
Build your Web Development
career with Wrox

Programmer’s Reference

P R O G R A M M E R T O P R O G R A M M E R T M

JavaScriptJavaScript

Cliff Wootton

e-book includes this complete reference and 2000+ extra entries

JavaScript Programmer's Reference

Cliff Wootton

Wrox Press Ltd. 

JavaScript Programmer's Reference

© 2001 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of

brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either

express or implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,

Birmingham, B27 6BH, UK
Printed in the United States

ISBN 1-861004-59-1

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits
Author Technical Reviewers
Cliff Wootton Alex Abacus

Jonny Axelsson
Category Manager Chong Chang
Dave Galloway Andrew Van Heusen

Martin Honnen
Technical Editors Ron Hornbaker
Timothy Briggs Kenneth Lo
Howard Davies Jim Macintosh
Phillip Jackson Jon Stephens
Amanda Kay Peter Torr
Simon Mackie Chris Ullman
Chris Mills Paul Vudmaska
Peter Morgan Paul Wilton

Project Manager Figures
Chandima Nethisinghe Shabnam Hussain

Production Coordinator Cover
Tom Bartlett Shelley Frazier

Additional Layout Proofreaders
Simon Hardware Ian Allen
Pippa Wonson Christopher Smith

Agnes Wiggers
e-Book Production
Tom Bartlett Index

Andrew Criddle
Production Manager
Simon Hardware

About the Author
Cliff Wootton lives in the south of England and works on multimedia systems and content management
software for large data driven web sites. Currently he is developing interactive TV systems for BBC
News Online in London (http://www.bbc.co.uk/news) and previously worked for other commercial
broadcasters on their web sites. Before that he spent several years developing geophysical software and
drawing maps with computers for oil companies.

Cliff is married with three daughters and a growing collection of bass guitars.

Acknowledgements
It's hard to believe I've actually reached the stage of writing the introductory pages to this book. It's been
a long process and I don't think I would have reached this point without the help of Tim Briggs at Wrox,
who very gently urged me onwards and gave me encouragement when I needed it. Tim's contribution to
this project was vital to its success because he developed the process which converted my DOCBOOK
output into something the Wrox editors could turn into a book. Tim also prepared the CD-ROM content
from the same XML files; truly amazing!

Thanks also to all the other folks at Wrox who have helped, organised, checked and collated my material
to present it in the form you now see it. Grateful thanks to my reviewers, who in a very short time
provided me with some useful guidance and support; in particular Jon Stephens and Martin Honnen,
who also provided some amazingly clever example code fragments for use as examples.

There are many other people who contributed without realising it. In particular Nick Cohen (formerly of
the BBC and now at Turner Broadcasting) who provided some helpful insights into TV set-top-box
workings. Also Matt Karas and Emyr Tomos (both ex-BBC, now at Talkcast) who threw down the
gauntlet of several interesting challenges for me to implement on the BBC News Online web site. I also
wouldn't be sitting here if it weren't for Bruce Morris at Carlton Online. It was through the happy chance
of an article I wrote for Bruce's Web Developer's Journal (WDJ) web site that led to Wrox contacting me
and the BBC inviting me to do some JavaScript work. What an amazing thing the web is.

Most importantly I dedicate this book to my family. To my wife, Julie and my daughters Hannah, Lydia
and Ruth who kept me going with cups of coffee, hugs and the occasional giggle when they saw the
photograph of me for the front cover.

http://www.bbc.co.uk/news

Introduction
The JavaScript language is constantly developing, and continues to increase in popularity. Its
evolution into a general purpose scripting language from what started life purely for scripting web
browsers, is a great success story. You can now find JavaScript interpreters in many different
environments and there are sure to be other new and interesting uses for the language in the
future, especially now that embeddable interpreters are available.

In this book, we have attempted to snapshot the browsers that exist currently, which need to be
supported by web sites, and collate that information together in a form that has broad scope and is
deep enough to be useful on a day-to-day basis. As the language is growing all the time, this is
likely to be an ongoing task.

Who is This Book For?
The book is aimed at people who already have some knowledge of JavaScript and need a
companion volume to their daily work. It is primarily aimed at the experienced practitioner, and so
does not attempt to be a tutorial for the beginner.

For a tutorial book, we suggest Paul Wilton's Beginning JavaScript
(Wrox Press, ISBN 1-861004-06-0).

Typical uses of the book include times when you:

❑ Need to check out the specific details of a particular language construct or object property

❑ Know what you want to do, but want to know how JavaScript helps you achieve that

❑ Want information on cross-browser compatibility issues for your script

❑ Have encountered a problem in your script and need help to debug it

One important motivation I had for writing this book was to reduce the amount of material I have
to carry around when I'm working on projects in my clients' offices. My library now contains
several shelves devoted purely to JavaScript, and in researching this book, I ended up with many
megabytes of material. There have been many fine books written about JavaScript but I simply
cannot carry them around on the train, even with a large rucksack! So, I set out to try and distil
enough useful information into one book and organize it so that the information is easy to find. I've
also put in material on issues that I've encountered in discussions with other programmers.

JavaScript Programmer's Reference

2

The Structure of the Book
To make it easy to navigate through the topics, titles describe the topic content and the topic type
and are organized alphabetically. Where a topic might be referred to using several headings, a brief
entry in the cross-reference at the end of the book shows the main topic for that subject.

I used a great deal of software automation to manage the book content and the whole thing was
built in a database and exported as an XML file set using the DocBook DTD. There are now in
excess of 3500 individual topics in this work. That is more than twice as many as we have room for
in the printed book, so we’ve had to put a useful subset of the reference into the printed book, and
the complete set of material onto the CD-ROM, which is available both in PDF and HTML formats.
Some additional reference information that is not strictly part of the JavaScript language, but that
you may find useful, is also included, such as country codes and MIME types.

Where we discuss an object all the important properties, methods, events, and any supporting material
are broken out into their own topics, and these detailed entries are included on the CD. Where objects
inherit properties and methods, they are listed in the object coverage, but to avoid duplication the
information about the inherited properties is described as a member of the super-class. This slightly
detracts from the lexical referencing but it saves space. In some cases these inherited
properties/methods are deemed important enough to merit a cross-referencing entry of their own.

This allows us to indicate availability of features at a very fine level of detail. Within each topic we
can also discuss bugs, gotchas, and areas of difficulty in a focused way.

Language syntax is illustrated by way of example code fragments that show how to access an
object, method, or property. More extensive examples are given where necessary.

Because of the scoping rules, properties are available without the need for the window object to be
specified as a prefix. Thus navigator as a topic is available under the window.navigator topic
as well. Once you have found an entry topic, you can then use the cross-referencing listings to
locate other related material.

The book content was developed inside a database system, which provided tools to relate topics.
The benefit is a rich source of cross-referencing links between topics. The cross-reference in the
printed book is complete; that is, it also includes entries found only on the CD. The italicized cross-
references in the printed book can also be found in the printed book.

We will now look at some of the 'features' of JavaScript programming, as an introduction to what
topics in the book will address.

Differences between Browsers
For some time, the most popular browsers have been Netscape Navigator 4.7 and Microsoft
Internet Explorer 5.0 (MSIE). Other, newer browsers make a point of being standards compliant
and so if your script conforms to the standards for core JavaScript as laid down by ECMA and the
W3C DOM specifications, it should function correctly.

However, the dominant browsers have for a long time been competing with one another to add
new features. Architecturally, this means their browsers have each gone in a completely different
direction. The penalty has been that support for various language features has been implemented
in each browser in ways that makes it difficult to use in a portable way. Indeed, to make use of
some features requires twice the work, since the same code has to be written in two different ways
and called after detecting which browser is being used.

Introduction

3

Because of the proliferation of browser versions and platforms, features are generally referred to as
being available in the revision in which they were first introduced. As the Netscape browser is
available on so many different platforms, to test for compliance across all platforms would require
a test suite of a dozen machines and 30 or more different installations of browser applications.
Indeed, when building such a test suite just prior to starting on this book, I found more than a
dozen distinctly different browser versions just for the Macintosh platform and many more than
that for Windows. Similarly, MSIE comes in a bewildering variety of versions and platform
variants. In addition, the JScript interpreter is a replaceable component that can be upgraded
without changing the containing browser.

Browsers and Standards
There is still much that is ambiguous or not yet defined in the standards and the browser manufacturers
continue to add new features in competition with one another. Even though they are standards
compliant at a functional level, there are still significant differences if you 'look under the hood'.

We have included coverage of the following standards:

❑ ECMAScript core language up to edition 3 of the standard

❑ DOM coverage to level 1

❑ Some DOM coverage of level 2 where implemented in Netscape 6

❑ Discussion of the features being added at DOM level 3

JavaScript implementations we cover include:

❑ Netscape 3.0, 4.0, 4.05, 6.0 (the final release came out as we went to press)

❑ MSIE version 3.0, 4.0, 5.0, 5.5

❑ Opera 3, 4, 5

❑ Netscape Enterprise Server

By implication that means we cover JavaScript versions up to 1.5 and JScript up to 5.5. The
coverage of Netscape 6.0 is based on it supporting the W3C DOM standards and several bugs in the
currently released version prevented the verification of some functionality although that may be
platform dependent. There are also some new and unexpected features.

We concentrate our discussions on the peculiarities of Netscape and MSIE because the other
browsers that support JavaScript attempt to provide a fault-free standards-based implementation.
Since this is a sub-set of the functionality of Netscape and MSIE, other platforms should be
adequately covered.

Features and Versions
There are now a wide variety of sources of information about JavaScript and they don't all agree. In
particular there is some uncertainty over which release of JavaScript introduces certain features.

The source material was assimilated by examining the standards documents and by inspecting
objects with fragments of JavaScript. Then, the availability of features was checked against several
alternative reference works. Occasionally, when a consistency error showed up, it was necessary to
go back to the browser and test for the availability of a property or method.

JavaScript Programmer's Reference

4

Where there is some room for doubt, we have documented the release at which the feature became
useful. This is because in earlier releases it may have had a serious flaw or been significantly
revised later to make it work properly. Any implementation prior to that may be unreliable. So
where we may appear to disagree with other commentators our coverage is based on whether it is
practical to use a particular feature at a certain release.

Some browser features are available at an earlier release on some platforms than others are. We take the
Windows 32-bit release as our baseline although significant testing was also done on the Macintosh
versions, which disappointingly lagged somewhat in performance and feature availability. Both
platforms exhibited instabilities and crash-prone behavior but in quite different areas of the language.

As there are so many variants of the browsers, the availability matrix for objects and their member
properties/methods is huge and requires a large amount of work to test on all the available
combinations. So far, no single reference source has proven to be error free and whilst the
information here has been examined and cross-checked it is still likely that there are errors. If, in
your work, you disagree with the information provided here, please send feedback (see the end of
the Introduction for how to do this).

Core JavaScript
At first glance, the JavaScript environment appears to be built around a small core of objects and it
is easy to fall into the trap of assuming the language is small and compact. That is certainly true if
you are only considering core JavaScript functionality. The core language is defined by ECMA and
both Netscape and MSIE both claim to be ECMA compliant. They may well be, but you cannot
write much useful JavaScript for deployment in a web page by confining yourself only to the
functionality of the ECMA standard. It is at that point that the two browsers begin to diverge.

DOM Support
Likewise, both browsers (MSIE 5 upwards and Netscape 6) claim to be DOM compliant. Browser
support for the DOM is slowly converging but if you need to do any esoteric code development
that involves DOM traversal and class names, they are still somewhat different.

MSIE implements a DOM model that is structurally right, but the class names of the objects that
comprise that model are certainly not correct and do not conform to the DOM standard. Netscape 6
implements a DOM compliant model that does use the correct class names. Another slight
difference is that MSIE implements distinctly different classes for some objects whereas Netscape
Navigator instantiates the same class for several purposes.

These differences don't cause much grief to you when you are constructing simple scripts and web
page enhancements but can be quite a problem if you need to manipulate the DOM structure and
operate on objects by means of their class names. This difference did not become apparent until I
used inspection scripts to examine internal document structures.

There are also areas where DOM specifies objects in a way that the browsers can implement
ambiguously. For example, DOM describes documents as being a generic document class with an
HTML document as a sub-class. Browsers simply provide a single document class with no access to
the two separate class types.

Introduction

5

Object Classes
You might also assume that there is a small and finite set of different object types. However if you
inspect the constructor properties and examine the function names, you will find the opposite, there are
a large number of object types. For example, the applets property that returns a list of applets in a
document will give you an AppletArray object and not a Collection object in Netscape. Trying to
work out class names on MSIE is a bit more problematic and it tends to provide generic Collection
objects instead. By building fragments of JavaScript to inspect objects, you can determine these class
names and learn a lot about how the browser maintains the internal model of the page.

The topics are constructed around a browser-centric model. The objects are defined based on their
instantiation by an HTML tag in a web browser window. MSIE creates a distinct object class for each
tag. Netscape does a similar trick, but not so convincingly in earlier versions. At version 6, the objects
are DOM compliant and named differently to those in MSIE and earlier Netscape browsers. Netcsape
6 is so different as to be a new browser with little similarity to the earlier versions of Netscape.

There is an emerging standards-based model that frames the object hierarchy much more logically
and, while it is still evolving, it may become a more robust way of describing the catalog of
available classes. For now, though, the web and browser dominate use of JavaScript, so this seems
like the more appropriate model.

Document Objects
Another area of debate is the document object. Typically, the previous documentation describes access
to it as if there is only one document object. This is true within the context of a single script within a
page. However, it is not necessarily true of a window in a web browser. A window may contain many
frames or layers. Each one will have its own private document object. If you are writing scripts that
operate across multiple frames or windows, you may refer to several document objects, so the syntax
examples are designed to accommodate the different ways in which objects can be accessed.

The Future
JavaScript is becoming available in an ever-wider variety of applications. It is used in:

❑ PDF forms for validation

❑ For modifying the behavior of the GUI in developer tools

❑ Embedded interpreters in cell phones and television set-top boxes

There was not space enough or time to cover these extensively. They are also changing continually
and will not be stable enough to document for a while yet.

What Do I Need to Use This Book?
All that is needed to use this book is a text editor and a JavaScript-enabled browser, such as
Microsoft Internet Explorer or Netscape Navigator.

To use the CD you will need a browser to read the HTML files and a copy of Adobe Acrobat
Reader/Adobe Acrobat eBook Reader to read the PDF files, which are freely available from
www.adobe.com. To make navigation easier, the PDF files contain interactive bookmarks,
thumbnails, and hyperlinks in the entries.

All of the code examples given in the book are available on the CD, and are also available to
download from our web site, www.wrox.com.

JavaScript Programmer's Reference

6

Conventions Used in This Book
The convention used for syntax naming is that a variable created within the local scope would be
prefixed with my while a global variable would be prefixed with the. Parameters passed into
function and method calls are prefixed with a, an, or some.

The syntax description for an object shows how a reference to an object of that class can be
retrieved via a property or method on another object. The syntax for properties and methods show
them as members of an object that is referred to with a variable. This manifests itself as an object
reference like this:

myDocument = document
myDocument = myElement.parentNode
myDocument = myFrame.document
myDocument = myLayer.document

Then a property reference looks like this,

myDocument.cookie

and not:

document.cookie

Of course you can omit the indirection through a referencing variable and any of these would be
equally valid:

document.cookie
myElement.parentNode.cookie
myFrame.document.cookie
myLayer.document.cookie

But by using the indirection, the syntax descriptions for the member properties and methods
are simplified.

In the tables, we have used the abbreviations N for Netscape, NES for Netscape Enterprise Server,
and IE for Internet Explorer.

As for styles in the text:

❑ Filenames, and code in the text appear like so: dummy.xml

❑ Test on user interfaces, and URLs, are shown as: File/Save As…

Introduction

7

Customer Support
Wrox has three ways to support books. You can:

❑ Post and check for errata at www.wrox.com

❑ Enroll at the peer-to-peer forums at p2p.wrox.com

❑ Email technical support a query or feedback on our books in general

Errata
You can check for errata for the book at our web site; www.wrox.com, simply navigate to the page
for this book. There will be a link to the list of errata.

P2P Lists
You can enroll in our peer to peer discussion forums at p2p.wrox.com. The JavaScript list is
available in the 'Web Design' section.

Email Support
If you wish to point out an errata to put up on the website or directly query a problem in the book
with an expert who knows the book in detail, then e-mail support@wrox.com. A typical email
should include the following things:

❑ The name of the book, the last four digits of the ISBN and the entry name for the problem in the
Subject field

❑ Your name, contact info and the problem in the body of the message

You may want to tell us your opinion of this book, or you may have ideas about how it can
be improved, in which case, e-mail feedback@wrox.com. We will do our utmost to act upon
your comments.

A object (Object/HTML)
An object that represents an <A> element when instantiated in MSIE.

Availability: JScript – 1.0
Internet Explorer – 3.02

Inherits from: Element object, Node object

IE myA = myDocument.all.anElementID

IE myA = myDocument.all.tags("A")[anIndex]

IE myA = myDocument.all[aName]

IE myA = myDocument.anchors.item(aName)[anIndex]

- myA = myDocument.anchors[aName]

- myA = myDocument.anchors[anIndex]

- myA = myDocument.getElementById(anElementID)

- myA = myDocument.getElementsByName(aName)[anIndex]

- myA = myDocument.getElementsByTagName("A")[anIndex]

IE myA = myDocument.links.item(aName)[anIndex]

- myA = myDocument.links[aName]

JavaScript
syntax:

- myA = myDocument.links[anIndex]

HTML syntax: <A> ...

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, dataFld, dataSrc, hash, host, hostname, href, Methods,
mimeType, nameProp, pathname, port, protocol, protocolLong, rel,
search, tabIndex, target

Event handlers: onBlur, onClick, onDblClick, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onSelectStart

See also: Element object, Input.accessKey, Map object, Anchor object

A

A – A object (Object/HTML)

9

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey - 3.0 + - 4.0 + - 1 + - -
dataFld - 1.0 + - 3.02 + - - - -
dataSrc - 1.0 + - 3.02 + - - - -
hash - 1.0 + - 3.02 + - - - -
host - 1.0 + - 3.02 + - - - -
hostname - 1.0 + - 3.02 + - - - -
href - 1.0 + - 3.02 + - 1 + - -
Methods - 1.0 + - 3.02 + - - - -
mimeType - 1.0 + - 3.02 + - - - -
nameProp - 1.0 + - 3.02 + - - - -
pathname - 1.0 + - 3.02 + - - - -
port - 1.0 + - 3.02 + - - - -
protocol - 1.0 + - 3.02 + - - - -
protocolLong - 1.0 + - 3.02 + - - - -
rel - 1.0 + - 3.02 + - - - -
search - 1.0 + - 3.02 + - - - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
target - 1.0 + - 3.02 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onBlur - 3.0 + - 4.0 + - - - Warning
onClick - 1.0 + - 3.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onFocus - 3.0 + - 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 1.0 + - 3.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

JavaScript Programmer's Reference

10

ABBR object (Object/HTML)
An object representing the HTML content (an abbreviation) delimited by the <ABBR> HTML tags.

Availability: HTML version – 4.0
JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object, Node object

IE myABBR = myDocument.all.anElementID

IE myABBR = myDocument.all.tags("ABBR")[anIndex]

IE myABBR = myDocument.all[aName]

- myABBR = myDocument.getElementById(anElementID)

- myABBR =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myABBR =
myDocument.getElementsByTagName("ABBR")[anIndex]

HTML syntax: <ABBR> ... </ABBR>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

See also: style.speak, Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

A – about: URL (Request method)

11

about: URL (Request method)
This is a special kind of URL that fetches content from a storage area inside the Netscape browser
instead from using HTTP to get it from a web server.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

This is a special request method provided by the Netscape browser to gain access to local client-
side resources. The resources are loaded from inside the application itself.

In the Macintosh version of Navigator, this means they are stored in the resource fork of the
browser application. If you need to deploy a custom version of Navigator within an intranet
environment, with some care you can modify these resources with a resource-editing tool, such as
ResEdit. Always work on a copy of the application and test the changes thoroughly.

On other platforms, the resources are likely to be stored in files located in folders adjacent to the
application. You will need to study your own copy of Netscape to see what you can change.

These special URLs are mostly not present in early versions of MSIE, although there will
be some internal resources, which may provide customization opportunities. MSIE also
supports an about:blank URL that provides a blank page. There may be others hidden
away inside the application.

You may also be able to obtain administration tools from Netscape and Microsoft to carry out
legitimate customizations on the browsers before deploying them throughout your organization.

The following special URLs seem to work when typed into the location box:

URL Description

about:logo Netscape logo
about:mozilla A fire & brimstone quote from the book of Mozilla (Yes it's really there –

at least on some versions)
about:authors Shows a cryptic message about the page having been removed, although

the authors.html file is still present inside the application
about:cache Displays a disk cache report
about:document Displays the document info console
about:fonts Displays the font info console
about:global A global history report
about:image-cache A report on the internal image cache
about:license A hyperlink to the Netscape license document
about:mailintro Displays the Netscape mail info page

JavaScript Programmer's Reference

12

URL Description

about:memory-cache A report on the memory cache
about:pics Generates a security exception
about:plugins A page of information about the plugins
about:security?advisor=XXX Brings up a security console where XXX indicates

the window to operate on.
about:security?banner-insecure Serves an unlocked padlock image
about:security?banner-secure Serves a locked padlock image
about:security?issuer-logo=XXX Returns a graphic where XXX identifies which one
about:security?subject-logo=XXX Returns a graphic where XXX identifies which one
about:coslogo2 Cosmo logo
about:fclogo Full Circle software logo
about:hslogo Beatnik logo
about:hype An audio clip
about:insologo Inso logo
about:javalogo Java compatible logo
about:litronic Litronic logo
about:mclogo Marimba Castanet logo
about:mmlogo Macromedia logo
about:ncclogo Netcast logo
about:odilogo Object Design logo
about:qtlogo Apple QuickTime logo
about:rsalogo RSA secure logo
about:symlogo Symantec logo
about:tdlogo TrueDoc logo
about:visilogo VisiGenic logo
about:blank Presents a blank page on Netscape Navigator 3 and

MSIE version 5; used to create a blank page when
a new window is opened

Some of these URLs can be used in frames, but others can't. A few can be used as HREF values.
JavaScript complains that the about: request method is illegal. This means you cannot change
the location.href within a page to any of the "about:" URLs. However, you might be able to
write some innerHTML content into a <DIV> or to place a link to these assets.

Many of the built-in assets are used as image sources in the about page. It's possible you might
want to display the Netscape logo. If you are aware that you are using software provided by the
other third parties, you might (if they give you permission) place their logo on the screen when you
are using features of their software. You should ask first, although Netscape probably won't mind
their logo being served like this.

A – abstract (Reserved word)

13

The interesting thing about this is that you are effectively serving assets out of a static cache in the
client file system.

The URL that points at the license document may be useful as it is possible you might want to
display the Netscape license if you are redistributing the browser.

The about:plugins URL yields a page containing some useful JavaScript that displays the
plugins page. You may find some useful techniques in here for managing plugin facilities although
they may be Netscape compatible only.

Mostly, these special URLs will be useful for debugging. Getting details of the disk cache, for
example, may be useful. Pulling up the JavaScript debugger page if you detect an error in your
script might also be a cool trick.

The MSIE and Netscape browsers can both use the about:blank URL value as a default page
when the browser is started up.

Warnings:
❑ The UniversalBrowserRead privilege is required for access to internal browser values and state

information such as the cache contents.

See also: javascript: URL, nethelp: URL, UniversalBrowserAccess,
UniversalBrowserRead, URL

abstract (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

AbstractView object (Object/DOM)
An object that belongs to the DOM level 2 views module.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

N myAbstractView = myMouseEvent.view
JavaScript syntax:

N myAbstractView = myUIEvent.view

JavaScript Programmer's Reference

14

This is part of a new suite of functionality introduced at DOM level 2, which provides a way of
looking at documents from alternative points of view. At present only the Abstract and Document
views are standardized and, because the capabilities are quite new, implementations may be
incomplete at this stage.

See also: MouseEvent object, MouseEvent.initMouseEvent(),
UIEvent object

Accessor method (Definition)
A method for accessing publicly available object properties.

Availability: ECMAScript edition – 2

A method used to store or retrieve property values contained in objects.

In ECMAScript-compliant implementations, this is accomplished with internal functions named
Get() and Put().

If you add new properties to an object of your own, you may want to implement functions that operate
by using the 'this' variable to access properties. These functions are then associated with the object or
its prototype, so that they can be shared. They are then referred to as methods rather than functions.

See also: function(...) ..., Get(), Method, Put()

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

ACRONYM object (Object/HTML)
An object representing the HTML content delimited by the <ACRONYM> HTML tags.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object, Node object

IE myACRONYM = myDocument.all.anElementID

IE myACRONYM = myDocument.all.tags("ACRONYM")[anIndex]

IE myACRONYM = myDocument.all[aName]

- myACRONYM = myDocument.getElementById(anElementID)

- myACRONYM =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myACRONYM =
myDocument.getElementsByTagName("ACRONYM")[anIndex]

A – Activation object (Object/internal)

15

HTML syntax: <ACRONYM> ... </ACRONYM>

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

See also: style.speak, Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Activation object (Object/internal)
The activation object is created when the flow of control first enters an execution context.

Availability: ECMAScript edition – 2

The activation object is created when the flow of control first enters an execution context for
declared function code, anonymous code or implementation-supplied code.

JavaScript Programmer's Reference

16

As the activation object is created, it is associated with the execution context. On
initialization, it has a property called arguments that cannot be deleted and that refers
to an arguments object.

This activation object is then used as the variable object for instantiating all the argument
variables. The activation object is discarded when the function returns its result to the caller.
The activation object is an internal mechanism and so cannot be passed to the outside world,
although members of the activation object may well be accessible to a running script.

See also: Execution context, function(…) ...

Cross-references:
ECMA 262 edition 2 – section – 10.1.6

ECMA 262 edition 3 – section – 10.1.6

Active Server Pages (Product)
A Microsoft web server product.

This is a server-side programming framework that supports JavaScript. More accurately, it
supports JScript, which is Microsoft's flavor of JavaScript.

For more information, see ASP 3.0 Programmer's Reference, ISBN 1-861003-23-4 from Wrox Press.

See also: BODY.recordNumber, Event.bookmarks[], Event.boundElements[],
Input.recordNumber, SCRIPT.recordNumber, Server-side JavaScript,
TextStream object

ActiveX (Product)
This is a Microsoft technology for embedding and sharing code.

In MSIE (on Windows), interactions between scripts and applets takes place by means of ActiveX.
Microsoft prefers to treat applets as a special kind of ActiveX object. Netscape shows a similar
preference towards treating applets as Java components.

If you are developing web-based applications for a captive audience who you know will be
running MSIE on Windows, then this technology may be appropriate for your project.

However, ActiveX is not supported on Netscape and, in fact, is unlikely to be well supported on
any other browsers aside from MSIE.

Coupling this with the fact that it is not supported outside the Windows platform, you will almost
certainly find Java to be a more portable solution. The Java solution is also secured better than
ActiveX, which can expose the internals of your system in ways you would rather avoid.

A – ActiveXObject object (Object/JScript)

17

For a high degree of Windows integration and a very Microsoft-oriented solution, ActiveX is ideal.
For portability across platforms and browsers, it's likely you'll do much better to select Java.

See also: Applet object, Dictionary object, Glue code, LiveConnect

Web-references:
http://msdn.microsoft.com/scripting/

ActiveXObject object (Object/JScript)
A Windows and MSIE specific object that allows various document components to be embedded.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myActiveX = ActiveXObject
JavaScript syntax:

IE myActiveX = new ActiveXObject
(anApplication)

Argument list: anApplication References an external application

Collections: Depends on the object created by the constructor

This is an object for embedding other applications into web pages on the Windows platform. The
example shows the creation of an object that is managed by the Word application.

This is also used to create Dictionary objects by using the Scripting application to create a new
Dictionary object.

Warnings:
❑ This is totally non-portable and non-standard, but if your scripts are likely to be deployed in a

Windows-only environment, it may be useful.

❑ Using this construct in client-side scripting is subject to security restrictions. If a script in a web
browser could just instantiate Word, then that implies that it has rights of access to the local file
system. The normal IE security settings disallow that level of access.

Example code:
// An example that opens a Word document and writes
// text into it.
var myActiveX = new ActiveXObject("Word.Document");
myActiveX.Application.Visible=true;
myString="Some text to be written to the document";
// now write the text to the word document
myActiveX.application.selection.typeText(myString);

See also: Dictionary object, OBJECT object

http://msdn.microsoft.com/scripting/

JavaScript Programmer's Reference

18

ActiveXObject() (Constructor)
Used for manufacturing new ActiveX objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE new ActiveXObject(anObjectType)
JavaScript syntax:

IE new ActiveXObject(anObjectType,
aLocation)

anObjectType What sort of application and object class type
to be created

Argument list:

aLocation A server name where the source object is
located

You can use this constructor for creating new objects. You need to specify the kind of object to be
created in the string argument value.For example, to create a Microsoft Word document, pass the
string "Word.Document" to the constructor.

You can also specify a second optional argument to locate the application on a remote server.

Here are some example applications you can invoke:

❑ Word.Document – Create an empty Word document

❑ Excel.Sheet – Create an empty Excel spreadsheet

❑ Microsoft.XMLDOM – Create a new XML document

Other alternatives depend on the applications you have installed on your client system.

See also: GetObject()

Add (+) (Operator/additive)
Add two numeric operands together. See concatenation for Strings.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 + anOperand2

anOperand1 An expression that evaluates to a numberArgument list:
anOperand2 Another expression that evaluates to a

numeric value

A – Add (+) (Operator/additive)

19

The addition operator adds two numeric values together or concatenates one string onto another.

When used with numeric operands, the plus sign adds the values together.

The addition is commutative, meaning that the order of the operands does not affect the outcome
of the calculation. However, the calculation is not always associative (so (a+b)+c is not always
the same as a+(b+c)) and so the precedence established with the grouping operator might affect
the outcome.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

If either operand is NaN, the result will be NaN.

The sum of infinity and minus infinity will be NaN; they do not cancel one another out.

The sum of two infinity values of the same sign will be the infinity of that sign.

The sum of infinity and a finite value is equal to the infinite operand.

Internally the sum of two negative zero values is -0. However, the sum of two positive zero
value or a positive and negative zero value added together will be +0. At the scripting level
however, you cannot determine whether a zero is positive or negative, but its sense may affect
subsequent computations.

The sum of zero and a non-zero value will be the non-zero value.

The sum of two non-zero finite values of the same magnitude but opposite signs will be zero.

Provided neither an infinity, a zero nor NaN is involved, adding two finite values results in the sum
of the two values given that the result will be rounded to its nearest representable value. Where the
result exceeds the largest presentable value, infinity will be substituted. A negative infinity may
result from an underflow.

The addition/concatenation operator looks at the arguments and if either is a String already or
preferentially converts to one, then a concatenation occurs. If neither operator prefers to be a
String, then a Number conversion happens and the values are added.

See also: Add then assign (+=), Additive expression, Additive operator, Associativity,
Negation operator (-), Operator Precedence, String concatenate (+), Subtract (-),
Type conversion, Unary expression, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.6.1

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.6.1

Wrox Instant JavaScript, ISBN 1-861001-27-4 – page – 37

JavaScript Programmer's Reference

20

Add then assign (+=) (Operator/assignment)
Add two numeric operands and assign the result to the first. See concatenation for Strings.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 += anOperand2

anOperand1 An expression that evaluates to a numberArgument list:
anOperand2 Another numeric value

Add the right operand to the left operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 + anOperand2;

Although this is classified as an assignment operator, it is really a compound of an assignment and
an additive operator.

It also works with string values and will concatenate the second onto the first.

The associativity is right to left.

Refer to the operator precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

Example code:
// Initialize with numeric valuesmyVar1 = 100;myVar2 = 1000;
// After this myVar1 contains 1100, myVar2 is unchanged
myVar1 += myVar2;

See also: Add (+), Additive operator, Assign value (=), Assignment
expression, Assignment operator, Associativity, Concatenate then
assign (+=), Increment value (++), LValue, Operator Precedence,
Subtract then assign (-=)

A – Adding JavaScript to HTML (Advice)

21

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

Adding JavaScript to HTML (Advice)
The most popular use of JavaScript is in web pages. Adding it is quite simple.

To add JavaScript to a web page, you can use the following techniques:

❑ The <SCRIPT> HTML tag containing the script source text

❑ From an external file using the <SCRIPT SRC="filename.js"> HTML tag and attribute

❑ From an external file using the <SCRIPT ARCHIVE="" SRC=""> HTML tag and attributes

❑ With an event handler attribute

❑ In a javascript: URL

❑ By means of a JavaScript style sheet

❑ As a JavaScript entity value for an HTML attribute

❑ Within a conditional comment

Refer to the individual topics for specific details covering each case.

See also: <SCRIPT ARCHIVE="...">, <SCRIPT SRC="...">, <SCRIPT>, <STYLE
TYPE="...">, Conditional comment, Event handler, JavaScript entity,
javascript: URL

Additive expression (Definition)
This is an expression that adds or subtracts values.

Availability: ECMAScript edition – 2

Additive expressions use the additive operators to yield a result by operating on two values, which
may themselves be expressions.

See also: Add (+), Decrement value (--), Expression, Increment value (++),
Negation operator (-)

Cross-references:
ECMA 262 edition 2 – section – 11.6

ECMA 262 edition 3 – section – 11.6

JavaScript Programmer's Reference

22

Additive operator (Definition)
An operator that adds or subtracts values.

Availability: ECMAScript edition – 2

Here is a table summarizing all operators that can be classified as additive, even those which are
primarily classified in other categories:

Value Meaning

+ Add
- Subtract
+= Add and assign
-= Subtract and assign
++ Increment
-- Decrement

Additive operators perform numeric addition and subtraction or string concatenation depending
on the native type of the operands.

It might seem perverse to call a subtraction symbol an additive operator, but the word additive is
used in the same context as multiplicative when talking about division. That is, a negative value is
added to perform subtraction. It's all about the kind of logic used in the interpreter kernel.

See also: Add (+), Add then assign (+=), Arithmetic operator, Associativity,
Decrement value (--), Increment value (++), Negation operator (-),
Operator, Operator Precedence, Positive value (+), Postfix expression,
Prefix decrement (--), Prefix expression, Prefix increment (++), String
concatenate (+), String operator, Subtract (-), Subtract then assign (-=)

Cross-references:
ECMA 262 edition 2 – section – 11.6

ECMA 262 edition 3 – section – 11.6

ADDRESS object (Object/HTML)
An object representing the HTML content delimited by the <ADDRESS> HTML tags.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object, Node object

Table continued on following page

A – ADDRESS object (Object/HTML)

23

IE myADDRESS = myDocument.all.anElementID

IE myADDRESS = myDocument.all.tags
("ADDRESS")[anIndex]

IE myADDRESS = myDocument.all[aName]

- myADDRESS =
myDocument.getElementById(anElementID)

- myADDRESS = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myADDRESS = myDocument.getElementsByTagName
("ADDRESS")[anIndex]

HTML syntax: <ADDRESS> ... </ADDRESS>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

See Also Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

JavaScript Programmer's Reference

24

ADO (Product)
ActiveX Data Objects is a Microsoft technology for accessing data.

This is a technology that enables an ASP server to access data from a data source. It provides an
easy-to-use object interface to the OLE database access mechanisms.

The ADO object model is built around a set of objects of the following kinds:

❑ Command

❑ Connection

❑ Record

❑ Recordset

❑ Stream

The ADO object model includes the following collections containing objects of these types:

❑ Errors

❑ Fields

❑ Parameters

❑ Properties

This is all covered in greater depth in the Wrox book ASP 3.0 Programmers Reference, ISBN 1-861003-23-4.

See also: BODY.recordNumber, Event.bookmarks[], Input.recordNumber,
SCRIPT.recordNumber, Window furniture

Adornments (Definition)
The various control items that form the window border and can be selectively enabled as needed.

Aggregate type (Definition)
Data types built from several atomic components.

An aggregate data type is built by combining one or more atomic data types to build a more
sophisticated data type. In compiled non-object-oriented languages one might create structures as
aggregates of member variables. These are analogous to object classes.

Arrays are another example of an aggregate data type.

Other aggregate types include the various collection-based objects.

See also: Array object, Cast operator, Function object, Object object, Scalar type, Type

A – alert() (Method)

25

alert() (Method)
Present the alert dialog box to the user.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: undefined

- alert(aString)
JavaScript syntax:

- myWindow.alert(aString)

Argument list: aString Some text to display in the alert box

See Also Window.alert()

Alias (Definition)
An indirect reference to an object.

By assigning an object to a variable, you are not copying that object but instead making a reference to it.
A reference is sometimes called an alias. The same technique is used in Java, and in non-object-oriented
languages you accomplish something similar with pointers.

See also: Object

Alpha() (Filter/visual)
A visual filter for controlling transparency.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript Programmer's Reference

26

AlphaImageLoader() (Filter/visual)
An image is displayed in the object, with some additional control over how it is displayed.

Availability: JScript – 5.5
Internet Explorer – 5.5

See Also Filter – AlphaImageLoader()

Anchor object (Object/HTML)
An object representing an HTML <A> tag.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Inherits from: Element object, Node object

- myAnchor = myAnchorArray[aName]

- myAnchor = myAnchorArray[anIndex]

- myAnchor = myDocument.anchors[aName]

- myAnchor = myDocument.anchors[anIndex]

- myAnchor =
myDocument.getElementById(anElementID)

- myAnchor = myDocument.getElementsByName
(aName)[anIndex]

- myAnchor = myDocument.getElementsByTagName
("A")[anIndex]

- myAnchor = myDocument.links[aName]

- myAnchor = myDocument.links[anIndex]

IE myAnchor = myDocument.all.anElementID

IE myAnchor = myDocument.all.tags("A")[anIndex]

IE myAnchor = myDocument.all[aName]

IE myAnchor =
myDocument.anchors.item(aName)[anIndex]

JavaScript syntax:

IE myAnchor = myDocument.links.item(aName)[anIndex]

HTML syntax: <A> ...

aName An associative array reference to the anchor object.
aName The name property of the anchor object
anIndex An index into the anchors collection
someText The text (or innerText) property of the anchor

Argument list:

anElementID The ID value of an Element object

Table continued on following page

A – Anchor object (Object/HTML)

27

Object properties: accessKey, charset, coords, dataFld, dataSrc, hash, host,
hostname, href, hreflang, Methods, mimeType, name, nameProp,
pathname, port, protocol, protocolLong, recordNumber, rel,
rev, search, shape, tabIndex, target, text, type, urn, x, y

Object methods: blur(), focus()

Event handlers: onClick, onMouseDown, onMouseOut, onMouseOver, onMouseUp

See Also: Filter – Alpha()

This object represents a named location in the HTML document. Only those <A> HTML tags that
have a NAME attribute will have anchor objects created for them. All the anchors are listed in the
anchors[] array object that belongs to the document object that represents the HTML.

Although the <A> tag is also used to create links using the HREF attribute, they are not anchors
unless they are named. Any <A> tags that have HREF attributes (whether or not they have NAME
attributes) will be listed in the links[] array.

In Netscape, you can construct new instances of the Anchor object, but there is no constructor
property in MSIE to support this.

<A> tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

Warnings:
❑ If you put an anchor object into a document.write(), in Netscape you get a string

containing the object class. In MSIE, you will get the HREF string if there is one and an
empty string if there isn't.

❑ MSIE provides access to properties that would normally be considered part of the link object.
Internally MSIE probably maintains a single object type for anchors and links, whereas Netscape
implements two quite different classes.

❑ Netscape supports an associative reference to an anchor object within the anchors[] array
according to the value of its NAME tag attribute. MSIE does not support this means of locating an
anchor object in quite the same way.

❑ Note that although the syntax examples illustrate the use of an innerText property, Netscape does
not support this mode of access and it will generate an error.

Example code:
<!-- Example showing how to dynamically replace -->
<!-- the anchor text -->
<HTML>
<HEAD></HEAD>
<BODY>
Click here

JavaScript Programmer's Reference

28

Click here

Click here

<HR>
<SCRIPT>
myLength = document.anchors.length;
for (myEnumerator=0; myEnumerator<myLength; myEnumerator++)
{
 document.anchors[myEnumerator].innerText =
document.anchors[myEnumerator].name;}
</SCRIPT>
</BODY>
</HTML>

See also: Document.anchors[], Document.links[], Element object,
Element.all[], Input.accessKey, LINK object, Location object,
String.anchor(), Subclasses, Superclasses, URL, Url object,
Window.scrollTo()

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
charset 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
coords 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
dataFld - 3.0 + - 4.0 + - - - -
dataSrc - 3.0 + - 4.0 + - - - -
hash 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
host 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
hostname 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
href 1.2 + 3.0 + 4.0 + 4.0 + - 1 + - Warning
hreflang 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
Methods - 3.0 + - 4.0 + - - - -
mimeType - 3.0 + - 4.0 + - - - Warning,

ReadOnly
name 1.2 + 3.0 + 4.0 + 4.0 + - 1 + - Warning
nameProp - 3.0 + - 4.0 + - - - ReadOnly
pathname 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
port 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
protocol 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
protocolLong - 3.0 + - 4.0 + - - - ReadOnly
recordNumber - 3.0 + - 4.0 + - - - ReadOnly
rel 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
rev 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Table continued on following page

A – Anchor() (Constructor)

29

Property JavaScript JScript N IE Opera DOM HTML Notes

search 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
shape 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
target 1.2 + 3.0 + 4.0 + 4.0 + - 1 + - Warning
text 1.2 + - 4.0 + - - - - Warning,

ReadOnly
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
urn - 3.0 + - 4.0 + - - - -
x 1.2 + - 4.0 + - - - - Warning,

ReadOnly
y 1.2 + - 4.0 + - - - - Warning,

ReadOnly

Method JavaScript JScript N IE Opera DOM HTML Notes

blur() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
focus() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.2+ 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOut 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Anchor() (Constructor)
You can construct new Anchor objects in Netscape.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Anchor object

N new Anchor

N new Anchor()
JavaScript syntax:

N new myAnchor.constructor

Although you can construct new anchors in Netscape, inserting them into a document is somewhat
problematic since the correct way to do that would be to rewrite a fragment of HTML. You may
find that replacing an anchor object in the document.anchors array links your new object to the
<A> HTML tag at the appropriate location in the document.

JavaScript Programmer's Reference

30

Warnings:
❑ This is only available on Netscape and is therefore not recommended for use in deployable

applications. MSIE generates a run-time error if you attempt to make a new Anchor object.

See also: Anchor object, Anchor.host

Anchor.accessKey (Property)
A key that needs to be pressed before the anchor object will respond to data entry.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myInputObject.accessKey

This is an extension that allows the anchor elements to be deadlocked unless a certain key is
held down.

On some browsers and operating systems, you may need to hold down one of the modifier keys for
this to work. The modifier key required depends on the environment you are using.

Warnings:
❑ This is not supported in some versions of the MSIE browser on Macintosh.

Anchor.blur() (Method)
Remove input focus from the Anchor object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myInputObject.blur()

This will trigger the onblur event handler function attached to the onblur property of the object.

A – Anchor.charset (Property)

31

Anchor.charset (Property)
This property indicates the character encoding of the document at the location specified by the URL.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.charset

This would contain the character set being used by the document. For example the value "iso-8859-1"
is likely to be returned, but the local variant of the browser and OS may affect the value you get.

This property might contain a value such as:

csISO5427Cyrillic

Details of other aliases can be located at the IANA registry. In that registry are listed the names and
aliases of a wide variety of character sets. Even though there are nearly 800 names and aliases, it
seems on inspection that there are items missing.

See also: LINK.charset, Url.charset

Web-references:
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Anchor.coords (Property)
This defines an area map within an image that is inside the <AREA> HTML tags.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.coords

When a shaped area is defined within an image map, the rectangle around the shape is defined
with the coords property. The value is defined with the COORDS HTML tag attribute.

See also: Anchor.shape, Area.coords, Url.coords

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

JavaScript Programmer's Reference

32

Anchor.dataFld (Property)
This binds the anchor object to a remote data source in MSIE.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myInputObject.dataFld

This is part of the MSIE data-binding mechanism that associates a column name in the data source
with the value property of an Anchor object. You must also set the dataSrc property for the
object. Normally, both the dataFld and dataSrc values would be defined with the DATAFLD and
DATASRC HTML tag attributes in the document source.

Note that the value is case-sensitive and must refer to a column that exists within the data source.

Setting both the dataFld and dataSrc properties to an empty string will disconnect the element
from the database.

Anchor.dataSrc (Property)
The name of a remote ODBC data source is stored in this property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myInputObject.dataSrc

This is part of the MSIE data-binding support. It contains the name of an ODBC data source (which
might be any kind of SQL database that supports such an adapter). The data source and element
are bound together with each column of the data source providing a source value to different
element objects through their dataFld property.

Normally, both the dataFld and dataSrc values would be defined with the DATAFLD and
DATASRC HTML tag attributes in the document source.

Setting both the dataFld and dataSrc properties to an empty string will disconnect the element
from the database.

A – Anchor.focus() (Method)

33

Anchor.focus() (Method)
Brings input focus back to the anchor object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myInputObject.focus()

The receiving Anchor object will receive a Focus event trigger and execute its function referred to
by the onfocus event handler property.

The element that previously had focus (if any element did) will receive a Blur event trigger.

Anchor.hash (Property)
On MSIE the Url.hash property is also available as the Anchor.hash property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.hash
JavaScript syntax:

- myAnchor.hash = newValue

HTML syntax:

This yields the hash suffix of the HREF value in an <A> tag.

You can assign a new value to this property, which will become a new anchor location within
the document.

Warnings:
❑ This attribute may not work correctly when URLs are accessed from one frame to another in some

versions of MSIE. You should check your target platforms for compliance.

❑ If you assign a value to this property in MSIE, you should omit the leading hash.

❑ Since the hash property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Url object to be able to work across MSIE
and Netscape.

❑ As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

JavaScript Programmer's Reference

34

See also: Anchor object, Anchor.host, Anchor.hostname,
Anchor.href, Anchor.pathname, Anchor.port,
Anchor.protocol, Anchor.search, Anchor.target, URL,
Url.hash, Url.host, Url.hostname, Url.href,
Url.pathname, Url.port, Url.protocol, Url.search,
Url.target

Anchor.host (Property)
On MSIE the link.host property is also available as the anchor.host property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.host
JavaScript syntax:

- myAnchor.host = newHostPort

HTML syntax:

This yields the host and port value of the HREF value in an <A> tag.

You can redefine the host to request the URL by assigning a new value to this property.

Warnings:
❑ Since the host property of an Anchor object is not portable in all older browser versions, you

should use the pathname property of the corresponding Url object to be able to work across MSIE
and Netscape.

❑ As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also: Anchor object, Anchor(), Anchor.hash, Anchor.href,
Anchor.pathname, Anchor.port, Anchor.protocol,
Anchor.search, Anchor.target, URL, Url.host

A – Anchor.hostname (Property)

35

Anchor.hostname (Property)
On MSIE the link.hostname property is also available as the anchor.hostname property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.hostname
JavaScript syntax:

- myAnchor.hostname = newHostname

HTML syntax:

This yields the host value of the HREF value in an <A> tag.

You can redefine the hostname to request the URL by assigning a new value to this property.

Warnings:
❑ Be careful not to assign a port number with the host name, otherwise your new URL may acquire

two port numbers, which makes it invalid.

❑ Since the hostname property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Url object to be able to work across MSIE
and Netscape.

❑ As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also: Anchor object, Anchor.hash, Anchor.href,
Anchor.pathname, Anchor.port, Anchor.protocol,
Anchor.search, Anchor.target, URL, Url.hostname

Anchor.href (Property)
On MSIE the link.href property is also available as the anchor.href property.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.href
JavaScript syntax:

- myAnchor.href = newHref

HTML syntax:

JavaScript Programmer's Reference

36

This yields the entire value of the HREF attribute in an <A> tag.

You can redefine the entire HREF content by assigning a new value to this property.

Warnings:
❑ Since the href property of an Anchor object is not portable in all older browser versions, you

should use the pathname property of the corresponding Url object to be able to work across MSIE
and Netscape.

❑ As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also: Anchor object, Anchor.hash, Anchor.host,
Anchor.hostname, Anchor.pathname, Anchor.port,
Anchor.protocol, Anchor.search, Anchor.target,
Location.href, URL, Url.href

Anchor.hreflang (Property)
The language code of the document at the location specified by the URL.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.hreflang

This property should contain values that use the international language two-letter abbreviation
codes. These are not the same as the country codes, which are also two letter values.

Refer to the Language codes topic for a list of the available language codes.

See also: Language codes, LINK.hreflang

Anchor.Methods (Property)
A property that can indicate some keywords regarding the action that the server provides when the
link is clicked on. These reflect the request methods.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myAnchor.Methods

A – Anchor.mimeType (Property)

37

The possible values of this property are those of the valid methods for the HTTP protocol. It could
be one of the following:

❑ GET

❑ HEAD

❑ POST

❑ PUT

❑ DELETE

❑ OPTIONS

❑ TRACE

It is likely that only the GET and POST methods make any logical sense in this context. On rare
occasions, the PUT method may be referred to, although it is unusual to find a web server that
accepts documents with this request method. Likewise DELETE is normally only supported within
very strict constraints.

The method name can be specified in upper or lower case.

See also: Url.Methods

Anchor.mimeType (Property)
Contains a long form human readable version of the MIME type of the document at the location
specified by the anchor's URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myAnchor.mimeType

The MSIE browser maps the file extension of the file belonging to the anchor to an extended
description of the file format, which it makes available through the mimeType property. Here is a
list of some mimeType values it pays special attention to.

File type: MSIE expanded Mime type:

.css Microsoft CSS1 Style Sheet (W3C would have been more
appropriate)

.gif GIF Image

.htc Microsoft HTML Component file for behaviors

.htm Microsoft HTML Document 4.0

.html Microsoft HTML Document 4.0

.jpg JPEG Image

JavaScript Programmer's Reference

38

File type: MSIE expanded Mime type:

.js Microsoft JScript File

.txt Text Document

.vbs Microsoft VBScript File

.xxx All unrecognized file types are returned as xxx File with no
further expansion

Microsoft asserts that .htm and .html files are "Microsoft HTML" and .css files are "Microsoft CSS1"
style sheets. It also asserts that .js files are "Microsoft JScript" files. Microsoft doesn't really own those
file extensions across all platforms, nor indeed does it even own them on the Windows platform.

Warnings:
❑ Do not confuse this value with other mimeType properties. For example the Navigator object has

a mimeTypes[] collection property with references to mimeType objects. The mimeType property
of an MSIE Anchor object is a simple string primitive value and not a mimeType object.

See also: MIME types, Url.mimeType

Property attributes:
ReadOnly.

Anchor.name (Property)
This corresponds to the NAME attribute of the <A> HTML tag.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.name
JavaScript syntax:

- myAnchor.name = aName

HTML syntax:

Argument list: aName A new name for the anchor.

The value of this property is defined by the NAME tag attribute in the HTML that describes
the document. Without the NAME attribute, the anchor object does not get added to the
anchors[] array.

A – Anchor.nameProp (Property)

39

This name property contains a case-sensitive value. It is case-sensitive because it can be used as a
value in one of the document hierarchies to locate an object.

The example should present the word "EXAMPLE" on all compliant browsers.

Warnings:
❑ This value is read/write in MSIE, but read-only in Netscape. Logically there is not much purpose in

changing the name of an anchor anyway.

❑ Beware that assigning a new name will affect the length of the document.anchors[].

❑ Changing the name in MSIE actually adds a new item to the document.anchors[] array that can
be reached associatively with the new name. There will now be two entries for the same anchor and
you can continue to access it using the old name as well.

❑ If you are writing portable code and expect it to work in both MSIE and Netscape Navigator, this is
the only property available in both browsers. Having located an anchor, being able to access only its
name without any browser dependencies is rather limiting.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Click
here

<SCRIPT>
document.write(document.anchors[0].name);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor object, AnchorArray.length,
Document.anchors[], NAME="...", String.anchor(),
Url.name

Anchor.nameProp (Property)
The filename portion of the URL value.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myAnchor.nameProp

This property extracts the filename portion of the HREF value for this <A> tag.

See also: Url.nameProp

Property attributes:
ReadOnly.

http://www.mydomain.com/folder/file.html#abcdef">Click

JavaScript Programmer's Reference

40

Anchor.pathname (Property)
In MSIE the Url.pathname property is also available as the Anchor.pathname property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.pathname
JavaScript syntax:

- myAnchor.pathname = newPath

HTML syntax:

This yields the pathname portion of the HREF attribute in an <A> tag.

MSIE and Netscape support the use of this property as an LValue. If you write to it, the pathname
portion of the HREF value is modified. Be careful not to include a hash or search/query value.

Warnings:
❑ Since the pathname property of an Anchor object is not portable in all older browser versions, you

should use the pathname property of the corresponding Url object to be able to work across MSIE
and Netscape.

❑ As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also: Anchor object, Anchor.hash, Anchor.host,
Anchor.hostname, Anchor.href, Anchor.port,
Anchor.protocol, Anchor.search, Anchor.target, URL,
Url.pathname

Anchor.port (Property)
In MSIE the Url.port property is also available as the Anchor.port property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.port
JavaScript syntax:

- myAnchor.port = newPort

HTML syntax:

A – Anchor.protocol (Property)

41

This yields the port number value of the HREF attribute in an <A> tag.

You can assign a value to this property as if it were an LValue.

Warnings:
❑ Since the port property of an Anchor object is not portable, you should use the port property of

the corresponding Url object to be able to work across MSIE and Netscape.

❑ Do not include the delimiting colon when you assign a value to this property.

❑ Make sure you assign a numeric value. Non-numeric values will be rejected to avoid the possibility
of a completely invalid port number being used.

See also: Anchor object, Anchor.hash, Anchor.host,
Anchor.hostname, Anchor.href, Anchor.pathname,
Anchor.protocol, Anchor.search, Anchor.target, URL,
Url.port

Anchor.protocol (Property)
In MSIE the Url.protocol property is also available as the Anchor.protocol property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.protocol
JavaScript syntax:

- myAnchor.protocol = newProtocol

HTML syntax:

This yields the protocol value of the HREF attribute in an <A> tag.

Using this property as an LValue, you can redefine the protocol for the link if it has an HREF. You
might want to do this if you want to change the way you access a particular document.

The URL topic enumerates a large number of available protocols that can be used in SRC and HREF
HTML tag attributes.

Warnings:
❑ Since the protocol property of an Anchor object is not portable, you should use the protocol

property of the corresponding Url object to be able to work across MSIE and Netscape.

See also: Anchor object, Anchor.hash, Anchor.host,
Anchor.hostname, Anchor.href, Anchor.pathname,
Anchor.port, Anchor.search, Anchor.target,
IMG.protocol, URL, Url.protocol

JavaScript Programmer's Reference

42

Anchor.protocolLong (Property)
A long form description of the protocol used by the URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myAnchor.protocolLong

Only the MSIE browser supports this property. Its use would be limited even if it were available
across multiple platforms.

See also: Url.protocolLong

Property attributes:
ReadOnly.

Anchor.recordNumber (Property)
The record within the data set that defined the element content when the content came from a
data source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBody.recordNumber

This is a property that is part of the MSIE data-binding support. It contains an integer value that is
the record number within the data set that created this object.

This is useful when you are building pages with Active Server Pages (ASP) and ActiveX Data
Objects (ADO).

Property attributes:
ReadOnly.

A – Anchor.rel (Property)

43

Anchor.rel (Property)
A definition of the relationship between the current document and the document at the location
specified by the URL.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.rel

This is sometimes called a forward link. Although the HREF HTML tag attribute is normally the
only means used to identify a target document, the browser is permitted to use the REL HTML tag
attribute to decide whether to use the HREF value or how it should be used.

The following HTML version 4.0 standard link types are permitted in this property:

❑ alternate

❑ appendix

❑ bookmark

❑ chapter

❑ contents

❑ copyright

❑ glossary

❑ help

❑ index

❑ next

❑ prev

❑ section

❑ start

❑ stylesheet

❑ subsection

MSIE adds these as well:

❑ same

❑ next

❑ parent

❑ previous

When used or tested within a script, any comparisons should be case-insensitive.

See also: Anchor.rev, LINK.rel

JavaScript Programmer's Reference

44

Anchor.rev (Property)
A complementary description of the link to the current document as viewed from the document at
the location specified by the URL.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.rev

This is sometimes called a reverse link. It defines the relationship between a document and another
that calls it. The linkage is defined from the destination document's viewpoint.

This property supports the same HTML version 4.0 standard link types as the rel property. Refer
to that topic for details.

When used or tested within a script, any comparisons should be case-insensitive.

Because rel and rev properties are complementary, the values in them are likely to be related. For
example, if one contains the value "next" then the other is likely to contain "previous".

Refer to the Anchor.rel topic for a list of the available types you can use in this property.

See also: Anchor.rel, LINK.rev

Anchor.search (Property)
The query portion of an HREF URL if there is one.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.search
JavaScript syntax:

- myAnchor.search = newSearch

HTML syntax:

Warnings:
❑ Since the search property of an Anchor object is not portable, you should use the search

property of the corresponding link object to be able to work across MSIE and Netscape.

A – Anchor.shape (Property)

45

See also: Anchor object, Anchor.hash, Anchor.host,
Anchor.hostname, Anchor.href, Anchor.pathname,
Anchor.port, Anchor.protocol, Anchor.target,
request.<urlExtension>, URL, Url.search

Anchor.shape (Property)
A map whose extent is defined by the coords property and which can be one of several
different shapes.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.shape

This property has a meaningful value when the Anchor object is instantiated via <MAP> and
<AREA> tag. It defines the shape of the hotspot within the extent rectangle defined by the coords
property. It might contain one of the following values:

❑ default

❑ rect

❑ circle

❑ poly

See also: Anchor.coords, Area.shape, Url.shape

Anchor.tabIndex (Property)
A control of where the Anchor object appears in the tabbing order of the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myInputObject.tabIndex

JavaScript Programmer's Reference

46

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms or moving focus. Pressing the [tab] key
moves from one form element to the next according to the cascaded tabbing order defined by
building a tree-like structure with the tab index values.

Anchor.target (Property)
In MSIE the Url.target property is also available as the Anchor.target property.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

- myAnchor.target
JavaScript syntax:

- myAnchor.target = newTarget

HTML syntax:

This yields the value of the TARGET attribute in an <A>, <AREA>, or <MAP> tag.

You can assign a new value to this property so that the URL will be directed to a different window
or frame.

Here are some example target values:

❑ _parent

❑ _self

❑ _top

❑ _blank

❑ Window name

❑ Frame name

Warnings:
❑ Since the target property of an Anchor object is not portable, you should use the target

property of the corresponding link object to be able to work across MSIE and Netscape.

See also: <MAP TARGET="...">, Anchor object, Anchor.hash,
Anchor.host, Anchor.hostname, Anchor.href,
Anchor.pathname, Anchor.port, Anchor.protocol,
Anchor.search, BASE.target, Form.target,
Location.target, Map.target, URL, Url.target

A – Anchor.text (Property)

47

Anchor.text (Property)
The text between the <A> and HTML tags in Netscape.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

N myAnchor.text
JavaScript syntax:

N myAnchor.text = aString

HTML syntax: <A>someText

Argument list: aString Some new text content for the anchor

This is equivalent to the innerText value that MSIE supports. It only works on Netscape and is
somewhat less reliable than the innerText property in MSIE.

Assigning to this property in MSIE simply creates a text property, but does not affect the text
of the anchor.

The value yielded by this property (when it does work) is the text between the <A> and tags.

Warnings:
❑ You will need to detect the browser type before attempting to use this property.

❑ Does not work on Netscape Navigator version 4.7 on the Macintosh. Instead it displays some
fragment of body text that comes from outside the anchor tags.

❑ Even if it does work, you may only extract a portion of the text from the anchor.

See also: Anchor object, Element.innerText, Url.text

Property attributes:
ReadOnly.

Anchor.type (Property)
A MIME type value in its abbreviated machine recognizable form.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAnchor.type

JavaScript Programmer's Reference

48

The MIME type of the document associated with the Anchor object is accessible through the value
of this property.

Refer to the MIME type topic for details of the available MIME types you will likely see in
this property.

See also: LINK.type, MIME types

Anchor.urn (Property)
An alternative format of the contents of the URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myAnchor.urn

See also: URN

Anchor.x (Property)
The X location of the anchor within the document.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N myAnchor.x
JavaScript syntax:

N myAnchor.x = aValue

Argument list: aValue A new X coordinate value

The Anchor.x property yields the pixel distance of the anchor from the left edge of the document.
The horizontal position of the object in the display is measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

Warnings:
❑ This is not supported by MSIE. Instead you can use the offsetLeft property that is inherited from

the Element object super-class. There may be some occasions when this is not an exact equivalent
value though.

See also: Anchor object, Element.offsetLeft, Location.x

A – Anchor.y (Property)

49

Property attributes:
ReadOnly.

Anchor.y (Property)
The Y location of the anchor within the document.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type:
Number primitive

N myAnchor.y
JavaScript syntax:

N myAnchor.y = aValue

Argument list: aValue A new Y coordinate value

The Anchor.y property yields the pixel distance of the anchor from the top edge of the document.
The vertical position of the object in the display is measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

Warnings:
❑ This is not supported by MSIE. Instead you can use the offsetTop property that is inherited from

the Element object super-class. There may be some occasions when this is not an exact equivalent
value though.

See also: Anchor object, Element.offsetTop, Location.y

Property attributes:
ReadOnly.

AnchorArray object (Object/DOM)
An array of Anchor objects retrieved from the document.anchors property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

JavaScript syntax: - myAnchorArray = myDocument.anchors

Object properties: length

JavaScript Programmer's Reference

50

The AnchorArray object is a sub-class of the Array object but has no additional properties. It
responds to the length property request as you would expect.

Any Anchor objects in this array can be accessed by index value because the Array class supports
that. In Netscape, the individual Anchor objects are accessible associatively by their NAME
attribute. However, MSIE does not make this associative mechanism available.

In MSIE, the AnchorArray object is a kind of Collection object and so it can be searched with
the item() and tags() methods.

Warnings:
❑ Netscape adds a constructor property to this object class from which you can request the name

to determine the object class. Actually Netscape provides constructors for virtually everything, but
MSIE only supports them when it's necessary and useful.

❑ Be aware that renaming an anchor in MSIE will add a new item to the AnchorArray collection
without destroying the old one. However, the length property remains the same. It does mean that
you could have problems enumerating the collection. But then, why would you ever want to rename
an anchor after it has been instantiated and named within the HTML tag?

Example code:
<!-- Catalog of anchors in an array -->
<HTML>
<HEAD>
</HEAD>
<BODY>
Apple

Wrox

Microsoft

<HR>
<TABLE BORDER=1>
<TH>Index</TH>
<TH>Name</TH>
<TH>Text</TH>
<TH>URL</TH>
<TH>Tab index</TH>
<TH>Protocol (long)</TH>
<SCRIPT>
myLength = document.anchors.length;
for (myEnumerator=0; myEnumerator<myLength; myEnumerator++)
{
document.write("<TR><TD>");
document.write(myEnumerator);
document.write("</TD><TD>");
document.write(document.anchors[myEnumerator].name);
document.write("</TD><TD>");
document.write(document.anchors[myEnumerator].innerText);
document.write("</TD><TD>");
document.write(document.anchors[myEnumerator].href);
document.write("</TD><TD>");

http://www.apple.com/">Apple<BR
http://www.wrox.com/">Wrox<BR
http://www.msdn.com/">Microsoft<BR

A – AnchorArray.length (Property)

51

document.write(document.anchors[myEnumerator].tabIndex);
document.write("</TD><TD>");
document.write(document.anchors[myEnumerator].protocolLong);
document.write("</TD></TR>");
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Anchor object, Collection object, Document.anchors[]

Property JavaScript JScript N IE Opera DOM Notes

length 1.0 + 3.0 + 2.0 + 4.0 + - - ReadOnly

AnchorArray.length (Property)
The number of named anchors in the current document.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - myDocument.anchors.length

The length of the anchors array, which indicates the number of named <A> HTML tags
in the document.

See also: Anchor.name, Collection.length, Document.anchors[]

Property attributes:
ReadOnly.

Anonymous code (Definition)
Script source executed by function objects.

Availability: ECMAScript edition – 2

Anonymous code is script source text that is supplied to the constructor when an anonymous
function is being instantiated.

JavaScript Programmer's Reference

52

As the constructor creates the function, one of the arguments to the constructor call will contain the
script source text to be stored as the code block associated with that function. Only the code in the last
argument on the constructor call is used in this way. All but the last argument are concatenated together
separated by commas and are then passed as the formal parameter list to the anonymous function.

Anonymous code initializes the scope chain to include its activation object followed by the
global object.

Variable instantiation is performed using the activation object as the variable object and any
initial variables are flagged with a DontDelete attribute.

The caller provides this value, but in some situations the value null may be passed. In that case, the
global object will be used in its place.

If you need more information, the ECMA standard is the authoritative source on what anonymous
code is and how a compliant interpreter implementation should manage it.

See also: Executable code, Execution context

Cross-references:
ECMA 262 edition 2 – section – 10.1.2

ECMA 262 edition 2 – section – 10.1.6

ECMA 262 edition 2 – section – 10.2.3

ECMA 262 edition 3 – section – 10.1.2

ECMA 262 edition 3 – section – 10.1.6

ECMA 262 edition 3 – section – 10.2.3

Anonymous function (Definition)
A manually constructed function object with no identifying name.

Availability: ECMAScript edition – 2

Anonymous functions are created dynamically by using the built-in Function object as a
constructor in a function expression.

As they are called, the last argument is used to provide the script source, and all but the last
argument are used as a formal parameter list for the function.

Anonymous functions are properly supported by the WebTV set-top box from the Summer 2000
release onwards. Earlier versions of this product only partially supported anonymous functions.

See also: Function literal, Function object, Instantiating Function, JellyScript

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 3 – section – 10.1.1

A – Applet object (Object/HTML)

53

Applet object (Object/HTML)
An object representing an HTML <APPLET> tag.

Availability: DOM level – 0
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0
Deprecated – HTML 4.0, DOM level 1

Inherits from: Element object

- myApplet = aName

- myApplet = myAppletArray[aName]

- myApplet = myAppletArray[anIndex]

IE myApplet = myDocument.all.anElementID

IE myApplet = myDocument.all.tags("APPLET")[anIndex]

IE myApplet = myDocument.all[aName]

- myApplet = myDocument.aName

- myApplet = myDocument.applets[aName]

- myApplet = myDocument.applets[anIndex]

- myApplet = myDocument.getElementById(anElementID)

- myApplet = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myApplet = myDocument.getElementsByTagName
("APPLET")[anIndex]

HTML syntax: <APPLET> ... </APPLET>

aName The name of an applet
anIndex An element in the applets collection

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, align, alt, altHTML, archive, code, codeBase,
dataFld, dataSrc, form, height, hspace, name, object, src,
tabIndex, vspace, width

Object methods: start(), stop()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDataAvailable, onDataSetChanged, onDataSetComplete,
onDblClick, onErrorUpdate, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange,
onResize, onRowEnter, onRowExit

The properties and methods of an Applet object are inherited from the public properties and
methods of the Java object it represents. However, in addition to these, MSIE also supports some
additional properties.

JavaScript Programmer's Reference

54

The Java applet itself is the concrete object whose properties are accessed.

In Netscape, Applets are encapsulated as instances of the JavaObject class and communicate by
means of the LiveConnect support. The mechanisms are quire different in MSIE, which uses
ActiveX facilities to access applets.

When you access an Applet (JavaObject) object, you are really interacting with the Java
applet itself.

The publicly accessible properties and methods depend on the applet, although all applets must
support the start() and stop() methods.

It is generally safer to interact with methods that you have provided as custom additions to the
applet, rather than hope that the applet supports any particular methods.

Because Java is so much more strongly data-typed than JavaScript, you must be careful with the kind
of values you try and send to and receive from a Java applet. Java will also not forgive the omission of
an argument. In JavaScript, all arguments are assumed to be optional as a general rule, although
leaving them out will have strange side effects sometimes. Java will not allow you to do this and a
run-time error will be generated if the arguments are not complete and all of the correct type.

In Netscape, you can build an enumerator loop to examine all the properties of an Applet object.
Enumerating applet interfaces like this will yield a long list of function objects. Each function object
represents an accessor for internal properties of the Java environment. Your applet may publish
additional properties. With these functions, you can enquire about certain attributes of the applet
and can change some of them from the script. Refer to the JavaObject topic for details about
these generic capabilities, but bear in mind they only work in Netscape.

In MSIE, the APPLET object inherits its behavior from the Element object. Refer to the topic
covering that for its generic properties and methods. MSIE supports many other properties and
methods that are not generally available to Element objects and these are detailed here as
properties and methods of the Applet object.

Warnings:
❑ MSIE implements this object as a member of the class APPLET rather than Applet as you would

expect.

❑ Netscape implements it as a member of the class JavaObject, although this is masked by some
shortcomings in the implementation that prevent it from displaying its class type.

❑ <APPLET> tags are deprecated in HTML 4.0 and DOM level 1, which suggests there may be some
changes to the JavaScript support for them in subsequent implementations of JavaScript in browsers.

See also: ActiveX, Applet.start(), Applet.stop(), AppletArray object,
Document.applets[], Element object, Input.accessKey, JavaObject
object, LiveConnect

A – Applet object (Object/HTML)

55

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 0 + - Warning,
Deprecated

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
alt 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
altHTML - 3.0 + - 4.0 + - - - -
archive 1.1 + 5.0 + 3.0 + 5.0 + - 1 + - -
code 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
codeBase 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
dataFld 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 0 + - Warning,

Deprecated
dataSrc 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 0 + - Warning,

Deprecated
form 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 0 + - Warning,

Deprecated
height 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
hspace 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
name 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - ReadOnl.
object 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
src - 3.0 + - 4.0 + - - - ReadOnly
tabIndex 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 0 + - Warning,

Deprecated
vspace 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly

Method JavaScript JScript N IE Opera DOM HTML Notes

start() 1.1 + 3.0 + 3.0 + 4.0 + - - - -
stop() 1.1 + 3.0 + 3.0 + 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onDataAvailable - 3.0 + - 4.0 + - - - -
onDataSetChanged - 3.0 + - 4.0 + - - - -
onDataSetComplete - 3.0 + - 4.0 + - - - -
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFocus 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Table continued on following page

JavaScript Programmer's Reference

56

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onLoad 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onReadyStateChange - 3.0 + - 4.0 + - - - -
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Applet() (Constructor)
You normally would not use the constructor to create new applets, but it is possible to do this if
you need to create an applet container.

Availability
Deprecated

Property/method value type: Applet object

As is the case with many (but not all) objects in Netscape, you can call a constructor to create a new
instance of an object. MSIE does not generally support this unless a constructor is really justified.
Because this constructor is only supported in Netscape, you should avoid constructing new Applet
objects. In any case, they are of limited use since you cannot easily place them into the page and make
them visible, even if you could populate them with meaningful content. Because of this, the topic is
marked as deprecated, although the functionality is likely to continue to be available.

Applet.align (Property)
Determines how the applet area aligns with its surrounding content.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.align

A – Applet.alt (Property)

57

The alignment of the applet with respect to its containing parent object is defined in this property.
The following expected set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

Applet.alt (Property)
The alternative text to be used instead of the applet block in case the applet fails to load or for use
as a tool-tip text.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.alt

If a browser loads a document containing an applet and discovers that it is unable to load the
applet, this text value of this property will be displayed in the space where the applet was
supposed to have been loaded.

The use of this property is somewhat problematical in some browsers and completely unsupported
in others.

Setting this property from a script is unlikely to be very useful, as the script is probably going to be
called after the applet has failed to load.

Applet.altHTML (Property)
Some alternative HTML to display if the applet fails to load.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myApplet.altHTML

JavaScript Programmer's Reference

58

If a browser loads a document containing an applet and discovers that it is unable to load
the applet, this HTML will be displayed in the space where the applet was supposed to have
been loaded.

However, this property cannot be set from an HTML tag attribute as the alt text can. It can only
be set from a script.

Setting this property from a script is unlikely to be very useful, as the script is probably going to
be called after the applet has failed to load.

Applet.archive (Property)
The name of a zip archive containing multiple class files.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 5.0
Internet Explorer – 5.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.archive

Netscape allows for multiple applet class files to be collected together into a single zipped archive
file. Useful performance gains are possible if an applet depends on several classes for its
implementation, because they can all be loaded at once.

For this to work, you must also specify the CODE HTML tag attribute so that the browser can
determine which one of the classes is the main one.

There is some variance here from the HTML 4.0 definition of this value, which suggests that a list
of space-separated URL values can be specified. That is intended for use with the <OBJECT> tag,
which, according to the W3C organization, is the successor to the <APPLET> tag, which is likely to
be come deprecated in due course. However, since the <APPLET> tag is used so widely, this is
likely to take some considerable time to take effect.

See also: Applet.code

Applet.code (Property)
The Java class code for the applet.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.code

A – Applet.codeBase (Property)

59

This specifies the main code class to be called when the applet is initially run. It is necessary to
identify the main item in case there was a collection of class files loaded as an archive.

See also: Applet.archive

Property attributes:
ReadOnly.

Applet.codeBase (Property)
The path to the directory containing the applet code.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.codeBase

The codebase is the path to the directory where the classes used in the code or archive properties
are located. The actual path to the required files is generated by a string concatenation of
codeBase+code or codeBase+archive to generate a fully specified URL.

Due to security limitations, it is not permitted to access a codebase value that is outside the domain
specified by the containing document.

Property attributes:
ReadOnly.

Applet.height (Property)
The height of the applet extent rectangle in pixels.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.height

JavaScript Programmer's Reference

60

The extent rectangle around the applet reserves some space in the display before the applet is loaded.
The height of that extent rectangle is specified in this property and is normally measured in pixels.
Length values controlled by CSS styles allow for sizes to be specified in other measurement units.

See also: Applet.width

Property attributes:
ReadOnly.

Applet.hspace (Property)
The width of the horizontal margin spacing around an Applet object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.hspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The hspace property controls the margin to the left and right of the object.

Applet.name (Property)
This corresponds to the NAME attribute of the <APPLET> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.name

HTML syntax: <APPLET NAME="aName">

Argument list: aName A name to identify the Applet object

A – Applet.object (Property)

61

Objects are identified either by the NAME HTML tag attribute or by the ID HTML tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

Property attributes:
ReadOnly.

Applet.object (Property)
An accessor that yields a reference to the containing JavaScript object when there is a possibility of
naming conflicts between internally visible and externally visible property names.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Applet object

JavaScript syntax: - myApplet.object

There are occasional namespace conflicts when using applets. Public properties are created in a
different environment, but are published into the JavaScript namespace and take precedence over
the properties of the containing JavaScript object.

The problem is exhibited when the name of a public property collides with a property of the
containing JavaScript object instantiated by the <APPLET> HTML tag. Access to the property
belonging to the containing object is difficult because the scope search order will obtain the public
property of the applet first. By using the object property, you can access the containing object
explicitly and retrieve a property of that object even if there is an identically named property
belonging to the enclosed Applet object.

This access mechanism applies to method invocations as well.

See also: OBJECT.object

Applet.src (Property)
A supplementary property for passing in URL values to the applet.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myApplet.src

JavaScript Programmer's Reference

62

Some applets may need to access a supplementary data file from the server. It is good practice to
abstract such data values from the code itself, and so a means of passing this parameter value in from
outside is necessary. The SRC HTML tag attribute is reflected into this property and is provided as a
somewhat standardized means of passing one of the parameter values most likely to be defined.

Property attributes:
ReadOnly.

Applet.start() (Method)
A public method that starts an applet running.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - myApplet.start()

This method will start an applet running if it has previously been stopped. Note that, in general,
applets will run automatically by default unless you do something to prevent it (possibly by setting
HTML tag attributes).

See also: Applet object, Applet.stop()

Applet.stop() (Method)
A public method that stops an applet running.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - myApplet.stop()

This method provides a way to stop the execution of an applet from outside. Applets may choose to
stop themselves if that is what you have designed them to do. Other applets may be embedded into
the page and instructed not to run automatically by setting the appropriate attributes in the
<APPLET> HTML tag.

See also: Applet object, Applet.start()

A – Applet.vspace (Property)

63

Applet.vspace (Property)
The height of the vertical margin spacing around an Applet object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.vspace

Margins placed around objects are modified either separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The vspace property controls the margin at the top and bottom of the object.

Applet.width (Property)
The width of the applet extent rectangle in pixels.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myApplet.width

The extent rectangle around the applet reserves some space in the display before the applet is
loaded. The width of that extent rectangle is specified in this property and is normally measured
in pixels. Length values controlled by CSS styles allow for sizes to be specified in other
measurement units.

See also: Applet.height

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

64

AppletArray object (Object/DOM)
A sub-class of the Array object that implements an applet collection.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

JavaScript syntax: - myAppletArray = myDocument.applets

Object properties: length

Warnings:
❑ Although Netscape supports a constructor for this object type, it appears to point at the wrong thing.

In any case, it's unlikely you'd want to create a new AppletArray.

See also: Applet object, AppletArray.length, Collection object,
Document.applets[]

Property JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

length 1.0 + 1.0 + 2.0 + 3.02 + - - - 1 + - - ReadOnly

AppletArray.length (Property)
The number of Applet objects in the collection.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - myDocument.applets.length

The length of the applets array, which indicates the number of <APPLET> HTML tags in
the document.

See also: AppletArray object, Collection.length

Property attributes:
ReadOnly.

A – Area object (Object/HTML)

65

Area object (Object/HTML)
An object representing an <AREA> HTML tag.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Inherits from: Element object

IE myArea = myDocument.all.aMapID.areas[anIndex]

IE myArea = myDocument.all.anElementID

IE myArea = myDocument.all.tags("AREA")[anIndex]

IE myArea = myDocument.all[aName]

- myArea = myDocument.getElementById
(anElementID)

- myArea = myDocument.getElementsByName
(aName)[anIndex]

- myArea = myDocument.getElementsByTagName
("AREA")[anIndex]

JavaScript syntax:

- myArea = myDocument.links[anIndex]

HTML syntax: <AREA>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, alt, coords, hash, host, hostname, href, name, noHref,
pathname, port, protocol, search, shape, tabIndex, target, text,
x, y

Object methods: add()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDataAvailable, onDataSetChanged, onDataSetComplete,
onDblClick, onErrorUpdate, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange,
onResize, onRowEnter, onRowExit

An Area object represents an area of an image map. They are generally referred to as Link objects,
although Netscape and MSIE instantiate them as different classes.

Netscape supports these objects as objects of the Url class.

MSIE treats them as Link objects.

JavaScript Programmer's Reference

66

Event-handling support via properties containing function objects was added to Area objects at
version 1.1 of JavaScript.

See also: Element object, HyperLink object, Input.accessKey, LINK object,
LinkArray object, Location object, Map object, Url object

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
alt 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
coords 1.5 + 3.0 + 6.0 + 3.02 + - 1 + - -
hash 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
host 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
hostname 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
href 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 1 + - -
name 1.1 + 3.0 + 3.0 + 4.0 + - - - -
noHref 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
pathname 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
port 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
protocol 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
search 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
shape 1.5 + 1.0 + 6.0 + 3.02 + - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
target 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 1 + - -
text 1.2 + - 4.0 + - - - - -
x 1.2 + - 4.0 + - - - - -
y 1.2 + - 4.0 + - - - - -

Method JavaScript JScript N IE Opera DOM HTML Notes

add() - 3.0 + - 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - 4.0 + Warning
onDataAvailable - 3.0 + - 4.0 + - - - -
onDataSetChanged - 3.0 + - 4.0 + - - - -
onDataSetComplete - 3.0 + - 4.0 + - - - -
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFocus 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning

Table continued on following page

A – Area.accessKey (Property)

67

Event name JavaScript JScript N IE Opera DOM HTML Notes

onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onLoad 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onReadyStateChange - 3.0 + - 4.0 + - - - -
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Area.accessKey (Property)
A key that needs to be pressed before the mapped link will respond to data entry.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myArea.accessKey

The key defined in this property needs to be held down for any input events to be triggered on this
object or its children.

Area.add() (Method)
Add a new element to the Area object that describes the image map.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myArea.add(anObject)
JavaScript syntax:

IE myArea.add(anObject, anIndex)

anObject A new link object to addArgument list:
anIndex A position in the collection to add the new item

JavaScript Programmer's Reference

68

Image maps can be modified from the scripting interface. You might find this useful if you present
some new information and want to add a button to dismiss it. It is possible to avoid an unnecessary
screen redraw and image load by adding an item to an image map collection.

Area.alt (Property)
The tool-tip text for the Area object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myArea.alt

Objects can have an alternative text string associated with them. Browsers that cannot cope with
the tag may display the text instead. If spoken styles are supported, the text may be read out to the
user. Some browsers will also display the alt text as a tool-tip if the mouse is positioned over the
object and remains static for a few seconds.

Area.coords (Property)
The extent rectangle for the Area object within a map.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.02
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myArea.coords

When a shaped area is defined within a an image map, the extent rectangle around the shape is
defined with the coords property. The value is defined with the COORDS HTML tag attribute.

See also: Anchor.coords, Area.shape

Area
Extent
Height

Extent
Width

A – Area.hash (Property)

69

Area.hash (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.hash

See also: Url.hash

Area.host (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.host

See also: Url.host

Area.hostname (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.hostname

See also: Url.hostname

JavaScript Programmer's Reference

70

Area.href (Property)
MSIE represents URLs in Link objects.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.href

HTML syntax: <AREA HREF="...">

See also: Location.href, Url.href

Area.name (Property)
This corresponds to the NAME attribute of the <AREA> HTML tag.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.name

Objects are identified either by the NAME HTML tag attribute or by the ID HTML tag attribute.

Netscape shows a marginal preference for the name property, while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

See also: Url.name

A – Area.noHref (Property)

71

Area.noHref (Property)
A Boolean flag to indicate whether the area is a link or a dead spot within the map.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myArea.noHref

When a shaped area is defined within a an image map, it can either define a live hotspot or a hole
that has been cut out in the map. In this way, both concave and convex shapes can be created. You
can also create shapes with holes in the middle.

Area.pathname (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.pathname

See also: Url.pathname

Area.port (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myArea.port

See also: Url.port

JavaScript Programmer's Reference

72

Area.protocol (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.protocol

See also: IMG.protocol, URL, Url.protocol

Area.search (Property)
MSIE represents URLs in Link objects.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.search

See also: request.<urlExtension>, Url.search

A – Area.shape (Property)

73

Area.shape (Property)
The shape of the extent area within the map.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 1.0
Internet Explorer – 3.02
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myArea.shape

This property has a meaningful value when the Area object is instantiated via <MAP> and <AREA>
tag. It defines the shape of the hotspot within the extent rectangle defined by the coords property.
It might contain one of the following values:

❑ default

❑ rect

❑ circle

❑ poly

See also: Anchor.shape, Area.coords, Url.shape

Area.tabIndex (Property)
A control of where the Area object appears in the tabbing order of the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myArea.tabIndex

This value indicates where this object and any of its children will be placed in the tabbing
sequence. The tabbing order is used when filling in forms or moving focus. Pressing the [tab] key
moves from one form element to the next according to the cascaded tabbing order defined by
building a tree-like structure with the tab index values.

JavaScript Programmer's Reference

74

Area.target (Property)
MSIE represents URLs in Link objects.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArea.target

HTML syntax: <AREA TARGET="...">

See also: <MAP TARGET="...">, Anchor.target, BASE.target,
Form.target, Location.target, Map.target,
Url.target

Area.text (Property)
Netscape represents <AREA> tags as Url objects and therefore they inherit this property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: N myArea.text

See also: Url.text

Area.x (Property)
Netscape provides this as an enumerable property because it represents an <AREA> as a Url object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myArea.x

A – Area.y (Property)

75

The horizontal position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

See also: Location.x

Area.y (Property)
Netscape provides this as an enumerable property because it represents an <AREA> as a Url object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myArea.y

The vertical position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

See also: Location.y

areas[] (Collection)
A collection of all the Area objects that contribute to making an image map for the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myMap.areas

See also: Map.areas[]

Property attributes:
ReadOnly.

argc parameter (Definition)
A command-line argument count.

Since JavaScript can be used in many environments, it is possible that in a server-side application
you will have access to the command-line arguments.

If that is the case, then it is likely that you will have an argc property, which indicates how many
arguments have been passed.

JavaScript Programmer's Reference

76

In general, the first argument is the name of the script or program being executed. The argc value
should never be zero and as a minimum should indicate that there is at least one argument.

The actual values of the arguments are collected in an array called argv. You should be able to
access argv and argc in a similar manner.

See also: argv parameter, Execution context, Execution environment, Host
environment, main() function

Argument (Definition)
A value passed to a function.

Arguments are passed to functions when they are called. They are substituted for the formal
parameters in the function declaration.

Because JavaScript is weakly typed, you will need to implement any type checking you need for yourself.

You can compare the arity property of the owning function with the length property of
the arguments array. If they are unequal, then the function was called with the wrong number
of arguments.

You can then check the type of the arguments one by one to compare them against the expected types.

This is a lot of work for little gain unless it is an important aspect of your design.

See also: Arguments object, Arguments.length, Conversion, Definition,
Function, function(…) ..., Function.arguments[], Parameter

Argument list (Definition)
A list of values that are passed to a function.

Availability: ECMAScript edition – 2

Argument lists are used to pass information into functions.

An argument list can have any of the following structures:

❑ Empty – no arguments

❑ A single argument

❑ A series of arguments separated by commas

Each argument, if present, can be an expression that will be evaluated and whose resulting value
will be used as the argument when it is passed to the function.

See also: Arguments object, Arguments.length, Function.arguments[],
Left-Hand-Side expression, Parameter

A – Arguments object (Object/core)

77

Cross-references:
ECMA 262 edition 2 – section – 11.2.4

ECMA 262 edition 3 – section – 11.2.4

Arguments object (Object/core)
An object represented as an array containing the argument values passed to the function when
it is called.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 5.5
Internet Explorer – 5.5
Netscape – 3.0

JavaScript syntax: - myArguments = arguments

Object properties: callee, caller, length

When you call a function, you can pass zero or more arguments to it from outside. These
arguments are available as named variables whose names are defined in the function declaration.

However, they are also available as the elements in an array. The arguments array is referenced
by the arguments property of the call object. Since the call object is added to the scope chain,
you don't need to reference the arguments property with an object identifier prefix.

The array-based mechanism is useful for those times when you want to implement a function that
has a variable number of arguments passed to it according to how and when it is called.

A new arguments object is created for each execution context. When the flow of control enters an
execution context for a function block, a new arguments object is created. Declared functions,
anonymous code, and implementation-specific code all use this technique.

When creating the arguments object, the initial conditions are set up like this:

❑ The internal Prototype property for the arguments object is that returned by calling
Object.Prototype.

❑ A property is created with the name callee. The callee property cannot be enumerated. The
initial value of the callee property is the function object being executed. Anonymous functions
can then be executed recursively if you so desire.

❑ A property named length is created whose value is the number of arguments passed to the
function. The length property cannot be enumerated.

❑ Each argument is associated with a property whose name is its integer position in an array of
arguments. The arguments are accessed in presentation order. Although the names are strings, they
represent purely numeric values and range from 0 to 1 less than the value in the length property.
You can enumerate the arguments in a for loop.

Note that objects of this type can only exist within a function body in a web browser, because you
cannot pass parameters to a script from outside. It is possible that an embedded JavaScript
interpreter may provide a host object to the main entry point to perform the same function.

JavaScript Programmer's Reference

78

Warnings:
❑ In Netscape, the arguments array is implemented as an object of type Arguments but in MSIE its

type is simply an Object object. In Netscape, the arguments object is extended with a
toString() mechanism that returns the arguments as a comma separated list in a String. In MSIE,
you get the object type.

❑ None of the properties of the arguments object are enumerable.

❑ Because the arguments object is meant to be used in a manner that is local to the function it was
created in, you get unpredictable results if you pass it to another function as an argument itself.

❑ Note that at the time of writing the example given below did not seem to work on Netscape 6.0.

Example code:
<HTML>
<BODY>
<SCRIPT>
// Call a function and use its arguments array find out the
// name of the function that called it. Demonstrates a one
// level call tracer.

level1();

function level1()
{
 testArgs(1, "ONE", true);
}

function testArgs(a1, a2,a3)
{
 document.write(callerName(arguments));
 document.write("
");
}

function callerName(a1)
{
 myCallerObject = a1.caller.callee;
 myCallerSource = String(myCallerObject);
 mySplitArray1 = myCallerSource.split(" ");
 mySplitArray2 = mySplitArray1[1].split("(");
 myCaller = mySplitArray2[0];
 return(myCaller);
}
</SCRIPT>

<BODY>
</HTML>

See also: Argument, Argument list, Arguments.callee, Arguments.caller,
Arguments.length, arguments[], Collection object, Execution context,
Function arguments, Function call, Function call operator (), function(...)
..., Function.arguments[], Object inspector, Object.prototype, Parameter

A – Arguments.callee (Property)

79

Property JavaScript JScript N IE Opera NES ECMA Notes

callee 1.2 + 5.5 + 4.0 + 5.5 + - - - DontEnum
caller 1.1 + 5.5 + 3.0 + 5.5 + - - - Warning,

DontEnum,
Deprecated

length 1.1 + 5.5 + 3.0 + 5.5 + - - - ReadOnly,
DontEnum

Cross-references:
ECMA 262 edition 2 – section – 10.1.6

ECMA 262 edition 2 – section – 10.1.8

ECMA 262 edition 2 – section – 15.2.3.1

ECMA 262 edition 3 – section – 10.1.6

ECMA 262 edition 3 – section – 10.1.8

Wrox Instant JavaScript, ISBN 1-861001-27-4– page – 27

Arguments.callee (Property)
The function object being called.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0

Property/method value type: Function object

JavaScript syntax: - myArguments.callee

The value yielded by this property is the function object that owns the arguments.

You can work out the calling tree by tracing the callee and caller relationships back up the tree.
The callee is a reference to the parent function that owns the arguments object.

This has no meaning outside of the context of a function.

See also: Arguments object, Arguments.caller, Debugging – client
side, Function object

Property attributes:
DontEnum.

JavaScript Programmer's Reference

80

Arguments.caller (Property)
The object that called the function that owns the arguments.

Availability: JavaScript – 1.1
JScript – 5.5
Internet Explorer – 5.5
Netscape – 3.0
Deprecated

Property/method value type: Arguments.object

JavaScript syntax: - myArguments.caller

This property refers to an Arguments object belonging to a parent function. Function call tracing
can traverse a hierarchy based on Arguments objects to unwind a call stack. This might be useful
when debugging complex script projects.

You can work out the calling tree by tracing the callee and caller relationships back up
the execution context tree. The caller is a reference to the arguments object of the caller of
the function.

To reference the function that called the current one, use this:

arguments.caller.callee

To get the name of the function that called the current one use this (so long as the interpreter
supports the name property on functions):

arguments.caller.callee.name

With this, you could build a stack trace function that you can call and will unwind the calling
context stack to show you how you got to the location you are in. Tools such as this are useful to
have around and if they are in a separate .js file, you can include them when you need to debug a
script problem.

When the caller value is Null, it refers to the global code context because there is no arguments
array in that context – at least not in a web browser. Other host implementations may provide an
additional level of arguments according to how the script is executed.

This has no meaning outside of the context of a function.

The example shows how to walk up the calling tree and should yield the following output
when it is run:

level2

called by level1

called by global level

A – Arguments.caller (Property)

81

Warnings:
❑ This property is incorrectly implemented in Netscape 3, which returned a reference to the calling

function and not its arguments. Since it works correctly in Netscape 4, you should consider that it is
only available there.

❑ The example shown below did not work correctly on Netscape 6.0 at time of writing.

❑ This is not part of the ECMA standard and is at some risk of becoming deprecated and
removed in later versions. In fact, it is deprecated as of JavaScript version 1.3 and should
not be used in new projects.

❑ It is recommended that you do not build this into functional deployed applications, although the
risks involved with using it for debugging are small.

Example code:
<HTML>
<BODY>

<SCRIPT>
// A function to extract the calling function name when
// passed the arguments object from a function. Demonstrates
// how to recursively walk up a call tree.level1();

level1();

function level1()
{
 level2();
}

function level2()
{
 testArgs(1, "ONE", true);
}

function testArgs(a1, a2,a3)
{
 document.write(callerName(arguments));
 document.write("
");
}

function callerName(a1)
{
 if(a1.caller == null)
 {
 return("global level");
 }
 myCallerObject = a1.caller.callee;
 myCallerSource = String(myCallerObject);
 mySplitArray1 = myCallerSource.split(" ");
 mySplitArray2 = mySplitArray1[1].split("(");
 myCaller = mySplitArray2[0];
 return(myCaller+"
 called by "+callerName(a1.caller));
}
</SCRIPT>
</BODY>
</HTML>

See also: Arguments object, Arguments.callee, Debugging – client
side, Function object, Function.caller, Hierarchy of objects

JavaScript Programmer's Reference

82

Property attributes:
DontEnum.

Arguments.length (Property)
The number of arguments passed to a function dictates the length of the array to hold them.

Availability: JavaScript – 1.1
JScript – 5.5
Internet Explorer – 5.5
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myArguments.length

The number of arguments passed to a function when it is called.

The length property of the Arguments object can be inspected or used in an enumeration loop to
access each argument in turn.

Even if no placeholder arguments are specified, you can still call a function and pass as many
arguments to it as you like. They will be assembled into an array that you can manipulate in the
way you would normally operate on any other array. You can build enumerators to process all the
elements and do something with them.

You can compare this value with the arity property of the owner function object. This will
allow you to determine whether the correct number of arguments was passed.

Example code:
<SCRIPT>
// Declare a function that processes a variable number of arguments
function summate()
{
 var total = 0;
 for(var ii=0; ii<arguments.length; ii++)
 {
 total += arguments[ii];
 }
 return total;
}

// Call the function
sum = summate(1, 2, 3, 4, 5);

document.write(sum);
</SCRIPT>

See also: Argument, Argument list, Arguments object,
Collection.length, Function.arguments[],
Function.arity, Function.length

A – arguments[] (Collection)

83

Property attributes:
ReadOnly, DontEnum.

Cross-references:
Wrox Instant JavaScript, ISBN 1-861001-27-4 – page – 27

myResult = myFunction(aaa, bbb, ccc, ddd);

aaa

bbb

ccc

ddd

Arguments array

length

arguments[] (Collection)
A property that is available inside a function to access its Arguments object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 5.5
Internet Explorer – 5.5
Netscape – 3.0

This property is only defined within a function body in a web browser. However, some
implementations may provide external arguments via this property.

See also: Arguments object, Function arguments, Function.arguments[]

Property attributes:
ReadOnly.

argv parameter (Definition)
A command-line argument collection.

Since JavaScript can be used in many environments, it is possible that in a server-side application
you will have access to the command-line arguments.

If that is the case, then it is likely that you will have an argv property, which contains the
argument values.

JavaScript Programmer's Reference

84

In general, the first argument is the name of the script or program being executed.

To establish the length of the argv array, you can inspect the argc value.

The values passed in the argv array are likely to be presented as strings, although they may be
automatically cast to number, Boolean or other types without you needing to perform any type
conversion yourself.

Warnings:
❑ If you call one script from another, the command-line arguments that were used to invoke the

original script may not be propagated unless your calling script makes some arrangements to pass in
the arguments it was given. Each script is likely to run in a separate execution context.

See also: argc parameter, Execution context, Execution environment,
Host environment, Host object, main() function

Arithmetic constant (Definition)
A constant derived from arithmetic (numeric) values.

An arithmetic constant is derived from one of the following:

❑ Unicode character code value of a character constant

❑ Enumeration constant

❑ Floating-point constant

❑ Integer constant

❑ Math object property

❑ Number object property

❑ Global object property

See also: Constant expression, Floating-point constant, Infinity, Integer constant, Math.E,
Math.LN10, Math.LN2, Math.LOG10E, Math.LOG2E, Math.PI,
Math.SQRT1_2, Math.SQRT2, NaN, Number.MAX_VALUE,
Number.MIN_VALUE, Number.NaN, Number.NEGATIVE_INFINITY,
Number.POSITIVE_INFINITY

Arithmetic operator (Definition)
An operator that works with numeric operands.

The collection of arithmetic operators includes the operators in the following categories:

❑ Additive operator

❑ Multiplicative operator

❑ Postfix operator

❑ Prefix operator

A – Arithmetic type (Definition)

85

Warnings:
❑ Applying some operators causes a strange degenerative effect in the accuracy. On the Macintosh in

MSIE 5.0 and in Netscape 4, the following loop generates a very strange sequence of numbers that
are quite erroneous:

for(myEnum = 1.5; myEnum > -2; myEnum -= 0.1)

{

 document.write(myEnum + "
");

}

❑ There are some very odd and subtle mathematical errors in the arithmetic handling within the
Macintosh platform, and it surely must be the platform since the same behavior is found on both
MSIE and Netscape.

See also: Additive operator, Expression, Mathematics, Multiplicative operator, Postfix
operator, Prefix decrement (--), Prefix increment (++), Prefix operator, Remainder
(%), Remainder then assign (%=), Subtract (-), Subtract then assign (-=), Type
conversion

Cross-references:
Wrox Instant JavaScript – page – 18

Arithmetic type (Definition)
A subset of the native types concerned with numeric values.

In the C language, programmers need to be aware of the many and various types of numeric value.
JavaScript hides a great deal of this complexity by presenting a Number data type.

However, internally it still uses 32 bit integer values, 16 bit integer values, signed and unsigned
integers, and floating-point values.

Arithmetic type values are used with arithmetic operators to build arithmetic expressions.

Characters are maintained as single character strings, but can be represented numerically by
converting them to their Unicode code point value using the method String.charCodeAt().
You can convert back again using the String.fromCharCode() method.

See also: String.charCodeAt(), String.fromCharCode()

JavaScript Programmer's Reference

86

Array index delimiter ([]) (Delimiter)
Access elements of an array with this delimiter.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Depends on array content

JavaScript syntax: - myArray[anIndex]

Argument list:
anIndex A legal index value into the array, not greater than

the array length

Array elements are indexed by selecting them numerically within the set of elements contained in
the array. The length property of an array indicates how many indexable locations there are.
Array elements begin with the zeroth item.

Storing values into indexes that are higher than the current value of the length property will
automatically extend the array and reset the length property. An array with only one entry in
the 100th element (index value 99) is very sparsely populated but still should report a length
value of 100.

In Netscape, referencing the array with no element delimiters will yield a comma-separated list of
the contents of the array. So this:

myArray = new Array(6);myArray[0] = 0;myArray[1] = "XXX";myArray[2] = 0;myArray[3]
= "XXX";myArray[4] = 0;myArray[5] = "XXX";document.write(myArray);

Yields this when executed:

0,XXX,0,XXX,0,XXX

Accessing properties of an object by name simply requires the name to be added to the object
reference with a dot separator between them. Numeric values cannot be used in this way. You must
use a string to name the array element when it is assigned.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

Although JavaScript does not properly support multi-dimensional arrays, you can simulate them
by storing references to one array in the elements of another. You need to create a separate array
for each row and then one master array to arrange them into a column.

True multi-dimensional arrays would use a notation like this:

multiArray[1,2]

A – Array index delimiter ([]) (Delimiter)

87

But in JavaScript we can at least manage this:

multiArray[1][2]

This is close enough that most programmers will be able to cope with it quite happily.

Another alternative way to do this is to use a single dimensional array, but calculate the indices.
For example to make a 5 x 5 array, you would create a single dimensional array that is 25 elements
long. Then to reach the rows you use the row number and multiply the value by 5 before adding
the column number to access the desired cell. You need to be careful though because if you have an
'off-by-one' error, it all goes wrong.

Warnings:
❑ Be aware that your script is referring to array elements starting at zero. You can get subtle 'off-by-

one' errors if you assume that the array begins at item 1.

❑ In Netscape 2.02, the length property of an array cannot be relied on to hold the right value.

❑ You should avoid putting spaces into associative names because it introduces a property whose
name cannot be reached other than via an array index. Not all implementations will trap this error
situation. A property name is an identifier and identifier names cannot contain spaces so it should
throw an exception.

Example code:
<SCRIPT>
// Multidimensional array simulation
hExtent = 5;
vExtent = 6;
theExtent = hExtent * vExtent;
myArray = new Array(theExtent);
document.write("<TABLE BORDER=1>");
for(vEnum = 0; vEnum < vExtent; vEnum++)
{
 document.write("<TR>");
 for(hEnum = 0; hEnum < hExtent; hEnum++)
 {
 targetCell = (vEnum * hExtent) + hEnum;
 document.write("<TD>");
 document.write(vEnum);
 document.write(",");
 document.write(hEnum);
 document.write(" = ");
 document.write(targetCell);
 document.write("</TD>");
 }
 document.write("</TR>");
}
document.write("</TABLE>");
</SCRIPT>

See also: Array object, Array.length, Associativity, Multi-dimensional
arrays, Off by one errors, Operator Precedence, Postfix operator,
Property name

JavaScript Programmer's Reference

88

Cross-references:
ECMA 262 edition 2 – section – 7.6

ECMA 262 edition 2 – section – 11.2

ECMA 262 edition 3 – section – 7.7

Wrox Instant JavaScript ISBN 1-861001-27-4– page – 16

Wrox Instant JavaScript ISBN 1-861001-27-4– page – 32

Wrox Instant JavaScript ISBN 1-861001-27-4– page – 33

Array literal (Declaration)
A means of creating and initializing an array at once.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 5.0
Internet Explorer – 5.0
Netscape – 4.7

Property/method value type: Array object

JavaScript syntax: - [anElement, ...]

Argument list: anElement An element to be stored in the array

JavaScript version 1.2 introduces the capability of assigning values to an array as it is created and
building the array without first using a constructor.

Now array construction can also be nested to create multi-dimensional arrays.

The result is an array containing the elements defined by the literal expression.

Warnings:
❑ Netscape 4 does not mind an extra trailing comma (as per the C language convention). To force an

undefined element to be assigned to the end of the array, you must place two trailing commas.

❑ MSIE adds an undefined element for each trailing comma. This means that MSIE creates arrays that
are one item longer than Netscape does if there is a trailing comma.

❑ Some revisions of Netscape exhibit a further problem in that a single numeric value in the square
brackets is interpreted as an array length value. This is consistent with the Array() constructor but
is not correct in this context. You can place a pair of trailing commas there to fix this at the expense
of some wasted array items that contain undefined values. This is not a problem on all versions and
may be encountered only rarely now.

A – Array object (Object/core)

89

Example code:
<SCRIPT>
// Create a simple array literal
var myArray = [100, 1.34, "String text", true, { prop:100 }];
// Create a nested multi-dimensional array
var matarray = [[1,0], [0,1]];
// JavaScript expression in arrays
var exprarray = [Math.random()*10, Math.random()*100];
// Sparse array
var sparse = [100, , , , , 1000];
document.write(myArray[2] + "
" + matarray[0,1] + "
" +
 exprarray[1] + "
" + sparse[5]);
</SCRIPT>

See also: Array object

Cross-references:
ECMA 262 edition 3 – section – 11.1.4

O'Reilly JavaScript, The Definitive Guide ISBN 1-56592-392-8– page – 46

Array object (Object/core)
An object of the class "Array".

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- myArray = Array

- myArray = myVBArray.toArray()

- myArray = new Array()

- myArray = new Array(aLength)

JavaScript syntax:

- myArray = new Array(anItem1, anItem2, anItem3, ...)

aLength An optional initial length to set the array to.Argument list:
anItemN A variable number of initial elements to insert into the array.

Object properties: constructor, index, input, length, prototype

Object methods: concat(), join(), pop(), push(), reverse(), shift(), slice(),
sort(), splice(), toLocaleString(), toSource(), toString(),
unshift(), valueOf()

An array is basically an indexed collection of references to other objects or values.

JavaScript Programmer's Reference

90

In JavaScript version 1.0, arrays were simple objects and had limited functionality, scarcely
enough really to be called arrays. Some commentators argue that the functionality was so limited
that they should be flagged as available from version 1.1 of JavaScript only. They were usually
simulated by creating an instance of the Object object and using its named properties as if the
object was an array.

Much additional functionality was added for JavaScript version 1.1. JavaScript version 1.0 lacked
the constructors and arrays had no special methods available. The ECMA standard enhances the
functionality and Netscape 4 provides additional functionality.

An instance of the class "Array" is created by using the new operator on the Array() constructor.
At JavaScript version 1.2, arrays can be created with an Array literal as well. The new object adopts
the behavior of the built-in prototype object through the prototype-inheritance mechanisms.

All properties and methods of the prototype are available as if they were part of the instance.

Note that the index and input properties are available only for arrays that are produced as the
result of a RegExp match. They are not generally available in Arrays or Collections.

An array is a collection of properties owned by an object and that can be accessed by name or by
index position in the array. Because they are collected together and accessible as a set, they may be
sorted into the order of the array.

Array objects give special treatment to property names, which are numeric values. These are used
as an index value and will affect the value of the length property. The length supported depends
on the platform, but is usually based on a 32 bit integer being used for addressing. That limits the
range to 4 Billion array elements.

Array objects implement the Put() internal function slightly differently from non-array based objects.

The prototype for the Array prototype object is the Object prototype object.

In the C language, an array is referred to as an aggregate type since it is made from a collection or
aggregate of individual members.

Warnings:
❑ Although arrays were partially supported prior to JavaScript version 1.1, the support was not

reliably or completely implemented. There was no way for the script developer to create and modify
the arrays. Netscape 2 lacks any realistic array support even though Array objects were returned by
some object properties.

❑ The WebTV set top box limits the extent of the Array objects to contain only 32,768 elements instead
of the 4 Billion or so that is defined as the normal maximum. This is because WebTV uses 16 bit
integers for addressing arrays rather than 32 bit integers.

A – Array object (Object/core)

91

Example code:
<SCRIPT>
// Array object demonstration
var weekly_summary = new Array(7);
weekly_summary[1] = 10;
weekly_summary[2] = 25;
var day_names = new Array("Su","Mo","Tu","We","Th","Fr","Sa");
for(var i=0; i<7; i++)
{
 document.write("Summary for day (");
 document.write(day_names[i]);
 document.write(") = ");
 document.write(weekly_summary[i]);
 document.write("
");
}
</SCRIPT>

See also: Aggregate type, Array index delimiter ([]), Array literal, Array(), Array(),
Array.Class, Array.length, Array.prototype, Collection object,
JavaArray object, JellyScript, Native object, Object object,
String.split(), unwatch(), VBArray.toArray(), watch()

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + -
index 1.2 + 5.5 + 4.0 + 5.5 + - - - -
input 1.2 + 5.5 + 4.0 + 5.5 + - - - -
length 1.0 + 3.0 + 2.0 + 4.0 + - - - ReadOnly
prototype 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + ReadOnly,

DontDelete,
DontEnum

Method JavaScript JScript N IE Opera NES ECMA Notes

concat() 1.2 + 3.0 + 4.0 + 4.0 + - 3.0 + 3 + Warning
join() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + -
pop() 1.2 + 5.5 + 4.0 + 5.5 + - 3.0 + 3 + -
push() 1.2 + 5.5 + 4.0 + 5.5 + - 3.0 + 3 + -
reverse() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + -
shift() 1.2 + 5.5 + 4.0 + 5.5 + - 3.0 + 3 + -
slice() 1.2 + 3.0 + 4.0 + 4.0 + - 3.0 + 3 + Warning
sort() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + Warning
splice() 1.2 + 5.5 + 4.0 + 5.5 + - 3.0 + 3 + Warning
toLocaleString() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + Warning
toSource() 1.3 + 3.0 + 4.06

+
4.0 + - - - -

toString() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + Warning
unshift() 1.2 + 5.5 + 4.0 + 5.5 + - 3.0 + 3 + -
valueOf() 1.1 + 3.0 + 3.0 + 4.0 + - - - -

JavaScript Programmer's Reference

92

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.2

ECMA 262 edition 2 – section – 15.4

ECMA 262 edition 3 – section – 8.6.2.2

ECMA 262 edition 3 – section – 15.4

Wrox Instant JavaScript ISBN 1-861001-27-4 – page – 15

Array() (Constructor)
An Array object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Array object

- new Array()

- new Array(aLength)
JavaScript syntax:

- new Array(anItem1, anItem2, anItem3, ...)

aLength An optional initial length to set the array toArgument list:
anItemN A variable number of initial elements to insert into

the array

The Array() constructor is used in a new expression to manufacture a new instance of
the Array object.

The arguments passed to the constructor affect the way that the array is initialized.

If no arguments are passed, then an empty array is created. Its length will be zero and it will only
have the properties it inherits from its prototype parent.

If it has a single argument, and if that argument is a numeric value that can be realized as an
unsigned 32-bit integer with no loss of precision, then it is taken as a length value to initialize the
array with. However, according the ECMA standard, a numeric value that is not convertible to a
Uint32 should cause a run-time error. This may not be the case with all host implementations and
would be considered a minor deviation from the standard. You may find that a single numeric value
results in a one-element array containing that value instead of a run-time error. A single argument of
non-numeric type results in an array containing one element and having a length value of 1.

If there is more than one argument, then each argument is placed into the array in the order of
presentation and the length value set according to the number of arguments provided.

A – Array() (Function)

93

Warnings:
❑ Netscape 2.02 does not understand the new Array() syntax. MSIE 3.02 with JScript 1.0 does not

understand new Array() either. This can be simulated with objects however.

See also: Array object, Array simulation, Array(), Array.prototype, Constructor
function, constructor property, Global object, new, Object constant

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.3

ECMA 262 edition 2 – section – 15.4.1

ECMA 262 edition 2 – section – 15.4.2

ECMA 262 edition 2 – section – 15.4.3.1

ECMA 262 edition 2 – section – 15.4.4

ECMA 262 edition 3 – section – 15.4.2

Wrox Instant JavaScript ISBN 1-861001-27-4 – page – 16

Array() (Function)
An Array object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Array object

- Array()

- Array(aLength)
JavaScript syntax:

- Array(anItem1, anItem2, anItem3, ...)

aLength An optional initial length for the arrayArgument list:
anItemN A variable number of initial elements to insert into

the array

Calling the Array() constructor as a function behaves exactly the same as if it had been called
with the new operator.

The function call Array() is equivalent to the object creation expression new Array() with the
same arguments. With other primitive objects, calling the constructor as a function carries out a
type conversion instead of an object instantiation.

JavaScript Programmer's Reference

94

The arguments passed to the constructor affect the way that the array is initialized in the same way
as they do with a new Array() expression.

See also: Array object, Array(), Array.prototype, Cast operator,
Constructor function, constructor property, Implicit conversion

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.3

ECMA 262 edition 2 – section – 15.4.1

ECMA 262 edition 2 – section – 15.4.2

ECMA 262 edition 3 – section – 15.4.1

Array.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

This is an internal property that describes the class that an Array object instance is a member of.
The reserved words suggest that in the future, this property may be externalized.

See also: Array object, Class

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 2 – section – 15.4.2.1

ECMA 262 edition 3 – section – 8.6.2

A – Array.concat() (Method)

95

Array.concat() (Method)
Concatenate arrays together.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Array object

JavaScript syntax: - myArray.concat(someValues, ...)

Argument list: someValues A sequence of values to concatenate onto the array

The result of this method is a new array consisting of the original array, plus the concatenation.

The values that are passed to the method are added to the end of the array.

If arrays are passed, they are flattened and their individual elements added.

The method returns an array consisting of the original Array plus the concatenated values.

If Array1 contains "AAA", "BBB", "CCC" and Array2 contains "000", "111", "222", then the method
call Array1.concat(Array2) will return an array with all the elements in a single collection.
The original arrays will be untouched.

Warnings:
❑ The concat() method will flatten arrays that are passed as arguments. However, it will not

recursively flatten multi-dimensional arrays.

Example code:
<SCRIPT>
// Create two arrays and demonstrate concat() method
myArray1 = new Array("AAA", "BBB", "CCC");
myArray2 = new Array("000", "111", "222");

document.write("Array1
");
displayArrayAsTable(myArray1);
document.write("Array2
")
displayArrayAsTable(myArray2);
document.write("Result returned from Array1.concat(Array2)
")
displayArrayAsTable(myArray1.concat(myArray2));
document.write("Result returned from Array1.concat('AAA')
")
displayArrayAsTable(myArray1.concat("AAA"));
document.write("Result returned from Array1.concat('AAA').concat('DFG')
")
displayArrayAsTable(myArray1.concat("AAA").concat("DFG"));

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");

JavaScript Programmer's Reference

96

 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}
</SCRIPT>

See also: Array.prototype, String.concat()

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.4

Array
instance

Array
instance

0 A

1 B

2 C

3 D

A1.concat(A2)

A1

A1 A2

Array
instance

0

A

1

B

2

C

3

D

A – Array.constructor (Property)

97

Array.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Array constructor

JavaScript syntax: - myArray.constructor

The constructor is that of the built-in Array prototype object.

You can use this as one way of creating arrays although it is more popular to use the new
Array() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Array.length, Array.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.4.2

ECMA 262 edition 3 – section – 15.4.2

ECMA 262 edition 3 – section – 15.4.4.1

Array.index (Property)
A special property provided only when the array results from a string match.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myArray.index

JavaScript Programmer's Reference

98

When the String.match() method is used, it returns an array as a result. If the match used a
pattern that made only a single match (that is, the g attribute was not used) then the array returned
will have this additional index property.

The index property will contain the character location within the original string where
the match occurred.

See also: Array.input, RegExp.exec(), String.match()

Array.input (Property)
A special property provided only when the array results from a string match.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: - myArray.input

When the String.match() method is used, it returns an array as a result. If the match used a
pattern that made only a single match (i.e. the g attribute was not used) then the array returned
will have this additional input property.

The input property will contain a copy of the original string that was searched.

See also: Array.index, RegExp.exec(), String.match()

Array.join() (Method)
Concatenate array elements to make a string.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArray.join(aSeparator)

Argument list:
aSeparator A string to place between array elements as

the array is concatenated to form a string

A – Array.join() (Method)

99

The result of this method will be a String primitive containing the array elements interposed
with separators.

The elements in the array are converted to strings and are concatenated together to form a larger
string. Each element has the separator value placed between it and the next element.

If the separator is not specified, then a single comma is used to join the array elements. This means
that if you want no separation between the joined items you should pass an empty string as the
separator value.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Demonstrate array joins
myString1 = "This is a sentence made of words.";
document.write("Original input string
")
document.write(myString1)
myArray = myString1.split(" ");
document.write("

String split into an array
")
displayArrayAsTable(myArray);
myString2 = myArray.join("+");
document.write("

Array joined up as a string
")
document.write(myString2)

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype, Cast operator, String concatenate (+), String.split()

JavaScript Programmer's Reference

100

Cross-references:
ECMA 262 edition 2 – section – 15.4.4.3

ECMA 262 edition 3 – section – 15.4.4.5

"A"

"B"

"C"

"D"

Array
instance

0

1

2

3

"A-B-C-D"

join string is "-"

"A" "B" "C" "D""-" "-" "-"

A – Array.length (Property)

101

Array.length (Property)
The number of elements in an array.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myArray.length

The length property of an array indicates one more than the maximum numeric index value that
has currently been used. This is because Array elements start indexing from zero rather than one.

Note that this is not necessarily a count of the exact number of elements in the array just an
indication of its range of index values.

Whenever a property is added whose name is an array index, the length property is recomputed
to allow the length of the array to contain the new element that was added.

Furthermore, when the length value is set explicitly, it may truncate the array and any properties
whose names are numeric values that falls outside the bounds indicated by the length value will
be deleted.

This does only affect properties that belong to an Array object itself though. Any properties that
are inherited from a parent or prototype are unaffected.

The maximum value for an Array length is 4,294,967,295. This is because a 32 bit integer is used to
index the array. Arrays of this length are unlikely to be encountered often! A web page containing
an array of that size could take several weeks to download, that is assuming you had 4 GBytes of
memory available and that your web browser could address that much storage.

Although this property is marked as ReadOnly, there are some sub-classes of the Array object that
allow you to modify the length property directly.

Warnings:
❑ The length property is so unreliable as to be virtually unusable unless you strictly constrain the

way you add elements to the array. If you add elements to an array using associative names, the
length property is not changed at all and will return a zero value.

❑ If you then add an element to the array whose index is a numeric value, then the length property
will be set to a value that is one more than the highest numbered numerically indexed item in the
array. This following fragment of code yields an array length property value of 3:

var myArray = new Array();myArray[2] = "ABC";myArray["zero"] =
"ABC";myArray["one"] = "one";myArray["two"] = "two";myArray[0] = "ABC";

JavaScript Programmer's Reference

102

❑ This behavior is correct according to the ECMA specification but it is not a genuine measurement of
the array length, merely an indication of the highest numerically indexed array element. It should be
used for controlling enumeration loops but not for measuring array element item counts.

❑ WebTV platforms can only address array indices using a 16 bit value and can only access 32,768
items in an array.

See also: Array index delimiter ([]), Array object, Array.constructor,
Array.prototype, Collection.length, length, NodeList.length

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.4.2

ECMA 262 edition 2 – section – 15.4.3.2

ECMA 262 edition 2 – section – 15.4.5.2

ECMA 262 edition 3 – section – 15.4.5.2

Wrox Instant JavaScript ISBN 1-861001-27-4 – page – 16

"A"

"B"

"C"

"D"

Array
instance

1

2

3

4

length
property

A – Array.pop() (Method)

103

Array.pop() (Method)
Pops items off of the end of an array like a FILO stack.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Depends on the array content

JavaScript syntax: - myArray.pop()

The pop() method returns the element at the end of the array. In doing so, it deletes the item from
the end of the array reducing the array length by one.

Elements are returned one at a time, even if several were pushed onto the stack together.

Arrays that were pushed onto the stack are returned as arrays.

Although this is very useful for programming stacks, it is not portable enough to deploy in a public
facing site.

The result of this method is the item that was on the end of the stack.

Example code:
// Create an array and test the Array.pop() method
myArray = new Array("AAA", "BBB", "CCC");
document.write("Array
")
displayArrayAsTable(myArray);
document.write("Array.pop()
")
document.write(myArray.pop())
document.write("

")
document.write("Array after pop() call
")
displayArrayAsTable(myArray);

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}

See also: Array.prototype, Array.push(), Queue manipulation,
Stack manipulation

JavaScript Programmer's Reference

104

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.6

Array
instance

Array
instance

0

A

1

B

2

C

3

Array.pop()

Array.prototype (Property)
The prototype for the Array object, which can be used to extend the interface for all Array objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Array object

- Array.prototype
JavaScript syntax:

- myArray.constructor.prototype

The prototype for an array is the original Array prototype object.

Array objects inherit many methods and properties from their prototype parent. Enquiring the
prototype of a an object whose provenance is unknown will tell you what sort of object it is.

A – Array.prototype (Property)

105

Array objects inherit these properties from the built-in Array prototype:

❑ Array.constructor

❑ Array.prototype

Array objects inherit these methods from the built in Array prototype:

❑ Array.join()

❑ Array.reverse()

❑ Array.sort()

❑ Array.toString()

Array instances provide these properties themselves even if the prototype has them:

❑ Array.length

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that duplicates the item at the end of
// the array
function dupe()
{
 if(this.length != 0)
 {
 myTail = this[this.length-1];
 this[this.length] = myTail;
 return myTail;
 }
}

// Register the new function
Array.prototype.dupe = dupe;

// Create an array and test the Array.dupe() method
myArray = new Array("AAA", "BBB", "CCC");
document.write("Array
");
displayArrayAsTable(myArray);
document.write("Array.dupe()
");
document.write(myArray.dupe());
document.write("
");
document.write("
");
document.write("Array after dupe() call
");
displayArrayAsTable(myArray);

JavaScript Programmer's Reference

106

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array object, Array(), Array(), Array.concat(), Array.constructor,
Array.join(), Array.length, Array.pop(), Array.push(),
Array.reverse(), Array.shift(), Array.slice(), Array.sort(),
Array.splice(), Array.toSource(), Array.toString(),
Array.unshift(), prototype property

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.4.3.1

ECMA 262 edition 3 – section – 15.4.3.1

Array.push() (Method)
Pushes items onto the end of an array like a FILO stack.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myArray.push(someValue, ...)

Argument list: someValue A series of values to be pushed onto the stack

A – Array.push() (Method)

107

The value is added to the end of the array.

If the value is an array itself, it is not flattened. When it is eventually popped, you get the array back.

If several values are passed to the push() method, they will all be added to the stack, but only the
last one will be returned.

This modifies the receiving array, increasing the array length by the number of elements that were
pushed onto the end.

The result of this method is the new length of the receiving array after the pushed item has been
concatenated onto its tail.

Example code:
// Create an array and test the Array.push() method
myArray = new Array("AAA", "BBB", "CCC");
document.write("Array
");
displayArrayAsTable(myArray);
document.write("Array.push()
")
document.write(myArray.push("XXX"));
document.write("

");
document.write("Array after push('XXX') call
");
displayArrayAsTable(myArray);

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}

See also: Array.pop(), Array.prototype, Array.unshift(), Queue manipulation,
Stack manipulation

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.7

JavaScript Programmer's Reference

108

Array
instance

A

B

C

Array
instance

A

B

C

X

Array.push("X")

Array.reverse() (Method)
Reverse the order of array elements.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Array object

JavaScript syntax: - myArray.reverse()

The elements in the array are rearranged into reverse order. The Array object is returned as
the result.

Note that the reverse() method may possibly be applied to other object types. Host objects may
support the reverse() method, but it will be in an implementation-dependant manner.

The result of this method is the array with its elements in reversed order.

A – Array.reverse() (Method)

109

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Demonstrate array joins
myString1 = "This is a sentence made of words.";
document.write("Original input string
")
document.write(myString1)
myArray = myString1.split(" ");
document.write("

String split into an array
")
displayArrayAsTable(myArray);
myArray.reverse();
document.write("

Array reversed
")
displayArrayAsTable(myArray);
myString2 = myArray.join(" ");
document.write("

Array joined up as a string
")
document.write(myString2)

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.4.4.4

ECMA 262 edition 3 – section – 15.4.4.8

JavaScript Programmer's Reference

110

"A"

"B"

"C"

"D"

Array
instance

0

1

2

3

"D"

"C"

"B"

"A"

0

1

2

3

Array
instance

Array.shift() (Method)
Pull off of a stack whose access is FILO from the start rather than the end.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Depends on array content

JavaScript syntax: - myArray.shift()

This method pulls an item from the front of the array and removes that item.

The array elements are all moved down one index position.

This modifies the array in place.

The result of this method is the item that is deleted from the front of the stack.

A – Array.shift() (Method)

111

Example code:
// Create an array and test the Array.shift() method
myArray = new Array("AAA", "BBB", "CCC");
document.write("Array
")
displayArrayAsTable(myArray);
document.write("Array.shift()
")
document.write(myArray.shift())
document.write("
")
document.write("
")
document.write("Array after shift() call
")
displayArrayAsTable(myArray);

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}

See also: Array.prototype, Array.unshift(), Queue manipulation, Stack manipulation

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.9

JavaScript Programmer's Reference

112

Array
instance

Array
instance

0

1

1

2

2

3

3

Array.shift()

Array.slice() (Method)
Slice out a sub-array from the receiving array.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Array object

JavaScript syntax: - myArray.slice(aRange)

Argument list: aRange A range of array elements

A – Array.slice() (Method)

113

This method returns the sliced-out sub-array presented as a new array.

The range values indicate which part of the receiving array is to be sliced out.

A positive value in the range specifier indicates a particular cell.The first cell index is 0.

A negative value in the range specifier indicates a cell counted back from the end of the array. The
last cell is index -1.

If only one value is indicated in the range specifier, then the second is assumed to be the end
of the array.

The first specifier should indicate an element earlier than the second although some
implementations may check and swap as necessary.

Warnings:
❑ There are some bugs in the way this works in MSIE. These are mostly to do with specifying

negative values for range specifiers. These bugs are still extant as of version 5 of MSIE so you
should avoid using the negative indices, and instead measure the length of the array and compute
a positive index to use instead. Be careful of 'off-by-one' errors when you do this.

Example code:
// Create an array and test the Array.slice() method
myArray = new Array("AAA", "BBB", "CCC", "DDD", "EEE");
document.write("Array
")
displayArrayAsTable(myArray);
document.write("Array.slice(3)
")
displayArrayAsTable(myArray.slice(3))
document.write("Array.slice(2,4)
")
displayArrayAsTable(myArray.slice(2,4))
document.write("Array.slice(-1)
")
displayArrayAsTable(myArray.slice(-1))
document.write("Array.slice(-3)
")
displayArrayAsTable(myArray.slice(-3))

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}

See also: Array.prototype, Off-by-one errors

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.10

JavaScript Programmer's Reference

114

Array
instance

A

E

B

F

C

G

D

H

Array
instance

E

F

C

G

D

H

Array.slice(2)

Array
instance

A

Array.slice(0,0)

Array
instance

B

C

D

Array.slice(1,3)

Array
instance

G

H

Array.slice(-2)

Array.sort() (Method)
Sort the elements in an array.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

A – Array.sort() (Method)

115

Property/method value type: Array object

- myArray.sort()
JavaScript syntax:

- myArray.sort(aComparator)

Argument list:
aComparator A function object that will compare two items

and returns a flag indicating their order in the
sort collating sequence

The elements in the array are sorted in place and the sorted array is returned as a result of this
method. The argument provides a comparator function to determine the relationship between any
two items.

The comparator function is necessary if you want to sort into any order other than alphabetically
ascending. You can observe the operation of the comparator by placing document.write()
methods into its source text. These will demonstrate how the comparison is called during the sort.

In the example, a comparator function shows how to custom-sort items. The example demonstrates
sorting by length rather than charset collation sequence. You must make sure the comparator
returns one of the following three values:

❑ Negative integer – signifies that the first argument is less than the second.

❑ Zero – Signifies that both arguments are the same.

❑ Positive integer – Signifies that the first argument is larger than the second.

You can reverse the sort direction by negating the result returned by this comparator function.

In the example, a more highly optimized comparator is shown as well. The more lengthy version is
presented first to illustrate the algorithmic requirements of the comparator, but the second is
functionally identical and can be accomplished in one line and therefore the sort is much faster.

The result of this method is the array with its elements sorted according to the comparator.

Warnings:
❑ According to the ECMA standard, this sort may not be stable.

❑ The sort() method is generic and may be applied to non-array objects. However, some objects
may not be conducive to sorting like this and the exact behavior may be host implementation-
dependant in some cases.

❑ The custom comparator is not supported by the WebTV platform as of the Summer 2000 release of
the JellyScript interpreter.

❑ It is easy to make the mistake of returning true and false as a result of comparing the two values.
For example the following is wrong:

function compare(aValue1, aValue2){
 if(aValue1.length <= aValue2.length)
 {
 return false;
 }
 return true;}

❑ This will not work properly and the resulting sort will be incorrect.

JavaScript Programmer's Reference

116

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Demonstrate array joins
myString1 = "This is a sentence made of words.";
document.write("Original input string
")
document.write(myString1)
myArray = myString1.split(" ");
document.write("

String split into an array
")
displayArrayAsTable(myArray);
myArray.sort(compare);
document.write("

Array sorted
")
displayArrayAsTable(myArray);
myString2 = myArray.join(" ");
document.write("

Array joined up as a string
")
document.write(myString2)

// Comparator function
function compare(aValue1, aValue2)
{
 if(aValue1.length < aValue2.length)
 {
 return -1;
 }

 if(aValue1.length > aValue2.length)
 {
 return 1;
 }

 return 0;
}

// Optimised comparator function
function optimalCompare(aValue1, aValue2)
{
 return (aValue1.length - aValue2.length);
}

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD><TD>");

A – Array.sort() (Method)

117

 document.write(anArray[myIndex].length);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype, JellyScript

Cross-references:
ECMA 262 edition 2 – section – 15.4.4.5

ECMA 262 edition 3 – section – 15.4.4.11

"A"

"B"

"C"

"D"

Array
instance

0

1

2

3

"D"

"C"

"B"

"A"0

1

2

3

Array
instance

JavaScript Programmer's Reference

118

Array.splice() (Method)
An array editing tool.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Array object

JavaScript syntax: - myArray.splice(startPos, aCount,
newElements)

aCount An optional count of items to remove
newElements An optional list of items to add

Argument list:

startPos An entry at which to start splicing

The start position indicates where the splicing is to occur. If there are no other arguments, then the
remainder of the array is truncated.

If there is a count argument present, only that number of items will be removed and the subsequent
ones shuffled up to be adjacent to the front section of the array.

Any additional arguments are taken to be values to be inserted. They are not evaluated according
to the techniques used by the Array.concat() method. If arrays are specified, they will not be
flattened but will be inserted as they are.

This method operates on the array in place, therefore it modifies the original receiving array.

Specifying a count value of zero provides the functionality of an insert() method.

Specifying a count value larger than the array length does not cause an error, but instead truncates
the array, behaving like a replace() method.

The method call returns an array containing the elements that were removed. This provides an
alternative to the slice() method, but you should use slice() for portability since some MSIE
browsers do not support the splice() method.

Warnings:
❑ In Netscape 4, there are some bugs with the values that get returned by this method. The receiving

array does get spliced, but the deleted items are not always properly returned.

A – Array.splice() (Method)

119

Example code:
// Create an array and test the Array.splice() method
myArray = new Array("AAA", "BBB", "CCC", "DDD", "EEE");
document.write("Array
")
displayArrayAsTable(myArray);
document.write("Array.splice() result
")
displayArrayAsTable(myArray.splice(3, 1, "XXX", "YYY", "ZZZ"));
document.write("Array after splice
")
displayArrayAsTable(myArray);

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}

See also: Array.prototype

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.12

JavaScript Programmer's Reference

120

Array
instance

A

E

B

F

C

G

D

H

Initial array A

Array
instance

A

E

B

F

C

Y

G

X

Z

H

A.splice(3,1, "X", "Y", "Z")

Array
instance

A

E

B

F

C

D

Y

G

X

Z

H

A.splice(3,0, "X", "Y", "Z")

Array
instance

A

B

C

D

Y

X

Z

A.splice(3,10, "X", "Y", "Z")

Array.toLocaleString() (Method)
Returns a string primitive version of the array taking the present locale into account during the
translation.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myArray.toLocaleString()

The locale context supplies some special conversion rules for strings. Depending on the locale, this
might include special characters or a means of using double-byte characters. It may also affect the
direction of the text, for certain Asian locales for example.

A – Array.toSource() (Method)

121

Warnings:
❑ The ECMA standard reserves the first argument of this method for future use. It does not specify

what that is, but warns against implementations extending the syntax to include its use.

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.3

Array.toSource() (Method)
Output an array formatted as an Array literal contained in a string.

Availability: JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myArray.toString()

This is an alternative way to deliver a string version of an array. In this case, it is formatted as an
Array literal and can then be used in an eval() function to assign another array. It means that
Arrays can be deep copied more easily.

This functionality was previously available in Netscape 4 when the toString() method
was executed in a <SCRIPT> block that was evaluated under explicit JavaScript version 1.2
language selection.

If you run the example, it should yield something like this:

["one", 2, "III"]

This is quite different from the result of a toString() method which would yield this for the
same array contents:

one,2,III

The result of this method is a String primitive version of the array formatted as an Array literal.

Example code:
// Create an array and display its source
myObject = new Array("one", 2, "III");
document.write(myObject.toSource());

See also: Array.prototype, Array.toString()

JavaScript Programmer's Reference

122

Array.toString() (Method)
Return a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myArray.toString()

The elements in the array are converted to strings and are concatenated together to form a larger string.

This is functionally identical to using the join() method with no join string argument.

If you run the example, it will yield the following:

one,2,III

This is quite different from what you get if you use the toSource() method, which presents this result:

["one", 2, "III"]

The result of this method is a String primitive version of the array assembled by concatenation.

Warnings:
❑ Netscape supports a special conversion mechanism if this method is invoked within a <SCRIPT>

HTML tag whose LANGUAGE attribute is set to the "JavaScript1.2" value.

❑ In that circumstance, the array is presented with enclosing square brackets. This means that it can be
used as an array literal in an eval() function. This behavior was added in anticipation of the
ECMA specification supporting some additional functionality. However, the standard mandates
very specific behavior for toString().

❑ In JavaScript 1.3, the toString() behavior will revert to what was expected. Because this source
form output is so useful, it will continue to be supported by a new method called toSource().

Example code:
// Create an array and display it as a string
myObject = new Array("one", 2, "III");
document.write(myObject.toString());

See also: Array.prototype, Array.toSource(), Cast operator,
String concatenate (+), toString()

A – Array.unshift() (Method)

123

Cross-references:
ECMA 262 edition 2 – section – 15.4.4.2

ECMA 262 edition 3 – section – 15.4.4.2

"A"

"B"

"C"

"D"

Array
instance

0

1

2

3

"ABCD"

"A" "C""B" "D"

Array.unshift() (Method)
Push onto a stack whose access is FILO from the start rather than the end.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myArray.unshift(someValue, ...)

Argument list: someValue A series of values to be pushed onto the stack

JavaScript Programmer's Reference

124

This operates very like the Array.push() method except that items are added to the front of the
stack rather than the end of the stack. The items are also pushed in reverse order if several are
presented at once. That is to say, the order of presentation is preserved within the array.

When the push is completed, the item at the front of the array is returned.

The number of items that were added increases the array length.

If arrays are presented, they will be pushed on as they are and not flattened. When they are
subsequently removed from the stack, they will still be arrays.

This method modifies the array in place.

The result of this method is the new length of the receiving array after the pushed item has been
concatenated onto its front.

Example code:
// Create an array and test the Array.unshift() method
myArray = new Array("AAA", "BBB", "CCC");
document.write("Array
")
displayArrayAsTable(myArray);
document.write("Array.unshift()
")
document.write(myArray.unshift("XXX"))
document.write("

")
document.write("Array after unshift('XXX') call
")
displayArrayAsTable(myArray);

// Display an array in a table
function displayArrayAsTable(anArray)
{
 myLength = anArray.length;
 document.write("<TABLE BORDER=1>");
 for(myIndex = 0; myIndex < myLength; myIndex++)
 {
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(anArray[myIndex]);
 document.write("</TD></TR>");
 }
 document.write("</TABLE>

")
}

See also: Array.prototype, Array.push(), Array.shift(), Queue manipulation, Stack
manipulation

Cross-references:
ECMA 262 edition 3 – section – 15.4.4.13

A – Array.unshift() (Method)

125

Array
instance

A

B

C

Array
instance

X

A

B

C

Array.unshift("X")

JavaScript Programmer's Reference

126

Array.valueOf() (Method)
Returns the contents of the array converted to a native primitive value.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myObject.valueOf()

The primitive value of the receiving object is returned by this method. Because an array is an
aggregation of many elements, a simple type conversion is not appropriate. The individual
elements are converted to string values and are then concatenated together and returned as a single
string primitive value. This applies even if an array comprises a collection of numeric values.

See also: valueOf()

Array simulation (Definition)
A means of simulating arrays in JavaScript.

With a constructor, you can simulate arrays by making them from objects and property
components. This may be useful if you want to run an array-based script in a very old JavaScript
implementation although these days that likelihood is diminishing rapidly.

This was necessary in JavaScript version 1.0. Numbered index locations within an Object object
could simulate Array objects. Named items simply allocate the next available numbered entry.

Thankfully we don't have to do this anymore.

Warnings:
❑ In Netscape 2.02 and MSIE 3.02 you can operate on existing arrays, but you cannot make a new one.

❑ In Netscape 2.02 the array length value does not work properly.

Example code:
// Simulate an array with an Object object
myArray = new Object();
myArray[0] = "One";
myArray[1] = "Two";

// Simulate an array with a constructor
function SimArray(aSize)
{

A – ASCII (Standard)

127

 this.length = aSize;
 for(var index = 0; index<aSize; index++)
 {
 this[index] = 0;
 }
 return this;
}

// Now make a simulated array
myArray = new SimArray(12);

See also: Array(), Cast operator, Constructor function

Cross-references:
Wrox Instant JavaScript ISBN 1-861001-27-4 – page – 32

ASCII (Standard)
A table of seven-bit binary numbers that encode the alphabet and other symbols.

ASCII stands for American Standard Code for Information Interchange. It describes an encoding
for letters, numbers and punctuation symbols that can be realized in seven bits. It uses only seven
of the 8 bits for historical reasons to allow the eighth bit to be used for parity control when the
characters are transmitted through serial interfaces.

Many of the character codes are reserved to send control signals to terminals and to manage the
communications. Modern networking provides this capability outside of the character encoding.

There is an extended ASCII encoding that provides all 8 bits for character code mapping. This
defines the upper 128 characters in addition to the lower 128 characters in the 7-bit representation.

There are many alternative interpretations of the ASCII character set that allow for national
extensions to the character set. In some cases, this may only result in the replacement of a few
currency symbols.

JavaScript uses the Unicode character set. The lower 128 characters of Unicode are purposely
mapped to the ASCII character. ASCII is described here to provide help when you are exchanging
data files with ASCII-based systems or applications.

It may also be useful in some situations if you are using JavaScript to drive a serial interface to
control some external system. Whether you could do that would depend on the hosting
environment. A browser wouldn't give you those capabilities, but an embedded JavaScript
interpreter in a process control system may well allow you to do that sort of thing.

This table summarizes the lower 128 characters in the ASCII character set:

Dec Hex Sym Unicode Description

000 00 NUL \u0000 <ctrl-@> Null character

001 01 SOH \u0001 <ctrl-A> Start of header

002 02 STX \u0002 <ctrl-B> Start of text

Table continued on following page

JavaScript Programmer's Reference

128

Dec Hex Sym Unicode Description

003 03 ETX \u0003 <ctrl-C> End of text

004 04 EOT \u0004 <ctrl-D> End of transmission

005 05 ENQ \u0005 <ctrl-E> Enquiry

006 06 ACK \u0006 <ctrl-F> Positive acknowledge

007 07 BEL \u0007 <ctrl-G> Alert (bell)

008 08 BS \u0008 <ctrl-H> Backspace

009 09 HT \u0009 <ctrl-I> Horizontal tab

010 0A LF \u000A <ctrl-J> Line feed

011 0B VT \u000B <ctrl-K> Vertical tab

012 0C FF \u000C <ctrl-L> Form feed

013 0D CR \u000D <ctrl-M> Carriage return

014 0E SO \u000E <ctrl-N> Shift out

015 0F SI \u000F <ctrl-O> Shift in

016 10 DLE \u0010 <ctrl-P> Data link escape

017 11 DC1 \u0011 <ctrl-Q> Device control 1 (XON)

018 12 DC2 \u0012 <ctrl-R> Device control 2 (tape on)

019 13 DC3 \u0013 <ctrl-S> Device control 3 (XOFF)

020 14 DC4 \u0014 <ctrl-T> Device control 4 (tape off)

021 15 NAK \u0015 <ctrl-U> Negative acknowledgement

022 16 SYN \u0016 <ctrl-V> Synchronous idle

023 17 ETB \u0017 <ctrl-W> End of transmission block

024 18 CAN \u0018 <ctrl-X> Cancel

025 19 EM \u0019 <ctrl-Y> End of medium

026 1A SUB \u001A <ctrl-Z> Substitute

027 1B ESC \u001B <ctrl-[> Escape

028 1C FS \u001C <ctrl-\> File separator (Form separator)

029 1D GS \u001D <ctrl-]> Group separator

030 1E RS \u001E <ctrl-^> Record separator

031 1F US \u001F <ctrl-_> Unit separator

032 20 SP \u0020 Space

033 21 ! \u0021 Exclamation point (bang)

034 22 " \u0022 Double quote

035 23 # \u0023 Hash (number sign, pound sign, sharp)

036 24 $ \u0024 Dollar sign (buck)

037 25 % \u0025 Percent sign

038 26 & \u0026 Ampersand

039 27 ' \u0027 Apostrophe (single quote)

040 28 (\u0028 Left parenthesis

Table continued on following page

A – ASCII (Standard)

129

Dec Hex Sym Unicode Description

041 29) \u0029 Right parenthesis

042 2A * \u002A Asterisk (star)

043 2B + \u002B Plus sign

044 2C , \u002C Comma

045 2D - \u002D Minus sign (hyphen)

046 2E . \u002E Period (full stop, dot, point)

047 2F / \u002F Slash (virgule, solidus)

048 30 0 \u0030 -

049 31 1 \u0031 -

050 32 2 \u0032 -

051 33 3 \u0033 -

052 34 4 \u0034 -

053 35 5 \u0035 -

054 36 6 \u0036 -

055 37 7 \u0037 -

056 38 8 \u0038 -

057 39 9 \u0039 -

058 3A : \u003A Colon

059 3B ; \u003B Semi-colon

060 3C < \u003C Left caret (less than, left angle bracket)

061 3D = \u003D Equal sign

062 3E > \u003E Right caret (greater than, right angle bracket)

063 3F ? \u003F Question mark

064 40 @ \u0040 Commercial at sign

065 41 A \u0041 -

066 42 B \u0042 -

067 43 C \u0043 -

068 44 D \u0044 -

069 45 E \u0045 -

070 46 F \u0046 -

071 47 G \u0047 -

072 48 H \u0048 -

073 49 I \u0049 -

074 4A J \u004A -

075 4B K \u004B -

076 4C L \u004C -

077 4D M \u004D -

078 4E N \u004E -

Table continued on following page

JavaScript Programmer's Reference

130

Dec Hex Sym Unicode Description

079 4F O \u004F -

080 50 P \u0050 -

081 51 Q \u0051 -

082 52 R \u0052 -

083 53 S \u0053 -

084 54 T \u0054 -

085 55 U \u0055 -

086 56 V \u0056 -

087 57 W \u0057 -

088 58 X \u0058 -

089 59 Y \u0059 -

090 5A Z \u005A -

091 5B [\u005B Left square bracket

092 5C \ \u005C Backslash (reverse solidus)

093 5D] \u005D Right square bracket

094 5E ^ \u005E Circumflex accent

095 5F _ \u005F Underscore (low line)

096 60 ` \u0060 Grave accent (back quote, back tick)

097 61 a \u0061 -

098 62 b \u0062 -

099 63 c \u0063 -

100 64 d \u0064 -

101 65 e \u0065 -

102 66 f \u0066 -

103 67 g \u0067 -

104 68 h \u0068 -

105 69 i \u0069 -

106 6A j \u006A -

107 6B k \u006B -

108 6C l \u006C -

109 6D m \u006D -

110 6E n \u006E -

111 6F o \u006F -

112 70 p \u0070 -

113 71 q \u0071 -

114 72 r \u0072 -

115 73 s \u0073 -

116 74 t \u0074 -

Table continued on following page

A – ASP (Object model)

131

Dec Hex Sym Unicode Description

117 75 u \u0075 -

118 76 v \u0076 -

119 77 w \u0077 -

120 78 x \u0078 -

121 79 y \u0079 -

122 7A z \u007A -

123 7B { \u007B Left brace (left curly bracket)

124 7C | \u007C Verical line (bar, pipe)

125 7D } \u007D Right brace (right curly bracket)

126 7E ~ \u007E Tilde

127 7F DEL \u007F Delete

See also: Character set, Character-case mapping, Control character, Equal to (==),
Greater than (>), Greater than or equal to (>=), Identically equal to (===),
isLower(), isUpper(), Less than (<), Less than or equal to (<=), NOT Equal
to (!=), NOT Identically equal to (!==)

ASP (Object model)
The object model inside an ASP server module.

As of the time of writing the ASP object model is at version 3.0 and is now shipped with Windows
2000 as part of the core OS. It is a mechanism that enhances the Microsoft IIS product to provide
server-side dynamically generated pages and uses JScript 5.0 as its programming language. It also
supports VBScript.

Code that is executed in an ASP page is delimited with a special tag pair that does not conform to
the HTML standards, but nevertheless should be ignored by browsers if the unprocessed pages
ever escape out of the server.

Here is an ASP tag pair with an example fragment of code:

<%Response.Write('<HR>');%>

More detailed and in-depth information on ASP can be found in the Wrox ASP 3.0 Programmer's
Reference ISBN 1-861003-23-4.

ASP (Product)
Active Server Pages. A Microsoft product.

See also: ADO, Active Server Pages

JavaScript Programmer's Reference

132

Assign value (=) (Operator/assignment)
Assign one operand to a left value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Depends on right value

JavaScript syntax: - anLValue = anExpression

anExpression Some operation that yields a suitable value to
assign

Argument list:

anLValue A target that can be assigned to

The expression value on the right is assigned to the target operand on the left.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The source expression to the right is called an RValue, the target expression to the left is called an
LValue. The LValue must be capable of having something assigned to it and the RVlaue must
evaluate to a meaningful and compatible value or a run-time exception will be thrown.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

❑ Be careful not to confuse the single equals with the double equals. Placing a double equals in place of
an assignment will do a comparison without assigning the result. This is less dangerous than
mistakenly assigning a value where you intended to compare for equality. The interpreter may be
forgiving enough that a run-time error isn't generated, but the side effects could be subtle and make
it hard to diagnose the cause.

See also: = (Assign), Add then assign (+=), Associativity, Concatenate then assign (+=), Equal to
(==), Location.assign(), LValue, Multiply then assign (*=), Operator Precedence,
Reference, Remainder then assign (%=), Subtract (-), var

Cross-references:
ECMA 262 edition 2 – section – 10.1.3

ECMA 262 edition 2 – section – 11.1.2

A – Assignment expression (Definition)

133

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 10.1.3

ECMA 262 edition 3 – section – 11.1.2

ECMA 262 edition 3 – section – 11.13

ECMA 262 edition 3 – section – 12.2

Assignment expression (Definition)
An expression that causes an assignment as a by-product.

Availability: ECMAScript edition – 2

Assignment expressions can be broken down into a two-operand expression with the result being
assigned to the value on the left.

Note that assignment expressions can be used in their entirety as an RValue. You may want to
void the assignment expression in some cases to prevent the result of the assignment being used
inadvertently as an HREF.

See also: Add then assign (+=), Assignment operator, Concatenate then assign (+=),
Expression, LValue, Multiply then assign (*=), Remainder then assign (%=), RValue,
Subtract (-), var, Variable statement, void

Cross-references:
ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 12.2

Assignment operator (Definition)
An operator that causes an assignment as a by-product.

Availability: ECMAScript edition – 2

Here is a table summarizing the assignment operators, most of which can be secondarily classified
as members of other operator categories:

JavaScript Programmer's Reference

134

Operator: Equivalent: Meaning:

= a = b Simple assignment to an LValue
+= a = a + b Add and assign to an LValue
-= a = a – b Subtract and assign to an LValue
*= a = a * b Multiply and assign to an LValue
/= a = a / b Divide and assign to an LValue
%= a = a % b Remainder and assign to an LValue
&= a = a & b Bitwise AND and assign to an LValue
|= a = a | b Bitwise inclusive OR and assign to an LValue
^= a = a ^ b Bitwise exclusive XOR and assign to an LValue
<<= a = a << b Bitwise shift left and assign to an LValue
>>= a = a >> b Bitwise shift right and assign to an LValue
>>>= a = a >>> b Bitwise shift right (unsigned) and assign to an LValue
++ a = a + 1 Increment LValue
-- a = 1 – 1 Decrement LValue

Assignment operators include the simple assignment as well as the compound OP= form where OP
is one of the shift, bitwise, multiplicative, or additive operators.

Warnings:
❑ Note that these operators are destructive. That is one of the source operands is overwritten

by the result. In most implementations, it is unlikely that this compound assignment executes
more efficiently than the long form version, which reads more clearly and is less prone to
accidental damage.

❑ Although the ECMA standard describes the algorithms to be used for evaluating operators, there is
no guarantee that the operands themselves will be evaluated in any particular order. The right one
might appear to be the sensible choice for being evaluated first, since the final value of the left one is
dependant on it. However, this is implementation-dependant and certain interpreter designs are
based around a recursive descent model, which may partially evaluate the left operand before
pausing momentarily while the right is evaluated.

❑ The operand on the left of the operator must be a modifiable LValue. You cannot use these
compound operators with a pair of constant literal values although the right-hand operand can be a
constant. The left one must be capable of being assigned to.

❑ It is a general assumption that the left value will be a single variable. However it could be an array
element or object property in which case the resolution of the identifier may cause some side effects
that are undesirable and may interact with the right-hand operand value.

❑ The compound operators are considered to be a single token and the characters that compose them
may not be separated by whitespace. The operator should be separated from the operands by
whitespace however. Some implementations may forgive the lack of whitespace, but this could lead
to ambiguities during interpretation. Such errors may be difficult to diagnose.

A – Associative array indexing (Advice)

135

See also: = (Assign), Add then assign (+=), Assignment expression, Bitwise AND then
assign (&=), Bitwise OR then assign (|=), Bitwise shift left then assign (<<=),
Bitwise shift right and assign (>>=), Bitwise unsigned shift right and assign
(>>>=), Bitwise XOR and assign (^=), Concatenate then assign (+=), Divide
then assign (/=), Multiply then assign (*=), Operator, Postfix expression,
Prefix expression, Remainder then assign (%=), Subtract then assign (-=), var

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 11.13

ECMA 262 edition 3 – section – 12.2

Wrox Instant JavaScript ISBN 1861001-27-4 – page – 20

Associative array indexing (Advice)
Accessing array elements with strings as symbolic names.

Arrays and collections can be accessed using numeric indexing where each pocket is referred to by
a number.

The array may be sparse and not all entries need to be assigned, but the length value will be set to
one greater than the highest numbered entry. The first numbered entry is item 0.

You can also use strings instead of numbers. These string values can be specified literally or be
passed with a variable.

These are all valid array element references:

myIndex = "three";

myArray[0] = "A";

myArray[100] = "B";

myArray["one"] = "C";

myArray['two'] = "D";

myArray[three] = "E";

See also: Array index delimiter ([])

Associativity (Definition)
A direction of evaluation of an operator-driven expression.

The associativity of an operator indicates the order of evaluation of its operands. An operator with
an associativity of left to right evaluates the expression in the operand to its left and then the one to
the right. The alternative is right to left associativity.

JavaScript Programmer's Reference

136

atob() (Method)
Decode some base-64 encoded data.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

N atob(aBase64String)
JavaScript syntax:

N myWindow.atob(aBase64String)

Argument list: aBase64String A string containing base 64 encoded data

See also: Window.btoa()

attachEvent() (Method)
A means of attaching events to windows and documents.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

IE attachEvent(anEventName, anEventHandler)
JavaScript syntax:

IE myWindow.attachEvent(anEventName,
anEventHandler)

anEventHandler A reference to an event handler functionArgument list:
anEventName The name of an event to be handled

See also: .htc, <STYLE>, Document.attachEvent(),
Document.detachEvent(), HTML Component,
onContentReady, onDocumentReady,
Window.detachEvent(), Window.attachEvent()

Cross-references:
Wrox Professional JavaScript – page – 115

Attr object (Object/DOM)
This is implemented in MSIE as an Attribute object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

A – Attribute object (Object/DOM)

137

Inherits from: Node object

JavaScript syntax: - myAttr = myDocument.createAttribute(aName)

Argument list: aName The name of the attribute to create

The DOM level 2 standard adds an ownerElement property to the Attr object specification. This
is not yet supported in browsers.

See also: Attribute object, Document.createAttribute()

Inheritance chain:
Node object

Attribute object (Object/DOM)
A DOM object that represents an HTML tag attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Node object

- myAttribute = myAttributes.aPropertyName

- myAttribute = myAttributes[anIndex]

- myAttribute = myAttributes[aName]

JavaScript syntax:

- myAttribute = myDocument.createAttribute(aName)

aPropertyName The name of the tag attribute
aName An attribute name

Argument list:

anIndex A valid numeric reference to an element in the
collection

Object properties: name, nodeName, nodeType, nodeValue, specified, value

This is used by the browser to maintain property values for HTML tag instantiated objects.

This object represents a single HTML tag attribute. The properties of this object indicate whether
the tag attribute has been specified or not, and if it has, what the current value is.

The Element object should contain enough information for you to be able to determine the
instantiating source tag name. The attributes can be inspected with a script and the complete source
HTML reconstructed from a combination of the information supplied by the element and its
associated attributes collection.

JavaScript Programmer's Reference

138

The attributes collection that belongs to an object also tells you what the expected complete set
of attributes are for the tag, although this may not be completely reliable.

The example script demonstrates how you can make an Attribute object inspector with a
fragment of JavaScript. These inspectors can be put into a library and called in for debugging when
you are experiencing problems.

Note that the example overleaf does not work on Netscape 6.0 due to the use of the all property.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY alink=red>
<SCRIPT>
// An example attributes object inspector
myAttributeObject = document.all[3].attributes.aLink;
displayAttributes("BODY alink", myAttributeObject);
// Display attributes object
function displayAttributes(aTitle, anObject)
{
 document.write("<H3>");
 document.write(aTitle);
 document.write("</H3>");
 document.write("<TABLE BORDER=1 CELLPADDING=2><TR>");
 document.write("<TH>Description</TH>");
 document.write("<TH>Property</TH>");
 document.write("<TH>Value</TH></TR>");
 displayTableLine("Tag attribute name:", "name", anObject.name);
 displayTableLine("Tag attribute value:", "value", anObject.value);
 displayTableLine("DOM node name:", "nodeName", anObject.nodeName);
 displayTableLine("DOM node type:", "nodeType", anObject.nodeType);
 displayTableLine("DOM node value:", "nodeValue", anObject.nodeValue);
 displayTableLine("Specified flag:", "specified", anObject.specified);
 document.write("</TABLE>");
}
// Display a table line
function displayTableLine(aDescription, aProperty, aValue)
{
 document.write("<TR><TH ALIGN=LEFT>");
 document.write(aDescription);
 document.write("</TH><TD>");
 document.write(aProperty);
 document.write("</TD><TD>");
 document.write(aValue);
 document.write("</TD></TR>");
}
</SCRIPT>
</BODY>
</HTML>

See also: Attr object, Attributes object, Document.createAttribute(),
Element.getAttributeNode(), Element.removeAttribute(),
Element.removeAttributeNode(), Element.setAttributeNode(),
HasProperty(), HTML tag attribute, MutationEvent.attrChange,
MutationEvent.attrName

A – Attribute.name (Property)

139

Property JavaScript JScript N IE Opera DOM Notes

name 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly
nodeName 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
nodeType 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
nodeValue 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
specified 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly
value 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Inheritance chain:
Node object

Attribute.name (Property)
The name of the HTML tag attribute this object represents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAttribute.name

The name of the HTML tag attribute that this object represents is reflected here. This is the same
value as the property name within the Attributes array that refers to this object. You can use
that value associatively or as if it were a property name.

This value is also the same as a property name belonging to the Element object that represents the
HTML tag that this is an attribute of.

Property attributes:
ReadOnly.

Attribute.nodeName (Property)
Another alias for the name property of an Attribute object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript Programmer's Reference

140

Property/method value type: String primitive

JavaScript syntax: - myAttribute.nodeName

This is provided to support some previous usage that accessed the tag name under the nodeName
property. The same value is available in the name property of the Attribute object. It may
contain some values that the name property does not support.

The following values may be seen in this property:

❑ The tag name, also visible via the tagName property of the owning object

❑ The attribute name for those nodes that are Attribute objects

❑ The value #text for nodes that encapsulate a block of raw text and are textNode objects

See also: Element.tagName, textNode object

Attribute.nodeType (Property)
Part of the internal document hierarchy management within MSIE.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myAttribute.nodeType

The node hierarchy is built from objects that represent a variety of different kinds of Document
Object Model content.

The two principle node types are HTML Element nodes (value 1) and Text content nodes (value 3).

Here is a list of the available node types:

Constant: Type: Description:

undefined null A member of the attributes collection
ELEMENT_NODE 1 HTML element object node
ATTRIBUTE_NODE 2 HTML tag attribute object
TEXT_NODE 3 Text object node
CDATA_SECTION_NODE 4 CDATA section
ENTITY_REFERENCE_NODE 5 Entity reference

Table continued on following page

A – Attribute.nodeValue (Property)

141

Constant: Type: Description:

ENTITY_NODE 6 Entity node
PROCESSING_INSTRUCTION_NODE 7 Processing instruction node
COMMENT_NODE 8 Comment node
DOCUMENT_NODE 9 Document object
DOCUMENT_TYPE_NODE 10 Doctype object
DOCUMENT_FRAGMENT_NODE 11 Document fragment node
NOTATION_NODE 12 Notation node

See also: Node object

Attribute.nodeValue (Property)
Another name for the value property of this object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAttribute.nodeValue

The value portion of the ATTRIBUTE="aValue" construct. Knowing the name and value of an attribute
provides sufficient information to reconstruct the source HTML code from scratch. Some nodeValues
may not be defined by ATTRIBUTE HTML tag attributes, but may be the content of the tag itself.

If the object that the attributes are associated with is a TxtNode object, then the nodeValue should
return the textual content encapsulated by that object. In that case, the nodeValue cannot be
modified although it may be writable for other object types.

If the nodeType is an attribute then the nodeValue reflects its HTML tag attribute value or null if
it has not been defined.

If the nodeType is an HTML Element object, then the nodeName should be used to determine
which tag it encapsulates. In that case the nodeValue should yield a null.

JavaScript Programmer's Reference

142

Attribute.specified (Property)
Whether the value has been specified or not.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myAttribute.specified

This flag indicates whether the attribute is defined or not. This property is updated automatically
when you change the value of a property belonging to an Element object.

The attribute contains a meaningful value only if this property is set to true. If it is set to false,
the other properties belonging to the Attributes object don't hold any useful information.

The result is true if the value is specified by an HTML tag attribute and false if it is not
currently specified.

Property attributes:
ReadOnly.

Attribute.value (Property)
The value of the HTML tag attribute if it has been specified.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myAttribute.value

This property reflects the value defined by the parent HTML tag attribute. It is part of the DOM
support for HTML tag attributes.

If an HTML tag attribute is specified, the attribute flag for that property of the HTML tag's object
will be set true. The actual value of the HTML tag attribute will be stored in this property. This
Attribute.value property gets updated automatically if the owner Element object's property
value is changed. Internally the two property accessors probably refer to the same storage location.

A – Attributes object (Object/DOM)

143

Attributes object (Object/DOM)
A sub-class of the Array object that contains a set of Element object attributes. This is a collection
of all attribute objects that apply to an element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myAttributes = myElement.attributes

Object properties: length

The Attributes array object is associated with an Element object as a container for a set of
Attribute objects each of which relates to a property of the Element object. This is the correct
implementation of the DOM specified Attr object class.

Not all Element object properties have an Attribute object, but those that do have related to
HTML tag attributes. Thus the Attributes array corresponds to the HTML tag attributes for a tag.

The Attributes array has a length property so that you can enumerate all of the attributes of its
instantiating HTML tag. It also has as many additional properties as are required to reflect each
HTML tag attribute for that HTML tag. The properties reflected from the HTML tag attributes are
named consistently with the HTML source text.

Properties are reserved to support event handlers and other tag attributes and so from the Attributes
array for a particular Element object, you can establish what the supported features are for the HTML
tag it represents. This means that the length property will vary from object to object.

The Attributes array seems to contain some properties that correspond to the imaginary HTML
generic Element class. Although this is not really a genuine object class, it is a convenient way of
documenting HTML object behaviors where they are common across a range of objects. The
Attributes array does not support a complete set of properties that correspond to the Element
class and therefore it is not true to say it inherits from that class.

The example script shows how you can inspect the attributes of an object. In this example, the
attributes of a <BODY> tag are exposed. Because they are enumerable, you can determine what
properties and what events the object instantiated by the <BODY> tag can respond to. Note that the
example does not work on Netscape 6.0 due to the use of the all property.

Example code:
<HTML>
<HEAD></HEAD>
<BODY alink=red vlink="blue" leftmargin="100">
<TABLE BORDER=1 CELLPADDING=2>
<SCRIPT>
myAttributesObject = document.all[3].attributes;
displayTableLine("Object class:", myAttributesObject, "");

JavaScript Programmer's Reference

144

displayTableLine("Number of attributes:", myAttributesObject.length, "");
for(myEnumerator=0; myEnumerator<myAttributesObject.length; myEnumerator++)
{
 myAttrib = myAttributesObject[myEnumerator];
 displayTableLine("Attribute ("+ myAttrib.nodeName +"):", myAttrib.specified,
myAttrib.nodeValue);
}

// Output one line of a table
function displayTableLine(aHeading, aFlag, aValue)
{
 document.write("<TR>");
 document.write("<TH ALIGN=LEFT>");
 document.write(aHeading);
 document.write("</TH>");
 document.write("<TD>");
 document.write(aFlag);
 document.write("</TD>");
 document.write("<TD>");
 document.write(aValue);
 document.write("</TD>");
 document.write("</TR>");
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Attribute object, Attributes.length, Collection object,
Element object, Element.attributes[],
Element.removeAttribute(), HasProperty(), HTML
object, HTML tag attribute

Property JavaScript JScript N IE Opera DOM Notes

length 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly

Attributes.length (Property)
The number of tag attributes supported in this Attributes array.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myAttributes.length

A – ATVEF (Standard)

145

The number of attributes supported by the HTML tag that owns this Attributes object.

This is the principle property of an Attributes object. Most others depend on the object
that is represented.

See also: Attributes object, Collection.length

Property attributes:
ReadOnly.

ATVEF (Standard)
Advanced Television Enhancement Forum.

This extract from the ATVEF standard describes in outline the aims and scope of this web and TV
convergence project. You should consult the specification for a complete description of how this is
to be accomplished. There are several manufacturers already building and deploying these systems
on a variety of broadcast mediums.

The Advanced Television Enhancement Forum (ATVEF) is a group of people from the broadcast
TV and Internet industries who are working to specify a single public standard for delivering
interactive television experiences. The intention is that these should be authored once using a
variety of tools and deployed to a range of television, set-top, and PC-based receivers.

The Enhanced Content Specification defines the fundamental requirements that are necessary to
enable creation of HTML-enhanced television content. This goes beyond normal Internet-based
delivery to describe how it can be reliably broadcast across any network to any compliant receiver.
Because the broadcast requires that there is no bidirectional link, some changes to the delivery
protocols are outlined.

The ATVEF specification for enhanced television programming uses existing Internet technologies.
It describes how to deliver enhanced TV programming over both analog and digital video systems
using terrestrial, cable, satellite, and Internet networks. The specification can be used in both one-
way broadcast and two-way video systems, and is designed to be compatible with all international
standards for both analog and digital video systems.

See also: Interpret, Liberate TV Navigator, Microsoft TV, URL, WebTV

Web-references:
http://atvef.com/library/spec1_1a.html

Aural style sheets (Definition)
The CSS standard describes style properties for spoken text.

The aural style properties allow the control of spoken voice and other sound effects to be assigned
to element objects so that as they are displayed, their content may be spoken or read out to the
user. This then makes the World Wide Web more accessible to sight-impaired users.

http://atvef.com/library/spec1_1a.html

JavaScript Programmer's Reference

146

So far, not much of this capability has found its way into the currently available web browsers.

There are many issues that have not yet been addressed with this aspect of style sheets. For example,
controlling multi-lingual spoken text and dates may be somewhat problematic. Certainly the locale that
the browser is operating in may be used to select a national language variant for the spoken word.

Warnings:
❑ This facility is not yet supported by any of the browsers.

AuthentiCode (Security related)
This is a security model that applies digital signatures to ActiveX objects in MSIE.

Warnings:
❑ This technique does not currently support signed scripts in MSIE and only applies to

ActiveX objects.

See also: Security policy, Signed scripts

Automatic semi-colon insertion (Definition)
The action of adding semi-colons where they have been omitted.

Availability: ECMAScript edition – 2

A semi-colon explicitly placed in the source text must terminate certain statements. Your JavaScript
interpreter may help by adding some automatically, but this may not work as you expect. As they
say, "Your mileage may vary".

Semi-colons are used to explicitly terminate certain keywords so that the parser can determine
exactly where the fragment of code begins and ends. The semi-colon removes the ambiguity about
how a piece of code is intended to execute.

Line terminators greatly affect the automatic semi-colon insertion process.

The following statements must have trailing semi-colons:

❑ empty statement

❑ variable statement

❑ expression statement

❑ continue statement

❑ break statement

❑ return statement

❑ throw statement

A – Automatic semi-colon insertion (Definition)

147

There are cases where the the interpreter will automatically insert semi-colons as needed. You won't see
them in the script source, but the interpreter knows they should be there. You should not rely on the
interpreter doing your work for you. For example, semi-colons are never added inside for statement
headers. Here are some instances of how the browser deals with automatic semi-colon insertion:

❑ Semi-colons are automatically placed before curly braces (}) that close code blocks if necessary.

❑ A semi-colon is added at the end of a script source text if necessary to parse the source as a
complete program.

❑ Semi-colons are added to prevent accidental postfix increment or decrement operations. Postfix ++
or -- operators should be on the same line as the operand to which they apply. Actually it is good
practice for there to be no whitespace between them.

❑ Semi-colons are added after the return statement when it is the last statement on a line. An
expression to be evaluated as part of a return statement should be placed adjacent to it. It is good
practice to form the return as if it were a function, enclosing the expression in parentheses:

return(expression);

❑ This is unaffected by automatic semi-colon insertion even though it is syntactically incorrect:

for (a; b)

❑ This is transformed:

returna + b

And becomes:

return;a + b;

However, a + b is not returned as a result because the line terminator separates them from the
return statement.

❑ People take a great many liberties with the formatting of if…else constructions. This won't
get fixed:

if(a > b)else c = d

❑ This won't get fixed either:

a = b + c(d + e).print()

It doesn't get fixed because the parentheses look like a function call.

Warnings:
❑ Careful programmers always put semi-colons in. If you come from a C or Java background, this may

be instinctive, but otherwise you should develop the habit so that it becomes instinctive.

See also: Free-format language, Lexical convention, Line terminator, Semi-colon (;)

JavaScript Programmer's Reference

148

Cross-references:
ECMA 262 edition 2 – section – 7.8

ECMA 262 edition 3 – section – 7.9

O'Reilly JavaScript Definitive Guide – page – 28

Wrox Instant JavaScript – page – 17

Automation object (Object/JScript)
An object created in the JScript environment for connecting to other applications within
the host environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myAutomation = GetObject(aLocation)

IE myAutomation = GetObject(aLocation,
anObjectType)

IE myAutomation =
GetObject(aLocation!aSubObject)

JavaScript syntax:

IE myAutomation = GetObject
(aLocation!aSubObject, anObjectType)

anObjectType What sort of application and object class type to be
created

aLocation A path to the file for the object to be instantiated

Argument list:

aSubObject A fragment identifier for a sub-object within the file

See also: ActiveXObject object, GetObject()

B object (Object/HTML)
An object that represents the font style controlled by the HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Deprecated Usage: Yes

Inherits from: Element object

IE myB = myDocument.all.anElementID

IE myB = myDocument.all.tags("B")[anIndex]

IE myB = myDocument.all[aName]

- myB = myDocument.getElementById(anElementID)

- myB =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myB =
myDocument.getElementsByTagName("B")[anIndex]

HTML syntax: ...

anIndex A valid reference to an item in the
collection

aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onSelectStart

B

JavaScript Programmer's Reference

150

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

See also: Element object

back() (Method)
Perform the same action as pressing the [BACK] button in the toolbar.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- back()
JavaScript syntax:

- myWindow.back()

See also: History.back(),Window.forward(), Window.back()

B – Background object (Object/browser)

151

Background object (Object/browser)
A background image object associated with a Netscape Navigator layer.

Availability: JavaScript – 1.2
Netscape Navigator version – 4.0

JavaScript syntax: N myBackground =
myLayer.background

Object properties: src

This object is used with a layer in Netscape Navigator and its properties correspond with
properties of the Image object in Netscape Navigator.

See also:
Background.src,BODY object,Image
object,Layer.background

Property JavaScript JScript N IE Opera HTML Notes

src 1.2 + - 4.0 + - - - -

Background.src (Property)
The source location of an image to be associated with a layer and used as its background image.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: N myBackground.src

This corresponds to the src property of a Netscape Navigator Image object. It defines the URL of an
image to load into the background of a layer, as these are scriptable in Netscape Navigator whereas
the background image of a document object is not.

See also: Background object, BODY.background,
BODY.bgProperties, JSSTag.
backgroundImage,style.background

Back-quote (`) (External code call)
Call some external code during server-side execution.

The back-quote substitutions operate much like you may have seen them work in command-line
shells and Perl interpreters. The text enclosed inside the back-quotes is parsed out from the HTML
and is then executed as JavaScript.

ASP provides a means of substituting the output of JavaScript code into a block enclosed in
<% ... %> markers which does a similar thing.

JavaScript Programmer's Reference

152

This allows us to include fragments of JavaScript into an HTML page and expect them to be parsed
server-side.

This is somewhat analogous to JavaScript entities but they operate at the client-side.

The server-side example wraps its result inside quote symbols so that the HTML tag attribute
syntax is preserved intact.

Example code:
<HTML>
<BODY>
<FORM>
<INPUT TYPE="text" VALUE=`server.hostname;`>
</FORM>
</BODY>
</HTML>

See also: JavaScript entity, Netscape Enterprise Server

Bar object (Object/Navigator)
An object used to hold properties for toolbars, location bars etc.

Availability: JavaScript – 1.2
Netscape Version – 4.0

N myBar = locationbar

N myBar = menubar

N myBar = myWindow.locationbar

N myBar = myWindow.menubar

N myBar = myWindow.personalbar

N myBar = myWindow.scrollbars

N myBar = myWindow.statusbar

N myBar = myWindow.toolbar

N myBar = personalbar

N myBar = scrollbars

N myBar = statusbar

JavaScript syntax:

N myBar = toolbar

Object properties: visible

This object is used to represent various items of window furniture (otherwise called chrome or
adornments) in Netscape Navigator. It isn't supported by MSIE although the control facilities it
offers are available when a new window is created with the window.open() method.

It only has one usable property. That is the visible property, which can be set to a Boolean value.
Some early documentation referred to this as the visibility property but that is the wrong
property name.

B – Bar.visibility (Pitfall)

153

See also: Bar.visible, Window.locationbar,
Window.menubar,Window.personalbar,
Window.scrollbars, Window.statusbar,
Window.toolbar

Property JavaScript JScript N IE Opera Notes

visible 1.2 + - 4.0 + - - -

Bar.visibility (Pitfall)
An erroneous name for the visible property of a Bar object.

Warnings:
❑ Some reference works refer to the visibility property of the Bar object, possibly due to early

prototype versions of the Netscape browser or in an attempt to document forthcoming features of
the browser. In between publishing and release of the browser, the property changed its name to the
visible property.

❑ You may even then have some difficulty in getting it to work on some platforms but you do
need to make sure you are trying to set the correct property value when changing the visibility
of Bar objects.

See also: Bar.visible

Bar.visible (Property)
A flag indicating whether the bar that this object represents is visible.

Availability: JavaScript – 1.2
Netscape Navigator version – 4.0

Property/method value type: Boolean primitive

N myBar.visible
JavaScript syntax:

N myBar.visible = aBoolean

Argument list:
aBoolean A switch value to control the visibility of a

window control item

Setting this property to true makes the bar visible. Setting false hides the bar.

You must have been granted the UniversalBrowserWrite privilege to be able to set this
property value.

See also: Bar object,Bar.visibility

JavaScript Programmer's Reference

154

Barn() (Filter/transition)
A transition effect with the appearance of barn doors opening or closing.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Barn()

BASE object (Object/HTML)
Represents the <BASE> HTML tag that describes a base URL for the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myBASE = myDocument.all.anElementID

IE myBASE = myDocument.all.tags("BASE")[anIndex]

IE myBASE = myDocument.all[aName]

- myBASE = myDocument.getElementById(anElementID)

- myBASE =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myBASE = myDocument.getElementsByTagName
("BASE")[anIndex]

HTML syntax: <BASE>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: href,target

Event handlers:
onClick,onDblClick,onHelp,onKeyDown,onKeyPress,
onKeyUp,onMouseDown,onMouseMove,onMouseOut,
onMouseOver,onMouseUp

The <<BASE>> tag must appear inside the <<HEAD>> block of a document and is used to define a
base URL for the document, this can be useful if the document is not served from the same server
that subsequent pages need to be served from.

See also: Element object

B – BASE.href (Property)

155

Property JavaScript JScript N IE Opera DOM HTML Notes

href 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
target 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

BASE.href (Property)
The URL defined by the <<BASE>> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value
type:

String primitive

JavaScript syntax: - myBASE.href

The URL to be used as a base for any relative URLs in the remainder of the document.

BASE.target (Property)
The target window or frame defined by the <<BASE>> HTML tag.

JavaScript Programmer's Reference

156

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape Navigator version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBASE.target

The target window or frame to be added to any relative (or non targeted) URL values in the
remainder of the document.

You can assign a new value to this property so that any URLs that are built by the browser with a
relative location will be directed to a different window or frame.

Here are some example target values:

❑ _parent

❑ _self

❑ _top

❑ _blank

❑ Window name

❑ Frame name

See also: Anchor.target, Form.target, Location.target,
Map.target, Url.target

BASEFONT object (Object/HTML)
A <<BASEFONT>> HTML tag is represented by this object and defines some generic font
information to be used as a default in this page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape Navigator version – 6.0

Inherits from: Element object

B – BASEFONT object (Object/HTML)

157

IE myBASEFONT = myDocument.all.anElementID

IE myBASEFONT =
myDocument.all.tags("BASEFONT")[anIndex]

IE myBASEFONT = myDocument.all[aName]

- myBASEFONT = myDocument.getElementById
(anElementID)

- myBASEFONT = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBASEFONT = myDocument.getElementsByTagName
("BASEFONT")[anIndex]

HTML syntax: <BASEFONT>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: color, face, size

Object methods: getAttribute()

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Historically web developers will have used the tag to set the attributes of blocks of text.
Latterly, they will be using style sheets to control this.

The <BASEFONT> tag provides a way to set the font presentation style from the position of this tag
to the end of the document unless overridden by further <BASEFONT> tags or settings.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

color 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
face 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
size 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

getAttribute() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

JavaScript Programmer's Reference

158

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

BASEFONT.color (Property)
The default color of text affected by the <BASEFONT> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape Navigator version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBASEFONT.color

The color of text affected by this BASEFONT object will be defined in this property.

The color can be specified in the normal way according to the HTML color specifiers.

See also: Color value, FONT. color

B – BASEFONT.face (Property)

159

BASEFONT.face (Property)
The default font face for text affected by the <BASEFONT> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape Navigator version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBASEFONT.face

The font face to be used for subsequent text is defined by this property. It is appropriate to define a
list of font faces in priority order in the normal way. The browser will use the first one it
encounters that it has available.

BASEFONT.size (Property)
The default size of text affected by the <<BASEFONT>> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape Navigator version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBASEFONT.size

The size of text rendered by the browser under control of the BASEFONT object is controlled by this
property. Absolute and relative sizes are supported in the normal way.

Basic type (Definition)
Another name for the native types supported by the interpreter.

See also: Native object, Primitive value

JavaScript Programmer's Reference

160

BasicImage() (Filter/visual)
Controls over the basic image display attributes of the containing HTML Element object.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – BasicImage()

BDO object (Object/HTML)
An object representing the <BDO> HTML tag for supporting bidirectional text algorithms.

Availability: JScript – 5.0
Internet Explorer – 5.0

Inherits from: Element object

IE myBDO = myDocument.all.anElementID

IE myBDO = myDocument.all.tags("BDO") [anIndex]

IE myBDO = myDocument.all[aName]

- myBDO = myDocument.getElementById (anElementID)

- myBDO = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBDO =
myDocument.getElementsByTagName("BDO")[anIndex]

HTML syntax: <BDO> ... </BDO>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: dir

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This is the Bi-Directional Override object. The LANG and DIR attributes of HTML tags in the
document will cover most eventualities but there may be times when you need to explicitly
override the direction of text flow.

B – BDO.dir (Property)

161

Usage of this is likely to be confined to scripts that operate in multiple-language environments and
on pages containing text in more than one language.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

dir - 5.0 + - 5.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 5.0 + - 5.0 + - - 4.0 + Warning
onDblClick - 5.0 + - 5.0 + - - 4.0 + Warning
onHelp - 5.0 + - 5.0 + - - - Warning
onKeyDown - 5.0 + - 5.0 + - - 4.0 + Warning
onKeyPress - 5.0 + - 5.0 + - - 4.0 + Warning
onKeyUp - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseDown - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseMove - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseOut - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseOver - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseUp - 5.0 + - 5.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

BDO.dir (Property)
The direction attribute of the <BDO> HTML tag.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myBDO.dir

The dir property may be set to indicate a left to right or right to left parsing direction.

This is part of the localization support and represents the contents of the DIR="..." tag attribute.

If you assign a value to this property it is case-sensitive and must be either "ltr" or "rtl".

This property works in conjunction with the lang property to control the direction of text flow.

JavaScript Programmer's Reference

162

See also: Element.dir, NOFRAMES.dir, NOSCRIPT.dir

BeanConnect (Definition)
A Netscape Communications technology for interconnecting Java applets (Beans).

See also: Java,Java exception events

Refer to:
LiveConnect

Behavior (Definition)
Implementations respond to different constructs according to their behavior.

The ECMAScript standard defines how an implementation should react to a language construct.
Other non-ECMA-compliant implementations may behave in the same way most of the time and
may deviate from the standard at others.

When the implementation conforms to the standard, its behavior is predictable according to the
definitions of the standard. When an implementation is not conformant, it may behave according to
one of the following abnormal behavior models:

❑ Unspecified behavior

❑ Undefined behavior

❑ Implementation-defined behavior

❑ Locale-specific behavior

Another meaning for the word behavior in the context of JavaScript is the way that MSIE supports
the addition of JavaScript functionality to style definitions. This is covered under the descriptions
of the addBehavior() and removeBehavior() methods that belong to the Element object.

See also: Compliance, Element.addBehavior(), Element.filters[],
Element.removeBehavior(), Implementation-defined
behavior,Locale-specific behavior, Undefined behavior, Unspecified
behavior

BGSOUND object (Object/HTML)
An object representing a <BGSOUND> HTML tag that defines an audio track to play while the page
is displayed.

Availability:
JScript – 3.0
Internet Explorer – 4.0 (as HTML in IE 3.0)

Inherits from: Element object

B – BGSOUND object (Object/HTML)

163

IE myBGSOUND = myDocument.all.anElementID

IE myBGSOUND = myDocument.all.tags("BGSOUND")
[anIndex]

IE myBGSOUND = myDocument.all[aName]

- myBGSOUND = myDocument.getElementById (anElementID)

- myBGSOUND = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBGSOUND = myDocument.getElementsByTagName
("BGSOUND")[anIndex]

HTML syntax: <BGSOUND>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: balance,loop,src,volume

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This object is instantiated by the <BGSOUND> HTML tag and represents a sound effect that is to be
played in the background. As the BGSOUND object is created during document loading and requires
that a sound file be downloaded, there may some noticeable delay before the sound starts to play.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

balance - 3.0 + - 4.0 + - - - ReadOnly
loop - 3.0 + - 4.0 + - - - -
src - 3.0 + - 4.0 + - - - -
volume - 3.0 + - 4.0 + - - - ReadOnly

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning

JavaScript Programmer's Reference

164

Inheritance chain:
Element object, Node object

BGSOUND.balance (Property)
The stereo balance of the background sound.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBGSOUND.balance

The relative volume of the left and right channels will be adjusted according to the value of this
property. This provides a limited amount of control over the apparent direction of the sound source.

Creative use of the balance property may be tied in to the horizontal scrolling of a page for creating
virtual reality effects.

Much more sophisticated control is available through the aural style sheet properties, although
these are not yet properly supported by browsers.

See also: style.azimuth

Property attributes:
ReadOnly.

BGSOUND.loop (Property)
Whether the background sound should loop when it gets to the end.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBGSOUND.loop

This indicates the number of times that the sound should play before stopping.

B – BGSOUND.src (Property)

165

BGSOUND.src (Property)
The URL that the background sound file can be fetched from.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myBGSOUND.src

The sound will be loaded from this location while the page is being constructed. There may be
some delay between requesting the sound and being able to play it.

You can define a new value here to load a different sound and play it in the background.

BGSOUND.volume (Property)
The volume setting at which the background sound should play.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBGSOUND.volume

The volume setting of the background can be modified by this property.

The actual perceived volume may depend on other factors. If the sound has been digitized at an
unusually low volume, you may need to raise the volume setting quite high. This may yield a very
noisy sound as you will also be increasing the ambient noise in the sampled sound. Digitizing is a
complex activity but you should always strive for the highest possible signal to noise ratio.

Other factors that may affect the apparent volume would be the user preference settings in the
computer. There may also be system controls for blending and mixing sound sources and these
may be set to unhelpful values.

This property can obviously only control the source volume of the sound generated by the browser.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

166

Big endian (Definition)
A bit ordering standard for some CPU models.

Increasing bit value

1248163264128

Refer to:
byte

BIG object (Object/HTML)
An object that represents the font style controlled by the <<BIG>> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Deprecated Usage: Yes

Inherits from: Element object

IE myBIG = myDocument.all.anElementID

IE myBIG = myDocument.all.tags("BIG") [anIndex]

IE myBIG = myDocument.all[aName]

- myBIG = myDocument.getElementById
(anElementID)

- myBIG = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBIG = myDocument.getElementsByTagName
("BIG")[anIndex]

HTML syntax: <BIG> ... </BIG>

anIndex A valid reference to an item in the
collection

aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

B – Binary bitwise operator (Definition)

167

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Binary bitwise operator (Definition)
An operator that applies in a bitwise fashion.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

A binary bitwise operator converts its operands to 32 bit values and performs the operation on each
corresponding bit in the two values.

Warnings:
❑ The result of a bitwise expression is a 32 bit binary value and should not be confused with the

Boolean value returned by a logical operator.

See also:
Bitwise AND (&), Bitwise operator, Bitwise OR (|),
Bitwise XOR (^)

JavaScript Programmer's Reference

168

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

Binary logical operator (Definition)
An operator that works with Boolean true or false values.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Binary logical operators test a pair of Boolean values according to logical rules. If necessary,
JavaScript will convert the operands that are passed to the expression into Boolean values before
testing them. You should consult the toBoolean rules for each type of object being passed to
ensure that values are cast in a way that you expect.

The resulting value of a binary logical expression may be coerced to another data type on return.

There is no logical XOR operator. It can be simulated though by testing two Boolean values for
inequality, since that is going to occur when either is one and the other is zero; the inequality will
not test true if both are one or both are zero.

Warnings:
❑ This is not to be confused with the bitwise operators, which yield a 32-bit integer value instead of the

Boolean value yielded by a logical expression.

See also: Logical AND (&&), Logical operator, Logical OR (||)

Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

B – Binary operator (Definition)

169

Binary operator (Definition)
An operator that works with two operands.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Binary operators require two operands and with them form an expression. The operator determines
the kind of expression.

Here is a list of the binary operators supported by JavaScript:

Operator Description

!= NOT equal to
% Remainder
%= Remainder and assign to an LValue
& Bitwise AND
&& Logical AND
&= Bitwise AND and assign to an LValue
* Multiply
*= Multiply and assign to an LValue
+ Add
+ Concatenate string
+= Add and assign to an LValue
- Subtract
-= Subtract and assign to an LValue
/ Divide
/= Divide and assign to an LValue
< Less than
<< Bitwise left shift
<<= Bitwise shift left and assign to an LValue
<= Less than or equal to
= Simple assignment to an LValue
== Equal to
> Greater than
>= Greater than or equal to
>> Bitwise shift right
>>= Bitwise shift right and assign to an LValue
>>> Bitwise shift right (unsigned)

Table continued on following page

JavaScript Programmer's Reference

170

Operator Description

>>>= Bitwise shift right (unsigned) and assign to an LValue
^ Bitwise XOR (exclusive OR)
^= Bitwise exclusive XOR and assign to an LValue
| Bitwise inclusive OR
|= Bitwise inclusive OR and assign to an LValue
|| Logical OR

See also: Multiplicative operator, Operator, Ternary operator

Cross-references:
ECMA 262 edition 2 – section – 11.5

ECMA 262 edition 3 – section – 11.6

ECMA 262 edition 3 – section – 11.7

ECMA 262 edition 3 – section – 11.8

ECMA 262 edition 3 – section – 11.9

ECMA 262 edition 3 – section – 11.10

ECMA 262 edition 3 – section – 11.11

ECMA 262 edition 3 – section – 11.13

Binding (Definition)
Binding is used to resolve identifiers via the scope chain.

Availability: ECMAScript edition – 2

Binding is the process of locating the appropriate object or property where a value is stored for a
particular identifier.

The binding process uses the scope chain belonging to the current execution context to locate the
earliest matching item according to the inheritance rules.

See also: Identifier resolution

B – Bit (Definition)

171

Cross-references:
ECMA 262 edition 2 – section – 10.1.4

ECMA 262 edition 3 – section – 10.1.4

Bit (Definition)
A binary digit.

A Boolean value can be represented as a bit. Since a bit can maintain exactly two states (true or
false), the two map very well to one another. Strictly speaking a Boolean value may yield an
undefined state as well.

A continuous series of 8 bits forms a byte and 16 form a word. In JavaScript, 16 bit values tend to be
the smallest that you operate with and correspond to a single character in a Unicode string. However,
you can probably represent most characters that you want to use in the English language with only 8
bits. In fact only 7 bits are sufficient to describe your script source text in an ASCII representation.

Bit manipulation of character values allows you to convert between upper and lower case. The
String.toUpperCase() and String.toLowerCase() methods allow you to convert
specifically to the case you want, but if the current case is unknown and you simply want to toggle
the case of a character, the difference between 'A' and 'a' is a single bit.

In most cases, you won't be operating with binary digits in JavaScript-based projects. However, the
language is quite capable of working with bit patterns provided you understand how they work.

Although you cannot store an individual bit on its own, you can keep collections of 32 of them in a
Number value.

In C language you operate on these using Bit-Fields. JavaScript does not support bit-fields but the
sort of things you do with them can be simulated.

This is likely to be of most use to people developing scripts for use in embedded interpreters and of
less use to browser script developers.

1 1 bit

1 1 1 1 1 0 0 0 1 byte

1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 word

1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 0 0 0 1 long word

JavaScript Programmer's Reference

172

Example code:
// Demonstrate bit inversion to change character case
myString = "AbCdEfGh";
myLength = myString.length;
document.write("Original source string : ");
document.write(myString);
document.write("
");
document.write("
");
document.write("<TABLE BORDER=1><TR><TH>");
document.write("Orig char</TH><TH>");
document.write("Char code</TH><TH>");
document.write("Bit inverted
char code</TH><TH>");
document.write("New char</TH></TR>");
for(myEnum = 0; myEnum < myLength; myEnum++)
{
 myChar = myString.charAt(myEnum);
 myCharCode = myString.charCodeAt(myEnum);
 myNewCharCode = myCharCode ^ 32;

 document.write("<TR><TD>");
 document.write(myChar);
 document.write("</TD><TD>");
 document.write(myCharCode);
 document.write("</TD><TD>");
 document.write(myNewCharCode);
 document.write("</TD><TD>");
 document.write(String.fromCharCode(myNewCharCode));
 document.write("</TD></TR>");
}
document.write("</TABLE>");

See also: Bit-field, String.toLocaleLowerCase(),
String.toLocaleUpperCase(), String.toLowerCase(),
String.toUpperCase()

Bit-field (Definition)
A collection of binary digits.

Although JavaScript does not support bit-fields, you can perform many binary operations on
patterns of bits by using the bitwise operators and various simple mathematical expressions to
simulate other bit manipulation operators that are not provided as part of the standard.

Op Description

~ Bitwise complement (NOT)
& Bitwise AND
<< Bitwise left shift
>> Bitwise right shift
>>> Bitwise right shift (unsigned)

B – Bit-field (Definition)

173

Op Description

| Bitwise inclusive OR
^ Bitwise XOR (exclusive OR)
&= Bitwise AND and assign to an LValue
|= Bitwise inclusive OR and assign to an LValue
^= Bitwise exclusive XOR and assign to an LValue
<<= Bitwise shift left and assign to an LValue
>>= Bitwise shift right and assign to an LValue
>>>= Bitwise shift right (unsigned) and assign to an LValue

The bits are individually weighted according to their position relative to the least significant digit.

The single bit at the extreme right-hand end is defined by the integer value 1. The next significant
bit is derived by using a zero-based indexing scheme to raise 2 to the power of its index position.
Thus 2 raised to the power 0 is 1. The value 2 raised to the power 1 is 2 and thus the values proceed
like this, moving from right to left:

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096 etc.

To build bit masks containing a set bit for several positions, simply add the component bit values
together. Thus a mask that includes all the four least significant bits in a value is equal to:

1 + 2 + 4 + 8

Here are some other useful mask values (note that we only show 8 bit values here to demonstrate
the concept):

Mask Value Description

0000 0001 1 Least significant bit

0000 1111 15 Least significant nibble

0010 0000 32 ASCII upper/lowercase character bit

0101 0101 85 Simple encryption pattern for XOR

0111 1111 127 Valid ASCII character mask

1111 0000 240 Most significant nibble

1111 1111 255 Low 255 UNICODE character set mask

See also: Bit,Bitwise AND (&), Bitwise AND then assign (&=), Bitwise
expression,Bitwise NOT – complement (~), Bitwise operator,Bitwise OR
(|), Bitwise OR then assign (|=), Bitwise shift left (<<), Bitwise shift left
then assign (<<=), Bitwise shift operator,Bitwise shift right (>>), Bitwise
shift right and assign (>>=), Bitwise unsigned shift right (>>>), Bitwise
unsigned shift right and assign (>>>=), Bitwise XOR (^), Bitwise XOR and
assign (^=),Expression

JavaScript Programmer's Reference

174

Bitwise AND (&) (Operator/bitwise)
Bitwise AND of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 & anOperand2

Argument list:
anOperand1
anOperand2

A binary bit pattern
Another binary bit pattern

The result is the bitwise AND of both binary bit pattern values.

This operator performs a bit by bit AND of the 32-bit value derived from both operands.
Effectively, each corresponding bit pair has a logical AND applied to it.

The truth table shows the result of this operator for two Boolean primitive values:

A B AND

false false false

false true false

true false false

true true true

Where a corresponding bit is 1 in both values, a 1 bit is inserted into the result otherwise the value
is zero.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

1

0

0

1

0

0

1

0

0

1

1

1

1

1

1

1

1

1

0

1

1

0

1

1

B – Bitwise AND (&) (Operator/bitwise)

175

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = 0xFFFF;
myValue2 = 0xFF00;
myValue3 = myValue1 & myValue2;

document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("Val 2 : " + binary32(myValue2) + "
");
document.write("AND : " + binary32(myValue3) + "
");

// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{

myArray = new Array(32);

for(myEnum=0; myEnum<32; myEnum++)
{

if(aValue & Math.pow(2, myEnum))
{

myArray[31-myEnum] = "1";
}
else
{

myArray[31-myEnum] = "0";
}

}

return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Associativity, Binary bitwise operator,Bit-field, Bitwise AND then assign
(&=), Bitwise expression, Bitwise operator, Logical AND (&&),Operator
Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.10

JavaScript Programmer's Reference

176

Bitwise AND then assign (&=) (Operator/assignment)
Bitwise AND two operands and assign the result to the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 &= anOperand2

anOperand1 A binary value
Argument list:

anOperand2 Another binary value

Bitwise AND the right operand with the left operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 & anOperand2;

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

The truth table shows the result of this operator for two Boolean primitive values:

A B AND

false false false
false true false
true false false
true true true

This is applied to each corresponding bit pair in the two values.

1

0

0

1

0

0

1

0

0

1

1

1

1

1

1

1

1

1

0

1

1

0

1

1

B – Bitwise expression (Definition)

177

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Bit-field,Bitwise AND (&),
Bitwise expression, Bitwise operator, Logical AND (&&), LValue,
Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

Bitwise expression (Definition)
An expression that applies in a bitwise manner.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Bitwise expressions perform a bit by bit operation across the entire integer width of the values.

See also:
Bit-field, Bitwise AND (&), Bitwise AND then assign (&=),
Expression

Cross-references:
ECMA 262 edition 2 – section – 11.7

ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.7

ECMA 262 edition 3 – section – 11.10

Bitwise NOT - complement (~) (Operator/bitwise)
Bitwise NOT of one operand.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript Programmer's Reference

178

Property/method value type: Number primitive

JavaScript syntax: - ~anOperand

Argument list: anOperand A numerical value

The operand is evaluated and then converted to a 32-bit integer value. Every bit is complemented
and the result is a bitwise NOT.

The truth table shows the result of this operator for a Boolean primitive value:

A NOT

false true

true false

This operation is applied to each individual bit in the operand, inverting them one by one.

Note that this could be classified as a unary operator but here we have called it a bitwise operator
on account of its functionality rather than its placement.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

0 1 1 0 1 0 1

0 0 1 0 1 01

Warnings:
❑ There are some deficiencies in the handling of bitwise operators in the MSIE 5.0 browser on the

Macintosh platform. It does not properly handle the sign bit and so you should observe some
caution when using this operator.

B – Bitwise operator (Definition)

179

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = 0xFFFF;
myValue2 = ~myValue1
document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("NOT : " + binary32(myValue2) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {
 myArray[31-myEnum] = "0";
 }
}
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Associativity, Bit-field,Logical NOT – complement (!), Operator
Precedence, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.8

ECMA 262 edition 3 – section – 11.4.8

Bitwise operator (Definition)
An operator that is applied in a bitwise manner.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Bitwise operators convert both operands to 32 bit integers and apply the operator to them on a bit-
by-bit basis.

JavaScript Programmer's Reference

180

Here is a table of all operators in the bitwise category and those are members of other categories
but perform bitwise operations:

Op Description

~ Bitwise complement (NOT)
& Bitwise AND
<< Bitwise left shift
>> Bitwise right shift
>>> Bitwise right shift (unsigned)
| Bitwise inclusive OR
^ Bitwise XOR (exclusive OR)
&= Bitwise AND and assign to an LValue
|= Bitwise inclusive OR and assign to an LValue
^= Bitwise exclusive XOR and assign to an LValue
<<= Bitwise shift left and assign to an LValue
>>= Bitwise shift right and assign to an LValue
>>>= Bitwise shift right (unsigned) and assign to an LValue

Warnings:
❑ The result of a bitwise expression is a 32 bit binary value and should not be confused with the

Boolean value returned by a logical operator.

❑ The bitwise operators may yield a value that in other languages is the same as the logical operator.
However although in the C language, true and false are really integer values, in JavaScript the
Boolean and Number values are distinctly different types.

❑ Be careful to use the correct number of ampersands and vertical bars to select the bitwise version of
the operator. Refer to the Logical operator topic for a list of operators to avoid in bitwise expressions.

See also: Associativity, Binary bitwise operator, Bit-field,Bitwise AND (&), Bitwise
AND then assign (&=), Bitwise OR then assign (|=), Bitwise shift left then
assign (<<=), Bitwise shift right and assign (>>=), Bitwise unsigned shift
right and assign (>>>=), Bitwise XOR and assign (^=),Logical operator,
Operator, Operator Precedence,Type conversion

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

Wrox Instant JavaScript – page – 19

B – Bitwise OR (|) (Operator/bitwise)

181

Bitwise OR (|) (Operator/bitwise)
Bitwise OR of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 | anOperand2

Argument list: anOperand1 A numeric value

- anOperand2 Another numeric value

Performs a bit-by-bit OR of the 32-bit value derived from both operands.

Where a corresponding bit is 1 in either of the two operands, a 1 is inserted into the result. A zero is
inserted only when neither operand has a 1 bit at that position.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

The truth table shows the result of this operator for two Boolean primitive values:

A B OR

false false false

false true true

true false true

true true true

This is applied to each corresponding bit pair in the operands.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = 0x00FF;
myValue2 = 0xFF00;
myValue3 = myValue1 | myValue2;
document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("Val 2 : " + binary32(myValue2) + "
");

JavaScript Programmer's Reference

182

document.write("OR : " + binary32(myValue3) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {
 myArray[31-myEnum] = "0";
 }
}
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Associativity, Binary bitwise operator, Bit-field,Bitwise OR then
assign (|=), Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

Bitwise OR then assign (|=)
(Operator/assignment)

Bitwise OR two operands and assign the result to the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 |= anOperand2

Argument list: anOperand1 A numeric value that can be assigned to

- anOperand2 Another numeric value

B – Bitwise OR then assign (|=) (Operator/assignment)

183

Bitwise OR the right operand with the left operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 | anOperand2;

Performs a bit by bit OR of the 32-bit value derived from both operands.

Where a corresponding bit is 1 in either of the two operands, a 1 is inserted into the result. A zero is
inserted only when neither operand has a 1 bit at that position.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

The truth table shows the result of this operator for two Boolean primitive values:

A B OR

false false false

false true true

true false true

true true true

This is applied to each corresponding bit pair in the operands.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Bit-field, Bitwise operator, Bitwise OR
(|),LValue, Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

JavaScript Programmer's Reference

184

Bitwise shift left (<<) (Operator/bitwise)
Bitwise shift leftwards one operand according to another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 << anOperand2

Argument list:
anOperand1
anOperand2

A value to be shifted
A distance to shift anOperand1

The bitwise shift left operator converts its left operand to a 32 bit integer and moves it leftwards by
the number of bits indicated by the right operand.

As the value is shifted leftwards, bits that roll out of the left end of the register are discarded. The
right-hand end of the register is filled with zero bits. Shifting leftwards by 32 bits will fill the
register with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

The right-hand operand is converted to a 5 bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

You can accomplish bitwise shift lefts by multiplying values using powers of 2. Multiplying a value
by 2 shifts leftwards by one bit position.

0 1 1 0 1 0 1

01 1 0 1 0 1

B – Bitwise shift left (<<) (Operator/bitwise)

185

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = 0x00FF;
myValue2 = myValue1 << 4;
document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("Result : " + binary32(myValue2) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {
 myArray[31-myEnum] = "0";
 }
 }
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Associativity, Bit-field,Bitwise shift left then assign (<<=), Bitwise shift
operator, Bitwise shift right (>>), Bitwise shift right and assign (>>=),
Bitwise unsigned shift right (>>>), Bitwise unsigned shift right and assign
(>>>=), Operator Precedence, Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.7.1

ECMA 262 edition 3 – section – 11.7.1

JavaScript Programmer's Reference

186

Bitwise shift left then assign (<<=)
(Operator/assignment)

Destructively bitwise leftwards shift the first of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera browser – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 <<= anOperand2

anOperand1 A value to be shifted and assigned to
Argument list:

anOperand2 A distance to shift anOperand1

Bitwise shift leftwards the left operand by the number of bits in the right operand and assign the
result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 << anOperand2;

The bitwise shift left operator converts it left operand to a 32 bit integer and moves it leftwards by
the number of bits indicated by the right operand.

As the value is shifted leftwards, bits that roll out of the left end of the register are discarded. The
right-hand end of the register is filled with zero bits. Shifting leftwards by 32 bits will fill the left
operand with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

B – Bitwise shift operator (Definition)

187

The new value of anOperand1 is returned as a result of the expression.

0 1 1 0 1 0 1

01 1 0 1 0 1

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Bit-field,Bitwise operator,
Bitwise shift left (<<), Bitwise shift operator, Bitwise shift right (>>),
Bitwise shift right and assign (>>=), Bitwise unsigned shift right
(>>>), Bitwise unsigned shift right and assign (>>>=),
LValue,Operator Precedence,Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

Bitwise shift operator (Definition)
A shift operator that moves the bits in an operand as if it were a shift register.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Bitwise shift operators convert their left operands to a 32-bit integer value and shift them according
to their right operand. The operator determines the kind of shifting that is applied.

See also: Bit-field, Bitwise shift left (<<), Bitwise shift left then assign (<<=),
Bitwise shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), Bitwise unsigned shift right and assign
(>>>=),Shift expression, Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.7

ECMA 262 edition 3 – section – 11.7

JavaScript Programmer's Reference

188

Bitwise shift right (>>) (Operator/bitwise)
Bitwise shift right one operand according to another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 >> anOperand2

anOperand1 A value to be shifted
Argument list:

anOperand2 A distance to shift the left operand

This is sometimes called shift right with sign extension.

The bitwise shift right operator converts its left operand to a 32 bit integer and moves it rightwards
by the number of bits indicated by the right operand.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is duplicated to sign-fill the value as it
shifts. Shifting rightwards by 32 bits will fill the register with all zero or all one bits according to
the value of the sign bit at the outset.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

You can accomplish bitwise shift rights by dividing values using powers of 2. Dividing a value by 2
shifts rightwards by one bit position.

B – Bitwise shift right (>>) (Operator/bitwise)

189

0 1 1 0 1 0 1

0 1 1 0 1 00

1 1 1 0 1 0 1

1 1 1 0 1 01

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = 0x00FF00;
myValue2 = myValue1 >> 4;
document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("Result : " + binary32(myValue2) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {
 myArray[31-myEnum] = "0";
 }
 }
 return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

JavaScript Programmer's Reference

190

See also: Associativity, Bit-field,Bitwise shift left (<<), Bitwise shift left then
assign (<<=), Bitwise shift operator, Bitwise shift right and assign
(>>=), Bitwise unsigned shift right (>>>), Bitwise unsigned shift
right and assign (>>>=), Operator Precedence, Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.7.2

ECMA 262 edition 3 – section – 11.7.2

Bitwise shift right and assign (>>=)
(Operator/assignment)

Destructively bitwise rightwards shift the first of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 >>= anOperand2

anOperand1 A value to be shifted and assigned to
Argument list:

="c2">anOperand2 ="c3">A distance to shift anOperand1

Bitwise shift rightwards the left operand by the number of bits in the right operand and assign the
result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 >> anOperand2;

The bitwise shift right operator converts its left operand to a 32 bit integer and moves it rightwards
by the number of bits indicated by the right operand.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is duplicated to sign fill the value as it
shifts. Shifting rightwards by 32 bits will fill the left operand with all zero or all one bits according
to the value of the sign bit at the outset.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

B – Bitwise shift right and assign (>>=) (Operator/assignment)

191

The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

0 1 1 0 1 0 1

0 1 1 0 1 00

1 1 1 0 1 0 1

1 1 1 0 1 01

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Bit-field, Bitwise operator,
Bitwise shift left (<<), Bitwise shift left then assign (<<=), Bitwise
shift operator, Bitwise shift right (>>), Bitwise unsigned shift right
(>>>), Bitwise unsigned shift right and assign (>>>=),LValue,
Operator Precedence, Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

JavaScript Programmer's Reference

192

Bitwise unsigned shift right (>>>)
(Operator/bitwise)

Bitwise shift right one operand according to another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 >>> anOperand2

anOperand1 A value to be shifted
Argument list:

anOperand2 A distance to shift the left operand

This is sometimes called shift right with zero extension.

The bitwise unsigned shift right operator converts its left operand to a 32 bit integer and moves it
rightwards by the number of bits indicated by the right operand. The sign bit is not propagated.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is zero-filled as the contents are shifted.
Shifting rightwards by 32 bits will fill the register with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

B – Bitwise unsigned shift right (>>>) (Operator/bitwise)

193

0 1 1 0 1 0 1

0 1 1 0 1 00

1 1 1 0 1 0 1

1 1 1 0 1 00

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = -0x00FF00;
myValue2 = myValue1 >>> 4;
document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("Result : " + binary32(myValue2) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {
 myArray[31-myEnum] = "0";
 }
 }
 return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Associativity, Bit-field,Bitwise shift left (<<), Bitwise shift left then assign
(<<=), Bitwise shift operator, Bitwise shift right (>>), Bitwise shift right
and assign (>>=), Bitwise unsigned shift right and assign (>>>=),
Operator Precedence, Shift operator

JavaScript Programmer's Reference

194

Cross-references:
ECMA 262 edition 2 – section – 11.7.3

ECMA 262 edition 3 – section – 11.7.3

Bitwise unsigned shift right and assign (>>>=)
(Operator/assignment)

Destructively bitwise rightwards shift the first of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 >>>= anOperand2

anOperand1 A value to be shifted and assigned to
Argument list:

anOperand2 A distance to shift the left operand

Bitwise unsigned shift rightwards the left operand by the number of bits in the right operand and
assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 >>> anOperand2;

The bitwise unsigned shift right operator converts its left operand to a 32 bit integer and moves it
rightwards by the number of bits indicated by the right operand. The sign bit is not propagated.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is zero-filled as the contents are shifted.
Shifting rightwards by 32 bits will fill the left operand with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

B – Bitwise unsigned shift right and assign (>>>=) (Operator/assignment)

195

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

0 1 1 0 1 0 1

0 1 1 0 1 00

1 1 1 0 1 0 1

1 1 1 0 1 00

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Bit-field, Bitwise operator, Bitwise
shift left (<<), Bitwise shift left then assign (<<=), Bitwise shift operator,
Bitwise shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), LValue, Operator Precedence, Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

JavaScript Programmer's Reference

196

Bitwise XOR (^) (Operator/bitwise)
Bitwise XOR one operand with another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 ^ anOperand2

anOperand1 A numeric value
Argument list:

anOperand2 Another numeric value

Performs a bit-by-bit XOR of the 32-bit values derived from both operands.

Where a corresponding bit is different in both operands, a 1 bit will be inserted into the result. If
the corresponding bit is identical in both operands, regardless of whether they both have a 1 bit or
a zero bit, a zero will be inserted at that bit position in the result.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

This is the truth table for two Boolean primitive values being operated on with the XOR operator.

A B XOR

false false false

false true true

true false true

true true false

The bitwise operator performs this operation on each corresponding bit pair in the two operands.

1

0

1

1

0

1

1

0

1

1

1

0

1

1

0

1

1

1

0

1

1

0

1

1

B – Bitwise XOR and assign (^=) (Operator/assignment)

197

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValue1 = 0xFFFF;
myValue2 = 0x0FF0;
myValue3 = myValue1 ^ myValue2;
document.write("Val 1 : " + binary32(myValue1) + "
");
document.write("Val 2 : " + binary32(myValue2) + "
");
document.write("XOR : " + binary32(myValue3) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {
 myArray[31-myEnum] = "0";
 }
 }
 return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Associativity, Binary bitwise operator, Bit-field, Bitwise XOR and assign
(^=),Logical XOR, Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

Bitwise XOR and assign (^=)
(Operator/assignment)

Destructively bitwise XOR two operands and store the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript Programmer's Reference

198

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 ^= anOperand2

anOperand1 A numeric value that can be assigned to
Argument list:

anOperand2 Another numeric value

Bitwise XOR the right operand with the left operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 ^ anOperand2;

Performs a bit-by-bit XOR of the 32-bit values derived from both operands.

Where a corresponding bit is different in both operands, a 1 bit will be inserted into the result. If
the corresponding bit is identical in both operands, regardless of whether they both have a 1 bit or
a zero bit, a zero will be inserted at that bit position in the result.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

This is the truth table for two Boolean primitive values being operated on with the XOR operator

A B XOR

false false false

false true true

true false true

true true false

The bitwise operator performs this operation on each corresponding bit pair in the two operands.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Bit-field, Bitwise operator,
Bitwise XOR (^), LValue, Operator Precedence

B – BlendTrans() (Filter/blend)

199

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

BlendTrans() (Filter/blend)
A blend filter for controlling transitions.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
filter – BlendTrans()

Blinds() (Filter/transition)
A transition effect with the appearance of venetian blinds opening or closing.

Availability: JScript – 5
Internet Explorer – 5

Refer to:
filter – Blinds()

blob object (Object/NES)
A special object that is designed to contain binary data extracted from a database or file.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

NES myBlob = blob()
JavaScript syntax:

NES myBlob = myCursor.colName.blobImage(...)

Object methods:
<methodname>blobImage()</methodname>,
<methodname>blobLink()</methodname>

A blob object is so called because it encapsulates a Binary Large OBject or BLOB. This is a block of
data, often quite large, that is stored in a binary form and which is likely to contain many non-
printable characters and probably some nulls as well.

You cannot instantiate a blob object directly in JavaScript but you can obtain one by fetching the
data from a database as shown in the example code.

JavaScript Programmer's Reference

200

Example code:
<SERVER>
// Example derived from Wrox Professional JavaScript
// This opens a database, selects some records
// Traverses the collection that was selected
// and for each one, outputs an image tag.
database.connect("ODBC", "TargetDB", "", "", "");
myCursor = database.cursor("SELECT * FROM TARGET_TABLE");
while(myCursor.next())
{
 myBlob = myCursor.blobData;
 write(myBlob.blobImage("bmp"));
}
myCursor.close();
</SERVER>

See also: Netscape Enterprise Server, unwatch(), watch()

Method JavaScript JScript NES Notes

blobImage() 1.1 + - 2.0 + -
blobLink() 1.1 + - 2.0 + -

blob.blobImage() (Method)
This method creates an element having the appropriate MIME type for the blob object.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Image object

NES myBlob.blobImage(aFormat)

NES myBlob.blobImage(aFormat, aTxt)

NES myBlob.blobImage(aFormat, aTxt, anAlign)

NES myBlob.blobImage(aFormat, aTxt, anAlign,
aPixWid)

NES myBlob.blobImage(aFormat, aTxt, anAlign,
aPixWid, aPixHgt)

NES myBlob.blobImage(aFormat, aTxt, anAlign,
aPixWid, aPixHgt, aPixBrdr)

JavaScript syntax:

NES myBlob.blobImage(aFormat, aTxt, anAlign,
aPixWid, aPixHgt, aPixBrdr, isMap)

aFormat Image file format
anAlign The alignment of the image
aPixBrdr The border value
aPixHgt The height of the image
aPixWid The width of the image
aTxt The alt text for the image

Argument list:

isMap Whether the image is a map

B – blob.blobLink() (Method)

201

The data is pulled out of the database according to the specified parameters. The BLOB can then be
displayed as if it were an image in an tag.

The format argument should contain an image specifier such as "GIF" or "JPEG" that can map
conveniently to a file extension or MIME type.

The remaining parameters to this method mainly correspond to the HTML tag attributes that can
be used with an tag and are optional.

This method generates the necessary tag to place into a document that refers to the BLOB
data as if it were an image file on the server. When the document is parsed, the browser will
request the image in the normal way; the contents of the BLOB are then returned in response to that
request. The browser is not aware that the image data was retrieved from the database and by
caching the image in memory when the link to it is placed in the document most of the latency
associated with requesting objects out of the database is eliminated, albeit at the cost of increased
memory usage in the server backend.

See also: Cursor.blobImage(),blob object,MIME types

blob.blobLink() (Method)
This method creates an <A> element that links to the BLOB data.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Anchor object

JavaScript syntax: NES myBlob.blobLink(aMimeType, aString)

aString The text inside the link
Argument list:

aMimeType The MIME type of the document being displayed

The data is pulled out of the database according to the specified parameters. The BLOB can then be
displayed as if it were a document in an <A> tag.

This method generates the necessary URL to place into a document that links to it. If the user clicks
on the link, the contents of the BLOB are then returned in response to that request.

See also: Cursor.blobLink(), blob object, MIME types

JavaScript Programmer's Reference

202

Block { } (Statement)
A list of executable statements enclosed in curly braces.

Availability: ECMAScript edition – 2

See also:
Compound statement, if(...) ..., if(...) ... else
..., Statement, Code block delimiter {}

Cross-references:
ECMA 262 edition 2 – section – 12.1

ECMA 262 edition 3 – section – 12.1

Wrox Instant JavaScript – page – 17

Block-level tag (Definition)
A block-level tag cannot exist inside a line. It must be placed on a line by itself.

By default, block-level items will be placed on a line by themselves because they force a line break
before and after they are displayed. However you can modify the alignment and text flow around a
block-level object to make it appear to be inline.

BLOCKQUOTE object (Object/HTML)
An object that represents a <BLOCKQUOTE> text area.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myBLOCKQUOTE = myDocument.all.anElementID

IE myBLOCKQUOTE = myDocument.all.tags
("BLOCKQUOTE")[anIndex]

IE myBLOCKQUOTE = myDocument.all[aName]

- myBLOCKQUOTE = myDocument.getElementById
(anElementID)

- myBLOCKQUOTE = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBLOCKQUOTE =
myDocument.getElementsByTagName("BLOCKQUOTE")[
anIndex]

B – BLOCKQUOTE object (Object/HTML)

203

HTML syntax: <BLOCKQUOTE> ... </BLOCKQUOTE>

anIndex A valid reference to an item in the
collection

aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: cite

Object methods: click()

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

This is used to set off a long quote inside a document and is intended to place an extract from a
document into the displayed window with an active link to the document it quotes from. The style
and appearance is that of a block quote text.

The <BLOCKQUOTE> tag is a block-level tag. That means that it forces a line break before and after
unless the alignment and text flow around it are controlled very cleverly.

The DOM level 1 specification refers to this as a QuoteElement object.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

cite 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

click() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

JavaScript Programmer's Reference

204

Inheritance chain:
Element object, Node object

BLOCKQUOTE.cite (Property)
A URL pointing at the document that a quote is attributed to.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBLOCKQUOTE.cite

The URL of the document being quoted from is noted in this property.

Blur() (Filter/visual)
A visual filter for blurring objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter – Blur()

blur() (Method)
Move the input focus away from the receiving element.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 3.0
Netscape – 3.0
Opera – 3.0

Property/method value type: undefined

- blur()
JavaScript syntax:

- myWindow.blur()

See also: Input.blur(), Window.focus(), Window.blur()

B – BODY object (Object/HTML)

205

BODY object (Object/HTML)
An object that represents the body of a document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myBODY = myDocument.all.anElementID

IE myBODY = myDocument.all.tags("BODY") [anIndex]

IE myBODY = myDocument.all[aName]

- myBODY = myDocument.body

- myBODY = myDocument.getElementById (anElementID)

- myBODY = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBODY = myDocument.getElementsByTagName
("BODY")[anIndex]

HTML syntax: <BODY> ... </BODY>

anIndex A valid reference to an item in the collection (should be 0)

aName The name attribute of an element
Argument list:

anElementID The ID attribute of an element

Object properties:
accessKey, aLink,background,bgColor, bgProperties,
bottomMargin, leftMargin, link,noWrap, recordNumber,
rightMargin,scroll, tabIndex, text,topMargin, vLink

Object methods: createControlRange(), createTextRange()

Event handlers:
onAfterUpdate, onBeforeUnload,onBeforeUpdate, onChange,
onClick, onDataAvailable, onDataSetChanged,
onDataSetComplete, onDblClick, onDragStart,
onErrorUpdate, onFilterChange, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onRowEnter,
onRowExit, onScroll, onSelectStart, onUnload

Collections: controlRange[]

Although this generally represents the <BODY> tag, there are also properties that relate to the body
that belong to the Document and Window objects. In MSIE, there is also a HEAD object, which
contains related information.

The <BODY> tag is a block-level tag. You can't place a <BODY> tag into the document but taken in
the context of a framed environment it manifests itself as if it were a block-level tag.

See also: Background object, Document object, Document.bgColor,
Document.body, Element object, Element.isTextEdit,
Element.offsetParent, Frame object,HEAD object,
Input.accessKey, Window object

JavaScript Programmer's Reference

206

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
aLink 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
background 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
bgProperties - 3.0 + - 4.0 + - - - -
bottomMargin - 3.0 + - 4.0 + - - - Warning
leftMargin - 3.0 + - 4.0 + - - - Warning
link 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
noWrap - 3.0 + - 4.0 + - - - Warning
recordNumber - 3.0 + - 4.0 + - - - ReadOnly

.
rightMargin - 3.0 + - 4.0 + - - - Warning
scroll - 3.0 + - 4.0 + - - - Warning
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
text 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
topMargin - 3.0 + - 4.0 + - - - Warning
vLink 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

create
ControlRange()

 - 5.0 + - 5.0 + - - - -

create
TextRange()

 - 3.0 + - 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUnload - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onChange 1.5 + 3.0 + 6.0 + 4.0 + - - - -
onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDataAvailable - 3.0 + - 4.0 + - - - -
onData
SetChanged

 - 3.0 + - 4.0 + - - - -

onData
SetComplete

 - 3.0 + - 4.0 + - - - -

onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning

Table continued on following page

B – BODY.aLink (Property)

207

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onScroll - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -
onUnload 1.5 + 3.0 + 6.0 + 3.02 + - - - Warning

Inheritance chain:
Element object, Node object

BODY.aLink (Property)
The colour of an active link in the current page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBODY.aLink

This value controls the text of active links in the document body. You should use the normal color
values to define the required color.

This property is equivalent to the ALINK attribute of the <BODY> HTML tag. This is the color that is
used while the mouse is over the link and the button is held down by the user.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall
into disuse.

Note also that its property name is not consistent with its counterpart, the
document.alinkColor property whose value it reflects.

See also: BODY.link, BODY.text, BODY.vLink, Color names, Color value,
Document.alinkColor, Document.bgColor, Document.fgColor,
Document.linkColor, Document.vlinkColor, HTML object

JavaScript Programmer's Reference

208

BODY.background (Property)
The URL of a background image for the current document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBODY.background

If a background image is available, then its URL is contained in this property. Changing the value
in this property will replace the background with a new one; however, there may be a perceptible
delay while the new image is fetched from the web server.

The background image for the document that is defined in the <BODY> tag is accessible via the
BODY.background property in MSIE.

Warnings:
❑ You cannot access the background image directly in Netscape Navigator because the BODY object is

not reflected into the JavaScript environment.

See also: Background.src, BODY.bgProperties, Document.background,
HTML object

BODY.bgColor (Property)
The background color of the current page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBODY.bgColor

This corresponds to the BGCOLOR="..." HTML tag attribute on the <BODY> tag.

You can modify this value at any time, the result of which will be to change the background color
of the page.

B – BODY.bgProperties (Property)

209

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape whereas style sheet
controls do not. Later, a DOM-standardized approach to style handling will provide a cross-
platform way to access style information from JavaScript. DOM level 2 introduces a first attempt at
standardizing this area.

The background can be colored whether an image is loaded into the background of a document or
not. In fact, it may be advisable to set the background color to something similar to the average
color of the background image in case the image takes a long time to load or the browser is unable
to display a background image.

The background color for the document that is defined in the <BODY> tag is also reflected in the
bgColor property of the document object, although that is now deprecated as of DOM level 1.

See also: Color names, Color value, Document.bgColor,
Document.linkColor ,HTML object

BODY.bgProperties (Property)
An attribute that controls the way the background image is managed when the page scrolls.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myBODY.bgProperties

The value of this property can be set to either the value "fixed" or an empty string (""). When the
"fixed" value is used, the background image (if it is specified) will be locked into position and if
the page is scrolled, the background will stay fixed where it is as if it were on a separate layer.

See also: Background.src, BODY.background

BODY.bottomMargin (Property)
A margin space at the bottom of the document in the current window.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
Number primitive

JavaScript syntax: IE myBODY.bottomMargin

Normally, you would not need to specify this property. It allows the document to have some clear
space at the bottom so, for example, the content could be made to scroll completely off the screen.

JavaScript Programmer's Reference

210

The distance is measured in pixels and can range from zero (which is the default) to any reasonably
sensible value.

If a page is being created dynamically with document.write() methods, and a script error
occurs, the margin is not appended. It appears to be added as a property of the body closure.

This corresponds to the style.marginBottom property and the margin-bottom attribute that is
defined in a style sheet.

Warnings:
❑ Even when this value is set to zero, the Macintosh version of MSIE has a noticeable margin

at the bottom.

See also: BODY.topMargin

BODY.controlRange[] (Collection)
A collection of all the elements within the document body.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myBODY.controlRange

This collection is returned by the createControlRange() method. The items in this collection
would all represent component elements within the page but would not include simple text items.

See also: BODY.createControlRange()

Property attributes:
ReadOnly.

BODY.createControlRange() (Method)
A constructor function to create a new controlRange object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: ControlRange object

JavaScript syntax: IE myElement.createControlRange()

This method creates a collection of non-text elements. These are selectable items based on controls
rather than text. If the controlRange (belonging to the BODY object) already exists, then it will be
overwritten by the results of this method call.

See also: BODY.controlRange[]

B – BODY.createTextRange() (Method)

211

BODY.createTextRange() (Method)
Used in MSIE for creating a text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextRange object

JavaScript syntax: IE myBODY.createTextRange()

This method should only be used if the receiving object responds true to its isTextEdit
property request.

See also: TextRange object

BODY.leftMargin (Property)
A margin down the left edge of the document window.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBODY.leftMargin

This property controls the amount of space down the left margin of a page. This indents all of the
content away from the left edge of its containing window or frame.

This corresponds to the style.marginLeft property and margin-left stylesheet attribute.

Warnings:
❑ Note that the default values are platform-dependent and although it is only a couple of pixels

difference it can throw off the layout of a page significantly if you make the wrong assumption.

See also: BODY.rightMargin

JavaScript Programmer's Reference

212

BODY.link (Property)
The color of an as yet unvisited link in the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBODY.link

This value controls the text of active links in the document body. You should use the normal color
values to define the required color.

This property is equivalent to the LINK attribute of the <BODY> HTML tag. This is the color that is
used for as yet unvisited links.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall
into disuse.

Note also that its property name is not consistent with its counterpart, the document.linkColor
property whose value it reflects.

See also: BODY.aLink,BODY. text,BODY.vLink, Color names,Color
value, Document.alinkColor, Document.bgColor,
Document.fgColor, Document.linkColor,
Document.vlinkColor, HTML object

BODY.noWrap (Property)
A switch to control whether text should wrap or not within the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myBODY.noWrap

This is a Boolean value that controls whether the textual content is wrapped at the right-hand
window border or not.

If the value false is assigned to this property, then words will wrap as the page is drawn. This is
the way you would expect a browser to behave. The text will flow according to the space available.

If the value true is assigned to this property, the line of text will continue to the right until a

or other block level tag is encountered. This will force the horizontal width of the page to extremely
large and the user will need to scroll furiously to be able to see the text and then scroll back again
for the start of the next line.

B – BODY.recordNumber (Property)

213

Warnings:
❑ Only use this if you plan to place line breaks at frequent intervals yourself and really do need to

control the line breaks manually.

BODY.recordNumber (Property)
The record within the dataset that defined the page content when the content came from a data source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBODY.recordNumber

This is a property that is part of the MSIE data-binding support. It contains an integer value that is
the record number within the data set that created this object.

This is useful when you are building pages with ASP and Active Data Objects (ADO).

See also: Active Server Pages, ADO

Property attributes:
ReadOnly.

BODY.rightMargin (Property)
A margin space down the right hand side of the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myBODY.rightMargin

This property controls the amount of space down the right-hand margin of a page. This indents all
of the content away from the right edge of its containing window or frame.

This corresponds to the style.marginRight property and margin-right stylesheet attribute.

Warnings:
❑ Note that the default values are platform-dependent and, although it is only a couple of pixels

difference, it can throw off the layout of a page significantly if you make the wrong assumption.

See also: BODY.leftMargin

JavaScript Programmer's Reference

214

BODY.scroll (Property)
A switch for whether the scrollbars appear or not.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myBODY.scroll

If this property contains "yes", then scrollbars will appear if the window content exceeds the size
of the space available. If it is "no", then the scroll bars will not appear.

Although this is a switch, it is not strictly a Boolean value because it only takes the values "yes" and
"no". A true Boolean value would accept only "true" or "false". This may be because the property
might yield the value "auto" on some platform variants if it has been defined in the HTML tag
attributes for a frame.

Warnings:
❑ Although the BODY object is not supported on Netscape Navigator, the HTML tag attribute

properties that control scrollbar visibility are the same on both MSIE and Netscape Navigator.

❑ You should note, however, that the content of a page in Netscape Navigator cannot be scrolled
unless the scrollbars are visible. Even if the content does not exceed the space available, the scroll
bars will still be drawn but will be inactive. To scroll content in Netscape Navigator without
scrollbars being visible, you will need to create a <LAYER> and scroll that.

❑ This leads to a further complication in that the vertical scroll value moves the content in the opposite
direction in MSIE and Netscape Navigator as it is incremented.

BODY.tabIndex (Property)
An integer that represents the position of this document in the tabbing order.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myBODY.tabIndex

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms. Pressing the [tab] key moves from one form
element to the next according to the cascaded tabbing order defined by building a tree-like
structure with the tab index values.

B – BODY.text (Property)

215

BODY.text (Property)
The color of body text within the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBODY.text

This value controls the foreground text in the document body. You should use the normal color
values to define the required color.

This is the default text color for the document. It corresponds to the TEXT attribute in the <BODY> tag.

Default foreground text is colored according to this setting unless it is in an <A> tag when the
alinkColor, linkColor and vlinkColor properties override it. The foreground text color can
be changed inline with the HTML tag attribute.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall
into disuse.

Note also that its property name is not consistent with its counterpart, the document.fgColor
property whose value it reflects.

See also: BODY.aLink, BODY.link, BODY.vLink, Color names,
Color value, Document.alinkColor,
Document.bgColor, Document.fgColor,
Document.linkColor, Document.vlinkColor, HTML
object

BODY.topMargin (Property)
A margin value at the top of the document window.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
Number primitive

JavaScript syntax: IE myBODY.topMargin

Normally, you would not need to specify this property. It allows the document to have some clear space
at the top so for example the content could be made to scroll completely off the screen when it is loaded.

The distance is measured in pixels and can range from zero (which is the default) to any reasonably
sensible value. Making it any bigger than the screen size is pointless.

This corresponds to the style.marginTop property and the margin-top attribute that is
defined in a style sheet.

JavaScript Programmer's Reference

216

Warnings:
❑ Note that the default values are platform-dependant and although it is only a couple of pixels

difference it can throw off the layout of a page significantly if you make the wrong assumption.

See also: BODY.bottomMargin

BODY.vLink (Property)
The color of visited links within the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBODY.vLink

This value controls the text of visited links in the document body. You should use the normal color
values to define the required color.

This corresponds to the VLINK attribute in the <BODY> tag.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into disuse.

Note also that its property name is not consistent with its counterpart, the
document.vlinkColor property whose value it reflects.

See also: BODY.aLink, BODY.link, BODY.text, Document.alinkColor,
Document.bgColor, Document.fgColor, Document.linkColor,
Document.vlinkColor, HTML object

Bookmarklets (Advice)
A means of storing fragments of JavaScript for execution as bookmarks.

Creating a javascript: URL with some attached JavaScript code and storing it in the bookmarks
or favorites of your browser is a way of setting up some really useful debugging tools. It seems to
work in most browsers, although some have a size limit on the URL that you can use.

See also: JavaScript Bookmark URLs, JavaScript interactive URL,
javascript: URL

B – Boolean (Primitive value)

217

Boolean (Primitive value)
A built-in primitive value.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

A Boolean value is a member of the Boolean type and may have one of two unique values, either
true or false.

In some languages the values true and false also equate to numeric values. False is commonly 0
and true any non-zero value. In JavaScript this is not the case. The value false does not test equal
against zero. However, a false Boolean value does become zero when converted to a number.

If you create a Boolean object and set it to the value true, you cannot convert it to a number with
the toNumber() method, because this generates a run-time error. However, you can coerce the
Boolean value into a numeric value by preceding it with a unary plus sign. So +true is a numeric
primitive and yields the value 1, while false is converted to zero.

See also: false, JavaScript to Java values, true

Cross-references:
ECMA 262 edition 2 – section – 4.3.13

ECMA 262 edition 3 – section – 4.3.13

Wrox Instant JavaScript – page – 14

boolean (Reserved word)
Reserved for future language enhancements.

The boolean keyword represents both a Java data type and the native Boolean primitive data type
in JavaScript. This suggests some potential extensions of JavaScript interfaces to access Java applet
parameters and return values.

See also: java.lang.Boolean, LiveConnect, Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

JavaScript Programmer's Reference

218

Boolean (Type)
A native built-in type.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Any object or expression that yields a result of type Boolean represents a logical entity.

Logical entities can only represent the true or false states.

These are useful as flags or conditional switches in your script.

See also: Data Type, false, Fundamental data type, true, Type

Cross-references:
ECMA 262 edition 2 – section – 4.3.14

ECMA 262 edition 2 – section – 8.3

ECMA 262 edition 3 – section – 4.3.14

ECMA 262 edition 3 – section – 8.3

O'Reilly JavaScript Definitive Guide – page – 41

Boolean literal (Primitive value)
A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Boolean literals specify constant values for the true and false values used in relational
expressions and are the only two values a Boolean primitive or object can resolve to.

See also: false, Implicit conversion, Literal, Token, true

Cross-references:
ECMA 262 edition 2 – section – 7.7.2

ECMA 262 edition 3 – section – 7.8.2

B – Boolean object (Object/core)

219

Boolean object (Object/core)
An object of the class "Boolean".

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- myBoolean = BooleanValue

- myBoolean = new Boolean()
JavaScript syntax:

- myBoolean = new Boolean(aValue)

BooleanValue A Boolean value (either true or false)
Argument List

aValue A value to be converted to a Boolean object.

Object properties: constructor, prototype

Object methods: toSource(), toString(), valueOf()

An instance of the class "Boolean" is created by using the new operator on the Boolean()
constructor. The new object adopts the behavior of the built-in Boolean prototype object through
the prototype-inheritance mechanisms.

All properties and methods of the prototype are available as if they were part of the new instance.

A Boolean object is a member of the type Object and is an instance of the built-in Boolean object.

Cloning the built-in Boolean object creates Boolean objects. This is done by calling the
Boolean() constructor with the new operator. For example:

myBoolean = new Boolean(true);

A Boolean object can be coerced into a Boolean value and can be used anywhere that a Boolean
value would be expected.

Programmers familiar with object-oriented techniques may be happy to use the Boolean object,
while procedural language programmers may prefer to implement the same functionality with a
Boolean value instead.

This is an example of the flexibility of JavaScript in its ability to accommodate a variety of users
from different backgrounds.

The prototype for the Boolean prototype object is the Object prototype object.

See also: Boolean. prototype, Native object, Object object, unwatch(),
watch()

JavaScript Programmer's Reference

220

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + -
prototype 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + -

Method JavaScript JScript N IE Opera NES ECMA Notes

toSource() 1.3 + - 4.06 + - 3.0 + - - -
toString() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + -
valueOf() 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + -

Cross-references:
ECMA 262 edition 2 – section – 4.3.15

ECMA 262 edition 2 – section – 10.1.5

ECMA 262 edition 2 – section – 15.6

ECMA 262 edition 3 – section – 4.3.15

ECMA 262 edition 3 – section – 15.6

Boolean() (Constructor)
A Boolean object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Boolean object

- new Boolean()
JavaScript syntax:

- new Boolean(aValue)

Argument list: aValue A value to be converted to a Boolean object.

The Boolean() constructor is used to manufacture new instances of the built-in Boolean object.

When the Boolean() constructor is called by the new operator, it initializes a brand new Boolean
object instance.

The value of the new Boolean object instance is the same as the Boolean value yielded by the type
conversion of the Boolean() constructor's parameter.

B – Boolean() (Constructor)

221

Value: Result:

No value Always false

undefined Always false

null Always false

Boolean No conversion, the input value is returned unchanged

Number The result is false if the argument is 0 or NaN, otherwise it is true

String Zero length strings return false otherwise the result is true

Object Always true

The result of calling the constructor is a Boolean object whose value is true or false depending
on the input value. If the value-input parameter is omitted, then a Boolean object with value
false is returned by default.

Warnings:
❑ Note that unlike the Object() constructor, which can be called without its parentheses, calling the

Boolean() constructor without parentheses yields an uninitialized object.

❑ Note also that using Boolean objects in conditional code is prone to risks due to the fact that all
objects yield a Boolean true value when tested in logical expressions. This includes Boolean
objects whose present value is false.

See also: Constructor function, constructor property, Global object,new,
Object constant, Object()

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.5

ECMA 262 edition 2 – section – 15.6.1

ECMA 262 edition 2 – section – 15.6.2

ECMA 262 edition 2 – section – 15.6.3

ECMA 262 edition 2 – section – 15.6.3.1

ECMA 262 edition 3 – section – 15.6.2

JavaScript Programmer's Reference

222

Boolean() (Function)
A Boolean object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Boolean primitive

- Boolean()
JavaScript syntax:

- Boolean(aValue)

Argument list: aValue A value to be converted to a Boolean result

When the Boolean() constructor is called as a function, it performs a type conversion on the
value that is passed to it as a parameter.

The following results are yielded by the Boolean() constructor function:

Value: Result:

No value false

undefined false

null false

Boolean false false

Boolean true true

NAN false

0 false

Non zero number true

Zero length string "" false

Non zero length string true

Object true

The result will be true or false depending on the parameter's value. If the parameter value is
omitted, then false is returned by default.

See also: Cast operator, Constructor function, constructor property,
Implicit conversion, Type conversion

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.5

ECMA 262 edition 2 – section – 15.6.1

ECMA 262 edition 2 – section – 15.6.2

ECMA 262 edition 2 – section – 15.6.3

ECMA 262 edition 3 – section – 15.6.1

B – Boolean.Class (Property/internal)

223

Boolean.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

This is an internal property that describes the class that an instance of a Boolean object is a
member of. The reserved words suggest that this property may be externalized in the future.

See also: Boolean.constructor, Class

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 15.6.4

Boolean.constructor (Property)
A reference to the constructor for the boolean object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Boolean constructor

JavaScript syntax: - myBoolean.constructor

The constructor referenced by this property is that of the built-in Boolean prototype object.

You can use this referenced constructor as one way of creating Boolean objects, although it is
more popular to use the new Boolean() technique. This property is especially useful if you have
an object that you want to clone, but you don't know what sort of object it is. Simply use the
property to access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective, so there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Boolean.Class, Boolean.prototype

JavaScript Programmer's Reference

224

Cross-references:
ECMA 262 edition 2 – section – 15.6.1

ECMA 262 edition 2 – section – 15.6.2

ECMA 262 edition 2 – section – 15.6.3

ECMA 262 edition 3 – section – 15.6.2

Boolean.prototype (Property)
The prototype for the Boolean object that can be used to extend the interface for all Boolean objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean object

- Boolean.prototype
JavaScript syntax:

- myBoolean.constructor.prototype

The initial value of the prototype of a Boolean object is the built-in Boolean prototype object.

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the output capabilities of Boolean objects
function yesNo()
{
if(this == true)
{
return "The switch is ON";
}
else
{
return "The switch is OFF";
}
}
// Register the new function
Boolean.prototype.yesNo = yesNo;

B – Boolean.toSource() (Method)

225

// Create a Boolean object and test the Boolean.yesNo() method
myBoolean = new Boolean(true);
document.write(myBoolean.yesNo())
document.write("
")
myBoolean = !myBoolean;
document.write(myBoolean.yesNo())
document.write("
")
</SCRIPT>
</BODY>
</HTML>

See also: Boolean object,Boolean.
constructor,Boolean.toSource(),
Boolean.toString(), Boolean.valueOf(), prototype
property, Boolean.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.2.3.1

ECMA 262 edition 2 – section – 15.6.3.1

ECMA 262 edition 3 – section – 15.6.3.1

Boolean.toSource() (Method)
Returns a Boolean object formatted as a Boolean literal contained in a string.

Availability: JavaScript – 1.3
Netscape – 4.06
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: N myBoolean.toSource()

This is an alternative way to retrieve a string version of a Boolean value. In this case, it is formatted
as a Boolean literal and can then be used in an eval() function to assign another Boolean.

If you run the example below, it should yield this as a result:

(new Boolean(true))

However, you should note that this is not supported by MSIE browsers.

The result of calling this method is a string version of the Boolean formatted as a Boolean literal.

Example code:
// Create a boolean and then examine its source
myBoolean = new Boolean(true);
document.write(myBoolean.toSource());

See also: Boolean.prototype, Boolean.toString()

JavaScript Programmer's Reference

226

Boolean.toString() (Method)
Returns a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myBoolean.toString()

The value of the object is converted to a string that represents its Boolean value.

See also: Boolean.prototype, Boolean.toSource(), Cast operator,
toString()

Cross-references:
ECMA 262 edition 2 – section – 15.6.4.2

ECMA 262 edition 3 – section – 15.6.4.2

Boolean.valueOf() (Method)
Returns the primitive value of the Boolean object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myBoolean.valueOf()

The Boolean object is converted to a Boolean primitive and returned to the caller.

See also: Boolean.prototype, Cast operator, valueOf()

B – BR object (Object/HTML)

227

Cross-references:
ECMA 262 edition 2 – section – 15.6.4.3

ECMA 262 edition 3 – section – 15.6.4.3

BR object (Object/HTML)
An object that represents the
 HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myBR = myDocument.all.anElementID

IE myBR = myDocument.all.tags("BR") [anIndex]

IE myBR = myDocument.all[aName]

- myBR = myDocument.getElementById (anElementID)

- myBR = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBR = myDocument.getElementsByTagName
("BR")[anIndex]

HTML syntax:

anIndex A valid index reference to an item in the collection

aName The name attribute of an elementArgument list:
anElementID The ID attribute of an element

Object properties: clear

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This object represents a line break in the text. There are very few appearance-modifying properties
you could apply to such an object.

The
 tag is a block-level tag. That means that it forces a line break before and after itself.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

clear 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

JavaScript Programmer's Reference

228

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

BR.clear (Property)
An property that controls how the browser treats the following paragraph alignment.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBR.clear

The value of this property controls the way that text flows around inline images and other block-level
objects. How this works will depend on how the object is fixed to either the left or right page border.

This property can contain any of the following values, or may simply contain an empty string:

❑ all

❑ left

❑ right

Additional accessor methods are defined in the DOM standard, but are yet to be implemented.
Since this property is read/write accessible, they are largely unnecessary.

B – Braces { } (Delimiter)

229

Braces { } (Delimiter)
A delimiting token for a block of executable script.

Availability: ECMAScript edition – 2

See also: if(...) ..., if(...) ... else ..., Code block delimiter {}

Cross-references:
ECMA 262 edition 2 – section – 12.5

ECMA 262 edition 3 – section – 12.1

break (Statement)
Exit unconditionally from a loop or switch.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- break aLabelName;
JavaScript syntax:

- break;

Argument list: aLabelName The name of a label associated with some code

The break keyword is a 'jump' statement. It is used in an loop to abort the current cycle and exit
from the smallest enclosing loop immediately. Execution continues at the line following the
statement block associated with the loop.

A break statement can only legally exist inside a while or for loop in an ECMA-compliant
implementation. Implementations that provide additional iterator types may also honor the same
behavior for the break statement.

The break statement would normally be executed conditionally, otherwise it would cause the
remaining lines in the loop to be redundant, since no execution flow would ever reach them.
Compilers generally warn you about this, but JavaScript would simply ignore it.

At version 1.2 of JavaScript, the break statement was enhanced to support a label as a breaking
destination. When the break is processed, it will jump to the end of the statement that has been
labeled. If an iterator is labeled, then the break is associated with that iterator. This mechanism
works like a 'goto'. It can work with an if block and with a labeled block of brace delimited code.

See also: Completion type,continue,for(...) ..., for(... in ...)
..., Iteration statement,Jump statement, Label,return, Scope
chain,Statement, switch(...) ... case: ... default: ...,
while(...) ...

JavaScript Programmer's Reference

230

Cross-references:
ECMA 262 edition 2 – section – 10.1.4

ECMA 262 edition 2 – section – 12.8

ECMA 262 edition 3 – section – 10.1.4

ECMA 262 edition 3 – section – 12.8

Wrox Instant JavaScript – page – 25

Broken-down time (Definition)
Time disassembled into component parts, for example hours or minutes.

Broken-down time is handled with a time structure in the C language. Breaking down a time value
in that context can require several lines of code. However, JavaScript provides the Date object
class, which supports methods for accessing the separate time and date components.

The following time components are available:

❑ Year number

❑ Month in year

❑ Date within month

❑ Day of week

❑ Hour within day

❑ Minute within hour

❑ Second within minute

❑ Millisecond within second

❑ Time of day in milliseconds

These values are available measured in either local time or UTC time.

There are also facilities to convert back and forth between local time and UTC time.

See also: Calendar time, Date and time, Date from time, Date number, Date object,
Day from year, Day number,Day within year, Daylight savings time
adjustment, Days in year, Local time, Local time zone adjustment, Locale-
specific behavior, Time from year, Time range, Time value, Time within
day,TimeClip(), Universal coordinated time, Year from time, Year
number

B – Browser (Object model)

231

Browser (Object model)
The collection of objects that a browser manages.

Refer to:
Document

Browser detection (Advice)
Browser detection techniques require some review in the light of recent browser upgrades.

Browser-detection techniques have been in use ever since the MSIE version 3 browser was
launched. Since the features of this browser differed from others, it became necessary to determine
what browser was being used to establish the features actually available.

The subject of browser detection is now extremely complex, with a wide variety of browsers. The
technique of simply distinguishing between Netscape and MSIE is no longer sufficient. This is even
more of an issue now that Netscape version 6.0 is shipping.

This Netscape version 6.0 browser was developed around a completely new source code base.
Having started completely afresh, Netscape has not implemented any unnecessary legacy features
and instead has pursued a strictly standards based approach. The most noticeable effect of this is
the complete lack of support for layers.

The reason why this is such a big problem is that in the past we might typically have written a
short script to determine whether we were running Netscape or MSIE, and coded accordingly. The
first example shows how we would have done this using a classical detection technique.

However, now we have millions of web pages using this technique that also use layers. They will
detect Netscape 6.0 and return a value saying "OK it's Netscape, so use the Netscape layers code
alternative". This is going to break a lot of pages.

We now need something that tells us whether a particular feature is available rather than a
particular browser. The second example is a skeleton of how we might do that. It adds a member
object called isAvailable to the global object, that can have additional properties added as we
need to extend it. In this example, it simply provides access to whether layers are available or not.
It provides for three possible cases:

❑ NO – Layers are not available and no alternative simulation is possible

❑ DIV – Layers are not available, use <DIV> blocks and CSS positioning

❑ YES – Layers are available

So now we can build some code to exploit this using a switch statement thus:

isAvailable();
switch(isAvailable.Layers)
{
 case "YES" :
// Call the layer programmed version of our page
 break;
 case "DIV" :
// Call the <DIV> simulated layers version of the page

JavaScript Programmer's Reference

232

 break;
 case "NO" :
// Fall back to the legacy browser, no layers page
 break;
 default:
// Unexpected condition handled here
 break;
}

Because we need to know what browser and version the code is being run on to determine simulation
capabilities, those get set as member properties of the isAvailable object.

Later you could add capabilities to access the DOM feature-detection mechanisms so that all these
related feature-detection facilities are in a single reusable code block.

Note that the appVersion value picks up the Mozilla/X.YY value and uses that. This means that
MSIE 5 reports an appVersion of 4 and Netscape version 6.0 reports an appVersion of 5, which
is odd to say the least. You can do a bit more work to parse out the correct version numbers from
the remainder of the user agent string or access special values that are platform dependant within a
fragment of code that is selected on a per platform basis.

Example code:
<SCRIPT>
// Classic browser detection returning browser types
// and versions
function getBrowserType()
{
var myUserAgent;
var myMajor;
myUserAgent = navigator.userAgent.toLowerCase();
myMajor = parseInt(navigator.appVersion);
if((myUserAgent.indexOf('mozilla') != -1) &&
(myUserAgent.indexOf('spoofer') == -1) &&
(myUserAgent.indexOf('compatible') == -1) &&
(myUserAgent.indexOf('opera') == -1) &&
(myUserAgent.indexOf('webtv') == -1)
)
{
if (myMajor > 4)
{
return "nav6";
}
if (myMajor > 3)
{
return "nav4";
}
return "nav";
}
if (myUserAgent.indexOf("msie") != -1)
{
if (myMajor > 4)
{
return "ie5";
}
if (myMajor > 3)
{
return "ie4";
}
return "ie";
}
return "other";
}

B – Browser version compatibility (Advice)

233

</SCRIPT>

<SCRIPT>
isAvailable();
document.write("Browser family : " + isAvailable.Browser + "
");
document.write("Browser version : " + isAvailable.Version + "
");
document.write("Layer support : " + isAvailable.Layers + "
");
// Modern extensible browser feature detection
// Becomes a member property of the global object
function isAvailable()
{
// Get user agent stuff
var myUserAgent = navigator.userAgent.toLowerCase();

// Set initial conditions
isAvailable.Browser = "OTHER";
// Check for navigator
if((myUserAgent.indexOf('mozilla') != -1) &&
(myUserAgent.indexOf('spoofer') == -1) &&
(myUserAgent.indexOf('compatible') == -1) &&
(myUserAgent.indexOf('opera') == -1) &&
(myUserAgent.indexOf('webtv') == -1)
)
{
isAvailable.Browser = "NAV";
}
// Check for MSIE
if (myUserAgent.indexOf("msie") != -1)
{
isAvailable.Browser = "MSIE";
}
// Store major version number from leading Moziilla/X.YY
// Portion of user agent string
isAvailable.Version = parseInt(navigator.appVersion);

// Work out if layers available
if(document.layers)
{
isAvailable.Layers = "YES";
}
else
{
if((isAvailable.Browser = "MSIE") && (isAvailable.Version > 3) ||
(isAvailable.Browser = "NAV") && (isAvailable.Version > 4))
{
isAvailable.Layers = "DIV";
}
else
{
isAvailable.Layers = "NO";
}
}
}
// For further investigation look at the MSIE script engine version and build
number properties and map them to features.
</SCRIPT>

Browser version compatibility (Advice)
Browser upgrades are not always upwardly compatible.

It is fairly obvious that as browsers are improved, new features will be added. This suggests that
you might upgrade and begin to exploit those new features. At the next browser upgrade, these
features should still be available, while yet more are introduced. This is called upwards
compatibility. This is generally no problem.

JavaScript Programmer's Reference

234

Downwards compatibility, where code using features in a later browser does not cause errors in an
earlier browser, is a little more difficult to provide. HTML has good downwards compatibility due
mainly to the fact that if a tag is unrecognized, it is simply ignored. That means web pages
containing new features simply display any contained text inside the unrecognized block as if the
unsupported tag did not exist.

This may be easy to manage with HTML, but is not feasible with a scripting language because you
can't expect the browser simply not to execute a line of script. However, you can code defensively
in such a way that your scripts may be downwards compatible.

To code defensively means to check for the existence of a feature before using it, and also to check
that objects are defined before trying to modify their properties. You can check the version of the
browser and switch various features of your scripts on and off accordingly.

With a little thought and planning, you can design your script so that it degrades graceful if it is
run on less capable browser versions than that for which you originally designed it.

The differences between browsers are now so complex and so diverse that it is difficult to
encompass them all in a single reference source. This book is structured to allow it to be revised on
a component-by-component basis so that where browsers differ from one another, the granularity
of the book is approximately the same and can track those differences as they become known.

The differences between the browsers may change in very subtle ways even with minor browser
version changes. We concentrate on the differences between major versions and use annotations to
cover important differences between minor browser versions.

Any feedback or observations you care to submit will be welcomed, tested, and added to the future
editions of the book.

Good workaround techniques involve innovative use of scripts to create your own properties and
methods to emulate missing functionality. For example, the window.opener property is not
available on all versions of Netscape. You could create a property of your own that refers to the
parent window when a new window object is created. If that property is always present and
created under script control, then you can use that property rather than the one that may or may
not be present in the built-in object model. This is generally more robust, but may not exploit the
very latest features of the available browsers.

See also: Compatibility, Date object, Defensive coding, Internet Explorer, Window.opener

Browser wars (Definition)
The contest between browser manufacturers to gain dominance in the market.

As this is being written, it is clear that Microsoft has won the war of the browsers – for now at least.
The Netscape browser has lost market share, to the extent that it is fast becoming a minority browser.

This poses an interesting situation, in that Microsoft has sufficient market share that it can perhaps
reduce the effort that it puts into browser support.

Actually, it is at such a time that it should put even more resources into it. That is because, now
that it is so dominant, it should be obliged to make sure its browser is supported identically on
every platform it is available on, and make it available on any remaining platforms.

B – btoa() (Method)

235

Whether it will do this is open to question as it could detract from its dominance of the operating
system marketplace.

This conflict of interests is potentially damaging for the end-user and the web developer.

Right at this moment, there is a significant proportion of the feature set in MSIE that is not
supported on platforms other than Windows.

Granted, it is acceptable that COM and ActiveX cannot easily be provided on non-Windows
platforms, but the CSS support should be identical, as should the integration with clipboards and
other parts of the OS where it is possible.

Netscape 6.0 has just been released in its final form as this is being written. The new version is so
radically different as to classify it as being a different browser. Its internal document model follows
the DOM specification very closely. Netscape had adhered to the DOM specified class names where
Microsoft has not, even though it has constructed a DOM representative object model in the browser.

Maybe Netscape can win back some proportion of the users it has lost to Microsoft in the last few
years. However, there is still much to be done to correct some shortcomings in the released quality
of the new Netscape browser.

btoa() (Method)
Used to encode some data into base-64 form.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

N btoa(aBinaryString)
JavaScript syntax:

N myWindow.btoa(aBinaryString)

Argument list: aBinaryString A string of binary data to be encoded

See also: Window.atob(), Window.btoa()

Built-in function (Definition)
Functions that are part of the core JavaScript implementation.

Availability: ECMAScript edition – 2

Built-in functions are implemented as Function objects.

JavaScript Programmer's Reference

236

Examples of built-in functions are parseInt() and Math.exp(). These are functions provided by
the Global object and the Math object respectively. They may be referred to as built-in methods in
some documentation.

None of the built-in functions implement the internal Construct() method and therefore they
cannot be used with the new operator to create another instantiation.

Generally, none of the built-in functions will have a prototype property, but since they cannot be
instantiated this should not cause any problems.

Built-in function objects have a length property whose value is an integer. This generally
indicates the number of arguments the function expects to be supplied with. Sometimes functions
may be supplied with optional arguments. The length value returns the maximum number of
arguments that are expected. The length property of a built-in function has the ReadOnly,
DontDelete and DontEnum attributes set for it.

Generally, all the other properties of a built-in function have the DontEnum attribute set.

See also: Function object,Native object

Cross-references:
ECMA 262 edition 2 – section – 15

ECMA 262 edition 3 – section – 15

Built-in method (Definition)
Object methods that are provided as part of the base JavaScript implementation.

Refer to:
Built-in function

Built-in object (Definition)
Objects that are part of the core JavaScript implementation.

Availability: ECMAScript edition – 2

A built-in object is provided by the core interpreter independently of the host environment.

Built-in objects are available at the outset of script execution and do not need to be created. They
are all native objects. Additional built-in objects may be added by the implementation over and
above those specified by the core functionality in the language specification.

See also: Native object

B – Button object (Object/DOM)

237

Cross-references:
ECMA 262 edition 2 – section – 4.3.7

ECMA 262 edition 3 – section – 4.3.7

Button object (Object/DOM)
An object representing an <INPUT TYPE="button">; HTML button in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

- myButton = myDocument.aFormName.anElementName

- myButton = myDocument.aFormName.elements
[anItemIndex]

IE myButton = myDocument.all.anElementID

IE myButton = myDocument.all.tags("INPUT") [anIndex]

IE myButton = myDocument.all[aName]

- myButton = myDocument.forms[aFormIndex].
anElementName

- myButton = myDocument.forms[aFormIndex].
elements[anItemIndex]

- myButton = myDocument.getElementById (anElementID)

- myButton = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myButton = myDocument.getElementsByTagName
("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="button">

anItemIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
aFormIndex A reference to a single form in the forms collection

Argument list:

anIndex A valid reference to an item in the collection

Object properties: type, value

Object methods: handleEvent()

Event handlers: onAfterUpdate, onBeforeUpdate,onBlur, onClick, onDblClick,
onErrorUpdate, onFilterChange, onFocus,onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onRowEnter, onRowExit

JavaScript Programmer's Reference

238

Many properties, methods and event handlers for this object are inherited from the Input object
class. Refer to topics grouped with the "Input" prefix for details of common functionality across all
sub-classes of the Input object super-class.

There isn't really a Button object class in Netscape, but it is helpful when trying to understand the
wide variety of input element types if we can reduce the complexity by discussing only the properties
and methods of a button. In actual fact, the object is represented as an item of the Input object class.

In MSIE, there is a special BUTTON class that is used to represent a <BUTTON> tag. It is documented
separately in its own topics. The Button object is the correct spelling for a DOM level 1 compliant
implementation.

Event handling support via properties containing function objects was added to Button objects at
version 1.1 of JavaScript.

Warnings:
❑ Note that on MSIE, Input objects are actually INPUT objects, because MSIE follows a general rule of

naming object classes after the capitalized name of the HTML tag that instantiates them. However, in
some special cases, MSIE creates other object types. For buttons, it uses the BUTTON class.

❑ Netscape does not support the defaultValue property for this sub-class of the Input object.

See also: Element object, Element.isTextEdit, Form.elements[],
FormElement object, Input object, Input.accessKey,
onClick, TextRange object

Property JavaScript JScript N IE Opera DOM HTML Notes

type 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning

B – Button.handleEvent() (Method)

239

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

Button.handleEvent() (Method)
Passes an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myResetButton.handleEvent (anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent()

JavaScript Programmer's Reference

240

Button.type (Property)
The type value for the object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myButton.type

HTML syntax: <INPUT TYPE="button">

The value of this property will be "button" when the <INPUT> HTML tag describes a form
Button object.

See also: Input.type

Property attributes:
ReadOnly.

Button.value (Property)
The text string displayed in the button.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myButton.value

The value of a button is also used to place a legend into the button image on screen.

Warnings:
❑ This property may be changed on some platforms, but not others.

See also: Input.value

B – BUTTON object (Object/HTML)

241

BUTTON object (Object/HTML)
An object that represents a special MSIE <BUTTON> element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myBUTTON = myDocument.all.anElementID

IE myBUTTON = myDocument.all.tags("BUTTON") [anIndex]

IE myBUTTON = myDocument.all[aName]

- myBUTTON = myDocument.getElementById (anElementID)

- myBUTTON = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myBUTTON = myDocument.getElementsByTagName
("BUTTON")[anIndex]

HTML syntax: <BUTTON> ... </BUTTON>

anIndex A valid reference to an item in the collection
aName The NAME attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties:
accept, accessKey, alt, dataFld, dataFormatAs, dataSrc,
form,name, status, tabIndex, type, value

Object methods: createTextRange()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick, onDblClick,
onDragStart, onFilterChange, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onResize,onRowEnter,
onRowExit,onSelectStart

This is an additional kind of button object, over and above that provided for the <INPUT
TYPE="Button"> tag.

Warnings:
❑ This object is not the same as a Button object, which is a convenience class that is really instantiated

as an Input object. Netscape only supports Button (Input) objects and does not support BUTTON
objects. MSIE supports both. The properties of each type of button object are different.

See also: Element object, Element.isTextEdit, Form.elements[],
FormElement object,Input object, Input.accessKey,
onClick,TextRange object

JavaScript Programmer's Reference

242

Property JavaScript JScript N IE Opera DOM HTML Notes

accept - 5.0 + - 5.0 + - - - Warning
accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
alt - 3.0 + - 4.0 + - - - -
dataFld 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataFormatAs 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataSrc 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
form 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
name 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
status 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
value 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

createTextRange() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onResize 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

B – BUTTON.accept (Property)

243

BUTTON.accept (Property)
Defines an acceptable MIME type to be submitted to the server. Not supposed to be supported by
the BUTTON class.

Availability:
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myBUTTON.accept

Refer to the MIME types topic for a list of MIME types to use in this property.

Warnings:
❑ This property is inherited, but is not applicable to a BUTTON object.

See also: MIME types

BUTTON.alt (Property)
The tool-tip text for the BUTTON object.

Availability:
JScript – 1.0
Internet Explorer – 3.02

Property/method value type: String primitive

JavaScript syntax: IE myBUTTON.alt

Objects can have an alternative text string associated with them. This is especially useful on
browsers that cannot cope with the tag, in which case they may display the alternative text. If
spoken styles are supported, the text may be read out to the user. Some browsers will also display
the text as a tool-tip if the mouse is positioned over the object and remains static for a few seconds.

BUTTON.name (Property)
This corresponds to the NAME attribute of the <BUTTON> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBUTTON.name

JavaScript Programmer's Reference

244

Objects are identified either by the NAME tag attribute or by the ID tag attribute. MSIE seems
slightly better disposed towards the ID attribute than earlier versions of Netscape. However, in
many cases, both browsers support either technique and in some cases will locate items named
with either attribute as if they existed in a single namespace. Version 6.0 of Netscape may restore
parity with MSIE in this respect.

See also: Input.name

BUTTON.type (Property)
The type of this BUTTON object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBUTTON.type

The property should contain one of the following values:

❑ button

❑ reset

❑ submit

See also: Input.type

Property attributes:
ReadOnly.

BUTTON.value (Property)
The value of this BUTTON object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myBUTTON.value

The value of a button is also used to place a legend into the button image on screen.

See also: Input.value

B – By reference (Definition)

245

By reference (Definition)
A means of passing data to functions, methods, and property accessors.

Passing a value by reference means that you pass a pointer to the data value. This means that when
you copy the reference to another variable, you then have two variables pointing at the same data.

The data for both is identical. Modifying the data value pointed at by one, changes the value for the
other variable also.

Non-primitive values (Objects) are passed in this manner.

Note that although JavaScript has a good pass-by-reference technique built-in to the
implementation, it does not support pointers as a specific data type as the C language does.

Passing a value by reference into a function allows the function to make changes that are visible
outside the function.

In JavaScript, you cannot manipulate these parameter passing mechanisms. It will choose to pass by
value or by reference according to the data type of the value being put into the argument. This is
often the result of evaluating an expression. JavaScript takes care of all the type conversions for you.

By value (Definition)
A means of passing data to functions, methods, and property accessors.

Passing data by value means that the data itself is stored in the variable. Assigning one variable to
another copies the value.

Changing the value in one variable leaves the other unaffected.

Non-object values (primitives) are generally passed in this manner.

Passing data by value to a function means that the function cannot affect the value outside the
function since it only has a copy of the value to work on.

In JavaScript, you cannot manipulate these parameter passing mechanisms. It will choose to pass by
value or by reference according to the data type of the value being put into the argument. This is
often the result of evaluating an expression. JavaScript takes care of all the type conversions for you.

byte (Reserved word)
Reserved for future language enhancements.

A byte is a set of 8 adjacent binary digits (bits). It is big enough to hold an 8 bit character code,
which will support the subset of 16 bit Unicode characters that most JavaScript users are likely to
need, at least for developing scripts for use with the English language.

The least significant bit is called the low-order bit and the most significant bit is called the high-
order bit. These do not necessarily map one to one to the bits stored in the memory of the
computer, which may be big-endian or little-endian. This is thankfully hidden from the JavaScript
programmer who will need to operate on a standardized IEEE-754 bit pattern when working with
binary values stored in Numeric primitive values.

JavaScript Programmer's Reference

246

The fact that the ECMAScript standard (edition 2) reserves this word for future use, suggests that
some byte level support is expected to be added to the language at some time in the future.

This keyword also represents a Java data type and the byte keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: char,IEEE 754, LiveConnect, Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Calendar time (Definition)
Time values measured according to the Gregorian calendar.

Time values are one of the areas of least portability between languages and systems. Although
many languages make a brave attempt to provide portable facilities, it is rarely indeed that you will
find two systems that can sensibly exchange the binary or internal time values.

You can transfer time values between systems but you'll need to do it like this. First, you will need
to convert from internal time values to some textual representation that can then be scanned and
parsed back into an internal value on the other system. Then transmit the string to the other end
and invoke some local processing there to convert the time value back in its internal form.

There are a variety of names for this internal time value, one of which is Calendar time.

See also: Broken down time, Date and time, Date object, Daylight savings time
adjustment, Local time, Time range, Time value, Universal coordinated time

Call (Function/internal)
An internal mechanism for executing function calls.

Availability: ECMAScript edition – 2

This is the internal mechanism by which functions are implemented.

Objects supporting this method are called functions.

When they are called, they add themselves to the scope chain and any variables subsequently
declared are added to that scope. Hence local objects belong to the function being executed.

Another name for the function being executed is the call object.

C

JavaScript Programmer's Reference

248

Warnings:
❑ The Global object does not have a Call property and therefore you cannot use it as a function.

See also: Function property, Internal Method, JSObject.call()

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

Call a function (Definition)
To invoke a function during script execution.

See also: Call by reference, Call by value, JSObject.call(), Function call

Call by reference (Definition)
Calling functions and passing references to receiving LValues in the arguments.

If you want to modify a value that is passed to a function, you need to pass a reference to it.
Normally you would depend on a function returning a single value.

You can do this by creating an object, passing the object but mutating the values of the object's
properties. This bridges the scope chain because the locally scoped copy refers to the outer
scoped LValue.

This is demonstrated in the example.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myObject = new Object();
myObject.myVar = 22;
callMe(myObject);

C – Call by value (Definition)

249

document.write("
");
document.write(myObject.myVar);
function callMe(aValue)
{
 document.write(aValue.myVar);
 document.write("
");
 aValue.myVar = 100;
 document.write(aValue.myVar);
}
</SCRIPT>
</BODY>
</HTML>

Call by value (Definition)
Calling functions and passing values in the arguments.

When you call by value, you are passing an immutable constant to a function. The function will
create a copy locally and that copy will be accessible in a locally scoped variable having the name
of the formal parameter.

However, on exit the local value is discarded leaving the original unchanged. It doesn't matter
whether you pass a literal constant value or a variable containing a value. This is easier to
understand if you already have a good grasp of the scope chain mechanism.

The example demonstrates this.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myVar = 22;
callMe(myVar);
document.write("
");
document.write(myVar);
function callMe(aValue)
{
 document.write(aValue);
 document.write("
");
 aValue = 100;
 document.write(aValue);
}
</SCRIPT>
</BODY>
</HTML>

See also: Scope chain

JavaScript Programmer's Reference

250

Call object (Object/internal)
The currently executing function is a call object.

Availability: ECMAScript edition – 2

See also: Arguments object, Function scope, Function.arguments[],
JSObject.call(), Call

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

Call-back event (Definition)
A mechanism for creating frameworks that call user-supplied functions.

See also: Event, JSObject.call(), Plugin events, Event handler

Calling event handlers (Definition)
Event handlers can be called in many different ways.

If you implement an event handler as a function, then you can call it from other functions as needed.
For example, we can build a form validator and associate it with the onSubmit event for the form.

We might want to invoke that validator when something else changes on the page or as a result of
the user clicking on various buttons. Because the submission is still handled by the browser,
invoking the form validation event handler won't submit the form unless it is called as a result an
onSubmit event being triggered.

The form only gets submitted to the server if the form validator returns the correct Boolean flag
value when it is invoked in response to an onSubmit trigger event.

There is another way to submit the form's contents. That is by calling the submit() method
belonging to a Form object. That doesn't trigger an onSubmit event if it is called within the context
of an onSubmit event handler. You could use this technique if you wanted the form contents to be
submitted by some action other than clicking on a submit button.

See also: Event handler, Event handler properties, Function call

C – CanPut() (Function/internal)

251

CanPut() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function returns a Boolean value to indicate whether the named property can be
changed in the containing object.

If the property is found, the value of its ReadOnly attribute is checked. If it has a ReadOnly
attribute, the result of CanPut() must be false. Otherwise, having found the property, the true
result will be returned.

If the property does not exist in the receiving object, the prototype chain is walked until the
property or a null prototype is encountered. At each inheritance level, the CanPut() function is
used to determine the existence of the property.

If a null prototype is encountered, the result will be true, since the property can then be created in
the original receiving object.

If the prototype is a host object that does not implement the CanPut() function, then false is
returned as a result.

Because the prototype chain is walked extensively by the CanPut() function, if the prototype
chain is not finite and terminated with a null at some stage, a recursive loop is built and the
function never returns.

See also: Internal Method

Property attributes:
Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.3

ECMA 262 edition 3 – section – 8.6.2.3

CAPTION object (Object/HTML)
An object that represents the <CAPTION> HTML tag, which is used inside a <TABLE>.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

JavaScript Programmer's Reference

252

IE myCAPTION = myDocument.all.anElementID

IE myCAPTION = myDocument.all.tags("CAPTION")[anIndex]

IE myCAPTION = myDocument.all[aName]

- myCAPTION = myDocument.getElementById(anElementID)

- myCAPTION =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCAPTION =
myDocument.getElementsByTagName("CAPTION") [anIndex]

HTML syntax: <CAPTION> ... </CAPTION>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: align, vAlign, align, vAlign

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onChange, onClick,
onDblClick, onDragStart, onErrorUpdate, onFilterChange,
onFocus, onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, onScroll,
onSelect, onSelectStart

The caption forms an integral part of the table to which it belongs. It needs to be defined inside the
<TABLE> tags.

The DOM level 1 standard describes these objects as TableCaptionElement objects.

See also: Element object, style.captionSide, TABLE object, TABLE.caption,
TABLE.createCaption(), TABLE.deleteCaption()

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,
Deprecated

vAlign - 3.0 + - 4.0 + - - - Warning,
Deprecated

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,
Deprecated

vAlign - 3.0 + - 4.0 + - - - Warning,
Deprecated

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onChange 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - -
onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Table continued on following page

C – CAPTION.align (Property)

253

Event name JavaScript JScript N IE Opera DOM HTML Notes

onDragStart - 3.0 + - 4.0 + - - - -
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onScroll - 3.0 + - 4.0 + - - - -
onSelect 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

CAPTION.align (Property)
The horizontal alignment of the caption with respect to its parent table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: - myCAPTION.align

The alignment of the CAPTION object with respect to its containing parent table object is defined in
this property. The expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

JavaScript Programmer's Reference

254

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

These may not all be supported by all browsers.

Note also that this property is deprecated in favor of using style properties such as textAlign and
verticalAlign, which correspond to the style sheet attributes text-align and vertical-align.

Warnings:
❑ Browsers may not always render the caption identically. The left and right values in particular

are rendered differently between MSIE and Netscape. MSIE draws the caption at the top and
bottom but takes the left and right as a justification control. Netscape places the caption to the
left or right of the table.

❑ Currently MSIE transgresses the rules laid down by the HTML 4.0 standard.

See also: style.captionSide, style.textAlign,
style.verticalAlign

CAPTION.vAlign (Property)
The vertical alignment of a caption with respect to its parent table.

Availability: JScript – 3.0
Internet Explorer – 4.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: IE myCAPTION.vAlign

This is only supported by MSIE and is intended to provide for alignment correction, which the
align property handles incorrectly with respect to the HTML 4.0 standard.

This property is basically supported for backwards compatibility.

The vAlign property may be set to these values:

❑ bottom

❑ top

C – captureEvents() (Function)

255

Warnings:
❑ It is probably wise to use the <CAPTION> tag with discretion and care. You should probably do

some cross-browser testing to ensure its placement is what you intended.

See also: style.captionSide

captureEvents() (Function)
Part of the Netscape 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: undefined

N captureEvents(anEventMask)

N myObject.captureEvents(anEventMask)
JavaScript syntax:

N myWindow.captureEvents(anEventMask)

Argument list: anEventMask A mask constructed with the manifest event
constants

Warnings:
❑ Since a bit mask is being used, this must be an int32 value. This suggests that there can only be 32

different event types supported by this event propagation model.

❑ This capability is deprecated and is not supported in Netscape 6.0 any more. It never was supported
by MSIE, which implements a completely different event model. As it turns out, the DOM level 2
event model converges on the MSIE technique.

See also: Document.captureEvents(), Document.releaseEvents(),
Element.onevent, Event handler, Event management, Event
propagation, Event type constants, Frame object, handleEvent(),
Keyboard events, Layer.captureEvents(),
Layer.releaseEvents(), onLoseCapture, onMouseMove,
Window object, Window.captureEvents(),
Window.releaseEvents(), Window.routeEvent()

Cross-references:
Wrox Instant JavaScript – page – 55

JavaScript Programmer's Reference

256

case ... : (Label)
Part of the switch ... case mechanism. The case keyword denotes a label associated with one
of the selectors.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0

See also: break, Flow control, Label, Selection statement, switch(...) ... case:
... default: ...

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

ECMA 262 edition 3 – section – 12.11

Case Sensitivity (Definition)
Upper and lower case are not identical when used in identifiers.

Availability: ECMAScript edition – 2

Identifiers in JavaScript are case-sensitive.

This means that, for example, variables will refer to distinctly different values if they differ in the
case of any part of their names. Hence aaa is not the same variable as Aaa.

MSIE browsers prior to version 4 were less particular about case-sensitivity. Since the ECMA
standard requires strict case-sensitive behavior, this is now the norm.

Some early versions of the WebTV set top box prior to the Summer 2000 release also lacked case-
sensitive behavior regarding built-in method and property names.

Warnings:
❑ In MSIE version 3, all client-side object and property names were case-insensitive. Beware of any old

scripts, which may have worked on MSIE version 3, but don't work on later browsers.

C – Cast operator (Definition)

257

❑ JavaScript style sheets in Netscape 4 are also case-insensitive.

See also: JavaScript Style Sheets, JellyScript

Cross-references:
ECMA 262 edition 2 – section – 7.5

ECMA 262 edition 3 – section – 7.6

O'Reilly JavaScript Definitive Guide – page – 27

Cast operator (Definition)
A way of converting data types.

Primitive values can be converted from one type to another or rendered as objects by using object
constructors to convert the values.

Type Name: Description:

Aggregate A collection of atomic types assembled collectively into an object.

Arithmetic All types that yield a value that can be operated on numerically.

Array Collections of objects and identifiers assembled into a sequence.

Basic The fundamental simple, non-object types.

Boolean This type can store and yield true or false values.

Completion Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

List Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

Null This has exactly one value, null, and is distinct from undefined.

Number Integer and floating-point values are all stored in a generic number type.

Object An object is an unordered collection of properties. Each property consists of a
name, a value, and a set of attributes.

Reference Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

Scalar The non-object types.

String Strings are arrays of characters that are accessible individually by indexing their
position in the sequence.

Undefined This value is returned by variables that have not yet been assigned a value.

In compiled languages, this is called casting. In JavaScript the values are actually converted using
methods and function calls on the objects. This yields a new value rather than making the old one
look like the new type that is required. It is really conversion rather than casting.

JavaScript Programmer's Reference

258

See also: Aggregate type, Array simulation, Escape sequence (\), escape(),
MakeDate(), MakeDay(), MakeTime(), Native object, null, Operator
Precedence, Primitive value, unescape()

catch(...) (Function)
Part of the try ... catch ...finally error-handling mechanism.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - catch(anError)

Argument list: anError An instance of the error object

The ECMAScript standard (edition 2) defined the catch keyword and reserves it for future use.
Edition 3 mandates that this should now be supported in a compliant interpreter.

In anticipation of that, it is available in JavaScript version 1.4. This is also now supported in JScript
version 5.0 as well.

Refer to the try ... catch ... finally topic for more details.

See also: Error object, EvalError object, Exception handling, finally ...,
RangeError object, ReferenceError object, SyntaxError object, throw,
try ... catch ... finally, TypeError object, URIError object

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

ECMA 262 edition 3 – section – 12.14

Category of an object (Definition)
Why we categorize topics the way we do.

Objects, properties and methods fall into many categories. It helps to understand why an item is
available and what it does if you can map it into a particular context. Here is a summary of the
different categories we use:

Category: Description:

Browser Language elements that are really only useful on the browser side.

Core Language elements that form part of the core of the language.

Desktop Language facilities provided to aid desktop automation.

Table continued on following page

C – CDATASection object (Object/DOM)

259

Category: Description:

Embedded Language facilities particularly intended for use in embedded interpreters.

Generic Topics that discuss something that could be used server-side or client-side are
categorized as generic. Properties and objects may be defined server-side and
deployed client-side.

Microsoft There are many proprietary additions by Microsoft. These are the particularly
noteworthy items and are generally non-portable.

Server Language elements that are really only useful on the server side.

Shell Language facilities that are added for use in shell scripts.

CDATASection object (Object/DOM)
Part of the extended interface that DOM describes for supporting non-HTML content.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: textNode object

JavaScript syntax: - myCDATASection =
myDocument.createCDATASection(someData)

Argument list: someData The data content for the new object

The extended interface supports various document forms other than HTML. This object is used to
encapsulate marked up XML without needing to escape all of the markup characters.

You can test for the availability of this feature by means of the Implementation.hasFeature()
method. In this case, test for a feature name of "XML" and a version value of "1.0"

See also: Document.createCDATASection()

Inheritance chain:
CharacterData object, Node object, textNode object

CENTER object (Object/HTML)
An object that represents the <CENTER> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

JavaScript Programmer's Reference

260

IE myCENTER = myDocument.all.anElementID

IE myCENTER = myDocument.all.tags("CENTER")[anIndex]

IE myCENTER = myDocument.all[aName]

- myCENTER = myDocument.getElementById(anElementID)

- myCENTER =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCENTER = myDocument.getElementsByTagName
("CENTER")[anIndex]

HTML syntax: <CENTER> ... </CENTER>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object methods: removeAttribute()

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Method JavaScript JScript N IE Opera DOM HTML Notes

removeAttribute(0 - 3.0 + - 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

C – .cfg (File extension)

261

Refer to:
Element object

.cfg (File extension)
A configuration file for Netscape.

See also: netscape.lck, Preferences

.cgi (File extension)
Common gateway interface dynamic page.

Refer to:
File extensions

CGI-Driven JavaScript (Definition)
Using JavaScript in the request - response loop of a web server.

You can use JavaScript to generate the response to a web browser's incoming requests at the web server.

This is a useful and powerful way to extend the CGI capabilities of your web server. Forms handling
with products such as ScriptEase WSE (Web Server Edition) are streamlined due to the interpreter
having additional features that usefully package the request data before your script is called.

See also: Host environment, Platform, Server-side JavaScript, Shell Scripting with
JavaScript

Cross-references:
Wrox Instant JavaScript – page – 5

char (Reserved word)
Reserved for future language enhancements.

The ECMAScript (edition 2) reserves the char keyword for future use. This suggests some
additional C-like functionality may be added in the future. A char may be represented by a byte.

However in JavaScript, characters are really double-byte values since they encode a Unicode code
point in each character.

JavaScript Programmer's Reference

262

This keyword also represents a Java data type and the char keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: byte, java.lang.Character, LiveConnect, Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

Character constant (Definition)
A literal description of a single character.

Property/method value type: String primitive

A character constant in JavaScript is represented by a single character length String primitive.
Technically it is a string, not a character. In JavaScript the single quote delimiter encloses strings as
well as the double quote delimiter.

Beware of this if you are familiar with C language character constants. In C, the single quote
(apostrophe) is used to enclose a single character that can be represented by a byte.

Some character constant escape codes are listed in the following table:

Escape Sequence: Name: Symbol:

\" Double Quote "
\' Single Quote (Apostrophe) '
\\ Backslash \
\a Audible alert (MSIE displays the letter a) <BEL>
\b Backspace (ignored silently in MSIE) <BS>
\f Form Feed (ignored silently in MSIE) <FF>
\n Line Feed (Newline - MSIE inserts a space) <LF>
\r Carriage Return (MSIE inserts a space) <CR>
\t Horizontal Tab (MSIE inserts a space) <HT>
\v Vertical tab (MSIE displays the letter v) <VT>
\0nn Octal escape -
\042 Double Quote "
\047 Single Quote (Apostrophe) '
\134 Backslash \
\xnn Hexadecimal escape -

Table continued on following page

C – Character display semantics (Definition)

263

Escape Sequence: Name: Symbol:

\x22 Double Quote "
\x27 Single Quote (Apostrophe) '
\x5C Backslash \
\unnnn Unicode escape -
\u0022 Double Quote "
\u0027 Single Quote (Apostrophe) '
\u005C Backslash \
\uFFFE A special Unicode sentinel character for flagging

byte reversed text
-

\uFFFF A special Unicode sentinel character -

See also: Character handling, Constant, Constant expression, Escape
sequence (\), Literal, Primitive value

Character display semantics (Definition)
How characters are displayed on the implementation's console.

Although the standard defines many escape sequences (see table), how these are displayed
depends very much on the way that the implementation uses the output of JavaScript:

Escape Sequence: Name: Symbol:

\" Double Quote "
\' Single Quote (Apostrophe) '
\\ Backslash \
\a Audible alert (MSIE displays the letter a) <BEL>
\b Backspace (ignored silently in MSIE) <BS>
\f Form Feed (ignored silently in MSIE) <FF>
\n Line Feed (Newline - MSIE inserts a space) <LF>
\r Carriage Return (MSIE inserts a space) <CR>
\t Horizontal Tab (MSIE inserts a space) <HT>
\v Vertical tab (MSIE displays the letter v) <VT>
\0nn Octal escape -
\042 Double Quote "
\047 Single Quote (Apostrophe) '
\134 Backslash \
\xnn Hexadecimal escape -
\x22 Double Quote "
\x27 Single Quote (Apostrophe) '

Table continued on following page

JavaScript Programmer's Reference

264

Escape Sequence: Name: Symbol:

\x5C Backslash \
\unnnn Unicode escape -
\u0022 Double Quote "
\u0027 Single Quote (Apostrophe) '
\u005C Backslash \
\uFFFE A special Unicode sentinel character for flagging

byte-reversed text
-

\uFFFF A special Unicode sentinel character -

Encoding line feeds, form feeds, and tabs into data that ultimately gets output as part of a
document.write() method suggests that the target is an HTML page. When HTML is rendered,
any embedded tabs and line terminators have no effect at all on the displayed output apart from
some undesirable side effects in older browsers, which used to display line terminators inside
anchor tags in a very odd way.

On the other hand, JavaScript that is generating a text data stream that is going to be returned via a
TCP socket may well want to encode all kinds of escaped control characters.

Warnings:
❑ Generally a browser will ignore any escape sequences it cannot cope with. Some it will ignore

silently such as a \b which results in no output in the MSIE browser. For others, such as \a, MSIE
ignores the backslash but writes the letter 'a' into the document output. A few escape characters
result in a space character being inserted into the output text.

❑ You should, as a matter of course, clean your HTML text of any unwanted escape characters if you can.

See also: Character set, Environment, Escape sequence (\)

Character entity (Definition)
A means of escaping difficult-to-type characters for use in HTML.

Refer to:
HTML Character entity

Character handling (Advice)
Functions for testing character attributes.

Developers who use the C language and who are converting to JavaScript may be used to having
support for testing various properties of character codes.

These functions are not formally part of the JavaScript language, although some of them are
provided as part of the host environment through additional objects that provide C-like
functionality. These are modeled on the Math object and cannot usually be instantiated by
belonging to the Global object in the same way as the Math object does.

C – Character set (Definition)

265

ScriptEase by Nombas is one interpreter that provides support for C language functionality
through its Clib object.

If you are using other interpreters, you can simulate these character handling functions with
fragments of script and some bitwise operators.

The following functions that are normally available to C programmers are simulated with the script
examples in the following sections:

❑ isalnum()

❑ isalpha()

❑ iscntrl()

❑ isdigit()

❑ isgraph()

❑ islower()

❑ isprint()

❑ ispunct()

❑ isspace()

❑ isupper()

❑ isxdigit()

See also: isAlnum(), isAlpha(), isCtrl(), isDigit(), isGraph(),
isLower(), isODigit(), isPrint(), isPunct(), isSpace(),
isUpper(), isXDigit()

Character set (Definition)
The collection of characters that the script can operate on.

Since JavaScript 1.3 and JScript 3.0, the language has been built around the Unicode standard. This
means its identifiers and hence its script source code is intended to be represented by a sequence of
Unicode characters. The benefit of this is that identifiers can be named using international
characters. The reality is that some implementations don't support this very well, even if they can
parse and process Unicode correctly as data.

As is the case with many languages, there may be a character set that can be used for data and a
smaller sub-set that is valid for use when editing script source text.

Strictly speaking, a JavaScript script source can be encoded with 7 bit ASCII characters since there
are mechanisms to escape generated character codes that are multi-byte Unicode code points.

The Unicode standard describes a large number of international character sets in terms of the character
glyphs supported by them. There are also a large number of ISO standardized character sets.

See also: ASCII, Character display semantics, Character handling, Character-case
mapping, Environment, Escape sequence (\), isLower(), isUpper(),
Locale-specific behavior, Localization, Multi-byte character, Unicode

JavaScript Programmer's Reference

266

Character testing (Definition)
Testing characters for attributes.

The following functions that are normally available to C programmers are simulated with script
examples in the following sections:

❑ isalnum()

❑ isalpha()

❑ iscntrl()

❑ isdigit()

❑ isgraph()

❑ islower()

❑ isprint()

❑ ispunct()

❑ isspace()

❑ isupper()

❑ isxdigit()

Strictly speaking, these functions should be coded to be aware of locale-specific issues. You may
want to take example simulations provided here and modify them to your own needs to support
that. These are just basic working examples.

See also: Character handling, Character-case mapping, isAlnum(), isAlpha(),
isCtrl(), isDigit(), isGraph(), isLower(), isODigit(),
isPrint(), isPunct(), isSpace(), isUpper(), isXDigit(),
String.charAt(), String.charCodeAt(),
String.fromCharCode()

Character value (Definition)
A numeric value based on the Unicode and ASCII character code points.

See also: ASCII, Integer constant, Unicode

Character-case mapping (Overview)
Character case conversion.

The conversion of characters from upper to lower case and vice versa is accomplished in JavaScript
by means of the String object. This provides two methods that can be applied to a String object
to change its case. However, this would not work on String primitives so you may need to do an
object conversion first.

C – CharacterData object (Object/DOM)

267

The ECMAScript standard mandates that only the base characters need be mapped between the
upper and lower case. Sorting and case conversion may support other international characters in
some implementations, but this is not covered by the standard.

Localization issues may affect this sort of operation.

The interpreter should automatically convert any String primitives to String objects so that the
method can be applied. This means that this should work:

"aaaa".toUpperCase()

And you should not need to do this:

String("aaaa").toUpperCase()

See also: ASCII, Character handling, Character set, Character testing, isLower(),
isUpper(), Locale-specific behavior, String.charCodeAt(),
String.fromCharCode(), String.toLocaleLowerCase(),
String.toLocaleUpperCase(), String.toLowerCase(),
String.toUpperCase(), Unicode

CharacterData object (Object/DOM)
A sub-class of the node object with extensions to support access to character data within the object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Node object

JavaScript syntax: - myCharacterData = new CharacterData()

Object properties: data, length

Object methods: appendData(), deleteData(), insertData(), replaceData(),
substringData()

See also: COMMENT object

Property JavaScript JScript N IE Opera DOM Notes

data 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
length 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Method JavaScript JScript N IE Opera DOM Notes

appendData() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
deleteData() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
insertData() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
replaceData() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
substringData() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

JavaScript Programmer's Reference

268

Inheritance chain:
Node object

CharacterData.appendData() (Method)
Append some text to the end of the character data.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myCharacterData.appendData(aString)

Argument list: aString Some data to append

CharacterData.data (Property)
The current contents of the character data node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myCharacterData.data

CharacterData.deleteData() (Method)
Remove a section of text from the data contained in the character data node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myCharacterData.deleteData(anOffset, aCount)

anOffset The start of the deleted sectionArgument list:
aCount The length of the deleted section

C – CharacterData.insertData() (Method)

269

CharacterData.insertData() (Method)
Insert some additional text into the character data node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myCharacterData.insertData(anOffset, aString)

anOffset A location to insert the data atArgument list:
aString The data to insert

CharacterData.length (Property)
Return the length (in characters) of the character data node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myCharacterData.length

CharacterData.replaceData() (Method)
Replace a section of text in the character data node with some new text.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myCharacterData.replaceData(anOffset,
 aCount, aString)

anOffset The location where the replacement starts
aCount The length of data to be replaced

Argument list:

aString The new data to insert

JavaScript Programmer's Reference

270

CharacterData.substringData() (Method)
Non destructively extract a section of the text from the character data node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myCharacterData.substringData(anOffset,
aCount)

anOffset A location where the substring startsArgument list:
aCount The length of the substring

Checkbox object (Object/DOM)
A checkbox to be used in a form. It toggles as it is clicked, but is not related to other checkboxes in
the way that radio buttons are related to one another in families.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

- myCheckbox = myDocument.aFormName.anElementName

- myCheckbox =
myDocument.aFormName.elements[anItemIndex]

IE myCheckbox = myDocument.all.anElementID

IE myCheckbox =
myDocument.all.tags("INPUT")[anIndex]

IE myCheckbox = myDocument.all[aName]

- myCheckbox =
myDocument.forms[aFormIndex].anElementName

- myCheckbox =
myDocument.forms[aFormIndex].elements
[anItemIndex]

- myCheckbox =
myDocument.getElementById(anElementID)

- myCheckbox =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCheckbox =
myDocument.getElementsByTagName("INPUT")
[anIndex]

C – Checkbox object (Object/DOM)

271

HTML syntax: <INPUT TYPE="checkbox">

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms
collection

Object properties: checked, defaultChecked, indeterminate, status, type,
value

Object methods: handleEvent()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDblClick, onErrorUpdate, onFilterChange, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onRowEnter, onRowExit

Many properties, methods, and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

There isn't really a Checkbox object class but it is helpful when trying to understand the wide variety
of input element types if we can reduce the complexity by discussing only the properties and
methods of a checkbox. In actual fact, the object is represented as an item of the Input object class.

Checkboxes may be used in groups where each one has the same name. However, this breaks the
mechanism by which a form element can be accessed associatively since there is now more than
one object with the same name. The fix for this is to support an InputArray so that you can access
the items with the same name from a collection.

Although Checkbox items should not deactivate other items in the same family in the way that Radio
buttons do, you can relate their states to one another by means of the onclick event handler.

Unlike MSIE, Netscape does not support the defaultValue property or the select() method
for this sub-class of the Input object.

Warnings:
❑ If you enumerate a form object that has several elements having the same name, in Netscape these

will be represented by a single property of that name that refers to an InputArray. In MSIE, you
will get multiple properties with the same name, but each will refer to a collection object. This is
probably a bug in MSIE, which exhibits this behavior in version 5 for Macintosh and probably on
other platforms too.

❑ Note that on MSIE, Input objects are actually INPUT objects because MSIE follows a general rule of
naming object classes after the capitalised name of the HTML tag that instantiates them.

JavaScript Programmer's Reference

272

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="RESULT">?</DIV>
<FORM onClick="handleClick()">
<INPUT TYPE="checkbox" VALUE="A" NAME="BOX_A">Selection A

<INPUT TYPE="checkbox" VALUE="B" NAME="BOX_B">Selection B

<INPUT TYPE="checkbox" VALUE="C" NAME="BOX_C">Selection C

<INPUT TYPE="checkbox" VALUE="D" NAME="BOX_D">Selection D

</FORM>
<SCRIPT>
function handleClick()
{
 myString = "Selection [";
 myString += event.srcElement.value;
 myString += "], State [";
 myString += event.srcElement.checked;
 myString += "]";
 document.all.RESULT.innerText = myString;
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object, Form.elements[], FormElement object, Input object,
Input.accessKey, onClick

Property JavaScript JScript N IE Opera DOM HTML Notes

checked 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
defaultChecked 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
indeterminate - 3.0 + - 4.0 + - - - -
status - 3.0 + - 4.0 + - - - Warning
type 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

C – Checkbox.checked (Property)

273

Event name JavaScript JScript N IE Opera DOM HTML Notes

onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

Checkbox.checked (Property)
The state of the checkbox is maintained in this property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myCheckbox.checked

HTML syntax: <INPUT CHECKED>

If the checkbox has a mark in it (depending on the UI display appearance guidelines, this may be a
tick or a cross), then this value will return true. Otherwise it will return false.

JavaScript Programmer's Reference

274

Checkbox.defaultChecked (Property)
The original initial default state of a checkbox.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myCheckbox.defaultChecked

HTML syntax: <INPUT CHECKED>

The defaultChecked state of an Input item is the value that was defined in the HTML document
source when the page was loaded. You can use this value if you need to reset the status of a page or
determine whether the user has changed the settings on an input item since the page was loaded.

Checkbox.handleEvent() (Method)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myResetButton.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event-handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent()

C – Checkbox.indeterminate (Property)

275

Checkbox.indeterminate (Property)
A checkbox is in this state if it was selected, but then disabled. The state cannot be accurately and
unambiguously determined.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myCheckbox.indeterminate

Checkboxes may be enabled and disabled. If you have a checkbox that was enabled and then
checked, and then if it is subsequently disabled, this flag property is set to true which indicates
that the current state of the checkbox is indeterminate.

Checkbox.status (Property)
The current highlighted or checked status of the input element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myCheckbox.status

This is the current status of the checkbox item. It is either checked or not. If the checkbox has not
been changed since the page was loaded from the server, then this value will be the same as the
defaultChecked property of the checkbox.

Warnings:
❑ Because this is not supported on all browsers, you should use the Checkbox.checked property

instead if portable code is important to your project.

Checkbox.type (Property)
The type value for the <INPUT> tag that describes the form checkbox.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript Programmer's Reference

276

JavaScript syntax: - myCheckbox.type

HTML syntax: <INPUT TYPE="CHECKBOX">

The type value for a checkbox is always "checkbox". This value is necessary to determine the type
of form element because this object is really an instance of the Input class and not the Checkbox
class. There is actually no Checkbox class.

See also: Input.type

Property attributes:
ReadOnly.

Checkbox.value (Property)
The text string for this particular checkbox object.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myCheckbox.value

HTML syntax: <INPUT VALUE="...">

This value is returned to the server during a submit only if the checked state for this radio button is on.

Warnings:
❑ If the checkbox is used in a group or even if it isn't, the state of the checkbox is in the checked

property not the value property.

See also: Input.value

CheckerBoard() (Filter/transition)
A transition effect with the appearance of chequer board blinds opening or closing.

Availability: JScript - 5.5
Internet Explorer - 5.5

Refer to:
filter - CheckerBoard()

C – ChildNodes object (Object/DOM)

277

ChildNodes object (Object/DOM)
A collection of all the children belonging to a DOM Node object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myChildNodes = myElement.childNodes

This is part of the internal DOM hierarchy model in the browser. There are several tree hierarchies
supported and this one maintains a tree of parent-child node relationships across the document.

See also: Element object, Element.childNodes[], Hierarchy of objects

Chroma() (Filter/visual)
A visual filter for chroma key effects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter - Chroma()

CITE object (Object/HTML)
An object representing the HTML content delimited by the <CITE> HTML tags.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE myCITE = myDocument.all.anElementID

IE myCITE = myDocument.all.tags("CITE")[anIndex]

IE myCITE = myDocument.all[aName]

- myCITE = myDocument.getElementById(anElementID)

- myCITE =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCITE =
myDocument.getElementsByTagName("CITE")[anIndex]

HTML syntax: <CITE> ... </CITE>

anElementID The ID value of the element required
anIndex A valid reference to an item in the collection

Argument list:

aName The name attribute of an element

JavaScript Programmer's Reference

278

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

This internal property returns a string value containing the class name of the containing object.

Every object type must implement this property.

It is supported by all built-in native objects in an ECMA-compliant JavaScript interpreter.

Host objects may supply any value as a Class identifying string. They may even masquerade as
one of the built-in classes, but good sense suggests that if they do, then they must obey the protocol
of that built-in class in precisely the same way as if they were a real built-in object. It's probably
sensible for host implementers to avoid overloading the built-in class names like that.

C – class (Reserved word)

279

At edition 2 of the ECMA standard, there is no publicly accessible method to retrieve this property
in a script. However, the reserved keyword values suggest that this may be offered at a later
revision of the standard.

See also: Array.Class, Boolean.Class, class, Date.Class,
Function.Class, Internal Property, Number.Class, Object.Class,
Reserved word, String.Class

Property attributes:
Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

class (Reserved word)
Reserved for future language enhancements.

Although you cannot request the class of a particular object, you can probably establish what class
it belongs to with the typeof operator.

This keyword also represents a Java object type and the class keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: Class, Internal Property, java.lang.Class, LiveConnect, Reserved
word, typeof

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 2 – section – 11.4.3

ECMA 262 edition 3 – section – 7.5.3

ECMA 262 edition 3 – section – 11.4.3

Class method (Definition)
Methods owned by a constructor function object.

Refer to:
Static method

JavaScript Programmer's Reference

280

Class variable (Definition)
Static variables owned by a constructor function object.

See also: Property

Refer to:
Static variable

CLASS="..." (HTML Tag Attribute)
A means of associating a tag with a stylesheet class. Represented by the className property of an
Element object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

In MSIE, virtually any object can be associated with a style object by means of the CLASS
attribute. This is reflected into the className property of the object. It is especially applicable to
DOM-related objects, which are considered to be sub-classed from the Element object. Netscape
6.0 brings that browser into line with these capabilities.

See also: DOM, Element object, Element.className,
Element.style, STYLE object (1), style object (2)

classes (Property)
An alternative reference to the document.classes property in JSS.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated – Netscape 6.0

Property/method value type: Collection object

N classes
JavaScript syntax:

N myDocument.classes

Warnings:
❑ This functionality is removed from Netscape 6.0.

See also: JavaScript Style Sheets, Document.classes[]

C – CLASSPATH (Environment variable)

281

CLASSPATH (Environment variable)
This is an important environment variable that helps Java code locate resources on your system. It
needs to be set correctly.

See also: Java, LiveConnect

clearInterval() (Method)
Cancel a previous setInterval() timer.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- clearInterval(anIntervalID)
JavaScript syntax:

- myWindow.clearInterval(anIntervalID)

Argument list: anIntervalID
The ID of an interval returned by the
setInterval() method

See also: Window.clearTimeout(), Window.clearInterval()

clearTimeout() (Method)
A function that removes a pending timeout event.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: undefined

- clearTimeout(aTimeoutID)
JavaScript syntax:

- myWindow.clearTimeout(aTimeoutID)

Argument list: aTimeoutID
The ID of a timeout returned by the
setTimeout() method

JavaScript Programmer's Reference

282

Warnings:
❑ This can cause problems if the timeout event you have identified has already been executed. Pending

timeouts quite reasonably can be removed. Already executed timeout actions cannot be removed
and may crash the browser if you try to remove them. Be sure that you are really removing a
pending timeout.

❑ A better technique is to set flags in global variables and use them to inhibit the creation of a new
timeout event if you are using this for a kind of interval timer.

See also: Window.clearTimeout(), Window.setTimeout()

client object (Object/NES)
A server-side object available in NES.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES client

HTML syntax: client

Object methods: destroy(), expiration()

One client object is created for each browser user. It is created when the user first accesses the
NES application and persists until some time after they have last visited. A timeout allows the
server to garbage-collect these session objects and purge them out. If a client comes back again
later, a new object will need to be created.

Because there is no session object in Netscape Enterprise Server, this object serves the purpose of
maintaining session state as well as holding details of the client.

To maintain state across all session in an application, you should use the project object discussed
in a separate topic.

Client objects have a limited lifetime. It is configurable but typically they will expire and be
discarded after 10 minutes of inactivity.

See also: Netscape Enterprise Server, project object, response.client,
unwatch(), watch()

Method JavaScript JScript NES Notes

destroy() 1.1 + - 2.0 + -
expiration() 1.1 + - 2.0 + -

C – client.destroy() (Method)

283

client.destroy() (Method)
This destroys the client object.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES client.destroy()

Calling this method on a client object will remove it and if the user makes another request, a new
client object will have to be created.

This is slightly inconsistent with the normal way that objects are destroyed. Normally the delete
operator would be used.

client.expiration() (Method)
This method will define the timeout after which the client object will expire. Used to set the
life-span of a client object in an NES server.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES client.expiration(aTime)

Argument list: aTime A time value measured in seconds

This method allows the number of seconds before a session times out to be defined. After this time,
the client object will be purged automatically and if the user connects again after that, a new
client object will need to be created.

The expiration time can be set for individual client objects. You may have one that needs to
persist longer based on the kind of session the user is experiencing.

For example, it might be useful to expire an e-commerce session quickly to prevent misuse. A
content administrator may need a session to be active for a much longer time than usual.

Typical expiry time for this sort of thing would be about 30 minutes. This is in line with current
practice of log analysis techniques and log auditing. Breaks of more than 30 minutes are considered
to be multiple sessions.

Client pull techniques (Definition)
This is a technique whereby the client end pulls content from the server at regular intervals.

Refer to:
Timer events

JavaScript Programmer's Reference

284

Client-side JavaScript (Definition)
The JavaScript that gets executed in the web browser or other client application.

See also: .jar, .java, .js, Desktop JavaScript, HTML file, Server-side
JavaScript, Web browser

Cross-references:
Wrox Instant JavaScript – page – 3

Wrox Instant JavaScript – page – 5

clientInformation (Property)
Details of the browser, A.K.A. the navigator object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Navigator object

IE clientInformation
JavaScript syntax:

IE myWindow.clientInformation

See also: Cross platform compatibility, Navigator object,
Window.clientInformation, Window.navigator

Property attributes:
ReadOnly, DontEnum.

Clip object (Object/Navigator)
An object that represents a clip region within a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

N myClip = myLayer.clip

N myClip = myStyle.clip

N myClip = myTextRectangle

JavaScript syntax:

N myClip = myRect

Object properties: bottom, height, left, right, top, width

C – Clip.bottom (Property)

285

This object represents a clipping rectangle that the visible part of a display object is viewed through.
This is most likely used with a layer object. The layer contents would be drawn off-screen and then
that part that falls within the clipping rectangle would be displayed in the window.

This can be useful for performing wipes and making parts of a layer progressively visible within
some kind of transition loop.

In the MSIE browser, these rectangular objects are manufactured as needed with the rect()
constructor function.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip, Rect object, style.clip, textRectangle
object

Property JavaScript JScript N IE Opera Notes

bottom 1.2 + - 4.0 + - - Warning, Deprecated
height 1.2 + - 4.0 + - - Warning, Deprecated
left 1.2 + - 4.0 + - - Warning, Deprecated
right 1.2 + - 4.0 + - - Warning, Deprecated
top 1.2 + - 4.0 + - - Warning, Deprecated
width 1.2 + - 4.0 + - - Warning, Deprecated

Clip.bottom (Property)
The bottom of a layer clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

Property/method value type: Number primitive

JavaScript syntax: N myClip.bottom

This defines the bottom edge of the clip region. You could modify this in a loop to create a vertical
downwards wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip.bottom, Rect.bottom

JavaScript Programmer's Reference

286

Clip.height (Property)
The height of a layer clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

Property/method value type: Number primitive

JavaScript syntax: N myClip.height

The clip region is defined by an extent rectangle that surrounds the space occupied by the clip
region. An extent rectangle is the smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip.height, Rect.height

Clip.left (Property)
The left of a layer clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

Property/method value type: Number primitive

JavaScript syntax: N myClip.left

This defines the left edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip.left, Rect.left

Clip.right (Property)
The right of a layer clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

C – Clip.top (Property)

287

Property/method value type: Number primitive

JavaScript syntax: N myClip.right

This defines the right edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip.right, Rect.right

Clip.top (Property)
The top of a layer clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

Property/method value type: Number primitive

JavaScript syntax: N myClip.top

This defines the top edge of the clip region. You could modify this in a loop to create a vertical
downwards wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip.top, Rect.top

Clip.width (Property)
The width of a layer clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated Netscape 6.0

Property/method value type: Number primitive

JavaScript syntax: N myClip.width

The clip region is defined by an extent rectangle that surrounds the space occupied by the clip
region. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

JavaScript Programmer's Reference

288

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.clip.width, Rect.width

clipboardData (Property)
A global browser variable that refers to the clipboardData object for the window.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: clipboardData object

IE clipboardData
JavaScript syntax:

IE myWindow.clipboardData

See also: clipboardData object, Window.clipboardData

clipboardData object (Object/JScript)
An object that can be used with editing operations to provide script-driven access to the
clipboard contents.

Availability: JScript – 5.0
Internet Explorer – 5.0

IE myClipboardData = clipboardData
JavaScript syntax:

IE myClipboardData = myWindow.clipboardData

Object methods: clearData(), getData(), setData()

If you want to move data in and out of the clipboard on a Windows platform from within the MSIE
browser, this object encapsulates the clipboard contents.

Refer to the dataTransfer object for a description of the clearData(), getData(), and
setData() methods that may also be used with the clipboardData object.

See also: dataTransfer.clearData(), dataTransfer.getData(),
Window.clipboardData

Method JavaScript JScript N IE Opera Notes

clearData() - 5.0 + - 5.0 + - -
etData() - 5.0 + - 5.0 + - -
setData() - 5.0 + - 5.0 + - -

C – close() (Method)

289

close() (Method)
A function that closes the receiving window.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: undefined

- close()
JavaScript syntax:

- myWindow.close()

See also: UniversalBrowserAccess, UniversalBrowserWrite,
Window.close()

closed (Property)
A flag indicating the window disposition.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer version – 4.0
Netscape Navigator version – 3.0
Opera browser – 3.0

Property/method value type: Boolean primitive

- closed
JavaScript syntax:

- myWindow.closed

false The window is still openArgument list:
true The window has been closed

Property attributes:
ReadOnly.

Refer to:
Window.closed

JavaScript Programmer's Reference

290

Closure object (Object/internal)
A special kind of function object that preserves prototype inheritance and scope.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myClosure = new Closure()

Object properties: __parent__, __proto__

This is a special kind of object, which maintains some contextual state information when it is created.

It can behave like a function, but is a kind of function wrapper that references a function and a
scope. Since it inherits everything from the Function object, it can behave like a function and can
be called as such.

Because it also stores the scope chain at the time it is manufactured, it can restore that scope chain
when it is executed.

See also: Lexical scoping

Property JavaScript JScript N IE Opera Notes

__parent__ 1.2 + - 4.0 + - - -
__proto__ 1.2 + - 4.0 + - - -

Closure() (Object/Navigator)
A Closure object constructor.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N new Closure(aFunction, aTarget)

aFunction The declaration of a functionArgument list:
aTarget An object to associate the function with

This constructor is used internally to create a Closure object containing the function associated
with a target object.

The Closure() constructor is used in Netscape 4 to create an event-handler function that can be
forced to run in a scope containing a target object.

C – Closure.__parent__ (Property)

291

Example code:
document.form1.myButton.onclick =
new Closure(
 function()
 {
 document.validated = false;
 },
 document.form1.myButton
);

See also: Constructor function, constructor property, Global object,
Object constant

Closure.__parent__ (Property)
A reference to a scope-chain object that is preserved with the function by the Closure object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: ScopeChain object

JavaScript syntax: N myClosure.__parent__

See also: __parent__, __proto__, Lexical scoping, Closure object

Closure.__proto__ (Property)
A reference to a function that is encapsulated by the Closure object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Function object

JavaScript syntax: N myClosure.__proto__

See also: __parent__, __proto__, Lexical scoping, Closure object

JavaScript Programmer's Reference

292

clsid: URL (Request method)
Used by MSIE to locate ActiveX controls for the <OBJECT> tag.

A special request method for loading ActiveX objects from the locally stored object repository.
This provides a portable, cross-platform, installation,independent way to refer to the folder where
you have installed shared ActiveX objects on your system. It is more or less equivalent to the
file: request method but without the need to specify a path to the folder.

See also: OBJECT.classid, URL

Code block delimiter {} (Delimiter)
A delimiting token for a block of executable script source text.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript syntax: - aLabel: { someScript }

aLabel An optional identifier to name the code blockArgument list:
someScript Some legal JavaScript source text

A block is a list of statements that form one syntactic unit enclosed in curly brace characters ({ }).

This is particularly useful in conditional execution and iterative execution. Both of those are
expected to operate on a single syntactic unit. A block allows that single syntactic unit to be
composed of multiple lines of source script text.

Because the curly brace characters are used to delimit a block of code that comprises a list of semi-
colon terminated statements, you do not need to place any semi-colons after the closing curly brace.

A block of code is most often used like this with a iterator or conditional test to either call the
same section of code repetitively or to execute it as the result of a conditional expression returning
a true value.

In compiled languages, variables declared inside a block are sometimes local to that block and are
garbage-collected when the block exits. The ECMA standard indicates that variables created inside
a code block will be global unless that code block is the body of a function. In ECMA-compliant
interpreters, a block does not instantiate a new execution context, whereas in C language it does
create a new scope within which the variables exist.

This means that variables created inside an 'if keyword' controlled compound statement will
be function-local or globally accessible according to whether the 'if keyword' is in a function or
global code section.

C – CODE object (Object/HTML)

293

Braces must be used in pairs. Although the JavaScript interpreters may forgive you when you miss
out some language elements, very subtle and difficult-to-diagnose errors can occur if you misplace
a brace character.

Modern text editors give you a lot of help when balancing pairs of braces.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

At version 1.2 of JavaScript, you can name the code block and use the labeled form of the break
keyword to exit the block prematurely.

See also: Associativity, else if(...) ..., if(...) ..., if(...)
... else ..., Label, Operator Precedence, Punctuator

Cross-references:
ECMA 262 edition 2 – section – 12.5

ECMA 262 edition 3 – section – 12.1

Wrox Instant JavaScript – page – 18

CODE object (Object/HTML)
An object representing the HTML content delimited by the <CODE> HTML tags.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE myCODE = myDocument.all.anElementID

IE myCODE = myDocument.all.tags("CODE")[anIndex]

IE myCODE = myDocument.all[aName]

- myCODE = myDocument.getElementById(anElementID)

- myCODE =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCODE =
myDocument.getElementsByTagName("CODE")[anIndex]

HTML syntax: <CODE> ... </CODE>

anElementID The ID value of the element required
anIndex A valid reference to an item in the collection

Argument list:

aName The name attribute of an element

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

JavaScript Programmer's Reference

294

See also: KBD object, LISTING object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Code signing (Definition)
A security mechanism to allow scripts to inter-communicate.

Signed scripts are allowed higher privileges to communicate with one another because the browser
assumes they are more secure.

See also: Security policy, Signed scripts

COL object (Object/HTML)
An object that represents a <COL> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

C – COL object (Object/HTML)

295

Inherits from: Element object

IE myCOL = myDocument.all.anElementID

IE myCOL = myDocument.all.tags("COL")[anIndex]

IE myCOL = myDocument.all[aName]

- myCOL = myDocument.getElementById(anElementID)

- myCOL =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCOL =
myDocument.getElementsByTagName("COL")[anIndex]

HTML syntax: <COL> ... </COL>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: align, ch, chOff, span, vAlign, width

Event handlers: onClick, onDblClick, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp

This object represents the <COL> tag, which is used within <TABLE> constructs to provide a way of
controlling an entire table column from a single definition. It is used in conjunction with a
<COLGROUP> construct.

The HTML 4 specification describes functionality that currently none of the widely available
browsers supports properly.

The DOM specification describes a HTMLTableColElement object, which is the standardized
interface to this class.

See also: COLGROUP object, Element object, style.columnSpan, TABLE object,
TABLE.rules, TableColElement object, TableColElement.align,
TableColElement.ch, TableColElement.chOff,
TableColElement.span, TableColElement.vAlign,
TableColElement.width

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
span 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

JavaScript Programmer's Reference

296

Event name JavaScript JScript N IE Opera DOM HTML Notes

onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

COL.align (Property)
An attribute controlling the alignment of a column contained in a <COL> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myCOL.align

The alignment of the COL object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ char

❑ justify

❑ left

❑ middle

❑ right

❑ texttop

❑ top

C – COL.ch (Property)

297

Note that not all of these are available in every browser. In particular the justify and char
values are recent additions.

See also: COLGROUP.align

COL.ch (Property)
The alignment character for cells in a column arrangement.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTHEAD.ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

See also: COLGROUP.ch, TD.ch, TH.ch, THEAD.ch, TR.ch

COL.chOff (Property)
The offset of a column alignment character.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTHEAD.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

See also: COLGROUP.chOff, TD.chOff, TH.chOff, THEAD.chOff,
TR.chOff

JavaScript Programmer's Reference

298

COL.span (Property)
The number of columns that the style for this object spans.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myCOL.span

This corresponds to the COLSPAN attribute within a <TD> or <TH> table cell description. It defines
how many table columns this column is to span.

See also: COLGROUP.span, TD.colSpan, TH.colSpan

COL.vAlign (Property)
The vertical alignment of items within this column.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myCOL.vAlign

This property controls text alignment in the vertical axis. This applies to text cells in the column group.

The vAlign property may be set to these values:

❑ baseline

❑ bottom

❑ middle

❑ top

See also: COLGROUP.vAlign

C – COL.width (Property)

299

COL.width (Property)
The width of each column in the column group.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myCOL.width

The columns within the column group are set to a width defined by this property. Changing the
value will cause the page content to be re-flowed to reflect the new value.

See also: COLGROUP.width

COLGROUP object (Object/HTML)
An object that represents the <COLGROUP> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myCOLGROUP = myDocument.all.anElementID

IE myCOLGROUP =
myDocument.all.tags("COLGROUP")[anIndex]

IE myCOLGROUP = myDocument.all[aName]

- myCOLGROUP = myDocument.getElementById(anElementID)

- myCOLGROUP =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myCOLGROUP =
myDocument.getElementsByTagName("COLGROUP")[anIndex]

HTML syntax: <COLGROUP> ... </COLGROUP>

anIndex A valid reference to an item in the collection
aName The name attribute of an element

Argument list:

anElementID The ID attribute of an element

Object properties: align, ch, chOff, span, vAlign, width

Event handlers: onClick, onDblClick, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp

JavaScript Programmer's Reference

300

The <COL> and <COLGROUP> tags correspond to objects that represent the column or group of
columns within a <TABLE> construct. Individual columns map to the COL object and groups of
columns to the COLGROUP object. Attributes can be applied to a group of columns and overridden
on an individual column basis if necessary.

The DOM specification mentions an HTMLTableColElement object, which provides the
functionality of this class.

See also: COL object, style.columnSpan, TABLE object, TABLE.rules,
TableColElement object, TableColElement.align,
TableColElement.ch, TableColElement.chOff,
TableColElement.span, TableColElement.vAlign,
TableColElement.width

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
span 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

C – COLGROUP .align (Property)

301

COLGROUP .align (Property)
The alignment settings for a column group.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myCOLGROUP.align

The alignment of the COLGROUP object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

See also: COL.align

COLGROUP .ch (Property)
The alignment character for cells in a column group arrangement.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTHEAD.ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

JavaScript Programmer's Reference

302

See also: COL.ch, TD.ch, TH.ch, THEAD.ch, TR.ch

COLGROUP .chOff (Property)
The offset of a column alignment character.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTHEAD.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

See also: COL.chOff, TD.chOff, TH.chOff, THEAD.chOff,
TR.chOff

COLGROUP .span (Property)
The span settings for a column group.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myCOLGROUP.span

This property contains a definition of the number of adjacent columns that are affected by the
<COLGROUP> tag's attributes. It corresponds to the COLSPAN attributes of the <TD> and <TH> tags
and the objects that encapsulate them.

See also: COL.span, TD.colSpan, TH.colSpan

C – COLGROUP .vAlign (Property)

303

COLGROUP .vAlign (Property)
The vertical alignment of items in a column group.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myCOLGROUP.vAlign

This property controls text alignment in the vertical axis. This applies to text cells in the column group.

The vAlign property may be set to these values:

❑ baseline

❑ bottom

❑ middle

❑ top

See also: COL.vAlign

COLGROUP .width (Property)
The width of items in a column group.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myCOLGROUP.width

The columns within the column group are set to a width defined by this property. Changing the
value will cause the page content to be re-flowed to reflect the new value.

See also: COL.width

JavaScript Programmer's Reference

304

Collation sequence (Definition)
The order in which objects are sorted lexically according to the locale.

Collation sequences determine the way that information is sorted into the correct sequence. This is
likely to be very locale-dependant and therefore if you are going to sort data, you may need to
provide a means of plugging in a sort comparator function that is aware of the national language
variants if your scripts belong to sites that will be deployed in foreign languages.

This is covered in some depth in the Unicode standard manual.

See also: Localization

Collection object (Object/DOM)
An array of Element objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera browser – 3.0

IE myCollection = myDocument.all

IE myCollection = myDocument.children

IE myCollection = myDocument.filters

- myCollection =
myDocument.getElementsByName(aName)[anIndex]

IE myCollection = myElement.all

IE myCollection = myElement.children

IE myCollection = myElement.filters

JavaScript syntax:

- myCollection =
myDocument.getElementsByTagName(aTag)[anIndex]

aName The name attribute of an element
anIndex A valid reference to an item in the collection

Argument list:

aTag The name of a tag

Object properties: length

Object methods: Item(), namedItem(), tags()

A collection object is an enhancement to the basic array object to provide some additional
searching capabilities for managing the contents of the document object model in a web browser.

Do not confuse DOM NodeList arrays with Enumerator or Collection objects. The
NodeListitem() method is subtly different from the Enumerator.Item() method.

C – Collection.Item() (Method)

305

See also: TABLE.cells[]

Property JavaScript JScript N IE Opera DOM Notes

length 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + 1 + ReadOnly

Method JavaScript JScript N IE Opera DOM Notes

Item() 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 1 + Warning
namedItem() 1.5 + 5.0 + 6.0 + 5.0 + 5.0 + 1 + -
tags() - 3.0 + - 4.0 + - - -

Collection.Item() (Method)
Select an Element object by index number.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: Node object

- myCollection.item(anIndex)

- myCollection.item(aSelector)

- myCollection.item(aSelector, anIndex)

JavaScript syntax:

- myCollection[anIndex]

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

This is a search method that traverses a collection looking for an item or collection of items by the
index in the collection.

If the first argument is a numeric value, the object at the indexed position is returned. You may not
place a second argument in the call. This is the DOM standard specified behavior.

If the first argument is a string, then any object in the collection that has an ID or name property
that matches the selector will be assembled into another collection. If there is no second argument,
that new collection will be returned as a sub-set of the original receiving collection. This is an
extension to the DOM specified behavior.

If the first argument is a string and the second argument is a numeric value, the sub-set collection
is manufactured but the element in that collection indexed by the second argument is returned as a
single object. This is also an extension to the DOM specified behavior.

JavaScript Programmer's Reference

306

This extension is useful because you can apply a filter and selection in one call without needing to
extract and then store a sub-set collection. On the downside, this will repeat the sub-setting search
each time it is called which can lead to performance problems.

When using the myCollection.item(anIndex) syntax variation, it is functionally equivalent to
myCollection[anIndex].

Note that the DOM specification does not allow for the alternative array-like addressing mode,
which is implemented in browsers as a convenience.

Warnings:
❑ You may get back a single object if there is only one item that matches. However, if the selection

criteria match more than one item, you will get back an array of objects. This is slightly problematic;
it would be better if you consistently got back an array even if it contained zero or only one item.
You could then operate on it consistently.

❑ The Item() method of an MSIE Collection object is not the same as the item() method for the
DOM NodeList object. The DOM specifies the method name in lower case, though it is upper case
in MSIE (although JScript is somewhat forgiving of upper-lower case errors in scripts).

❑ In addition, the Item() method of an MSIE Collection supports several different addressing
modes, whereas the item() method of a Nodelist supports only one.

See also: Collection object, NamedNodeMap.item(),
OptionsArray.item(), style.item()

Collection.length (Property)
Returns the length of a collection array.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myCollection.length

The collection behaves exactly like an array object and returns a number representing a count of
all the elements in the collection.

See also: AnchorArray.length, AppletArray.length,
Arguments.length, Array.length, Attributes.length,
Form.elements.length, Form.length,
FormArray.length, LayerArray.length,
LinkArray.length, NodeList.length, Plugin.length,
PluginArray.length, ScriptArray.length,
StyleSheetList.length, Window.length

C – Collection.namedItem() (Method)

307

Property attributes:
ReadOnly.

Collection.namedItem() (Method)
Select an Element object by name or ID value.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Opera – 5.0

Property/method value type: Node object

- myCollection.namedItem(aString)
JavaScript syntax:

- myCollection[aString]

Argument list: aString A textual value that selects all matching objects

This is a search method that traverses a collection looking for a named item or collection of items.

The argument is a string containing the name or ID value of the Element to be located.

Collection.tags() (Method)
Extract a sub-list of Element objects of a particular tag type.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Collection object

JavaScript syntax: IE myCollection.tags(aTagName)

Argument list: aTagName The name of a tag to be filtered

The collection is traversed and all objects are examined to see if they were created by an HTML tag
that is the same as that specified in the argument.

The argument must always be specified in upper case and the resulting collection will contain all
objects of that type selected from the receiving collection object.

You can then manipulate the sub-set collection in the normal way, accessing items within it by
index or by other means.

See also: Collection object, Select.tags()

JavaScript Programmer's Reference

308

Colon (:) (Delimiter)
A delimiter used with labels and conditional operators.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

This delimiter is used with the case keyword and the default keyword in switch statement blocks.

Refer to the switch topic for details of how this is used.

See also: switch(...) ... case: ... default: ...

Color names (Definition)
There are standard definitions of color names for use in web pages.

Property/method value type: String primitive

Although the color names are used in HTML tags, you can use Hexadecimal values as well.

Here is a list of the standard color definitions:

Name: Value:

AliceBlue #F0F8FF
AntiqueWhite #FAEBD7
Aqua #00FFFF
Aquamarine #7FFFD4
Azure #F0FFFF
Beige #F5F5DC
Bisque #FFE4C4
Black #000000
BlanchedAlmond #FFEBCD
Blue #0000FF
BlueViolet #8A2BE2
Brown #A52A2A
BurleyWood #DEB887
CadetBlue #5F9EA0
Chartreuse #7FFF00
Chocolate #D2691E
Coral #FF7F50
CornFlowerBlue #6495ED
CornSilk #FFF8DC
Crimson #DC143C

Table continued on following page

C – Color names (Definition)

309

Name: Value:

Cyan #00FFFF
DarkBlue #00008B
DarkCyan #008B8B
DarkGoldenrod #B8860B
DarkGray #A9A9A9
DarkGreen #006400
DarkKhaki #BDB76B
DarkMagenta #8B008B
DarkOliveGreen #556B2F
DarkOrange #FF8C00
DarkOrchid #9932CC
DarkRed #8B0000
DarkSalmon #E9967A
DarkSeaGreen #8FBC8F
DarkSlateBlue #483D8B
DarkSlateGray #2F4F4F
DarkTurquoise #00CED1
DarkViolet #9400D3
DeepPink #FF1493
DeepSkyBlue #00BFFF
DimGray #696969
DodgerBlue #1E90FF
Firebrick #B22222
FloralWhite #FFFAF0
ForestGreen #228B22
Fuchsia #FF00FF
Gainsboro #DCDCDC
GhostWhite #F8F8FF
Gold #FFD700
Goldenrod #DAA520
Gray #808080
Green #008000
GreenYellow #ADFF2F
Honeydew #F0FFF0
HotPink #FF69B4
IndianRed #CD5C5C
Indigo #4B0082
Ivory #FFFFF0
Khaki #F0E68C
Lavender #E6E6FA
LavenderBlush #FFF0F5
LawnGreen #7CFC00
LemonChiffon #FFFACD
LightBlue #ADD8E6

Table continued on following page

JavaScript Programmer's Reference

310

Name: Value:

LightCoral #F08080
LightCyan #E0FFFF
LightGoldenrodYellow #FAFAD2
LightGray #D3D3D3
LightGreen #90EE90
LightPink #FFB6C1
LightSalmon #FFA07A
LightSeaGreen #20B2AA
LightSkyBlue #87CEFA
LightSlateGray #778899
LightSteelBlue #B0C4DE
LightYellow #FFFFE0
Lime #00FF00
LimeGreen #32CD32
Linen #FAF0E6
Magenta #FF00FF
Maroon #800000
MediumAquamarine #66CDAA
MediumBlue #0000CD
MediumOrchid #BA55D3
MediumPurple #9370DB
MediumSeaGreen #3CB371
MediumSlateBlue #7B68EE
MediumSpringGreen #00FA9A
MediumTurquoise #48D1CC
MediumVioletRed #C71585
MidnightBlue #191970
MintCream #F5FFFA
MistyRose #FFE4E1
Moccasin #FFE4B5
NavajoWhite #FFDEAD
Navy #000080
OldLace #FDF5E6
Olive #808000
OliveDrab #6B8E23
Orange #FFA500
OrangeRed #FF4500
Orchid #DA70D6
PaleGoldenrod #EEE8AA
PaleGreen #98FB98
PaleTurquoise #AFEEEE
PaleVioletRed #DB7093
PapayaWhip #FFEFD5
PeachPuff #FFDAB9
Peru #CD853F

Table continued on following page

C – Color names (Definition)

311

Name: Value:

Pink #FFC0CB

Plum #DDA0DD

PowderBlue #B0E0E6

Purple #800080

Red #FF0000

RosyBrown #BC8F8F

RoyalBlue #4169E1

SaddleBrown #8B4513

Salmon #FA8072

SandyBrown #F4A460

SeaGreen #2E8B57

SeaShell #FFF5EE

Sienna #A0522D

Silver #C0C0C0

SkyBlue #87CEEB

SlateBlue #6A5ACD

SlateGray #708090

Snow #FFFAFA

SpringGreen #00FF7F

SteelBlue #4682B4

Tan #D2B48C

Teal #008080

Thistle #D8BFD8

Tomato #FF6347

Turquoise #40E0D0

Violet #EE82EE

Wheat #F5DEB3

White #FFFFFF

WhiteSmoke #F5F5F5

Yellow #FFFF00

YellowGreen #9ACD32

If you prefer to compute the color names, there is a very neat color picker tool on the Netscape
developer's web site.

See also: Color value

Web-references:
http://home.netscape.com/computing/webbuilding/studio/feature19981111-5.html

http://home.netscape.com/computing/webbuilding/studio/feature19981111-5.html

JavaScript Programmer's Reference

312

Color value (Advice)
Color values can be specified numerically or mnemonically.

Property/method value type: String primitive

A numeric color specification is a 6 digit (3 pairs) hexadecimal value with a leading hash symbol.

Each pair of digits defines the intensity of a single color (RGB) in the display.

The web-safe palette of 216 colors is defined by every possible combination of the following values:

00, 33, 66, 99, CC and FF

There are other values supported through the mnemonic named color palette, which includes 100
shades of gray.

You can use non-web-safe values if you have a greater than 8 bit deep display. These days most
platforms can resolve at least 16 bits, but some legacy systems may have problems resolving
non-web-safe colors.

When using color values for defined styled colors, the rgb() function can be used.

In the MSIE browser, the values can also be specified as 32 bit integer values, although in practice
this is extremely difficult to manage.

In certain circumstances, where an alpha value is available, the color value can be specified using
hexadecimal notation to define a 32 bit integer. In this case, the value is comprised of four pairs of
hex digits as follows:

0xAARRGGBB

The value AA controls the alpha channel transparency, while the RR, GG, and BB values are the
intensity of Red, Green and Blue respectively.

When passed as a string value, the same hexadecimal value can be used but must be preceded by a
hash rather than the 0x prefix. Thus 0xAARRGGBB becomes #AARRGGBB

Warnings:
❑ Be wary of spellings when specifying color values. The UK English spelling of "colour" will not set

the property values you intend. Property values to do with color values will be spelled "color". In
addition some of the color names may be spelled in the American English tradition.

See also: Colour names, rgb()

C – Comma expression (Definition)

313

Comma expression (Definition)
Used to separate individual operands or arguments.

Availability: ECMAScript edition – 2

Comma expressions occur rarely and are used to evaluate several expressions at once.

See also: Comma operator (,), Expression

Cross-references:
ECMA 262 edition 2 – section – 11.14

ECMA 262 edition 3 – section – 11.14

Comma operator (,) (Delimiter)
An argument separator token.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

The comma operator provides a way to evaluate several assignment expressions at once.

It is provided as a way to express the arguments to a function in a manner consistent with the
ECMA standard.

It is also used in variable declaration lists to declare more than one variable with a single var statement.

Its most subtle use is to exploit the side effects of an expression without assigning the result of that
expression to anything. This is actually so subtle as to confuse what it's actually doing. There is
probably a simpler way to express the same functionality that doesn't execute any slower and is a
lot easier to maintain.

The associativity is left to right. This means that the expressions should be executed in left to right
order of appearance in the script source text. The result of the entire expression will be the
evaluation of the last comma-separated item. It is not good style to use a comma separated list as
an RValue in an assignment to an LValue.

JavaScript Programmer's Reference

314

Example code:
// Declaring several variables
var e, c, d, x, y;

// Arguments in a for iterator header
for(a=0, b=0; a<10 ; a++, b++)
{
;
}

// assign variables
c = 1;
d = 2;
x = 3;
y = 4;
z = 5;

// Add c to d and assign the result to e with incrementing
// side effects
e = (x++, y++, c) + (z--, d);

See also: Associativity, Comma expression, Document.write(),
Document.writeln(), Operator Precedence, var

Cross-references:
ECMA 262 edition 2 – section – 11.14

ECMA 262 edition 3 – section – 11.14

Wrox Instant JavaScript – page – 21

Comment (Definition)
Sections of inactive code.

Availability: ECMAScript edition – 2

A comment is some text that is embedded within the script source text but is ignored by the
interpreter. It is intended to provide guidance and documentation to the reader of the source code.

Comments can be contained completely on a single line or can span multiple lines.

A single-line comment can contain any character except for a line terminator. The line terminator at
the end of the single line comment is not part of the comment and must obey the rules of placement
of line terminators in general. Multiple-line comments are replaced by a single line terminator
regardless of how many line terminators they actually contain. This means that a multiple-line
comment behaves syntactically as if it were a line terminator.

Warnings:
❑ You cannot nest multi-line comments within one another.

C – Comment (// and /* ... */) (Delimiter)

315

See also: Comment (// and /* ... */), Escape sequence (\), Lexical
convention, Lexical element, Line, Multi-line comment, Script
Source Text, Single line comment

Cross-references:
ECMA 262 edition 2 – section – 6

ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 2 – section – 7.8.2

ECMA 262 edition 3 – section – 6

ECMA 262 edition 3 – section – 7.4

O'Reilly JavaScript Definitive Guide – page – 29

Wrox Instant JavaScript – page – 17

Comment (// and /* ... */) (Delimiter)
Mark a multi-line comment block.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- /* First line of comment text

- // Comment text

- Second line of comment text

JavaScript syntax:

- Third line of comment text */

There are two kinds of comment blocks supported by JavaScript. They each have a different
kind of delimiter.

Single-line comments commence with a pair of slash characters (//) and stop at the end of the
current line.

Multi-line comments start with a slash-asterisk (/*) and finish at the first following asterisk-slash
(*/). This means you cannot nest multiple line comment blocks inside one another. The
disadvantage with that is that it is common practice in some languages to comment out sections of
code by marking the start and end of the inactive sections as a multi-line comment block. This
won't work if there are any multi-line comment blocks anywhere in this inactive block. A better
technique, although slightly more cumbersome is to use single line comments (//) to 'switch-off'
the lines of code you want to deactivate. Thus:

//a = 1000;
//b = 2000;
//c = 3000;

JavaScript Programmer's Reference

316

See also: Comment, Lexical convention, Line, Line terminator, Multi-line comment,
Single line comment

Cross-references:
ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 3 – section – 7.4

COMMENT object (Object/DOM)
An object that represents a section of HTML enclosed in comment delimiter tags.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: CharacterData object

IE myCOMMENT = myDocument.all.anElementID

IE myCOMMENT = myDocument.all.tags("COMMENT")[anIndex]

IE myCOMMENT = myDocument.all[aName]

- myCOMMENT = myDocument.getElementById(anElementID)

- myCOMMENT =
myDocument.getElementsByName(aName)[anIndex]

N myCOMMENT = myDocument.createComment(aString)

JavaScript syntax:

- myCOMMENT =
myDocument.getElementsByTagName("COMMENT")[anIndex]

HTML syntax: <!-- ... -->

anIndex An item within the collection
aString A comment string
aName The name of an element

Argument list:

anElementID The ID attribute of an element

Object properties: text

Object methods: click(), getAttribute(), removeAttribute(), setAttribute()

Collections: all[], children[]

It is somewhat unlikely you would ever want to modify the contents of a comment tag. However, access
to the text contained within it may be a way of passing hidden data values to your scripts without them
being visible in the displayed page. Of course they would still be visible in the document source, but
you might be able to avoid the creation of a <FORM> and hidden <INPUT> object.

C – COMMENT.text (Property)

317

Warnings:
❑ The DOM level 1 specification describes this as a Comment object, but MSIE implements it as a

COMMENT object instead. You may need to be aware of this in case other platforms implement the
DOM specified class exactly as it is intended.

See also: CharacterData object, Document.createComment(), Element
object, Hiding scripts from old browsers

Property JavaScript JScript N IE Opera DOM Notes

text - 3.0 + - 4.0 + - - -

Method JavaScript JScript N IE Opera DOM Notes

click() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + Warning
getAttribute() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + Warning
removeAttribute() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + Warning
setAttribute() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + Warning

Inheritance chain:
CharacterData object, Node object

COMMENT.text (Property)
The text within a comment block.

Availability: JScript – 3.0
Internet Explorer version – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myCOMMENT.text

This is the internal text within the comment block. The DOM standard treats comment blocks as
character data to standardize the access to their content, but you should not expect to be able to
access the internal text of a comment for any functional purpose.

Compatibility (Definition)
Creating web content is an exercise in portable programming that would severely test the most
experienced programmer.

There are so many issues to do with portability and compatibility that unless you are doing
something very simple, its is an amazing achievement to get your web page to display even
remotely similarly on several browsers or platforms.

JavaScript Programmer's Reference

318

Leaving aside the creative issues to do with color matching, gamma correction, and display
resolution, there are problems with fonts, style sheets and table layout. Layers and dynamic HTML
behave differently even within the same browser family as the browsers are revised. Even scrolling
a page means you have to increment the scroll value in opposite directions in Netscape and MSIE,
and Netscape won't scroll at all without the scroll bars being visible.

To cope with this, it helps to break the compatibility issues down into sub-sets and to understand
the underlying reason for incompatibility. You do need to know about and be able to identify
issues based on platforms, browsers, or versions of client software.

See also: <NOSCRIPT>, <SCRIPT LANGUAGE="...">, Browser version
compatibility, Compatibility strategies, Cross browser compatibility,
Cross platform compatibility, Defensive coding, Document, Plugin
compatibility issues, Portability, Server-side browser detection

Cross-references:
Wrox Instant JavaScript – page – 60

Compatibility strategies (Advice)
Choose how compatible you want to be from the outset.

You need to establish a strategy for how compatible you need to be. Here are some questions you
need to think about and consider their relative importance.

❑ Is it important that your pages work perfectly in browsers that do not support JavaScript? If so, don't
deploy any at all.

❑ If you really need JavaScript, can you design your forms and page content to degrade gracefully? If not,
you may need to browser-detect and present warnings. If you cannot browser-detect with JavaScript at
the client end, you may need to browser-detect at the server end and return a different page.

❑ Are you in control of browser deployment to the target desktop systems? This is likely in an intranet
situation. If it is true, then you can use all of the features of the browser your deploy, including
platform-specific and version-specific capabilities. You may need to co-ordinate content upgrades
with browser upgrades though.

❑ Are you only using JavaScript to define proxy settings? If so, you only need to be cross-platform and
browser-version aware.

❑ Are you only using JavaScript to set preference values in Netscape? If so, you only need to be
cross-platform and browser-version aware.

❑ Can you sacrifice old-browser users? If you can get some meaningful statistics of your readership,
you may find that only a few percent have an old browser. Are you prepared to support all users or
can you disregard some? You need to set a threshold, say 5%, and work out a sub-set of browsers
that you will support and from that derive a functionality profile that your must enforce in your
design department.

❑ Must you guarantee to work on all browsers of every vintage? In which case, you could consider the
lowest common denominator approach and only use those capabilities that are supported by your
choice of target browsers.

C – Completion type (Definition)

319

❑ Do you think you need to only support the latest version of a browser? Users are generally keen to
upgrade if it is well worth their while. They likely may not consider your site a compelling reason to
upgrade though.

❑ Are you hardwired to a very specific platform/browser combination? Some sites only work on MSIE
running on Windows. This is very frustrating for Netscape users or people using any web browser
on other non-Windows platforms. Things change and you cannot rely on Microsoft Windows always
being the dominant platform. This could change within the hardware replacement cycle that large
corporations like to implement. That might be between 2 and 4 years. If your site only works on a
single platform, your traffic may go down as that platform loses market share.

❑ Do you just not care about it? If your page breaks on someone's browser, so what? Maybe it's not
important at all. However, don't expect that user to come back – ever. If the script fails to draw some
cute animation or change a color the effect is likely to be cosmetic anyway and may not even be
noticed. Maybe it fails fairly gracefully if you are lucky.

See also: Compatibility, Date object

Completion type (Definition)
An internal type used by the interpreter.

Availability: ECMAScript edition – 2

This is an internal type used by the interpreter for processing expression evaluation results. It
cannot be stored as an object property.

A completion happens when a statement is evaluated and completes normally. A completion can
involve a value and may still be a normal completion.

Abrupt completions are triggered by break, continue, and return statements, which are all
classified as program steps that may redirect the flow of control. This may cause sections of code to
be skipped or repeated. In the case of a return, it may prematurely exit a function.

In the set of ECMA-defined reserved words, there is evidence that new flow control changes may
be introduced and therefore other completion type values may be added later.

The set of completion type values are summarized in this table:

Type: Reason:

Normal completion -

Normal completion after evaluation -

Abrupt completion break

Abrupt completion after evaluation break

Abrupt completion continue

Abrupt completion after evaluation continue

Abrupt completion return

Abrupt completion after evaluation return

JavaScript Programmer's Reference

320

See also: break, continue, Identifier resolution, return, Scope chain, Type

Cross-references:
ECMA 262 edition 2 – section – 8.9

ECMA 262 edition 3 – section – 8.9

Compliance (Overview)
The degree to which an implementation adheres to the standard.

The formal definition of the core JavaScript language is embodied in the ECMA standard 262.

Until recently, where implementations conformed it was to the second edition of the standard,
which was published in August 1998.

In December 1999, the third edition was made available and new implementations or revisions to
existing products released in the early part of the year 2000 onwards complied with that new
version of the standard.

To comply with the standard, an implementation must provide and support all the types, values,
objects, properties, methods, and program syntax described in the standard.

See also: Behavior, Conformance, Definition, ECMA, ECMAScript, ECMAScript – edition 2,
ECMAScript – edition 3, Limits

Compositor() (Filter/visual)
As content is added to an object, it can be colored to indicate it is changed content.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter - Compositor()

Compound statement (Definition)
A block of code handled as if it were one statement.

A compound statement is a block of one or more statements gathered together and executed as if
they were a single statement. This is a somewhat wordy description of what a function declaration
provides. Other similar uses are the code that is iterated in a while or for loop and the code that
is conditionally executed in an if ... else construct.

C – Concatenate (+) (Operator/string)

321

Any variables created within a compound statement will be local to the enclosing function if the
compound statement exists inside a function's execution context, otherwise they will be globally
scoped. In JavaScript you cannot localize the scope of a variable to within an if(), while(), or
for() construct in the way that you can in C language.

See also: Definition, for(... in ...) ..., Function code,
if(...) ..., if(...) ... else ..., Scope chain,
Statement, var, while(...) ...

Concatenate (+) (Operator/string)
Join two strings end to end. See Addition for numeric values.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

See also: Add (+), Additive operator, Array.join(),
Array.toString(), Concatenate then assign (+=), String,
String, String literal, String object, String operator,
String.concat(), String.split(), Type conversion, String
concatenate (+)

Cross-references:
ECMA 262 edition 2 – section – 11.6.1

Wrox Instant JavaScript – page – 21

Concatenate then assign (+=)
(Operator/assignment)

Concatenate two string operands and assign the result to the first. See Addition for numeric values.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript Programmer's Reference

322

JavaScript syntax: - anOperand1 += anOperand2

anOperand1 A numeric value that can be assigned toArgument list:
anOperand2 Another numeric value

Concatenate the right operand to the left operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 + anOperand2;

Although this is classified as an assignment operator, it is really a compound of an assignment and
a concatenation operator.

It also works with numeric values and will add the second to the first.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Add then assign (+=), Assign value (=), Assignment expression,
Assignment operator, Associativity, LValue, Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

Conditional code block (Pre-processor)
A pseudo pre-processor mechanism for conditionally executing code in MSIE.

There is an implementation of a C language inspired pre-processor in the MSIE JScript interpreter.

The usual pre-processor directives for conditional code use are reproduced here except that in the
C language they are prefixed with a hash symbol (#) and in JScript the commercial at sign (@) is
used instead.

There are several directives and a set of pre-defined constants

❑ @cc_on Statement

❑ @if Statement

C – Conditional comment (HTML Tag)

323

❑ @set Statement

❑ @elif(...) ... Statement

❑ @else ... Statement

❑ @end Statement

❑ @<variable_name> Reference

❑ @_alpha Pre-defined constant

❑ @_jscript Pre-defined constant

❑ @_jscript_build Pre-defined constant

❑ @_jscript_version Pre-defined constant

❑ @_mac Pre-defined constant

❑ @_mc680x0 Pre-defined constant

❑ @_PowerPC Pre-defined constant

❑ @_win16 Pre-defined constant

❑ @_win32 Pre-defined constant

❑ @_x86 Pre-defined constant

Warnings:
❑ This is not supported prior to MSIE version 4.

See also: Pre-processing - @cc_on, Pre-processing - @elif(...) ...,
Pre-processing - @else ..., Pre-processing - @end, Pre-
processing - @if(...) ...

Conditional comment (HTML Tag)
A portability trick that only works in Netscape.

Availability: JavaScript – 1.2
Netscape – 4.0

Conditional comments use JavaScript entities to enclose a block of JavaScript and only execute it
conditionally on some value being true.

It is accomplished by embedding a JavaScript entity with a logical expression evaluation in it. If the
expression proves true then the <SCRIPT> HTML tag enclosed in the comment block is parsed,
otherwise it is ignored.

This is how it's done. A conditional comment is formed by adding an ampersand character to the
leading tag of a comment. Rather than use "<!--" the comment is introduced with "<!--&"
instead. The comment is closed in the normal way with a trailing "-->" string. Inside the comment
a <SCRIPT></SCRIPT> block is placed with some global code to be executed if called for.

JavaScript Programmer's Reference

324

Warnings:
❑ This only works in Netscape 4 or later, which limits its usefulness somewhat. MSIE supports an

alternative, but completely incompatible technique that only works inside the <SCRIPT> tag.

Example code:
<!--&{navigator.userAgent == "Mozilla/4.7 (Macintosh; I; PPC) "};
<SCRIPT>
document.write("Power Macintosh running Navigator 4.7");
</SCRIPT>
-->

See also: Adding JavaScript to HTML

Conditional expression (Definition)
Conditionally execute one code branch or another.

Availability: ECMAScript edition – 2

Conditional expressions test a logical expression and perform one of two possible alternative
code blocks.

The grammar for a conditional expression in ECMA-compliant JavaScript implementation is
slightly different from that you may have seen before in Java and C language. Java and C set
restrictions on the kind of expression you can put into the second code block, whereas JavaScript
does not. This is a subtle distinction and is intended to simplify the use of this expression and
avoid the use of a comma operator.

See also: Conditionally execute (?:), Expression

Cross-references:
ECMA 262 edition 2 – section – 11.12

ECMA 262 edition 3 – section – 11.12

Wrox Instant JavaScript – page – 18

Conditional operator (Definition)
Conditionally execute one code branch or another.

Availability: ECMAScript edition – 2

C – Conditionally execute (?:) (Operator/conditional)

325

Refer to:
Conditionally execute (?:)

Cross-references:
ECMA 262 edition 2 – section – 11.12

ECMA 262 edition 3 – section – 11.12

Conditionally execute (?:) (Operator/conditional)
Conditionally execute one code branch or another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Depends on arguments

JavaScript syntax: - aCondition ? someCode : moreCode

aCondition A relational or logical expression that yields
true or false

moreCode Code that is executed if aCondition is false

Argument list:

someCode Code that is executed if aCondition is true

The two associated code blocks are executed according to the value yielded by a Boolean test on the
first operand. If it is true, then the first code block is executed, otherwise the second is used.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

This is sometimes called a Ternary operator, because it takes three operands.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
mySwitch = false;
myResult = (mySwitch) ? "TRUE VALUE" : "FALSE VALUE" ;
document.write(myResult);
</SCRIPT>
</BODY>
</HTML>

JavaScript Programmer's Reference

326

See also: Associativity, Conditional expression, Flow control, if(...)
..., if(...) ... else ..., Operator Precedence,
Selection statement, Ternary operator

Cross-references:
ECMA 262 edition 2 – section – 11.12

ECMA 262 edition 3 – section – 11.12

config.jsc (Special file)
A JavaScript configuration file for Netscape.

Refer to:
Preferences

Cross-references:
Wrox Instant JavaScript – page – 59

confirm() (Method)
A dialog box to get confirmation from the user.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

- myResult = confirm(aString)
JavaScript syntax:

- myResult = myWindow.confirm(aString)

Argument list: aString Some text to explain what is to be confirmed

See also: Window.alert(), Window.confirm()

C – Conformance (Definition)

327

Conformance (Definition)
An interpreter may or may not conform to the ECMAScript specification.

Availability: ECMAScript edition – 2

Conforming implementations of ECMA 262 edition 2 must properly support Unicode version 2.0
and ISO/IEC 10646-1 with UCS-2 as the encoding form. There are various sub-clauses to that
encoding requirement and implementers should build their systems around the specifications laid
down therein. Edition 3 requires slightly different character coding support.

Conforming implementations may provide additional capabilities. In particular, functionality
flagged under the 'Future Reserved Word' category is encouraged by ECMA.

A strictly conforming implementation is one that only provides the features outlined in the
standard. Since ECMAScript only defines core functionality and absolutely none of the host
environment, a strictly conforming implementation of ECMAScript would be of limited use.

A conforming implementation provides the behavior outlined in the standard with some allowable
additional behavior to support the hosting environment.

See also: Compliance, ECMA, ECMAScript, ECMAScript – edition 2,
ECMAScript – edition 3

Cross-references:
ECMA 262 edition 2 – section – 2

ECMA 262 edition 3 – section – 2

Connection object (Object/NES)
An object that represents a connection from the server to the back-end database.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myConnection = myDbPool.connection(aName, aTimeout)

aName A connection nameArgument list:
aTimeout Timeout in seconds

Object properties: prototype

Object methods: beginTransaction(), commitTransaction(), connected(),
cursor(), execute(), majorErrorCode(), majorErrorMessage(),
minorErrorCode(), minorErrorMessage(), release(),
rollbackTransaction(), SQLTable(), storedProc(), toString()

This object is used to maintain the connection state details between the Netscape Enterprise Server
and the backend database it is retrieving data from.

A connection object is created by calling the connection() method of the DbPool object.

JavaScript Programmer's Reference

328

Example code:
<SERVER>
// An example of how to create a connection object
// Based on the one in Wrox Professional JavaScript
myDbPool = new DbPool("ODBC", "myDatabase", "", "", "");
myConnection = myDbPool.connection("ExampleConnection", 30);
myConnection.SQLTable("SELECT * FROM MY_TABLE");
</SERVER>

See also: DbPool.connection(), Netscape Enterprise Server,
unwatch(), watch()

Property JavaScript JScript NES Notes

prototype 1.2 + - 3.0 + -

Method JavaScript JScript NES Notes

beginTransaction() 1.2 + - 3.0 + -
commitTransaction() 1.2 + - 3.0 + -
connected() 1.2 + - 3.0 + -
cursor() 1.2 + - 3.0 + -
execute() 1.2 + - 3.0 + -
majorErrorCode() 1.2 + - 3.0 + -
majorErrorMessage() 1.2 + - 3.0 + -
minorErrorCode() 1.2 + - 3.0 + -
minorErrorMessage() 1.2 + - 3.0 + -
release() 1.2 + - 3.0 + -
rollbackTransaction() 1.2 + - 3.0 + -
SQLTable() 1.2 + - 3.0 + -
storedProc() 1.2 + - 3.0 + Warning
toString() 1.2 + - 3.0 + -

Connection.beginTransaction() (Method)
Commence a new transaction with the database.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

JavaScript syntax: NES myConnection.beginTransaction()

Call this method to signify the start of a new transaction with the database. This is a reference point
to which you can rollback the changes if necessary. Note that you cannot rollback after the commit
has occurred.

C – Connection.commitTransaction() (Method)

329

Connection.commitTransaction() (Method)
Commit the changes made to the database.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

JavaScript syntax: NES myConnection.commitTransaction()

Relational databases support the facility of a two phase commit. That is, any changes made to the
database require that a commit is requested before the session is disconnected. If the session is
disconnected without a commit, then the changes are unwound and discarded leaving the database
in the state it was in after the previous commit.

Sometimes people place a commit after every transaction. This is somewhat wasteful and can lead
to low performance. Placing a commit every 25 or so transactions is better.

You do need to be sure that you have made the changes you need to and that any referential
integrity is maintained and any constraints on the data are satisfied, otherwise the commit may fail.

Connection.connected() (Method)
A method that returns a flag indicating the state of the connection.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myConnection.connected()

If the session is currently connected to the database, this method will return a true value. If the
session is no longer connected it yields false.

Connection.cursor() (Method)
Create a cursor object on the connection with the SQL database.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Cursor object

NES myConnection.cursor(aQuery)
JavaScript syntax:

NES myConnection.cursor(aQuery, aFlag)

aQuery A valid SQL query for the databaseArgument list:
aFlag Indicates whether the cursor can be updated

JavaScript Programmer's Reference

330

These Cursor objects are used to run SQL queries against the database we are currently connected
to. It is probably a good idea to consult the reference documentation for your database to fully
understand how it handles cursors.

See also: Cursor object

Connection.execute() (Method)
Execute some SQL on the database.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.execute(someSQL)

Argument list: someSQL A string containing valid SQL for the database

The SQL to be executed on the database is passed as an argument to this method.

Connection.majorErrorCode() (Method)
Provide the code for an error raised by the database server or the ODBC interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.majorErrorCode()

For a status code value of 5 when using the Oracle database, this yields a return code from the
Oracle Call-level interface.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the SQL server message number.

For a status code value of 7 when using the Informix database, this yields the Informix error code.

For a status code value of 7 when using the Sybase database, this yields the DB-Library error number.

See also: database.majorErrorCode(),
DbPool.majorErrorCode(), Error handling, Status code

C – Connection.majorErrorMessage() (Method)

331

Connection.majorErrorMessage() (Method)
Provide the descriptive text message for an error raised by the database server or by the ODBC
interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.majorErrorMessage()

For a status code value of 5 when using the Oracle database, this yields a text string describing the
server error.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields a text string from SQL server.

For a status code value of 7 when using the Informix database, this yields the text string from the
vendor error library.

For a status code value of 7 when using the Sybase database, this yields a text string from the
DB-Library.

See also: database.majorErrorMessage(),
DbPool.majorErrorMessage(), Error handling, Status code

Connection.minorErrorCode() (Method)
Returns a supplementary error code for an error raised by the database server or the ODBC
interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.minorErrorCode()

For a status code value of 5 when using the Oracle database, this yields an operating system error
code from the Oracle Call-level interface.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the severity level from SQL server.

For a status code value of 7 when using the Informix database, this yields the ISAM error code.

For a status code value of 7 when using the Sybase database, this yields the severity level of the
error from the DB-Library.

See also: database.minorErrorCode(),
DbPool.minorErrorCode(), Error handling, Status code

JavaScript Programmer's Reference

332

Connection.minorErrorMessage() (Method)
Returns a supplementary error message text for an error raised by the database server or the ODBC
interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.minorErrorMessage()

For a status code value of 5 when using the Oracle database, this yields the Oracle server name.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the SQL server name.

For a status code value of 7 when using the Informix database, this yields a text string describing
the ISAM error.

For a status code value of 7 when using the Sybase database, this yields the text of the operating
system error from the DB-Library.

See also: database.minorErrorMessage(),
DbPool.minorErrorMessage(), Error handling, Status code

Connection.prototype (Property)
The prototype for the connection object that can be used to extend the interface for all
connection objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: Connection object

NES Connection.prototype
JavaScript syntax:

NES myConnection.constructor.prototype

Refer to:
prototype property

Connection.release() (Method)
Releases this connection back into the pool for reuse.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myConnection.release()

C – Connection.rollbackTransaction() (Method)

333

There are a limited number of connections available for accessing the database. This is intentional.
It prevents the database from being swamped by connections.

The limit may be large or small depending on the scale of the database server and the software
it is using.

Requesting a connection from the DbPool object consumes one of the available connections. You
must ensure that you release them back to the pool when you are finished, otherwise your server
will soon use them all up and will be unable to form new connections to the database.

Connection.rollbackTransaction() (Method)
A means of undoing transactions that have not yet been committed.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myConnection.rollbackTransaction()

Until you commit a transaction on the database, you can rollback to the previous commit state.
Once you have committed a transaction, this opportunity to undo is lost. To undo after that, you
must make changes under your own script's control. That means that if you anticipate that
possibility, you will need to remember the previous values. On the whole, it's easier to let the
database do this and to commit only when you are sure the transaction is complete and correct.

Connection.SQLTable() (Method)
Create an HTML table as a result of a SQL query on the database.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.SQLTable(someSQL)

Argument list: someSQL A string containing valid SQL for the database

The argument to this method is a database query that is expected to yield some rows and columns.
These are then reformatted with the requisite HTML tags to form a table.

The table is likely to be fairly generic in appearance so you may need to modify the HTML that is
returned or perhaps you could use style sheets to control its appearance.

Connection.storedProc() (Method)
This method creates a Stproc object and then runs the stored procedure on the database server.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript Programmer's Reference

334

NES myConnection.storedProc(aProcName)
JavaScript syntax:

NES myConnection.storedProc(aProcName,
aProcParm)

aProcName The name of a stored procedure to callArgument list:
aProcParm A parameter or parameters to pass to the stored

procedure

Stored procedures are pre-programmed code that lives inside the database. They generally encompass
searches that are more complex than the simple select … from … where … SQL statements.

Stored procedures in some database products cannot yield a record structure the same as a select
query would. This is because they are not associated with any particular table and so they return
the results as a resultset rather than a table record. You may need to do additional work to turn the
resultset into the objects you need.

Warnings:
❑ Every middle-ware application server supports a completely different way of running stored

procedures. At least it seems like that sometimes when you are using several different products.
Fundamentally they all do the same thing but databases provide different mechanical
implementations and so there are many different ways in which to develop code to exploit them.

See also: Stproc object

Connection.toString() (Method)
Returns a string containing a representation of the Connection object.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myConnection.toString()

The value of the object is converted to a string value that represents its value.

const (Reserved word)
Reserved for future language enhancements.

This keyword suggests that future standardization may support immutable constant values. This
may allow stronger type casting of formal parameters in function prototypes.

See also: Function prototype, Reserved word, Type, volatile

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

C – Constant (Definition)

335

Constant (Definition)
A literal description of a fixed value.

A constant is a lexical element that represents a set numerical or string value.

Numeric values can be integer or floating-point. String values may define only a single character
but are nevertheless still considered to be a string.

The Number and Math objects provide constant values as properties of the object class. These are
static constants. Other static constants are provided by the implementation. For example the Event
object supplies a set of masks in some implementations. These masks can be used to determine
keyboard states. The DOM standard defines others as part of the event model.

See also: Character constant, Constant expression, Escape sequence (\), Floating constant,
Integer constant, Lexical element, Literal, Math object, Number object, Primary
expression, Variable

Cross-references:
Wrox Instant JavaScript – page – 13

Constant expression (Definition)
A constant expression is a combination of constants and an operator.

A constant expression can always be degenerated to a simpler constant form.

For example 100 + 101 is a constant expression, but could be replaced by the value 202.

A constant expression involving strings is "abcdef" + "ABCDEF". This yields the result
"abcdefABCDEF".

Warnings:
❑ In JavaScript you should always try to avoid the use of string concatenation unless you really have to

use it. It is very useful. However, in Netscape and MSIE, over-using a string concatenation in a loop
can lead to significant memory leaks. It is quite easy to leak several megabytes of memory in a few
minutes simply by concatenating strings and passing them to a document.write(). The garbage
does eventually get collected, but not until the page is refreshed. This means that a page that
implements a ticker for instance can leak horribly until the page is refreshed. There are techniques
you can employ to minimize this effect and you could trigger a garbage collection by reloading the
page periodically under script control.

See also: Arithmetic constant, Character constant, Constant, Date constant, Escape
sequence (\), Expression, Expression statement, Floating constant, Floating-point
constant, Initialization, Integer constant, JavaScript language, Logical constant,
Object constant

JavaScript Programmer's Reference

336

Constraint (Definition)
A restriction placed on a script to be executed.

A constraint determines a restriction that the syntax and semantics of the language must set upon
the interpretation of the elements of the language. Violating these constraints should generate an
interpretation error in a compliant implementation.

See also: Definition, Diagnostic message, Error handling

Construct (Property/internal)
An object constructor call.

Availability: ECMAScript edition – 2

The internal constructor is invoked via the new operator.

This is not implemented by all objects. Those that do support it are called constructor objects. In
other languages these might be called factory objects.

Warnings:
❑ The global object does not have a Construct property and you cannot make copies of it with the

new operator.

See also: Constructor function, constructor property, Internal Method

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15

ECMA 262 edition 3 – section – 15.1.4

Constructor function (Definition)
A function that can create new objects.

Availability: ECMAScript edition – 2

A constructor is analogous to a factory class in a truly object-oriented system. It instantiates new
objects of its class by copying a built-in prototype object.

C – Constructor function (Definition)

337

A constructor function is a method that creates and initializes new objects or values. It is a way of
calling the constructor object as a function rather than with the new operator.

These constructor functions are available from the global object; the host implementation may
add others for you to use:

❑ Object()

❑ Function()

❑ Array()

❑ String()

❑ Boolean()

❑ Number()

❑ Date()

Calling the constructor as a function is a way of carrying out type conversion.

You can also create your own constructor functions. You name them with the name of the class you
want to create. Depending on how you implement them, they may or may not work as type
converting functions.

When we use the new operator, it understands that the function is a constructor and as it constructs
the new object, it associates the constructor function with it so you can locate it again, via the
prototype and constructor properties. Because this function makes use of the 'this' keyword,
it could be a method belonging to another object. However, it doesn't have to belong to an object to
be used as a constructor in the first place. The object creation process will properly associate it in
due course when it needs to.

You don't need to pass parameters to add properties to objects as they are created.

Constructors are generally a better way of making self documenting objects than simply
instantiating more copies of the Object object. In addition, there is more opportunity to reuse and
share code between multiple instances. It's probably not a good thing to add properties and
methods to the base Object class as it means they would get inherited just about everywhere,
because ultimately all prototype inheritance chains descend from the topmost Object.

With a constructor, you can simulate arrays by making them from objects and property
components. This may be useful if you want to run an array-based script in a very old JavaScript
implementation although these days that likelihood of that is diminishing rapidly.

The Netscape browser creates a constructor for virtually every object it instantiates. This can be an aid to
debugging and making more flexible scripts. You can inspect an object by requesting its constructor
property. This will normally convert to a string that contains the function definition and to determine
the class it may be more useful to request the constructor.name property instead.

This technique is not so useful in MSIE where constructors are only made available for objects that
can genuinely be instantiated usefully by a script.

JavaScript Programmer's Reference

338

Example code:
// This constructor function defines a class called Tree:
function Tree(aName, aNode1, aNode2)
{
 this.name = aName;
 this.leftbranch = aNode1;
 this.rightbranch = aNode2;
}

// We can now implement tree walking algorithms and
// associate them with the prototype for the tree object:
function tree_walk()
{
 if((this.leftbranch == null) &&
 (this.rightbranch == null))
 {
 document.write(this.name);
 document.write("
");
 }
 if(this.leftbranch != null)
 {
 document.write(this.name);
 document.write(" -L- ");
 this.leftbranch.walk();
 }
 if(this.rightbranch != null)
 {
 document.write(this.name);
 document.write(" -R- ");
 this.rightbranch.walk();
 }
}

// Now associate the tree walk with the prototype.
Tree.prototype.walk = tree_walk;
// Here we create a new tree object:
// In this case, we have defined null values to signify we have reached
// the end of the branching structure so we must be at a leaf node.
myTree1 = new Tree("AAA", null, null);
// Let's create another and join both to a third:
myTree2 = new Tree("BBB", null, null);
myTree3 = new Tree("CCC", myTree1, myTree2);
// Now we walk the tree
myTree3.walk();
// We could have created an array in the tree class and
// stored more than two branches. B-Trees, Quad trees,
// and Oct trees are all useful modelling tools for
// building simulations.

See also: Array simulation, Construct, constructor property, prototype property

C – constructor property (Definition)

339

Cross-references:
ECMA 262 edition 2 – section – 4.3.4

ECMA 262 edition 2 – section – 15.1.3

ECMA 262 edition 3 – section – 4.3.4

Wrox Instant JavaScript – page – 31

constructor property (Definition)
A reference to a constructor function.

Availability: ECMAScript edition – 2

A constructor property is a function object that creates and initializes new objects. Each
constructor has an associated prototype object that provides inheritance and shared properties.

There are constructor properties belonging to the Global object for all the Built-in (Native)
object prototypes. These constructors are available as part of the core language from the global
object. They are defined in the ECMA standard at editions 2 and 3. The host implementation may
add others for you to use:

❑ Object()

❑ Function()

❑ Array()

❑ String()

❑ Boolean()

❑ Number()

❑ Date()

To create new objects, a new expression is formed with the constructor as its operand. The result is
to create a new object by means of the constructor.

For any object the constructor is a property of the prototype. The prototype is a property of the
object and the constructor points back at the object. In that sense the prototype and
constructor properties each point at the other's parent object.

This needs to hold true for a constructor to be correctly set up:

myObject.prototype.constructor

is the same as:

myObject

They should test true with the === operator since they are supposed to be identical objects.

Warnings:
❑ Both Netscape and MSIE support a constructor property for the Math object. You won't find

very many circumstances where you will need to create a new instance of the Math object. Note that
the constructor is not a Math object but an Object object, therefore a new Math() statement
will produce a new Object object and not a new Math object.

JavaScript Programmer's Reference

340

❑ In both cases, attempting to execute a new Math() statement will cause a run-time error. Arguably,
this is a bug because objects that should not be instantiated or cloned ought not to support a
constructor so that you can sensibly write general-purpose routines that can test for the existence of a
constructor property and can then exit gracefully if it is not supported.

❑ The constructor property is supported so inconsistently across the browsers that this kind of test
before use approach is almost impossible to deploy.

See also: Construct, Global object, prototype property

Cross-references:
ECMA 262 edition 2 – section – 4.3.4

ECMA 262 edition 2 – section – 15.1.3

ECMA 262 edition 3 – section – 4.3.4

constructor.name (Definition)
The name of the constructor that created an object.

You can determine the class of an object by requesting the name property from its constructor.
Since the constructor is a function, you are actually asking a function object for its name.
Functions know all about their names. If you get the name of a function that's been used as a
constructor, you have effectively gotten its class. Its type is still an object, but its class lets you tell
one kind of object from another.

See also: Determining the object type

Content Model (Definition)
A new model in the DOM level 3 specification describes how documents can be exchanged
between implementations.

The DOM level 3 content model is embodied in the following object classes:

❑ CMObject

❑ CMExternalObject

❑ CMNode

❑ CMNodeList

❑ NamedCMNodeMap

❑ CMDataType

❑ CMType

❑ ElementDeclaration

❑ ElementCMModel

❑ AttributeDeclaration

❑ EntityDeclaration

C – contextual() (Method)

341

❑ DocumentCM

❑ DomImplementationCM

❑ ErrorHandler

❑ NodeCM

❑ TextCM

contextual() (Method)
A JSS style control method.

Availability: JavaScript – 3.0
Netscape – 4.0
Deprecated

JavaScript syntax: N contextual(tags.anItem, ...).aProperty = aValue

anItem A tag name such as P or B or H1
aProperty A style property of the returned tags object

Argument list:

aValue A value to be stored in the property of the nominated tags

This function can take a variable number of arguments, each one indicating a tag property within
the tag's object. It is followed by a dot-delimited property value and basically provides a way to
modify the same property across a large number of objects in a single call.

This could be a quite useful function for a variety of other non-style-related cases. You may want to
experiment and see whether, in your browser, the contextual() method is useful. However, it
may only be present in Netscape browsers, thus limiting its usefulness for deployment.

When used in a JSS context, this is more or less equivalent to H1 P { color: red }.

Warnings:
❑ This functionality is removed from Netscape 6.0.

Example code:
// Set the color property for several objects at once.
contextual(tags.P, tags.H1)color = "red";

See also: JavaScript Style Sheets

Cross-references:
Wrox Instant JavaScript – page – 50

JavaScript Programmer's Reference

342

continue (Statement)
Force the next iteration of a loop.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.0
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- continue aLabelName;
JavaScript syntax:

- continue;

Argument list: aLabelName The name of a label associated with some code

The continue keyword is a jump statement. It is used in an iterator loop to proceed to the next
cycle without executing the remaining lines in the statement block.

A continue statement can only legally exist inside a while or for loop in an ECMA-compliant
implementation. Implementations that provide additional iterator types may also honor the same
behavior for the continue statement.

The continue statement would normally be executed conditionally, otherwise it would cause the
remaining lines to be redundant since no execution flow would ever reach them. Compilers
generally warn you about this, but JavaScript would likely simply ignore it.

The continue statement is obeyed by the smallest enclosing iterator loop.

At version 1.2 of JavaScript, the continue statement was enhanced to support a label as a
continuing destination. When the continue is processed, it will jump to the start of the statement
that has been labeled. If an iterator is labeled, then the continue is associated with that iterator.
This mechanism can only be used in a while, for or for ... in loop.

A labeled continue behaves differently according to the iterator it has been used in.

Warnings:
❑ In Netscape 4, there is a bug with labeled continue statements and do ... while loops that causes

the continue to vector to the top of the loop without testing the condition. This can set up an endless
loop. You could work round this by creating a while loop and modifying the test condition.

❑ When the continue statement is used, its behavior inside a while loop suggests that a while loop is
not exactly similar to a for loop. In a while loop, it simply runs the test condition again before
deciding to loop or not. In a for loop, the incrementor gets executed again and then the test condition.
You cannot perfectly simulate a for loop with a while loop if a continue statement is involved.

See also: break, Completion type, do ... while(...), for(...) ...,
for(... in ...) ..., Iteration statement, Jump statement, Label,
return, Scope chain, Statement, while(...) ...

C – Control character (Definition)

343

Cross-references:
ECMA 262 edition 2 – section – 10.1.4

ECMA 262 edition 2 – section – 12.7

ECMA 262 edition 3 – section – 10.1.4

ECMA 262 edition 3 – section – 12.7

Wrox Instant JavaScript – page – 25

Control character (Definition)
A non-printing character entity.

A control character is any character code point in the locale-specific character set that does not
print a visible glyph when it is output.

See also: ASCII, Character handling, isCtrl(), isGraph(), isPrint(),
Printing character, Unicode

Conversion (Definition)
Changing the type of a value, object, function or constant.

Values are continuously being changed from one type of value to another inside a JavaScript interpreter.
The very nature of its weak data typing and the automatic promotion and demotion of values in
expressions causes implicit changes in the type of values at almost every step of a script's execution.

The conversion behavior of each type is discussed in the coverage of each of the Native primitive
types that are built into the interpreter.

Refer to the Cast operator description as well for further information.

There are also some internal conversion operators that provide the basic underlying conversion
facilities. These are described in the following topics:

❑ ToBoolean

❑ ToInt32

❑ ToInteger

❑ ToNumber

❑ ToObject

❑ ToPrimitive

❑ ToString

❑ toString()

❑ ToUint16

❑ ToUint32

JavaScript Programmer's Reference

344

These are given individual topics on account of their description in the ECMA standard. There are
however four basic and fundamental conversions. These are:

❑ Boolean

❑ Number

❑ String

❑ Object

The internal function topics cover what happens inside an interpreter. In this topic and the several
following, we are concerned with the script visible effects of conversion.

There are some circumstances where the conversion of an object to a number or a string can be
ambiguous. The cases of concatenate or add and the relative expression operators are such an
example. The Date objects will prefer to be converted to a string rather than a number if at all
possible and consistent with the context.

Many objects have toString() methods. Not as many will support the valueOf() method. The
valueOf() method is so named because it is not implicitly a toNumber() method. It may return a
string because that is the most reasonable primitive. It is really a toPrimitive() method.

See also: Argument, Cast operator, Integer constant, Integer promotion,
LValue, ToBoolean, ToInt32, ToInteger, ToNumber,
ToObject, ToPrimitive, ToString, toString(), ToUint16,
ToUint32

Conversion to a Boolean (Definition)
Converting values to a Boolean representation.

There are three conversions to study. Obviously Boolean values will remain as they are.

This table summarizes the effects of converting values to Boolean:

Value: Boolean equivalent:

null false

Undefined value false

Non empty string true

Empty string false

0 false

NaN false

Infinity true

Negative infinity true

Any other non zero number true

Object true

Array No direct boolean equivalent
Function true

C – Conversion to a number (Definition)

345

There is no proper Boolean equivalent for an array. The ECMA standard does not address this
either. The standard does suggest that any non-null object reference convert to true and since an
array is an object, it should rightly become a true value.

Warnings:
❑ Some non-portable behavior has been implemented in the MSIE and Netscape browsers. In some

cases, the array becomes true in all cases. In others, a non-empty array is true, while an empty
array is false. This seems to be based on the length value.

❑ You should test your target browsers to see what behavior persists if you intend to use this
capability and not rely on any implicit array conversion facilities. It is probably safest to implement
your own conversion method.

❑ The array to Boolean conversion is so inconsistently supported as to render it unusable in any cross-
browser implementation.

❑ A more insidious side effect is exhibited by the fact that all objects convert to the Boolean true
value, even a Boolean object whose value is false. This is demonstrated in the example. You
really need to be careful if you are storing Boolean values in objects rather than simple variables,
especially if they are driving some conditional code execution.

Example code:
<!-- Is this a bug or a feature??? -->
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myTrueObject = new Boolean(false);
if(myTrueObject)
{
 alert("True");
}
else
{
 alert("False");
}
</SCRIPT>
</BODY>
</HTML>

Conversion to a number (Definition)
Converting values to a numeric representation.

There are three conversions to study. Obviously numeric values will remain as they are.
This table summarizes the effects of converting values to numbers:

Value: Numeric equivalent:

null 0

Undefined value NaN

Table continued on following page

JavaScript Programmer's Reference

346

Value: Numeric equivalent:

Empty string 0

Numeric string Numeric value of string

Non-numeric string NaN

Boolean true 1

Boolean false 0

Object Result of Object.valueOf().

Object lacking a valueOf() method. Result of conversion of result from
Object.toString() method.

Object without toString() or valueOf() methods. An error

Array No direct numeric equivalent

Function NaN

Converting objects to numbers will first attempt to use the valueOf() method and then the
toString() method, converting the resulting string to a number after that.

There is no proper numeric equivalent for an array. The ECMA standard does not address this either.

Warnings:
❑ Some non-portable behavior has been implemented in the MSIE and Netscape browsers. In some

cases, the array becomes NaN. In others, the first element is converted to a number. For some
browsers this may only happen if the array is a single element long and the array is otherwise
converted to NaN. Some browsers will take the length of the array and use that value.

❑ You should test your target browsers to see what behavior persists if you intend to use this
capability and not rely on any implicit array conversion facilities. It is probably safest to implement
your own conversion method.

❑ The array to number conversion is so inconsistently supported as to render it unusable in any cross
browser implementation.

Conversion to a string (Definition)
Converting values to a string representation.

There are three conversions to study. Obviously string values will remain as they are.

This table summarizes the effects of converting values to strings:

Value: Resulting string:

Zero "0"

null "null"

Undefined value "undefined"

NaN "NaN"

Infinity "Infinity"

Negative infinity "-Infinity"

Table continued on following page

C – Conversion to an object (Definition)

347

Value: Resulting string:

Numeric value That numeric value as a sequence of
characters.

Boolean true "true"

Boolean false "false"

Object Result of Object.toString().

Object lacking a toString() method. Result of conversion of result from
Object.valueOf() method.

Object without toString() or valueOf() methods. An error

Array Comma elements joined by a comma.

Function Depends on implementation.

Converting objects to strings will first attempt to use the toString() method and then the
valueOf() method, converting the resulting number to a string after that.

Conversion to an object (Definition)
Converting values to a object-structured representation.

There are three conversions to study. Obviously Object values will remain as they are.

This table summarizes the effects of converting values to objects:

Value: Object representation:

null An error

Undefined value An error

Empty string String object

Non-empty string String object
0 Number object
NaN Number object

Infinity Number object

Negative infinity Number object

Any other non-zero number Number object

Boolean true Boolean object

Boolean false Boolean object

Cookie (Advice)
A means of maintaining state in the client machine by storing information in a cookie that is
associated with the document.

A cookie is a small fragment of textual data that is associated with the current page. It is not modeled
particularly well for access by JavaScript and you will need to use some scripting to disassemble and
reassemble the name-value pairs that are concatenated together to make the cookie.

JavaScript Programmer's Reference

348

The cookie property for a document returns a string containing ALL the cookies that apply to the
document. You will need to split them into individual cookies by separating them at semicolon
boundaries. From there you will need to obtain for each cookie a name=value construct that you
can further dismantle and process.

Note that you will not get any of the special attributes of the cookie since they are write only. The
only thing you can get back is its value property.

When you read the cookie property from a document, you get a list of cookie values, one for each
cookie. When you assign to the cookie property of a document, you define only a single cookie
whose name is the first name-value pair in the string. Other attributes are appended by
concatenation and delimited from one another by a semicolon. The other attributes are optional
and all that is required is the new cookie name and value pair.

You must make sure the cookie value you assign is properly URL escaped so that it can be sent
back to the server when necessary.

Cookie values should be defined as a series of name=value pairs. As well as the fundamental
cookie value, you can define the following name=value pairs:

❑ expires

❑ path

❑ domain

❑ secure

Cookies can be redefined whenever you want. To delete a cookie, set it to some value with an
expiry date defined to be prior to the current date and time.

Cookies are useful but you should not rely on them 100%. It is possible that the user may have
disabled cookie support in their browser. You should also avoid storing sensitive information in a
cookie and it is intended that the value you store there is small. Storing huge amounts of data in a
cookie is somewhat bad etiquette.

The example code demonstrates how two functions (setCookie and getCookie) can be created to
simplify the creation and parsing of cookies. The comments in the example explain how they work.

Warnings:
❑ There are limitations to the size and quantity of cookies that can be used. Typically these days

browsers will exceed these limitations, but you should always code for the minimum specification.

❑ The specification for cookies says that browsers need support no more than 300 different cookies. Of
those, no more than 20 should be associated with any particular server. For each cookie, the data
stored is not expected to exceed 4 kilobytes.

❑ You should therefore try to store as much data in a single cookie as you can for a given web site and
not create different cookies for each page. Indeed for a properly designed data-driven site, it is hard
to see how you would need more than one single cooking containing a short but unique user
identifier. As long as you can look up that user's record quickly when a new session commences,
all session and user state information can then be maintained on the server unless you want to
traverse through some static pages. Even then state can be carried by means of cookies and special
web-server code to intercept the request-response loop.

C – Cookie (Advice)

349

Example code:
// Example provided by Martin Honnen
// A function that sets cookie values properly
// The cookieName and cookieValue arguments are mandatory
// but all other arguments are optional.
// The expires argument is a Date object.
// The path defines the part of the document tree on the server
// that the cookie is valid for.
// The domain argument allows multiple server hosts to be used.
// The secure value is boolean and only applicable for use
// with HTTPS: connections.
function setCookie(cookieName, cookieValue, expires, path, domain, secure)
{
 document.cookie = escape(cookieName) + '=' + escape(cookieValue)
 + (expires ? '; EXPIRES=' + expires.toGMTString() : '')
 + (path ? '; PATH=' + path : '')
 + (domain ? '; DOMAIN=' + domain : '')
 + (secure ? '; SECURE' : '');
}

// A complementary function to unwrap a cookie.
function getCookie(cookieName)
{
 var cookieValue = null;
 var posName = document.cookie.indexOf(escape(cookieName) + '=');

 if (posName != -1)
 {
 var posValue = posName + (escape(cookieName) + '=').length;
 var endPos = document.cookie.indexOf(';', posValue);
 if (endPos != -1)
 {
 cookieValue = unescape(document.cookie.substring(posValue, endPos));
 }
 else
 {
 cookieValue = unescape(document.cookie.substring(posValue));
 }
 }
 return cookieValue;
}

// Tryout 1: Set a session cookie which expires after
// the browser is closed
setCookie ('TRYOUT', '1');

// Tryout 2: Set a cookie which expires after 24 hours
var now = new Date();
var tomorrow = new Date(now.getTime() + 1000 * 60 * 60 * 24);
setCookie ('TRYOUT', '2', tomorrow);

// Tryout 3: Set a cookie with a path
setCookie ('TRYOUT', '3', null, '/');

// Tryout 4: Delete a cookie by setting its expiry date to
// be sometime in the past
var now = new Date();
var yesterday = new Date(now.getTime() - 1000 * 60 * 60 * 24);
setCookie('TRYOUT', '4', yesterday);

JavaScript Programmer's Reference

350

See also: Document.cookie

Web-references:
http://www.netscape.com/newsref/std/cookie_spec.html

Cookie domain (Attribute)
An attribute that defines the domain scope of a cookie.

For security reasons, cookies can only be sent back to the web-server the creating document
originated from. However, in large web-server farms, the web pages may be distributed for load
balancing reasons. Because of this, the domain attribute provides a way to widen the scope to any
machine within a domain.

Cookie expires (Attribute)
An attribute that defines the expiry date and time of a cookie.

The lifetime of a cookie is defined with this attribute. From JavaScript, you can set this attribute but
you cannot read it since there is no real object model for the cookies.

To define this attribute, you add a name-value pair to the cookie definition string whose name is
"expires" and whose value is defined according to the Date.toGMTString() method.

A cookie only survives for the duration of the page in the browser unless you define an expiry date
for it. If the expiry date is in the future when the browser exits, they will be remembered in a
persistent cache inside the browser. If not, the cookie is discarded and unavailable next time you
run the browser.

See also: Date.toGMTString()

Cookie path (Attribute)
An attribute that defines the path scope of a cookie.

The scope of a cookie can be limited to a certain part of the document tree within the web server.
By defining a node within the document hierarchy, the cookie will only be sent to the web server
when requesting a page that exists at that path or lower down in any sub-directories within it.

Unless you specify this value, the cookie will by default be available to any pages in the same
directory as the page that created it or in pages lower down in sub-directories. These might be
referred to as sibling or child pages. The path value is usually modified to be more inclusive than
the default settings.

Cookie secure (Attribute)
A Boolean attribute that defines whether a cookie is secure or not.

The secure attribute is a Boolean value that defines whether the secure protocol is required. If it is
activated, then the cookie is only sent to a server when the secure https: protocol is used. To
activate this facility simply add the secure attribute to the cookie.

http://www.netscape.com/newsref/std/cookie_spec.html

C – Cookie value (Attribute)

351

Cookie value (Attribute)
An attribute containing the value of a cookie.

Refer to:
Cookie

Copying objects (Advice)
Object references are normally duplicated in preference to the objects themselves.

When you assign the result of a new operation to a variable, you are actually storing a reference to
the object. Copying the contents of one variable to another by assignment copies the reference and
not the object.

Creating a new object and copying all the top-level properties across from the original is a shallow
copy, so called because it only goes one layer into the hierarchy.

If you are able to create a new instance of the object and then recursively copy all the properties
across from one to the other, you will have made a deep copy of the object. To do this, you need to
traverse all of the branches of the object references, instantiating new copies of any objects you find.
This may or may not be possible since some properties may be hidden from view, may be read-only
or may not be enumerable and therefore impossible to copy without knowing what they are.

In practice though, any properties you put into the original object from a script are likely to be
copyable and you are likely to know enough about your objects to be able to accomplish this at
least to the extent that you need.

Comparing two objects may yield a different result depending on whether you are comparing
shallow copies or deep copies. Comparing two shallow copies is actually the act of comparing
references. If they both refer to the same object, then they must be identical and equal. Comparing
deep copies requires a comparison on a property-by-property basis. This may prove that the objects
are equal but not identical. A simple compare of the references would prove false.

To compare deep copies, you should implement an object method called isEqualTo() and pass
the object that you want to compare. The receiving object can then enumerate its properties and test
the passed object for the existence and content of those properties.

You may need to make your deep copy algorithm recursive if you are copying objects that contain
references to objects. For example, Arrays of Arrays.

Writing a generalized algorithm is quite difficult if you want it to work across browsers. This is because
you need to be able to determine the class of any objects you encounter so that you can perform the right
kind of copying on them. This might be easier if you limit the kind of objects you use.

Example code:
// Copying only an object reference
myObject1 = new Array("AAA", "BBB", "CCC");
myObject2 = myObject1;

// Shallow copying (one layer deep)
myObject1 = new Array("AAA", "BBB", "CCC");

JavaScript Programmer's Reference

352

myObject2 = new Array(myObject1.length);
for(ii=0; ii < myObject1.length; ii++)
{
 myObject2[ii] = myObject1[ii];
}

// Deep copying (knowledge of the internal structure required)
myItem1 = new Array("A", "B", "C");
myItem2 = new Array("1", "2", "3", myItem1);
myObject1 = new Array("X", "Y", "Z", myItem2);
myObject2 = new Array();
myObject2[0] = myObject1[0];
myObject2[1] = myObject1[1];
myObject2[2] = myObject1[2];
myObject2[3] = new Array();
myObject2[3][0] = myObject1[3][0];
myObject2[3][1] = myObject1[3][1];
myObject2[3][2] = myObject1[3][2];
myObject2[3][3] = new Array();
myObject2[3][3][0] = myObject1[3][3][0];
myObject2[3][3][1] = myObject1[3][3][1];
myObject2[3][3][2] = myObject1[3][3][2];

See also: Multi-dimensional arrays

Core JavaScript (Definition)
That part of the language that is deemed to be fundamental.

The core part of the language includes the operators and basic language elements. This covers
constructs such as for loops, while loops, if/else conditions and switch/case trees.

The Global object is included in the core language, but gets extended with additional functionality
when the interpreter is hosted.

The prototype-inheritance mechanisms, scope chain, and function call support is part of the core
language too, as are the constructor frameworks.

These are built around the generic set of objects that represent the primitive data types such as
Number, Boolean, String, and Array.

The core language also includes the Math and Date object support.

Core Object (Definition)
Objects that are built into the base language.

Core objects describe the fundamental primitive data types such as Number, Boolean, String,
and Array. The Object object, which is considered to be the super-class of all objects, is a
fundamental core object.

Math and Date are core objects too and provide support for mathematical capabilities and date
handling respectively.

C – Cross-browser compatibility (Definition)

353

Cross-browser compatibility (Definition)
Different browsers have different features and capabilities.

The differences between browsers are most acute when considering Netscape vs. MSIE. The Opera
and iCab browsers are keen to become ECMAScript-compliant. Recent versions of MSIE also make
this claim and it is likely that imminent versions of Netscape will be at least as ECMAScript-
compliant as the other browsers. This bodes well for the future in that we can code for a base level
of functionality and be able to deploy a useful sub-set of the JavaScript capabilities of each browser.

Inevitably, they will continue to present features that are browser-specific. Some of those will be
accommodated in the next revision of the ECMA standard. But some won't.

You may find that your script needs to do something more esoteric than a simple form validation
or mouse rollover. In particular doing any dynamic HTML and changing <DIV>, , or
<LAYER> content. For these kinds of things, you may need to use browser-detection scripts and
then provide alternative versions of some of your functions so that you select one that is
appropriate for the browser the script happens to find itself running in.

See also: Compatibility, Defensive coding

Cross-platform compatibility (Definition)
Portability is a major issue for web developers.

When you write JavaScript that exploits capabilities of either Netscape or MSIE, you may already
be taking account of the differences between the two browsers.

However, those browsers, even at the same versions, may not always behave identically on
different platforms.

Netscape is available on more platforms than MSIE. Opera and iCab are likely to be available as widely
as Netscape, but both are stressing their adherence to the standards and both make bold claims to be
compliant. That suggests that their behavior across computing platforms will be identical.

In actual fact, there are minor differences even on the best crafted browser projects. MSIE and
Netscape fall some way behind the lesser known browsers in this respect.

If you are deploying a major web site that contains JavaScript, you really must consider setting up a
test suite to check the cross-platform capabilities.

It is possible to install a variety of browsers onto a single Macintosh system. It is a little more
difficult with Windows installations, which generally do not cope well with more than one version
of any particular product being installed. You experience difficulties installing older versions of
MSIE onto recent versions of Windows that already have an embedded web browser.

You could, if you are serious about cross platform testing, easily end up with a test suite of 10 or
more machines. That way you would likely be able to cover Linux as well.

Although you may install many browser applications on a single Macintosh, you may want to add
more hard disks and install multiple operating system versions so you can multiple-boot the machine.

JavaScript Programmer's Reference

354

This is because some cross-platform differences are due to underlying operating system level code,
which may be revised with a new release of the OS and which may manifest itself as an artifact on
the web page when it is displayed.

The navigator property tells you a lot about the browser and platform. However, MSIE supports
other platform and browser detection methods that are not available on other browsers.

See also: Compatibility, Navigator object

crypto (Property)
A reference to a Crypto object for security encoding.

Availability: JavaScript – 1.2
Netscape – 4.04

Property/method value type: Crypto object

N crypto
JavaScript syntax:

N myWindow.crypto

Property attributes:
ReadOnly.

Refer to:
Window.crypto

Crypto object (Object/Navigator)
An object to manage cryptographic resources.

Availability: JavaScript – 1.2
Netscape – 4.04

JavaScript syntax: N crypto

Object properties: constructor

Object methods: random(), signText()

This object appears to be quite opaque. That seems to make sense as you wouldn't want security-
related information to be visible simply by enumerating the properties.

There appear to be no enumerable properties belonging to this object.

See also: Window.crypto

C – Crypto.constructor (Property)

355

Property JavaScript JScript N IE Opera Notes

constructor 1.2 + - 4.04 + - - -

Method JavaScript JScript N IE Opera Notes

random() 1.2 + - 4.04 + - - -
signText() 1.2 + - 4.04 + - - -

Crypto.constructor (Property)
A constructor function for the Crypto object in Netscape.

Availability: JavaScript – 1.2
Netscape – 4.04

Property/method value type: Crypto object

JavaScript syntax: N crypto.constructor

You can use this as a way of creating Crypto objects.

This property is useful if you have an object that you want to clone, but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

Crypto.random() (Function)
Return a string of randomly generated characters.

Availability: JavaScript – 1.2
Netscape – 4.04

JavaScript syntax: N crypto.random()

Refer to:
Security policy

Crypto.signText() (Function)
Request a digital signature from a user.

Availability: JavaScript – 1.2
Netscape – 4.04

JavaScript syntax: N crypto.signText()

JavaScript Programmer's Reference

356

Refer to:
Security policy

Cryptoki (Security related)
Part of the Netscape security facilities.

Cryptoki is pronounced crypto-key and is short for cryptographic token interface. It is provided by
RSA Data Security, Inc and can be accessed from the C language and Java.

See also: Pkcs11 object

CSS (Standard)
Cascading Style Sheets.

In the early days of the web, page designers were intent on creating ever more complex HTML in an
effort to be able to organize how the content would appear on every browser. It became important to
be able to render the page with pixel perfect accuracy. This was not the original intent of HTML.

With the introduction of CSS, designers were given a much larger range of tools with which to
control the appearance of web pages. For some time CSS level 1 was thought to be sufficient.
Eventually this was superseded by CSS level 2.

The Netscape 4 browser supports a third alternative, that of JavaScript Style Sheets or JSS for short.
With the release of Netscape 6.0 providing standards-based support, JSS has no future and should
not be used in any new projects. Our JSS coverage has accordingly been marked as deprecated.

CSS is constructed from packages of rules, which are assembled into style-sheets.

There is no object model defined for style sheets as of DOM level 1. Until this is ratified in a later
DOM specification, Netscape and MSIE continue to support mutually incompatible style sheet
API specifications.

The DOM level 2 implementation of CSS style objects (the CSS Object model) provides a complex
hierarchy of objects. These are only partly implemented in current browsers. The most complete
implementation is in the MSIE browser, and even then the objects are factored differently and the
classes named in an MSIE-specific manner.

The DOM CSS suite is embodied in the following classes:

❑ CSSStyleSheet

❑ CSSRuleList

❑ CSSRule

❑ CSSStyleRule

❑ CSSMediaRule

❑ CSSFontFaceRule

❑ CSSPageRule

❑ CSSImportRule

C – CSS level 1 (Standard)

357

❑ CSSCharsetRule

❑ CSSUnknownRule

❑ CSSStyleDeclaration

❑ CSSValue

❑ CSSPrimitiveValue

❑ CSSValueList

❑ RGBColor

❑ Rect

❑ Counter

❑ ViewCSS

❑ DocumentCSS

❑ DOMImplementationCSS

❑ ElementCSSInlineStyle

❑ CSS2Properties

See also: <STYLE>, CSS level 1, CSS level 2, CSS-P, Dynamic HTML

CSS level 1 (Standard)
A standard for describing style sheets.

The CSS level 1 standard was issued in December 1996 and describes a simple formatting model
intended mainly for screen, based presentations. It makes available approximately 50 properties for
controlling the appearance of a web page.

See also: <STYLE>, CSS, CSS level 2, JavaScript Style Sheets

Web-references:
http://www.w3.org/TR/REC-CSS1

CSS level 2 (Standard)
A standard for describing style sheets.

The CSS level 2 standard was presented around May 1998 and was based on the earlier CSS1
standard. It adds another 70 properties to the 50 already available with CSS level 1.

See also: <STYLE>, CSS, CSS level 1, CSS-P, Dynamic positioning

Web-references:
http://www.w3.org/TR/REC-CSS2

http://www.w3.org/TR/REC-CSS1
http://www.w3.org/TR/REC-CSS2

JavaScript Programmer's Reference

358

CSS-P (Standard)
Specifically and only the positional controls for HTML entities, nowadays folded into the CSS
level 2 standard.

Warnings:
❑ The CSS-P specification allows that any tag can be positioned. However Netscape 4 only supports

the positioning of elements that have an opening and closing tag. This means you cannot control the
position of an IMG object on its own unless you encapsulate it correctly within the document. You
can control the posistion of an IMG object if it is enclosed within a set of balanced , <DIV>,
or <A> HTML tags.

❑ Netscape 4 also converts any absolutely positioned <DIV> tags into layers. This means you can
manipulate them as layers but this requires special script code that is only usable on version 4 of
Netscape. This has completely changed on Netscape 6.0.

See also: CSS, CSS level 2, Dynamic positioning

Currency symbol (Definition)
A symbol that denotes a locale-specific currency.

Many (but not all) currency symbols are defined as Unicode character code points. The currently
extant standard does not adequately support the Euro symbol in common use, although it is
generally available in the fonts that ship with MacOS and Windows.

Here is a list of the Unicode defined currency symbols at this time:

Code: HTML: Description:

0023 # Hash sign
0024 $ USA (Dollar)
00A2 ¢ USA (Cent)
00A3 £ United Kingdom (Pound)
00A4 ¤ General currency symbol
00A5 ¥ Japan (Yen)
0192 ƒ Florin
0E3F - Thailand (Baht)
20A0 - Euro currency sign
20A1 - Costa Rica & El Salvador (Colon)
20A2 - Brazil (Cruzeiro)
20A3 - France (Franc)
20A4 £ Italy (Lira - similar to 00A3)
20A5 - USA (Mill - 1/10 cent)

Table continued on following page

C – currentStyle object (Object/JScript)

359

Code: HTML: Description:

20A6 - Nigeria (Naira)
20A7 - Spain (Peseta)
20A8 - India (Rupee - can be drawn as Rs)
20A9 - Korea (Won)
20AA - Israel (New Sheqel)
20AB - Vietnam (Dong)

See also: Localization

currentStyle object (Object/JScript)
An object that represents the cascaded format and style of its parent object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Inherits from: style object

JavaScript syntax: IE myCurrentStyle = myElement.currentStyle

Object methods: getAttribute(), getExpression(), removeExpression(),
setAttribute(), setExpression()

Because the style values are cascaded from style sheet to style sheet and may include some inline
styles as well as some explicit styles, objects need to maintain a current style value that is the result
of all the inheritances applied on top of one another.

In addition they maintain a runtime style that reflects dynamic changes as well. The runtime style
is based on the current style in the first place.

This represents the cascaded format and style of its parent object.

The properties belonging to this object correspond closely to those of the style object and so there
is little point in discussing them again here. Refer to the style object property descriptions for
details of the various properties.

See also: Element.currentStyle, Element.runtimeStyle,
runtimeStyle object, style object (2)

Method JavaScript JScript N IE Opera Notes

getAttribute() - 5.0 + - 5.0 + - -
getExpression() - 5.0 + - 5.0 + - -
removeExpression() - 5.0 + - 5.0 + - -
setAttribute() - 5.0 + - 5.0 + - -
setExpression() - 5.0 + - 5.0 + - -

JavaScript Programmer's Reference

360

Cursor object (Object/NES)
This object encapsulates a cursor that was returned from the database as a result of an SQL query.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

NES myCursor = Connection.cursor(aQuery)
JavaScript syntax:

NES myCursor = Database.cursor(aQuery)

Argument list: aQuery A valid SQL query for the database

Object properties: <column_name>

Object methods: blobImage(), blobLink(), close(), columnName(), columns(),
deleteRow(), insertRow(), next(), updateRow()

You can construct a cursor object by requesting it via the Connection object or database
object, both of which have cursor methods.

Example code:
<SERVER>
// An example cursor retrieved from a database
// Based on the example from Wrox Professional JavaScript
database.connect("ODBC", "myDatabase", "", "", "");
myCursor = database.cursor("SELECT * FROM MY_TABLE");
</SERVER>

See also: Connection.cursor(), database object, database.cursor(),
Netscape Enterprise Server, unwatch(), watch()

Property JavaScript JScript NES Notes

<column_name> 1.1 + - 2.0 + -

Method JavaScript JScript NES Notes

blobImage() 1.1 + - 2.0 + -
blobLink() 1.1 + - 2.0 + -
close() 1.1 + - 2.0 + -
columnName() 1.1 + - 2.0 + -
columns() 1.1 + - 2.0 + -
deleteRow() 1.1 + - 2.0 + -
insertRow() 1.1 + - 2.0 + -
next() 1.1 + - 2.0 + -
updateRow() 1.1 + - 2.0 + -

C – Cursor.<column_name> (Property)

361

Cursor.<column_name> (Property)
The columns within the answer set are reflected into properties with the same names.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type:
String primitive

JavaScript syntax: NES myCursor.aColumnName

Argument list: aColumnName The name of a column within the answer set

The column names are inherited from the tables in the database that the cursor is traversing.

Cursor.blobImage() (Method)
This method creates an element having the appropriate mimeType for the blob object.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Image object

NES myCursor.blobImage(aFormat)

NES myCursor.blobImage(aFormat, aTxt)

NES myCursor.blobImage(aFormat, aTxt, anAlign)

NES myCursor.blobImage(aFormat, aTxt, anAlign,
aPixWid)

NES myCursor.blobImage(aFormat, aTxt, anAlign,
aPixWid, aPixHgt)

NES myCursor.blobImage(aFormat, aTxt, anAlign,
aPixWid, aPixHgt, aPixBrdr)

JavaScript syntax:

NES myCursor.blobImage(aFormat, aTxt, anAlign,
aPixWid, aPixHgt, aPixBrdr, isMap)

aFormat Image file format
anAlign The alignment of the image
aPixBrdr The border value
aPixHgt The height of the image
aPixWid The width of the image
aTxt The alt text for the image

Argument list:

isMap Whether the image is a map

The data is pulled out of the database according to the specified parameters. The BLOB can then be
displayed as if it were an image in an tag.

The format argument should contain an image specifier such as "GIF" or "JPEG" that can map
conveniently to a file extension or MIME type.

JavaScript Programmer's Reference

362

In general, the remaining parameters to this method correspond to the HTML tag attributes that
can be used with an tag and are optional.

See also: blob.blobImage()

Cursor.blobLink() (Method)
This method creates an <A> element that links to the BLOB data.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Anchor object

JavaScript syntax: NES myCursor.blobLink(aMimeType, aString)

aString The text inside the linkArgument list:
aMimeType The MIME type of the document being displayed

The data is pulled out of the database according to the specified parameters. The BLOB can then be
displayed as if it were an document in an <A> tag.

See also: blob.blobLink()

Cursor.close() (Method)
To close the cursor.

Availability: JavaScript - 1.1
Netscape Enterprise Server - 2.0

JavaScript syntax: NES myCursor.close()

After a cursor has been closed, there can be no further access to it until it is reopened by creating a
new instance from the cursor property belonging to the Connection or database objects.

All open cursors are automatically closed by NES at the end of the client request.

Cursor.columnName() (Method)
Returns the name of the indexed column within the cursor.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES myCursor.columnName(anIndex)

Argument list: anIndex A valid column number within the cursor

The columns are arranged in order as they appear in the answer set. This method indexes the name
list in the answer set and returns the names for each column using a zero-based index.

C – Cursor.columns() (Method)

363

Cursor.columns() (Method)
Returns the number of columns in the cursor.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myCursor.columns()

The answer set contains a list of columns that were retrieved from the database. This method
returns a count of the columns in the answer set.

Cursor.deleteRow() (Method)
Deletes the current row in the cursor.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myCursor.deleteRow(aTableName)

Argument list: aTableName The name of a table to have a record deleted from it

If the cursor is updateable, then you can remove a row from the table. The row removed
corresponds to the one the cursor is currently referencing.

The row following the current row becomes the current row unless the cursor is on the last row of
the cursor in which case it is indexed backwards to the previous row.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

See also: Status Code

Cursor.insertRow() (Method)
A new row is inserted into the table that the cursor is pointing at.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myCursor.insertRow(aTableName)

Argument list:
aTableName The name of a table to have the new data inserted

into it

JavaScript Programmer's Reference

364

New rows can be inserted into the table if the cursor is updateable.

Note that there is no guarantee as to the position of the new inserted record. There may be
automatic sorting triggers activated in the database that cause it to be sorted into the correct
position or the new record may simply be appended to the end. It is implementation-dependent.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

See also: Status Code

Cursor.next() (Method)
Index the cursor onwards to the next row.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES myCursor.next()

The cursor is moved onwards to point at the next sequential record.

When the cursor reaches the end of the selection, it cannot be indexed any further onwards. What
happens in this case is implementation-dependent, but there should probably be an error generated.

Cursor.prototype (Property)
The prototype for the Cursor object that can be used to extend the interface for all Cursor objects.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Cursor object

NES Cursor.prototype
JavaScript syntax:

NES myCursor.constructor.prototype

Refer to:
prototype property

Cursor.updateRow() (Method)
Any pending changes to the current row are saved back to the database.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

C – Custom object (Definition)

365

JavaScript syntax: NES myCursor.updateRow(aTableName)

Argument list: aTableName The name of a table to be updated with the new data

If the cursor is updateable, then the row currently referred to by the cursor can be updated.

You may need to perform a commit action on the database to confirm the changes and avoid them
being rolled back when the session is closed. Whether this is necessary depends on whether there
are auto-confirm triggers or whether the target database even supports a two phase commit.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

See also: Status Code

Custom object (Definition)
A user-defined object inheriting the properties of an Element object within the MSIE browser model.

Refer to:
Element object

Data Type (Definition)
The type of data contained in a variable or described by a literal.

Fundamentally, JavaScript works with the following value types:

❑ Numbers

❑ Strings

❑ Boolean values

❑ Objects

All other data types are aggregates of those.

Objects are really collections of primitive values and are accessed by reference.

See also: Boolean, Number, Object, String

Cross-references:
O'Reilly JavaScript Definitive Guide – page – 34

Data-tainting (Security related)
A mechanism for marking data in the client and controlling its use. An obsolete security work-around.

The data-tainting model was implemented in Netscape 3 but deprecated by version 4. It was never
implemented in MSIE.

Rather than prevent access to data in other parts of the browser space, it allows full access even to
private data. However, that access marked the data as tainted and any values that were derived
from it were also tainted. Tainted data values could not be sent back to the server and in fact were
not permitted to leave the client.

These capabilities were not used very much in production systems and have now been superseded
by the signed scripts and privilege model.

Warnings:
❑ This is deprecated and should not be used in new projects.

D

D – database object (Object/NES)

367

See also: Restricted access, Security policy, Signed scripts

database object (Object/NES)
An object that encapsulates the access to a back end database from Netscape Enterprise Server.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES database

Object properties: prototype

Object methods:
beginTransaction(), commitTransaction(),
connect(), connected(), cursor(), disconnect(),
execute(), majorErrorCode(),
majorErrorMessage(), minorErrorCode(),
minorErrorMessage(), rollbackTransaction(),
SQLTable(), storedProc(), storedProcArgs(),
toString()

The database object is always available through the database property of the Global object
within the Netscape Enterprise Server session. Before using any other methods belonging to this
object, you must first successfully connect to a database.

Until the database object has made a connection to the database, the only methods that have any
meaning are database.connect() and database.connected().

See also: Cursor object, Netscape Enterprise Server,
response.database, unwatch(), watch()

Property JavaScript JScript NES Notes

prototype 1.1 + - 2.0 + -

Method JavaScript JScript NES Notes

beginTransaction() 1.1 + - 2.0 + -
commitTransaction() 1.1 + - 2.0 + -
connect() 1.1 + - 2.0 + -
connected() 1.1 + - 2.0 + -
cursor() 1.1 + - 2.0 + -
disconnect() 1.1 + - 2.0 + -
execute() 1.1 + - 2.0 + Warning
majorErrorCode() 1.1 + - 2.0 + -
majorErrorMessage() 1.1 + - 2.0 + -
minorErrorCode() 1.1 + - 2.0 + -

JavaScript Programmer's Reference

368

Method JavaScript JScript NES Notes

MinorErrorMessage() 1.1 + - 2.0 + -
rollbackTransaction() 1.1 + - 2.0 + -
SQLTable() 1.1 + - 2.0 + -
storedProc() 1.1 + - 3.0 + -
storedProcArgs() 1.1 + - 3.0 + -
toString() 1.1 + - 2.0 + -

database.beginTransaction() (Method)
Marks the beginning of a transaction with the database.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES database.beginTransaction()

This commences a transaction on the database. The transaction methods are useful if you want to
maintain control over the two phase commit process in the database. The alternative
database.execute() method can accomplish the same but it will automatically commit any
changes as the SQL is executed. This transaction based technique provides a finer degree of control
and allows for rollbacks.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

See also: database.commitTransaction(),
database.rollbackTransaction(), Status code

database.commitTransaction() (Method)
Commit the changes made during this transaction.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES database.commitTransaction()

In the transaction based mechanism, you can control the commit and rollback of the transaction if
necessary. You will need to explicitly call this method to commit the changes to the database.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

See also: database.beginTransaction(),
database.rollbackTransaction(), Status code

D – database.connect() (Method)

369

database.connect() (Method)
Forms a connection to the database using the database type to select the correct one.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

NES database.connect(aType, aServer, aUser,
aPassword, aDb);

NES database.connect(aType, aServer, aUser,
aPassword, aDb, maxCon);

JavaScript syntax:

NES database.connect(aType, aServer, aUser,
aPassword, aDb, maxCon, aFlag);

aDb The name of a database
aFlag Commit or roll back on close
aPassword A valid password for the user
aServer The name of a database server
aType A valid connection type
aUser A user registered for database access on the server

Argument list:

maxCon The maximum number of simultaneous connections

When connecting to a database, you need to indicate the type of database you are connecting to.
The following are examples of commonly available database types:

❑ ORACLE

❑ SYBASE

❑ INFORMIX

❑ DB2

❑ ODBC

Use one of these values in the first argument to this method.

You will also need to know the name of your target server, a valid username and password and if
multiple databases are supported by your database server, then you will need to know the name of
the target database you want to connect to.

The last two arguments indicate the maximum number of connections available at once and a flag
to indicate the commit policy on closure. You can elect to automatically commit any changes
(dangerous) or roll back any uncommitted changes.

See also: DbPool object, DbPool(), DbPool.connect()

JavaScript Programmer's Reference

370

database.connected() (Method)
A flag, indicating the connection status for this database object.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Boolean primitive

JavaScript syntax: NES database.connected()

This method returns a Boolean value that tells you whether the database object is connected to a
database or not.

See also: DbPool.connected()

database.cursor() (Method)
Creates a new cursor object with the SQL supplied in the argument.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Cursor object

NES database.cursor(aQuery)
JavaScript syntax:

NES database.cursor(aQuery, aFlag)

aFlag Defines whether the cursor is updateable or notArgument list:
aQuery A valid SQL query for the database

This method returns an answer set as a cursor object.

The updateable flag controls whether the cursor can be updated or not. Setting it true means the
cursor can be used to send an update change to the database. False renders it read only.

See also: Cursor object

database.disconnect() (Method)
Severs the current connection to the database.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES database.disconnect()

It is a good idea to disconnect from the database when you know you won't need it anymore. This
is good practice and allows other processes to connect when resources are scarce.

D – database.execute() (Method)

371

Until the database is connected again, only the connect() and connected() methods have
any meaning.

See also: DbPool.disconnect()

database.execute() (Method)
Executes the SQL passed in the argument.

Availability:
JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES database.execute(someSQL)

Argument list: someSQL A fragment of valid SQL for the database

This method cannot return an answer set. It does return a status code indicating how successfully it
managed the query.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

Warnings:
❑ This method will automatically perform a commit on any SQL that you send. You can avoid this by

using transaction methods.

See also: Status code

database.majorErrorCode() (Method)
Returns the error code for an error that may have happened in the database or the interface to it.

Availability:
JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES database.majorErrorCode()

For a status code value of 5 when using the Oracle database, this yields a return code from the
Oracle Call-level interface.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the SQL server message number.

For a status code value of 7 when using the Informix database, this yields the Informix error code.

For a status code value of 7 when using the Sybase database, this yields the DB-Library error number.

See also: Connection.majorErrorCode(),
DbPool.majorErrorCode(), Error handling, Status code

JavaScript Programmer's Reference

372

database.majorErrorMessage() (Method)
Returns the error message text for an error that may have happened in the database or the
interface to it.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES database.majorErrorMessage()

For a status code value of 5 when using the Oracle database, this yields a text string describing the
server error.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields a text string from SQL server.

For a status code value of 7 when using the Informix database, this yields the text string from the
vendor error library.

For a status code value of 7 when using the Sybase database, this yields a text string from the DB-Library.

See also: Connection.majorErrorMessage(),
DbPool.majorErrorMessage(), Error handling, Status code

database.minorErrorCode() (Method)
Returns a supplementary error code for an error that may have happened in the database or the
interface to it.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES database.minorErrorCode()

For a status code value of 5 when using the Oracle database, this yields an operating system error
code from the Oracle Call-level interface.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the severity level from SQL server.

For a status code value of 7 when using the Informix database, this yields the ISAM error code.

For a status code value of 7 when using the Sybase database, this yields the severity level of the
error from the DB-Library.

See also: Connection.minorErrorCode(),
DbPool.minorErrorCode(), Error handling, Status code

D – database.minorErrorMessage() (Method)

373

database.minorErrorMessage() (Method)
Returns a supplementary error message text for an error that may have happened in the database
or the interface to it.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES database.minorErrorMessage()

For a status code value of 5 when using the Oracle database, this yields the Oracle server name.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the SQL server name.

For a status code value of 7 when using the Informix database, this yields a text string describing
the ISAM error.

For a status code value of 7 when using the Sybase database, this yields the text of the operating
system error from the DB-Library.

See also: Connection.minorErrorMessage(),
DbPool.minorErrorMessage(), Error handling, Status code

database.prototype (Property)
The prototype for the database object that can be used to extend the interface for all database objects.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: database object

JavaScript syntax: NES database.prototype

See also: Prototype property

database.rollbackTransaction() (Method)
Undoes any changes made in the current transaction.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES database.rollbackTransaction()

JavaScript Programmer's Reference

374

In the transaction based technique, this method provides a way to rollback the changes if you have
not yet committed them.

Refer to the Status Code topic for a list of the status code values that are returned by this method.

See also: database.beginTransaction(),
database.commitTransaction(), Status code

database.SQLTable() (Method)
Creates an HTML table based on the results of the SQL query provided in the argument.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES database.SQLTable(someSQL)

Argument list: someSQL A valid SQL query for the connected database

The select statement is passed to the database and the results are returned to the caller as a series of
records formatted to appear as an HTML table.

database.storedProc() (Method)
Creates a stored procedure object and runs the specified stored procedure in the database.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 3.0

Property/method value type: Stproc object

JavaScript syntax: NES database.storedProc(aProcName, aProcParm)

aProcName The name of a stored procedure to callArgument list:
aProcParm A parameter set to pass to the stored procedure

See also: ResultSet object

database.storedProcArgs() (Method)
Creates a prototype for a stored procedure and controls the argument passing.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 3.0

Property/method value type: Stproc object

NES database.storedProcArgs(aProc)
JavaScript syntax:

NES database.storedProcArgs(aProc,
someArgTypes)

D – database.toString() (Method)

375

aProc The name of a stored procedureArgument list:
someArgTypes Some argument types to define the API

The prototype stored procedure object supports input and output parameters. This prototype object
is used to indicate the direction of values in these parameters.

See also: DbPool.storedProcArgs()

database.toString() (Method)
Returns a string equivalent of the database object.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES database.toString()

The value of the object is converted to a string value that represents its value.

See also: DbPool.toString()

dataTransfer object (Object/JScript)
An object used during drag and drop operations to provide access to data being dragged.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myDataTransfer = myEvent.dataTransfer

Object properties: dropEffect, effectAllowed

Object methods: clearData(), getData(), setData()

This also assists with access to the clipboard while items are being dragged and dropped. You need
to access this object via the dataTransfer property of the event object.

Operating this functionality is quite complex and you should check out the various examples
covered in the documentation at the Microsoft developer web site.

See also: Event.dataTransfer

JavaScript Programmer's Reference

376

Property JavaScript JScript N IE Opera Notes

dropEffect - 5.0 + - 5.0 + - -
effectAllowed - 5.0 + - 5.0 + - -

Method JavaScript JScript N IE Opera Notes

clearData() - 5.0 + - 5.0 + - -
getData() - 5.0 + - 5.0 + - -
setData() - 5.0 + - 5.0 + - -

dataTransfer.clearData() (Method)
Clears any data currently in the transfer object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myDataTransfer.clearData()

The contents of the dataTransfer object are discarded according to the values specified. To
understand what this means requires a short discussion about clipboards and how they work.

The Microsoft Windows clipboard is modelled very closely on the clipboard mechanisms originally
implemented in the Macintosh operating system in 1984, when it was first released. The Macintosh
environment is constructed around a set of resource objects. When a selection is cut or copied to the
clipboard, what is actually stored is a set of resources that describe the selection in a variety of
different ways. This enables the target application that receives a paste command to select the most
appropriate piece of data that it can understand.

For example, in a music application, the selected region of notation is copied to the clipboard
as the following:

❑ Native application specific data

❑ A MIDI sequence

❑ A picture of the notation on screen

If you then goto a word processor and paste in the clipping, it won't understand the MIDI data or
the application specific data. However, it could very well understand the picture data and would
choose that as being the most appropriate.

This explains how data is lost when you cut and paste between several applications and back to the
originating application. Some applications are quite good at preserving the entire contents of the
clipboard even though they may only understand one of its component varieties. An example of
that is the Macintosh Scrapbook application. It can only display a picture when music clippings are
pasted in from a MIDI sequencer. However, it preserves all the component resources and if you
copy an item from the scrapbook, you get the complete set again.

D – dataTransfer.dropEffect (Property)

377

Going back to the MSIE browser and the dataTransfer object, the drag drop and clipboard
mechanism carries a collection of related resources. Each is a copy of the source item in different
forms. This clearData() method can be used to discard the forms that you no longer need.

It accepts the following values in its argument:

❑ Text

❑ URL

❑ File

❑ HTML

❑ Image

You can specify one or several of these to discard the values you no longer need.

This method should be called in an onDragStart event handler for maximum effect. If you need
to override the default behavior of the target receiver, then you may want to use this in the onDrop
event handler too.

See also: clipboardData object, onDragStart, onDrop

dataTransfer.dropEffect (Property)
Set the effect when the element is dropped.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myDataTransfer.dropEffect

This property defines the effect when the data item is dropped onto the receiving element. It needs
to be used with the effectAllowed property. Controlling the drag drop operation at this level is
quite complicated and you should consult the Microsoft developer web site for an in depth
explanation of how it works.

This property accepts the following values:

❑ copy

❑ link

❑ move

❑ none

This value can be set during certain event handlers, during the drag operation. These events are
likely candidates:

❑ onDragEnter

❑ onDragOver

❑ onDrop

See also: dataTransfer.effectAllowed, onDragEnter,
onDragOver, onDrop

JavaScript Programmer's Reference

378

Web-references:
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/dropeffect.asp

dataTransfer.effectAllowed (Property)
Indicates whether the drop effect is allowed or not.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDataTRansfer.effectAllowed

You should set this property in the onDragStart event handler.

The following values can be assigned to this property, to control whether the drag drop is allowed
to happen:

❑ copy

❑ link

❑ move

❑ copyLink

❑ copyMove

❑ linkMove

❑ all

❑ none

❑ uninitialized

Assigning values to this property must be done bearing in mind what you have assigned to the
dropEffect property as the two work together.

See also: dataTransfer.dropEffect, onDragStart

dataTransfer.getData() (Method)
Gets the data from the transfer object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myDataTRansfer.getData()

This is used to extract the data via the dataTransfer, or clipboardData objects. The value
returned will be in the form of a string and will either be the textual content or a URL reference to a
non-text item.

http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/dropeffect.asp

D – dataTransfer.setData() (Method)

379

This mode of access preserves the various security needs when accessing values from one
frame to another.

This method is most useful within the onCopy and onCut event handlers.

See also: clipboardData object, onCopy, onCut

dataTransfer.setData() (Method)
Sets the data in the transfer object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDataTransfer.setData(aType, aString)

aType The value TEXT or URL to indicate what kind of data is
in aString

Argument list:

aString A text string to be added to the transfer object

You would use this method to put data into the clipboard. This is done by accessing the
clipboardData or dataTransfer objects during an event handler. You can only store textual
values into the clipboard with this method. However they may be the raw text data itself or a
description of the URL where non-text data can be found.

The method takes two arguments. The first can be set to the value "TEXT" or "URL" to indicate which
kind of data is being stored. The second argument is the data to be added to the transfer object.

This method returns a Boolean value indicating success or failure of the setData() call.

Date and time (Definition)
There is a variety of ways to work with dates and times.

Date and time values are manipulated by means of a Date object. You can instantiate a new copy
of the built-in Date object with its constructor. The new instance will hold a fixed time value,
which might be 'the time now' or may have been initialized with some other value.

You can get and set various components of the time and date values for a Date object. Note that,
although you can use the set methods to set a Date object to the system time, this will not alter the
system time of the machine you are running the script in.

It is possible that some implementations may provide that capability, but it is not defined as part of
the standard.

See also: Broken down time, Calendar time, Daylight savings time
adjustment, Local time, Localization, Universal coordinated time

JavaScript Programmer's Reference

380

Date constant (Definition)
A constant date value.

Date constants are Date objects with predefined values. These need to be manufactured from
component parts and parsed by the Date object constructor.

See also: Constant expression, Date()constructor, Date()function,
Date.constructor, Date.parse()

Date from time (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

ECMA compliant implementations use the extended Gregorian system for dates. These are
all based on 01-January-1970 UTC as a starting point. Although the date handling in JavaScript
is flexible and generally comprehensive, there may be additional date computations required
in some implementations.

The formula for calculating day number is shown here:

t = an instant in time measured in milliseconds relative to 01-January-1970 UTC.

msPerDay = 86400000

Day(t) = floor(t/msPerDay)

All non-leap years have 365 days with the usual number of days in each month. Leap years have an
extra day in February. The calculation shown below uses known leap years and non-leap years to
adjust the day numbers, and yield the day number of the first day of the given year and then use
that to work out the time in milliseconds from when the year started:

DayFromYear(y) =

365 * (y – 1970) +

floor((y – 1969) / 4) -

floor((y – 1901) / 100) +

floor((y – 1601) / 400)

TimeFromYear(y) = msPerDay * DayFromYear(y)

YearFromTime(t) = The largest integer y to make TimeFromYear(y) less than or equal
to t.

DayWithinYear(t) = Day(t) – DayFromYear(YearFromTime(t))

The month value is worked out with this formulaic framework:

D – Date from time (Time calculation)

381

MonthFromTime(t) = lookup according to DayWithinYear(t) falling into a range according
to the following table:

Greater than Less than Month Name

000 031 0 January

031 059 + InLeapYear(t) 1 February

059 + InLeapYear(t) 090 + InLeapYear(t) 2 March

090 + InLeapYear(t) 120 + InLeapYear(t) 3 April

120 + InLeapYear(t) 151 + InLeapYear(t) 4 May

151 + InLeapYear(t) 181 + InLeapYear(t) 5 June

181 + InLeapYear(t) 212 + InLeapYear(t) 6 July

212 + InLeapYear(t) 243 + InLeapYear(t) 7 August

243 + InLeapYear(t) 273 + InLeapYear(t) 8 September

273 + InLeapYear(t) 304 + InLeapYear(t) 9 October

304 + InLeapYear(t) 334 + InLeapYear(t) 10 November

334 + InLeapYear(t) 365 + InLeapYear(t) 11 December

The date within the month is worked out in a similar way, and could probably share a common
table of month lengths or offsets.

DateFromTime(t) = lookup according to MonthFromTime(t) selecting a value to subtract
according to the following table:

Month value Subtract this

00 -1

01 30

02 58 + InLeapYear(t)

03 89 + InLeapYear(t)

04 119 + InLeapYear(t)

05 150 + InLeapYear(t)

06 180 + InLeapYear(t)

07 211 + InLeapYear(t)

08 242 + InLeapYear(t)

09 272 + InLeapYear(t)

10 303 + InLeapYear(t)

11 333 + InLeapYear(t)

See also: Broken down time, Date number, Day from year, Day number, Day within
year, Month from time, Time from year, Time range, Year from time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.5

ECMA 262 edition 3 – section – 15.9.1.5

JavaScript Programmer's Reference

382

Date number (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

A date number is identified by an integer in the range 1 through 31, inclusive. The specific range
depends on the month being considered and whether a leap year is in force.

See also: Broken down time, Date from time, Day from year, Day number,
Day within year, Month from time, Time from year, Time range,
Year from time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.5

ECMA 262 edition 3 – section – 15.9.1.5

Date object (Object/core)
An object of the class "Date".

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- myDate = Date

N myDate = myEvent.timeStamp

N myDate = myMouseEvent.timeStamp

N myDate = myMutationEvent.timeStamp

N myDate = myUIEvent.timeStamp

JavaScript syntax:

- myDate = new Date()

Object properties: constructor, length, prototype

Class methods: parse(), UTC()

D – Date object (Object/core)

383

Object methods:
getDate(), getDay(), getFullYear(), getHours(),
getMilliseconds(), getMinutes(), getMonth(),
getSeconds(), getTime(), getTimezoneOffset(),
getUTCDate(), getUTCDay(), getUTCFullYear(),
getUTCHours(), getUTCMilliseconds(), getUTCMinutes(),
getUTCMonth(), getUTCSeconds(), getVarDate(), getYear(),
parse(), setDate(), setFullYear(), setHours(),
setMilliseconds(), setMinutes(), setMonth(),
setSeconds(), setTime(), setUTCDate(), setUTCFullYear(),
setUTCHours(), setUTCMilliseconds(), setUTCMinutes(),
setUTCMonth(), setUTCSeconds(), setYear(),
toDateString(), toGMTString(), toLocaleDateString(),
toLocaleString(), toLocaleTimeString(), toSource(),
toString(), toTimeString(), toUTCString(), valueOf()

A Date object contains a number that denotes a particular instant in time that is accurate to within
a millisecond. The number value may also contain NaN, which indicates that the Date object does
not represent a valid instant in time.

The prototype for the Date prototype object is the Object prototype object.

Instances of the Date object have no special properties beyond those they inherit from the
Date.prototype object.

JavaScript version 1.2 and the ECMAScript standard both mandate additional methods that the Date
object should support. These are generally useful when computing year numbers higher than 1999.

Warnings:
❑ The Date object is particularly bug prone in Netscape 2. If this browser version is important,

you may need to provide significant amounts of date correcting logic or avoid the use of date
values altogether.

Example code:
<!-- Display time since document loaded --->
<HTML>
<HEAD>
<SCRIPT>
window.myDate1 = new Date();
</SCRIPT>
</HEAD>
<BODY>
<DIV ID="TEXTCELL">
0000
</DIV>
<FORM>
<INPUT TYPE="button" VALUE="CLICK ME" onClick="clickMe()">
</FORM>
<SCRIPT>
function clickMe()
{
 myDate2 = new Date();

JavaScript Programmer's Reference

384

 myDelta = myDate2 - window.myDate1;
 document.all.TEXTCELL.innerText = myDelta/1000;
}
</SCRIPT>
</BODY>
</HTML>

See also: Broken down time, Browser version compatibility, Calendar time,
Compatibility strategies, Date.Class, Date.length,
Date.prototype, Event.timeStamp, java.util.Date,
JellyScript, MakeDate(), MakeDay(), MakeTime(), Native object,
Object object, Time range, Time value, TimeClip(), unwatch(),
watch()

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.1 + 1.0 + 3.0 + 3.02 + - - 2 + -
length 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + ReadOnly,

DontEnum.
prototype 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + ReadOnly,

DontDelete,
DontEnum.

Method JavaScript JScript N IE Opera NES ECMA Notes

getDate() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getDay() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getFullYear() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getHours() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getMilliseconds() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getMinutes() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getMonth() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getSeconds() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getTime() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
getTimezoneOffset() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + Warning
getUTCDate() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getUTCDay() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getUTCFullYear() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + Warning
getUTCHours() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getUTCMilliseconds() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getUTCMinutes() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getUTCMonth() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getUTCSeconds() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
getVarDate() - 3.0 + - 4.0 + - - - -
getYear() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + Warning,

Deprecated

Table continued on following page

D – Date object (Object/core)

385

Method JavaScript JScript N IE Opera NES ECMA Notes

parse() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setDate() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setFullYear() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setHours() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setMilliseconds() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setMinutes() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setMonth() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setSeconds() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setTime() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
setUTCDate() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setUTCFullYear() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setUTCHours() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setUTCMilliseconds() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setUTCMinutes() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setUTCMonth() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setUTCSeconds() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
setYear() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + Warning,

Deprecated
toDateString() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toGMTString() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + Warning,

Deprecated
toLocaleDateString() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toLocaleString() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -
toLocaleTimeString() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toSource() 1.3 + 3.0 + 4.06 + 4.0 + - - 3 + -
toString() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + Warning
toTimeString() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toUTCString() 1.2 + 3.0 + 4.0 + 4.0 + - - 2 + -
valueOf() 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + -

Cross-references:
ECMA 262 edition 2 – section – 10.1.5

ECMA 262 edition 2 – section – 15.9

ECMA 262 edition 2 – section – 15.9.6

ECMA 262 edition 3 – section – 10.1.5

ECMA 262 edition 3 – section – 15.9

O'Reilly JavaScript Definitive Guide – page – 48

JavaScript Programmer's Reference

386

Date() (Constructor)
A Date object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Date object

- new Date()

- new Date(aValue)

- new Date(aYear, aMonth)

- new Date(aYear, aMonth, aDate)

JavaScript syntax:

- new Date(aYear, aMonth, aDate, anHour)

- new Date(aYear, aMonth, aDate, anHour,
aMinute)

- new Date(aYear, aMonth, aDate, anHour,
aMinute, aSecond)

JavaScript syntax:

- new Date(aYear, aMonth, aDate, anHour,
aMinute, aSecond, aMillisecond)

aDate An optional date within the month value
aMillisecond An optional value between 0 and 999

milliseconds
aMinute An optional value between 0 and 59 minutes
aMonth An optional 0 to 11 month value
anHour A value between 0 and 23 hours
aSecond An optional value between 0 and 59 seconds
aYear A full year value

Argument list:

aValue A time in UTC milliseconds

The result of calling this constructor is a date object with the indicated date and time value.

Calling the Date() constructor with the new operator creates a fresh object based on the Date
prototype. The value of this new Date object depends on the parameters specified when the
constructor was invoked.

This is not the same as simply calling the Date() function which would yield the current system
date and time at the instant it was called.

The arguments to the Date() constructor are all optional, but they are also positional. This means
that you must mark empty positions with comma separated null values to indicate that a parameter
needs to be skipped. The time values are assumed to be measured in local time and not UTC.

The prototype of the new Date object is the built in Date prototype object.

D – Date() (Constructor)

387

Functionally, the algorithm that manufactures a new date value uses the internal MakeDay(),
MakeTime(), and MakeDate() functions that we describe elsewhere.

If the year value is less than 99, then the date creation adds 1900 to it and assumes the date is in the
20th century. To avoid millennium problems, always specify a full year number.

The following rules apply where items are omitted from the right of the argument list.

Zero values are assumed for hours, minutes and seconds. When all three are missing, the time is
assumed to be midnight.

The date value is assumed to be the first of the month, and the default month is not considered
since a single value on its own is taken to mean a millisecond time value in UTC time coordinates.

When all arguments are omitted, the time value for the new object is set to the current time in UTC
time coordinates.

Putting null values in place of the year month and date sets the time correctly but unpredictable
date values are substituted.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define the date but assume the time is set to zero
// Note that month numbers start at zero
myDate1 = new Date(1954, 0, 19);
document.write(myDate1);
document.write("
");
// Define the time in minutes but make up any old date
myDate2 = new Date(null, null, null, 12, 14);
document.write(myDate2);
document.write("
");
// Fully qualified date value
myDate3 = new Date(1984, 9, 23, 1, 0, 0, 0);
document.write(myDate3);
document.write("
");
// Output message of the day
</SCRIPT>
</BODY>
</HTML>

See also: Constructor function, constructor property, Date constant, Date()function,
Date.UTC(), Global object, MakeDate(), MakeDay(), MakeTime(), new, Object
constant, TimeClip()

JavaScript Programmer's Reference

388

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.7

ECMA 262 edition 2 – section – 15.9.3

ECMA 262 edition 2 – section – 15.9.4

ECMA 262 edition 3 – section – 15.9.3

Date() (Function)
A function that returns the current date.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - Date()

This function returns a string primitive representing the current UTC time value.

When the Date() constructor is called as a function rather than in a new expression, it returns a
string representing the current time (in UTC time). Note that when calling it as a function the
arguments are all ignored and it is not equivalent to calling the Date() constructor in a new
expression at all.

Effectively, the function call to a Date() constructor behaves as if you had coded this fragment of
JavaScript in the script source text:

(new Date()).toString()

See also: Cast operator, Constructor function, constructor property, Date
constant, Date() constructor, Implicit conversion

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.7

ECMA 262 edition 2 – section – 15.9.2

ECMA 262 edition 3 – section – 15.9.2

Date.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

D – Date.constructor (Property)

389

This is an internal property that describes the class that a Date object instance is a member of. The
reserved words suggest that, in the future, this property may be externalized.

See also: Class, Date object

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 2 – section – 15.9.3.1

ECMA 262 edition 3 – section – 8.6.2

Date.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

Property/method value type: Date constructor object

JavaScript syntax: - Date.constructor

The initial value of the date prototype constructor is the built-in Date constructor.

You can use this as one way of creating Date objects although it is more popular to use the new
Date() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Date constant, Date.length, Date.parse(),
Date.prototype, Date.UTC()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.1

ECMA 262 edition 3 – section – 15.9.3

JavaScript Programmer's Reference

390

Date.getDate() (Method)
Returns the day number within a month for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getDate()

This method returns a day number within a month from the date value of the receiving object. The
value is 1 based and will not exceed 31 although the range is variable based on month and leap
year contexts.

The date is computed according to local time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
// Create diary of special days per month
myDiary = new Array();
myDiary[1] = "Pay into bank account";
myDiary[28] = "Invoice customers";
myDiary[14] = "Chase customers for payment";
myDiary[5] = "Top up fuel in generator";
// Work out day number
myDate = new Date();
myDay = myDate.getDate();
// Output message of the day
document.write(myDiary[myDay]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setDate()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.10

ECMA 262 edition 3 – section – 15.9.5.14

D – Date.getDay() (Method)

391

Date.getDay() (Method)
Returns the weekday number for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getDay()

A weekday number for the date value of the receiving object is returned. The value will be in the
range 0 to 6, with 0 representing Sunday.

The value is computed according to Local time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat");
myDate = new Date();
document.write(myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.12

ECMA 262 edition 3 – section – 15.9.5.16

JavaScript Programmer's Reference

392

Date.getFullYear() (Method)
Returns the full year for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getFullYear()

The full year number of the date value in the receiving object is returned as a four digit value. This
is much preferred to the getYear() method which suffers from Y2K ambiguities and is now
deprecated in favor of this method.

The year number is a local time value.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
// Calculate which century from the year number
myDate = new Date();
myCentury = 1 + myDate.getFullYear()/100;
switch (myCentury % 10)
{
case 1 : mySuffix = "st";
break;

case 2 : mySuffix = "nd";
break;

case 3 : mySuffix = "rd";
break;

default : mySuffix = "th";
break;

}
document.write(myCentury + mySuffix + " century");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getYear(), Date.prototype, Date.setFullYear(),
Date.setUTCFullYear(), Date.setYear()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.6

ECMA 262 edition 3 – section – 15.9.5.10

D – Date.getHours() (Method)

393

Date.getHours() (Method)
Returns the hour value for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getHours()

The hours of the time value contained in the receiving object. This is returned as an integer in the
range 0 to 23 inclusive.

The value is computed according to local time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
// Generate a flag based on work or play time
myDate = new Date();
myHours = myDate.getHours();
if((myHours > 8) && (myHours < 17))
{
document.write("At work");
}
else
{
document.write("At play");
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setHours(), Date.setUTCHours()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.14

ECMA 262 edition 3 – section – 15.9.5.18

JavaScript Programmer's Reference

394

Date.getMilliseconds() (Method)
Return the milliseconds value of a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getMilliseconds()

The milliseconds of the time value contained in the receiving object. The result will be an integer in
the range 0 to 999 inclusive.

The value is computed according to local time coordinates.

In the example a timer is set up to trigger a function call every 1000 milliseconds. However,
processing load may affect how accurately the timer is executed. By measuring the time on each
call, we know that the millisecond value should be the same each time but you will probably
observe a small and random perturbation in the value. You can compensate for this by making a
small adjustment to the timer value to take this error into account. You will most likely need to
reduce the value 1000 by a few milliseconds to get a more accurate timer.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<DIV ID="RESULT">000</DIV>
<SCRIPT>
// Check the accuracy of a timer by printing the milliseconds
setInterval("monitor()", 1000);
myOldMSecs = 000;
function monitor()
{
 myDate = new Date();
 myMsecs = myDate.getMilliseconds();
 myErr = myMsecs - myOldMSecs;
 document.all.RESULT.innerText = myMsecs + " (" + myErr + " milliseconds of
error)";
 myOldMSecs = myMsecs;
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setMilliseconds(),
Date.setUTCMilliseconds()

D – Date.getMinutes() (Method)

395

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.20

ECMA 262 edition 3 – section – 15.9.5.24

Date.getMinutes() (Method)
Returns the minutes value of a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getMinutes()

The minutes of the time value contained in the receiving object. The result will be an integer in the
range 0 to 59 inclusive.

The value is computed according to local time coordinates.

Example code:
<!-- A bar chart indicating minutes of the hour -->
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
<TR HEIGHT=10>
<TD ID="LEFT" WIDTH=100 STYLE="background-color:RED"> </TD>
<TD ID="RIGHT" WIDTH=500 STYLE="background-color:BLUE"> </TD>
</TR>
</TABLE>
<SCRIPT>
setBar()
setInterval("setBar()", 60000);
function setBar()
{
 myDate = new Date();
 myMinutes = myDate.getMinutes();
 myOther = 60 - myMinutes;
 document.all.LEFT.style.width = 1+myMinutes*10;
 document.all.RIGHT.style.width = 1+myOther*10;
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setMinutes(),
Date.setUTCMinutes()

JavaScript Programmer's Reference

396

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.16

ECMA 262 edition 3 – section – 15.9.5.20

Date.getMonth() (Method)
Returns the month value of a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getMonth()

The month number for the receiving date object is returned. This is a zero based value in the range
0 to 11 inclusive. The value 0 represents January, and 11 represents December.

The value is in local time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myMonth = myDate.getMonth();
egyptianCalendar(myMonth);
// Generate attributes of the egyptian calendar based on month
function egyptianCalendar(aMonth)
{
 mySeasonArray = new Array("Akhet", "Peret", "Shemu");
 myMonthArray = new Array("I", "II", "III", "IV");
 myNameArray = new Array("Thoth", "Phaophi", "Athyr", "Choiak", "Tybi",
"Mechir", "Phamenoth", "Pharmuthi", "Pachons", "Payni", "Epiphi", "Mesore");
 myDeityArray = new Array("Tekhi", "Ptah-aneb-res-f", "Het-hert", "Sekhet",
"Amsu", "Rekeh-ur", "Rekeh-netches", "Rennutet", "Khensu", "Kenthi",
"Apt", "Heru-khuti");
 myTypeArray = new Array("F", "M", "F", "F", "M", "M", "M", "F", "M", "M",
"F", "M");
 mySeason = mySeasonArray[Math.floor(aMonth/4)];
 myMonth = myMonthArray[aMonth%4];
 myName = myNameArray[aMonth];
 myDeity = myDeityArray[aMonth];
 switch(myTypeArray[aMonth])

D – Date.getSeconds() (Method)

397

 {
 case "F" : myType = "Goddess";
 break;
 case "M" : myType = "God";
 break;
 }
 document.write("Index : " + aMonth + "
");
 document.write("Season : " + mySeason + "
");
 document.write("Month : " + myMonth + "
");
 document.write("Name : " + myName + "
");
 document.write("Deity : " + myDeity + "
");
 document.write("Type : " + myType + "
");
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setMonth(), Date.setUTCMonth()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.8

ECMA 262 edition 3 – section – 15.9.5.12

Date.getSeconds() (Method)
Returns the seconds value of a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getSconds()

The seconds of the time value contained in the receiving object. The result will be an integer in the
range 0 to 59 inclusive.

The value is computed according to UTC time coordinates.

JavaScript Programmer's Reference

398

Example code:
<!-- A bar chart indicating seconds of the minute -->
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
<TR HEIGHT=10>
<TD ID="LEFT" WIDTH=100 STYLE="background-color:RED"> </TD>
<TD ID="RIGHT" WIDTH=500 STYLE="background-color:BLUE"> </TD>
</TR>
</TABLE>
<SCRIPT>
setBar()
setInterval("setBar()", 990);
function setBar()
{
myDate = new Date();
mySeconds = myDate.getSeconds();
myOther = 60 - mySeconds;
document.all.LEFT.style.width = 1+mySeconds*10;
document.all.RIGHT.style.width = 1+myOther*10;
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setSeconds(),
Date.setUTCSeconds()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.18

ECMA 262 edition 3 – section – 15.9.5.22

Date.getTime() (Method)
Returns the time value of a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

JavaScript syntax: - myDate.getTime()

The time value of the receiving object. This will be an integer that represents the time in
milliseconds since the time origin at midnight on January the first, 1970.

This method returns the time value of the receiving object.

D – Date.getTimezoneOffset() (Method)

399

Example code:
<!-- Hand and eye coordination and reaction timer -->
<HTML>
<HEAD></HEAD>
<BODY>
<DIV ID="ONE" STYLE="background-color:YELLOW">
Click button 1 then button two as quickly as you can
</DIV>
<FORM>
<INPUT TYPE="button" VALUE="1" onClick="clickMe1()">
<INPUT TYPE="button" VALUE="2" onClick="clickMe2()">
</FORM>
<SCRIPT>
function clickMe1()
{
myDate1 = new Date();
myTime1 = myDate1.getTime();
}
function clickMe2()
{
myDate2 = new Date();
myTime2 = myDate2.getTime();
document.all.ONE.innerText = (myTime2 - myTime1) + " Milliseconds";
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setTime()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.4

ECMA 262 edition 3 – section – 15.9.5.9

Date.getTimezoneOffset() (Method)
Returns the time zone offset for the date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getTimezoneOffset()

JavaScript Programmer's Reference

400

The difference between UTC time and local time measured in minutes.

The result of this method is a zero based integer equal to the time difference between GM reference
time and the clock in the client system. The value is measured in minutes and will be in the range 0
to 59 inclusive.

Warnings:
❑ Note that international time zones are generally in 60-minute intervals. However, a very few are less

than 60 minutes.

❑ There are deficiencies in the accuracy of this method in Netscape 2 and 3. You should test
whether your scripts work properly on those browsers if backwards compatibility is important
to your project.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myTZO = myDate.getTimezoneOffset();
if(myTZO == 0)
{
 document.write("Same time as London, England.");
}
else
{
 document.write(myTZO + " hours relative to London, England time.");
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.22

ECMA 262 edition 3 – section – 15.9.5.26

D – Date.getUTCDate() (Method)

401

Date.getUTCDate() (Method)
Returns the UTC day of month value for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCDate()

This method returns a day number within a month from the date value of the receiving object. The
value is 1 based and will not exceed 31 although the range is variable based on month and leap
year contexts.

The date is computed according to UTC time coordinates.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Create diary of special days per month
myDiary = new Array();
myDiary[1] = "Pay into bank account";
myDiary[28] = "Invoice customers";
myDiary[14] = "Chase customers for payment";
myDiary[5] = "Top up fuel in generator";
// Work out day number
myDate = new Date();
myDay = myDate.getUTCDate();
// Output message of the day
document.write(myDiary[myDay]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCDate()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.11

ECMA 262 edition 3 – section – 15.9.5.15

JavaScript Programmer's Reference

402

Date.getUTCDay() (Method)
Returns the UTC weekday number for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCDay()

The result of this method is a weekday number for the date value of the receiving object. The value
will be in the range 0 to 6 inclusive. The 0 value represents Sunday.

The value is computed according to UTC time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat");
myDate = new Date();
document.write(myArray[myDate.getUTCDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.13

ECMA 262 edition 3 – section – 15.9.5.17

Date.getUTCFullYear() (Method)
Returns the UTC full year value for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCFullYear()

D – Date.getUTCFullYear() (Method)

403

The year number for the receiving object normalized to UTC time coordinates. The result is a full
4 digit year number value based on the UTC time value.

Warnings:
❑ If you are computing relative times or developing scripts that operate on very early dates, Netscape

will not support negative year numbers, and cannot go any earlier than year zero. MSIE can, if
necessary return a negative year number.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
// Calculate which century from the year number
myDate = new Date();
myCentury = 1 + myDate.getUTCFullYear()/100;
switch (myCentury % 10)
{
case 1 : mySuffix = "st";
break;

case 2 : mySuffix = "nd";
break;

case 3 : mySuffix = "rd";
break;

default : mySuffix = "th";
break;

}
document.write(myCentury + mySuffix + " century");
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCFullYear()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.7

ECMA 262 edition 3 – section – 15.9.5.11

JavaScript Programmer's Reference

404

Date.getUTCHours() (Method)
Returns the UTC hours value for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCHours()

The result of this method is the hours component of the time value contained in the receiving
object. The value will be in the range 0 to 23 inclusive.

The value is computed according to UTC time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
// Generate a flag based on work or play time
myDate = new Date();
myHours = myDate.getUTCHours();
if((myHours > 8) && (myHours < 17))
{
document.write("At work");
}
else
{
document.write("At play");
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCHours()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.15

ECMA 262 edition 3 – section – 15.9.5.19

D – Date.getUTCMilliseconds() (Method)

405

Date.getUTCMilliseconds() (Method)
Returns the UTC milliseconds for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCMilliseconds()

The result of this method is the milliseconds of the time value contained in the receiving object.
The value will be in the range 0 to 999 inclusive.

The value is computed according to UTC time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<DIV ID="RESULT">000</DIV>
<SCRIPT>
// Check the accuracy of a timer by printing the milliseconds
setInterval("monitor()", 1000);
myOldMSecs = 000;
function monitor()
{
myDate = new Date();
myMsecs = myDate.getUTCMilliseconds();
myErr = myMsecs - myOldMSecs;
document.all.RESULT.innerText = myMsecs + " (" + myErr + " milliseconds of
error)";
myOldMSecs = myMsecs;
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCMilliseconds(),
Event.timeStamp

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.21

ECMA 262 edition 3 – section – 15.9.5.25

JavaScript Programmer's Reference

406

Date.getUTCMinutes() (Method)
Returns the UTC minutes value for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCMinutes()

The result is the minutes of the time value contained in the receiving object. The value will be in the
range 0 to 59 inclusive.

The value is computed according to UTC time coordinates.

Example code:
<!-- A bar chart indicating minutes of the hour -->
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
<TR HEIGHT=10>
<TD ID="LEFT" WIDTH=100 STYLE="background-color:RED"> </TD>
<TD ID="RIGHT" WIDTH=500 STYLE="background-color:BLUE"> </TD>
</TR>
</TABLE>
<SCRIPT>
setBar()
setInterval("setBar()", 60000);
function setBar()
{
myDate = new Date();
myMinutes = myDate.getUTCMinutes();
myOther = 60 - myMinutes;
document.all.LEFT.style.width = 1+myMinutes*10;
document.all.RIGHT.style.width = 1+myOther*10;
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCMinutes()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.17

ECMA 262 edition 3 – section – 15.9.5.21

D – Date.getUTCMonth() (Method)

407

Date.getUTCMonth() (Method)
Returns the UTC month number for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCMonth()

The result of this method is month number for the receiving date object. The value will be in the
range 0 to 11 inclusive, with the value 0 representing January, and 11 representing December.

The month number is measured in UTC time coordinates.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myMonth = myDate.getUTCMonth();
egyptianSeasons(myMonth);
// Generate attributes of the egyptian calendar based on month
function egyptianSeasons(aMonth)
{
mySeasonArray = new Array("Akhet", "Peret", "Shemu");
myMonthArray = new Array("I", "II", "III", "IV");
mySeason = mySeasonArray[Math.floor(aMonth/4)];
myMonth = myMonthArray[aMonth%4];
document.write("Index : " + aMonth + "
");
document.write("Season : " + mySeason + "
");
document.write("Month : " + myMonth + "
");
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCMonth()

Cross-references:
ECMA 262 edition 2 – section – 15.5.9.9

ECMA 262 edition 3 – section – 15.9.5.13

JavaScript Programmer's Reference

408

Date.getUTCSeconds() (Method)
Returns the UTC seconds value for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.getUTCSeconds()

The result of this method is the seconds part of the time value contained in the receiving object. The
value will be in the range 0 to 59 inclusive.

The value is computed according to UTC time coordinates.

Example code:
<!-- A bar chart indicating seconds of the minute -->
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=0 CELLPADDING=0 CELLSPACING=0>
<TR HEIGHT=10>
<TD ID="LEFT" WIDTH=100 STYLE="background-color:RED"> </TD>
<TD ID="RIGHT" WIDTH=500 STYLE="background-color:BLUE"> </TD>
</TR>
</TABLE>
<SCRIPT>
setBar()
setInterval("setBar()", 990);
function setBar()
{
myDate = new Date();
mySeconds = myDate.getUTCSeconds();
myOther = 60 - mySeconds;
document.all.LEFT.style.width = 1+mySeconds*10;
document.all.RIGHT.style.width = 1+myOther*10;
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.prototype, Date.setUTCSeconds()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.19

ECMA 262 edition 3 – section – 15.9.5.23

D – Date.getVarDate() (Method)

409

Date.getVarDate() (Method)
A special date format for use with ActiveX objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: VarDate value

JavaScript syntax: IE myDate.getVarDate()

This method is provided so that you can obtain a special date format called VT_DATE. This is used
for communicating with ActiveX objects on the Windows platform.

This method is not standardized in ECMAScript and is not supported in Netscape, so you should
use it with great caution. In any case, if you are likely to need it, then you'll likely be using an
ActiveX object that is only available on the Windows platform.

Date.getYear() (Method)
Returns a 2 digit non-Y2K compliant year for a date/time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0
Deprecated from JavaScript 1.3

Property/method value type: Number primitive

JavaScript syntax: - myDate.getYear()

The result of this method is a 2 digit year number for the date contained in the receiving object.

The year number is a local time value.

However, in this case, the value 1900 is subtracted from the year on the assumption that a two digit
year will result.

This can lead to year 2000 problems as the year value may be modulo 100 or it may carry over.

This is why the method is deprecated and should be replaced by Date.getFullYear() in your scripts.

As of ECMA edition 3 it is no longer included in the standard although implementations may still
provide it for backwards compatibility.

JavaScript Programmer's Reference

410

Warnings:
❑ Although it is described in the ECMA standard, it is noted that this function is not formally part of

the standard and an ECMA compliant implementation need not provide it. Instead, the
Date.getFullYear() function should be used.

❑ Nevertheless, some implementations may support this function although it is strongly
recommended that you avoid its use.

See also: Date.getFullYear(), Date.prototype,
Date.setFullYear(), Date.setYear()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.5

ECMA 262 edition 3 – section – B.2.4

Date.length (Property)
The length of a date object.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.length

The length property for a Date object returns the maximum number of arguments that the
Date() constructor function accepts.

The length property always returns the value 7 for a Date object.

See also: Date object, Date.constructor

Property attributes:
ReadOnly, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.9.4

ECMA 262 edition 3 – section – 15.9.4

D – Date.parse() (Method/static)

411

Date.parse() (Method/static)
A class based factory method for converting strings to Date objects.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: UTC time value

JavaScript syntax: - Date.parse(aString)

Argument list: aString A string containing a meaningful date value

The argument used with the Date.parse() method should process any string containing a
sequence of characters that represents a meaningful date value. The parse() method then
tokenizes that string and converts the value to a number in UTC time coordinates corresponding to
the date and time in the string.

The string may be interpreted as a local time, UTC time, or a time in some other time zone
depending on the contents of the string.

The result of this method is a UTC time value.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="RESULT1">???</DIV>
<DIV ID="RESULT2">???</DIV>
<FORM>
<HR>
<SELECT ID="IN1">
<OPTION VALUE="Sun">Sunday
<OPTION VALUE="Mon">Monday
<OPTION VALUE="Tue">Tuesday
<OPTION VALUE="Wed">Wednesday
<OPTION VALUE="Thu">Thursday
<OPTION VALUE="Fri">Friday
<OPTION VALUE="Sat">Saturday
</SELECT>
<INPUT ID="IN2" TYPE="text" VALUE="1" SIZE="2">
<SELECT ID="IN3">
<OPTION VALUE="Jan">January
<OPTION VALUE="Feb">February
<OPTION VALUE="Mar">March
<OPTION VALUE="Apr">April
<OPTION VALUE="May">May
<OPTION VALUE="Jun">June
<OPTION VALUE="Jul">July
<OPTION VALUE="Aug">August

JavaScript Programmer's Reference

412

<OPTION VALUE="Sep">September
<OPTION VALUE="Oct">October
<OPTION VALUE="Nov">November
<OPTION VALUE="Dec">December
</SELECT>
<INPUT ID="IN4" TYPE="text" VALUE="2000" SIZE="4">
<INPUT ID="IN5" TYPE="text" VALUE="12" SIZE="2">:
<INPUT ID="IN6" TYPE="text" VALUE="00" SIZE="2">:
<INPUT ID="IN7" TYPE="text" VALUE="00" SIZE="2">
<INPUT ID="IN8" TYPE="text" VALUE="+0000" SIZE="5">
<HR>
<INPUT TYPE="button" VALUE="CLICK ME" onClick="clickMe()">
</FORM>
<SCRIPT>
function clickMe()
{
parseInput = document.all.IN1.value;
parseInput += " ";
parseInput += document.all.IN2.value;
parseInput += " ";
parseInput += document.all.IN3.value;
parseInput += " ";
parseInput += document.all.IN4.value;
parseInput += " ";
parseInput += document.all.IN5.value;
parseInput += ":";
parseInput += document.all.IN6.value;
parseInput += ":";
parseInput += document.all.IN7.value;
parseInput += " ";
parseInput += document.all.IN8.value;
document.all.RESULT1.innerText = parseInput;

document.all.RESULT2.innerText = Date.parse(parseInput);
}
</SCRIPT>
</BODY>
</HTML>

See also: Cast operator, Date constant, Date.constructor

Cross-references:
ECMA 262 edition 2 – section – 15.9.4.2

ECMA 262 edition 3 – section – 15.9.4.2

D – Date.prototype (Property)

413

Date.prototype (Property)
The prototype for the Date object that can be used to extend the interface for all Date objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Date object

- Date.prototype
JavaScript syntax:

- myDate.constructor.prototype

The initial value of the prototype property refers to the built-in Date prototype object.

The value of the Date prototype object is NaN.

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the output capabilities of Date objects
function millennium()
{
 return this.getFullYear()/1000;
}
// Register the new function
Date.prototype.millennium = millennium;
// Create a date and test the Date.millennium() method
myDate = new Date();
document.write(myDate.millennium())
document.write("
")
</SCRIPT>
</BODY>
</HTML>

See also: prototype property

Property attributes:
ReadOnly, DontDelete, DontEnum.

JavaScript Programmer's Reference

414

Cross-references:
ECMA 262 edition 2 – section – 15.2.3.1

ECMA 262 edition 2 – section – 15.9.4.1

ECMA 262 edition 2 – section – 15.9.5

ECMA 262 edition 3 – section – 15.9.4.1

Date.setDate() (Method)
Sets the day number within a month of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

JavaScript syntax: - myDate.setDate(aDateValue)

Argument list: aDateValue A day number within the current month

The result of this method will be the new time value of the containing object having been adjusted
by the values passed in as arguments.

The calculations are performed according to local time coordinates.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
myDate.setDate(1);
document.write("The first day of this month is a " + myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.getDate(), Date.prototype

D – Date.setFullYear() (Method)

415

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.32

ECMA 262 edition 3 – section – 15.9.5.36

Date.setFullYear() (Method)
Sets the full year value of a date/time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

- myDate.setFullYear(aYearValue)

- myDate.setFullYear(aYearValue, aMonthValue)
JavaScript syntax:

- myDate.setFullYear(aYearValue, aMonthValue,
aDateValue)

aDateValue An optional date within the month value
aMonthValue An optional 0 to 11 month value

Argument list:

aYearValue A full year value

The result returned by this method will be the new time value of the containing object, having been
adjusted by the values passed in as arguments.

The computations are carried out in local time coordinates.

ECMA mandates that the month and date should be optional arguments. If the date value is omitted,
the value is provided internally as if the getDate() method had been invoked to provide it.
Likewise the month value will be replaced by internally calling the getMonth() method.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
myDate.setFullYear(myDate.getFullYear() - 1);
document.write("A year ago on today's date, it was a " +
myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

JavaScript Programmer's Reference

416

See also: Date.getFullYear(), Date.getYear(), Date.prototype,
Date.setUTCFullYear(), Date.setYear()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.36

ECMA 262 edition 3 – section – 15.9.5.40

Date.setHours() (Method)
Sets the hours of a date/time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

- myDate.setHours(anHoursValue)

- myDate.setHours(anHoursValue, aMinutesValue)

- myDate.setHours(anHoursValue, aMinutesValue,
aSecondsValue)

JavaScript syntax:

- myDate.setHours(anHoursValue, aMinutesValue,
aSecondsValue, aMillisecondsValue)

aMillisecondsValue An optional value between 0 and 999
milliseconds

aMinutesValue An optional value between 0 and 59
minutes

anHoursValue A value between 0 and 23 hours

Argument list:

aSecondsValue An optional value between 0 and 59
seconds

The value is computed according to local time coordinates.

ECMA mandates that the minutes, seconds and milliseconds should be optional arguments. If the
milliseconds value is omitted, the current milliseconds value is used as if the value had been
supplied with a getMilliseconds() method. Likewise, the seconds value behaves as if it had
been supplied by a getSeconds() method, and the minutes as if getMinutes() was used, if
they are missing.

The result of this method is the new time value of the containing object having been adjusted by the
values passed in as arguments.

D – Date.setMilliseconds() (Method)

417

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDay1 = myDate.getDay();
for(myEnum=1; myEnum<24; myEnum++)
{
myDate.setHours(myDate.getHours()+1);
myDay2 = myDate.getDay();
if(myDay1 != myDay2)
{
document.write("In "+myEnum+" hours time it will be tomorrow.
");
}
else
{
document.write("In "+myEnum+" hours time it will still be today.
");
}
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.getHours(), Date.prototype, Date.setUTCHours()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.30

ECMA 262 edition 3 – section – 15.9.5.34

Date.setMilliseconds() (Method)
Sets the milliseconds value of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

JavaScript syntax: - myDate.setMilliseconds(aMillisecondValue)

Argument list: aMillisecondValue a value between 0 and 999 milliseconds

The computations are done based on extracting a local time value and changing the millisecond
count for that, before storing it back again as a local time value.

The result of this method is the new time value having had the milliseconds component set
according to the passed-in argument.

JavaScript Programmer's Reference

418

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDate.setMilliseconds(0);
myTime = myDate.getTime();
document.write("The time rounded down to the nearest second is " + myTime + "
Milliseconds");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getMilliseconds(), Date.prototype,
Date.setUTCMilliseconds()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.24

ECMA 262 edition 3 – section – 15.9.5.28

Date.setMinutes() (Method)
Sets the minutes of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

- myDate.setMinutes(aMinutesValue)

- myDate.setMinutes(aMinutesValue,
aSecondsValue)

JavaScript syntax:

- myDate.setMinutes(aMinutesValue,
aSecondsValue, aMillisecondsValue)

aMillisecondsValue An optional value between 0 and 999
milliseconds

aMinutesValue A value between 0 and 59 minutes

Argument list:

aSecondsValue An optional value between 0 and 59
seconds

The computation is done according to local time coordinates.

D – Date.setMonth() (Method)

419

ECMA mandates that the seconds and milliseconds should be optional arguments. If the
milliseconds value is omitted, the current milliseconds value is used as if the value had been
supplied with a getMilliseconds() method. Likewise, the seconds value behaves as if it had
been supplied by a getSeconds() method, if it is missing.

The result of this method is the new time value of the containing object having been adjusted by the
values passed in as arguments.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDate.setMilliseconds(0);
myDate.setSeconds(0);
myDate.setMinutes(0);
myTime = myDate.getTime();
document.write("The time rounded down to the nearest hour is " + myTime + "
Milliseconds");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getMinutes(), Date.prototype,
Date.setUTCMinutes()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.28

ECMA 262 edition 3 – section – 15.9.5.32

Date.setMonth() (Method)
Sets the month number of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

- myDate.setMonth(aMonthValue)
JavaScript syntax:

- (JavaScript 1.3 +) myDate.setMonth(aMonthValue,
aDateValue)

aDateValue An optional value in days of the monthArgument list:
aMonthValue A value between 0 and 11 in months

JavaScript Programmer's Reference

420

The result returned by this method will be the new time value of the containing object having been
adjusted by the values passed in as arguments.

The computations are carried out in local time coordinates.

ECMA mandates that the date should be an optional argument. If the date value is omitted, the
value is provided internally as if the getDate() method had been called to provide it.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
myDate.setDate(4);
myDate.setMonth(6);
document.write("The fourth of July this year is a " + myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.getMonth(), Date.prototype, Date.setUTCMonth()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.34

ECMA 262 edition 3 – section – 15.9.5.38

Date.setSeconds() (Method)
Sets the seconds value of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

- myDate.setSeconds(aSeconds
Value)

JavaScript syntax:

- (JavaScript 1.3 +) myDate.setSeconds(aSeconds
Value, aMillisecondsValue)

aMillisecondsValue An optional value between 0 and 999
milliseconds

Argument list:

aSecondsValue A value between 0 and 59 seconds

D – Date.setTime() (Method)

421

The values are computed as local time coordinates.

ECMA mandates that the milliseconds value should be an optional argument. If the milliseconds
value is omitted, the current milliseconds value is used as if the value had been supplied with a
getMilliseconds() method.

The result of this method is the new time value of the containing object having been adjusted by the
values passed in as arguments.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDate.setMilliseconds(0);
myDate.setSeconds(0);
myTime = myDate.getTime();
document.write("The time rounded down to the nearest minute is " + myTime + "
Milliseconds");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getSeconds(), Date.prototype,
Date.setUTCSeconds()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.26

ECMA 262 edition 3 – section – 15.9.5.30

Date.setTime() (Method)
Sets the time value of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Time value

JavaScript syntax: - myDate.setTime(aTimeValue)

Argument list:
aTimeValue A value measured in milliseconds since midnight on

any date.

JavaScript Programmer's Reference

422

The time value is extracted by clipping off any overflow past 24 hours. This is done with the
internal TimeClip() method. The value of the receiving object is set to the resulting value. That
same value is returned as the result of the method.

The result is a time clipped to modulo 24 hours.

Example code:
<HTML>
<HEAD></HEAD>
<BODY onMouseMove="moved()">
Move mouse horizontally to change day number
<DIV ID="ONE" STYLE="background-color:YELLOW">?</DIV>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
function moved(anEvent)
{
myDate.setTime(event.x * 1000000);
document.all.ONE.innerText = myArray[myDate.getDay()];
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.getTime(), Date.prototype, TimeClip()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.23

ECMA 262 edition 3 – section – 15.9.5.27

Date.setUTCDate() (Method)
Sets the UTC day within a month of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

JavaScript syntax: - myDate.setUTCDate(aDateValue)

Argument list: aDateValue A day number within the current month

The result returned by this method is the new time value of the containing object having been
adjusted by the values passed in as arguments.

The calculations are performed according to UTC time coordinates.

D – Date.setUTCFullYear() (Method)

423

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
myDate.setUTCDate(1);
document.write("The first day of this month is a " + myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.getUTCDate(), Date.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.33

ECMA 262 edition 3 – section – 15.9.5.37

Date.setUTCFullYear() (Method)
Sets the UTC full year value of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

- myDate.setUTCFullYear(aYearValue)

- myDate.setUTCFullYear(aYearValue,
aMonthValue)

JavaScript syntax:

- myDate.setUTCFullYear(aYearValue,
aMonthValue, aDateValue)

aDateValue An optional date within the month value
aMonthValue An optional 0 to 11 month value

Argument list:

aYearValue A full year value

The result returned by this method is the new time value of the containing object having been
adjusted by the values passed in as arguments.

The computations are carried out in UTC time coordinates.

ECMA mandates that the month and date should be optional arguments. If the date value is omitted,
the value is provided internally as if the getUTCDate() method had been called to provide it.
Likewise the month value will be replaced by internally calling the getUTCMonth() method.

JavaScript Programmer's Reference

424

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
myDate.setUTCFullYear(myDate.getFullYear() - 1);
document.write("A year ago on today's date, it was a " +
myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.getFullYear(), Date.getUTCFullYear(),
Date.prototype, Date.setFullYear()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.37

ECMA 262 edition 3 – section – 15.9.5.41

Date.setUTCHours() (Method)
Sets the UTC hours of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

- myDate.setUTCHours(anHoursValue)

- myDate.setUTCHours(anHoursValue,
aMinutesValue)

- myDate.setUTCHours(anHoursValue,
aMinutesValue, aSecondsValue)

JavaScript syntax:

- myDate.setUTCHours(anHoursValue,
aMinutesValue, aSecondsValue,
aMillisecondsValue)

aMillisecondsValue An optional value between 0 and 999
milliseconds

aMinutesValue An optional value between 0 and 59
minutes

anHoursValue A value between 0 and 23 hours

Argument list:

aSecondsValue An optional value between 0 and 59
seconds

D – Date.setUTCMilliseconds() (Method)

425

The value is computed according to UTC time coordinates.

ECMA mandates that the minutes, seconds and milliseconds should be optional arguments. If the
milliseconds value is omitted, the current milliseconds value is used as if the value had been
supplied with a getUTCMilliseconds() method. Likewise, the seconds value behaves as if it
had been supplied by a getUTCSeconds() method, and the minutes value as if
getUTCMinutes() was used, if they are missing.

The result of this method is the new time value of the containing object having been adjusted by the
values passed in as arguments.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDay1 = myDate.getDay();
for(myEnum=1; myEnum<24; myEnum++)
{
myDate.setUTCHours(myDate.getHours()+1);
myDay2 = myDate.getDay();
if(myDay1 != myDay2)
{
document.write("In "+myEnum+" hours time it will be tomorrow.
");
}
else
{
document.write("In "+myEnum+" hours time it will still be today.
");
}
}
</SCRIPT>
</BODY>
</HTML>

See also: Date.getHours(), Date.getUTCHours(), Date.prototype,
Date.setHours()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.31

ECMA 262 edition 3 – section – 15.9.5.35

Date.setUTCMilliseconds() (Method)
Sets the UTC milliseconds value of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

JavaScript Programmer's Reference

426

JavaScript syntax: - myDate.setUTCMilliseconds(aMillisecondValue)

Argument list: aMillisecondValue a value between 0 and 999 milliseconds

The computations are done based on extracting a UTC time value and changing the millisecond
count for that before storing it back, again as a UTC time value.

The result of this method is the new time value having had the milliseconds component set
according to the passed-in argument.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDate.setUTCMilliseconds(0);
myTime = myDate.getTime();
document.write("The time rounded down to the nearest second is " + myTime + "
Milliseconds");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getMilliseconds(), Date.getUTCMilliseconds(),
Date.prototype, Date.setMilliseconds()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.25

ECMA 262 edition 3 – section – 15.9.5.29

Date.setUTCMinutes() (Method)
Sets the UTC minutes of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Time value

- myDate.setUTCMinutes(aMinutesValue)

- myDate.setUTCMinutes(aMinutesValue,
aSecondsValue)

JavaScript syntax:

- myDate.setUTCMinutes(aMinutesValue,
aSecondsValue, aMillisecondsValue)

D – Date.setUTCMonth() (Method)

427

aMillisecondsValue An optional value between 0 and 999
milliseconds

aMinutesValue A value between 0 and 59 minutes

Argument list:

aSecondsValue An optional value between 0 and 59
seconds

The computation is done according to UTC time coordinates.

ECMA mandates that the seconds and milliseconds should be optional arguments. If the
milliseconds value is omitted, the current milliseconds value is used as if the value had been
supplied with a getUTCMilliseconds() method. Likewise, the seconds value behaves as if it
had been supplied by a getUTCSeconds() method, if it is missing.

The result of this method is the new time value of the containing object having been adjusted by the
values passed in as arguments.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDate.setUTCMilliseconds(0);
myDate.setUTCSeconds(0);
myDate.setUTCMinutes(0);
myTime = myDate.getTime();
document.write("The time rounded down to the nearest hour is " + myTime + "
Milliseconds");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getMinutes(), Date.getUTCMinutes(),
Date.prototype, Date.setMinutes()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.29

ECMA 262 edition 3 – section – 15.9.5.33

Date.setUTCMonth() (Method)
Sets the UTC month number of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

JavaScript Programmer's Reference

428

Property/method value type: Time value

- myDate.setUTCMonth(aMonthValue)
JavaScript syntax:

- myDate.setUTCMonth(aMonthValue, aDateValue)

aDateValue An optional value in days of the monthArgument list:
aMonthValue A value between 0 and 11 in months

The result returned by this method is the new time value of the containing object having been
adjusted by the values passed in as arguments.

The computations are carried out in UTC time coordinates.

ECMA mandates that the date should be an optional argument. If the date value is omitted, the
value is provided internally as if the getUTCDate() method had been called to provide it.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myArray = new Array("Sunday", "Monday", "Tuesday", "Wednesday", "Thursday",
"Friday", "Saturday");
myDate = new Date();
myDate.setUTCDate(4);
myDate.setUTCMonth(6);
document.write("The fourth of July this year is a " + myArray[myDate.getDay()]);
</SCRIPT>
</BODY>
</HTML>

See also: Date.getMonth(), Date.getUTCMonth(), Date.prototype,
Date.setMonth()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.35

ECMA 262 edition 3 – section – 15.9.5.39

Date.setUTCSeconds() (Method)
Sets the UTC seconds value of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

D – Date.setUTCSeconds() (Method)

429

Property/method value type: Time value

- myDate.setUTCSeconds(aSecondsValue)
JavaScript syntax:

- myDate.setUTCSeconds(aSecondsValue,
aMillisecondsValue)

aMillisecondsValue An optional value between 0 and 999
milliseconds

Argument list:

aSecondsValue A value between 0 and 59 seconds

The values are computed as UTC time coordinates.

ECMA mandates that the milliseconds value should be an optional argument. If the milliseconds
value is omitted, the current milliseconds value is used as if the value had been supplied with a
getUTCMilliseconds() method.

The result of this method is the new time value of the containing object having been adjusted by the
values passed in as arguments.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myDate = new Date();
myDate.setUTCMilliseconds(0);
myDate.setUTCSeconds(0);
myTime = myDate.getTime();
document.write("The time rounded down to the nearest minute is " + myTime + "
Milliseconds");
</SCRIPT>
</BODY>
</HTML>

See also: Date.getSeconds(), Date.getUTCSeconds(),
Date.prototype, Date.setSeconds()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.27

ECMA 262 edition 3 – section – 15.9.5.31

JavaScript Programmer's Reference

430

Date.setYear() (Method)
Sets a non-Y2K compliant year number of the time object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0
Deprecated in JavaScript 1.3

Property/method value type: Time value

JavaScript syntax: - myDate.setYear(aYearNumber)

Argument list:
aYearNumber If the year number is less than 100, then

1900 is added to it.

The result returned by this method is the new time value of the containing object having been
adjusted by the values passed in as arguments.

The computation is carried out in local time coordinates.

This method has difficulties with properly resolving the century, which is why it is deprecated and
should be replaced by Date.setFullYear() in your scripts.

As of ECMA edition 3 it is no longer included in the standard, although implementations may still
provide it for backwards compatibility.

Warnings:
❑ Although it is described in the ECMA standard, it is noted that this function is not formally part of

the standard and an ECMA compliant implementation need not provide it. Instead, the
Date.setFullYear() function should be used.

❑ Nevertheless, some implementations may support this function although it is strongly
recommended that you avoid its use.

See also: Date.getFullYear(), Date.getYear(), Date.prototype,
Date.setFullYear()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.38

ECMA 262 edition 3 – section – B.2.5

D – Date.toDateString() (Method)

431

Date.toDateString() (Method)
The value of the Date object is presented just as a date.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toDateString()

The time value is rounded off and only the date value is presented by this method.

Cross-references:
ECMA 262 edition 3 – section – 15.9.5.3

Date.toGMTString() (Method)
Converts a Date object to a string containing a GMT time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0
Deprecated in JavaScript 1.3

Property/method value type: String primitive

JavaScript syntax: - myDate.toGMTString()

This method returns a string value containing a GMT representation of the date and time value in
the receiving object. The contents of the string are implementation-dependent, but are intended to
represent the date in a convenient, human-readable form. However, this method is now deprecated
in favor of Date.toUTCString() which should be used in preference. It is provided merely for
compatibility with older systems.

As of ECMA edition 3 it is no longer included in the standard although implementations may still
provide it for backwards compatibility.

Warnings:
❑ This function is now deprecated and you should use toUTCString() instead.

JavaScript Programmer's Reference

432

See also: Cast operator, Cookie expires, Date.prototype,
Date.toUTCString()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.41

ECMA 262 edition 3 – section – B.2.6

Date.toLocaleDateString() (Method)
The value of the Date object is presented just as a date taking the present locale into consideration.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toLocaleDateString()

The time value is rounded off, and only the date value is presented by this method. Any locale
specific character encoding is performed as necessary. If the implementation is particularly well
endowed with internationalization code, this is an opportunity to reorganize the order of the day,
month and year components and also to substitute leading zeros if necessary. The month names
may also be spelled differently.

Cross-references:
ECMA 262 edition 3 – section – 15.9.5.6

Date.toLocaleString() (Method)
Converts a Date object to a string with the locale specific time.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toLocateString()

A string representing the date taking the locale into account.

D – Date.toLocaleTimeString() (Method)

433

The contents of the string that is returned, is implementation dependent. This method is intended
to represent the date in a convenient and human-readable form that is appropriate to the
geographic or cultural locale that is defined for the hosting environment.

In the Macintosh environment, the format should conform to that set by the date/time control
panel in accordance with the Apple guidelines for application developers.

See also: Cast operator, Date.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.39

ECMA 262 edition 3 – section – 15.9.5.5

Date.toLocaleTimeString() (Method)
The value of the Date object is presented just as a time taking the present locale into consideration.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toLocaleTimeString()

The date value is removed and only the time value is presented by this method. Any locale specific
character encoding is performed as necessary. If the implementation is particularly well endowed
with internationalization code, this is an opportunity to substitute leading zeros if necessary.

Cross-references:
ECMA 262 edition 3 – section – 15.9.5.7

Date.toSource() (Method)
Outputs a date formatted as a Date literal contained in a string.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myDate.toSource()

JavaScript Programmer's Reference

434

This is an alternative way to deliver a string version of a date value. In this case, it is formatted as a
Date literal and can then be used in an eval() function to assign another date.

If you run the example below (in N 4, or 6), it should yield something resembling this:

(new Date(961700949597))

Note that the date value is in milliseconds UTC time, and will vary, but you should see a very long
number like that.

Example code:
// Create a date object and display its source
myObject = new Date();
document.write(myObject.toSource());

See also: Date.prototype, Date.toString()

Date.toString() (Method)
Return a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toString()

This method returns a string primitive representation of the date value of the receiving object. The
contents of the string are implementation-dependent, but are intended to represent the date in a
convenient, human-readable form in the current time zone. This is likely to be a UTC time value
but implementations may perform some localization.

Warnings:
❑ If you plan to process the date string, be aware that MSIE presents its date format differently to the

Netscape browser. Here is the MSIE presentation style:
Wed Jun 21 20:20:03 UTC 2000

❑ And this is how Netscape presents the same time value:
Wed Jun 21 20:20:03 GMT-2300 (2000

❑ Note that one uses UTC time and the other uses GMT. There is a very odd time-zone offset with
the Netscape example and it is also missing a closing parenthesis. This may be platform- and
version-dependent.

❑ You can override this behavior by creating your own toString() method and associating it with
the Date.prototype. The example demonstrates how to override toString() with your own
custom handler that should yield the same result on all platforms.

D – Date.toTimeString() (Method)

435

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that overrides toString()
function myToString()
{
myYear = this.getFullYear();
myMonth = this.getMonth() + 1;
myDate = this.getDate();

return (myDate + "-" + myMonth + "-" + myYear);
}
// Register the new function
Date.prototype.toString = myToString;
// Create a date and test the replacement Date.toString() method
myDate = new Date();
document.write(myDate.toString())
document.write("
")
</SCRIPT>
</BODY>
</HTML>

See also: Cast operator, Date.prototype, Date.toSource(),
toString()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.2

ECMA 262 edition 3 – section – 15.9.5.2

Date.toTimeString() (Method)
The value of the Date object is presented just as a time.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toTimeString()

The date value is removed and only the time value is presented by this method.

Cross-references:
ECMA 262 edition 3 – section – 15.9.5.4

JavaScript Programmer's Reference

436

Date.toUTCString() (Method)
Converts a Date object to a string with UTC time.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: - myDate.toUTCString()

This method returns a string value. The contents of the string are implementation-dependent, but
are intended to represent the date in a convenient, human-readable form in UTC coordinates.

See also: Cast operator, Date.prototype, Date.toGMTString()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.40

ECMA 262 edition 3 – section – 15.9.5.42

Date.UTC() (Method/static)
A class based factory method for converting numeric values to Date objects.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: UTC time in milliseconds

- Date.UTC(aYear, aMonth)

- Date.UTC(aYear, aMonth, aDate)

- Date.UTC(aYear, aMonth, aDate,
anHour)

- Date.UTC(aYear, aMonth, aDate,
anHour, aMinute)

- Date.UTC(aYear, aMonth, aDate,
anHour, aMinute, aSecond)

- (JavaScript 1.3 +) Date.UTC(aYear, aMonth, aDate,
anHour, aMinute, aSecond,
aMillisecond)

JavaScript syntax:

aDate An optional date within the month value

D – Date.UTC() (Method/static)

437

aMillisecond An optional value between 0 and 999
milliseconds

aMinute An optional value between 0 and 59 minutes
aMonth An optional 0 to 11 month value
anHour A value between 0 and 23 hours
aSecond An optional value between 0 and 59 seconds
aYear A full year value
aValue A time in UTC milliseconds

Argument list:

This method returns a date value with the indicated date and time value.

When the Date.UTC() method is called, it interprets the arguments as UTC time values and
returns a number representing the UTC time in milliseconds.

The value stored in the new date object depends on the argument values that are supplied. The
arguments are all optional but are positional so, if an argument is missing, it is assumed to be the
last argument and so on.

Functionally, the algorithm that manufactures a new date value uses the internal MakeDay(),
MakeTime() and MakeDate() methods that we describe elsewhere.

If the year value is less than 99, then the date creation adds 1900 to it and assumes the date is in the
20th century. To avoid millennium problems, always specify a full year number.

Where arguments are omitted, zero values are assumed for hours, minutes and seconds. When all
three are missing, the time is assumed to be midnight.

An incomplete date with zero, one or two arguments will behave in an implementation dependent
way and might yield a different result depending on the platform supporting the script interpreter.

See also: Date(), Date.constructor, MakeDate(), MakeDay(),
MakeTime(), TimeClip()

Cross-references:
ECMA 262 edition 2 – section – 15.9.4.3

ECMA 262 edition 2 – section – 15.9.4.4

ECMA 262 edition 2 – section – 15.9.4.5

ECMA 262 edition 2 – section – 15.9.4.6

ECMA 262 edition 2 – section – 15.9.4.7

ECMA 262 edition 2 – section – 15.9.4.8

ECMA 262 edition 2 – section – 15.9.4.9

ECMA 262 edition 2 – section – 15.9.4.10

ECMA 262 edition 3 – section – 15.9.4.3

JavaScript Programmer's Reference

438

Date.valueOf() (Method)
Returns a number that is the date and time value for the receiving Date object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myDate.valueOf()

This method returns a numeric value representing the date and time in milliseconds UTC.

See also: Cast operator, Date.prototype, valueOf()

Cross-references:
ECMA 262 edition 2 – section – 15.9.5.3

ECMA 262 edition 3 – section – 15.9.5.8

Day from year (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

We need to calculate a reference point for each year number to know when it starts. We do this by
calculating the number of days since the timer started.

All non-leap years have 365 days with the usual number of days in each month. Leap years have an
extra day in February. The calculation shown below uses known leap years and non -eap years to
adjust the day numbers, and yield the day number of the first day of the given year:

DayFromYear(y) =

365 * (y - 1970) +

floor((y - 1969) / 4) -

floor((y - 1901) / 100) +

floor((y - 1601) / 400)

This function will return the start day for the year number passed in as an argument. See the
example code to see how to run this in a test harness.

D – Day number (Time calculation)

439

Example code:
<HTML>
<BODY>
<SCRIPT>
// Test day from year
document.write("<TABLE BORDER=1>");
for(var ii=1980; ii<2009; ii++)
{
 document.write("<TR>");
 document.write("<TD>");
 document.write(ii);
 document.write("</TD>");
 document.write("<TD>");
 document.write(dayFromYear(ii));
 document.write("</TD>");
 document.write("</TR>");
}
document.write("</TABLE>");

// Day from year function
function dayFromYear(aYear)
{
 var myDay = 365 * (aYear - 1970) +
 Math.floor((aYear - 1969) / 4) -
 Math.floor((aYear - 1901) / 100) +
 Math.floor((aYear - 1601) / 400);
 return myDay;
}
</SCRIPT>
</BODY>
</HTML>

See also: Broken down time, Date from time, Date number, Day within year,
Days in year, In leap year, Month from time, Time from year, Time
range, Year from time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.3

ECMA 262 edition 3 – section – 15.9.1.3

Day number (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Calculating day numbers uses the Math.floor() function. It is the largest integer remaining after
the time value is divided by the number of milliseconds per day.

JavaScript Programmer's Reference

440

The formula for calculating day number is shown here:

t = an instant in time measured in milliseconds relative to 01-January-1970 UTC.

msPerDay = 86400000

Day(t) = Math.floor(t/msPerDay)

Example code:
<HTML>
<BODY>
<SCRIPT>
// Measure time in milliseconds since 01-01-1970 and work
// out the day number
var myDate = Number(new Date());
document.write(dayNumber(myDate));
// Work out day number from milliseconds
function dayNumber(aMillisecondTime)
{
var msPerDay = 86400000
var myDay = Math.floor(aMillisecondTime/msPerDay);

return myDay;
}
</SCRIPT>
</BODY>
</HTML>

See also: Broken down time, Date from time, Date number, Day within year,
Month from time, Month number, Time from year, Time range, Time
within day, Week day

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.2

ECMA 262 edition 3 – section – 15.9.1.2

Day within year (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The day number within a year is calculated by subtracting the day at the start of the year from the
target day being evaluated. The difference is the day number within its year.

D – Day within year (Time calculation)

441

The formula for calculating day number is shown here:

t = an instant in time measured in milliseconds relative to 01-January-1970 UTC.

msPerDay = 86400000

Day(t) = floor(t/msPerDay)

All non-leap years have 365 days with the usual number of days in each month. Leap years have an
extra day in February. The calculation shown below uses known leap years and non-leap years to
adjust the day numbers and yield the day number of the first day of the given year and then use
that to work out the time in milliseconds when the year started:

DayFromYear(y) =

365 * (y - 1970) +

floor((y - 1969) / 4) -

floor((y - 1901) / 100) +

floor((y - 1601) / 400)

TimeFromYear(y) = msPerDay * DayFromYear(y)

YearFromTime(t) = The largest integer y to make TimeFromYear(y) less than or equal
to t.

DayWithinYear(t) = Day(t) - DayFromYear(YearFromTime(t))

Example code:
<HTML>
<BODY>
<SCRIPT>
// Work out a day number within the year
msPerDay = 86400000;
myMilliseconds = Number(new Date());
document.write(dayWithinYear(myMilliseconds));
// Work out day number within year based on time value
function dayWithinYear(aMilliseconds)
{
myDayNumber = dayNumber(aMilliseconds);
myYearFromTime = yearFromTime(aMilliseconds);
myDayFromYear = dayFromYear(myYearFromTime);
myDayWithinYear = myDayNumber - myDayFromYear;

return myDayWithinYear;
}
// Return year number based on time value
function yearFromTime(aMilliseconds)
{
myStartYear = 1970;

while(timeFromYear(myStartYear) < myMilliseconds)
{
myStartYear++
}

JavaScript Programmer's Reference

442

return myStartYear-1;
}
// Work out milliseconds at start of year
function timeFromYear(aYear)
{
myTime = msPerDay * dayFromYear(aYear);
return myTime;
}
// Work out day number from milliseconds
function dayNumber(aMillisecondTime)
{
myDay = Math.floor(aMillisecondTime/msPerDay);

return myDay;
}
// Day from year function
function dayFromYear(aYear)
{
myDay = 365 * (aYear - 1970) +
Math.floor((aYear - 1969) / 4) -
Math.floor((aYear - 1901) / 100) +
Math.floor((aYear - 1601) / 400);
return myDay;
}
</SCRIPT>
</BODY>
</HTML>

See also: Broken down time, Date from time, Date number, Day from year,
Day number, Month from time, Month number, Time from year,
Year from time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.4

ECMA 262 edition 3 – section – 15.9.1.4

Daylight savings time adjustment (Definition)
An adjustment to the local time value.

Availability: ECMAScript edition – 2

Daylight savings time is the practice of shifting the settings of your clock during the Summer or
Winter months to move some daylight time from the morning to the evening. The nature of this
shift is dependent on locality and cultural issues. The time may be shifted in the Summer relative to
standard time or it may be shifted in the Winter. In the UK, during the Winter, time is shifted
backwards by an hour. In the USA, clocks are shifted forwards in the Summer.

An ECMA compliant implementation is expected to be able to determine the correct daylight
savings time algorithm.

D – Days in year (Time calculation)

443

The algorithm is used to determine the Daylight Savings Time Adjustment value (known internally
as DaylightSavingTA). This value is measured in milliseconds and must depend only on the
following factors:

❑ The time since the beginning of the year

❑ Whether the year is a leap year

❑ The week day of the beginning of the year

❑ The geographic location

The ECMAScript implementation should decide whether daylight saving time would be in effect
according to the currently available algorithm. Historically, daylight saving time algorithms may
be different according to local political decisions and it would be too complicated trying to take
that into account.

It is possible that the underlying host environment provides some daylight savings time algorithm
support and the standard allows that this can be used if it is available.

The standard does not specify any particular algorithm. It just mandates that the algorithm should
only rely on a restricted sub-set of information.

Warnings:
❑ The standard suggests that daylight savings time support is really a matter for the host environment

and should be considered implementation and platform dependent. There are portability
implications in that respect.

See also: Broken down time, Calendar time, Date and time, Local time, Local
time zone adjustment, Universal coordinated time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.8

ECMA 262 edition 3 – section – 15.9.1.8

Days in year (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The number of days in a year depends on whether it is a leap year or not.

JavaScript Programmer's Reference

444

ECMA compliant implementations use an extended Gregorian system to map a day number to a
year number and to determine the month and date within that year. In this system, leap years are
summarized thus:

DaysInYear(y) =

365 if ((y modulo 4) != 0)

366 if ((y modulo 4) == 0) and ((y modulo 100) != 0)

365 if ((y modulo 4) == 0) and ((y modulo 400) != 0)

366 if ((y modulo 400) == 0)

Example code:
<HTML>
<BODY>
<SCRIPT>
// Test number of days in year
document.write("<TABLE BORDER=1>");
for(var ii=1980; ii<2009; ii++)
{
document.write("<TR>");
document.write("<TD>");
document.write(ii);
document.write("</TD>");
document.write("<TD>");
document.write(daysInYear(ii));
document.write("</TD>");
document.write("</TR>");
}
document.write("</TABLE>");
// Day from year function
function daysInYear(aYear)
{
if((aYear % 4) != 0)
{
return 365;
}

if(((aYear % 100) != 0) ||
((aYear % 400) == 0))
{
return 366;
}

return 365;
}
</SCRIPT>
</BODY>
</HTML>

See also: Broken down time, Day from year, In leap year, Time range,
Year number

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.3

ECMA 262 edition 3 – section – 15.9.1.3

D – DbPool object (Object/NES)

445

DbPool object (Object/NES)
An object of the class "DbPool" which provides a means of pooling connections to multiple databases.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

NES myDbPool = new DbPool();

NES myDbPool = new DbPool(aType, aServer,
aUser, aPassword, aDb);

NES myDbPool = new DbPool(aType, aServer,
aUser, aPassword, aDb, maxCon);

JavaScript syntax:

NES myDbPool = new DbPool(aType, aServer,
aUser, aPassword, aDb, maxCon, aFlag);

aType A database type
aServer A data source name or server name
aUser A user identifier
aPassword A valid password for the user
aDb A database name if required by the data source
maxCon A number indicating maximum connections

Argument list:

aFlag Commit/rollback flag value

Object properties: prototype

Object methods:
connect(), connected(), connection(),
disconnect(), majorErrorCode(),
majorErrorMessage(), minorErrorCode(),
minorErrorMessage(), storedProcArgs(), toString()

In JavaScript 1.2, you can connect to multiple databases and reuse connections. Each database can
have a pool of available and ready connections which can be created when needed.

A DbPool object is created in a similar way to when you connect a single database object to a
database. In this case however, you create a new DbPool object each time so you could maintain
connections to several databases which is not possible with a plain (JavaScript 1.1) database object.

To create an object instance of the DbPool class, use the new operator on the DbPool() constructor.

The database type would likely be one of:

❑ ORACLE

❑ SYBASE

❑ INFORMIX

❑ DB2

❑ ODBC

The server value would identify one of the available data source names.

The user and password details would correspond to valid users you have already created on your
database server.

JavaScript Programmer's Reference

446

Likewise the database name, although for some databases such as Oracle this may be done through
the data source description and so the argument should be left blank in that case.

The maximum number of connections depends on your licensing arrangements with your database
supplier and the capacity of your server and whether it needs to share connections with other services.

The commit flag indicates whether to commit (true) or rollback (false) a pending transaction.

See also: database.connect(), Netscape Enterprise Server, unwatch(),
watch()

Property JavaScript JScript NES Notes

prototype 1.2 + - 3.0 + -

Method JavaScript JScript NES Notes

connect() 1.2 + - 3.0 + -
connected() 1.2 + - 3.0 + -
connection() 1.2 + - 3.0 + -
disconnect() 1.2 + - 3.0 + -
majorErrorCode() 1.2 + - 3.0 + -
majorErrorMessage() 1.2 + - 3.0 + -
minorErrorCode() 1.2 + - 3.0 + -
minorErrorMessage() 1.2 + - 3.0 + -
storedProcArgs() 1.2 + - 3.0 + -
toString() 1.2 + - 3.0 + -

DbPool() (Constructor)
Used for creating new pools of connections to a database.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: DbPool object

JavaScript syntax: NES new DbPool(aType, aServer, aUser,
aPassword, aDb, maxCon, aFlag);

aDb The name of a database
aFlag Commit or roll back on close
aPassword A valid password for the user
aServer The name of a database server
aType A valid connection type
aUser A user registered for database access on the server

Argument list:

maxCon The maximum number of simultaneous connections

D – DbPool.connect() (Method)

447

When creating a new DbPool object, you need to indicate the type of database you are connecting
to. The following are examples of commonly available database types:

❑ ORACLE

❑ SYBASE

❑ INFORMIX

❑ DB2

❑ ODBC

Use one of these values in the first argument to this method.

You will also need to know the name of your target server, a valid username and password and, if
multiple databases are supported by your database server, then you will need to know the name of
the target database you want to connect to.

The last two arguments indicate the maximum number of connections available at once and a flag
to indicate the commit policy on closure. You can elect to automatically commit any changes
(dangerous) or roll back any uncommitted changes.

See also: database.connect()

DbPool.connect() (Method)
Connects the DbPool object to a database.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myDbPool.connect(aType, aServer, aUser,
aPassword, aDb, maxCon, aFlag);

aDb The name of a database
aFlag Commit or rollback on close
aPassword A valid password for the user
aServer The name of a database server
aType A valid connection type
aUser A user registered for database access on the server

Argument list:

maxCon The maximum number of simultaneous connections

When connecting to a database, you need to indicate the type of database you are connecting to.
The following are examples of commonly available database types:

❑ ORACLE

❑ SYBASE

❑ INFORMIX

❑ DB2

❑ ODBC

JavaScript Programmer's Reference

448

Use one of these values in the first argument to this method.

You will also need to know the name of your target server, a valid username and password and, if
multiple databases are supported by your database server, then you will need to know the name of
the target database you want to connect to.

The last two arguments indicate the maximum number of connections available at once and a flag
to indicate the commit policy on closure. You can elect to automatically commit any changes
(dangerous) or roll back any uncommitted changes.

See also: database.connect()

DbPool.connected() (Method)
A flag that indicates the connection status for this DbPool object.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myDbPool.connected()

This method returns a Boolean value that tells you whether the database object is connected to a
database or not.

See also: database.connected()

DbPool.connection() (Method)
Requests a connection object from the pool of available connections.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: Connection object

JavaScript syntax: NES myDbPool.connection(aName, aTimeout)

aName A connection nameArgument list:
aTimeout Timeout in seconds

The object returned by this method is used to maintain the connection state details between the
Netscape Enterprise Server and the back end database it is retrieving data from.

See also: Connection object

D – DbPool.disconnect() (Method)

449

DbPool.disconnect() (Method)
Disconnect from the database discarding all connections in the pool in the process.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myDbPool.disconnect()

It is a good idea to disconnect from the database when you know you won't need it anymore. This
is good practice and allows other processes to connect when resources are scarce.

Until the database is connected again, only the connect() and connected() methods have
any meaning.

See also: database.disconnect()

DbPool.majorErrorCode() (Method)
Returns an error code value for an error that happened in the database or the interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myDbPool.majorErrorCode()

For a status code value of 5 when using the Oracle database, this yields a return code from the
Oracle Call-level interface.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the SQL server message number.

For a status code value of 7 when using the Informix database, this yields the Informix error code.

For a status code value of 7 when using the Sybase database, this yields the DB-Library error number.

See also: Connection.majorErrorCode(),
database.majorErrorCode(), Error handling

JavaScript Programmer's Reference

450

DbPool.majorErrorMessage() (Method)
Returns an error message text for an error that happened in the database or the interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myDbPool.majorErrorMessage()

For a status code value of 5 when using the Oracle database, this yields a text string describing
the server error.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields a text string from SQL server.

For a status code value of 7 when using the Informix database, this yields the text string from the
vendor error library.

For a status code value of 7 when using the Sybase database, this yields a text string from the
DB-Library.

See also: Connection.majorErrorMessage(),
database.majorErrorMessage(), Error handling

DbPool.minorErrorCode() (Method)
Returns a supplementary error code value for an error that happened in the database or the
interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myDbPool.minorErrorCode()

For a status code value of 5 when using the Oracle database, this yields an operating system error
code from the Oracle Call-level interface.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the severity level from SQL server.

For a status code value of 7 when using the Informix database, this yields the ISAM error code.

For a status code value of 7 when using the Sybase database, this yields the severity level of the
error from the DB-Library.

See also: Connection.minorErrorCode(),
database.minorErrorCode(), Error handling

D – DbPool.minorErrorMessage() (Method)

451

DbPool.minorErrorMessage() (Method)
Returns a supplementary error message text for an error that happened in the database or the
interface to it.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myDbPool.minorErrorMessage()

For a status code value of 5 when using the Oracle database, this yields the Oracle server name.

For a status code value of 5 when using SQL server through the ODBC database interface, this
yields the SQL server name.

For a status code value of 7 when using the Informix database, this yields a text string describing
the ISAM error.

For a status code value of 7 when using the Sybase database, this yields the text of the operating
system error from the DB-Library.

See also: Connection.minorErrorMessage(),
database.minorErrorMessage(), Error handling

DbPool.prototype (Property)
The prototype for the DbPool object that can be used to extend the interface for all DbPool objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: DbPool object

NES DbPool.prototype
JavaScript syntax:

NES myDbPool.constructor.prototype

Refer to:
prototype property

DbPool.storedProcArgs() (Method)
Creates a prototype for a stored procedure and controls the argument passing.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: Stproc object

JavaScript syntax: NES myDbPool.storedProcArgs()

JavaScript Programmer's Reference

452

The prototype stored procedure object supports input and output parameters. This prototype
object is used to indicate the direction of values in these parameters.

See also: database.storedProcArgs()

DbPool.toString() (Method)
Returns a string primitive version of the DbPool object.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myDbPool.toString()

The value of the object is converted to a string value that represents its value.

See also: database.toString()

DD object (Object/HTML)
An object that represents the <DD> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myDD = myDocument.all.anElementID

IE myDD = myDocument.all.tags("DD")[anIndex]

IE myDD = myDocument.all[aName]

- myDD =
myDocument.getElementById(anElementID)

- myDD = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myDD = myDocument.getElementsByTagName
("DD")[anIndex]

HTML syntax: <DD> ... </DD>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

D – DD object (Object/HTML)

453

Object properties: noWrap

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

This object represents the definition value of an item in a definition list. It corresponds to a related
definition term maintained in an DT object. DT and DD objects are paired up and maintained
together as a member of the DL collection.

The <DD> tag is a block-level tag. That means that it forces a line break before and after itself unless
the DL is compacted.

See also: DL object, DT object, Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

noWrap - 3.0 + - 4.0 + - - - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

454

DD.noWrap (Property)
A switch to control text wrapping within the <DD> block.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDD.noWrap

This is a Boolean value that controls whether the textual content is wrapped at the right hand
window border or not.

If the value false is assigned to this property, then words will wrap as the page is drawn. This is
good and is the way you would expect a browser to behave. The text will flow according to the
space available.

If the value true is assigned to this property, the line of text will continue to the right until a

or other block level tag is encountered. This will force the horizontal width of the page to extremely
large and the user will need to scroll furiously to be able to see the text and then scroll back again
for the start of the next line.

Warnings:
❑ Only use this if you plan to place line breaks at frequent intervals yourself and really do need to

control the line breaks manually.

Debugger (Definition)
A tool to help with the location of bugs in your script.

See also: Constraint, Debugging – client side, Error handling, JavaScript
debugger console

debugger (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Debugging - client side (Advice)
How to debug faulty client-side scripts.

D – Debugging - client side (Advice)

455

When you are trying to debug client-side code, there are not many ways you have available for
seeing what is going on. Usually, you have to resort to placing a document.writes() into the
body of the page or perhaps putting up an alert box when the script runs.

In Netscape, you can bring up a debugging console by typing the string 'javascript:' into the
location box and pressing return. Because you have not indicated any action to be passed to the
interpreter, it opens the debugging window by default.

Another way to do some very effective debugging is to trap the onError event handler with your
own debugger script. You would implement the debugging error handler as something that opens
a window and places HTML into it. Then you attach the handler to the current window with the
self.onerror property.

You might find it useful to open a document window with a "text/plain" MIME type so you can
simply use document.writeln() actions to display some debugging text.

A useful technique when debugging form handlers is to loop through all the elements in the form,
presenting them in an alert() box for inspection. Of course this is useful for all kinds of
collections, not just forms.

The example script illustrates three different ways to do debugging. There are lots of other
techniques too.

The first example simply uses document.write() and alert() methods to feed information
back to the user.

The second example is more sophisticated and attaches an error handler to the onError event
hook. This works in MSIE. In Netscape, it was expected to work, but as of the pre-release version
PR3 it still would not catch the errors. Since Netscape is very likely to undergo rapid and frequent
updates for the foreseeable future, this might start to work quite soon. Nevertheless, Netscape
provides the JavaScript console which may be helpful too.

The third example is based around a call to the embedded Java VM and requests that it prints a
message on its console display surface. Again, whether this works may be browser and platform
dependent but it is a starting point for custom building your own suite of debugging tools.

The fourth example shows how to debug form values without causing a form submit or page refresh.

JavaScript Programmer's Reference

456

Example code:
<!-- Simple debugging example -->
<HTML>
<BODY>
<SCRIPT LANGUAGE="JavaScript">
// Write text into the document body at this point
document.write('Your text here');
// Present a dialog box with a message
alert('Your other text here');
</SCRIPT>
</BODY>
</HTML>

<!-- Custom debugging example -->
<HTML>
<HEAD>
<SCRIPT>
function debugHandler(aMessage, aURL, aLineNumber)
{
 myText = "An error has occurred\n\nThe message is\n\n";
 myText += aMessage + "\n\n at URL\n\n";
 myText += aURL + "\n\non line number ";
 myText += aLineNumber;

 alert(myText);

 return true;
}
</SCRIPT>
</HEAD>

<BODY>
<SCRIPT>
// Note that this may not work in Netscape Navigator
self.onerror = debugHandler("This is an example error", "local site", 21);
myError = null.open();
</SCRIPT>
</BODY>
</HTML>
--
// Java console debugging
// Calls the Java console output to print a debug message
function consoleDebug(errMessage)
{
 java.lang.System.out.println(errMessage);
}

someError = "true";

// Call the console debug output like this
if(someError == true)
{
 consoleDebug("Display this text on the Java Console");
}

D – Debugging - server side (Definition)

457

--
// A form debugger provided by Jon Stephens
// This can pasted into the location window if it is prefixed
// with javascript: and if all the line breaks and extra
// spaces are removed
function formDebug()
{
 var output = "";
 for (var i = 0; i < document.forms.length; i++)
 {
 for (var j = 0; j < document.forms[i].elements.length; j++)
 {
 output += "Form: " + i
 + " Elem: " + j
 + " Type: "
 + document.forms[i].elements[j].type + "; "
 + document.forms[i].elements[j].name + ": "
 + document.forms[i].elements[j].value + "
"
 }
 }
 var newWin = window.open("","newWin","width=350,height=350");
 with(newWin.document)
 {
 open();
 write(output);
 close();
 }
}

formDebug();

See also: Arguments.callee, Arguments.caller, Debugging – server side, Dialog
boxes, Document.open(), Input-output, JavaScript debugger console, Object
inspector, Window.alert(), Window.confirm(), Window.onerror,
Window.prompt()

Cross-references:
Wrox Instant JavaScript – page – 205

Web-references:
http://msdn.microsoft.com/scripting/default.htm?/scripting/debugger/
http://developer.netscape.com/tech/javascript/index.html?content=/software/jsdebug.html

Debugging - server side (Definition)
How to debug faulty stand-alone scripts.

Debugging stand-alone, and server-side scripts is essentially the same.

You don't necessarily have a document.write() method but you will certainly have a means of
printing text. In the case of a server-side script, that may be the way you construct the response so you
can put debugging information in the response, so that it can be viewed by from the web browser.

You might not want to do that if you are debugging some security related services though. In that case,
your web server probably has a logging capability and you might be able to write to the error log.

http://msdn.microsoft.com/scripting/default.htm?/scripting/debugger/
http://developer.netscape.com/tech/javascript/index.html?content=/software/jsdebug.html

JavaScript Programmer's Reference

458

Example code:
// Nombas ScriptEase debugging is like thisClib.puts('Your message text here');

See also: Debugging – client side, Input-output

Decimal point (.) (Delimiter)
A delimiter that marks the beginning of the fractional part of a floating point value.

Availability: ECMAScript edition – 2
Opera – 3.0

A decimal point separates the integer and fractional parts of a floating point value. The character
being used may need to alter depending on the locale of the hosting environment.

If your national language routines change the formatting of numbers, be aware that commas and
dots mean different things.

A dot is really a decimal point. A comma is a thousands separator.

In some formatting regimes, thousands may be separated by a space character and a comma may be
used in place of a dot (or vice versa).

Note also that it is a convention in financial reports to show negative values in parentheses but as a
positive value.

All of this can make it difficult to parse numeric values that a user may enter into a text field.

Warnings:
❑ Localization of JavaScript implementations is still undergoing some development.

See also: Floating point, Localization, Object property delimiter (.), Property accessor

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 7.8.3

Decimal value (Definition)
A numeric value based on a radix of 10.

A decimal value is an integer composed of only the following characters:

0 1 2 3 4 5 6 7 8 9

Decimal values are never prefixed by a zero character.

The sequence carries over for the next increment when each column reaches the value 9. Thus:

0 1 2 3 4 5 6 7 8 9 10 11 12

D – Decimal value (Definition)

459

Converting between decimal, hexadecimal, and binary values is quite complicated. Here are the
first 16 values in all number bases:

Binary Octal Decimal Hexadecimal

0000 00 0 0

0001 01 1 1

0010 02 2 2

0011 03 3 3

0100 04 4 4

0101 05 5 5

0110 06 6 6

0111 07 7 7

1000 10 8 8

1001 11 9 9

1010 12 10 A

1011 13 11 B

1100 14 12 C

1101 15 13 D

1110 16 14 E

1111 17 15 F

Warnings:
❑ Beware when you prefix decimal values with a zero character. You may want to justify a column of

figures. If you add leading zero characters to a numeric string, if that string is subsequently parsed
back to a numeric value, you may inadvertently export the value as a decimal but import it as an
octal value. This can lead to an extremely difficult to diagnose fault in your software because the
parsers sometimes add some intelligence and will correctly interpret the value as decimal if the
characters 8 or 9 are present but otherwise interpret it as octal notation.

❑ Be careful that you remove any leading zero characters from the text strings that you plan to convert
using the numeric parser.

❑ This may be implementation dependent behavior to some extent.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Create a 0-255 lookup table
document.write("<TABLE BORDER=1>");
document.write("<TR><TH>Index</TH>");
document.write("<TH>Binary</TH>");
document.write("<TH>Octal</TH>");
document.write("<TH>Hex</TH>");
document.write("<TH>Char</TH></TR>");
for(ii=0; ii<256; ii++)
{

JavaScript Programmer's Reference

460

 myBinary = ii.toString(2);
 myBinaryPadding = "00000000".substr(1,(8-myBinary.length));

 myOctal = ii.toString(8);
 myOctalPadding = "0000".substr(1,(4-myOctal.length));

 myHex = ii.toString(16);
 myHexPadding = "00".substr(1,(2-myHex.length));

 myChar = String.fromCharCode(ii);

 document.write("<TR ALIGN=RIGHT><TD>");
 document.write(ii);
 document.write("</TD><TD>");
 document.write(myBinaryPadding+myBinary);
 document.write("</TD><TD>");
 document.write(myOctalPadding+myOctal);
 document.write("</TD><TD>");
 document.write(myHexPadding+myHex.toUpperCase());
 document.write("</TD><TD>");
 document.write(" "+myChar);
 document.write("</TD></TR>");
}
document.write("</TABLE>");
</SCRIPT>
</BODY>
</HTML>

See also: Hexadecimal value, Integer constant, Number.toString(), Octal value

Declaration (Definition)
Declares the attributes of an identifier.

A declaration gives the type and scope of an identifier.

It specifies whether the identifier refers to a function or a variable and indicates what its name is.
The scope is indicated by the placement. Variables are scoped globally if they are created outside of
a function script source block.

When storage is being allocated, a declaration is sometimes called a definition. This means you
might declare a function and define a variable. If you indicate the size of an array then that would
be a definition.

See also: Definition, Initialization, JavaScript language, Scope chain, Variable Declaration

Declared function (Definition)
A function can be declared in the script source text.

Availability: ECMAScript edition – 2

D – decodeURI() (Function)

461

Declared functions are added to the script source text to provide additional functions that are only
needed while that script is being executed.

Declaring a function in a script requires a function declaration, which includes the name of the
function, its arguments and a block of source script code to be executed when the function is called.

Through the Prototype Inheritance mechanism, this script code will be called in preference to any
identically named function higher up the inheritance chain. This provides a way to override
methods in parent object classes, which mimics (but is not identical to) the sub-class/super-class
relationships in class-based languages.

See also: Function object, function(...) ...

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 3 – section – 10.1.1

decodeURI() (Function)
This ECMA defined function can be used to decode an entire URI value that was encoded with the
encodeURI() function.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - decodeURI(anEncodedURI)

Argument list: anEncodedURI A previously encoded URI

This function is the complement of the encodeURI() function that we describe elsewhere.

A string that might have been encoded with the encodeURI() function either locally or remotely,
can be converted back to a normal URI string with this function.

As far as ECMAScript is concerned, this supersedes the unescape() function, which is flagged as
deprecated functionality in the JScript 5.5 documentation.

Note that the hash character (#) is not decoded.

See also: decodeURIComponent(), encodeURI(),
encodeURIComponent(), escape(), unescape(), URI
handling functions

Cross-references:
ECMA 262 edition 3 – section – 15.1.3.1

JavaScript Programmer's Reference

462

decodeURIComponent() (Function)
This ECMA defined function can be used to decode a URI component value that was encoded with
the encodeURIComponent() function.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - decodeURIComponent(anEncodedComponent)

Argument list: anEncodedComponent A previously encoded component

This function is the complement of the encodeURIComponent() function that we describe elsewhere.

A string that might have been encoded with the encodeURIComponent() function either locally
or remotely, can be converted back to a normal URI string with this function.

This enhances the encode/decode facilities of the compliant browser over and above what used to
be available with escape()/unescape() functions.

See also: decodeURI(), encodeURI(), encodeURIComponent(),
escape(), unescape(), URI handling functions

Cross-references:
ECMA 262 edition 3 – section – 15.1.3.2

Decrement value (--) (Operator/postfix)
Pre or post decrementing operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

- --anOperand
JavaScript syntax:

- anOperand--

Argument list: anOperand A numeric value that can be decremented

The operand is decremented by one.

D – Deep copying (Definition)

463

A pre-fixing decrementor will subtract 1 from the operand value before it is used in the expression.

A post-fixing decrementor will subtract 1 from the operand after it is used in the expression.

Be careful how you use this pre/post placement as you can easily generate 'off by one' errors in
your algorithms by placing the operator on the wrong side of the operand.

This operator is more or less functionally equivalent to:
anOperand -= 1

which is equivalent to:
anOperand = anOperand – 1

See also: Additive expression, Additive operator, Increment value (++),
Negation operator (-), Postfix decrement (--), Postfix expression,
Postfix increment (++), Prefix decrement (--), Prefix expression,
Prefix increment (++)

Cross-references:
ECMA 262 edition 2 – section – 11.3.2

ECMA 262 edition 3 – section – 11.3.2

Deep copying (Definition)
Making a duplicate of objects, property by property.

See also: Array.toSource(), Copying objects

default: (Label)
A target label for use with the switch statement as a catch-all for any unmatched cases.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0

See also: Label, Selection statement, switch(...) ... case: ... default: ...

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

ECMA 262 edition 3 – section – 12.11

JavaScript Programmer's Reference

464

defaultStatus (Property)
The default status text of the window.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type:
String primitive

- defaultStatus

- defaultStatus = aString

- myWindow.defaultStatus

JavaScript syntax:

- myWindow.defaultStatus = aString

Argument list:
aString A new value for the default status

Refer to:
Window.defaultStatus

DefaultValue() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function returns the default value for the object, given that the caller indicates a
preferred result type in the hint argument.

The hint gives some suggestion to the receiving object about the preferred result type. This is a
fairly ambiguous result. Generally if you ask for a string you will get a string. Asking for a number
will generally yield a number. However, there are cases where the DefaultValue for an object
cannot be rendered into the preferred type and you may generate a run-time error.

If you don't specify any hint value at all, the DefaultValue will first assume you want a Number
unless the receiver is a Date object in which case it assumes a String is required.

See also: Internal Method

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.6

ECMA 262 edition 3 – section – 8.6.2.6

D – Defensive coding (Advice)

465

Defensive coding (Advice)
Allowing your scripts to be downwards compatible and coding for portability and robustness.

Coding defensively is to check for the existence of a feature before using it. Also to check that
objects are defined before trying to modify their properties. You can check the version of the
browser and switch various features of your scripts on and off accordingly.

With a little thought and planning, you can contrive your script design so that it degrades gracefully
if it is run on less capable browser versions than that which you originally designed it for.

Defensive coding also covers cros- platform and cross-browser support. Running scripts in
different browsers often exposes the differences between them. This may be simply a property
value that is available in one context but not another. A more serious problem might be an entire
object class that is missing from particular implementations.

Sometimes the differences are more subtle than that, and you may just find that a document object
model needs to be traversed in a different way, depending on the browser being used.

Example code:
// Check for the existence of an object before using it
if(document.layers)
{
 document.write(document.layers);
}
else
{
 document.write("There is no layers array in this browser!");
}

See also: Browser version compatibility, Compatibility, Cross browser compatibility

Definition (Definition)
Defines the storage for an identifier.

A definition is a declaration that also allocates storage for the item being declared.

For example:

new Array();

creates an empty Array object. As there is no indication of the likely size the array will require, no
storage is allocated for array elements.

Now consider this:

new Array(10);

new Array("aaa", "bbb", "ccc");

JavaScript Programmer's Reference

466

Each of these declarations require some storage to be allocated. In the first entry, space for 10
elements is reserved in the array. In the second, there are three element pointers created and the
storage for the three items as well.

Thus we have a definition.

See also: Argument, Compliance, Compound statement, Constraint, Declaration,
Deprecated functionality, Diagnostic message, false, Function,
function(...) ..., Implementation, Object, Parameter,
RValue, true, Variable Declaration

DEL object (Object/HTML)
An object that represents a HTML tag within the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myDEL = myDocument.all.anElementID

IE myDEL = myDocument.all.tags("DEL")[anIndex]

IE myDEL = myDocument.all[aName]

- myDEL = myDocument.getElementById(anElementID)

- myDEL = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myDEL =
myDocument.getElementsByTagName("DEL")[anIndex]

HTML syntax: ...

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: cite, dateTime

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

You can add mark-up to a document to strike through text as if it were deleted. This deleted text
block can also have a citation reference that links to a description of why the deletion took place.

The DOM level 1 specification includes this in the ModElement object functionality.

See also: Element object, INS object, ModElement object

D – DEL.cite (Property)

467

Property JavaScript JScript N IE Opera DOM HTML Notes

cite 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
dateTime 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

DEL.cite (Property)
A URL that references a document that describes why the item was deleted.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDEL.cite

The URL of the document that describes why the text was marked as deleted is noted in this property.

JavaScript Programmer's Reference

468

DEL.dateTime (Property)
The date and time that the deletion occurred.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDEL.dateTime

This is the date and time value for when the deletion change occurred. If you are maintaining
change control down to the sub-document level in a content management system, these values can
be defined from change records in the database.

delete (Operator/unary)
Property deletion operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- delete anObject

- delete myArray[anIndex]
JavaScript syntax:

- delete myObject.aProperty

anIndex The index of the item to be deleted from the
array.

anObject An object to be deleted

Argument list:

aProperty An object property to be removed

The delete operator is used to delete a property from an object or delete a reference to an object. It
can also be used to delete an element from an array.

Using the new operator, a new object is created with a reference count of zero. Assigning that
object creation to a variable increments the reference count. Saving it as an object property also
increments the reference count. Storing it in an array does likewise.

All of these are simply references to the same object.

Deleting a variable containing a reference to an object decrements the reference count for that object.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

D – Delete() (Function/internal)

469

Warnings:
❑ The delete operator will not work with MSIE version 3.02 or earlier. It also won't work in

Netscape 2.02.

❑ Netscape does not generate an error in version 3.0 if the delete operator is used but it is functionally
ignored and does nothing.

❑ In JavaScript version 1.0 and version 1.1, the delete operator does not actually delete any object
properties. Instead it sets them to null. If you then subsequently test for the existence of those
properties, they might not prove false when you expect them to.

❑ In the JavaScript 1.2 implementation, in version 4 of Netscape , the behavior of the delete operator as it
applies to variables is slightly different. Any variable declared with the var statement is considered to
be permanent and cannot be deleted. This will generate an error if you try. This happens for the case
when you enclose the script in <SCRIPT LANGUAGE="JAVASCRIPT1.2"> tags.

❑ There is some difference between Netscape and MSIE as to whether global variables can be deleted.
The safest assumption is that they cannot, so to remain portable, your script should not try.

Example code:
// Create a new object
myObject = new Object;
// Then delete a reference to it
delete myObject;

See also: Associativity, Garbage collection, Grouping operator (),
JSObject.removeMember(), Memory leak, Object object, Operator
Precedence, Property attribute, Reference counting, Unary expression,
Unary operator, Variable statement

Cross-references:
ECMA 262 edition 2 – section – 11.1.4

ECMA 262 edition 2 – section – 11.4.1

ECMA 262 edition 3 – section – 11.4.1

Wrox Instant JavaScript – page – 21

Wrox Instant JavaScript – page – 28

Delete() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function removes the named property from the object.

JavaScript Programmer's Reference

470

This function does not walk the prototype inheritance chain. If it did and a shared property got
deleted, that property would disappear from ALL the objects that shared it.

If the property does not exist in the receiving object, the Delete() is assumed to have been
successful anyway and true is returned.

If the property is present but has the DontDelete attribute, it cannot be removed so false is returned.

If the property can be deleted, then it is removed and true is returned.

See also: Internal Method

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.5

ECMA 262 edition 3 – section – 8.6.2.5

Deprecated functionality (Pitfall)
Some language features are to be discontinued in later versions of the language.

Deprecated functionality describes a feature that is likely to be removed and should not be used in
new developments.

There are various features that interpreter manufacturers add from time to time and which become
standardized in a different and possibly better way, or that everyone agrees should be disregarded.
Netscape's data tainting functionality is a good example of a dead end that was introduced and
withdrawn soon after.

The following is a list of such deprecated functionality that should be avoided:

❑ Data tainting

❑ JavaScript extensions to HTML character entities

Warnings:
❑ If you use deprecated functionality, your script may fail when it is deployed on other platforms or

when the platform it is hosted on is revised.

See also: Definition, JavaScript entity, Obsolescent, Pitfalls

D – Desktop JavaScript (Definition)

471

Desktop JavaScript (Definition)
Control of desktop automation with JavaScript.

You can install a JavaScript interpreter that you can use to automate activity on your desktop. On a
Macintosh, this kind of activity has been possible for some time with HyperCard, AppleScript and
the Macintosh Programmer's Workshop shell environment. Now you can install products such as
Nombas ScriptEase.

On Windows, you could have used DOS batch files and if you had installed the NeXTStep
developer tools in the past, a Bourne shell was possible. Other alternatives have also been
available. Now, you can use JScript within the Windows Script Host environment. You can also use
ScriptEase on Windows.

On UNIX, a variety of possibilities are available. ScriptEase again is useful but there are other
freely available JavaScript interpreters that you can download and build yourself. It just depends
how much work you want to do before you can start scripting.

See also: Host environment, Platform, Server-side JavaScript

Cross-references:
Wrox Instant JavaScript – page – 5

detachEvent() (Method)
A means of detaching events from windows and documents that were previously attached with the
attachEvent() method.

Availability: JScript – 5.0
Internet Explorer – 5.0

IE detachEvent(anEventName)
JavaScript syntax:

IE myWindow.detachEvent(anEventName)

Argument list: anEventName The name of an event to be handled

See also: .htc, <STYLE>, Document.attachEvent(),
Document.detachEvent(), Window.attachEvent(),
Window.detachEvent()

Determining the object type (Useful tip)
To determine what kind of object type you have, this function may be useful.

This checks the type of the value passed in. If it is an object, then it looks at the constructor and
returns the constructor's name. This works in Netscape 4.7 and MSIE version 5 and should work on
other browsers, but check before deploying that it works on all the browsers you need it to.

JavaScript Programmer's Reference

472

Example code:
<HTML>
<BODY>
<SCRIPT>
// Determine object type
function what_kind(aValue)
{
var myType = typeof(aValue);
if (myType == "object")
{
return aValue.constructor.name;
}
else
{
return myType;
}
}
document.write(what_kind(1));
</SCRIPT>
</BODY>
</HTML>

See also: constructor.name

Developing JavaScript source code (Definition)
Techniques for easing developer headaches.

Refer to:
Preferences

DFN object (Object/HTML)
An object representing the HTML content delimited by the <DFN> HTML tags.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myDFN = myDocument.all.anElementID

IE myDFN = myDocument.all.tags("DFN")[anIndex]

IE myDFN = myDocument.all[aName]

JavaScript syntax:

- myDFN = myDocument.getElementById(anElementID)

D – DHTML (Standard)

473

- myDFN = myDocument.getElementsByName(aName)[anIndex]
JavaScript syntax:

- myDFN =
myDocument.getElementsByTagName("DFN")[anIndex]

HTML syntax: <DFN> ... </DFN>

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

DHTML (Standard)
Dynamic HTML controlled by JavaScript. A fourth generation browser technology for dynamically
altering the document that describes a web page.

You might be forgiven for thinking DHTML is a new kind of HTML. Actually it’s not really. It’s
just plain old HTML code. What makes it dynamic are the supporting technologies that operate on
it. Without them, there is nothing dynamic about HTML at all.

JavaScript Programmer's Reference

474

Principally, it’s the JavaScript and CSS style sheet support that makes HTML dynamic and it’s the
access to the HTML through a Document Object Model that allows us to operate on the HTML in
the document.

Things are complicated a little because the dynamism can be applied at the server-end and really
what we mean by DHTML is a client-end activity. Server created HTML, even though it's done
with JavaScript, is not really DHTML.

Perhaps a less ambiguous description is CSS and DOM scripting. That allows some differentiation
of the appearance vs. structural things you can accomplish with script driven documents.

See also: Dynamic HTML

DHTML Behavior (Definition)
A mechanism for enhancing the dynamic capabilities of HTML.

Refer to:
Element.addBehavior()

Diagnostic message (Definition)
A message from the interpreter warning you about a script error.

A diagnostic message is what the implementation presents when it detects an error.

These are normally presented as an alert box in web browsers.

In other implementations such as Web Server back ends, server-side JavaScript failures may be recorded
in an error log or written into the pages being sent to the client. However, you should be careful to
remove any debugging stubs before launching your service as these messages could potentially divulge
some valuable security related information about your server (and how to hack it).

You should always know where the error logs are written for your implementation. On a UNIX
platform, it is helpful to open an additional terminal console and pipe the output of the error log to
the screen. This can be done with the tail command like this:
tail -f error.log

See also: Constraint, Definition, Error, Error handling

Dialog boxes (Definition)
User communication is effected by means of several different dialog boxes.

Dialog boxes are generally modal. That means they need to be acted on and dismissed by the user.
Some are scriptable and others are not. Your operating system will determine whether modality
extends across the whole system or just to the application. If modality is system-wide, you won't be
able to switch applications while a modal dialog is on display.

D – Dialog object (Object/JScript)

475

Here are a few that you might encounter routinely when scripting:

❑ Window.alert()

❑ Window.confirm()

❑ Window.prompt()

❑ Window.showHelp()

❑ Window.showModalDialog()

❑ Window.showModelessDialog()

One that you cannot script is the secure login panel presented to allow you to authenticate your access
to a secure web page. That is controlled by the server, and your browser should not provide any
script-driven interface to it.

See also: Debugging – client side, Window.alert(), Window.confirm(),
Window.prompt(), Window.showHelp(),
Window.showModalDialog(), Window.showModelessDialog()

Dialog object (Object/JScript)
This is the parent object of a frame within a modal dialog window.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Window object

IE myDialog = myFrame.parent
JavaScript syntax:

IE myDialog = myWindow.parent

Event handlers:
onAfterPrint, onBeforePrint, onBeforeUnload, onBlur,
onDragDrop, onError, onFocus, onHelp, onLoad,
onMouseMove, onMove, onResize, onScroll, onUnload

To all intents and purposes this is a window object except that, because it is modal, it is placed on
top of all other windows and, until it is disposed of, no other browser windows can be accessed.

Some early documentation suggests that there are dialog sizing properties for this window type but
this has not been confirmed to work.

On the new version 6.0 Netscape browser, there is the tantalizing possibility that the appearance of
dialog boxes can be affected by altering the 'skin' of the browser. As yet, this does not appear to be
scriptable or accessible from HTML. It is highly likely that internally the appearance is JavaScript
driven. Historically, much of the internal behavior of Netscape has been controlled by .js files so
this may change.

See also: Window.alert(), Window.confirm(), Window.parent,
Window.prompt(), Window.showHelp(),
Window.showModalDialog(), Window.showModelessDialog()

JavaScript Programmer's Reference

476

Event name JavaScript JScript N IE Opera Notes

onAfterPrint - 5.0 + - 5.0 + - -
onBeforePrint - 5.0 + - 5.0 + - -
onBeforeUnload - 3.0 + - 4.0 + - -
onBlur - 3.0 + - 4.0 + - Warning
onDragDrop - - - - - -
onError - 3.0 + - 4.0 + - Warning
onFocus - 3.0 + - 4.0 + - Warning
onHelp - 3.0 + - 4.0 + - Warning
onLoad - 3.0 + - 4.0 + - Warning
onMouseMove - 3.0 + - 4.0 + - Warning
onMove - - - - - -
onResize - 3.0 + - 4.0 + - Warning
onScroll - 3.0 + - 4.0 + - -
onUnload - 3.0 + - 4.0 + - Warning

Inheritance chain:
Window object

dialogArguments (Property)
The arguments passed to a modal dialog window.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

IE dialogArguments
JavaScript syntax:

IE myWindow.dialogArguments

Property attributes:
ReadOnly

Refer to:
Window.dialogArguments

dialogHeight (Property)
The height of a modal or modeless dialog window.

Availability: JScript – 3.0
Internet Explorer – 4.0

D – dialogLeft (Property)

477

Property/method value type: Number primitive

IE dialogHeight
JavaScript syntax:

IE myWindow.dialogHeight

Refer to:
Window.dialogHeight

dialogLeft (Property)
The offset to the left edge of a modal or modeless dialog window. In IE 4, the default measure is the
em, in IE 5 it is the pixel.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

IE dialogLeft
JavaScript syntax:

IE myWindow.dialogLeft

Refer to:
Window.dialogLeft

dialogTop (Property)
The offset to the top edge of a modal or modeless dialog window. In IE 4, the default measure is the
em, in IE 5 it is the pixel.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

IE dialogTop
JavaScript syntax:

IE myWindow.dialogTop

Refer to:
Window.dialogTop

dialogWidth (Property)
The width of a modal or modeless dialog window. In IE 4, the default measure is the em, in IE 5 it is
the pixel.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript Programmer's Reference

478

Property/method value type: Number primitive

IE dialogWidth
JavaScript syntax:

IE myWindow.dialogWidth

Refer to:
Window.dialogWidth

Dictionary object (Object/JScript)
A name-value collection object created by the Active X facilities.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myDictionary = new
ActiveXObject("Scripting.Dictionary");

Object properties: Count

Object methods:
Add(), Exists(), Item(), Items(), Key(), Keys(),
Remove(), RemoveAll()

A dictionary is a special kind of collection or array which allows you to access items using name
and value pairs. This is functionally similar to using associative name indexing on a JavaScript
array, so although this is not generally available, its fundamental usefulness is already provided in
the native JavaScript implementation.

The Dictionary object provided by JScript and Active X, has a few extra properties and methods
to help manage the contents of the dictionary. These could be simulated fairly easily and added to
the Array prototype to create your own portable Dictionary-like object.

Warnings:
❑ As this object needs to be created with the Active X facilities, it is not supported outside of the

Windows environment. It is odd that such a useful object can only be constructed in this way and
that it does not have a native JavaScript constructor. That at least would make it available in all
platforms that JScript runs in.

❑ Note that the properties and methods for the Dictionary object all start with an upper case letter.
This is not the common practice in JavaScript and may cause you a few run-time errors if you forget.

❑ There are some unusual syntactical constructs in this object. In particular, item and key methods
that behave like properties. These are intended to provide an interface to replace an item in the
dictionary or to rename a key. These methods would normally be made with several arguments to a
single method, but instead they use a method to retrieve a reference to a Dictionary pocket and
you can then assign a value to the reference that was returned.

D – Dictionary object (Object/JScript)

479

Example code:
// Create a new dictionary
var myDictionary = new ActiveXObject("Scripting.Dictionary");
// Store some items in the dictionary
// (Melting Points of fats/waxes)
myDictionary.Add("Butter", "28");
myDictionary.Add("Lard", "36");
myDictionary.Add("MuttonTallow", "44");
myDictionary.Add("Beeswax", "61");
myDictionary.Add("Stearin", "71.6");
myDictionary.Add("ParaffinWax", "38");
// Display one item if it exists
if(myDictionary.Exists("ParaffinWax"))
{
document.write("Paraffin Wax melts at ");
document.write(myDictionary.Item("ParaffinWax"));
document.write(" degrees Centigrade.
");
}
// Remove an item
if(myDictionary.Exists("Stearin"))
{
myDictionary.Remove("Stearin");
}
// Change an item and its key
if(myDictionary.Exists("MuttonTallow"))
{
myDictionary.Item("MuttonTallow") = "40";
myDictionary.Key("MuttonTallow") = "BeefTallow";
}
// List all the items
myArray = (new VBArray(myDictionary.Keys())).toArray();
for(myEnum=0; myEnum<myArray.length; myEnum++)
{
document.write("Key value: ");
document.write(myArray[myEnum]);
document.write(" Item value: ");
document.write(myDictionary.Item(myArray[myEnum]));
document.write("
");
}
// Now discard the items in the array
myDictionary.RemoveAll();

See also: ActiveX, ActiveXObject object

Property JavaScript JScript N IE Opera Notes

Count - 3.0 + - 4.0 + - ReadOnly.

Method JavaScript JScript N IE Opera Notes

Add() - 3.0 + - 4.0 + - -
Exists() - 3.0 + - 4.0 + - -

Table continued on following page

JavaScript Programmer's Reference

480

Method JavaScript JScript N IE Opera Notes

Item() - 3.0 + - 4.0 + - Warning
Items() - 3.0 + - 4.0 + - -
Key() - 3.0 + - 4.0 + - -
Keys() - 3.0 + - 4.0 + - Warning
Remove() - 3.0 + - 4.0 + - -
RemoveAll() - 3.0 + - 4.0 + - -

Dictionary.Add() (Method)
Adds a new item to the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myDictionary.Add(aKey, aValue)

aKey A textual key nameArgument list:
aValue A value to store for the key

This method adds a new item to the Dictionary associating it with the key name being passed.

Keys are meant to be strings but will be coerced as necessary during the addition. However, you
cannot use an Array object to build the key name. If you do need to build a key name from an
array, you must convert it to a string first.

The items being associated with Dictionary keys can be of any type.

You cannot replace an item with this method as a run-time error is caused by an attempt to add a
new object where the key name has already been used.

Dictionary.Count (Property)
Returns a count of the number of items in the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myDictionary.Count

This behaves like the length property of a native JavaScript Array or Collection object. Note
that its name begins with an upper case letter.

Property attributes:
ReadOnly

D – Dictionary.Exists() (Method)

481

Dictionary.Exists() (Method)
Returns a flag indicating whether a key has an item associated with it in the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDictionary.Exists(aKey)

Argument list: aKey A textual key name

Dictionaries are a useful way to collect items together at random intervals. The Dictionary can
then be tested later on after the items have been added. This method provides a way to test
whether a specific name-value pair has been added to the Dictionary.

Dictionary.Item() (Method)
Returns a reference to the Item container for a key.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Reference to an item pocket

IE myDictionary.Item(aKey)
JavaScript syntax:

IE myDictionary.Item(aKey) = aValue

aKey A textual key nameArgument list:
aValue A value to store for the key

This method provides a way to extract an item from the Dictionary using its key name as an
accessor.

This method can also be used as an alternative to the Dictionary.add() method although its
syntax for doing so is unusual.

These two lines of code are syntactically different but functionally the same when creating a new
name-value pair:

myDictionary.add("KEY1", "an item text");

myDictionary.item("KEY1") = "an item text";

This suggests that you can use the add() method to replace an item but in fact that will cause an
error. The item(), method, used as if it were an LValue property is the only way to replace an
item content.

JavaScript Programmer's Reference

482

Warnings:
❑ Although this is a method, because it has parentheses and therefore can be called, it also behaves as a

property. This somewhat bends the syntax rules for JavaScript and looks like a badly formed
expression when you see the variant that does an assignment.

❑ It is important to use this item within a conditional code block that tests for the existence of the key
first. This is because an attempt to retrieve a named item from a Dictionary will create a named
but empty item if it does not already exist.

❑ Note the capitalised name of the method.

Dictionary.Items() (Method)
Returns an array containing all Items in the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: VBArray object

JavaScript syntax: IE myDictionary.Items()

The entire set of items is returned in a VBArray. If you want to access this as a normal JavaScript array,
you should use the toArray() method on the VBArray that is created by the Items() method.

Dictionary.Key() (Method)
Returns a reference to the named key container.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Reference to a key name pocket

JavaScript syntax: IE myDictionary.Key(anOldKey) = aNewKey

anOldKey An existing key nameArgument list:
aNewKey A new name to rename the existing key to

This method provides a reference to the receptacle containing the key name. This 'by-reference'
access to the key allows the key to be changed. You would not be able to do that if it accessed the
key name by value.

Because you are referencing the container of the key, you can use this method as an LValue and
assign a new value to the key. This is effectively a key rename mechanism.

If the key does not already exist, like the Item() method, this will create a new named but empty
item in the Dictionary.

D – Dictionary.Keys() (Method)

483

Dictionary.Keys() (Method)
Returns a collection of all the keys currently defined in the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: VBArray object

JavaScript syntax: IE myDictionary.Keys()

The entire set of key names is returned in a VBArray. If you want to access this as a normal
JavaScript array, you should use the toArray() method on the VBArray that is created by the
Items() method.

Warnings:
❑ This is not the same as a collection of Items. This is a list of key names.

Dictionary.Remove() (Method)
Remove a key name and its item value from the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myDictionary.Remove(aKey)

Argument list: aKey A textual key name

You should test that the key already exists before attempting to remove it. This will save you
generating run-time errors if you attempt to remove items for non-existent keys.

Dictionary.RemoveAll() (Method)
Remove all key names and item values from the Dictionary.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myDictionary.RemoveAll()

The dictionary is completely emptied and can be re-used instead of creating a new one.

Digit (Definition)
A decimal numeric character.

A digit is any of the following characters:

0 1 2 3 4 5 6 7 8 9

See also: Identifier, Nondigit

JavaScript Programmer's Reference

484

DIR object (Object/HTML)
A somewhat deprecated object that is now superseded by the HTML tag and its object
representation. This object represents the contents of a <DIR> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myDIR = myDocument.all.anElementID

IE myDIR = myDocument.all.tags("DIR")[anIndex]

IE myDIR = myDocument.all[aName]

- myDIR = myDocument.getElementById(anElementID)

- myDIR =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myDIR =
myDocument.getElementsByTagName("DIR")[anIndex]

HTML syntax: <DIR> ... </DIR>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: compact

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The DOM level 1 specification refers to this as a DirectoryElement object.

See also: Element object, UL object

Property JavaScript JScript N IE Opera DOM HTML Notes

compact 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -

Table continued on following page

D – DIR.compact (Property)

485

Event name JavaScript JScript N IE Opera DOM HTML Notes

onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

DIR.compact (Property)
An attribute that controls the display of <DIR> items and the amount of space they require on the screen.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myDir.compact

Refer to:
DL.compact

disableExternalCapture() (Method)
Part of the Netscape 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N disableExternalCapture()
JavaScript syntax:

N myWindow.disableExternalCapture()

See also: Window.enableExternalCapture(),
Window.disableExternalCapture()

JavaScript Programmer's Reference

486

DIV object (Object/HTML)
An object that represents a <DIV> block level element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myDIV = myDocument.all.anElementID

IE myDIV = myDocument.all.tags("DIV")[anIndex]

IE myDIV = myDocument.all[aName]

- myDIV = myDocument.getElementById(anElementID)

- myDIV =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myDIV =
myDocument.getElementsByTagName("DIV")[anIndex]

HTML syntax: <DIV> ... </DIV>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align, dataFld, dataFormatAs, dataSrc

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onClick, onDblClick, onDragStart, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onResize, onRowEnter,
onRowExit, onScroll, onSelectStart

A DIV object is a means of building a block structured organization of a document that is custom-
designed. It is yet another means of building a hierarchical model if none of the existing models fits
the structure you need. It is also a way of marking out blocks of a document to be treated as a
styled area or perhaps a means of dynamically replacing or modifying document content in an
easily controlled manner.

The <DIV> tag is a block-level tag. That means that it forces a line break before and after itself.

The example shows how to exchange the style values between two <DIV> blocks.

Warnings:
❑ In Netscape 4, a <DIV> object whose CSS style defines its positioning as absolute, is then

enumerated in the layers collection at an appropriate position in the document/layer hierarchy. This
is confusing because a <DIV> is not a <LAYER>. Refer to the discussion about Layer objects in a
separate topic for further details.

D – DIV object (Object/HTML)

487

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="ONE" STYLE="background-color:RED">
The DIV block ONE
</DIV>
<DIV ID="TWO" STYLE="background-color:BLUE">
The DIV block TWO
</DIV>
<FORM>
<INPUT TYPE="button" VALUE="CLICK ME" onClick="clickMe()">
</FORM>
<SCRIPT>
function clickMe()
{
myStyle1 = document.all.ONE.style.cssText;
myStyle2 = document.all.TWO.style.cssText;

document.all.ONE.style.cssText = myStyle2;
document.all.TWO.style.cssText = myStyle1;
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object, Hierarchy of objects, Layer object, LayerArray object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
dataFld 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataFormatAs 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataSrc 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onChange 1.5 + 3.0 + 6.0 + 4.0 + - - - -
onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning

Table continued on following page

JavaScript Programmer's Reference

488

Event name JavaScript JScript N IE Opera DOM HTML Notes

OnKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onResize 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onScroll - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

DIV.align (Property)
The alignment for content within a <DIV> block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: myDIV.align

The alignment of the DIV block object with respect to its containing parent object is defined in this
property. The expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

D – Divide (/) (Operator/multiplicative)

489

Divide (/) (Operator/multiplicative)
Divide one operand by another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 / anOperand2

anOperand1 The dividendArgument list:
anOperand2 The divisor

The left-hand operand is divided by the right-hand operand and the quotient is returned.

The left operand is the dividend, and the right is the divisor. ECMAScript compliant interpreters
do not perform integer division. The operand and results of all divisions are double-precision
floating point numbers. All divisions are performed according to IEEE 754 specifications.

If either operand is NaN then the result is NaN.

The sign of the result is positive if both operands have the same sign and negative if the operands
have different signs.

Division of an infinity by an infinity results in NaN.

Division of an infinity by zero results in an infinity. The sign is determined by the rule stated earlier.

Division of infinity by a non-zero finite value results in a signed infinity. The sign is determined
as before.

Division of a finite value by infinity results in zero. The sign is determined as usual.

Division of a zero by a zero results in NaN.

Division of zero by any other finite value results in zero with the sign determined as normal.

Otherwise, where there is neither an infinity or zero involved and neither value is NaN, the quotient
is computed and rounded to the nearest representable value. If the magnitude is too large to
represent, it will overflow and become an infinity. If the magnitude is too small to represent, an
underflow occurs and the result will be zero.

The associativity is from left to right.

Refer to the operator precedence topic for details of execution order.

JavaScript Programmer's Reference

490

See also: Associativity, Divide then assign (/=), Double-precision,
Multiplicative expression, Multiplicative operator, Operator
Precedence, Remainder (%)

Cross-references:
ECMA 262 edition 2 – section – 11.5.2

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.5.2

Divide then assign (/=) (Operator/assignment)
Divide one operand by another and put the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 /= anOperand2

anOperand1 The dividendArgument list:
anOperand2 The divisor

Divide the left operand by the right operand and assign the quotient to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 / anOperand2;

Although this is classified as an assignment operator, it is really a compound of an assignment and
a multiplicative operator.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assignment operator, Associativity, Divide (/), LValue,
Multiplicative operator, Operator Precedence, Remainder (%)

D – DL object (Object/HTML)

491

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

DL object (Object/HTML)
An object that represents a definition list defined by a <DL> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myDL = myDocument.all.anElementID

IE myDL = myDocument.all.tags("DL")[anIndex]

IE myDL = myDocument.all[aName]

- myDL = myDocument.getElementById(anElementID)

- myDL = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myDL =
myDocument.getElementsByTagName("DL")[anIndex]

HTML syntax: <DL> ... </DL>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: compact

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Definition lists are collections of member definitions. The whole list is encapsulated in a DL object.
Each member definition is constructed from a DT and a DD object which are maintained together.

The <DL> tag is a block-level tag. That means that it forces a line break before and after itself.

The DOM level 1 standard describes this as a DListElement object.

See also: DD object, DT object, Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

compact 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

JavaScript Programmer's Reference

492

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

DL.compact (Property)
An attribute that controls the display of <DD> and <DT> items and the amount of space they
require on the screen.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myDL.compact

The DT and DD objects are normally displayed on two consecutive lines. When the DL that owns a
collection of DT/DD object pairs has the compact property set to true, the DT/DD pair are
displayed on the same line to save space.

D – do ... while(...) (Iterator)

493

do ... while(...) (Iterator)
A variant of the while iterator that checks the condition after execution.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript syntax: - aLabel: do { someCode } while (aCondition);

aCondition This must prove true for a subsequent cycle to start
aLabel An optional identifier that names the loop

Argument list:

someCode The code that gets executed in the loop

A do loop is a variation on the while iterator. A while iterator checks the condition and only
executes the code block if it is true. This means that a while loop may never execute even once. A
do iterator checks the condition once the code has been executed. This ensures that a do iterator
will perform at least one execution of the code block even if the condition proves false the first
time it is tested.

ECMA edition 2 compliance merely states that it is a reserved word. At edition 3 of the
ECMAScript standard, it is a fully supported requirement of compliance.

JavaScript version 1.2 anticipates this and provides it anyway.

If a labelled continue is used (available from version 1.2 of JavaScript), it is intended that execution
should drop to the bottom of the loop and test the condition again before cycling or falling out.

Note carefully the line that increments the counter. If you leave it out, you create an endless loop and
the browser locks you out. Maybe it will eventually crash but you may need to wait a long time.

Warnings:
❑ In Netscape 4, there is a bug with labelled continue statements and do ... while loops

that causes the continue to vector to the top of the loop without testing the condition. This can
set up an endless loop. You could work round this by creating a while loop and modifying the
test condition.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myCounter = 10;
do
{
document.write(myCounter);

JavaScript Programmer's Reference

494

document.write("
");
myCounter++;
}
while(myCounter < 35);
</SCRIPT>
</BODY>
</HTML>

See also: continue, Flow control, for(...) ..., for(... in ...) ...,
Label, Off by one errors, while(...) ...

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

ECMA 262 edition 3 – section – 12.6.1

Doctype object (Object/DOM)
An object that represents the document type DTD.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Inherits from: Node object

IE myDoctype = myDocument.all.anElementID

IE myDoctype = myDocument.all.tags("DOCTYPE")[anIndex]

IE myDoctype = myDocument.all[aName]

- myDoctype = myDocument.doctype

- myDoctype = myDocument.getElementById(anElementID)

- myDoctype =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myDoctype =
myDocument.getElementsByTagName("DOCTYPE")[anIndex]

HTML syntax: <!DOCTYPE>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: name

Collections: entities[], notations[]

D – Doctype.entities[] (Collection)

495

Every document should own a Doctype object according to the DOM level 1 specification. This
object encapsulates name and some collections that describe the DTD. Work is still underway on
standardizing the XML and DTD requirements and this object is therefore likely to change in later
versions of the DOM specification.

The DOM level 2 specification adds the following new properties:

❑ publicId

❑ systemId

❑ internalSubset

See also: Document.doctype, Element.document, Notation object

Property JavaScript JScript N IE Opera DOM Notes

name 1.5 + 5.5 + 6.0 + 5.5 + - 1 + ReadOnly

Inheritance chain:
Node object

Doctype.entities[] (Collection)
A named node map containing all the general entities within the DTD.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: NamedNodeMap object

JavaScript syntax: - myDoctype.entities

Property attributes:
ReadOnly.

Doctype.name (Property)
The name of the DTD that the Doctype encapsulates.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myDoctype.name

JavaScript Programmer's Reference

496

Property attributes:
ReadOnly.

Doctype.notations[] (Collection)
A named node map containing the notations declared in the DTD encapsulated by the Doctype object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: NamedNodeMap object

JavaScript syntax: - myDoctype.notations

See also: Notation object

Property attributes:
ReadOnly

Document (Object model)
An organized collection of objects that represent a document.

The document object is the foundation around which a scriptable interface to an HTML or XML
document is constructed. This is sometimes referred to as the DOM and is subject to its own
standardization exercise being managed by W3C and other interested parties.

The DOM has its origins in the MSIE version 4 browsers. Version 3 of MSIE and versions of
Netscape prior to version 6 implement a more miscellaneous collection of objects that behave a bit
like a DOM but are not really a standards-compliant model.

There are areas where the so called DOM support in each browser is so different as to render any
script access to the document either problematical or virtually impossible with the same script. This
means that you need to support parallel development of HTML and JavaScript to be able to cover
both competing browsers.

Now that Netscape 6.0 converges on the same standard- based DOM model as MSIE, we can look
forward to a much more portable future for our scripts. So long as we can disregard legacy versions
and steer clear of the still quite large number of differences, we should be able to to do much more
across different browsers without needing to code differently for each one. History suggests it is
also equally likely that they will diverge in other areas where they introduce new features.

The starting point for the DOM hierarchy is the <HTML> HTML tag, although the <BODY> HTML
tag is realistically the root of the DOM.

D – Document (Object model)

497

The basic approach to the DOM differs between the browsers on these points:

❑ Netscape prior to version 6.0 generally provides a constructor for every object type. MSIE only
provides them for objects that you can reasonably instantiate. The new Netscape should comply with
the DOM requirements and only provide constructors where they are mandated by the standard.

❑ MSIE implements an Element object on which most other DOM components are based. Netscape 6
implements a structured, DOM compliant model so this is implicit.

❑ The DOM hierarchy is organized in different ways. MSIE provides many reference vectors for
locating parent and child objects to traverse the DOM tree. Netscape provides very few prior to
version 6.0.

❑ MSIE provides an object to represent every tag. Its type is the tag name in upper case.

❑ On the down-side, MSIE supports a DOM structure that resembles the DOM standard quite closely.
However, many of its class names are incorrect. Netscape 6.0 supports a similar structure but uses
the correct names for object classes. If you need to use class names in your scripts, beware!

Global

Document Navigator

Form Table

TextCell SubmitButton

Warnings:
❑ This is not supported at all on Netscape 2 and 3 or MSIE version 3. You should at least check for

these browsers and generate a helpful warning message or skip round the requirement somehow.

See also: Compatibility, Document object, DOM, Event handler scope

Web-references:
http://msdn.microsoft.com/redirs/inetsdkredir.asphttp://www.w3.org/TR/WD-DOM/

http://msdn.microsoft.com/redirs/inetsdkredir
asphttp://www.w3.org/TR/WD-DOM/

JavaScript Programmer's Reference

498

document (Property)
The document within the current window.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Document object

- document
JavaScript syntax:

- myWindow.document

See also: Window.document, Document object

Property attributes:
ReadOnly

Document component (Definition)
A component object within a document object model.

Component objects within the document correspond to tags in the HTML or XML document. As
tags, they may be given names with the NAME="..." HTML tag attribute. In the level 0 DOM,
these names become properties of the document object, which can lead to pollution of the
property/method namespace. This is likely to be changed in DOM level 1.

See also: DOM

Document event handlers (Definition)
A property containing a reference to an event handler property.

Property/method value type: Function object

There is a small set of event handler function properties created by default. You can assign your
own handlers to these properties (if necessary creating the properties that don't already exist).

D – Document event handlers (Definition)

499

Here is a list of all the event handler property names that we discovered during our research:

Event Handler Usage

Abort onabort When image loading is aborted.
AfterPrint onafterprint When printing has just finished.
AfterUpdate onafterupdate When an update is completed.
Back onback The user has clicked on the [BACK] button in the

toolbar.
BeforeCopy onbeforecopy Immediately before a copy to the clipboard.
BeforeCut onbeforecut Immediately before a cut to the clipboard.
BeforeEditFocus onbeforeeditfocus Immediately before the edit focus is directed to an

element.
BeforePaste onbeforepaste Immediately before the clipboard is pasted.
BeforePrint onbeforeprint Immediately before printing begins.
BeforeUnload onbeforeunload Called immediately prior to the window being

unloaded.
BeforeUpdate onbeforeupdate Called immediately before an update commences.
Blur onblur When an input element loses input focus.
Bounce onbounce Triggered when a marquee element hits the edge

of its element area.
Change onchange When edit fields have new values entered or a

popup has a new selection, this event's handler can
check the new value.

Click onclick When the user clicks the mouse button on the
Element object that represents the object on
screen.

ContextMenu oncontextmenu Special handling for contextual menus.
Copy oncopy When a copy operation happens.
Cut oncut When a cut operation happens.
DataAvailable ondataavailable Some data has arrived asynchronously from an

applet or data source.
DataSetChanged ondatasetchanged A data source has changed the content or some

initial data is now ready for collection.
DataSetComplete ondatasetcomplete There is no more data to be transmitted from the

data source.
DblClick ondblclick When the user double clicks on an object.
Drag ondrag When a drag operation happens.
DragDrop ondragdrop Some data has been dropped onto a window.
DragEnd ondragend When a drag ends.
DragEnter ondragenter When a dragged item enters the element.
DragLeave ondragleave When a dragged item leaves the element.
DragOver ondragover While the dragged item is over the element.

Table continued on following page

JavaScript Programmer's Reference

500

Event Handler Usage

DragStart ondragstart The user has commenced some data selection with
a mouse drag.

Drop ondrop When a dragged item is dropped.
Error onerror Triggered if an error occurs when loading an

image.
ErrorUpdate onerrorupdate An error has occurred in the transfer of some data

from a data source.
FilterChange onfilterchange A filter has changed the state of an element or a

transition has just been completed.
Finish onfinish A marquee object has finished looping.
Focus onfocus When the form element is selected for entry.
Forward onforward The user has clicked on the [FORWARD] button in

the toolbar.
Help onhelp The user has pressed the [F1] key or selected

[help] from the toolbar or menu.
KeyDown onkeydown When a key is pressed.
KeyPress onkeypress Pressing the key down and releasing it again elicits

this event.
KeyUp onkeyup When a key is released.
Load onload When an object has completed loading.
LoseCapture onlosecapture When an element loses event capturing

permission.
MouseDown onmousedown When the mouse button is pressed.
MouseDrag onmousedrag An event handler for mouse drag operations.
MouseMove onmousemove When the mouse pointer is moved.
MouseOut onmouseout When the mouse pointer leaves the active area

occupied by the Element object that represents
the object on screen.

MouseOver onmouseover When the mouse pointer enters the active area
owned by the object.

MouseUp onmouseup When the mouse button is released.
Move onmove The browser window has been moved.
Paste onpaste When a paste operation happens.
PropertyChange onpropertychange When an object property is modified (similar to the

Netscape watch() method).
ReadyStateChange onreadystatechange An object in the window has changed its ready

state.
Reset onreset The user has clicked a reset button in a form.
Resize onresize As the window is resized, this event is triggered.
RowEnter onrowenter The data in a field bound to a data source is

about to be changed.

Table continued on following page

D – Document object (Object/HTML)

501

Event Handler Usage

RowExit onrowexit The data in a field bound to a data source has
been changed.

Scroll onscroll The window has been scrolled.
Select onselect Some textual content in the window has been

selected.
SelectStart onselectstart A select action is beginning.
Start onstart A marquee element is beginning its loop.
Stop onstop When a stop action occurs.
Submit onsubmit The user has clicked on the submit button in a

form.
Unload onunload Triggered when the document is unloaded.

See also: Document object, Element.onevent

Document object (Object/HTML)
An object that represents the document currently loaded into the window. This exposes the
contents of the HTML document through a variety of collections and properties.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Element object

- myDocument = document

- myDocument = document.documentElement

IE myDocument = myElement.document

IE myDocument = myElement.offsetParent

- myDocument = myElement.ownerDocument

IE myDocument = myElement.parentElement

- myDocument = myElement.parentNode

- myDocument = myFrame.document

N myDocument = myLayer.document

- myDocument = myWindow.document

- myDocument = opener.document

JavaScript syntax:

- myDocument = self.document

Argument list: anIndex An index that selects this document

JavaScript Programmer's Reference

502

Object properties:
<form_name>, activeElement, alinkColor, background,
bgColor, body, characterset, charset, cookie,
defaultCharset, designMode, doctype, documentElement,
domain, expando, fgColor, fileCreatedDate,
fileModifiedDate, fileSize, height, implementation,
lastModified, linkColor, location, parentWindow,
protocol, readyState, referrer, selection, title,
uniqueID, URL, vlinkColor, width

Object methods:
attachEvent(), captureEvents(), clear(), close(),
contextual(), createAttribute(), createCDATASection(),
createComment(), createDocumentFragment(),
createElement(), createEntityReference(),
createProcessingInstruction(), createStyleSheet(),
createTextNode(), detachEvent(), elementFromPoint(),
execCommand(), getElementById(), getElementsByName(),
getElementsByTagName(), getSelection(), handleEvent(),
mergeAttrbutes(), open(), queryCommandEnabled(),
queryCommandIndeterm(), queryCommandState(),
queryCommandSupported(), queryCommandText(),
queryCommandValue(), recalc(), releaseEvents(),
routeEvent(), write(), writeln()

Functions: captureEvents(), releaseEvents(), routeEvent()

Event handlers:
onAfterUpdate, onBeforeCut, onBeforEditFocus,
onBeforePaste, onBeforeUpdate, onClick, onContextMenu,
onCut, onDblClick, onDrag, onDragEnd, onDragEnter,
onDragLeave, onDragOver, onDragStart, onDrop,
onErrorUpdate, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onPaste, onPropertyChange,
onReadyStateChange, onRowEnter, onRowExit,
onSelectStart, onStop

Collections:
all[], anchors[], applets[], classes[], embeds[],
forms[], frames[], ids[], images[], layers[], links[],
plugins[], scripts[], styleSheets[], tags[]

The document object is the root of a hierarchy that describes the document in terms of objects,
properties and methods that can operate on those objects.

The DOM level specification describes a core Document object and distinguishes that from the
HTMLDocument that is a sub-class of it. However, the browsers do not make such a fine
distinction and so Documents and HTMLDocuments are considered to be one and the same.
This works because an HTMLDocument inherits the behavior of a DOM core Document object.

Documents and their child objects can respond to events by means of event handler functions.
These are generally associated with one another by means of the HTML tag attributes that
correspond to each event.

Although there is a superset of all event types, each object type only responds to a few of them.

The document object is based on the Element object, therefore it inherits all the properties and
methods of that class and adds others itself.

The document object is basically derived initially from the <BODY> HTML tag, although it contains
some properties that are associated with the <HEAD> HTML tag and others from the <HTML>
HTML tag that encloses the entire file. The document type header also affects properties in the
document object.

D – Document object (Object/HTML)

503

Traversing the document object model in MSIE is quite straightforward. In Netscape prior to
version 6.0 it is so difficult as to be virtually impossible. You can access certain parts of the DOM in
earlier Netscape browsers by virtue of the forms, applets, embeds and other collections but you
cannot access other parts of the DOM at all.

Event handling support via properties containing function objects was added to Anchor objects at
version 1.1 of JavaScript and is significantly extended in Netscape 6.0 where it supports DOM level
2 capabilities.

Because you might refer to documents in many ways, possibly by means of object properties or as a
property belonging to another window, it is not safe to assume that the document property
belonging to the Global object is always the document object you are trying to access. Indeed, a
document may belong to a window, frame, layer or Iframe and several may be accessible at once.
Because of this, the object references in the syntax examples assume the object is being referred to
via a variable called myDocument or myObject etc. In the object descriptions, the value
myDocument is shown being assigned as a variable from the many alternative sources that you can
obtain a document reference.

The DOM level specification deprecates the following properties in favor of their counterparts
belonging to the BODY object:

❑ alinkColor

❑ background

❑ bgColor

❑ fgColor

❑ linkColor

❑ vlinkColor

The DOM level 2 specification adds the following methods:

❑ importNode()

❑ createElementNS()

❑ createAttributeNS()

❑ getElementsByTagNameNS()

❑ getElementById()

A new suite of functionality relating to the way documents are viewed is introduced at DOM level 2.
This is embodied in the following classes:

❑ AbstractView

❑ DocumentView

DOM level 3 expects to add the following properties to the document object:

❑ actualEncoding

❑ encoding

❑ standalone

❑ strictErrorChecking

❑ version

JavaScript Programmer's Reference

504

It is also expected to add the following methods:

❑ adoptNode()

❑ getElementsByAttributeValue()

Warnings:
❑ There are a number of properties that are defined in both Netscape and MSIE browsers. There are

also a few that each defines while the other doesn't. There is at least one (document.title) that is
defined with different behavior in both browsers. Likewise the same is true of the support for
different methods across the two browsers.

❑ With each release, they tend to support the extensions that the other introduced with its previous
release, but they also both introduce new and incompatible extensions each time as well.

See also: BODY object, Element.document, Form.handleEvent(), Frame object,
HTML object, JavaScript Style Sheets, Layer.document, Node object,
Node.ownerDocument, TextRange.queryCommandEnabled(),
TextRange.queryCommandIndeterm(),
TextRange.queryCommandState(),
TextRange.queryCommandSupported(),
TextRange.queryCommandText(),
TextRange.queryCommandValue(), Window object,
Window.document, Window.frames[], Window.opener

Property JavaScript JScript N IE Opera DOM HTML Notes

<form_name> 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
activeElement - 3.0 + - 4.0 + - - - ReadOnly.
alinkColor 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 0 + - Warning, Deprecated
background - - - - - 0 + - Deprecated
bgColor 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 0 + - Warning, Deprecated
body 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 1 + - ReadOnly.
characterset 1.5 + - 6.0 + - - - - -
charset - 3.0 + - 4.0 + - - - -
cookie 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
defaultCharset - 3.0 + - 4.0 + - - - Warning
designMode - 5.0 + - 5.0 + - - - Warning
doctype 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning, ReadOnly.
documentElement 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - Warning, ReadOnly.
domain 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - Warning, ReadOnly.
expando - 3.0 + - 4.0 + - - - -
fgColor 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 0 + - Warning, Deprecated
fileCreatedDate - 3.0 + - 4.0 + - - - ReadOnly.
fileModifiedDate - 3.0 + - 4.0 + - - - ReadOnly.
fileSize - 3.0 + - 4.0 + - - - ReadOnly.
height 1.2 + - 4.0 + - - - - Warning
implementation 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - Warning, ReadOnly.

Table continued on following page

D – Document object (Object/HTML)

505

Property JavaScript JScript N IE Opera DOM HTML Notes

lastModified 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - ReadOnly.
linkColor 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 0 + - Warning,

Deprecated
location 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning,

Deprecated
parentWindow - 3.0 + - 4.0 + - - - ReadOnly.
protocol - 1.0 + - 3.02 + - - - ReadOnly.
readyState - 3.0 + - 4.0 + - - - ReadOnly.
referrer 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning,

ReadOnly.
selection - 3.0 + - 4.0 + - - - Warning,

ReadOnly.
title 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
uniqueID - 5.0 + - 5.0 + - - - -
URL 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly.
vlinkColor 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 0 + - Warning,

Deprecated
width 1.2 + - 4.0 + - - - - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

attachEvent() - 5.0 + - 5.0 + - - - -
captureEvents() 1.2 + - 4.0 + - - - - Warning;

Deprecated
clear() 1.0 + 1.0 + 2.0 + 3.02 + 5.0 + - - Warning:

Deprecated
close() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
contextual() 1.2 + - 4.0 + - - - - Warning,

Deprecated
createAttribute() 1.5 + - 6.0 + - - 1 + - -
createCDATASection() 1.5 + - 6.0 + - - 1 + - -
createComment() 1.5 + - 6.0 + - - 1 + - -
createDocumentFragment() 1.5 + - 6.0 + - - 1 + - -
createElement() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
createEntityReference() 1.5 + - 6.0 + - - 1 + - -
CreateProcessing
Instruction()

1.5 + - 6.0 + - - 1 + - -

createStyleSheet() - 3.0 + - 4.0 + - - - Warning
createTextNode() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
detachEvent() - 5.0 + - 5.0 + - - - -
elementFromPoint() - 3.0 + - 4.0 + - - - -
execCommand() - 3.0 + - 4.0 + - - - Warning
getElementById() 1.5 + 5.0 + 6.0 + 5.0 + 5.0 + 1 + - -
getElementsByName() 1.5 + 5.0 + 6.0 + 5.0 + 5.0 + 1 + - Warning

Table continued on following page

JavaScript Programmer's Reference

506

Method JavaScript JScript N IE Opera DOM HTML Notes

getElementsByTagName() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
getSelection() 1.2 + - 4.0 + - - - - Warning
handleEvent() 1.2 + - 4.0 + - - - - -
mergeAttrbiutes() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
open() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
queryCommandEnabled() - 3.0 + - 4.0 + - - - Warning
queryCommandIndeterm() - 3.0 + - 4.0 + - - - Warning
queryCommandState() - 3.0 + - 4.0 + - - - Warning
queryCommandSupported() - 3.0 + - 4.0 + - - - Warning
queryCommandText() - 3.0 + - 4.0 + - - - Warning
queryCommandValue() - 3.0 + - 4.0 + - - - Warning
recalc() - 5.0 + - 5.0 + - - - Warning
releaseEvents() 1.2 + - 4.0 + - - - - -
routeEvent() 1.2 + - 4.0 + - - - - -
write() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
writeln() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeCut - 5.0 + - 5.0 + - - - -
onBeforEditFocus 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
onBeforePaste - 5.0 + - 5.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onClick 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - 4.0 + Warning
onContextMenu - 5.0 + - 5.0 + - - - -
onCut - 5.0 + - 5.0 + - - - -
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onDrag - 5.0 + - 5.0 + - - - -
onDragEnd - 5.0 + - 5.0 + - - - -
onDragEnter - 5.0 + - 5.0 + - - - -
onDragLeave - 5.0 + - 5.0 + - - - -
onDragOver - 5.0 + - 5.0 + - - - -
onDragStart - 3.0 + - 4.0 + - - - -
onDrop - 5.0 + - 5.0 + - - - -
onErrorUpdate - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning

Table continued on following page

D – Document.<form_name> (Property)

507

Event name JavaScript JScript N IE Opera DOM HTML Notes

onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onPaste - 5.0 + - 5.0 + - - - -
onPropertyChange - 5.0 + - 5.0 + - - - -
onReadyStateChange - 3.0 + - 4.0 + - - - -
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -
onStop 1.2 + - 4.0 + - - - - -

Inheritance chain:
Element object, Node object

Document.<form_name> (Property)
The name of a form if the document contains a <FORM> tag.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: Form object

JavaScript syntax: - myDocument.aFormName

HTML syntax: <FORM NAME="aFormName">

Argument list: aFormName The unique name of a form

If a <FORM NAME="ABCD"> tag is present in the document, then there will be a property of the
document object called document.ABCD, named after the form. This means you can access the
form object directly by name.

If there are several different forms, they will each have a named property according to their names.

Warnings:
❑ This is not supported in the same way on MSIE.

❑ Be careful not to use the same name more than once. Properties must be created according to the
name HTML tag attribute in the <FORM> tag. If there are two <FORM NAME="ABCD"> tags, there
will only be one ABCD property but you cannot be sure which one of the two forms will be present in
it. The individual forms will still be reachable via the forms[] array however.

See also: Document object, Form object, NAME="..."

JavaScript Programmer's Reference

508

Document.activeElement (Property)
The input element that currently has input (keyboard and mouse) focus.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: An object that can receive input focus

JavaScript syntax: IE myDocument.activeElement

This property contains a reference to the element object that currently has the input focus.

This may refer to an input element but if there is no active <FORM> in the document then the active
element will be the window object that the document is displayed in.

See also: Document object, Frame object, Window object

Property attributes:
ReadOnly

Document.alinkColor (Property)
The color of a link on the page while it is being activated.

Availability: DOM level – 0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0
Deprecated

Property/method value type: Color value

- myDocument.alinkColorJavaScript syntax:
- myDocument.alinkColor = aColorValue

HTML syntax: <BODY ALINK="aColorValue">

Argument list: aColorValue A hex color value or color name

This value controls the text of active links in the document body. You should use the normal color
values to define the required color.

This property is equivalent to the ALINK attribute of the <BODY> HTML tag. This is color that is
used while the mouse is over the link and the button is held down by the user.

D – Document.all[] (Collection)

509

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape where style sheet
controls do not.

The DOM level 1 standard deprecates the usage of this property in favor of BODY.aLink instead.

Warnings:
❑ This property can only be changed from JavaScript in the <HEAD> section. You cannot modify it

after the <BODY> has commenced loading.

See also: BODY.aLink, BODY.link, BODY.text, BODY.vLink, Color
names, Color value, Document object, Document.bgColor,
Document.fgColor, Document.linkColor,
Document.vlinkColor

Document.all[] (Collection)
A collection object containing references to every object in the MSIE DOM.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Collection object

JavaScript syntax: IE myDocument.all

This is available by virtue of the document inheriting properties from an Element object.

Refer to the description of the collection object for details of how it enhances the capabilities of
the basic built-in Array class.

Warnings:
❑ This function may not be available in a properly constructed level 1 DOM implementation. Therefore

it may become deprecated after version 5 of MSIE.

See also: Collection object, Document object, Element object,
Element.all[]

Property attributes:
ReadOnly

JavaScript Programmer's Reference

510

Document.anchors[] (Collection)
An array of all the anchor objects in the document.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: AnchorArray object

JavaScript syntax: - myDocument.anchors

HTML syntax: <A>

There is one anchor object for every <A> HTML tag in the page.

Prior to version 1.2 of JavaScript, this array simply contained a list of anchors but there were no
anchor objects accessible until Netscape 4 implemented them. The only property that could be
accessed prior to that was the length of the array.

Changing the name of an anchor in MSIE leaves the existing anchor available and adds a copy using
the new name. This may be important if you are parsing the anchors array with an enumerator.

Refer to the description of the AnchorArray object for details of how it enhances the built-in
Array class.

There is some difference between the browsers in the way they implement anchor and link
objects. In MSIE the anchor and link objects are represented identically and the objects simply
ignore properties they don't need. Netscape supports different objects according to whether they
are links or anchors.

DOM level 1 requires that this collection contains only those objects instantiated by an <A> HTML
tag which contain a NAME="..." HTML tag attribute. Any anchors that have an ID="..."
HTML tag attribute but no NAME="..." attribute should not be included.

Warnings:
❑ Be aware that if you are not using some NAME or ID binding to the <A> tags, you may get

unexpected results if new links are added and you are accessing elements of this array using
numeric index values.

❑ The DOM standard mandates at level 1 that only the A tags that have a NAME="..." HTML tag
attribute should be included in this collection. Anchors with an ID="..." HTML tag attribute but
no NAME="..." attribute should not be included in the collection.

See also: Anchor object, Anchor.name, AnchorArray object,
AnchorArray.length, Document object, Document.links[],
Element.all[], LINK object, LinkArray object

D – Document.applets[] (Collection)

511

Property attributes:
ReadOnly

Document.applets[] (Collection)
An array containing a list of all the applets in the document.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: AppletArray object

JavaScript syntax: - myDocument.applets

HTML syntax: <APPLET>

There is one applet object in this array for every <APPLET> tag. The applets are represented by
JavaObject objects. These are wrappers around instances of the class java.applet.Applet.
This is done with LiveConnect in Netscape and ActiveX in MSIE.

From Netscape 3 and MSIE version 3, your script is able to access the public methods and
properties of the Java applets. Netscape supports better communication facilities between the two
by virtue of its LiveConnect facility.

Every applet inherits some public properties and methods from its super-class. At least we can be
certain that the applet supports the start() and stop() methods. In MSIE, the applets collection
may contain references to intrinsic controls, images, embed and other non-Java objects as well. However
other than those, you will need to examine the applet documentation on a case by case basis.

Refer to the description of the AppletArray object for details of how it enhances the built-in
Array class.

DOM level 1 requires that this collection includes objects that are instantiated by <OBJECT> HTML
tags. It also notes that <APPLET> HTML tags should be deprecated.

Warnings:
❑ Be aware that if you are not using some NAME or ID binding to the <APPLET> tags, you may get

unexpected results if new applets are added and you are accessing elements of this array using
numeric index values.

❑ In MSIE version 4, this returns a Collection object instead of an AppletArray object. MSIE 5 is
more consistent with Netscape .

JavaScript Programmer's Reference

512

See also: Applet object, AppletArray object, Document object,
Document.embeds[], JavaObject object, LiveConnect, OBJECT
object

Property attributes:
ReadOnly

Document.attachEvent() (Method)
A means of attaching events to windows and documents.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDocument.attachEvent(anEventName,
anEventHandler)

anEventHandler A reference to an event handler functionArgument list:
anEventName The name of an event to be handled

This is part of the behavior handling in MSIE which involves the use of style sheets and .htc files.
It is a way of binding a function to an event so that when the event fires, the function is called. It
can be applied in a more general way than just with behaviors.

See also: <STYLE>, Document.detachEvent(),
Window.attachEvent(), Window.detachEvent()

Document.background (Property)
DOM originally intended this to be the URL of a background image for the current document.

Availability: DOM level – 0
Deprecated

Property/method value type: String primitive

JavaScript syntax: none myDocument.background

The background image for the document which is defined in the <BODY> tag is actually stored in
the BODY object in MSIE. You cannot access the background image directly in Netscape because the
BODY object is not available.

DOM level 1 deprecates the use of this property in favor of the BODY.background property.
Accessing this property in MSIE and Netscape returns the undefined value.

See also: BODY.background

D – Document.bgColor (Property)

513

Document.bgColor (Property)
The background color of the document.

Availability: DOM level – 0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0
Deprecated

Property/method value type: color value

- myDocument.bgColor
JavaScript syntax:

- myDocument.bgColor = aColorValue

HTML syntax: <BODY BGCOLOR="aColorValue">

Argument list: aColorValue A hex color value or color name

This corresponds to the BGCOLOR="..." HTML tag attribute on the <BODY> tag.

You can modify this value at any time, the results of which will be to change the background color
of the page.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape where style sheet
controls do not.

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image, in case the image takes a long time to load or the browser
is unable to display a background image.

Warnings:
❑ On the Unix platform, the Netscape browser versions 2 and 3 exhibit a bug when changing the

background color. If you attempt to do this, the page content disappears until something causes the
window to be redrawn. If you are using X-Windows, you may be able to alleviate this by changing
the damage control policy; however, you would likely need to change it to a slower performing
damage control model and that change would apply to all applications in the session. Alternatively,
detect the platform and avoid the background color change.

See also: BODY object, BODY.aLink, BODY.bgColor, BODY.link,
BODY.text, BODY.vLink, Color names, Color value, Document
object, Document.alinkColor, Document.fgColor,
Document.linkColor, Document.vlinkColor,
style.backgroundColor

JavaScript Programmer's Reference

514

Document.body (Property)
The contents of the <BODY> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: BODY object

JavaScript syntax: - myDocument.body

In MSIE, this property is a reference to a BODY object. Early versions of Netscape are not DOM
compliant and do not support this property since it has no BODY object implemented to refer to.
This is corrected in Netscape 6.0 which implements full DOM level 1 compliance.

The DOM level 1 specification states that this property should yield an HTMLElement object. A
BODY object is derived from an HTMLElement so that general rule is satisfied.

If the document is a frameset then it will return a FRAMESET object.

See also: BODY object, Document object, Window.pageXOffset,
Window.pageYOffset

Property attributes:
ReadOnly

Document.captureEvents() (Function)
Part of the Netscape 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: undefined

JavaScript syntax: N myDocument.captureEvents(anEventMask)

Argument list:
anEventMask A mask constructed with the manifest event

constants

This is part of the event management suite which allow events to be routed to handlers other than
just the one that defaults to being associated with an event.

The events to be captured are signified by setting bits in a mask.

This method allows you to specify what events are to be routed to the receiving Document object.

D – Document.captureEvents() (Function)

515

The events are specified by using the bitwise OR operator to combine the required event mask
constants into a mask that defines the events you want to capture. Refer to the Event Type
Constants topic for a list of the event mask values.

A limitation of this technique is that ultimately, only 32 different kinds of events can be combined
in this way and this may limit the number of events the browser can support. Since this is only
supported by Netscape, the functionality is likely to be deprecated when the standards bodies
agree on a standard way of handling events. Then we simply need to wait for the browser
manufacturers to support the standardized behavior.

In the meantime, we shall have to implement scripts using this capability if we need to build
complex event handling systems. A different script will be required for MSIE.

You may be able to factor your event handler so that you only have to make platform specific event
dispatchers and can call common handling routines that can be shared between MSIE and Netscape.

The example copes with cross browser execution in an interesting way (note; this doesn’t work for
Opera or N 6).

Warnings:
❑ Since a bit mask is being used, this must be an int32 value. This suggests that there can only be 32

different Event types supported by this event propagation model.

❑ This capability is deprecated and is not supported in Netscape 6.0 anymore. It never was supported
by MSIE which implements a completely different event model. As it turns out the DOM level 2
event model converges on the MSIE technique.

Example code:
// A portable keyboard eventhandler
// Provided by Jon Stephens
function handleKeypress(event)
{
 var key;
 if(document.layers)
 {
 key = event.which;
 }
 if(document.all)
 {
 event = window.event;
 key = event.keyCode;
 }
 alert("Key: " + String.fromCharCode(key) + "\nCharacter code: " + key + ".");
}

if(document.layers)
{
 document.captureEvents(Event.KEYPRESS);
}

document.onkeypress = handleKeypress;

JavaScript Programmer's Reference

516

See also: captureEvents(), Document object,
Document.releaseEvents(), Element.onevent, Event
management, Event propagation, Event type constants, Frame
object, Layer.captureEvents(), Layer.releaseEvents(),
onMouseMove, Window object, Window.captureEvents(),
Window.releaseEvents()

Document.characterset (Property)
A Netscape 6.0 equivalent of the Document.charset property.

Availability: JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myDocument.characterset

Refer to:
Document.charset

Document.charset (Property)
The character set currently being used.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.charset

This would contain the character set being used by the document. For example the value
"iso-8859-1" is likely to be returned but the local variant of the browser and OS may
affect the value you get.

This property might contain a value such as:

csISO5427Cyrillic

Details of other aliases can be located at the IANA registry.

See also: Document object, Document.defaultCharset

Web-references:
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

D – Document.classes[] (Collection)

517

Document.classes[] (Collection)
Part of the JSS style control model supported only by Netscape .

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: JSSClasses object

This returns a collection of JSS classes. These are associative arrays that contain other associative
arrays. They don't inherit properties and methods from the Array object class and are particularly
difficult to operate on.

If you are working with JSS driven style sheets, for a start your project is not portable across browser.
It will only work on Netscape. Secondly, you are using deprecated functionality. This will lead to
your project code breaking at some time in the future when JSS support is no longer available.

Warnings:
❑ This functionality is removed from Netscape 6.0.

See also: Document object, Document.contextual(), Document.ids[],
Document.tags[], JSSClasses object

Property attributes:
ReadOnly.

Document.clear() (Method)
A deprecated method that clears the document.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 5.0
Deprecated

JavaScript syntax: - myDocument.clear()

This is a method that was implemented early in the life of the Netscape browser. It is only provided
for backwards compatibility with older projects and should not be used in any new work you do.

Warnings:
❑ This method is deprecated as of JavaScript version 1.2 from which point you simply need to use

document.open() to create a fresh (and empty) document.

See also: Document object

JavaScript Programmer's Reference

518

Document.close() (Method)
Close a document body after you have finished writing to it.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myDocument.close()

Calling the document.close() method will cause the output buffer to be flushed, stop the rotating
loading icon and force the display of any HTML you have written. In some browsers this may happen
automatically when the script exits and in others you will need to do it explicitly. It is good coding
style to close a stream when you have finished writing to it. This is analogous to the fflush() call
that C programmers make to force the buffered output to be sent through an I/O stream.

If you close a document stream and then proceed to write to it again, the document will be
implicitly cleared and reopened. That is as if you had performed a document.clear() and then a
document.open(). Any content that you had just written and then terminated with the
document.close() will be discarded and a new document body started.

The DOM level 1 specification suggests that this method may be deprecated in the future.

See also: Document object, Document.open(), Document.write(),
Document.writeln()

Document.contextual() (Method)
Returns a style object that represents the contextual style for the receiver.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: JSSTag object

JavaScript syntax: N myDocument.contextual(aStyle, ...)

Argument list: aStyle One or more style objects to clone

This method is used to instantiate a new style object for when tags occur within the tags or
classes of other types. For example, you can build a contextual style object that combines two tag
types and specifies that when, and only when, they are used in that context, a certain style
appearance is defined.

This fragment of JavaScript will yield a style object that is relevant to the contents of an <H1> tag:

myStyle1 = document.tags.H1;

D – Document.cookie (Property)

519

This fragment will yield a style object relevant to text inside a tag (bold text):

myStyle2 = document.tags.B;

Now we can combine the two to yield a style object that applies only to content between the
tags when they are inside <H1> tags:

myStyle3 = document.contextual(myStyle1, myStyle2);

Finally, we can set some attribute of that style:

myStyle3.color = "Blue";

So, any text inside tags inside <H1> tags will be blue.

This needs to be executed in a <SCRIPT> block in the <HEAD> portion of the document and cannot
be executed after the body has commenced loading.

The result of this method call is a style object that operates within a particular context.

Warnings:
❑ Because this is part of the JSS support, its use is deprecated and likely to become redundant now that

Netscape is orienting its style sheet capabilities towards the open standards from W3C.

See also: Document object, Document.classes[], Document.tags[],
JSSTag object

Document.cookie (Property)
Access to a cookie for the current document.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDocument.cookie

A cookie is a small fragment of textual data that is associated with the current page. It is not modelled
particularly well for access by JavaScript and you will need to use some scripting to disassemble and
reassemble the name-value pairs that are concatenated together to make the cookie.

The cookie property for a document returns a string containing ALL the cookies that apply to the
document. You will need to split them into individual cookies by separating them at semi-colon
boundaries. From that you will for each cookie obtain a name=value construct that you can further
dismantle and process.

JavaScript Programmer's Reference

520

Note that you will not get any of the special attributes of the cookie since they are write-only. The
only thing you can get back is its value property. This means that although the cookie property
is available for read and write access, it is unlike all other properties it is not symmetrical. You
don't get back out what you put in.

Warnings:
❑ MSIE version 3 will only return cookie data for documents that were requested using the http:

protocol.

Example code:
// Define a cookie for the current document
document.cookie = "cookiename=value";
// Define a cookie from a variable using URL escape()
document.cookie = "cookiename=" + escape(myValue);
// Setting an expiry date on the cookie
myCookieValue = "cookiename=value";
myCookieExpires = "expires="+myDate.toGMTString();
myCookie = myCookieValue + "; " + myCookieExpires;

See also: Cookie, Document object

Document.createAttribute() (Method)
Creates an Attribute object that can then set on an Element with the setAttributeNode() method.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Attribute object

JavaScript syntax: N myDocument.createAttribute(aName)

Argument list: aName The name of the attribute to create

This is a new feature introduced with the DOM level 1 standard and currently available only in
fully DOM compliant browsers.

The example function shows how a new attribute object can be created and set on an element.
Because this is standardized at the DOM document level and is not dependent on HTML, it could
work in non-web browser implementations.

This is where browser implementations of DOM functionality tend to blur the facts slightly. DOM
describes a generic Document and then sub-classes that to describe an HTMLDocument. Browsers
merge the two areas of functionality and simply call it a Document.

D – Document.createCDATASection() (Method)

521

Example code:
// A code fragment that creates an attribute and sets it on
// an element object that is passed in:
function attachMyAttrib(anElement, aName, aValue)
{
var myNewAttr = createAttribute(aName);
var myOldAttr = anElement.setAttributeNode(myAttr);
}

See also: Attr object, Attribute object

Document.createCDATASection() (Method)
Creates a new CDATASection object whose value is the string passed as an argument.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: CDATASection object

JavaScript syntax: N myDocument.createCDATASection(someData)

Argument list: someData The data content for the new object

See also: CDATASection object

Document.createComment() (Method)
Creates a new comment node object containing the data passed in the string argument.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: COMMENT object

JavaScript syntax: N myDocument.createComment(someData)

Argument list: someData The content of the comment block

See also: COMMENT object

JavaScript Programmer's Reference

522

Document.createDocumentFragment() (Method)
Creates a new and empty document fragment.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: DocumentFragment object

JavaScript syntax: N myDocument.createDocumentFragment(someData)

Argument list: someData The content of the document fragment

See also: DocumentFragment object

Document.createElement() (Method)
A method to create a new element within a document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Element object

JavaScript syntax: - myDocument.createElement(aTagName)

Argument list: aTagName An HTML tag name

The result of calling this method is a new Element object as if it had been freshly instantiated by
an HTML tag.

This is a means of creating new objects which you can then assign to various properties. It is
effectively a constructor which is driven by the HTML tag names.

Internally, the MSIE browser maintains objects that are associated with HTML tags as members of a
class named after the tag that created them. It’s as if there were a class that corresponded to each HTML
tag. This means that a call like createElement() can use them as if they were constructor objects.

The internal mechanisms in Netscape 6.0 follow the DOM level 1 specification more closely and use
the correct class names as defined in the standards. MSIE may support these in the future and you
should be careful when writing any script that needs to be aware of the object class names it is
operating on.

See also: Document object, Element object

D – Document.createEntityReference() (Method)

523

Document.createEntityReference() (Method)
A new EntityReference object is created. It may acquire the same child list as the entity it refers to.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: EntityReference object

JavaScript syntax: N myDocument.createEntityReference(aName)

Argument list: aName The name of the entity reference to be created

See also: EntityReference object

Document.createProcessingInstruction() (Method)
A new processing instruction node is created. Its name and content are specified by the arguments.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: ProcessingInstruction object

JavaScript syntax: N myDocument.createProcessingInstruction
(aTarget,someData)

aTarget The target for the instructionArgument list:
someData The data for the instruction

See also: ProcessingInstruction object

Document.createStyleSheet() (Method)
A style sheet factory method.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: styleSheet object

IE myDocument.createStyleSheet()

IE myDocument.createStyleSheet(aURL)
JavaScript syntax:

IE myDocument.createStyleSheet(aURL,
anIndex)

aURL The URL to load the style sheet fromArgument list:
anIndex A location within the stylesheet list to insert this

stylesheet

JavaScript Programmer's Reference

524

This is a means of adding a style sheet to a document from the JavaScript context.

When you create the style sheet, you have the choice of simply creating an empty styleSheet
object or calling one in from a URL document source location.

You can also specify where in the hierarchy of currently loaded style sheets this new one should be
placed by specifying its index location within the styleSheets collection.

If you can locate this styleSheet object once it has been installed, you can carry out further
modifications on it by means of the addRule() method. This may be somewhat problematic on
some browser versions and platforms since you don't get an object reference handle back from this
method. You might be able to code around that, however, since you can specify a target index
position in the styleSheets collection. That may mean you can get a reference to it indirectly
once it has been added.

Warnings:
❑ Although this method is supposed to return a styleSheet object, on the Macintosh platform it

returns a null value in some versions of the MSIE browser.

See also: Document object, StyleSheet object, StyleSheet.addRule()

Document.createTextNode() (Method)
A means of constructing a new textNode object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: textNode object

JavaScript syntax: - myDocument.createTextNode(someData)

Argument list: someData The textual content of the node

You may need to create additional text nodes to be placed between other objects you create when
modifying a document object model. Text nodes are placed interstitially between object nodes
within a document hierarchy.

See also: Hierarchy of objects, textNode object

D – Document.defaultCharset (Property)

525

Document.defaultCharset (Property)
The default character set of the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.defaultCharset

This would contain the character set being used by the document when it was first opened. That
may have changed but this value should always be the same as it was at the start. For example the
value "iso-8859-1" is likely to be returned but the local variant of the browser and OS may
affect the value you get.

Warnings:
❑ Netscape does not support this.

See also: Document object, Document.charset

Document.designMode (Property)
Part of a page authoring control system built into the MSIE browser.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDocument.designMode

This is a means of editing objects manually within the browser. While the browser is in this state,
editable elements acquire a UI for modification by means of the enter key. When the designMode
property is set to "on" you cannot execute scripts.

The following values can be assigned to this property:

❑ On

❑ Off

❑ Inherited

Warnings:
❑ Whether this works may depend on platform and browser versions. It does not appear to be

functional on MSIE for Macintosh despite the Microsoft documentation saying that it should work.

JavaScript Programmer's Reference

526

Document.detachEvent() (Method)
A means of detaching events from windows and documents that were previously attached with the
attachEvent() method.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myDocument.detachEvent(anEventName)

Argument list: anEventName The name of an event to be handled

This is part of the behavior handling in MSIE which involves the use of style sheets and .htc files.

See also: <STYLE>, Document.attachEvent(),
Window.attachEvent(), Window.detachEvent()

Document.doctype (Property)
The current document type of the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Doctype object

JavaScript syntax: - myDocument.doctype

HTML syntax: <!DOCTYPE aDocumentDescription>

Argument list: aDocumentDescription A reference to a DTD for this document

The <!DOCTYPE> tag at the top of the document is instantiated into a Doctype object and a reference
to it is stored here. This tag describes a DTD statement that identifies the type of document.

Here is a properly formed DTD statement:

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 FINAL//EN">

This is represented by an object whose type is a single exclamation mark. As this tag should be on
the first line of a document, the object will be at index 0 in the document.all[] array.

Support for this is still somewhat patchy as of Netscape 6.0 and MSIE 5.5. Netscape 6.0 returns a
DocType object (note the class name capitalization) but its string value is not defined. MSIE returns
an undefined value.

D – Document.documentElement (Property)

527

Warnings:
❑ There is apparently no access to this value in Netscape and MSIE only provides limited access.

See also: ! object, !.tabIndex, Doctype object, Document object,
Element object

Property attributes:
ReadOnly

Document.documentElement (Property)
An HTML element that represents the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Element object

JavaScript syntax: - myDocument.documentElement

HTML syntax: <HTML>

This property contains a reference to an Element object that corresponds to the <HTML> tag at the
top of the document.

Warnings:
❑ Traversing this object with a for(... in ...) loop in MSIE 5 may lead to a browser crash.

This is unfortunately still true for version 5.5 of MSIE.

See also: Document object, Element object, HTML object

Property attributes:
ReadOnly

JavaScript Programmer's Reference

528

Document.domain (Property)
A means of allowing web servers that trust one another to allow normally insecure access from one
another's documents.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDocument.domain

This is part of the Netscape security model that allows unsigned scripts to communicate with one
another as long as they belong to the same domain.

Normally, documents may not always be able to communicate with one another because they come
from different servers. This can be alleviated by specifying a domain that is shared by several servers.

The initial value of this property is the complete host name of the server that provided the
document when it was loaded.

A script is able to set a domain value that is a suffix of the existing domain. So, aaa.bbb.ccc.com
can become bbb.ccc.com but cannot become another.domain.com which allows you to serve
documents from several hosts in the same domain but not access content served by other domains.

Once any two documents have the same domain setting, they can exchange property values with
one another even though they may have originated on different hosts.

Global

Function call

Function call

Function call

Function call

Function call

Function call

D – Document.elementFromPoint() (Method)

529

Warnings:
❑ This is not supported on the WebTV platform.

See also: Document object, JellyScript, Security policy

Property attributes:
ReadOnly

Document.elementFromPoint() (Method)
Determines which element is under a particular x, y location.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Object object

JavaScript syntax: IE myDocument.elementFromPoint(xCoordinate,
yCoordinate)

xCoordinate The X-coordinate valueArgument list:
yCoordinate The Y-coordinate value

The result of this method will be a reference to the Element object under the x,y point.

The document is inspected and the browser works out the topmost Element object at the indicated
x,y location. That Element object is then returned as the result. This is very much like executing a
mouse click at a location in the document window, and then extracting the target Element object
from the event object. However this is far simpler.

See also: Document object

Document.embeds[] (Collection)
An array of all the <EMBED> tag objects within the document.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: EmbedArray object

JavaScript syntax: - myDocument.embeds

HTML syntax: <EMBED>

JavaScript Programmer's Reference

530

Each <EMBED> tag is represented here by an object. The embeds are encapsulated in the same
JavaObject objects as are used for the Java applets.

Every embedded plugin will respond to different suites of property and method messages although
there may be some similarities between some plugins that serve the same purpose.

Warnings:
❑ Be aware that if you are not using some NAME or ID binding to the <EMBED> tags, you may get

unexpected results if new embeds are added and you are accessing elements of this array using
numeric index values.

❑ In Netscape, your JavaScript code interacts with them courtesy of LiveConnect in a very similar way.
MSIE interacts with the embeds by means of ActiveX. This can lead to some differences in the way
the plugins are supported and the things they can do in each browser environment.

❑ In MSIE on the Windows platform, plugins are often recommended for use with the <OBJECT> tag
rather than the <EMBED> tag. This can lead to portability issues in your scripts and web pages.

❑ In MSIE version 4, this returns a Collection object instead of an EmbedArray object. MSIE 5 is
more consistent with Netscape .

❑ Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class although they are really implemented as JavaObject objects. In MSIE, this is an
ActiveX object.

❑ There is additional confusion in that there is a plugins[] array that belongs to the document and
another that belongs to the navigator object. They both contain collections of objects but of
different types. This is further confused by the fact that the document.plugins[] array is another
name for the document.embeds[] array.

❑ Because of this confusing situation, the best recommendation is that we refer to
document.embeds[] and navigator.plugins[] and quietly ignore the
document.plugins[] array. Furthermore we shall refer to Plugin objects as being something
the browser can use to play embedded content and Embed objects will be an instance of a plugin that
is alive and running in a document.

See also: <EMBED>, Document object, Document.applets[],
Document.plugins[], Embed object, EmbedArray object,
JavaObject object, LiveConnect

Property attributes:
ReadOnly

Document.execCommand() (Method)
Part of an MSIE special document command handling mechanism. A method for executing commands.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

D – Document.execCommand() (Method)

531

IE myDocument.execCommand(aCommand)

IE myDocument.execCommand(aCommand, aUIFlag)
JavaScript syntax:

IE myDocument.execCommand(aCommand, aUIFlag,
aParameter)

aCommand An MSIE command to execute
aParameter Parameter value to the command

Argument list:

aUIFlag Display or inhibit UI appearance

The MSIE browser supports a special command handling interface that hooks through the
browser's user interface. It allows you to automate user actions in a way that other browsers and
non-Windows platform users cannot take advantage of.

Although this is a method that applies to a document object, many of the commands that are
executed through this mechanism will require that a TextRange object is created and available first.

The result returned by this method, is a Boolean true if the action succeeded, and a Boolean
false if it failed in someway.

The flag parameter provides a way to suppress any user interface changes that may appear as a
result of executing the command.

Name Description

2D-Position Absolutely positioned elements can be moved by dragging.
AbsolutePosition Sets an element's position property to "absolute"
BackColor The background color for the current selection is set to the color value

passed in the parameter argument.
Bold The selected text has and tags placed at either end.
Copy The TextRange is copied to the clipboard.
CreateBookmark Carries out modifications to an existing <A> tag or creates one, then adds

the item to the bookmarks list. The parameter provides the NAME value. The
<A> tag is removed if there is no parameter.

CreateLink Wraps an tag around the selected text. The parameter
contains the URL value for the HREF.

Cut Performs a cut to clipboard.
Delete The text range is deleted. This is not the same as a Cut command.
FontName Wraps tags round the selection. The required font face is passed

in the parameter.
FontSize Wraps tags round the selection and defines the fonts size from the

parameter value.
ForeColor Redefines the foreground btext color for the selection taking the color

value from the parameter.
FormatBlock Wraps a <BLOCK> tag round the TextRange.
Indent The TextRange is indented
InsertButton A <BUTTON> tag is placed at the current insertion point in the document.

Its ID value is defined by the parameter.

Table continued on following page

JavaScript Programmer's Reference

532

Name Description

InsertFieldset A <FIELDSET> tag is inserted with the ID value being taken from the
parameter

InsertHorizontalRule An <HR> tag is added at the current insertion point.
InsertIFrame A new <IFRAME> is inserted with the content URL being provided in

the parameter.
InsertImage Overwrites an image on the current selection.
InsertInputButton An <INPUT TYPE="Button"> is added with its ID value coming

from the parameter.
InsertInputCheckbox An <INPUT TYPE="Checkbox"> is added with its ID value coming

from the parameter.
InsertInputFileUpload An <INPUT TYPE="FileUpload"> is added with its ID value

coming from the parameter.
InsertInputHidden An <INPUT TYPE="Hidden"> is added with its ID value coming

from the parameter.
InsertInputImage An <INPUT TYPE="Image"> is added with its ID value coming

from the parameter.
InsertInputPassword An <INPUT TYPE="Password"> is added with its ID value coming

from the parameter.
InsertInputRadio An <INPUT TYPE="Radio"> is added with its ID value coming

from the parameter.
InsertInputReset An <INPUT TYPE="Reset"> is added with its ID value coming

from the parameter.
InsertInputSubmit An <INPUT TYPE="Submit"> is added with its ID value coming

from the parameter.
InsertInputText An <INPUT TYPE="Text"> is added with its ID value coming from

the parameter.
InsertMarquee A new <MARQUEE> is added with the ID being taken from the

parameter.
InsertOrderedList A new is added with the ID being taken from the parameter.
InsertParagraph A new <P> is added with the ID being taken from the parameter.
InsertSelectDropdown A new <SELECT TYPE="select-one"> is added with the ID

being taken from the parameter.
InsertSelectListbox A new <SELECT TYPE="select-multiple"> is added with the

ID being taken from the parameter.
InsertTextArea A new <TEXTAREA> is added with the ID being taken from the

parameter.
InsertUnorderedList A new is added with the ID being taken from the parameter.
Italic The TextRange is enclosed with <I> tags.
JustifyCenter The TextRange is centered within its parent object.
JustifyFull The TextRange is fully justified.
JustifyLeft The TextRange is left justified.
JustifyRight The TextRange is right justified.

Table continued on following page

D – Document.expando (Property)

533

Name Description

LiveResize Causes the MSHTML Editor to update an element's appearance
continuously during a resizing or moving operation, rather than updating
only at the completion of the move or resize.

MultipleSelection Allows for the selection of more than one site selectable element at a time
when the user holds down the SHIFT or CTRL keys.

Outdent The complement of the Indent command.
OverWrite The input-typing mode is set to overwrite if the parameter value is true and

insert if it is false.
Paste The contents of the clipboard are pasted into the TextRange.
PlayImage If an image represents a video clip, then it starts playing.
Refresh The document is reloaded.
RemoveFormat The complement of the FormatBlock command.
SaveAs Saves the current Web page to a file.
SelectAll The entire document text is selected.
StopImage The complement of the PlayImage command.
UnBookmark The complement of the CreateBookmark command.
Underline Places <U> tags around the TextRange.
Unlink The complement of the CreateLink command.
Unselect Unselects whatever was selected to create the TextRange. Many

commands are now inappropriate until a new TextRange has been created.

None of these commands provide any greatly significant functionality as far as dynamic HTML is
concerned. A few of them allow you to manage the clipboard and bookmark lists. It is probably best
to avoid using these commands and use the more usual ways of accessing the document internals.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

See also: Document object, Document.queryCommandEnabled(),
Document.queryCommandIndeterm(),
Document.queryCommandState(),
Document.queryCommandSupported(),
Document.queryCommandText(), Document.queryCommandValue(),
FileUpload.select(), TextRange.execCommand()

Document.expando (Property)
A means of locking objects to prevent new properties being added.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript Programmer's Reference

534

Property/method value type: Boolean primitive

IE myDocument.expandoJavaScript syntax:
IE myDocument.expando = aSwitch

Argument list: aSwitch A boolean value to turn this feature on or off

When the document.expando property is set to false, it inhibits the creation of new properties
if they do not already exist. This can sometimes help find bugs in your scripts. Imagine that you
may have misspelled a property name. Setting this property so that it generates a runtime error
when a new property is created may help you to isolate the fault.

See also: Document object

Document.fgColor (Property)
The foreground color for text in the current document.

Availability: DOM level – 0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0
Deprecated

Property/method value type: Color value

- myDocument.fgColorJavaScript syntax:
- myDocument.fgColor = aColorValue

HTML syntax: <BODY TEXT="aColorValue">

Argument list: aColorValue A hex string or color name

This value controls the foreground text in the document body. You should use the normal color
values to define the required color.

This is the default text color for the document. It corresponds to the TEXT attribute in the <BODY> tag.

Default foreground text is colored according to this setting unless it is in an <A> tag when the
alinkColor, linkColor and vlinkColor values override it. The foreground text color can be
changed inline with the HTML tag attribute.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape where style sheet
controls do not.

DOM level 1 deprecates the use of this property in favor of the BODY.text property.

Warnings:
❑ This property can only be changed in the <HEAD> section. You cannot modify it after the <BODY>

has commenced loading.

D – Document.fileCreatedDate (Property)

535

See also: BODY.aLink, BODY.link, BODY.text, BODY.vLink, Color
names, Color value, Document object, Document.alinkColor,
Document.bgColor, Document.linkColor,
Document.vlinkColor

Document.fileCreatedDate (Property)
The date that the document file was created.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.fileCreatedDate

Where it is possible to distinguish properties of document source files, this can tell you about the
history of the document.

This read-only property describes the date that a file was created. With this you can calculate the
age of the file by subtracting that date from the date and time now.

See also: IMG.fileCreatedDate

Property attributes:
ReadOnly

Document.fileModifiedDate (Property)
The date that the document file was last modified.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.fileModifiedDate

Where it is possible to distinguish properties of document source files, this can tell you about the
history of the document.

This read-only property describes the date that a file was last modified. With this you can calculate
the age of the file content by subtracting that date from the date and time now.

Because this is MSIE specific functionality, you should use the Document.lastModified
property for portable script code.

See also: Document.lastModified, IMG.fileModifiedDate

JavaScript Programmer's Reference

536

Property attributes:
ReadOnly

Document.fileSize (Property)
The size in bytes of the file that was received by the browser.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myDocument.fileSize

This is the exact length of the received HTTP body portion of the document. This does not count
any HTTP headers that the web server may have sent prior to the HTTP body. If you edit a
document in a text file and then load it into the web browser, this is the exact length of that text file
in characters.

On the Macintosh operating system, some text editors hide additional resource data in the file. This
is not included and on that platform, the fileSize property is a measurement of the data fork of
the file and does not include the resource fork.

See also: Document object, IMG.fileSize

Property attributes:
ReadOnly

Document.forms[] (Collection)
An array containing a list of all the forms in the document.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera – 3.0

Property/method value type: FormArray object

JavaScript syntax: - myDocument.forms

HTML syntax: <FORM>

Every <FORM> element in the document corresponds to an object in the forms[] array.

D – Document.frames[] (Collection)

537

Warnings:
❑ Be aware that if you are not using some NAME or ID binding to the <FORM> tags, you may get

unexpected results if new forms are added and you are accessing elements of this array using
numeric index values.

❑ In MSIE version 4, this returns a generic untyped object instead of an AppletArray object. MSIE 5
is more consistent with Netscape .

❑ Following some experiments, it seems that in Netscape (version 4.75) the length of the forms[]
array indicates only the number of numerically indexed items in the array. There are additional
items added to the array to refer to the same Form objects by name.

Example code:
// Referring to the first form of a document
myFirstForm = document.forms[0];
// Referring to the last form of a document
myLastForm = document.forms[document.forms.length-1];

See also: Document object, Element.all[], Form object,
FormArray object

Property attributes:
ReadOnly

Document.frames[] (Collection)
An array containing references to all the frame objects within a document.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Frames object

JavaScript syntax: IE myDocument.frames

HTML syntax: <FRAME>

In the MSIE browser, you can define in-line frames with the <IFRAME> tag. The frame property of
a document contains a reference to a Frames object which is a collection of Frame or Window
objects that enumerate the child frames within the current document.

Aside from the fact that the frame inlined into the HTML and can appear like an image embedded in the
text, in all other respects it is like <FRAME> in a <FRAMESET> and is instantiated as a Window object.

To locate the objects representing these in-line frame, use the normal DOM navigation techniques
based on object ID values and collections belonging to the document.

JavaScript Programmer's Reference

538

Warnings:
❑ Be careful not to confuse this property with the Window.frames property.

See also: Document object, Frame object, Frames object, Window object,
Window.frames[]

Property attributes:
ReadOnly

Document.getElementById() (Method)
An accessor method for retrieving objects from within the DOM hierarchy specifically according to
their ID value.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Opera – 5.0

Property/method value type: Element object

JavaScript syntax: - myDocument.getElementById(anID)

Argument list: anID The ID value of an object to locate in a string

Sometimes, it can be inconvenient to walk the document hierarchy to locate an object by its ID. One
alternative is to search the all[] collection on the MSIE browser but this is a linear search that
takes place serially through the document object collection from beginning to end. It can take quite
a while to locate the object.

There may also be some conflict in locating objects. The ID and NAME attributes are different and
yet often the two namespaces are combined and searched together.

This method is a faster way of locating object specifically by its ID value and ignoring its NAME
value. It searches the only unmerged namespace for the ID value.

The DOM level 1 specification notes that the behavior is undefined if more than one item shares the
same ID. Running a short test on MSIE on the Macintosh platform yields the first occurring element
with a matching ID value. It is likely that this is the generic behavior for versions of MSIE across all
other platforms too. For now at least Netscape 6.0 seems to do the same thing.

As there is undefined behavior in the specification, you may find that some browsers return a
different object. Indeed, because this is undefined, the behavior may change from one browser
version to the next.

D – Document.getElementsByName() (Method)

539

Document.getElementsByName() (Method)
An accessor method for retrieving objects from within the DOM hierarchy specifically according to
their NAME value.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Opera – 5.0

Property/method value type: NodeList object

JavaScript syntax: - myDocument.getElementsByName(aName)

Argument list: aName The name of the element to be retrieved

Sometimes, it can be inconvenient to walk the document hierarchy to locate an object by its NAME. One
alternative is to search the all[] collection but this is a linear search that takes place serially through
the document object collection from beginning to end. It can take quite a while to locate the object.

There may also be some conflict in locating objects. The ID and NAME attributes are different and
yet often the two namespaces are combined and searched together.

This method is a faster way of locating an object specifically by its NAME value and ignoring its ID
value. It searches the only unmerged namespace for the NAME value.

Warnings:
❑ This always yields an empty collection on MSIE 5 for Macintosh.

Document.getElementsByTagName() (Method)
A node list is returned that contains references to all the child elements having the specified tag name.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: NodeList object

JavaScript syntax: - myDocument.getElementsByTagName(aTagName)

Argument list: aTagName The name of an HTML tag

See also: Element.getElementsByTagName(), NodeList object

JavaScript Programmer's Reference

540

Document.getSelection() (Method)
Return the currently selected text string.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: N myDocument.getSelection()

If you have selected a piece to text, in Netscape this method will return the raw unformatted text
within the selection. If there are any HTML tags in the selection, they will be stripped out.

The MSIE browser employs a completely different technique that involves Selection objects and
TextRange objects as a means of access to the selected text.

As it is easy to deselect the highlighted text by clicking on some other active object in the page, you
will need to access the selection inside an event handler that is triggered by the selection action
itself. This might be done quite effectively in an onSelectStart handler.

Warnings:
❑ On MSIE, use the selection property of the document object.

See also: Document object, Document.selection, Selection object

Document.handleEvent() (Function)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myDocument.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: Document object, handleEvent()

D – Document.height (Property)

541

Document.height (Property)
The height of the document.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N myDocument.body.offsetHeight
JavaScript syntax:

N myDocument.height

The current height of the document measured in pixels. This value constantly changes as the
document content is rendered into the page. You can measure this value during document loading
and then measure it later to find the page has grown in size.

On MSIE, this property is not supported and you need to do a little work to access the appropriate
Element object properties of the body object.

Document.height

Document.width

Warnings:
❑ This is not supported by MSIE, however you could use the document.body.offsetHeight

property instead.

❑ This value can be read by an unsigned script in another window.

See also: Document object, Document.width

JavaScript Programmer's Reference

542

Document.ids[] (Collection)
Part of the JSS model supported only by Netscape 4.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: JSSTags object

JavaScript syntax: N myDocument.ids

This yields a JSSTags associative array which contains a style object for each Element object in
the page which has an ID="..." HTML tag attribute.

The ID value is used as an associative array reference to reach the style object.

This property does not show up when the document properties are enumerated in a for(... in
...) loop.

Refer to the JSSTags topic if you need to operate on these objects.

Warnings:
❑ This is only supported by Netscape 4 and is part of the JSS support and therefore to be deprecated

and should not be used on new projects.

❑ If you plan to use this, the style settings can only be done during the <HEAD> portion of the
document and cannot be modified once the document body begins to load.

❑ This functionality is removed from Netscape 6.0.

See also: Document object, Document.classes[], ID="...",
JSSTags object

Property attributes:
ReadOnly, DontEnum.

Document.images[] (Collection)
An array containing a list of all the images in the document.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: ImageArray object

D – Document.implementation (Property)

543

JavaScript syntax: - myDocument.images

HTML syntax:

Every image in the document corresponds to an element in this array. There is a one for one
relationship between these elements and tags.

The MSIE and Netscape browsers each maintain an ImageArray object which is just a special case
of the Array object. However, although they both store objects that represent images in that array,
those image objects are quite different. For a start in Netscape they are of the class "Image" while in
MSIE they are of the class "IMG" named after the HTML tag. Perhaps this is fortunate in that you
may be able to detect what kind of object you are operating on if you need to perform complex
image management activities. This might change however if browsers become more standards
compliant in their object class naming, so it may not be true of all versions of all browsers.

The DOM level 1 specification requires that only those images referenced by HTML tags
should be included in this list.

Warnings:
❑ Be aware that if you are not using some NAME or ID binding to the tags, you may get

unexpected results if new images are added and you are accessing elements of this array using
numeric index values.

See also: Document object, Element.all[], Image object,
ImageArray object

Property attributes:
ReadOnly

Document.implementation (Property)
A reference to a DOM Implementation object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Implementation object

JavaScript syntax: - myDocument.implementation

This object is used to find out about the DOM implementation in a web browser in the same way
that the navigator object tells you about the browser version and its capabilities.

The most useful item belonging to this object is the hasFeature() method. With that you can establsih
whether your script is running in an environment that supports the capabilities that you need.

JavaScript Programmer's Reference

544

Warnings:
❑ This may not be implemented in all version of the MSIE browser. It has been reported as being

undefined in MSIE 5.0 and 5.5 for Windows.

See also: Document object, Implementation object

Property attributes:
ReadOnly

Document.lastModified (Property)
The modification date of the document is stored in this property.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDocument.lastModified

This value is obtained by inspecting the HTTP headers as they arrive in the browser. The value of
this header is defined by the web server, which probably used the modification date of the file in
the htdocs directory that it served the content from.

You can check that this is a valid date by handing it to the Date.parse() method as an argument.
If Date.parse() yields a zero value, then it is invalid unless the file was last modified in January
1970 which is extremely unlikely.

See also: Document object, Document.fileModifiedDate,
Document.location, Document.referrer,
Document.title

Property attributes:
ReadOnly

Document.layers[] (Collection)
An array containing a list of layers in the document.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: LayerArray object

JavaScript syntax: N myDocument.layers

D – Document.linkColor (Property)

545

HTML syntax: <LAYER>

Each item in this array corresponds to a <LAYER> tag in the document. This array also includes layers
that are created in Netscape by setting the position attribute of an HTML <DIV> block to absolute.

The layers in this array are ordered according to the order in which they appear in the document.
Layers can be accessed associatively if they have been given an ID with the ID="..." or
NAME="..." tag attribute. This means you can refer to an element whose ID is set to ABC by its
unique name. Either as document.ABC or document layers["ABC"].

Warnings:
❑ Netscape 6.0 completely removes layer support. If you use layers, your pages will break.

❑ Be aware in Netscape 4 that if you are not using some NAME or ID binding to the <LAYER> or
<DIV> tags, you may get unexpected results if new layers are added and you are accessing elements
of this array using numeric index values.

❑ Unnamed layers will not be added to the array, although the array length will correctly reflect the
existence of the layers in its count. The count will be wrong and there will be too few objects in the
array when you enumerate them in a loop.

See also: Document object, ID="...", Layer.layers[], LayerArray
object, style.position

Property attributes:
ReadOnly, DontEnum

Document.linkColor (Property)
The color of links that have not yet been visited.

Availability: DOM level – 0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0
Deprecated

Property/method value type: Color value

- myDocument.linkColorJavaScript syntax:
- myDocument.linkColor = aColorValue

HTML syntax: <BODY LINK="aColorValue">

Argument list: aColorValue A hex color value or color name

JavaScript Programmer's Reference

546

This value controls the text of active links in the document body. You should use the normal color
values to define the required color.

This property is equivalent to the LINK attribute of the <BODY> HTML tag. This is the color that is
used for as yet unvisited links.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape where style sheet
controls do not.

DOM level 1 deprecates this property in favor of the BODY.link property.

Warnings:
❑ This property can only be changed in the <HEAD> section. You cannot modify it after the <BODY>

has commenced loading.

❑ On MSIE 5 for Macintosh, the color of the link remains set to its default color until a mouse rolls over
it whereupon it changes to the value defined in the script. This is probably a bug.

❑ Some suggested work arounds include using document.write() to output the <BODY> tag as the
document is loaded. This might work for some applications although I have experienced significant
problems with complex pages that are being built with document.write() calls. The problems
seem to stem from the internal document structure being incomplete and, once the page is loaded,
some object references crash the browser. This is particularly problematic with <OBJECT> tags in
MSIE for Windows and because the <BODY> tag is so fundamental to a document, you may want to
check that a page composed in this way really does work on all browsers and platforms.

See also: BODY.aLink, BODY.bgColor, BODY.link, BODY.text,
BODY.vLink, Color names, Color value, Document object,
Document.alinkColor, Document.bgColor,
Document.fgColor, Document.vlinkColor

Document.links[] (Collection)
An array of links in the document.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: LinkArray object

JavaScript syntax: - myDocument.links

HTML syntax: <A><AREA>

This is a collection of link objects, each one corresponding to an anchor or area tag in the
document. This array may be identical to the anchors[] array if there are no <AREA> tags present.

D – Document.location (Property)

547

Note that in Netscape , the class type for these link objects is actually Url and so they are described
in detail at that point in the lexically sorted topics.

Objects are added to this array if they are hyperlinks. Simple named anchors do not qualify for
addition to this array although they would be added to the array accessible via the
document.anchors property. The anchors, and links arrays allow you to distinguish easily
between internal and external HREF values. It is slightly confusing in that all <A> tags will be
members of the anchors array while only externally linking <A> tags and all <AREA> tags will be
in the links array.

DOM level 1 requires that this collection should include all objects instantiated by <AREA> and <A>
HTML tags which contain an HREF="..." HTML tag attribute.

Warnings:
❑ Be aware that if you are not using some NAME or ID binding to the <A> and <AREA> tags, you may

get unexpected results if new links are added and you are accessing elements of this array using
numeric index values.

❑ There are security limitations to what you can do when accessing the links property of a document
in another frame. So long as both documents came from the same server, you can access one from
the other. Documents from the same domain can access one another as can signed documents
according to the security policy in force at run-time.

❑ It isn't proven conclusively but Netscape 6.0 may have some incipient bugs that prevent write-
access to properties of objects in this collection. That may be corrected quite quickly as the browser
is more widely released.

See also: Anchor object, Document object, Document.anchors[],
Element.all[], LinkArray object, LinkArray.length,
Security policy, Url object, Url.name

Property attributes:
ReadOnly

Document.location (Property)
This is another name for the Document.URL property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0
Deprecated

Property/method value type: Location object

JavaScript syntax: - myDocument.location

JavaScript Programmer's Reference

548

This is deprecated now in favor of using the Document.URL property to access a Url object.

In version 1.0 of JavaScript this was a simple string primitive value that contained the actual
location of a window. It was not necessarily the same value as the Window.location.href
value which always contained the requested location.

As of version 1.1 of JavaScript, this is now a reference to the same object that Window.location
points at. However at the same time its use became deprecated.

Warnings:
❑ This location property is not the same as the location property that belongs to a window. The

document.location property is a string containing the URL that the document was loaded from.
The window.location property is a reference to the requested URL encapsulated in an object.
Because of this, the document.location property is not preferred and you should use the
document.URL property to avoid confusion.

❑ This property is supposed to be read-only. However, Netscape 4 allows this property value to be
changed. This is not recommended practice and you should use the Window.location.href
property to change the page in the window.

See also: Document object, Document.lastModified, Document.referrer,
Document.URL, Location object, Window.location

Document.open() (Method)
Open a document body ready for writing.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

- myDocument.open()

- myDocument.open(aMimeType)
JavaScript syntax:

- myDocument.open(aMimeType, aReplaceFlag)

aMimeType A text string describing a valid mime types for the
document

Argument list:

aReplaceFlag A string containing the word "replace"

This opens and prepares the document in readiness for a document.write() action.

Although the document.close() is required, the document.open() may be omitted. Some
browsers may be permissive enough to allow the document.write() actions to work without a
document.open() first but occasionally a browser may fail. It is good coding style to observe the
discipline of opening a stream before writing to it.

D – Document.parentWindow (Property)

549

The optional parameter describes the MIME type of the document to be opened. By default this will
be "text/html". The "text/plain" MIME type is useful too. You can, in theory, open any kind of
document but most binary formats are just not practical.

Refer to the MIME type topic for details of some available MIME type values.

The DOM level 1 specification suggests that this method may be deprecated in the future.

Warnings:
❑ MSIE does not support the MIME type parameter.

See also: Debugging – client side, Document object, Document.close(),
Document.write(), Document.writeln(), MIME types,
Window.open()

Document.parentWindow (Property)
The window object that contains the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Window object

JavaScript syntax: IE myDocument.parentWindow

This is the parent window in which the document is currently being viewed. This window parent-
child hierarchy is the nearest analogy that MSIE has to the Netscape layers facility.

If you write code to manage layers or parent-child windows (such as documents containing in-line
frames), you will need to take account of browser differences and code accordingly.

See also: Document object, Frame object, Window object,
Window.document, Window.frame

Property attributes:
ReadOnly

JavaScript Programmer's Reference

550

Document.plugins[] (Collection)
Another (confusing) name for the document.embeds property and NOT the
navigator.plugins property.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0
Deprecated

Property/method value type: EmbedArray object

JavaScript syntax: - myDocument.plugins

Each <EMBED> tag is represented here by an object. The embeds are encapsulated in the same
JavaObject objects as are used for the Java applets.

Every embedded plugin will respond to different suites of property and method messages although
there may be some similarities between some plugins that serve the same purpose.

Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class although they are really implemented as JavaObject objects. In MSIE, this is an
ActiveX object.

Plugins folder

Embedded plugins

Document.plugins
Document.embeds

Navigator.plugins

D – Document.protocol (Property)

551

There is additional confusion in that there is a plugins[] array that belongs to the document and
another than belongs to the navigator object. They both contain collections of objects but of
different types. This is further confused by the fact that the document.plugins[] array is
another name for the document.embeds[] array.

Due to this confusing situation, the best recommendation is that we refer to document.embeds[]
and navigator.plugins[] and quietly ignore the document.plugins[] array. Furthermore
we shall refer to Plugin objects as being something the browser can use to play embedded content
and Embed objects will be an instance of a plugin that is alive and running in a document.

Warnings:
❑ In MSIE version 4, this returns a Collection object instead of an EmbedArray object. MSIE 5 is

more consistent with Netscape .

❑ Because of the confusion between embedded and installed plugins, it is highly recommended that
you use the document.embeds array for scripts that operate on objects instantiated by the
<EMBED> tag. Then, use the navigator.plugins array for operations on the installed and
available plugins that may not yet be embedded into a page.

See also: Document object, Document.embeds[], EmbedArray object

Property attributes:
ReadOnly

Document.protocol (Property)
The protocol that was used when the document was loaded.

Availability: JScript – 1.0
Internet Explorer – 3.02

Property/method value type: String primitive

JavaScript syntax: IE myDocument.protocol

This should yield the value HTTP or FILE or one of the other available protocols according to how
the document was accessed. This allows you to build script code that can behave differently
according to how the document was loaded.

See also: IMG.protocol, URL

Property attributes:
ReadOnly

JavaScript Programmer's Reference

552

Document.queryCommandEnabled() (Method)
Part of an MSIE special document command handling mechanism. Indicates if a command is
available for a document or text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDocument.queryCommandEnabled(aCommandName)

Argument list: aCommandName An MSIE command name

This method returns a Boolean value that indicates whether the named command is enabled. Many
factors can affect the result of this command. It may depend on the ready state of the document or
whether a selection is in force.

Refer to the document.execCommand() method for a list of the available commands.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

See also: Document object, Document.execCommand(),
TextRange.queryCommandEnabled()

Document.queryCommandIndeterm() (Method)
Part of an MSIE special document command handling mechanism. Indicates whether the command
is in the indeterminate state.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDocument.queryCommandIndeterm(aCommandName)

Argument list: aCommandName An MSIE command name

If the document is not fully loaded (you can check the readyState), or if a command might not be
available due to some of its prerequisites not being set (such a selection creating a TextRange),
this method will return a Boolean true value. If it returns a Boolean false, then the command
may be available as determined by the enabled test.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

See also: Document object, Document.execCommand(),
TextRange.queryCommandIndeterm()

D – Document.queryCommandState() (Method)

553

Document.queryCommandState() (Method)
Part of an MSIE special document command handling mechanism. The current state of a command
for the document or text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive or Null

JavaScript syntax: IE myDocument.queryCommandState(aCommandName)

Argument list: aCommandName An MSIE command name

This will return one of the following values:

❑ Boolean true if the command has completed.

❑ Boolean false if it is still in progress.

❑ Null if the state cannot be determined.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

See also: Document object, Document.execCommand(),
TextRange.queryCommandState()

Document.queryCommandSupported() (Method)
Part of an MSIE special document command handling mechanism. Indicates whether the document
or text range supports a command.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDocument.queryCommandSupported(aCommandName)

Argument list: aCommandName An MSIE command name

Some commands are not supported by the document object but may be supported by the
TextRange object.

This method returns a Boolean true value if the command is supported by the document object.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

JavaScript Programmer's Reference

554

See also: Document object, Document.execCommand(),
TextRange.queryCommandSupported()

Document.queryCommandText() (Method)
Part of an MSIE special document command handling mechanism.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.queryCommandText(aCommandName)

Argument list: aCommandName An MSIE command name

Some commands support the extraction of text from the document or TextRange. If the command
does support the extraction of text, it will be returned by this method.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

See also: Document object, Document.execCommand(),
TextRange.queryCommandText()

Document.queryCommandValue() (Method)
Part of an MSIE special document command handling mechanism. The value of a command for a
document or text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.queryCommandValue(aCommandName)

Argument list: aCommandName An MSIE command name

The value of a command depends on the command itself and what is selected. This method returns
a value according to those criteria.

Warnings:
❑ This is only supported by the 32 bit Windows version of MSIE.

See also: Document object, Document.execCommand(),
TextRange.queryCommandValue()

D – Document.readyState (Property)

555

Document.readyState (Property)
The current downloading status disposition of the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.readyState

Sometimes, you can design scripts to execute while the document is downloading. In-line scripts for
example. At that time, you may even be able to trigger interval timed deferred executions as well.

If it is important that the document has completed loading, you can check this property for one of
the following values:

State Value

uninitialized The object is first instantiated but has not begun loading.
loading The object has commenced loading.
loaded The object has completed loading.
interactive The object is loaded but not yet closed but is ready to handle interaction.
complete The object body has been closed and the loading is finished.

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: Document object, onReadyStateChange, XML object

Property attributes:
ReadOnly

Document.recalc() (Method)
A special MSIE supported method that sends a recalculation event to a document.

Availability: JScript – 5.0
Internet Explorer – 5.0

IE myDocument.recalc()
JavaScript syntax:

IE myDocument.recalc(aFlag)

Argument list: aFlag A flag to force the recalculation

JavaScript Programmer's Reference

556

All dynamic properties in the document will be recalculated when this method is called.

The flag value is optional and is assumed to be false if it is missing. Setting this flag to false
only recalculates those dynamic properties that have changed.

Setting the flag to the true value forces the browser to recalculate all of the dynamic properties
regardless of whether they have changed or not.

Document.referrer (Property)
The URL of the document that was displayed when the user clicked on a link to request this document.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDocument.referrer

The referrer value indicates the page that was being viewed when the user clicked on a link to
request this document.

The referrer data is often used in log analysis to trace a click stream that the user traversed your
web site with. This property allows you to do similar things at the client end and build all kinds of
history trees and back button simulations.

If you are prepared to do a little work to dismantle the referring link, you can detect when someone
has a link to one of your internal pages. What you do then is up to you but you could redirect to an
error page or simply bump the user to your front page. This would mean that whatever they did to
bookmark one of your pages, they would always end up at your front door instead.

Warnings:
❑ This does not work in MSIE version 3.

❑ In Netscape, the referrer only contains a value if the document is different. If a document refers to
itself in an anchor, clicking on that anchor effectively reloads the document. The referrer will be an
empty string. It continues to to be suspect at Netscape 6.0 as well.

❑ Some log analysis studies suggest that the referrer value is empty in MSIE when documents are
loaded into frames.

❑ Also as a result of studying log results, book-marked links or link values typed into the location box
or drag/dropped into the browser will also not yield a meaningful referrer value.

See also: Document object, Document.lastModified,
Document.location, Document.URL, Window.location

Property attributes:
ReadOnly

D – Document.releaseEvents() (Function)

557

Document.releaseEvents() (Function)
An alias for the window.releaseEvents() method.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myDocument.releaseEvents(anEventMask)

Argument list: anEventMask A mask defined with the manifest event constants

This is part of the Netscape 4 event management suite which allows events to be routed to handlers
other than just the one that defaults to being associated with an event.

The events to be captured are signified by setting bits in a mask.

This method provides a means of indicating which events are no longer needing to be captured by
the receiving Document object.

The events are specified by using the bitwise OR operator to combine the required event mask
constants into a mask that defines the events you want to capture. Refer to the Event Type
Constants topic for a list of the event mask values.

Since this is only supported by Netscape prior to version 6.0, the functionality is likely to be
deprecated when the standards bodies agree on a standard way of handling events. In the
meantime, we shall have to implement scripts using this capability if we need to build complex
event handling systems that work on legacy browsers. A different script will be required for MSIE
although it may be possible for Netscape 6.0 to share the same one.

You may be able to factor your event handler so that you only have to make platform specific event
dispatchers, and can call common handling routines that can be shared between MSIE and Netscape.

See also: captureEvents(), Document object,
Document.captureEvents(), Element.onevent, Event
propagation, Event type constants, Event.modifiers, Frame
object, Layer.captureEvents(), Layer.releaseEvents(),
onMouseMove, Window object, Window.releaseEvents()

Document.routeEvent() (Function)
Part of the Netscape event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myDocument.routeEvent(anEvent)

JavaScript Programmer's Reference

558

Argument list: anEvent An event to be routed

Object 1

Object 2

Object 3

Object 4

See also:
Document object, Document.handleEvent(),
Window.routeEvent()

Document.scripts[] (Collection)
An array of all the <SCRIPT> blocks in a document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: ScriptArray object

JavaScript syntax: IE myDocument.scripts

HTML syntax: <SCRIPT>

This is an array with references to a collection of objects that represent the <SCRIPT> blocks in the
current document.

Unnamed <SCRIPT> blocks are placed into the array with numbered index values. <SCRIPT> having
an ID="..." HTML tag attribute will be added to the array associatively. The NAME="..." HTML
tag is not reflected in this associative naming scheme and does not work with <SCRIPT> blocks.

D – Document.selection (Property)

559

Warnings:
❑ In MSIE version 4, this returns a generic Collection object instead of a ScriptArray object.

❑ If you interrogate this array in-line while the document is loading, you will not see any script blocks
that follow the one containing the script that inspects the array. That suggests this should be used
once the document has completed loading.

See also: <SCRIPT ID="...">, <SCRIPT>, Document object, ID="...",
SCRIPT object, ScriptArray object

Property attributes:
ReadOnly.

Document.selection (Property)
The selected text within the object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Selection object

JavaScript syntax: IE myDocument.selection

This is the MSIE equivalent functionality to the Netscape document.getSelection() method.

Any selected text is returned by a request for this property.

Warnings:
❑ On Netscape use the document.getSelection() method instead.

❑ On the Macintosh MSIE 5.0 browser, the selection property consistently returns null even when
there is some text selected. This may be because the Macintosh implementation of MSIE does not
support text ranges.

See also: Document object, Document.getSelection(),
Selection object

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

560

Document.styleSheets[] (Collection)
An array containing a list of style sheets in an MSIE document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: styleSheets object

JavaScript syntax: - myDocument.styleSheets

HTML syntax: <LINK>

This property yields a styleSheets array that contains a collection of objects that represent any
style sheets currently used by the document. These style sheets are called into the document with
the <LINK> tag.

The core style sheet model for both MSIE and Netscape is fundamentally the same. However, the
style sheet management is done in a completely different way in MSIE and Netscape, prior to
version 6.0.

The MSIE technique appears to be far easier to operate on and you can quite easily build
algorithmic techniques to locate exactly the style object you want to. In Netscape 4, the CSS
styling appears to have been added as an interface to an underlying JSS styling model that is far
more cumbersome.

As of Netscape 6.0, the JSS support is deprecated and a DOM-based Style object like the one in
MSIE now provides a more consistent way to operate on styles.

Warnings:
❑ The entire style management complex is different between the two browsers.

See also: Document object, rule object, StyleSheet object,
StyleSheetList object

Property attributes:
ReadOnly.

Document.tags[] (Collection)
Part of the JSS model supported only by Netscape 4.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: JSSTags object

JavaScript syntax: N myDocument.tags

D – Document.title (Property)

561

Prior to Netscape 6.0, this was one of the ways into the style sheet manipulation process. It is now
deprecated and should not be used in any forward looking new projects unless they really need to
operate with legacy browsers. Even then, compared with the MSIE and Netscape 6.0 capabilities,
this is quite limited in its scope.

This roughly corresponds to the Document.styleSheets[] property in MSIE and is the root of
the style control mechanism in Netscape .

Since you cannot enumerate this value and it does not translate easily into a primitive type it is
difficult to examine from JavaScript.

Warnings:
❑ This is not available in MSIE and is part of the Netscape 4 JSS style support and therefore to be

deprecated and not used in new projects.

❑ Although this is supposed to be an associative array, it is really a factory class that manufactures
JSSTag objects on demand. If you specify a non-existent HTML tag as a property to this object, you
should get an error. Unfortunately you just get a new JSSTag object.

❑ This whole JSS style complex is deprecated, and unless you are simply keen to amuse yourself
examining it and doing some experiments, it is of little practical use.

❑ Netscape 6.0 provides a much more capable and portable interface by means of the Style object
and removes all the JSS functionality.

See also: Document object, Document.classes[],
Document.contextual(), JSSTags object

Property attributes:
ReadOnly, DontEnum.

Document.title (Property)
The title text for the document.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

IE myDocument.all.tags("TITLE")[0].text
JavaScript syntax:

- myDocument.title

HTML syntax: <HEAD><TITLE>aTitleText</TITLE><HEAD>

Argument list: aTitleText Some text in the title heading block

JavaScript Programmer's Reference

562

The document title is yielded by this property. The property is not enumerable in the Netscape
browser but it is in MSIE. In Netscape this property value is read-only but in MSIE you can modify
it whenever you want by assigning a new value to one of the property references that point at the
string containing the title text.

This is the text placed inside the <TITLE> tags. It exists inside the<HEAD> portion of the document,
which suggests the document is really rooted at the <HTML> tag rather than the <BODY> tag. There
are minor hierarchical inconsistencies like this.

In the MSIE browser, a special TITLE object is also created to help construct a DOM hierarchy
inside the browser. The text attribute of that object references the same value as this property.

Warnings:
❑ For most other objects, this value represents the TITLE="..." tag attribute for the tag that

constructs the object. Beware when using title attributes that you get the value you really wanted.

❑ In the MSIE browser, for objects other than the document object, the title property is used
as ToolTip text, that automatically appears when the mouse moves over an Element object
and pauses there.

See also: <TITLE>, Document object, Document.lastModified,
Element.title, HTML object, HTML.title, LINK.title,
TITLE object, TITLE.text

Document.uniqueID (Property)
A unique ID value for this document.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myDocument.uniqueID

Some server side support provides a way to give each document a unique ID value. this property
reflects such a value for access at the scripting interface.

Document.URL (Property)
This is the actual URL that was loaded for the document.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myDocument.URL

D – Document.vlinkColor (Property)

563

Most of the time, the document.URL value will be the same as the window.location.href
value. However if a server redirect happened, then document.URL will contain the actual page
that was loaded while window.location.href will contain the requested URL.

This property should be used in place of the document.location property which used to be a
string but is now a reference to the same object as the window.location property.

See also: Document object, Document.location, Document.referrer,
URL, Window.location

Property attributes:
ReadOnly.

Document.vlinkColor (Property)
The color of a visited link in the current document.

Availability: DOM level – 0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0
Deprecated in DOM level 1

Property/method value type: Color value

- myDocument.vlinkColor
JavaScript syntax:

- myDocument.vlinkColor = aColorValue

HTML syntax: <BODY VLINK="aColorValue">

Argument list: aColorValue A hex color value or color name

This value controls the text of visited links in the document body. You should use the normal color
values to define the required color.

This corresponds to the VLINK attribute in the <BODY> tag.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape where style sheet
controls do not.

DOM level 1 deprecates the use of this property in favor of the BODY.vLink property.

Warnings:
❑ This property can only be changed in the <HEAD> section. You cannot modify it after the <BODY>

has commenced loading.

JavaScript Programmer's Reference

564

See also: BODY.aLink, BODY.link, BODY.text, BODY.vLink, Color
names, Color value, Document object, Document.alinkColor,
Document.bgColor, Document.fgColor,
Document.linkColor

Document.width (Property)
The width of the document.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N myDocument.body.offsetWidth
JavaScript syntax:

N myDocument.width

The current width of the document measured in pixels. This value constantly changes as the
document content is rendered into the page. You can measure this value during document loading
and then measure it later to find the page has grown in size.

On MSIE, this property is not supported and you need to do a little work to access the appropriate
Element object properties of the body object.

Document.height

Document.width

Warnings:
❑ This is not supported by MSIE, however you could use the document.body.offsetWidth

property instead.

❑ This value can be read by an unsigned script in another window.

See also: Document object, Document.height

D – Document.write() (Method)

565

Document.write() (Method)
A method for writing HTML into the document body.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

- myDocument.write(anArgument)
JavaScript syntax:

- myDocument.write(anArgument, ...)

Argument list: anArgument A value to be written out to the document

In a client-side script, you would use document.write() to generate some HTML.

This is a host method. It belongs to the document object. Its argument values are converted to a string
value and are then appended to the content of the document window and then interpreted as HTML.

This is the primary means of generating HTML as a document is parsed and the scripts are
executed. Everything that is output by the document.write() method is streamed into the page
at the execution point where it is called. That means if you place a <SCRIPT> block in the middle
of the page and it has a document.write() in its global code (that is not inside a function
declaration), the output will be inserted into the document in place of the <SCRIPT> block.

This is a useful technique for creating dynamically changing pages where the dynamism happens
at the client end.

Although writing to the current document in an event handler will destroy the document, you can
perform document.write() actions in other windows to replace their document content. You
will need to invoke the document.write() method belonging to the target window or frame you
want the write to happen in. Here is a document.write() that is targeted at a frame somewhere
in a frame-set:

top.frames[4].document.write("Some target content");

When writing across frames like this, you should call the document.open() method before the
document.write() and then call document.close() afterwards. The animated browser
loading icon will continue to revolve until you close the target document.

The document.write() method takes a variable number of arguments which it will concatenate
in the output. You can do the concatenation manually but all that is needed is to comma separate
the individual items for the document.write() to perform this step automatically.

The DOM level 1 specification suggests that this method may be deprecated in the future.

Warnings:
❑ Beware if you use document.write() at any time other than during the document parsing. If you

use it in an event handler, you will overwrite the entire documents. Once you have overwritten the
document, even the event handler has gone and there is no trace of the original document so when
you subsequently refresh again, you may get a blank page.

JavaScript Programmer's Reference

566

❑ Destroying the document content with a document.write() will crash Netscape 2 browsers. It
may lead to unexpected behavior in Netscape 3 browsers.

❑ Beware that if you were to use a with statement to add the document object to the scope chain, your
script would look very much like the server side scripts which use the write() method on its own.

❑ If the output that you write does not immediately appear, it may have been buffered by the browser.
There is no way to flush this buffer out to the screen and keep the document open. The only way to
flush the buffer is to call the document.close() method. However any subsequent
document.write() will implicitly call document.open() and clear the page as it starts a new
empty document.

❑ If you need to change the HTML at that time, you will need to resort to the following dynamic
HTML techniques:

❑ <DIV> blocks

❑ blocks

❑ innerHTML and innerText properties of elements

❑ createElement() and its related DOM support.

See also: Comma operator (,), Document object, Document.close(),
Document.open(), Input-output, response.write()

Document.writeln() (Method)
A method for writing HTML into the document body.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

- myDocument.writeln(anArgument)
JavaScript syntax:

- myDocument.writeln(anArgument, ...)

Argument list: anArgument A value to be written out to the document

The document.writeln() method is very similar to the document.write() method. The
difference is that document.writeln() will place a carriage return after the written value.

This is of little consequence when writing HTML because the browser ignores any line breaks in
the HTML.

However, it can be useful when writing other kinds of output such as plain text for example.

The DOM level 1 specification suggests that this method may be deprecated in the future.

See also: Comma operator (,), Document object, Document.close(),
Document.open(), Input-output, response.write()

D – DocumentEvent (Object/DOM)

567

DocumentEvent (Object/DOM)
An interface that extends the Document object to support a DOM compliant event structure.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myDocumentEvent = myDocument

Object methods: createEvent()

This is not an object class that exists on its own. Rather it is an extension to the underlying
Document object. It could be considered to be a sub-class of Document that inherits all the
properties and methods of the Document class. Objects of this type are likely to report that they
belong to the Document class rather than the DocumentEvent class although that may be
implementation dependent.

The syntax listing shows that a DocumentEvent object is equal to a Document object although as
is the case with Document, you cannot be certain which one of several possible documents you may
have been passed if several windows, frames or layers are in use at once.

Method JavaScript JScript N IE Opera DOM Notes

createEvent() 1.5 + - 6.0 + - - 2 + -

DocumentEvent.createEvent() (Method)
A method to create a new event object ready to be dispatched to an EventTarget.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Event object

JavaScript syntax: N myDocumentEvent.createEvent(aType)

Argument list: aType A string containing an event type

The only argument to this method contains the event type value. This is discussed fully in the
Event.type topic elsewhere. The method returns a freshly manufactured but uninitialized
Event object.

The DOM specification describes how the event should be initialized by an appropriate
initialization method.

During the execution of this method, it is possible to raise a DOM exception. The only one
enumerated in DOM level 2 is the NOT_SUPPORTED_ERR value.

JavaScript Programmer's Reference

568

The following event types are defined in DOM level 2:

Value Event object type

HTMLEvents HTML Element objects
MouseEvents MouseEvent object
MutationEvents MutationEvent object
UIEvents UIEvent object

See also: Event.type, UIEvent.initUIEvent()

DocumentFragment object (Object/DOM)
The DOM specification calls this a lightweight or minimal document object. It can be used as a
temporary store for a part of the document hierarchy.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Inherits from: Node object

JavaScript syntax: N myDocumentFragment =
myDocument.createDocumentFragment()

See also: Document.createDocumentFragment(), Node object

Inheritance chain:
Node object

DocumentStyle object (Object/DOM)
Added at DOM level 2 to support document related stylesheets.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myDocumetStyle = new DocumentStyle()

This is a major upgrade in progress. At present the DOM level 2 standards run to several hundred
pages and are extremely powerful.

The event model is supported by the Netscape 6.0 browser. Some (probably most) of the style
model is supported by MSIE and Netscape 6.0 but there are some shortcomings. For instance, MSIE
incorrectly names some properties and object types and it introduces some non-compliant extra
methods and properties which are not portable.

D – DocumentType object (Object/DOM)

569

The document styling interface is likely to be an area of major amounts of work on the next round
of browser upgrades.

DOM mandates that this object should have a single property:

❑ styleSheets

Note that MSIE takes that property name and uses it as an object type. DOM mandates that the property
should point at a StyleSheetList object and not a styleSheets object.

DocumentType object (Object/DOM)
This is implemented in MSIE as a Doctype object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Inherits from: Node object

JavaScript syntax: - myDocumentType = new DocumentType()

Inheritance chain:
Node object

Refer to:
Doctype object

DOM (Standard)
A standardized model of a document built with objects.

The DOM standard is concerned with mapping document components to an object model which
reflects the values defined in HTML tag attributes. These are visible to the script writer as object
properties. In case of conflicts with reserved words and object names in the JavaScript context, any
conflicting names will have the"html" prefix. An example is the "for" attribute which becomes the
"htmlFor" property. The HTML tag that instantiated an object is reflected in the tagName
property of each element object. All document elements derived from HTML tags are sub-classed
from the Element class.

The W3C Document Object Model standard is being reviewed and updated to enhance the support
of the document in the browser. There are several levels to this standard:

❑ Level 0 – The more or less de-facto situation with the version 4 browsers.

❑ Level 1 – Text, elements and attributes of HTML and XML.

❑ Level 2 – Views, traversals, events and stylesheets standardized.

❑ Level 3 – More work on events and the content model introduced.

❑ Future – Potential standardization of the security model and standardization of the context and
environment in which the document exists.

JavaScript Programmer's Reference

570

Thankfully now that browsers are converging on the same standards the amount of duplicated
effort will diminish over time as the older browsers are replaced. Netscape 6.0 is just beginning to
ship. Beta versions of MSIE version 6.0 are imminent and Opera version 5 is likely to be similarly
capable as regards DOM compliance. DOM level 1 seems to be roughly where we are at present.

Browser manufacturers make grand claims to be ECMAScript compliant as well as DOM
compliant. This claim is somewhat suspect. Providing objects with the functionality of DOM
specified classes but having different class names does not completely satisfy the requirements for
DOM compliance. We may ultimately end up with objects being mirrored into duplicate instances
under different class names to satisfy DOM class naming and to preserve legacy support.

MSIE at version 5 supports a DOM like object model with Microsoft specific class names. Netscape
6 supports a highly DOM compliant object model with correct object class names. When testing the
PR3 beta version of Netscape 6.0, it looked like several HTML tags instantiated objects of the same
class when they should have been different but this may have gone away in the final release.

As browser manufacturers support more standardized interfaces, we may be better off in some
areas but are also likely to be inconsistent between the browsers in some new areas.

As the new levels are introduced and add new modules, they often extend the interfaces of existing
classes. The DOM standard accomplishes this by defining new classes as if they were a sub-class of
the object they extend. This provides some opportunity for implementors to name object classes
incorrectly in early version of their DOM support. For example, event handling extends the
Document object to allow it to create new events. This would really be an extension of the Document
object and would likely not be implemented by sub-classing Document to create a DocumentEvent
object. Were that the way the implentor had chosen, we would have a DOM hierarchy model that had
been structurally altered by the insertion of a new sub-class between Document and HTMLDocument
and we already have enough confusion between those two object classes across browsers.

Warnings:
❑ The support for DOM in Netscape 4 is so vestigial that it cannot really be called a DOM

implementation at all. This is corrected in Netscape 6.0 which supports DOM level 1 and
additionally supports some DOM level 2 features to do with Event handling.

See also: CLASS="...", Document, Document component, Dynamic HTML,
Element object, MutationEvent object, NamedNodeMap object,
Overview

Web-references:
http://www.w3c.org/DOM/

DOM - Level 0 (Standard)
The initial collation of document objects and properties from the de-facto HTML & JavaScript
implementations.

The level 0 version of the DOM standard was compiled from the available functionality of the
Netscape 3.0 and MSIE version 3.0 functionality. The principal input was derived from the HTML
support provided by the browsers. As it stands, some attributes and methods are provided to
support backwards compatibility with these older browsers. Those items will likely become
deprecated features and will in due course be withdrawn.

http://www.w3c.org/DOM/

D – DOM - Level 1 (Standard)

571

DOM - Level 1 (Standard)
A standardized model of a document built with objects.

The level 1 version of the DOM standard defines the complete content structure of the document.

This is implemented in the standard in two parts:

❑ DOM core functionality

❑ HTML functionality

The core functionality should apply to documents of a variety of types while the HTML
functionality should only be supported in implementations that use HTML marked up documents.

In a fully compliant browser, you can expect to access all of the attributes, names and values of
each and every tag. There should be a high degree of consistency between HTML tag attribute sets
and object properties and methods.

The document should then be represented as a tree of objects starting at the outermost <HTML> tag
and all subsequent items being contained in a logical tree structured parent and child arrangement.

With the consistent compliance between HTML attributes and JavaScript object properties, there
may still be a few catch-outs. For example, the namespaces may collide. An HTML attribute may
correspond to a JavaScript reserved word and therefore it should not be used as a property or
method name since they exist in the identifier namespace. Identifiers and JavaScript reserved
words must not collide.

To work around this, some prefix will be added to the property names.

The Level 1 DOM support should also include some API support to locate objects by name without
necessarily walking the document tree.

Warnings:
❑ The level 1 DOM specification is similar to but may be somewhat incompatible with the MSIE

version 4 DOM implementation. Netscape 6.0 provides the most accurate and compliant
implementation of DOM level 1 at the time of writing.

See also: NamedNodeMap object

DOM - Level 2 (Standard)
A standardized model of a document built with objects.

The level 2 DOM is an enhancement on the level 1 support. It introduces additional properties and
styles for document objects.

The standard is composed of the following modules:

❑ DOM core functionality

❑ HTML functionality

❑ Event handling

JavaScript Programmer's Reference

572

❑ Style specification

❑ Document views

❑ Traversal and range specification

The DOM level specification is now a 500 page document that maps the HTML specification to the
ECMAScript and Java language bindings. Many additional objects are provided to assist in
navigating the DOM hierarchy.

In general, the MSIE version 5 browser on Windows and Macintosh is the best and most complete
implementation of DOM released for general use so far.

Netscape 5 never saw the light of day, and with Netscape 6, the development teams have a stated
goal of going very aggressively for DOM standardization. Running the same inspection scripts on
MSIE 5 and Netscape 6 reveals that the DOM implementations are structurally similar but that the
DOM compliance is more robust in Netscape . This is because MSIE does not use the standardized
class names fpr objects although the entity relations are more or less correct.

The differences between level 1 and level 2 basic support for DOM are as follows:

❑ Some new methods added to the existing DOM interfaces and exceptions. This extends to about 30
minor changes.

❑ Many wholly new interfaces are added. These provide access to the HTML implementation, views
on the document, additional StyleSheet support, new CSS support, Event handling support,
traversals and ranges.

See also: ECMAScript, MutationEvent object

DOM - Level 3 (Standard)
An improved model of the document object structure.

The level 3 DOM is an enhancement on the level 2 support. It introduces additional properties and
interfaces for document objects.

The standard is composed of the following modules:

❑ DOM core functionality

❑ HTML functionality

❑ Event handling

❑ Style specification

❑ Document views

❑ Traversal and range specification

❑ Content model and archiving

The DOM level specification has grown again although not as much as it did at the level 2 version. Some
changes to the Core and Events modules have taken place and a new module has been introduced to
support content models and the ability to export and import documents between implementations.

D – DOM Events (Standard)

573

Level 3 standardization is still very much a work in progress and as a whole the DOM
standardization process is somewhat held back by work in other groups to do with XML and
internationalization among other things. Progress is still being made and although there is much to
do, many aspects of the DOM standard are now reasonably well defined and not likely to change.

It still remains for the browser manufacturers to catch up with the standard and in particular to use
the same naming conventions for object classes instead of continually inventing their own.

See also: ECMAScript

DOM Events (Standard)
A new modular part of the DOM standard introduced at level 2 and implemented in Netscape 6.

The DOM level 2 event model has been designed to be platform and language neutral. The standard
describes bindings for Java and ECMAScript and it is applicable to other environments too.

The foundation on which DOM Events are constructed requires that DOM Core and DOM views
are available too.

There are three main types of events:

❑ User interface related events such as those triggered by an input device. A key press or mouse click
is an example.

❑ Logical events that may have been triggered via the UI but are more abstract. A focus change or
element notification event is an example.

❑ Mutation events which are caused by some action that modified the structure of the document.

Events are captured in several ways depending on the implementation and context. For example,
server-side events would be captured in a different way to those in a web browser.

In a structured document, a target element that receives an event may handle it or may choose to pass
it upwards through the document hierarchy to its parent node. This is called event bubbling and was
first provided in a web browser by MSIE. As of version 6, the same event model is used in Netscape
which attempts to implement the entire DOM level 2 event capabilities as described in the standard.

Events can be cancelled. This can prevent them from bubbling upwards or from exercising some
default behavior.

As an alternative to implementing an event bubbling technique, the DOM level 2 event model also
provides for an event capturing approach where the highest ancestor object that registers a listener
will receive the event before the target object. This traverses the document hierarchy from top to
bottom and is the opposite of the bubbling technique which traverses from bottom to top.

EventTarget objects are not really objects in their own right although it is convenient to describe
them thus in the DOM specification. An EventTarget is actually one of the already existing
classes but when the DOM level 2 event model is implemented, the element objects that can react
to events become EventTargets by inheriting the properties and methods of the EventTarget
class as well as any others they inherit from their superclass.

JavaScript Programmer's Reference

574

Events are handled by registering EventListener functions. These are registered by the potential
EventTargets. An EventTarget is simply an HTML instantiated object, or one that has been
manufactured by script and placed into the display for the user to interact with.

See also: Element object, Event, Event management, Event model,
MutationEvent object

Domain error (Definition)
An error in computation that would normally crash a compiled program.

Refer to:
Minima-maxima

DOMImplementation object (Object/DOM)
MSIE implements this class as the Implementation object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

- myDOMImplementation = new DOMImplementation
JavaScript syntax:

- myDOMImplementation =
myDocument.implementation

Refer to:
Implementation object

DontDelete (Property attribute)
An internal property attribute that prevents a property from being deleted.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

This attribute is set internally on properties by the host environment that the interpreter
implementation is running in. When this attribute is set on a property, that property cannot be
deleted by the script writer. This attribute is not normally exposed to the script level code.

See also: DontEnumerate, ReadOnly

Cross-references:
ECMA 262 edition 2 – section – 11.4.1

D – DontEnumerate (Property attribute)

575

DontEnumerate (Property attribute)
An internal property attribute that prevents a property from being enumerated.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

This attribute is set internally on properties by the host environment that the interpreter
implementation is running in. When this attribute is set on a property, that property cannot be
enumerated by the script writer. This attribute is not normally exposed to the script level code.

See also: DontDelete, for(... in ...) ..., ReadOnly

Cross-references:
ECMA 262 edition 2 – section – 12.6.3

ECMA 262 edition 3 – section – 12.6.4

double (Reserved word)
Reserved for future language enhancements.

Providing double as a reserved keyword suggests stronger data typing may be available in later
versions of the ECMA standard.

This keyword also represents a Java data type and the double keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: float, Integer, java.lang.Double, LiveConnect, long,
Reserved word, short

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Double-precision (Definition)
A type of number value.

Double precision numbers use twice the number of bits to represent the value and this increases the
range of values that can be resolved by the numeric computations.

See also: Divide (/), JellyScript

JavaScript Programmer's Reference

576

Drive object (Object/JScript)
A special JScript object to represent a disk drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myDrive = myFileSystem.GetDrive()

Object properties:
AvailableSpace, DriveLetter, DriveType,
FileSystem, FreeSpace, IsReady, Path, RootFolder,
SerialNumber, ShareName, TotalSize, VolumeName

This is an object that represents the disk drive that a file object is stored on in the Windows
environment. This object is accessed via the GetDrive() method belonging to the FileSystem object.

See also: FileSystem.GetDrive(), Folder.Drive

Property JavaScript JScript N IE Opera Notes

AvailableSpace - 3.0 + - 4.0 + - -
DriveLetter - 3.0 + - 4.0 + - -
DriveType - 3.0 + - 4.0 + - -
FileSystem - 3.0 + - 4.0 + - -
FreeSpace - 3.0 + - 4.0 + - -
IsReady - 3.0 + - 4.0 + - -
Path - 3.0 + - 4.0 + - -
RootFolder - 3.0 + - 4.0 + - -
SerialNumber - 3.0 + - 4.0 + - -
ShareName - 3.0 + - 4.0 + - -
TotalSize - 3.0 + - 4.0 + - -
VolumeName - 3.0 + - 4.0 + - -

Drive.AvailableSpace (Property)
The amount of free space on the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myDrive.AvailableSpace

The amount of total capacity on the drive may be useful to a server-side script developer who
needs to store some information during a session. Refer to the FreeSpace property for details of
the remaining space available on the drive.

See also: Drive.FreeSpace, Drive.TotalSize

D – Drive.DriveLetter (Property)

577

Drive.DriveLetter (Property)
The name of the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.DriveLetter

The abbreviated letter name of the drive in the Windows file system hierarchy.

If the Drive object was supported on file-systems other than Windows, the behavior of this
property would be unclear, as only Windows names its drives by letters.

Drive.DriveType (Property)
The kind of disk media in the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.DriveType

This returns a string describing the kind of media that the drive supports. These drive types are
currently supported:

Type Description

0 Undefined

1 Removable volume

2 Fixed disk

3 Network mounted drive

4 CD-ROM

5 RAM disk in memory

If you know the type of drive being used, you can write scripts in a more informed manner. If you
are aware that the drive may be volatile, then you can make sure things are backed up, and you can
also establish whether the volume is updateable from its type.

JavaScript Programmer's Reference

578

Drive.FileSystem (Property)
The kind of file system on the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.FileSystem

A disk drive is mapped via a file-system. This property returns a reference to an object that
encapsulates the file system on the drive.

See also: FileSystem object

Drive.FreeSpace (Property)
The amount of free space left on the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myDrive.FreeSpace

The amount of spare capacity on the drive may be useful to a server-side script developer who
needs to store some information during a session.

See also: Drive.AvailableSpace, Drive.TotalSize

Drive.IsReady (Property)
Whether the drive is ready to be used.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDrive.IsReady

The behavior of this property will depend on the hardware you have in your system. If you use a
hard disk drive, it is likely to always yield true for this property. Other drive types may need to
be spun up or mounted. They may yield a false value. Some may yield a false value that
changes to true after a short while.

D – Drive.Path (Property)

579

Drive.Path (Property)
The path for the specified drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.Path

If the drive is mounted into a file system at some location other than the root, this is the path to
reach its root directory.

Drive.RootFolder (Property)
A folder object that represents the root folder for the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.RootFolder

Drives have a root folder. This property yields the path to reach the root folder for the drive that
this object encapsulates.

Drive.SerialNumber (Property)
The serial number of the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.SerialNumber

Not all drives will provide a serial number. Some removable cartridge drives support this as a
means of identifying cartridges when they are used in multiple drives or systems.

JavaScript Programmer's Reference

580

Drive.ShareName (Property)
If the drive is shared, then this is its shared name.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.ShareName

If a disk drive is shared for use by other users on a network, this property reflects the name it was
given when it was set up for sharing.

Drive.TotalSize (Property)
The total space available on the disk if it were empty.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myDrive.TotalSize

This is the total space available on the drive. There appears to be some redundancy here given that
we also have AvailableSpace and FreeSpace properties.

See also: Drive.AvailableSpace, Drive.FreeSpace

Drive.VolumeName (Property)
Access to the volume name of the drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myDrive.VolumeName

If the disk drive supports volume naming, this may be an alternative way to identify a disk drive as
opposed to the DriveLetter property value.

D – Drives object (Object/JScript)

581

Drives object (Object/JScript)
A collection of drives belonging to a file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myDrives = myFileSystem.Drives

Object properties: count

The Drives object is a collection that needs to be used with an enumerator to access the individual
drive items.

Example code:
// Instantiate a file system object
myFileSystem = new ActiveXObject("Scripting.FileSystemObject");

// Create an enumerator
myEnum = new Enumerator(myFileSystem.Drives);

// Traverse the Drives collection via the enumerator
for(; !myEnum.atEnd(); myEnum.moveNext())
{
 processDrive(myEnum.item());
}

//A function to do something with each disk drive
function processDrive(aDrive)

See also: FileSystem.Drives[]

Property JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

count - 3.0 + - 4.0 + - - - - - - -

DropShadow() (Filter/visual)
A visual filter for creating drop shadows.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter – DropShadow()

JavaScript Programmer's Reference

582

DT object (Object/HTML)
An object that represents the content of a <DT> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE myDT = myDocument.all.anElementID

IE myDT = myDocument.all.tags("DT")[anIndex]

IE myDT = myDocument.all[aName]

- myDT = myDocument.getElementById(anElementID)

- myDT =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myDT =
myDocument.getElementsByTagName("DT")[anIndex]

HTML syntax: <DT> ... </DT>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: noWrap

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

This object represents the definition term of an item in a definition list. It corresponds to a related
definition contained in a DD object. DT and DD objects are paired up and maintained together as a
member of the DL collection.

The <DT> tag is a block-level tag. That means that it forces a line break before and after itself unless
its enclosing <DL> tag uses its compact property.

See also: DD object, DL object, Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

noWrap - 3.0 + - 4.0 + - - - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -

Table continued on following page

D – DT.noWrap (Property)

583

Event name JavaScript JScript N IE Opera DOM HTML Notes

OnFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

DT.noWrap (Property)
Controls the wrapping of text within a <DT> block.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myDT.noWrap

This is a Boolean value that controls whether the textual content is wrapped at the right hand
window border or not.

If the value false is assigned to this property, then words will wrap as the page is drawn. This is
good and is the way you would expect a browser to behave. The text will flow according to the
space available.

If the value true is assigned to this property, the line of text will continue to the right until a

or other block level tag is encountered. This will force the horizontal width of the page to extremely
large and the user will need to scroll furiously to be able to see the text and then scroll back again
for the start of the next line.

Warnings:
❑ Only use this if you plan to place line breaks at frequent intervals yourself and really do need to

control the line breaks manually.

JavaScript Programmer's Reference

584

DVB-MHP (Standard)
Digital Video Broadcasting – Multimedia Home Platform.

An emerging Digital TV platform standard, which may achieve some dominance in the future. Of
interest to JavaScript users because it is being developed by Sun Microsystems as a platform in
which a web browser could be hosted.

If that is the case, there may, by implication, be a JavaScript interpreter available for use.

See also: Interpret

Dynamic HTML (Definition)
A fourth generation browser technology for dynamically altering the document that describes a
web page.

Dynamic HTML is a term that collectively describes the DOM (Document Object Model) and the
script activated mechanisms for changing the content of a web page either interactively or not. The
content of the page can be animated or modified as a result of the user moving the mouse or
clicking on items in the page. The event model is also a contributing factor as is Style sheet support
for abstraction of content and appearance by means of CSS (Cascading Style Sheets) and the
absolute positioning of HTML elements.

Really the term Dynamic HTML should be deprecated in favor of "DOM scripting" and "CSS scripting".

See also: CSS, DHTML, DOM, Event model

Dynamic positioning (Definition)
Cascading style properties for positioning objects within the page.

Dynamic positioning in MSIE is accomplished with the style object that belongs to each Element
object in the MSIE DOM. This means that every tag pretty much corresponds to an object in the
MSIE DOM. This gives a very fine-grain approach to style and position attributes.

Netscape prior to version 6.0 had to accomplish dynamic positioning by means of layers. This is a
bit more complicated than the CSS positioning now available in the new version.

Warnings:
❑ The JavaScript API that Netscape and MSIE provide to support dynamic positioning differ from one

another.

See also: CSS level 2, CSS-P, style.position

E-mail containing JavaScript (Advice)
You can embed JavaScript into e-mail messages composed using HTML.

When you compose and send an e-mail message, you may use HTML as a way to improve the
presentation. This means you can include some JavaScript to be executed in the client mail
reader application.

Not all mail clients can support HTML, let alone JavaScript. However, if your recipient does, then
you can do some creative things to generate auto reply messages (security permitting). You can
also do animation, play audio, present a form for a survey etc. You simply construct your HTML
document in the normal way.

Server-generated mail-outs could use this technique to determine how well targeted the mailing is.
Perhaps you could put a subscribe/unsubscribe button on the form and tie that to a user ID. That
would get round one of the major difficulties of unsubscribing people, which is to do with the
mutations that mail addresses undergo. Periodically, a mail server may move or a domain name may
change, and this means that unsubscribing from the new address does not locate the subscription
record that was made under an old address. Passing an ID back and forth solves this major headache.

Warnings:
❑ There are significant security and virus related risks with JavaScript enabled e-mail. The possibilities

are so catastrophic that the best recommendation is to deactivate JavaScript and Java in any mail
reading client application.

❑ Just because something is possible does not mean it is advisable or good to do.

❑ On the other hand, within the confines of a closely controlled Intranet or workgroup, this could find
many useful applications. Just so long as you know where the mails came from and you can
absolutely trust that they have not been compromised.

❑ Personally, I'd recommend that you turn it off. I've not yet been convinced of the need to support
HTML in e-mail correspondence other than for demonstrating how hip and trendy I can be.

E

JavaScript Programmer's Reference

586

See also: News posts containing JavaScript

Cross-references:
Wrox Instant JavaScript – page – 60

ECMA (Standard)
An international standards organization.

The European Computer Manufacturers Association (ECMA) has be developing standards for
computing systems for many years.

You can obtain printed copies of their standards and in most cases you can download an electronic
copy for your own use.

You should explore the ECMA web site for details of their activities and standards if you are
developing compliant implementations or scripts.

See also: Compliance, Conformance, ECMAScript, Implementation, Opera,
Overview, Topic classification

Web-references:
ftp://ftp.ecma.ch/mailto://documents@ecma.ch/http://www.ecma.ch/

ECMAScript (Background)
An international standard that describes JavaScript.

ECMAScript is an object oriented programming language for performing computations and
manipulating computational objects within a host environment.

It defines the central or core capabilities of the language and does not define any of the host
defined capabilities.

As defined in the standard, ECMAScript is not intended to be self-sufficient, but should provide
core functionality on top of which host objects need to be added.

Scripting languages are intended to be used by both experienced programmers and non-
programmers. This means a scripting language will tend to be less formal than a compiled
language and will relax the rules a little. Basically you can get away with more things than a
compiler would permit.

Scripting languages are generally used to automate existing capabilities of a hosting environment.
Those facilities may be already accessible under manual operation via a Graphical User Interface.

ECMAScript was originally designed to be a web scripting language to provide facilities to add
dynamics to client-side browser displayed web pages.

ftp://ftp.ecma.ch/
mailto://documents@ecma.ch/
http://www.ecma.ch/

E – ECMAScript (Background)

587

Some of the facilities provided by ECMAScript interpreters are similar to those available in other
languages such as Java, Perl and C.

Here is an extract from the ECMA second edition standard:

“ This ECMA Standard is based on several originating technologies, the most well-known being
JavaScript and JScript. The language was invented by Brendan Eich at Netscape and first appeared
in the Netscape Navigator version 2.0 browser. It has appeared in all subsequent Netscape
Navigator browsers and in all browsers from Microsoft starting with MSIE version 3.0.”

Warnings:
❑ The browser manufacturers go to great lengths to stress how well they comply with a standard.

Microsoft and Netscape both claim compatibility with ECMAScript.

❑ It is not always clear which revision of ECMAScript they are claiming compliance with. It is hoped
that they mean edition 3 of the standard. However if they don't make this clear, they may only be
edition 2 compliant.

❑ If all the browsers you are using were 100% compliant with ECMAScript edition 3, would this then
mean that you could write one version of your script and deploy it everywhere?

❑ Unfortunately not. ECMAScript only defines the core language. It allows for the browser
manufacturers adding host specific features in a compliant fashion, but it does not specify what they
should be. Because the DOM implementations are so different, claiming ECMAScript compliance is
almost meaningless in terms of whether you can really build portable scripts to run in web browsers.

❑ That is not to diminish the importance of ECMAScript at all. It is the foundation on which every
JavaScript interpreter should be based – without question. However, for your script to be truly
portable, every other facet of the implementation must also conform strictly to the same standard.

❑ At least we could expect browser manufacturers to comply with ECMAScript and the W3C DOM
definition. That still leaves many holes in security standardization and event handling. Not to
mention the new directions regarding mobile devices and TV set-top boxes, which will all lead to
diverging implementations.

❑ The event handling is being rigorously worked out as part of the DOM level 2 and level 3
standardization work.

See also: Compliance, Conformance, DOM – Level 2, DOM – Level 3, ECMA,
ECMAScript – edition 2, ECMAScript – edition 3, ECMAScript version,
Glue code, Host features, Implementation, JavaScript language, Native
feature, Opera, Overview

Cross-references:
ECMA 262 edition 2 – section – 4

ECMA 262 edition 3 – section – 4

Wrox Instant JavaScript – page – 12

JavaScript Programmer's Reference

588

ECMAScript – edition 2 (Standard)
Specific conformance for ECMAScript at its second edition.

The character encoding support described in the second edition of the standard is very specific:

“ A conforming implementation of the International standard shall interpret characters in
conformance with the Unicode Standard, Version 2.0, and ISO/IEC 10646-1 with UCS-2 as the
adopted encoding form, implementation level 3. If the adopted ISO/IEC 10646-1 subset is not
otherwise specified, it is presumed to be the BMP subset, collection 300.”

Other than typographical and editorial changes, little was added between the first and second
editions of the ECMA standard. That means this edition becomes the foundation specification for
the core language.

The principle features of this edition include:

❑ Arithmetic, string and logical operators

❑ Global and local variables managed via scope chains

❑ Core data types and objects (Number, String, Boolean)

❑ Core object types (Date and Array)

❑ Core numeric library support by means of the Math object

❑ Language flow control and keywords

❑ Object instantiation by means of constructors

❑ Inheritance supported via prototype chains

See also: Compliance, Conformance, ECMAScript, Implementation

Cross-references:
ISO/IEC 10646-1 Information Technology – Universal Multiple-Octet Coded Character Set (UCS),
plus its amendments and technical corrigenda.

The Unicode Standard, Version 2.0, Addison-Wesley Publishing Co. ISBN: 0-201-48345-9

ECMAScript – edition 3 (Standard)
Specific conformance for ECMAScript at its third edition.

The character encoding support described in the third edition of the standard is somewhat more
advanced than that in the second edition:

“ A conforming implementation of this International standard shall interpret characters in
conformance with the Unicode Standard, Version 2.1 or later, and ISO/IEC 10646-1 with either
UCS-2 or UTF-16 as the adopted encoding form, implementation level 3. If the adopted ISO/IEC
10646-1 subset is not otherwise specified, it is presumed to be the BMP subset, collection 300. If the
adopted encoding form is not otherwise specified, it presumed to be the UTF-16 encoding form.”

E – ECMAScript version (Standard)

589

The third edition adds to the earlier versions in the following areas:

❑ Regular expressions

❑ Richer control statements

❑ Better string and array handling

❑ Exception handling improvements with try/catch

❑ Internationalization facilities

❑ Error objects for managing exceptions

ECMAScript edition 3 support is a feature of the MSIE/Jscript 5.5. upgrade and the new
Netscape 6.0 release.

See also: Compliance, Conformance, ECMAScript, Implementation

Cross-references:
ISO/IEC 10646-1 Information Technology – Universal Multiple-Octet Coded Character Set (UCS),
plus its amendments and technical corrigenda.

Unicode Technical Report #8, The Unicode Standard, Version 2.1.

ECMAScript version (Standard)
The version history for ECMAScript.

The version history of ECMAScript is slightly behind the current browser implementations.
Versions of ECMAScript are defined as editions 2 and 3 of the standard. Edition 1 was superseded
by edition 2, which made few functional changes. There were not enough to warrant revising the
level of functionality.

ECMA edition 2 is roughly equivalent to JavaScript version 1.1, minus any HTML document modelling.

ECMA edition 3 is roughly equivalent to JavaScript 1.5 and JScript 5.5.

See also: ECMAScript

Element object (Object/HTML)
A common name for an object that represents an HTML tag or container.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Node object

JavaScript Programmer's Reference

590

IE myElement = document.all(anIndex)

IE myElement = document.all.anElementID

IE myElement = document.all[anIndex]

IE myElement = document.children(anIndex)

IE myElement = document.children.anElementID

IE myElement = document.children[anIndex]

- myElement = myChildNodes[aName]

- myElement = myChildNodes[anIndex]

- myElement = myDocument.getElementById(anElementID)

- myElement =
myDocument.getElementsByName(aName)[anIndex]

- myElement = myDocument.createElement(aTagName)

- myElement = myDocument.documentElement

JavaScript syntax:

- myElement =
myDocument.getElementsByTagName(aTagName)[anIndex]

HTML syntax: <anHTMLTag>

anElementID The ID value for the required element

anHTMLTag A tag that represents a realizable concrete object

anIndex An index location in the collection

aTagName The name of an HTML tag to create an element for

Argument list:

aName An associative array reference

Object properties: canHaveChildren, canHaveHTML, className, clientHeight,
clientLeft, clientTop, clientWidth, contentEditable,
currentStyle, dir, document, firstChild, hideFocus, id,
innerHTML, innerText, isContentEditable, isDisabled,
isTextEdit, lang, language, lastChild, nextSibling,
nodeName, nodeType, nodeValue, offsetHeight, offsetLeft,
offsetParent, offsetTop, offsetWidth, outerHTML,
outerText, ownerDocument, parentElement, parentNode,
parentTextEdit, previousSibling, readyState,
recordNumber, runtimeStyle, scopeName, scrollHeight,
scrollLeft, scrollTop, scrollWidth, sourceIndex, style,
tagName, tagUrn, title, uniqueID

Object methods: addBehavior(), applyElement(), blur(), clearAttributes(),
click(), componentFromPoint(), contains(), doScroll(),
focus(), getAdjacentText(), getAttribute(),
getAttributeNode(), getElementsByTagName(),
getExpression(), insertAdjacentHTML(),
insertAdjacentText(), mergeAttributes(), normalize(),
releaseCapture(), removeAttribute(),
removeAttributeNode(), removeBehavior(),
removeExpression(), replaceAdjacentText(),
scrollIntoView(), setAttribute(), setAttributeNode(),
setCapture(), setExpression()

Functions: handleEvent()

E – Element object (Object/HTML)

591

Event handlers: onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Collections: all[], attributes[], behaviorUrns[], childNodes[],
children[], filters[]

The standard DOM hierarchy model specifies a variety of properties that should be available across
the entire collection of objects. This suggests that all objects in the document would generally
behave as if they were sub-classes of a master DOM element object.

DOM level 1 describes an Element object and an HTML object and makes a distinction between the
two. JavaScript considers them to be one and the same within a web browser context.

In JavaScript 1.2 and MSIE 4, many HTML tags are represented as objects that have similar
methods and properties. It is convenient also to model these as if they were sub-classes of a single
super-class. Actually, Netscape at revision 4 does not really support this model very consistently,
although it is a sound concept when studying the internals of the MSIE browser. Netscape 6.0
implements a much more robust and complete set of the DOM level 1 capabilities.

The Element object described here includes the behavior of the DOM Element object with some
additional properties and methods that are common to many objects in the various browsers.

We call these Element objects. In other reference works they may be called DOM objects, DOM
elements or HTML Elements. Trying to work out what kind of element you have is not always easy.
Some objects will provide this with their toString() method. Others will need some inspection.
You can look at constructor properties for help. Sometimes object.constructor.name will
tell you what you need. This is not consistent across all the different kinds of objects, nor is the
same technique applicable across all browsers.

By considering all the DOM and HTML Element objects as sub-classes of the Element object class,
we can document their common behavior collectively and then deal with any specific behavior they
may implement on a case by case basis.

We attempt to de-clutter the object descriptions by abstracting properties, methods, collections and
events into a super-class wherever possible. This Element class does not really exist as a concrete
class but it helps to understand the internals of the MSIE and Netscape 6.0 browsers in particular to
model it like this. A couple of notable exceptions are the document object and window object
classes which share some properties etc. with the Element class, but cannot easily be considered to
be sub-classes of the Element class. Those properties and methods etc. are used in a contextually
different way and may exhibit slightly different behavior, and so they merit being covered in
separate (but similar) topics to the ones described as members of the Element topic set.

There is another special class and that is the FormElement object. These are sub-classes of the
fundamental Element class, but are a super-class of all Form elements which represent <INPUT>
tags. Many of these share common methods and properties in addition to the Element object
functionality. Properties, methods, collections and events that relate to the Input object class are
discussed under topics beginning with the phrase "Input" and are not duplicated here. However,
they are listed here in the summary.

If you are inspecting objects with an enumeration loop, you may want to eliminate Element object
properties so that your enumerator only lists special properties of the object you are inspecting.
There is actually no object of the Element object type. We explored a great deal of the internal
browser model by writing small fragments of JavaScript to walk through the properties of each
object type. This yielded some properties that were hitherto undocumented and highlighted some
differences between platforms and browsers.

JavaScript Programmer's Reference

592

In MSIE, there is a class for each type of HTML tag. There is also an array class for collections of
each type of tag. For example, for an imaginary tag called <XXXX>, there will be an object class with
the name XXXX which represents tags of that type regardless of whether they are upper or lower
cased. There will also be an XxxxArray collection for that class which is yielded by this expression:

document.all.tags("XXXX")

If you create imaginary tags in your documents, MSIE won't render them nor will it create objects
to represent them. However, the expression shown above will yield an empty collection of an
appropriate type.

Versions of Netscape prior to 6.0 do not implement this mechanism because they manage its content
with a different DOM construction technique. Netscape 6.0 and MSIE support a more consistent
interface to all of the tags in a document. No version of Netscape provides the all[] collection.

If you want to examine the properties of Element objects you need to be able to isolate those
properties that are inherited and those that are not. The example code for MSIE includes a function
that you can use to exclude items that are inherited from Element objects as you enumerate the
properties of an object. We used this to examine the undocumented structures within web content
viewed in the browsers. There is also an attribute accessor function demonstrated here. The rest of
the example demonstrates a framework for examining object properties.

The DOM level 2 specification adds the following new methods to support namespaces:

❑ getAttributeNS()

❑ setAttributeNS()

❑ removeAttributeNS()

❑ getAttributeNodeNS()

❑ setAttributeNodeNS()

❑ getElementsByTagNameNS()

❑ hasAttribute()

❑ hasAttributeNS()

DOM level 2 moves the normalize() method to the Node object but it is still available here through
inheritance.

As the DOM standards advance and proliferate and the browser become more DOM standards
compliant, a standards based approach to the documentation may become more appropriate. We
have structured our coverage around a browser centric approach.

Element objects will have other properties and methods not included here because they are not yet
implemented or fall outside the standard. The following properties are present in some
implementations for example:

❑ onOffBehavior

❑ hasMedia

❑ syncMaster

These are part of the SMIL and HTML+TIME standards which are still in a state of evolution and
therefore the behavior of the implementation may change.

E – Element object (Object/HTML)

593

Warnings:
❑ Be careful how you operate on these objects. Traversing the properties in a for(... in ...)

loop can recursively lock up your browser for some objects that represent high level parts of the
DOM hierarchy.

Example code:
<HTML>
<HEAD></HEAD>
<BODY >

<TABLE CELLPADDING=2 CELLSPACING=2 BORDER=1>
<SCRIPT>
var myObject = document.getElementById("IMAGE1");
document.write(displayProperties(myObject));

// Display a table of enumerated properties
function displayProperties(anObject)
{
 var myOut = "";
 myOut += '<TR BGCOLOR="ANTIQUEWHITE">';
 myOut += "<TD>Object type</TD><TD>";
 myOut += typeof anObject;
 myOut += "</TD><TD>";
 myOut += anObject;
 myOut += "</TD><TD>Name</TD><TD>Specified</TD>";
 myOut += "<TD>Value</TD></TR>";

 for(myProp in anObject)
 {
 // Place a not symbol on this condition to see
 // non inherited properties
 if(isElementProperty(myProp))
 {
 myOut += "<TR><TD>";
 myOut += myProp;
 myOut += "</TD><TD>";
 myOut += typeof anObject[myProp];
 myOut += "</TD><TD>";
 myOut += displayableValue(myProp, anObject[myProp]);
 myOut += "</TD><TD>";
 myOut += getPropAttr(anObject, myProp, "name");
 myOut += "</TD><TD>";
 myOut += getPropAttr(anObject, myProp, "specified");
 myOut += "</TD><TD>";
 myOut += getPropAttr(anObject, myProp, "value");
 myOut += "</TD></TR>";
 }
 }

 return myOut;
}

JavaScript Programmer's Reference

594

// Prevent recursive displays
function displayableValue(aProperty, aValue)
{
 switch(aProperty)
 {
 case "innerHTML" :
 case "innerText" :
 case "outerHTML" :
 case "outerText" :
 return "**" + aProperty + "**";
 }
 return aValue;
}

// Element object property flag
function isElementProperty(aProperty)
{
 switch(aProperty)
 {
 case "all" :
 case "attributes" :
 case "childNodes" :
 case "children" :
 case "className" :
 case "currentStyle" :
 case "dir" :
 case "document" :
 case "filters" :
 case "firstChild" :
 case "id" :
 case "innerHTML" :
 case "innerText" :
 case "isTextEdit" :
 case "lang" :
 case "language" :
 case "lastChild" :
 case "nextSibling" :
 case "nodeName" :
 case "nodeType" :
 case "nodeValue" :
 case "offsetHeight" :
 case "offsetLeft" :
 case "offsetParent" :
 case "offsetTop" :
 case "offsetWidth" :
 case "outerHTML" :
 case "outerText" :
 case "ownerDocument" :
 case "parentNode" :
 case "parentElement" :
 case "parentTextEdit" :
 case "previousSibling" :
 case "sourceIndex" :
 case "style" :
 case "tagName" :
 case "title" :

E – Element object (Object/HTML)

595

 return true;
 }
 return false;
}

// Property attribute accessor
function getPropAttr(anObject, aProp, anAttrib)
{
 if(anObject.attributes[aProp])
 {
 return anObject.attributes[aProp][anAttrib];
 }
 else
 {
 return " ";
 }
}

</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Attributes object, Document.all[],
Document.createElement(), Document.documentElement,
isElementProperty(), Node object

Property JavaScript JScript N IE Opera DOM HTML Notes

canHaveChildren - 5.0 + - 5.0 + - - - -
canHaveHTML - 5.5 + - 5.5 + - - - ReadOnly
className 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
clientHeight - 3.0 + - 4.0 + - - - Warning,

ReadOnly
clientLeft - 3.0 + - 4.0 + - - - Warning,

ReadOnly
clientTop - 3.0 + - 4.0 + - - - Warning,

ReadOnly
clientWidth - 3.0 + - 4.0 + - - - Warning,

ReadOnly
contentEditable - 5.5 + - 5.5 + - - - -
currentStyle - 5.0 + - 5.0 + - - - Warning
dir 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
document - 3.0 + - 4.0 + 5.0 + - - Warning,

ReadOnly
firstChild 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
hideFocus - 5.5 + - 5.5 + - - - -
id 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
innerHTML 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
innerText - 3.0 + - 4.0 + - - - Warning

Table continued on following page

JavaScript Programmer's Reference

596

Property JavaScript JScript N IE Opera DOM HTML Notes

isContentEditable - 5.5 + - 5.5 + - - - ReadOnly
isDisabled - 5.5 + - 5.5 + - - - ReadOnly
isTextEdit - 3.0 + - 4.0 + - - - ReadOnly
lang 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
language - 3.0 + - 4.0 + - - - -
lastChild 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
nextSibling 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
nodeName 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - ReadOnly
nodeType 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - ReadOnly
nodeValue 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
offsetHeight - 3.0 + - 4.0 + - - - Warning,

ReadOnly
offsetLeft - 3.0 + - 4.0 + 5.0 + - - Warning,

ReadOnly
offsetParent - 3.0 + - 4.0 + 5.0 + - - Warning,

ReadOnly
offsetTop - 3.0 + - 4.0 + 5.0 + - - Warning,

ReadOnly
offsetWidth - 3.0 + - 4.0 + - - - Warning,

ReadOnly
outerHTML - 3.0 + - 4.0 + - - - Warning
outerText - 3.0 + - 4.0 + - - - Warning
ownerDocument 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - ReadOnly
parentElement - 3.0 + - 4.0 + - - - ReadOnly
parentNode 1.5 + 5.0 + 6.0 + 5.0 + 5.0 + 1 + - ReadOnly
parentTextEdit - 3.0 + - 4.0 + - - - Warning,

ReadOnly
previousSibling 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
readyState - 3.0 + - 4.0 + - - - ReadOnly
recordNumber 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
runtimeStyle - 5.0 + - 5.0 + - - - -
scopeName - 5.0 + - 5.0 + - - - -
scrollHeight - 5.0 + - 5.0 + - - - Warning,

ReadOnly
scrollLeft - 5.0 + - 5.0 + - - - Warning
scrollTop - 5.0 + - 5.0 + - - - Warning
scrollWidth - 5.0 + - 5.0 + - - - Warning,

ReadOnly
sourceIndex - 3.0 + - 4.0 + - - - Warning,

ReadOnly
style 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + - -
tagName 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 1 + - ReadOnly
tagUrn - 5.0 + - 5.0 + - - - -
title 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
uniqueID - 5.0 + - 5.0 + - - - ReadOnly

E – Element object (Object/HTML)

597

Method JavaScript JScript N IE Opera DOM HTML Notes

addBehavior() - 5.0 + - 5.0 + - - - -
applyElement() - 5.0 + - 5.0 + - - - Warning
blur() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
clearAttributes() - 5.0 + - 5.0 + - - - Warning
click() - 3.0 + - 4.0 + - - - -
componentFromPoint() - 5.0 + - 5.0 + - - - -
contains() - 3.0 + - 4.0 + 5.0 + - - -
doScroll() - 5.0 + - 5.0 + - - - -
focus() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
getAdjacentText() - 5.0 + - 5.0 + - - - -
getAttribute() 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 1 + - Warning
getAttributeNode() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
getElementsByTagName() 1.5 + 5.0 + 6.0 + 5.0 + 5.0 + 1 + - Warning
getExpression() - 5.0 + - 5.0 + - - - -
insertAdjacentHTML() - 3.0 + - 4.0 + - - - Warning
insertAdjacentText() - 3.0 + - 4.0 + - - - Warning
mergeAttributes() - 5.0 + - 5.0 + - - - -
normalize() 1.5 + - 6.0 + - - 1 + - -
releaseCapture() - 5.0 + - 5.0 + - - - -
removeAttribute() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
removeAttributeNode() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
removeBehavior() - 5.0 + - 5.0 + - - - -
removeExpression() - 5.0 + - 5.0 + - - - -
replaceAdjacentText() - 5.0 + - 5.0 + - - - -
scrollIntoView() - 3.0 + - 4.0 + - - - -
setAttribute() 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 1 + - -
setAttributeNode() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
setCapture() - 5.0 + - 5.0 + - - - -
setExpression() - 5.0 + - 5.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

JavaScript Programmer's Reference

598

Inheritance chain:
Node object

Element.addBehavior() (Method)
Attach a behavior to an object in MSIE.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.addBehavior()

MSIE supports an extension to style sheet handling that provides for scripts to be called as part of
the style. These are called behaviors. The script source text is stored in a special and separate file
with an .htc (or .HTC) file extension. It stands for HTml Component.

This augments the already available event handler support which provides for handlers to be
registered with individual objects or with a particular instance of a tag. Behaviors allow a handler
to be registered with all occurrences of a tag with only one registration being necessary.

Here is the contents of a simple HTC file taken from the Wrox book Professional JavaScript.

<SCRIPT LANGUAGE="JScript">attachEvent("onclick", event_onclick);function
event_onclick(){ alert("Read the manual.");}</SCRIPT>

This can be defined in a style sheet or in a <STYLE> tag. Here is how it would be invoked with an
inline <STYLE> defined in the <HEAD> of a document:

<STYLE> .help{behavior:url(help.htc)}</STYLE>

Having defined the style, you can now apply this to any element. For example, it could apply to the
entire contents of a <DIV> block like this:

<DIV CLASS="help" DELAY="2000">Click for help</DIV>

The DELAY HTML tag attribute provides a way to delay the presentation of the <DIV> block
contents until the browser has had a chance to load the HTC file content.

There are more complex ways to use behaviors that involve the use of XML mark-up and which can
avoid the use of attachEvent() methods. Refer to the Microsoft web site for further details.

See also: .htc, Behavior, Element.removeBehavior()

Web-references:
http://msdn.microsoft.com/workshop/essentials/versions/IE5behave.asp

http://msdn.microsoft.com/workshop/essentials/versions/IE5behave.asp

E – Element.all[] (Collection)

599

Element.all[] (Collection)
An array containing references to all elements within this element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Collection object

JavaScript syntax: IE myElement.all

This property yields a collection of objects that are descendants within the DOM hierarchy of
the receiver.

The collection (Array) contains a reference to all the objects that represent the contents of the
HTML contained within the current Element object. If the Element object is the document, then
this array will contain every single object within the document. If it represents a <TABLE> then it
will contain references to objects within that table and none that live outside it.

The objects are listed strictly in the order in which they appear in the document source.

You can access the items by index number or you can operate on the collection with the item() or
tags() methods. If you use index number access, MSIE allows you to use either square brackets or
parentheses to delimit the index value. Associative references may also work if the target item has
a NAME or ID value defined.

Refer to the topic that describes the Collection object for further details.

The event handling is also dealt with in a generic manner via the Element object. However some
object sub-classes also support additional event types. Event types and handlers are dealt with in
topics pertaining to each type of event.

Warnings:
❑ Be careful that when you traverse this collection you avoid the possibility of creating a recursive

reference. This can lead to a script lockup that could crash your browser.

❑ Netscape does not support the all[] collection for document objects. Versions prior to Netscape 6.0
also do not consistently support access via an ID value.

See also: Anchor object, Collection object, Document.all[],
Document.anchors[], Document.forms[],
Document.images[], Document.links[], Element object,
Form object, FormElement object, Hierarchy of objects,
HyperLink object, Image object, LINK object

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

600

Element.applyElement() (Method)
A way of defining an Element object as the child or parent of another element.

Availability: JScript – 5.0
Internet Explorer – 5.0

IE myElement.applyElement(anObject)
JavaScript syntax:

IE myElement.applyElement(anObject, aLocation)

anObject An object to be referencedArgument list:
aLocation The relationship to construct

When the element is applied, you must specify the element object to which it is to become attached.

There is an optional second parameter to define whether it should become the parent or the child of that
object. If the second parameter is not specified, then the element becomes the parent of the target object.

The second parameter can be any of these values:

❑ outside

❑ inside

Warnings:
❑ Although this can be used at run-time when the page is being constructed, any removal of elements

during this process may leave the page in a state where it cannot be properly rendered.

See also: Function.apply()

E – Element.attributes[] (Collection)

601

myElement.applyElement(B2, "outside")

A1

B1 B2

C1 C2 C3

A1

B1

B2

C1 C2 C3

myElement

myElement.applyElement(B2, "inside")

A1

B1 B2

C1 C2 C3

A1

B1 B2

C1 C2 C3

myElement

Element.attributes[] (Collection)
A reference to a collection of attribute objects for the HTML tag that the Element object represents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Attributes object

JavaScript syntax: - myElement.attributes

This property yields an attributes object which is a collection of attribute objects belonging
to the object instantiated by an HTML tag.

JavaScript Programmer's Reference

602

The attributes object contains properties that JavaScript can inspect to obtain the value of
HTML tag attributes for the tag that instantiated the Element object.

Structurally, the attributes object is an array whose elements correspond to properties of the
Element object, each containing a name, a value and a flag. The Flag value is set true only when
the property has a meaningful value. That value is reflected in the value property of the
attribute object.

So, to find out all about an Element object property, you can get the value of the property by
enquiring for its contents directly. However, if you use the property name to index the
attributes array for that Element object, you can find out other information about that
property by inspecting the attribute properties.

Access a property of an object like this:

myObject["propertyName"]

or like this:

myObject.propertyName

To access its corresponding attributes use this:

myObject.attributes["propertyName"].name

myObject.attributes["propertyName"].specified

myObject.attributes["propertyName"].value

However you should test for the existence of the myObject.attributes[myProp] object first
because an attribute object is not created for every property of an Element object but only
those that correspond to valid HTML tag attributes for the parent tag.

Any Element objects that represent HTML tags will have a nodeType of 1. Other node types
supported by their attributes property will contain the null value.

The example code shows how this attribute access might be provided with a function.

Example code:
// An attribute accessor function
function getPropertyAttribute(anObject, aProp, anAttrib)
{
 if(anObject.attributes[aProp])
 {
 return anObject.attributes[aProp][anAttrib];
 }
 else
 {
 return "";
 }
}

E – Element.behaviorUrns[] (Collection)

603

See also: Attributes object, Element object,
Element.mergeAttributes(), Node.attributes[]

Property attributes:
ReadOnly.

Element.behaviorUrns[] (Collection)
A collection of all the behaviors attached to an element (as a set of URN strings).

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.behaviorUrns

This lists all the URN values that point at HTC files from within the current document.

Property attributes:
ReadOnly.

Element.canHaveChildren (Property)
A Boolean flag indicating whether this element may have child Nodes associated with it.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myElement.canHaveChildren

If an element is able to own child Nodes and hence populate its childNodes[] collection and its
children[] and all[] collections, then this property should be set true.

Element.canHaveHTML (Property)
A flag property that indicates whether the element can contain HTML.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: Boolean primitive

JavaScript syntax: IE myElement.canHaveHTML

JavaScript Programmer's Reference

604

If an element is able to respond to innerHTML set and get accessors and hence display some visible
onscreen content, this property should yield true.

See also: Element.innerHTML, Element.innerText

Property attributes:
ReadOnly.

Element.childNodes[] (Collection)
A list of object nodes within the DOM that are direct children of the node object that owns
this collection.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: ChildNodes object

JavaScript syntax: - myElement.childNodes

This is part of the internal management of the DOM that browsers use to manage the document
content. There are additional nodes here that map to fragments of text in between HTML tags. So
there may be more items in this array than in the children[] property.

ParentNode

Text 1/Node 2 Child 2/Node 3 Text 2/Node 4Child 1/Node 1 Child 3/Node 5

ParentElement

See also: ChildNodes object, Element object, Hierarchy of objects,
Node.childNodes[]

Property attributes:
ReadOnly.

E – Element.children[] (Collection)

605

Element.children[] (Collection)
The elements that are direct children of this element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Collection object

JavaScript syntax: IE myElement.children

A collection of objects which are the immediate children of the receiving Element object. These
objects generally represent HTML tags but there are other objects that are linked in to the DOM
hierarchy that represent the fragments of text between the HTML tags.

Element

Child 1 Child 2 Child 3

Element.children()

See also: Collection object, Element object, Hierarchy of objects

Property attributes:
ReadOnly.

Element.className (Property)
The value of the CLASS tag attribute for the HTML tag that represents this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myElement.className
JavaScript syntax:

- myElement.className = aClassName

Argument list:
aClassName A new class name that exists in the cascading

style sheet

JavaScript Programmer's Reference

606

This property contains the name of the cascading style sheet class for the tag that the Element
object represents. Because MSIE implements its tag objects so consistently as sub-classes of the
Element object class, it is possible to apply CLASS tag attributes to tags that really shouldn't have
style sheets associated with them. The <HTML> and <HEAD> tags for example. Nevertheless, you
can still define a CLASS tag attribute and its value will be reflected and accessible in this property.

You can read or write this value to manipulate the style attributes of the object.

The value is specified as a String primitive, but is case sensitive. If you specify multiple items, they
must be space separated.

Changing this value can be a way to change a whole range of style settings on an object in a single
hit rather than modifying the individual settings one by one.

Warnings:
❑ This property used to be called Element.class but has been renamed as of DOM level 1 to avoid

namespace conflicts with a possible future object.class property.

❑ This is not the name of the object class that is associated with the tag. In Netscape, you can usually
figure out the class of an object by accessing the constructor property to get an object that
represents the class and then you can obtain the name property of the constructor to find the class
name. This doesn't work in MSIE in general. However, you can get a string version of an object in
MSIE in many cases that is of the form "[object XXXXX]" where XXXXX is the class name. You will
need to dismantle the string with a fragment of script.

❑ There can be a conflict of style settings where the same attribute is controlled from several class
settings. The following precedence rules are applied:

1. Styles defined in the Element's HTML tag.

2. Styles applied to the Element with the CLASS HTML tag attribute.

3. Styles applied using the ID value of an Element.

4. Inline styles defined within the script environment.

See also: CLASS="...", Element object

Element.clearAttributes() (Method)
Clear the attributes from an element object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.clearAttributes()

Any attribute values that are associated with an element can be cleared using this method.

Warnings:
❑ This may not be supported on all platforms that MSIE runs on. In particular, under testing it failed to

work on a Macintosh and generated a run-time error.

E – Element.click() (Method)

607

Element.click() (Method)
Sends a click event to the receiving object to trigger its onclick event handler.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: undefined

JavaScript syntax: IE myElement.click()

This is supported by most objects on MSIE but only input objects on Netscape, and this is still true
in version 6.0.

It simulates the effect of a mouse click on the object. This should trigger the event handler for the
onclick event. That handler would be a function object and a reference to it should be available in
the onclick property of the receiving object.

The handler function may have been registered by assigning the function object reference to the
property user script control or it may have been registered with the onClick HTML tag attribute
in the tag that instantiates the object.

See also: onClick

Element.clientHeight (Property)
The height in pixels of the object on the client display surface.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.clientHeight

The height of the extent rectangle around the element object as it appears on screen. This value is
measured in pixels.

Warnings:
❑ This property does not operate consistently across different platforms, and in any case is only

available in MSIE. This somewhat limits its usefulness.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

608

Element.clientLeft (Property)
The offset in pixels of the object on the client display surface relative to its parent object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.clientLeft

The pixel coordinate of the left edge of the extent rectangle around the element object as it
appears on screen.

Warnings:
❑ This property does not operate consistently across different platforms and in any case is only

available in MSIE. This somewhat limits its usefulness.

Property attributes:
ReadOnly.

Element.clientTop (Property)
The offset in pixels of the object on the client display surface relative to its parent.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.clientTop

The pixel coordinate of the top edge of the extent rectangle around the element object as it
appears on screen.

Warnings:
❑ This property does not operate consistently across different platforms and in any case is only

available in MSIE. This somewhat limits its usefulness.

Property attributes:
ReadOnly.

E – Element.clientWidth (Property)

609

Element.clientWidth (Property)
The width in pixels of the object on the client display surface.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.clientWidth

The width of the extent rectangle around the element object as it appears on screen. This value is
measured in pixels.

Warnings:
❑ This property does not operate consistently across different platforms and in any case is only

available in MSIE. This somewhat limits its usefulness.

Property attributes:
ReadOnly.

Element.componentFromPoint() (Method)
Determines what object is under a particular pixel coordinate in the window.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Element object

JavaScript syntax: IE myElement.componentFromPoint(anX, aY)

anX A horizontal coordinateArgument list:
aY A vertical coordinate

Return a reference to an element object that is the upper most in the Z order at the corresponding
X-Y coordinate point measured in pixels relative to the upper left of the receiving object.

Element.contains() (Method)
A test to see if the element contains another element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Boolean primitive

JavaScript Programmer's Reference

610

JavaScript syntax: IE myElement.contains(anElement)

Argument list: anElement An Element object to check for

The receiving element hierarchy is checked to see if the element that is passed as an argument
exists by reference within it.

The result of this method will be true if the element referred to by its argument is contained in the
receivers node descendants. If by traversing the child nodes of the receiver the indicated element
cannot be found, a false value is returned.

The functionality of this method is similar to that provided by the DOM level 1 compliant
Node.hasChildNodes() method which should provide a more portable solution.

E0122 E0123

E011 E013

E02 E03

E0121

E012

E01

E0

E0.contains(E0121)

See also: Element object, Node.hasChildNodes()

E – Element.contentEditable (Property)

611

Element.contentEditable (Property)
A property that determines whether the content of an element can be changed.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

IE myElement.contentEditable
JavaScript syntax:

IE myElement.contentEditable = aSetting

Argument list: aSetting One of true, false or inherit

This property can be set under script control. The following values are appropriate for use with it:

❑ inherit

❑ true

❑ false

When set to false, the content cannot be changed. When set to inherit, the ability to change the
content depends on the setting of this property in the parent Node.

You cannot set this property on the following element types:

❑ TABLE

❑ COL

❑ COLGROUP

❑ TBODY

❑ TD

❑ TFOOT

❑ TH

❑ THEAD

❑ TR

However you can work around this by placing <DIV> and elements inside the table cells and
then setting their contentEditable property as needed.

Element.currentStyle (Property)
A reference to a style object that contains the current style settings for the Element object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Style object

JavaScript Programmer's Reference

612

IE myElement.currentStyle
JavaScript syntax:

IE myElement.currentStyle = aStyleObject

Argument list: aStyleObject A new style object to associate with the element

Because the style values are cascaded from style sheet to style sheet and may include some inline
styles as well as some explicit styles, objects need to maintain a current style value that is the result
of all the inheritances applied on top of one another.

In addition they maintain a run-time style which reflects dynamic changes as well. The run-time
style is based on the current style in the first place.

The value of this property is a reference to a style object. However it does not refer to the same
style object as the style property. You can test for this with the isObjectEqual() function
that we have covered elsewhere.

Warnings:
❑ Note that in MSIE, the object that is returned is of the class "style" rather than "Style". The upper

and lower case spelling may differ between browsers. However since you are likely to access the
object by reference you may never need to know the specific class name.

See also: currentStyle object, Element object,
Element.runtimeStyle, Element.style,
isObjectEqual(), runtimeStyle object, style object (2)

Element.dir (Property)
The text direction of the Element object content.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

- myElement.dir
JavaScript syntax:

- myElement.dir = aDirection

Argument list:
aDirection A value that indicates leftwards or rightwards

text drawing

The dir property may be set to indicate a left to right or right to left parsing direction.

This is part of the localization support and represents the contents of the DIR tag attribute.

If you assign a value to this property it is case sensitive and must be either "ltr" or "rtl".

This property works in conjunction with the lang property to control the direction of text flow.

E – Element.document (Property)

613

On MSIE 5.0 for Macintosh, this can reverse the order of the table columns so they are drawn right
to left, but present the items in the cells still written left to right. This may be because tables block
the inheritance of style attributes from the outer containing elements into the table cells.

See also: BDO.dir, Element object, NOFRAMES.dir, NOSCRIPT.dir

Element.document (Property)
The document containing this element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Document object

JavaScript syntax: IE myElement.document

This is the document in which the Element object is instantiated. Although this is not generally
available as an object property in Netscape, it is supported by the Window object by virtue of it
being a global value. This means that for most cases, the scope chain adds the document object to
all objects, or at least it appears as if they have the property. However, in Netscape, the document
property is shared by all objects in the window rather than each having its own private document
property that refers to the same document object. The difference is subtle.

Warnings:
❑ Be careful when blindly using the properties of Element objects, as a property such as this can lead

you into a recursive loop situation.

See also: Doctype object, Document object, Element object,
Element.ownerDocument, Layer.document,
Window.document

Property attributes:
ReadOnly.

Element.doScroll() (Method)
Simulates a mouse click on a scroll bar.

Availability: JScript – 5.0
Internet Explorer – 5.0

IE myElement.doScroll()
JavaScript syntax:

IE myElement.doScroll(aKeyword)

Argument list: aKeyword Define the scroll item to click on

JavaScript Programmer's Reference

614

This emulates the action of the user having clicked on a scrollbar item with the mouse. The scroll
controller that is clicked on depends on the keyword used in the method call.

Keyword: Description:

down Composite reference to scrollbarDown.
left Composite reference to scrollbarLeft.
pageDown Composite reference to scrollbarPageDown.
pageLeft Composite reference to scrollbarPageLeft.
pageRight Composite reference to scrollbarPageRight.
pageUp Composite reference to scrollbarPageUp.
right Composite reference to scrollbarRight.
scrollbarDown Down scroll arrow is at the specified location.
scrollbarHThumb Horizontal scroll thumb or box is at the specified location.
scrollbarLeft Left scroll arrow is at the specified location.
scrollbarPageDown Page-down scroll bar shaft is at the specified location.
scrollbarPageLeft Page-left scroll bar shaft is at the specified location.
scrollbarPageRight Page-right scroll bar shaft is at the specified location.
scrollbarPageUp Page-up scroll bar shaft is at the specified location.
scrollbarRight Right scroll arrow is at the specified location.
scrollbarUp Up scroll arrow is at the specified location.
scrollbarVThumb Vertical scroll thumb or box is at the specified location.
up Composite reference to scrollbarUp.

The default value is scrollbarDown.

Element.filters[] (Collection)
Filters are supported by MSIE and provide some stylistic control over presentation. This collection
contains all the filters associated with an Element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Filters object

JavaScript syntax: IE myElement.filters

This is a reference to a filter collection object that contains details of objects that represent a
DHTML filter effect that is invoked during event handling.

See also: Behavior, Element object, Filter, Filter object,
style.filter, Transition

E – Element.firstChild (Property)

615

Property attributes:
ReadOnly.

Element.firstChild (Property)
The first object in the collection of direct children of this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Element object

- myElement.children[0]
JavaScript syntax:

- myElement.firstChild

The Element objects are instantiated as the HTML tags are parsed within the document source.
They are added to several collections and can be navigated in a variety of ways.

Each Element object has an array of Element objects that are considered to be its direct
descendants (that is children). This collection will not contain its children's children. The first
element in this collection can be referred to by index and its siblings by means of an enumerator or
for(... in ...) loop. However you can access it directly with this property.

If the element has no children, then this property will contain a null value.

Element

Child 3 Child 4 Child 5

parentElement

firstChild lastChild

nextSibling previousSibling

See also: Element object, Element.lastChild,
Element.nextSibling, Element.parentElement,
Element.previousSibling, Node.firstChild,
Node.hasChildNodes()

JavaScript Programmer's Reference

616

Element.getAdjacentText() (Method)
Obtains the text adjacent to the object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myElement.getAdjacentText(aRelativePosition)

Argument list: aRelativePosition
An indication of where the new HTML is
to be placed

Using the same locational techniques as insertAdjacentText(), this method retrieves the text
adjacent to the element.

See also: Element.insertAdjacentHTML(),
Element.insertAdjacentText(),
Element.replaceAdjacentText()

Element.getAttribute() (Method)
An accessor for reading named custom attributes.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: String primitive

- myElement.getAttribute(anAttribName)
JavaScript syntax:

- myElement.getAttribute(anAttribName,
aCaseSense)

aCaseSense A flag to indicate a case-sensitive lookupArgument list:
anAttribName An attribute of an Element object

This is an accessor method which is used to access named attributes of an Element object.
Attributes are not properties in the strict sense of the word, but may be accessible as if they were in
some implementations.

This accessor is intended to provide a means of managing custom attributes.

It would be logical to assume that attributes are named uniquely but if several share the same
name, differing only in case sensitivity, then if a case-insensitive search is used you may not
retrieve the one you expect. It is likely that you'll be given the last one that occurs, but this may be
implementation-dependent.

E – Element.getAttributeNode() (Method)

617

The case-sensitive flag should be set to the Boolean true value to force a case-sensitive search and
false to ignore the case of letters in the attribute name.

The following values can be passed in the optional case-sensitive flag argument:

❑ true – A case-sensitive search is carried out.

❑ false – A case-insensitive search is carried out.

❑ 0 – A case-insensitive search of property values is carried out by default. If several instances are
located, then only the last is returned.

❑ 1 – A case-sensitive search is carried out.

❑ 2 – The value is returned exactly as was originally defined in the document source regardless of
subsequent setAttribute() calls.

The result will be value of the attribute. If the element does not have an attribute of the specified name, a
null value is returned.

Warnings:
❑ If a case-sensitive search is carried out using a property name stored in a variable, you should make

sure that the same setting was defined for a corresponding setAttribute() call. If you don't,
then it is possible that the name may have a case change if the 0 value was used in the
setAttribute() call. After that case change, the value in the variable will no longer match the
property defined for the receiving object.

See also: Element object, Element.removeAttribute(),
Element.setAttribute(), style.getAttribute()

Element.getAttributeNode() (Method)
Given its name, this will retrieve an Attribute node for the Element object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Attribute object

JavaScript syntax: - myElement.getAttrbuteNode(aName)

Argument list: aName The name of an attribute node

See also: Attribute object

JavaScript Programmer's Reference

618

Element.getElementsByTagName() (Method)
Obtain a collection of elements that have the same tag name.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Opera – 5.0

Property/method value type: NodeList object

JavaScript syntax: - myElement.getElementsByTagName(aTagName)

Argument list: aTagName The name of a tag

Modern browsers are implementing a DOM standard architecture that represents a document in
the same way regardless of the browser you are running. This means that the focus of script
development will move away from a browser-centric view to a standards-centric approach. Using
DOM will lead to you developing a much more portable script product.

One of the important "gateway" methods to this DOM model is getElementsByTagName(). This
can be applied to a document or to an individual HTML element within it.

The getElementsByTagName() method returns a collection of elements that are children of the
receiving element so long as they were instantiated by the specified tag name.

Many HTML tags create a container within which other tags are placed. <HTML> contains <HEAD>
and <BODY> as its immediate children. A <BODY> tag might contain a <TABLE> which contains
<TR> row elements, each of which has its own collection of <TD> elements. Within those table cells,
further parent- child relationships are constructed.

The getElementsByTagName() method will walk down that parent-child tree structure and
collect a reference to each Element object that was instantiated by the HTML tag name you
specify. Then on return, it passes back a Collection object with them organized for easy access
with the item() method or by array index.

Since you can apply this search to an individual HTML element, the traversal of the document tree
can be very efficient because you only need to walk the portion local to the objects you want to find.

Warnings:
❑ Netscape 6.0 is forgiving of non-existent tag names. It will instantiate an Element object and you

can access it using this DOM method even though the tag is not a valid HTML item. MSIE does not
do that. It won't parse incorrect tags into DOM objects and therefore this is not a portable
workaround for hiding data in documents.

❑ Beware that item() methods that are used to access individual members of a collection come in
several varieties with different argument values. In the case of the MSIE Collection object, the
method name is capitalised so you need to call Item() and not item() on those collections.

See also: Document.getElementsByTagName(), NodeList object

E – Element.getExpression() (Method)

619

Element.getExpression() (Method)
Obtains an expression value from within a style rule.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myElement.getExpression()

The rules that are used to construct a style are comprised of multiple expressions. You can use this
method to extract the value of an expression from a style item.

Given the rule might contain a line such as:

width:200px

the getExpression() method can be applied to the style object containing the rule with that
expression like this:

myStyle.getExpression("width:")

The value 200px would be returned.

See also: Element.removeExpression(),
Element.setExpression(), style.getExpression(),
style.removeExpression(), style.setExpression()

Element.hideFocus (Property)
This property controls whether there is any visible effect of acquiring focus on an object.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: Boolean primitive

IE myElement.hideFocus
JavaScript syntax:

IE myElement.hideFocus = aSwitch

Argument list: aSwitch A Boolean value

This simply controls the visible effect of having focus. To control whether an object can receive
focus or not, the tabIndex property should be modified instead.

Setting the property true inhibits the visible focus effect. Setting it false restores the visible
effect of receiving focus to the normal behavior.

See also: onFocus

JavaScript Programmer's Reference

620

Element.id (Property)
The value of the ID tag attribute in the HTML tag that represents this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myElement.id

HTML syntax: <ELEMENT_TAG ID="anIDValue">

Argument list: anIDValue A valid (and unique within the document) ID value

DOM level 1 specifies this property as a member of the HTMLElement object.

HTML elements in MSIE are often identified using their ID value. This is a textual name added
with the ID HTML tag attribute. Netscape 6.0 should support this more reliably than earlier
versions of the browser.

The value of the ID HTML tag attribute is stored in this property. This is also used as a means of
locating elements by ID value.

You can change the ID value of an element by setting this property since it has read and write
access. However it is hard to think of a circumstance where that might be useful. It is really meant
to be a read-only property.

DOM provides some help when searching for elements and you can use the getElementsById()
method on the document object in a DOM compliant implementation. Note that a
getElementsById() method is not supported on the individual HTML elements. This does mean
that DOM compliant searches by ID will traverse the entire document if necessary.

DOM provides several other mappings and you can traverse a node hierarchy as well, so this is not
likely to prove a severe limitation.

Warnings:
❑ You must make sure that any value you assign to this property is unique within the document since

it is used as part of the document navigation mechanism.

❑ If you use the same ID value for more than one element, it is not clear which one will be located first
when the document hierarchy is traversed, although it is likely to be the first one that was defined.

❑ In the case of objects with the same ID, you may be presented with a collection or array of objects
rather than a single object. This can make it difficult to write general purpose scripts.

See also: Element object, ID="..."

E – Element.innerHTML (Property)

621

Element.innerHTML (Property)
The inner HTML of a tag in the document.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myElement.innerHTML
JavaScript syntax:

- myElement.innerHTML = someHTML

Argument list: someHTML Some new HTML content to place inside the object

The HTML in between but not including the tags that define the element is extracted. The resulting
content complete with tags and text is returned when this property is being read.

When the property is being written to, the start and end tags remain intact but everything between
them is replaced with a sequence of HTML content.

This property contains the text and any HTML tags that are contained in the body of the element. If
you only want the text, then use the innerText property.

If you want to include the containing tags, then use the outerHTML or outerText properties instead.

You can assign new text to be displayed in the HTML element by using this property as an LValue.

The innerHTML property of an HTML Element object is supported in Netscape 6.0 although it is not
mandated in the DOM specification. However Netscape 6.0 does not also support innerText,
outerHTML or outerText. You should be able to accomplish what you need with innerHTML though.

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

innerHTML

Warnings:
❑ Be careful if you extract the innerHTML of an element and document.write() it back to the

same document. You can create recursive loop situations if you are evaluating in global code during
the document loading process.

❑ You cannot set this property while the document is loading.

❑ MSIE version 4 for Macintosh does not support this as widely as the Windows version or later
versions of MSIE for Macintosh.

See also: Element object, Element.canHaveHTML,
Element.innerText, Element.insertAdjacentHTML(),
Element.outerHTML, Element.outerText

JavaScript Programmer's Reference

622

Element.innerText (Property)
The inner text of a tag in the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

IE myElement.innerText
JavaScript syntax:

IE myElement.innerText = aString

Argument list: aString Text to replace the inner text

The HTML in between but not including the tags that define the element is extracted and any tags
are removed. The resulting text is returned when this property is being read.

When the property is being written to, the start and end tags remain intact but everything between them
is replaced with a text string. To place HTML tags between the tags, use the innerHTML property.

For some objects, this is equivalent to the text property that Netscape supports.

It is effectively the same as anElement.innerHTML as long as there is no mark-up on the text
between the beginning and ending tags.

If you want to include the containing tags, then use the outerText or outerHTML properties instead.

You can assign new text to be displayed in the HTML element by using this property as an LValue.

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

innerText

Warnings:
❑ This is not supported by Netscape although the text property may be supported by some objects.

You can probably do all you need to do by means of the innerHTML property which Netscape 6.0
does support.

❑ You will need to detect the browser type before attempting to use this property.

❑ Be careful if you extract the innerText of an element and document.write() it back to the
same document. You can create recursive loop situations if you are evaluating in global code during
the document loading process.

❑ You cannot set this property while the document is loading.

❑ MSIE version 4 for Macintosh does not support this as widely as the Windows version or later
versions of MSIE for Macintosh.

❑ Netscape does not support it at all.

E – Element.insertAdjacentHTML() (Method)

623

See also: Anchor.text, Element object, Element.canHaveHTML,
Element.innerHTML, Element.insertAdjacentHTML(),
Element.outerHTML, Element.outerText

Element.insertAdjacentHTML() (Method)
Inserts some HTML into the document adjacent to this element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: undefined

JavaScript syntax: IE myElement.insertAdjacentHTML
(aRelativePosition, someHTML)

aRelativePosition An indication of where the new HTML
is to be placed

Argument list:

someHTML The new fragment of HTML to be inserted

This is quite similar to an expression that assigns a new value to the innerHTML property of an
Element object. In this case, the new HTML leaves the existing HTML intact.

The relative positions where the adjacent HTML can be introduced determine where the new
HTML is to be inserted. The following relative positions can be specified:

Position: Description:

AfterBegin Immediately after the opening tag and before any other content
AfterEnd Immediately after the closing tag and before any other content
BeforeBegin Immediately before the opening tag
BeforeEnd Immediately before the closing tag

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

innerHTML

Warnings:
❑ You cannot call this method while the document is loading.

❑ MSIE version 4 for Macintosh does not support this as widely as the Windows version or later
versions of MSIE for Macintosh.

See also: Element object, Element.getAdjacentText(),
Element.innerHTML, Element.innerText,
Element.insertAdjacentText(), Element.outerHTML,
Element.outerText

JavaScript Programmer's Reference

624

Element.insertAdjacentText() (Method)
Inserts some text into the document adjacent to this element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: undefined

JavaScript syntax: IE myElement.insertAdjacentHTML
(aRelativePosition, aString)

aRelativePosition An indication of where the new HTML
is to be placed

Argument list:

aString The new fragment of text to be inserted

This is quite similar to an expression that assigns a new value to the innerText property of an
Element object. In this case, the new text leaves the existing text and HTML content intact.

The relative positions where the adjacent text can be introduced determine where the new text is to
be inserted. The following relative positions can be specified:

Position: Description:

AfterBegin Immediately after the opening tag and before any other content
AfterEnd Immediately after the closing tag and before any other content
BeforeBegin Immediately before the opening tag
BeforeEnd Immediately before the closing tag

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

innerText

Warnings:
❑ You cannot call this method while the document is loading.

❑ MSIE version 4 for Macintosh does not support this as widely as the Windows version or later
versions of MSIE for Macintosh.

See also: Element object, Element.getAdjacentText(),
Element.insertAdjacentHTML(),
Element.replaceAdjacentText(), Node.insertBefore()

E – Element.isContentEditable (Property)

625

Element.isContentEditable (Property)
Returns a Boolean value indicating whether the content of the element can be altered.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: Boolean primitive

JavaScript syntax: IE myElement.isContentEditable

It is necessary to have this property because the Element.contentEditable property may have
the value "inherited" assigned to it. To determine whether the content was in fact editable would
require you to walk up the document hierarchy to a parent node whose contentEditable
property was set explicitly.

Property attributes:
ReadOnly.

Element.isDisabled (Property)
A flag property that indicates whether the user can interact with the object or not.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: Boolean primitive

JavaScript syntax: IE myElement.isDisabled

This is especially applicable to input objects or those other objects that may not be sub-classes of
the Input object but can be clicked on by the user. For example, Anchor objects.

The property yields the current state of the disabled setting for the receiving object.

A separate property to the object's disabled property is necessary because it might depend on the
context in which an object is used and whether that context (such as a form or window) is disabled.
The implication is then that all child objects within that context would be disabled too. It's also
necessary because some objects are not members of the Input object family but can still be
disabled even though they do not have a disabled property of their own.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

626

Element.isTextEdit (Property)
A Boolean indication of the text editing capabilities of this element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myElement.isTextEdit

This property contains a Boolean flag to indicate whether the object can be used to create a
TextRange object. This is done with the createTextRange() method. Only the following object
classes should yield a true value for this property:

❑ BODY

❑ BUTTON

❑ TextCell

❑ TextArea

If the HTML element represents an <INPUT> tag whose type is TEXT for example, then this value will
yield true. Most of the time it will yield false. It is useful for writing generic accessors and handlers for
objects which may or may not have selectable or editable text in them.

Logically you would only want to read from this property.

The value yielded by this property will be true if the element represents an editable text field and
false if is not.

Example code:
// An example showing how a text range can be created//
conditionallyif(myElement.isTextEdit){ myElement.createTextRange();}

See also: // An example showing how a text range can be created
// conditionally
if(myElement.isTextEdit)
{
 myElement.createTextRange();
 alert("TextRange object created");
}

Property attributes:
ReadOnly.

E – Element.lang (Property)

627

Element.lang (Property)
The value of the LANG tag attribute of the HTML tag that represents this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myElement.lang
JavaScript syntax:

- myElement.lang = aNationality

Argument list: aNationality An indication of the national language required

This property controls the locale specific text rendering. It allows special characters to be handled
appropriately and special character sets to be supported properly according to the national
language variants.

Refer to the Language codes topic for a list of the available language codes.

See also: Element object, LANG="...", Navigator.language,
Navigator.systemLanguage, Navigator.userLanguage

Cross-references:
RFC 1766

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

Element.language (Property)
The required scripting language for fragments of script associated with this element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

IE myElement.language
JavaScript syntax:

IE myElement.language = aScriptLanguage

HTML syntax: <SCRIPT LANGUAGE="...">

Argument list: aScriptLanguage One of the available scripting languages

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

JavaScript Programmer's Reference

628

This does not affect scripting contained within script tags, but provides a way to select a script
language interpreter for use with event handlers for example.

The following scripting languages are supported in MSIE (Netscape does not support this facility):

❑ JAVASCRIPT

❑ JSCRIPT

❑ VBS

❑ VBSCRIPT

The values are case-insensitive in the MSIE browser.

With this property available, it is conceivable that other languages could be supported in the
future. For example, client-side Perl and Python are feasible. Search out the PerlScript and
ActivePython projects for further details.

See also: <SCRIPT LANGUAGE="...">, Element object

Element.lastChild (Property)
The last child object contained within the DOM hierarchy that descends from this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Element object

- myElement.children[anIndex]
JavaScript syntax:

- myElement.lastChild

Argument list: anIndex A value equal to the length of the array minus 1

The Element objects are instantiated as the HTML tags are parsed within the document source.
They are added to several collections and can be navigated in a variety of ways.

Each Element object has an array of Element objects considered to be its direct descendants (that
is children). This collection will not contain its children's children. The last element in this
collection can be referred to by index and its siblings by means of an enumerator or for(... in
...) loop. However you can access it directly with this property.

Accessing the object at the end of the collection with this property is more convenient than
measuring the length of the collection and accessing by array index.

If the element has no children, then this property will contain a null value.

E – Element.mergeAttributes() (Method)

629

Element

Child 3 Child 4 Child 5

parentElement

firstChild lastChild

nextSibling previousSibling

See also: Element object, Element.firstChild,
Element.nextSibling, Element.parentElement,
Element.previousSibling, Node.lastChild

Element.mergeAttributes() (Method)
Merge the attributes from one object with another.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: undefined

IE myElement.mergeAttributes(anElement)
JavaScript syntax:

IE myElement.mergeAttributes(anElement,
aCaseSense)

aCaseSense A flag indicating whether name lookup is case
sensitive

Argument list:

anElement A source element to merge attributes from

The attributes from the source object are merged with the attributes of the receiving object. This
may replace some attribute values or may add to the set of attributes if similarly named attributes
are present in both but only differ in their case sensitivity.

See also: Element.attributes[], Element.removeAttribute(),
Element.setAttribute()

Element.nextSibling (Property)
An HTML element at the same level within the document hierarchy.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript Programmer's Reference

630

Property/method value type: Element object

- myElement.nextSibling
JavaScript syntax:

- myElement.parentElement.children[anIndex]

Argument list: anIndex An enumerated position in the collection

The Element objects are instantiated as the HTML tags are parsed within the document source.
They are added to several collections and can be navigated in a variety of ways.

Each Element object has an array of Element objects considered to be its direct descendants (that
is children). This collection will not contain its children's children. All elements in this collection
can be referred to by index and all siblings by means of an enumerator or for(... in ...)
loop. However you can access them directly with this property.

Accessing the next object in the collection belonging to the parent by means of this property is more
convenient than traversing back to the parent and working through the children property's collection.

The next sibling will be the object following this one in the children property's collection of the
same parent element.

If there is no next sibling then the null value will be returned.

Element

Child 3 Child 4 Child 5

parentElement

firstChild lastChild

nextSibling previousSibling

See also: Element object, Element.firstChild, Element.lastChild,
Element.parentElement, Element.previousSibling,
Node.nextSibling

Element.nodeName (Property)
Part of the internal document hierarchy management.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

E – Element.nodeType (Property)

631

Property/method value type: String primitive

JavaScript syntax: - myElement.nodeName

The nodeName property is part of the browser's internal DOM management. It contains a value that is
the name of the HTML tag that instantiated the object. This is also reflected as the tagName property.

When the object is a Text object, the nodeName value is "#text" because there is no HTML tag to
represent plain text and a text node is placed between HTML Element objects. It's like the mortar
between the bricks in a wall.

See also: Element object, Node.nodeName

Property attributes:
ReadOnly.

Element.nodeType (Property)
Part of the internal document hierarchy management.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myElement.nodeType

The nodeType property is part of the browser's internal DOM management.

By inspecting the properties of various objects with an enumeration loop, you can determine some
values for this property. If you know the node type, you may be able to take advantage of this when you
write more sophisticated scripts. Here is a partial list of node types defined by the DOM specification:

Constant: Type: Description:

undefined null A member of the attributes collection

ELEMENT_NODE 1 HTML element object node

ATTRIBUTE_NODE 2 HTML tag attribute object

TEXT_NODE 3 Text object node

CDATA_SECTION_NODE 4 CDATA section

ENTITY_REFERENCE_NODE 5 Entity reference

ENTITY_NODE 6 Entity node

Table continued on following page

JavaScript Programmer's Reference

632

Constant: Type: Description:

PROCESSING_INSTRUCTION
_NODE

7 Processing instruction node

COMMENT_NODE 8 Comment node

DOCUMENT_NODE 9 Document object

DOCUMENT_TYPE_NODE 10 Doctype object

DOCUMENT_FRAGMENT
_NODE

11 Document fragment node

NOTATION_NODE 12 Notation node

The DOM standard is quite large at level 1 and defines a lot of ways in which you can traverse a
document structure. The level 2 capabilities are even more extensive. Scripts than can understand
node types and DOM document trees will be able to accomplish some amazingly powerful things.

See also: Element object, Node.nodeType

Property attributes:
ReadOnly.

Element.nodeValue (Property)
Part of the internal document hierarchy management.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myElement.nodeValue

This object is part of the browser's internal DOM management.

The value of this attribute always seems to be the null object for objects that represent HTML tags. This
is probably because all the other attributes of the tags can be stored in named properties of the Element
object or in attributes of those properties collected into the Attributes object that belongs to it.

When the node is a #text value, the text itself is stored here.

See also: Element object, Node.nodeValue

E – Element.normalize() (Method)

633

Element.normalize() (Method)
Processes all of the textNode objects that are children of the receiving element and prepares the
document for save and restore.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N Element.normalize()

There are implications here for the way CDATASection objects are handled and are most likely to
be used when XPointer lookups are required.

This begins to move in the direction of XML support, which the DOM actively facilitates and which
is a very large and complicated topic. For now we shall concentrate on HTML documents.

Element.offsetHeight (Property)
The height of this element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.offsetHeight

The height of the element in pixels. This value is read-only but for some objects such as images the
height property should be used instead if you need to modify the physical size of the item. The
changes will be reflected in this property but you cannot make the changes by altering the value of
this property from your script.

The value in this property is not supposed to include any padding, border or margin widths.

Although the name of this property implies its value is related to a parent object, in fact it is a
measure of the element's height and the parentage has no bearing on that whatsoever.

Parent element

offsetParent

ChildElement

offsetLeft

offsetWidth

offsetHeight

offsetTop

JavaScript Programmer's Reference

634

Warnings:
❑ The offset properties are implemented very inconsistently across platforms and versions of MSIE.

Use them with caution. In any case, they are available for read access only so they are of limited use
in position control.

❑ MSIE 4 for Windows incorrectly includes padding widths around the object when calculating the
size value in here. The correct value will be yielded on both Macintosh and Windows versions of
MSIE 4 if you don't specify any padding at all.

See also: Element object, Element.offsetWidth

Property attributes:
ReadOnly.

Element.offsetLeft (Property)
The X coordinate of the HTML element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.offsetLeft

The position of the object in pixels offset horizontally from its parent. This value is read-only.

The offsetParent property contains a reference to the parent object that the relative positions
are measured with respect to.

Parent element

offsetParent

ChildElement

offsetLeft

offsetWidth

offsetHeight

offsetTop

E – Element.offsetParent (Property)

635

Warnings:
❑ The offset properties are implemented vary inconsistently across platforms and versions of MSIE.

Use them with caution. In any case, they are available for read access only so they are of limited use
in position control.

See also: Anchor.x, Element object, Element.offsetParent,
Measurement units, style.pixelLeft, style.posLeft

Property attributes:
ReadOnly.

Element.offsetParent (Property)
A reference to the parent object that is the reference point for offset positioning values.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Element object

JavaScript syntax: IE myElement.offsetParent

The parent object whose position provides a datum for the element to be offset away from.

This could refer to the document object for the current window. In many cases it will be the BODY
object for the document. However you may have used <TABLE> tags to control the layout and
these might be the parent objects for the content of the table while the parent of the TABLE objects
would be the BODY object.

The parent-child hierarchy of element objects within the document is dependent on how you
construct it when the document source is authored.

This is not the same as the parentElement property. That property reflects the true document
hierarchy in all its fine detail. The offsetParent property reflects the spatial relationships
between objects. Objects that show up in the parentElement hierarchy will likely be omitted
from the offsetParent hierarchy model on account of them not contributing any spatial offset to
the contained elements.

Parent element

offsetParent

ChildElement

offsetLeft

offsetWidth

offsetHeight

offsetTop

JavaScript Programmer's Reference

636

Warnings:
❑ The offset properties are implemented very inconsistently across platforms and versions of MSIE.

Use them with caution. In any case, they are available for read access only so they are of limited use
in position control.

See also: BODY object, Document object, Element object,
Element.offsetLeft, Element.offsetTop,
Element.parentElement, Hierarchy of objects, TABLE object

Property attributes:
ReadOnly.

Element.offsetTop (Property)
The Y coordinate of the HTML element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.offsetTop

An offset value in the vertical access from the origin of the parent to the top of the receiving
Element object. This value is read-only.

The offsetParent property contains a reference to the parent object that the relative positions
are measured with respect to.

Parent element

offsetParent

ChildElement

offsetLeft

offsetWidth

offsetHeight

offsetTop

E – Element.offsetWidth (Property)

637

Warnings:
❑ The offset properties are implemented very inconsistently across platforms and versions of MSIE.

Use them with caution. In any case, they are available for read access only so they are of limited use
in position control.

See also: Anchor.y, Element object, Element.offsetParent,
Measurement units, style.pixelTop, style.posTop

Property attributes:
ReadOnly.

Element.offsetWidth (Property)
The width of the HTML element.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.offsetWidth

The width of the element in pixels. This value is read-only, but for some objects such as images the
width property should be used instead if you need to modify the physical size of the item. The
changes will be reflected in this property but you cannot make the changes by altering the value of
this property from your script.

The value in this property is not supposed to include any padding, border or margin widths.

Although the name of this property implies its value is related to a parent object, in fact it is a
measure of the element's width and the parentage has no bearing on that whatsoever.

Parent element

offsetParent

ChildElement

offsetLeft

offsetWidth

offsetHeight

offsetTop

JavaScript Programmer's Reference

638

Warnings:
❑ The offset properties are implemented very inconsistently across platforms and versions of MSIE.

Use them with caution. In any case, they are available for read access only so they are of limited use
in position control.

❑ MSIE version 4 for Windows incorrectly includes padding widths around the object when
calculating the size value in here. The correct value will be yielded on both Macintosh and Windows
versions of MSIE 4 if you don't specify any padding at all.

See also: Element object, Element.offsetHeight

Property attributes:
ReadOnly.

Element.onevent (Property)
A property containing a reference to an event handler property.

Availability: JavaScript – 1.2
JScript – 5.0
Internet Explorer – 5.0
Netscape – 4.0

Property/method value type: Function object

- myElement.onevent
JavaScript syntax:

- myElement.onevent = aFunctionObject

HTML syntax: < ... onEvent="...">

Argument list: aFunctionObject An event handler function

There is a small set of event handler function properties created by default. Some sub-classes of the
Element object will add others as needed. You can assign your own handlers to these properties (if
necessary creating the properties that don't already exist).

Here is a list of all the event handler property names discovered during our research. These are collated
from a variety of documentation sources. Some were discovered by inspecting objects with scripts:

Event: Handler: Usage:

Abort onabort When image loading is aborted.

AfterPrint onafterprint When printing has just finished.

AfterUpdate onafterupdate When an update is completed.

Back onback The user has clicked on the [BACK] button in the toolbar.

BeforeCopy onbeforecopy Immediately before a copy to the clipboard.

BeforeCut onbeforecut Immediately before a cut to the clipboard.

Table continued on following page

E – Element.onevent (Property)

639

Event: Handler: Usage:

BeforeEditFocus onbeforeeditfocus Immediately before the edit focus is directed
to an element.

BeforePaste onbeforepaste Immediately before the clipboard is pasted.

BeforePrint onbeforeprint Immediately before printing begins.

BeforeUnload onbeforeunload Called immediately prior to the window
being unloaded.

BeforeUpdate onbeforeupdate Called immediately before an update commences.

Blur onblur When an input element loses input focus.

Bounce onbounce Triggered when a marquee element hits the edge of its
element area.

Change onchange When edit fields have new values entered or a popup
has a new selection, this event's handler can check the
new value.

Click onclick When the user clicks the mouse button on the
Element object that represents the object on screen.

ContextMenu oncontextmenu Special handling for contextual menus.

Copy oncopy When a copy operation happens.

Cut oncut When a cut operation happens.

DataAvailable ondataavailable Some data has arrived asynchronously from an applet
or data source.

DataSetChanged ondatasetchanged A data source has changed the content or some initial
data is now ready for collection.

DataSetComplete ondatasetcomplete There is no more data to be transmitted from
the data source.

DblClick ondblclick When the user double clicks on an object.

Drag ondrag When a drag operation happens.

DragDrop ondragdrop Some data has been dropped onto a window.

DragEnd ondragend When a drag ends.

DragEnter ondragenter When a dragged item enters the element.

DragLeave ondragleave When a dragged item leaves the element.

DragOver ondragover While the dragged item is over the element.

DragStart ondragstart The user has commenced some data selection
with a mouse drag.

Drop ondrop When a dragged item is dropped.

Error onerror Triggered if an error occurs when loading
an image.

ErrorUpdate onerrorupdate An error has occurred in the transfer of some
data from a data source.

FilterChange onfilterchange A filter has changed the state of an element or a
transition has just been completed.

Finish onfinish A marquee object has finished looping.

Focus onfocus When the form element is selected for entry.

 Table continued on following page

JavaScript Programmer's Reference

640

Event: Handler: Usage:

Forward onforward The user has clicked on the [FORWARD] button
in the toolbar.

Help onhelp The user has pressed the [F1] key or selected
[help] from the toolbar or menu.

KeyDown onkeydown When a key is pressed.

KeyPress onkeypress Pressing the key down and releasing it again
elicits this event.

KeyUp onkeyup When a key is released.

Load onload When an object has completed loading.

LoseCapture onlosecapture When an element loses event capturing permission.

MouseDown onmousedown When the mouse button is pressed.

MouseDrag onmousedrag An event handler for mouse drag operations.

MouseMove onmousemove When the mouse pointer is moved.

MouseOut onmouseout When the mouse pointer leaves the active area
occupied by the Element object that represents
the object on screen.

MouseOver onmouseover When the mouse pointer enters the active area owned
by the object.

MouseUp onmouseup When the mouse button is released.

Move onmove The browser window has been moved.

Paste onpaste When a paste operation happens.

PropertyChange onpropertychange When an object property is modified (similar to
the Netscape Navigator watch() method).

ReadyStateChange onreadystatechange An object in the window has changed its
ready state.

Reset onreset The user has clicked a reset button in a form.

Resize onresize As the window is resized, this event is triggered.

RowEnter onrowenter The data in a field bound to a data source is
about to be changed

RowExit onrowexit The data in a field bound to a data source has
been changed.

Scroll onscroll The window has been scrolled.

Select onselect Some textual content in the window has been
selected.

SelectStart onselectstart A select action is beginning.

Start onstart A marquee element is beginning its loop.

Stop onstop When a stop action occurs.

Submit onsubmit The user has clicked on the submit button
in a form.

Unload onunload Triggered when the document is unloaded.

You can usually discover what events an object supports by enumerating all its properties in a
for(... in ...) loop. The event handler hooks will be listed with the other enumerable
properties of the object.

E – Element.outerHTML (Property)

641

Element.outerHTML (Property)
The outer HTML of a tag in the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

IE myElement.outerHTML
JavaScript syntax:

IE myElement.outerHTML = someHTML

Argument list: someHTML Some new HTML content to place outside the object

The outer HTML of an HTML element is that fragment of HTML that completely contains the start
and end tags of the element. The outerHTML of an <A> tag would be the complete anchor and any
styled text or image tags between the <A> and tags.

You can read this value to extract a fragment of HTML and you can write to this value to redefine a
section of HTML within the page.

Because this property is not DOM compliant, you may want to refer to the DOM Text object and
DOM CharacterData object which provide a compliant set of accessors to the content of a DOM
component. The implementation of this is still somewhat vague and ambiguous and some more
work needs to be done to bring the DOM compliant capabilities up to the same level of
functionality. This can probably best be simulated by walking up the tree to a containing element
and using innerHTML on that object.

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

outerHTML

Warnings:
❑ Be careful if you extract the outerHTML of an element and document.write() it back to the

same document. You can create recursive loop situations if you are evaluating in global code during
the document loading process.

❑ You cannot set this property while the document is loading.

❑ If you replace the outer HTML, you will also be replacing the containing tags of the object. If you do
not keep the ID or NAME properties intact, you may not be able to locate the object again in the way
you might expect to later.

❑ Conceptually, changing the outerHTML property of an object might imply that the object's class is
being changed as well. This is not truly consistent with the rules of object oriented programming as
you would not normally 'cast' objects in the way you might 'cast' pointers in the C-Language context.
The effects of this are not documented and you may find that the behavior varies from one
implementation to another.

JavaScript Programmer's Reference

642

❑ MSIE version 4 for Macintosh does not support this as widely as the Windows version or later
versions of MSIE for Macintosh.

❑ Netscape does not support it at all.

See also: Element object, Element.innerHTML, Element.innerText,
Element.insertAdjacentHTML(), Element.outerText

Element.outerText (Property)
The outer text of a tag in the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
String primitive

IE myElement.outerText
JavaScript syntax:

IE myElement.outerText = aString

Argument list:
aString Some new text content to place outside the object

The HTML from the start tag to the end tag, including the tags that define the element, is extracted
and any tags are removed. The resulting text is returned when this property is being read.

You can read this value to extract a fragment of text, and you can write to this value to redefine a
section of text within the page.

When the property is being written to, the start and end tags are destroyed because everything
between them and the tags is replaced with a text string. To place new HTML tags as replacements
for the ones you are about to destroy, use the outerHTML property.

DOM standardization provides access to the content of a Text and CharacterData object. These
are special cases of the Node object which is also the parent of the Element object. We really need
the Element object to inherit the data accessors of the CharacterData object as well and for now
at least it doesn't. So long as you want to access text in between Element objects, you may be able
to navigate the Node hierarchy and access properties of the Text objects between each Element.

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

outerText

Warnings:
❑ Be careful if you extract the outerText of an element and document.write() it back to the

same document. You can create recursive loop situations if you are evaluating in global code during
the document loading process.

❑ You cannot set this property while the document is loading.

E – Element.ownerDocument (Property)

643

❑ It is not clear what the intent of this property is when used as an LValue. Assigning a new string to
this property when it's on the left of an expression implies that the containing HTML tags could be
removed. Some experimentation may be necessary to ensure you get predictable behavior across the
various browser implementations. Removing the containing HTML tags could cause an object to be
removed from the document tree and discarded. Because the container is no longer there, any child
objects will also have been destroyed and there is no handle by which you can locate the object again
because there is no HTML tag with a NAME or ID attribute to find.

❑ If the implementation is smart, it will let you retain the parent object by reference, but will mutate it
from an HTML Element that represents a tag and change it into a text node. That way you could
then reassign some outerHTML to it to re-establish the HTML containment again.

❑ MSIE version 4 for Macintosh does not support this as widely as the Windows version or later
versions of MSIE for Macintosh.

❑ Netscape does not support it at all.

See also: Element object, Element.innerHTML, Element.innerText,
Element.insertAdjacentHTML(), Element.outerHTML

Element.ownerDocument (Property)
A reference to the document object that the element is contained within.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Document object

JavaScript syntax: - myElement.ownerDocument

This is another name for the document property of an Element object. They both refer to
the same object.

This is provided by MSIE 5 and Netscape 6.0 as a convenience property. Accessing a containing
document object in this way is far easier than walking down a document.childElement
sequence to locate a contained document.

See also: Document object, Element object, Element.document,
Hierarchy of objects, Node.ownerDocument

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

644

Element.parentElement (Property)
The element that is the owner or parent of the current object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Element object

JavaScript syntax: IE myElement.parentElement

This is the object that contains the receiving Element object. For example, an Element object that
represents a <TABLE> tag is the parentElement of the Element objects that represent the <TR> tags
within that table. If you want to add a row to a table, you may select the row that needs to be replaced
or that it can be inserted after. You can then locate its parentElement and modify that if necessary.

This is not the same as the offsetParent. This property reflects the true document hierarchy in
all its fine detail. The offsetParent property reflects the spatial relationships between objects.
Objects that show up in the parentElement hierarchy will likely be omitted from the
offsetParent hierarchy model on account of them not contributing any spatial offset to the
contained elements.

Access to a parentElement is especially useful when driving the generation of styleSheet
properties. You might have a series of nested containers which cascade a relative font size. By
checking the fonts size property belonging to the style object associated with the
parentElement, you can set a limit on this cascading effect to prevent the font sizes from
becoming too small.

Element

Child 3 Child 4 Child 5

parentElement

firstChild lastChild

nextSibling previousSibling

See also: Document object, Element object, Element.firstChild,
Element.lastChild, Element.nextSibling,
Element.offsetParent, Element.parentNode,
Element.previousSibling, Hierarchy of objects

Property attributes:
ReadOnly.

E – Element.parentNode (Property)

645

Element.parentNode (Property)
Part of the internal DOM hierarchy management.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Opera – 5.0

Property/method value type: Element object

JavaScript syntax: - myElement.parentNode

This is part of the internal DOM management provided by the browser. Although the functionality
is similar to parentElement, it is not quite the same since there are two hierarchies superimposed
on one another. One hierarchy simply contains objects representing the HTML tags. The other
contains additional objects that help the browser maintain the text between the HTML tags.

The parentElement property is not DOM compliant whereas parentNode is.

ParentNode

Text 1/Node 2 Child 2/Node 3 Text 2/Node 4Child 1/Node 1 Child 3/Node 5

ParentElement

See also: Document object, Element object, Element.parentElement,
Hierarchy of objects, Node.parentNode

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

646

Element.parentTextEdit (Property)
A reference to the next highest object in the hierarchy that allows a TextRange to be created.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Element object

JavaScript syntax: IE myElement.parentTextEdit

TextRange objects can only be created for a limited sub-set of the available objects in the MSIE
browser. Only objects that can receive input focus are appropriate.

An object somewhere higher up in the hierarchy is referred to by this property. The document
hierarchy may have to be traversed upwards for some considerable distance before a suitable object
is found, so this hierarchical model is much more sparsely populated than any of the others.

Warnings:
❑ Because text ranges are not supported in the Macintosh, MSIE returns a null value when text

ranges and the parentTextEdit property is accessed.

Example code:
// Locate a textEdit capable parent object and create an all enclosing text range.
myParentTextEdit = myElement.parentTextEdit;
myTextRange = myParentTextEdit.createTextRange();
alert ("TextRange object created for " + myParentTextEdit.tagName);

See also: Element object, Hierarchy of objects, TextRange object

Property attributes:
ReadOnly.

Element.previousSibling (Property)
An HTML element at the same level within the document hierarchy.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Element object

- myElement.parentElement.children[anIndex]
JavaScript syntax:

- myElement.previousSibling

E – Element.readyState (Property)

647

Argument list: anIndex An enumerated position in the collection

The Element objects are instantiated as the HTML tags are parsed within the document source.
They are added to several collections and can be navigated in a variety of ways.

Each Element object has an array of Element objects that are considered to be its direct
descendants (that is children). This collection will not contain its children's children. All elements
in this collection can be referred to by index and all siblings by means of an enumerator or for(
... in ...) loop. However you can access them directly with this property.

Accessing the next object in the collection belonging to the parent by means of this property is more
convenient than traversing back to the parent and working through the children property's collection.

The previous sibling will be the object prior to this one in the children property's collection of the
same parent element.

If there is no previous sibling, then the null value will be returned.

Element

Child 3 Child 4 Child 5

parentElement

firstChild lastChild

nextSibling previousSibling

See also: Element object, Element.firstChild, Element.lastChild,
Element.nextSibling, Element.parentElement,
Node.previousSibling

Element.readyState (Property)
The readyState of an object contains a value indicating whether it is currently loading or is
ready to use.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myElement.readyState

JavaScript Programmer's Reference

648

This property contains the current disposition of the element object.

You might use this in a timed event to watch the status of a document being loaded into a window
or frame. Then when it has completed loading, you could activate some script within it.

Here is a list of the ready state values:

State: Value:

uninitialized The object is first instantiated, but has not begun loading.

loading The object has commenced loading.

loaded The object has completed loading.

interactive The object is loaded but not yet closed. However, it is ready to
handle interaction.

complete The object body has been closed and the loading is finished.

Note that these are string values. Some references describe a numeric value for ready states.
According to the Microsoft documentation however, they are strings.

Sometimes, you can design scripts to execute while the document is downloading. Inline scripts for
example. At that time, you may even be able to trigger interval timed deferred executions as well.

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: onReadyStateChange

Property attributes:
ReadOnly.

Element.releaseCapture() (Method)
Part of the event handling mechanism in MSIE.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.releaseCapture()

If event capture was established with the setCapture() method, this relinquishes such
event capturing.

See also: Element.setCapture()

E – Element.removeAttribute() (Method)

649

Element.removeAttribute() (Method)
An accessor method to delete a named custom attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

- myElement.removeAttribute(anAttribName)
JavaScript syntax:

- myElement.removeAttribute(anAttribName,
aCaseSense)

aCaseSense A flag indicating whether lookup is case sensitive
or not

Argument list:

anAttribName An attribute of an Element object

This is an accessor method which is used to remove named attributes of an Element object.
Attributes are not properties in the strict sense of the word but may be accessible as if they were in
some implementations. They are gathered together into an Attributes collection which you can
access like any other Array or Collection object to retrieve the individual Attribute objects.
The accessor methods provide some additional modes of access for convenience.

This accessor is intended to provide a means of managing custom attributes.

If the false value is returned, it may mean that either the attribute did not exist and could not be
removed or that the attribute was locked in some way preventing it from being removed. The true
value returned by this method indicates the attribute was successfully removed.

Note also that you can only remove attributes that were added with the setAttribute() method.
Some attributes may have been added by the browser and may not be removed by scripts.

Warnings:
❑ Note that the DOM level 1 standard defines this method as returning no meaningful value. Other

implementations may concur so you should not rely on the value being returned.

❑ However, Netscape 6.0 and MSIE 5.5 do return a meaningful value.

See also: Attribute object, Attributes object, Element object,
Element.getAttribute(), Element.mergeAttributes(),
Element.setAttribute()

JavaScript Programmer's Reference

650

Element.removeAttributeNode() (Method)
Removes an attribute node from the element hierarchy. If the attribute has a default value, that
will be used subsequently.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Attribute object

JavaScript syntax: - myElement.removeAttributeNode(anAttribute)

Argument list: anAttribute An attribute object to be removed

See also: Attribute object

Element.removeBehavior() (Method)
Removes a behavior that was previously added to the object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.removeBehavior()

Part of the MSIE behaviors control suite.

See also: Behavior, Element.addBehavior()

Element.removeExpression() (Method)
Removes an expression from an object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.removeExpression()

This is used for removing expressions from the style object that have previously been put there
by the setExpression() method call.

See also: Element.getExpression(), Element.setExpression(),
style.getExpression(), style.removeExpression(),
style.setExpression()

E – Element.replaceAdjacentText() (Method)

651

Element.replaceAdjacentText() (Method)
Replace some text adjacent to the element object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: undefined

JavaScript syntax: IE myElement.replaceAdjacentText
(aRelativePosition, aString)

aRelativePosition An indication of where the new HTML
is to be placed

Argument list:

aString The new fragment of text to be inserted

This is a close relation to the insertAdjacentText() method. This method will replace the text
adjacent to an object rather than add to it.

<TAG> </TAG>AAAA<XX>BBBB</XX>CCCC

innerText

See also: Element.getAdjacentText(),
Element.insertAdjacentText()

Element.runtimeStyle (Property)
The style settings for the object, taking into account any cascaded styles and changes to the styles
that may have happened dynamically.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Style object

JavaScript syntax: IE myElement.runtimeStyle

Because the style values are cascaded from style sheet to style sheet and may include some inline
styles as well as some explicit styles, objects need to maintain a current style value that is the result
of all the inheritances applied on top of one another.

In addition they maintain a runtime style which reflects dynamic changes as well. The runtime
style is based on the current style in the first place.

The value of this property is a reference to a style object. However, it does not refer to the same
style object as the style property. You can test for this with the isObjectEqual() function
that we have documented elsewhere.

JavaScript Programmer's Reference

652

See also: currentStyle object, Element.currentStyle,
Element.style, runtimeStyle object

Element.scopeName (Property)
The name of a scope chain.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myElement.scopeName

The MSIE browser allows different scope chains to be built and referred to by name. These are
called namespaces. This is a very esoteric property and its coverage is quite sparse in the Microsoft
developer documentation. However, you should refer to the MSDN web site for further details.

Web-references:
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/scopename.asp

Element.scrollHeight (Property)
An MSIE property for measuring sizes of objects when they have been scrolled.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.scrollHeight

This functionality is not well supported across platforms and means different things for different
objects. Generally, it is taken as the height of an object when its scroll position is taken into account.
Objects scrolled entirely off the screen have a scrollHeight of zero.

Warnings:
❑ This functionality is sufficiently unportable as to preclude its use from any useful purpose.

Property attributes:
ReadOnly.

http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/scopename.asp

E – Element.scrollIntoView() (Method)

653

Element.scrollIntoView() (Method)
Set the scroll of the document to bring the element into view.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: undefined

IE myElement.scrollIntoView()
JavaScript syntax:

IE myElement.scrollIntoView(aReferencePoint)

Argument list: aReferencePoint Indicates the desired scroll to location

This method scrolls the window to bring the receiving element into view. The argument is an
optional Boolean value that indicates whether the receiving Element object should be scrolled to
the top (true) or the bottom (false) of the window.

By default, the value true is assumed if no value is specified.

See also: Element object

Element.scrollLeft (Property)
An MSIE property for measuring position of objects when they have been scrolled.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.scrollLeft

This functionality is not well supported across platforms and means different things for different
objects. Generally, it is taken as the distance an object has been scrolled in the horizontal axis.

Warnings:
❑ This functionality is sufficiently unportable as to preclude its use from any useful purpose.

Element.scrollTop (Property)
An MSIE property for measuring position of objects when they have been scrolled.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.scrollTop

JavaScript Programmer's Reference

654

This functionality is not well supported across platforms and means different things for different
objects. Generally, it is taken as the distance an object has been scrolled in the vertical axis.

Warnings:
❑ This functionality is sufficiently unportable as to preclude its use from any useful purpose.

Element.scrollWidth (Property)
The width of a scrolling region.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.scrollWidth

This functionality is not well supported across platforms and means different things for different
objects. Generally, it is taken as the width of an object when its scroll position is taken into account.
Objects scrolled entirely off the screen have a scrollWidth of zero.

Warnings:
❑ This functionality is sufficiently unportable as to preclude its use from any useful purpose.

Property attributes:
ReadOnly.

Element.setAttribute() (Method)
An accessor method to set a named custom attribute value.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: undefined

- myElement.setAttribute(anAttribName,
aValue)JavaScript syntax:

- myElement.setAttribute(anAttribName,
aValue, aCaseSense)

aCaseSense A flag indicating whether name lookup is
case sensitive

anAttribName An attribute of an Element object

Argument list:

aValue A new value for the custom attribute

E – Element.setAttributeNode() (Method)

655

An attribute is added to the attributes collection for the object. Some attributes are presented as
properties as well which is simply an alternative means of access to the same value. If that is the
case then setting the attribute will also alter the property setting as well.

If the case sensitivity flag is set to true, then the name of the attribute must exactly match the name
used in the HTML tag attribute, otherwise the results are uncertain.

See also: Element object, Element.getAttribute(),
Element.mergeAttributes(),
Element.removeAttribute()

Element.setAttributeNode() (Method)
A new attribute node is added to the element. If one with the same name already exists, it
will be replaced.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Attribute object

JavaScript syntax: - myElement.setAttributeNode(anAttribute)

Argument list: anAttribute An attribute node object to be set

See also: Attribute object

Element.setCapture() (Method)
Part of the event handling mechanism in MSIE.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.setCapture()

If an event capture is established with this method, it can be relinquished with the
releaseCapture() method.

See also: Element.releaseCapture()

JavaScript Programmer's Reference

656

Element.setExpression() (Method)
Part of the behavior handling mechanisms in MSIE.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myElement.setExpression(aProperty,
anExpression, aLanguage)

aProperty The name of a property to be modified
anExpression An expression to assign

Argument list:

aLanguage The language the expression is defined in

The rules that are used to construct a style are comprised of multiple expressions. You can use this
method to assign a new value to an expression within a style item with that value being generated
by a callback to a script function.

The rule might contain a line such as:

width:200px

The setExpression() method can be applied to the style object containing the rule with that
expression like this:

myStyle.setExpression("width:", "callBack()", "JavaScript")

The value of the width parameter would be defined by the result of calling the callBack()
function in the JavaScript context.

The language argument can be one of the following:

❑ JavaScript

❑ JScript

❑ VBScript

See also: Element.getExpression(),
Element.removeExpression(), style.getExpression(),
style.removeExpression(), style.setExpression()

Element.sourceIndex (Property)
The index value of this element in the document.all[] array.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myElement.sourceIndex

E – Element.style (Property)

657

In MSIE, all Element objects are available in the all[] array object for the document. If you need
to know the element's position within that order, this property tells you what the index value for
the object is. This will change as objects are created and destroyed in the page.

This is useful to be able to tell the relative position of objects in the page, perhaps so that you can
scroll forwards or backwards to reach them.

Warnings:
❑ This value may change if new objects are added to the document.

See also: Element object

Property attributes:
ReadOnly.

Element.style (Property)
A style object that can be modified for the element.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: Style object

JavaScript syntax: - myElement.style

This property is an important reference to a DOM level 2 style object which can be accessed from
script to dynamically alter the appearance of an HTML element.

The Element.style property yields an object that contains the style settings for the HTML
element. By modifying the properties of this style object belonging to the HTML element, you can
affect the display of the element. It is as if the element owned a miniature style sheet of its own.
This may be affected by the settings of the CLASS tag attribute on the HTML tag that instantiates
the Element object; we will come back to that in a little while.

You can replace the style object with another you have created separately or defined in the style
sheet, and by doing this you can effect a considerable change in appearance of an object in one hit
without needing to change several properties individually.

Style management is quite complex and offers many more capabilities than using HTML tags and
attributes. You should be able to completely abstract any appearance related controls away from
the HTML document at the cost of it not working on older browsers.

JavaScript Programmer's Reference

658

The complexity stems from there being an inheritance mechanism and the possibility of having
many style objects attached to a document at different points. There is a hierarchy of style
objects, each overriding another. Ultimately the appearance you see is the accumulation of all of
those style controls cascaded down to your element.

You can try to alter a style property on an object only to see it remain the same as it was before. Styles
are attached to objects at different points in the DOM tree and some style properties are inherited. So
you could be altering a style property that is being masked. This can be quite frustrating.

Each HTML element in the DOM structure has a style property that points at a style object.
Style objects may be shared by referring to the same one from several elements.

The style object is documented extensively elsewhere with a topic describing each of its
properties. For now, let's look at some simple style manipulation. You can access the style
properties of an element as simply as this:

myElement.style.color = "red";

That's it, aside from learning about all of the different style properties that are available and their
values. You'll need to look at how styles are inherited down the DOM document tree.

Styles can be put into style sheets and pulled in from a shared document in a <LINK> tag. Access to
those style objects is a little more complicated because you need to locate the object representing
that <LINK> tag, then navigate through the StyleSheet object to find the rules that describe each
named style block. Those rules are associated with your element by means of the CLASS HTML tag
attribute. Having located the rule for your element object (and these would be shared between
many objects), you can examine the rule object and access it's style property. That points at a
style object that is just like the one your Element.style property would have pointed at.

You can also specify the styles inline, that is you can add a STYLE HTML tag attribute to the tag
that instantiates your element object. That would be reflected in the properties of a private style
object that your Element.style property refers to.

MSIE supports two additional properties that relate to the cascaded style on an element. They are
called currentStyle and runtimeStyle. The currentStyle property points at an object that
holds the accumulated style, taking into account linked stylesheets, tag attributes and anything else
that can affect style appearance apart from any script driven changes. The runtimeStyle
property takes the currentStyle property and accumulates appearance changes when styles are
modified on an object, so it represents the visual style as it is now. Neither of these are portable
though, and they are not part of the DOM standard and so they should be avoided.

To learn more about styles and how they work you might want to go through this learning sequence:

❑ Build a document with HTML tag driven appearance, just like you always used to.

❑ Now remove all its appearance control and introduce STYLE HTML tag attributes and put in some
CSS style control.

❑ If you prefer, use a <LINK> tag to call in a style sheet and build some even more complex
style controls.

E – Element.tagName (Property)

659

❑ Now explore the document hierarchy by looking at individual HTML Elements and inspecting their
style objects.

❑ Try enumerating the style objects to inspect their properties.

❑ Then try modifying those properties.

❑ By this stage, you should now be pretty much an expert at modifying style and appearance.

Support for styles is part of the DOM level 2 specification which the MSIE and Netscape 6.0 browsers
support (at least in part). While it's at recommendation stage, it could change. Browsers may implement
it incorrectly or introduce bugs inadvertently. Because of that uncertainty, we have covered what seems
to work and what we expect to become available, but things may change with new browser versions.
There is a lot still to explore and test with Netscape 6.0, and MSIE 6.0 is on the horizon too.

See also: CLASS="...", Element object, Element.currentStyle,
Element.runtimeStyle, style object (2), StyleSheet object

Element.tagName (Property)
The name of the HTML tag that instantiated this object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myElement.tagName

This property contains a text string with the HTML tag name in upper case for the tag that
instantiated the object. This is also some indication of the object class, which will help you to write
generic functions that can operate on many kinds of objects in an intelligent way.

The tag name is returned without any left and right carets (greater/less than signs) and in fully
DOM compliant implementations will be the same value as the class name of the object. There are a
few inconsistencies that prevent this being used reliably as a class name for non DOM specified
objects, but within some constraints, it may be useful in that context for determining what kind of
object a script is operating on.

It is possible that the Element represents a text node. Text nodes are placed between the elements
that represent HTML tags. We can then operate on the text in between adjacent HTML tags. With
this capability, we probably don't need innerHTML, OuterHTML, innerText and outerText
properties anymore. However, we will need to get a little bit smarter with our navigation of
document trees to locate these text nodes.

JavaScript Programmer's Reference

660

If the element does represent a text node, then the tagName value is meaningless. Typically a
browser will respond with an undefined value which could be difficult to handle. An empty space
would have been easier to cope with. You should check the value you get back from this property,
unless you are absolutely certain it relates to an HTML tag. If you suspect it might be a text node,
then check it before using it or your script will crash.

See also: Attribute.nodeName, Element object

Property attributes:
ReadOnly.

Element.tagUrn (Property)
The URN value for a tag.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myElement.tagUrn

This is part of the XMLNS support in MSIE 5.0 and returns a URN value specified in a namespace
declaration. This is highly MSIE specific functionality and not standardized for use in other
browsers. It is not portable.

Element.title (Property)
The value of the TITLE tag attribute for the HTML tag that created this object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myElement.title
JavaScript syntax:

- myElement.title = aToolTip

HTML syntax: <LINK TITLE="...">

Argument list: aToolTip A text string

This is the text that is presented as a 'ToolTip' when the mouse rolls onto an object and pauses there
for a few moments. The MSIE browser and the Netscape 6.0 browser will display this text as a
small popup comment box. Earlier versions of Netscape prior to version 6.0 did not support this
capability, so it should be considered somewhat implementation dependent until the penetration of
newer browsers increases.

E – Element.uniqueID (Property)

661

When aural style sheet support is provided by a browser, this value might be spoken as the mouse
rolls over it.

Warnings:
❑ This property is not the name of the object. The ID tag attribute is a more reliable way of making that

association, since it assists with the document.all[] array construction and indexing on MSIE,
and is more portable across browsers when accessing objects associatively.

❑ Another recommended technique is the DOM compliant getElementById() method which in the
longer term will become more prevalent.

❑ This is also not the same as the altText on an image, which may also appear as a ToolTip in
some browsers.

See also: Document.title, Element object, LINK.title

Element.uniqueID (Property)
An automatically generated unique ID value for an object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myElement.uniqueID

You may go to great lengths to map ID values to objects in your documents and still have ID
conflicts. This property generates a guaranteed unique ID value which will be static for that object
as long as it exists.

However, reloading a page and requesting a unique ID again from objects within it will not yield
the same values.

You cannot assign a value to this property.

Property attributes:
ReadOnly.

else ... (Keyword)
Part of the if ... else conditional code execution mechanism.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0

JavaScript Programmer's Reference

662

JavaScript syntax: - if(aCondition){someCode1} else{someCode2}

aCondition A condition that tests true or false
someCode1 Code to be executed if the condition tests true

Argument list:

someCode2 Code to be executed if the condition tests false

This is an optional additional statement that can be added to an if() condition test to allow for some
alternative code to be executed when the condition tests false. The true case will cause the first block
of code to be executed, the false case will execute the second (that which follows the else keyword).

See also: else if(...) ..., Flow control, if(...) ..., if(
...) ... else ..., Selection statement, switch(...)
... case: ... default: ...

Cross-references:
ECMA 262 edition 2 – section – 12.5

ECMA 262 edition 3 – section – 12.5

Wrox Instant JavaScript – page – 23

else if(...) ... (Idiom)
A technique for stacking if conditions in a script.

Although there is no 'else if' keyword, because the if follows the else and is separated by a
space, the if block is treated as if it were a single statement. Here we omit the braces surrounding
the statement executed in the else condition of a leading if block. We then place another in its
else statement and so on. Like this:

if(aCondition){ some code}else if(aCondition){ some code}else if(aCondition){
some code}else{ some code}

By putting in the braces, it becomes clearer. Actually, what we have really done is this:

if(aCondition){ some code}else{ if(aCondition) { some code } else
{ if(aCondition) { some code } else {
some code } }}

It is really just a plain old if() else block nested several times. By leaving off the braces (against
our recommendations otherwise), in this circumstance it actually makes the code clearer.

See also: Code block delimiter {}, else ..., if(...) ..., if(...)
... else ...

E – EM object (Object/HTML)

663

EM object (Object/HTML)
An object representing the HTML content delimited by the tags.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myEM = myDocument.all.anElementID

IE myEM = myDocument.all.tags("EM")[anIndex]

IE myEM = myDocument.all[aName]

- myEM = myDocument.getElementById(anElementID)

- myEM = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myEM = myDocument.getElementsByTagName("EM")[anIndex]

HTML syntax: ...

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

 tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

See also: Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Table continued on following page

JavaScript Programmer's Reference

664

Event name JavaScript JScript N IE Opera DOM HTML Notes

onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

<EMBED> (HTML Tag)
A mechanism for adding plugin functionality to a web browser.

Inherits from: Element object

Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class.

Because of this, and because each browser supports different properties and methods for them,
they will be discussed here as Embed objects for MSIE and Plugin objects for Netscape.

Warnings:
❑ Note that Netscape can talk to the plugins that are encapsulated with an <EMBED> tag, but the

MSIE browser cannot. However MSIE will talks to plugins that are encapsulated with the
<OBJECT> tag. Netscape has supported <OBJECT> tags, but somewhat unreliably. Version 6
should be more robust.

❑ The Macintosh platform does not support the <OBJECT> tag because the MSIE browser really
expects and hopes that it will be used to encapsulate an ActiveX object. Since ActiveX objects are
written to be compiled into X86 machine code, they can only be used on a Wintel platform.

❑ Because of this, the MSIE browser on the Macintosh does support some limited communication with
<EMBED> tag plugins.

❑ Trying to find a platform and browser portable compromise for embedding plugins (especially for
video playback) is an utterly lost cause right now. You will have to write browser specific modules
and use the appropriate one.

See also: Document.embeds[], Embed object, EmbedArray object, Plugin
events, Plugin object

Inheritance chain:
Element object, Node object

E – Embed object (Object/HTML)

665

Embed object (Object/HTML)
An object that represents an embedded item in MSIE.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Inherits from: Element object

IE myEmbed = myDocument.all.anElementID

IE myEmbed = myDocument.all.tags("EMBED")[anIndex]

IE myEmbed = myDocument.all[aName]

- myEmbed = myDocument.anElementName

- myEmbed = myDocument.embeds[anIndex]

- myEmbed = myDocument.getElementById(anElementID)

- myEmbed =
myDocument.getElementsByName(aName)[anIndex]

- myEmbed = myEmbedArray[aName]

- myEmbed = myEmbedArray[anIndex]

JavaScript syntax:

- myEmbed =
myDocument.getElementsByTagName("EMBED")[anIndex]

HTML syntax: <EMBED>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, align, height, hidden, name, palette, pluginspage,
readyState, src, tabIndex, units, width

Event handlers: onBlur, onClick, onDblClick, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class, although they are really implemented as JavaObject objects. In MSIE, this is an
ActiveX object.

There is additional confusion in that there is a plugins[] array that belongs to the document and
another that belongs to the navigator object. They both contain collections of objects, but of
different types. This is further confused by the fact that the document.plugins[] array is
another name for the document.embeds[] array.

JavaScript Programmer's Reference

666

Because of this confusing situation, the best recommendation is that we refer to document.embeds[]
and navigator.plugins[] and quietly ignore the document.plugins[] object. Furthermore we
shall refer to Plugin objects as being something the browser can use to play embedded content and
Embed objects will be an instance of a plugin that is alive and running in a document.

Warnings:
❑ Interacting with the properties of Embed objects in MSIE seems to work quite reliably. This is not the

case with Netscape, which is prone to all kinds of strange behavior. However that may be version
and platform specific and could depend greatly on the quality of what you are embedding.

❑ As an example, Video plugins work really well on one particular platform and are generally less
optimal on others. Windows media player is great on Windows and lacking in reliability and quality
on other platforms. QuickTime is brilliant on Macintosh and good on Windows, but it still suffers
some instability. Real player is pretty good everywhere, but it works better as a player than it does as
a plugin. Windows media player works well as a plugin on MSIE. QuickTime is good as both a
plugin and a player, but its JavaScripting control is somewhat behind Real player. None of them
share the remotest similarity as far as properties, parameters or JavaScript API calls are concerned. If
only we could have some compatible video players, we could solve a lot of the embedding problems.

See also: <EMBED>, Document.embeds[], Element object, EmbedArray object,
Input.accessKey, Plugin object

Property JavaScript JScript N IE Opera NES DOM HTML Notes

accessKey 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 2.0 + - - Warning
align - 3.0 + - 4.0 + - - - - -
height - 3.0 + - 4.0 + - - - - -
hidden - 3.0 + - 4.0 + - - - - -
name 1.2 + 3.0 + 4.0 + 4.0 + - - - - -
palette - 3.0 + - 4.0 + - - - - ReadOnly
pluginspage - 3.0 + - 4.0 + - - - - ReadOnly
readyState - 3.0 + - 4.0 + - - - - ReadOnly
src - 3.0 + - 4.0 + - - - - -
tabIndex 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 2.0 + - - Warning
units - 3.0 + - 4.0 + - - - - -
width - 3.0 + - 4.0 + - - - - -

Event name JavaScript JScript N IE Opera NES DOM HTML Notes

onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - - Warning
onClick 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning

Table continued on following page

E – Embed.align (Property)

667

Event name JavaScript JScript N IE Opera NES DOM HTML Notes

onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - 4.0 + Warning
onMouseOver 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

Embed.align (Property)
Controls the alignment of an embedded plugin relative to its surrounding objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.align

The alignment of the plugin object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

JavaScript Programmer's Reference

668

Embed.height (Property)
The height of a plugin's extent rectangle.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.height

The space reserved for the plugin is defined by an extent rectangle that surrounds the space
occupied by it even before it is loaded. An extent rectangle is that smallest rectangle that
completely encloses the item. This property specifies the height of that extent rectangle.

Embed.hidden (Property)
A flag indicating whether a plugin is hidden or not.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEmbed.hidden

Setting this property to true will hide the plugin, and a false value will reveal it.

Embed.name (Property)
This corresponds to the NAME attribute of the <EMBED> tag.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: - myEmbed.name

Objects are identified either by the NAME HTML tag attribute or by the ID HTML tag attribute.

Netscape 4 shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However, in many cases, both browsers support either
technique and in some cases will locate items named with either tag as if they existed in a single
namespace. Netscape 6.0 is DOM based and works well with ID values.

E – Embed.palette (Property)

669

Embed.palette (Property)
The palette for use with a plugin.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.palette

In the Windows environment, there are two alternative palettes that you can apply to an embedded
object. This property reflects the value of the PALETTE HTML tag attribute on the <EMBED> tag
that instantiates this object.

It should contain one of these values to indicate which palette is being used:

❑ foreground

❑ background

Property attributes:
ReadOnly.

Embed.pluginspage (Property)
The URL of a page where the plugin can be obtained if it is not yet installed in the browser.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.pluginspage

This contains a URL value where the plugin can be obtained if you do not have it installed in your browser.

Property attributes:
ReadOnly.

Embed.readyState (Property)
The downloading status disposition of the plugin associated with the <EMBED> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.readyState

JavaScript Programmer's Reference

670

This property reflects the loading status of an EMBED object.

Sometimes, you can design scripts to execute while the document is downloading. Inline scripts for
example. At that time, you may even be able to trigger interval timed deferred executions as well.

If it is important to know when the document has completed loading, you can check this property
for one of the following values:

State: Value:

uninitialized The object is first instantiated but has not begun loading.

loading The object has commenced loading.

loaded The object has completed loading.

interactive The object is loaded but not yet closed, and is ready to handle
interaction.

complete The object body has been closed and the loading is finished.

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: onReadyStateChange

Property attributes:
ReadOnly.

Embed.src (Property)
The URL of an external file that the plugin may use.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.src

Some plugins may need to access a supplementary data file from the server. It is good practice to
abstract such data values from the code itself and so a means of passing this parameter value in from
outside is necessary. The SRC HTML tag attribute is reflected into this property and is provided as a
somewhat standardized means of passing one of the parameter values most likely to be defined.

E – Embed.units (Property)

671

Embed.units (Property)
The unit of measure for the height and width of the plugin extent rectangle.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.units

This value appears to be derived from the measurement units used in style sheets.

However, it does not appear to work at all and has no observable effect on the browsers. There are
several possible values for this, but they are not supported uniformly across all browsers and
platforms. This may be better supported in the future.

The best solution for now is to omit this attribute and always measure <EMBED> tag objects in pixels.

The following values are allegedly available:

❑ pixels

❑ en

❑ em

Embed.width (Property)
The width of the plugin extent rectangle.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEmbed.width

The space reserved for the plugin is defined by an extent rectangle that surrounds the space
occupied by it even before it is loaded. An extent rectangle is that smallest rectangle that
completely encloses the item. This property specifies the width of that extent rectangle.

EmbedArray object (Object/browser)
A more appropriate name for a PluginArray that contains a collection of plugins within the
current document.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript Programmer's Reference

672

Inherits from: Object object

- myEmbedArray = myDocument.embeds
JavaScript syntax:

- myEmbedArray = myDocument.plugins

Object properties: length

A collection of objects, each one representing a plugin that is embedded in the current page. The
object being referred to is not the embedded data, but the plugin module that plays it.

Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class although they are really implemented as JavaObject objects. In MSIE, this is an
ActiveX object.

There is additional confusion in that there is a plugins[] array that belongs to the document and
another that belongs to the navigator object. They both contain collections of objects but of
different types. This is further confused by the fact that the document.plugins[] array is
another name for the document.embeds[] array.

Because of this confusing situation the best recommendation is that we refer to
document.embeds[] and navigator.plugins[] and quietly ignore the
document.plugins[] object. Furthermore we shall refer to Plugin objects as being something
the browser can use to play embedded content and Embed objects will be an instance of a plugin
that is alive and running in a document.

Warnings:
❑ Beware of confusion between document.plugins and navigator.plugins. The former relates

to the plugins currently used in the document while the latter lists the plugins currently available
and supported by the browser.

See also: <EMBED>, Collection object, Document.embeds[],
Document.plugins[], Embed object, JavaObject object,
Plugin object, PluginArray object

Property JavaScript JScript N IE Opera HTML Notes

length 1.1 + 3.0 + 3.0 + 4.0 + - - ReadOnly

Inheritance chain:
Object object

E – EmbedArray.length (Property)

673

EmbedArray.length (Property)
The number of plugin objects in the document.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

- myDocument.embeds.length
JavaScript syntax:

- myDocument.plugins.length

See also: EmbedArray object, Collection.length

Property attributes:
ReadOnly.

Embedded JavaScript (Definition)
JavaScript available inside your application.

Embedded interpreters are available to buy or download as open source projects.

With an embedded interpreter, you can break your application into components and integrate them
together with fragments of JavaScript. This allows you to flexibly reconfigure and extend an
application very easily.

See also: Host environment, Platform

Cross-references:
Wrox Instant JavaScript – page – 5

Emboss() (Filter/visual)
Displays the image content of the HTML element as if it were an embossed effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
filter – Emboss()

JavaScript Programmer's Reference

674

Empty statement (;) (Statement)
A no-op 'do-nothing' statement.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0

JavaScript syntax: - ;

An empty statement is signified by a semi-colon on a line by itself or a semi-colon following a
semi-colon with no executable statements in between them.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

Warnings:
❑ If you intentionally place an empty statement into your script, you should put a comment adjacent

to it to make sure people realize you did it on purpose. They may remove it otherwise and you may
have had a functional reason for putting it there such as to aid the parsing of the text inside a
SCRIPT object.

❑ This sails awfully close to the territory of self-modifying code which programmers have always
loved to do and preachers of good programming style have said is a very bad thing.

❑ On the other hand, JavaScript supports the eval() function and you can't get closer to self
modifying code than that.

See also: Associativity, Operator Precedence, Semi-colon (;), Statement

Cross-references:
ECMA 262 edition 2 – section – 12.3

ECMA 262 edition 3 – section – 12.3

E – enableExternalCapture() (Method)

675

enableExternalCapture() (Method)
Part of the Netscape 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

- enableExternalCapture()
JavaScript syntax:

- myWindow.enableExternalCapture()

Refer to:
Window.enableExternalCapture()

encodeURI() (Function)
This ECMA defined function can be used to encode an entire URI value that can then be decoded
with the decodeURI() function.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - encodeURI(aURI)

Argument list: aURI An unencoded URI

The encodeURI() function computes a new version of the string value it is passed. The new
version has certain characters replaced with hexadecimal escape sequences. The string is expected
to conform to the UTF-8 profile.

All character codes other than letters, numbers or a small set of special characters will be escaped.

These special characters are not transformed:

❑ Minus

❑ Underscore

❑ Period

❑ Exclamation-mark

❑ Tilde

❑ Single quote

❑ Opening and closing parentheses

JavaScript Programmer's Reference

676

Note that the hash character is also not encoded by this function.

See also: decodeURI(), decodeURIComponent(),
encodeURIComponent(), escape(), unescape(), URI
handling functions

Cross-references:
ECMA 262 edition 3 – section – 15.1.3.3

encodeURIComponent() (Function)
This ECMA defined function can be used to encode a URI component value that can then be
decoded with the decodeURIComponent() function.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - encodeURIComponent(aComponent)

Argument list: aComponent A URI component to be encoded

The encodeURIComponent() function is used to encode individual components belonging to a
URI. You will need to deconstruct the URI yourself if you intend to call this function from your
own scripts.

See also: decodeURI(), decodeURIComponent(), encodeURI(),
escape(), unescape(), URI handling functions

Cross-references:
ECMA 262 edition 3 – section – 15.1.3.4

Engrave() (Filter/visual)
An effect that is the opposite of the embossed image appearance.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
filter – Engrave()

E – Enquiry functions (Definition)

677

Enquiry functions (Definition)
A means of determining value types.

The following enquiry functions are built in:

❑ isFinite()

❑ isNaN()

This operator can behave as if it were a function:

❑ typeof

These enquiry functions are available in other languages and we have documented them elsewhere
with example scripts to simulate their functionality:

❑ isalnum()

❑ isalpha()

❑ iscntrl()

❑ isdigit()

❑ isgraph()

❑ islower()

❑ isodigit()

❑ isprint()

❑ ispunct()

❑ isspace()

❑ isupper()

❑ isxdigit()

See also: isAlnum(), isAlpha(), isCtrl(), isDigit(), isFinite(),
isGraph(), isLower(), isNaN(), isODigit(), isPrint(),
isPunct(), isSpace(), isUpper(), isXDigit(), typeof

Entity object (Object/DOM)
An entity is an item in an XML document. This object encapsulates the XML entity.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Node object

JavaScript Programmer's Reference

678

JavaScript syntax: - myEntity = new Entity()

Object properties: notationName, publicId, systemId

DOM level 3 is expecting to add the following properties:

❑ actualEncoding

❑ encoding

❑ version

Property JavaScript JScript N IE Opera DOM Notes

notationName 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly.
publicId 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly.
systemId 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly.

Inheritance chain:
Node object

Entity.notationName (Property)
If an entity is unparsed, then this will be the name of the notation for that entity, otherwise it is null.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myEntity.notationName

Property attributes:
ReadOnly.

Entity.publicId (Property)
The public identifier associated with the entity if it was specified when the entity was instantiated.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

E – Entity.systemId (Property)

679

Property/method value type: String primitive

JavaScript syntax: - myEntity.publicId

Property attributes:
ReadOnly.

Entity.systemId (Property)
The system identifier associated with the entity if it was specified when the entity was instantiated.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myEntity.systemId

Property attributes:
ReadOnly.

EntityReference object (Object/DOM)
A reference to an entity object in an XML document.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Inherits from: Node object

JavaScript syntax: N myEntityReference =
myDocument.createEntityReference(aName)

Argument list: aName The name of the entity to reference

See also: Document.createEntityReference()

Inheritance chain:
Node object

JavaScript Programmer's Reference

680

enum (Reserved word)
Reserved for future language enhancements.

The provision of this keyword suggests that future versions of ECMAScript may support
enumerated data types.

See also: Reserved word, Type

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Enumeration constant (Definition)
Possible future functionality to provide enumerated data types.

Refer to:
enum

Enumerator object (Object/JScript)
A special object supported by MSIE for processing collections of objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myEnumerator = Enumerator
JavaScript syntax:

IE myEnumerator = new Enumerator(aCollection)

Argument list: aCollection The collection to be enumerated

Object properties: constructor

Object methods: atEnd(), item(), moveFirst(), moveNext()

An Enumerator object provides a way to enumerate through all the objects in a collection (aka
Array). You can create a new Enumerator, giving it your collection as an argument and can then
access the items in the collection in a more sophisticated way than simply using a for loop.

You can use the enumerator to cycle through the items in a collection in much the same way as a
for(... in ...) loop would enumerate the properties. However, in some collections, objects
have more than one entry. They may have an indexed entry and an associative entry. An
enumerator should traverse the collection visiting each item only once. A for loop may visit
objects several times.

E – Enumerator object (Object/JScript)

681

The available set of methods and properties is somewhat limited compared with enumerator
objects in other languages.

Because this is only available on MSIE and is severely dysfunctional on the Macintosh version of MSIE 5,
its use is somewhat limited from the portability point of view. It is recommended that you avoid using it
for the time being. Later, when it is more widely and reliably available, it may be more useful.

Do not confuse DOM NodeList arrays with Enumerator or Collection objects. The
NodeListitem() method is subtly different to the Enumerator.Item() method.

Warnings:
❑ When tested on MSIE 5 for Macintosh, this object exhibited some very odd behavior.

❑ When passed a FormArray, it complained that it was not a Collection object. When passed a
Collection object (document.all) it still complained. However, when passed an Array object,
it was happy to accept it. It would allow a new Enumerator to be created with no argument being
passed to its constructor function.

❑ When examined, its constructor reported that it was a reference to a Date object.

❑ The object may only be usable on MSIE on the Windows platform until a later version of MSIE
supports a corrected implementation.

❑ The naming convention for methods and properties of this object are capitalized in a very
untypical way and you need to be aware of this in case you have trouble getting your
enumerator to work properly.

Example code:
// Instantiate a file system object
myFileSystem = new ActiveXObject("Scripting.FileSystemObject");

// Create an enumerator
myEnum = new Enumerator(myFileSystem.Drives);

// Traverse the Drives collection via the enumerator
for(; !myEnum.atEnd(); myEnum.moveNext())
{
 processDrive(myEnum.item());
}

// A function to do something with each disk drive
function processDrive(aDrive){...}

See also: Collection object, Files object, NodeList object

Property JavaScript JScript N IE Opera Notes

constructor - 3.0 + - 4.0 + - Warning

JavaScript Programmer's Reference

682

Method JavaScript JScript N IE Opera Notes

atEnd() - 3.0 + - 4.0 + - -
item() - 3.0 + - 4.0 + - -
moveFirst() - 3.0 + - 4.0 + - -
moveNext() - 3.0 + - 4.0 + - -

Enumerator() (Constructor)
A constructor function for creating new Enumerator objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Enumerator object

IE new Enumerator()
JavaScript syntax:

IE new Enumerator(aCollection)

Argument list: aCollection A collection of objects to be enumerated

This is the constructor function for creating new enumerator objects. Use it with the new operator
to manufacture an Enumerator and then store the reference to it in a variable.

Enumerator.atEnd() (Method)
A method that returns a flag indicating the end of the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEnumerator.AtEnd()

In your enumeration loop, you can test this method and exit the loop if it returns the
Boolean true value.

Enumerator.constructor (Property)
A reference to the constructor object for the Enumerator.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Enumerator object

JavaScript syntax: IE myEnumerator.constructor

You can access the constructor for an existing Enumerator object here.

E – Enumerator.item() (Method)

683

You can use this as one way of creating Enumerator objects, although it is more popular to use the
new Enumerator() technique.

This property is useful if you have an object that you want to clone, but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

Warnings:
❑ On the Macintosh version of MSIE 5, this property yields a reference to the Date() constructor

object. This is obviously a bug and renders the Enumerator unusable on this platform.

Enumerator.item() (Method)
A reference to the current item in the collection. This method returns the object from the collection
that the enumerator is currently accessing.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: User defined

IE myEnumerator.item(anIndex)

IE myEnumerator.item(aSelector)
JavaScript syntax:

IE myEnumerator.item(aSelector, anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

Enumerator.moveFirst() (Method)
Resets the enumerator to point at the first item in the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myEnumerator.MoveFirst()

This relocates the enumerator so that it accesses the first item in the collection.

JavaScript Programmer's Reference

684

Enumerator.moveNext() (Method)
Moves the enumerator to the next item in the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myEnumerator.MoveNext()

This indexes the enumerator onwards to the next item in the collection that has not yet been visited.

Environment (Definition)
The environment is the computing context in which the script is executed.

There are a variety of different environments in which a script may be executed. At the time of
writing, a JavaScript script could be operating in any of these distinctly different environments:

❑ A Netscape web browser
❑ A MSIE browser
❑ Several other new web browsers
❑ A server CGI environment
❑ A desktop application environment
❑ A UNIX shell
❑ A WebTV set top box
❑ A Liberate TV Navigator set top box
❑ A WAP/WScript mobile phone
❑ An Adobe PDF file reader
❑ An embedded web browser built-into consumer products

Each of these has certain advantages and constraints. Most offer special facilities native and unique to
that hosting environment.

In general, you should be able to determine which of these environments you are operating in.
However, there is no standardized way to detect this at present.

There may be range limits on values in certain environments and certainly there will be 'bugs' in the
implementations that are platform specific. It is also very likely that functionality will be more or less
incomplete in some environments – mostly depending on the maturity of the implementation.

See also: Character display semantics, Character set, Execution environment,
Host environment, Limits, Script termination

Cross-references:
Wrox Instant JavaScript – page – 5

E – Equal to (==) (Operator/equality)

685

Equal to (==) (Operator/equality)
Compares two operands for equality.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 == anOperand2

anOperand1 A value that can reasonably be comparedArgument list:
anOperand2 A value that can reasonably be compared with

anOperand1

The result is the Boolean value true if anOperand1 is numerically or lexically equal to
anOperand2, otherwise false is returned.

The equality operator is not always transitive. For example, two string objects may represent the
same string value. Comparing the objects for equality will yield false because the references to
the objects are being compared and not the object values themselves. However, forcing a string
comparison may in fact yield a true value when testing for equality. Do this by converting the
objects as part of the comparison process by type conversion or valueOf() methods.

Numeric values may require rounding to take place and testing for equality may be accurate down to
a precision finer than your script cares about. You can set a precision value in a variable, then subtract
the value you are comparing with from the absolute value of the comparee. If the difference is smaller
than your precision value, then the two values are close enough to yield a match.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

Refer to the Equality expression topic for a discussion on the ECMA standard definition of the
equality testing rules.

Warnings:
❑ Be careful not to confuse the single equals with the double equals. Placing a single equals in place of

a test for equality will assign the right hand value to the left hand operand and clobber the value
accidentally. It will also force the relational expression to yield true as well. The interpreter may be
forgiving enough that a run-time error isn't generated, but the side effects could be subtle and make
it hard to diagnose the cause.

❑ A triple equals sign further complicates things as it is a test for identical type as well as equal value.

JavaScript Programmer's Reference

686

Example code:
// Fuzzy matching of numeric values
function almost_equal(aValue1, aValue2)
{
 var myPrecision = 1e-10;
 if((Math.abs(aValue1 – aValue2)) < myPrecision)
 {
 return(true);
 }
 return(false);
}

See also: ASCII, Type conversion, typeof, Unicode

Cross-references:
ECMA 262 edition 2 – section – 11.9.1

ECMA 262 edition 3 – section – 11.9.1

Wrox Instant JavaScript – page – 36

Equality expression (Definition)
An expression that tests for equality or not.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Equality expressions are a special case of Relational expressions. They deal strictly with equality or
non-equality.

There are two equality operators that you can use to make an equality expression:

❑ The == operator tests for equality.

❑ The != operator tests for inequality.

As a general rule, equality expressions will yield a true or false result in a more forgiving way than
relational expressions. Passing NaN, undefined and null values to relational expressions may yield
undefined values as results, where an equality expression would still return a Boolean value.

The comparisons between objects are likely to be a shallow comparison. If you are comparing two
objects of the same type, the comparison logic will check to see if you are referring to the same instance.
That is a test for identity and not equality. A deeper comparison might compare two similar objects on a
property by property basis. They wouldn't be identical, but they may be equivalent. You could simulate
this with a script function that returns true or false having done a deep comparison.

E – Equality expression (Definition)

687

Tests for equality require further deductive reasoning on the part of the interpreter. The values are
converted to their preferred types. If the types are the same, then the values can be compared easily
either as Numbers or Strings. If the types are different, the further conversion is necessary before
the comparison can be completed. In that case, Boolean become Numbers as do any other non-
numeric values and numeric comparison predominates.

Comparing null with undefined values does not require any conversion and they will compare equal.

Comparing values with null can expose some bugs in earlier implementations. It may be safer to
rely on Boolean conversions and simply test for true or false.

The ECMA standard (edition 3) sets out the rules for testing two values for equality (somewhat
simplified):

❑ If they are of different types, they are unequal – return false.

❑ If the type of the first argument is undefined or null return true.

❑ For numeric values NaN in either case return false.

❑ Positive and negative zeros are represented differently internally but are equal.

❑ Otherwise equal numbers return true and unequal numbers return false.

❑ For strings, the two values must contain the same sequence of characters for them to be equal.

❑ Boolean values must be equal and they have no special states to consider.

❑ Object references must refer to the same object instance.

❑ The values null and undefined are considered to be equal.

❑ If necessary, ToNumber() and ToPrimitive() functions are called to coerce objects when one
value is a primitive and the other is an object.

❑ If all of the above fail to match equal then a false value is returned.

It seems odd to assume equality to be true if the type of the arguments is not absolutely clear, but this
may be necessary to allow implementations some flexibility in the internal representation of values
which may not have a defined type.

It might also be strange to see that if either value is NaN then a false value is returned. This is
necessary because NaN is indeterminate. It is not a specific value and can be caused by a variety of
circumstances when an expression yields an out of bounds value. There is no guarantee that two
individual NaN values resulted from the same circumstance and hence they are assumed to be unequal.

Referring to the same object also includes joined objects which are an internal mechanism for
sharing functionality between objects. This is not exposed to the script interface.

Warnings:
❑ Earlier versions of MSIE and Netscape exhibited bugs in the comparison logic between the results of

comparisons involving NaN, null and 0, where type conversions led to inconsistent behavior.

❑ Since historically there are known bugs in comparisons involving null values, you should avoid
using them. The following:

if(a){ someCode}

JavaScript Programmer's Reference

688

may be more reliable in some implementations than:

if(a != null){ someCode}

Example code:
// Force a string comparison
myResult = (a+'' == b+'');
alert(myResult);

// Force a numeric comparison
myResult = (a-0 == b-0);
alert(myResult);

// Force a boolean comparison
myResult = (!a == !b);

See also: Equal to (==), Equality operator, Expression, Identically equal to (===), NOT
Equal to (!=), NOT Identically equal to (!==), Relational expression, Type
conversion

Cross-references:
ECMA 262 edition 2 – section – 11.9

ECMA 262 edition 3 – section – 11.9

Wrox Instant JavaScript – page – 39

Equality operator (Definition)
An operator that tests for equality or not.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

There are two equality operators:

❑ The == operator tests for equality.

❑ The != operator tests for inequality.

Equality operators deal exclusively with the test for the operands being equal to one another. They
yield a true or false result and are generally considered as part of the relational operator set
since they are most often used in the same circumstances.

Testing two operands for equality follows these basic rules:

E – Equality operator (Definition)

689

If the native types of the two operands are not the same, then the values are not equal unless a numeric
coercion yields equal values from both sides or the operands both yield null/undefined values.

If the type of the left operand is undefined or null, it is assumed to be equal to the right operand.

If either of the operands is NaN,then they are assumed to be not equal.

Positive and negative zero are equal values.

Boolean values must be identical values to be considered equal.

Two strings of the same length containing the same character sequence (identical copies of one
another in terms of Unicode character code points) are assumed to be equal.

References to the same object test as equal. References to two objects containing the same property
values, even though they may be copies of one another, are not equal.

Comparing different types of operands can use coercion techniques to force the comparison to be
conducted according to string, numeric or Boolean rules.

If one of the operands is an object and the other is not, then the object is converted to a primitive.

String comparisons can be by concatenating values of other types to an empty string. It may help to
use the parentheses to guarantee that precedence is established as you intend it to be. Here is a
forced string comparison:

("" + a) == ("" + b)

Numeric comparisons can be forced by subtracting zero. Again, grouping operators help to
establish the desired precedence:

(a – 0) == (b – 0)

Boolean comparisons can be forced by performing a logical NOT on both operands, in which case
precedence control with grouping operators may not be as necessary as it is with the addition and
concatenation operators:

!a == !b

The values null and undefined are generally considered to be equal although they are distinctly
different values. This is because early implementations did not support an explicit undefined
value and allowed for it to have the same meaning as the null value.

Comparing strings is done simply according to the Unicode character code point values and does
not take into account any of the more subtle semantic meanings of those characters as defined in
the Unicode version 2.0 specification.

Refer to the identity operators for a more exact comparison taking data type into account.

JavaScript Programmer's Reference

690

Warnings:
❑ Be careful not to miss one of the equals signs when testing for equality. You can accidentally assign

to an LValue and not realize it.

See also: = (Assign), Associativity, Equal to (==), Equality expression,
Identically equal to (===), NOT Equal to (!=), NOT Identically equal
to (!==), Operator, Operator Precedence, Relational operator

Cross-references:
ECMA 262 edition 2 – section – 11.9

ECMA 262 edition 3 – section – 11.9

Error (Definition)
That which happens when your script fails to execute properly.

Availability: ECMAScript edition – 2

The ECMA standard dictates that a compliant implementation will detect and alert on all errors in
the code even if the error is in a section of code that is not executed. Such dead code might be in a
conditional block for which the condition could never be true. Nevertheless, a compile time
warning should be generated.

This means that you should not rely on placing code within an if(false) block to prevent its
execution. Instead, you should comment out the code to achieve the same effect.

This behavior is generally implementation dependent due to the different ways that compilers and
interpreters may be designed and built. It also changes as browser versions evolve and of course
the kind of error that is thrown can also affect when and how it is detected and managed.

See also: Diagnostic message, Error handler, Mathematics

Cross-references:
ECMA 262 edition 2 – section – 16

ECMA 262 edition 3 – section – 16

Error events (Definition)
A class of events that are triggered by errors.

HTML syntax:

E – Error handler (Interface)

691

There is an onError event defined as part of the set of events supported by JavaScript. However,
as of JavaScript version 1.2, the onError event is actually only supported by Image objects when
defined in HTML tag attributes. You can add an error handler to a window object with the
onerror property.

The tag element allows an error during image loading to be handled
gracefully.

Attaching an error handler to a window with the window.onerror property allows JavaScript
errors to be intercepted.

Error events have a slightly different parameter passing API so although they are events, they are
slightly different to the rest of the event model.

See also: Error handler, Event handler, Event model, onError,
Window.onerror

Error handler (Interface)
Triggered by an error in the JavaScript execution.

JavaScript syntax: - function anErrorHandler(aMessage, aURL, aLine)
{ someCode };

aLine The line number where the error occurred
aMessage The text of the error message
anErrorHandl
er

An identifier name for the function

aURL The URL of the document containing the error

Argument list:

someCode The script source for the error handler

This is a means of trapping the errors in any script. You can activate an error handler in various
ways. Placing this line at the top of your script will trap all errors within that script:

self.onerror = function() { return true };

Because the script always returns true, no error dialog will ever be displayed.

Here is a pseudo code example of a better technique.

function HandleErrors(aMessage, aURL, aLine){ //If we can handle the error with
a piece of code return true; //Else we can't do anything return
false;}self.onerror = HandleErrors;

An error handler should return true if the host environment can safely ignore the error and false
if the environment needs to handle the error as normal.

See also: Error, Error events, Semantic event, Window.onerror

JavaScript Programmer's Reference

692

Error handling (Definition)
A mechanism for dealing with errors.

Error handling in compiled languages happens in two stages.

First, compile time messages tell you about syntax errors. Secondly, when you run the application,
you get run-time errors. These are generally semantic problems.

JavaScript is an interpreted language and as such compilation and run-time happen one after the
other when the script is executed. Some implementations parse and tokenize the entire script before
executing any of it, others may parse and execute a line at a time.

If you are handling errors in server-side code, you may be able to make use of the following
methods/properties of the Netscape Enterprise Server's server-side objects. These will tell you
about errors that have just occurred:

❑ majorErrorCode()

❑ majorErrorMessage()

❑ minorErrorCode()

❑ minorErrorMessage()

The status codes returned by NES database calls imply that you should inspect these error code
values when the status code is 5 or 7 (depending on the database type).

Warnings:
❑ In an effort to make the Internet more accessible to inexperienced users, you may find some

browsers, especially those in TV set-top boxes, handle errors silently. A fatal error in a script may
halt the script and indeed stop any others executing on the page. However, the user will not
receive any warning that this has happened. This is certainly the case with the WebTV set-top box
and may be true of others.

See also: Connection.majorErrorCode(), Connection.majorErrorMessage(),
Connection.minorErrorCode(), Connection.minorErrorMessage(),
Constraint, database.majorErrorCode(),
database.majorErrorMessage(), database.minorErrorCode(),
database.minorErrorMessage(), DbPool.majorErrorCode(),
DbPool.majorErrorMessage(), DbPool.minorErrorCode(),
DbPool.minorErrorMessage(), Diagnostic message, Input-output, JellyScript,
Script termination, Status code

Error object (Object/core)
An object that represents a custom error condition.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

E – Error object (Object/core)

693

- myError = new Error()

- myError = new Error(aNumber)
JavaScript syntax:

- myError = new Error(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

Object properties: constructor, description, message, name, number, prototype

Object methods: toString()

This object is provided to create custom error codes for your application. The ECMA standard
(edition 3) describes them as objects that are thrown as exceptions when a run-time error occurs.

These objects are passed as the first argument of the catch() function in a try ... catch
structure where you can inspect them and deal with the error.

Example code:
// Force an error condition
myError = new Error(100, "My user defined error text")
try
{
 throw myError;
}
catch(anErr)
{
 confirm(anErr.description);
}
finally
{
 alert("Sorted");
}

See also: catch(...), EvalError object, RangeError object,
ReferenceError object, SyntaxError object, throw, try ...
catch ... finally, TypeError object, URIError object

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.5 + 5.0 + 6.0 + 5.0 + - - 3 + DontEnum.
description - 5.0 + - 5.0 + - - - Warning
message 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + Warning
name 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
number 1.5 + 5.0 + 6.0 + 5.0 + - - - -
prototype 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + 2.0 + 3 + ReadOnly,

DontDelete,
DontEnum.

JavaScript Programmer's Reference

694

Method JavaScript JScript N IE Opera NES ECMA Notes

toString() 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + 2.0 + 3 + -

Cross-references:
ECMA 262 edition 3 – section – 15.1.4.9

ECMA 262 edition 3 – section – 15.11.1

ECMA 262 edition 3 – section – 15.11.2

Error() (Constructor)
An Error object constructor.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

- new Error()

- new Error(aNumber)
JavaScript syntax:

- new Error(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

The Error() constructor can be called with the new operator or as a function.

The initial value of Error.prototype.constructor is the built-in Error() constructor.

The two arguments supplied to the Error() constructor describe the error number and a textual
description. They are all optional.

A prototype property is automatically created in case the Error object is used as a constructor at
some future time.

See also: Constructor function, constructor property, Error.prototype

Cross-references:
ECMA 262 edition 3 – section – 15.11.2

E – Error() (Function)

695

Error() (Function)
An Error object constructor.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

- Error()

- Error(aNumber)
JavaScript syntax:

- Error(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

When the Error() constructor is called as a function, it creates and initializes a new Error object.
The function call Error() is equivalent to the expression new Error() with the same arguments.

See also: Error.prototype

Cross-references:
ECMA 262 edition 3 – section – 15.11.1

Error.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Error object

JavaScript syntax: - myError.constructor

The initial value of Error.prototype.constructor is the built-in Error() constructor.

You can use this as one way of creating Error objects, although it is more appropriate to use the
new Error() technique.

This property is useful if you have an object that you want to clone, but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

JavaScript Programmer's Reference

696

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Error.prototype

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 3 – section – 15.11.4.1

Error.description (Property)
A property that corresponds to the description argument in the constructor function.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myError.description

A human readable textual description of the custom error is available in this property. You can
assign a new value if you wish. Reading the property yields the value that was passed in the
description argument to the constructor function unless it has been changed since then.

Warnings:
❑ The ECMA standard describes this property as Error.message. MSIE supports it as the

description property.

Error.message (Property)
A property that corresponds to the message argument in the constructor function.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myError.message

E – Error.name (Property)

697

A human readable textual description of the custom error is available in this property. You can
assign a new value if you wish. Reading the property yields the value that was passed in the
description argument to the constructor function unless it has been changed since then.

Warnings:
❑ The ECMA standard describes this property as Error.message. Netscape 6.0 claims to be

completely compliant and therefore should support this property.

❑ MSIE supports the description property which is functionally identical.

Cross-references:
ECMA 262 edition 3 – section – 15.11.4.3

Error.name (Property)
The name of an Error object can be accessed with this property.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

- myError.name
JavaScript syntax:

- myError.name = aString

Argument list: aString The new name value for the Error object

The initial value for this property is the string primitive "Error". The ECMA standard suggests
that this property can be assigned with a different name for each instance of the Error object.

For native errors that are subclassed from this Error object, the name property will be the name of
that object class and will be one of the following:

❑ EvalError

❑ RangeError

❑ ReferenceError

❑ SyntaxError

❑ TypeError

❑ URIError

Cross-references:
ECMA 262 edition 3 – section – 15.11.4.2

JavaScript Programmer's Reference

698

Error.number (Property)
A property that corresponds to the number argument in the constructor function.

Availability: JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myError.number

This is the error number your custom error will be registered under. Unless you change it by
assigning a new value to this property, it will contain the value that was passed in the number
argument to the constructor function.

The number is a 32 bit value consisting of a facility code and an error number. The upper 16 bits is
the facility code and the lower 16 bits the error number within that facility.

Error.prototype (Property)
The prototype for the Error object that can be used to extend the interface for all Error objects.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Error object

- Error.prototype
JavaScript syntax:

- myError.constructor.prototype

This is the Error prototype object belonging to the global object and from which all Error
objects are descended.

The initial value of Error.prototype is the built-in Error prototype object.

The value of the prototype property of an Error object is used to initialize child objects when
that Error object is used as a constructor.

The following properties are inherited from the Error.prototype:

❑ Error.prototype

❑ Error.constructor

❑ Error.name

E – Error.prototype (Property)

699

❑ Error.message (according to ECMA)

❑ Error.description (according to Microsoft)

The following methods are inherited from the Error.prototype:

❑ Error.toString()

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object to emulate the ECMA standard message property that is lacking in
some implementations.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that provides ECMA compliance
function message()
{
 return this.description;
}

// Register the new function
Function.prototype.message = message;

// Create an Error object and test the new property accessor
var myError = new Error(100, "My error message");
document.write(myError.message);
</SCRIPT>
</BODY>
</HTML>

See also: Error(), Error(), Error.constructor,
Error.toString(), prototype property

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 3 – section – 15.11.3.1

JavaScript Programmer's Reference

700

Error.toString() (Method)
Returns a string primitive version of an Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myBoolean.toString()

The value of the object is converted to a string value that represents its value. The value returned is
implementation dependent.

See also: Cast operator, Error.prototype, toString()

Cross-references:
ECMA 262 edition 3 – section – 15.11.4.4

Escape sequence (\) (Definition)
A means of defining characters that cannot easily be typed on a keyboard.

Availability: ECMAScript edition – 2
Opera – 3.0

The string delimiter characters present problems if you need to include them inside a string.
Typically you may want to include a single quote as an apostrophe, as in the contraction of do not
to don't. Or you may want to enclose a spoken comment inside double quotation marks.

Because the single and double quotes are generally interchangeable in JavaScript, in most cases the
problem is easy to solve.

To use " inside a string, you can do it like this:

myString = 'A man said "hello" to me';

Using a double quote to include single quotes in your string, you might do this:

myString = "Don't do that";

E – Escape sequence (\) (Definition)

701

Using the backslash escape delimiter we can safely use any combination of quotes inside either
sort. Like this:

myString = "A man said \"hello\" to me";

myString = 'Don\'t do that';

A further use for this is to escape a single dot character in regular expressions. This allows you to
search for full stops in the source text because a dot in a Regular Expression is a wildcard character
match. This technique is useful for other meta symbols in the regular expression set. Refer to the
regular expression topic for more details.

Just to illustrate here is a simple example. This regular expression matches any single character at
the start of a line:

/^./

This variant matches only full stops or periods at the start of the line:

/^\./

An escape sequence is a series of characters that taken together describe a character that cannot
normally be represented in the code set that the source is written in, or may be difficult to type on
keyboards that are not specially designed for international character sets.

Escape Sequence Name Symbol

\" Double Quote "

\' Single Quote (Apostrophe) '

\\ Backslash \

\a Audible alert (MSIE displays the letter a) <BEL>

\b Backspace (ignored silently in MSIE) <BS>

\f Form Feed (ignored silently in MSIE) <FF>

\n Line Feed (Newline – MSIE inserts a space) <LF>

\r Carriage Return (MSIE inserts a space) <CR>

\t Horizontal Tab (MSIE inserts a space) <HT>

\v Vertical tab (MSIE displays the letter v) <VT>

\0nn Octal escape -

\042 Double Quote "

\047 Single Quote (Apostrophe) '

\134 Backslash \

\xnn Hexadecimal escape -

\x22 Double Quote "

\x27 Single Quote (Apostrophe) '

\x5C Backslash \

\unnnn Unicode escape -

Table continued on following page

JavaScript Programmer's Reference

702

Escape Sequence Name Symbol

\u0022 Double Quote "

\u0027 Single Quote (Apostrophe) '

\u005C Backslash \

\uFFFE A special Unicode sentinel character for flagging byte reversed text -

\uFFFF A special Unicode sentinel character -

Here are some examples of escape sequences for the apostrophe character.

In HTML apostrophe characters are escaped like this:

'

In C language characters are escaped like this for octal values:

\047

And like this for hexadecimal values:

\x27

And in JavaScript, Unicode characters can be escaped like this:

\u0027

Where the \u is followed by a four digit hexadecimal value.

See also: Cast operator, Character constant, Character display semantics,
Character set, Comment, Constant, Constant expression, Lexical
convention, Newline, Script Source Text, String literal

Cross-references:
ECMA 262 edition 2 – section – 2

ECMA 262 edition 2 – section – 6

ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 2

ECMA 262 edition 3 – section – 6

ECMA 262 edition 3 – section – 7.7

O'Reilly JavaScript Definitive Guide – page – 38

E – escape() (Function/global)

703

escape() (Function/global)
URL escaping a text string.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0
Deprecated

Property/method value type: String primitive

- escape(anInputString)
JavaScript syntax:

- escape(anInputString, aSwitch)

anInputString A string of un-escaped (normal) characters.Argument list:
aSwitch A switch that allows plus signs to be encoded

or not

The escape() function computes a new version of the string value it is passed. The new version
has certain characters replaced with hexadecimal escape sequences.

All character codes from zero to 32 (decimal) will be escaped.

All character codes above 126 will be escaped.

The table summarizes the characters below 127 that will be escaped.

Escape Character

%09 Tab

%0A Line feed

%0D Carriage return

%20 space

%21 !

%22 "

%23 #

%24 $

%25 %

%26 &

%27 '

%28 (

%29)

Table continued on following page

JavaScript Programmer's Reference

704

Escape Character

%3A :

%3B ;

%3C <

%3D =

%3E >

%3F ?

%5B [

%5C \

%5D]

%5E ^

%60 `

%7B {

%7C |

%7D }

%7E ~

%7F Delete

For those characters that are replaced whose Unicode encoding is 0xFF or less, a two digit escape
sequence of the form %xx is used. For those characters that are replaced whose Unicode character
value is greater than 0xFF, a four-digit escape sequence of the form %uxxxx is used.

The encoding is partly based on the encoding described in document RFC1738. However the entire
coding scheme goes beyond the scope of that RFC document.

Most non-alphanumeric characters will be escaped. All control codes are and also the upper 128 of
the 255 character codes that are normally used in a web browser will be escaped too. The example
script generates a table of character codes that show how they are escaped. Note that control
characters will be represented by a 'missing character' box, but on some platforms special
characters are mapped for display in these lower code points (0-31).

MSIE version 4 introduces Unicode support.

Netscape supports the optional second parameter to switch on the encoding of plus signs. You
should place an integer 1 in this argument to activate plus encoding.

As far as ECMAScript is concerned, this is superceded in edition 3 with a set of generalized
URI handling functions. The JScript 5.5 documentation refers to the escape() function as a
deprecated feature.

E – Escaped JavaScript quotes in HTML (Pitfall)

705

Example code:
// Create a 0-255 lookup table of escapes
document.write("<TABLE BORDER=1>");
document.write("<TR><TH>Index</TH>");
document.write("<TH>Char</TH>");
document.write("<TH>Escape</TH></TR>");
for(ii=0; ii<256; ii++)
{
 myBinary = ii.toString(2);
 myBinaryPadding = "00000000".substr(1,(8-myBinary.length));

 myOctal = ii.toString(8);
 myOctalPadding = "000".substr(1,(3-myOctal.length));

 myHex = ii.toString(16);
 myHexPadding = "00".substr(1,(2-myHex.length));

 myChar = String.fromCharCode(ii);

 document.write("<TR ALIGN=RIGHT><TD>");
 document.write(ii);
 document.write("</TD><TD>");
 document.write(" "+myChar);
 document.write("</TD><TD>");
 document.write(escape(myChar));
 document.write("</TD></TR>");
}
document.write("</TABLE>");

See also: Cast operator, decodeURI(), decodeURIComponent(),
encodeURI(), encodeURIComponent(), Function property,
Global object, unescape(), URI handling functions

Cross-references:
ECMA 262 edition 2 – section – 15.1.2.4

ECMA 262 edition 3 – section – B.2.1

ftp://ftp.isi.edu/in-notes/

Escaped JavaScript quotes in HTML (Pitfall)
Closing quotes may appear when you least expect them.

If you are generating JavaScript calls from a database, you might use one particular field as a quote
delimited text parameter like this:

Click me

Since the JavaScript call is inside a tag attribute, it is enclosed in double quotes. This means for
starters that double quotes are a problem in your data if they appear.

ftp://ftp.isi.edu/in-notes/

JavaScript Programmer's Reference

706

You can get round this by enclosing any string constants in the JavaScript domain by using single
quotes. JavaScript doesn't mind either. However, that means you get a problem when a single
quote turns up in your data.

You might think that your output routines that get data from the database are doing very well by
detecting the apostrophe and replacing it with ', however you might still be in trouble.
Likewise if you escaped the double quote by using the HTML character entity descriptor. This is
because the browser unescapes the page as it is loaded. This is extremely hard to diagnose because
when you view the source, you see the character entities and not the characters they become.

You must ensure that your data extraction/insertion code places the database generated items into
this scenario with JavaScript escapes and not HTML escapes.

Of course everywhere else in the document you need to escape things as HTML and not JavaScript.

This all applies vice-versa by swapping the quotes around, although the escaped character entity
value changes.

The example code illustrates a set of quoted strings that break and another set that work fine.

When they break, they cause a run-time error. In some cases they even prevent the status line from
displaying the right thing.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Watch the status bar as you roll over the link.

<HR>
Examples of broken quotes:

Test 1.1

Test 1.2

Test 1.3

Test 1.4

Test 1.5

Test 1.6

<HR>
These work fine:

Test 2.1

Test 2.2

Test 2.3

Test 2.4

Test 2.5

Test 2.6

Test 2.7

Test 2.8

Test 2.9

Test 2.10

<HR>
</BODY>
</HTML>

See also: HTML Character entity, Pitfalls, String literal

E – Eval code (Definition)

707

Eval code (Definition)
Script source executed by an eval() function call.

Availability: ECMAScript edition – 2

Eval code is the source text that is supplied to the built-in eval() function.

When the eval() function is called, it expects a string as an argument value. The contents of that
string should be syntactically correct executable script source text.

On initialization, the scope chain is based on the caller's scope chain. The variable object and its 'this'
property value are also inherited. If there is no calling context, then the global object is used instead. The
scope chain is identical to the caller's. Variable instantiation is performed by using the variable object
belonging to the caller, but with empty property attributes. The caller provides its own value.

Eval code therefore executes very much as if it were part of the caller's execution context.

See also: eval(), Executable code, Execution context, JSObject.eval()

Cross-references:
ECMA 262 edition 2 – section – 10.1.2

ECMA 262 edition 2 – section – 10.2.2

ECMA 262 edition 3 – section – 10.1.2

ECMA 262 edition 3 – section – 10.2.2

eval() (Function/global)
Execute some script source passed as an argument.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Depends on the script source passed as an argument

JavaScript syntax: - eval(aSourceText)

Argument list:
aSourceText A string value containing some syntactically

correct script source code.

JavaScript Programmer's Reference

708

When the eval() function is called, it expects a string to be passed to it as its single argument
value. The contents of that string should be syntactically correct executable script source text.

The script code gets executed and any result it generates is returned. That value must be explicitly
returned, otherwise the result will be undefined.

Warnings:
❑ If the script source passed to the eval() function cannot be parsed without failure, a run-time error

will result.

❑ Be careful how you let people pass values from outside into this function. It is feasible to provide a
way for a user to type in some valid JavaScript and to then execute it for them in an eval()
function. This can be dangerous, not only because it exposes all the variables in the script but also it
may be possible to construct a JavaScript that when executed, talks back to the server that provided
the page in the first place.

❑ It would be an unusual thing to do anyway, but the possibility may be there to compromise your
server security. It rather depends on the security in the hosting environment. Possibly an eval()
action is not permitted to do things that a non-user-modifiable script embedded in a web page can
do. However, this is likely to be very implementation specific.

Example code:
// Create some script source
var scriptCode = "c = a * b";
var a = 5;
var b = 10;
var c = 2;
document.write(c);
document.write("
");
eval(scriptCode);
document.write(c);

See also: Eval code, Function code, Function property, function(...)
..., Global object, JSObject.eval(), Object.eval(),
Window.setInterval(), Window.setTimeout()

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 10.1.2

ECMA 262 edition 2 – section – 15.1.2.1

ECMA 262 edition 3 – section – 10.1.2

ECMA 262 edition 3 – section – 15.1.2.1

Wrox Instant JavaScript – page – 28

E – EvalError object (Object/core)

709

EvalError object (Object/core)
A native error object based on the Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
Netscape – 6.0

Inherits from: Error object

N myError = new EvalError()

N myError = new EvalError(aNumber)
JavaScript syntax:

N myError = new EvalError(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

This sub-class of the Error object is used when an exception is caused by using the global eval()
function incorrectly.

See also: catch(...), Error object, RangeError object,
ReferenceError object, SyntaxError object, throw, try ...
catch ... finally, TypeError object, URIError object

Inheritance chain:
Error object

Cross-references:
ECMA 262 edition 3 – section – 15.11.6.1

Event-driven model (Definition)
A contextual manner in which script functions are executed.

Events are generated by all kinds of occurrences. For example, an event is generated when a web
page has finished loading.

Some events are triggered as a result of some user interaction, for example, clicking a mouse button
or passing a mouse pointer across the screen. As the mouse crosses over an item on the screen, it
generates an event signifying that the mouse has entered the region occupied by the screen item.
Similarly, an event is generated when the mouse moves away from the item.

Other events can be generated by plugins as they execute some special dynamic animated or
audio/visual presentation.

Sometimes these events may be useful to trap a form submission or maybe a user has entered some
data into a text cell and you want to check it right away before the user does something else.

Sometimes, events might be generated on a regular basis with an interval timer.

There are other more subtle events such as errors, property changes and focus changes. Some of
these are derived and are triggered as a consequence of other events.

JavaScript Programmer's Reference

710

There is an association between an event and an event handler. The handler is a JavaScript function
having the same or a similar name as the event. If an event handler is not present, then the event is
discarded and the browser continues interacting with the user.

See also: Element.onevent, MutationEvent object

Event (Definition)
A trigger that may occur at any time.

Event mechanisms are good way to add functionality to the user interaction. Rather than let the
browser handle the user's mouse clicks, you can intervene with JavaScript and add all kinds of
sophisticated behavior to each user-driven trigger.

An event is simply a trigger generated manually by the user or as a consequence of something
happening in the host environment. Events can be generated at the following times:

❑ When a user clicks on something

❑ When something finished being loaded from the web server

❑ When an error occurs

❑ When a Java exception happens

❑ When a timer runs out

❑ When a page is closed

❑ When a page needs to be refreshed

❑ When a plugin calls back to its parent page

❑ When a property changes while it has a watch() active on it

❑ Server-side initiation

Each of these is associated with a handler. Most of them are triggered as HTML intrinsic events.

By default, the triggers behave as if a null handler is assigned to the event so it appears that
nothing happens when the event fires. It's likely that inside the interpreter the event is processed
and simply calls a handler that returns straight away. You can replace that handler whenever you
want to as the page content is processed.

MSIE version 4 implements virtually every event on every object. We describe each of those events
in its own topic.

Trying to integrate both MSIE and Netscape browser event models into a single unified concept is
something that is vexing the W3C experts as they deliberate over higher level functionality in the
DOM. This is not likely to be resolved for some time.

Even the documentation from Netscape is inconsistent as to which event and object combinations are
supported on different platforms, and you should attempt to test any portable scripts and event
handlers on a variety of system configurations before deployment. Netscape 6.0 is far more standards
based and consistent with MSIE as far as event handling is concerned. It implements the DOM level 2
event support. Documentation on the new version is still scarce, even on the Netscape web sites.

Draft DOM level 3 documents describing an MSIE-like event model have been published and the
relevant topics are included here because that event model is supported by Netscape 6.

E – event (Property)

711

You may be able to establish what events are supported by an object if you write an inspection
script to enumerate and print out the names of any properties of that object. You should see place
holder properties for each event handler. These will be undefined unless you have registered a
handler function with them.

See also: DOM Events, Script execution

Cross-references:
Wrox Instant JavaScript – page – 52

event (Property)
During event handling, MSIE stores a reference to an Event object in this variable.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Event object

IE event
JavaScript syntax:

IE myWindow.event

Example code:
// Browser portable event handler
function myEventHandler(anEvent)
{
 if(navigator.appName.indexOf("Microsoft") != -1)
 {
 anEvent = window.event;
 anEvent.srcElement = target;
 anEvent.button = which;
 anEvent.keyCode = which;
 anEvent.altKey = anEvent.modifiers & Event.ALT_MASK;
 anEvent.ctrlKey = anEvent.modifiers & Event.CONTROL_MASK;
 anEvent.shiftKey = anEvent.modifiers & Event.SHIFT_MASK;
 anEvent.clientX = pageX;
 anEvent.clientY = pageY;
 }
 // Portable event code goes here.
}

See also: Element.onevent, Window.event

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

712

Event bubbling (Definition)
A mechanism whereby MSIE and Netscape 6.0 pass events up a hierarchy of objects until they find
a handler.

Event bubbling was introduced in version 4.0 of MSIE and provides a structured and hierarchical
way of handling events. This is somewhat more object oriented in its approach than that provided
by the Event Management suite in Netscape prior to version 6.

Functionally, this is very similar to the event hierarchy model found in HyperCard. Other hyper-
linking and events-driven systems have modelled their event handling on this same technique
since it became popularized in HyperCard in 1987.

The event bubbling technique hands an event to the most specific object relating to the event, such as the
object representing an HTML tag. If there is no handler, the event is passed up the document object tree
until a handler that matches is found or until it is established without doubt that there is no handler.

Handlers are able to consume an event and terminate the event handling process for that event or
they may choose to pass the event upwards to a parent object. This is very sub-class, super-class
like behavior and is again borrowed from the HyperCard and Object Oriented prototypes.

Event bubbling has been selected as a candidate for standardization, since it is a fundamentally
more useful and automated way to propagate events through the DOM. DOM level 2 documents
describing an MSIE-like event model have been published and the relevant topics are included here
because that event model is supported by Netscape version 6. The event model is expected to be
enhanced a little at DOM level 3 when that standard matures.

E0122 E0123

E011 E013

E02 E03

E0121

E012

E01

E0

E – Event handler (Definition)

713

See also: Element.onevent, Event, Event handler, Event management,
Event model, Event object, Event propagation

Cross-references:
Wrox Instant JavaScript – page – 55

Event handler (Definition)
A script function that is called in response to an event trigger.

Property/method value type: Boolean primitive

Each event is associated with a handler. By default a null handler is assigned to the event so it
appears that nothing happens when the event fires. It's likely that inside the interpreter the event is
processed and simply calls a handler that returns straight away. You can replace that handler as the
page content is processed.

Event handlers are associated with objects in the following ways:

❑ By placing JavaScript code in HTML tag attributes

❑ By setting the object property for the handler

An event handler should conform to the following pattern:

function checkValue(anObject){ \\ someCode... return true;}

The object that is passed to the handler is an Event object that describes the event that has called
the handler. This was not always supported and so may be null in some implementations. It was
introduced with Netscape version 4.0.

When building a page, it is sensible to place the handler functions in the <HEAD> block. You can do
script driven property assignments to attach the handler to the objects, but that cannot take place
until the page is almost complete. It is far more sensible to use the HTML tag attribute to attach the
handler function where it is needed. It also keeps everything to do with that tag and its attributes
in one place. The other disadvantage to script assigning the handler to a property is that the
document tree needs to be walked. This can sometimes take a while and can be problematical if the
</BODY> tag closure has not yet been processed. Legally you cannot place anything after a
</BODY> closure. The only way then to ensure something happens when the <BODY> block is
closed is to execute it under the <BODY ONLOAD="..."> handler. But then why do that if you
won't use tag attributes for the <INPUT> handlers.

If you want to, you can include the entire script of the event handler code at the point where it is
associated with the HTML tag. However, this then prevents reuse and becomes hard to manage. It
is better to gather the event handling logic into a single named function, organized so that it has
everything it needs to process that event. Then, simply reference the function in the tag attribute
that is associated with the event.

JavaScript Programmer's Reference

714

Event handlers should be designed to execute quickly and return. This is because, by their nature,
they are part of the User Interface feedback process and anything that slows down the interaction
between the user and the web page tends to frustrate the user and makes the application hard to
use. You can let the user know that an action may take a while to complete. Even better, maybe you
can create a progress indicator to show them how it's doing.

Event handlers may be invoked sooner than you expect them to be. Certainly, it is possible for
them to be triggered before the page is fully loaded into the browser. Be careful that a prematurely
triggered event handler does not try to manipulate objects that do not yet exist.

Event handler functions should return Boolean true or false depending on what action you want
the host environment to take following your event handler's processing of the event.

Warnings:
❑ Event handlers should always return true or false. However, this is not enforced and won't

generate an error so it isn't always necessary and often won't cause anything to happen whichever
value you return. However, this might change if the interpreter vendors tighten up their functional
specifications, so it's good practice to always return a Boolean result.

❑ Some event handlers cannot be set from a tag attribute. Those will have to be set from a script by
assigning the handler to the appropriate property.

❑ Event handling architectures differ somewhat between Netscape and MSIE. Netscape provides event
routing management while the event hierarchy allows events to bubble up through the document
object model. If you are doing anything other than simply handling the event through the default
handler, you need to be aware of the difference.

Example code:
<HTML>
<HEAD>
<SCRIPT>
function errorHandler()
{
 alert("An error has occurred");
}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT>
window.onerror = errorHandler;
ablert("an error");
</SCRIPT>
</BODY>
</HTML>

See also: Adding JavaScript to HTML, unwatch(), watch()

Cross-references:
Wrox Instant JavaScript – page – 52

E – Event handler in <SCRIPT> (Definition)

715

Event handler in <SCRIPT> (Definition)
You can associate an event handler using the <SCRIPT> tag's attributes.

HTML syntax: <SCRIPT FOR="aName" EVENT="anEvent">

aName The name of an <INPUT> elementArgument list:
anEvent The name of an event to be handled

In MSIE, you can give each <INPUT> tag a NAME attribute.

This can then be used to map a <SCRIPT> block to that <INPUT> object. The <SCRIPT> block is
further mapped to the event names that the <INPUT> block might generate trigger events for. You
end up with one <SCRIPT> block per event per named <INPUT> object.

The upside of this is that you don't have complicated function name mappings, but the downside is
that you can end up with a large number of discrete <SCRIPT> blocks.

Internally, MSIE has to be turning these into some kind of function object otherwise they would be
interpreted as inline Global code.

Warnings:
❑ Beware of using functionality that is not portable to your entire target audience. This is useful, but

only on MSIE browsers. This capability is born out of the VBScript support in MSIE and is better
confined to that language.

See also: <SCRIPT EVENT="...">, Element.onevent, Script execution

Event handler properties (Definition)
Objects can have event handlers attached via property values.

From JavaScript version 1.1, you can attach event handlers by saving a reference to a function
object in a property whose name is the same as the event.

If there is no handler defined then MSIE stores a reference to the null object in the event property
of the Element object, while Netscape leaves the property undefined.

The property names must be all lower case even though the convention is to use mixed case when
the event handlers are defined in HTML as tag attributes.

It is a useful thing to be able to define event handlers like this since mixing JavaScript and HTML in
tag attributes is somewhat messy and can become more difficult to maintain.

A major benefit of this technique is that you can dynamically change the event handler associated
with an object without changing the document's HTML. You might want to make the error handler
more complex after repeated errors. Or you might want to reuse some objects and have form value
checking change according to some user choices.

See also: Calling event handlers, Element.onevent

JavaScript Programmer's Reference

716

Event handler scope (Definition)
The scope of an event handler is somewhat different to the normal scope.

Although event handlers are functions like any other, they are not called from global code and therefore
are running in a different scope chain context to that which your functions normally execute.

The head of the scope chain is the call object. Arguments passed to the event handler are
available here as they would be in other function calls.

In a normal context, the next object in the scope chain might be the global object. However for the
event handler, it is the object to which the event was directed. This makes event handles somewhat
easier to write.

For example, the form object yielded in the scope for an event handler attached to an <INPUT> tag
is the form object that the FormElement object belongs to. This scope chain continues up the
document hierarchy (the DOM), until it reaches the global object. You can share various parts of
the form handling code by plugging it into objects at different points in the DOM.

The scope chain for an <INPUT> object is the reverse of its DOM location. Thus:

window.document.form.button.event

will seek to resolve its identifiers in this order:

❑ call object

❑ button object

❑ form object

❑ document object

❑ window (global) object

Warnings:
❑ You need to be explicit about how objects and event handlers are declared and called.

❑ Inside an event handler, you should call window.open() and not just open() because the
document object is located sooner in the scope chain than the window object. This means that
open() will call the document.open() method before it would have resolved to the
window.open() method.

❑ You should also be careful not to add properties to your objects whose name is the same as other
pre-defined objects in the DOM. If you do, you risk seriously compromising your script's ability to
run correctly within its scope.

❑ Beware that only the code defined in the HTML tag attribute is executed in an event handler scope
chain. Calls to other functions will execute them in the scope that they are defined in due to the static
scope rules for functions. You can get round this by defining a JavaScript version 1.2 Closure
object. However this technique is not supported by MSIE version 4 browsers.

See also: Document, Element.onevent, Function scope,
Function.call()

E – Event management (Definition)

717

Event management (Definition)
The Netscape 4 event management suite provides event routing facilities.

The Netscape browser provides event management capabilities in version 4.0 that are different to
those provided by MSIE. There are four management functions provided to facilitate this:

❑ captureEvents()

❑ releaseEvents()

❑ routeEvent()

❑ handleEvent()

Without using these management functions, events simply fire at the default handler for the event. Now
you can route the events to other handlers, invoking whichever ones you need. As such, this adds to the
basic functionality.

See also: captureEvents(), Document.captureEvents(), DOM
Events, Element.onevent, Event, Event bubbling, Event handler,
Event model, handleEvent(), MutationEvent object,
unwatch(), watch(), Window.routeEvent()

Cross-references:
Wrox Instant JavaScript – page – 55

Event model (Definition)
A framework within which events are triggered and handled by the interpreter.

The HTML 4.0 standard refers to events relating to HTML as intrinsic events. That includes
the following:

❑ Conditions that cause events

❑ Attributes in tags that support events

❑ Scripts in the page that handle events

❑ A JavaScript host object that an event operates on

❑ Control being passed temporarily to the interpreter during the event handling

❑ Data associated with and passed to the handler by the event

The DOM level 2 standard introduces an event model based on the MSIE event bubbling technique.
It is embodied in the following object classes:

❑ EventTarget

❑ EventListener

❑ Event

❑ EventException

❑ DocumentEvent

❑ UIEvent

❑ MouseEvent

JavaScript Programmer's Reference

718

❑ MutationEvent

E – Event names (Definition)

719

Events can be added using the addEventListener() method that is inherited by any Elements
that can be treated as EventTarget objects. The EventTarget class is not a concrete class in its
own right but is an extension of an existing object class to add event handling capabilities to it.

DOM level 3 is expected to enhance the event model further with the addition of the following classes:

❑ KeyEvent

❑ EventGroup

❑ EventGrouped

❑ DocumentEventGroup

See also: DOM Events, Dynamic HTML, Element.onevent,
MutationEvent object, unwatch(), watch()

Event names (Definition)
Rules for naming event handlers.

When you specify the name of an event as an HTML tag attribute, because tag attributes in HTML
are case insensitive, you only have to spell the event name correctly. You can type it in any mixture
of upper and lower case and the browser should still be able to associate it with the correct
fragment of JavaScript. These are all equally valid:

❑ <INPUT TYPE="text" ONCHANGE="handleEvent();">

❑ <INPUT TYPE="text" onchange="handleEvent();">

❑ <INPUT TYPE="text" onChange="handleEvent();">

❑ <INPUT TYPE="text" OnChAnGe="handleEvent();">

It is conventional to do it like this:

❑ <INPUT TYPE="text" onChange="handleEvent();">

Inside the JavaScript interpreter, you can associate handlers using properties. However the event names
must be correctly cased in that situation: they would be lower case. You don't need to put the onChange
tag attribute in, because you are registering the error handler inside the script block, like this:

<HTML>
<BODY>
<FORM NAME="the_form"><INPUT TYPE="text" NAME="the_text"></FORM>
<SCRIPT>document.the_form.the_text.onchange=alert("Changed");</SCRIPT>
</BODY>
</HTML>

Here is a list of all event names although they don't all apply to every object in the document.

Event Handler Usage

Abort onabort When image loading is aborted.
AfterPrint onafterprint When printing has just finished.
AfterUpdate onafterupdate When an update is completed.

JavaScript Programmer's Reference

720

Table continued on following page

E – Event names (Definition)

721

Event Handler Usage

Back onback The user has clicked on the [BACK] button in
the toolbar.

BeforeCopy onbeforecopy Immediately before a copy to the clipboard.
BeforeCut onbeforecut Immediately before a cut to the clipboard.
BeforeEditFocus onbeforeeditfocus Immediately before the edit focus is directed to

an element.
BeforePaste onbeforepaste Immediately before the clipboard is pasted.
BeforePrint onbeforeprint Immediately before printing begins.
BeforeUnload onbeforeunload Called immediately prior to the window

being unloaded.
BeforeUpdate onbeforeupdate Called immediately before an update commences.
Blur onblur When an input element loses input focus.
Bounce onbounce Triggered when a marquee element hits the edge

of its element area.
Change onchange When edit fields have new values entered or a

popup has a new selection, this event's handler
can check the new value.

Click onclick When the user clicks the mouse button on the
Element object that represents the object on
screen.

ContextMenu oncontextmenu Special handling for contextual menus.
Copy oncopy When a copy operation happens.
Cut oncut When a cut operation happens.
DataAvailable ondataavailable Some data has arrived asynchronously from an

applet or data source.
DataSetChanged ondatasetchanged A data source has changed the content or some

initial data is now ready for collection.
DataSetComplete ondatasetcomplete There is no more data to be transmitted from

the data source.
DblClick ondblclick When the user double-clicks on an object.
Drag ondrag When a drag operation happens.
DragDrop ondragdrop Some data has been dropped onto a window.
DragEnd ondragend When a drag ends.
DragEnter ondragenter When a dragged item enters the element.
DragLeave ondragleave When a dragged item leaves the element.
DragOver ondragover While the dragged item is over the element.
DragStart ondragstart The user has commenced some data selection

with a mouse drag.
Drop ondrop When a dragged item is dropped.
Error onerror Triggered if an error occurs when loading

an image.
ErrorUpdate onerrorupdate An error has occurred in the transfer of some

data from a data source.
Table continued on following page

JavaScript Programmer's Reference

722

Event Handler Usage

FilterChange onfilterchange A filter has changed the state of an element
or a transition has just been completed.

Finish onfinish A marquee object has finished looping.

Focus onfocus When the form element is selected for entry.

Forward onforward The user has clicked on the [FORWARD] button
in the toolbar.

Help onhelp The user has pressed the [F1] key or selected
[help] from the toolbar or menu.

KeyDown onkeydown When a key is pressed.

KeyPress onkeypress Pressing the key down and releasing it again elicits
this event.

KeyUp onkeyup When a key is released.

Load onload When an object has completed loading.

LoseCapture onlosecapture When an element loses event capturing
permission.

MouseDown onmousedown When the mouse button is pressed.

MouseDrag onmousedrag An event handler for mouse drag operations.

MouseMove onmousemove When the mouse pointer is moved.

MouseOut onmouseout When the mouse pointer leaves the active area
occupied by the Element object that represents
the object on screen.

MouseOver onmouseover When the mouse pointer enters the active area
owned by the object.

MouseUp onmouseup When the mouse button is released.

Move onmove The browser window has been moved.

Paste onpaste When a paste operation happens.

PropertyChange onpropertychange When an object property is modified (similar to
the Netscape Navigator watch() method).

ReadyStateChange onreadystatechange An object in the window has changed its
ready state.

Reset onreset The user has clicked a reset button in a form.

Resize onresize As the window is resized, this event is triggered.

RowEnter onrowenter The data in a field bound to a data source is
about to be changed.

RowExit onrowexit The data in a field bound to a data source has
been changed.

Scroll onscroll The window has been scrolled.

Select onselect Some textual content in the window has
been selected.

SelectStart Onselectstart A select action is beginning.

Start Onstart A marquee element is beginning its loop.

Table continued on following page

E – Event object (Object/DOM)

723

Event Handler Usage

Stop Onstop When a stop action occurs.

Submit Onsubmit The user has clicked on the submit button in a
form.

Unload onunload Triggered when the document is unloaded.

In the topics that describe the events, the intercap (capitalised word breaks) form is used so that the
event name reads more easily.

Warnings:
❑ Netscape version 4.0 allows event name properties to have some uppercase characters. For example,

a portable script would set the onchange property. A non-portable script that only worked in
Netscape would set the onChange property. It is probably best to avoid using this if you want your
scripts to run as widely as possible.

❑ Not all versions of the browsers support the assignment of handlers to object properties. This
depends on the object type, browser version and probably the phase of the moon.

See also: Event, Event handler, Event model, Keyboard events,
Window.releaseEvents()

Event object (Object/DOM)
Early Netscape and MSIE browsers define different event object models. In MSIE, a single Event
object is available globally and shared by all events.

Availability: DOM level – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

- myEvent = event

- myEvent = myWindow.event
JavaScript syntax:

N myEvent =
myDocumentEvent.createEvent(aType)

Argument list: aType An event type

Object properties: altKey, bubbles, button, cancelable, cancelBubble,
charCode, clientX, clientY, ctrlKey, currentTarget,
data, dataFld, dataTransfer, eventPhase, fromElement,
height, keyCode, layerX, layerY, modifiers, offsetX,
offsetY, pageX, pageY, propertyName, qualifier, reason,
recordset, repeat, returnValue, screenX, screenY,
shiftKey, srcElement, srcFilter, srcUrn, target,
timeStamp, toElement, type, which, width, x, y

JavaScript Programmer's Reference

724

Class constants: ABORT, ALT_MASK, AT_TARGET, BACK, BLUR, BUBBLING_PHASE,
CAPTURING_PHASE, CHANGE, CLICK, CONTROL_MASK,
DBLCLICK, DRAGDROP, ERROR, FOCUS, FORWARD, HELP,
KEYDOWN, KEYPRESS, KEYUP, LOAD, LOCATE, META_MASK,
MOUSEDOWN, MOUSEDRAG, MOUSEMOVE, MOUSEOUT, MOUSEOVER,
MOUSEUP, MOVE, RESET, RESIZE, SCROLL, SELECT,
SHIFT_MASK, SUBMIT, UNLOAD, XFER_DONE

Object methods: initEvent(), preventDefault(), stopPropagation()

Collections: bookmarks[], boundElements[]

The event models in Netscape version 4 and MSIE version 4 support an Event object. However,
both browsers support different properties for this object. It may be possible with some smart
JavaScript code to normalize these to look like the same object model. You could either define your
own or take one and emulate it in the other.

As well as being different, the Event object is passed to event handlers in a different way for each
browser. Netscape version 4 passes the Event object as an argument. MSIE version 4 stores a
reference to it in the global variable called event.

Netscape provides a set of static constants that can be used to manufacture modifier masks. These
can then be tested against the Event.modifiers property. These constants have names that all
end with the suffix "_MASK". There are other constants provided so masks for event types can be
made. These can be tested against the Event.type property.

MSIE does not support these static constants in the same way and uses fully spelled-out event
names as string primitive values for matching. This ultimately may be better because Netscape is
constrained for space as regards bit values for new events. There are only 32 bits and most have
already been allocated to event types.

As of version 6.0 of Netscape, the underlying event model is based on the DOM level 2 event
module. This is fundamentally different to the support of events in earlier versions of the Netscape
browser. DOM level 2 and Netscape 6.0 converge on the same basic model as MSIE. This adds some
new properties, methods and static constants in accordance with the DOM specification. Some
properties persist from earlier versions.

The DOM level 2 specification for events describes a category of HTMLEvents which it suggests is
based on DOM level 0 capabilities. There is only a small amount of information about the event
type strings and the event capabilities in the DOM level 2 context. No ECMAScript binding is
described and because DOM level 0 has never been published as a standard, there is a little
ambiguity about these events. The standardization is somewhat de-facto regarding them and in
due course, as the DOM event model evolves, this should all become more consistent and more
completely documented.

Warnings:
❑ Properties belonging to an Event object cannot be set in Netscape unless the script has the

UniversalBrowserWrite privilege. You also cannot watch events in other windows if they are
loaded from different sources unless the script also has the UniversalBrowserWrite privilege.

E – Event object (Object/DOM)

725

❑ The properties and methods supported by Netscape and MSIE differ greatly in name and function.
You will need to be very careful when building sophisticated event management capabilities into
your scripts.

❑ Netscape does not implement all of the events for which there are static constants defined.

Example code:
// List the event constants in Netscape Navigator.
// This does not work in MSIE.
d = document;
e = Event;
s1 = "<TR><TD>";
s2 = "</TD><TD>";
s3 = "</TD></TR>";
d.write("<TABLE BORDER=1>");
d.write(s1 + "MOUSEDOWN" + s2 + e.MOUSEDOWN + s3);
d.write(s1 + "MOUSEUP" + s2 + e.MOUSEUP + s3);
d.write(s1 + "MOUSEOVER" + s2 + e.MOUSEOVER + s3);
d.write(s1 + "MOUSEOUT" + s2 + e.MOUSEOUT + s3);
d.write(s1 + "MOUSEMOVE" + s2 + e.MOUSEMOVE + s3);
d.write(s1 + "CLICK" + s2 + e.CLICK + s3);
d.write(s1 + "DBLCLICK" + s2 + e.DBLCLICK + s3);
d.write(s1 + "KEYDOWN" + s2 + e.KEYDOWN + s3);
d.write(s1 + "KEYUP" + s2 + e.KEYUP + s3);
d.write(s1 + "KEYPRESS" + s2 + e.KEYPRESS + s3);
d.write(s1 + "DRAGDROP" + s2 + e.DRAGDROP + s3);
d.write(s1 + "FOCUS" + s2 + e.FOCUS + s3);
d.write(s1 + "BLUR" + s2 + e.BLUR + s3);
d.write(s1 + "SELECT" + s2 + e.SELECT + s3);
d.write(s1 + "CHANGE" + s2 + e.CHANGE + s3);
d.write(s1 + "RESET" + s2 + e.RESET + s3);
d.write(s1 + "SUBMIT" + s2 + e.SUBMIT + s3);
d.write(s1 + "LOAD" + s2 + e.LOAD + s3);
d.write(s1 + "UNLOAD" + s2 + e.UNLOAD + s3);
d.write(s1 + "ABORT" + s2 + e.ABORT + s3);
d.write(s1 + "ERROR" + s2 + e.ERROR + s3);
d.write(s1 + "MOVE" + s2 + e.MOVE + s3);
d.write(s1 + "RESIZE" + s2 + e.RESIZE + s3);
d.write("</TABLE>");

See also: Element.onevent, Event bubbling, Event handler, Event type
constants, Event.modifiers, Implementation.hasFeature(),
MouseEvent object, Timer events, UIEvent object,
UniversalBrowserAccess, UniversalBrowserRead,
UniversalBrowserWrite, unwatch(), watch(),
Window.handleEvent()

Property JavaScript JScript N IE Opera DOM Notes

altKey - 3.0 + - 4.0 + 5.0 + - ReadOnly
bubbles 1.5 + - 6.0 + - - 2 + ReadOnly
button - 3.0 + - 4.0 + - - Warning,

ReadOnly
cancelable 1.5 + - 6.0 + - - 2 + ReadOnly

Table continued on following page

JavaScript Programmer's Reference

726

Property JavaScript JScript N IE Opera DOM Notes

cancelBubble - 3.0 + - 4.0 + 5.0 + - -
charCode - 3.0 + - 4.0 + - - -
clientX - 3.0 + - 4.0 + 5.0 + - ReadOnly
clientY - 3.0 + - 4.0 + 5.0 + - ReadOnly
ctrlKey - 3.0 + - 4.0 + 5.0 + - ReadOnly
currentTarget 1.5 + - 6.0 + - 5.0 + 2 + ReadOnly
data 1.2 + 3.0 + 4.0 + 4.0 + - - Warning,

ReadOnl.
dataFld 1.2 + 3.0 + 4.0 + 4.0 + - 2 + Warning
dataTransfer - 5.0 + - 5.0 + - - -
eventPhase 1.5 + - 6.0 + - - 2 + ReadOnly
fromElement - 3.0 + - 4.0 + - - ReadOnly
height 1.2 + - 4.0 + - - - -
keyCode - 3.0 + - 4.0 + - - Warning
layerX 1.2 + - 4.0 + - - - Warning,

ReadOnly
layerY 1.2 + - 4.0 + - - - Warning,

ReadOnly
modifiers 1.2 + - 4.0 + - - - ReadOnly
offsetX - 3.0 + - 4.0 + - - Warning,

ReadOnly
offsetY - 3.0 + - 4.0 + - - Warning,

ReadOnly
pageX 1.2 + - 4.0 + - - - ReadOnly
pageY 1.2 + - 4.0 + - - - ReadOnly
propertyName - 5.0 + - 5.0 + - - -
qualifier 1.2 + 3.0 + 4.0 + 4.0 + - 2 + Warning
reason - 3.0 + - 4.0 + - - ReadOnly
recordset 1.2 + 3.0 + 4.0 + 4.0 + - 2 + Warning
repeat - 5.0 + - 5.0 + - - -
returnValue - 3.0 + - 4.0 + - - -
screenX 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - ReadOnly
screenY 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - ReadOnly
shiftKey - 3.0 + - 4.0 + 5.0 + - ReadOnly
srcElement - 3.0 + - 4.0 + - - ReadOnly
srcFilter - 3.0 + - 4.0 + - - ReadOnly
srcUrn 1.2 + 3.0 + 4.0 + 4.0 + - 2 + Warning
target 1.2 + - 4.0 + - 5.0 + 2 + ReadOnly

Table continued on following page

E – Event.altKey (Property)

727

Property JavaScript JScript N IE Opera DOM Notes

timeStamp 1.5 + - 6.0 + - - 2 + Warning,
ReadOnly

toElement - 3.0 + - 4.0 + - - ReadOnly
type 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 2 + ReadOnly
which 1.2 + - 4.0 + - 5.0 + - Warning,

ReadOnly
width 1.2 + - 4.0 + - - - -
x 1.2 + 3.0 + 4.0 + 4.0 + - - ReadOnly
y 1.2 + 3.0 + 4.0 + 4.0 + - - ReadOnly

Method JavaScript JScript N IE Opera DOM Notes

initEvent() 1.5 + - 6.0 + - - 2 + -
preventDefault() 1.5 + - 6.0 + - 5.0 + 2 + -
stopPropagation() 1.5 + - 6.0 + - 5.0 + 2 + -

Event.altKey (Property)
A Boolean value in MSIE that represents the state of the [alt] key.

Availability: JScript – 3.0
Internet Explorer version – 4.0
Opera – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEvent.altKey

When an event is being processed, you may want to know the state of the [alt] key on the keyboard.

This Boolean property returns true when the [alt] key is pressed and false when it is not.

This property reflects the state of the [alt] key at the instant when the event was triggered. The user
may have released the [alt] key in the meantime, so you should not assume that if the [alt] key was
pressed earlier on that it is still pressed when the event handler is being executed.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.modifiers, MouseEvent.altKey, onKeyDown

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

728

Event.bookmarks[] (Collection)
A collection of all the ADO bookmarks tied to the rows affected by the current event.

JavaScript syntax: ASP myEvent.bookmarks

This is part of the ADO server side support in the Microsoft ASP server.

See also: Active Server Pages, ADO

Property attributes:
ReadOnly.

Event.boundElements[] (Collection)
A collection of all the elements on the page that are bound to a dataset.

JavaScript syntax: ASP myEvent.boundElements

This is part of the ADO server side support in the Microsoft ASP server.

See also: Active Server Pages

Property attributes:
ReadOnly.

Event.bubbles (Property)
A Boolean value that indicates whether the event can bubble or not.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myEvent.bubbles

If this value is true, then the event can bubble. That means it can propagate upwards to its parent
node and onwards towards the head of the document hierarchy.

Property attributes:
ReadOnly.

E – Event.button (Property)

729

Event.button (Property)
The mouse button that was pressed to trigger the event in MSIE.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.button

This property will contain a value to indicate the mouse button that was pressed to trigger the event.

Note that on a Macintosh, this value is meaningless as there is only one button on an Apple
Macintosh mouse although you can retrofit a third party 2 or 3 button mouse.

Third party mice can be added to Apple Macintosh systems to provide multiple (2 or 3) button
functionality, but they are by no means commonplace and it is probably safe to assume only a 1
button mouse on the Macintosh platform.

The values for the buttons are defined to cope with 1, 2 or 3 button mice.

The following values correspond with mouse buttons:

❑ 0 – No mouse button was pressed when the event was triggered

❑ 1 – The left button was pressed

❑ 2 – The right button was pressed

❑ 3 – The middle button was pressed

DOM level 2 event handling moves this property to the MouseEvent object.

Warnings:
❑ This is not supported by Netscape which returns mouse button values and key codes in the same

property (which).

See also: Event.which, MouseEvent.button, onClick, onDblClick,
onMouseDown, onMouseUp

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

730

Event.cancelable (Property)
If the event can be cancelled, then this flag will be set true.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myEvent.cancelable

Events can be cancelled and have their default action prevented. If the event can support this, then
the true value will be present. This will affect the value returned to the dispatcher that triggered
the event. Dispatchers should behave consistently whether they are EventTarget objects or the
implementation that the scripts are executing in.

Property attributes:
ReadOnly.

Event.cancelBubble (Property)
A flag that halts event bubbling in MSIE browsers.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEvent.cancelBubble = aBooleanValue

Argument list: aBooleanValue A true or false setting

Event propagation passes events up the DOM hierarchy, calling the handler for each event in turn.
This propagation effect can be stopped at once by setting the cancelBubble property to true.

Setting this property true in an event handler may improve stability in dynamically generated
HTML fragments that have mouse rollover code associated with them.

For example, you can implement a ticker in JavaScript instead of Java. However, on some MSIE
implementations (Macintosh for example), the browser crashes as you rollover several objects that
have been created dynamically. Using the cancelBubble technique may stop runaway events
from propagating and causing contention in the browser core.

See also: Event propagation

E – Event.charCode (Property)

731

Event.charCode (Property)
The character code of a key that was pressed to trigger the event relating to this object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myEvent.charCode

Events may be triggered by keystrokes. This property provides a means of determining which key
was pressed.

Note that this is a character code property so it is a character value mapped to a keyboard key and
therefore should take account of internalization.

Event.clientX (Property)
MSIE mouse position relative to the web page.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.clientX

This is the horizontal position of the mouse when the event was triggered. The position is
calculated relative to the visible document area within the window or frame the mouse was
positioned in when the event triggered.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.clientY, Event.pageX, Event.pageY,
Event.screenX, Event.screenY, MouseEvent.clientX

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

732

Event.clientY (Property)
MSIE mouse position relative to the web page.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.clientY

This is the vertical position of the mouse when the event was triggered. The position is calculated
relative to the visible document area within the window or frame the mouse was positioned in
when the event triggered.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.clientX, Event.pageX, Event.pageY,
Event.screenX, Event.screenY, MouseEvent.clientY

Property attributes:
ReadOnly.

Event.ctrlKey (Property)
A Boolean value in MSIE that represents the state of the [control] key.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEvent.ctrlKey

When an event is being processed, you may want to know the state of the [control] key on the keyboard.

This Boolean property returns true when the [control] key is pressed and false when it is not.

This property reflects the state of the [control] key at the instant when the event was triggered. The
user may have released the key in the meantime, so you should not assume that if the [control] key
was pressed earlier on that it is still pressed when the event handler is being executed.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.modifiers, MouseEvent.ctrlKey, onKeyDown

E – Event.currentTarget (Property)

733

Property attributes:
ReadOnly.

Event.currentTarget (Property)
A reference to the object whose listener is being called with the receiving Event object.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0
Opera – 5.0

Property/method value type: EventTarget object

JavaScript syntax: N myEvent.currentTarget

This is a useful property which provides a means of sharing listener scripts between several event
handlers. You can then determine which one of several objects was the EventTarget that had the
event dispatched to it.

Property attributes:
ReadOnly.

Event.data (Property)
The URL of the data dropped into a the window from an onDragDrop event.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: - myEvent.data

This property contains information that describes what was just dropped onto the object that owns
the onDragDrop handler. Normally, that would be a URL that refers to the entity that was dropped.

Warnings:
❑ When using this property in Netscape, you will need the UniversalBrowserRead privilege to see

the value and UniversalBrowserWrite privilege to change it.

See also: UniversalBrowserAccess, UniversalBrowserRead,
UniversalBrowserWrite, Window.ondragdrop

JavaScript Programmer's Reference

734

Property attributes:
ReadOnly.

Event.dataTransfer (Property)
A means of transferring drag and drop data via the Event object. This refers to a dataTransfer object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: dataTransfer object

JavaScript syntax: IE myEvent.dataTransfer

The browser loads the object as it handles the drag and drop operation. Refer to the
dataTransfer object topic for further details.

See also: dataTransfer object

Event.eventPhase (Property)
Describes what phase the event is currently being processed in.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.eventPhase

A new concept that has been introduced at DOM level 2 is that of event phases. This allows your
handler to determine the current disposition of an event from the script interface. You can examine
the eventPhase property and test it against one of the predefined constants.

DOM level 2 introduces these static constants to the Event class to describe the current state of an
event that is encapsulated by the Event object:

Value Symbolic Name

1 CAPTURING_PHASE
2 AT_TARGET
3 BUBBLING_PHASE

See also: Event type constants

Property attributes:
ReadOnly.

E – Event.fromElement (Property)

735

Event.fromElement (Property)
The object that the mouse is moving from.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Object object

JavaScript syntax: IE myEvent.fromElement

This property is useful in onMouseOver event handlers. It is a reference to the object that mouse
was previously over when it entered an object. That object receives a onMouseOver event. It also
knows about the onMouseOver object via the toElement property of the Event object.

See also: Event.toElement

Property attributes:
ReadOnly.

Event.height (Property)
The new height of a resized window or frame.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.height

If a window or frame is resized by the user, the new height value is available in this property.

See also: Event.width

Event.initEvent() (Method)
An Event object initializer that must be called before dispatching the Event object to an
EventTarget.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myEvent.initEvent(aType, aBubble, aCancel)

JavaScript Programmer's Reference

736

aType A string indicating the event type
aBubble A boolean flag indicating whether the event can bubble

Argument list:

aCancel A boolean flag indicating whether the event can be
cancelled

This method is used to initialize Event objects that have been created with the DocumentEvent
object. It is intended that this be called at the outset although the DOM level 2 specification allows
for an implementation to call it several times later on if necessary.

The event type argument value must conform to the conventions discussed in the Event.type topic.

The first of the remaining arguments is a flag value to indicate whether the event is bubbling or
capturing in its behavior. The last argument is a flag to indicate whether the event can be cancelled.

See also: Event.type

Event.keyCode (Property)
The code point for the key that was pressed in MSIE.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.keyCode

This is the Unicode code point value and not the character code. This means the value is numeric.

You can also use the mask values to determine if any of the modifier keys were held down. Here is
a list of the modifier key mask values:

Bit Constant Event type

2^0 ALT_MASK The [alt] key was held down while key was pressed

2^1 CONTROL_MASK The [control] key was held down while key was pressed

2^2 SHIFT_MASK The [shift] key was held down while key was pressed

2^3 META_MASK The [meta] key was held down while key was pressed

Warnings:
❑ This is not supported by Netscape which returns choice values in the which property value.

See also: Event.which, onKeyDown

E – Event.layerX (Property)

737

Event.layerX (Property)
The X coordinate of the event within a layer.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.layerX

In Netscape, mouse positions are available within a layer object. These may not be the same
positions as the mouse coordinates within a window. This is because a layer may have been
scrolled with respect to the window. Nevertheless if you are working on the layer, you need
coordinates that are relative to your target to save having to compute them.

Warnings:
❑ Netscape 6.0 completely removes layer support. If you use layers, your pages will break.

See also: Event.layerY

Property attributes:
ReadOnly.

Event.layerY (Property)
The Y coordinate of the event within a layer.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.layerY

In Netscape, mouse positions are available within a layer object. These may not be the same
positions as the mouse coordinates within a window. This is because a layer may have been
scrolled with respect to the window. Nevertheless if you are working on the layer, you need
coordinates that are relative to your target to save having to compute them.

Warnings:
❑ Netscape version 6.0 completely removes layer support. If you use layers, your pages will break.

See also: Event.layerX

JavaScript Programmer's Reference

738

Property attributes:
ReadOnly.

Event.modifiers (Property)
A bitmask provided by Netscape, which contains a bit flag for each modifier key.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.modifiers

The modifiers are supplied as a mask which needs to be assembled using bitwise OR techniques
from the component values.

The mask values are summarized in this table:

Bit Constant Event type

2^0 ALT_MASK The [alt] key was held down while key was pressed

2^1 CONTROL_MASK The [control] key was held down while key was pressed

2^2 SHIFT_MASK The [shift] key was held down while key was pressed

2^3 META_MASK The [meta] key was held down while key was pressed

See also: Document.releaseEvents(), Event object, Event.altKey,
Event.ctrlKey, Event.shiftKey, Keyboard events,
Layer.releaseEvents(), onKeyDown,
Window.releaseEvents()

Property attributes:
ReadOnly.

Event.offsetX (Property)
The X coordinate of the event relative to its containing object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.offsetX

As you would expect, coordinate positions of the mouse are provided in mutually exclusive ways
in Netscape and MSIE. This is the MSIE equivalent to the layer coordinate scheme in Netscape. Of
course, MSIE does not have layers but they can be simulated by using arbitrary objects.

E – Event.offsetY (Property)

739

Warnings:
❑ The value in this property is calculated relative the coordinate system of the container of the source

element that generated the event. This may not be the same as the coordinate scheme for the
receiving object.

Property attributes:
ReadOnly.

Event.offsetY (Property)
The Y coordinate of the event relative to its containing object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.offsetY

As you would expect, coordinate positions of the mouse are provided in mutually exclusive ways
in Netscape and MSIE. This is the MSIE equivalent to the layer coordinate scheme in Netscape. Of
course, MSIE does not have layers but they can be simulated by using arbitrary objects.

Warnings:
❑ The value in this property is calculated relative the coordinate system of the container of the source

element that generated the event. This may not be the same as the coordinate scheme for the
receiving object.

Property attributes:
ReadOnly.

Event.pageX (Property)
Netscape mouse position relative to the web page.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.pageX

This is the Netscape mechanism for locating the mouse with respect to the window or frame
coordinate address space. Of course it's different to the MSIE property that provides the same
functionality. This means you need to build completely different event handling scripts for each
platform, as if you didn't already have reason enough.

JavaScript Programmer's Reference

740

See also: Event.clientX, Event.clientY, Event.pageY,
Event.screenX, Event.screenY

Property attributes:
ReadOnly.

Event.pageY (Property)
Netscape mouse position relative to the web page.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.pageY

This is the Netscape mechanism for locating the mouse with respect to the window or frame
coordinate address space. Of course it's different to the MSIE property that provides the same
functionality. This means you need to build completely different event handling scripts for each
platform, as if you didn't already have reason enough.

See also: Event.clientX, Event.clientY, Event.pageX,
Event.screenX, Event.screenY

Property attributes:
ReadOnly.

Event.preventDefault() (Method)
A means of preventing the default behavior from being activated after the event returns
to its dispatcher.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0
Opera – 5.0

JavaScript syntax: N myEvent.preventDefault()

This method only applies if the event can be cancelled. That is, if the Event object's cancelable
property contains a true value. This value is readable but not writable. It is defined when the
Event object is instantiated or initialized and cannot be changed later.

Calling this method at any time during the handling of the event will cancel the event immediately,
returning control to the dispatcher. Any default handling will also be cancelled. You should be aware
that if you dispatch an event from a script, it is your responsibility to make sure you check the return
status of your dispatch call to ensure you do this consistently with implementation dispatched events.

E – Event.propertyName (Property)

741

Calling this method should cancel any subsequent event processing regardless of the kind of
propagation being used. Any subsequent bubbling up or capturing should see that the event has
been cancelled and should honor that without any further processing of the event.

Calling this method on an event whose cancelable property does not contain a true value
should have no effect at all.

Event.propertyName (Property)
The name of a property that was changed and which triggered an onPropertyChange event.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myEvent.propertyName

This property is useful in the event handler code for the onPropertyChange event. You can also
inspect the srcElement property of the same Event object to establish the object owning the
changed property.

See also: Event.srcElement, onPropertyChange

Event.reason (Property)
An indication of the status of a data transfer.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myEvent.reason

This is part of the database driven event handling which is triggered by a DataSetComplete event.

You can check this property to determine if the data transfer worked. The following values
are supported:

❑ 0 – The transfer was successful

❑ 1 – The transfer was aborted prematurely

❑ 2 – Some kind of error occurred during the transfer

See also: onDataSetComplete

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

742

Event.repeat (Property)
If a keyboard can generate auto-repeating keystrokes, then this is set true when a keystroke is an
auto-repeat of a previous one.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEvent.repeat

Refer to:
Event.keyCode

Event.returnValue (Property)
A return value for the event.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myEvent.returnValue

You may want to modify the return value for the event handler. By assigning a new value to this
property, the returnValue property of the event handler will be modified.

Because event handlers can only return a Boolean value, you only need to consider the possibility
of changing the default true value to false.

If you return a true value, the event is handed back into the browser and it is able to continue
handling the user interaction. For example, if a Click handler is introduced, it would behave as if
the Click handler were not present.

Returning a false value informs the browser that your handler has done everything that is
necessary to manage the event and it can now dispose of the event without any further action being
taken on its part.

Event.screenX (Property)
Mouse position relative to the screen display.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

E – Event.screenY (Property)

743

JavaScript syntax: - myEvent.screenX

You may need to know the position of the mouse relative to the screen display coordinates and not
the browser window or objects within it. This property provides the horizontal coordinate of the
mouse within the screen.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.clientX, Event.clientY, Event.pageX,
Event.pageY, Event.screenY, MouseEvent.screenX

Property attributes:
ReadOnly.

Event.screenY (Property)
Mouse position relative to the screen display.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myEvent.screenY

You may need to know the position of the mouse relative to the screen display coordinates and not
the browser window or objects within it. This property provides the vertical coordinate of the
mouse within the screen.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.clientX, Event.clientY, Event.pageX,
Event.pageY, Event.screenX, MouseEvent.screenY

Property attributes:
ReadOnly.

Event.shiftKey (Property)
A Boolean value in MSIE that represents the state of the [shift] key.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

JavaScript Programmer's Reference

744

Property/method value type: Boolean primitive

JavaScript syntax: IE myEvent.shiftKey

When an event is being processed, you may want to know the state of the [shift] key on the keyboard.

This Boolean property returns true when the [shift] key is pressed and false when it is not.

This property reflects the state of the [shift] key at the instant when the event was triggered. The
user may have released the key in the meantime, so you should not assume that if the [shift] key
was pressed earlier on that it is still pressed when the event handler is being executed.

DOM level 2 event handling moves this property to the MouseEvent object.

See also: Event.modifiers, MouseEvent.shiftKey, onKeyDown

Property attributes:
ReadOnly.

Event.srcElement (Property)
An MSIE supported property containing the event source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Object reference

JavaScript syntax: IE myEvent.srcElement

You can construct an event handler that is shared amongst several objects. If that is the case, this
property allows you to determine which one triggered the event so that you can modify the event
handler behavior accordingly.

See also: Event.propertyName, Event.target, onPropertyChange

Property attributes:
ReadOnly.

Event.srcFilter (Property)
A filter object representing the filter that changed.

Availability: JScript – 3.0
Internet Explorer – 4.0

E – Event.stopPropagation() (Method)

745

Property/method value type: Filter object reference

JavaScript syntax: IE myEvent.srcFilter

You can construct an event handler that is shared amongst several filters in MSIE. If that is the case,
this property allows you to determine which one triggered the event, so that you can modify the
event handler behavior accordingly.

Property attributes:
ReadOnly.

Event.stopPropagation() (Method)
Prevents propagation of event handling via bubbling or capture techniques.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0
Opera – 5.0

JavaScript syntax: N myEvent.stopPropagation()

This is similar to event cancelling, but defers that cancellation until the end of the current handler.
Any pending dispatches to the current EventTarget will be honored however.

Propagation of events to any parent node when bubbling is used or child nodes when event
capturing is used will be inhibited.

Event.target (Property)
A property containing a reference to the object that the event was directed at.

Availability: DOM level – 2
JavaScript – 1.2
Netscape – 4.0
Opera – 5.0

Property/method value type: EventTarget object

JavaScript syntax: N myEvent.target

You can construct an event handler that is shared amongst several target objects in Netscape. If that
is the case, this property allows you to determine which one the event was aimed at, so that you
can modify the event handler behavior accordingly.

DOM level 2 introduces the EventTarget object as a standard property, so it should be expected
to be available more widely in due course than in the Netscape browser.

JavaScript Programmer's Reference

746

See also: Event.srcElement,
MutationEvent.initMutationEvent()

Property attributes:
ReadOnly.

Event.timeStamp (Property)
A time value at which the event was triggered.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.timeStamp

This indicates the exact time (in milliseconds) when the event occurred. This should be equivalent
to having called Date.getUTCMilliseconds() to obtain a measurement of the number of
milliseconds since midnight on the first of January 1970.

The example demonstrates how this might be used to display an alert() dialog that indicates the
number of milliseconds that have elapsed since the page was loaded.

The time stamp value here is the time the event was triggered. This is important because if you measure
the time during an event handler, that may be some time after the event occurred. It may be important
to collect a series of events and arrange them into sequence. The trigger time allows you to do this.

Warnings:
❑ The standard expects that this may not always be available, and that in such cases a value of zero

should be returned.

❑ This feature appears to manifest a bug and unfortunately, the Event object does not seem to work
with this property in the initial release of Netscape 6.0. This event model is a completely new
implementation based on the DOM level 2 standard and so we might expect some instabilities in
the early days.

Example code:
<HTML>
<HEAD>
<SCRIPT>
myLoadTime = new Date().getTime();
</SCRIPT>
</HEAD>
<BODY>

E – Event.toElement (Property)

747

<SCRIPT>
document.write(myLoadTime);
</SCRIPT>
<HR>
<INPUT TYPE="BUTTON" VALUE="TOM" ONCLICK="measureTime(event);">
<SCRIPT>
function measureTime(anEvent)
{
 alert(anEvent.timeStamp- myLoadTime);
}
</SCRIPT>
</BODY>
</HTML>

See also: Date object, Date.getUTCMilliseconds()

Property attributes:
ReadOnly.

Event.toElement (Property)
The object to which the mouse is moving.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Object object

JavaScript syntax: IE myEvent.toElement

This property is useful in MouseOut event handlers. It is a reference to the object that the mouse is
just entering when it left an object. That object receives a MouseOver event. It also knows about the
MouseOut object via the fromElement property of the Event object.

See also: Event.fromElement

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

748

Event.type (Property)
A string that contains the event type name.

Availability: DOM level – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myEvent.type

The event types in pre-version 6.0 examples of Netscape are determined by matching against a
bitmask, which is then used internally for capturing and routing events. Eventually during an
event handler, an event is passed to a handler and the type property is set to a string that
describes the event type.

The DOM level 2 event handling that is supported by Netscape version 6 works more like it did for
the MSIE browser, although the event bubbling and event capture techniques are both available.
The event type property is still available although the DOM level 2 event specification does not list
a set of values but does mention some possible values incidentally. It does indicate that the value
should be an XML name value as defined in the XML specification which simply describes its 'well
formedness' but does not enumerate any valid event type values.

Certain name values are reserved. For example, the XML standard reserves all names beginning
with "XML". The value is case-insensitive and this rule should apply after conversion from
international characters to locale specific characters.

Likewise, the DOM standard reserves all names beginning with the string "DOM". It is also
likewise case- and internationalization-insensitive in its reservation of this name start string.

The specification suggests that third party event definitions that are implementation-specific
should include some kind of prefix to avoid namespace collisions.

Here are some Event type names that can be observed by closely inspecting the DOM level 2 event
specification:

Value Event object type

HTMLEvents HTML Element objects

MouseEvents MouseEvent object

MutationEvents MutationEvent object

UIEvents UIEvent object

The standard notes that Key events are not yet supported and will be added in a later DOM level.

E – Event.which (Property)

749

See also: DocumentEvent.createEvent(), Event type constants,
Event.initEvent(), XML name

Property attributes:
ReadOnly.

Web-references:
http://www.w3.org/TR/1998/Rec-xml-19980210

Event.which (Property)
The number of the mouse button or the code point value of a key that was pressed in Netscape.

Availability: JavaScript – 1.2
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: N myEvent.which

Netscape uses a completely different means of determining which mouse button or keyboard key
was pressed. It also detects [alt], [control] and [shift] modifier keys using a different technique to that
used by MSIE.

The mouse buttons don't even correspond to the same mapping as MSIE. Here are the mouse
button value passed in the which property:

❑ 1 – The left button

❑ 2 – The right button in a two button mouse

❑ 2 – The middle button in a three button mouse

❑ 3 – The right button in a three button mouse

If the event is a keyboard triggered event, the which property will contain the ASCII character
value of the keyboard key that was pressed. Note that it is the ASCII value and not the Unicode
value although the distinction is very subtle.

DOM level 2 event handling replaces this property of the Event object with the
MouseEvent.button property.

Warnings:
❑ This is not supported by MSIE, which uses the button and keyCode properties to return mouse

button values and key codes separately from one another.

http://www.w3.org/TR/1998/Rec-xml-19980210

JavaScript Programmer's Reference

750

See also: Event.button, Event.keyCode, Keyboard events,
MouseEvent.button, onClick, onDblClick, onKeyDown,
onMouseDown, onMouseUp

Property attributes:
ReadOnly.

Event.width (Property)
The new width of a resized window or frame.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N MyEvent.width

If a window or frame is resized by the user, the new height value is available in this property.

See also: Event.height

Event.x (Property)
The X coordinate of the event within a positioned object.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myEvent.x

When this event is passed with a resize event in Netscape, this property indicates the width of the
object having been resized.

Otherwise, in Netscape, it indicates the horizontal position of the mouse pointer measured relative
to the layer in which the event occurred.

In MSIE, it indicates the horizontal position of the mouse pointer, measured relative to the
parent element.

Property attributes:
ReadOnly.

E – Event.y (Property)

751

Event.y (Property)
The Y coordinate of the event within a positioned object.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myEvent.y

When this event is passed with a resize event in Netscape, this property indicates the height of the
object having been resized.

Otherwise, in Netscape, it indicates the vertical position of the mouse pointer measured relative to
the layer in which the event occurred.

In MSIE, it indicates the vertical position of the mouse pointer, measured relative to the
parent element.

Property attributes:
ReadOnly.

Event propagation (Definition)
The means whereby events are passed up a hierarchy of objects.

Event propagation is important and handled slightly differently in Netscape versus MSIE.

Events are processed by handlers in objects that support the event and are then passed upwards,
being handled as necessary as they traverse a tree. This is especially useful when a single event
object represents the event, as properties can be added or modified at each stage.

Propagation also saves you proliferating event handlers all over your script. It may be that you can
handle all the errors you need to by attaching a handler at a high level and then waiting for events
to be propagated up to it.

This would be fine apart from the fact that Netscape and MSIE model this in quite different ways.
The only common factor between them is that events ultimately end up at the window or
document. They arrive there by quite different means, but at least you do get one centralized
opportunity to handle them.

Netscape prior to version 6.0 does it like this. First it makes a list of events that it wishes to capture.
This is done with the captureEvents() method. Once the event capture bitmask is set up, you
need to register some event handlers by assigning a reference to a function object to the event
handler properties. Events are then only propagated by the event handler if it chooses to do so. The
routeEvent() function passes the event to the next event that has signified an interest with the
captureEvents() bitmask. Alternatively, you can use the handleEvent() function to pass the
event to an object which will then select an appropriate handler. Event propagation in Netscape is
very flexible but needs to be set up manually very carefully. Basically, events are captured at the
top and passed down the tree to the leaf nodes.

JavaScript Programmer's Reference

752

MSIE implements an event propagation technique that operates in completely the opposite
direction. Instead of starting the processing of events at the top of the DOM hierarchy, events start
at the bottom and work their way upwards. This is more of a traditional event propagation model.
If an event handler wants to inhibit the passing upwards of an event, it can do so by setting the
cancelBubble property of the Event object to true. The so called Input or Raw events exhibit this
bubbling effect while the Semantic events do not.

At version 6.0 of Netscape, the DOM level 2 event model is supported. This a complete
reorganization of event modelling in Netscape and fits more closely with the event model in MSIE.
The DOM standard appears to reach a helpful compromise though and allows for both kinds of
event propagation. This event model is still undergoing some change and there are additional
features at DOM level 3 which have yet to be ratified and are not implemented in any browser yet.

Warnings:
❑ Not all kinds of events in MSIE bubble up through the DOM hierarchy. This is because there are two

distinct types of events. These are sometimes called raw events and semantic events. Raw events
bubble and semantic events do not.

See also: CaptureEvents(), Document.captureEvents(),
Document.releaseEvents(), Element.onevent, Event
bubbling, Event.cancelBubble, Layer.captureEvents(),
Layer.releaseEvents(), Semantic event,
Window.captureEvents(), Window.handleEvent(),
Window.releaseEvents(), Window.routeEvent()

Event type constants (Constant/static)
Netscape defines a set of constants that represent event types.

Netscape provides some static properties of the Event object class that define mask values for
event types. These can then be combined with a bitwise OR operator to build a mask that can be
applied with the captureEvents() and releaseEvents() methods that are supported by
Window, Document and Layer objects.

Here is a list of the available Event type constants:

Bit Constant Event type

2^0 MOUSEDOWN The mouse button was pressed while the pointer was over
the element.

2^1 MOUSEUP The mouse button was released while the pointer was within the
extent region of the element.

2^2 MOUSEOVER The mouse has just moved over the extent region of the element.

2^3 MOUSEOUT The mouse has just moved out of the extent region of the element.

2^4 MOUSEMOVE The mouse was moved within the extent region of the element.

2^5 undefined Reserved for future use.

2^6 CLICK The element has been clicked on.

Table continued on following page

E – EventCapturer object (Object/Navigator)

753

Bit Constant Event type

2^7 DBLCLICK The element has been double-clicked on.

2^8 KEYDOWN A key was pressed while the element had focus.

2^9 KEYUP A key was released while the element had focus.

2^10 KEYPRESS A key was pressed and released again while the element had focus.

2^11 DRAGDROP Some entity has been dragged over and dropped onto the element.

2^12 FOCUS The element has had input focus restored to it.

2^13 BLUR Window or input element has lost input focus.

2^14 SELECT An item in a pop-up menu was selected.

2^15 CHANGE The input element's value has changed.

2^16 RESET The [RESET] button within a <FORM> was clicked.

2^17 SUBMIT The [SUBMIT] button within a <FORM> was clicked.

2^18 undefined Reserved for future use.

2^19 LOAD An element (usually a <BODY> or) has completed loading.

2^20 UNLOAD The element (usually a <BODY>) is about to be unloaded.

2^21 undefined Reserved for future use.

2^22 ABORT Image loading was aborted.

2^23 ERROR A script error has occurred.

2^24 undefined Reserved for future use.

2^25 MOVE The element (usually a Window) was moved.

2^26 RESIZE The element (usually a Window) was resized.

2^27 undefined Reserved for future use.

2^28 undefined Reserved for future use.

2^29 undefined Reserved for future use.

2^30 undefined Reserved for future use.

2^31 undefined Reserved for future use.

See also: captureEvents(), Document.captureEvents(),
Document.releaseEvents(), Event object,
Event.eventPhase, Event.type, Keyboard events,
Layer.captureEvents(), Layer.releaseEvents(),
Window.captureEvents(), Window.releaseEvents()

EventCapturer object (Object/Navigator)
A special object that Netscape uses to grab events.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myEventCapturer = window.open()

JavaScript Programmer's Reference

754

An object of this class is created when a window.open() method is executed in Netscape. Within
the window, the window object is visible to the scripts running inside it. From outside, the creating
script is handed an EventCapturer object as a handle on the window. In MSIE, you get a genuine
window object back.

The properties of the Netscape EventCapturer object are difficult to inspect because they cannot
be enumerated directly. The object, like many internal objects in Netscape has a constructor which
can be inspected but the object is opaque otherwise.

Because the event manager complex is so new (and somewhat fragile in Netscape 6.0) it is hard to
determine whether this is still true in that version. Some work needs to be done and a revised
version of Netscape will be required before this can be verified.

See also: Window object, Window.open()

EventException object (Object/DOM)
An object that describes the kind of event based exception that has occurred.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myEventException = new EventException()

Object properties: code

Class constants: UNSPECIFIED_EVENT_TYPE_ERR

During the processing of an event with its handler, some unexpected circumstance may cause an
exception to occur. This is not quite the same as a try ... catch exception as defined in
ECMAScript.

DOM level 2 describes an EventException object, but it's not obvious how this would be
associated with any JavaScript function that could be set up to catch it. The DOM level 2 event
specification is founded on the principle that the implementation should be at least ECMAScript
(third edition) compliant. This should ensure it has sophisticated enough error handling support to
cope with an exception being thrown. Neither specification describes in detail exactly how this
should happen and so it is likely that, whilst we may have browsers that support a standard and
consistent object model, we still have portability problems because they implement the
surrounding infrastructure differently.

Assuming that a function handler were called, it would be passed a reference to an
EventException object from which it could obtain a code value that describes the cause of the
exception. Perhaps, the onError handler may be used to trap this but an implementation might
choose to provide an onException handler.

At DOM level 2, only the UNSPECIFIED_EVENT_TYPE_ERR is defined as a static constant. This has
the value 0. Other event types may be defined in later versions of the DOM specification.

E – EventException.code (Property)

755

See also: EventTarget.dispatchEvent()

Property JavaScript JScript N IE Opera DOM Notes

code 1.5 + - 6.0 + - - 2 + -

EventException.code (Property)
A property containing a code value that indicates which one of the available set of exceptions
has occurred.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myEventException.code

At DOM level 2, the event model only supports a single UNSPECIFIED_EVENT_TYPE_ERR code value.

It is expected that other exception values will be defined in subsequent levels of the DOM standard
as they are released.

EventListener object (Object/DOM)
A script function that is called when an event is triggered.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myEventListener = function
Listener(anEvent) { ... }

Argument list: anEvent A placeholder argument

This is an event handler function which you can define in the script source text and can then
register as the listener for an event by means of the addEventListener() and
removeEventListener() methods belonging to the EventTarget object.

The script function takes a single argument which is an Event object that is instantiated as the
event is triggered.

JavaScript Programmer's Reference

756

Warnings:
❑ If you copy a document node with the cloneNode() method, the copies will not inherit the same

listeners and you will need to add new listeners to handle any events that are dispatched to the new
copies of the nodes.

❑ HTML 4.0 describes a way to associate listeners with objects as they are instantiated by means of the
HTML tag attributes. However, to support multiple listeners, the internal mechanisms no longer use
the member attribute mechanism for associating listeners with targets. This means that code that
assigns values to the onEventHandler property family may no longer work as expected if you mix
old and new style event handling techniques. Newer versions of browsers may deprecate the old
way and may in subsequent versions render it unsupported.

❑ The DOM level 2 event model is somewhat ambiguous about this part of the event handling
complex. It describes an event listener as having a handleEvent() method which is called. It is
not clear how you would add a handleEvent() method as a member of a function object which
was itself the element that was registered to receive the event.

❑ There may be changes to this aspect of the event model in later DOM levels to better support HTML
based event specification.

See also: EventTarget.addEventListener(), MutationEvent object

EventTarget object (Object/DOM)
A set of properties and methods that extend the behavior of DOM nodes to support event handling.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

N myEventTarget = myEvent.currentTarget

N myEventTarget = myEvent.target

N myEventTarget = myMouseEvent.currentTarget

N myEventTarget = myMouseEvent.relatedTarget

N myEventTarget = myMouseEvent.target

N myEventTarget =
myMutationEvent.currentTarget

N myEventTarget = myMutationEvent.target

N myEventTarget = myUIEvent.currentTarget

JavaScript syntax:

N myEventTarget = myUIEvent.target

Object methods: addEventListener(), dispatchEvent(),
removeEventListener()

Netscape version 6 introduces this capability and adds the EventTarget methods and properties
to its Node objects. This provides the necessary tools for registering and deregistering event
listeners and for dispatching an event to a Node.

See also: MouseEvent.initMouseEvent(),
MouseEvent.relatedTarget,
MutationEvent.initMutationEvent(), Node object

E – EventTarget.addEventListener() (Method)

757

Method JavaScript JScript N IE Opera DOM Notes

addEventListener() 1.5 + - 6.0 + - - 2 + -
dispatchEvent() 1.5 + - 6.0 + - - 2 + -
removeEventListener() 1.5 + - 6.0 + - - 2 + -

EventTarget.addEventListener() (Method)
Add a listener function to handle events dispatched to the owning EventTarget node.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myEventTarget.addEventListener(aType,
aListener, aFlag)

aType A string containing the event type
aListener A reference to an EventListener function object

Argument list:

aFlag A Boolean value containing the useCapture
disposition

The addEventListener() method will attach a function object to an EventTarget node in such
a way that the function is called when the event is triggered. An Event object is passed to the
function as an argument so you need to specify this in its declaration. This is how handler functions
are registered as listeners.

You can replace a listener with another by registering a new listener with the same parameters. The
old one will be discarded. If you want to stop the listener from responding to the event, you can
deregister it with the removeEventListener() method.

The three parameters to the addEventListener() method are:

❑ A string describing the event type being registered.

❑ A reference to a function object that has been declared elsewhere in the script source text.

❑ A Boolean flag value that indicates whether the event listener should use bubbling (bottom up) or
capture (top down) event propagation. Both types can be registered separately but must also be
removed separately.

Examining the DOM level 2 specification suggests that these event type strings may be used:

Event string Event object type DOM

abort HTMLEvent 2

blur HTMLEvent 2

change HTMLEvent 2

click MouseEvent 2

DOMActivate UIEvent 2

Table continued on following page

JavaScript Programmer's Reference

758

Event string Event object type DOM

DOMAttrModified MutationEvent 2

DOMCharacterDataModified MutationEvent 2

DOMFocusIn UIEvent 2

DOMFocusOut UIEvent 2

DOMNodeInserted MutationEvent 2

DOMNodeInsertedIntoDocument MutationEvent 2

DOMNodeRemoved MutationEvent 2

DOMNodeRemovedFromDocument MutationEvent 2

DOMSubtreModified MutationEvent 2

error HTMLEvent 2

focus HTMLEvent 2

load HTMLEvent 2

mousedown MouseEvent 2

mousemove MouseEvent 2

mouseout MouseEvent 2

mouseover MouseEvent 2

mouseup MouseEvent 2

reset HTMLEvent 2

resize HTMLEvent 2

scroll HTMLEvent 2

select HTMLEvent 2

submit HTMLEvent 2

unload HTMLEvent 2

Note that the DOM level 2 event module specification is somewhat ambiguous on the specifics of
event type values and you may want to refer to the specification if you are intending to exercise
these capabilities in the Netscape Navigator version 6.0 browser. This functionality is fairly new
and still in a state of evolution but since it is defined in a standard, it will become more widespread
and is therefore the best way to ensure portability even if it takes a while for the various browser
manufacturers to catch up and make their products compliant.

See also: Element.onevent, EventListener object,
EventTarget.removeEventListener(), MutationEvent
object

E – EventTarget.dispatchEvent() (Method)

759

EventTarget.dispatchEvent() (Method)
Create and send an event trigger to a target node.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myEventTarget.dispatchEvent(anEvent)

Argument list: anEvent A reference to an Event object

Events can be created by your script independently of any other kind of event triggering. Indeed,
they can be triggered using this mechanism from within the event handling complex because the
event mechanisms specified by DOM level 2 must be re-entrant. That means they may be called
recursively without any cross coupling of the local storage between nested or concurrent handlers.

Events triggered by this mechanism are handled in the same way as implementation generated events.

You must first create an Event object to pass as an argument to this method when you call it. The
resulting Boolean value tells you whether the preventDefault flag was set by any of the listeners
that were invoked. If this value is true, then any default behavior should be suppressed. It is quite
important to provide a consistent level of support for this so that it behaves in the same way as an
implementation controlled event dispatcher.

During the handling of the event being dispatched by this method, an EventException may be raised.

At DOM level 2, only the unspecified event type is available as an exception. This will be raised by
an unspecified or null event type value.

See also: EventException object

EventTarget.removeEventListener() (Method)
Deregister an event listener that was established with the addEventListener() method.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myEventTarget.addEventListener(aType,
aListener, aFlag)

aType A string containing the event type
aListener A reference to an EventListener function object

Argument list:

aFlag A Boolean value containing the useCapture
disposition

JavaScript Programmer's Reference

760

The removeEventListener() method will detach a previously registered function object from
an EventTarget node. This will stop the event being handled by that target.

The three parameters to the removeEventListener() method are:

❑ A string describing the event type being registered.

❑ A reference to a function object that has been declared elsewhere in the script source text.

❑ A Boolean flag value that indicates whether the event listener should use bubbling (bottom up) or
capture (top down) event propagation. Both types can be registered separately but must also be
removed separately.

See also: Element.onevent, EventTarget.addEventListener()

Exactly equal to (===) (Operator/identity)
The two values must be identically equal in value and type.

Availability: ECMAScript edition – 3

Refer to:
Identically equal to (===)

Cross-references:
ECMA 262 edition 3 – section – 11.9.4

Exception (Definition)
An unexpected result from an expression evaluation.

An exception occurs when an expression yields a result that was not expected when you evaluate
it. In numerical expressions, the NaN value is provided for just such a circumstance. NaN represents
a numeric quantity that cannot be resolved within the range of meaningful values. The interpreter
knows it is numeric but the value is wrong. The undefined and Infinity values also help in the
management of such exceptions.

In general, the exception handling in JavaScript is better than that in a compiled language and
therefore it is more forgiving. Its best efforts will usually be good enough to yield a working script
where a compiled program may fail with a fatal error.

E – Exception handling (Definition)

761

The DOM level 1 specification describes an enumerated set of exception codes as follows:

Value Name DOM

1 INDEX_SIZE_ERR 1

2 DOMSTRING_SIZE_ERR 1

3 HIERARCHY_REQUEST_ERR 1

4 WRONG_DOCUMENT_ERR 1

5 INVALID_CHARACTER_ERR 1

6 NO_DATA_ALLOWED_ERR 1

7 NO_MODIFICATION_ALLOWED_ERR 1

8 NOT_FOUND_ERR 1

9 NOT_SUPPORTED_ERR 1

10 INUSE_ATTRIBUTE_ERR 1

11 INVALID_STATE_ERR 2

12 SYNTAX_ERR 2

13 INVALID_MODIFICATION_ERR 2

14 NAMESPACE_ERR 2

15 INVALID_ACCESS_ERR 2

See also: Expression, Infinity, NaN, undefined

Exception handling (Definition)
The process of managing errors.

This is enhanced in JavaScript version 1.3 by the addition of the try ... catch and
throw statements.

See also: catch(...), throw, try ... catch ... finally

execScript() (Method)
Execute a script.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: User defined

IE execScript(aSourceText)
JavaScript syntax:

IE myWindow.execScript(aSourceText)

Argument list: aSourceText Some legal JavaScript source

JavaScript Programmer's Reference

762

Refer to:
Window.execScript()

Executable code (Definition)
Script code that can be parsed and run as a program or function.

Availability: ECMAScript edition – 2

Executable code is from the programmer's point of view a block of script source text that is parsed
and executed by the interpreter.

There are five distinct types of executable code:

❑ Global code

❑ Eval code

❑ Function code

❑ Anonymous code

❑ Implementation-supplied code

See also: Anonymous code, Eval code, Execution context, Function code,
Global code, Implementation-supplied code

Cross-references:
ECMA 262 edition 2 – section – 10.1.2

ECMA 262 edition 3 – section – 10.1.2

Execute a function (Definition)
The act of calling a function during script execution.

Refer to:
Function call

Execution context (Definition)
An environment in which the script source code is executed.

Availability: ECMAScript edition – 2

E – Execution environment (Definition)

763

An execution context is the environment within which a portion of script code executes. If
subsequent fragments of code are called, they are assembled to form a stack of execution contexts
such that when one exits, the stack is popped and control returns to the immediate parent or caller.

The first item to be placed on the stack is the initial code that is considered to be global and is
executed in a web browser as the page is parsed. Other types of host implementation may execute
this global code at a different time. The topmost item on the stack is the code fragment that is
currently executing. This might be the code in a called function or some code that is triggered by an
event and is running as the handler for it.

Every execution context has associated with it its own variable object in which functions, formal
parameters and variables are maintained as properties.

Each execution context also has its own private scope chain, which is a logical list of objects which
are searched when name binding an identifier.

As the flow of control enters each execution context, its scope chain is created and initialized,
variable instantiation is performed creating the variable object which in turn causes the arguments
object to be created as well. At this time the value is also determined The particular values for these
items depend on the kind of code being entered.

See also: Activation object, Anonymous code, argc parameter,
Arguments object, argv parameter, Eval code, Executable code,
Function code, Function object, Function.arguments[],
Global code, Global object, Identifier resolution, Implementation-
supplied code, main() function, Primary expression, Scope chain,
this, Variable instantiation

Cross-references:
ECMA 262 edition 2 – section – 10

ECMA 262 edition 3 – section – 10

Execution environment (Definition)
The environment in which a script is executed.

The execution environment is where the script is run. In compiled languages, the translation
environment and the execution environment may not be the same. JavaScript is interpreted and
therefore the translation and execution environments are one and the same.

However, JavaScript can be transported across a network and may be executed in a server and then
transferred to a client and executed there.

This means that the execution environment may change from time to time. The script should be
aware of the context and environment it is being executed in if it needs to be portable in this way.

JavaScript Programmer's Reference

764

Future developments suggest that JavaScript may be available in hosted environments that will
require the script to be delivered in a compact form. Indeed, some JavaScript interpreters are
written in Java and decompose the script to Java byte-codes before executing them in the Java
Virtual Machine. If these tokenized JavaScripts were transmitted to a remote machine, then
JavaScript could be considered to be a compiled (or semi-compiled) language. In that case the
translation environment would be different to the execution environment.

See also: argc parameter, argv parameter, Environment, Garbage collection, Host
environment, main() function, Script termination

Cross-references:
Wrox Instant JavaScript – page – 5

Exponent-log function (Definition)
Functions that calculate exponents and logs.

The ECMAScript standard defines several functions that calculate exponents and logs and several
other value properties that are useful in this context:

❑ Math.E

❑ Math.exp()

❑ Math.LN2

❑ Math.LN10

❑ Math.log()

❑ Math.LOG2E

❑ Math.LOG10E

See also: Integer-value-remainder, Math object, Math.E, Math.exp(), Math.LN10,
Math.LN2, Math.log(), Math.LOG10E, Math.LOG2E, Power function,
Trigonometric function

export (Statement)
Exports some properties to allow them to be imported into another execution context.

Availability: ECMAScript edition – 2
JavaScript – 1.2
Netscape – 4.0
Netscape Enterprise Server – 3.0

N export aFunction;
JavaScript syntax:

N export aProperty;

aFunction A function object to exportArgument list:
aProperty a named property

E – export (Statement)

765

ECMAScript edition 2 suggests this is a future extension. As of the third edition of the ECMAScript
standard it is still denoted as a reserved word.

Netscape 4 anticipates that a future standard will endorse this capability and provides it anyway.

This functionality allows layers to define handlers for themselves and then export them to allow
other layers or windows to call them.

This facility is also useful to allow controlled access via the security policy. This can then allow an
unsigned script to have access to content in a signed script's context.

This is good Object Oriented Programming technique on the grounds that hiding the private data
and making a public interface available means code can be reused. This black-box approach is
much used in languages such as Java, SmallTalk and Objective-C.

Warnings:
❑ This only works in Netscape version 4 when the LANGUAGE attribute is set to "JavaScript1.2". This

will affect the behavior of the == and != operators as well.

❑ This can affect the security policy regarding the "same-signer" trustworthiness of a page.

❑ Be careful that you do not export a secure method or property and allow it to be executed or seen by
insecure and untrusted non-signed scripts running in other windows.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
var myLocalVariable;
function myLocalFunction()
{
 document.write("Test");
}
export myLocalVariable;
export myLocalFunction;
</SCRIPT>
</BODY>
</HTML>

See also: import, Same origin, Signed scripts

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

JavaScript Programmer's Reference

766

Expression (Definition)
Combining one or more operands with an operator creates an expression.

Availability: ECMAScript edition – 2

An expression consists of an operand on its own, or a combination of operators and operands. An
operand may be a constant value, a functional value, or a variable. Evaluating expressions can
easily cause side effects, especially when functions are invoked.

Expressions are the contexts within which JavaScript operates on entities in its object model. There
are a variety of different kinds of expressions according to whether you are referring to the
destination or source of an assignment or reference.

Expressions fall into one of several categories according to the operator used in the expression.

The following expression types are defined in the ECMAScript standard:

Type Description

Primary A Primary Expression is a specific object, identifier or literal and may also be
the result of evaluating another nested expression when it is surrounded by
the grouping operators (round brackets).

Left-Hand-Side This kind of expression identified the destination of an assignment (even if
that assignment operation is only implied).

Postfix Postfix expressions operate on Left-Hand-Side (sometimes called LValue)
expressions.

Unary Unary expressions can also be considered to be prefix expressions and also
operate on LValues.

Multiplicative Multiplicative expressions use the multiplicative operators to yield a result by
operating on two other values which may themselves be nested.

Additive Additive expressions use the additive operators to yield a result by operating
on two other values which may be nested expressions.

Shift Shifts the left value by an amount specified by the right value.

Relational Relational expressions yield a Boolean result according to the relational test of
the values either size of the operator.

Bitwise Bitwise expressions perform a bit by bit operation across the entire integer
width of the values.

Logical Logical operators perform a test of the Boolean value of the two operands
either side of the operator.

Conditional Conditional expressions test a logical expression and perform one of two
possible alternative code blocks.

Assignment Assignment expressions can be broken down into a two-operand expression
with the result being assigned to the value on the left.

Comma Comma expressions occur rarely and are used to evaluate several expressions
at once.

E – Expression statement (Definition)

767

The operators are discussed in detail in individual topics. Refer to those topics for more details.

Expressions resolve eventually to a primary expression, which has a distinct value.

In a compound expression, the precedence (or "Who's on first") is governed by the operator
selected for that sub-expression. However that operator-driven precedence model can be
overridden by use of the grouping operators.

See also: Associativity, Bit-field, Exception, JavaScript language, Side effect

Cross-references:
ECMA 262 edition 2 – section – 11

ECMA 262 edition 3 – section – 11

Expression statement (Definition)
Expressions do not necessarily have to be placed on the right of an assignment operator.

Availability: ECMAScript edition – 2

An expression statement is an expression that is evaluated on a line by itself.

Expression statements consist of a stand-alone expression followed by a semi-colon (;).

An example of the main use of expressions in this context would be a function call. Since a function
is a named block of code that can be called by putting its identifier into an expression, a function
that does not return a value or where the value has been voided is being called like a procedure or
sub-routine in other languages.

See also: Constant expression, Semi-colon (;), Statement

Cross-references:
ECMA 262 edition 2 – section – 12.4

ECMA 262 edition 3 – section – 12.4

Wrox Instant JavaScript – page – 18

extends (Reserved word)
Reserved for future language enhancements to do with better class handling.

Refer to:
Reserved word

JavaScript Programmer's Reference

768

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

external (Property)
Reference to external objects outside of the interpreter.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: External object

IE external
JavaScript syntax:

IE myWindow.external

See also: Window.external

external object (Object/JScript)
Since MSIE can be embedded as a component into other applications, this object represents the
object model of such a containing application.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myExternal = external
JavaScript syntax:

IE myExternal = myWindow.external

Object properties: menuArguments

Object methods: AddChannel(), AddDesktopComponent(), AddFavorite(),
AddFavourite(), AutoCompleteSaveForm(), AutoScan(),
ImportExportFavorites(), ImportExportFavourites(),
IsSubscribed(), NavigateAndFind(), ShowBrowserUI()

Part of the MSIE on Windows environment object space. You should avoid using this facility if you
want your scripts to be usable outside of the Windows environment.

To use this effectively, you need to know quite a bit about the application whose components you
are calling in using this functionality. Each application has its own object model and unless you
know how it works, making use of it will be a bit 'Hit and Miss'.

Warnings:
❑ Several methods for this object have arguments that are mandatory but may take empty strings or

null values. This is somewhat diametrically opposed to the normal JavaScript behavior which
dictates that unnecessary arguments are optional and can be assumed to be a default value when
they are not present.

E – external.AddChannel() (Method)

769

❑ By implementing methods with mandatory null or empty string values, Microsoft puts the script
developer off balance and can cause unnecessary difficulty when developing scripts. Novices and
even expert scripters may be caught out by this kind of implementation.

❑ You should always check the reference material if you are in any doubt as to how an API interface to
a method is designed to work.

Property JavaScript JScript N IE Opera Notes

menuArguments - 5.0 + - 5.0 + - -

Method JavaScript JScript N IE Opera Notes

AddChannel() - 5.0 + - 5.0 + - -
AddDesktopComponent() - 5.0 + - 5.0 + - -
AddFavorite() - 5.0 + - 5.0 + - -
AddFavourite() - 3.0 + - 4.0 + - Warning
AutoCompleteSaveForm() - 5.0 + - 5.0 + - -
AutoScan() - 5.0 + - 5.0 + - -
ImportExportFavorites() - 5.0 + - 5.0 + - Warning
ImportExportFavourites() - 3.0 + - 4.0 + - Warning
IsSubscribed() - 5.0 + - 5.0 + - -
NavigateAndFind() - 5.0 + - 5.0 + - -
ShowBrowserUI() - 5.0 + - 5.0 + - Warning

external.AddChannel() (Method)
A means of adding a channel to an external object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myExternal.AddChannel(aURL)

Argument list: aURL The URL for a CDF file

With this method, you can use the Microsoft Active Channel system to share content delivered
via channels.

This presents a dialog box allowing you to select a channel to add the channel defined in the
argument or to specify a new one.

The argument value passed is a URL that points at a valid CDF file.

If the operation fails, an error event is generated and unless you are trapping the onError event
with your own handler, the MSIE browser will present an error alert box.

See also: external.IsSubscribed(), File extensions

JavaScript Programmer's Reference

770

external.AddDesktopComponent() (Method)
A means of adding an image or web site link to the desktop workspace.

Availability: JScript – 5.0
Internet Explorer – 5.0

IE myExternal.AddDesktopComponent(aURL, aType)

IE myExternal.AddDesktopComponent(aURL, aType,
aLeft)

IE myExternal.AddDesktopComponent(aURL, aType,
aLeft, aTop)

IE myExternal.AddDesktopComponent(aURL, aType,
aLeft, aTop, aWidth)

JavaScript syntax:

IE myExternal.AddDesktopComponent(aURL, aType,
aLeft, aTop, aWidth, aHeight)

aURL The URL where the resource can be located
aType What kind of item is added to the desktop
aLeft Left edge position
aTop Top edge position
aWidth Size width

Argument list:

aHeight Size height

This provides a way of customizing the underlying desktop with shortcuts and images.

You must always specify the URL value and the type indicator. The remaining option arguments
describe the position and size of the item being placed on the desktop.

The type value must be one of:

❑ image

❑ website

This only works if you have the Active Desktop support installed. If it is not installed, this method
does nothing.

Example code:
//Add the Wrox web site as a desktop item
window.external.AddDesktopComponent("http://www.wrox.com", "website", 100, 100,
200, 200);

external.AddFavorite() (Method)
Support for external applications and objects when using MSIE in the Windows environment. This
adds an item to the favorites collection.

Availability: JScript – 5.0
Internet Explorer – 5.0

http://www.wrox.com

E – external.AutoCompleteSaveForm() (Method)

771

IE myExternal.AddFavourite(aURL)
JavaScript syntax:

IE myExternal.AddFavourite(aURL, aName)

aURL A Url for a link in the bookmarks listArgument list:
aName The name that goes in the menu list

With this method, you can add your own bookmarks to the favorites menu.

You must specify a URL value (otherwise there is no point in adding the bookmark). However, you
need not specify the second argument which is the text displayed in the menu.

Typically you might provide a button on the page called "bookmark me" which might call some
script to work out what the real URL should be. This gets round one of the major problems with
framed sites in that a bookmark usually yields unpredictable results since you are accessing the site
at a sub-framed level.

Example code:
// Bookmark a page from its current location
// using its document title string as an
// identifying text.
window.external.AddFavorite(location.href, document.title);

external.AutoCompleteSaveForm() (Method)
Support for external applications and objects when using MSIE in the Windows environment. This
accesses the auto-complete mechanisms.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myExternal.AutoCompleteSaveForm(aForm)

Argument list: aForm A reference to a form object

This method provides a way to save the contents of the text and password fields in the auto-
complete storage area of your computer. Normally this would happen when the form is submitted
but you can call this method to save the values without submitting the form.

If necessary, you can override the auto-complete capabilities for individual fields by means of the
AUTOCOMPLETE HTML tag attribute being applied to the appropriate form input elements.

This method takes one argument that is mandatory. This argument is an object reference to the
form whose fields are to be stored in the auto-complete registers.

external.AutoScan() (Method)
Connects to a web server using a template and registry scanning process to work out the target web
server address from a partial domain name.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript Programmer's Reference

772

IE myExternal.AutoScan(aDomain, anErrURL)
JavaScript syntax:

IE myExternal.AutoScan(aDomain, anErrURL,
aTarget)

aDomain The domain address of a web site
anErrURL A URL to display if aDomain is inaccessible

Argument list:

aTarget The target window or frame to put the content into

This mechanism is used to find a web site when you are not certain of the URL.

The Registry in the client system contains a list of top level domains such as .com, .net, .org and
.edu which will be tried one at a time until a valid connection is completed.

If none of these turns out to yield a working site address, then the error URL is accessed and
displayed instead.

The browser will add the leading "www." to the domain address so you might only need to specify
a domain value of "wrox" for the browser to eventually connect to "www.wrox.com".

external.ImportExportFavorites() (Method)
A mechanism for storing favorites lists on a server and getting them back later.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myExternal.ImportExportFavourites(aFlag,
aURL)

aFlag A direction indicatorArgument list:
aURL A storage URL location

This is useful in a corporate environment where you may want to define a set of standard favorites
and download them to the user's browser when they access the corporate Intranet.

Both arguments are mandatory so you must specify the direction and server location. This also
requires that you have a server set up correctly to handle these requests.

The flag value should be false to save the favorites list and true to restore from the server.

When the method is called, the browser will ask you to confirm that you want to upload or
download the favorites collection. The server needs to be carefully set up to erase any favorites that
were previously stored unless you want to gradually accumulate a larger and larger collection of
stored favorites. This deletion on the server does not propagate into the browser and any favorites
retrieved from the server are merged with the existing set in the client browser.

It is not clear from the documentation whether duplicates are eliminated and if they are not, then it
is likely that a later version of the browser would provide this capability.

If you do not specify a location value, then the browser will open a file dialog so you can import
and export to the local file system. You must still provide an argument, but it can be an empty
string to trigger this behavior.

E – external.IsSubscribed() (Method)

773

Warnings:
❑ Oddly, this method can both save and retrieve the favorites using a flag value to determine the

direction. This is slightly unusual and many similar actions in JavaScript provide one method to save
and another to restore. You need to be constantly on the lookout for these kinds of inconsistent
behaviors when developing JavaScript applications.

external.IsSubscribed() (Method)
Channel handling support is provided by this enquiry that determines whether the channel
is registered.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myExternal.IsSubscribed(aURL)

Argument list: aURL The URL for a CDF file

You might want to enhance the script that adds channels by checking first to see if the user has
already subscribed to a channel. That way you can avoid asking them the same question every time
they enter the page that gives them access to the channel.

This query method returns a Boolean value true if the client is already subscribed and false if not.

The argument would be the same URL value that is used in the addChannel() method.

See also: external.AddChannel()

external.menuArguments (Property)
The window object where a context menu was executed.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Window object

JavaScript syntax: IE myExternal.menuArguments

Once you have this window, you can inspect its event object to determine various properties that
tell you about the user interaction.

JavaScript Programmer's Reference

774

external.NavigateAndFind() (Method)
This augments the anchor linking behavior and adds a highlighting capability.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myExternal.NavigateAndFind(aURL, aString,
aTarget)

aURL The URL to link to
aString A string to be selected and highlighted

Argument list:

aTarget The frame or window to load the content into

You can use this method to link to a page and then highlight some fragment of text when it is loaded.

Although the target frame argument is mandatory, it can be an empty string.

external.ShowBrowserUI() (Method)
Accesses dialog panels that are built into the browser.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myExternal.ShowBrowserUI(aName, null)

Argument list: aName The name of a UI dialog

This method takes two arguments although one is obviously a place holder. Both arguments are
mandatory. The first indicates the dialog to be displayed while the second is a null value.

The values for selecting browser UI dialogs are:

❑ LanguageDialog

❑ OrganizeFavorites

Warnings:
❑ The API for this method breaks a rule of requiring a place holder argument to be set to null and yet

mandating that it must be present. This is poor API design. It is possible that the argument may take
undocumented values other than null which may alter its behavior but it should still be optional.

Fade() (Filter/transition)
A transition effect with the appearance of a dissolve between two images.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
filter – Fade()

false (Primitive value)
The Boolean false value.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

This is a Boolean primitive value representing the logically false state.

Conditional code execution depends on this value to signify the execution of a block of script code.

Warnings:
❑ Beware of a rather insidious effect when converting Boolean primitive values into objects. All

objects yield the value true when converted back to a Boolean primitive. This also applies to a
Boolean object having the value false.

❑ This if() test yields a true condition and selects the opposite branch to that which you
would expect:

F

JavaScript Programmer's Reference

776

var myBoolean = new Boolean(false);

if(myBoolean)

{

 // This branch is called

}

else

{

 // You would have expected this one to be called

}

See also: Boolean, Boolean, Boolean literal, Definition, true

Cross-references:
ECMA 262 edition 2 section 9.2

ECMA 262 edition 2 section 15.6

ECMA 262 edition 3 section 9.2

ECMA 262 edition 3 section 15.6

fdlibm (Product)
A publicly available library of math functions.

Availability: ECMAScript edition – 2

A freely distributable mathematical library available from Sun Microsystems. It supports the
algorithms specified in IEEE 754. It is available by contacting fdlibm-
comment@sunpro.eng.sun.com.

This library is commonly used to implement the mathematical functions belonging to the built-in
native Math object.

Cross-references:
ECMA 262 edition 2 section 15.8.2

ECMA 262 edition 3 section 15.8.2

F – FIELDSET object (Object/HTML)

777

FIELDSET object (Object/HTML)
A field set within a form.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myFIELDSET = myDocument.all.anElementID

IE myFIELDSET = myDocument.all.tags("FIELDSET")
[anIndex]

IE myFIELDSET = myDocument.all[aName]

- myFIELDSET = myDocument.getElementById
(anElementID)

- myFIELDSET = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myFIELDSET = myDocument.getElementsByTagName
("FIELDSET")[anIndex]

HTML syntax: <FIELDSET> ... </FIELDSET>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, align, form, margin, tabIndex

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onClick, onDblClick, onDragStart, onErrorUpdate,
onFilterChange, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onResize,
onScroll, onSelect, onSelectStart

A FIELDSET object represents a structured group of Input objects within a form. You can operate
on them collectively. Grouping Input items might be useful for activating or hiding Input items
without needing to access each one individually, which can be very useful if a form is undergoing
rapid and continuous changes during its development. Controlling this with a FIELDSET allows
the member elements to change without needing to modify your script.

See also: Element object, Input object, Input.accessKey, Legend object

JavaScript Programmer's Reference

778

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
align - 3.0 + - 4.0 + - - - -
form 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
margin - 3.0 + - 4.0 + - - - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onChange 1.5 + 3.0 + 6.0 + 4.0 + - - - -
onClick 1.5 + 3.0 + 6.0 + 3.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onResize 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onScroll - 3.0 + - 4.0 + - - - -
onSelect 1.5 + 3.0 + 6.0 + 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

F – FIELDSET.align (Property)

779

FIELDSET.align (Property)
The alignment of the field set within its surrounding objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFIELDSET.align

The alignment of the FIELDSET object with respect to its containing parent object is defined in this
property. The following alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

FIELDSET.margin (Property)
The margin around a fieldset to separate it from its surrounding objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFIELDSET.margin

You may want to place a margin round the fieldset of Input objects on screen. This property
contains the current width settings for that margin.

File extensions (Definition)
A means of determining file content by a part of its file name.

JavaScript Programmer's Reference

780

JavaScript can be contained in a variety of file types. The one that you use, depends on what you
plan to do with the script and the kind of environment it is being used in. Here is a summary of the
file types you are likely to encounter:

Extension Description

.123 Lotus 123 Document

.3dmf QuickDraw 3D File

.509 Certificates

.669 669 MOD Music

.8med Amiga OctaMed music

.8svx Amiga OctaMed music

.aam Authorware

.aas Authorware

.ai Postscript Document

.aif AIFF Audio

.aifc AIFF Audio

.aiff AIFF Audio

.al Amiga OctaMed music

.ani Animated NeoChrome

.apr Lotus Approach Document

.arc PC ARChive

.arj ARJ Archive

.arr Animated NeoChrome

.art Animated NeoChrome

.au AU Audio/ULAW Audio

.avi Microsoft Video

.bar Unix BAR Archive

.bga OS/2 Bitmap

.bin MacBinary File

.binary Untyped Binary Data

.bmp OS/2 Bitmap

.bmp Windows Bitmap

.bw OS/2 Bitmap

.c Text File

.cdf Channel definition file

.cer Certificates

.cfg Configuration file

.cgi Common Gateway Interface dynamic page

.cgm Animated NeoChrome

.ckl Compromized Key List

Table continued on following page

F – File extensions (Definition)

781

Extension Description

.class Java Class File

.clp Animated NeoChrome

.com MS-DOS Executable

.cpio Unix CPIO Archive

.cpt Compact Pro Archive

.crl Certificate Revocation List

.crt Certificates

.csh C Shell Program

.css Text File

.ct Animated NeoChrome

.cut Animated NeoChrome

.cvs Canvas Drawing

.dbf DBase Document

.dcr Shockwave/Director

.dcx Animated NeoChrome

.dir Shockwave/Director

.dl DL Animation

.dll MS-DOS Executable

.doc Microsoft Word Document

.dot Word for Windows Template

.dqy Excel Worksheet

.dv DV Video

.dvi TeX DVI Document

.dxr Director

.enc Pre-encrypted Data

.eps Encapsulated Postscript document

.epsf Encapsulated Postscript document

.evy Envoy Document

.exe MS-DOS Executable

.fdf Forms Data Format

.fif Fractal Image Format

.fit Flexible Image Transport

.flc DV Video/FLC Animation

.fli DV Video/FLC Animation

.fm FileMaker Pro Database

.fm3 FileMaker Pro Database

.fts Animated NeoChrome

.gem Animated NeoChrome

Table continued on following page

JavaScript Programmer's Reference

782

Extension Description

.gif GIF Image

.gl DL Animation

.grp Animated NeoChrome

.gtar GNU Tape Archive

.gz GNU Zip Compressed Data

.h Text File

.hcom Amiga OctaMed music

.hdf HDF Data File

.hpgl Animated NeoChrome

.hqx Macintosh BinHex Archive

.htc Microsoft HTML Component

.htm HTML web page

.html HTML web page

.ic1 Animated NeoChrome

.ic2 Animated NeoChrome

.ic3 Animated NeoChrome

.icn Animated NeoChrome

.ico Animated NeoChrome

.ief IEF image

.iff Animated NeoChrome

.ilbm Animated NeoChrome

.image Apple DiskCopy Image

.img Animated NeoChrome

.ini Text File

.iqy Excel Worksheet

.jar Java archive file

.java Java source file

.jfif OS/2 Bitmap

.jfx TIFF Image

.jpe JPEG Image

.jpeg JPEG Image

.jpg JPEG Image

.js JavaScript include file

.jsc JavaScript configuration file

.kar MIDI

.latex LaTeX Document

.lbm Animated NeoChrome

.lck Old style configuration file

Table continued on following page

F – File extensions (Definition)

783

Extension Description

.lha LHArc Archive

.lwp Lotus WordPro Document

.lzh LHArc Archive

.m15 DV Video/MPEG video/audio stream

.m1a MPEG audio stream

.m1a MPEG video/audio stream

.m1s DV Video/MPEG audio stream

.m1v MPEG video/audio stream

.m2s DV Video

.m2v DV Video

.m3u MP3 PlayLists

.m75 DV Video/MPEG video/audio stream

.mac MacPaint Image/PICT Image

.mda Microsoft Access Database

.mdb Microsoft Access Database

.mde Microsoft Access Database

.med Amiga OctaMed music

.mid MIDI Music

.midi MIDI Music

.ml ML Source

.mocha JavaScript Program

.mod Amiga OctaMed music

.moov QuickTime Movie

.mov QuickTime Movie

.mp2 MPEG video/audio stream

.mp2v MPEG2 Video

.mp3 MPEG-1 Layer 3 audio stream/MPEG Movie

.mpa MPEG video/audio stream

.mpe MPEG video/audio stream

.mpeg MPEG video/audio stream

.mpegv MPEG Video

.mpg MPEG video/audio stream

.mpm MPEG video/audio stream

.mpv MPEG video/audio stream

.mpv2 MPEG2 Video

.msp Animated NeoChrome

.mtm 669 MOD Music

.mw MacWrite Document

Table continued on following page

JavaScript Programmer's Reference

784

Extension Description

.mwii MacWrite Document

.neo Animated NeoChrome

.nsc application/x-conference

.nst Amiga OctaMed music

.obj MS-DOS Executable

.oda ODA Document

.okt Amiga OctaMed music

.or2 Lotus Organizer Document

.or3 Lotus Organizer Document

.org Lotus Organizer Document

.otf OpenType Font

.out Untyped Binary Data

.ovl MS-DOS Executable

.p7c PKCS7 Encrypted Data

.p7m PKCS7 Encrypted Data

.p7s PKCS7 Signature

.pac A proxy or parameter package file (also a NeoChrome image file)

.pbm Portable Bitmap

.pc1 Animated NeoChrome

.pc2 Animated NeoChrome

.pc3 Animated NeoChrome

.pcd PhotoCD Image

.pcs Animated NeoChrome

.pct PICT Image

.pcx Animated NeoChrome

.pdf Portable Document Format

.pf Private File

.pgm Portable Graymap

.pgp PGP Key File

.pi1 Animated NeoChrome

.pi2 Animated NeoChrome

.pi3 Animated NeoChrome

.pic PICT Image

.pict PICT Image

.pit PackIt Archive

.pkg AppleLink Package

.pl Perl Program

.pls MP3 PlayLists

Table continued on following page

F – File extensions (Definition)

785

Extension Description

.plt Animated NeoChrome

.pm Animated NeoChrome

.pm3 PageMaker 3 Document

.pm4 PageMaker 3 Document

.pm5 PageMaker 3 Document

.png PNG Image

.pnm PBM Image

.pnt MacPaint Image

.pntg OS/2 Bitmap/MacPaint Image

.pot Microsoft PowerPoint Show

.ppa Microsoft PowerPoint Show

.ppm Portable Pixmap

.pps Microsoft PowerPoint Show

.ppt Microsoft PowerPoint Show

.pre Lotus Freelance Document

.prz Lotus Freelance Document

.ps Postscript Document

.psd PhotoShop Document

.pt4 PageMaker 3 Document

.pt5 PageMaker 3 Document

.pwz Microsoft PowerPoint Show

.pxr PhotoShop Document

.qcp QCP Audio

.qdv Animated NeoChrome

.qif OS/2 Bitmap

.qt QuickTime Movie

.qtc video/x-qtc

.qti QuickTime Image

.qtif QuickTime Image

.qxd QuarkXpress Document

.qxt QuarkXpress Document

.ra RealAudio Clip

.ram RealPlayer File

.ras CMU Raster Image

.raw Animated NeoChrome

.rf RealFlash Clip

.rgb SGI Image/RGB Image

.rgba SGI Image

Table continued on following page

JavaScript Programmer's Reference

786

Extension Description

.rif Animated NeoChrome

.rjs RealSystem Skin

.rle Animated NeoChrome

.rm RealMedia File

.rmf audio/rmf/audio/x-rmf

.rmm RealPlayer File

.rmp RealJukebox Music Package

.rmx RealSystem Secure Media Clip

.rnx RealPlayer File

.rp RealPix Clip

.rpl Replica Document

.rpm RealPlayer Plugin

.rsc Resource File

.rsml RealSystem ML File

.rsrc Resource File

.rt RealText Clip

.rtf Rich Text Format File

.rts Real Time Streaming Protocol

.rtsp Real Time Streaming Protocol

.rv RealVideo Clip

.s3m 669 MOD Music

.sam Lotus WordPro Document

.sc2 Microsoft Schedule+ Application

.scc Animated NeoChrome

.scd Microsoft Schedule+ Application

.scg Animated NeoChrome

.sch Microsoft Schedule+ Application

.sci Animated NeoChrome

.scm Lotus ScreenCam Movie

.scp Animated NeoChrome

.scr Animated NeoChrome

.scu Animated NeoChrome

.sd2 DV Video

.sdp Session Description Protocol/Scalable Multicast

.sea Self-Extracting Archive

.sf IRCAM Sound

.sgi OS/2 Bitmap/SGI Image

.sgm SGML Document

Table continued on following page

F – File extensions (Definition)

787

Extension Description

.sgml SGML Document

.sh Bourne Shell Program

.shar Unix Shell Archive

.shp Animated NeoChrome

.shtm HTML web page with server-side include

.shtml HTML web page with server-side include

.sit Macintosh StuffIt Archive

.sit StuffIt Archive

.six Animated NeoChrome

.smf MIDI

.smi SMIL Document

.smil SMIL Document

.snd Amiga OctaMed music

.snd AU Audio

.snd ULAW Audio

.spc Animated NeoChrome

.spl FutureSplash Player

.sr Animated NeoChrome

.ssm Standard Streaming Metafile

.stm HTML web page with server side include

.sun Animated NeoChrome

.sup Animated NeoChrome

.svx Amiga OctaMed music

.swf Shockwave Flash

.tar Unix Tape Archive

.targa OS/2 Bitmap/Targa Truevision Image

.taz Unix Compressed (.z) Files

.tcl TCL Program

.tex TeX Document

.texi GNU TeXinfo Document

.texinfo GNU TeXinfo Document

.text Text File

.tga OS/2 Bitmap/Targa Truevision Image

.tgz GZIP File

.tif TIFF Image

.tiff TIFF Image

.tny Animated NeoChrome

.ttc OpenType Font

Table continued on following page

JavaScript Programmer's Reference

788

Extension Description

.ttf OpenType Font

.txt Text File

.ul AU Audio

.ulw AU Audio

.url URL Bookmark

.uu UUEncoded Data

.uue UUEncoded Data

.vbs VB Script in text file/MPEG Video

.vcf VCard

.vew Lotus Approach Document

.vff Animated NeoChrome

.vfw Microsoft Video

.vga OS/2 Bitmap

.vob DV Video

.voc Amiga OctaMed music

.w51 WordPerfect PC 5.1 Doc

.waf Website Archive

.wav WAV Audio

.web Compiled JavaScript and HTML, ready to be served by NES

.wiz Word Document

.wk1 Lotus Spreadsheet r2.1

.wk3 Lotus 123 Document

.wk4 Lotus 123 Document

.wks Lotus Spreadsheet r2.1

.wmf Windows MetaFile image

.wp WordPerfect PC 5.1 Doc

.wp4 WordPerfect PC 4.2 Doc

.wp5 WordPerfect PC 5.1 Doc

.wp6 WordPerfect PC 4.2 Doc

.wpd WordPerfect Document

.wpg Animated NeoChrome

.wpm WordPerfect PC 4.2 Doc

.wrl VRML File

.ws Windows Script File (beta versions of WSH)

.wsf Windows Script File used by WSH

.wsh WSH control file

.wve Amiga OctaMed music

.x10 X-Windows Dump

Table continued on following page

F – File object (Object/JScript)

789

Extension Description

.x11 X-Windows Dump

.xbm X-Windows Bitmap

.xlc Excel Worksheet

.xlm Excel Worksheet

.xls Excel Worksheet

.xls Microsoft Excel Worksheet

.xlt Excel Worksheet

.xlw Excel Worksheet

.xm 669 MOD Music

.xml XML (Extensible Markup Language) Document

.xpm X-Windows Pixmap

.xsl XML style sheet Document

.xwd X-Windows Dump

.z Unix Compressed Files

.zip ZIP Archives

.zoo Zoo Archive

Warnings:
❑ Beware of the .pac file extension. It is a proxy.pac auto-config file but it also represents an

obscure image format supported by some plugins.

See also: .jar, .java, .js, <SCRIPT ARCHIVE="...">, <SCRIPT
SRC="...">, external.AddChannel(), Host environment, HTML
file, Platform, proxy.pac

File object (Object/JScript)
A special JScript object representing a file on a locally mounted drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myFile = File

IE myFile = new File(aName)

IE myFile = myFileSystem.GetFile(aName)

IE myFile = myFileSystem.CreateTextFile(aName,
aFlag)

JavaScript syntax:

IE myFile = myFileSystem.OpenTextFile(aName,
aMode, aFlag, aFormat)

aName The name of a file
aFlag A flag indicating whether the file can be overwritten
aMode An I/O mode for the file

Argument list:

aFormat A format code indicating ASCII or Unicode content

JavaScript Programmer's Reference

790

Object properties:
Attributes, constructor, dataFld, dataSrc,
DateCreated, DateLastAccessed, DateLastModified,
defaultValue, Drive, Name, ParentFolder, Path,
prototype, recordNumber, ShortName, ShortPath, Size,
Type, value

Object methods:
blur(), byteToString(), clearError(), click(),
close(), Copy(), Delete(), eof(), error(), exists(),
flush(), focus(), getLength(), getPosition(), Move(),
open(), OpenAsTextStream(), read(), readByte(),
readln(), select(), setPosition(), stringToByte(),
write(), writeByte(), writeln()

Event handlers:
onBlur, onClick, onDblClick, onFocus

This object is available in many contexts. On the server-side, it allows access to the server file
system. In that context it is available as part of the Netscape Enterprise Server product (see the
separate File object entries for the NES version).

File objects may also exist client-side. Similar file system access may be possible there as well,
although you should not expect this to work from within your browser. It may be available as part
of a desktop scripting environment.

Although they aren't instantiated as File objects, it is sometimes convenient to refer to a File object
when we really mean to refer to an Input object whose type property is set to the "FILE" value.

Warnings:
❑ Be aware that File objects are not standardized and may offer different methods, properties

and functions in each context. Furthermore, the same named methods, properties and functions
may not yield the same results across all implementations.

❑ The JScript File object and the identically named Netscape Enterprise Server File object do
not share any properties or methods. They are completely different implementations.

❑ The JScript File object is somewhat odd in that its properties and methods are spelled with a
capital letter at the start of their name. This is not typical JavaScript or JScript usage so you
should beware of capitalization when scripting File objects with JScript.

See also: FileSystem object, FileSystem.CreateTextFile(),
FileSystem.GetFile(), FileSystem.OpenTextFile(), Folder
object

Property JavaScript JScript N IE Opera HTML Notes

Attributes - 3.0 + - 4.0 + - - -
dataFld - 3.0 + - 4.0 + - - Warning
dataSrc - 3.0 + - 4.0 + - - Warning
DateCreated - 3.0 + - 4.0 + - - -
DateLastAccessed - 3.0 + - 4.0 + - - -
DateLastModified - 3.0 + - 4.0 + - - -

Table continued on following page

F – File.Attributes (Property)

791

Property JavaScript JScript N IE Opera HTML Notes

DefaultValue - 3.0 + - 4.0 + - - Warning
Drive - 3.0 + - 4.0 + - - -
Name - 3.0 + - 4.0 + - - -
ParentFolder - 3.0 + - 4.0 + - - -
Path - 3.0 + - 4.0 + - - -
recordNumber - 3.0 + - 4.0 + - - Warning
ShortName - 3.0 + - 4.0 + - - -
ShortPath - 3.0 + - 4.0 + - - -
Size - 3.0 + - 4.0 + - - -
Type - 3.0 + - 4.0 + - - ReadOnly
value - 3.0 + - 4.0 + - - Warning

Method JavaScript JScript N IE Opera HTML Notes

blur() - 3.0 + - 4.0 + - - Warning
click() - 3.0 + - 4.0 + - - Warning
Copy() - 3.0 + - 4.0 + - - -
Delete() - 3.0 + - 4.0 + - - -
focus() - 3.0 + - 4.0 + - - Warning
Move() - 3.0 + - 4.0 + - - -
OpenAsTextStream() - 3.0 + - 4.0 + - - -
select() - 3.0 + - 4.0 + - - Warning

Event name JavaScript JScript N IE Opera HTML Notes

onBlur - 3.0 + - 4.0 + - - Warning
onClick - 3.0 + - 4.0 + - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - 4.0 + Warning
onFocus - 3.0 + - 4.0 + - - Warning

File.Attributes (Property)
The file-system attributes of a file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFile.Attributes

JavaScript Programmer's Reference

792

The File object is available for client-side use with the MSIE browser. This property contains its
file system attributes.

This property manages the attributes as a bit-mask with individual bits controlling different
attributes. The bits can be accessed individually using the integer value corresponding to a power
of 2. The table lists the integers that represent each different attribute:

Value Attribute

0 No special attributes – normal file.

1 Read only access.

2 Hidden file.

4 Indicates a system file.

8 Refers to drive volume label and cannot be altered.

16 Refers to a folder and cannot be changed.

32 File has changed and needs to be backed up again.

64 File object represents a shortcut and not a real file.

128 File is compressed.

You can use Bitwise OR expressions to merge them or accomplish the same with integer additions.

You cannot alter the settings of bits 8, 16, 64 and 128 as these affect the structure of a file. That is to
say, you cannot change a file into a folder or disk volume.

You should read the current attributes setting and then modify it to write it back. The example
illustrates some simple functions that encapsulate this conveniently.

Where the bit needs to be set, a simple bitwise OR with a single bit value is accomplished in a
single line. To clear a bit, we could use a bitwise AND having the corresponding bit clear. In these
examples a different technique is used for illustration where the bit is set regardless of its previous
state and is then cleared using a subtraction. That saves the computation of a complex bit-mask. An
intermediate temporary variable is used to avoid signalling the operating system with
unnecessarily modification requests.

There are other alternative ways to accomplish this and you could write some generic functions to
examine, set or clear a bit in a bit-mask and then call them from each of these wrappers indicating
the bit you want to operate on.

Example code:
// Examine the read/write flag
function isReadOnly(aFile)
{
 return Boolean(aFile.Attributes & 1);
}
// Set the file read only
function setReadOnly(aFile)
{
 aFile.Attributes |= 1;
}

F – File.Attributes (Property)

793

// Set the file read/write
function setWriteOnly(aFile)
{
 var myAttributes = aFile.Attributes |= 1;
 aFile.Attributes = myAttributes – 1;
}
// --
// Examine the hidden flag
function isHidden(aFile)
{
 return Boolean(aFile.Attributes & 2);
}
// Hide the file
function setHidden(aFile)
{
 aFile.Attributes |= 2;
}
// Reveal the file
function setVisible(aFile)
{
 var myAttributes = aFile.Attributes |= 2;
 aFile.Attributes = myAttributes – 2;
}
// --
// Examine the system flag
function isSystemFile(aFile)
{
 return Boolean(aFile.Attributes & 4);
}
// Set file to be a system file
function setSystem(aFile)
{
 aFile.Attributes |= 4;
}
// Set file to be a non system file
function setPublic(aFile)
{
 var myAttributes = aFile.Attributes |= 4;
 aFile.Attributes = myAttributes – 4;
}
// --
// Examine the drive volume flag
function isDriveVolume(aFile)
{
 return Boolean(aFile.Attributes & 8);
}
// --
// Examine the folder flag
function isFolder(aFile)
{
 return Boolean(aFile.Attributes & 16);
}
// --
// Examine the backup flag
function needsBackup(aFile)
{

JavaScript Programmer's Reference

794

 return Boolean(aFile.Attributes & 32);
}
// Set backup required
function setBackup(aFile)
{
 aFile.Attributes |= 32;
}
// Clear backup
function clearBackup(aFile)
{
 var myAttributes = aFile.Attributes |= 32;
 aFile.Attributes = myAttributes – 32;
}
// --
// Examine the shortcut flag
function isShortCut(aFile)
{
 return Boolean(aFile.Attributes & 64);
}
// --
// Examine the compressed flag
function isCompressed(aFile)
{
 return Boolean(aFile.Attributes & 128);
}

See also: Folder.Attributes

File.Copy() (Method)
A method that copies files.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFile.Copy(newFileName, aFlag)

newFileName The new file name to copy the file to
Argument list:

aFlag An indication of whether to overwrite or not

When operating on files on the client platform with MSIE, this method provides a means of
copying files within the file system.

The destination argument needs to be a valid location within the file system the File object
belongs to. Given that computers allow for the mounting of foreign file systems through a variety
of different techniques, the target file system path may be constructed quite differently to that of
the source path.

See also: FileSystem.CopyFile(), Folder.Copy()

F – File.DateCreated (Property)

795

File.DateCreated (Property)
The creation date of the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.DateCreated

The date the file was first created. This is obtained by inspecting the file system and directory
information for the file.

See also: Folder.DateCreated

File.DateLastAccessed (Property)
The date that a file was last accessed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.DateLastAccessed

The date that the file was last accessed by an application. This is obtained by inspecting the file
system and directory information for the file.

See also: Folder.DateLastAccessed

File.DateLastModified (Property)
The last modified data for a file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.DateLastModified

The date that the file was last modified by being written to. This is obtained by inspecting the file
system and directory information for the file.

See also: Folder.DateLastModified

JavaScript Programmer's Reference

796

File.Delete() (Method)
A method that deletes files.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFile.Delete()

If need be, you can delete a file from the file system in the client environment. This may not be
possible from a web browser due to the security protections surrounding the browser.

However, JScript is available as a general purpose scripting tool as part of the WSH facility on
Windows. In that context it may well need to be able to delete a file.

File.Drive (Property)
The drive name that the file is stored on.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.Drive

This returns the drive name describing the drive that the file is currently stored on.

See also: Folder.Drive

File.Move() (Method)
A file move method.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFile.Move(aPath)

Argument list: aPath The new target part for the file

You may use this method in the Windows environment to move a file to a different folder within
the file system. This follows the Unix tradition of calling the Rename command a Move command.

The destination path should be valid for the file system which the file is being moved. Given that
computers allow for the mounting of foreign file systems through a variety of different techniques,
the target file system path may be constructed quite differently to that of the source path.

See also: FileSystem.MoveFile(), Folder.Move()

F – File.Name (Property)

797

File.Name (Property)
The name of the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.Name

The name portion of the file's full path and name is returned by this property.

You can also change the contents of this property to rename the file without moving it from the
folder it is currently kept in.

See also: Folder.Name

File.OpenAsTextStream() (Method)
A means of opening the file as if it were a text stream so JScript can do I/O on it.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextStream object

JavaScript syntax: IE myFile.OpenAsTextStream(aMode, aFormat)

aMode An access mode for the file
Argument list:

aFormat A format control for the file

This method opens the file for JScript so that it can access or modify its contents when the JScript
interpreter is in the Windows environment.

The mode parameter should be one of:

❑ ForReading

❑ ForWriting

❑ ForAppending

The format parameter can be set to open the file with a Unicode or ASCII character set. The
default is ASCII if you request the system default value. These values are indicated with a
numeric value as follows:

Value Format

-2 Use system default
-1 Unicode text format
0 ASCII text format

JavaScript Programmer's Reference

798

See also: FileSystem.OpenTextFile(), TextStream object

File.ParentFolder (Property)
The parent folder that contains the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folder object

JavaScript syntax: IE myFile.ParentFolder

The File object represents a file living within a folder in the file system. This property returns an
object that represents the folder containing the file.

See also:
Folder object, Folder.ParentFolder,
Folder.SubFolders[]

File.Path (Property)
The path within the file system that locates the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.Path

The full path to reach the file within the file system is yielded by this property.

See also: Folder.Path

File.ShortName (Property)
The DOS 8.3 filename for the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.ShortName

In the Windows environment, even though long file names are used from the user's point of view,
at the lowest level within the file system some files will still be stored under their old style DOS 8.3
format file names. This property yields the DOS equivalent short file name for a File object.

See also: Folder.ShortName

F – File.ShortPath (Property)

799

File.ShortPath (Property)
The DOS 8.3 compatible path to the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.ShortPath

In the Windows environment, even though long file and folder names are used from the user's
point of view, at the lowest level within the file system some folders and files will still be stored
under their old style DOS 8.3 format file names. This property yields the DOS equivalent path
name for a File object.

See also: Folder.ShortPath

File.Size (Property)
The size of the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFile.Size

The size of the file measured in bytes is yielded by this property. This is effectively the same as the
value returned by the getLength() method in the NES server environment.

See also: Folder.Size

File.Type (Property)
The type of the file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFile.type

The file type extension of the file is yielded by this property. In the past, extensions conformed to a three
character standard. With the cross mounting of foreign file systems which did not conform to the DOS
8.3 standard, file extensions can be of any length although they are usually less than five characters long.

JavaScript Programmer's Reference

800

It is normal to hide the file extensions from the users of desktop systems. In that case you may
want to hold the filename and extension separately, so that you can hide the file extension to be
consistent with what your users see on the desktop.

See also: Folder.Type, Input.type

Property attributes:
ReadOnly.

File object (Object/NES)
An object that encapsulates a file on the local file system within the server.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

NES myFile = File
JavaScript syntax:

NES myFile = new File(aName)

Argument list: aName A valid file name

Object methods:
byteToString(), clearError(), close(), eof(),
error(), exists(), flush(), getLength(),
getPosition(), open(), read(), readByte(), readln(),
setPosition(), stringToByte(), write(), writeByte(),
writeln()

You can create a new instance of this class with the File() constructor.

Files tend to behave in a somewhat similar way in all languages and implementations. This generally
means that they will read and write in 8 bit character sized elements. Beware of this as JavaScript is
Unicode based so file contents may not exactly mirror the in-memory representation of a string.

Warnings:
❑ Be careful not to confuse this with the JScript File object. The JScript object may be supported

in a Microsoft server but the Netscape Enterprise Server supports an object with a mutually
exclusive set of properties and methods and neither kind of File object has any chance of being
portable between a Netscape Enterprise Server and a Microsoft server. There are so many other
differences between their object models that it is a waste of time trying to write a portable
server-side script.

See also: Netscape Enterprise Server, unwatch(), watch()

Method JavaScript JScript NES Notes

byteToString() 1.1 + - 2.0 + -
clearError() 1.1 + - 2.0 + -
close() 1.1 + - 2.0 + -
eof() 1.1 + - 2.0 + -

F – File() (Constructor)

801

Method JavaScript JScript NES Notes

error() 1.1 + - 2.0 + -
exists() 1.1 + - 2.0 + -
flush() 1.1 + - 2.0 + -
getLength() 1.1 + - 2.0 + -
getPosition() 1.1 + - 2.0 + -
open() 1.1 + - 2.0 + -
read() 1.1 + - 2.0 + -
readByte() 1.1 + - 2.0 + -
readln() 1.1 + - 2.0 + -
setPosition() 1.1 + - 2.0 + -
stringToByte() 1.1 + - 2.0 + -
write() 1.1 + - 2.0 + -
writeByte() 1.1 + - 2.0 + -
writeln() 1.1 + - 2.0 + -

File() (Constructor)
A constructor for creating new instances of the file object in an NES server.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: File object

JavaScript syntax: NES new File(aFileName);

Argument list: aFileName
A file path and name that is valid within
the local file system

This constructor is used for creating new File objects, like this:

myFileObject = new File("/some/path/to/a/folder/filename.txt");

File.byteToString() (Method)
Convert a byte value into a string.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: String object

JavaScript syntax: NES myFile.byteToString(aNumber)

Argument list: aNumber A byte value to be converted to a string

JavaScript Programmer's Reference

802

This method provides a way of converting a single numeric value that represents a code point in
the native character set to a character than can be written to a file from a string variable.

There is other similar functionality supported as a static method of the String object.

See also: File.stringToByte(), String.fromCharCode()

File.clearError() (Method)
Reset the error property value.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

JavaScript syntax: NES myFile.clearError()

If the file access caused an error, you can clear that error status value by calling this method.

See also: File.error()

File.close() (Method)
Close the file that was opened with the File.open() method.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myFile.close()

This method closes a file that was opened for reading, writing or appending. It returns a Boolean
value to indicate the success or failure of the closure.

See also: File.open()

File.constructor (Property)
A reference to the constructor function for this object.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Function object

JavaScript syntax: NES myFile.constructor

F – File.eof() (Method)

803

The constructor is that of the built-in File prototype object.

You can use this as one way of creating file objects although it is more popular to use the new
File() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

File.eof() (Method)
This method returns a flag indicating whether we are at the end of the file or not.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myFile.eof()

If we are currently positioned at the end of the file (the getLength() and getPosition()
method calls return an equivalent value), then this method returns the Boolean true value. Any
other position within the file will return false.

A zero length file can only ever have a file pointer positioned at its end of file so it will always
return true if the getLength() method returns zero.

File.error() (Method)
An accessor function for the error property.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES myFile.error()

If an error occurs during an operation on a File object, this property will yield the value of that
error. You will need some additional source of reference to make sense of the possible error codes
that might be presented by this method, as they will be operating system specific.

See also: File.clearError()

JavaScript Programmer's Reference

804

File.exists() (Method)
A method that returns a flag to indicate whether the file exists or not.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myFile.exists()

This method returns the Boolean true value if the file already exists within the file system and a
Boolean false value if it does not.

File.flush() (Method)
Purges the output buffer to the file after some writing.

Availability:
JavaScript – 1.1
Netscape Enterprise Server– 2.0

JavaScript syntax: NES myFile.flush()

File writing tends to involve a certain amount of buffering by the file manager in the environment
in which you are accessing the files. This is necessary to improve performance and throughput. The
data is only physically transferred to the file when a buffer full of data is ready or when the file
buffer is closed. This can mean that a JavaScript error can leave the file incomplete if it fails in a
way that prevents the file from being closed properly. A run-time error would normally not write
any pending data out to a file.

The flush() method allows you to force the file contents to be updated so that the file is complete
and there are no pending contents yet to be written. You might force a flush() at the end of a
record for example.

A flush() method may be called for much more frequently if you are using fixed length records
and manually maintaining an index structure at the front of the file.

See also:
File.write(), File.writeByte(), File.writeln(),
response.flush()

File.getLength() (Method)
Returns the length of the file measured in 8 bit characters.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myFile.getLength()

F – File.getPosition() (Method)

805

The length of the file is returned. You may want to compute a position within the file based on this
value and use it with the setPosition() method later on.

See also: File.setPosition()

File.getPosition() (Method)
Returns the current position in the file where the next read or write is to take place.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myFile.getPosition()

The position of the file pointer within the file is returned relative to the beginning of the file. You
can then use this value with the setPosition() method.

See also: File.setPosition()

File.open() (Method)
Opens a file for reading, writing or appending.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

JavaScript syntax: NES myFile.open(aMode);

Argument list: aMode A mode of opening the file (read, write, append)

This method opens the file that is encapsulated by the File object.

C language programmers will be immediately familiar with this method. It behaves very similarly
to the fopen() call in the ANSI C language libraries. The difference is that this method lacks a
filename argument which is moved to the constructor function which is called separately.

The following flag values can be used with this method:

Flag Description

r Opens the file for reading

r+ Opens the file for reading and writing

w Opens the file for writing

w+ Opens the file for writing and reading

Table continued on following page

JavaScript Programmer's Reference

806

Flag Description

A Opens the file for appending

a+ Opens the file for reading and appending

br Opens a Windows binary file for reading

br+ Opens a Windows binary file for reading and writing

bw Opens a Windows binary file for writing

bw+ Opens a Windows binary file for writing and reading

ba Opens a Windows binary file for appending

ba+ Opens a Windows binary file for reading and appending

If you are using this in a server-side application (within NES), you should make sure the project locking
is activated to avoid file corruption happening if there are multiple simultaneous accesses to the file.

Example code:
<SERVER>
// Example file create, open and write taken from
// Wrox Professional JavaScript
myFile = new File("file.txt");
myFile.open("a");
myFile.writeln("Append this line to the file.");
myFile.close();
</SERVER>

See also: File.close(), FileSystem.CreateTextFile(),
FileSystem.OpenTextFile(), project.lock()

File.prototype (Property)
The prototype for the File object which can be used to extend the interface for all File objects.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: File object

NES File.prototype
JavaScript syntax:

NES myFile.constructor.prototype

Refer to:
prototype property

F – File.read() (Method)

807

File.read() (Method)
Reads a string of characters from the file.

Availability:
JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: String primitive

JavaScript syntax: NES myFile.read(aByteCount)

Argument list: aByteCount Read this many bytes from the file

When you call this method, you need to indicate the length of the string you want to retrieve.

You might use this in a record structured file where the records are all of a fixed length.

See also: File.readByte(), File.readln(), File.write()

File.readByte() (Method)
Reads a single byte or character from the file.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myFile.readByte()

When this reads a byte, the position register for the File object is indexed onwards by one item.

This would be used to read a file as a stream of characters where the individual records will need
to be determined by the script as it reads and buffers the file.

See also: File.read(), File.readln(), File.writeByte()

File.readln() (Method)
Reads from the current position up to the next newline character in the file.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type: String primitive

JavaScript syntax: NES myFile.readln()

JavaScript Programmer's Reference

808

After this method returns the string read from the file, the position pointer is then located at the
beginning of the next line.

You would use this to read records that are variable length and terminated by a newline character.

See also: File.read(), File.readByte()

File.setPosition() (Method)
Sometimes you may need to reposition the file pointer. This method allows you to position it at
exactly the right place.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Boolean primitive

NES myFile.setPosition(aPosition)JavaScript syntax:

NES myFile.setPosition(aPosition,
aControl)

aControl
A means of indicating what kind of offset
to use

Argument list:

aPosition A valid position within the file

File positioning mechanisms are a fundamental part of building indexed record oriented files and
managing fixed length records and fields in a sequential and variable length file structure.

The position control takes an integer value that selects a reference technique for setting the new
position value.

A position control value of 0 (zero) indicates the new position should be measured from the
start of the file.

A position control value of 1 adds the offset to the current position. This should allow forwards or
backwards movement relative to the current position.

A position control value of 2 is measured relative to the end of the file.

File

Start End

File.setPosition(x, 0)

File.setPosition(x, 1)

File.setPosition(x, 2)

F – File.stringToByte() (Method)

809

See also: File.getLength(), File.getPosition()

File.stringToByte() (Method)
Converts the first character of the string argument into a byte value.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Number primitive

JavaScript syntax: NES myFile.stringToByte(aString)

Argument list: aString A string containing at least one character

This converts a single character to a numeric value. It is equivalent to the character to number
conversions supported by the String object.

See also:
File.byteToString(), String.charAt(),
String.charCodeAt()

File.write() (Method)
Writes a string of data out to the file.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myFile.write(aString)

Argument list: aString Some text to be written to the file

As the string is written to the file, the method will return a Boolean value that indicates success or
failure of the write access.

The length of the content is the controlling factor here. This might be used to write individual fields
of a variable length record structure or, if you have loaded the string value you intend to write
with a fixed length value, you can use this to write fixed length data to a file.

See also: File.flush(), File.read(), File.writeByte(),
File.writeln()

JavaScript Programmer's Reference

810

File.writeByte() (Method)
Writes a single byte to the file.

Availability: JavaScript – 1.1
Netscape Enterprise Server– 2.0

JavaScript syntax: NES myFile.writeByte(aNumber)

Argument list: aNumber The value of a byte to be written to the file

This is the complement of the readByte() method which is used to write a continuous stream of
character bytes to a file. This imposes no structure on the file other than that which you contrive
with your JavaScript code.

See also: File.flush(), File.readByte(), File.write(),
File.writeln()

File.writeln() (Method)
Writes a string and automatically place a newline character after it in the file.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES myFile.writeln(aString)

Argument list: aString Some text to be written to the file

This method is functionally very similar to the write() method. In this case however, an
additional trailing newline character is added automatically by the method. You could append the
newlines yourself and use the write() method instead.

Use this technique to write variable length records to a file.

See also: File.flush(), File.write(), File.writeByte()

file: URL (Request method)
Loads a local file into a window.

This request method is useful for retrieving files from the local file systems or can be used to
display a window containing the HTML version of a directory in the client machine.

The file path values are platform dependent although web browsers tend to understand Unix path
rules and convert them to the local platform specific conventions, although MSIE doesn't do this
quite as well when navigating local file systems.

F – file: URL (Request method)

811

On MSIE for Windows, you must at least specify a disk drive letter because the Unix root directory
is not mapped. This presents network mapped drives and removable media all at the same peer
level. So start with this:

file:c:\

MSIE is so well integrated into the Windows environment that it immediately recognizes that you
are browsing the file system and goes into desktop explorer mode. This adds a folder icon to the
toolbar and you can then navigate exactly as you would from the desktop.

The web browsers attempt to take this functionality across to other platforms and so on the
Macintosh, with MSIE, try this:

file:/

MSIE version 5.0 does a much better job and is aware of local network zones and can see other
machines connected via the AppleTalk protocol. Given that you can satisfy the security
requirements, you can browse a network of machines and keep shared documents on a workgroup
server. On the Macintosh MSIE does a better job if the Finder has already mounted a shared
volume on the desktop.

Using this technique you can also run applications provided the URL resolves to the name of an
executable file. On Windows 98, this URL fires up the desktop calculator:

file:C:\Windows\Calc.exe

This means you can build a link on your page that activates local applications really easily. This
works across platforms too. On the Macintosh, a functionally equivalent URL would be:

file://G3/APPS/Desk%20tools/Calculator%207.5

You may need to explore your hard disk to work out the paths to your installed applications. Don't
forget that you need to use escaped URL values.

The same automated activation works for documents too. For example, locate an Excel spreadsheet
and link to it from a document. When you click on the link, this will open Excel and load the
document into it.

Older versions of Netscape Navigator are less capable of navigating the whole file system and
initially start at the folder the browser application lives in. Netscape 6.0 exhibits a bug and this
whole area of the browser needs more work before it is useful.

Accessing these capabilities from script is a little more tricky. window.location.href
assignment effectively does the same thing on a Macintosh. On Windows, there are already
capabilities for activating applications via the ActiveXObject and you need to use that technique
because window.location.href does not like having applications loaded into browser frames.

Warnings:
❑ Be very careful what you browse on your system and how. You may corrupt your system

although read-only access is unlikely to cause any harm.

file://G3/APPS/Desk%20tools/Calculator%207.5

JavaScript Programmer's Reference

812

See also: javascript: URL, URL, view-source: URL

Files object (Object/JScript)
A collection of files belonging together in a folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFiles = myFolder.Files

Object properties: Count

Object methods: Item()

This object is obtained by inspecting the Files property of a Folder object. The Files object is a
collection containing objects that encapsulate the files in that folder. Each file is represented by a
separate File object. You can then examine each of those objects to operate on them as you need to.

The Files object provides a method for searching and extracting a named File object within the
collection and a property that yields the number of File objects in the collection.

You should be able to traverse the Files object using array indexing techniques or by means of an
Enumerator object.

See also: Enumerator object

Property JavaScript JScript N IE Opera Notes

Count - 3.0 + - 4.0 + - ReadOnly.

Method JavaScript JScript N IE Opera Notes

Item() - 3.0 + - 4.0 + - -

Files.Count (Property)
A count of the number of file items in the Files collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFiles.Count

The number of File objects belonging to the Files collection is yielded by this property. You can
build enumeration loops if you know the extent of a collection. You cannot change this value.

F – Files.Item() (Method)

813

Property attributes:
ReadOnly.

Files.Item() (Method)
An accessor for retrieving individual File objects by name from a Files collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: File object

JavaScript syntax: IE myFiles.Item(aName)

Argument list: aName The name of a file within its folder

With this method, you can locate a named File object within the Files collection if it is present.
The file name is used as a key to locate the required object.

FileSystem object (Object/JScript)
An object that represents an entire file system for a specific disk drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myFileSystem = myDrive.FileSystem
JavaScript syntax:

IE myFileSystem = new ActiveXObject
("Scripting.FileSystemObject")

Object methods:
BuildPath(), CopyFile(), CopyFolder(),
CreateFolder(), CreateTextFile(), DeleteFile(),
DeleteFolder(), DriveExists(), FileExists(),
FolderExists(), GetAbsolutePathName(),
GetBaseName(), GetDrive(), GetDriveName(),
GetExtensionName(), GetFile(), GetFileName(),
GetFolder(), GetParentFolderName(),
GetSpecialFolder(), GetTempName(), MoveFile(),
MoveFolder(), OpenTextFile()

Collections: Drives[]

When building scripts to run in the Windows environment, possibly for use with WSH, you may
need to operate on files and folders within the file system hierarchy of the computer. This object
encapsulates the file system so that you can operate on its methods and properties.

JavaScript Programmer's Reference

814

File systems may have been shared across from other computers but the network manager should
make them appear identical to local drives. Foreign file systems should also be mapped to local
drives and appear to have a structure that is familiar. However, there may be file name differences.
Certain characters may be valid on one operating system and invalid on another or there may be
different limitations on file name length and capitalization rules.

See also: Drive.FileSystem, File object

Method JavaScript JScript N IE Opera Notes

BuildPath() - 3.0 + - 4.0 + - -
CopyFile() - 3.0 + - 4.0 + - -
CopyFolder() - 3.0 + - 4.0 + - -
CreateFolder() - 3.0 + - 4.0 + - -
CreateTextFile() - 3.0 + - 4.0 + - -
DeleteFile() - 3.0 + - 4.0 + - -
DeleteFolder() - 3.0 + - 4.0 + - -
DriveExists() - 3.0 + - 4.0 + - -
FileExists() - 3.0 + - 4.0 + - -
FolderExists() - 3.0 + - 4.0 + - -
GetAbsolutePath
Name()

 - 3.0 + - 4.0 + - -

GetBaseName() - 3.0 + - 4.0 + - -
GetDrive() - 3.0 + - 4.0 + - -
GetDriveName() - 3.0 + - 4.0 + - -
GetExtensionName() - 3.0 + - 4.0 + - -
GetFile() - 3.0 + - 4.0 + - -
GetFileName() - 3.0 + - 4.0 + - -
GetFolder() - 3.0 + - 4.0 + - -
GetParentFolderName() - 3.0 + - 4.0 + - -
GetSpecialFolder() - 3.0 + - 4.0 + - -
GetTempName() - 3.0 + - 4.0 + - -
MoveFile() - 3.0 + - 4.0 + - -
MoveFolder() - 3.0 + - 4.0 + - -
OpenTextFile() - 3.0 + - 4.0 + - -

F – FileSystem.BuildPath() (Method)

815

FileSystem.BuildPath() (Method)
A method for manufacturing paths within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.BuildPath(aPath, aName)

aPath A previously existing path
Argument list:

aName A name to be added to extend the path

This yields a path value for use within the file system.

FileSystem.CopyFile() (Method)
A method for copying files within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.CopyFile(aSource,
aTarget, aFlag)

aSource The file to copy from

aTarget The file to copy toArgument list:
aFlag A flag to indicate whether to overwrite

Although you can copy files by using the Copy() method that belongs to a File object, the
FileSystem object also supports file copying from a point of view that is external to a file.

See also: File.Copy()

FileSystem.CopyFolder() (Method)
A method for copying folders within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.CopyFolder(aSource,
aTarget, aFlag)

aSource The folder to copy from

aTarget The folder to copy toArgument list:
aFlag A flag to indicate whether to overwrite

From the FileSystem, you can copy a whole folder hierarchy in a single operation. As is the case
with the File object, the Folder object also provides a Copy() method too.

JavaScript Programmer's Reference

816

See also: Folder.Copy()

FileSystem.CreateFolder() (Method)
A method for creating new folders within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folder object

JavaScript syntax: IE myFileSystem.CreateFolder(aName)

Argument list: aName The name of a folder to be created

You may need to create a new folder as a destination to copy files to or to use as a location to create
them in.

See also: Folder object

FileSystem.CreateTextFile() (Method)
A method for creating new empty text files within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: File object

JavaScript syntax: IE myFileSystem.CreateTextFile(aName,
aFlag)

aName The name of a text file to be created
Argument list:

aFlag A flag to indicate whether to overwrite

This is a means of creating a new text file. As is often the case with the Windows environment, it
has become bloated by having several alternative methods for achieving the same result. If you are
not careful, this can lead to sloppy coding and some very difficult to maintain systems.

It is highly recommended that you choose only one of the several available techniques where there
are alternatives and apply that wherever you can. It is likely you'll find one of the other ways of
creating new files more appropriate and you should be able to ignore this method most of the time.

See also: File object, File.open()

F – FileSystem.DeleteFile() (Method)

817

FileSystem.DeleteFile() (Method)
A method for deleting files from the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.DeleteFile(aName, aFlag)

aName The name of a file to be deleted
Argument list:

aFlag A flag that indicates whether to force the deletion or not

Files can be deleted by using the File object's own Delete() method or by deleting them at the
file system level.

See also: File.Delete()

FileSystem.DeleteFolder() (Method)
A method for deleting folders from the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.DeleteFolder(aName, aFlag)

aName The name of a folder to be deleted
Argument list:

aFlag A flag that indicates whether to force the deletion or not

As is the case with files, there is an alternative way to delete folders too. You can either use this
method or the Delete() method that belongs to the Folder object itself.

See also: Folder.Delete()

FileSystem.DriveExists() (Method)
A method for testing the existence of a drive.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myFileSystem.DriveExists(aName)

Argument list: aName The name of a disk drive to be tested

You can test for the existence of a drive within the file system using this method.

JavaScript Programmer's Reference

818

FileSystem.Drives[] (Collection)
A list of all Drive objects within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Drives object

JavaScript syntax: IE myFileSystem.Drives

This property yields a collection of Drive objects, each one representing a different drive unit.

See also: Drives object

FileSystem.FileExists() (Method)
A means of testing for the existence of a file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myFileSystem.FileExists(aName)

Argument list: aName The name of a file to be tested for existence

You can test for the existence of a file in the file system with this method.

FileSystem.FolderExists() (Method)
A means of testing for the existence of a folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myFileSystem.FolderExists(aName)

Argument list: aName The name of a folder to be tested for existence

You can test for the existence of a folder within the file system with this method.

F – FileSystem.GetAbsolutePathName() (Method)

819

FileSystem.GetAbsolutePathName() (Method)
A method that returns the complete path name of a file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.GetAbsolutePathName(aPath)

Argument list: aPath A relative or absolute path to be examined

Given that you have a partial reference to a file by name, this method will return a fully qualified
path that describes that file's unique location within the file system.

FileSystem.GetBaseName() (Method)
A method that returns the base name of a file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.GetBaseName(aPath)

Argument list: aPath A path to be examined

This method yields the base portion of a path.

FileSystem.GetDrive() (Method)
A method that returns a drive object from the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Drive object

JavaScript syntax: IE myFileSystem.GetDrive(aName)

Argument list: aName The name of a drive in the file system

Given a path within the file system, this method returns an object representing the drive containing
that path.

See also: Drive object

JavaScript Programmer's Reference

820

FileSystem.GetDriveName() (Method)
A method to obtain the drive name of a drive within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.GetDriveName(aLetter)

Argument list: aLetter The letter of a drive to examine for its name

Given a file path, the drive name within it is extracted and returned.

FileSystem.GetExtensionName() (Method)
A method to yield the file extension from the path name.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
String primitive

JavaScript syntax: IE myFileSystem.GetExtensionName(aPath)

Argument list:
aPath A full path to the file to be examined

Given a path name, the file extension portion of it is extracted and returned.

FileSystem.GetFile() (Method)
A method to obtain a File object from a File system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: File object

JavaScript syntax: IE myFileSystem.GetFile(aName)

Argument list: aName The name of a file to construct a File object for

Given a file path within the file system, this method returns an object that represents the file.

See also: File object

F – FileSystem.GetFileName() (Method)

821

FileSystem.GetFileName() (Method)
A method to extract a file name from a path.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.GetFileName(aPath)

Argument list: aPath A full or relative path to examine

Given a file path, this method extracts and returns the file name portion of it.

FileSystem.GetFolder() (Method)
A method to extract the folder from a path.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folder object

JavaScript syntax: IE myFileSystem.GetFolder(aPath)

Argument list: aPath A path to examine for a deepest folder object

Given a path name, this method extracts and returns an object representing the innermost folder
within it.

See also: Folder object

FileSystem.GetParentFolderName() (Method)
A method to extract the parent folder from a path.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.GetParentFolderName(aPath)

Argument list: aPath The path to a file or folder whose parent is required

Given a path, this method returns the name of a parent folder within that path.

JavaScript Programmer's Reference

822

FileSystem.GetSpecialFolder() (Method)
A method to yield a special folder within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folder object

JavaScript syntax: IE myFileSystem.GetSpecialFolder(aNumber)

Argument list: aNumber An identifier for the special folder required

There are many special locations within the file system where objects are stored. Given a keyword,
this method maps the keywords to physical locations within the file system.

The following special folders are supported in the Windows environment:

Number Description

0 Windows files folder
1 System files folder
2 Temporary items folder

See also: Folder object

FileSystem.GetTempName() (Method)
A method to generate a unique temporary file name.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFileSystem.GetTempName()

There are often times when you need a temporary file name. If you want to generate a unique name
yourself you can. It is generally better to let the operating system do this because it can generate
and test for uniqueness far more reliably than you can.

F – FileSystem.MoveFile() (Method)

823

FileSystem.MoveFile() (Method)
A method to move a file within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.MoveFile(aSource,
aTarget)

aSource The file to move from
Argument list:

aTarget The file to move to

As well as being able to move files with their own Move() method, you can move them from
within the file system as well.

See also: File.Move()

FileSystem.MoveFolder() (Method)
A method to move a folder within the file system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.MoveFolder(aSource,
aTarget)

aSource The folder to move from
Argument list:

aTarget The folder to move to

Folder objects can be moved from within the file system or by invoking the Move() method that
belongs to the Folder object itself.

See also: Folder.Move()

FileSystem.OpenTextFile() (Method)
A method for opening text files for I/O.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: File object

JavaScript syntax: IE myFileSystem.OpenTextFile(aName,
aMode, aFlag, aFormat)

JavaScript Programmer's Reference

824

aName The name of the file to be created

aFlag A flag indicating whether the file can be created if necessary

aMode An access mode for the file

Argument list:

aFormat A format control for the file

Yet another way to open files that is named inconsistently with every other way that files can be
operated on. In this case, we are opening files from the file system's point of view.

It is recommended that you select only one preferred technique for opening text files for I/O and
sticking to it. If you mix and match and use several alternatives, you will become confused and so
will everyone else who has to maintain your scripts in the future.

This is the equivalent of a File.Open() when the JScript interpreter in the Windows environment
needs to read the contents of the text in the file.

The mode parameter should be one of:

❑ ForReading

❑ ForWriting

❑ ForAppending

The format parameter can be set to open the file with a Unicode or ASCII character set. The default
is ASCII if you request the system default value. This parameter is indicated with a numeric value
as follows:

Value Format

-2 Use system default
-1 Unicode text format
0 ASCII text format

See also:
File object, File.open(), File.OpenAsTextStream(),
TextStream object

FileUpload object (Object/DOM)
A text field in a form for entering the name of a file to be uploaded to the server.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

F – FileUpload object (Object/DOM)

825

- myFileUpload = myDocument.aFormName.anElement
Name

- myFileUpload =
myDocument.aFormName.elements[anItemIndex]

IE myFileUpload = myDocument.all.anElementID

IE myFileUpload =
myDocument.all.tags("INPUT")[anIndex]

IE myFileUpload = myDocument.all[aName]

- myFileUpload =
myDocument.forms[aFormIndex].anElementName

- myFileUpload = myDocument.forms[aFormIndex]
.elements [anItemIndex]

- myFileUpload =
myDocument.getElementById(anElementID)

- myFileUpload =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myFileUpload = myDocument.getElementsByTagName
("INPUT") [anIndex]

HTML syntax: <INPUT TYPE="file">

anItemIndex A reference to an element in a collection
anIndex A reference to an element in a collection
aName An associative array reference
anElementID The ID value of an Element object

Argument list:

aFormIndex A reference to one specific form in the collection

Object properties: accept, size, type, value

Object methods: handleEvent(), select()

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onDragStart, onFilterChange, onFocus, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onResize, onRowEnter, onRowExit, onSelect,
onSelectStart

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all subclasses of
the Input object superclass.

There isn't really a FileUpload object class, but it is helpful when trying to understand the wide
variety of input element types, if we can reduce the complexity by discussing only the properties and
methods of a file upload. In actual fact, the object is represented as an item of the Input object class.

Unlike MSIE, Netscape Navigator does not support the defaultValue property or the select()
method for this subclass of the Input object.

Warnings:
❑ To be able to upload a file under script control, you must have the UniversalFileRead

privilege granted to the script.

JavaScript Programmer's Reference

826

See also: Element object, FileUpload.handleEvent(), Form.elements[],
Input object, Input.accessKey, onChange, UniversalFileRead

Property JavaScript JScript N IE Opera DOM HTML Notes

accept - 5.0 + - 5.0 + - - - -
size 1.0 + 3.0 + 2.0 + 4.0 + - - - -
type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly
value 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -
select() 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelect 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

F – FileUpload.accept (Property)

827

FileUpload.accept (Property)
A list of acceptable MIME types for a file upload in a form.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myFileUpload.accept

Refer to:
MIME types

FileUpload.handleEvent() (Method)
Passes an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myFileUpload.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape Navigator prior to version 6.0. From that release onwards, event
management follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: FileUpload object, handleEvent()

FileUpload.select() (Method)
Triggers a Select event on a FileUpload object.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myFileUpload.select()

JavaScript Programmer's Reference

828

This selects all the text in the FileUpload object so that it can be cut or copied by the user if necessary,
or used as TextRange and have a command executed on it. It also triggers a Select event.

See also: Document.execCommand(), Input.select(),
TextRange.execCommand()

FileUpload.size (Property)
Returns the size of the file to be uploaded.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myFileUpload.size

It may be important to limit the size of files being uploaded to the server.

It is very possible that vindictive users may use file uploading to try and crash your server or deny
its availability to other users by uploading massive files to it.

On the other hand, there may be limits you want to impose as a courtesy to the network managers
who run the LANs and WANs where your users will be browsing. Allowing the user to upload
unnecessarily large files will saturate their network as well as your server.

By testing this property, you can impose limits of acceptability on file uploads.

See also: Input.size

FileUpload.type (Property)
The type of a form input element.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myFileUpload.type

The type value for a FileUpload is always "file". This value is necessary to determine the type
of form element because this object is really an instance of the Input class.

F – FileUpload.value (Property)

829

See also: Input.type

Property attributes:
ReadOnly.

FileUpload.value (Property)
The file name entered by the user for the file to be uploaded.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myFileUpload.value

This property yields the name of the file that is to be uploaded. You may want to check this for its
suitability. Perhaps you need a text file and the user chose an executable. Careful checking at the
client can save serious problems at the server when your data processing code receives the
uploaded file. Sending an image file to a server back-end that was expecting a small text file
containing short lines can cause a server crash.

See also: Input.value, UniversalFileRead

Filter (Definition)
A mechanism for providing display effects in MSIE.

The filters fall into three broad groups.

Static filters can be used (and stacked) to enhance the visual display effect of an object as it is
rendered on screen. By using time-out loops you can also use them as animated effects by altering
one property continuously.

The transitional filters control the change from one display to another, but can be used as static
filters by freezing them at a fixed point in the transition.

The procedural filters calculate a surface according to a shading algorithm.

There are examples in the filter topics of how to use the latest variants of these filters. The older
versions are now deprecated in favor of a new set and the examples have been omitted for the
deprecated filters. In any case, they can all be implemented in terms of the new versions of the filters.

The major change took place at version 5.5 of MSIE and it is recommended that you use the latest
filter set for any new projects.

JavaScript Programmer's Reference

830

Warnings:
❑ This is not the same as the event filtering provided by Netscape Navigator

See also: Element.filters[]

filter – Alpha() (Filter/visual)
A visual filter for controlling transparency.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties:
Enabled, Opacity, FinishOpacity, StartX, StartY,
FinishX, FinishY, Style

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This filter is used to define a transparency level with an optional gradient effect.

The Enabled property can be set true to switch on the effect of this filter or false to deactivate it.

The Opacity property describes the initial opacity value. The values 0 and 100 represent the full
range of alpha levels with 0 being fully transparent to 100 being fully opaque.

When using a gradient, the FinishOpacity describes the opacity required on completion.

The StartX and StartY properties are the starting coordinates of the gradient.

The FinishX and FinishY properties are the ending coordinates of the gradient.

The Style property defines the kind of gradient to use for the alpha channel filter. The following
kinds of gradient are supported:

Index Description

0 Uniform alpha level defined by the opacity name=value pair. The entire
element is rendered at the same opacity level.

1 A linear gradient is specified. The two opacity levels define the start and
end gradient points while the start and finish coordinates define the
gradient normal vector.

2 Radial gradient starting at the StartX, StartY position and using the
two opacity values for range.

3 Rectangular gradient spanning the rectangle defined by the start and end
coordinates and using the start and end opacity values.

There are two examples. One shows the creation of the filter from script, the other implements the
same effect but shows the modification of an existing object defined by <STYLE> tags.

F – filter – Alpha() (Filter/visual)

831

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="pulsateButton()">
<INPUT ID="MYBUTTON" TYPE="button" VALUE="Button">

<SCRIPT>
var theOpacity = 0;
var theIncrement = 1;
function pulsateButton()
{
 theOpacity += theIncrement;

 myFilter = "Alpha(opacity="+theOpacity+")";
 document.all.MYBUTTON.style.filter = myFilter;
 if((theOpacity % 100) == 0)
 {
 theIncrement *= -1;
 }

 setTimeout("pulsateButton()", 5);
}
</SCRIPT>
</BODY>
</HTML>
--
<HEAD>
<STYLE>
INPUT.aFilter {filter:Alpha(Opacity=50);}
</STYLE>
</HEAD>
<BODY onLoad="pulsateButton()">
<INPUT ID="MYBUTTON" TYPE="button" VALUE="Button" CLASS="aFilter">

<SCRIPT>
var theOpacity = 0;
var theIncrement = 1;
var theFilter = document.all.MYBUTTON.filters[0];
function pulsateButton()
{
 theOpacity += theIncrement;

 theFilter.opacity = theOpacity;
 if((theOpacity % 100) == 0)
 {
 theIncrement *= -1;
 }

 setTimeout("pulsateButton()", 5);
}
</SCRIPT>
</BODY>
</HTML>

JavaScript Programmer's Reference

832

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
Opacity - 3.0 + - 4.0 + - Warning
FinishOpacity - 3.0 + - 4.0 + - Warning
StartX - 3.0 + - 4.0 + - Warning
StartY - 3.0 + - 4.0 + - Warning
FinishX - 3.0 + - 4.0 + - Warning
FinishY - 3.0 + - 4.0 + - Warning
Style - 3.0 + - 4.0 + - Warning

filter – AlphaImageLoader() (Filter/procedural)
An image is displayed in the object with some additional control over how it is displayed.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Enabled, SizingMethod, Src

Supported by objects: A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body, BUTTON,
CAPTION, CENTER, CITE, CODE, custom, DD, DFN, DIR, DIV, DL, DT, EM,
FIELDSET, FONT, FORM, FRAME, Hn, I, IFRAME, IMG, INPUT, INS, KBD,
LABEL, LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE, STRONG,
style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT, U, UL, VAR, XMP

If you consider the content of the object and its background as two layers that are composited
together, this filter interposes an additional image layer between them.

This layer can have its transparency adjusted as well as scaling and clipping to position the image
where you want it.

The Enabled property can be set true to switch on the effect of this filter or false to deactivate it.

The SizingMethod property can be set to one of the following values:

❑ The crop value forces the image to be cropped to fit the HTML Element content's extent
rectangle.

❑ The image value forces the HTML Element to be resized to accommodate the extent rectangle
of the image file.

❑ The scale value forces the image to be scaled to fit the current extent rectangle for the HTML
Element.

The Src property is mandatory and needs to point at a valid and absolute image URL value that
can be loaded.

The example demonstrates these capabilities by cycling round all three settings using a switch
case selector.

F – filter – Barn() (Filter/transition)

833

Example code:
<HTML><HEAD></HEAD>
<BODY>
<SCRIPT>
var theState = 0;
// Cycle the sizingMethod property to size the image.
function changeState(oObj)
{
 switch(theState)
 {
 case 0:
 theState = 1;
 CONTAINER.filters(0).sizingMethod = "image";
 oObj.innerText = 'Scale to fit';
 break;
 case 1:
 theState = 2;
 CONTAINER.filters(0).sizingMethod = "scale";
 oObj.innerText = 'Crop to fit';
 break;
 case 2:
 theState = 0;
 CONTAINER.filters(0).sizingMethod = "crop";
 oObj.innerText = 'Normal';
 break;
 }
}
</SCRIPT>
<DIV ID="CONTAINER" STYLE="position:absolute; left:140px; height:50; width:50;
filter:progid:DXImageTransform.Microsoft.AlphaImageLoader(src='C:\FilterTests\Logo
150.gif', sizingMethod='scale');" >
</DIV>
<BUTTON onclick="changeState(this);">Scale to fit</BUTTON>
</BODY>
</HTML>

See also: Filter object, Procedural surfaces, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 4.0 + - -
SizingMethod - 5.5 + - 5.5 + - -
Src - 5.5 + - 5.5 + - -

filter – Barn() (Filter/transition)
A transition effect with the appearance of barn doors opening or closing.

Availability: JScript – 5.5
Internet Explorer – 5.5

JavaScript Programmer's Reference

834

Object properties:
Duration, Enabled, Motion, Orientation, Percent,
status

Object methods: apply(), play(), stop()

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The Motion property can use the values in or out to determine the direction that the transition
moves in.

The Orientation property indicates whether the effect is applied horizontally or vertically with
the values horizontal or vertical.

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

The example shows the filter being applied in a continuous time-out loop.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Barn(orientation=vertical,
motion=out) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>

F – filter – Barn() (Filter/transition)

835

This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility = "visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility = "hidden";
 DIV2.style.visibility = "visible";
 }
 else
 {
 DIV1.style.visibility = "visible";
 DIV2.style.visibility = "hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 2000);
}
</SCRIPT>
</BODY>
</HTML>

See also: filter – Iris(), filter – RandomBars(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
Motion - 5.5 + - 5.5 + - -
Orientation - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

JavaScript Programmer's Reference

836

filter – BasicImage() (Filter/visual)
Controls over the basic image display attributes of the containing HTML Element object.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Enabled, GrayScale, Invert, Mask, MaskColor,
Mirror, Opacity, Rotation, XRay

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD,
DFN, DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM,
FRAME, FRAMESET, Hn, I, IFRAME, IMG, INPUT, INS,
KBD, LABEL, LEGEND, LI, MARQUEE, MENU, NOBR, OL, P,
PLAINTEXT, PRE, Q, RT, RUBY, runtimeStyle, S, SAMP,
SMALL, SPAN, STRIKE, STRONG, style, SUB, SUP,
TABLE, TD, TEXTAREA, TH, TT, U, UL, VAR, XMP

This filter was added for version 5.5 of MSIE and consolidates the image handling capabilities of
the filters in earlier versions of the MSIE browser.

The Enabled property turns the filter on and off by assigning the true or false value to it.

The GrayScale property replaces the functionality of the GrayScale() filter. Setting it to 1
discards the color information while zero makes it inactive.

The Invert property replaces the functionality of the Invert() filter. However, note that it
inverts the value in the RGB color space and not the HSV color space that the deprecated
Invert() filter used to use.

The Mask property replaces the functionality of the now deprecated Mask() filter. Any pixels set
to transparent will be replaced by the color defined in the MaskColor operator. This means that
MaskColor must be specified when the Mask operator is used.

The Mirror property replaces the deprecated FlipH() filter. The value 0 and 1 control whether
the mirror effect is applied. To reproduce the effect of the FlipV() filter, use the Rotation
operator first to rotate the element by 90 degrees.

The Opacity property can accept a floating point value between 0.0 and 1.0. 0.0 is completely
transparent while 1.0 is completely opaque.

The Rotation property takes a set of values to specify which of of the four cardinal directions to
rotate the object. The value 0 corresponds to no rotation. Angles of 90, 180 and 270 degrees are
indicated by the values 1,2 and 3 respectively. This does not provide a free rotate facility. You can
use it in combination with the mirroring to perform Mirror flips other than a straightforward left
to right mirror.

The XRay property displays the image taking the average of the red and green values of each pixel
and then inverting it. This is not quite the same as an invert on the GrayScale value. It is also
different to what the earlier XRay() filter provided according to the documentation. Earlier
XRay() filters were documented as proving just an edge detected outline.

The example shows an image in its normal and XRay modes.

F – filter – BlendTrans() (Filter/blend)

837

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

X-Ray-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.BasicImage(xray=1)";

document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: color value, filter – FlipH(), filter – FlipV(), filter – Grayscale(),
filter – Invert(), filter – Mask(), filter – Matrix(), filter – XRay(),
Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
GrayScale - 5.5 + - 5.5 + - -
Invert - 5.5 + - 5.5 + - -
Mask - 5.5 + - 5.5 + - -
MaskColor - 5.5 + - 5.5 + - -
Mirror - 5.5 + - 5.5 + - -
Opacity - 5.5 + - 5.5 + - -
Rotation - 5.5 + - 5.5 + - -
XRay - 5.5 + - 5.5 + - -

filter – BlendTrans() (Filter/blend)
A blend filter for controlling transitions.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

This blend transition filter is used to control the fading in and out of the filtered element. This
would be used to create a dissolve effect.

The duration name=value pair specifies a floating point value in seconds which controls how
quickly the effect should take place.

The use of this feature is deprecated in favor of the named transitions introduced in later versions
of MSIE and which can be used as static or transitional effects.

JavaScript Programmer's Reference

838

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also: filter – RevealTrans(), Filter object, style.filter, Transition

filter – Blinds() (Filter/transition)
A transition effect with the appearance of venetian blinds opening or closing.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
bands, Direction, Duration, Enabled, Percent,
status

Object methods:
apply(), play(), stop()

This transition effect supports the following properties:

❑ The bands property defines the number of strips that the blinds filter will use for its transition
effect. The value should be in the range 1 to 100.

❑ The Direction property determines which direction the transition should proceed. It accepts
the values: left, right, up or down.

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example runs continuously in a timeout loop.

F – filter – Blinds() (Filter/transition)

839

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Blinds(orientation=vertical,
motion=out) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 2000);
}
</SCRIPT>
</BODY>
</HTML>

See also:
filter – CheckerBoard(), filter – Slide(), Filter object,
style.filter

JavaScript Programmer's Reference

840

Property JavaScript JScript N IE Opera Notes

bands - 5.5 + - 5.5 + - -
Direction - 5.5 + - 5.5 + - -
Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Blur() (Filter/visual)
A visual filter for blurring objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties: Enabled, MakeShadow, PixelRadius, ShadowOpacity

Supported by objects: A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body, BUTTON,
CAPTION, CENTER, CITE, CODE, custom, DD, DFN, DIR, DIV, DL, DT, EM,
FIELDSET, FONT, FORM, FRAME, FRAMEST, Hn, I, IFRAME, IMG, INPUT,
INS, KBD, LABEL, LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT, U, UL, VAR, XMP

This visual filter provides a way of adding motion blur to elements as they are drawn into the
display. Versions of the MSIE browser prior to version 5.5 implement the MotionBlur() filter as a
Blur() filter.

As of the IE 5.5 browser, the Blur effect provides a simple Gaussian blur which is non directional.
The Previous motion blurring artifacts is now available with a specialized MotionBlur() filter.

From version 5.5 of MSIE, the properties supported by this filter have changed to this set:

❑ The Enabled property turns the blurring effect on and off when set to true or false,
respectively.

❑ The MakeShadow property allows you to select between displaying the object as a shadow, or
as its normal RGB values. Set to true to get a blurred shadow effect.

❑ The PixelRadius property takes a floating point value to indicate the radius of the blurring
effect. The value ranges from 1.0 to 100.0 in pixels.

❑ The ShadowOpacity property takes a floating point value in the range 0.0 to 1.0 to indicate
the opacity of the blurred image. The value 0.0 is completely transparent while 1.0 is
completely opaque.

The example shows how to make a blurred shadow effect.

F – filter – CheckerBoard() (Filter/transition)

841

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Blur(makeshadow=true,
pixelradius=5.0, shadowopacity=0.5)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: filter – MotionBlur(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
MakeShadow - 3.0 + - 4.0 + - Warning
PixelRadius - 3.0 + - 4.0 + - Warning
ShadowOpacity - 3.0 + - 4.0 + - Warning

filter – CheckerBoard() (Filter/transition)
A transition effect with the appearance of chequer board blinds opening or closing.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Direction, Duration, Enabled, SquaresX, SquaresY

This transition effect supports the following properties:

❑ The Direction property determines which direction the transition should proceed. It accepts
the values: left, right, up or down.

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

JavaScript Programmer's Reference

842

❑ The SquaresX and SquaresY properties describe how many squares the effect should use
across the content being transitioned.

The example runs in a continuous loop.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.CheckerBoard(direction=left,
squaresx=10, squaresy=10) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 2000);
}
</SCRIPT>
</BODY>
</HTML>

F – filter – Chroma() (Filter/visual)

843

See also: filter – Blinds(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Direction - 5.5 + - 5.5 + - -
Duration - 5.5 + - 5.5 + - -
Enabled - 5.5+ - 5.5 + - -
SquaresX - 5.5 + - 5.5 + - -
SquaresY - 5.5 + - 5.5 + - -

filter – Chroma() (Filter/visual)
A visual filter for chroma key effects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties: Enabled, Color

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This visual filter provides a way to define a particular color as being transparent. This is sometimes
called chroma keying (a technique much used in the television industry).

The Color property defines a hex triplet value which is deemed to be transparent for this element.

Version 5.5 of the MSIE browser adds the Enabled property which controls whether the effect is
applied by means of the true and false value.

The example makes black the transparent color for the image.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

❑ This can display some unattractive visual artifacts with images that have been compressed or
dithered to reduce the number of colors available. It also does not work very well round the
edges of anti-aliased images.

JavaScript Programmer's Reference

844

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Chroma(color=#000000)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript Nav IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
Color - 3.0 + - 4.0 + - Warning

filter – Compositor() (Filter/visual)
As content is added to an object, it can be colored to indicate that it is changed content.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Enabled, Function

Object methods: apply(), play()

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESET, Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

Although this is implemented as a transitional effect, it actually only affects the display of an
HTML Element in a static manner.

The Function property provides a way to select a rule for displaying a pixel color based on the two
corresponding pixels in the previous and new image content of the HTML element being filtered.

F – filter – Compositor() (Filter/visual)

845

The actual function is selected by a numeric value as follows (as described by the MSDN scripting
reference information):

Code Operation Description

0 CLEAR Neither pixel value displayed.

1 MIN(A, B) Show the less bright of the two pixels.
2 MAX(A, B) Show the brighter of the two pixels.
3 A Input A shown, Input B ignored.
4 A OVER B Input A displayed over Input B. All of Input A is visible,

and Input B shows through translucent regions of Input A.
5 A IN B Display all parts of Input A that are contained in Input B.

Only regions with nonzero alpha values for both images are
visible, and no part of Input B shows through.

6 A OUT B Display all parts of Input A that are not contained in Input B.
No part of Input B is displayed.

7 A ATOP B Display Input A covering Input B, with each sample scaled
by the alpha channel of Input B.

8 A SUBTRACT B Display Input A with the sample color values of Input B
subtracted from the corresponding sample color values of Input
A. The resulting color is scaled by the alpha values of Input A.

9 A ADD B Display Input A with the sample color values of Input B
added to the corresponding sample color values of Input A. The
resulting color value is scaled by the alpha value of Input A.

10 A XOR B Display pixels of each set of input where the two images do not
overlap. Pixels that overlap are scaled by their inverse alpha
value.

19 B Input B shown, Input A ignored.
20 B OVER A Input B displayed over Input A. All of Input B is visible,

and Input A shows through translucent regions of Input B.
21 B IN A Display all parts of Input B that are contained in Input A.

Only regions with nonzero alpha values for both images are
visible, and no part of Input A shows through.

22 B OUT A Display all parts of Input B that are not contained in Input A.
No part of Input A is displayed.

23 B ATOP A Display Input B over Input A, with each sample scaled by the
alpha channel of Input A.

24 B SUBTRACT A Display Input B with the sample color values of Input A
subtracted from the corresponding sample color values of Input
B. The resulting color is scaled by the alpha values of Input B.

25 B ADD A Display Input B with the sample color values of Input A
added to the corresponding sample color values of Input B. The
resulting color value is scaled by the alpha value of Input B.

The apply() method should be executed on the filter object to capture the initial (state A)
image pixel map. Then the play() method can be applied after some changes have taken place. At
this point the state B image can be determined and compared with the state A image.

JavaScript Programmer's Reference

846

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY bgcolor=gray onload="loader()">
<BUTTON onClick="filterThing()">Click me</BUTTON>

<DIV ID="CONTAINER"
STYLE="filter:progid:DXImageTransform.Microsoft.Compositor(function=20);
position:absolute; height:300; width:300">

</DIV>
<SCRIPT>
function loader()
{
 CONTAINER.filters.item(0).Apply();
 CONTAINER.innerHTML = HIDDEN.innerHTML;
 CONTAINER.filters.item(0).Play();
}
function filterThing()
{
 CONTAINER.filters.item('DXImageTransform.Microsoft.Compositor').Function = 2;
}
</SCRIPT>
<DIV ID="HIDDEN" STYLE="display:none">

</DIV>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
Function - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -

filter – DropShadow() (Filter/visual)
A visual filter for creating drop shadows.

Availability: JScript – 3.0
Internet Explorer – 4.0

F – filter – DropShadow() (Filter/visual)

847

Object properties: Enabled, OffX, OffY, Positive , Color

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This visual filter creates drop shadow effects. These are quite useful for lifting control elements out
of the page to make them more readily visible.

The following properties are supported:

❑ The Enabled property was added at version 5.5 of MSIE to implement a consistent way of
enabling/disabling filters by means of its true or false setting.

❑ The offx and offy properties define the magnitude and direction of the dropshadow.

❑ The positive property specifies whether all pixels or only visible pixels generate a drop
shadow. Setting this value to 0 applies a shadow based on every pixel in the element. A value of
1 only shadows non-transparent pixels.

❑ The Color property provides a way to determine the drop shadow color. This is not available
on earlier versions of the MSIE browser.

The example shows the effect of adding a drop shadow to an image. In this example, you will see
that the shadow has a hard edge created by a point source of light – you may want to use the Blur
filter to provide a more natural effect with soft edges.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.DropShadow(offx=10, offy=10,
positive=1, color=gray)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

JavaScript Programmer's Reference

848

See also: color value, Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
OffX - 3.0 + - 4.0 + - Warning
OffY - 3.0 + - 4.0 + - Warning
Positive - 3.0 + - 4.0 + - Warning
Color - 3.0 + - 4.0 + - Warning

filter – Emboss() (Filter/visual)
Displays the image content of the HTML element as if it were an embossed effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Enabled, Bias

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESET, Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

The grayscale values of the image are used as a height map, and an image is generated by using
this height map with a light source to cast a shadow. The result is a grayscale image.

The following properties are supported:

❑ The Enabled property can be set to true or false to switch the filter on or off.

❑ The Bias property controls an intensity level that is added to the brightness of the embossed
filter output. The value can range from -1.0 to 1.0 with brighter images as the value becomes
more positive.

The example shows the application of an Emboss filter to an image. However when running tests,
the Bias value did not seem to have any visible effect on MSIE 5.5 running on Windows 98.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

F – filter – Engrave() (Filter/visual)

849

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Emboss()";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: filter – Engrave(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
Bias - 5.5 + - 5.5 + - -

filter – Engrave() (Filter/visual)
An effect that is the opposite of the embossed image appearance.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Enabled, Bias

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESST, Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

This filter operates in a similar way to the Emboss() filter. In this case, the height information is
inverted giving the effect of an engraved image.

The following properties are supported:

❑ The Enabled property can be set to true or false to switch the filter on or off.

❑ The Bias property controls an intensity level that is added to the brightness of the engraved
filter output. The value can range from -1.0 to 1.0 with brighter images as the value becomes
more positive.

The example shows the application of an Engrave filter to an image. However when running tests,
the Bias value did not seem to have any visible effect on MSIE 5.5 running on Windows 98.

JavaScript Programmer's Reference

850

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Engrave()";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: filter – Emboss(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
Bias - 5.5 + - 5.5 + - -

filter – Fade() (Filter/transition)
A transition effect with the appearance of a dissolve between two images.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Overlap, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The Overlap property is a floating point value from 0.0 to 1.0 that determines what proportion
of the duration time both images should be partially visible.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

F – filter – Fade() (Filter/transition)

851

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example runs in a continuous loop.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Fade(duration=5, overlap=2)
">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";

JavaScript Programmer's Reference

852

 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 2000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
Overlap - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – FlipH() (Filter/visual)
A visual filter for horizontal mirror effects.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

This visual filter is used for creating symmetrically mirrored copies of an element flipped on the
horizontal axis. There are no properties to use with it.

The use of this filter is now deprecated in favor of the BasicImage() filter that was implemented
with the IE 5.5 browser. You can also use the Matrix() filter in place of this.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also: filter – BasicImage(), filter – Matrix(), Filter object,
style.filter

F – filter – FlipV() (Filter/visual)

853

filter – FlipV() (Filter/visual)
A visual filter for vertical mirror effects.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

This visual filter is used for creating symmetrically mirrored copies of an element flipped on the
vertical axis. There are no properties to use with it.

The use of this filter is now deprecated in favor of the BasicImage() filter that was implemented
with the IE 5.5 browser. You can also use the Matrix() filter in place of this.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also:
filter – BasicImage(), filter – Matrix(), Filter object,
style.filter

filter – Glow() (Filter/visual)
A visual filter for adding a glow effect.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties: Enabled, Color, Strength

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This visual filter adds a glow effect surrounding the filtered element.

The following properties are supported:

❑ The Enabled property was added for version 5.5 of MSIE to provide a consistent interface
for controlling whether a filter is active. It takes the values true or false to enable or
disable the filter.

❑ The color property defines the color value for the glow.

❑ The strength property sets the intensity of the glow with a value from 1 to 255.

The glow effect is demonstrated in the example.

JavaScript Programmer's Reference

854

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Glow(color=lightgreen,
strength=20)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
Color - 3.0 + - 4.0 + - Warning
Strength - 3.0 + - 4.0 + - Warning

filter – Gradient() (Filter/procedural)
A procedural definition of a gradient effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Enabled, StartColor, StartColorStr, EndColor,
EndColorStr, GradientType

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESET, Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

F – filter – Gradient() (Filter/procedural)

855

The following properties can be used with this filter:

❑ The Enabled property can be set to true or false to control whether the Gradient() is
used or not.

❑ The StartColor and EndColor properties can be specified as a 32 bit integer in decimal or
hexadecimal notation. The extra 8 bits of information specify an alpha channel blending effect.

The StartColorStr and EndColorStr properties can be specified as a hexadecimal color value
string including the alpha channel value. Color names may not work properly.

You should use StartColor or StartColorStr and EndColor or EndColorStr according how you
want to specify the start and end colors. This is another example of where the MSIE browser syntax
breaks with the traditional color naming conventions and goes off in another direction. This lack of
consistency even within a browser makes it more difficult for beginners to learn how use these features.

❑ The GradientType property selects the kind of gradient to apply. It simply controls the
orientation of the gradient. A zero value specifies a vertical gradient while the 1 value specifies a
horizontal gradient.

The example shows how to enable the gradient and select its direction interactively.

Example code:
<HTML><HEAD></HEAD>
<BODY>
<SCRIPT>
var theState = 0;
var theGradientType = 0;
function selectGradientType()
{
 theGradientType = (theGradientType + 1) % 2;
 CONTAINER.filters(0).GradientType = theGradientType;
}

function switchState(anObject)
{
 switch(theState)
 {
 case 0:
 theState = 1;
 CONTAINER.filters(0).enabled = "true";
 anObject.innerText = 'Remove effect';
 break;
 case 1:
 theState = 0;
 CONTAINER.filters(0).enabled = "false";
 anObject.innerText = 'Apply effect';
 break;
 }
}
</SCRIPT>
<BUTTON onclick="switchState(this);">Apply effect</BUTTON>

<BUTTON onclick="selectGradientType();">Next style</BUTTON>

<DIV ID="CONTAINER" STYLE="position:absolute; left:140px; height:250; width:250;
filter:progid:DXImageTransform.Microsoft.Gradient(enabled='false',
startColorStr='#FF0000FF', endColorStr='#00FFFF00', GradientType=0);">
<CENTER>

JavaScript Programmer's Reference

856

</CENTER>
</DIV>
</BODY>
</HTML>

See also: color value, Filter object, Procedural surfaces, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
StartColor - 5.5 + - 5.5 + - -
StartColorStr - 5.5 + - 5.5 + - -
EndColor - 5.5 + - 5.5 + - -
EndColorStr - 5.5 + - 5.5 + - -
GradientType - 5.5 + - 5.5 + - -

filter – GradientWipe() (Filter/transition)
A transition effect with the appearance of a wipe with a soft edge.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Duration, Enabled, GradientSize, Motion, Percent,
status, WipeStyle

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The GradientSize property indicates what proportion of the object is covered by the gradient
band. The value is in the range 0.0 to 1.0 and is a floating point value.

❑ The Motion property can be defined as forward or reverse to indicate the direction of the
transition.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

❑ The WipeStyle property is an integer value to determine which direction the gradient wipe
travels. The value 0 selects a horizontal wipe while the value 1 selects a vertical wipe.

F – filter – GradientWipe() (Filter/transition)

857

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example runs in a continuous loop. Note that you should ensure the loop is at least long
enough to cope with the effect duration otherwise a jerky transition will result.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.GradientWipe(duration=5,
gradientsize=0.4, motion=forward, wipestyle=0) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; "><CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";

JavaScript Programmer's Reference

858

 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 7000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
GradientSize - 5.5 + - 5.5 + - -
Motion - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -
WipeStyle - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Grayscale() (Filter/visual)
A visual filter for converting to a grayscale appearance.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

This visual filter removes all color information from the filtered element and display it in grayscale
mode only. There are no properties associated with it.

The use of this filter is now deprecated in favor of the BasicImage() filter that was implemented
with the IE 5.5 browser.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also: filter – BasicImage(), Filter object, style.filter

F – filter – Inset() (Filter/transition)

859

filter – Inset() (Filter/transition)
A diagonal wipe across the image revealing the new image.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

There do not appear to be any values that control the direction of the inset which wipes
diagonally rightwards and downwards. The example shows how to apply this in a cyclic manner.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Inset(duration=2) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>

JavaScript Programmer's Reference

860

<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 7000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

F – filter – Invert() (Filter/visual)

861

filter – Invert() (Filter/visual)
A visual filter for inverting image colors.

Availability: JScript – 3.0
Internet Explorer – 4.0

This visual filter inverts the color value of every pixel in the filtered element.

There are several color models that could be used for this. The display is based around the RGB
model and a printout would use the CMY or CMYK model. Inverting either of these would yield a
different effect.

So, the browser will invert the colors using the HSV model. This should work consistently across
all display mediums.

HSV stands for Hue, Saturation and Value (which means brightness or luminosity in most cases).

The Hue value is represented by a color wheel where the colors are specified on an angular basis
from 0 to 360 degrees. Opposite sides of the wheel yield complementary colors.

The Saturation value defines the amount of color. No color at all yields a purely grayscale
appearance.

The Value or lightness axis defines how bright the pixel is.

So inverting a pixel using HSV will perform these operations on discrete components of the color
value:-

❑ Switch the color to one that is 180 degrees round the color wheel.

❑ Complement the saturation value. Unsaturated pixels become saturated and vice versa.

❑ Lightness is complemented making dark pixels light and vice versa.

Using this model to invert the pixels in an element should make it stand out clearly against a
background.

There are no properties defined for this filter at present.

The use of this filter is now deprecated in favor of the BasicImage() filter that was implemented
with the IE 5.5 browser.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also: filter – BasicImage(), Filter object, style.filter

JavaScript Programmer's Reference

862

filter – Iris() (Filter/transition)
A transition effect with the appearance of an iris opening or closing.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, IrisStyle, Motion, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The IrisStyle property is used to define the shape of the iris that is opened or closed. It can
be one of DIAMOND, CIRCLE, CROSS, PLUS, SQUARE or STAR.

❑ The Motion property can use the values in or out to determine the direction that the transition
moves in.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example shows how to call this effect using a continuous loop.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Iris(duration=2, motion=out,
irisstyle=cross) ">

F – filter – Iris() (Filter/transition)

863

<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: filter – Barn(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
IrisStyle - 5.5 + - 5.5 + - -
Motion - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

JavaScript Programmer's Reference

864

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Light() (Filter/visual)
A visual filter for simulating a lighting model.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties: Enabled

Object methods:
clear(), addAmbient(), addCone(), addPoint(),
changeColor(), changeStrength(), moveLight()

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This visual filter simulates the effect of a light source being played on the element.

The Enabled property is supported – it was added for version 5.5 of MSIE to provided a consistent
way of controlling whether a filter was active or not.

There are also methods for defining the type of light source, the location of it, and its intensity. The
light source color can also be specified. These methods are supported:

❑ The clear() method removes all currently defined light sources. It has no parameters. You
should stack your light sources with this being the first one unless you want to accumulate the
lighting effects during any dynamic updating.

❑ The addAmbient() method is used to add another ambient light source. The red, green, blue
and strength parameter values describe its lighting properties. The parameters are presented in
this order:

❑ Red intensity

❑ Green intensity

❑ Blue intensity

❑ Strength

F – filter – Light() (Filter/visual)

865

❑ The addCone() method is used to to describe a directional light source. Its parameters include
a description of the beam direction and spread. The parameters are presented in this order:

❑ Left coordinate of the light source.

❑ Top coordinate of the light source.

❑ Z-axis level of the light source.

❑ Left coordinate of the target light focus.

❑ Top coordinate of the target light focus.

❑ Red intensity

❑ Green intensity

❑ Blue intensity

❑ Strength

❑ Spread

❑ The addPoint() method is used to describe a point light source. The parameters are presented
in this order:

❑ Left coordinate of the light source.

❑ Top coordinate of the light source.

❑ Z-axis level of the light source.

❑ Red intensity

❑ Green intensity

❑ Blue intensity

❑ Strength

❑ The color of a light source can be changed by calling the changeColor() method. The
parameters are presented in this order:

❑ Light number

❑ Red intensity

❑ Green intensity

❑ Blue intensity

❑ Replace or accumulate color flag

❑ The intensity of the light impinging on the object can be modified for each light source with the
changeStrength() method. The parameters are presented in this order:

❑ Light number

❑ Strength value

❑ Replace or accumulate strength flag

JavaScript Programmer's Reference

866

❑ The location of a light source can be modified with the moveLight() method. The parameters
are presented in this order:

❑ Light number

❑ Left coordinate of the light source.

❑ Top coordinate of the light source.

❑ Z-axis level of the light source.

❑ Relative or absolute move flag

The example demonstrates how several light sources can be combined and then moved in a
mouseMove event loop to simulate the effect of a torchlight in a darkened room. The clear()
function is necessary to avoid the light sources simply accumulating a lighting effect with each
mouse move. The ambient light source raises the background illumination to a dull grey.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
<STYLE>
.aFilter
{
 background-color:#FFFFFF;
 filter:light();
 position:absolute;
 top: 100;
 left: 100;
 color: cyan;
 height: 250;
 width: 250;
}
</STYLE>
</HEAD>
<BODY onMouseMove="myHandler()">
<DIV ID="EXAMPLE" CLASS="aFilter">

<CENTER>
This text is highlighted

with a light source.
</CENTER>
</DIV>
<SCRIPT>
function myHandler()
{
 myLightX = 125;
 myLightY = 125;
 myLightZ = 1;

F – filter – Mask() (Filter/visual)

867

 myTargetX = event.x;
 myTargetY = event.y;
 myRed = 200;
 myGreen = 64;
 myBlue = 32;
 myStrength = 100;
 mySpread = 220;
 EXAMPLE.filters[0].clear();
 EXAMPLE.filters[0].addAmbient(64, 100, 10, 100);
 EXAMPLE.filters[0].addCone(myLightX, myLightY, myLightZ, myTargetX, myTargetY,
myRed, myGreen, myBlue, myStrength, mySpread);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -

Method JavaScript JScript N IE Opera Notes

clear() - 3.0 + - 4.0 + - ?
addAmbient() - 3.0 + - 4.0 + - ?
addCone() - 3.0 + - 4.0 + - ?
addPoint() - 3.0 + - 4.0 + - ?
changeColor() - 3.0 + - 4.0 + - ?
changeStrength() - 3.0 + - 4.0 + - ?
moveLight() - 3.0 + - 4.0 + - ?

filter – Mask() (Filter/visual)
A visual filter for creating a transparent mask.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

Object properties: Color

This visual filter is used for creating transparent masks. The transparent regions are defined by
pixels set to the color value specified by the Color property.

The use of this filter is now deprecated in favor of the BasicImage() filter that was implemented
with the IE 5.5 browser.

JavaScript Programmer's Reference

868

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

❑ According to the latest MSDN documentation, this filter appears to have been renamed as
MaskFilter().

See also: filter – BasicImage(), filter – MaskFilter(), Filter object,
style.filter

Property JavaScript JScript N IE Opera Notes

Color - 3.0 + - 4.0 + - Warning, Deprecated

filter – MaskFilter() (Filter/visual)
Uses the transparent color pixels of an object into a mask.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Enabled , Color

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This filter behaves differently according to whether a pixel in the HTML Element object being
filtered is transparent or not.

Transparent pixels are added to the mask image. Non-transparent pixels are set to be transparent in
the mask image.

The following properties are available to control this filter:

❑ The Enabled property provides a consistent means of controlling whether the filter is active or
not. It can accept a value of true or false.

❑ The Color property defines the color value selected for the mask.

The example shows how a transparent GIF file can be used to cut out a shape with this filter.

F – filter – Matrix() (Filter/visual)

869

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.MaskFilter(color=lightgreen,
strength=20)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: color value, filter – Mask(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
Color - 5.5 + - 5.5 + - -

filter – Matrix() (Filter/visual)
A means of applying sophisticated rotation, translate, and scaling effects to an image using matrix
transformation.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Enabled, M11, M12, M21, M22, Dx, Dy, SizingMethod,
FilterType

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESET< Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

Matrix transformation of images provides the ability to do free rotation to any angle if you are
prepared to do the trigonometrical maths.

JavaScript Programmer's Reference

870

This matrix transformation provides the following possibilities:

❑ Scaling

❑ Rotation

❑ Flipping

The matrix transformations are based on a 2x2 matrix with an additional linear vector.

The following properties are supported:

❑ The Enabled property can be set to true or false to control whether the Matrix() filter is
active or not.

❑ The M11, M12, M21 and M22 properties contain the four values that comprise the matrix. You
can define values in each one of them on its own or you can perform more complex transforms
by defining several at once.

❑ The Dx and Dy properties take floating point values and are used to move the resulting filtered
output along a linear vector. This helps to simplify the transformation matrix and allows it to be
implanted as a 2x2 matrix instead of a 2x3 or 3x3 matrix.

❑ The FilterType property is used to select a method for deriving the resulting filter output.
This is necessary because when transforming objects with a matrix, you need to interpolate pixel
values to fill in gaps. This operator can be defined as a bilinear or nearest neighbor interpolation
function. The bilinear interpolation is better at the expense of needing more compute power.
The nearest neighbor interpolation technique may be more useful for animated effects.

❑ The sizingMethod property determines how the results are displayed. They can either be
clipped to fit the container or the container can be resized to accommodate the new size of the
transformed output. The values are "clip to original" or "auto expand".

The following simple operations can be applied:

❑ Flip horizontal

❑ Flip vertical

❑ Resize

❑ Rotate

A horizontal flip can be accomplished with this code fragment:

myFilter.M11 -= myFilter.M11;

myFilter.M12 -= myFilter.M12;

A vertical flip can be accomplished with this code fragment:

myFilter.M21 -= myFilter.M21;

myFilter.M22 -= myFilter.M22;

F – filter – Matrix() (Filter/visual)

871

A resize of the whole image can be accomplished like this:

myFilter.M11 *= aScaleFactor;

myFilter.M12 *= aScaleFactor;

myFilter.M21 *= aScaleFactor;

myFilter.M22 *= aScaleFactor;

A horizontal stretch can be done like this:

myFilter.M11 *= aScaleFactor;

myFilter.M12 *= aScaleFactor;

And a vertical stretch like this:

myFilter.M21 *= aScaleFactor;

myFilter.M22 *= aScaleFactor;

A rotation is a little more complex:

deg2radians = Math.PI * 2 / 360;

rad = deg * deg2radians;

costheta = Math.cos(rad);

sintheta = Math.sin(rad);

myFilter.M11 = costheta;

myFilter.M12 = -sintheta;

myFilter.M21 = sintheta;

myFilter.M22 = costheta;

The example demonstrates these transformations individually. Strange shearing effects can be
achieved by modifying the coefficients of the rotation matrix. These introduce scaling artifacts
which might be useful when fitting an image into a space, perhaps for designing some VRML like
projected surfaces without using VRML itself.

Example code:
<HTML>
<HEAD>
<STYLE>
.aFilter
{
 filter:progid:DXImageTransform.Microsoft.Matrix(sizingMethod='auto expand');
 position:absolute;
}

JavaScript Programmer's Reference

872

</STYLE>
</HEAD>
<BODY>
<TABLE BORDER=1>
<TR HEIGHT=160><TD>Normal--></TD><TD ALIGN=CENTER WIDTH=160>

</TD></TR>
<TR HEIGHT=160><TD>Flip H--></TD><TD ALIGN=CENTER>

</TD></TR>
<TR HEIGHT=160><TD>Flip V--></TD><TD>

</TD></TR>
<TR HEIGHT=160><TD>Scale--></TD><TD ALIGN=CENTER>

</TD></TR>
<TR HEIGHT=160><TD>Scale--></TD><TD>

</TD></TR>
</TABLE>
<SCRIPT>
FLIPH.filters.item(0).M11 *= -1;
FLIPH.filters.item(0).M12 *= -1;
FLIPH.style.top = 30+160;
FLIPH.style.left = 110;
FLIPV.filters.item(0).M21 *= -1;
FLIPV.filters.item(0).M22 *= -1;
FLIPV.style.top = 30+(160*2);
FLIPV.style.left = 110;
SCALE.filters.item(0).M11 *= 0.5;
SCALE.filters.item(0).M12 *= 0.5;
SCALE.filters.item(0).M21 *= 0.5;
SCALE.filters.item(0).M22 *= 0.5;
SCALE.style.top = 70+(160*3);
SCALE.style.left = 130;
myDeg2Rad = Math.PI*2/360;
myRadians = 30 * myDeg2Rad;
myCosine = Math.cos(myRadians);
mySine = Math.sin(myRadians);
ROTOR.filters.item(0).M11 = myCosine;
ROTOR.filters.item(0).M12 = -mySine;
ROTOR.filters.item(0).M21 = mySine;
ROTOR.filters.item(0).M22 = myCosine;
ROTOR.style.top = 20+(160*4);
ROTOR.style.left = 80;
</SCRIPT>
</BODY>
</HTML>

See also: filter – BasicImage(), filter – FlipH(), filter – FlipV(), Filter
object, style.filter

F – filter – MotionBlur() (Filter/visual)

873

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
M11 - 5.5 + - 5.5 + - -
M12 - 5.5 + - 5.5 + - -
M21 - 5.5 + - 5.5 + - -
M22 - 5.5 + - 5.5 + - -
Dx - 5.5 + - 5.5 + - -
Dy - 5.5 + - 5.5 + - -
SizingMethod - 5.5 + - 5.5 + - -
FilterType - 5.5 + - 5.5 + - -

filter – MotionBlur() (Filter/visual)
An enhanced motion blur artifact that replaces the older Blur() filter functionality.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Enabled, Add, Direction, Strength

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This visual filter provides a way of adding motion blur to elements as they are drawn into
the display.

The Blur() filter supplied with the version 4.0 of the MSIE browser was really a motion blur. At
version 5.5 of MSIE, the filters have been enhanced and rationalized. The result is that the old
Blur() filter has been renamed to MotionBlur() and a new Blur() filter has been introduced
to provide a simpler gaussian blur effect without motion artifacts.

The following properties are supported by this filter:

❑ The Enabled property turns the motion blurring effect on and off by setting it to true or
false.

❑ The add property can have two values. If it is set to 1, it includes the original image as well as
the blurred image. If the value 0 is defined, just the blurred effect is displayed.

❑ The direction property defines the angle of the motion blur with respect to the original
object. The value is specified in degrees from 0 to 359 moving clockwise as the values increase.

❑ The strength property defines how many pixels distance to apply the blur effect.

The example shows an image with motion blur applied.

JavaScript Programmer's Reference

874

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.MotionBlur(direction=60,
strength=50, add=0)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: filter – Blur(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
Add - 5.5 + - 5.5 + - -
Direction - 5.5 + - 5.5 + - -
Strength - 5.5 + - 5.5 + - -

filter – Pixelate() (Filter/transition)
A transition effect with the appearance of a coarse pixelated dissolve.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, MaxSquare, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The MaxSquare property indicates the largest possible size of a pixelated square. This can be in
the range 2 to 50.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

F – filter – Pixelate() (Filter/transition)

875

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example demonstrates a gross pixelation transition effect.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Pixelate(duration=2,
maxsquare=50) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }

JavaScript Programmer's Reference

876

 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
MaxSquare - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Pixelate() (Filter/visual)
An effect that simulates the pixellation achieved when lowering the display resolution of an image.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Enabled, Duration, MaxSquare, Percent, status

Object methods: apply(), play(), stop()

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
FRAMESET, Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

F – filter – Pixelate() (Filter/visual)

877

Although this may be used as a static filter, it can also be used with the duration value,
Apply(), Stop() and Play() methods to control a transition effect.

The effect retains the current image size but takes groups of pixels and averages them and replaces
the group with the average value. The effect is similar to that achieved by reducing the image and
expanding it again without applying interpolation.

This can be useful for greeking out some content that you don't want to display. For example, you
can obscure facial features or car number plates in this way.

The following properties can be applied to this filter when it is used as a static visual effect (Other
transition control properties are not useful in this context):

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The MaxSquare property defines the maximum width in pixels of a pixelated square. This is
effectively the amount of pixelation that occurs.

❑ The Percent property sets the point in the overall transition effect at which to capture the
transition and use it as a static filter effect.

The example demonstrates the pixelation filter applied as a static effect.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Pixelate(maxsquare=10)";
document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 5.5 + - 5.5 + - -
Duration - 5.5 + - 5.5 + - -
MaxSquare - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

JavaScript Programmer's Reference

878

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – RadialWipe() (Filter/transition)
A transition effect with the appearance of a radar display wiping round.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Duration, Enabled, Percent, status, WipeStyle

Object methods:
apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

❑ The WipeStyle property is one of clock, wedge or radial which indicates the shape of the
transition effect.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example demonstrates the use of the clock version of the radial wipe.

F – filter – RadialWipe() (Filter/transition)

879

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.RadialWipe(duration=2,
wipestyle=clock) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

JavaScript Programmer's Reference

880

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -
WipeStyle - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – RandomBars() (Filter/transition)
A transition effect with the appearance of random bars sliding down.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Orientation, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The Orientation property indicates whether the effect is applied horizontally or vertically
with the values horizontal or vertical.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

The example demonstrates the vertical orientation of this effect.

F – filter – RandomBars() (Filter/transition)

881

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.RandomBars(duration=2,
orientation=vertical) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: filter – Barn(), Filter object, style.filter

JavaScript Programmer's Reference

882

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
Orientation - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – RandomDissolve() (Filter/transition)
A transition effect with the appearance of a fine pixelated dissolve.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ The Duration property controls the time it takes to play-back the transition effect.

❑ The Enabled property provides a way to activate or inhibit the filter from working by
assigning the true or false value to it.

❑ The Percent property controls the point at which the effect can be halted to provide a static
effect. The value can be between 0 and 100.

❑ The status property value can be read to determine the current disposition of the transition
filter. It will return one of three values. The 0 value indicates the transition has stopped, 1
indicates that it is completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ The apply() method sets the transition effect to its initial condition.

❑ The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an
optional duration argument to this method when it is called.

❑ The stop() method can be called at any time during the time the transition is running to halt
the transition play-back. This will also trigger the execution of an onFilterChange event
handler if there is one defined.

F – filter – RandomDissolve() (Filter/transition)

883

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.RandomDissolve(duration=2)
">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

JavaScript Programmer's Reference

884

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – RevealTrans() (Filter/reveal)
A reveal filter for controlling transitions.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

This reveal filter controls a transition effect that specifies the kind of wipe to use between the
hiding and showing of a filtered element.

The duration name=value pair is specified in the same way as for the blendTrans() filter. It
specifies a floating point value in seconds which controls how quickly the effect should take place.

The transition-shape name=value pair specifies the kind of wipe effect to use. It is an integer value
which defines the following wipe patterns:

index Description

00 Box in

01 Box out

02 Circle in

03 Circle out

04 Wipe up

05 Wipe down

06 Wipe right

07 Wipe left

08 Vertical blinds

09 Horizontal blinds

10 Checkerboard across

11 Checkerboard down

12 Random dissolve

13 Split vertical in

Table continued on following page

F – filter – Shadow() (Filter/visual)

885

index Description

14 Split vertical out

15 Split horizontal in

16 Split horizontal out

17 Strips left down

18 Strips left up

19 Strips right down

20 Strips right up

21 Random bars horizontal

22 Random bars vertical

23 Random

These are loosely modelled on some of the standard SMPTE wipes and dissolves although the full
complement is not available.

This is deprecated in favor of using named filters that provide the visual transition effect.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also: filter – BlendTrans(), Filter object, style.filter, Transition

filter – Shadow() (Filter/visual)
A visual filter for creating a shadow.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties: Enabled , Color, Direction

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DFN,
DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM, FRAME,
Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL, LEGEND,
LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT, PRE, Q,
RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN, STRIKE,
STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA, TH, TT,
U, UL, VAR, XMP

This visual filter is used to define a shadow effect. The filtered element is displayed as a silhouette.

JavaScript Programmer's Reference

886

The following properties are available for use with this filter:

❑ The Enabled property was added at version 5.5 of the MSIE browser to provide a consistent
way of enabling and disabling filters by assigning a true or false value to it.

❑ The color of the cast shadow is defined by the color property and the direction property specifies
the angle of the shadow with respect to the original filtered element's location. This value is
specified in degrees, measured in a clockwise direction from 0 to 359 as the values increase.

You may want more control over the shadow appearance and so other filters might be closer
to the desired effect. This one is good for a simple shadow effect. The example shows it being
applied to an image.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Shadow(direction=120,
color=yellowgreen)";

document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter, style.textShadow

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - Warning
Color - 3.0 + - 4.0 + - Warning
Direction - 3.0 + - 4.0 + - Warning

F – filter – Slide() (Filter/transition)

887

filter – Slide() (Filter/transition)
A transition effect with the appearance of one image sliding over another.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: bands, Duration, Enabled, Percent, SlideStyle, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ bands

❑ Duration

❑ Enabled

❑ Percent

❑ SlideStyle

❑ Status

The bands property defines the number of strips that the sliding filter will use for its transition effect.

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The SlideStyle property indicates what sort of sliding effect is used. It can be one of HIDE, PUSH
or SWAP.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ apply()

❑ play()

❑ stop()

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

JavaScript Programmer's Reference

888

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

The example shows one of the available variants of this filter.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Slide(duration=2, bands=5,
slidestyle=swap) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

F – filter – Spiral() (Filter/transition)

889

See also: filter – Blinds(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

bands - 5.5 + - 5.5 + - -
Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
Percent - 5.5 + - 5.5 + - -
SlideStyle - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Spiral() (Filter/transition)
Reveals the new image with a spiral effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Duration, Enabled, GridSizeX, GridSizeY, Percent,
status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ Duration

❑ Enabled

❑ GridSizeX

❑ GridSizeY

❑ Percent

❑ Status

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The GridSizeX and GridSizeY properties indicate the granularity of the effect.

JavaScript Programmer's Reference

890

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ apply()

❑ play()

❑ stop()

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

The example shows how to apply this transition.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Spiral(duration=2,
gridsizex=10, gridsizey=10) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>

F – filter – Stretch() (Filter/transition)

891

<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: filter – Zigzag(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
GridSizeX - 5.5 + - 5.5 + - -
GridSizeY - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Stretch() (Filter/transition)
A variation on a wipe effect except that the new image appears to stretch over the old one. The old
one is squashed until it disappears.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Percent, status, StretchStyle

Object methods: apply(), play(), stop()

JavaScript Programmer's Reference

892

This transition effect supports the following properties:

❑ Duration

❑ Enabled

❑ Percent

❑ status

❑ StretchStyle

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The StretchStyle property describes the kind of effect that the transition uses. It can be one of
HIDE, PUSH or SPIN.

The following methods are supported by this transition filter:

❑ apply()

❑ play()

❑ stop()

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

The example shows the spin variant of this effect.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Stretch(duration=2,
stretchstyle=spin) ">

F – filter – Stretch() (Filter/transition)

893

<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -
StretchStyle - 5.5 + - 5.5 + - -

JavaScript Programmer's Reference

894

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Strips() (Filter/transition)
Reveals new image by sliding diagonal strips across the image.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Motion, Percent, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ Duration

❑ Enabled

❑ Motion

❑ Percent

❑ Status

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The Motion property indicates which order and direction the transition moves in. The value can be
one of leftdown, leftup, rightdown or rightup.

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ apply()

❑ play()

❑ stop()

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

F – filter – Strips() (Filter/transition)

895

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

One variant of this filter is demonstrated in the example.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Strips(duration=2,
motion=leftdown) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

JavaScript Programmer's Reference

896

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
Motion - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – Wave() (Filter/visual)
A visual filter for creating ripple effects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Object properties: Enabled, Add, Freq, LightStrength, Phase, Strength

Supported by objects:
A, ACRONYM, ADDRESS, B, BDO, BIG, BLOCKQUOTE, body,
BUTTON, CAPTION, CENTER, CITE, CODE, custom, DD, DEL,
DFN, DIR, DIV, DL, DT, EM, FIELDSET, FONT, FORM,
FRAME, Hn, I, IFRAME, IMG, INPUT, INS, KBD, LABEL,
LEGEND, LI, MARQUEE, MENU, NOBR, OL, P, PLAINTEXT,
PRE, Q, RT, RUBY, runtimeStyle, S, SAMP, SMALL, SPAN,
STRIKE, STRONG, style, SUB, SUP, TABLE, TD, TEXTAREA,
TH, TT, U, UL, VAR, XMP

This visual filter applies a rippled distortion effect to the filtered element. The effect is applied only
along the vertical axis.

The following properties can be applied to this filter:

❑ Enabled

❑ Add

❑ Freq

❑ LightStrength

❑ Phase

❑ Strength

The Enabled property was introduced at version 5.5 of the MSIE browser to provide a consistent
interface for activating and disabling filters by assigning the true or false value to it.

Like the MotionBlur() filter, the Add property specifies whether the original unmodified image
should be placed over the rippled copy. A value of 1 adds the original while a value of 0 displayed
only the rippled copy.

F – filter – Wave() (Filter/visual)

897

The Freq property specifies the number of waves to be applied as the distorting effect is rendered.

The LightStrength property indicates the intensity of the light playing on the rippled surface
with a value in the range 0 to 100.

The Phase property defines the percentage offset for the sine wave curve in the range 0 to 100
which corresponds to an angular phase offset of 0 to 359 degrees.

The Strength property defines the wave rendering effect's intensity. This value must be between
0 and 255 with 0 providing no distortion and 255 causing a gross ripple effect.

The example shows this ripple effect being applied to an image.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Normal-->

Filtered-->

<SCRIPT>
myFilter = "progid:DXImageTransform.Microsoft.Wave(freq=6, lightstrength=90,
phase=60, add=1, strength=10)";

document.all.MYIMAGE.style.filter = myFilter;
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Enabled - 3.0 + - 4.0 + - -
Add - 3.0 + - 4.0 + - Warning
Freq - 3.0 + - 4.0 + - Warning
LightStrength - 3.0 + - 4.0 + - Warning
Phase - 3.0 + - 4.0 + - Warning
Strength - 3.0 + - 4.0 + - Warning

JavaScript Programmer's Reference

898

filter – Wheel() (Filter/transition)
Reveals the new image with a rotating spoked wheel effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties: Duration, Enabled, Percent, spokes, status

Object methods: apply(), play(), stop()

This transition effect supports the following properties:

❑ Duration

❑ Enabled

❑ Percent

❑ spokes

❑ status

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The spokes property indicates how many spokes there are in the cartwheel that is used for the
transition effect. The value can range from 2 to 20 with 8 being a typical value.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ apply()

❑ play()

❑ stop()

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

This filter is demonstrated in the example.

F – filter – Wheel() (Filter/transition)

899

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="swiitchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.Wheel(duration=2, spokes=10)
">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function swiitchState()
{
CONTAINER.filters[0].Apply();
if (DIV1.style.visibility == "visible")
{
DIV1.style.visibility="hidden";
DIV2.style.visibility="visible";
}
else
{
DIV1.style.visibility="visible";
DIV2.style.visibility="hidden";
}
CONTAINER.filters[0].Play();
setTimeout("swiitchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: Filter object, style.filter

JavaScript Programmer's Reference

900

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
Percent - 5.5 + - 5.5 + - -
spokes - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

filter – XRay() (Filter/visual)
A visual filter that displays only the element edges.

Availability: JScript – 3.0
Internet Explorer – 4.0
Deprecated

This visual filter detects the visible edges of the filter element and only draws them. This might be
useful for greeking a graphical object as it is dragged around with the cursor.

There are no properties for this filter.

The use of this filter is now deprecated in favor of the BasicImage() filter that was implemented
with the version 5.5 MSIE browser.

Warnings:
❑ Filters are defined in style sheets as if they were a function call with its arguments expressed as

name=value pairs. This is not the typical way to define arguments so you should be aware of
this anomaly when working with filters.

See also: filter – BasicImage(), Filter object, style.filter

filter – Zigzag() (Filter/transition)
Reveals the new image with a zigzag effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Object properties:
Duration, Enabled, GridSizeX, GridSizeY, Percent,
status

Object methods: apply(), play(), stop()

F – filter – Zigzag() (Filter/transition)

901

This transition effect supports the following properties:

❑ Duration

❑ Enabled

❑ GridSizeX

❑ GridSizeY

❑ Percent

❑ Status

The Duration property controls the time it takes to play-back the transition effect.

The Enabled property provides a way to activate or inhibit the filter from working by assigning
the true or false value to it.

The GridSizeX and GridSizeY properties indicate the granularity of the effect.

The Percent property controls the point at which the effect can be halted to provide a static effect.
The value can be between 0 and 100.

The status value can be read to determine the current disposition of the transition filter. It will
return one of three values. The 0 value indicates the transition has stopped, 1 indicates that it is
completed and 2 that it is still in progress.

The following methods are supported by this transition filter:

❑ apply()

❑ play()

❑ stop()

The apply() method sets the transition effect to its initial condition.

The play() method executes the transition effect using the control values and taking the time
specified in the duration value. You can override the duration property by passing an optional
duration argument to this method when it is called.

The stop() method can be called at any time during the time the transition is running to halt the
transition play-back. This will also trigger the execution of an onFilterChange event handler if
there is one defined.

This filter is demonstrated in the example.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY onLoad="switchState()">
<DIV ID="CONTAINER" STYLE="position:absolute; top: 0; left: 0; width: 300;
height:300; filter:progid:DXImageTransform.Microsoft.ZigZag(duration=2,
gridsizex=15, gridsizey=15) ">
<DIV ID="DIV1" STYLE="position:absolute; top:50; left:10; width:240;
height:180;background:ivory">

JavaScript Programmer's Reference

902

<HR>
<CENTER>
This is a DIV block containing text.
</CENTER>
<HR>
</DIV>
<DIV ID="DIV2" STYLE="visibility:hidden; position:absolute; top:50; left:10;
width:240; height:180; background:antiquewhite; ">
<CENTER>

</CENTER>
</DIV>
</DIV>
<SCRIPT>
DIV1.style.visibility="visible";
function switchState()
{
 CONTAINER.filters[0].Apply();
 if (DIV1.style.visibility == "visible")
 {
 DIV1.style.visibility="hidden";
 DIV2.style.visibility="visible";
 }
 else
 {
 DIV1.style.visibility="visible";
 DIV2.style.visibility="hidden";
 }
 CONTAINER.filters[0].Play();
 setTimeout("switchState()", 5000);
}
</SCRIPT>
</BODY>
</HTML>

See also: filter – Spiral(), Filter object, style.filter

Property JavaScript JScript N IE Opera Notes

Duration - 5.5 + - 5.5 + - -
Enabled - 3.0 + - 4.0 + - -
GridSizeX - 5.5 + - 5.5 + - -
GridSizeY - 5.5 + - 5.5 + - -
Percent - 5.5 + - 5.5 + - -
status - 5.5 + - 5.5 + - -

F – Filter object (Object/JScript)

903

Method JavaScript JScript N IE Opera Notes

apply() - 5.5 + - 5.5 + - -
play() - 5.5 + - 5.5 + - -
stop() - 5.5 + - 5.5 + - -

Filter object (Object/JScript)
A single filter object obtained from an element's filters array.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myFilter = myElement.filters(anIndex)

IE myFilter = myElement.filters[anIndex]
JavaScript syntax:

IE myFilter = myFilters[anIndex]

Argument list: anIndex A reference to an element in a collection

Object properties: enabled

This object defines a visual effect that is used when the display is updated as the result of a change
to the content of an element. The Filter object has properties that relate to the individual filters.
There are some common properties (and methods) that are available to all filters and in some cases
the same property name can mean different things depending on the filter being applied.

You should access the filter objects via the Filters collection because you may have the same
filter type repeated for a cascading effect and so you need to be sure that you are addressing the
right one.

There are three kinds of filters that can be applied to an object.

❑ Visual

❑ Reveal

❑ Blend

A visual filter is used to enhance the visual appearance of objects; maybe to flip them over, add a
glow effect or a drop shadow.

A reveal filter is used to apply a transition effect as the appearance changes.

A blend filter controls the speed at which a reveal filter is applied.

You can define more than one filter, they just need to be space separated from one another.

Here is a list of the procedural filter function names:

❑ AlphaImageLoader()

❑ Gradient()

JavaScript Programmer's Reference

904

Here is a list of the static filters supported at version 5.5 of the MSIE browser:

❑ Alpha()

❑ BasicImage()

❑ Blur()

❑ Chroma()

❑ Compositor()

❑ DropShadow()

❑ Emboss()

❑ Engrave()

❑ Glow()

❑ Light()

❑ MaskFilter()

❑ Matrix()

❑ MotionBlur()

❑ Pixelate()

❑ Shadow()

❑ Wave()

The old blendTrans() and revealTrans() filters are now replaced by these
transition filters:

❑ Barn()

❑ Blinds()

❑ CheckerBoard()

❑ Fade()

❑ GradientWipe()

❑ Inset()

❑ Iris()

❑ Pixelate()

❑ RadialWipe()

❑ RandomBars()

❑ RandomDissolve()

❑ Slide()

❑ Spiral()

❑ Stretch()

❑ Strips()

❑ Wheel()

❑ Zigzag()

F – Filter object (Object/JScript)

905

Filters are defined as if they were a sequence of space delimited function calls. they aren't really
functions because their argument passing mechanism is not truly JavaScript based. Arguments to
each filter function are defined as name=value pairs.

Refer to the specific topics on each filter function for details of what it does and how you can
control it.

When using the filters in the context of the style object, the function name for each filter must be
preceded by this string (although some less sophisticated filters seem to work without this):

"progid:DXImageTransform.Microsoft."

You can apply the filters directly as properties of the filter object that belongs to HTML element
objects themselves.

Thus:

myFilter.Shadow(someAttributes)

Warnings:
❑ Filters are not supported in all versions of MSIE on the Macintosh. In fact they are not really

well supported outside of the MSIE browser or the Win32 platform.

❑ There are various sources of documentation about these filters. There is some difference
between them regarding the spelling of the filters names and the availability of the filters. The
naming conventions are sometimes all lower case and at others a mixed upper and lower case.
This suggests that the filter name parser may be case-insensitive. This also applies to the
name=value pairs that are passed as arguments to the filter functions.

❑ Certain filter functions are no longer included in the MSDN reference material and so they may
be considered to be deprecated.

❑ We have conformed to the case style of the MSDN reference and have included all the filters
that were covered in earlier references as well as those that have been added recently. Those that
appear not to be in the MSDN reference anymore are marked as deprecated as follows:

❑ FlipH()

❑ FlipV()

❑ Grayscale()

❑ Invert()

❑ Mask()

❑ XRay()

These are deprecated filters that used to provide blends and reveals:

❑ BlendTrans()

❑ RevealTrans()

Note that the functionality and availability of the filters has changed significantly from version 4.0
to version 5.5 of the MSIE browser and the older deprecated filters have been assimilated into the
functionality of the new filter set. No previously existing filter appearance has been lost but they do
need to be operated differently.

JavaScript Programmer's Reference

906

See also: Element.filters[], onFilterChange, style.filter,
style.textShadow, Transition

Property JavaScript JScript N IE Opera Notes

enabled - 3.0 + - 4.0 + - -

Filter.enabled (Property)
A flag indicating whether a filter is enabled.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myFilter.enabled

This value can be set true or false to switch a filter in and out of the display.

Example code:
// Alternative ways of referring to a filter
// and controlling its enabled state. This assumes
// the filter was instantiated with a <STYLE> tag previously.
myFilters = myElement.filters;
myFilter1 = myFilters.item(1);
myFilter2 = myFilters.item("DXImageTransform.Microsoft.Alpha");
myFilter1.enabled = true;
myFilter2.enabled = false;

Filters object (Object/JScript)
The filters object is part of the MSIE filter mechanisms and is a special case of the
collection object.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFilters = myElement.filters

Object properties: length

Object methods: item()

See also: Element.filters[], Filter object, style.filter

F – Filters.item() (Method)

907

Property JavaScript JScript N IE Opera Notes

length - 3.0 + - 4.0 + - ReadOnly.

Method JavaScript JScript N IE Opera Notes

item() - 3.0 + - 4.0 + - -

Refer to:
Collection object

Filters.item() (Method)
An item selector for accessing a single filter within the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Filter object

IE myFilters.item(anIndex)

IE myFilters.item(aSelector)
JavaScript syntax:

IE myFilters.item(aSelector, anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

Filters.length (Property)
The length of the filter collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFilters.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

JavaScript Programmer's Reference

908

final (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 section – 7.4.3

ECMA 262 edition 3 section – 7.5.3

finally ... (Statement)
Part of the try ... catch ... finally error-handling mechanism.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

The ECMAScript standard (edition 2) defined the finally keyword and reserves it for future use.
At edition 3, it was made a required keyword.

In anticipation of that, it is available in JavaScript version 1.4. This is also now supported in JScript
version 5.0 as well.

Refer to the try ... catch ... finally topic for more details.

Warnings:
❑ This is not available for use server-side with Netscape Enterprise Server 3.

See also: catch(...), throw, try ... catch ... finally

Cross-references:
ECMA 262 edition 2 section – 7.4.3

ECMA 262 edition 3 section – 7.5.2

ECMA 262 edition 3 section – 12.14

F – find() (Method)

909

find() (Method)
A means of performing a text search on the document content.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Boolean primitive

- find()

- find(aSearchKey)

- find(aSearchKey, aCaseSense)

- find(aSearchKey, aCaseSense,
aDirection)

- myWindow.find()

- myWindow.find(aSearchKey)

- myWindow.find(aSearchKey,
aCaseSense)

JavaScript syntax:

- myWindow.find(aSearchKey,
aCaseSense, aDirection)

aCaseSense A switch for case sensitivity
aDirection A direction to search

Argument list:

aSearchKey The text to search for

Refer to:
Window.find()

FindProxyForURL() (Function/proxy.pac)
The main function in a proxy.pac file.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N FindProxyForURL(aFullURL, aHostname)

aFullURL The complete URL to be checked for proxy access.Argument list:
aHostname The hostname component of a URL for

convenience

This function is called at request time for every URL. Therefore any lengthy and complex coding in
here is going to be detrimental to the performance of your browser.

The String and Math object methods/functions are available in this context.

The return value from this function tells the browser how to reach the target URL.

JavaScript Programmer's Reference

910

For directly connected sites, the value "DIRECT" should be returned. This is usually appropriate for
hosts within the same domain or on the same sub-net. The functions isPlainHostName() and
isInNet() both return true for machines that should use DIRECT connection. However only one
of them needs to return true for this to be the desired outcome. If both are false, then either a
SOCKS gateway or PROXY server is needed.

For secure access using the HTTPS: protocol, the function might return "SOCKS" plus some details
of the SOCKS host and port to use. You may choose to perform secure access by some other means.

For the remaining cases, your script should probably return "PROXY" with details of the PROXY
server (or servers) to use. If more than one proxy server is returned, they are consulted in the order
they are listed. This gives you an opportunity to add some load balancing logic if you care to. That
is quite important if you have more than one proxy server, since you might return the proxies in
the same order every time. That would more-or-less guarantee that the first one was loaded until it
simply couldn't respond any more and the second would only kick in as a last resort. Randomizing
the order in which they are presented ensures the work is fairly divided between them.

This function must return a very specific result. The following values are examples:

"DIRECT"

"SOCKS sockshost:1081"

"PROXY proxy1:1080 ; proxy2:1080"

Here we provide an example based on the one provided in the Wrox Instant JavaScript book (by
Nigel MacFarlane) that illustrates all of these capabilities. The logic is unraveled to illustrate the
selection technique at the expense of a minor performance hit.

Example code:
// Example proxy.pac file
function FindProxyForURL(aFullURL, aHostname)
{
 // Check for hosts in the same domain as the client
 if(isPlainHostName(aHostname))
 {
 return "DIRECT";
 }
 // Check for hosts in the same IP sub-net
 if(isInNet(aHostname, "192.168.1.0"))
 {
 return "DIRECT";
 }
 // Check for secure http: protocol
 if(aFullURL.substring(0, 6) == "https:")
 {
 return "SOCKS sockshost:1081";
 }
 // Check for secure news protocol
 if(aFullURL.substring(0, 6) == "snews:")
 {
 return "SOCKS sockshost:1081";

F – FlipH() (Filter/visual)

911

 }
 // Return a randomly selected proxy list
 if(Math.random() < 0.5)
 {
 return "PROXY proxy1:1080 ; proxy2:1080";
 }
 else
 {
 return "PROXY proxy2:1080 ; proxy1:1080";
 }
}

See also: isInNet(), isPlainHostName(), Proxies, proxy.pac

FlipH() (Filter/visual)
A visual filter for horizontal mirror effects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
filter – FlipH()

FlipV() (Filter/visual)
A visual filter for vertical mirror effects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
filter – FlipV()

float (Reserved word)
Reserved for future language enhancements.

The inclusion of this reserved keyword in the ECMAScript standard suggests that future versions
of ECMAScript may be more strongly typed.

This keyword also represents a Java data type and the float keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: double, Integer, java.lang.Float, LiveConnect, long, Reserved
word, short

JavaScript Programmer's Reference

912

Cross-references:
ECMA 262 edition 2 section – 7.4.3

ECMA 262 edition 3 section – 7.5.3

Floating constant (Definition)
A floating constant is a literal floating point value.

A floating constant is a literal numeric value representing a floating-point number. Generally these
would appear in comparison expressions, assignments or arithmetic expressions.

There may be some loss of precision with extremely long numbers or floating point values that are
very small. In addition, some interpreters may perform rounding slightly differently. Fully ECMA
compliant implementations should conform to the IEEE 754 specifications and therefore should be
consistent with one another.

See also: Constant, Constant expression, Floating point, IEEE 754, Number, Numeric literal

Floating point (Definition)
A type of number value.

Availability: ECMAScript edition – 2

Although a floating-point value may be equal in magnitude to an integer, logically they are
different due to the typing of the value. However, typing in JavaScript is weak and a floating point
value and an integer value may well compare equal where they might not have in other languages.

If ever the JavaScript language acquires a stronger typing facility, some scripts may fail on this point.

See also: Decimal point (.), Floating constant, Floating point constant, Number

Cross-references:
ECMA 262 edition 2 section – 7.7.3

ECMA 262 edition 3 section – 7.8.3

O'Reilly JavaScript Definitive Guide – page – 36

F – Floating point arithmetic (Definition)

913

Floating point arithmetic (Definition)
Arithmetic operations performed on floating point values.

See also: Math object, Floating point

Floating point constant (Definition)
A floating point value.

This is a special case of the arithmetic constant that provides non-integer values.

See also: Arithmetic constant, Constant expression, Floating point, Math.E,
Math.LN10, Math.LN2, Math.LOG10E, Math.LOG2E, Math.PI,
Math.SQRT1_2, Math.SQRT2, Number.MAX_VALUE,
Number.MIN_VALUE

Flow control (Definition)
Redirecting the program execution away from the linear flow.

Normal execution of the script proceeds from the top to the bottom, one statement at a time. This
makes for a not very flexible or capable program.

Conditional execution of one section of code or another allows the execution flow to be controlled
according to the result of a computation that yields a Boolean result. These either conditionally
execute a piece of code, or not as is the case with the if() construct, or conditionally execute either
one fragment of code or another as is the case with the if()else construct. The ternary operator
?: provides an alternative way to construct an if()else mechanism at the expense of readability
and potential obfuscation of your script.

Iterators are used to cycle round a section of code repeatedly until some condition is met.

A for() iterator will normally be used to index a counter to enumerate through a set of items,
possibly in an array.

A while() iterator will execute the same code over and over until something in that code block
changes the value of the condition at the head of the while() block.

Reserved words (as of ECMA edition 2) suggest that do() iterators and switch()case trees will
be introduced later, or may be implemented now by forward-looking JavaScript interpreter
builders. Edition 3 of the standard introduces these and a mandatory requirement.

See also: Conditionally execute (?:), do ... while(...), else ..., for(
...) ..., for(... in ...) ..., if(...) ..., if(...
) ... else ..., Obfuscation, switch(...) ... case: ...
default: ..., while(...) ...

JavaScript Programmer's Reference

914

Cross-references:
Wrox Instant JavaScript – page – 22

focus() (Method)
Direct the keyboard and mouse focus onto the window.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: undefined

- focus()
JavaScript syntax:

- myWindow.focus()

See also: Input.blur(), Window.blur(), Window.focus()

Folder object (Object/JScript)
A special JScript folder object.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myFolder = myFile.ParentFolder

IE myFolder = myFolder.ParentFolder

IE myFolder =
myFileSystem.CreateFolder(aPath)

IE myFolder =
myFileSystem.GetFolder(aPath)

IE myFolder =
myFileSystem.GetSpecialFolder(aNumber)

JavaScript syntax:

IE myFolder = myFolders.Item(aPath)

aPath The pathname of the folder to be createdArgument list:
aNumber A code referring to a special folder

Object properties:
Attributes, DateCreated, DateLastAccessed,
DateLastModified, Drive, IsRootFolder, Name,
ParentFolder, Path, ShortName, ShortPath,
Size, SubFolders, Type

Object methods: Copy(), Delete(), Move()

Collections: Files[], SubFolders[]

F – Folder.Attributes (Property)

915

This is an object used in the Windows environment, probably as part of the WSH implementation
to encapsulate a single folder within the file-system.

See also: File object, File.ParentFolder,
FileSystem.CreateFolder(), FileSystem.GetFolder(),
FileSystem.GetSpecialFolder(), Folder.ParentFolder,
Folders.Add(), Folders.Item()

Property JavaScript JScript N IE Opera Notes

Attributes - 3.0 + - 4.0 + - -
DateCreated - 3.0 + - 4.0 + - -
DateLastAccessed - 3.0 + - 4.0 + - -
DateLastModified - 3.0 + - 4.0 + - -
Drive - 3.0 + - 4.0 + - -
IsRootFolder - 3.0 + - 4.0 + - -
Name - 3.0 + - 4.0 + - -
ParentFolder - 3.0 + - 4.0 + - -
Path - 3.0 + - 4.0 + - -
ShortName - 3.0 + - 4.0 + - -
ShortPath - 3.0 + - 4.0 + - -
Size - 3.0 + - 4.0 + - -
SubFolders - 3.0 + - 4.0 + - -
Type - 3.0 + - 4.0 + - ReadOnly

Method JavaScript JScript N IE Opera Notes

Copy() - 3.0 + - 4.0 + - -
Delete() - 3.0 + - 4.0 + - -
Move() - 3.0 + - 4.0 + - -

Folder.Attributes (Property)
The file system attributes of a folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFolder.Attributes

Folders have attributes that control how they can be used and accessed. This property contains the
attributes for the folder encapsulated by this object.

The attributes can be manipulated in a similar way to those belonging to the File object.

JavaScript Programmer's Reference

916

This property manages the attributes as a bit-mask with individual bits controlling different
attributes. The bits can be accessed individually using the integer value corresponding to a power
of 2. The table lists the integers that represent each different attribute:

You can use Bitwise OR expressions to merge them or accomplish the same with integer additions.

Value Attribute

0 No special attributes – normal folder.

1 Read-only access.

2 Hidden folder.

4 Indicates a system folder.

8 Refers to drive volume label and cannot be altered.

16 Refers to a directory and cannot be changed.

32 Folder has changed and needs to be backed up again.

64 Folder object represents a shortcut and not a real folder.

128 Folder is compressed.

You cannot alter the settings of bits 8, 16, 64 and 128 as these affect the structure of a file. That is to
say, you cannot change a folder into a file or disk volume.

You should read the current attributes setting and then modify it to write it back. The example
illustrates some simple functions that encapsulate this conveniently.

Where the bit needs to be set, a simple bitwise OR with a single bit value is accomplished in a single
line. To clear a bit, we could use a bitwise AND having the corresponding bit clear. In these
examples a different technique is used for illustration where the bit is set regardless of its previous
state and is then cleared using a subtraction. That saves the computation of a complex bit mask. An
intermediate temporary variable is used to avoid signalling the operating system with modification
unnecessarily requests.

There are other alternative ways to accomplish this and you could write some generic functions to
examine, set or clear a bit in a bit-mask and then call them from each of these wrappers indicating
the bit you want to operate on.

Example code:
// Examine the read/write flag
function isReadOnly(aFolder)
{
 return Boolean(aFolder.Attributes & 1);
}
// Set the folder read only
function setReadOnly(aFolder)
{
 aFolder.Attributes |= 1;
}
// Set the folder read/write
function setWriteOnly(aFolder)
{

F – Folder.Attributes (Property)

917

 var myAttributes = aFolder.Attributes |= 1;
 aFolder.Attributes = myAttributes – 1;
}
// --
// Examine the hidden flag
function isHidden(aFolder)
{
 return Boolean(aFolder.Attributes & 2);
}
// Hide the folder
function setHidden(aFolder)
{
 aFolder.Attributes |= 2;
}
// Reveal the folder
function setVisible(aFolder)
{
 var myAttributes = aFolder.Attributes |= 2;
 aFolder.Attributes = myAttributes – 2;
}
// --
// Examine the system flag
function isSystemFolder(aFolder)
{
 return Boolean(aFolder.Attributes & 4);
}
// Set file to be a system folder
function setSystem(aFolder)
{
 aFolder.Attributes |= 4;
}
// Set file to be a non system folder
function setPublic(aFolder)
{
 var myAttributes = aFolder.Attributes |= 4;
 aFolder.Attributes = myAttributes – 4;
}
// --
// Examine the drive volume flag
function isDriveVolume(aFolder)
{
 return Boolean(aFolder.Attributes & 8);
}
// --
// Examine the folder flag
function isFolder(aFolder)
{
 return Boolean(aFolder.Attributes & 16);
}
// --
// Examine the backup flag
function needsBackup(aFolder)
{
 return Boolean(aFolder.Attributes & 32);
}

JavaScript Programmer's Reference

918

// Set backup required
function setBackup(aFolder)
{
 aFolder.Attributes |= 32;
}
// Clear backup
function clearBackup(aFolder)
{
 var myAttributes = aFolder.Attributes |= 32;
 aFolder.Attributes = myAttributes – 32;
}
// --
// Examine the shortcut flag
function isShortCut(aFolder)
{
 return Boolean(aFolder.Attributes & 64);
}
// --
// Examine the compressed flag
function isCompressed(aFolder)
{
 return Boolean(aFolder.Attributes & 128);
}

See also: File.Attributes

Folder.Copy() (Method)
A method to copy folders.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myFolder.Copy(aTarget)
JavaScript syntax:

IE myFolder.Copy(aTarget, aFlag)

aTarget A valid path within the destination file systemArgument list:
aFlag A flag to indicate whether to overwrite an existing folder

Although you can copy whole folders from the file system via the FileSystem object's
CopyFolder() method, this is a more fine-grain means of copying folders.

It is highly recommended that you choose one of the several alternative techniques for copying
folders and stick to it. It is far less confusing that way.

This copy method is better than using the FileSystem.CopyFolder() method because it’s
clearer in the script that we are operating on a Folder. The other method appears ambiguous
because we are operating on something contained in the file system and not the object directly. It
feels instinctively better to be operating on objects directly rather than by proxy.

See also: File.Copy(), FileSystem.CopyFolder()

F – Folder.DateCreated (Property)

919

Folder.DateCreated (Property)
The date that the folder was created.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.DateCreated

The file-system maintains a whole range of properties for its folders and files. This property
exposes the date and time that the folder was first created.

See also: File.DateCreated

Folder.DateLastAccessed (Property)
The date that the folder was last accessed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.DateLastAccessed

The file-system maintains a whole range of properties for its folders and files. This property
exposes the date and time that the folder was last accessed by an application.

See also: File.DateLastAccessed

Folder.DateLastModified (Property)
The date that the folder was last modified.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.DateLastModified

The file-system maintains a whole range of properties for its folders and files. This property
exposes the date and time that the folder was last modified by adding files to it or removing them
from it. It isn't clear whether modifying a file will affect the modification date and time of a folder
that contains it. It may depend on the file-system the folder exists within and how the application
modifies the file. It may rewrite the file and delete the old one. In that case, modifying a file will
alter the modification date and time of the folder it lives in.

JavaScript Programmer's Reference

920

See also: File.DateLastModified

Folder.Delete() (Method)
A method to delete a folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFolder.Delete(aFlag)

Argument list: aFlag A flag to indicate whether to force the deletion

You may remove folders via the FileSystem.DeleteFolder() method or with this method.
Choose one and stick to it if you can.

See also: File.Delete(), FileSystem.DeleteFolder()

Folder.Drive (Property)
The drive name that folder belongs to.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.Drive

This returns a Drive name that describes the drive that the folder is currently stored on.

See also: Drive object, File.Drive

Folder.Files[] (Collection)
Availability:

JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Files object

F – Folder.IsRootFolder (Property)

921

Folder.IsRootFolder (Property)
A flag indicating whether the folder is the root folder for the drive it lives in.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myFolder.IsRootFolder

It may be useful to detect whether a folder is a root folder. If you have built a tree-walking script to
navigate round a file system hierarchy folder by folder, this property tells you when you have
reached the top.

See also: Folder.ParentFolder

Folder.Move() (Method)
A means of moving folders.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFolder.Move(aTarget)

Argument list: aTarget A valid path within the destination file system

Moving or renaming folders is accomplished with this method or with the
FileSystem.MoveFolder() method, whichever you prefer.

See also: File.Move(), FileSystem.MoveFolder()

Folder.Name (Property)
The name of a folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.Name

This property yields the name of the folder itself within the file-system's pathing syntax.

See also: File.Name

JavaScript Programmer's Reference

922

Folder.ParentFolder (Property)
The folder containing the folder object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folder object

JavaScript syntax: IE myFolder.ParentFolder

You can use this as a means of walking up the folder hierarchy until you reach the root folder.

See also:
File.ParentFolder, Folder object,
Folder.IsRootFolder

Folder.Path (Property)
The file-system path to the folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.Path

This property yields the complete and fully qualified path to the folder within the context of its
parent file-system.

See also: File.Path

Folder.ShortName (Property)
The DOS 8.3 name for the folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.ShortName

In the Windows environment, even though long file names are used from the user's point of view, at
the lowest level within the file system some folders will still be stored under their old style DOS 8.3
format folder names. This property yields the DOS equivalent short folder name for a Folder object.

See also: File.ShortName

F – Folder.ShortPath (Property)

923

Folder.ShortPath (Property)
The DOS 8.3 path to the folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.ShortPath

In the Windows environment, even though long file and folder names are used from the user's
point of view, at the lowest level within the file system, some folders and files will still be stored
under their old style DOS 8.3 format file names. This property yields the DOS equivalent path
name for a Folder object.

See also: File.ShortPath

Folder.Size (Property)
The size of the folder contents.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFolder.Size

The total size of all the files in the folder measured in bytes, is yielded by this property. At least
this is consistent with the size property belonging to the File objects. It remains to be seen
whether this actually yields the same value as you would get if you obtained the size properties
from every file in the folder and summed them yourself. There may be invisible files and this
property should include their sizes too.

See also: File.Size

Folder.SubFolders[] (Collection)
A list of sub-folders within the receiving folder object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folders object

JavaScript syntax: IE myFolder.SubFolders

JavaScript Programmer's Reference

924

If you are walking up the folder hierarchy, you can use the parentFolder property.

This collection of Folder objects provides a way of traversing down the folder hierarchy to the leaf
nodes at the deepest level.

See also: File.ParentFolder

Folder.Type (Property)
The folder object type.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFolder.type

This is used as a way to determine the type of an object when Folder objects are mixed with File
objects in a collection obtained from a Folder or FileSystem.

Folder objects should return a type value of "File Folder".

See also: File.Type

Property attributes:
ReadOnly.

Folders object (Object/JScript)
A special JScript object that contains a collection of Folder objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFileSystem.Folders

Object properties: Count

Object methods: Add(), Item()

You can access items in this array with the methods provided or you can create an Enumerator
object to index through the collection one object at a time.

F – Folders.Add() (Method)

925

Property Java Script JScript N IE Opera NES ECMA DOM CSS HTML Notes

Count - 3.0 + - 4.0 + - - - - - - ReadOnly

Method Java Script JScript N IE Opera NES ECMA DOM CSS HTML Notes

Add() - 3.0 + - 4.0 + - - - - - - -
Item() - 3.0 + - 4.0 + - - - - - - -

Folders.Add() (Method)
Add a folder to the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myFolders.Add(aName)

Argument list: aName The name of the new Folder object to be created

If you refer to an existing folder within the file system, an object is created to encapsulate it and
that Folder object is then added to the Folders collection.

You can also create new folders by using a name that does not yet already exist within the
folder that this collection is a child object of. The new folder will be created and then
encapsulated as before.

See also: Folder object

Folders.Count (Property)
Return a count of the number of Folder objects in the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFolders.Count

You cannot modify this property to change the extent of the collection. It should however be
modified as folders are created or destroyed within the file system.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

926

Folders.Item() (Method)
Locate and return a reference to a specifically named Folder.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Folder object

JavaScript syntax: IE myFolders.Item(aName)

Argument list: aName The name of the Folder object to be located

You can use this to retrieve a Folder object that encapsulates an existing folder. Like the Add()
method, this can also be used to create new folders and to instantiate an encapsulating object before
returning it.

See also: Folder object

FONT object (Object/HTML)
An object that represents a tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myFONT = myDocument.all.anElementID

IE myFONT =
myDocument.all.tags("FONT")[anIndex]

IE myFONT = myDocument.all[aName]

- myFONT =
myDocument.getElementById(anElementID)

- myFONT = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myFONT = myDocument
.getElementsByTagName("FONT") [anIndex]

HTML syntax: ...

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: color, face, size

F – FONT object (Object/HTML)

927

Event handlers:
onClick, onDblClick, onDragStart,
onFilterChange, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onSelectStart

With this object, you can manipulate the appearance of text enclosed within the tag and its
corresponding closure tag.

However, although this may be possible now, a more future-proof technique would be to modify
the attributes of the style object associated with the block of text that is contained by this FONT
object. Indeed, you may wish to replace the tag with a <DIV> or tag and employ
a CLASS="..." HTML tag attribute to attach style object to it.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

color 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
face 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
size 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

928

FONT.color (Property)
The color of text contained within a block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myFONT.color

The color of text affected by this FONT object will be defined in this property.

The color can be specified in the normal way according to the HTML color specifiers.

See also:
BASEFONT.color, Color names, Color value,
String.fontcolor()

FONT.face (Property)
The font face for text contained within the block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myFONT.face

The font face to be used for text controlled by the tag is defined by this property. It is
appropriate to define a list of font faces in priority order in the normal way. The browser will use
the first one it encounters that it has available.

FONT.size (Property)
The size of text contained within the block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

F – for(...) ... (Iterator)

929

Property/method value type: String primitive

JavaScript syntax: - myFONT.size

The size of text rendered by the browser under control of this FONT object is controlled by this
property. Absolute and relative sizes are supported in the normal way.

See also: String.fontsize()

for(...) ... (Iterator)
An iterator mechanism – a loop construct.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

JavaScript syntax: - aLabel: for(anInitializer;
aCondition; aModifier)

aCondition An expression that yields a Boolean value
aLabel An optional label to name the iterator
aModifier Modifies the value being enumerated

Argument list:

anInitializer Assigns the starting value

A for loop is established by setting up the control construct in the header and associating a
statement block to be evaluated each time the loop is iterated.

The control construct in a for loop has three semi-colon-separated expressions. They are all optional.

The first one initializes the enumerator. It can also declare and initialize a variable to be used for
this purpose if one has not already been created.

The second is the condition to test for exit when the required number of loops has been iterated. The
for() loop exits when this value becomes false. While it is true, the loop will continue to cycle.

The third is the incrementor (or decrementor if you prefer).

The code in the statement block can be completed early with the break, continue or return statements.

A break will cause the for() loop to drop out and execution to continue at the line following its
statement block.

A continue statement will cycle to the next iteration and begin executing the statement block
without executing the remaining lines in the block.

JavaScript Programmer's Reference

930

A return will exit the loop and its enclosing function and can only be used if the loop is executing
inside a function block otherwise the return is meaningless.

You can understand how the for() loop works by considering how it can be restated as a
while() loop.

for(anInitializer; aCondition; aModifier)

Can be recast as:

anInitializer;

while(aCondition)

{

someCode;

aModifier;

}

Although the items in the head of a for() iterator heading are optional, the semicolons must all be
present to indicate the placement of any expressions in the heading.

There is an alternative construction called the for ... in ... statement which is especially
useful for operating on objects. Refer to the for ... in ... topic for details.

At version 1.2 of JavaScript, a named continue can be used with this iterator. If the named continue
is executed, control passes to the top of the named for loop. The increment expression is evaluated,
then the test expression. If necessary the loop iterates once more.

Example code:
// Reccomended form
for(ii=0; ii<100; ii++)
{
 document.write("-");
}
// Possibly dangerous during maintenance
for(ii=0; ii<100; ii++)
document.write("-");
// Loop within a loop
for(ii=0; ii<100; ii++)
{
 for(jj=0; jj<ii; jj++)
 {
 document.write("-");
 }
 document.write("
");
}
// Loop forever doing some task
for(;;)
{
 animateSpinningGraphic();
}

F – for(... in ...) ... (Iterator)

931

See also: break, continue, do ... while(...), Flow control, for(...
in ...) ..., Iteration statement, Label, Off by one errors, while(
...) ...

Cross-references:
ECMA 262 edition 2 section – 12.6.2

ECMA 262 edition 2 section – 12.7

ECMA 262 edition 2 section – 12.8

ECMA 262 edition 3 section – 12.6.3

Wrox Instant JavaScript – page – 24

for(... in ...) ... (Iterator)
An iterator mechanism – a loop construct.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 5.0
Internet Explorer – 5.0
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera– 3.0

JavaScript syntax: - aLabel: for(anLValue in anObject) {
someCode };

aLabel An optional label to identify the loop
anLValue A value that can be assigned to
anObject An object whose properties will be cycled

Argument list:

someCode Some code that executed each time round the loop

A for ... in iteration statement is used to enumerate through the properties of an object.

The first item in the control construct is a container that a value can be assigned to. An LValue or
Left-Hand Side expression in other words. The item following the in keyword, is the object whose
properties are to be enumerated.

Each time round the loop, the name of an object property will be assigned to the LValue and it can
then be used as an index to the property value in that object.

Properties that have the DontEnum attribute set will not be enumerated in this iteration statement.

During each iteration, the property name can be used as an array index key to extract the
property value.

At version 1.2 of JavaScript, a named continue can be used with this iterator. If the named continue
is executed, control passes to the top of the named for loop. The loop starts over with the next
property name being assigned to the specified variable.

JavaScript Programmer's Reference

932

Warnings:
❑ It is often the case that some properties will not be enumerated with this mechanism. In

particular, properties of host objects seem particularly prone to this problem.

Example code:
// Loop through the properties of an object only printing properties
// that have the string data type.
for(myProperty in myObject)
{
 if(typeof(myObject[myProperty]) == "string")
 {
 document.write(myProperty, myObject[myProperty]);
 }
}

See also: break, Compound statement, continue, do ... while(...),
DontEnumerate, Flow control, for(...) ..., Host object, Iteration
statement, Label, while(...) ...

Cross-references:
ECMA 262 edition 2 section – 11.1.2

ECMA 262 edition 2 section – 12.6.3

ECMA 262 edition 2 section – 12.7

ECMA 262 edition 2 section – 12.8

ECMA 262 edition 3 section – 12.6.4

ECMA 262 edition 3 section – 12.7

ECMA 262 edition 3 section – 12.8

Wrox Instant JavaScript – page – 34

Form (Definition)
A browser page that can be filled in and submitted with user specified values.

See also: Document object, Form object

Form element (Definition)
Those components that are used to construct a form document.

Refer to:
Form.elements[]

F – Form object (Object/HTML)

933

Form object (Object/HTML)
An object representing an HTML <FORM> tag.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Inherits from: Element object

- myForm = myDocument.aFormName

IE myForm = myDocument.all.anElementID

IE myForm = myDocument.all.tags("FORM")[anIndex]

IE myForm = myDocument.all[aName]

- myForm = myDocument.forms.aFormName

- myForm = myDocument.forms[aFormName]

- myForm = myDocument.forms[anIndex]

- myForm = myDocument.getElementById(anElementID)

- myForm =
myDocument.getElementsByName(aName)[anIndex]

- myForm = myDocument.getElementsByTagName
("FORM")[anIndex]

- myForm = myFormArray[aFormName]

- myForm = myFormArray[anIndex]

JavaScript syntax:

- myForm = myInputObject.form

HTML syntax: <FORM> ... </FORM>

aFormName The name of a form in the document
anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
acceptCharset, accessKey, action, elements, encoding,
enctype, length, method, name, tabIndex, target

Object methods: handleEvent(), reset(), submit()

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onReset, onSelectStart, onSubmit

Collections: elements[]

Each <FORM> tag creates an object in the document.forms[] array. However even if the forms
are given names, those names become properties within the document object and are not assigned
as element names in the forms[] array, because the associative naming is lacking. Access to form
objects at level 0 of the DOM may need some attention when the DOM becomes level 1.

JavaScript Programmer's Reference

934

In MSIE, the form details are collected in a FORM object rather than a Form object. It is these object
naming differences that can cause some problems with scripts, and it is possible that some
implementations will actually make object class references case insensitive to avoid this problem.

Warnings:
❑ You can normally enumerate the properties in a Form object to access the Form input elements.

However, if you place a <TEXTAREA> into a <FORM> then Netscape 4.7 on Macintosh will not
enumerate the Form properties. The script halts but no error message is generated. MSIE has no
problem enumerating a <FORM> containing a <TEXTAREA> tag.

See also: Collection object, Document.<form_name>, Document.forms[],
Element object, Element.all[], Form.elements[],
Form.handleEvent(), Input.accessKey, Input.form, Legend
object

Property JavaScript JScript N IE Opera DOM HTML Notes

acceptCharset 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
accessKey 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
action 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
elements 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
encoding 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
enctype 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
length 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - ReadOnly
method 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
name 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
target 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -
reset() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - -
submit() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Table continued on following page

F – Form.acceptCharset (Property)

935

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onReset 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - -
onSelectStart - 3.0 + - 4.0 + - - - -
onSubmit 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - -

Inheritance chain:
Element object, Node object

Form.acceptCharset (Property)
The character set that the form will be prepared to accept input from.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myForm.acceptCharset

This becomes important if you are serving forms to different international language communities.
You need to define the character set that your form is able to accept.

This property may return a single character set or a list of character sets that can be supported.

Form.action (Property)
A property that contains the submit action method for the <FORM>.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

JavaScript Programmer's Reference

936

Property/method value type: String primitive

JavaScript syntax: - myForm.action

HTML syntax: <FORM ACTION="...">

This value corresponds to the ACTION="..." tag attribute in the <FORM> tag that represents this
Form object. This indicates the server side form handler method.

Warnings:
❑ The value you might store in this property is ignored by MSIE version 3 because it has read-only

access to the property.

Form.elements.length (Property)
The number of input elements there are in the form. This is a reflection of the Form.length property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Property/method value type: Number primitive

JavaScript syntax: - myForm.elements.length

Form.elements.length is not really a property of the Form object but it is convenient to discuss
it here since it is related to the Form.length property.

The structural model of the form and its length property is somewhat confusing because there is
an elements[] collection which is really what is being measured. Somehow, the elements all
being members of the Form object, means that the Form object's length value is really the length
value of the elements[] collection.

The elements collection is really a reference to the Form object and this means the elements collection
is polluted with a lot of associatively named member items that are not actually form elements at all.

It is possible that future browser versions will correct this and that a proper FormElementArray
class is created. For legacy reasons, the Form.length parameter may need to persist.

See also:
Collection.length, Form.length, FormElement object,
length

Property attributes:
ReadOnly.

F – Form.elements[] (Collection)

937

Form.elements[] (Collection)
An array containing a list of elements belonging to a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Collection object

JavaScript syntax: - myForm.elements

HTML syntax: <INPUT>

This property actually refers to the parent Form object which contains the elements array content
superimposed on its existing properties.

Each item in this array represents an input control element within the form. Each input element is
created with a separate <INPUT> tag. Any of the following element types can be present in a form
object's elements[] array although it’s unlikely you'll see them all there together:

❑ Button

❑ Checkbox

❑ FileUpload

❑ Hidden

❑ Option

❑ Password

❑ Radio

❑ Reset

❑ Select

❑ Select (multiple)

❑ Submit

❑ Text

❑ Textarea

See also: Button object, BUTTON object, Checkbox object, Collection
object, FileUpload object, Form object, FormElement object,
Hidden object, Option object, Password object, RadioButton
object, ResetButton object, Select object, SubmitButton
object, TEXTAREA object, TextCell object

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

938

Form.encoding (Property)
The type of encoding that the form needs to undergo during submission.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Property/method value type: String primitive

JavaScript syntax: - myForm.encoding

HTML syntax: <FORM ENCTYPE="...">

This value corresponds to the ENCTYPE="..." tag attribute in the <FORM> tag that represents this
form object.

This specifies a MIME type for the form when it is submitted to a server.

Warnings:
❑ The value you might store in this property is ignored by MSIE version 3 because it can only

read-access the property.

❑ This property is not supported on the WebTV platform.

❑ The DOM specification at level 1 specifies that this property should be called enctype and not
encoding. In MSIE, the enctype property has a control attribute while the encoding
property does not. This suggests that the encoding property is simply mapped to the
enctype property internally.

See also: JellyScript, MIME types

Form.enctype (Property)
An alias for the Form.ecoding property as specified by DOM level 1.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myForm.enctype

F – Form.handleEvent() (Method)

939

Refer to:
Form.encoding

Form.handleEvent() (Method)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myFileUpload.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: Document object, Form object, handleEvent()

Form.length (Property)
The number of elements in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Property/method value type: Number primitive

JavaScript syntax: - myForm.length

This may be the same as the form.elements.length value. Because of this, the Form.elements
property may return a reference to the Form object itself in some implementations.

See also: Collection.length, Form.elements.length, length

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

940

Form.method (Property)
The method of submission for the form object.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Property/method value type: String primitive

JavaScript syntax: - myForm.method

HTML syntax: <FORM METHOD="...">

This value corresponds to the METHOD="..." tag attribute in the <FORM> tag that represents this
form object.

Warnings:
❑ The value you might store in this property is ignored by MSIE version 3 because it can only

read-access the property.

Form.name (Property)
This corresponds to the NAME attribute of the <FORM> tag.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Property/method value type: String primitive

JavaScript syntax: - myForm.name

HTML syntax: <FORM NAME="...">

Forms may be accessed by the NAME or ID attribute in some browsers. It is recommended practice
to always use the NAME value.

F – Form.reset() (Method)

941

Form.reset() (Method)
Invoke a form reset on the field content.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera– 3.0

JavaScript syntax: - myForm.reset()

Refer to:
onReset

Form.submit() (Method)
Invoke a form submit to the server.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

JavaScript syntax: - myForm.submit()

If your verification script is happy that the form data is correct, you can call this method to force
the form data to be submitted.

Form.tabIndex (Property)
A control of where the form appears in the tabbing order of the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
Number primitive

JavaScript syntax: - myForm.tabIndex

JavaScript Programmer's Reference

942

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms. Pressing the [tab] key moves from one
form element to the next according to the cascaded tabbing order defined by building a tree-like
structure with the tab index values.

Form.target (Property)
A target window or frame for the form response to be displayed in.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera– 3.0

Property/method value type: String primitive

JavaScript syntax: - myForm.target

HTML syntax: <FORM TARGET="...">

This value corresponds to the TARGET="..." tag attribute in the <FORM> tag that represents this
form object.

Here are some example target values:

❑ _parent

❑ _self

❑ _top

❑ _blank

❑ Window name

❑ Frame name

Warnings:
❑ The value you might store in this property is ignored by MSIE version 3 because it can only

read-access the property.

See also: <MAP TARGET="...">, Anchor.target, BASE.target,
Location.target, Map.target

F – Form verification (Definition)

943

Form verification (Definition)
A process of checking user entered form values.

You can attach a script to the Submit button in a form to verify the entire contents of the form as it
is submitted.

You may prefer to add event handlers to the individual form elements to check them whenever
they change.

This is very like the traditional data entry approach to building database loading systems.

Historically, a data entry system would carry out checks at the end of entering each field of data. It
would then carry out checks on the whole record before loading it into the database. At that point
some integrity checks may also come into play.

In the context of form data verification, our field end checks correspond to the scripts that run
when a Form element changes. They can only logically check the internal integrity of that
individual form element. They should be concerned with correct formatting of the value and range
checking it for validity and size.

Our record end checks in the context of Form verification are done when the Submit button is
pressed. This can check the integrity of data from field to field. That is best done at this point
because if it’s done at the field editing level, it needs to take account of default values which need
to be considered as valid entry data. That complicates the field integrity checks. Cross-checking
fields with one another should logically be done at a higher administrative level.

If all the fields correlate, the form can be submitted. If one or more needs to be corrected, a message
can be presented and the offending item marked, selected or focussed for correction.

Formal Parameter List (Definition)
The arguments that are passed to a function when it is called.

Availability: ECMAScript edition – 2

The list of parameters in the function declaration. This defines the calling interface to the function.

As the formal parameter list is parsed, each item is represented by a property added to the variable
object belonging to the owner of the evaluation. The attributes of the property being added depend
on the type of code being evaluated. The values to be stored in each parameter's property attribute
are determined by the caller.

If fewer values are provided than there are formal parameters, the remaining parameters will have
the value undefined assigned to their properties in the variable object.

If more than one formal parameter shares the same name, then earlier values are overwritten by
later ones in order of appearance in the Script Source Text. If an overwrite like this occurs and there
are insufficient values passed by the caller, a previously defined value could be replaced by the
undefined value.

JavaScript Programmer's Reference

944

See also: function(...) ..., Script Source Text, Variable Declaration,
Variable instantiation

Cross-references:
ECMA 262 edition 2 section – 10.1.3

ECMA 262 edition 3 section – 10.1.3

FormArray object (Object/browser)
The FormArray object is a collection of objects referring to the Form objects for the current document.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

JavaScript syntax: - myFormArray = myDocument.forms

Object properties: length

Object methods: item()

The array is constructed by taking the <FORM> tags in the document and building a unique Form
object for each.

In MSIE, the FormArray is constructed by adding an element to the array for each Form object and
setting its key to be the value of the NAME="..." HTML tag attribute. For two named <FORM>
tags, there will be only two entries in the array.

In Netscape, the array is constructed a little differently. First, the Form objects are created as was
the case with MSIE. Then they are added to the array and can be accessed numerically. The
FormArray.length property is then set according to the number of Form objects in the array.
Then, additional elements are added to the FormArray to correspond to the NAME="..." HTML
tag attribute. If you have this in your document:

<FORM NAME="ONE">

...

<FORM NAME="TWO">

...

Then your FormArray will contain these entries:

❑ 0 -> Form ONE

❑ 1 -> Form TWO

❑ ONE -> Form ONE

❑ TWO -> Form TWO

F – FormArray object (Object/browser)

945

However the length property will still only return the value 2.

If you make both <FORM> tags identical, with the same NAME value, like this:

<FORM NAME="ONE">
...

<FORM NAME="ONE">

...

Then, you will get this array:

❑ 0 -> First form

❑ 1 -> Second form

❑ ONE -> Form ONE

The length value still reports 2 but if you enumerate the array contents in a for(... in ...)
loop, you get three entries now instead of four.

Regardless of how you define the forms in MSIE, it will always have the correct number of
elements in the FormArray but they might have the same name. You can still access them
numerically though.

Warnings:
❑ Although the FormArray is a collection, the MSIE 5.0 browser on the Macintosh will crash if

you try to use the item() method on it.

❑ Be careful to avoid naming forms identically if you have more than one in a document. You still
get the correct number of Form objects but accessing them via the FormArray may become
problematic if you use the name attributes to locate them associatively.

See also: Collection object, Document.forms[]

Property Java Script JScript N IE Opera HTML Notes

length 1.0 + 3.0 + 2.0 + 4.0 + - - Warning, ReadOnly

Method Java Script JScript N IE Opera HTML Notes

item() - 3.0 + - 4.0 + - - -

JavaScript Programmer's Reference

946

FormArray.item() (Method)
An item selector for picking items out of a collection of forms.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Form object

IE myFormArray.item(anIndex)

IE myFormArray.item(aSelector)
JavaScript syntax:

IE myFormArray.item(aSelector, anIndex)

AnIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

FormArray.length (Property)
The number of forms in the form array.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

Property/method value type:
Number primitive

JavaScript syntax: - myFormArray.length

This property yields the number of forms in the document. Each form is represented by its own
individual Form object.

The length property is consistent across Netscape and MSIE in that it reports the number of unique
Form objects that are available. However, this is not the length of the array in Netscape because
additional elements are placed into the array to access the Form objects associatively by name.

Warnings:
❑ The length value is only correct in Netscape if you are accessing the array with numeric index

values. You will get more than myFormArray.length objects if you enumerate the array with
a for(... in ...) loop. In that case you will visit each Form object more than once.

See also: Collection.length

Property attributes:
ReadOnly.

F – FormElement object (Object/browser)

947

FormElement object (Object/browser)
An object representing an HTML <INPUT> tag in a <FORM>.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Inherits from: Input object

IE myFormElement = myDocument.all.anElementID

IE myFormElement =
myDocument.all.tags("INPUT")[anIndex]

IE myFormElement = myDocument.all[aName]

- myFormElement =
myDocument.getElementById(anElementID)

- myFormElement = myDocument.getElementsByName(aName)
[anIndex]

- myFormElement = myForm.anElementName

- myFormElement = myForm.elements[anItemIndex]

- myFormElement = myForm[anIndex]

- myFormElement = myFormElementsArray[anItemIndex]

JavaScript syntax:

- myFormElement = myDocument.getElementsByTagName
("INPUT")[anIndex]

anIndex A reference to an element in a collection
aName An associative array reference
anElementID The ID value of an Element object

Argument list:

anItemIndex A reference to a single item within the form elements array

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onClick, onDblClick, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onRowEnter,
onRowExit, onSelect

This is a generic description of a form element object. The object will really be a concrete
manifestation of a particular class but is available generally as an item in the elements array that
belongs to the form.

Refer to the Input object topics for a more detailed description of FormElement functionality.

See also: Button object, BUTTON object, Checkbox object, Element object,
Element.all[], Form.elements.length, Form.elements[], Input
object, Password object, RadioButton object, ResetButton object,
Select object, SubmitButton object, TextCell object

JavaScript Programmer's Reference

948

Event name JavaScript JScript N IE Opera HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - -
onBeforeUpdate - 3.0 + - 4.0 + - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - Warning
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - -
onClick 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 4.0 + Warning
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - Warning
onHelp - 3.0 + - 4.0 + - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 4.0 + Warning
onMouseOver 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - -
onRowExit - 3.0 + - 4.0 + - - -
onSelect 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - -

Inheritance chain:
Element object, Input object, Node object

FormElementsArray object (Object/browser)
A collection containing the input elements of a form. This is provided by adding properties to the
FORM object the elements belong to.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

JavaScript syntax: - myFormElementsArray = myForm.elements

Object properties: length

Property JavaScript JScript N IE Opera HTML Notes

length - 3.0 + - 4.0 + - - ReadOnly

F – FormElementsArray.length (Property)

949

Refer to:
Collection object

FormElementsArray.length (Property)
The number of input elements within a form.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFormElementsArray.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

forward() (Method)
Equivalent to the user clicking on the [FORWARD] button.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

- forward()
JavaScript syntax:

- myWindow.forward()

See also: History.forward()

Refer to:
Window.forward()

frame (Property)
This is another name for self and window.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Window object

IE frame
JavaScript syntax:

IE myWindow.frame

JavaScript Programmer's Reference

950

Property attributes:
ReadOnly.

Refer to:
Window.frame

Frame object (Object/DOM)
An object representing an HTML <FRAME> tag.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Window object

- myFrame = frame

- myFrame = frames[anIndex]

IE myFrame = myDocument.all.aFrameID

IE myFrame = myDocument.all.tags("FRAME")[anIndex]

IE myFrame = myDocument.all[aName]

- myFrame = myDocument.getElementById(anElementID)

- myFrame = myDocument.getElementsByName(aName)
[anIndex]

- myFrame = myDocument.getElementsByTagName
("FRAME")[anIndex]

IE myFrame = myDocument.parentWindow

- myFrame = myFrameArray[anIndex]

- myFrame = parent

- myFrame = self

- myFrame = top

JavaScript syntax:

- myFrame = window

HTML syntax: <FRAME>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
borderColor, className, dataFld, dataSrc,
defaultStatus, frameBorder, height, isTextEdit, lang,
language, longDesc, marginHeight, marginWidth, name,
noResize, parent, parentElement, parentTextEdit,
scrolling, sourceIndex, src, style, tagName, title, top

Object methods:
close(), contains(), getAttribute(), removeAttribute(),
setAttribute()

F – Frame object (Object/DOM)

951

Event handlers:
onAfterPrint, onBeforePrint, onBeforeUnload, onBlur,
onDragDrop, onError, onFocus, onHelp, onLoad, onMouseMove,
onMove, onResize, onScroll, onUnload

Collections: all[], attributes[], children[]

The methods and properties of a frame are the same as those for a window object.

Note that MSIE supports a FRAME object as opposed to a Frame object for the management of
frames within a frame-set.

DOM level 2 adds the following properties:

❑ contentDocument

Warnings:
❑ Be aware that if you store a reference to a frame object and the frame is closed, if you don't

dispose of the reference to the frame object then it cannot be garbage collected. A frame object
with no associated frame is not much use unless you need to keep the object persistent due to
having added some properties to it. If this is the case, then arguably the frame object was the
wrong place to put such things.

See also: BODY object, captureEvents(), Collection object, Document object,
Document.activeElement, Document.captureEvents(),
Document.frames[], Document.parentWindow,
Document.releaseEvents(), Frames object, Global object, IFRAME
object, Layer.captureEvents(), Layer.releaseEvents(),
Layer.window, self

Property JavaScript JScript N IE Opera DOM HTML Notes

borderColor - 3.0 + - 4.0 + - - - -
className 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
dataFld 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
dataSrc 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
defaultStatus 1.0 + 1.0 + 2.0 + 3.02 + - - - -
frameBorder 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
height - 3.0 + - 4.0 + - - - Warning
isTextEdit 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
lang 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
language 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
longDesc 1.5 + - 6.0 + - - 1 + - -
marginHeight 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
marginWidth 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
name 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Table continued on following page

JavaScript Programmer's Reference

952

Property JavaScript JScript N IE Opera DOM HTML Notes

noResize 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
parent 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -
parentElement 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
parentTextEdit 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
scrolling 1.5 + 3.0 + 2.0 + 3.0 + - 1 + - Warning
sourceIndex 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
src 1.5 + 3.0 + 2.0 + 3.0 + - 1 + - -
style 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
tagName 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
title 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
top 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - ReadOnly

Method JavaScript JScript N IE Opera DOM HTML Notes

close() 1.0 + 1.0 + 2.0 + 3.02 + - - - Warning
contains() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
getAttribute() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
removeAttribute() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
setAttribute() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterPrint - 5.0 + - 5.0 + - - - -
onBeforePrint - 5.0 + - 5.0 + - - - -
onBeforeUnload - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onDragDrop 1.2 + - 4.0 + - - - - -
onError 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onLoad 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMove 1.2 + - 4.0 + - - - - -
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onScroll - 3.0 + - 4.0 + - - - -
onUnload 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning

Inheritance chain:
Window object

F – Frame.borderColor (Property)

953

Frame.borderColor (Property)
The color of a border around a frame.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFrame.borderColor

You can use this property to determine the color of a border surrounding a frame.

See also: color names, color value

Frame.close() (Method)
A redundant method that should be ignored.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: undefined

JavaScript syntax: - myFrame.close()

This method is inherited from the Window object class but is of no use in the context of a Frame object.

Warnings:
❑ Attempting to close a frame in a frame-set serves no purpose whatsoever.

See also: Window.close()

Frame.defaultStatus (Property)
A default status value that only applies when the mouse is in the frame.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myFrame.defaultStatus

JavaScript Programmer's Reference

954

Refer to:
Window.defaultStatus

Frame.frameBorder (Property)
A control attribute for borders around frames.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive.

JavaScript syntax: - myFrame.frameBorder

this property provides a way to switch frame borders on and off. Although it is a switching
property and behaves as if it were a Boolean value it really is implemented as a String value.

This is because it accepts a yes/no value or a 0/1 value depending on which browser you are
using. The following values may be used:

❑ yes – Supported by all browsers to turn frame borders on

❑ no – Supported by all browsers to turn frame borders off

❑ 0 – Supported by MSIE to turn frame borders off

❑ 1 – Supported by MSIE to turn frame borders on

See also: IFRAME.frameBorder, IFRAME.frameSpacing

Frame.height (Property)
The height of a frame.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFrame.height

Frames can vary in size from browser to browser. Although you can measure the height of a frame,
setting it accurately to a desired and exact size is virtually impossible. MSIE is marginally better at
this than Netscape.

F – Frame.longDesc (Property)

955

Warnings:
❑ Height and width control of frames in Netscape is nothing less than a lottery. There are all kinds

of platform dependant weirdness that crop up and you may find yourself doing a browser sniff
and building in corrective document.writes() that fix up the Frame sizes on the fly.

❑ Note that there is no width property to be able to measure the frame width value.

See also: IFRAME.height

Frame.longDesc (Property)
This is a URL which points at a document containing a long description of the contents of this frame.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myFrame.longDesc

See also: IFRAME.longDesc

Frame.marginHeight (Property)
The vertical height of a top and bottom margin round a frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myFrame.marginHeight

Margins flow round the entire frame. You cannot operate on them individually, but you can
operate on the vertical and horizontal margins separately.

This property is the size of the margins at the top and bottom of the frame.

See also: IFRAME.frameSpacing, IFRAME.marginHeight

JavaScript Programmer's Reference

956

Frame.marginWidth (Property)
The horizontal width of a margin round a frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myFrame.marginWidth

Margins flow round the entire frame. You cannot operate on them individually but you can operate
on the vertical and horizontal margins separately.

This property is the size of the margins to the left and right of the frame.

See also: IFRAME.frameSpacing, IFRAME.marginWidth

Frame.name (Property)
This corresponds to the NAME attribute of the <FRAME> tag.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myFrame.name

HTML syntax: <FRAME NAME="...">

See also: IFRAME.name

Refer to:
Window.name

F – Frame.noResize (Property)

957

Frame.noResize (Property)
A switch to control the resize box on a frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myFrame.noResize

This is a Boolean value to turn the frame resizing control on and off. Unlike the border control, this
is a truly Boolean value accepting either true or false as its setting.

See also: IFRAME.noResize

Frame.parent (Property)
A reference to the window (frame) that contains the frame.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Window object

JavaScript syntax: - myFrame.parent

See also: Dialog object, Window.parent

Frame.scrolling (Property)
A switch to control the appearance of scrollbars on a frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myFrame.scrolling

JavaScript Programmer's Reference

958

Yet another deviant property in the browser mess! Having just discussed the noResize property which
is a switching mechanism having a Boolean setting, here we are with another switching property.
However, as is the case with border controls, this one is not Boolean. Instead it accepts the values:

❑ yes

❑ no

❑ auto

Warnings:
❑ Be aware that if you allow the scrollbars to be invisible by setting this property to "no" or "auto"

when they are not present, Netscape will ignore the scroll() method that you apply to the
Window object. This means that to scroll the content of a window, you must have visible
scrollbars. MSIE is far more forgiving and lets you scroll as much as you like regardless of
whether the scrollbars are present or not.

❑ You can work around this in Netscape by creating Layers that can be scrolled independently of
the presence of window scrollbars.

See also: IFRAME.scrolling

Frame.src (Property)
The URL for a document contained within the frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myFrame.src

Frames have their content loaded in much the same way as for a window. This property describes
the source URL of the document that controls the content of a frame. You can reload the frame by
redefining this value but it is probably better to use the location.href value for that.

See also: IFRAME.src

F – Frame.top (Property)

959

Frame.top (Property)
The top-level window that owns the hierarchy the current frame lives in.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Window object

JavaScript syntax: - myFrame.top

Property attributes:
ReadOnly.

Refer to:
Window.top

FrameArray object (Object/browser)
A collection of frames within a window. Actually there is no FrameArray object type because it is
implemented as a Frames object.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

- myFrameArray = frames

- myFrameArray = myDocument.frames
JavaScript syntax:

- myFrameArray = myWindow.frames

Object properties: length

Object methods: item()

See also:
Collection object, Frame object, Window.frames[],
Frames object

Property JavaScript JScript N IE Opera Notes

length 1.0 + 1.0 + 2.0 + 3.02 + - ReadOnly

Method JavaScript JScript N IE Opera Notes

item() - 3.0 + - 4.0 + - -

JavaScript Programmer's Reference

960

FrameArray.item() (Method)
An item picker for accessing individual frames within a collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Frame object

IE myFrameArray.item(anIndex)

IE myFrameArray.item(aSelector)
JavaScript syntax:

IE myFrameArray.item(aSelector, anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

FrameArray.length (Property)
The number of frame objects in a frame collection.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

- frames.length

- myDocument.frames.length

- myFrameArray.length

JavaScript syntax:

- myWindow.frames.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

F – frameRate (Property)

961

frameRate (Property)
An indication of the frame rate for the current display.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N frameRate
JavaScript syntax:

N myWindow.frameRate

Property attributes:
ReadOnly.

Refer to:
Window.frameRate

Frames object (Object/browser)
A collection of frames belonging to a document or window.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

- myFrames = frames

- myFrames = myDocument.frames
JavaScript syntax:

- myFrames = myWindow.frames

Object properties: length

Object methods: item()

An array of Frame objects contained within the document or window.

If the Frames object were named consistently with the rest of MSIE, it might be called a
FrameArray object.

Note that Frame objects is really another name for Window objects.

Each entry in the Frames object is a reference to a Window object for the specified frame.

Giving the individual frames a name with the NAME="..." HTML tag attribute does not feed
through into the Frames array. The entries are simply numbered with their index value.

JavaScript Programmer's Reference

962

The frames property in Netscape points at a Window object rather than a Frames object. Although
there is no Frames array in Netscape, the Window object acquires a length value which is the
number of Frame objects. However, the frames are not enumerable by index number. We can
simulate the functionality of the Frames array but to do this, we will need to enumerate all the
properties of the Window object and eliminate the ones we don't want.

The example below illustrates how to enumerate through the properties of a Window object and
extract only those which are valid Frame objects. The toString function forces the new array to
pose as a new object class. This actually works in MSIE and Netscape and yields an array that is
consistent in both browsers.

Warnings:
❑ The frames property in MSIE points at a Frames array object that is easy to enumerate and

operate on by itself. In Netscape, the properties that would have been stored in the Frames
array in MSIE are simply dumped into the global property space, and stored in a Window
object. This not only makes them harder to find but much harder to operate on in a logical way.
Yet again it illustrates the need for script developers to be aware of the finer points regarding
the differences between MSIE and Netscape.

Example code:
// Build a FrameArray in Netscape
var myIndex = 0;
var myFramesArray = new Array();
myFramesArray.toString = function () { return "[object FrameArray]"; }

for(var myProp in frames)
{
 if(isDesiredFrameObject(myProp, frames[myProp]))
 {
 myFramesArray[myIndex] = frames[myProp];
 myIndex++;
 }
}

// Select genuine frame objects
function isDesiredFrameObject(aProperty, anObject)
{
 if(toString(anObject) == "[object Window]")
 {
 switch(aProperty)
 {
 case "frames" :
 case "parent" :
 case "top" :
 case "self" :
 return false;
 default :
 return true;
 }
 }
 return false;
}

F – Frames.length (Property)

963

See also: Collection object, Document.frames[], Frame object,
Window object, Window.frames[]

Property JavaScript JScript N IE Opera HTML Notes

length 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - ReadOnly

Method JavaScript JScript N IE Opera HTML Notes

item() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - Warning

Frames.length (Property)
The number of frames in the window to which the frames array belongs. The number of inline
frames in the current document.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Number primitive

- frames.length

- myDocument.frames.length
JavaScript syntax:

- myWindow.frames.length

HTML syntax: <IFRAME>

See also: Frames object, Collection.length

Property attributes:
ReadOnly.

Cross-references:
Wrox Instant JavaScript – page – 81

JavaScript Programmer's Reference

964

frames[] (Collection)
The frames array belongs to the window object.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Frames object

- frames
JavaScript syntax:

- myWindow.frames

HTML syntax: <FRAME>

See also: Document.frames[], Frames object, Window.frames[]

Property attributes:
ReadOnly.

Cross-references:
Wrox Instant JavaScript – page – 81

FRAMESET object (Object/HTML)
An object that represents a <FRAMESET> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0

Inherits from: Element object

IE myFrameSET = myDocument.all.aFramesetID

IE myFrameSET = myDocument.all.anElementID

IE myFrameSET =
myDocument.all.tags("FRAMESET")[anIndex]

IE myFrameSET = myDocument.all[aName]

- myFrameSET =
myDocument.getElementById(anElementID)

- myFrameSET =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myFrameSET = myDocument.getElementsByTagName
("FRAMESET") [anIndex]

F – FRAMESET object (Object/HTML)

965

HTML syntax: <FRAMESET> ... </FRAMESET>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
accessKey, border, borderColor, cols, frameBorder,
frameSpacing, rows, tabIndex

Event handlers:
onBeforeUnload, onClick, onDblClick, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onResize, onUnload

This object encapsulates the top level frame-set in a multi-paned window. You need to be a little bit
cunning to access the object for the FRAMESET because normally you are running a script that lives
inside one of its frames.

Logically, you might assume that a FRAMESET object has a property with a list of frames contained
within it. Actually, you can navigate the hierarchy but it’s via the usual DOM properties such as
childNodes and firstChild etc.

The FRAMESET object can be a useful way of maintaining session state. Although it is only present
in the MSIE browser, the Netscape browser can accomplish the same session store techniques with
the global object that belongs to the document containing the frame-set.

See also: Element object

Property Java Script JScript N IE Opera DOM HTML Notes

accessKey - 3.0 + - 4.0 + - - - -
border - 3.0 + - 4.0 + - - - -
borderColor - 3.0 + - 4.0 + - - - -
cols 1.5 + 3.0 + 2.0 + 3.0 + - 1 + - -
frameBorder - 3.0 + - 4.0 + - - - -
frameSpacing - 3.0 + - 4.0 + - - - -
rows 1.5 + 3.0 + 2.0 + 3.0 + - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name Java Script JScript N IE Opera DOM HTML Notes

onBeforeUnload - 3.0 + - 4.0 + - - - -
onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Table continued on following page

JavaScript Programmer's Reference

966

Event name Java Script JScript N IE Opera DOM HTML Notes

onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onLoad 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onUnload 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning

Inheritance chain:
Element object, Node object

FRAMESET.accessKey (Property)
A key that needs to be pressed before the input object will respond to data entry.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFrameSET.accessKey

The key defined in this property needs to be held down for any input events to be triggered on this
object or its children.

FRAMESET.border (Property)
A switching attribute that controls the border around the frames in a frame-set.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFrameSET.border

This property indicates the thickness of frame borders around all the frames. The borders are
turned on and off with the frameBorder property.

Even if the borders are turned off, the value of this property controls the spacing between frames.
Setting the border color forces the borders to appear regardless of the frameBorder setting.

See also: FRAMESET.frameBorder, FRAMESET.frameSpacing

F – FRAMESET.borderColor (Property)

967

FRAMESET.borderColor (Property)
An attribute controlling the color of a border around the frames in a frame-set.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myFrameSET.borderColor

You can use this property to determine the color of a border surrounding a frame. The borders are
turned on and off with the frameBorder property.

Even if the borders are turned off, the value of the border property controls the spacing between
frames. Setting the border color forces the borders to appear regardless of the frameBorder setting.

FRAMESET.cols (Property)
The column arrangement of frames within a frame-set.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myFrameSET.cols

The value defined in the COLS HTML tag attribute is reflected into this property. It appears exactly
as it does in the HTML document source.

FRAMESET.frameBorder (Property)
A switching attribute for the border around individual frames within the frame-set.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myFrameSET.frameBorder

This property controls whether the frame borders are visible or not.

Even if the borders are turned off, the value of the border property controls the spacing between
frames. Setting the border color forces the borders to appear regardless of the frameBorder setting.

See also: FRAMESET.border

JavaScript Programmer's Reference

968

FRAMESET.frameSpacing (Property)
A property indicating the amount of space between frames within the frame-set.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myFrameSET.frameSpacing

The spacing distance between frames is specified in this property. Actually, from a functional point
of view, it behaves exactly the same as the border property.

See also: FRAMESET.border

FRAMESET.rows (Property)
The row control attribute for the frame-set.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myFrameSET.rows

The value defined in the ROWS HTML tag attribute is reflected into this property. It appears exactly
as it does in the HTML document source.

FRAMESET.tabIndex (Property)
A numeric ordering of the <FRAMESET> within the parent document's tabbing sequence.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myFrameSET.tabIndex

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms. Pressing the [tab] key moves from one
form element to the next according to the cascaded tabbing order defined by building a tree-like
structure with the tab index values.

F – Free-format language (Definition)

969

Free-format language (Definition)
A somewhat relaxed layout strategy for source code.

JavaScript is a free-format language. That means it has a very relaxed attitude to the organization
and layout of the script source text. You can place multiple statements on one line and separate
them with semi-colons. It is also forgiving enough to allow you to omit semi-colons, which it will
put in for you as the script is executed. There are some cases where this cannot apply because for
JavaScript to do this, the programmer's original intent must be quite unambiguous. This is called
automatic semi-colon insertion and is covered in a topic of its own.

See also: Automatic semi-colon insertion, JavaScript language

Cross-references:
Wrox Instant JavaScript – page – 17

ftp: URL (Request method)
A request from a web browser to an ftp server to send a file.

This will download a file using the FTP protocol. In most respects it is very like accessing with
HTTP. However, you may need to specify a user name and password.

See also: javascript: URL, URL

Function (Definition)
The action of executing a function object's script source text.

Availability: ECMAScript edition – 2

Functions and methods are similar but not the same thing.

Methods provide a function like behavior because they can be called and sometimes return a value.
They operate on the content of the receiving object to which they are attached and yield
information about the internals of the object.

Functions perform some transformation on the input arguments and return a result that is
dependent on them. This computation is complete independent of the contents of any object.

Accessor methods to set and get internal values of an object are presented externally as properties.

In JavaScript, functions are first class data items. That means they are implemented as objects and
can be manipulated in expressions and assigned to LValues. You could create an array that
contains a collection of function objects. You can pass a function as a parameter to another function
or store a reference to it in a variable. To do this in a compiled language would require you to do
some pointer manipulation. In Objective C, this kind of functionality is called dynamic late binding
and allows methods to be attached to event triggers at run-time.

JavaScript Programmer's Reference

970

A function is a construct that performs a task. It is derived from the procedural language model
rather than the Object Oriented Language model. Procedural language functions are analogous to
Object Oriented language methods but they are not quite the same. Functions are called and carry
out some procedural task, while methods are invoked by sending a message to a receiving object –
they may however belong to a class or an object instance of a class. Class methods are most likely to
be factory methods for creating instance objects of that class.

Function calls can only be received by function objects otherwise a runtime error results –
however, those Function objects generally belong to other objects and are stored as properties
of the owner object.

A method is a specially written function that operates on the receiving object and can be shared
between several objects using the 'this' variable to refer to the receiving object.

Associating a function with an object renders that function the active code to be called when a
method is invoked on that object. Invoking a method sends a message to the object, the receiving
object looks for a property with the message name which contains a reference to callable function
object. If it doesn't have one, it calls its parent and delegates the message upwards.

In JavaScript version 1.2, function definitions can be nested within one another. You can end up
with local scope chains being nested within one another. Be sure to scope any variables to exist
within the level of function nesting that you need. You can accomplish this with the var keyword.

Example code:
// Example of JavaScript version 1.2 function nesting
// Create a globally scoped value
var scope = "Global"

// Define a function object and store a global reference to it
myFunc1 = function outer()
{
 var scope = "Outer"
 // Define an inner anonymous function and store a global reference to it
 myFunc2 = function ()
 {
 var scope = "Inner"
 return scope;
 }
 return scope;
}

// Call the various functions to establish the scope of the variables
document.write("<TABLE BORDER=1>");
document.write("<TR><TH>Scope</TH>");
document.write("<TH>Value</TH></TR>");
document.write("<TR><TD>Global</TD>");
document.write("<TD>");
document.write(scope);
document.write("</TD></TR>");
document.write("<TR><TD>myFunc1</TD>");
document.write("<TD>");
document.write(myFunc1());
document.write("</TD></TR>");

F – Function arguments (Definition)

971

document.write("<TR><TD>myFunc2</TD>");
document.write("<TD>");
document.write(myFunc2());
document.write("</TD></TR>");
document.write("</TABLE>");

See also: Argument, Definition, Function call, Function call operator (), function(...
) ..., Integer-value-remainder, Left-Hand-Side expression, Method,
Parameter, Property

Cross-references:
ECMA 262 edition 2 section – 11.2.3

ECMA 262 edition 2 section – 11.2.4

ECMA 262 edition 2 section – 13

ECMA 262 edition 3 section – 11.2.3

ECMA 262 edition 3 section – 11.2.4

ECMA 262 edition 3 section – 13

Function arguments (Definition)
The parameters that are passed to a function as it is called.

When values are passed to a function as it is called, primitive values are passed by value. This means
that from inside the function you see a copy of the value and cannot damage the one outside.

Objects are passed by reference. If you modify the properties of an object that is passed into a
function by way of an argument, you will be modifying the master instance of that object because
there is only one.

This means that calling a function can have side effects that you may not expect unless you realize
that this is happening.

See also: Arguments object, arguments[], Function.arguments[],
Reference, Reference counting, Variable

Cross-references:
Wrox Instant JavaScript – page – 27

Wrox Instant JavaScript – page – 29

JavaScript Programmer's Reference

972

Function call (Definition)
A means of invoking a function definition.

A function may be invoked at any time. Typically in a web browser, functions are attached to event
handlers belonging to document objects.

A function call consists of the identifier that names the function and a set of parentheses enclosing
the optional parameters. The declaration of the function specifies the identifier and the formal
parameter list.

The identifier must match letter for letter in the same case.

When a function is called either as a procedure or as part of an expression, there is the possibility of
somewhat massive side effects to take place before the function returns. Indeed, it is possible to
build a function that actually never returns.

Functions can be called in other documents, other frames and other windows. However, there are
some security implications regarding whether those functions are accessible – the calling and called
functions must exist in pages that were loaded from the same server or domain unless the security
controls can be relaxed.

It is generally easier to call functions in parent windows and frames and then call downwards to
their children. This allows some session state to be maintained in the parent's global scope. The
parent can be a frameset and need not be a visible window or frame.

If you are using the parent as a means of maintaining state information, you might want to
implement accessor functions to store and retrieve state information. This allows the validation of
the values to be range checked in one place and for the physical storage implementation to be
hidden. This is indicative of a good Object Oriented Programming style.

The result returned by a function call depends on the function script source text.

See also: Arguments object, Calling event handlers, Function, Function code,
Function object, Function property, Function prototype, function(...) ...,
Function(), Function(), Function.arguments[],
Function.arity, Function.Class, Function.constructor,
Function.length, Function.prototype,
Function.toString()

Cross-references:
Wrox Instant JavaScript – page – 27

Function call operator () (Definition)
The parentheses change a property into a function/method.

❑ A property invoked as an LValue is used as an assignment target.

❑ A property invoked as an RValue returns its value, which for a function or method is the
function declaration.

❑ A property invoked as an RValue with the parentheses and some optional arguments is called
as a function or method.

F – Function code (Definition)

973

The distinction between a function and method is whether the script source text in the function body
makes use of the 'this' keyword to operate on the receiving objects properties.

See also: Arguments object, Function, Function code, Function literal, Function
property, function(...) ..., Function.arguments[], Grouping operator ()

Function code (Definition)
Script source in a declared function.

Availability: ECMAScript edition – 2

Function code is the script source text that appears between the braces in a function declaration.

This could also fall under the heading of eval code if the function is being declared as a component
within some script source text that has been passed to the eval() function for processing.

Function code initializes the scope chain to include its activation object followed by the global object.

Variable instantiation is performed using the activation object as the variable object and any initial
variables are flagged with a DontDelete attribute.

The caller provides this value but in some situations the value null may be passed. In that case,
the global object will be used in its place.

See also: Compound statement, eval(), Executable code, Execution context, Function
call, Function call operator (), function(...) ..., Script

Cross-references:
ECMA 262 edition 2 section – 10.1.2

ECMA 262 edition 2 section – 10.1.6

ECMA 262 edition 2 section – 10.2.3

ECMA 262 edition 2 section – 13

ECMA 262 edition 3 section – 10.1.2

ECMA 262 edition 3 section – 10.1.6

ECMA 262 edition 3 section – 10.2.3

ECMA 262 edition 3 section – 13

JavaScript Programmer's Reference

974

Function definition (Definition)
The description of a function in the script source text.

See also:
Declaration, Function call, Function call operator (), Parameter,
function(...) ...

Function literal (Definition)
A way of creating functions on the fly within your script.

JavaScript version 1.2 introduces a genuine literal syntax for creating anonymous functions.

Previously we might have used a function constructor and assigned the result to an object. This is
more simple and straightforward. It looks just like a normal function declaration, except that there
is no name defined for the function.

Example code:
// An example function literal
var cube_value = function(a) { return a*a*a; };

See also: Anonymous function, Function call operator (), function(...) ...

Function object (Object/core)
An object of the class "Function".

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

- myFunction = Function
JavaScript syntax:

- myFunction = new Function()

Object properties:
arity, caller, constructor, length, prototype

Object methods: apply(), call(), toSource(), toString(), valueOf()

Collections: arguments[]

An instance of the class "Function" is created by using the new operator on the Function()
constructor. The new object adopts the behavior of the built-in prototype object through the
prototype-inheritance mechanisms.

All properties and functions of the prototype are available as if they were part of the instance.

Many built-in objects are functions. They can be invoked with arguments. Some of these are
constructors. They are functions that are intended to be used with the new operator.

F – Function object (Object/core)

975

Function objects come in four varieties according to how they are implemented. They may be built-in
to the interpreter or may be provided as extensions in the script itself. The four types of functions are:

❑ Declared functions in script source text

❑ Anonymous functions build with the Function object constructor

❑ Implementation-supplied functions built into the host environment

❑ Internal functions built into the language

JavaScript has such relaxed syntax rules that it forgives the programmer if the arguments to a
function are omitted. Instead, the interpreter will automatically pass the undefined value in place
of the missing argument.

Every built-in function has the Function prototype object as the value returned by its internal
Prototype property with the exception of the Function prototype object itself, which would
return the Object prototype object.

The prototype for the Function prototype object is the Object prototype object.

If you want to create a function with no name, you can create your own Function object with the
new operator. That function would have some script source associated with it and you can then call
your function directly. Although it won't have a name, it would appear as if it did in the script
source when you call it. However the name it would appear to have is actually the name of the
variable containing the reference to it. Since it is an object, two variables can refer to the same
object and you could call the same function under two different names. That might happen if you
pass the function as an argument in the calling interface to another function. This is a way of
implementing call-backs. You might build a comparator like this and pass it to a sort() function.

Creating function objects and referring to them in variables is somewhat like using an eval()
function to execute script source that you have built in a string.

Example code:
// Create a function object
var myFunction = new Function("arg1, arg2", "return(arg1 * arg2);");

// And call it
document.write(myFunction(5, 10));

See also: Aggregate type, Anonymous function, Arguments.callee,
Arguments.caller, Built-in function, Declared function, Execution
context, Function call, function(...) ..., Function(), Function.arity,
Function.Class, Function.length, Function.prototype,
Implementation-supplied function, Internal function, JavaScript to Java
values, Native object, Object object, Parameter

JavaScript Programmer's Reference

976

Property JavaScript JScript N IE Opera NES ECMA Notes

arity 1.2 + 3.0 + 4.0 + 4.0 + - 3.0 + - Warning,
ReadOnly,
DontDelete,
DontEnum.

caller 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 2.0 + - Warning,
ReadOnly,
DontEnum.,
Deprecated

constructor 1.1 + 1.0 + 3.0 + 3.02 + - - 2 + DontEnum.
length 1.1 + 1.0 + 4.0 + 3.02 + - - 2 + Warning,

ReadOnly,
DontDelete,
DontEnum.,
Deprecated

prototype 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 2.0 + 2 + ReadOnly,
DontDelete,
DontEnum.

Method JavaScript JScript N IE Opera NES ECMA Notes

apply() 1.3 + 5.5 + 4.06 + 5.5 + - - 3 + -
call() 1.3 + 5.5 + 4.06 + 5.5 + - - 3 + -
toSource() 1.3 + 3.0 + 4.06 + 4.0 + - - - -
toString() 1.1 + 3.0 + 4.0 + 3.0 + 3.0 + 2.0 + 2 + -
valueOf() 1.1 + - 4.0 + - - - 2 + -

Cross-references:
ECMA 262 edition 2 section – 10.1.1

ECMA 262 edition 2 section – 10.2.4

ECMA 262 edition 2 section – 13

ECMA 262 edition 2 section – 15

ECMA 262 edition 2 section – 15.3

ECMA 262 edition 3 section – 10.1.1

ECMA 262 edition 3 section – 13

ECMA 262 edition 3 section – 15.3

O'Reilly JavaScript Definitive Guide – page – 42

F – Function() (Constructor)

977

Function() (Constructor)
A Function object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

- new Function()
JavaScript syntax:

- new Function(someArguments)

Argument list: someArguments Some formal parameters and a block of script source

The function constructor can be called with the new operator or as a function.

The initial value of Function.prototype.constructor is the built-in Function constructor.

The arguments supplied to the Function() constructor are all assumed to be parameters apart
from the last one which is taken to be the body Source Script Text. If there is only one argument,
then that is taken to be the body of the function.

If there are no arguments, an empty function is created.

Note that it is permissible but not necessary to have a separate argument for each formal
parameter. All three of these examples produce exactly the same result:

❑ new Function("a", "b", "c", "return a+b+c")

❑ new Function("a, b, c", "return a+b+c")

❑ new Function("a, b", "c", "return a+b+c")

A prototype property is automatically created in case the function object is used as a constructor at
some future time.

The function constructor will always create top level functions without static scoping. This is a little
different to the behavior of a function literal, available in JavaScript version 1.2 onwards.

See also: Constructor function, constructor property, Function call, Function object,
Function.prototype, Global object, new, Object constant

Cross-references:
ECMA 262 edition 2 section – 15.1.3.2

ECMA 262 edition 2 section – 15.3.1

ECMA 262 edition 2 section – 15.3.4.1

ECMA 262 edition 3 section – 15.3.2

JavaScript Programmer's Reference

978

Function() (Function)
A Function object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

Property/method value type: Function object

- Function()
JavaScript syntax:

- Function(someArguments)

Argument list: someArguments
Some formal parameters and a block of
script source

When the Function constructor is called as a function, it creates and initializes a new function
object. The function call Function() is equivalent to the expression new Function() with the
same arguments.

The arguments supplied to the Function() constructor are all assumed to be parameters apart
from the last one which is taken to be the body Source Script Text. If there is only one argument,
then that is taken to be the body of the function.

See also: Cast operator, Constructor function, constructor property,
Function call, Function.prototype, Implicit conversion

Cross-references:
ECMA 262 edition 2 section – 15.1.3.2

ECMA 262 edition 2 section – 15.3.1

ECMA 262 edition 2 section – 15.3.2.1

ECMA 262 edition 2 section – 15.3.4.1

ECMA 262 edition 3 section – 15.3.1

F – Function.apply() (Method)

979

Function.apply() (Method)
Use a function object as if it belonged to another target object.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.06

Property/method value type: Function result

JavaScript syntax: - myFunction.apply(anObject, anArray)

anArray A set of arguments presented as an arrayArgument list:
anObject An object to apply the function to

If you want to force a particular function implementation to be used on an object, you can locate
the one you want and pass it an object on which to operate. The function then executes as if it were
a property of the passed object instead of the receiving object.

This can be useful to restore some functionality that may have been overridden or to share a
function definition between several objects.

This is effectively like adding the function as a property to the target object, executing it, passing the
arguments to it and then deleting the function property afterwards. Applying a function is a lot easier.

This is similar to the call() method that passed the arguments as a comma separated list. This
passes them as an array.

Example code:
// Use the fundamental valueOf method on an object that has overridden
// its own valueOf method
Object.prototype.valueOf.apply(myTargetObject);

See also: Element.applyElement()

Cross-references:
ECMA 262 edition 3 section – 15.3.4.3

JavaScript Programmer's Reference

980

Function.arguments[] (Collection)
The values passed to the function when it is called.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server– 2.0
Opera – 3.0 Deprecated

JavaScript syntax: - myFunction.arguments

This property is only defined within a function body in a web browser. However some
implementations may provide external arguments via this property.

Refer to the Arguments object topic for more details on how to access the caller and callee properties.

Warnings:
❑ This is an alternative way to access the arguments of a function. It is left over from earlier

versions of JavaScript and although it still works, as of JavaScript version 1.2 it is deprecated.
You should use the arguments object without there being any function object prefix to
access it as a property.

See also: Argument, Argument list, Arguments object, Arguments.length,
arguments[], Execution context, Function arguments, Function call,
Function call operator (), function(...) ..., Object.prototype,
Parameter

Property attributes:
ReadOnly, DontEnum.

Cross-references:
ECMA 262 edition 2 section – 10.1.6

ECMA 262 edition 2 section – 10.1.8

ECMA 262 edition 2 section – 15.2.3.1

ECMA 262 edition 3 section – 10.1.6

ECMA 262 edition 3 section – 10.1.8

Wrox Instant JavaScript – page – 27

F – Function.arity (Property)

981

Function.arity (Property)
The number of arguments expected by a function call.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server– 3.0

Property/method value type: Number primitive

JavaScript syntax: - myFunction.arity

This property yields a numeric value representing the maximum number of arguments the function
expects to be called with and can support.

The arity property of the Function constructor returns 1 but it accepts a variable number
of arguments.

Otherwise, the arity property returns a value that is typical for the function. Because the number
of arguments can often be variable, this typical value should be used with caution.

This value is not necessarily the same as the length of the arguments array that is available inside
the function when it is called. This indicates the actual number of arguments that were passed.

You can compare the two values to verify that the function was called with the correct arguments.

Warnings:
❑ There is a bug in the Netscape implementation of this property unless the LANGUAGE attribute

is defined as "Javascript1.2" for the <SCRIPT> tag.

See also: Arguments.length, Function call, Function object,
Function.length, Function.prototype

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 section – 15.3.3.2

ECMA 262 edition 2 section – 15.3.5.1

JavaScript Programmer's Reference

982

Function.call() (Method)
Uses a function object as if it belonged to another target object.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.06

Property/method value type: Function result

JavaScript syntax: - myFunction.call(anObject,
anArgumentList)

anArgumentList A list of arguments
Argument list:

anObject An object to apply the function to

If you want to force a particular function implementation to be used on an object, you can locate
the one you want and pass it an object on which to operate. The function then executes as if it were
a property of the passed object instead of the receiving object.

This can be useful to restore some functionality that may have been overridden or to share a
function definition between several objects.

This is effectively like adding the function as a property to the target object, executing it, passing the
arguments to it and then deleting the function property afterwards. Applying a function is a lot easier.

This is similar to the apply() method which passed the arguments as an array. This passes them
as a comma separated list.

Example code:
// Call this function against another object
myFunctionObject.call(myTargetObject, 100, "aaa");

See also: Event handler scope

Cross-references:
ECMA 262 edition 3 section – 15.3.4.4

F – Function.caller (Property)

983

Function.caller (Property)
A reference to the caller of the function.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server– 2.0
Opera – 3.0 Deprecated

Property/method value type: Object object

JavaScript syntax: - myFunction.caller

Warnings:
❑ This is an alternative way to access the caller of a function. It is left over from earlier versions of

JavaScript and although it still works, as of JavaScript version 1.2 it is deprecated. You should
use the arguments object without there being any function object prefix to access it as a
property and reference the caller from there.

See also: Arguments.caller

Property attributes:
ReadOnly, DontEnum.

Function.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

This is an internal property that describes the class that a Function object instance is a member of.
The reserved words suggest that in the future, this property may be externalised.

See also: Class, Function call, Function object

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 section – 8.6.2

ECMA 262 edition 2 section – 15.3.2.1

ECMA 262 edition 3 section – 8.6.2

JavaScript Programmer's Reference

984

Function.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

Property/method value type: Function object

JavaScript syntax: - myFunction.constructor

The initial value of Function.prototype.constructor is the built-in Function constructor.

You can use this as one way of creating function objects although it is more popular to use the new
Function() technique or to simply create them in the script source text.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Function call, Function.prototype

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 section – 15.3.4.1

ECMA 262 edition 3 section – 15.3.2

Function.length (Property)
The number of arguments expected by a function call.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myFunction.length

F – Function.prototype (Property)

985

This property yields a numeric value representing the number of arguments the function expects to
be called with and can support.

The length property of the Function constructor returns 1 but it accepts a variable number
of arguments.

Otherwise the length property returns a value that is typical for the function. Because the number
of arguments can often be variable, this typical value should be used with caution.

This value is not necessarily the same as the length of the arguments array that is available inside
the function when it is called. This indicates the actual number of arguments that were passed.

Warnings:
❑ There is a bug in the Netscape implementation of this property unless the LANGUAGE attribute

is defined as "JavaScript1.2" for the <SCRIPT> tag.

❑ In any case the function.length property is deprecated in favor of the arity property.
This is to avoid confusion between functions and arrays.

See also: Arguments.length, Function call, Function object,
Function.arity, Function.prototype

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 section – 15.3.3.2

ECMA 262 edition 2 section – 15.3.5.1

ECMA 262 edition 3 section – 15.3.5.1

Function.prototype (Property)
The prototype for the Function object that can be used to extend the interface for all Function objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server– 2.0
Opera – 3.0

Property/method value type: Function object

- Function.prototype
JavaScript syntax:

- myFunction.constructor.prototype

JavaScript Programmer's Reference

986

This is the prototype function object belonging to the global object and from which all Function
objects are descended.

The initial value of Function.prototype is the built-in Function prototype object.

The value of the prototype property of a function is used to initialize child objects when that
function is used as a constructor.

The following properties are inherited from the Function.prototype:

❑ Function.prototype

❑ Function.constructor

The following methods are inherited from the Function.prototype:

❑ Function.toString()

The following properties are provided by the instances of the Function object:

❑ Function.length

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the output capabilities of Function objects
function sourceDump()
{
 myString = this.toString();
 myArray = myString.split("{");
 myString = myArray.join("
{
");
 myArray = myString.split("}");
 myString = myArray.join("
}
");
 return myString;
}

// Register the new function
Function.prototype.sourceDump = sourceDump;

// Create a function and test the Function.sourceDump() method
var myFunction = new Function("arg1, arg2", "return(arg1 * arg2);");
document.write(myFunction.sourceDump());
</SCRIPT>
</BODY>
</HTML>

See also: Function call, Function object, Function(), Function(),
Function.arity, Function.constructor, Function.length,
Function.toString(), prototype property

F – Function.toSource() (Method)

987

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 section – 15

ECMA 262 edition 2 section – 15.3.2.1

ECMA 262 edition 2 section – 15.3.3.1

ECMA 262 edition 2 section – 15.3.4

ECMA 262 edition 2 section – 15.3.5.2

ECMA 262 edition 3 section – 15.3

Function.toSource() (Method)
Returns a string primitive version of the function.

Availability: JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myFunction.toSource()

This value is identical to the toString() method (exclusive to Netscape). In MSIE, it is not
supported but since toString() is available in MSIE the recommended approach is to use
toString() instead of toSource() for portability reasons.

Function.toString() (Method)
Returns a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 3.0
Netscape – 4.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myFunction.toString()

JavaScript Programmer's Reference

988

The result of calling this method is to obtain the source text of the function definition unless it is a
host implemented function. In that case, an implementation dependent value will be returned by
this method.

See also: Cast operator, Function call, Function.prototype,
Function.valueOf(), toString()

Cross-references:
ECMA 262 edition 2 section – 15.3.4.2

ECMA 262 edition 3 section – 15.3.4.2

Function.valueOf() (Method)
Returns a string primitive version of the function.

Availability: ECMAScript edition – 2
JavaScript – 1.1
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: N myFunction.valueOf()

This value is identical to the toString() method (exclusive to Netscape). The recommended
approach is to use toString() instead of valueOf() for reasons of consistency.

The result of calling this method is to obtain the source text of the function definition unless it is a
host implemented function.

See also: Function.toString()

Cross-references:
ECMA 262 edition 2 section – 15.3.4

Function object properties (Definition)
User defined properties added to a function object.

You can add your own properties to a function object. These can then be used as static variables
inside the function. Since the function object persists, so do its properties. Variables declared inside
the function with a var statement only persist while the function context is called and present in
the scope chain.

See also: Static method, Static variable

F – Function property (Definition)

989

Function property (Definition)
A property belonging to an object which can be called as a function.

Availability: ECMAScript edition – 2

Function properties are implemented as function objects stored as the value of a named
property within an object.

See also: Call, escape(), eval(), Function call, Function call operator (),
isFinite(), isNaN(), parseInt(), unescape()

Cross-references:
ECMA 262 edition 2 section – 15.1.2

ECMA 262 edition 3 section – 15.1.2

Function prototype (Definition)
A description of the calling interface to a function.

Warnings:
❑ In C language, the declaration of a function may also include a function prototype. This defines

the calling interface to the function so that the compiler can give warning about any function
calls that do not conform to the prototype.

❑ JavaScript does not support this function prototyping because it is not a strongly typed
language and the scripts are not compiled before execution. Do not confuse function prototype
calling interface specifications with the JavaScript Function.prototype object, which is part
of the inheritance mechanism.

See also: const, Function call, function(...) ...

Function scope (Definition)
The context within which the body script runs is the function scope.

JavaScript uses static scoping. This means that the functions are executed in the scope in which
they are defined. This is important because any global values they refer to belong to the page in
which they live. That is not necessarily the page that they were called from. This is only likely to
cause any confusion when a multiple framed document is being rendered.

The function scope is the state of the scope chain as it was when the function was called, plus the
call object added onto the end of the scope chain. The call object is the function being executed.

Because the call object is added to the scope chain, you don't need to refer to it explicitly and the
current context inherits all its properties and methods.

JavaScript Programmer's Reference

990

Warnings:
❑ The static properties of a regular expression object do not conform to the same static scoping

rules. Their static or class-based properties are dynamically scoped and available in the scope
chain from which they are executed.

See also: Event handler scope, RegExp object

function(...) ... (Declaration)
The description of a function in the script source text.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

JavaScript syntax: - function anIdentifier (aParameter,
...) { scriptSource }

anIdentifier The name of the function being declared
aParameter One of the formal parameters to be passed to the

function when it is called

Argument list:

scriptSource The source text for the script code that is
executed when the function is called

A function declaration is a description of a function in the script source text. It provides the
function name and a list of its arguments. It also provides a block of script code to be executed
when the function is called.

Functions can be declared in the script source to add to the functions your script can make use of.
When they are called, the prototype inheritance mechanism matches most local instances of the
function having the name that the caller requests. This provides a way to override methods in
parent prototypes or the global object.

When functions are declared in global and eval code, the new function object that is instantiated
is added to the variable object for the owner of the script source text. It uses the function
identifier as a name for the dictionary entry in the variable object. The functions are added in the
order in which they appear in the Script Source Text and will replace any previously existing entry.
Attributes are set according to the type of code being evaluated.

New functions can be added to the scripting environment as needed. They are described in the
source script text with function declarators.

A function is declared with the function keyword, a set of parentheses enclosing its passed
arguments and a block of executable code enclosed in curly braces.

F – function(...) ... (Declaration)

991

Functions will always return a result but a function call can be cast to a void type to discard the
resulting value. If you don't indicate a result to return yourself, the function mechanism would
return the value undefined.

The internal mechanics of function declaration is to add a function property to the global object
whose name is the function's identifier. The value of that property is a function object with the
given parameter list and statement block.

If the function definition is part of the source text supplied to an eval function, then the function
may be added to an internal activation object rather than the global object.

The act of executing or invoking a function is to call it.

Calling a function is accomplished by using the function property of an object as an RValue and
appending the parentheses grouping operators with option arguments grouped within them.

Functions can be created and their script can refer to objects that don't yet exist. However, you may
not run them until the objects they refer to have been created. This is often the case with event
handlers that are defined speculatively on the basis that they may be needed but in fact they may
never be called at all.

As of JavaScript version 1.2, you can declare new functions anywhere in a script source text. Prior
to this, you could only define them in global code but not inside any if() blocks, loop blocks or
with blocks. In JavaScript version 1.2, functions can be declared inside these contexts and inside
functions themselves. This means that function availability can be localized to only be usable
within a function's context scope.

Warnings:
❑ Debugging namespace collisions between function and variable names can be difficult to debug.

For very large projects with many people working on shared code, you may want to establish
some strict naming conventions to partition the namespace.

❑ This is an issue because function declarations occur before variable declarations. If you declare a
variable with the same name as a function and assign a value to it the function will be
inaccessible since you will have replaced the reference to its object with the value you just
assigned to the variable.

❑ This will still happen even if the var declaration is placed sequentially earlier in the script block
than the function declaration. The first pass declares and sets up the function. The second pass
instantiates the variable.

❑ Remember that functions are created at compile (parse) time, and variables at run-time.

Example code:
// Here is an example function declaration:
function circularArea (aRadius)
{
 someGlobalValue = aRadius;
 return(Math.pow(aRadius,2)*Math.PI);
}

JavaScript Programmer's Reference

992

// We are using functions belonging to the Math object to
// raise the passed in radius value to the power of 2
// and multiply the result by the constant value of PI.
// We can call this and assign its value like this:
myArea = circularArea(12);
alert(myArea);

// If we simply wanted to execute the function and discard its
// result we might use this form:
void circularArea(10000);

// The conseqence is just to set the global value but we don't
// do anything with the returned value.

See also: Formal Parameter List, Function.arguments[]

Cross-references:
ECMA 262 edition 2 section – 10.1.1

ECMA 262 edition 2 section – 10.1.3

ECMA 262 edition 2 section – 10.1.6

ECMA 262 edition 2 section – 13

ECMA 262 edition 2 section – 15.3.2.1

ECMA 262 edition 3 section – 10.1.1

ECMA 262 edition 3 section – 13

ECMA 262 edition 3 section – 15.3.2.1

Wrox Instant JavaScript – page – 26

Fundamental data type (Definition)
The basic simple native data types.

The fundamental data types in JavaScript are:

❑ Number

❑ String

❑ Boolean

All other data types are expressed in terms of these kinds of value.

See also: Boolean, Number, Regular expression, String

F – Furniture (Definition)

993

Furniture (Definition)
A name for the various items that form the window border.

Refer to:
Window furniture

Garbage collection (Definition)
The mechanism by which deallocated strings and objects are cleared from memory.

Garbage collection happens in JavaScript, but you have very little control over when and how. Since
you don't have pointers, you cannot identify items that need to be released and nor do you need to.

Garbage collection happens in a web browser implementation when the page is reloaded. Any
objects, strings, functions and variables you were using are discarded and no longer available. If you
want to keep them around, you need to put them somewhere else, possibly in a parent FRAMESET
object or as member properties of the Navigator object although that's not very portable.

The old JavaScript context is completely destroyed and a new one is made from scratch. This means
that each page owns a pool of memory from which its scripts allocate storage. The pool is flushed
on a page by page basis. This may get a little more complicated when you have scripts running
across frames, since some pools will get flushed and others won't – be careful that the top-most
frame does not become a memory hog, as this is the only one you cannot purge without losing all
the session state. You could store the state data in cookies or in a transitory page in a separate
window and then fetch it back again after the frame-set is regenerated. However, this "solution" is a
bit of a hack, and it's better to solve the problem at source rather than try to hide the consequences.

There are many garbage collection algorithms, some better than others, but since you have no
control over garbage collection, there is little point in investigating it, other than to influence the
strategy you might use for creating and destroying objects. Some techniques may yield better
performance in certain browsers due to the garbage collection algorithm the browser uses. Since
the browser implementers tend to change this from time to time, there is no guarantee that a
technique you deploy now will be optimal for the next version of the same browser.

However, you should try to avoid creating and destroying large numbers of strings and objects,
since this seems to lead to memory leakage on most platforms. MSIE version 4 on Windows is
particularly prone to this and it's not hard to develop animation loops that consume 50K of
memory on each cycle. Virtually any elimination of String construction/destruction is worthwhile
in cyclic situations. Indeed, you might find that innerText properties are a better place to store
textual content than strings if things become extreme.

G

G – Get() (Function/internal)

995

See also: delete, Execution environment, Memory leak, Memory management, Object(),
Option(), Reference counting, Variable

Cross-references:
Wrox Instant JavaScript – page – 29

Get() (Function/internal)
Internal private function that is used to access public properties.

Availability: ECMAScript edition – 2

This internal function is used to retrieve internal properties from objects.

If the property exists in the receiving object, its value will be returned.

If the property is not a member of the receiving object, then if the Prototype property for this
object returns null, we have reached the top of the prototype chain so the property is undefined.
The result will be the undefined value.

If the property does not exist, and there is a parent Prototype object, then the message is passed
to that object for evaluation.

The Get internal function may indeed return a value when received by a host object, even if that
host object would respond to the HasProperty function with a false result indicating that the
property does not exist.

See also: Accessor method, GetValue(), Internal Method

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.1

ECMA 262 edition 3 – section – 8.6.2.1

GetBase() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function returns the base object component pointed at by the reference item passed
as its argument.

A runtime error will be generated if the passed in object is not a reference item.

See also: Reference

JavaScript Programmer's Reference

996

Cross-references:
ECMA 262 edition 2 – section – 8.7.1

ECMA 262 edition 3 – section – 8.7.1

getClass() (Function)
Returns the JavaClass of a JavaObject.

Availability: JavaScript – 1.1
Netscape version – 3.0

JavaScript syntax: N myJavaObject.getClass()

Refer to:
JavaObject.getClass()

GetObject() (Function)
A JScript function that returns a reference to an object representing a file belonging to an
application on your system.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Automation object

IE GetObject(aLocation)

IE GetObject(aLocation, anObjectType)

IE GetObject(aLocation!aSubObject)

JavaScript syntax:

IE GetObject(aLocation!aSubObject,
anObjectType)

anObjectType What sort of application and object class type to
be created

aLocation A path to the file for the object to be
instantiated

Argument list:

aSubObject A fragment identifier for a sub-object within
the file

When this function is called, the application may be activated to provide a remote interface to the
file. You can also specify fragments within the file.

The path argument points at the file within the file system where the object you want reposes.

This is related to the ActiveXObject() constructor which creates an object that points at an
application or document without loading a file to instantiate it.

G – GetPropertyName() (Function/internal)

997

The objects created by this function are called Automation objects.

The location value can have a fragment identifier delimited by an exclamation mark. With this, for
example, you can refer to one worksheet within an Excel document.

Example code:
// Locate an Excel spreadsheet
myWorkbook = GetObject("F:\\DOCUMENTS\\ACCOUNTS.XLS");
// Locate one worksheet within an Excel spreadsheet
myWorkSheet = GetObject("F:\\DOCUMENTS\\ACCOUNTS.XLS!sheet4");

See also: ActiveXObject()

GetPropertyName() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function returns the property name component of the reference item passed
in its argument.

A run time error is generated if the argument passed is not a reference item.

See also: Reference

Cross-references:
ECMA 262 edition 2 – section – 8.7.2

ECMA 262 edition 3 – section – 8.7.2

GetValue() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function returns the value contained in the property belonging to the object pointed at
by the reference item passed in its argument.

If the passed-in argument is not a reference item, it is returned as the result.

If the object being referred to does not exist, a run-time error is generated.

JavaScript Programmer's Reference

998

Otherwise the usual Get() function behavior is invoked for the property named in the reference.

See also: Get(), Reference

Cross-references:
ECMA 262 edition 2 – section – 8.7.3

ECMA 262 edition 3 – section – 8.7.1

Global code (Definition)
Script source that is outside of any function code blocks.

Availability: ECMAScript edition – 2

Global code is that source text that is outside of all function declarations.

On initialization of some global code into an execution context, the scope chain is initialized to only
contain the global object and nothing else.

Variable instantiation is performed using the global object as the variable object and with empty
property attributes.

This value is set to point at the global object.

See also: Executable code, Execution context, function(…)… , Script

Cross-references:
ECMA 262 edition 2 – section – 10.1.2

ECMA 262 edition 2 – section – 10.2.1

ECMA 262 edition 3 – section – 10.1.2

ECMA 262 edition 3 – section – 10.2.1

G – Global object (Object/core)

999

Global object (Object/core)
A special type of object that is always available in the prototype chain.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.0
Netscape – 2.0

- myGlobal = document.parentWindow

- myGlobal = frame

- myGlobal = self

- myGlobal = window

JavaScript syntax:

- myGlobal = window.frames[anIndex]

Argument list: anIndex
A reference to a window object which is also a global object
for that window

Object properties:
clientInformation, clipboardData, closed, crypto,
defaultStatus, dialogArguments, dialogHeight, dialogLeft,
dialogTop, dialogWidth, document, event, external, frame,
frameRate, history, innerHeight, innerWidth, java, length,
location, locationbar, Math, menubar, name, navigator,
netscape, offScreenBuffering, opener, outerHeight,
outerWidth, Packages, pageXOffset, pageYOffset, parent,
personalbar, pkcs11, returnValue, screen, screenLeft,
screenTop, screenX, screenY, scrollbars, secure, self,
status, statusbar, sun, toolbar, top, window

Class constants: Infinity, NaN, undefined

Object methods:
addClient(), addResponseHeader(), alert(), Array(),
attachEvent(), back(), blob(), blur(), Boolean(), callC(),
clearInterval(), clearTimeout(), close(), confirm(),
Date(), debug(), deleteResponseHeader(), detachEvent(),
disableExternalCapture(), enableExternalCapture(),
escape(), eval(), execScript(), find(), flush, focus(),
forward(), Function(), getOptionValue(),
getOptionValueCount(), home(), isFinite(), isNaN(),
moveBy(), moveTo(), navigate(), Number(), Object(),
open(), parseFloat(), parseInt(), print(), prompt(),
redirect, registerCFunction(), resizeBy(), resizeTo(),
scroll(), scrollBy(), scrollTo(), setHotkeys(),
setInterval(), setResizable(), setTimeout(),
setZOptions(), showHelp(), showModalDialog(),
showModelessDialog(), ssjs_generateClientID(),
ssjs_getCGIVariable(), ssjs_getClientID(), stop(),
String(), typeof(), unescape(), write()

Functions:
atob(), btoa(), captureEvents(), handleEvent(),
releaseEvents(), routeEvent()

Event handlers:
onAfterPrint, onBeforePrint, onBeforeUnload, onBlur,
onDragDrop, onError, onFocus, onHelp, onLoad, onMove,
onResize, onUnload

Collections: frames[]

The Global object is unique and is created before any code is executed. In an ECMAScript compliant
implementation it is where variables, methods, functions and properties are stored if you don't explicitly
attach them to another object yourself. The member properties, methods, functions and variables are
globally available because the Global object is placed into the scope chain of every execution context.

JavaScript Programmer's Reference

1000

In a web browser, the Global object is also the Window object. In a server-side implementation, the
Global object is probably the Response object but this is not mandatory. Other implementations
will use one of the host objects as the Global object but there is no defined and standard choice.

Since you don't ever use the keyword Global and can avoid using the keyword Window, the
properties and methods look as if they are part of the core language rather than members of an
object. Web browsers are becoming more ECMAScript compliant as new versions are released.

The Global object is added to the scope chain of a program when it commences execution. Other
built-in objects are accessible as initial properties of the Global object. Some of these are added as
core functionality and are available in all implementations. Others are added as host objects
defined differently for each implementation.

When the Global object is created, it always has at least the following properties:

❑ Object object

❑ Function object

❑ Array object

❑ String object

❑ Boolean object

❑ Number object

❑ Date object

❑ Math object

❑ Value properties

❑ Utility function properties

❑ Additional host defined properties

Most of the properties initially provided by the Global object cannot be enumerated as their
DontEnum attribute is set (at least in ECMA-compliant implementations).

The initial properties soon change and are added to when the flow of control enters execution
contexts and begins to process scripts.

The value properties that are initially set up in the Global object are listed in this table:

Name

Infinity

NaN

Refer to the discussion on each of value properties for more details.

Some host implementations create aliases for the Global object and store those self-referring
aliases in the Global object when it is initialized. An example of this behavior is the window object
created in some web browser host implementations of JavaScript.

G – Global object (Object/core)

1001

There is one Global object for each window in a web browser. There is also one for each frame in a
frame-set. This means that you can have Global objects that have global variables that are not
shared with one another.

However, you can access them by referring to the parent object. This goes to an object context
that contains the current frame. You can also access the top or outer window of a frame-set
hierarchy directly.

Whether you can truly access objects in other windows or frames comes down to some basic
security issues. Generally the security policy prevents access to code that arrives from different
servers. You can legally get at values in pages served from the same host as your page was served
from. It is unreasonable to be able to access variables in a page served from another host. This can
lead to difficulties if you serve your site from multiple hosts. It isn't as limiting as all that though
and there are ways to grant permission via the security policy in the browser.

Global objects support different sub-sets of the complete range of properties according to the context
in which they are used. Server-side JavaScript won't support anything to do with window display
and client-side (browser) JavaScript does not need to know about request-response handling.

If you want to access a Global object in another context, perhaps in a different window, you need
to assign it to a variable. In the syntax listing this is illustrated by assigning references to Global
objects to the myGlobal variable.

Warnings:
❑ You cannot use the Global object with the new operator to make a copy.

❑ You cannot call the Global object as a function.

❑ The value of the internal Prototype property of the Global object is implementation dependent.
Since it contains the Object object as one of its children, it could not inherit its Prototype from there
since that could set up an endlessly recurring loop of Prototype inheritors. It is likely that the
Prototype of the Global object is Null. If it is important that you know the value of this, then you
should test it with a debugging script first. However, you may be writing non-portable code if you
depend on the value that it indicates.

❑ In a web browser, the Window object serves as the Global object. It owns all the properties that you
would expect the Global object to have in a core implementation. The hosting environment adds
the other window-based properties.

See also: escape(), eval(), Infinity, isFinite(), isNaN(), NaN,
parseFloat(), parseInt(), typeof, undefined, unescape(),
Window object

Property JavaScript JScript N IE Opera NES ECMA Notes

clientInformation 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
clipboardData 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
closed 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
crypto 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
defaultStatus 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

Table continued on following page

JavaScript Programmer's Reference

1002

Property JavaScript JScript N IE Opera NES ECMA Notes

dialogArguments 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
dialogHeight 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
dialogLeft 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
dialogTop 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
dialogWidth 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
document 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
event 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
external 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
frame 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
frameRate 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
history 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
innerHeight 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
innerWidth 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
java 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
length 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
location 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
locationbar 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Math 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
menubar 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
name 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
navigator 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
netscape 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
offScreenBuffering 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
opener 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
outerHeight 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
outerWidth 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Packages 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
pageXOffset 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
pageYOffset 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
parent 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
personalbar 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
pkcs11 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
returnValue 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
screen 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
screenLeft 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
screenTop 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
screenX 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

Table continued on following page

G – Global object (Object/core)

1003

Property JavaScript JScript N IE Opera NES ECMA Notes

screenY 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
scrollbars 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
secure 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
self 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
status 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
statusbar 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
sun 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
toolbar 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
top 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
window 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

Method JavaScript JScript N IE Opera NES ECMA Notes

addClient() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
addResponse
Header()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

alert() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Array() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
attachEvent() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
back() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
blob() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
blur() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Boolean() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
callC() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
clearInterval() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
clearTimeout() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
close() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
confirm() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Date() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
debug() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
delete
ResponseHeader()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

detachEvent() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
disableExternal
Capture()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

enableExternal
Capture()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

escape() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
eval() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
execScript() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
find() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

Table continued on following page

JavaScript Programmer's Reference

1004

Method JavaScript JScript N IE Opera NES ECMA Notes

flush 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
focus() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
forward() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Function() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
getOptionValue() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
getOption
ValueCount()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

home() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
isFinite() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
isNaN() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
moveBy() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
moveTo() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
navigate() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Number() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
Object() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
open() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
parseFloat() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
parseInt() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
print() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
prompt() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
redirect 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
register
CFunction()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

resizeBy() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
resizeTo() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
scroll() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
scrollBy() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
scrollTo() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
setHotkeys() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
setInterval() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
setResizable() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
setTimeout() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
setZOptions() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
showHelp() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
showModalDialog() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
showModeless
Dialog()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

ssjs_generate
ClientID()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

Table continued on following page

G – Global object (Object/core)

1005

Method JavaScript JScript N IE Opera NES ECMA Notes

ssjs_get
CGIVariable()

1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

ssjs_getClientID() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
stop() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
String() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
typeof() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
unescape() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning
write() 1.0 + 1.0 + 2.0 + 3.0 + - - 2 + Warning

Event name JavaScript JScript N IE Opera NES ECMA Notes

onAfterPrint - 5.0 + - 5.0 + - - - -
onBeforePrint - 5.0 + - 5.0 + - - - -
onBeforeUnload - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onDragDrop 1.2 + - 4.0 + - - - - -
onError 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onLoad 1.0 + 1.0 + 2.0 + 3.02

+
3.0 + - - Warning

onMove 1.2 + - 4.0 + - - - - -
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onUnload 1.0 + 1.0 + 2.0 + 3.02

+
3.0 + - - Warning

Cross-references:
ECMA 262 edition 2 – section – 10.1.5

ECMA 262 edition 2 – section – 15

ECMA 262 edition 3 – section – 10.1.5

ECMA 262 edition 3 – section – 15.1

JavaScript Programmer's Reference

1006

Global.undefined (Constant/static)
A globally available copy of the undefined value.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.06

Property/method value type: Undefined primitive

See also: Global object, undefined

Cross-references:
ECMA 262 edition 2 – section – 4.3.9

ECMA 262 edition 3 – section – 4.3.9

Global special variable (Definition)
Special variables that are globally available.

Availability: ECMAScript edition – 2

Some special variables are created in the interpreter to assist with program execution and to define
certain special values. You must avoid using these as identifiers.

Here is a list of the special variable names:

Name

Infinity

NaN

Some implementations may allow you to redefine the value of these special variables. This can
cause unpredictable side effects later on.

See also: Global object, Infinity, NaN

G – Glow() (Filter/visual)

1007

Cross-references:
ECMA 262 edition 2 – section – 15.1.1

ECMA 262 edition 3 – section – 15.1.1

Glow() (Filter/visual)
A visual filter for adding a glow effect

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter – Glow()

Glue code (Definition)
Supporting code to integrate JavaScript with the environment.

This so called glue code is that which provides a conduit for signals to be sent between different parts
of the hosting environment. Most likely as far as JavaScript is concerned, this would be a mechanism
for transmitting events to the interpreter so that a particular handler function can be activated.

There are many proprietary names for these mechanisms, but fundamentally they all do the same
job, which is to connect the script to the environment. Here are some examples of enabling
technologies that may be involved to a greater or lesser extent in some platforms:

❑ ActiveX

❑ LiveConnect

❑ AppleEvents

❑ Signals

❑ BSD Sockets

❑ Call-backs from plugins

See also: ActiveX, ECMAScript, Host environment, LiveConnect, Plugin object

Cross-references:
Wrox Instant JavaScript – page – 12

JavaScript Programmer's Reference

1008

Gotcha (Definition)
A pitfall or catch-out for the unwary and the experienced script developer.

Refer to:
Pitfalls

goto (Reserved word)
Reserved for future language enhancements.

This keyword suggests that future versions of JavaScript may support the goto statement which
will unconditionally go to a labelled portion of script source text. This also suggests that labels will
need to be supported as well.

ECMA edition 3 already mandates that case and default labels are supported for the benefit of the
switch() statement.

The ECMA standard notes that although it is reserved future use, an implementation is still
compliant if it provides the appropriate functionality of these reserved keywords.

See also: Jump statement, Label, Reserved word, Reserved Word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Gradient() (Filter/visual)
A procedural definition of a gradient effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Gradient()

G – GradientWipe() (Filter/transition)

1009

GradientWipe() (Filter/transition)
A transition effect with the appearance of a wipe with a soft edge.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – GradientWipe()

Grayscale() (Filter/visual)
A visual filter for converting to a grayscale appearance.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter – Grayscale()

Greater than (>) (Operator/relational)
Compares two operands to determine which is nearer to +Infinity.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 > anOperand2

anOperand1 A value that can be compared numerically or
lexically

Argument list:

anOperand2 A compatible value

Returns true if the left operand is numerically greater than the right operand or is sorted later in
the Unicode collating sequence when two string values are compared.

In numeric comparisons, the presence of NaN in either or both operands will yield undefined
instead of true or false.

When comparing two strings, a prefixing plus sign is present, then a numeric coercion of a string takes
place before the comparison. Numeric coercion takes place when either of the operands is numeric.

JavaScript Programmer's Reference

1010

In ECMA compliant JavaScript implementations, string values are simply compared according to the
Unicode character code point values, with no attempt to provide the more complex semantically
oriented definitions of character and string equality defined in the Unicode version 2.0 specification.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

The result is the Boolean value true if anOperand1 is numerically or lexically greater than
anOperand2; otherwise false is returned.

See also: ASCII, Associativity, Equal to (==), Greater than or equal to (>=),
Identically equal to (===), Less than (<), Less than or equal to (<=),
Logical expression, Logical operator, NOT Equal to (!=), NOT
Identically equal to (!==), Operator Precedence, Relational
expression, Relational operator, Unicode

Cross-references:
ECMA 262 edition 2 – section – 11.8.2

ECMA 262 edition 2 – section – 11.8.5

ECMA 262 edition 3 – section – 11.8.2

ECMA 262 edition 3 – section – 11.8.5

Greater than or equal to (>=)
(Operator/relational)

Compare two operands to determine which is nearer to +Infinity or whether they are equal.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 >= anOperand2

anOperand1
A value that can be compared numerically or
lexicallyArgument list:

anOperand2 A compatible value

G – Grouping operator () (Delimiter)

1011

Returns true if the left operand is numerically greater than or equal to the right operand or is
sorted later or identically in the Unicode collating sequence when two string values are compared.

In numeric comparisons, the presence of NaN in either or both operands will yield undefined
instead of true or false.

When comparing two strings, a prefixing plus sign is present, then a numeric coercion of a string takes
place before the comparison. Numeric coercion takes place when either of the operands is numeric.

In ECMA compliant JavaScript implementations, string values are simply compared according to the
Unicode character code point values, with no attempt to provide the more complex semantically
oriented definitions of character and string equality defined in the Unicode version 2.0 specification.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

The result is the Boolean value true if anOperand1 is numerically or lexically greater than or
equal to anOperand2; otherwise false is returned.

See also: ASCII, Associativity, Equal to (==), Greater than (>), Identically equal to (===), Less
than (<), Less than or equal to (<=), Logical expression, Logical operator, NOT Equal to
(!=), NOT Identically equal to (!==), Operator Precedence, Relational expression,
Relational operator, Unicode

Cross-references:
ECMA 262 edition 2 – section – 11.8.4

ECMA 262 edition 3 – section – 11.8.4

Grouping operator () (Delimiter)
A means of controlling precedence of evaluation in expressions.

Availability: ECMAScript edition – 2

The grouping operator is a pair of parentheses placed around an expression or expressions to
control the precedence of evaluation in expressions so that the sub-expressions are evaluated in the
correct order. It is also used to enclose the arguments to a function or method.

Placing parentheses around expressions controls the order in which they are evaluated and can
override the normal precedence that operators assume. This allows delete and typeof
operations to be applied to expressions in parentheses for example.

Controlling the precedence of expressions allows operators with lower precedence to be evaluated
ahead of the higher priority expression operators. For example:

A + B * C

JavaScript Programmer's Reference

1012

by implication is executed like this:

A + (B * C)

A and B can be added before the multiplication like this:

(A + B) * C

This forces the addition to occur before the multiplication and is functionally equivalent to:

A*C + B*C

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

See also: Associativity, delete, Function call operator (), Operator, Operator Precedence,
Parentheses (), Primary expression, typeof

Cross-references:
ECMA 262 edition 2 – section – 11.1.4

ECMA 262 edition 3 – section – 11.1.6

handleEvent() (Function)
Pass an event to the appropriate handler for this object.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N handleEvent(anEvent)
JavaScript syntax:

N myWindow.handleEvent(anEvent)

Argument list: anEvent An Event object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

This method is supported by all objects that respond to events. It is part of the event management
suite which allow events to be routed to handlers other than just the one that defaults to being
associated with an event.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: Button.handleEvent(), captureEvents(),
Checkbox.handleEvent(), Document.handleEvent(),
Event handler, Event management,
FileUpload.handleEvent(), Form.handleEvent(),
Input.handleEvent(), Layer.handleEvent(),
Password.handleEvent(), RadioButton.handleEvent(),
ResetButton.handleEvent(), Window.handleEvent(),
Window.routeEvent()

H

JavaScript Programmer's Reference

1014

Cross-references:
Wrox Instant JavaScript - page 55

Handler (Definition)
An event handler can be attached to an HTML tag as an attribute.

The event handlers can be attached to a particular object within the HTML document or within
JavaScript. Some event handlers can only be attached with HTML tag attributes. Others only by
setting the event handler property of an object to point at an event handling function.

The names of the handlers in HTML are case-insensitive, although there are some conventions.

The value associated with the event handling tag attribute is a fragment of JavaScript code. The
script source text forms the body of an anonymous function object. This may simply contain a call
to the name of an event handling function or it may be several lines of JavaScript code. It is
probably a good idea to encapsulate the handler into a function and refer to it by name.

HasInstance() (Function/internal)
Internal private function to test for the existence of an instance.

Availability: ECMAScript edition - 3

This internal function returns a Boolean value indicating whether the function object is the
prototype of an instance object that is passed as an argument. If it is, then the function returns true.

This is an internal function very similar to the Object.isPrototypeOf() method.

See also: Object.isPrototypeOf()

Cross-references:
ECMA 262 edition 3 section - 15.3.5.3

HasProperty() (Function/internal)
Internal private function to test for the existence of a property.

Availability: ECMAScript edition - 2

This internal function returns a Boolean value indicating whether the object contains the
named property.

If the receiving object has the property, then the result is true.

H – HEAD object (Object/HTML)

1015

If the receiving object does not, then the prototype chain is walked until the property is found or
the chain is exhausted.

If a null prototype is found, the false value is returned.

Host objects may or may not strictly honor the intent of this internal function. The ECMA standard
allows for the possibility that a host object may still properly manage Get and Put internal
functions, even if the HasProperty function returns false for the properties being accessed.

To cope with that eventuality, ECMAScript edition 3 provides a way to test whether an object has a
property of its own, but this test ignores the prototype inheritance. You might simulate that by
walking up the prototype chain, testing objects as you go.

See also: Attribute object, Attributes object, Host object, Internal Method,
Object.hasOwnProperty()

Cross-references:
ECMA 262 edition 2 section - 8.6.2.4

ECMA 262 edition 3 section - 8.6.2.4

HEAD object (Object/HTML)
A special MSIE object that represents the head block of an HTML document.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Inherits from: Element object

IE myHEAD = myDocument.all.anElementID

IE myHEAD = myDocument.all.tags("HEAD")[anIndex]

IE myHEAD = myDocument.all[aName]

- myHEAD = myDocument.getElementById(anElementID)

- myHEAD =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myHEAD = myDocument.getElementsByTagName("HEAD")
[anIndex]

HTML syntax: <HEAD> ... </HEAD>

anIndex A reference to an element in a collection

aName An associative array referenceArgument list:
anElementID The ID value of an Element object

Object properties: profile, vAlign

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp

JavaScript Programmer's Reference

1016

This object inherits from HTML. It has a TITLE object as one of its children and its sibling is the
BODY object that represents the contents of the <BODY> tag.

The CLASS tag attribute is supported by MSIE but serves no purpose other than maintaining
consistency. You should avoid its use even though the reference is maintained within the
corresponding HEAD object.

See also: BODY object, Element object, HEAD.profile

Property JavaScript JScript N IE Opera DOM HTML Notes

profile 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
vAlign - 3.0 + - 4.0 + - - - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

HEAD.profile (Property)
The profile property of the current document's <HEAD> block.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 5.0
Internet Explorer - 5.0
Netscape - 6.0

Property/method value type: String primitive

JavaScript syntax: - myHEAD.profile

HTML syntax: <HEAD PROFILE="...">

H – HEAD.vAlign (Property)

1017

This value should contain the value of the PROFILE attribute of the document's <HEAD> block. The
PROFILE value is a means of sharing meta-data profiles between many documents. It's very like an
include file for meta information, but does not get used very much. This property should contain a
URL value for a shared meta-data profile.

It might be useful to be able to access the internals of this file, but the property only yields the URL
that reaches the file on the server or local file system.

See also: HEAD object

HEAD.vAlign (Property)
The vertical alignment associated with the <HEAD>.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

JavaScript syntax: IE myHEAD.vAlign

Although this property is present and accessible, it should not affect the display of the page at all.

Warnings:
❑ This property is probably an implementation mistake. Although it is visible when the properties of

the HEAD object are enumerated, it has no use in that context.

Hexadecimal value (Definition)
A numeric value based on a radix of 16.

A hexadecimal value is an integer composed of only the following characters:

0 1 2 3 4 5 6 7 8 9

A B C D E F

a b c d e f

Note the use of the alphabetic characters to extend the decimal number digit set.

Hexadecimal values are always prefixed by a zero and X character.

The sequence carries over for the next increment when each column reaches the value F. Thus:

0x00 0x01 0x02 0x03 0x04 0x05 0x06 0x07

0x08 0x09 0x0A 0x0B 0x0C 0x0D 0x0E 0x0F

0x10 0x11 0x12 0x13 0x14 0x15 0x16 0x17

JavaScript Programmer's Reference

1018

Hexadecimal values have a historical significance, having been used in the earliest computer
systems. However, these days they are particularly useful since they map quite conveniently to the
binary system. Each hexadecimal digit corresponds to four binary digits. Two hex digits map to a
byte and four to a word. This is particularly useful and is evidenced by hexadecimal values being
used to generate Unicode escape sequences.

There are several hexadecimal values that are useful. These are summarized in the following table:

Value Description

0x0 All bits clear

0x20 The single bit to toggle between upper and lower case letters

0x7F A seven bit character mask

0x8000 The sign bit of a 16 bit integer value

0x80000000 The sign bit of a 32 bit integer value

0xDF A mask that excludes the upper/lower case bit

0xFF All bits set in a byte

0xFFFF All bits set in a 16 bit word

0xFFFFFFFF All bits set in a 32 bit word

0 0

0 0 0 0 00 0 0

See also: Decimal value, Integer constant, Number, Number.toString(), Octal value

Cross-references:
O'Reilly JavaScript Definitive Guide - page 35

H – Hidden object (Object/DOM)

1019

Hidden object (Object/DOM)
A field of data submitted with the form but not visible to the user.

Availability: DOM level - 1
JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Inherits from: Input object

- myHidden = myDocument.aFormName.anElementName

- myHidden =
myDocument.aFormName.elements[anItemIndex]

IE myHidden = myDocument.all.anElementID

IE myHidden = myDocument.all.tags("INPUT")[anIndex]

IE myHidden = myDocument.all[aName]

- myHidden =
myDocument.forms[aFormIndex].anElementName

- myHidden = myDocument.forms[aFormIndex].elements
[anItemIndex]

- myHidden =
myDocument.getElementById(anElementID)

- myHidden = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myHidden = myDocument.getElementsByTagName
("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="hidden">

anIndex A valid reference to an item in the collection

aName The NAME attribute of an element

anElementID The ID attribute of an element

anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms collection

Object properties: type, value

Event handlers: onAfterUpdate, onBeforeUpdate, onHelp, onRowEnter, onRowExit

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

There isn't really a Hidden object class but it is helpful when trying to understand the wide variety of
input element types if we can reduce the complexity by discussing only the properties and methods
of a hidden field. In actual fact, the object is represented as an item of the Input object class.

Hidden objects don't respond to any events. They can't since they are not visible and therefore the
user cannot interact with them to trigger one.

JavaScript Programmer's Reference

1020

They may be accessed by event handling functions associated with the Form object but very little else.

Unlike MSIE, Netscape does not support the defaultValue property for this sub-class of the
Input object. It also does not support the onFocus event, although why MSIE should support
focus control onto a Hidden object is not clear.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="RESULT">?</DIV>
<FORM>
 <INPUT TYPE="hidden" VALUE="A" NAME="BOX_A">
 <INPUT TYPE="hidden" VALUE="B" NAME="BOX_B">
 <INPUT TYPE="hidden" VALUE="C" NAME="BOX_C">
 <INPUT TYPE="hidden" VALUE="D" NAME="BOX_D">
 <INPUT TYPE="button" VALUE="Reveal" onClick="handleClick()">
</FORM>
<SCRIPT>
function handleClick()
{
 myString = "[";
 myString += document.forms[0].BOX_A.value;
 myString += "] [";
 myString += document.forms[0].BOX_B.value;
 myString += "] [";
 myString += document.forms[0].BOX_C.value;
 myString += "] [";
 myString += document.forms[0].BOX_D.value;
 myString += "]";
 document.all.RESULT.innerText = myString;
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object, Form.elements[], Input object

Property JavaScript JScript N IE Opera DOM Notes

type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + -

Event name JavaScript JScript N IE Opera DOM Notes

onAfterUpdate - 3.0 + - 4.0 + - - -
onBeforeUpdate - 3.0 + - 4.0 + - - -
onHelp - 3.0 + - 4.0 + - - Warning
onRowEnter - 3.0 + - 4.0 + - - -
onRowExit - 3.0 + - 4.0 + - - -

H – Hidden.type (Property)

1021

Inheritance chain:
Element object, Input object, Node object

Hidden.type (Property)
The type value for the <INPUT> object that describes the hidden field.

Availability: DOM level - 1
JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: String primitive

JavaScript syntax: - myHidden.type

The type value for a hidden field is always "hidden". This value is necessary to determine the
type of form element because this object is really an instance of the Input class.

See also: Input.type

Property attributes:
ReadOnly.

Hidden.value (Property)
The value of a hidden field in a form.

Availability: DOM level - 1
JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera browser - 3.0

Property/method value type: String primitive

JavaScript syntax: - myHidden.value

The value of a hidden form is probably its main purpose for existence. The idea is that you can pass
values into a form by means of hidden fields and when the form is submitted, those values are
passed back to the server with the form data that the user has entered. It is often used as a means of
maintaining state across a user session.

See also: Input.value

JavaScript Programmer's Reference

1022

Hiding scripts from old browsers (Pitfall)
Old browsers need to have script content disguised.

If you are presenting your HTML on the web to an audience that may use browsers that cannot
cope with the <SCRIPT> tag, then you will need to hide the script inside the <SCRIPT> block. This
is done by placing HTML comment tags around the script code.

This depends on the JavaScript interpreter providing some non-standardized behavior. That is, it
needs to recognize the HTML comment opening tag as being some valid syntax, even though it is
not really legal.

Beware that the closing HTML comment tag is placed on a line that itself is a JavaScript comment.
However, you must also make sure that the closing </SCRIPT> tag is placed on a line of its own or
the interpreter cannot see it and the <SCRIPT> block then becomes unterminated.

Example code:
<SCRIPT>
<!-- // Hide from older browsersalert("some script here");// end hiding -->
</SCRIPT>

See also: COMMENT object, Pitfalls

Cross-references:
Wrox Instant JavaScript - page 46

Hierarchy of objects (Definition)
To fully understand JavaScript and in particular its use in the browser, it is helpful to know how
objects relate to one another.

In the core JavaScript language, objects are related to one another by means of the prototype chain.
This is a hierarchy that determines the inheritance of functionality from a super-class, although it's
an object-based inheritance and not really a class-based inheritance. You can only walk up this
hierarchy. There is no convenient way to determine what objects are sub-classed from an object.

From version 5.0 of MSIE and version 6.0 of Netscape, there are several hierarchy models available for
traversing the document. The HTML view of the document is not quite the same as the DOM view. In
general, each one is based on a property to traverse up the tree to a parent and collections for traversing
down the tree to the leaf nodes. Here are some examples of the different hierarchical arrangements.

❑ The parentElement and children[] collection operate on the HTML tag-based hierarchy.

❑ The parentNode property and childNodes[] collection can be used to traverse the DOM
hierarchy which exposes the interstitial text objects between the HTML tags. These are not visible to
the HTML view.

❑ The spatial layout and positioning of objects relative to one another can be walked upwards by
means of the offsetParent property. You can't traverse this tree from top to bottom without
inspecting the contents of the children[] collection and looking at each child's offsetX and
offsetY properties.

H – Hierarchy of objects (Definition)

1023

❑ The all[] collection flattens the whole tree from the receiving object downwards. The
document.all[] collection is the complete tree. This can slow things down if you are searching it
to find a single object.

❑ An editing hierarchy is constructed with the parentTextEdit property which describes the
relationship between items that can have a text range created for them, and hence have some
selectable content that can be cut or copied to the clipboard (usually as text).

❑ Function calls construct a hierarchy by means of the Argument objects which link upwards to the
calling function's Arguments object. This provides a way to walk through a stack trace to diagnose
a calling sequence.

❑ You can create custom hierarchies by using nested <DIV> tags and navigating them by means of the
corresponding DIV objects they instantiate.

❑ A spatial hierarchy is created in Netscape version 4 with the <LAYER> tags. Layers sharing a
common parent are siblings and can be ordered relative to one another.

❑ A CSS style hierarchy is implemented in MSIE to describe the relationship between CSS style rule
objects and their owning parent style sheet.

❑ Another hierarchy can be built by importing style sheets into one another to allow styles to be
managed in a more modular fashion. This is also supported at the rule level by means of the
styleSheet.addRule() method.

The DOM level 2 standard adds a suite of traversal methods for walking through a document object
model. It is embodied in the following classes:

❑ NodeIterator

❑ NodeFilter

❑ TreeWalker

❑ DocumentTraversal

Related to the traversal suite, the DOM level 2 standard also introduces the Range suite. This is
embodied in these classes:

❑ Range

❑ DocumentRange

❑ RangeException

See also: Arguments.caller, ChildNodes object, DIV object,
Document.createTextNode(), Element.all[], Element.childNodes[],
Element.children[], Element.offsetParent, Element.ownerDocument,
Element.parentElement, Element.parentNode,
Element.parentTextEdit, Layer.siblingAbove, Prototype Based
Inheritance, rule.parentStyleSheet, StyleSheet.addImport(),
StyleSheet.addRule(), StyleSheet.owningElement,
StyleSheet.owningNode, StyleSheet.parentStyleSheet

JavaScript Programmer's Reference

1024

High order bit (Definition)
The most significant bit in an integer value.

1 1 1 1 1 0 0 0

See also: Bit, Bit-field, Bitwise operator, byte

History (Background)
Scripting language history.

Availability: ECMAScript edition - 2

The JavaScript language was invented by Brendan Eich at Netscape. In the early days, it was
known as LiveScript.

The ECMA 262 standard is based on the earlier work at Netscape where they embedded the
JavaScript interpreter into the Netscape version 2.0 web browser. Microsoft also embedded script-
driven capabilities into their version 3.0 of the MSIE browser. The Microsoft interpreter implements
a language called JScript as opposed to JavaScript.

Microsoft clearly chose not to use the word JavaScript. It might be because any product name containing
the word 'Java' needs to be licensed from Sun Microsystems or that it was a Netscape originated name.
Given the very public antagonism between Microsoft and the other two, this is understandable. Perhaps
it also gives Microsoft a little extra leeway to extend the language in non-standard ways.

Both Microsoft and Netscape have continued to enhance their implementations in subsequent
versions of their web browsers, taking them sometimes in completely opposing directions.

In November 1996, the language started to become standardized by a working group under the
ECMA organization. At this stage it was also commonly referred to as ECMAScript and became a
published standard in June 1997. By April 1998, the ECMA 262 standard had been adopted as an
international standard as ISO/IEC 16262 which prompted a second edition of the ECMA standard
to keep the two fully aligned.

A third edition of the ECMA 262 standard was published in October 1999.

On the horizon are upgraded interpreters from Netscape and Microsoft, and the availability of
JavaScript in a variety of other products such as TV set-top boxes, mobile phones and embeddings
into legacy applications.

See also: JavaScript language, JavaScript version, JScript version

H – history (Property)

1025

Cross-references:
ECMA 262 edition 2 - section Introduction

ECMA 262 edition 3 - section Introduction

Wrox Instant JavaScript - page 3

history (Property)
An alias to the window.history property.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: History object

- history
JavaScript syntax:

- myWindow.history

Property attributes:
ReadOnly.

Refer to:
Window.history

History object (Object/browser)
A history object owned by the window. This exposes information about URLs that have been
visited previously.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

- myHistory = history
JavaScript syntax:

- myHistory = myWindow.history

Object properties: current, length, next, previous

Object methods: back(), forward(), go()

JavaScript Programmer's Reference

1026

Netscape version 4 provides access to the history array by signed scripts. Earlier versions of
Netscape and MSIE do not provide this level of access and therefore the history object is limited
in what you can do with it.

Some properties can be accessed by non-privileged scripts.

In Netscape, each element in the History object array is a String containing the URL for that item
in the history. In MSIE, the objects are not accessible directly.

Warnings:
❑ The array elements and properties of this object cannot be accessed by JavaScript unless the script

has the UniversalBrowserRead privilege granted to it.

❑ On Netscape, the toString() method is not correctly implemented and returns the value
"[object]" instead of "[object History]".

See also: Collection object, UniversalBrowserAccess,
UniversalBrowserRead, Window.history

Property JavaScript JScript N IE Opera HTML Notes

current 1.1 + - 3.0 + - 3.0 + - Warning, ReadOnly.
length 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - ReadOnly.
next 1.1 + - 3.0 + - 3.0 + - Warning, ReadOnly.
previous 1.1 + - 3.0 + - 3.0 + - Warning, ReadOnly.

Method JavaScript JScript N IE Opera HTML Notes

back() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - -
forward() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - -
go() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - Warning

History.back() (Method)
Go to the previous page.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

JavaScript syntax: - myHistory.back()

This is accessible to unsigned scripts.

See also: Window.back()

H – History.current (Property)

1027

History.current (Property)
The URL of the current window content.

Availability: JavaScript - 1.1
Netscape Navigator - 3.0
Opera browser - 3.0

Property/method value type: String primitive

JavaScript syntax: N myHistory.current

If you are accessing the URL of the current page, it is probably better to use the location object
and access its href property.

Warnings:
❑ The UniversalBrowserRead privilege is required to access this property value.

See also: UniversalBrowserRead

Property attributes:
ReadOnly.

History.forward() (Method)
Go to the next page.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

JavaScript syntax: - myHistory.forward()

This is accessible to unsigned scripts.

See also: Window.forward()

JavaScript Programmer's Reference

1028

History.go() (Method)
Return to a URL from the history array.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera browser - 3.0

- myHistory.go(anIndex)

- myHistory.go(aURL)
JavaScript syntax:

- myHistory.go(aDocTitle)

anIndex Denotes which history item to go to
aURL A URL value to go to

Argument list:

aDocTitle The name of a document (in Netscape)

You can perform a soft reload of a page, retaining its current settings by means of the
History.go(0) method call.

The following values are meaningful as an argument:

❑ -4 indicates you want to go back 4 pages.

❑ -1 indicates you want to go back one page.

❑ 0 requests a reload of the current page

❑ 2 indicates you want to go forward two pages

❑ A URL indicates a specific page to load

❑ A Document title references the history list associatively

Warnings:
❑ There are some bugs in this method in versions of Netscape prior to version 4. MSIE version 3 also

exhibits unruly behavior.

Example code:
// Recall a page from the history keeping form settings intact
history.go(-1);

See also: Location.reload()

H – History.length (Property)

1029

History.length (Property)
The number of history entries available.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Number primitive

JavaScript syntax: - myHistory.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

History.next (Property)
The next document in the history array.

Availability: JavaScript - 1.1
Netscape - 3.0
Opera - 3.0

Property/method value type: String primitive

JavaScript syntax: N myHistory.next

The value you get back from this property will depend very much on what navigation the user has
recently performed. Most of the time this would yield a null or undefined value unless the user
has used the [BACK] button.

Warnings:
❑ The UniversalBrowserRead privilege is required to access this property value.

❑ This property is not supported on the WebTV platform.

See also: JellyScript, UniversalPreferencesRead

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1030

History.previous (Property)
The previous document in the history array.

Availability: JavaScript - 1.1
Netscape - 3.0
Opera - 3.0

Property/method value type: String primitive

JavaScript syntax: N myHistory.previous

You may find it more useful to build a stack of pages visited in a persistent array. This can be tricky
within a single window, but if you are prepared to use a frameset, you can create a global session
store for such things. That way you'd be able to traverse a logical history rather than the possibly
random page ordering that the user navigated.

Warnings:
❑ The UniversalBrowserRead privilege is required to access this property value.

See also: UniversalPreferencesRead

Property attributes:
ReadOnly.

H<n> object (Object/HTML)
An object that represents the <H1> to <H6> tags.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Inherits from: Element object

IE myH1 = myDocument.all.anElementID

IE myH1 = myDocument.all.tags("H1")[anIndex]

IE myH1 = myDocument.all[aName]

- myH1 =
myDocument.getElementById(anElementID)

- myH1 = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myH1 = myDocument.getElementsByTagName
("H1")[anIndex]

H – H<n> object (Object/HTML)

1031

HTML syntax: <H1> ... </H1>,<H2> ... </H2>,<H3> ... </H3>,<H4> ...
</H4>,<H5> ... </H5>,<H6> ... </H6>
anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

The properties, methods, collections and event handling support for the <H1> tag object are also
provided for <H2> through <H6> tag objects as well. It is only necessary to document one of these
object classes, although the other header types are each instantiated as objects of an appropriately
named class in MSIE. The syntax examples illustrate the use of an <H1> tag object.

The <H1> through <H6> tags are block-level tags. That means that they force a line break before
and after themselves.

The DOM level 1 specification refers to this and its sibling object types as a HeadingElement object.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

1032

H<n>.align (Property)
The alignment of an <H1> to <H6> tag.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Property/method value type: String primitive

JavaScript syntax: - myH1.align

The alignment of the H1 (to H6) object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

home() (Method)
Go to the home page according to the user preferences.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N home()
JavaScript syntax:

N myWindow.home()

Refer to:
Window.home()

H – Host environment (Definition)

1033

Host environment (Definition)
The environment in which a JavaScript interpreter has been embedded.

The host environment is where the JavaScript interpreter lives.

Typically this might be a web browser, a web server back end, or an embedded implementation.
There are other possibilities as well, limited only by the imagination of the software developers and
their ingenuity in finding new ways to apply JavaScript.

JavaScript is usually interpreted. However, recent digital TV systems are deploying byte code
compiled JavaScript and it is also being used in that way for mobile devices.

See also: <SCRIPT>, argc parameter, argv parameter, CGI Driven JavaScript, Desktop
JavaScript, Embedded JavaScript, Environment, Execution environment, File
extensions, Glue code, Host features, Implementation-defined behavior, main()
function, PDF, Platform, Script execution, Shell Scripting with JavaScript, Web
browser, WScript

Cross-references:
Wrox Instant JavaScript - page 5

Wrox Instant JavaScript - page 42

Host features (Definition)
That which is added to the language due to the hosting environment it runs in.

Host features are those which the implementation adds around the native feature set. Host features
would include new object types. There are entire groups of objects which collected together
provide a host environment capability.

For example, the HTML Document Object Model describes a page as it lives inside a web browser.

The PDF file format can contain a collection of objects and the PDF reader adds others to construct
a different kind of object model.

A process control system might contain an object model representation of a brewery or a nuclear
reactor, although it is unlikely you would control either with just a JavaScript interpreter. You
could build a monitoring system with a mimic display that was a fairly good illustration of the
processes though.

The browser, server or operating system is said to host the interpreter. That is where the
terminology of host environments, host features and so on is derived.

See also: ECMAScript, Host environment

JavaScript Programmer's Reference

1034

Cross-references:
Wrox Instant JavaScript - page 12

Wrox Instant JavaScript - page 42

Host object (Definition)
An object that is built-in, but is provided by the hosting environment.

Availability: ECMAScript edition - 2

A host object is any additional non-native object provided by the interpreter at the outset of
script execution.

Host objects may or may not strictly honor the intent of the Get and Put internal function. The ECMA
standard allows for the possibility that a host object may still properly manage Get and Put internal
functions, even if the HasProperty function returns false for the properties being accessed.

See also: argv parameter, for(... in ...) ..., HasProperty(),
Implementation-defined behavior, main() function

Cross-references:
ECMA 262 edition 2 - section 4.3.8

ECMA 262 edition 3 - section 4.3.8

HR object (Object/HTML)
An object that represents an <HR> tag.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Inherits from: Element object

IE myHR = myDocument.all.anElementID

IE myHR = myDocument.all.tags("HR")[anIndex]

IE myHR = myDocument.all[aName]

- myHR = myDocument.getElementById(anElementID)

- myHR = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myHR =
myDocument.getElementsByTagName("HR")[anIndex]

HTML syntax: <HR>

H – HR object (Object/HTML)

1035

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align, color, noShade, size, width

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

The <HR> tag is a block-level tag. That means that it forces a line break before and after itself.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
color - 3.0 + - 4.0 + - - - Warning
noShade 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
size 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

1036

HR.align (Property)
An attribute to control the alignment of the <HR> object on screen.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Property/method value type: String primitive

JavaScript syntax: - myHR.align

The alignment of the HR object with respect to its containing parent object is defined in this
property. The following expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

HR.color (Property)
The color of the <HR> object.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

JavaScript syntax: IE myHR.color

The color of the horizontal rule defined by this HR object will be defined in this property.

The color can be specified in the normal way according to the HTML color specifiers.

H – HR.noShade (Property)

1037

Warnings:
❑ In JavaScript the noShade and color properties operate independently of one another, even

though setting the COLOR="..." HTML tag attribute implies a NOSHADE attribute as well when
defined in the document HTML source.

See also: Color names, Color value

HR.noShade (Property)
A switch attribute, used to control whether there is a shadow around the<HR> object.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myHR.noShade

This Boolean value can be set to true which will change the horizontalrule style from the 3D
appearance to a flat non-shaded look. Setting the property to false restores the 3D-shaded
appearance again.

Warnings:
❑ In JavaScript the noShade and color properties operate independently of one another even

though setting the COLOR="..." HTML tag attribute implies a NOSHADE attribute as well when
defined in the document HTML source.

HR.size (Property)
A measure of the thickness of the <HR> object, expressed in pixels.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Property/method value type: Number primitive

JavaScript syntax: - myHR.size

The thickness of the horizontal rule, measured in pixels.

JavaScript Programmer's Reference

1038

HR.width (Property)
A width measurement of the <HR> object.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

Property/method value type: String primitive

JavaScript syntax: - myHR.width

The width of the rule can be defined in pixels as an absolute measure or by specifying the value as
a percentage of its containing element's width.

Although the value is noted as being a String primitive, a numeric value is specified for the width
measured in pixels. It is a string value simply sot hat it can accommodate the percentage value.

HTC (Definition)
This is an abbreviation for the MSIE based HTML components (which used to be called scriptlets).

See also: Scriptlet, HTML Component

.htc (File extension)
A file containing a behavior handler script for use in MSIE browsers.

This file contains an HTML Component (HTC). These used to be called scriptlets but have been
evolved and renamed when used in an MSIE web browser.The Windows Script Host environment
continues to use scriptlets but these have also evolved into something quite different to an HTC.

Refer to the Element.addBehavior() topic for a more detailed explanation of how these
files are used.

See also: <STYLE>, Element.addBehavior(), Scriptlet

H – .htm (File extension)

1039

.htm (File extension)
An HTML page.

Refer to:
File extensions

HTML (Standard)
The standard notation for creating web pages.

HTML is short for HyperText Markup Language. It is a markup language belonging to the SGML
(Standard Generalized Markup Language) family.

Currently, the HTML state of the art is framed in the HTML version 4.0 standard as defined by the
World Wide Web Consortium (W3C). However, much web content is still presented in an HTML
3.2 conformant manner.

TV set-top boxes that employ HTML are generally built around an HTML 3.2 core which means
that web content that needs to be deployed to the PC based browser and the TV viewer needs to be
downgraded to be compatible with that standard version.

Browser manufacturers are still yet to release fully HTML 4.0 compliant browsers.

The strategic importance of HTML version 4.0 is to separate document content from presentation
style. This means that certain techniques are deprecated in favor of the use of style sheets.

This adds much complexity to the JavaScript support since its API to those style controls is not as
well standardized as the underlying Document Object Model (DOM). However, there is also
significant flexibility in the new styling model, and to date, the MSIE browser has made great
strides in implementing a robust styling model that provides many Dynamic HTML capabilities.

It is hoped that the forthcoming Netscape 6.0 might offer similar capabilities.

See also: Web browser

.html (File extension)
An HTML page.

Refer to:
File extensions

JavaScript Programmer's Reference

1040

HTML Character entity (Definition)
Character value escapes for use in HTML.

HTML Character entities are escape sequences that work in the HTML source domain. The
character entities have a defined format that begins with an ampersand as a control sequence
introducer and terminates with a semi-colon. The value between them is the character description.

Many of these have symbolic names which browsers honor to a greater or lesser extent depending
on the browser and its vintage. HTML 4.0 defines a large number of these escaped entities. If the
character you wish to represent does not have a symbolic name, you can use the decimal value of
the character and then place a hash symbol in-front. You can also use the hexadecimal notation by
placing an x in front of the value. Thus:

< defines the less-than or < symbol.

' defines a single quote or apostrophe character.

' also defines a single quote character.

Here is a table of useful character entity values:

Numeric Named Description Netscape MSIE

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Invisible Space

 - - Missing Space

	 - Horizontal tab Space Space

 - Line feed Space Space

 - - Space Space

 - - Space Space

 - Carriage return Space Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

Table continued on following page

H – HTML Character entity (Definition)

1041

Numeric Named Description Netscape MSIE

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - - Missing Space

 - Space Space Space

! - Exclamation mark Yes Yes

" " Double quote Yes Yes

- Hash Yes Yes

$ - Dollar Yes Yes

% - Percent Yes Yes

& & Ampersand Yes Yes

' - Apostrophe Yes Yes

(- Left parenthesis Yes Yes

) - Right parenthesis Yes Yes

* - Asterisk Yes Yes

+ - Plus Yes Yes

, - Comma Yes Yes

- - Hyphen Yes Yes

. - Period Yes Yes

/ - Slash Yes Yes

0 - Digit 0 Yes Yes

1 - Digit 1 Yes Yes

2 - Digit 2 Yes Yes

3 - Digit 3 Yes Yes

4 - Digit 4 Yes Yes

5 - Digit 5 Yes Yes

6 - Digit 6 Yes Yes

7 - Digit 7 Yes Yes

8 - Digit 8 Yes Yes

9 - Digit 9 Yes Yes

: - Colon Yes Yes

Table continued on following page

JavaScript Programmer's Reference

1042

Numeric Named Description Netscape MSIE

; - Semicolon Yes Yes

< < Less than Yes Yes

= - Equals Yes Yes

> > Greater than Yes Yes

? - Question mark Yes Yes

@ - Commercial at sign Yes Yes

A - Letter A Yes Yes

B - Letter B Yes Yes

C - Letter C Yes Yes

D - Letter D Yes Yes

E - Letter E Yes Yes

F - Letter F Yes Yes

G - Letter G Yes Yes

H - Letter H Yes Yes

I - Letter I Yes Yes

J - Letter J Yes Yes

K - Letter K Yes Yes

L - Letter L Yes Yes

M - Letter M Yes Yes

N - Letter N Yes Yes

O - Letter O Yes Yes

P - Letter P Yes Yes

Q - Letter Q Yes Yes

R - Letter R Yes Yes

S - Letter S Yes Yes

T - Letter T Yes Yes

U - Letter U Yes Yes

V - Letter V Yes Yes

W - Letter W Yes Yes

X - Letter X Yes Yes

Y - Letter Y Yes Yes

Z - Letter Z Yes Yes

[- Left square bracket Yes Yes

\ - Backslash Yes Yes

] - Right square bracket Yes Yes

^ - Caret Yes Yes

Table continued on following page

H – HTML Character entity (Definition)

1043

Numeric Named Description Netscape MSIE

_ - Underscore Yes Yes

` - Grave accent Yes Yes

a - Letter a Yes Yes

b - Letter b Yes Yes

c - Letter c Yes Yes

d - Letter d Yes Yes

e - Letter e Yes Yes

f - Letter f Yes Yes

g - Letter g Yes Yes

h - Letter h Yes Yes

i - Letter i Yes Yes

j - Letter j Yes Yes

k - Letter k Yes Yes

l - Letter l Yes Yes

m - Letter m Yes Yes

n - Letter n Yes Yes

o - Letter o Yes Yes

p - Letter p Yes Yes

q - Letter q Yes Yes

r - Letter r Yes Yes

s - Letter s Yes Yes

t - Letter t Yes Yes

u - Letter u Yes Yes

v - Letter v Yes Yes

w - Letter w Yes Yes

x - Letter x Yes Yes

y - Letter y Yes Yes

z - Letter z Yes Yes

{ - Left curly brace Yes Yes

| - Vertical bar Yes Yes

} - Right curly brace Yes Yes

~ - Tilde Yes Yes

 - Undefined Displays ? Missing

€ - Undefined No Displays ?

 - Undefined No Displays ?

‚ - Comma Yes Yes

ƒ - Florin Yes Yes

Table continued on following page

JavaScript Programmer's Reference

1044

Numeric Named Description Netscape MSIE

„ - Right double quote Yes Yes

… - Ellipsis Yes Yes

† - Dagger Yes Yes

‡ - Double dagger Yes Yes

ˆ - Circumflex Yes Yes

‰ - Permil Yes Yes

Š - Undefined Displays ? Bugged

‹ - Less than Yes Yes

Œ - Capital OE ligature Yes Yes

 - Undefined No Displays ?

Ž - Undefined No Displays ?

 - Undefined No Displays ?

 - Undefined No Displays ?

‘ - Left single quote Yes Yes

’ - Right single quote Yes Yes

“ - Left double quote Yes Yes

” - Right double quote Yes Yes

• - Bullet Yes Yes

– - En dash Yes Yes

— - Em dash Yes Yes

˜ - Tilde Yes Yes

™ - Trademark symbol Yes Yes

š - Undefined Displays ? Yes

› - Greater than Yes Yes

œ - Small oe ligature Yes Yes

 - Undefined No Displays ?

ž - Undefined No Displays ?

Ÿ - Capital Y umlaut Yes Yes

 Non breaking space Yes Yes

¡ ¡ Inverted exclamation Yes Yes

¢ ¢ Cent sign Yes Yes

£ £ Pound sign Yes Yes

¤ ¤ General currency symbol Displays ? Displays ?

¥ ¥ Yen sign Yes Yes

¦ ¦ Broken vertical bar Displays ? Yes

§ § Section sign Yes Yes

¨ ¨ Umlaut Yes Yes

Table continued on following page

H – HTML Character entity (Definition)

1045

Numeric Named Description Netscape MSIE

© © Copyright Yes Yes

ª ª Feminine ordinal Yes Yes

« « Left angle quote Yes Yes

¬ ¬ Not sign Yes Yes

­ ­ Soft hyphen Displays ? Yes

® ® Registered trademark Yes Yes

¯ ¯ Macron accent Yes Yes

° ° Degree sign Yes Yes

± ± Plus or minus Yes Yes

² ² Superscripted 2 Displays ? Yes

³ ³ Superscripted 3 Displays ? Yes

´ ´ Acute accent Yes Yes

µ µ Micro sign Yes Yes

¶ ¶ Paragraph Yes Yes

· · Middle dot Yes Yes

¸ ¸ Cedilla Yes Yes

¹ ¹ Superscripted 1 Displays ? Yes

º º Masculine ordinal Yes Yes

» » Right angle quote Yes Yes

¼ ¼ One quarter Displays ? Yes

½ ½ One half Displays ? Yes

¾ ¾ Three quarters Displays ? Yes

¿ ¿ Inverted question mark Yes Yes

À À Capital A grave Yes Yes

Á Á Capital A acute Yes Yes

Â Â Capital A circumflex Yes Yes

Ã Ã Capital A tilde Yes Yes

Ä Ä Capital A umlaut Yes Yes

Å Å Capital A ring Yes Yes

Æ Æ Capital AE ligature Yes Yes

Ç Ç Capital C cedilla Yes Yes

È È Capital E grave Yes Yes

É É Capital E acute Yes Yes

Ê Ê Capital E circumflex Yes Yes

Table continued on following page

JavaScript Programmer's Reference

1046

Numeric Named Description Netscape MSIE

Ë Ë Capital E umlaut Yes Yes

Ì Ì Capital I grave Yes Yes

Í Í Capital I acute Yes Yes

Î Î Capital I circumflex Yes Yes

Ï Ï Capital I umlaut Yes Yes

Ð Ð Capital eth Displays ? Bugged

Ñ Ñ Capital N tilde Yes Yes

Ò Ò Capital O grave Yes Yes

Ó Ó Capital O acute Yes Yes

Ô Ô Capital O circumflex Yes Yes

Õ Õ Capital O tilde Yes Yes

Ö Ö Capital O umlaut Yes Yes

× × Multiply Displays ? Yes

Ø Ø Capital O slash Yes Yes

Ù Ù Capital U grave Yes Yes

Ú Ú Capital U acute Yes Yes

Û Û Capital U circumflex Yes Yes

Ü Ü Capital U umlaut Yes Yes

Ý Ý Capital Y acute Displays ? Yes

Þ Þ Capital thorn Displays ? Bugged

ß ß Small sz ligature Yes Yes

à à Small a grave Yes Yes

á á Small a acute Yes Yes

â â Small a circumflex Yes Yes

ã ã Small a tilde Yes Yes

ä ä Small a umlaut Yes Yes

å å Small a ring Yes Yes

æ æ Small ae ligature Yes Yes

ç ç Small c cedilla Yes Yes

è è Small e grave Yes Yes

é é Small e acute Yes Yes

ê ê Small e circumflex Yes Yes

ë ë Small e umlaut Yes Yes

ì ì Small i grave Yes Yes

í í Small i acute Yes Yes

î î Small i circumflex Yes Yes

Table continued on following page

H – HTML Character entity (Definition)

1047

Numeric Named Description Netscape MSIE

ï ï Small i umlaut Yes Yes

ð ð Small eth Displays ? Bugged

ñ ñ Small n tilde Yes Yes

ò ò Small o grave Yes Yes

ó ó Small o acute Yes Yes

ô ô Small o circumflex Yes Yes

õ õ Small o tilde Yes Yes

ö ö Small o umlaut Yes Yes

÷ ÷ Divide Yes Yes

ø ø Small o slash Yes Yes

ù ù Small u grave Yes Yes

ú ú Small u acute Yes Yes

û û Small u circumflex Yes Yes

ü ü Small u umlaut Yes Yes

ý ý Small y acute Displays ? Yes

þ þ Small thorn Displays ? Bugged

ÿ ÿ Small y umlaut Yes Yes

Warnings:
❑ Inside <SCRIPT> tags, you are inside the JavaScript source domain and you use a different set of

escape mechanisms. If you use the HTML escape mechanisms inside JavaScript source, your script is
likely to break unless you are intentionally outputting them to the HTML source space via a
document.write() method.

❑ The character set you are using inside the <SCRIPT> tags is completely different to that used in
HTML. The script source is written using Unicode characters (ISO 10646). If you are generating
HTML, a great manyof the character codes are mapped differently. This is because the HTML
character entities are defined according to an ISO standard (ISO 8859). Even then, national language
variants of the browser should map the character entity values to the correct character glyph which
should ensure that what the designer intended is what you actually see, regardless of the actual
character code transformations that take place.

❑ Most of the character entities are supported by both MSIE and Netscape. A few characters are
supported inconsistently. All of the character entities with values less than 32 are control codes
anyway, so although the browsers treat them differently, it shouldn't prove to be significant. Those
character entities that are undefined in the HTML specification aren't supported in the same way
either, and should probably be avoided. Recent updates to the HTML standard allow for Unicode
character values to be used above character entity 255, and some of these have symbolic names
defined. Refer tothe HTML specification available from the W3C at http://www.w3.org/TR/html4/ for
further details.

❑ Of the rest:

❑ The general currency symbol (¤) is unsupported.

http://www.w3.org/TR/html4/

JavaScript Programmer's Reference

1048

❑ There is currently no Euro symbol implemented although its character entity • and Unicode value
20AC are defined but not in the version of the Unicode standard that is currently mandated (version
2.0). Unicode is about to undergo a revision and at that time, browser manufacturers will then need
to accommodate the changes to remain compliant.

❑ The broken vertical bar (¦) does not work on Netscape, nor does the soft hyphen (), and neither do
the superscripted numbers and fractional values.

❑ ETH and THORN are broken in both browsers in both upper and lower case variants.

❑ Netscape also lacks support for Y acute in both upper and lower case.

❑ Most of these are fairly obscure and not likely to cause much difficulty aside from some very
specialized national language support. TheEuro character, however, is likely to become more
important whether the currency thrives or not.

See also: Escaped JavaScript quotes in HTML,Portability

Web-references:
http://www.w3.org/TR/html4/

HTML Comment tag (<!-- ... -->) (HTML Tag)
HTML comments can be used to hide scripts.

See also: COMMENT object, Hiding scripts from old browsers

HTML Component (Definition)
An HTML Component is a small modular fragment of script contained in an .htc file and can be
shared across several pages.

These used to be called scriptlets but have evolved into HTML Components. Do not confuse them
with Windows Script Host scriptlets: these are something different altogether.

See also: Scriptlet

Web-references:
http://msdn.microsoft.com/workshop

http://www.w3.org/TR/html4/
http://msdn.microsoft.com/workshop

H – HTML entity escape (Pitfall)

1049

HTML entity escape (Pitfall)
It looks like HTML but it isn't intended to be.

You can sometimes innocently include some text into your script that when presented with
adocument.write(), gets completely misunderstood by the HTML parser. This will almost
certainly be due to the presence of "<" and">" characters in the output. It is likely that the browser
will see what it thinks is a tag, but then ignore it according to the "I don't know what it is - so I
won't display it" rule, as it won't be a recognized tag.

Use HTML escapes to output the character as intended.

This is important for the following characters if not for others:

< becomes <

> becomes >

& becomes &

See also: Pitfalls

Cross-references:
Wrox Instant JavaScript - page 46

HTML file (Definition)
HTML web page file.

JavaScript is contained in HTML files with the <SCRIPT> tag. This is called client side JavaScript.

See also: <SCRIPT>, File extensions, Web browser

Cross-references:
Wrox Instant JavaScript – page 3

HTML object (Object/HTML)
An object in MSIE that represents an <HTML> tag.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer - 4.0
Netscape - 6.0

JavaScript Programmer's Reference

1050

Inherits from: Element object

IE myHTML = myDocument.all.anElementID

IE myHTML = myDocument.all.tags("HTML")[0]

IE myHTML = myDocument.all.tags("HTML")[anIndex]

IE myHTML = myDocument.all[aName]

IE myHTML = myDocument.all[anIndex]

- myHTML = myDocument.documentElement

- myHTML =myDocument.getElementById(anElementID)

- myHTML
=myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myHTML =myDocument.getElementsByTagName
("HTML")[anIndex]

HTML syntax: <HTML> ... </HTML>

anIndex A selector for one particular HTML element

aName An associative array referenceArgument list:
anElementID The ID value of an Element object

Object properties: title,version

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This object is otherwise known as the HTML object.

The <HTML> tag is a block-level tag, although it cannot be placed inside any other tag. Like the
body tag, it is considered to be a block-level tag on grounds of its behavior in a framed context.

Warnings:
❑ Be careful how you operate on this object. Traversing its properties in a for(... in ...) loop

can recursively lock up your browser.

❑ The index value that points at this object in the all[] array for the document will be 0 if there is no
DTD statement and 1 if there is. A correctly formed document should have a DTD statement. Use a
dynamic mechanism for locating the object of type HTML instead of hardwiring the index value.

See also: Attributes object, BODY.aLink, BODY.background,
BODY.bgColor, BODY.link, BODY.text,BODY.vLink, Document
object, Document.documentElement, Document.title, Element
object

Property JavaScript JScript N IE Opera DOM HTML Notes

title - 3.0 + - 4.0 + - - - -
version 1.5+ 5.0 + 6.0 + 5.0 + - 1 + - Warning ,

Deprecated

H – HTML.title (Property)

1051

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

HTML.title (Property)
The document title.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

JavaScript syntax: IE myHTML.title

HTML syntax: <TITLE>aTitle</TITLE>

Argument list: aTitle A title text

 The DOM standard at level 1 requires that the title property of an HTML object should contain the
text from the <TITLE> HTML tag in the<HEAD> block of the document. At least, this is the
implication, because it refers the reader to the HTML specification, which defines that <TITLE>is
only legal inside <HEAD> blocks. We can't really say this is part of the DOM specification, which
unfortunately makes it ambiguous.

 Netscape makes this available as the document.title property, as does MSIE. However, MSIE
does support this property as a member of the HTML object even though it is not mentioned in the
Microsoft documentation.

 In Netscape, the title property of an HTML object exists but is empty, hence it cannot be
guaranteed to be available in Netscape 6.0.

See also: Document.title

JavaScript Programmer's Reference

1052

HTML.version (Property)
The version string of an HTML document.

Availability: DOM level - 1
JavaScript - 1.5
JScript - 5.0
Internet Explorer - 5.0
Netscape - 6.0 Deprecated

Property/method value type: String primitive

JavaScript syntax: - myHTML.version

HTML syntax: <HTML VERSION="aVersion">

Argument list: aVersion A version text

This property is intended to hold the value of the VERSION="..." HTML tag attribute which is
used in conjunction with the <HTML> tag. It has now been superseded by the <!DOCTYPE> DTD tag
and is now deprecated.

The MSIE browser does reflect this HTML tag into the version property, although it is not
mentioned in the documentation.

Warnings:
❑ This feature is deprecated in favor of placing aproperty DTD statement at the start of the document.

HTML tag attribute (Definition)
HTML tags have attributes, some of which can be accessed fromscripts.

Earlier versions of the browsers required that HTML tag attributes were enclosed in double quotes.
More recent browsers also allow the use of single quotes or even no quotes in some cases. This may
be useful when enclosing fragments of JavaScript that contain quoted text strings.

See also: Attribute object, Attributes object

HTTP-EQUIV="..." (HTML Tag Attribute)
The name attribute for a pseudo header item.

Refer to:
<META>

H – http: URL (Request method)

1053

http: URL (Request method)
A request from a web browser to a web server to send a document.

This requests a document from a web server. Most web traffic isrequested this way.

See also: javascript: URL, URL

https: URL (Request method)
A request from a web browser to a secure web server to send a document with an encrypted and
secure protocol.

Requests a document from a secure web server. Your encryption code needs to be compatible and
this may involve an exchange of security certificates.

See also: javascript: URL, Security policy, URL

HyperLink (Definition)
HyperLinks are references to documents served elsewhere. They may be pages, assets or
includable files.

See also:
Anchor.href, BASE.href,IMG.href, Location.href,
StyleSheet.href, HTML

HyperLink object (Object/HTML)
Another name for the Url object.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0

Inherits from: Element object

JavaScript syntax: - myHyperLink = myDocument.links[anIndex]

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

In Netscape, links are stored in Url objects. These are distinctly different to Anchor objects.

MSIE does not distinguish between the two but since there is no constructor, it is hard to know
what object type they are. Generally they are assumed to be Url objects.

JavaScript Programmer's Reference

1054

Because the class name is Url in Netscape, the link objects are discussed in detail under that lexical
topic location.

MSIE supports a LINK object class but this is a special object that stems from a styleSheet item.
It doesn't support all the properties that a Url object does and is probably more concerned with
managing the appearance of a Url object on the screen.

See also: Area object, Element.all[], LinkArrayobject, URL, Urlobject

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

I object (Object/HTML)
An object that represents the font style controlled by the <I> HTML tag.

Availability: DOM level – 1
JScript – 3.0
Internet Explorer – 4.0
Deprecated

Inherits from: Element object

IE myI = myDocument.all.anElementID

IE myI = myDocument.all.tags("I")[anIndex]

IE myI = myDocument.all[aName]

- myI = myDocument.getElementById(anElementID)

- myI = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myI = myDocument.getElementsByTagName("I")[anIndex]

HTML syntax: <I> ... </I>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

<I> tags and the objects that represent them are inline elements. Placing them into a document does
not create a line break.

See also: Element object

I

JavaScript Programer's Reference

1056

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

iCab (Web browser)
A web browser alternative to MSIE and Netscape Navigator.

The iCab web browser is only available on the Macintosh but has some interesting features not
found in other products. It is developed by a small German company run by Alexander Clauss and
Oliver Joppich. The browser was originally developed for use on the Atari platform.

The browser is compact, fast and standards-based and can be downloaded free from the iCab web
site (http://www.iCab.de). The current version is 2.1 and is available at the moment as a preview or
Beta product (see web-references).

Earlier versions do not fully support JavaScript although implementation of a completely standards
based version of the interpreter is expected in the final release. It also supports some of the browser
specific tags that Netscape and Microsoft have added to their browsers. This is necessary to avoid
the browser not being able to properly render the pages currently deployed on the web. However,
iCab also has an HTML validator built in and this triggers an indicator on the screen when the page
is non-HTML 4.0 compliant. This shows up as a smiley face when the HTML is good and a
frowning face when it’s not. Clicking on the frowning face yields a report of the non-compliant
HTML. This is a good browser for developers to use.

http://www.iCab.de

I – ID="..." (HTML Tag Attribute)

1057

iCab supports some interesting features such as image and cookie filtering. This allows much finer
control over image display than simply switching images on and off. By default, iCab is set up to
not filter out banner ads, but by virtue of its awareness of standard banner ad image sizes it can
prevent the display of banners leaving other graphics intact. It can also filter based on URL
contents. Cookie filtering is also flexible and sophisticated.

The <LINK REL="..."> and <LINK REV="..."> tags are actively supported and provide some
structural navigation when sites implement these tags properly.

Access the iCab web site for more details of special features.

See also: Platform, Script execution, Web browser

Web-references:
http://www.icab.de/

ID="..." (HTML Tag Attribute)
MSIE document objects can be referenced conveniently with an ID name if it is added with
this tag attribute.

Many objects are identified in the DOM hierarchy of the web browser by means of their id
property. This value is defined as an HTML tag attribute.

Some objects can be accessed using a <NAME="..."> HTML tag attribute instead of or as well as
the ID="..." HTML tag attribute.

Netscape 4.0 supports ID access but only apparently for visible elements. Version 6.0 is much more
consistent now that it supports the DOM standard properly.

See also: Document.ids[], Document.layers[],
Document.scripts[], Element.id, NAME="..."

Identically equal to (===) (Operator/identity)
Compares two values for equality and identical type.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.06

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 === anOperand2

anOperand1 A value of a comparable typeArgument list:
anOperand2 A value of the same type as operand 1

http://www.icab.de/

JavaScript Programer's Reference

1058

The two operands are compared and the Boolean true value is returned if they are equal and of
the same type.

The equality operator is not always transitive. For example, two string objects may represent the
same string value. Comparing the objects for equality will yield false because the references to
the objects are being compared and not the object values themselves. However forcing a string
comparison may in fact yield a true value when testing for equality. Do this by converting the
objects as part of the comparison process by type conversion or valueOf() methods.

Numeric values may require rounding to take place, and testing for equality may be accurate down to
a precision finer than your script cares about. You can set a precision value in a variable, then subtract
the value you are comparing with from the absolute value of the comparee. If the difference is smaller
than your precision value, then the two values are close enough to yield a match.

The associativity is from left to right.

Refer to the operator precedence topic for details of execution order.

The result is the Boolean value true if anOperand1 is numerically or lexically equal to
anOperand2 and both operands are of the same type otherwise false is returned.

Warnings:
❑ Be careful not to confuse the single and double equals operators with the triple equals operator.

❑ Placing a single equals in place of a test for equality will assign the right-hand value to the left-hand
operand and clobber the value accidentally. Placing a single equals sign in-stead of the identity
operator has the same effect.

❑ Using the equality operator in place of the identity operator is more subtle. Sometimes the test will
appear to work correctly because the values in the two objects could be the same. That would have
failed the identity test because they may be equal but are not identical.

❑ The interpreter may be forgiving enough that a run-time error isn't generated, but the side effects
could be subtle and make it hard to diagnose the cause.

❑ This is not available for use server-side with Netscape Enterprise Server 3.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myObject1 = 100;
myObject2 = "100";
if(myObject1 == myObject2)
{
 document.write("Objects are equal
");
}
else
{
 document.write("Objects are NOT equal
");
}

I – Identifier (Definition)

1059

if(myObject1 === myObject2)
{
 document.write("Objects are identical
");
}
else
{
 document.write("Objects are NOT identical
");
}
</SCRIPT>
</BODY>
</HTML>

See also: ASCII, Associativity, Equal to (==), Equality expression, Equality operator, Greater
than (>), Greater than or equal to (>=), Identity operator, JellyScript, Less than (<),
Less than or equal to (<=), Logical expression, Logical operator, NOT Equal to (!=),
NOT Identically equal to (!==), Operator Precedence, Relational expression,
Relational operator, typeof, Unicode

Cross-references:
ECMA 262 edition 3 – section – 11.9.4

O'Reilly JavaScript Definitive Guide – page – 48

Wrox Instant JavaScript – page – 39

Identifier (Definition)
A means of referring uniquely to a variable, property or method.

Variables and functions have unique names. These names are called identifiers.

An identifier is a string of characters, composed of letters, digits or two other special characters ($
and _). An identifier name must begin with a non-digit (that is a letter or underscore). JavaScript is
case-sensitive and an identifier spelled with uppercase letters is distinct from one having the same
name spelled with lowercase letters.

You should not use any of the reserved keywords as identifier names.

An identifier refers to a variable, property or function and is the user-defined way to distinguish
one item from another.

Identifiers can be of unlimited length, although for practical purposes they should be kept to a
reasonable length, say 30 to 40 characters at most. The following characters are valid for use in
identifiers:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

$ _ (Underscore)

JavaScript Programer's Reference

1060

Identifiers are case-sensitive. The following all denote different identifiers:

exampleidentifier

exampleIdentifier

ExampleIdentifier

EXAMPLEidentifier

EXAMPLEIDENTIFIER

The dollar sign should be used sparingly and according to the ECMA standard is reserved for use
by mechanically generated code.

Warnings:
❑ You cannot use reserved words as identifier names.

❑ Avoid using the dollar sign. MSIE version 3.0 and Netscape 2.02 cannot cope with dollar signs in
variable names. MSIE version 3.02 cannot tell the difference between one identifier and another
when the names only differ in the case of the letters that spell the identifier name.

See also: Digit, function(...) ..., int, Internet Explorer, Lexical element,
Namespace, Netscape Navigator, Nondigit, Scope chain, Storage duration,
String literal, Token, Type, with ...

Cross-references:
ECMA 262 edition 2 – section – 7.5

ECMA 262 edition 3 – section – 7.6

O'Reilly JavaScript Definitive Guide – page – 31

Wrox Instant JavaScript – page – 14

Identifier resolution (Definition)
The process of resolving and locating an identifier.

Availability: ECMAScript edition – 2

Identifiers are resolved by binding the name to the value container through the scope chain.

A hierarchical access mechanism adds items to the front of the scope chain as code is nested. The
most local variable object belonging to the current execution context is searched first. If the name is
not resolved, then the scope chain is walked until a matching name is located or the global code's
execution context is reached. If there is still no match, then the undefined value is returned.

An identifier is considered to be a primary expression when it is being evaluated.

See also:
Binding, Completion type, Execution context, Primary expression,
Scope chain, with ...

I – Identity operator (Definition)

1061

Cross-references:
ECMA 262 edition 2 – section – 10.1.4

ECMA 262 edition 2 – section – 11.1.2

ECMA 262 edition 3 – section – 10.1.4

ECMA 262 edition 3 – section – 11.1.2

Identity operator (Definition)
A close cousin of the equality operator family.

Equality operators are generally used for comparing primitive values.

If they are used for comparing objects, the objects are converted to primitives and then tested. This
may not be the test you are trying to accomplish.

Imagine two objects, each distinct from one another but containing the same value in the properties
that are yielded by the toString() or valueOf() methods. They are different objects but they
will test true for equality.

The identity operators provide a way to test whether they are the same object or not.

There are two identity operators:

❑ === Identically equal to

❑ !=== Not identically equal to

You can use these in relational expressions in much the same way as you would the equality
operators but remember that you are testing references to objects not values.

See also: Identically equal to (===), NOT Identically equal to (!==)

ids (Property)
An alternative reference to the document.ids property in JSS.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Collection object

N ids
JavaScript syntax:

N myDocument.ids

JavaScript Programer's Reference

1062

Warnings:
❑ This functionality is removed from Netscape 6.0.

See also: JavaScript Style Sheets, Document.ids[]

IEEE 754 (Standard)
An international standard for floating point number handling and storage in 8 bytes.

Availability: ECMAScript edition – 2

The IEEE 754 standard defines the behavior of a numeric environment in such a way that the
computation should generate the same result across any compliant platforms.

It specifies the exact format for the storage and manipulation of the values. It also specifies
bounding ranges for exponents and mantissas.

The standards describes how and when rounding should occur and the direction in which
rounding takes place. Exceptions are also described and this determines how the NaN value is
generated and propagated through expressions.

See also: byte, Floating constant, NaN, Not a number, Number

Cross-references:
ECMA 262 edition 2 – section – 3

ECMA 262 edition 3 – section – 3

if(...) ... (Selector)
A conditional execution mechanism.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

JavaScript syntax: - aLabel: if(aCondition) { someCode}

aCondition An expression that yields a Boolean value
aLabel An optional identifier to name the if block

Argument list:

someCode Some script source text that is executed if the condition
tests true

I – if(...) ... (Selector)

1063

The if() statement is used to conditionally execute a code block depending on the result of a
conditional expression. This mechanism is called branching.

The expression in the parentheses is evaluated and cast to a Boolean value. If it yields a true value
as a result, then the code in the associated block is executed. Otherwise, the code is ignored and
execution continues at the line following the closing brace of the code block.

JavaScript allows you to omit the braces around the code block if the code is a single line. You must
place the trailing semi-colon on the line to delimit the script source text that is associated with the
if() statement.

At version 1.2 of JavaScript, you can name the if statement and use the labelled form of the break
keyword to exit the conditional code block prematurely.

Warnings:
❑ Beware of leaving the braces off the associated script source text as it is possible for this to be

ambiguous to the reader and can lead to difficulties when adding more code to be executed
conditionally. It can become easy to add a second line of code but still omit the braces. In that
case, only the first line will be conditional but the second will always be executed regardless of
the result of the if() condition. This can lead to completely unexpected behavior and is quite
difficult to diagnose.

Example code:
// Reccomended form
if(a == b)
{
 z = 100;
 alert("z set to 100");
}

// Possibly dangerous during maintenance
if(a !== b)
 z = 100;

See also: Code block delimiter {}, Compound statement, Conditionally execute (?:), else
..., else if(...) ..., Flow control, if(...) ... else ...,
Obfuscation, Selection statement, Statement, switch(...) ... case: ...
default: ..., while(...) ...

Cross-references:
ECMA 262 edition 2 – section – 12.5

ECMA 262 edition 2 – section – 12.6.1

ECMA 262 edition 3 – section – 12.5

Wrox Instant JavaScript – page – 22

JavaScript Programer's Reference

1064

if(...) ... else ... (Selector)
A conditional execution mechanism.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

JavaScript syntax: - aLabel: if(aCondition) { someCode} else {
someOtherCode)

aCondition An expression that yields a Boolean value
aLabel An optional identifier to name the if block
someCode Some script source text that is executed if the condition

tests true

Argument list:

someOtherCode Some script source text that is executed if the condition
tests false

The if() ... else statement is used to conditionally execute one or other code block depending
on the result of a conditional expression.

The expression in the parentheses is evaluated and cast to a Boolean value. If it yields a true value
as a result, then the code in the first associated block is executed. Otherwise, the code in the first
block is ignored and the code in the block following the else keyword is executed.

Each else keyword for which the associated if() is ambiguous will be associated with the
nearest possible if() that would otherwise have no corresponding else.

At version 1.2 of JavaScript, you can name the if statement and use the labelled form of the break
keyword to exit the conditional code block prematurely.

Example code:
// Reccomended form
if(a == b)
{
 z = 100;
}
else
{
 z = 200;
}

// Possibly dangerous during maintenance
if(a == b)
z = 100;
else
z = 200;

I – IFRAME object (Object/HTML)

1065

See also: Code block delimiter {}, Compound statement, Conditionally execute (?:),
else ..., else if(...) ..., Flow control, if(...) ...,
Selection statement, Statement, switch(...) ... case: ...
default: ...

Cross-references:
ECMA 262 edition 2 – section – 12.5

ECMA 262 edition 3 – section – 12.5

Wrox Instant JavaScript – page – 22

IFRAME object (Object/HTML)
An object that represents an <IFRAME> tag.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myIFRAME = myDocument.all.anElementID

IE myIFRAME = myDocument.all.tags("IFRAME")[anIndex]

IE myIFRAME = myDocument.all[aName]

- myIFRAME = myDocument.aName

- myIFRAME = myDocument.getElementById(anElementID)

- myIFRAME = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myIFRAME = myDocument.getElementsByTagName
("IFRAME")[anIndex]

HTML syntax: <IFRAME> ... </IFRAME>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
align, dataFld, dataSrc, frameBorder, frameSpacing,
height, hspace, longDesc, marginHeight, marginWidth,
name, noResize, scrolling, src, tabIndex, vspace, width

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

An <IFRAME> is a special MSIE supported tag that introduces an inline frame into a document that
appears like a block structured element within the document text flow, accessible as a named frame
object that belongs to the document.

JavaScript Programer's Reference

1066

Its properties appear to be all read-only in the MSIE browser. Changing them seems to have no
visible effect at all. The properties belonging to the object retain the values that you assign and
return them when requested but the display does not change.

The DOM level 1 specification refers to IFRAME objects as IFrameElement objects and this makes
them available in Netscape by virtue of its support for DOM level 1.

DOM level 2 adds the following properties:

❑ contentDocument

Warnings:
❑ Netscape does not support the <IFRAME> tag prior to version 6.0, but it does support an <ILAYER>

tag which describes an inline laye,r which is not the same thing but may provide a way to emulate
the <IFRAME> functionality in some cases.

❑ MSIE seems to have trouble locating an IFRAME object in the document hierarchy, and you cannot
refer to the object directly in the same way that you can with other objects.

❑ With an IFRAME object whose ID is "MYFRAME" this accessor works:

❑ document.all.MYFRAME

❑ But these accessors don't:

❑ document.MYFRAME

❑ MYFRAME

❑ Even worse, the IFRAME appears to float in some separate plane to its containing object. Placing an
<IFRAME> inside a <DIV> block exhibits some very strange behavior. Its position seems locked to
the top left of the <DIV> but its right edge seems to be able to flow outside the <DIV> area.

❑ Netscape 6.0, which implements IFRAME objects, does not appear to fare any better, exhibiting
similarly strange behavior.

See also: Element object, Frame object, Window object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataFld 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataSrc 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
frameBorder 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
frameSpacing - 3.0 + - 4.0 + - - - Warning
height 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
hspace - 3.0 + - 4.0 + - - - Warning
longDesc 1.5 + - 6.0 + - - 1 + - Warning
marginHeight 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
marginWidth 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

Table continued on following page

I – IFRAME.align (Property)

1067

Property JavaScript JScript N IE Opera DOM HTML Notes

name 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
noResize - 3.0 + - 4.0 + - - - -
scrolling 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
src 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
vspace - 3.0 + - 4.0 + - - - Warning
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5+ 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5+ 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5+ 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5+ 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

IFRAME.align (Property)
A controlling attribute that affects the alignment of the <IFRAME> with respect to its parent object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.align

JavaScript Programer's Reference

1068

The alignment of the IFRAME object with respect to its containing parent object is defined in this
property. An expected and widely available set of alignment specifiers are available, as follows (the
default is bottom):

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

Warnings:
❑ None of the alignment values seem to affect the appearance of the IFRAME object in MSIE or

Netscape 6.0.

IFRAME.frameBorder (Property)
Describes a 3D border effect to be drawn round the inline frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.frameBorder

The frameBorder property should allow you to turn the engraved frame border effect on and off.
Its should accept the following values (the default is yes):

❑ 0

❑ 1

❑ yes

❑ no

I – IFRAME.frameSpacing (Property)

1069

Warnings:
❑ This seems to have no effect on the appearance of the IFRAME object in the MSIE or Netscape

browsers.

See also: Frame.frameBorder

IFRAME.frameSpacing (Property)
A frame spacing margin around the <IFRAME> object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myIFRAME.frameSpacing

A spacing distance between multiple frames that is measured in pixels on the screen.

Warnings:
❑ The spacing controls for an IFRAME are provided in differently named properties and HTML tag

attributes to those supported by the normal <FRAME> in <FRAMESET> objects.

❑ They don't seem to work on the MSIE or Netscape browsers at all.

See also: Frame.frameBorder, Frame.marginHeight,
Frame.marginWidth

IFRAME.height (Property)
Contains the height of the inline frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.height

The current height of the IFRAME can be measured from this property. You ought to be able to
modify it but it seems not to work.

JavaScript Programer's Reference

1070

Warnings:
❑ This appears to be a read-only property in MSIE and Netscape.

See also: Frame.height, IFRAME.width

IFRAME.hspace (Property)
A measure of the horizontal spacing either side of the <IFRAME> to separate it from any adjacent
objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myIFRAME.hspace

This works the same as the hspace you apply to an image object. It introduces some space
between objects that run together on the same line. It appears as if the margin has been altered but
it is a different spacing control.

The space is applied equally on both sides of the IFRAME object.

Warnings:
❑ This has no visible effect on the IFRAME object in MSIE and Netscape.

See also: IFRAME.vspace

IFRAME.longDesc (Property)
This is a URL which points at a document containing a long description of the contents of this frame.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myIFRAME.longDesc

It needs to be defined as the IFRAME is created to have any meaningful purpose.

I – IFRAME.marginHeight (Property)

1071

Warnings:
❑ This yields nothing in MSIE and Netscape.

See also: Frame.longDesc

IFRAME.marginHeight (Property)
A measure of the vertical margin above and below the <IFRAME> object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.marginHeight

Margins flow round the entire frame. You cannot operate on all four individually but you can
operate on the vertical and horizontal margin pairs independently.

That means the top and bottom margin must be the same, as must the left and right.

This property is the size of the margins at the top and bottom of the frame.

This is a bit like the vspace property but since neither seems to have any effect it is difficult to
prove they operate independently.

Warnings:
❑ This seems to have no visible effect in MSIE and Netscape.

See also: Frame.marginHeight

IFRAME.marginWidth (Property)
A measure of the horizontal margin to the left and right of the <IFRAME> object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.marginWidth

JavaScript Programer's Reference

1072

Margins flow round the entire frame. You cannot operate on them individually but you can operate
on the vertical and horizontal margins separately.

That means the top and bottom margin must be the same, as must the left and right.

This property is the size of the margins to the left and right of the frame.

This is a bit like the hspace property but since neither seems to have any effect it is difficult to
prove that they operate independently.

Warnings:
❑ This seems to have no visible effect in MSIE and Netscape.

See also: Frame.marginWidth

IFRAME.name (Property)
The value of the NAME="..." HTML tag attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.name

This reflects the value defined in the HTML tag attribute. It’s not likely that you would want to
change it.

See also: Window.name

IFRAME.noResize (Property)
A switch value that controls whether the <IFRAME> can be resized or not.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myIFRAME.noResize

This is a Boolean value to turn the frame resizing control on and off. Unlike the border control, this
is a truly Boolean value accepting either true or false as its setting.

However, it has no effect whatsoever – this is because inline frames can't be resized in Internet
Explorer 4.0 anyway.

See also: Frame.noResize

I – IFRAME.scrolling (Property)

1073

IFRAME.scrolling (Property)
A switching attribute that controls the appearance of scrollbars on the <IFRAME> when its content
exceeds the available space.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.scrolling

Yet another deviant property in the browser mess! Having just discussed the noResize property
which is a switching mechanism having a Boolean setting, here we are with another switching
property. However, as is the case with border controls, this one is not Boolean. Instead it accepts
the values:

❑ yes

❑ no

❑ auto

See also: Frame.scrolling

IFRAME.src (Property)
The URL of the document content inside the <IFRAME> object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.src

Inline frames have their content loaded in much the same way as for a window. This property
describes the source URL of the document that controls the content of an inline frame. You can
reload the inline frame by redefining this value, but it is probably better to use the
location.href value for that.

See also: Frame.src

JavaScript Programer's Reference

1074

IFRAME.tabIndex (Property)
A numeric ordering of the <IFRAME> within the parent document's tabbing sequence.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myIFRAME.tabIndex

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms. Pressing the [tab] key moves from one
form element to the next according to the cascaded tabbing order defined by building a tree-like
structure with the tab index values.

IFRAME.vspace (Property)
A spacing in the vertical axis between the <IFRAME> and its adjacent objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myIFRAME.vspace

This works the same as the vspace you apply to an image object. It introduces some space
between objects that run together on adjacent lines. It appears as if the margin has been altered but
it is a different spacing control.

The space is applied equally above and below the IFRAME object.

Warnings:
❑ Changing this seems to have no visible effect on the IFRAME object in MSIE and Netscape.

See also: IFRAME.hspace

I – IFRAME.width (Property)

1075

IFRAME.width (Property)
Contains the width of the inline frame.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIFRAME.width

The current width of the IFRAME can be measured from this property. You ought to be able to
modify it, but it doesn't seem to work.

Warnings:
❑ This appears to be a read-only property in MSIE and Netscape.

See also: IFRAME.height

IIS (Product)
Internet Information Server. A Microsoft server product.

Refer to:
Internet Information Server

Image animation (Useful tip)
Using cached images to animate an image.

If you cache some images in local memory, you can perform some very slick animations.

You can effect animation with the lowsrc property in the same way as you can with the src
property but the src property must remain empty while you do that. If you specify both and
the browser is running in a low resolution device, the lowsrc image will be used instead of
the src image.

The example shows you how to do animation with src properties.

JavaScript Programer's Reference

1076

Example code:
<HTML>
<BODY>
<!-- Image cache technique -->
<SCRIPT>
// First create an image buffer array
var myImages = new Array(10);

// Now load the array with image objects getting them from the server
for(var myIndex = 0; myIndex<10; myIndex++)
{
 myImages[myIndex] = new Image();
 myImages[myIndex].src = "assets/image_" + myIndex + ".jpg";
}

var mySequence = 0;
function animate()
{
 mySequence = (mySequence + 1)%10;
 document.images[0].src = myImages[mySequence].src;
}

setInterval("animate()", 100);
</SCRIPT>

</BODY>
</HTML>

See also: Image.lowsrc, Image.src

Image object (Object/HTML)
An object representing an HTML tag in Netscape.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Inherits from: Element object

IE myImage = myDocument.all.anElementID

IE myImage = myDocument.all.tags("IMG")[anIndex]

IE myImage = myDocument.all[aName]

- myImage = myDocument.anImageName

- myImage = myDocument.getElementById(anElementID)

- myImage = myDocument.getElementsByName(aName)[anIndex]

- myImage = myDocument.images[anIndex]

- myImage = myImageArray[anIndex]

JavaScript syntax:

- myImage = myDocument.getElementsByTagName("IMG")
[anIndex]

I – Image object (Object/HTML)

1077

HTML syntax:

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
border, complete, constructor, defaultValue, height,
hspace, lowsrc, name, size, src, vspace, width, x, y

Object methods: select()

Event handlers:
onAbort, onBlur, onClick, onDblClick, onError, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp, onLoad,
onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp

The image object added at version 1.1 of JavaScript introduced the possibility of dynamically
replacing images under script control.

Event handling support via properties containing function objects was added to Image objects at
version 1.1 of JavaScript.

The image object supported by Netscape and the IMG object supported by MSIE are so different to
each other that they are covered as separate objects. They share a few similarities but not many. By
inspection, they are instances of different classes.

Warnings:
❑ In the MSIE browser, the images are instantiated inside IMG objects because they correspond to the

IMG tag. There is an Image object created as another name for the same IMG tag and if you
instantiate a new copy of it you get an IMG object. This means you should be careful when
examining the constructors and class names of image objects, as their object type is not portable
across platforms.

Example code:
<HTML>
<HEAD>
<SCRIPT>
function moved()
{
 document.all.ONE.width = event.x;
}
</SCRIPT>

</HEAD>

<BODY onMouseMove="moved()">
Move mouse horizontally to scale image

</BODY>
</HTML>

JavaScript Programer's Reference

1078

See also: Background object, Document.images[], Element.all[], ImageArray object, IMG
object, Input object, Input.type, Web browser

Property JavaScript JScript N IE Opera DOM HTML Notes

border 1.1 + - 3.0 + - 3.0 + 1 + - -
complete 1.1 + - 3.0 + - 3.0 + - - Warning,

ReadOnly
constructor 1.1 + - 3.0 + - - - - -
defaultValue 1.1 + - 3.0 + - 3.0 + 1 + - Warning
height 1.1 + - 3.0 + - 3.0 + 1 + - ReadOnly
hspace 1.1 + - 3.0 + - 3.0 + 1 + - ReadOnly
lowsrc 1.1 + - 3.0 + - 3.0 + 1 + - -
name 1.1 + - 3.0 + - 3.0 + 1 + - -
size 1.1 + - 3.0 + - 3.0 + 1 + - Warning
src 1.1 + - 3.0 + - 3.0 + 1 + - -
vspace 1.1 + - 3.0 + - 3.0 + 1 + - ReadOnly
width 1.1 + - 3.0 + - 3.0 + 1 + - ReadOnly
x 1.1 + - 3.0 + - - - - ReadOnly
y 1.1 + - 3.0 + - - - - ReadOnly

Method JavaScript JScript N IE Opera DOM HTML Notes

select() 1.1 + - 3.0 + - 3.0 + 1 + - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAbort 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.1+ 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onError 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onFocus 1.1+ 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onLoad 1.1+ 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.1+ 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

I – Image() (Constructor)

1079

Inheritance chain:
Element object, Node object

Image() (Constructor)
A constructor for new browser images.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - new Image()

When the Image constructor is used in a new expression it creates a new object based on the Image
prototype.

You can then assign values to the properties of that new Image object as needed.

Image objects are generally constructed so that image assets can be requested from the server and
retained in the browser cache. This can happen in the background without the image needing to
appear on the display.

Then, when you need to perform an image replacement, the browser knows that the image is
stored locally and can be located more quickly than if it had to request it from the server at the
time it is required.

This can significantly speed up the animation effects you choose to reproduce.

See also: Web browser

Image() (Function)
A function for constructing new browser images.

Availability: JavaScript – 1.1
Netscape – 3.0

JavaScript syntax: N Image()

You can either use the function to create new images or another image object which can be
cloned instead.

See also: Image(), Web browser

JavaScript Programer's Reference

1080

Image.border (Property)
The thickness of the border round an image.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: N myImage.border

The border will be highlighted if the image is embedded inside an anchor tag.

Image.Class (Property/internal)
Internal property that returns an object class.

This is an internal property that describes the class that an Image object instance is a member of.
The reserved words suggest that in the future, this property may be externalized.

See also: Web browser

Property attributes:
DontEnum, Internal.

Image.complete (Property)
The current state of an image loading operation.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: N myImage.complete

This is a Boolean property that reflects the current loading status of an image object. It should yield
the value false until the image has completely transferred from the server to the client browser.

Warnings:
❑ Netscape 4 will incorrectly yield a true value when the image has not yet completely loaded.

Property attributes:
ReadOnly.

I – Image.constructor (Property)

1081

Image.constructor (Property)
An Image object constructor.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Image object

JavaScript syntax: N myImage.constructor

The constructor is that of the built-in Image prototype object.

You can use this as one way of creating arrays, although it is more popular to use the new
Image() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

Image.height (Property)
The height of an image.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myImage.height

The image space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. The extent rectangle is the smallest rectangle that can completely enclose the item. This
property specifies the height of that extent rectangle.

Including height and width information on images is optional, but it can significantly improve the
performance of the layout engine as it renders the web page. This is because the layout engine does not
need to wait until the image has been fetched before reserving sufficient space for it in the display.

See also: Image.width, IMG.height, IMG.width

Property attributes:
ReadOnly.

JavaScript Programer's Reference

1082

Image.hspace (Property)
The horizontal spacing attribute value.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myImage.hspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The hspace property controls the margin to the left and right of the object.

See also: IMG.hspace

Property attributes:
ReadOnly.

Image.lowsrc (Property)
The low-resolution version of the image can be supplied from this URL.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: N myImage.lowsrc

This is a useful technique to make the site appear to be faster than it really is. You specify a low
resolution version of the image that can be contained in a much smaller file. This is then loaded
first by the browser while it downloads the larger image.

Although this property is read/write, changing it does not force the image to be reloaded again.

DOM level 1 describes this as a lowSrc property. Note the capitalization.

For this to work as intended, you must specify the lowsrc (lowSrc) property value prior to the
src property value otherwise the high quality image will be fetched first.

See also: Image animation, IMG.lowsrc

I – Image.name (Property)

1083

Image.name (Property)
This corresponds to the NAME attribute of the tag.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: N myImage.name

HTML syntax:

Objects are identified either by the NAME="..." HTML tag attribute or by the ID="..." HTML
tag attribute.

Netscape shows a marginal preference for the name property, while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

This property cannot be used with Image objects that are manufactured at run-time from the
Image() constructor. They can be collected in an array and accessed associatively as named array
elements, but images you create in script aren't part of the document and therefore can't be
addressed as if they are.

See also: IMG.name

Image.src (Property)
The URL where the image is located.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: N myImage.src

If you change the src property of an image it will be replaced on the browser's display screen. The
only limitation is that the images that are replaced are exactly the same shape and size as the
previous image.

Some browsers may forgive you if you display differently sized images, and some may scale the
images to fit.

JavaScript Programer's Reference

1084

This can lead to all manner of creative effects such as rollover highlights, clocks, animations,
progress bars etc. You can also simulate checkboxes graphically as well as all manner of other
useful and 'pretty' user interface widgets.

For animations to work smoothly, you should ensure that the images have been cached locally first
otherwise the animation will appear somewhat jerky while they are fetched from a server.

See also: Image animation, Image preloading, IMG.src

Image.vspace (Property)
The vertical spacing attribute value.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myImage.vspace

Margins placed around objects are either modified separately, with all four margin sides having a
different property, or by adjusting the horizontal margins and vertical margins using just two values.

The vspace property controls the margin at the top and bottom of the object.

See also: IMG.vspace

Property attributes:
ReadOnly.

Image.width (Property)
The width of an image.

Availability: DOM level – 1
JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myImage.width

I – Image.x (Property)

1085

The image space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. The extent rectangle is the smallest rectangle that can completely enclose the item. This
property specifies the width of that extent rectangle.

Including height and width information on images is optional, but it can significantly improve the
performance of the layout engine as it renders the web page. This is because the layout engine does not
need to wait until the image has been fetched before reserving sufficient space for it in the display.

See also: Image.height, IMG.height, IMG.width

Property attributes:
ReadOnly.

Image.x (Property)
The X coordinate of the image within the client display area.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myImage.x

The horizontal position of the object in the display, measured in pixels. You can use the x and y co-
ordinates of the object as targets of the scrollTo() method for the window it lives in.

Property attributes:
ReadOnly.

Image.y (Property)
The Y coordinate of the image within the client display area.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myImage.y

The vertical position of the object in the display, measured in pixels. You can use the x and y co-
ordinates of the object as targets of the scrollTo() method for the window it lives in.

Property attributes:
ReadOnly.

JavaScript Programer's Reference

1086

Image preloading (Useful tip)
A technique for caching images locally in readiness for an animation.

If you want to animate some images, you will need to cache them locally to make sure the
animation moves smoothly. If you don't, the animation will be very jerky while the images are
fetched from the server.

The action of setting the src attribute of the image object in the buffer array is simply to recall the
images and store them in the cache. The image objects then act as a repository to store the src
value so it can be assigned to the target image in an animation loop.

Warnings:
❑ Note that this technique is a waste of time if you set your browser cache to zero bytes capacity and

force a document to be requested from the server every time, at least that is what happens in MSIE
(and is what you would expect).

❑ Netscape adds a trick to this by caching objects that you are holding in memory and referencing via
script variables – it's a little smarter, and knows that you are intentionally caching images even
though you have set your cache size to zero.

❑ Some versions of MSIE fetch the image from the server every time you reference it, regardless of
your cache settings or the fact that you have preloaded it and stored a reference to it in a variable.

Example code:
<!-- Image cache technique -->
<SCRIPT>
// First create an image buffer array

var myImages = new Array(10);

// Now load the array with image objects getting them from the server
for(var myIndex = 0; myIndex<10; myIndex++)
{
 myImages[myIndex] = new Image();
 myImages[myIndex].src = "assets/image_" + myIndex + ".jpg";
}

var anIndex=Math.ceil(Math.random()*10);

document.write("");
</SCRIPT>

See also: Image.src

I – ImageArray object (Object/browser)

1087

ImageArray object (Object/browser)
A collection of image objects.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - myImageArray = myDocument.images

Object properties: length

Object methods: item()

The MSIE and Netscape browsers each maintain an ImageArray object, which is just a special case
of the Array object. However, although they both store objects that represent images in that array,
those image objects are quite different. For a start, in Netscape they are of the class "Image" while
in MSIE they are of the class "IMG" (named after the HTML tag). This is fortunate in a way, because
you can use this difference to detect what kind of object you are operating on if you need to
perform complex image management activities.

For MSIE image objects refer to the IMG object topic and its properties.

For Netscape Navigator image objects refer to the Image object topic and its properties.

Warnings:
❑ Beware of the differences between the properties that MSIE and Netscape Navigator provide to

support image management.

See also: Collection object, Document.images[], Image object,
IMG object

Property JavaScript JScript N IE Opera HTML Notes

length 1.1 + 3.0 + 3.0 + 4.0 + - - ReadOnly

Method JavaScript JScript N IE Opera HTML Notes

item() - 3.0 + - 4.0 + - - -

ImageArray.item() (Method)
An item selector for accessing a single image within the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Image object

JavaScript Programer's Reference

1088

IE myImageArray.item(anIndex)

IE myImageArray.item(aSelector)
JavaScript syntax:

IE myImageArray.item(aSelector, anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

ImageArray.length (Property)
A collection of image objects in the current document.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myImageArray.length

See also: Image object, Collection.length

Property attributes:
ReadOnly.

IMG object (Object/HTML)
The MSIE object wrapper for images.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Inherits from: Element object

I – IMG object (Object/HTML)

1089

IE myIMG = myDocument.all.anElementID

IE myIMG = myDocument.all.tags("IMG")[anIndex]

IE myIMG = myDocument.all[aName]

- myIMG = myDocument.anImageName

- myIMG = myDocument.getElementById(anElementID)

- myIMG =
myDocument.getElementsByName(aName)[anIndex]

- myIMG = myDocument.images[anIndex]

- myIMG = myImageArray[anIndex]

JavaScript syntax:

- myIMG =
myDocument.getElementsByTagName("IMG") [anIndex]

HTML syntax: <INPUT TYPE="IMAGE">

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
accessKey, align, alt, border, complete, dataFld,
dataFormatAs, dataSrc, defaultValue, dynsrc,
fileCreatedDate, fileModifiedDate, fileSize,
fileUpdatedDate, height, href, hspace, iccProfile,
isMap, longDesc, loop, lowsrc, name, protocol,
prototype, readyState, size, src, start, tabIndex,
useMap, vspace, width

Object methods: select()

Event handlers:
onAbort, onAfterUpdate, onBeforeUpdate, onBlur,
onChange, onClick, onDataAvailable, onDataSetChanged,
onDataSetComplete, onDblClick, onDragStart, onError,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onLoad, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onResize, onRowEnter,
onRowExit, onScroll, onSelectStart

 tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

Event handling support via properties containing function objects was added to IMG objects at
version 1.1 of JavaScript.

The DOM level 1 specification refers to this as an ImageElement object. Netscape implements an
Image class with somewhat different properties. By inspecting their DOM attributes, you can see
that they are instances of different classes.

See also: Element object, Image object, ImageArray object, Input.accessKey

JavaScript Programer's Reference

1090

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
align 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
alt 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
border 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
complete - 3.0 + - 4.0 + - - - ReadOnly.
dataFld 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
dataFormatAs 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
dataSrc 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
defaultValue 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
dynsrc - 3.0 + - 4.0 + - - - Warning
fileCreatedDate - 3.0 + - 4.0 + - - - ReadOnly
fileModifiedDate - 3.0 + - 4.0 + - - - ReadOnly
fileSize - 3.0 + - 4.0 + - - - ReadOnly
fileUpdatedDate - 3.0 + - 4.0 + - - - ReadOnly
height 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
href - 3.0 + - 4.0 + - - - -
hspace 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
iccProfile - 3.0 + - 4.0 + - - - -
isMap 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
longDesc 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - Warning
loop - 3.0 + - 4.0 + - - - -
lowsrc 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
name 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
protocol - 3.0 + - 4.0 + - - - ReadOnly
prototype - 3.0 + - 4.0 + - - - ReadOnly
readyState - 3.0 + - 4.0 + - - - ReadOnly
size 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
src 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
start - 3.0 + - 4.0+ - 2 + - -
tabIndex 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
useMap 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
vspace 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

select() 1.5 + 3.0 + 3.0 + 4.0 + - 1 + - -

I – IMG object (Object/HTML)

1091

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAbort 1.5 + 3.0+ 3.0+ 4.0 + 3.0 + - - -
onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onChange 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - - -
onClick 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onDataAvailable - 3.0 + - 4.0 + - - - -
onDataSetChanged - 3.0 + - 4.0 + - - - -
onDataSetComplete - 3.0 + - 4.0 + - - - -
onDblClick 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onError 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onLoad 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onMouseDown 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 3.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.5 + 3.0 + 3.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onScroll - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programer's Reference

1092

IMG.align (Property)
The alignment of an image within its surrounding objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.align

The alignment of the IMG object with respect to its containing parent object is defined in this
property. The following expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ none

❑ right

❑ texttop

❑ top

IMG.alt (Property)
An alternative text used when the Image is defined as an input item.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.alt

Objects can have an alternative text string associated with them. This is useful for browsers that
cannot cope with the tag and hence may display the alternate text. If spoken styles are supported,
the text may be read out to the user. Some browsers will also display the alt text as a tool-tip if the
mouse pointer is positioned over the object and remains static for a few seconds.

I – IMG.border (Property)

1093

IMG.border (Property)
Controls the border around an image object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.border

The border will be highlighted if the image is embedded inside an anchor tag.

See also: Image.border

IMG.complete (Property)
Returns a value indicating whether the image has completely loaded or not.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myIMG.complete

The constructor is that of the built-in Image prototype object.

You can use this as one way of creating arrays, although it is more popular to use the new
Image() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Image.constructor

Property attributes:
ReadOnly.

JavaScript Programer's Reference

1094

IMG.dynsrc (Property)
The URL of a video clip that can be played where an image would normally have been located.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.dynsrc

This is part of the dynamic HTML model although the dynamism is inside the asset encapsulated
by the object.

You can playback a video clip or traverse a VRML panorama at any location where an image would
have been placed.

If you use the DYNSRC="..." HTML tag attribute, you should not specify the SRC="..." HTML
tag attribute.

The loop property of the IMG object controls how many iterations of the animation take place.

Warnings:
❑ This is not even remotely portable so it is not recommended that you use this, unless your user base

is captive and using a controlled release of the MSIE browser. Using a plugin video player is far
more portable.

See also: IMG.loop, IMG.start

IMG.fileCreatedDate (Property)
The date that the image file was created.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.fileCreatedDate

Where it is possible to distinguish properties of document source files, this can tell you about the
history of the document.

This read-only property described the date that an image file was created. With this you can
calculate the age of the image file by subtracting that date from the current date and time.

See also: Document.fileCreatedDate

Property attributes:
ReadOnly.

I – IMG.fileModifiedDate (Property)

1095

IMG.fileModifiedDate (Property)
The date that image file was last modified.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.fileModifiedDate

Where it is possible to distinguish properties of image files, this can tell you about the history
of the image.

This read-only property describes the date that a file was last modified. With this you can calculate
the age of the file content by subtracting that date from the current date and time.

See also: Document.fileModifiedDate

Property attributes:
ReadOnly.

IMG.fileSize (Property)
The size of the image file.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myIMG.fileSize

This is the exact length of the received HTTP body portion of the image. This does not count any
HTTP headers that the web server may have sent prior to the HTTP body.

On the Macintosh operating system, some image editors hide additional resource data in the file.
This is not included and on that platform, the fileSize property is a measurement of the data
fork of the file and does not include the resource fork.

See also: Document.fileSize

Property attributes:
ReadOnly.

JavaScript Programer's Reference

1096

IMG.fileUpdatedDate (Property)
The date that the image file was last updated.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.fileUpdatedDate

According to the available documentation from Microsoft, there is no distinction made between
this and the fileModifiedDate. However this property is only available for IMG objects whereas
the other file metrics can be obtained for IMG and document objects.

Property attributes:
ReadOnly.

IMG.height (Property)
The height of the image within the client display surface.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.height

The image space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. The extent rectangle is the smallest rectangle that can completely enclose the item. This
property specifies the height of that extent rectangle.

Including height and width information on images is optional but it can significantly improve the
performance of the layout engine as it renders the web page. This is because the layout engine does not
need to wait until the image has been fetched before reserving sufficient space for it in the display.

See also: Image.height, Image.width, IMG.width

I – IMG.href (Property)

1097

IMG.href (Property)
The URL where the image was loaded from. This is identical to the SRC="..." HTML tag attribute.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.href

Image tags can have their HREF defined by JavaScript code. To do this, you need to place a
JavaScript: URL in the HREF and return a valid location on exit from the function or expression
that is invoked.

See also: IMG.src

IMG.hspace (Property)
The horizontal spacing either side of the image.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.hspace

Margins placed around objects are either modified separately with all four margin sides having a
different property, or by adjusting the horizontal margins and vertical margins using just two values.

The hspace property controls the margin to the left and right of the object.

See also: Image.hspace

IMG.iccProfile (Property)
The color of an image may appear different from one platform to another. This indicates the color
profile that was used when the image was created so you can make adjustments if necessary.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.iccProfile

JavaScript Programer's Reference

1098

Color correction software is something that should be performed on a workstation in a consistent
manner across all applications. This is because they all share the same visual display, and that
display needs to be calibrated to conform to a particular color temperature and gamma curve.

An ICC profile is a preset collection of values that may be accessed by symbolic name and from
that you may be able to select a particular setting in the browser to ensure the images and colors in
the web page are displayed exactly as the designer intended.

IMG.isMap (Property)
Indicates whether the image is acting as a server-side image map.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myIMG.isMap

This Boolean value determines whether an image is used as a server-side image map. If it is a server-side
image map, then a click on the image will return a URL request to the server that includes an X-Y
coordinate pair describing where on the image the mouse was positioned when the button was clicked.

You can set this property yourself from a script, although it would most likely be set from HTML.

The value true signifies that the image is a server-side image map and the value false signifies
that it is not.

IMG.longDesc (Property)
This is a long description of the image file.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.longDesc

Warnings:
❑ This is a separate property to the alt text or the title value for the image. It does not appear to work

on the Macintosh platform and only yields an empty string.

I – IMG.loop (Property)

1099

IMG.loop (Property)
This controls the looping of a video clip that is loaded with the dynsrc attribute.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myIMG.loop

The value of this loop property of the IMG object controls how many iterations of the animation
take place.

By setting the value to -1, continuous looping is achieved. Otherwise, the number of cycles is
defined by a positive integer.

See also: IMG.dynsrc

IMG.lowsrc (Property)
The URL of a low-resolution image that can be loaded quickly.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.lowsrc

This is a useful technique to make the site appear to be faster than it really is. You specify a low
resolution version of the image that can be contained in a much smaller file. This is then loaded
first by the browser while it downloads the larger image.

Although this property is read/write, changing it does not force the image to be reloaded again.

The DOM level 1 specification refers to this as the lowSrc property. Note the capitalization.

For this to work as intended, you must specify the lowsrc (lowSrc) property value prior to the
src property value otherwise the high quality image will be fetched first.

See also: Image.lowsrc

JavaScript Programer's Reference

1100

IMG.name (Property)
This corresponds to the NAME attribute of the tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.name

Objects are identified either by the NAME="..." HTML tag attribute or by the ID="..." HTML
tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

This property cannot be used with IMG objects that are manufactured at run-time from the IMG()
constructor. They can be collected in an array and accessed associatively as named array elements.
Images you create in script aren't part of the document and therefore can't be addressed as if they are.

See also: Image.name

IMG.protocol (Property)
The protocol that was used in the image URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.protocol

This should yield the value HTTP or FILE or one of the other available protocols according to how
the image was accessed. This allows you to build script code than can behave differently according
to how the image was loaded.

Typically this might allow for a different page content to be displayed when an image is loaded
from a local file system.

Refer to the URL topic for details of a variety of URL protocol values.

See also: Anchor.protocol, Document.protocol, URL,
Url.protocol

Property attributes:
ReadOnly.

I – IMG.prototype (Property)

1101

IMG.prototype (Property)
The prototype for the IMG object that can be used to extend the interface for all IMG objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Image object

IE IMG.prototype
JavaScript syntax:

IE myIMG.constructor.prototype

Property attributes:
ReadOnly.

Refer to:
prototype property

IMG.readyState (Property)
The current disposition of the image as it is being loaded.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myIMG.readyState

This property reflects the loading status of an image.

Sometimes, you can design scripts to execute while the document is downloading – inline scripts for
example. At that time, you may even be able to trigger interval timed deferred executions as well.

If it is important that the document has completed loading, you can check this property for one of
the following values:

State Value

uninitialized The object is first instantiated but has not begun loading.

loading The object has commenced loading.

loaded The object has completed loading.

interactive The object is loaded but not yet closed, but is ready to handle
interaction.

complete The object body has been closed and the loading is finished.

JavaScript Programer's Reference

1102

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: onReadyStateChange

Property attributes:
ReadOnly.

IMG.src (Property)
The URL where the image can be loaded from.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.src

If you change the src property of an image it will be replaced on the browser's display screen. The
only limitation is that the images that are replaced are exactly the same shape and size as the
previous image.

Some browsers may forgive you if you display differently sized images, some may scale the
images to fit.

Changing the src property of an image can lead to all manner of creative effects such as rollover
highlights, clocks, animations, progress bars etc. You can also simulate checkboxes graphically as
well as all manner of other useful and 'pretty' user interface widgets.

For animations to work smoothly, you should ensure that the images have been cached locally first,
otherwise the animation will appear somewhat jerky while they are fetched from a server.

See also: Image.src, IMG.href

I – IMG.start (Property)

1103

IMG.start (Property)
The state of the image when it started loading a dynamic source.

Availability: DOM level – 2
JScript – 3.0
Internet Explorer – 3.02

Property/method value type: Boolean primitive

JavaScript syntax: IE myIMG.start

This property indicates when the dynamic content should start to play. It can take two values as follows:

❑ fileopen

❑ mouseover

You should only specify this value when the IMG object has a meaningful dynsrc property value.

See also: IMG.dynsrc

IMG.useMap (Property)
The URL of a <MAP> defined hash element that defines a client side image map.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.useMap

This property reflects the value of the USEMAP="..." HTML tag attribute which should refer to
the named <MAP> tag containing an image map. The reference is by means of a "#NAME" value in
this property that corresponds to the NAME="..." HTML tag attribute of the <MAP> tag describing
the image map to use.

See also: Map.name

JavaScript Programer's Reference

1104

IMG.vspace (Property)
The vertical margin above and below the image.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.vspace

Margins placed around objects are either modified separately with all four margin sides having a
different property, or by adjusting the horizontal margins and vertical margins using just two values.

The vspace property controls the margin at the top and bottom of the object.

See also: Image.vspace

IMG.width (Property)
The width of the image on the client display surface.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myIMG.width

The image space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. The extent rectangle is the smallest rectangle that can completely enclose the item. This
property specifies the width of that extent rectangle.

Including height and width information on images is optional but it can significantly improve the
performance of the layout engine as it renders the web page. This is because the layout engine does not
need to wait until the image has been fetched before reserving sufficient space for it in the display.

See also: Image.height, Image.width, IMG.height

I – Implementation (Definition)

1105

Implementation (Definition)
A JavaScript interpreter provided in a usable form that can execute scripts.

An implementation is a program or set of programs that can read, interpret and execute script
source text according to the conventions of the JavaScript language.

An ECMA compliant implementation is one that does so according to the precepts laid down in the
ECMA 262 standard. This would be an ECMAScript interpreter although it should also state what
edition of the standard it is compliant with.

A DOM compliant interpreter would be compatible with DOM level 1 or level 2. Other levels are in
the course of being standardized.

An implementation will usually supply additional functionality over and above that specified by
the standard.

See also: Definition, ECMA, ECMAScript, ECMAScript – edition 2, ECMAScript –
edition 3, Interpret

Implementation object (Object/DOM)
A special core object that describes the DOM implementation.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myImplementation = myDocument.implementation

Object methods: hasFeature()

This is part of the DOM compliant implementation that MSIE now provides.

It has no enumerable properties and is a member of a the Implementation object class. It
describes the DOM implementation that is supported.

The DOM level 2 specification adds the following two methods:

❑ createDocumentType()

❑ createDocument()

Warnings:
❑ The DOM level 1 standard calls this a DOMImplementation object. MSIE calls it an

Implementation object.

JavaScript Programer's Reference

1106

See also: Document.implementation

Method JavaScript JScript N IE Opera DOM Notes

hasFeature() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Implementation.hasFeature() (Method)
A means of enquiring whether a certain feature is supported by the DOM implementation.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myImplementation.hasFeature(aFeature,
aVersion)

aFeature The name of a featureArgument list:
aVersion The feature version

Here is a list of feature and version codes that have been obtained by inspecting the DOM
specifications. Note that this list may not be complete or exhaustive as only those values that are
mentioned in the DOM specifications published to date have been included:

String Version Feature described

CSS 2.0 DOM level 2 CSS support
CSS2 2.0 DOM level support for CSS extended interfaces
Events 2.0 DOM level 2 event model
HTML 1.0 DOM level 1 HTML model
HTML 2.0 DOM level 2 HTML model
HTMLEvents 2.0 DOM level 2 HTML event support
MouseEvents 2.0 DOM level 2 mouse event support (part of Events)
MutationEvents 2.0 DOM level 2 mutation event support (part of Events)
Range 2.0 DOM level 2 text range module
StyleSheets 2.0 DOM level 2 StyleSheets module
Traversal 2.0 DOM level 2 document traversal module
UIEvents 2.0 DOM level 2 user interface event support (part of Events)
Views 2.0 DOM level 2 views module
XML 1.0 DOM level 1 XML extended interfaces
XML 2.0 DOM level 2 XML extended interfaces

See also: Event object, MouseEvent object, MutationEvent object,
UIEvent object

I – Implementation-defined behavior (Definition)

1107

Implementation-defined behavior (Definition)
Correct behavior that is specific to a particular implementation.

Some behavior falls outside the ECMAScript standard but is nevertheless correct. Implementers
should try to adhere to the spirit of the standard as far as possible. If other standards are built into
the implementation (such as DOM for example), the standards working groups generally try to
make the standards interoperable, and this helps to make sure that an implementation can support
them both easily.

It is important that the implementers properly document any implementation specific behavior.

See also: Behavior, Host environment, Host object, Implementation-supplied
code, Implementation-supplied function

Implementation-supplied code (Definition)
Script source that is provided by the implementation.

Availability: ECMAScript edition – 2

The implementation-supplied code is provided by the hosting environment when it creates an
implementation defined function.

As the function is created, the hosting environment may or may not additionally provide a formal
parameter list for the function.

On initialization, the scope chain is set up to contain the activation object as its first element.

The caller provides this value, but in some situations the value null may be passed. In that case,
the global object will be used in its place.

The ImplicitThis and ImplicitParents attributes affect the way that other lists of objects are
attached to the scope chain. They interact to some extent as illustrated in this table:

ImplicitThis ImplicitParents First item Second item Third item Fourth item

no no activation
object

global object - -

no yes activation
object

list of objects
provided by
this value

global object -

yes no activation
object

this value global object -

yes yes activation
object

this value list of objects
provided by
this value

global object

JavaScript Programer's Reference

1108

Finally the global object is placed in the scope chain after all other objects.

Variable instantiation is performed using the activation object as the variable object and any
initial variables are flagged with a DontDelete attribute.

See also: Executable code, Execution context, Implementation-defined behavior

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 2 – section – 10.1.2

ECMA 262 edition 2 – section – 10.1.6

ECMA 262 edition 2 – section – 10.2.4

ECMA 262 edition 3 – section – 10.1.1

ECMA 262 edition 3 – section – 10.1.2

ECMA 262 edition 3 – section – 10.1.6

Implementation-supplied function (Definition)
The script interpreter can provide functions.

Availability: ECMAScript edition – 2

Implementation supplied functions are part of the hosting implementation, although it may depend
on the core functionality of the interpreter to provide the necessary services.

The source text for an implementation supplied function is provided by the host environment. The
mechanisms by which they are created is host dependent.

The functions created by the implementation may have any combination of ImplicitThis and
ImplicitParents attributes. These control the way that the scope chain is set up when the
function is initialized. Note that these are function object attributes and notProperty attributes.
Depending on the host implementation you may or may not have access to these attributes to be
able to define their settings.

See also: Function object, function(...) ..., Implementation-defined behavior,
Scope chain

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 3 – section – 10.1.1

I – implements (Reserved word)

1109

implements (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Implicit conversion (Definition)
Type conversions that happen automatically.

In JavaScript, the type of a value may be promoted or demoted (coerced) from one kind to another
according to the context in which it is used.

A number becomes a string if it is used in a string concatenation.

A string becomes a number if it contains a numeric value and if it is used in an arithmetic expression.

This happens automatically as expressions are evaluated.

The specific behavior depends on the data type of the value at the time the expression is invoked. It
also depends on the type of expression being invoked.

This also affects the values yielded by expressions when they are used as operands in other
expressions. In this case the value is an ephemeral item not stored in a variable nor in a visible
container that the script can access, nevertheless, it behaves as any other value would.

The result of a function call may be affected in the same way when it is used in an expression.

Refer to the descriptions of each of the primitive value types for details of the result of a type
conversion on a value of that type.

See also: Array(), Boolean literal, Boolean(), Cast operator, Date(), Function(), Number(),
Numeric literal, Object(), String literal, String(), ToBoolean, ToInt32, ToInteger,
ToNumber, ToObject, ToPrimitive, ToString, ToUint16, ToUint32

ImplicitParents (Attribute)
An internal attribute of a function object referred to by an object property.

Availability: ECMAScript edition – 2

JavaScript Programer's Reference

1110

This internal attribute controls the way that the scope chain might be modified when an
implementation defined function is being executed. If this attribute is set, then the list of objects
defined by the 'this' value will be added to the scope chain after the implementation supplied
activation object.

The difference between the behavior of the ImplicitParents and the ImplicitThis internal
attributes is quite subtle and you should consult and fully understand the ECMA standard as it
relates to them.

See also: ImplicitThis

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 2 – section – 10.2.4

ImplicitThis (Attribute)
An internal Function object property.

Availability: ECMAScript edition – 2

This internal attribute controls the way that the scope chain might be modified when an
implementation defined function is being executed. If this attribute is set, then the 'this' value
will be added to the scope chain after the implementation supplied activation object.

The difference between the behavior of the ImplicitParents and the ImplicitThis internal
attributes is quite subtle, and you should consult and fully understand the ECMA standard as it
relates to them.

See also: ImplicitParents

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 2 – section – 10.2.4

import (Statement)
Import some properties that have been exported from another execution context.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

I – in (Operator/logical)

1111

- import anObject.aFunction;
JavaScript syntax:

- import anObject.aProperty;

aFunction A function object to imprt
anObject An object that is exporting some property values

Argument list:

aProperty A property value to import

ECMAScript edition 2 suggests this is a future extension. As of the third edition of the ECMAScript
standard it is still denoted as a reserved word.

Navigator 4 anticipates that a future standard will endorse this capability and provides it anyway.

A layer might import a function exported by another layer so that they can exchange values or
operate on one another.

The imported property name can include the wildcard asterisk character to match several properties.

Warnings:
❑ This only works in Netscape 4 when the LANGUAGE attribute is set to "JavaScript1.2". Using

import will affect the behavior of the == and != operators as well.

❑ This can affect the security policy regarding the "same-signer" trustworthiness of a page.

See also: export, Same origin, Signed scripts

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

in (Operator/logical)
Test for the existence of a property in an object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - aProperty in anObject

Argument list: aProperty A specific property to test for the existence of

The object is examined to see if the property exists. If it does, then a Boolean true value is
returned, otherwise the expression returns false.

JavaScript Programer's Reference

1112

This might be useful as a work-around for when you need to test for the existence of a property but
to do so by referring to it directly might cause a run-time error.

The logical operator yields true if the property exists in the object and false if the property is
not available.

Warnings:
❑ This is not available for use server-side with Netscape Enterprise Server 3.

Cross-references:
ECMA 262 edition 3 – section – 11.8.7

in ... (Keyword)
Part of the for ... in code execution mechanism.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

JavaScript syntax: - for(aVariable in anObject)
{ someCode }

anObject An object to be examined for properties.
aVariable A variable to store each enumerated property

name in

Argument list:

someCode Some script source to execute for each enumeration

See also: in, for(... in ...) ...

Cross-references:
ECMA 262 edition 2 – section – 12.6.3

ECMA 262 edition 3 – section – 11.8.7

In leap year (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

It is useful to know whether you are in a leap year. ECMA compliant implementations use an
extended Gregorian system to compute dates and can compute leap year flag values internally. This
facility may not be available within scripts in all implementations. It can be simulated however.

I – In leap year (Time calculation)

1113

ECMA compliant implementations use an extended Gregorian system to map a day number to a
year number and to determine the month and date within that year. In this system, leap years are
summarized thus:

DaysInYear(y) =

365 if ((y modulo 4) != 0)

366 if ((y modulo 4) == 0) and ((y modulo 100) != 0)

365 if ((y modulo 4) == 0) and ((y modulo 400) != 0)

366 if ((y modulo 400) == 0)

All non-leap-years years have 365 days with the usual number of days in each month. Leap years
have an extra day in February. The calculation shown below uses known leap years and non-leap
years to adjust the day numbers and yield the day number of the first day of the given year and
then use that to work out the time in milliseconds when the year started:

DayFromYear(y) =

365 * (y – 1970) +

floor((y – 1969) / 4) -

floor((y – 1901) / 100) +

floor((y – 1601) / 400)

msPerDay = 86400000

TimeFromYear(y) = msPerDay * DayFromYear(y)

YearFromTime(t) = The largest integer y to make TimeFromYear(y) less than or equal
to t.

This leap year method would yield a 1 for years that are leap years and 0 for the others:

InLeapYear(y) = 0 if DaysInYear(y) == 365

= 1 if DaysInYear(y) == 366

To use a time value instead of a year number, the function can be modified like this:

InLeapYear(t) = 0 if DaysInYear(YearFromTime(t)) == 365

= 1 if DaysInYear(YearFromTime(t)) == 366

JavaScript Programer's Reference

1114

Example code:
// Test for leap year
document.write("<TABLE BORDER=1>");
for(ii=1980; ii<2009; ii++)
{
 document.write("<TR><TD>");
 document.write(ii);
 document.write("</TD><TD>");
 document.write(inLeapYear(ii));
 document.write("</TD></TR>");
}
document.write("</TABLE>");

// Flag a leap year with a Boolean value
function inLeapYear(aYear)
{
 if((aYear % 4) != 0)
 {
 return false;
 }

 if(((aYear % 100) != 0) ||
 ((aYear % 400) == 0))
 {
 return true;
 }

 return false;
}

See also: Day from year, Days in year, Time range, Year from time, Year number

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.3

ECMA 262 edition 3 – section – 15.9.1.3

Included JavaScript files (Definition)
The technique of including JavaScript files from external locations.

Refer to:
<SCRIPT SRC="...">

I – Increment value (++) (Operator/postfix)

1115

Increment value (++) (Operator/postfix)
Pre or post incrementing operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

- ++anOperand
JavaScript syntax:

- anOperand++

Argument list: anOperand A numeric value that can be incremented

The operand is incremented by one.

A prefixing incrementor will add 1 to the operand value before it is used in an expression.

A post-fixing incrementor will add 1 to the operand after it is used in an expression.

Be careful how you use this pre/post placement as you can easily generate 'off by one' errors in
your algorithms by placing the operator on the wrong side of the operand.

This operator is more or less functionally equivalent to:

anOperand += 1

which is equivalent to:

anOperand = anOperand + 1

See also: Add then assign (+=), Additive expression, Additive operator,
Decrement value (--), Postfix expression, Postfix increment (++),
Prefix expression

Cross-references:
ECMA 262 edition 2 – section – 11.3.1

ECMA 262 edition 3 – section – 11.3.2

JavaScript Programer's Reference

1116

Infinity (Constant/static)
A literal constant whose type is a built in primitive value.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: Number primitive

JavaScript syntax: - Infinity

The primitive value Infinity represents the positive infinite number value.

In JavaScript you can use the values positive infinity and negative infinity. They make reference to
a global special variable called Infinity, and you can place an optional unary plus or unary minus
in front to yield the positive and negative extremes.

If you are in an environment that does not have the Infinity value implemented, then you may
be able to create one yourself like this:

var Infinity = 1e300 * 1e300;

You can check for infinity values with Number.POSITIVE_INFINITY and
Number.NEGATIVE_INFINITY. They should be identical to Infinity and -Infinity which are
properties of the Global object.

Note that although the type of result when testing the value Infinity or the copies available from
the Number object is number, the value will print as "Inf" when displayed with a
document.write() method.

Warnings:
❑ This constant is available as a property of the global object in MSIE version 4 but not in Netscape 4.

❑ This is not available for use server-side with Netscape Enterprise Server 3.

❑ Note that you can assign a new value to the Infinity property on some browsers. This is
somewhat dangerous and may cause unpredictable results later on.

See also: Arithmetic constant, Exception, Global object, Global special
variable, isFinite(), NaN, Number, Number,
Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY,
Range error, Special number values, Value property, Zero value

Property attributes:
DontEnum.

I – Inheritance (Definition)

1117

Cross-references:
ECMA 262 edition 2 – section – 4.3.22

ECMA 262 edition 2 – section – 15.1.1.2

ECMA 262 edition 3 – section – 4.3.22

ECMA 262 edition 3 – section – 15.1.1.2

Wrox Instant JavaScript – page – 14

Inheritance (Definition)
Inheritance is provided through a prototype chain.

Availability: ECMAScript edition – 2

Inheritance in JavaScript is implemented by means of a chain of prototypes that link upwards from
child to parent until a null reference is encountered.

String prototype

Object prototype

null

Number prototype

A number object A number object An Object objectA string objectA string object

See also: Prototype Based Inheritance

Cross-references:
ECMA 262 edition 2 – section – 4.2.1

ECMA 262 edition 3 – section – 4.2.1

JavaScript Programer's Reference

1118

Initialization (Definition)
Setting a variable to its initial condition.

Initialization code is very similar to assignment statements in the main body of the code. There is a
slight difference in that the assignment takes place before any code is executed.

If variables are not initialized they will contain the value undefined.

The initialization happens when the variable is declared using the var keyword.

Objects are initialized when they are constructed. This is a somewhat different process to that of
initializing a variable.

If a variable is initialized to equal an object, it is really a reference to that object and not the object
itself that gets stored in the variable.

See also: Constant expression, Declaration, var

Inline script (Definition)
Code that is embedded in a page or executed during page loading.

Strictly speaking, inline code is code that is embedded into the page in some enclosing
<SCRIPT></SCRIPT> tags. However, some code can be included from an external file using the
SRC attribute. This code is not inline code because it no longer lives in the page. However, when
the page is loaded, it executed inline as if it had been part of the page all the time.

You may find yourself arguing over the fine points of whether included code is inline code, but to
the browser it simply does not matter.

See also: <SCRIPT ARCHIVE="...">, <SCRIPT SRC="...">

Cross-references:
Wrox Instant JavaScript – page – 43

Inline tags (Definition)
An inline element can be placed anywhere inside a line of text.

An inline tag does not cause a line break in the way that a block level tag does. Inline tags can be
placed at the start, end or in the middle of the line. They may cause the line spacing to adjust to
accommodate them if they are particularly high.

I – innerHeight (Property)

1119

Here is a list of inline tags:

❑ <A>

❑

❑ <I>

❑

❑

❑

❑ <TT>

Some block level tags can appear to be inline tags if they control the alignment and text flow
around them in such a way as to clear the alignment at one or other side.

Layers complicate things – they can make any block level tag appear to be an inline tag, however,
positioning and text flow on separate layers is difficult to control effectively.

innerHeight (Property)
An alias for the window.innerHeight property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

- innerHeight
JavaScript syntax:

- myWindow.innerHeight

innerWidth

innerHeight

Refer to:
Window.innerHeight

JavaScript Programer's Reference

1120

innerWidth (Property)
An alias for the window.innerWidth property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

- innerWidth
JavaScript syntax:

- myWindow.innerWidth

innerWidth

innerHeight

Refer to:
Window.innerWidth

Input event (Definition)
Another name for a raw input event. These are sometimes called HTML control events.

See also: onBlur, onChange, onFocus, onReset, onSelect,
onSelectStart, onSubmit, Event propagation

Input object (Object/DOM)
Another name for a FormElement object.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Inherits from: Element object

I – Input object (Object/DOM)

1121

- myInput = myDocument.aFormName.anElementName

- myInput =
myDocument.aFormName.elements[anItemIndex]

IE myInput = myDocument.all.anElementID

IE myInput = myDocument.all.tags("INPUT")[anIndex]

IE myInput = myDocument.all[aName]

- myInput =
myDocument.forms[aFormIndex].anElementName

- myInput = myDocument.forms[aFormIndex].elements
[anItemIndex]

- myInput = myDocument.getElementById(anElementID)

- myInput =
myDocument.getElementsByName(aName)[anIndex]

- myInput = myInputArray[aName]

- myInput = myInputArray[anIndex]

JavaScript syntax:

- myInput = myDocument.getElementsByTagName("INPUT")
[anIndex]

HTML syntax: <INPUT TYPE="aType">

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms collection

Object properties:
accept, accessKey, align, alt, checked, dataFld,
dataFormatAs, dataSrc, defaultChecked, defaultSelected,
defaultValue, disabled, form, length, maxLength, name,
readOnly, recordNumber, selected, selectedIndex, size,
src, status, tabIndex, type, value

Object methods:
blur(), click(), createTextRange(), focus(),
handleEvent(), select()

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onClick, onDblClick, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onRowEnter,
onRowExit, onSelect

This is a generic description of a form element object. The object will really be a concrete
manifestation of a particular class, but is available generally as an item in the elements array that
belongs to the form.

We have tried to conceive a general model of the object relationships in a browser, a difficult
task – we document a general purpose class referred to as an Element object. Most displayable
items in a document that are instantiated by an HTML tag can be considered to be sub-classes
of the Element object.

Input objects, collectively, are a sub-class of the Element object class so to avoid over-duplicating
the same coverage, properties, methods, events and collections that are specific to Input objects
are discussed here and are omitted from the discussion topics relating to the Element object. They
are listed in the property, method, collection and event summary for the Element object.

JavaScript Programer's Reference

1122

Likewise, under the Input object, those properties, method, collections and events that apply
generally to all kinds of Input objects are documented here, but those that are specific to only a
particular kind of Input object sub-class are covered under specific topics relating to that class.

Some properties and methods of the Input objects and its specific sub-classes are platform specific.
The dataFld, dataSrc and dataFormatAs properties are only available in MSIE. Assigning event
handlers to onevent... properties may also support different event sets in each browser platform.

MSIE supports an INPUT object class rather than an Input object class.

Object

Element

Input

Checkbox RadioButton TextCell etc

Warnings:
❑ Note that on MSIE, Input objects are actually INPUT objects because MSIE follows a general rule of

naming object classes after the capitalised name of the HTML tag that instantiates them.

❑ Beware that although a small sub-set of the complete range of properties and methods are supported
on all browsers, there are many properties and methods that are only available on one browser or
the other.

See also: FIELDSET object, ISINDEX object, Label object, Legend object

Property JavaScript JScript N IE Opera DOM HTML Notes

accept 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Table continued on following page

I – Input object (Object/DOM)

1123

Property JavaScript JScript N IE Opera DOM HTML Notes

alt 1.5 + 3.0 + 6.0 + 3.02 + - 1 + - -
checked 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
dataFld - 3.0 + - 4.0 + - - - -
dataFormatAs - 3.0 + - 4.0 + - - - -
dataSrc - 3.0 + - 4.0 + - - - -
defaultChecked 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
defaultSelected 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - Warning
defaultValue 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - ReadOnly
disabled 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
form 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - ReadOnly
length 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - Warning
maxLength 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
name 1.5 + 5.5 + 6.0 + 5.5 + 3.0 + 1 + - -
readOnly 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
recordNumber - 3.0 + - 4.0 + - - - ReadOnly
selected 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - Warning
selectedIndex 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - Warning
size 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - -
src 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
status 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - Warning
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
type 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 1 + - ReadOnly
value 1.5 + 1.0 + 6.0 + 3.02 + 3.0 + 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

blur() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
click() 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + 1 + - -
create
TextRange()

 - 3.0 + - 4.0 + - - - -

focus() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
handleEvent() 1.2 + - 4.0 + - - - - -
select() 1.1 + 3.0 + 3.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - ?
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -

Table continued on following page

JavaScript Programer's Reference

1124

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelect 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -

Inheritance chain:
Element object, Node object

Input.accept (Property)
Defines an acceptable MIME type to be submitted to the server.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myInput.accept

Refer to:
BUTTON.accept

I – Input.accessKey (Property)

1125

Input.accessKey (Property)
A key that needs to be pressed before the input object will respond to data entry.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myInputObject.accessKey

This is an MSIE extension that allows the input elements to be deadlocked unless a certain key is held
down. For some input elements, this key is the one that selects the item, as is the case with the checkbox.

See also: ! object, Anchor object, Applet object, Area object, BODY
object, Element object, Embed object, FIELDSET object, Label
object, Legend object, MARQUEE object, OBJECT object, TBODY
object, TD object

Input.align (Property)
The alignment of the paragraph object with respect to its parent object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myInput.align

Input.alt (Property)
An alternative text, used when an image is defined as an input item.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 3.02
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myInput.alt

JavaScript Programer's Reference

1126

See also: BUTTON.alt, IMG.alt

Input.blur() (Method)
Removes input focus from the input element.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myInputObject.blur()

This will trigger the Blur event handler function attached to the onblur property of the object.

See also: Input.focus(), onBlur, onFocus, Window.blur(),
Window.focus()

Input.checked (Property)
The state of the button is returned by this property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myInput.checked

See also: Checkbox.checked, RadioButton.checked

I – Input.click() (Method)

1127

Input.click() (Method)
Sends an artificial mouse click event to the input element.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myInputObject.click()

This will trigger the Click event handler function attached to the onClick property of the object.

See also: onClick

Input.createTextRange() (Method)
Used in MSIE for creating a text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextRange object

JavaScript syntax: IE myInputObject.createTextRange()

This method should only be used if the receiving object responds true to its isTextEdit
property request.

See also: Element.isTextEdit, TextRange object

Input.dataFld (Property)
This binds the input object to a remote data source in MSIE.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myInputObject.dataFld

This is part of the MSIE data binding mechanism that associates a column name in the data source
with the value property of an Input object. You must also set the dataSrc property for the object.
Normally, both the dataFld and dataSrc values would be defined with the DATAFLD="..."
and DATASRC="..." HTML tag attributes in the document source.

JavaScript Programer's Reference

1128

Note that the value is case sensitive and must refer to a column that exists within the data source.

Setting both the dataFld and dataSrc properties to an empty string will disconnect the element
from the database.

Input.dataFormatAs (Property)
Indicates whether data loaded from the database should be treated as text or HTML.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myInputObject.dataFormatAs

This property can legally only contain one of two values:

❑ HTML

❑ text

Input.dataSrc (Property)
The name of a remote ODBC data source is stored in this property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myInputObject.dataSrc

This is part of the MSIE data binding support. It contains the name of an ODBC data source (which
might be any kind of SQL database that supports such an adapter). This data source is then
associated with the element and various columns of it may provide the values of different element
objects by means of their dataFld property.

Normally, both the dataFld and dataSrc values would be defined with the DATAFLD="..."
and DATASRC="..." HTML tag attributes in the document source.

Setting both the dataFld and dataSrc properties to an empty string will disconnect the element
from the database.

I – Input.defaultChecked (Property)

1129

Input.defaultChecked (Property)
The default checked state for a radio button or checkbox in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myInput.defaultChecked

See also: Checkbox.defaultChecked, RadioButton.defaultChecked

Input.defaultValue (Property)
The default value of the input object when the page was loaded.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myInputObject.defaultValue

HTML syntax: <INPUT VALUE="aValue">

Argument list: aValue A value string for the input element

This is the value of the Input element originally furnished by the VALUE="..." HTML tag
attribute when the page was first loaded. You cannot change this value and it is provided so that a
JavaScript can restore the default value or test that the current value is the same or different to it.

Property attributes:
ReadOnly.

JavaScript Programer's Reference

1130

Input.disabled (Property)
Activates and deactivates the input element within the form.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myInputObject.disabled

If this value is set true, then the input element can no longer receive focus or be interacted with.
It will also no longer be submitted with the other input elements when the form is submitted back
to the server.

Setting this value to false renders the input element active again.

See also: TextCell.readOnly

Input.focus() (Method)
Brings input focus back to the input element.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myInputObject.focus()

The receiving Input element will receive a Focus event trigger and execute its function referred to
by the onfocus property.

The element that previously had focus (if any element did) will receive a Blur event trigger.

See also: Input.blur(), onBlur, onFocus, Window.blur(),
Window.focus()

I – Input.form (Property)

1131

Input.form (Property)
The form object that the input element belongs to.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Form object

JavaScript syntax: - myInputObject.form

Input elements must belong to a containing form. The form is the next outermost <FORM> tag
(although <FORM> tags should not be nested). This is represented by a Form object (or a FORM
object in MSIE).

See also: Form object

Property attributes:
ReadOnly.

Input.handleEvent() (Method)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myInputObject.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

On receipt of a call to this method, the input object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent()

JavaScript Programer's Reference

1132

Input.maxLength (Property)
The maximum length allowed for an input entry field.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myInput.maxLength

This defines the maximum number of characters that are allowed to be entered into the input text
field. The browsers differ in how they handle this value. Some will warn the user with a beep or
flash on the screen, others simply stop accepting keystrokes when this number of characters have
been entered.

See also: Password.maxLength, TextCell.maxLength

Input.name (Property)
This corresponds to the NAME attribute of the <INPUT> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myInputObject.name

HTML syntax: <INPUT NAME="aName">

Argument list: aName A name for the input element

Objects are identified either by the NAME="..." HTML tag attribute or by the ID="..." HTML
tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

See also: BUTTON.name

I – Input.onevent (Property)

1133

Input.onevent (Property)
Input objects support a variety of different events.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Event handler

JavaScript syntax: - myInputObject.onevent

Although this property is named onevent, there is actually no such property. All event handlers
for input objects have names that begin with the 'on' prefix. The name then describes the event.

The properties contain references to a handler function that is invoked for each kind of event. Events
that are not handled are represented by a null value in the corresponding handler property.

The event model is different for each browser, and the way that events are propagated is different
as well. As long as you define only a single handler and keep the event trapping simple, both
browsers behave similarly enough that you will be able to realize a portable script implementation.

Note that the event model undergoes a significant revision with the introduction of DOM level 2
capabilities which are currently provided in the new Netscape 6.0 browser.

Refer to the topic describing each kind of Input object sub-class for details of the events that this
can handle.

Input.readOnly (Property)
Set to true if the input text field cannot be changed.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myInput.readOnly

The value of the input text field is defined but cannot be changed by the user.

Do not confuse this with the ReadOnly internal attribute that controls whether an object property
value can be changed.

See also: Password.readOnly, ReadOnly, TEXTAREA.readOnly,
TextCell.readOnly

JavaScript Programer's Reference

1134

Input.recordNumber (Property)
The record number within the data set that created the input element's content.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myInputObject.recordNumber

This is a property that is part of the MSIE data binding support. It contains an integer value that is
the record number within the data set that created this object.

This is useful when you are building pages with ASP and Active Data Objects (ADO).

See also: Active Server Pages, ADO

Property attributes:
ReadOnly.

Input.select() (Method)
Triggers a Select event on an input object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - myInputObject.select()

If the Input object is a FileUpload, this selects all the text in the FileUpload object so that it
can be cut or copied by the user if necessary or used as TextRange and have a command executed
on it. It also triggers a Select event.

See also: FileUpload.select(), OptionsArray.select(),
Password.select(), TEXTAREA.select(),
TextCell.select()

I – Input.size (Property)

1135

Input.size (Property)
Returns the size of the file to be uploaded when the Input object represents a file upload.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myInput.size

It may be important to limit the size of files being uploaded to the server.

It is very possible that vindictive users may use this as an opportunity to try and crash your server
or deny its availability to other users by uploading massive files to it.

In addition, there may be limits you want to impose as a courtesy to the network managers who
run the LANs and WANs where your users will be browsing. Allowing the user to upload
unnecessarily large files will saturate their network as well as your server.

By testing this property, you can impose limits of acceptability on file uploads.

See also: FileUpload.size, Password.size, TextCell.size

Input.src (Property)
The URL where the image is located when an input object represents a clickable image.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myInput.src

Refer to:
Image.src

JavaScript Programer's Reference

1136

Input.tabIndex (Property)
A control of where the form input element appears in the tabbing order of the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myInputObject.tabIndex

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms. Pressing the [tab] key moves from one
form element to the next according to the cascaded tabbing order defined by building a tree-like
structure with the tab index values.

Input.type (Property)
The type of a form input element.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myInputObject.type

HTML syntax: <INPUT TYPE="...">

The following values can be assigned to the type attribute:

❑ button

❑ checkbox

❑ file

❑ hidden

❑ image

❑ password

❑ radio

❑ reset

❑ submit

❑ text

❑ textarea

I – Input.value (Property)

1137

The file value really represents a file-upload.

These values can be used in the type property of a Select object even though it is not derived
from an Input object:

❑ select-multiple

❑ select-one

For images, the description of the Input-type in MSIE and Netscape differ because each browser
uses a different object class and supports a different set of methods, properties and events.

Refer to the IMG object for MSIE and the Image object for Netscape.

DOM level 2 specifies that this property should not be read-only. This implies that DOM level 2
allows for the type of an input object to change. How the browsers cope with this, given that some
of them create objects of specific classes for each type, will be interesting to see.

See also: Button.type, BUTTON.type, Checkbox.type, File.Type,
FileUpload.type, Hidden.type, Image object,
Password.type, RadioButton.type, ResetButton.type,
selection.type, SubmitButton.type, TEXTAREA.type,
TextCell.type

Property attributes:
ReadOnly.

Input.value (Property)
The value associated with the input element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 1.0
Internet Explorer – 3.02
Netscape – 6.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myInputObject.value

HTML syntax: <INPUT VALUE="...">

When the input element is a button, this will be the legend text displayed in the button.

When it is a hidden field, it is the value carried in the hidden field and back to the server again on
submitting the form.

See also: Button.value, BUTTON.value, Checkbox.value,
FileUpload.value, Hidden.value, Option.value,
Password.value, RadioButton.value,
ResetButton.value, Select.value,
SubmitButton.value, TEXTAREA.value, TextCell.value

JavaScript Programer's Reference

1138

Input-output (Definition)
Reading data in and writing data out.

JavaScript was first developed for use in web browsers. Its input and output capabilities in that
context are somewhat limited, this mainly being due to the security considerations of allowing a
third party to run a script on your computer.

In a web browser implementation, the I/O is limited to being able to access form data, the inner
text or HTML of document objects, or perform document writes.

When JavaScript is used server-side, or as a general purpose scripting language for automation,
then the implementation adds much more sophisticated I/O capabilities. For example, ScriptEase
adds many file and stream based I/O capabilities found in the C language.

See also: Debugging – client side, Debugging – server side, Document.write(),
Document.writeln(), Error handling

Cross-references:
Wrox Instant JavaScript – page – 13

InputArray object (Object/browser)
A collection of identically named input elements.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Inherits from: Collection object

- myInputArray =
myDocument.aFormName.anElementName

IE myInputArray = myDocument.all[aName]

- myInputArray = myDocument.forms[aFormIndex]
.anElementName

- myInputArray = myDocument.getElementsByName
(aName)

JavaScript syntax:

- myInputArray =
myDocument.getElementsByTagName
("INPUT")

aName An associative array reference
aFormIndex A reference to a particular form in the forms collection

Argument list:

anIndex A valid reference to an item in the collection

Object properties: length

You may encounter this if you have several Input objects with the same name. It is better to make
sure they have unique names.

I – INS object (Object/HTML)

1139

Warnings:
❑ In Netscape, this array is of the type InputArray. However, in MSIE it is an object of type

Collection. Be careful if your code depends on testing object types because you may find it
breaks when used across the two browsers.

See also: Input object

Property JavaScript JScript N IE Opera HTML Notes

length 1.2 + 3.0 + 4.0 + 4.0 + - - Warning

Inheritance chain:
Collection object

INS object (Object/HTML)
An object representing an <INS> tag in the document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE myINS = myDocument.all.anElementID

IE myINS = myDocument.all.tags("INS")[anIndex]

IE myINS = myDocument.all[aName]

- myINS = myDocument.getElementById(anElementID)

- myINS = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myINS = myDocument.getElementsByTagName("INS")
[anIndex]

HTML syntax: <INS> ... </INS>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: cite, dateTime

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

This is a means of marking a section of the page that has been inserted since the previous version of
the page. The appearance is styled to indicate the inserted text as distinct from the surrounding
text. The cite property refers to a document that describes the reason for the insertion.

JavaScript Programer's Reference

1140

The DOM level 1 specification includes this in the ModElement object functionality.

See also: DEL object, Element object, ModElement object

Property JavaScript JScript N IE Opera DOM HTML Notes

cite - 5.0 + - 5.0 + - - - -
dateTime - 5.0 + - 5.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

INS.cite (Property)
A string of characters citing the reason for the <INS> element being placed into the document.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myINS.cite

The URL of the document that describes why the text being inserted is noted in this property.

I – INS.dateTime (Property)

1141

INS.dateTime (Property)
The date and time relating to the owning <INS> element.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myINS.dateTime

This is the date and time value for when the insertion change occurred. If you are maintaining
change control down to the sub-document level in a content management system, these values can
be defined from change records in the database.

Inset() (Filter/transition)
A diagonal wipe across the image, revealing a new image.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Inset()

Instance method (Definition)
A method belonging to an instance of a class.

Refer to:
Method

Instance variable (Definition)
A variable property belonging to an instance of a class.

Refer to:
Property

JavaScript Programer's Reference

1142

instanceof (Operator/logical)
Checks to see if an object is an instance of another object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - anObject instanceof anotherObject

anObject The object to testArgument list:
anotherObject the object
to test against

-

The object referred to by the left operand is examined, and its type compared with the type of the
object on the right. The object on the right should be an object with a constructor (that is, a class
object) although this likely works with instances as well if they also have constructors inherited.

The ECMA standard (second edition) reserves this keyword for future use in anticipation of the
JavaScript 1.4 implementation. That means that a compliant implementation does not need to
support this feature.

This operator yields the true value if both objects are of the same class, otherwise it is false.

Warnings:
❑ Use with caution. Be aware that there are some bugs in the class instantiation of some objects in

Netscape and MSIE. This may always not yield true when you expect it to.

❑ This is not available for use server-side with Netscape Enterprise Server 3.

See also: Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 11.8.6

Instantiating Function (Definition)
Another name for a constructor mechanism.

Availability: ECMAScript edition – 2

I – int (Reserved word)

1143

An instantiating function is a Function object that can be used as a constructor to make new
instances of itself. These new instances are anonymous functions.

See also: Anonymous function

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 3 – section – 10.1.1

int (Reserved word)
Reserved for future language enhancements.

The provision of this reserved keyword suggests that future versions of the ECMAScript standard
may provide for a stronger data-typing model than is currently available.

This keyword also represents a Java data type and the int keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: Identifier, java.lang.Integer, JavaScript language, Lexical element, LiveConnect,
Reserved word, Type

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Integer (Definition)
A type of number value.

The inclusion of this reserved keyword in the ECMAScript standard suggests that future versions
of ECMAScript may be more strongly typed.

See also: double, float, Integer promotion, long, Math.ceil(), Math.floor(),
Number, Reserved word, short

Cross-references:
O'Reilly JavaScript Definitive Guide – page – 35

JavaScript Programer's Reference

1144

Integer arithmetic (Definition)
Arithmetic operations performed on integer values.

Arithmetic in the JavaScript interpreter is basically floating point although many values will be
integers. If a numeric value is output then it will automatically be truncated to an integer if there is
no fractional part. There are several functions and operators available for explicitly converting
floating point values to integer values:

❑ Math.abs() function

❑ Math.ceil() function

❑ Math.floor() function

❑ Math.round() function

❑ % Remainder

❑ %= Remainder and assign to an LValue

See also: Math object, Math.abs(), Math.ceil(), Math.floor(), Math.round(), Mathematics,
Remainder (%), Remainder then assign (%=)

Integer constant (Definition)
A numeric value expressed as an integer.

An integer constant is a special case of the arithmetic constant. It's values must be integers – no
decimal places.

It could be composed of several components if a constant expression is being created.

Integer constants can be defined as decimal, octal or hexadecimal values. Here are some examples:

❑ Decimal notation – myVariable = 150

❑ Hexadecimal notation – myVariable = 0xFF

❑ Octal notation – myVariable = 0377

With a little creativity in the scripting, you can assign string constants to the value of string objects,
then decode the character value to yield an integer constant:

myString = new String("A");

myVariable = myString.charCodeAt(0);

See also: Arithmetic constant, Constant, Constant expression, Conversion, Decimal value,
Hexadecimal value, Octal value, String.charCodeAt()

I – Integer promotion (Definition)

1145

Integer promotion (Definition)
The action of converting a value during expression evaluation.

Integer promotion is a concept that is used in compilers where there are many more strongly
enforced data typing rules.

All the same, JavaScript does the same thing automatically without you realizing it.

The process of promoting a value is to convert it to a higher resolution data type, so that an
expression can be evaluated in that higher data type's context without any loss of value.

For example, adding a floating point and an integer value together would be promoted to a floating
point addition. The result would stay as a floating point value. However it is conceivable that adding
an integer and two floating points together might yield a result that had a zero value fractional part.
That resulting value could then be demoted safely back to an integer with no loss of value.

That would be a value preserving demotion.

Most current implementations of JavaScript do not do a great deal of internal promotion and
demotion other than conversions between numeric values and strings. This is because the language
is currently a weakly typed language and is somewhat forgiving in the area of data types.

Many reserved words are specified by the ECMA standard. There is a comment in the standard that
allows implementations to support these reserved words. This suggests that sometime in the future
the standard may allow for more strongly typed data vales. Indeed, some implementations may
already provide that functionality and still be ECMAScript compliant.

At such a time that an implementation does more strongly type its data values, then this integer
promotion may be more visible.

See also: Conversion, Integer

Integer-value-remainder (Definition)
Integer rounding functions.

The ECMAScript standard provides several functions and operators that yield an integer value or
remainder based on a floating point value:

❑ Math.abs() function

❑ Math.ceil() function

❑ Math.floor() function

❑ Math.round() function

❑ % Remainder

❑ %= Remainder and assign to an LValue

See also: Exponent-log function, Function, function(...) ..., Math.abs(),
Math.ceil(), Math.floor(), Math.round(), Mathematics, Power function,
Remainder (%), Remainder then assign (%=), Trigonometric function

JavaScript Programer's Reference

1146

interface (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Internal function (Definition)
Internal functions are built into the language interpreter but are private.

Availability: ECMAScript edition – 2

Internal functions are built into the language interpreter.

These may also sometimes be referred to as internal methods.

A host implementation may provide additional non-ECMA compliant built-in functions by
extending the Global object and other core objects that the ECMA standard defines.

See also: Function object, Internal Method

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 3 – section – 10.1.1

Internal Method (Definition)
ECMAScript describes internal methods that are private.

Availability: ECMAScript edition – 2

Internal methods are not exposed to the programmer using ECMA compliant JavaScript. However,
some implementations may allow you to view them through a debugging interface. The reserved
words suggest that at least some of these internal methods may be made visible at a later stage of
the language development.

I – Internal Method (Definition)

1147

Run time errors may be generated due to faults in the interpreter logic trying to access internal
methods that do not exist.

Property Parameters Description

Call A list of argument values This method executes some code associated with the
object via a function call mechanism. Objects that
implement this internal method are called functions.

CanPut A property name Returns a Boolean value indicating whether you can
put values into the named property.

Class none A string value describing what kind of object this is.

Construct A list of argument values This constructs an object and is normally invoked by
the new operator. Objects that implement this
internal method are called constructors.

DefaultValue A hint value Returns a default value for the object which should
be a primitive value and not an object or a reference
to one.

Delete A property name Removes the specified property from the object.

Get A property name This method returns the value of the named
property.

HasInstance A value Returns a Boolean value indicating whether there is
an instance. This only applies to Function objects.

HasProperty A property name Returns a Boolean value indicating whether that
property is available as a member of this object.

Match A string and an index Tests for a regular expression and returns a match
result.

Prototype none Returns the prototype of this object.

Put A property name and a value This method stores the value in the named property.

Scope none A scope chain for the Function object to be
executed in.

Value none Internal state information associated with this object.

The table describes the base set of ECMA compliant internal methods. Hosted implementations
may add to these and implement special methods in any way they need to, however they are not
required to implement all of these methods.

Every object must implement the Get, Put, HasProperty, Delete and DefaultValue functions.
This also applies to host objects. Note that the DefaultValue method may for some objects
generate a runtime error.

ECMA edition 3 introduces the following internal methods/properties:

❑ HasInstance

❑ Scope

❑ Match

See also: Call, CanPut(), Construct, DefaultValue(), Delete(), Get(),
HasProperty(), Internal function, Internal Property, Object, Put()

JavaScript Programer's Reference

1148

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

Internal Property (Definition)
ECMAScript describes internal methods that are private.

Availability: ECMAScript edition – 2

Internal properties are not exposed to the programmer using ECMA compliant JavaScript.
However, some implementations may allow you to view them through a debugging interface. The
reserved words suggest that at least some of these internal properties may be made visible at a later
stage of the language development.

Run time errors may be generated due to faults in the interpreter logic trying to access internal
methods that do not exist.

Property Parameters Description

Call A list of argument values This method executes some code associated with the
object via a function call mechanism. Objects that
implement this internal method are called functions.

CanPut A property name Returns a Boolean value indicating whether you can
put values into the named property.

Class none A string value describing what kind of object this is.

Construct A list of argument values This constructs an object and is normally invoked by
the new operator. Objects that implement this internal
method are called constructors.

DefaultValue A hint value Returns a default value for the object which should be a
primitive value and not an object or a reference to one.

Delete A property name Removes the specified property from the object.

Get A property name This method returns the value of the named property.

HasInstance A value Returns a Boolean value indicating whether there is an
instance. This only applies to Function objects.

HasProperty A property name Returns a Boolean value indicating whether that
property is available as a member of this object.

Match A string and an index Tests for a regular expression and returns a match
result.

Prototype none Returns the prototype of this object.

Put A property name and a value This method stores the value in the named property.

Scope none A scope chain for the Function object to be
executed in.

Value none Internal state information associated with this object.

I – Internet Explorer (Web browser)

1149

The table describes the base set of ECMA compliant internal properties. Hosted implementations
may add to these and implement special properties in any way they need to. Host implementations
may not implement all of these properties.

Every object must implement the Class property.

The value of the Prototype property must be either an object or null. Every prototype chain
must have finite length, that is to say starting from any object, traversing the prototype chain must
ultimately yield a null value. Whether or not a native object can refer to a host object as its
prototype is implementation dependent.

ECMA edition 3 introduces the following internal methods/properties:

❑ HasInstance

❑ Scope

❑ Match

See also: Class, class, Internal Method, Object, prototype property, Value property

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

Internet Explorer (Web browser)
A Microsoft web browser product.

In this publication, we refer to this browser by the commonly used abbreviation MSIE.

Many values that MSIE exposes as JavaScript properties reflect the value of an HTML tag attribute.
Likewise, many of its special objects are counterparts to the HTML tags.

Where the information is available, the version number that objects, properties and methods
became accessible to JavaScript is indicated. In many cases, this may be a later version than when
the instantiating HTML tag or attribute was first supported by the browser.

Because the Windows platform in particular and Microsoft products in general are componentized,
the JScript interpreter can be replaced over the top of the Internet Explorer browser. This means
that you can be running a version of JScript that is later than the browser version you are using.
Scripts will work although they may not be able to exploit features of the later browser. For
example, JScript 5.5 can be installed over the top of JScript 5.0 in a version 5.0 MSIE browser.

We wrote many scripts to inspect and enumerate various properties of the objects in the MSIE and
Netscape browsers – the exposed object types and properties that were hitherto undocumented. They
may have been available in earlier versions of the browser, however, where language elements were
discovered for the first time, they are initially documented as being available from version 5 of MSIE.
A limited amount of further testing was applied where it was suspected that language elements may
have been available in earlier releases and the availability modified accordingly.

JavaScript Programer's Reference

1150

Because the MSIE browser is componentized to the extent that the JSscript interpreter is actually a
separate installation to the MSIE browser, it is very difficult to arrive at a definitive version of
JScript that correlates with a particular version of MSIE. For example, several different versions of
JScript were extant with the version 3 MSIE browser.

Perhaps this may become less important as browsers converge on a single standard benchmark of
functionality. For the time being, current practice suggests that version 4 browsers are rapidly
being taken over by version 5 MSIE browsers. Version 2 and 3 of MSIE have declined to such small
usage levels as to not require any further serious attempts to support them on new projects.

Refer to the JScript version topic for details of interpreter vs browser revisions.

Warnings:
❑ Version 3.02 has these problems with identifier names:

❑ Do not use dollar signs in identifier names.

❑ Identifier names are caseless and this version cannot tell the difference between AAA and
aaa.

See also: Browser version compatibility, Identifier, JScript version, Platform, Script execution,
Web browser

Cross-references:
Wrox Instant JavaScript – page – 14

Internet Information Server (Product)
Internet Information Server. A Microsoft server product.

Version 4 of IIS is reputed to be 100% ECMAScript compliant.

See also: Server-side JavaScript

Cross-references:
Wrox Instant JavaScript – page – 64

Interpret (Definition)
The act of parsing a JavaScript script source text.

To execute a JavaScript script source text, you first have to convert its textual representation into a
series of executable steps. This interpretation phase involves the stripping out of commented blocks
and the division of the script into tokens – each token is then evaluated and executed sequentially.

Interpretation is distinct from compiling a program. A compiler renders the interpreted code down
to a machine-readable form that can be executed directly in terms of CPU opcodes. An interpreted
program partially compiles the program to an intermediate form and may store this interpreted
data as a series of byte codes. These are then executed in a virtual machine.

I – Interval handlers (Definition)

1151

Java applets work like this and so do many JavaScript implementations although you cannot
normally store the byte-coded version of a JavaScript script. This is beginning to change however
and some interactive TV platforms are delivering byte-code forms of JavaScript sourced software to
set-top boxes. This is particularly appropriate, since the available bandwidth is much reduced
compared to web delivery and a byte-code form takes less time to transmit.

The same applies to the delivery of WMLScript code to WAP enabled mobile phones.

See also: ATVEF, DVB-MHP, Implementation, Liberate TV Navigator, OpenTV, WAP, WebTV,
WML, WMLScript

Interval handlers (Definition)
You can set event handlers to be called periodically on a regular basis.

This is a mechanism for scheduling the execution of a script at regular intervals. The interval is
specified with the setInterval() method.

See also: Window.clearInterval(), Window.setInterval()

Intrinsic events (Definition)
Those events that pertain to HTML rather than any other host-based triggers.

See also: Event, Event model

Invert() (Filter/visual)
A visual filter for inverting image colors.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter – Invert()

Invoke a function (Definition)
To execute a function when the script is running.

Refer to:
Function call

JavaScript Programer's Reference

1152

Iris() (Filter/transition)
A transition effect with the appearance of an iris opening or closing.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Iris()

isAlnum() (Simulated functionality)
Check if a character is a number or letter.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However it is useful to script developers as well,
and may be available in some implementations as an extension to the ECMA standard functionality.

This function tests to see if a character is a letter or a number. A letter is any character for which the
isAlpha() function returns true. Likewise a number is any character for which isDigit()
returns true.

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for letters and digits
function isAlnum(aChar)
{
 return (isDigit(aChar) || isAlpha(aChar));
}

// Test for digits
function isDigit(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 47) && (myCharCode < 58))
 {
 return true;
 }

 return false;
}

I – isAlpha() (Simulated functionality)

1153

// Test for letters (only good up to char 127)
function isAlpha(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if(((myCharCode > 64) && (myCharCode < 91)) ||
 ((myCharCode > 96) && (myCharCode < 123)))
 {
 return true;
 }

 return false;
}

alert(isAlnum("5"));
alert(isAlnum("a"));
alert(isAlnum("%"));

See also: Character handling, Character testing, Enquiry functions,
isAlpha(), isDigit(), isPunct(), Letter

isAlpha() (Simulated functionality)
Check if a character is a letter.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

This function tests to see if a character is a letter. It will return true for any character in the
following set:

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m

n o p q r s t u v w x y z

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for letters (only good up to char 127)
function isAlpha(aChar)
{
 myCharCode = aChar.charCodeAt(0);

JavaScript Programer's Reference

1154

 if(((myCharCode > 64) && (myCharCode < 91)) ||
 ((myCharCode > 96) && (myCharCode < 123)))
 {
 return true;
 }

 return false;
}

alert(isAlpha("a"));
alert(isAlpha("5"));

See also: Character handling, Character testing, Enquiry functions,
isAlnum(), Letter

isCtrl() (Simulated functionality)
Check if a character is a control code.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

This function tests to see if a character is a control code. It will return true for any character in the
following set:

Value Character Meaning

01 <ctrl-A> SOH

03 <ctrl-C> ETX

04 <ctrl-D> EOT

05 <ctrl-E> ENQ

06 <ctrl-F> ACK

07 <ctrl-G> BEL

08 <ctrl-H> BS

09 <ctrl-I> HT

0A <ctrl-J> LF

0B <ctrl-K> VT

0C <ctrl-L> FF

0D <ctrl-M> CR

0E <ctrl-N> SO

0F <ctrl-O> SI

10 <ctrl-P> DLE

11 <ctrl-Q> DC1

Table continued on following page

I – isCtrl() (Simulated functionality)

1155

Value Character Meaning

12 <ctrl-R> DC2

13 <ctrl-S> DC3

14 <ctrl-T> DC4

15 <ctrl-U> NAK

16 <ctrl-V> SYN

17 <ctrl-W> ETB

18 <ctrl-X> CAN

19 <ctrl-Y> EM

1A <ctrl-Z> SUB

1B <ctrl-[> ESC

1C <ctrl-\> FS

1D <ctrl-]> GS

1E <ctrl-^> RS

1F <ctrl-_> US

7F - DEL

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for control codes
function isCtrl(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if(((myCharCode > -1) && (myCharCode < 32)) ||
 ((myCharCode == 127)))
 {
 return true;
 }

 return false;
}

alert(isCtrl("\u0011"));
alert(isCtrl("a"));

See also: Character handling, Character testing, Control character, Enquiry
functions, Letter

JavaScript Programer's Reference

1156

isDigit() (Simulated functionality)
Check if a character is a digit.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However it is useful to script developers as
well and may be available in some implementations as an extension to the ECMA standard
functionality.

This function tests to see if a character is a digit. It will return true for any character in the
following set:

0 1 2 3 4 5 6 7 8 9

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for digits
function isDigit(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 47) && (myCharCode < 58))
 {
 return true;
 }

 return false;
}

alert(isDigit("a"));
alert(isDigit("3"));

See also: Character handling, Character testing, Enquiry functions,
isAlnum(), isODigit(), isXDigit(), Letter

isElementProperty() (Simulated functionality)
A function that tells you whether a property name is inherited from Element objects.

Property/method value type: Boolean primitive

This function switches according to the value of a text string that is passed in. If the string is in the
set of strings that enumerate properties that belong to an Element object then the value true will
be returned. This indicates that the property is defined in a super-class.

I – isElementProperty() (Simulated functionality)

1157

You can build property enumeration loops that test for this value to build debugging displays of
object properties that are less cluttered than simply displaying all the object properties.

The result of this method is true if the property has been inherited from the Element object
otherwise the false value is returned.

Example code:
function isElementProperty(aProperty)
{
 switch(aProperty)
 {
 case "all" :
 case "attributes" :
 case "childNodes" :
 case "children" :
 case "className" :
 case "currentStyle" :
 case "dir" :
 case "document" :
 case "filters" :
 case "firstChild" :
 case "id" :
 case "innerHTML" :
 case "innerText" :
 case "isTextEdit" :
 case "lang" :
 case "language" :
 case "lastChild" :
 case "nextSibling" :
 case "nodeName" :
 case "nodeType" :
 case "nodeValue" :
 case "offsetHeight" :
 case "offsetLeft" :
 case "offsetParent" :
 case "offsetTop" :
 case "offsetWidth" :
 case "outerHTML" :
 case "outerText" :
 case "ownerDocument" :
 case "parentNode" :
 case "parentElement" :
 case "parentTextEdit" :
 case "previousSibling" :
 case "sourceIndex" :
 case "style" :
 case "tagName" :
 case "title" :
 return true;
 }
 return false;
}

See also: Element object

JavaScript Programer's Reference

1158

isFinite() (Function/global)
Test a numeric value for infinity.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: Boolean primitive

JavaScript syntax: - isFinite(aValueToTest)

Argument list: aValueToTest A numeric value to check for validity

This is a built-in function to check for the infinity value. Because it is a member of the Global
object, and the Global object is permanently in the prototype inheritance chain, you don't need to
identify which object the function belongs to.

Applies the internal ToNumber operator to its argument, then returns true or false depending
on whether the value is a finite number or not.

The result is true for a valid and finite numeric value and false if the value is NaN or one
of the Infinities.

Warnings:
❑ This is not available for use server-side with Netscape Enterprise Server 3.

See also: Enquiry functions, Function property, Global object, Infinity,
Special type, ToNumber

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.1.2.7

ECMA 262 edition 3 – section – 15.1.2.5

isGraph() (Simulated functionality)
Check if a character is a printable glyph.

Property/method value type: Boolean primitive

I – ISINDEX object (Object/HTML)

1159

This is a function normally found in the C language. However it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

This function tests to see if a character is printable. However it does exclude the space character
from the set of valid characters that return true. It is likely that implementation provided versions
of this will only support the lower 255 characters in the Unicode character set. Some may only
support the lower 128 that correspond to the ASCII character set.

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for visibly printable characters
// (only good up to char 127)
function isGraph(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 32) && (myCharCode < 127))
 {
 return true;
 }

return false;
}

See also: Character handling, Character testing, Control character, Enquiry functions,
isPrint(), isPunct(), Letter

ISINDEX object (Object/HTML)
A deprecated object that represents the <ISINDEX> tag. Do not use this in new projects. This tag
describes text entry field with an associated prompting text.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Deprecated

Inherits from: Element object

JavaScript Programer's Reference

1160

IE myISINDEX = myDocument.all.anElementID

IE myISINDEX =
myDocument.all.tags("ISINDEX")[anIndex]

IE myISINDEX = myDocument.all[aName]

- myISINDEX =
myDocument.getElementById(anElementID)

- myISINDEX = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myISINDEX = myDocument.getElementsByTagName
("ISINDEX")[anIndex]

HTML syntax: <ISINDEX>

Object properties: prompt, form, prompt

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Warnings:
❑ This element object is deprecated as of HTML version 4.0 and should not be used for any

new projects. Refer to the <INPUT> tag and its corresponding objects for a better and more
functional replacement.

See also: Input object

Property JavaScript JScript N IE Opera DOM HTML Notes

prompt 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Deprecated
form 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly,

Deprecated
prompt 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Deprecated

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

I – ISINDEX.form (Property)

1161

Inheritance chain:
Element object, Node object

ISINDEX.form (Property)
Returns a reference to a containing Form object. If there is none, then a null is returned instead.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Deprrecated

Property/method value type: Form object

JavaScript syntax: - myISINDEX.form

Property attributes:
ReadOnly.

Refer to:
Form object

ISINDEX.prompt (Property)
A property relating to the deprecated <ISINDEX> object. Avoid the use of this object and property
in new projects. This property provides a prompting text message for the text entry field.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: - myISINDEX.prompt

Refer to:
Input object

JavaScript Programer's Reference

1162

isInNet() (Function/proxy.pac)
This is a convenience function for use with proxy.pac files.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N isInNet(aHostname, aSubNet)

aHostname A host name whose IP address is compared
with the sub-net

Argument list:

aSubNet A sub-net to test against the host IP address

This function performs a name to IP translation by means of an IP lookup. This involves connecting
to a name server and waiting for its reply. This is not something you will want to do often as it can
severely affect your performance.

Once the host IP address is known, it can be checked against the sub-net value and a true or
false value returned.

The value true is returned if the host is a valid member of the sub-net and false if it is part of
another sub-net.

See also:
FindProxyForURL(), isPlainHostName(), Proxies,
proxy.pac

Cross-references:
Wrox Instant JavaScript – page – 58

isLower() (Simulated functionality)
Check if character is lower case.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However, it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

This function will return true for any character in the following set:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

I – isNaN() (Function/global)

1163

Example code:
// Test for lowercase letters (only good up to char 127)
function isLower(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 96) && (myCharCode < 123))
 {
 return true;
 }

 return false;
}

See also: ASCII, Character handling, Character set, Character testing,
Character-case mapping, Enquiry functions, isUpper(), Letter,
Unicode

isNaN() (Function/global)
Test a numeric value for validity.

Availability: ECMAScript edition – 1
JavaScript – 1.3
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2
Netscape Enterprise Server version – 2.0

Property/method value type: Boolean primitive

JavaScript syntax: - isNaN(aValueToTest)

Argument list: aValueToTest A numeric value to be tested for validity

This is a built-in function to check for the Not-a-Number value. Because it is a member of the
Global object, and the Global object is permanently in the prototype inheritance chain, you don't
need to identify which object the function belongs to.

Applies the internal ToNumber operator to its argument and returns true or false depending on
whether the value is a number or not.

The values may not always yield the result you expect.

These all yield a false value:

❑ "4"

❑ true

❑ false

JavaScript Programer's Reference

1164

❑ 100.00

❑ Infinity

❑ null

These all yield a true value:

❑ "4A"

❑ "true"

❑ "false"

❑ undefined

The result is true for valid numeric values and false for invalid numerics.

Warnings:
❑ This is not very useful on MSIE version 3.02 since it cannot understand what a NaN is in

the first place.

❑ Although this was added to some browsers in version 1.0 of JavaScript, it was not available in all
versions of Netscape until it was added to the Unix variants for JavaScript 1.1. Most browsers being
used these days are at least version 1.1 compliant so this issue is becoming less important.

❑ Comparing the NaN value with anything using the == operator will always yield the Boolean
false value.

See also: Enquiry functions, Function property, Global object, NaN, Number, Special
type, ToNumber

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.1.2.6

ECMA 262 edition 3 – section – 15.1.2.4

Wrox Instant JavaScript – page – 15

Wrox Instant JavaScript – page – 28

ISO 3166 (Standard)
An ISO standard that identifies different countries.

The ISO 3166 standard is revised occasionally to add new country codes. The following table
summarizes the third edition of the standard. Note that some countries will have changed since
this edition:

I – ISO 3166 (Standard)

1165

Code Country

AD Andorra

AE United Arab Emirates

AF Afghanistan

AG Antingua and Barbuda

AI Anguilla

AL Albania

AN Netherlands Antilles

AO Angola

AQ Antarctica

AR Argentina

AS American Samoa

AT Austria

AU Australia

AW Aruba

BB Barbados

BD Bangladesh

BE Belgium

BF Burkina Faso

BG Bulgaria

BH Bahrain

BI Burundi

BJ Benin

BN Brunei Darussalam

BO Bolivia

BR Brazil

BS Bahamas

BT Bhutan

BU Burma

BV Bouvet Island

BW Botswana

BY Byelorussian Ssr

BZ Belize

CA Canada

CC Cocos (Keeling) Islands

CF Central African Republic

CG Congo

CH Switzerland

CI Cote D'ivoire

Table continued on following page

JavaScript Programer's Reference

1166

Code Country

CK Cook Islands

CL Chile

CM Cameroon

CN China

CO Colombia

CR Costa Rica

CS Czechoslovakia

CU Cuba

CV Cape Verde

CX Christmas Island

CY Cyprus

DD German Democratic Republic

DE Federal Republic Of Germany

DJ Djibouti

DK Denmark

DM Dominica

DO Dominican Republic

DZ Algeria

EC Ecuador

EG Egypt

EH Western Sahara

ES Spain

ET Ethiopia

FI Finland

FJ Fiji

FK Falkland Islands

FM Micronesia

FO Faroe Islands

FR France

GA Gabon

GB United Kingdom of Great Britan and Northern Ireland

GD Grenada

GF French Guiana

GH Ghana

GI Gibraltar

GL Greenland

GM Gambia

GN Guinea

Table continued on following page

I – ISO 3166 (Standard)

1167

Code Country

GP Guadaloupe

GQ Equatorial Guinea

GR Greece

GT Guatemala

GU Guam

GW Guinea-Bissau

GY Guyana

HK Hong Kong

HM Heard and Mc Donald Islands

HN Honduras

HT Haiti

HU Hungary

ID Indonesia

IE Ireland

IL Israel

IN India

IO British Indian Ocean Territory

IQ Iraq

IR Islamic Republic Of Iran

IS Iceland

IT Italy

JM Jamaica

JO Jordan

JP Japan

KE Kenya

KH Democratic Kampuchea

KI Kiribati

KM Comoros

KN St Kitts and Nevis

KP Democratic People's Republic Of Korea

KR Republic Of Korea

KW Kuwait

KY Cayman Islands

LA Lao People's Democratic Republic

LB Lebanon

LC Saint Lucia

LI Lichtenstein

LK Sri Lanka

Table continued on following page

JavaScript Programer's Reference

1168

Code Country

LR Liberia

LS Lesotho

LU Luxembourg

LY Libyan Arab Jamahiriya

MA Morocco

MC Monaco

MG Madagascar

MH Marshall Islands

ML Mali

MN Mongolia

MO Macau

MP Northern Mariana Islands

MQ Martinique

MR Mauritania

MS Montserrat

MT Malta

MU Mauritius

MV Maldives

MW Malawi

MX Mexico

MY Malaysia

MZ Mozambique

NA Namibia

NC New Caledonia

NE Niger

NF Norfolk Island

NG Nigeria

NI Nicaragua

NL Netherlands

NO Norway

NP Nepal

NR Nauru

NU Niue

NZ New Zealand

OM Oman

PA Panama

PE Peru

PF French Polynesia

Table continued on following page

I – ISO 3166 (Standard)

1169

Code Country

PG Papua New Guinea

PH Philippines

PK Pakistan

PL Poland

PM St Pierre and Miquelon

PN Pitcairn

PR Puerto Rico

PT Portugal

PW Palau

PY Paraguay

QA Qatar

RE Reunion

RO Romania

RW Rwanda

SA Saudi Arabia

SB Solomon Islands

SC Seychelles

SD Sudan

SE Sweden

SG Singapore

SH St Helena

SJ Svalbard and Jan Mayen Islands

SL Sierra Leone

SM San Marino

SN Senegal

SO Somalia

SR Suriname

ST Sao Tome and Principe

SU USSR replaced by individual country codes

SV El Salvador

SY Syrian Arab Republic

SZ Swaziland

TC Turks and Caicos Islands

TD Chad

TF French Southern Territories

TG Togo

TH Thailand

TK Tokelau

Table continued on following page

JavaScript Programer's Reference

1170

Code Country

TN Tunisia

TO Tonga

TP East Timor

TR Turkey

TT Trinidad and Tobago

TV Tuvalu

TW Taiwan

TZ United Republic Of Tanzania

UA Ukraine SSR

UG Uganda

UM United States Minor Outlying Islands

US United States of America

UY Uruguay

VA Vatican City State

VC St Vincent and The Grenadines

VE Venezuela

VG British Virgin Islands

VI Virgin Islands (US)

VN Vietnam

VU Vanuatu

WF Wallis and Futuna Islands

WS Samoa

YD Democratic Yemen

YE Yemen

YU Yugoslavia

ZA South Africa

ZM Zambia

ZR Zaire

ZW Zimbabwe

See also: Language codes, Navigator.systemLanguage,
Navigator.userLanguage

ISO 639 (Standard)
An ISO standard that defines language code values.

See also: ISO 3166, Language codes

I – isObjectEqual() (Simulated functionality)

1171

isObjectEqual() (Simulated functionality)
Compare the properties of two objects for equality.

Property/method value type: Boolean primitive

This function tests two objects for equality. This is not the same as identity. Two objects may be
deep copies of one another but still be distinctly different objects. If they have the same properties
because they are both of the same class, you can compare their enumerable properties for equality.

The example code is fairly simple and could be enhanced in several ways. For example, you should
possibly enumerate the second object as well if the first pass proves to yield a true value. This
would ensure that if the second object has additional attributes, the test will properly yield a
Boolean false result.

You could also test for object type and return false. This would allow the test to be applied to
dissimilar objects and still yield a meaningful result.

The result will be true if all enumerable properties are equal and false if any of them are not.

Example code:
// Test objects for equality
function isObjectEqual(anObject1, anObject2)
{
 for(myProp in anObject1)
 {
 if(anObject1[myProp] != anObject2[myProp])
 {
 return false;
 }
 }
 return true;
}

See also: Element.currentStyle

isODigit() (Simulated functionality)
Check if character is an octal numeral.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

JavaScript Programer's Reference

1172

This function tests to see if a character is an octal digit. It will return true for any character in the
following set:

0 1 2 3 4 5 6 7

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for octal only digits
function isODigit(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 47) && (myCharCode < 56))
 {
 return true;
 }

 return false;
}

See also: Character handling, Character testing, Enquiry functions,
isDigit(), isXDigit(), Letter

isPlainHostName() (Function/proxy.pac)
This is a convenience function for use with proxy.pac files.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: N isPlainHostName(aHostname)

Argument list: aHostname The name of a host to check

This function will check to see if the passed-in HostName parameter is just a host name on its own
or if it has a full domain specified too. This functionality can probably be simulated outside of a
proxy.pac file by testing for the existence of a full stop within the passed HostName parameter.

This function returns true if the HostName parameter contains a plain host name with no domain
specified. If the HostName parameter specifies a domain as well then this method returns false.

See also: FindProxyForURL(), isInNet(), proxy.pac

Cross-references:
Wrox Instant JavaScript – page – 58

I – isPrint() (Simulated functionality)

1173

isPrint() (Simulated functionality)
Check if a character is printable.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However, it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

This function tests to see if a character is printable. Unlike the isgraph() function, however it
does include the space character in the set of valid characters that return true. It is likely that
implementation provided versions of this will only support the lower 255 characters in the Unicode
character set. Some may only support the lower 128 that correspond to the ASCII character set.

Functionally then, it is the result of testing for space and then cascading into the isgraph() test.

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for printable characters (only good up to char 127)
function isPrint(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 31) && (myCharCode < 127))
 {
 return true;
 }

 return false;
}

See also: Character handling, Character testing, Control character, Enquiry
functions, isGraph(), Letter, Printing character

isPunct() (Simulated functionality)
Check if a character is a punctuation mark.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However, it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

A punctuation character is any character in the isGraph() set except for those in the isAlnum() set.

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

JavaScript Programer's Reference

1174

Example code:
// Test for punctuation characters
function isPunct(aChar)
{
 return (isGraph(aChar) && !(isAlnum(aChar)));
}

// Test for printable characters (only good up to char 127)
function isGraph(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 32) && (myCharCode < 127))
 {
 return true;
 }

 return false;
}

// Test for letters and digits
function isAlnum(aChar)
{
 return (isDigit(aChar) || isAlpha(aChar));
}

// Test for digits
function isDigit(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 47) && (myCharCode < 58))
 {
 return true;
 }

 return false;
}

// Test for letters (only good up to char 127)
function isAlpha(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if(((myCharCode > 64) && (myCharCode < 91)) ||
 ((myCharCode > 96) && (myCharCode < 123)))
 {
 return true;
 }
 return false;
}

See also:
Character handling, Character testing, Enquiry functions,
isAlnum(), isGraph(), Letter

I – isSpace() (Simulated functionality)

1175

isSpace() (Simulated functionality)
Check if a character is whitespace.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However, it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

Any whitespace character should return true for this function. The following character codes are
considered to be whitespace:

❑ The space character

❑ A form feed character

❑ A Newline character

❑ A carriage return

❑ A tab character

❑ A vertical tab

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for space characters
function isSpace(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if(((myCharCode > 8) && (myCharCode < 14)) ||
 (myCharCode == 32))
 {
 return true;
 }

return false;
}

See also: Character handling, Character testing, Enquiry functions, Letter

isUpper() (Simulated functionality)
Check if a character is upper case.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However, it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

JavaScript Programer's Reference

1176

This function will return true for any character in the following set:

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for upper case letters (only good up to char 127)
function isUpper(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 64) && (myCharCode < 91))
 {
 return true;
 }

 return false;
}

See also: ASCII, Character handling, Character set, Character testing,
Character-case mapping, Enquiry functions, isLower(),
Letter, Unicode

isXDigit() (Simulated functionality)
Check if character is a hexadecimal numeral.

Property/method value type: Boolean primitive

This is a function normally found in the C language. However, it is useful to script developers as well
and may be available in some implementations as an extension to the ECMA standard functionality.

This function tests to see if a character is a hexadecimal digit. It will return true for any character
in the following set:

0 1 2 3 4 5 6 7 8 9 A B C D E F

Strictly speaking, this function should be coded to be aware of locale specific issues. You may want
to take the example simulation provided here and modify it to your own needs to support that.
This is just a basic working example.

Example code:
// Test for hexadecimal digits
function isXDigit(aChar)
{
 return (isDigit(aChar) || isA2F(aChar));
}

I – Iteration statement (Definition)

1177

// Test for digits
function isDigit(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if((myCharCode > 47) && (myCharCode < 58))
 {
 return true;
 }

 return false;
}

// Test for letters A to F
function isA2F(aChar)
{
 myCharCode = aChar.charCodeAt(0);

 if(((myCharCode > 64) && (myCharCode < 71)) ||
 ((myCharCode > 96) && (myCharCode < 103)))
 {
 return true;
 }

 return false;
}

alert(isXDigit("G"));
alert(isXDigit("A"));

See also: Character handling, Character testing, Enquiry functions, isDigit(),
isODigit(), Letter

Iteration statement (Definition)
A block of repeating code – a loop.

Availability: ECMAScript edition – 2

An iteration statement executes a body of code iteratively – that is, over and over again, while a
certain condition is true or until a terminating condition becomes true.

An iteration statement consists of a header and a body. The header is a keyword and a set of
control parameters in parentheses. The body is a statement block enclosed in braces.

The following iteration statements are supported by ECMA compliant implementations:

❑ while()

❑ for ()

❑ for(... in)

All of these loop-controlling statements test the condition each time round the loop. In the case of
some iterators, the test happens before the code is executed. For others it happens after the code
has been executed.

JavaScript Programer's Reference

1178

An infinite loop is one for which the terminating condition never happens or where the iterating
condition remains true forever.

Here are some infinite loops:

for(;;){// do this forever}while(true){// do this forever}

You can break out of a loop with a break or return. The return statement should only be used when
the loop is contained in a called function body. You can call the next iteration prematurely with a
continue statement.

Warnings:
❑ That statement about enclosing code in braces sometimes elicits arguments from developers who

routinely prefer to omit braces when the code block consists of a single line.

❑ However, I stand by the assertion that putting in the braces tends to result in fewer
misunderstandings when another programmer is maintaining your source. On the whole I can see
no advantages in leaving out the enclosing braces even when the code block is a single line. It helps
to remind you that the code is part of an iteration or condition and allows you to add a second line
without worrying about the braces.

❑ In a rush to add a second line, you might very easily omit the braces. That would cause the added
line to be executed outside of the iteration loop, whether the condition matched or not. Because of
the way people indent braces it is hard to spot when this has happened.

See also:
break, continue, for(...) ..., for(... in ...) ..., return,
Statement, while(...) ...

Cross-references:
ECMA 262 edition 2 – section – 12.6

ECMA 262 edition 3 – section – 12.6

Wrox Instant JavaScript – page – 25

.jar (File extension)
Java archive file.

JavaScript include files normally have a .js file extension. In some rare cases, a .jar file may be
used. This is really a Java archive file type.

It contains a collection of .js files and is normally requested with the ARCHIVE tag attribute in the
<SCRIPT> tag.

A .jar file is a ZIP compressed archive of the .js files with a small amount of additional
information that carries a manifest. The web browser extracts the manifest so that it can then index
the archive to retrieve the items it needs. You can make a simple archive like this with a zip
compression utility (e.g. Winzip). There is nothing special about it other than making sure the
names are consistent with what you refer to from a script or HTML document.

Archives are also useful for attaching digital signatures to scripts. The web reference points to a
Netscape resource on archiving, including a link to a downloadable Signtool Archive generator tool.

See also: <SCRIPT ARCHIVE="...">, File extensions, Security policy, Web browser

Cross-references:
O'Reilly JavaScript Definitive Guide – page 390

Wrox Instant JavaScript – page 3

Web-references:
http://developer.netscape.com/software/signedobj/

J

http://developer.netscape.com/software/signedobj/

JavaScript Programmer's Reference

1180

Java (Definition)
A language developed by Sun Microsystems that is useful for building plugins for web pages.

Java applets can call JavaScript by means of the exception event mechanism.

You can also embed fragments of JavaScript inside Java applets although there are some limitations
to what you can accomplish with this.

For this to work, Java and JavaScript both have to be enabled and working. This may require some
preference setting. It also only works in Netscape for the time being.

Things are slightly different with Netscape 6.0. No longer do you get a Java VM packed and
embedded in the browser. Instead, it depends on the one you have installed in the OS. If you don't
have one installed or if Netscape can't find it, then Java won't work. There's not a great deal of help
provided on this aspect of the installation.

Once you do have it installed and working, the Java connectivity should behave as it did before.

Warnings:
❑ Writing a Java applet to handle a rollover effect is not such a challenging task as you might think,

and is one of the things that can be accomplished quite early in your career as a Java programmer.
Java is capable of much more than that, but if you are going to tackle a large Java-driven project, you
need to think it through and plan it much more carefully.

❑ Scripting in general seems to be amenable to being developed on the fly and with a minimum of
forethought and planning and it’s good for putting something together really quickly. Of course
getting good at it takes some time. Getting good at Java will probably take longer still. There's a lot
more to consider with Java (considerably more than with JavaScript) and the process of creation and
deployment is far more unwieldy than putting JavaScript in web pages.

❑ Your Java code will be far better for having thought the object model through and constructed it
carefully. JavaScript lets you get right in there and start manipulating a pretty good object model
right away. Of course there are objects already there in Java, but you do need to start building from a
lot lower down.

See also: Java exception events, JavaScript embedded in Java, Plugin object

Cross-references:
Wrox Instant JavaScript – page 56

Wrox Professional JavaScript – page 542

J – .java (File extension)

1181

.java (File extension)
Java source file.

A very obscure situation is when JavaScript is hidden inside Java source code. In that case it will be
contained in a file with a .java extension.

See also: File extensions, Web browser

Cross-references:
Wrox Instant JavaScript – page 3

Java calling JavaScript (Definition)
Java has mechanisms for calling back to JavaScript directly.

For Java to call JavaScript functionality, it needs to have access to the
netscape.javascript.JSObject class. This is a Java wrapper that encapsulates a JavaScript
object and makes it accessible to the Java environment.

Warnings:
❑ This is only available in Netscape and there is presently no equivalent capability in MSIE.

See also: JSObject object, LiveConnect, netscape.javascript.JSObject

Cross-references:
O'Reilly JavaScript Definitive Guide – page 568

Wrox Professional JavaScript – page 544

Java exception events (Definition)
Exceptions in Java applets can trigger JavaScript code in the containing web page.

A Java exception can be coupled to JavaScript handlers using the Netscape BeanConnect
technology built into Netscape 4.0 browsers.

This can be used without a great deal of effort on the part of the Java applet programmer. A Java
exception could cause a trigger for a call-back event at any time. This may be a way to develop
more sophisticated scheduling machines although if you are going to that much trouble, you might
choose to implement the bulk of your functionality in the applet itself.

However, this may yield a solution to the portability issues with media players. Given that the providers
of the different media players generally provide an API, you may be able to hide the complexity of the
different players by embedding the video inside an applet. This would allow you to normalize the
JavaScript API it presents to the outside worlds and also deal with any cross-platform problems.

JavaScript Programmer's Reference

1182

The applet becomes the player but deals with all the differences between different video players
and all the nasty cross-platform stuff gets dealt with by the JVM. It’s certainly feasible to embed
QuickTime inside Java and there also a kit for doing the same with Real Player. Windows media
player may be more tricky.

See also: Event, Java, JavaScript embedded in Java

Cross-references:
Wrox Instant JavaScript – page 56

Wrox Professional JavaScript – page 549

Java method calls (Definition)
JavaScript allows Java methods to be called natively.

Access to the methods of Java objects is very simple. They appear to be native JavaScript methods.
To all intents and purposes, they are no different to the other built-in objects such as Math,
Boolean, String, Date etc.

There is a subtle difference between the two environments in that JavaScript methods are forgiving
about the number and type of arguments whereas Java is not. There is also some ambiguity
regarding data types when calling Java methods. It is possible to overload a method in Java and
provide alternative interfaces to support different data types. JavaScript can only cope with calling
the first interface it encounters and cannot select an appropriate one based on the data type of the
method arguments.

You may be able to limit the problems here by carefully considering the data types and coercing
them in the script.

Warnings:
❑ Netscape 3.0 supported Java method calls with a special JavaMethod object that was deprecated as

of Netscape 4.0.

See also: LiveConnect

Cross-references:
Wrox Professional JavaScript – page 537

Java method data conversion (Definition)
Data types are mapped and converted between JavaScript and Java when methods are called.

When Java methods are called from JavaScript in Netscape they are translated via LiveConnect so
that the Java objects appear to be as much like JavaScript objects as possible.

J – Java to JavaScript values (Definition)

1183

When methods are called, often you want to pass some data to the method. JavaScript supports a
variety of primitive data types and more complex objects. These need to be mapped usefully to
their corresponding Java equivalent values and types. A similar thing happens when the methods
return a result value.

There is some hysteresis effect here because there are not always direct equivalents and so it is
possible for the data type to mutate across this boundary, even if the method does nothing other
than to echo an input value without modifying it.

It simplifies things a great deal to consider the input arguments and returned values as a separate
issue although many factors about the data conversion are similar. On the one hand, we are
converting JavaScript values to their nearest and most sensible Java equivalents. On the other hand,
we are converting Java values to their best possible JavaScript counterparts.

See also: Java to JavaScript values, JavaScript to Java values, LiveConnect

Java to JavaScript values (Definition)
Conversion of Java primitives and objects to JavaScript compatible types.

When a Java method returns a value to JavaScript, the Java values need to be converted to
compatible and useful data types. This is accomplished with LiveConnect in Netscape Navigator
and ActiveX in MSIE.

In some cases a single Java primitive data type will be compatible with JavaScript primitives and
objects of many different types. An example of this is the JavaScript Number primitive that will
readily accept half a dozen different Java numeric and logical types.

Some Java data types correspond exactly to a single and specific JavaScript type. Examples of this
are null, Boolean and void.

A third possibility is that many different Java object types will become a single JavaScript object
type. In fact Java objects all become a generic JavaObject.

Here is a table that summarizes the correspondence between Java and JavaScript types when converting
to Java. This would be used when passing values into methods under control of JavaScript:

Java JavaScript

boolean boolean primitive

byte number primitive

char number primitive

double number primitive

float number primitive

int number primitive

long number primitive

Table continued on following page

JavaScript Programmer's Reference

1184

Java JavaScript

null null
short number primitive
void undefined
java.lang.Boolean JavaObject object
java.lang.Character JavaObject object
java.lang.Class JavaObject object
java.lang.Double JavaObject object
java.lang.Float JavaObject object
java.lang.Integer JavaObject object
java.lang.Long JavaObject object
java.lang.String JavaObject object
All Java arrays regardless of what they contain JavaArray
netscape.javascript.JSObject generic JavaScript object
All other Java objects JavaObject object

When this happens under the control of Java, there are further limitations as to what can be
exchanged between the environments. This is discussed under the individual methods that are
affected in the JSObject description.

This table summarizes the relationships at the method return interface. JavaScript values may need
to be converted further if they are assigned to JavaScript LValues.

JavaScript objects are wrapped so that Java can access them as a
netscape.javascript.JSObject object. When they are passed back to JavaScript, the
encapsulation is removed and the intrinsic JavaScript object is accessed directly again.

Warnings:
❑ Be aware that you can lose precision when passing data into and out of a Java applet method. As

well as type conversion, value truncation may occur. You may not get out what you put in – in terms
of accuracy. An example of this is passing a number from JavaScript to a short primitive data type
inside Java and back again.

❑ JavaScript number values can interface to java.lang.Double method arguments but will be
mapped back to a JavaObject. You may need to extract the numeric value to yield a number
primitive again.

❑ Because JavaScript does not have a character data type, the Java char values will be converted to
number primitives. You will need to convert them to strings yourself by converting the character's
numeric value to a character with the String.fromCharCode() method.

❑ Although number primitives in JavaScript can convert to a java.lang.Double value, converting
back again yields a JavaObject and not a number primitive. You will need to extract the numeric
value again manually.

❑ the java.lang.String object becomes a JavaObject. This means the String and
netscape.javascript.JSObject items mutate as they pass into Java and back again. You may
need to do additional work to get the string value back out in a form that you need.

❑ All Java arrays are returned in a JavaArray object. This means that arrays of strings, numbers and
objects all appear to be the same from JavaScript and you may need to provide special code to
unwrap them properly.

J – java (Property)

1185

See also: Java method data conversion, java.lang.Boolean,
java.lang.Character, java.lang.Class,
java.lang.Double, java.lang.Float,
java.lang.Integer, java.lang.Long,
java.lang.String, JavaArray object, JavaObject object,
JavaScript to Java values, JSObject object, JSObject.call(),
JSObject.setMember(), JSObject.setSlot(),
LiveConnect, Math object, netscape.javascript.JSObject,
String.fromCharCode()

Cross-references:
Wrox Professional JavaScript – page 533

java (Property)
A short cut reference to the Packages.java object.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaPackage java

N java

N myWindow.java

N myWindow.Packages.java

JavaScript syntax:

N Packages.java

See also: java.awt, Window.java, Window.Packages

Property attributes:
ReadOnly.

Refer to:
Packages.java

java.awt (Java package)
A JavaPackage that represents the Abstract Windowing Toolkit.

Availability: JavaScript – 1.1
Netscape – 3.0

JavaScript Programmer's Reference

1186

The Abstract Windowing Toolkit is a set of Classes that provide a platform-independent way to
develop graphical user interfaces on your applets or Java applications. It was introduced quite
early on in the Java history at version 1.0 and had some major additions at Java 1.1, and it has now
been supplemented by the Swing components which override some AWT functionality but do not
render it entirely obsolete.

java.awt.Button (Java class)
A JavaClass object that represents the java.awt.Button class.

Availability: JavaScript – 1.1
Netscape – 3.0

Object methods:
action(), addNotify(), bounds(), checkImage(),
createImage(), deliverEvent(), disable(), enable(),
equals(), getBackground(), getClass(), getColorModel(),
getFont(), getFontMetrics(), getForeground(),
getGraphics(), getLabel(), getLocale(), getParent(),
getPeer(), getToolkit(), gotFocus(), hashCode(), hide(),
imageUpdate(), inside(), invalidate(), isEnabled(),
isShowing(), isValid(), isVisible(), keyDown(), keyUp(),
layout(), list(), locate(), location(), lostFocus(),
minimumSize(), mouseDown(), mouseDrag(), mouseEnter(),
mouseExit(), mouseMove(), mouseUp(), move(), nextFocus(),
notify(), notifyAll(), paint(), paintAll(), postEvent(),
preferredSize(), prepareImage(), print(), printAll(),
removeNotify(), repaint(), requestFocus(), reshape(),
resize(), setBackground(), setFont(), setForeground(),
setLabel(), setVisible(), show(), size(), toString(),
update(), validate(), wait()

This is a sub-class of the AWT Component Class. It describes a button labelled with a text legend
which the user can click on. Clicking on the button initiates an action. Each button has an action
associated with it and when it is clicked, it will generate an ActionEvent object.

Method JavaScript JScript N IE Opera Notes

action() 1.1 + - 3.0 + - - -
addNotify() 1.1 + - 3.0 + - - -
bounds() 1.1 + - 3.0 + - - -
checkImage() 1.1 + - 3.0 + - - -
createImage() 1.1 + - 3.0 + - - -
deliverEvent() 1.1 + - 3.0 + - - -
disable() 1.1 + - 3.0 + - - -
enable() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
getBackground() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
getColorModel() 1.1 + - 3.0 + - - -

Table continued on following page

J – java.awt.Button (Java class)

1187

Method JavaScript JScript N IE Opera Notes

getFont() 1.1 + - 3.0 + - - -
getFontMetrics() 1.1 + - 3.0 + - - -
getForeground() 1.1 + - 3.0 + - - -
getGraphics() 1.1 + - 3.0 + - - -
getLabel() 1.1 + - 3.0 + - - -
getLocale() 1.1 + - 3.0 + - - -
getParent() 1.1 + - 3.0 + - - -
getPeer() 1.1 + - 3.0 + - - -
getToolkit() 1.1 + - 3.0 + - - -
gotFocus() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
hide() 1.1 + - 3.0 + - - -
imageUpdate() 1.1 + - 3.0 + - - -
inside() 1.1 + - 3.0 + - - -
invalidate() 1.1 + - 3.0 + - - -
isEnabled() 1.1 + - 3.0 + - - -
isShowing() 1.1 + - 3.0 + - - -
isValid() 1.1 + - 3.0 + - - -
isVisible() 1.1 + - 3.0 + - - -
keyDown() 1.1 + - 3.0 + - - -
keyUp() 1.1 + - 3.0 + - - -
layout() 1.1 + - 3.0 + - - -
list() 1.1 + - 3.0 + - - -
locate() 1.1 + - 3.0 + - - -
location() 1.1 + - 3.0 + - - -
lostFocus() 1.1 + - 3.0 + - - -
minimumSize() 1.1 + - 3.0 + - - -
mouseDown() 1.1 + - 3.0 + - - -
mouseDrag() 1.1 + - 3.0 + - - -
mouseEnter() 1.1 + - 3.0 + - - -
mouseExit() 1.1 + - 3.0 + - - -
mouseMove() 1.1 + - 3.0 + - - -
mouseUp() 1.1 + - 3.0 + - - -
move() 1.1 + - 3.0 + - - -
nextFocus() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -

Table continued on following page

JavaScript Programmer's Reference

1188

Method JavaScript JScript N IE Opera Notes

paint() 1.1 + - 3.0 + - - -
paintAll() 1.1 + - 3.0 + - - -
postEvent() 1.1 + - 3.0 + - - -
preferredSize() 1.1 + - 3.0 + - - -
prepareImage() 1.1 + - 3.0 + - - -
print() 1.1 + - 3.0 + - - -
printAll() 1.1 + - 3.0 + - - -
removeNotify() 1.1 + - 3.0 + - - -
repaint() 1.1 + - 3.0 + - - -
requestFocus() 1.1 + - 3.0 + - - -
reshape() 1.1 + - 3.0 + - - -
resize() 1.1 + - 3.0 + - - -
setBackground() 1.1 + - 3.0 + - - -
setFont() 1.1 + - 3.0 + - - -
setForeground() 1.1 + - 3.0 + - - -
setLabel() 1.1 + - 3.0 + - - -
setVisible() 1.1 + - 3.0 + - - -
show() 1.1 + - 3.0 + - - -
size() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
update() 1.1 + - 3.0 + - - -
validate() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

java.awt.image (Java class)
A JavaClass object that represents the java.awt.image class.

Availability: JavaScript – 1.1
Netscape – 3.0

This is an abstract class provided as the super-class of all classes that describe and encapsulate
images within AWT. Because it is an abstract class, the methods are mostly place holders and will
need to be overridden in the concrete classes that are sub-classed from this class.

J – java.lang (Java package)

1189

java.lang (Java package)
The Java language package.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaPackage object

JavaScript syntax: N java.lang

This JavaPackage provides the main language support classes for Java. There are classes for
handling variables, multi-threaded programming, system classes, string-handling and
error/exception handler support.

It’s not likely you would want to delve deeply into these issues, but occasionally you may need to
enquire of some readable attributes of a Java applet and this package may help.

java.lang.Boolean (Java class)
The Java Boolean class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class properties: FALSE, TRUE, TYPE

Class methods: getBoolean(), valueOf()

Object methods:
booleanValue(), equals(), getClass(),
hashCode(), notify(), notifyAll(), toString(),
wait()

Support for Boolean primitives in Java.

Values of this type are visible to JavaScript as a JavaObject, which encapsulates the Java created value.

See also: boolean, Java to JavaScript values, JavaScript to Java values

Method JavaScript JScript N IE Opera Notes

booleanValue() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

JavaScript Programmer's Reference

1190

java.lang.Character (Java class)
The Java Character class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class properties:
COMBINING_SPACING_MARK, CONNECTOR_PUNCTUATION,
CONTROL, CURRENCY_SYMBOL, DASH_PUNCTUATION,
DECIMAL_DIGIT_NUMBER, ENCLOSING_MARK,
END_PUNCTUATION, FORMAT, LETTER_NUMBER,
LINE_SEPARATOR, LOWERCASE_LETTER, MATH_SYMBOL,
MAX_RADIX, MAX_VALUE, MIN_RADIX, MIN_VALUE,
MODIFIER_LETTER, MODIFIER_SYMBOL,
NON_SPACING_MARK, OTHER_LETTER, OTHER_NUMBER,
OTHER_PUNCTUATION, OTHER_SYMBOL,
PARAGRAPH_SEPARATOR, PRIVATE_USE,
SPACE_SEPARATOR, START_PUNCTUATION, SURROGATE,
TITLECASE_LETTER, TYPE, UNASSIGNED,
UPPERCASE_LETTER

Class methods:
digit(), forDigit(), getNumericValue(),
getType(), isDefined(), isDigit(),
isIdentifierIgnorable(), isISOControl(),
isJavaIdentifierPart(),
isJavaIdentifierStart(), isJavaLetter(),
isJavaLetterOrDigit(), isLetter(),
isLetterOrDigit(), isLowerCase(), isSpace(),
isSpaceChar(), isTitleCase(),
isUnicodeIdentifierPart(),
isUnicodeIdentifierStart(), isUpperCase(),
isWhitespace(), toLowerCase(), toTitleCase(),
toUpperCase()

Object methods:
charValue(), equals(), getClass(), hashCode(),
notify(), notifyAll(), toString(), wait()

Support for character based data in the Java environment.

Values of this type are visible to JavaScript as a JavaObject which encapsulates the Java created value.

See also: char, Java to JavaScript values

Method JavaScript JScript N IE Opera Notes

charValue() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

J – java.lang.Class (Java class)

1191

java.lang.Class (Java class)
The Java Class class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class methods: forName()

Support for access to the Java Classes that define the structure of objects.

Values of this type are visible to JavaScript as a JavaObject which encapsulates the Java created value.

You cannot instantiate new objects of this class because the constructor is not public.

See also: class, Java to JavaScript values

Cross-references:
O'Reilly JavaScript Definitive Guide – page 358

java.lang.Double (Java class)
The Java numeric double precision class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class properties:
MAX_VALUE, MIN_VALUE, NaN, NEGATIVE_INFINITY,
POSITIVE_INFINITY, TYPE

Class methods:
doubleToLongBits(), isInfinite(), isNaN(),
longBitsToDouble(), toString(), valueOf()

Object methods:
byteValue(), doubleValue(), equals(),
floatValue(), getClass(), hashCode(),
intValue(), isInfinite(), isNaN(),
longValue(), notify(), notifyAll(),
shortValue(), toString(), wait()

Support for double precision floating point numbers.

Values of this type are visible to JavaScript as a JavaObject which encapsulates the Java created value.

See also: double, Java to JavaScript values, JavaScript to Java values

JavaScript Programmer's Reference

1192

Method JavaScript JScript N IE Opera Notes

byteValue() 1.1 + - 3.0 + - - -
doubleValue() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
floatValue() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
intValue() 1.1 + - 3.0 + - - -
isInfinite() 1.1 + - 3.0 + - - -
isNaN() 1.1 + - 3.0 + - - -
longValue() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
shortValue() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

java.lang.Float (Java class)
The Java Floating point numeric class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class properties:
MAX_VALUE, MIN_VALUE, NaN, NEGATIVE_INFINITY,
POSITIVE_INFINITY, TYPE

Class methods:
floatToIntBits(), intBitsToFloat(),
isInfinite(), isNaN(), toString(), valueOf()

Object methods:
byteValue(), doubleValue(), equals(),
floatValue(), getClass(), hashCode(),
intValue(), isInfinite(), isNaN(),
longValue(), notify(), notifyAll(),
shortValue(), toString(), wait()

Support for single precision floating point numbers.

Values of this type are visible to JavaScript as a JavaObject, which encapsulates the Java created value.

See also: float, Java to JavaScript values

J – java.lang.Integer (Java class)

1193

Method JavaScript JScript N IE Opera Notes

byteValue() 1.1 + - 3.0 + - - -
doubleValue() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
floatValue() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
intValue() 1.1 + - 3.0 + - - -
isInfinite() 1.1 + - 3.0 + - - -
isNaN() 1.1 + - 3.0 + - - -
longValue() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
shortValue() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

java.lang.Integer (Java class)
The Java integer numeric class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class properties: MAX_VALUE, MIN_VALUE, TYPE

Class methods:
decode(), getInteger(), parseInt(),
toBinaryString(), toHexString(),
toOctalString(), toString(), valueOf()

Object methods:
byteValue(), doubleValue(), equals(),
floatValue(), getClass(), hashCode(),
intValue(), longValue(), notify(),
notifyAll(), shortValue(), toString(), wait()

Support for integer values in the Java environment.

Values of this type are visible to JavaScript as a JavaObject which encapsulates the Java created value.

See also: int, Java to JavaScript values

JavaScript Programmer's Reference

1194

Method JavaScript JScript N IE Opera Notes

byteValue() 1.1 + - 3.0 + - - -
doubleValue() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
floatValue() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
intValue() 1.1 + - 3.0 + - - -
longValue() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
shortValue() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

java.lang.Long (Java class)
The Java long numeric class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class properties: MAX_VALUE, MIN_VALUE, TYPE

Class methods:
getLong(), parseLong(), toBinaryString(),
toHexString(), toOctalString(), toString(),
valueOf()

Object methods:
byteValue(), doubleValue(), equals(),
floatValue(), getClass(), hashCode(),
intValue(), longValue(), notify(),
notifyAll(), shortValue(), toString(),
wait()

Support for long integer values in the Java environment.

Values of this type are visible to JavaScript as a JavaObject, which encapsulates the Java created value.

See also: Java to JavaScript values, long

Method JavaScript JScript N IE Opera Notes

byteValue() 1.1 + - 3.0 + - - -
doubleValue() 1.1 + - 3.0 + - - -

J – java.lang.Object (Java class)

1195

Method JavaScript JScript N IE Opera Notes

equals() 1.1 + - 3.0 + - - -
floatValue() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
intValue() 1.1 + - 3.0 + - - -
longValue() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
shortValue() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

java.lang.Object (Java class)
This is the super-class of all objects in the Java lang environment.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Object methods:
equals(), getClass(), hashCode(), notify(),
notifyAll(), toString(), wait()

Support for generic objects in the Java environment.

Methods and properties belonging to this object are inherited by objects such as the JavaArray
object (as it appears to JavaScript).

This class is presented to the JavaScript programmer as a JavaObject object.

See also: JavaObject object

Method JavaScript JScript N IE Opera Notes

equals() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

Cross-references:
O'Reilly JavaScript Definitive Guide – page 566

JavaScript Programmer's Reference

1196

java.lang.String (Java class)
The Java String class.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaObject object

Class methods: copyValueOf(), valueOf()

Object methods:
charAt(), compareTo(), concat(), endsWith(),
equals(), equalsIgnoreCase(), getBytes(),
getChars(), getClass(), hashCode(), indexOf(),
intern(), lastIndexOf(), length(), notify(),
notifyAll(), regionMatches(), replace(),
startsWith(), substring(), toCharArray(),
toLowerCase(), toString(), toUpperCase(),
trim(), wait()

Support for string values in the Java environment.

Values of this type are visible to JavaScript as a JavaObject, which encapsulates the Java created value.

See also: Java to JavaScript values, JavaScript to Java values, String

Method JavaScript JScript N IE Opera Notes

charAt() 1.1 + - 3.0 + - - -
compareTo() 1.1 + - 3.0 + - - -
concat() 1.1 + - 3.0 + - - -
endsWith() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
equalsIgnoreCase() 1.1 + - 3.0 + - - -
getBytes() 1.1 + - 3.0 + - - -
getChars() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
indexOf() 1.1 + - 3.0 + - - -
intern() 1.1 + - 3.0 + - - -
lastIndexOf() 1.1 + - 3.0 + - - -
length() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
regionMatches() 1.1 + - 3.0 + - - -
replace() 1.1 + - 3.0 + - - -

Table continued on following page

J – java.util (Java package)

1197

Method JavaScript JScript N IE Opera Notes

startsWith() 1.1 + - 3.0 + - - -
substring() 1.1 + - 3.0 + - - -
toCharArray() 1.1 + - 3.0 + - - -
toLowerCase() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
toUpperCase() 1.1 + - 3.0 + - - -
trim() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

java.util (Java package)
The Java utility package.

Availability: JavaScript – 1.1
Netscape – 3.0

This package provides a collection of classes and interfaces that are generally useful to the
programmer. These fall into the following categories:

❑ Arrays

❑ Calender functions and date support

❑ Collections

❑ Event objects

❑ Mapping classes

❑ Random numbers

❑ Resource bundle support

❑ String tokenizer

❑ Timers

❑ Timer tasks

See also: Method, Property

java.util.Date (Java class)
The Java Date object.

Availability: JavaScript – 1.1
Netscape – 3.0

Class methods: parse(), UTC()

JavaScript Programmer's Reference

1198

Object methods:
after(), before(), equals(), getClass(),
getDate(), getDay(), getHours(), getMinutes(),
getMonth(), getSeconds(), getTime(),
getTimezoneOffset(), getYear(), hashCode(),
notify(), notifyAll(), setDate(), setHours(),
setMinutes(), setMonth(), setSeconds(),
setTime(), setYear(), toGMTString(),
toLocaleString(), toString(), wait()

This class is an encapsulation of the machine date and time measured in milliseconds since January the
1st, 1970. Fortunately, this is the same reference time that the JavaScript standard (ECMA) prescribes.

See also: Date object, Universal coordinated time

Method JavaScript JScript N IE Opera Notes

after() 1.1 + - 3.0 + - - -
before() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
getDate() 1.1 + - 3.0 + - - -
getDay() 1.1 + - 3.0 + - - -
getHours() 1.1 + - 3.0 + - - -
getMinutes() 1.1 + - 3.0 + - - -
getMonth() 1.1 + - 3.0 + - - -
getSeconds() 1.1 + - 3.0 + - - -
getTime() 1.1 + - 3.0 + - - -
getTimezoneOffset() 1.1 + - 3.0 + - - -
getYear() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
setDate() 1.1 + - 3.0 + - - -
setHours() 1.1 + - 3.0 + - - -
setMinutes() 1.1 + - 3.0 + - - -
setMonth() 1.1 + - 3.0 + - - -
setSeconds() 1.1 + - 3.0 + - - -
setTime() 1.1 + - 3.0 + - - -
setYear() 1.1 + - 3.0 + - - -
toGMTString() 1.1 + - 3.0 + - - -
toLocaleString() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

J – JavaArray object (Object/Navigator)

1199

JavaArray object (Object/Navigator)
A JavaScript data type that encapsulates a Java array.

Availability: JavaScript – 1.1
Netscape – 3.0

JavaScript syntax: N myJavaArray = myWindow.Packages

Object properties: length

Object methods: toString()

In Java, objects can be collected together into arrays. This is also true of JavaScript. However, as
you might expect, some encapsulation of the Java array is necessary to be able to operate on it from
a JavaScript environment. The JavaArray object does just this. It supports some JavaScript-like
behavior in that it has a length property and can be accessed element by element using the
JavaScript [] notation. JavaArray objects can be stacked to make multidimensional arrays and they
can also be traversed with a for(... in ...) ... loop.

At version 1.4 of JavaScript, a JavaArray object inherits properties from the java.lang.Object
super-class.

See also: Array object, Collection object, Java to JavaScript values,
JavaScript to Java values, LiveConnect, Window.Packages

Property JavaScript JScript N IE Opera Notes

length 1.1 + - 3.0 + - - ReadOnly.

Method JavaScript JScript N IE Opera Notes

toString() 1.1 + - 3.0 + - - -

JavaArray.length (Property)
The length of the Java array encapsulated by the JavaArray object.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: N myJavaArray.length

See also: LiveConnect, Collection.length

JavaScript Programmer's Reference

1200

Property attributes:
ReadOnly.

JavaArray.toString() (Method)
A string primitive representation of the JavaArray contents.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: N myJavaArray.toString()

In version 1.4 of JavaScript, this method is overridden by the toString() method belonging to
the java.lang.Object super-class.

Prior to that, it yielded a string like this:

[object JavaArray]

If you expect to use this for any useful purpose in scripting, you will need to override it with a
custom handler that converts the object to a string that delivers the instance value rather than the
type of its prototype object.

JavaClass object (Object/Navigator)
A JavaScript data type that encapsulates a Java Class.

Availability: JavaScript – 1.1
Netscape – 3.0

JavaScript syntax: N myJavaClass = myWindow.Packages.java

The static fields of the Java Class are presented as properties of the JavaClass object.

The static methods of the Java Class are presented as methods available to the JavaClass object. They
may be presented as JavaMethod objects depending on how you access them from JavaScript.

The only properties and methods this object has, correspond to the public properties and methods
of the Java class that it represents. You can enumerate these properties in a loop.

Java classes are either stored in individual class files or are collected together into groups stored in
a ZIP file. Groups of classes will be represented by a JavaPackage object. Each individual class is
represented by a JavaClass object. The JavaClass objects belong to a parent JavaPackage object.

J – JavaMethod object (Object/Navigator)

1201

To operate on these objects, you really need to know something about the Java classes they encapsulate.
There are many standard classes and some that may have been custom written for your project.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Create a JavaScript object that encapsulates a Java Class
var myJavaDateClass = Packages.java.util.Date;
var myJavaDateObject = new Packages.java.util.Date;
// Write the date to a web page
document.write(myJavaDateObject.toString());
// Write the same date value date to the Java console
java.lang.System.out.println(myJavaDateObject);
</SCRIPT>
</BODY>
</HTML>

See also: JavaScript to Java values, LiveConnect, Packages.java,
Packages.netscape, Window.Packages

Cross-references:
O'Reilly JavaScript Definitive Guide – page 358

JavaMethod object (Object/Navigator)
A deprecated way of encapsulating method calls on Java objects from JavaScript.

Availability: JavaScript – 1.1
Netscape – 3.0 Deprecated

JavaScript syntax: N myJavaMethod = myJavaObject.aMethod()

Argument list: aMethod A method belonging to the Java object

See also: JavaScript to Java values, Window.Packages, Java method calls

Cross-references:
Wrox Professional JavaScript – page 527

JavaScript Programmer's Reference

1202

JavaObject object (Object/Navigator)
A JavaScript data type that encapsulates a Java object. These are generally going to be members of
the Java component class

Availability: JavaScript – 1.1
Netscape – 3.0

N myJavaObject = new java.lang.Object
JavaScript syntax:

N myJavaObject = document.applets[anIndex];

Object properties: description, filename, length, name

Object methods:
booleanValue(), destroy(), disable(), doubleValue(),
enable(), getAppletContext(), getAppletInfo(),
getBackground(), getClass(), getCodeBase(),
getDocumentBase(), getLocale(), getParameter(),
getParameterInfo(), getToolkit(), hide(), init(),
isActive(), isEnabled(), isShowing(), isValid(),
isVisible(), minimumSize(), refresh(), start(),
stop(), toString()

To make any serious use of this object, you need to know a little Java – at least enough to be able to
be familiar with the class structures and creating and modifying objects. If you know how to make
your own applets then that is probably sufficient to get started with.

The public properties of the Java Class of which the JavaObject is an instance are presented as properties
of the JavaObject object. A JavaObject also inherits the properties from the java.lang.Object Class
and any other classes which are in its superclass hierarchy. These are generally available by means of
accessor methods so they will likely be listed as methods rather than properties.

The public methods of the Java Class of which the JavaObject is an instance are presented as
methods of the JavaObject object. A JavaObject also inherits the methods from the
java.lang.Object Class and any other classes which are in its superclass hierarchy.

The only properties and methods this object has, correspond to the public properties and methods
of the Java object that it represents. You can enumerate the properties in a loop to inspect the
interface to the object from your own scripts; like this:

for(myProp in myJavaObject) {
 document.write(myProp);
 document.write("
");
}
for(myProp in myJavaObject) {
 document.write(myProp);
 document.write("
");

There may be some properties that are not revealed by this and you may need to resort to some
Java documentation for further details. Properties and methods for the objects in Java are
documented in more depth in Java Programmer's Reference, written by Grant Palmer and published
by Wrox Press, which covers JDK 1.3 extensively.

To operate on the JavaObject objects, you really need to know something about the Java objects
they encapsulate. There are many standard classes and some that may have been custom written
for your project.

Beware that the object may report accessors that don't actually have any purpose in the object you
have enumerated.

J – JavaObject object (Object/Navigator)

1203

For properties and methods that apply to the Applet object in the context of an MSIE browser,
examine the Applet object topic and its related items. This is documented separately because it
does not support the same Java – JavaScript bridging mechanism and provides a mutually
exclusive set of properties for communication with the Applet object.

Although JavaScript exposes a great many of the properties of an Applet by means of Accessor
Methods, it is probably not safe to call the more destructive of them from JavaScript. However, you
may usefully want to use the various enquiry methods to find out about the Applet and its
internals. Many of these Accessor Methods yield other objects whose properties can also be
inspected by using the same enumeration techniques.

Having examined some applets and other miscellaneous Java objects, a summary list of the
accessor methods is presented at the head of this topic.

Some fragments of example code are given here and a couple of important methods are described
in adjacent topics. Documenting all the interfaces to an Applet or Java object is so dependent on the
object that you should refer to the Applet documentation and source and a Java reference manual
for details of the internals of Java code.

Warnings:
❑ When JavaObject objects are used in JavaScript expressions, even though internally they may contain

a value that could be represented by a JavaScript primitive type, they do not behave like that
JavaScript primitive type. Instead, they behave according to the rules of the Java object type that
contains the value. This can sometimes cause scripts to behave in unexpected ways, for example you
might get a concatenation instead of a numeric addition. You should also explicitly test for values
and not make assumptions that a null or undefined value is returned.

❑ The JavaObject in Netscape is notably unforgiving. Many other JavaScript objects will yield the value
undefined if you ask for a property that does not exist. A JavaObject will generate a run time error
and so you cannot easily test for the existence of an unknown property.

❑ Some objects also support a strangely named function that is referred to by an enumerable but
apparently unnamed property. It is exposed when you enumerate the properties in a for(... in
...) loop and output their names with a document.write(). A property appears in the list
that seems to have no name. Checking the property names with the typeof operator reports this as
a string so it’s not an undefined name. OK, so lets measure its length. The suspect property reports a
length of 6 in the example I was testing but it is still invisible. Here's where we try hunches and use
our debugging instincts. Wrap the property name in the escape() function. That should tell us
what weird characters are there. Voila. It reports that the name is now %3CInit%3E. So the name is
the word Init wrapped in < and > characters, which explains why we couldn't see it. The web
browser thought it was a tag and didn't recognize it so it was hidden.

❑ The second piece of example code shows how the properties were enumerated and how to display
the hidden property name.

Example code:
// Output some text to the Java console
java.lang.System.out.println("Some text message");
// Create a JavaScript object that encapsulates a Java Objectvar

JavaScript Programmer's Reference

1204

myJavaDateObject = new Packages.java.util.Date;

--

<!-- Debugging hidden property values -->
<HTML>
<HEAD>
</HEAD>
<BODY>
<TABLE BORDER=1>
<SCRIPT>
// Create a JavaScript object that encapsulates a Java Class
var myJavaDateClass = new Packages.java.util.Date;
// Now enumerate its properties
var myIndex = 0;
for(myProp in myJavaDateClass)
{
 document.write("<TR><TD>");
 document.write(myIndex);
 document.write("</TD><TD>");
 document.write(myProp);
 document.write("</TD><TD>");
 document.write(typeof(myProp));
 document.write("</TD><TD>");
 document.write(myProp.length);
 document.write("</TD><TD>");
 document.write(escape(myProp));
 document.write("</TD></TR>");

 myIndex++;
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Applet object, Document.applets[], Document.embeds[],
EmbedArray object, Java to JavaScript values, java.lang.Object,
JavaObject.booleanValue(), JavaScript to Java values,
LiveConnect, Packages.java, Packages.netscape,
Window.Packages

Property JavaScript JScript N IE Opera Notes

description 1.1 + - 3.0 + - - Warning
filename 1.1 + - 3.0 + - - Warning
length 1.1 + - 3.0 + - - Warning
name 1.1 + - 3.0 + - - Warning

Method JavaScript JScript N IE Opera Notes

booleanValue() 1.2 + - 4.0 + - - -
destroy() 1.1 + - 3.0 + - - Warning
disable() 1.1 + - 3.0 + - - Warning
doubleValue() 1.1 + - 3.0 + - - Warning

Table continued on following page

J – JavaObject.booleanValue() (Method/Java)

1205

Method JavaScript JScript N IE Opera Notes

enable() 1.1 + - 3.0 + - - Warning
getAppletContext() 1.1 + - 3.0 + - - Warning
getAppletInfo() 1.1 + - 3.0 + - - Warning
getBackground() 1.1 + - 3.0 + - - Warning
getClass() 1.2 + - 4.0 + - - Warning
getCodeBase() 1.1 + - 3.0 + - - Warning
getDocumentBase() 1.1 + - 3.0 + - - Warning
getLocale() 1.1 + - 3.0 + - - Warning
getParameter() 1.1 + - 3.0 + - - Warning
getParameterInfo() 1.1 + - 3.0 + - - Warning
getToolkit() 1.1 + - 3.0 + - - Warning
hide() 1.1 + - 3.0 + - - Warning
init() 1.1 + - 3.0 + - - Warning
isActive() 1.1 + - 3.0 + - - Warning
isEnabled() 1.1 + - 3.0 + - - Warning
isShowing() 1.1 + - 3.0 + - - Warning
isValid() 1.1 + - 3.0 + - - Warning
isVisible() 1.1 + - 3.0 + - - Warning
minimumSize() 1.1 + - 3.0 + - - Warning
refresh() 1.1 + - 3.0 + - - Warning
start() 1.1 + - 3.0 + - - Warning
stop() 1.1 + - 3.0 + - - Warning
toString() 1.1 + - 3.0 + - - Warning

JavaObject.booleanValue() (Method/Java)
This is the value that is used when the JavaObject is used in a Boolean context.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myJavaObject.booleanValue()

Java Boolean objects support this method. It is a Java method but it is analogous to the valueOf()
method used on a JavaScript Boolean object.

Because all Java objects become members of the JavaObject class they respond to valueOf() and
toString() but those can be overridden in the JavaScript environment. The booleanValue()
method penetrates to the Java environment and is executed there with its result encapsulated. The
valueOf() and toString() methods are executed in the JavaScript environment even if there is
a corresponding Java method for each.

JavaScript Programmer's Reference

1206

The example shows all three methods being invoked but the toString() and valueOf() are
masked. Note that by masking toString(), valueOf() is affected too. That may not be common
to all object types.

There are other similar methods to support different Java primitive data types when they are
encapsulated in an object. Only this one is illustrated. The others are different only in the data type
and the name they have.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Create a JavaScript object that encapsulates a Java Class
var myJavaBooleanClass = new Packages.java.lang.Boolean(true);
// Mask the JavaScript environment values
myJavaBooleanClass.toString = mask;
// Write the object to a web page
document.write("toString() : ");
document.write(myJavaBooleanClass.toString());
document.write("
");
document.write("valueOf() : ");
document.write(myJavaBooleanClass.valueOf());
document.write("
");
document.write("booleanValue() : ");
document.write(myJavaBooleanClass.booleanValue());
document.write("
");
// Masking function
function mask()
{
return "Masked";
}
</SCRIPT>
</BODY>
</HTML>

See also: JavaObject object, LiveConnect

JavaObject.getClass() (Method/Java)
A JavaScript method for obtaining the class of a JavaObject.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myJavaObject.getClass()

This returns the Java class of the encapsulated Java object. This is not necessarily the same as a
JavaScript class name. In fact what is returned is an object reference to a class object which may
need further work to extract the name of the class.

J – JavaPackage object (Object/Navigator)

1207

The example shows how a Java object is instantiated and then enquired to as of its class. Using the
LiveConnect, the getClass() method requests the class name from the Java code and then
converts that to a JavaScript message. Inspecting the constructor of the new object and extracting
its name property tells you what class JavaScript has wrapped around the Java object.

Warnings:
❑ Beware that you don't confuse this JavaScript getClass() method with the Java getClass()

method. Although they have the same name, they yield a different result. The JavaScript method
yields a JavaScript object of the class JavaClass. The Java method yields a Java object of the class
java.lang.Class, which is not the same thing.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Instantiate a Java object
myJavaString = new java.lang.String;
// Display its Java class
document.write("Java class : ");
document.write(myJavaString.getClass());
document.write("

");
// Display its JavaScript class
document.write("JavaScript class : ");
document.write(myJavaString.constructor.name);
document.write("

");
</SCRIPT>
</BODY>
</HTML>

See also: LiveConnect

JavaPackage object (Object/Navigator)
A JavaScript data type that encapsulates a Java Package.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myJavaPackage = myWindow.Packages

A collection of Java classes are represented as a package. The complete set of all available Java
Packages are contained within a single parent JavaPackage object. This constructs a hierarchy of
JavaPackage and JavaClass objects.

The properties of the JavaPackage object are those that refer to any Java Class or Java Packages
that belong to it. However, these are generally not enumerable so you do need to know what they
are called before you can access them.

JavaScript Programmer's Reference

1208

Because you cannot enumerate the properties of this object you won't be able to walk a Java
package hierarchy with a script driven tree walker.

The JavaPackage tree structure resembles the directory structure that the Java class files are
stored in. Some class files are collected into ZIP archives but even then the hierarchy is still intact
and there will be one package that represents the ZIP file and corresponds to that node in the tree.
Any arbitrary collection of classes will be represented by a JavaPackage object, regardless of how
they are stored in the file system.

Example code:
// Create a JavaScript object that encapsulates a Java Package
var myJavaPackage = Packages.java.util;

See also: JavaScript to Java values, LiveConnect, netscape.applet, Packages.java,
Packages.netscape, Window.java, Window.Packages, Window.sun

JavaScript Bookmark URLs (Advice)
Bookmarks composed of JavaScript calls.

You can build a bookmark by typing in a JavaScript URL. You do need to be careful as you type it in.

To create a JavaScript bookmark, open the bookmark manager and create a new entry. Be careful to
only refer to objects that are likely to exist regardless of the page on view. You can crash the logic
of the browser if your bookmark script tries to manipulate objects that belong to a page other than
that which you are browsing.

It is necessary to work within these limitations because the user may request a bookmark at any time.

These JavaScript-coded bookmarks are sometimes known as Bookmarklets.

It is possible to create bookmarklets to aid in a number of information-gathering and debugging
tasks. The example demonstrates how to display form elements in a pop up window. This only
works if your bookmarks can hold a long enough URL value. It works fine in MSIE and Netscape
6.0, but not in version 4.0 of Netscape although you can paste it into the location bar and hit return
for the same effect.

Upon testing it was found that only the Opera 5 browser has a security check to ask whether the
script is allowed to check the password.

Example code:
// Provided for our enjoyment by Jon Stephens
// Note, the line breaks and space have been added to aid
// readability. You should omit the line breaks when
// inserting this into the bookmark. Any unnecessary spaces
// can also be removed to prevent URL buffer overruns.
// This also works fine when wrapped in a function
// declaration and called from a button on the form page.

J – JavaScript debugger console (Advice)

1209

javascript:var output = "";

for(var i = 0; i < document.forms.length; i++)
{
 for(var j = 0; j < document.forms[i].elements.length; j++)
 {
 output += "Form " + i+ " -- # " + j + " -- Type: "
 + document.forms[i].elements[j].type + "; "
 + document.forms[i].elements[j].name + ": "
 + document.forms[i].elements[j].value + "
";
 }
}
var newWin = window.open("","newWin","width=350,height=350");
with(newWin.document)
{
 open();
 write(output);
 close();
}

See also: Bookmarklets, JavaScript interactive URL, javascript: URL

Cross-references:
Wrox Instant JavaScript – page 49

JavaScript debugger console (Advice)
Netscape JavaScript debugger console window for viewing error logs.

If you type the javascript: URL method into the location box on a Netscape 4 browser and then
press return, the web browser will display a debugging console window that gives you some
helpful messages about what is happening in your script. It can certainly speed up the debugging
process when you are trying to trace a fault.

You can type short pieces of JavaScript source code into the type-in box and press return and the
results will be executed in console.

For example, to see the value of some mathematical constants, you type these lines into the location box:

Math.PI

Math.LOG10

Number.MAX_VALUE

Warnings:
❑ A small bug in the console requires that the first item be triggered with two carriage returns. For

some reason the console eats the first message and then spits it out with the second. Everything is
fine after that.

JavaScript Programmer's Reference

1210

See also: Debugging – client side, JavaScript interactive URL, javascript: URL

Cross-references:
Wrox Instant JavaScript – page 48

JavaScript Document Source URL (Definition)
JavaScript can be called directly instead of fetching a page.

JavaScript URLs can be used in the HREF attribute of an anchor tag. If this technique is used, a
fragment of JavaScript code can call in an external function and generate the content of another
page without ever calling a web server for the page.

Quite sophisticated dynamic page generation can be accomplished like this, however, at some stage
you will have to have downloaded the JavaScript code to be executed in the first place.

Example code:
<HTML>
<BODY>
<SCRIPT>
var the_value = 100;
function increment()
{
 the_value++;
}
</SCRIPT>
Click to display the value
Click to increment the value
</BODY>
</HTML>

See also: JavaScript Image Source URL, javascript: URL

JavaScript embedded in Java (Definition)
Java applets can contain JavaScript code fragments that can be executed by the applet.

You can embed fragments of JavaScript inside Java applets although there are some limitations to
what you can accomplish with this. For this to work, Java and JavaScript both have to be enabled
and working. This may require some preference setting. Currently, it only works in Netscape.

The <APPLET> tag is the main way to embed a Java applet within an HTML document. That much
generally works across all browsers.

JavaScript scripts should always have access to all the internals of a Java applet that it cares to
make publicly available. However, the converse is not necessarily true. Java applets may not access
the script-owned object space unless you give them permission to do so.

J – JavaScript entity (Pitfall)

1211

This is done with the MAYSCRIPT tag attribute on the <APPLET> tag.

The Java applet can then mimic JavaScript methods using the Java syntax, and there are
mechanisms for accessing eval() functionality for interpreting JavaScript source text.

See also: Java, Java exception events, JSObject object, MAYSCRIPT

Cross-references:
Wrox Instant JavaScript – page 57

JavaScript entity (Pitfall)
This functionality is deprecated and should not be used in new projects.

The HTML character entities are useful for describing hard to type characters.

They are functionally similar to the back-quote substitutions that are available server-side with
Netscape Enterprise Server.

MSIE version 3.0 introduced a means of passing JavaScript values into the HTML source space
using a syntax that is similar to the character entity syntax. However, it is used in contexts that
character entities were never intended to be used in. It is also advised as deprecated functionality
in the HTML version 4.0 standard.

You might indicate an image width like this:

The value for the image width can be taken from a JavaScript expression like this:

This assumes that the values myWidth and myScaleFactor have already been defined in some
earlier fragment of JavaScript.

The entity can be used to replace a single character in the tag attribute value so you can concatenate
other characters such as percent signs if you use it in <HR> tags for example.

This functionality should be avoided and the usual client or server methods used to define the
values in HTML tags.

Example code:
<HTML>
<BODY>
<FORM>
<INPUT TYPE="text" VALUE="&{top.name;}">
</FORM>
</BODY>
</HTML>

See also: Adding JavaScript to HTML, Backquote (`), Deprecated functionality, Pitfalls

Cross-references:
Wrox Instant JavaScript – page 47

JavaScript Programmer's Reference

1212

JavaScript Image Source URL (Definition)
Image data can be generated in some browsers.

Within some limitations, you can generate image data within a web browser's JavaScript
environment. This seems to work best on the Netscape version 4.0 browser, but it is worth
exploring somewhat to see if it can be exploited on other browsers.

If you store this text into a script variable it describes a 1 pixel image:

#define x_width 1

#define x_height 1

static char x_bits[] = {0x00};

This is the code for an XBM image. It is only black and white but it may be useful to be able to
create an image with a script.

Now you can call this as the source of an image like this:

The example works as it is in Netscape 4.0. Adding a MIME type header will help browsers to
determine what the content type is and this technique doesn't need to be confined to just image data.

Example code:
<HTML>
<BODY>
<SCRIPT>
var the_image_data;
the_image_data = "Content-type: image/x-xbm";
the_image_data = "";
the_image_data = "#define x_width 10\n";
the_image_data += "#define x_height 1\n";
the_image_data += "static char x_bits[] = {";
the_image_data += "0xFF,0xFF,0xFF,0xFF,0xFF,";
the_image_data += "0xFF,0xFF,0xFF,0xFF,0xFF";
the_image_data += "};";
</SCRIPT>

</BODY>
</HTML>

See also: JavaScript Document Source URL, javascript: URL, MIME types

Cross-references:
Wrox Instant JavaScript – page 49

J – JavaScript interactive URL (Request method)

1213

JavaScript interactive URL (Request method)
An interactive JavaScript statement executor.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

You can type short pieces of JavaScript source code into the location box and press return and the
results will be executed in the document window.

For example, to see the value of some mathematical constants, you type these lines:

javascript:Math.PI

javascript:Math.LOG10

javascript:Number.MAX_VALUE

javascript:alert(top.location)

See also: Bookmarklets, JavaScript Bookmark URLs, JavaScript debugger console, javascript:
URL

Cross-references:
Wrox Instant JavaScript – page 48

JavaScript language (Overview)
JavaScript overview summary.

Availability: ECMAScript edition – 2

JavaScript is a so-called third generation language.

JavaScript was originally developed by Netscape Communications and is influenced by many other
languages. Most notably, it borrows from:

❑ C language

❑ Pascal

❑ BASIC

❑ Java

❑ Perl

❑ Other scripting languages

This means that if you have already used any of these other languages, it is likely that you will
become proficient in JavaScript fairly quickly.

JavaScript and Java are two distinctly different languages. They even operate in a different
architectural way. JavaScript is interpreted while Java is compiled. It is a lot simpler to get started
using JavaScript and designers find it’s a good way to become accustomed to the more intense
software developer issues.

JavaScript Programmer's Reference

1214

Java code tends to be quite self-contained and not require the help of any additional systems. On
the other hand, JavaScript is often more like a kind of glue that joins various parts of the web
together so they can inter-operate more effectively.

JavaScript is object-based. That is to say, the basic language operation and access to the hosting
environment is by means of objects that represent items in the real world. A JavaScript application
is built from a collection of various kinds of objects, which communicate with one another.

Every JavaScript environment comes with a set of Core Objects. These provide the fundamental
basis on which the language is built. It is these objects that are defined in the ECMAScript
standard. There is a Global Object which is the topmost object in the hierarchy. Other objects such
as the Math Object provide more specialized capabilities.

In JavaScript we talk about primitive values having a type. There are a set of standard types built-
in to the core JavaScript interpreter. Although JavaScript is object-based, it is not a class based
object oriented language, and so while these Primitive Types behave very much like object oriented
classes, they aren't really implemented as such. The language does provide some facilities for
creating new object types however.

An Object in the JavaScript environment is a collection of Properties which you can access by name.
Some you can only access in a read-only fashion while others can be modified. The Properties have
attributes such as a read-only flag, which controls this access to the values contained in the property.
Properties may have other attributes as well and can often be a reference to another object.
Requesting a property from an object can therefore yield another object, which in turn has properties
of its own. If you think of the properties as containers you'll soon feel comfortable with the concept.

Objects can also respond to messages, each of which will invoke a named Method. Those methods may
behave much like a property request or they may cause some action to happen. At the JavaScript
programming level, methods and properties begin to lose their distinction. Methods are often analogous
to Functions in other languages. Indeed, methods are implemented as functions that are attached to
objects by means of properties. You may use functions in a traditional way, very much like you would
in C, but the functions you use in the scripts are actually methods that belong to the global object.
However, in that case you don't need to specify which object should execute the method.

The syntax of JavaScript intentionally mimics that of Java but many rules are relaxed to make the
language easier to use. For example, you don't need to declare the type of a variable before using it.
Properties don't need to have their type specified and functions do not need to be placed earlier in
the script than when they are first invoked.

Although JavaScript is intended to be forgiving and therefore easy to be comfortable with and yet
not be a hard-core programmer, beyond the simple basics, it certainly is not a simple language to
learn and exploit fully.

See also: Constant expression, Declaration, ECMAScript, Expression, Free-format language,
History, int, JavaScript version, Lexical element, LiveScript, Native feature,
Overview, Statement

Cross-references:
ECMA 262 edition 2 – section – 4.2

ECMA 262 edition 3 – section – 4.2

O'Reilly JavaScript Definitive Guide – page 2

J – JavaScript Style Sheets (Definition)

1215

Wrox Instant JavaScript – page 1

Wrox Instant JavaScript – page 11

JavaScript Style Sheets (Definition)
A standard for describing style sheets.

The JavaScript Style Sheet facility (JSS) is based on the CSS level 1 capabilities. They are only
supported in the version 4.0 Netscape browsers and are now completely deprecated. Netscape 6.0
does not support them at all. This gives rise to some concerns on portability issues.

However, if your web server is capable of recognizing the user agent value and serving different
content accordingly, you may be able to ensure that JSS style sheets are served only to requesting
Netscape 4.0 browsers and that other browsers will be presented with CSS style sheets instead.

The main difference is in the notation used to describe the JSS rules.

There are two ways to call in a JSS defined style sheet, either with the <STYLE> tag, which embeds the
style definitions into the page, or with the <LINK> tag, which includes them from an external document.

Creating styles in JavaScript comes down to correctly forming the object model that refers to the
style properties of the document object. This is managed by means of a tags object, which is the
root of a collection of objects for which the style can be defined as properties. By and large the
tags object has a property that corresponds to every style controllable HTML tag. It’s fairly easy to
guess the likely syntax and give a CSS reference, you can probably figure out the properties of the
individual objects. The properties correspond with those attributes of the instances of the tags
described in the browser object model (or the DOM if you prefer).

There are some special methods and functions defined for JSS to be used when creating styles.
These are:

❑ margins()

❑ rgb()

❑ contextual()

For JavaScript to be able to modify style settings, it needs to be able to read the current values and
to be able to write new values into the object properties.

In Netscape 4.0, the absolute and relative style properties apply to positioning of an object. If these
are present, the objects are assumed to be in layers. Layers can be controlled very effectively from
within JavaScript. they can be moved, sized and have their visibility changed. However there are
rendering issues and the effects are complex and hard to control when some styled objects are
already rendered on the page. Some tags can have absolute positioning applied directly but it is not
portable across minor revision changes of the browser.

MSIE version 4.0 provides dynamic style control. It is improved significantly in version 5.0 and 5.5 and
the same DOM based model is built into Netscape 6.0. The styles are available as host objects. You can
modify the appearance of styled object in MSIE even after they have already been displayed. Changing
the style or position of an object gives you all the capabilities that layers provided in Netscape, and an
automatic damage repair redraw is also triggered if necessary when the style of an object is modified.

JavaScript Programmer's Reference

1216

Warnings:
❑ JSS comes about because internally Netscape 4.0 converts CSS rules into JavaScript code and

executes it as such. That is why you lose styling when you turn off JavaScript for security reasons.

❑ Netscape decided to make this interface available to the developer and exposed it as JSS. This means
there is a conflicting alternative to CSS. It is very unlikely that JSS would be supported in any other
browser than Netscape 4.0 given that most browser manufacturers are striving for standards
compliance. They will all be supporting CSS2 fully in due course.

❑ It is therefore recommended that while you may want to experiment with JSS, it is a deprecated
item. As such you probably should avoid deploying it in any mission critical projects or using it in
new developments.

❑ MSIE 3.0 does not allow JavaScript access to style properties.

❑ The JSS functionality is removed from Netscape 6.0.

Example code:
<STYLE TYPE="text/JavaScript">tags.P.borderWidth = 10;tags.B.color =
“#FF0000”;</STYLE>

See also: <META>, <STYLE TYPE="...">, <STYLE>, Case Sensitivity, contextual(), CSS
level 1, Document object, JSS, JSSTag.apply, JSSTag.margins(),
JSSTag.rgb(), JSSTags object

Cross-references:
Wrox Instant JavaScript – page 50

JavaScript to Java values (Definition)
Conversion of JavaScript primitives and objects to Java compatible types.

When a Java method is called from JavaScript, the JavaScript values need to be converted to
compatible and useful data types.

In some cases a single JavaScript type will be compatible with arguments of many different types.
An example of this is the JavaScript Number primitive that will convert readily into half a dozen
different Java types.

Some JavaScript data types correspond exactly to a single and specific Java type. An example of
this is null.

A third possibility is that many different JavaScript types will become a single Java type. This is what
happens to objects which all become a generic JavaScript object represented by the Java class JSObject.

J – JavaScript to Java values (Definition)

1217

Here is a table that summarizes the correspondence between JavaScript and Java types when converting
to Java. This would be used when passing values into methods under control of JavaScript:

JavaScript Java

boolean primitive boolean

boolean primitive java.lang.Boolean

null null

number primitive byte

number primitive char

number primitive double

number primitive float

number primitive int

number primitive java.lang.Double

number primitive long

number primitive short

string primitive java.lang.String

Function object netscape.javascript.JSObject

JavaArray object netscape.javascript.JSObject

JavaClass object netscape.javascript.JSObject

JavaMethod object netscape.javascript.JSObject

JavaObject object The encapsulated Java object unwrapped

JavaPackage object netscape.javascript.JSObject

netscape.javascript.JSObject java.lang.String

All other JavaScript objects netscape.javascript.JSObject

When this happens under the control of Java, there are further limitations as to what can be
exchanged between the environments. This is discussed under the individual methods that are
affected in the JSObject description.

This table summarizes the relationships at the passing interface. JavaScript values may have been
converted during the expression evaluation. You may also need to coerce some values as they are
passed so they are correctly mapped to the Java interface for the method.

Java objects are wrapped so that JavaScript can access them as a JavaObject object. When they are
passed back to Java, the encapsulation is removed and the intrinsic Java object is accessed directly.

Warnings:
❑ Be aware that you can lose precision when passing data into and out of a Java applet method. As

well as type conversion, value truncation may occur.

❑ JavaScript number values can interface to java.lang.Double method arguments but not to
java.lang.Integer or java.lang.Float.

JavaScript Programmer's Reference

1218

❑ Because JavaScript does not have a character data type, numbers can map to Java char data types.
A character in a string in JavaScript is presented as a String primitive but is only one character
long. This will convert to java.lang.String but will not naturally convert to a Java char data
value unless you make some effort in the script to prepare it first. A String.charCodeAt()
conversion may be necessary.

❑ Some Java encapsulations are not unwrapped when the value is passed to Java. A JavaPackage,
JavaArray, JavaClass and the deprecated JavaMethod are all encapsulated as a JSObject.
This may cause problems if the objects are passed backwards and forwards as the encapsulation
might become increasingly nested. This behavior would be classed as erroneous and may be
platform dependent. It may also depend on what happens inside the applet code when the
method is called.

❑ JavaScript arrays are not converted to Java arrays of JSObject items. They are passed as a JSObject
encapsulated as a whole.

See also: Boolean, Function object, Java method data conversion, Java to JavaScript values,
JSObject object, JSObject.call(), JSObject.eval(),
JSObject.getMember(), JSObject.getSlot(), JSObject.toString(),
LiveConnect, netscape.javascript.JSObject, null

JavaScript version (Standard)
The version history for JavaScript.

JavaScript was initially developed by Netscape Communications and was originally called
LiveScript 1.0. Around that time, the Java language was becoming more popular and possibly as a
marketing ploy, the name of LiveScript was changed to JavaScript. It was first available to the
public in version 2.0 of Netscape.

Version ECMA Notes

LiveScript 1.0 No The original precursor to JavaScript

JavaScript 1.0 No Netscape 2.0 implemented this. Now mostly obsolete.

JavaScript 1.1 Yes Supported in Netscape 3.0 and Netscape Enterprise Server 2.0. Also
supported in Opera 3.0. More robust and better support for arrays. Image
replacement and access to plugin properties. Scroll control.

JavaScript 1.2 No Netscape 4.0 to 4.05 added RegExp, switch and delete. Screen object
and interval timer. Window move & resize. Object and array literals
added.

JavaScript 1.3 Yes Version 4.06 to 4.76 of Netscape adds better exception handling. Also
supported by Netscape Enterprise Server 3.

JavaScript 1.4 Yes Netscape version 5.0 (not widely released).

JavaScript 1.5 Yes Netscape 6.0 (final beta stages at time of writing).

See also: History, JavaScript language, JScript version, LiveScript

Cross-references:
O'Reilly JavaScript Definitive Guide – page 3

Wrox Instant JavaScript – page 3

J – javascript: URL (Request method)

1219

javascript: URL (Request method)
Execute some JavaScript code instead of fetching a document.

When you specify a URL in a web browser, the intent is usually to fetch a document from a remote
web server.

The javascript: URL method is used to execute a fragment of JavaScript code when the
URL is requested.

You can use the javascript URL as follows:

❑ To call up the debugger console

❑ To interactively execute statements

❑ As document source

❑ As bookmarks

The view-source: URL can be used in Netscape to call up a source view of a document under script
control. Its not very portable and not much use for anything other than debugging.

These are all described in separate topics.

You can call up the JavaScript debugger by setting a document location to "javascript:",
"livescript:" or "mocha:".

Looking at the internals of the Netscape browser, this debugging console is itself written in HTML
with JavaScript dynamic actions.

Mostly, these special URLs will be useful for debugging – getting details of the disk cache may be
useful for example. Pulling up the JavaScript debugger page if you detect an error in your script
might also be a cool trick.

With a javascript: URL, you can also type the code directly into the location bar of your
Netscape browser to see the results of evaluating it right away.

As of JavaScript version 1.1, you can use the void operator to discard the result of an expression.

This javascript: URL form is vailable in the WebTV set top boxes effective from the Summer
2000 release. However, it cannot be typed in manually by the user as it can be in the desktop
computer based web browsers.

Warnings:
❑ This technique does not work with MSIE 3.0.

❑ The JavaScript debugger is not present in MSIE at all, although it may be possible to use the Visual
J++ debugging tools if you have them installed.

❑ Almost too late for inclusion was a report that History.back() calls that worked in JScript 5.1
started to fail on upgrade to JScript 5.5 service pack 1. In the end it turned out to be related to calling
a javascript: URL within an context. In earlier versions of MSIE, you could
omit the single and double quotes around the URL. Version 5.5 is no longer forgiving that omission.
This may affect other kinds of URL values and other HTML tag attributes in an MSIE 5.5 browser.

JavaScript Programmer's Reference

1220

Example code:
<HTML>
<HEAD>
<SCRIPT>
function test()
{
alert("Test function called");
}
</SCRIPT>
</HEAD>
<BODY>
<DIV onClick="javascript:test();">Click on me</DIV>
</BODY>
</HTML>

See also: Adding JavaScript to HTML, Bookmarklets, JavaScript Bookmark URLs, JavaScript
debugger console, JavaScript Document Source URL, JavaScript Image Source URL,
JavaScript interactive URL, mailbox: URL, mailto: URL, URL, void

JellyScript (Definition)
The JavaScript interpreter inside a WebTV set-top box is referred to as JellyScript.

This interpreter is based on the normal web browser JavaScript with a few limitations and some
additional functionality. The interpreter functionality is mainly limited due to the small amount of
memory available in the set-top box. Low memory is important to keep the manufacturing costs as
small as possible.

The JellyScript interpreter underwent an upgrade in late Spring 2000 and was released for public
use during the Summer. It is generally referred to as the Summer 2000 release.

Versions prior to Summer 2000 did not care about case-sensitivity of built-in property and method
names. This was also the case with MSIE 3.0

The Summer 2000 version introduces support for user-defined properties and such like. This means
that DHTML effects created by authoring tools such as DreamWeaver should work better in
WebTV boxes that are shipped after this date or are upgraded in the field.

Event handling support is improved in the latest release. Earlier versions had problems with event
handlers that had not yet completed their execution after 10 seconds. The WebTV documentation
still suggests that the Window.onunload event handler is not used.

The javascript: URL format can be used with the minor limitation that it cannot be typed
manually by the user.

Anonymous functions are properly supported by the WebTV set-top box from the Summer 2000
release onwards. Earlier versions of this product only partially supported anonymous functions.

Referring to page element objects by their names is more flexible. Versions of WebTV prior to the
Summer 2000 release required that the references were fully qualified. This is still recommended but the
JellyScript interpreter is now more forgiving, along the lines of the JScript interpreter in the MSIE
browser. Some care still needs to be taken when building web pages for use in cross browser situations.

mailto:URL

J – JellyScript (Definition)

1221

Security was enhanced in the Summer 2000 release. This is now correctly implemented inline with
the rules of access to window content from different domains.

The screen property was added to the Window object and contains a reference to the Screen
object that describes the size and attributes of the TV display screen.

The Window.open() method will behave differently in JellyScript when compared with the behavior
in a normal computer-based web browser. It creates a pseudo window in an IFRAME and appends it
to the end of the current display. The user can then scroll down to this window. On the whole this
behavior is so different to the normal Window.open() usage that it is probably best to avoid using it.

The Summer 2000 release of JellyScript now supports full double-precision math routines. Date
object support is now up to ECMA standard specifications with full support for all properties and
methods. The identity (===) and non identity (!==) operators are also now supported (consistent
with the support in the MSIE browser).

There are some areas of functionality that are considered weak or are completely unsupported on
this platform:

❑ Window.open()

❑ Regular Expression support

❑ Signed scripts

❑ Custom sort ordering

❑ Array sizes limited to 32768 elements

❑ Error handling is silent

Be careful when accessing form elements within a document. In fact you should generally fully
qualify all references to objects within the page. This is mandatory with form elements, which
should have the document object referred to as the first item in the hierarchy chain that describes
the element's location in the DOM.

You should also be careful when testing for browser types in the user agent string. Eliminate the
possibility of the browser being a WebTV box before testing for the Netscape browser. If you don't,
then it is likely you will test true for being a Netscape browser even when executing the JavaScript
code on a WebTV box. You will need to scan the entire user agent string. To parse out the string
"WebTV" it might be worth converting to lowercase first to increase your chances of a match.

See also: TV Set-top boxes, WebTV

Web-references:
This link leads to a useful WebTV JavaScript guide, for interested parties.

http://developer.webtv.net/authoring/javascript/javascript.htm

http://developer.webtv.net/authoring/javascript/javascript.htm

JavaScript Programmer's Reference

1222

.js (File extension)
JavaScript include file.

You can include external shared fragments of JavaScript into a web page by calling in a .js file.

A .js file simply contains that JavaScript which would have been placed inside a <SCRIPT> tag.

In the case of the Netscape browser, it can store configuration and preferences data in .js files.

These .js files can also be used server-side with Netscape Enterprise Server. They can be compiled
with the LiveWire JavaScript compiler and linked with the HTML to create .web files that Netscape
Enterprise Server can deliver very quickly to a requesting client browser.

The MIME type for a .js file used to be application/x-javascript but is now
text/javascript. Either should work but text/javascript is preferred. This may necessitate
you carrying out some server configuration changes if you don't already serve this kind of file.

The file is included by specifying its URL with the SRC="..." HTML tag attribute. You must also
include a closing </SCRIPT> tag because <SCRIPT> is a block level item.

Example code:
<SCRIPT SRC="http://www.mydomain.com/include.js"></SCRIPT>

See also: <SCRIPT ARCHIVE="...">, <SCRIPT SRC="...">, File extensions,
Preferences, Source files, Web browser

Cross-references:
O'Reilly JavaScript Definitive Guide – page 215

Wrox Instant JavaScript – page 3

.jsc (File extension)
JavaScript configuration file.

See also: netscape.lck, Preferences

http://www.mydomain.com/include.js"></SCRIPT

J – JScript version (Standard)

1223

JScript version (Standard)
The version history for JScript.

Microsoft added scripting capabilities to version 3.0 of the MSIE browser. The JScript interpreter is
perhaps named differently so that detractors would not accuse Microsoft of modifying the
JavaScript language.

Version 1.0 of JScript was also available in Internet Information Server as well as the MSIE version
3.0 browser. That first version of JScript is broadly compatible with JavaScript version 1.0 although
there are differences between them:

Interpreter ECMA Notes

JScript 1.0 No Equivalent to JavaScript 1.0 and released with MSIE 3.0

JScript 1.1 No Never released

JScript 1.2 No Evidence of its existence but status unknown

JScript 2.0 No Released with IIS 1.0

JScript 3.0 Yes Equivalent to JavaScript 1.2 and released with MSIE 4.0, IIS 4.0 and WSH
1.0 (some features are in MSIE 3.02)

JScript 4.0 Yes Released with Visual Studio 6.0

JScript 5.0 Yes Equivalent to JavaScript 1.5 and supported on all 32 bit Windows
operatings systems with MSIE.

JScript 5.1 Yes Released with IIS 5.0 on Windows 2000

JScript 5.5 Yes Released with MSIE 5.5

The JScript support in MSIE is excellent. However, if you limit yourself purely to the JavaScript
sub-set, there are some limitations in the support. The language has been extended somewhat but
not in the same way as Netscape Communications Inc provided enhancements to their interpreter.

If the JScript interpreter is reinstalled without upgrading the browser, you may be using a version
of JScript that is later than the browser. Scripts should work normally as long they do not exploit
features of Jscript that have changed. However, the scripts may not be able to access some new
features of the later version. For example, JScript 5.5 can be installed over the top of JScript 5.0 in a
version 5.0 MSIE browser. You get the later core language features but continue to use the old
document model. This can get utterly confusing for script developers.

See also: History, Internet Explorer, JavaScript version

Cross-references:
Wrox Instant JavaScript – page 3

JavaScript Programmer's Reference

1224

.jse (File extension)
Nombas ScriptEase source file.

See also: File extensions, Nombas ScriptEase, Standalone JavaScript

.jsh (File extension)
Nombas ScriptEase include file.

See also: File extensions, Nombas ScriptEase, Standalone JavaScript

JSObject object (Java class)
A Java class that encapsulates JavaScript objects for access from Java code.

Availability: JavaScript – 1.1
Netscape – 3.0

JavaScript syntax: N myJSObject = netscape.javascript.JSObject

Class methods:
getWindow()

Object methods:
call(), eval(), getMember(), getSlot(),
removeMember(), setMember(), setSlot(), toString()

This Java class is otherwise known as netscape.javascript.JSObject (to give it its full name
within the Java context). This provides a way for Java code to interact fully with the JavaScript
native environment.

JSObject is a sub-class of the generic Object class within Java. Its public interface defines the
following methods and properties:

❑ getWindow()

❑ getMember()

❑ getSlot()

❑ setMember()

❑ setSlot()

❑ removeMember()

❑ call()

❑ eval()

❑ toString()

Note that these are hooks to Java methods although they may look like JavaScript methods.

When member properties and slot values are accessed from arrays, you get an Object object
returned. If this object is really a JavaObject, then it will be unwrapped and the encapsulated Java
object will be returned without its JavaScript wrapper. It will still be returned as an Object object
but it can then be cast to a native Java object type rather than another JSObject.

J – JSObject.call() (Java method)

1225

The setMember() and setSlot() methods perform the converse although there are some
subtle limitations.

Your Java development environment should give you plenty of help with the compilation of
applets. The key point is that you have a copy of the netscape.javascript.JSObject class
available for the applet to be linked against. This may involve setting your CLASSPATH to defined
where the Java classes are located. The file you need may be browser version specific. In Netscape
Navigator version 4.0, the file is called java40.jar but it may be named differently in other
versions. Where it is located also may depend on how and where you installed Netscape.

See also: Java calling JavaScript, Java to JavaScript values, JavaScript
embedded in Java, JavaScript to Java values, JSObject.call(),
JSObject.eval(), JSObject.getMember(),
JSObject.getSlot(), JSObject.getWindow(),
JSObject.removeMember(), JSObject.setMember(),
JSObject.setSlot(), JSObject.toString(),
LiveConnect, MAYSCRIPT,
netscape.javascript.JSObject

Method JavaScript JScript N IE Opera Notes

call() 1.1 + - 3.0 + - - -
eval() 1.1 + - 3.0 + - - -
getMember() 1.1 + - 3.0 + - - -
getSlot() 1.1 + - 3.0 + - - -
removeMember() 1.1 + - 3.0 + - - -
setMember() 1.1 + - 3.0 + - - -
setSlot() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -

Cross-references:
O'Reilly JavaScript Definitive Guide – page 8-570

Wrox Professional JavaScript – page 544

JSObject.call() (Java method)
Calls a method in the JavaScript object from the Java environment.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Object object

JavaScript Programmer's Reference

1226

Java syntax: myJSObject.call("aMethod", anArgArray)

aMethod The name of a method to call.Argument list:
anArgArray An array of arguments to pass to the method

This is the way in which a Java applet can call back to a JavaScript function in a page. Once you
know the window, you can invoke methods that belong to it as well as access properties. This will
always yield an Object object as a result.

There are quite restricted Java to JavaScript limitations on passing non-primitive values in the
arguments array.

The values passed to JavaScript will conform to the following conversions as they are passed to the
JSObject methods:

Java JavaScript

java.lang.Boolean JavaObject object

java.lang.Double JavaObject object

java.lang.Integer JavaObject object

java.lang.String JavaObject object

netscape.javascript.JSObject generic JavaScript object

all other Java objects JavaObject object

The return values will conform to the following conversions as they are passed between the
environments:

JavaScript Java

boolean primitive java.lang.Boolean

number primitive java.lang.Double

string primitive java.lang.String

JavaObject object The encapsulated Java object unwrapped

all other JavaScript objects netscape.javascript.JSObject

The result of this method call will be an Object object which needs to be cast to some other value
for use in the Java environment.

See also: Call, Java to JavaScript values, JavaScript to Java values, JSObject
object, JSObject.eval(), LiveConnect

Cross-references:
Wrox Professional JavaScript – page 542-3

J – JSObject.eval() (Java method)

1227

JSObject.eval() (Java method)
A means of invoking native JavaScript eval() functionality.

Availability: JavaScript – 1.1
Netscape – 3.0

Java syntax: myJSObject.eval("someScript")

Argument list: someScript Some valid JavaScript source

This is a much simpler way to execute JavaScript than by the call() method. Here there is no
need to construct an array to pass in the method arguments.

The return values will conform to the following conversions as they are passed between
the environments:

JavaScript Java

boolean primitive java.lang.Boolean

number primitive java.lang.Double

string primitive java.lang.String

JavaObject object The encapsulated Java object unwrapped

all other JavaScript objects netscape.javascript.JSObject

The JSObject.eval() method eliminates many of the parameter passing problems associated
with the JSObject.call() method as far as type conversion is concerned. You will need to
convert any parameters you want to pass into strings, but this does allow you to pass primitive
values which you simply cannot do with the JSObject.call() method.

See also: Eval code, eval(), JavaScript to Java values, JSObject object,
JSObject.call(), LiveConnect

JSObject.getMember() (Java method)
Returns the value of a named property of the object belonging to a JavaScript object to a calling in
the Java environment.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Object object

Java syntax: myJSObject.getMember("aMemberName")

Argument list: aMemberName The name of a property belonging to the JSObject

JavaScript Programmer's Reference

1228

As you read properties of JSObjects, you get more JSObjects returned. In this way, you can walk the
document hierarchy to locate any item in the window referred to by the root JSObject.

The return values will conform to the following conversions as they are passed between the
environments:

JavaScript Java

boolean primitive java.lang.Boolean
number primitive java.lang.Double
string primitive java.lang.String
JavaObject object The encapsulated Java object unwrapped
all other JavaScript objects netscape.javascript.JSObject

The result of this method call will be an Object object which needs to be cast to some other value
for use in the Java environment.

See also: JavaScript to Java values, JSObject object, LiveConnect

JSObject.getSlot() (Java method)
A means of accessing elements within an array encapsulated in a JSObject.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: Object object

Java syntax: myJSObject.getSlot(anIndex)

Argument list: anIndex The array index equivalent to [anIndex]

This is a means of accessing array elements in JavaScript arrays when they are encapsulated inside
a JSObject.

The return values will conform to the following conversions as they are passed between the
environments:

JavaScript Java

boolean primitive java.lang.Boolean
number primitive java.lang.Double
string primitive java.lang.String
JavaObject object The encapsulated Java object unwrapped
all other JavaScript objects netscape.javascript.JSObject

The result of this method call will be the element of the array at the slot location returned as an
Object object which needs to be cast to some other value.

See also: JavaScript to Java values, JSObject object, LiveConnect

J – JSObject.getWindow() (Java static method)

1229

JSObject.getWindow() (Java static method)
A static method to return a new JSObject that belongs to the window containing the applet.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JSObject object

JavaScript syntax: N new JSObject(anApplet)

Java syntax: myJSObject.getWindow(anApplet)

Argument list: anApplet
The applet whose window is to be
referenced by the new JSObject

When called from a Java applet, this method returns a new JSObject for the window containing
the applet.

This is a way of creating a JSObject that relates to the correct window, that is, the one containing
the applet. This factory method is called because there is no constructor for the JSObject class. It
creates a JSObject appropriate for the applet whose reference is passed in its only parameter.

Example code:
// Create a JSObject for the applet we are running in
JSObject myJSObject = JSObject.getWindow(this);

See also: JSObject object, LiveConnect

JSObject.removeMember() (Java method)
Remove a property from a JavaScript object.

Availability: JavaScript – 1.1
Netscape – 3.0

Java syntax: myJSObject.removeMember()

This is equivalent to the delete property mechanism in JavaScript.

See also: delete, JSObject object, LiveConnect

JavaScript Programmer's Reference

1230

JSObject.setMember() (Java method)
Stores a new value in a property.

Availability: JavaScript – 1.1
Netscape – 3.0

Java syntax: myJSObject.setMember("aName", "aValue")

aName The name of the property to be changed
Argument list:

aValue The new value to be stored in the property

This method allows the Java code to set a property of a JSObject to a new value There is a minor
limitation in that you must pass a Java object and cannot set a primitive value.

The values passed to JavaScript will conform to the following conversions as they are passed to the
JSObject methods:

Java JavaScript

java.lang.Boolean JavaObject object

java.lang.Double JavaObject object

java.lang.Integer JavaObject object

java.lang.String JavaObject object

netscape.javascript.JSObject generic JavaScript object

all other Java objects JavaObject object

See also: Java to JavaScript values, JSObject object, LiveConnect

JSObject.setSlot() (Java method)
Store an element in the JavaScript array.

Availability: JavaScript – 1.1
Netscape – 3.0

Java syntax: myJSObject.setSlot(anIndex, "aValue")

anIndex The array index equivalent to [anIndex].
Argument list:

aValue The new value to be stored in the array element

This method allows the Java code to set an element of a JavaScript array stored in a JSObject.
There is a minor limitation in that you must pass a Java object and cannot set a primitive value.

J – JSObject.toString() (Java method)

1231

The values passed to JavaScript will conform to the following conversions as they are passed to the
JSObject methods:

Java JavaScript

java.lang.Boolean JavaObject object

java.lang.Double JavaObject object

java.lang.Integer JavaObject object

java.lang.String JavaObject object

netscape.javascript.JSObject generic JavaScript object

all other Java objects JavaObject object

See also: Java to JavaScript values, JSObject object, LiveConnect

JSObject.toString() (Java method)
Converts the object to a string value.

Availability: JavaScript – 1.1
Netscape – 3.0

Java syntax: myJSObject.toString()

The string equivalent value of the object is returned as a Java String.

See also: JavaScript to Java values, JSObject object, LiveConnect,
ToString, Type conversion

JSS (Definition)
A standard for describing style sheets in Netscape 4.0.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: JavaScript Style Sheets

JavaScript Programmer's Reference

1232

JSSClasses object (Object/JSS)
A collection of JavaScript Style Sheet classes.

Availability: JavaScript – 1.2
Netscape – 4.0 Deprecated

JavaScript syntax: N myJSSClasses =
myDocument.classes

Object properties: className

This style sheet control mechanism is becoming deprecated as it is only supported on Netscape 4.0
and will not be ratified by a W3C standard. It is not recommended that you use these facilities
in new projects.

This object is somewhat like an array in that it contains a collection of objects that can be accessed
associatively by name. However, unlike an array, it does not respond to the length property
request. Also unlike an array, you cannot access its members using index values.

The only meaningful property of this object is one of its array elements corresponding to a named
class in the style sheet. That property is also associated with a named CLASS="..." attribute of an
HTML tag in the document.

You cannot enumerate this object to inspect its properties.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Document.classes[]

Property JavaScript JScript N IE Opera Notes

className 1.2 + - 4.0 + - - WarningDeprecated

Property attributes:
DontEnum.

J – JSSClasses.className (Property)

1233

JSSClasses.className (Property)
A JSS object corresponding to a single style class.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: JSSTags object

JavaScript syntax: N myDocument.classes.aClassName

Argument list: aClassName A named class within the style sheet

This object represents a class within the style sheet. However it is only available in Netscape 4.0
and is a means of access that leads ultimately to a Style object.

This mechanism is radically different to and much more complex than the simple style property
belonging to an Element object in MSIE and Netscape 6.0.

From the value in this property, you would traverse the style tree down another level to find a style
collection relating to a particular tag.

You cannot enumerate this object to inspect its properties.

This was mainly provided to give access to a style definition in Netscape 4.0 as opposed to the way
it is used in MSIE and Netscape 6.0, where it is used to apply a style definition to a styled element
within the document.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

JSSTag object (Object/JSS)
A single style object for use in Netscape 4.

Availability: JavaScript – 1.2
Netscape – 4.0 Deprecated

N myJSSTag =
myDocument.classes.aClassName.aTagName

N myJSSTag = myDocument.contextual(...)

N myJSSTag =
myDocument.ids.anElementName

N myJSSTag = myDocument.tags.aTagName

JavaScript syntax:

N myJSSTag = myJSSTags.aTagName

JavaScript Programmer's Reference

1234

aClassName A named class within the style sheet
anElementName The value of a NAME="..." or ID="..." tag

attribute.

Argument list:

aTagName The name of an HTML tag

Object properties:
align, apply, background, backgroundColor,
backgroundImage, bgColor, borderBottomWidth,
borderColor, borderLeftWidth, borderRightWidth,
borderStyle, borderTopWidth, clear, clip, color,
display, fontFamily, fontSize, fontStyle, fontWeight,
height, left, lineHeight, listStyleType,
marginBottom, marginLeft, marginRight, marginTop,
paddingBottom, paddingLeft, paddingRight, paddingTop,
textAlign, textDecoration, textIndent, textTransform,
top, verticalAlign, visibility, whiteSpace, width,
zIndex

Object methods: borderWidths(), margins(), paddings(), rgb()

This is the Netscape 4.0 JSS equivalent of the DOM style object. You assign values to the properties of
this object to define the styles according to the JSS rules. Browsers sometimes use different object types
with incompatible properties and methods to represent the same thing. We cover them as distinctly
different objects where it seems sensible. The Netscape 4.0 style settings are properties of a JSSTag
object. Refer to the style object for details of the MSIE and Netscape 6.0 style control properties.

The property values for this object each represent a style attribute of an HTML tag.

To define a style setting with JSS, assign a value to this property according to the class name and
tag name hierarchy.

These values are write-only and must be defined in the <HEAD> of the document. You cannot read
them back or change them after the <BODY> has commenced loading.

You cannot enumerate the properties of this object so it is impossible to inspect them. Indeed, after
repeated attempts to access them, they appear to be write-only properties.

Because you can only define them during the <HEAD> of a document, they don't provide much
helpful facilities as regards dynamic style control.

It is highly recommended that you refrain from using these JSS facilities in any new projects. They are
deprecated now that Netscape 6.0 adopts a more standardized DOM based approach to style settings.

The CSS support in Netscape 4.0 is available up to CSS level 1. In MSIE and Netscape 6.0, much of
CSS level 2 is available through its more sophisticated and easier to manage style model.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Document.contextual(), JSSTags object, style object (2)

J – JSSTag object (Object/JSS)

1235

Property JavaScript JScript N IE Opera Notes

align 1.2 + - 4.0 + - - Warning, Deprecated
apply 1.2 + - 4.0 + - - Warning, Deprecated
background 1.2 + - 4.0 + - - Warning, DontEnum.,

Deprecated
backgroundColor 1.2 + - 4.0 + - - Warning, Deprecated
backgroundImage 1.2 + - 4.0 + - - Warning, Deprecated
bgColor 1.2 + - 4.0 + - - Warning, DontEnum.,

Deprecated
borderBottomWidth 1.2 + - 4.0 + - - Warning, Deprecated
borderColor 1.2 + - 4.0 + - - Warning, Deprecated
borderLeftWidth 1.2 + - 4.0 + - - Warning, Deprecated
borderRightWidth 1.2 + - 4.0 + - - Warning, Deprecated
borderStyle 1.2 + - 4.0 + - - Warning, Deprecated
borderTopWidth 1.2 + - 4.0 + - - Warning, Deprecated
clear 1.2 + - 4.0 + - - Warning, Deprecated
clip 1.2 + - 4.0 + - - Warning, DontEnum.,

Deprecated
color 1.2 + - 4.0 + - - Warning, Deprecated
display 1.2 + - 4.0 + - - Warning, Deprecated
fontFamily 1.2 + - 4.0 + - - Warning, Deprecated
fontSize 1.2 + - 4.0 + - - Warning, Deprecated
fontStyle 1.2 + - 4.0 + - - Warning, Deprecated
fontWeight 1.2 + - 4.0 + - - Warning, Deprecated
height 1.2 + - 4.0 + - - Warning, Deprecated
left 1.2 + - 4.0 + - - Warning, DontEnum.,

Deprecated
lineHeight 1.2 + - 4.0 + - - Warning, Deprecated
listStyleType 1.2 + - 4.0 + - - Warning, Deprecated
marginBottom 1.2 + - 4.0 + - - Warning, Deprecated
marginLeft 1.2 + - 4.0 + - - Warning, Deprecated
marginRight 1.2 + - 4.0 + - - Warning, Deprecated
marginTop 1.2 + - 4.0 + - - Warning, Deprecated
paddingBottom 1.2 + - 4.0 + - - Warning, Deprecated
paddingLeft 1.2 + - 4.0 + - - Warning, Deprecated
paddingRight 1.2 + - 4.0 + - - Warning, Deprecated
paddingTop 1.2 + - 4.0 + - - Warning, Deprecated
textAlign 1.2 + - 4.0 + - - Warning, Deprecated
textDecoration 1.2 + - 4.0 + - - Warning, Deprecated
textIndent 1.2 + - 4.0 + - - Warning, Deprecated

Table continued on following page

JavaScript Programmer's Reference

1236

Property JavaScript JScript N IE Opera Notes

textTransform 1.2 + - 4.0 + - - Warning, Deprecated
top 1.2 + - 4.0 + - - Warning, DontEnum., Deprecated
verticalAlign 1.2 + - 4.0 + - - Warning, Deprecated
visibility 1.2 + - 4.0 + - - Warning, DontEnum., Deprecated
whiteSpace 1.2 + - 4.0 + - - Warning, Deprecated
width 1.2 + - 4.0 + - - Warning, Deprecated
zIndex 1.2 + - 4.0 + - - Warning, DontEnum., Deprecated

Method JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

borderWidths() 1.2 + - 4.0 + - - - - - 1 + - Warning,
Deprecated

margins() 1.2 + - 4.0 + - - - - - 1 + - Warning,
Deprecated

paddings() 1.2 + - 4.0 + - - - - - 1 + - Warning,
Deprecated

rgb() 1.2 + - 4.0 + - - - - - - - Warning,
Deprecated

Property attributes:
DontEnum.

JSSTag.align (Property)
Specified the alignment of objects.

Availability: JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.align
JavaScript syntax:

N myJSSTag.align = aValue

CSS syntax: float

HTML syntax: <... ALIGN="...">

Argument list: aValue An alignment value

J – JSSTag.apply (Property)

1237

The JSSTag.align property does not correspond to any CSS property as there is not a specific
align property in CSS even though some HTML 4.0 tags do.

It is based on values that are specified with HTML ALIGN="..." tag attributes.

The alignment of the styled object with respect to its containing parent object is defined in this
property. The folllowing expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

JSSTag.apply (Property)
A special JSS supporting property that holds a reference to a callback function.

Availability: JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: Function object

JavaScript syntax: N myTags.anItem.apply = aHandler

aHandler
A JavaScript function to call when setting the
object's styleArgument list:

anItem A tag name such as P or B or H1

This is a mechanism that allows the style engine in Netscape 4.0 to call for help when things get too
complicated. Basically it calls the handler when an object is created and that handler sets the
properties of the receiving object. There is an implied this on the front of any property names that
are assigned with new values.

JavaScript Programmer's Reference

1238

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0

See also: JavaScript Style Sheets

JSSTag.backgroundColor (Property)
The background color for objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type:
String primitive

N myJSSTag.backgroundColor

N myJSSTag.backgroundColor = "transparent"
JavaScript syntax:

N myJSSTag.backgroundColor = aColor

CSS syntax:
background-color: aColorbackground-color:
transparent

HTML syntax:
<BODY BGCOLOR="...">

Argument list:
aColor color value specified as #numeric or color name

The JSSTag.backgroundColor property corresponds to the background-color CSS property.

This property controls the background color of the element.

The value should be a color specified using the normal numeric or symbolic name notation.

In addition, the value "transparent" can be specified to allow the background to be "see-through".

The default value is "transparent".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.backgroundColor

J – JSSTag.backgroundImage (Property)

1239

JSSTag.backgroundImage (Property)
The URL of a background image for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.backgroundImage

N myJSSTag.backgroundImage = "none"
JavaScript syntax:

N myJSSTag.backgroundImage = aURL

CSS syntax: background-image: aURL

HTML syntax: <BODY BACKGROUND="...">

Argument list: aURL A URL that points at an image

The JSSTag.backgroundImage property corresponds to the background-image CSS property.

This property is used to specify the URL of an image file to be loaded and used as the background.
Alternatively the value "none" can be specified to deactivate the image background.

The default value for this property is "none".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Background.src, style.backgroundImage

JavaScript Programmer's Reference

1240

JSSTag.borderBottomWidth (Property)
The thickness of the bottom edge of border round objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.borderBottomWidth
JavaScript syntax:

N myJSSTag.borderBottomWidth = aWidth

CSS syntax: border-bottom-width: aWidth

HTML syntax: <... MARGINHEIGHT="...">

Argument list: aWidth A CSS length value

The JSSTag.borderBottomWidth property corresponds to the border-bottom-width
CSS property.

The content of an object is enclosed in a bounding extent rectangle. Around this is placed a
padding space controlled by the padding parameters. The padding expands the bounding. Then the
border is placed around this. The border width increases the bounding rectangle around the object
still further. Last of all the margin is placed around the outside. This forms a rectangle that is used
to locate the object adjacent to any other objects or page margins.

The value of this property can be specified as follows:

❑ thin

❑ medium

❑ thick

It can also be specified with a length value in one of several units of measure.

The initial value is set to "medium".

This value is not inherited from its parent container element.

Object

Padding

Border

Margin

Border bottom width

Margin bottom

Padding bottom

J – JSSTag.borderColor (Property)

1241

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.borderColor (Property)
The color of the border around objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.borderColor
JavaScript syntax:

N myJSSTag.borderColor = aColor

CSS syntax: border-color: aColor

HTML syntax: <... BORDERCOLOR="...">

Argument list: aColor color value specified as #numeric or color name

The JSSTag.borderColor property corresponds to the border-color CSS property.

This property controls the color of all four borders of the object. The value is a color specified in the
normal numeric or symbolically named fashion.

The initial value is taken from the color property of the element around which the border is placed.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.borderColor

JavaScript Programmer's Reference

1242

JSSTag.borderLeftWidth (Property)
The thickness of the left edge of the border around objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.borderLeftWidth
JavaScript syntax:

N myJSSTag.borderLeftWidth = aWidth

CSS syntax: border-left-width: aWidth

HTML syntax: <... MARGINWIDTH="...">

Argument list: aWidth A CSS length value

The JSSTag.borderLeftWidth property corresponds to the border-left-width CSS property.

Refer to the JSSTag.borderBottomWidth topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.borderRightWidth (Property)
The thickness of the right edge of the border around objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.borderRightWidth
JavaScript syntax:

N myJSSTag.borderRightWidth = aWidth

CSS syntax: border-right-width: aWidth

J – JSSTag.borderStyle (Property)

1243

HTML syntax: <... MARGINWIDTH="...">

Argument list: aWidth A CSS length value

The JSSTag.borderRightWidth property corresponds to the border-right-width CSS property.

Refer to the JSSTag.borderBottomWidth topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.borderStyle (Property)
The type of line used for the border around objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.borderStyle
JavaScript syntax:

N myJSSTag.borderStyle = aStyle

CSS syntax: border-style: aStyle

Argument list: aStyle A border style value

The JSSTag.borderStyle property corresponds to the border-style CSS property.

The following style values can be applied to borders with this property:

❑ none

❑ hidden

❑ dotted

❑ dashed

❑ solid

❑ double

❑ groove

❑ ridge

JavaScript Programmer's Reference

1244

❑ inset

❑ outset

The initial value for this property is "none".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.borderStyle

JSSTag.borderTopWidth (Property)
The thickness of the top edge of the border around objects.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.borderTopWidth
JavaScript syntax:

N myJSSTag.borderTopWidth = aWidth

CSS syntax: border-top-width: aWidth

HTML syntax: <... MARGINHEIGHT="...">

Argument list: aWidth A CSS length value

The JSSTag.borderTopWidth property corresponds to the border-top-width CSS property.

Refer to the JSSTag.borderBottomWidth topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

J – JSSTag.borderWidths() (Method)

1245

JSSTag.borderWidths() (Method)
Sets all of the border width values for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

N myJSSTag.borderWidths(aTop, aHoriz, aBottom)

N myJSSTag.borderWidths(aTop, aRight, aBottom, aLeft)

N myJSSTag.borderWidths(aValue)

JavaScript syntax:

N myJSSTag.borderWidths(aVert, aHoriz)

CSS syntax:
border-width: aTop, aHoriz, aBottomborder-width: aTop,
aRight, aBottom, aLeftborder-width: aValueborder-width:
aVert, aHorizborder: aValue

HTML syntax: <... BORDER="...">

aBottom A border width applied at the bottom
aHoriz A border width applied left and right
aLeft A border width applied to the left
aRight A border width applied to the right
aTop A border width applied at the top
aValue A border width value applied all round

Argument list:

aVert A border width applied top and bottom

Event handlers: This controls the border attribute of an image objects

This method provides a way to set all four border width values at once. The number of arguments
is variable and the values are applied in different ways according to how many are supplied.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.borderWidth

Event name JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

This controls the
border attribute of
an image object.

1.2 + - 4.0 + - - - - - 1 + - Warning,
Deprecated

JavaScript Programmer's Reference

1246

JSSTag.clear (Property)
A property that clears the style and forces the object to be displayed below a left or right aligned image.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.clear
JavaScript syntax:

N myJSSTag.clear = aControl

CSS syntax: clear: aControl

HTML syntax: <... CLEAR="...">

Argument list: aControl a clear control value

The JSSTag.clear property corresponds to the clear CSS property.

This property is used to control the floating elements around the element to which the styling
applies. Clearing the float attribute to one side or the other forces a line break on that side and will
not allow floating elements to flow into an adjacent position.

The following values are permitted:

❑ none

❑ left

❑ right

❑ both

The default value for this property is "none".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.clear

J – JSSTag.color (Property)

1247

JSSTag.color (Property)
A foreground color for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape Navigator version – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.color
JavaScript syntax:

N myJSSTag.color = aColor

CSS syntax: color: aColor

HTML syntax: <... COLOR="...">

Argument list: aColor color value specified as #numeric or color name

The JSSTag.color property corresponds to the color CSS property.

This property controls the foreground color of text in the element.

The value should be a color specified using the normal numeric or symbolic name notation.

The default value depends on the settings in the user preferences of the user agent (the browser).

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: color names, color value, style.color

JSSTag.display (Property)
Controls the display visibility of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.display
JavaScript syntax:

N myJSSTag.display = aControl

CSS syntax: display: aControl

Argument list: aControl a display control value

JavaScript Programmer's Reference

1248

The JSSTag.display property corresponds to the display CSS property.

This property controls the way that a styled element is displayed on-screen. It can cause the
element to appear as a block item, something that is inline, a list or other possibilities. The
following values are accepted:

❑ inline

❑ block

❑ list-item

❑ run-in

❑ compact

❑ marker

❑ table

❑ inline-table

❑ table-row-group

❑ table-header-group

❑ table-footer-group

❑ table-row

❑ table-column-group

❑ table-column

❑ table-cell

❑ table-caption

❑ none

Elements having the display property set to "block" will be forced to start on a new line.

The "inline" value keeps items running together on the same line.

Setting the display property to "none" will completely hide an item.

The other property values are quite complex and beyond the scope of our coverage here and are
documented thoroughly in other works that specifically cover the CSS presentation styling
standard. In any case, the whole JSS style complex is deprecated and will likely fall into disuse.

The default value for this property is "inline".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.display

J – JSSTag.fontFamily (Property)

1249

JSSTag.fontFamily (Property)
The font family or typeface name for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.fontFamily
JavaScript syntax:

N myJSSTag.fontFamily = aFontList

CSS syntax: font-family: aFontList

HTML syntax:

Argument list: aFontList A list of one or more font names

The JSSTag.fontFamily property corresponds to the font-family CSS property in a style
sheet. It allows you to select a font for use in the object within the document.

Some example values of specific font families are listed below:

❑ Arial

❑ Courier

❑ Times

❑ Garamond

❑ Palatino

❑ Helvetica

❑ "New Century Schoolbook"

Font names containing spaces will need to be enclosed in quotes.

These are generic family names and allow the browser to choose its own best matching font:

❑ serif

❑ sans-serif

❑ monospace

❑ cursive

❑ fantasy

You should provide your list of fonts as a comma separated list with the most preferred fonts to the left.

The default value for this property depends on the browser font settings in the user preferences.

This value is inherited from its parent container element.

JavaScript Programmer's Reference

1250

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.fontFamily

JSSTag.fontSize (Property)
The font size for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.fontSize
JavaScript syntax:

N myJSSTag.fontSize = aSizeValue

CSS syntax: font-size: aSizeValue

HTML syntax:

Argument list: aSizeValue A size value as described

The JSSTag.fontSize property corresponds to the font-size CSS property. It controls the size
of the text as it appears on the screen.

This is notoriously unportable and text always looks smaller on a Macintosh than it does on a
Windows system. This is because the native screen resolution of a Macintosh is 72 dpi and a
Windows system is 96 dpi.

You can specify the size in a variety of ways. There are four classifications for the font size value:

❑ Length

❑ Percentage

❑ Absolute size

❑ Relative size

The length value can be specified in units of measure as follows:

Points – e.g. 12pt

Millimetres – e.g. 0.4mm

Pixels – e.g. 16px

The percentage value is computed relative to the enclosing object's corresponding property (hence
the cascading effect of style sheets). A percentage value is indicated with an integer followed by a
percent sign, for example 120%.

J – JSSTag.fontStyle (Property)

1251

The absolute size is based on the browser knowing the screen display resolution and computing
some preferred font sizes. It is specified using the following keywords:

❑ xx-small

❑ x-small

❑ small

❑ medium

❑ large

❑ x-large

❑ xx-large

Note that some of the smaller sizes render so small on a Macintosh as to be unreadable.

The relative sizing is controlled by the two keywords:

❑ larger

❑ smaller

You can use a combination of absolute and relative sizing or any combination of sizes as this
property is cascaded down through the styles.

The default value for this property is "medium".

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units, style.fontSize

JSSTag.fontStyle (Property)
The font attributes for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type:
String primitive

N myJSSTag.fontStyle
JavaScript syntax:

N myJSSTag.fontStyle = aStyle

CSS syntax:
font-style: aStyle

Argument list:
aStyle A font presentation style

The JSSTag.fontStyle property corresponds to the CSS font-style property.

JavaScript Programmer's Reference

1252

You can choose a value from these available styles:

❑ normal

❑ italic

❑ oblique

For some fonts, the italic and oblique fonts are simply slanted versions of the normal upright fonts.
This can lead to some unattractive artefacts and so the italic form is sometimes specially designed
and uses a markedly different glyph. It is intended to improve readability of italic characters.

The default value for this property is "normal".

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.fontStyle

JSSTag.fontWeight (Property)
The weight of a font for an object. This is otherwise known as the boldness.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.fontWeight
JavaScript syntax:

N myJSSTag.fontWeight = aWeight

CSS syntax: font-weight: aWeight

HTML syntax:

Argument list: aWeight A font weight control value

The JSSTag.fontWeight property corresponds to the font-weight CSS property.

This property controls the weight of the characters on the screen. this is sometimes called boldness
although it provides a much finer level of control than simply using a bold tag. The following
numerical values select a progressive weight increase:

❑ 100

❑ 200

❑ 300

J – JSSTag.height (Property)

1253

❑ 400

❑ 500

❑ 600

❑ 700

❑ 800

❑ 900

These keywords select a pair of reasonably similar settings across platforms:

❑ normal

❑ bold

The normal setting is equivalent to 400 and the bold setting matches 700.

In addition there are two relative boldness controls:

❑ bolder

❑ lighter

Not all font families support as wide a range of possible weights as the fontWeight property can
control. Nevertheless, the browser makes its best efforts to deliver the requested appearance.

The default value for this property is "normal".

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units, style.fontWeight

JSSTag.height (Property)
The height of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.height
JavaScript syntax:

N myJSSTag.height = aHeight

CSS syntax: height: aHeight

JavaScript Programmer's Reference

1254

HTML syntax: <... HEIGHT="...">

Argument list: aHeight An object height value

Event handlers:
This controls the height of an image object on
screen for example.

The JSSTag.height property corresponds to the height CSS property.

This property can be used to control the height of an object on the screen. The value can be
specified as a length measured in units, a percentage of the containing block the element is located
in or an "auto" value that lets the browser compute the size.

The default value for this property is "auto".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: JSSTag.width, style.height

JSSTag.lineHeight (Property)
The line height spacing for an object. This is the distance between the baselines of two adjacent
lines of text.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.lineHeight
JavaScript syntax:

N myJSSTag.lineHeight =
aLineHeight

CSS syntax: line-height: aLineHeight

Argument list: aLineHeight A spacing between lines of text

The JSSTag.lineHeight property corresponds to the line-height CSS property.

This value specifies the distance between the baselines for adjacent lines; more accurately, it
indicates the minimum distance, because an object larger than the line height value will cause lines
to be leaded further apart to accommodate the item within the display.

J – JSSTag.listStyleType (Property)

1255

The following values are meaningful in this property:

❑ A numeric line height measured in points

❑ A value in pixels

❑ A distance in mm

❑ A percentage of the parent line height value

The default value for this depends on the user preference settings for font sizes.

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units, style.lineHeight

JSSTag.listStyleType (Property)
A list style bullet selector for the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.listStyleType
JavaScript syntax:

N myJSSTag.listStyleType = aStyle

CSS syntax: list-style-type: aStyle

HTML syntax: <... TYPE="...">

Argument list: aStyle A list style control

The JSSTag.listStyleType property corresponds to the list-style-type CSS property.

This is used to control the appearance of lists of items. It can have the following values:

❑ disc

❑ circle

❑ square

❑ decimal

❑ decimal-leading-zero

JavaScript Programmer's Reference

1256

❑ lower-roman

❑ upper-roman

❑ lower-alpha

❑ lower-latin

❑ upper-alpha

❑ upper-latin

❑ lower-greek

❑ hebrew

❑ armenian

❑ georgian

❑ cjk-ideographic

❑ hiragana

❑ katakana

❑ hiragana-iroha

❑ katakane-iroha

❑ none

The value "none" suppresses labels on the list.

There are various graphic symbols.

You can also number the list items using different documentation conventions (numbers, roman
numerals, letters etc).

There is also support for international character fonts and localization requirements.

The default value for this property is "disc".

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4 and is completely removed

from Netscape 6.0.

See also: style.listStyleType

J – JSSTag.marginBottom (Property)

1257

JSSTag.marginBottom (Property)
The margin at the bottom of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

N myJSSTag.marginBottom
JavaScript syntax:

N myJSSTag.marginBottom = aWidth

CSS syntax: margin-bottom: aWidth

Argument list: aWidth A CSS length value

The JSSTag.marginBottom property corresponds to the margin-bottom CSS property.

The content of an object is enclosed in a bounding extent rectangle. Around this is placed a
padding space controlled by the padding parameters, which expands the bounding – the border is
then placed around this. The border width increases the bounding rectangle around the object still
further. Last of all the margin is placed around the outside. This forms a rectangle that is used to
locate the object adjacent to any other objects or page margins.

The value of this property can be specified as follows:

❑ A length value in one of several units of measure

❑ A percentage of the width of the object

In addition a keyword can be used:

❑ auto

The auto setting need not be applied to all of the margins, but according to how it is used, some fairly
complex margin computation is applied. You should consult one of the standard texts on CSS styles.

The initial value is set to 0 allowing for no margin value at all.

This value is not inherited from its parent container element.

Object

Padding

Border

Margin

Border bottom width

Margin bottom

Padding bottom

JavaScript Programmer's Reference

1258

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.marginLeft (Property)
The margin at the left of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.marginLeft
JavaScript syntax:

N myJSSTag.marginLeft = aWidth

CSS syntax: margin-left: aWidth

Argument list: aWidth A CSS length value

The JSSTag.marginLeft property corresponds to the margin-left CSS property.

Refer to the JSSTag.marginBottom topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.marginRight (Property)
The margin at the right of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.marginRight
JavaScript syntax:

N myJSSTag.marginRight = aWidth

J – JSSTag.margins() (Method)

1259

CSS syntax: margin-right: aWidth

Argument list: aWidth A CSS length value

The JSSTag.marginRight property corresponds to the margin-right CSS property.

Refer to the JSSTag.marginBottom topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.margins() (Method)
Set all margin values for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

N myJSSTag.margins(aTop, aHoriz, aBottom)

N myJSSTag.margins(aTop, aRight, aBottom, aLeft)

N myJSSTag.margins(aValue)

JavaScript syntax:

N myJSSTag.margins(aVert, aHoriz)

CSS syntax:
margin: aTop, aHoriz, aBottommargin: aTop, aRight,
aBottom, aLeftmargin: aValuemargin: aVert, aHoriz

aBottom A margin applied at the bottom
aHoriz A margin applied left and right
aLeft A margin applied to the left
aRight A margin applied to the right
aTop A margin applied at the top
aValue A margin value applied all round

Argument list:

aVert A margin applied top and bottom

This method provides a way to set all four margin values at once. The number of arguments is
variable and the values are applied in different ways according to how many are supplied.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: JavaScript Style Sheets, style.margin

JavaScript Programmer's Reference

1260

JSSTag.marginTop (Property)
The margin at the top of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.marginTop
JavaScript syntax:

N myJSSTag.marginTop = aWidth

CSS syntax: margin-top: aWidth

Argument list: aWidth A CSS length value

The JSSTag.marginTop property corresponds to the margin-top CSS property.

Refer to the JSSTag.marginBottom topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.paddingBottom (Property)
The padding at the bottom of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type:
String primitive

N myJSSTag.paddingBottom
JavaScript syntax:

N myJSSTag.paddingBottom = aWidth

CSS syntax:
padding-bottom: aWidth

Argument list:
aWidth A CSS length value

The JSSTag.paddingBottom property corresponds to the padding-bottom CSS property.

J – JSSTag.paddingLeft (Property)

1261

The content of an object is enclosed in a bounding extent rectangle. Around this is placed a
padding space controlled by the padding parameters. The padding expands the bounding. Then the
border is placed around this. The border width increases the bounding rectangle around the object
still further. Last of all the margin is placed around the outside. This forms a rectangle that is used
to locate the object adjacent to any other objects or page margins.

The value of this property can be specified as follows:

❑ A length value in one of several units of measure

❑ A percentage of the width of the object

The initial value is set to 0 allowing for no padding value at all.

This value is not inherited from its parent container element.

Object

Padding

Border

Margin

Border bottom width

Margin bottom

Padding bottom

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.paddingLeft (Property)
The padding at the left of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive Deprecated

N myJSSTag.paddingLeft
JavaScript syntax:

N myJSSTag.paddingLeft = aWidth

JavaScript Programmer's Reference

1262

CSS syntax: padding-left: aWidth

Argument list: aWidth A CSS length value

The JSSTag.paddingLeft property corresponds to the padding-left CSS property.

Refer to the JSSTag.paddingBottom topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.paddingRight (Property)
The padding at the right of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.paddingRight
JavaScript syntax:

N myJSSTag.paddingRight = aWidth

CSS syntax: padding-right: aWidth

Argument list: aWidth A CSS length value

The JSSTag.paddingRight property corresponds to the padding-right CSS property.

Refer to the JSSTag.paddingBottom topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

J – JSSTag.paddings() (Method)

1263

JSSTag.paddings() (Method)
Set all padding values for an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

N myJSSTag.paddings(aTop, aHoriz, aBottom)

N myJSSTag.paddings(aTop, aRight, aBottom,
aLeft)

N myJSSTag.paddings(aValue)

JavaScript syntax:

N myJSSTag.paddings(aVert, aHoriz)

CSS syntax:
padding: aTop, aHoriz, aBottompadding: aTop,
aRight, aBottom, aLeftpadding: aValuepadding:
aVert, aHoriz

aBottom A padding applied at the bottom
aHoriz A padding applied left and right
aLeft A padding applied to the left
aRight A padding applied to the right
aTop A padding applied at the top
aValue A padding value applied all round

Argument list:

aVert A padding applied top and bottom

This method provides a way to set all four padding values at once. The number of arguments is
variable and the values are applied in different ways according to how many are supplied.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.padding

JSSTag.paddingTop (Property)
The padding at the top of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.paddingTop
JavaScript syntax:

N myJSSTag.paddingTop = aWidth

CSS syntax: padding-top: aWidth

Argument list: aWidth A CSS length value

JavaScript Programmer's Reference

1264

The JSSTag.paddingTop property corresponds to the padding-top CSS property.

Refer to the JSSTag.paddingBottom topic for details.

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units

JSSTag.rgb() (Method)
A JSS style control method.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myTags.anItem.rgb(aRed, aGreen,
aBlue)

aBlue Blue intensity value
aGreen Green intensity value
anItem A tag name such as P or B or H1

Argument list:

aRed Red intensity value

The rgb() method provides a convenient way to define an RGB triplet in a single call.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

Example code:
// Some red texttags.P.rgb(255, 0, 0);

See also: JavaScript Style Sheets

Cross-references:
Wrox Instant JavaScript – page 50

J – JSSTag.textAlign (Property)

1265

JSSTag.textAlign (Property)
The text alignment within the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.textAlign
JavaScript syntax:

N myJSSTag.textAlign = anAlignment

CSS syntax: text-align: anAlignment

HTML syntax: <... ALIGN="...">

Argument list: anAlignment A text alignment control

The JSSTag.textAlign property corresponds to the text-align CSS property.

This property controls the justification of text between the left and right margins. The following
values are supported:

❑ left

❑ right

❑ center

❑ justify

IN addition a string can be used to indicate a character to use for decimal alignment. This need not
be a dot but can be other characters to present a neatly laid out tabular column.

The default value for this property depends on the user preference settings in the user agent.

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.textAlign

JavaScript Programmer's Reference

1266

JSSTag.textDecoration (Property)
The text decoration (underline, overline etc) for text in the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.textDecoration
JavaScript syntax:

N myJSSTag.textDecoration =
aDecoration

CSS syntax: text-decoration: aDecoration

Argument list: aDecoration A list of decorations for some text

The JSSTag.textDecoration property corresponds to the text-decoration CSS property.

This controls the decoration of the text on screen with additional overprinting or dynamics.

The following values are permitted:

❑ underline

❑ overline

❑ line-through

❑ blink

Beware when you use the underline attribute, people may think that it is a hyperlink. Also avoid
using the blink decoration unless you really need to. It can become very annoying for the user
unless it is used with taste and discretion.

The default value for this property is "none".

This value is not inherited from its parent container element although the attributes of the parent
will persist.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.textDecoration

J – JSSTag.textIndent (Property)

1267

JSSTag.textIndent (Property)
The indentation of text in the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.textIndent
JavaScript syntax:

N myJSSTag.textIndent = anIndent

CSS syntax: text-indent: anIndent

Argument list: anIndent A value to indent the first line of text

The JSSTag.textIndent property corresponds to the text-indent CSS property.

This value is used to indent the first line of text in the styled element.

The value is numeric but can be specified in several ways:

❑ Absolute (10)

❑ Relative (-5)

❑ Percentage of paragraph width (10%)

The default value for this property is 0, meaning no indent at all.

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: Measurement units, style.textIndent

JSSTag.textTransform (Property)
The transformation of text in the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

JavaScript Programmer's Reference

1268

N myJSSTag.textTransform
JavaScript syntax:

N myJSSTag.textTransform = aTransformation

CSS syntax: text-transform: aTransformation

Argument list: aTransformation A character glyph transform

The JSSTag.textTransform property corresponds to the text-transform CSS property.

This property provides a means to change the glyphs that are used without affecting the
underlying source text. The following values are permitted:

❑ capitalize

❑ uppercase

❑ lowercase

❑ none

The default value is "none".

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.textTransform

JSSTag.verticalAlign (Property)
Control over the vertical alignment of the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.verticalAlign
JavaScript syntax:

N myJSSTag.verticalAlign = anAlignment

CSS syntax: vertical-align: anAlignment

HTML syntax: <... VALIGN="...">

Argument list: anAlignment A vertical alignment control

J – JSSTag.whiteSpace (Property)

1269

The JSSTag.verticalAlign property corresponds to the vertical-align CSS property.

This property controls the vertical alignment of an element. It provides a way to raise or lower
individual letters to create subscript or superscript effects. The technique can be used to move
images relative to a line of text.

The following values are meaningful for this property:

❑ baseline

❑ sub

❑ super

❑ top

❑ text-top

❑ middle

❑ bottom

❑ text-bottom

In addition you can specify a percentage value and a length value in various units of measure.

The default value for this property is "baseline".

This value is not inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: style.verticalAlign

JSSTag.whiteSpace (Property)
The control of white space collapsing or retention in the object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type:
String primitive

N myJSSTag.whiteSpace
JavaScript syntax:

N myJSSTag.whiteSpace = aControl

CSS syntax:
white-space: aControl

Argument list:
aControl A whitespace preservation control

JavaScript Programmer's Reference

1270

The JSSTag.whiteSpace property corresponds to the white-space CSS property.

This property controls how tabs, newline characters and additional whitespace inside an element is
presented. The following values are available:

❑ normal

❑ pre

❑ nowrap

The default value for this property is "normal".

This value is inherited from its parent container element.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also:
style.whiteSpace

JSSTag.width (Property)
This is the width of an object.

Availability: CSS level – 1
JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: String primitive

N myJSSTag.width
JavaScript syntax:

N myJSSTag.width = aWidth

CSS syntax: width: aWidth

HTML syntax: <... WIDTH="...">

Argument list: aWidth A CSS length value

The JSSTag.width property corresponds to the width CSS property.

This property can be used to control the width of an object on the screen. The value can be specified
as a length measured in units, a percentage of the containing block the element is located in or an
"auto" value that lets the browser compute the size.

The default value for this property is "auto".

This value is not inherited from its parent container element.

J – JSSTags object (Object/JSS)

1271

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: JSSTag.height, style.width

JSSTags object (Object/JSS)
Part of the Netscape Navigator style JSS rendering support.

Availability: JavaScript – 1.2
Netscape – 4.0 Deprecated

N myJSSTags =
myDocument.classes.aClassNameJavaScript syntax:

N myJSSTags = myDocument.ids.anIdValue

aClassName The name of a style classArgument list:
anIdValue The value of an ID="..." HTML tag attribute

Object properties: <tagName>

This object is somewhat like an array in that it contains a collection of objects that can be accessed
associatively by name. However, unlike an array, it does not respond to the length property
request. Also unlike an array, you cannot access its members using index values.

The only meaningful property of this object is one of its array elements corresponding to an HTML
tag name. There is one item in this collection for each HTML tag.

This is part of the deprecated JSS support in Netscape 4.0. It is not recommended that you use these
facilities in new projects.

You cannot enumerate this object to inspect its properties.

The document.tags object has properties that correspond to each of the stylable tags – for
example, there is a document.tags.P, document.tags.B and document.tags.H1 object.

Each of those objects has properties such as borderWidth and color so you can set or get the
property value.

Note that the tags object properties can be specified in mixed case as it is case-insensitive. Its
properties contain objects that correspond to HTML tags and therefore they also have case-
insensitive properties that correspond to each tag's attributes.

Its an interesting way to control style from JavaScript, but since it was only ever supported in Netscape
4.0 and is no longer available in Netscape 6.0 (which fully supports CSS), there is no future for JSS.

JavaScript Programmer's Reference

1272

Warnings:
❑ This is sometimes called tags object but if you inspect the object with some script that reveals its

constructor, you will see it is really a member of the JSSTags class.

❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed
from Netscape 6.0.

See also: Document.ids[], Document.tags[], JavaScript Style Sheets,
JSSTag object, JSSTags.<tagName>

Property JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

<tagName> 1.2 + - 4.0 + - - - - - - - Warning,
Deprecated

Property attributes:
DontEnum.

JSSTags.<tagName> (Property)
A JSS object corresponding to a single HTML tag.

Availability: JavaScript – 1.2
Netscape – 4.0 Deprecated

Property/method value type: JSSTag object

JavaScript syntax: N myDocument.classes.aClassName.aTagName

aClassName The name of a style classArgument list:
aTagName The name of an HTML tag

This object represents an HTML tag. However it is only available in Netscape 4.0 and is a means of
access that ultimately leads to a Style object.

You can refer to a specific HTML tag name or you can use the value "all" to indicate that all HTML
tags of any kind with the appropriate CLASS name will be affected.

This mechanism is radically different to and much more complex than the simple style property
belonging to an Element object in MSIE.

From the value in this property, you would traverse the style tree down another level to find a style
object with properties that directly affect the appearance of the document.

Warnings:
❑ Deprecated for any further use. This was available only in Netscape 4.0 and is completely removed

from Netscape 6.0.

See also: JSSTags object

J – Jump statement (Definition)

1273

Jump statement (Definition)
Unconditionally jump to a new location in the script.

A jump statement is one, which forces the flow of execution to jump unconditionally to another
location in the script.

Jump statements in JavaScript are used to terminate iteration statements.

A function call causes execution to go unconditionally to a new location (the beginning of the
function's script source text block – its body) but a function call is not strictly a jump statement
because the flow of control returns eventually to the line following the function call.

A return statement is considered to be a jump statement.

See also: break, continue, goto, return, Statement

KBD object (Object/HTML)
An object representing content to be displayed as if typed on the keyboard.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myKBD = myDocument.all.anElementID

IE myKBD = myDocument.all.tags("KBD")[anIndex]

IE myKBD = myDocument.all[aName]

- myKBD = myDocument.getElementById(anElementID)

- myKBD =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myKBD =
myDocument.getElementsByTagName("KBD")[anIndex]

HTML syntax: <KBD> ... </KBD>

anElementID The ID attribute of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

The appearance of the content described by this object is likely to look similar to that enclosed in
<CODE>, <LISTING> or <PRE> tags.

See also: Element object, LISTING object, PRE object

K

Error! No text of specified style in document.

1275

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 1.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 1.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Keyboard events (Definition)
Some events within the event-handling complex of a browser are related to keyboard handling.

The following events relate to keyboard handling:

❑ onKeyDown

❑ onKeyUp

❑ onKeyPress

These events are classified as keyboard events because they are generated as a result of user
interactions with the keyboard.

Note that the onKeyPress event is triggered as a result of a matching pair of onKeyDown and
onKeyUp events. You should not rely on the events arriving in any particular order, although
onKeyPress probably arrives before onKeyUp.

For example, as a key is pressed, an onKeyDown event is fired. As it is released, an onKeyUp event
and an onKeyPress event are fired. An onKeyPress is only fired once for each onKeyDown and
onKeyUp pair.

In Netscape, you can capture keyboard events by calling the captureEvents() method like this:

window.captureEvents(Event.KEYPRESS);

This need not necessarily apply to the window; the area of interest can be more limited by selecting
an appropriate object.

Chapter number

1276

Example code:
<!-- Event programming example supplied by Alex.Abacus -->
<SCRIPT LANGUAGE="JavaScript1.2">

// Object sensing routine
var isNN4up = (window.Event)? true : false;

// Key press handler designed for cross platform use
function key_press_event_handler(e)
{
 if (isNN4up)
 {
 var whichKey = e.which;
 }
 else
 {
 var whichKey = window.event.keyCode;
 }
 var realKey = String.fromCharCode(whichKey);
 window.status = 'You pressed ' + realKey +
 ' (Key code: ' + whichKey + ')'
}

// Register event handler for NNav
if (isNN4up)
{
 document.captureEvents(Event.KEYPRESS);
}

// Register event handler for MSIE
document.onkeypress = key_press_event_handler;
</SCRIPT>

See also: captureEvents(), Event, Event names, Event type constants,
Event.modifiers, Event.which, onKeyDown, onKeyPress, onKeyUp,
String.fromCharCode()

Keyword (Definition)
The keywords that ECMAScript defines should be avoided when you create your own identifier or
variable names.

A keyword is a word that has special significance in the JavaScript language. It follows the rules
that ECMA lays down for describing identifiers. All of the JavaScript keywords are reserved and
define the language syntax. You must not use any of them as identifier names for variables,
properties, methods and functions that you define.

ECMAScript reserves a set of keywords for future use. These are intended to make provision for
future language features and to give developers warning that they should avoid using these
keywords in order that their scripts should continue to operate when the language is revised.

Other special names are defined by JavaScript to identify properties of the Global object and
constructor functions of the built-in data types. You should avoid these too, unless you are
intentionally overriding their functionality with your own.

Error! No text of specified style in document.

1277

Here is a list of keywords that ECMA edition 2 mandates a compliant implementation should support:

❑ break

❑ continue

❑ delete

❑ else

❑ for

❑ function

❑ if

❑ in

❑ new

❑ return

❑ this

❑ typeof

❑ var

❑ void

❑ while

❑ with

In addition, these are constants that should also be avoided:

❑ true

❑ false

❑ null

The third edition of the ECMA standard adds these keywords which in the earlier edition were
reserved for future use:

❑ case

❑ catch

❑ default

❑ do

❑ finally

❑ instanceof

❑ switch

❑ throw

❑ try

Chapter number

1278

The remaining reserved keywords as of edition 3 are:

❑ abstract

❑ boolean

❑ byte

❑ char

❑ class

❑ const

❑ debugger

❑ double

❑ enum

❑ export

❑ extends

❑ final

❑ float

❑ goto

❑ implements

❑ import

❑ int

❑ interface

❑ long

❑ native

❑ package

❑ private

❑ protected

❑ public

❑ short

❑ static

❑ super

❑ synchronized

❑ throws

❑ transient

❑ volatile

However, you should note that Netscape anticipates a future standard and supports these already:

❑ export

❑ import

Error! No text of specified style in document.

1279

The JavaScript 2.0 project defines these which should also be avoided and which will likely be
added to a later edition of the ECMAScript standard:

❑ namespace

❑ use

Many implementations of JavaScript will introduce additional keywords. Some will provide
functional behavior for the reserved keywords. To remain ECMAScript compliant, the reserved
words specified in edition 3 must be supported sufficiently to prevent parsing errors, but need not
provide any meaningful functionality.

You can code defensively to avoid any future problems. Using an underscore character or digit in
your identifier names should improve the chances of your script continuing to operate properly in
later versions of the language. Using upper case may help, but is less of a guarantee of safety. In
particular, you should be very careful to avoid the names of properties and methods belonging to
the Global object.

See also: Lexical element, Reserved word, Token

Cross-references:
ECMA 262 edition 2 – section – 7.4.2

ECMA 262 edition 3 – section – 7.5.2

Label (Definition)
An identifier marking a section of code.

Availability: ECMAScript edition – 3

In JavaScript version 1.2, the case and default labels were added, which introduced as a by-
product the fact that any fragment of code can be labelled with an identifier.

The identifier can be any legal JavaScript identifier that does not match a reserved keyword.

The namespace that labels exist in, is separate to that of variables and function names. This means
you can use the same identifier names over again, although it’s probably good practice not to.

Adding a label in front of an iterator allows you to associate a label name with a break or
continue statement. This means that you can break or continue nested iterators from deep inside
them. This can greatly simplify the logic of a looping system.

If the goto keyword is ever implemented, it would depend on this labelling mechanism being
extended to provide a useful destination.

Example code:
// An example break to a labelled line
outerLoop:
for (var i=0; i <= max; i++)
{
 for (var j=0; j <= max2; j++)
 {
 if (i== someNum && j ==someNum2)
 {
 break outerLoop;
 }
 }
}

L

L – Label object (Object/HTML)

1281

See also: break, Code block delimiter {}, continue, do ... while(...),
for(...) ..., for(... in ...) ..., goto, Reserved Word,
while(...) ...

Cross-references:
ECMA 262 edition 3 – section – 12.12

Label object (Object/HTML)
Adds a legend label to an input object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myLabel = myDocument.all.anElementID

IE myLabel = myDocument.all.tags("LABEL")[anIndex]

IE myLabel = myDocument.all[aName]

- myLabel = myDocument.getElementById(anElementID)

- myLabel =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myLabel = myDocument.getElementsByTagName("LABEL")
[anIndex]

HTML syntax: <LABEL> ... </LABEL>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
accessKey, dataFld, dataFormatAs, dataSrc, form,
htmlFor, tabIndex

Object methods: blur(), click()

Event handlers:
onBlur, onClick, onDblClick, onDragStart,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onSelectStart

MSIE supports this object type with a LABEL object, and because we often don't need to know the
specific class of an object, this does not cause us any significant problems with labels. But the
inconsistent object class names across browsers may need to be standardized in a more reliable way
in the future.

See also: Element object, Input object, Input.accessKey

JavaScript Programmer's Reference

1282

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
dataFld 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
dataFormatAs 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
dataSrc 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
form 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
htmlFor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

blur() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
click() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onBlur 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

L – Label.htmlFor (Property)

1283

Label.htmlFor (Property)
A means of associating the label with an Input object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLabel.htmlFor

The value of this property should correspond with the ID="..." HTML tag attribute for the
<INPUT> tag that instantiates the Input object the label belongs to.

LANG="..." (HTML Tag Attribute)
A tag attribute that specifies the international language of some content.

This tag attribute allows the current national language to be overridden on a tag by tag basis if
necessary. There are many values for international languages.

Refer to the Language codes topic for a list of language code values.

See also: Element.lang, Language codes

Language codes (Definition)
Language codes are used to define locale specific handling.

The Element.lang property controls the locale specific text rendering. It allows special characters
to be handled appropriately and special character sets to be supported properly according to the
national language variants.

Here is a partial list of some example language codes to be used with it:

Code Language Country

af Afrikaans Standard
ar_AE Arabic U.A.E.
ar_BH Arabic Bahrain
ar_DZ Arabic Algeria
ar_EG Arabic Egypt
ar_IQ Arabic Iraq

Table continued on following page

JavaScript Programmer's Reference

1284

Code Language Country

ar_JO Arabic Jordan
ar_KW Arabic Kuwait
ar_LB Arabic Lebanon
ar_LY Arabic Libya
ar_MA Arabic Morocco
ar_OM Arabic Oman
ar_QA Arabic Qatar
ar_SA Arabic Saudi Arabia
ar_SY Arabic Syria
ar_TN Arabic Tunisia
ar_YE Arabic Yemen
be Belarusian Standard
be_BY Belorussian Belarus
bg Bulgarian Standard
bg_BG Bulgarian Bulgaria
ca Catalan Standard
ca_ES Catalan Spain
cs Czech Standard
cs_CZ Czech Czech Republic
da Danish Standard
da_DK Danish Denmark
de German Standard
de_AT German Austria
de_CH German Switzerland
de_DE German Germany
de_LI German Liechtenstein
de_LU German Luxembourg
el Greek Standard
el_GR Greek Greece
en English Standard
en_AU English Australia
en_BZ English Belize
en_CA English Canada
en_GB English Great Britain
en_IE English Ireland
en_JM English Jamaica
en_NZ English New Zealand

Table continued on following page

L – Language codes (Definition)

1285

Code Language Country

en_TT English Trinidad
en_UK English United Kingdom
en_US English United States
en_ZA English South Africa
es Spanish (Traditional or modern) Spain
es_AR Spanish Argentina
es_BO Spanish Bolivia
es_CL Spanish Chile
es_CO Spanish Colombia
es_CR Spanish Costa Rica
es_DO Spanish Dominican Republic
es_EC Spanish Ecuador
es_ES Spanish Spain
es_GT Spanish Guatemala
es_HN Spanish Honduras
es_MX Spanish Mexico
es_NI Spanish Nicaragua
es_PA Spanish Panama
es_PE Spanish Peru
es_PR Spanish Puerto Rico
es_PY Spanish Paraguay
es_SV Spanish El Salvador
es_UY Spanish Uruguay
es_VE Spanish Venezuela
et Estonian Standard
et_EE Estonian Estonia
eu Basque Standard
fa Farsi Standard
fi Finnish Standard
fi_FI Finnish Finland
fo Faeroese Standard
fr French Standard
fr_BE French Belgium
fr_CA French Canada
fr_CH French Switzerland
fr_FR French France
fr_LU French Luxembourg
gd Gaelic Scotland

Table continued on following page

JavaScript Programmer's Reference

1286

Code Language Country

gd_IE Gaelic Ireland
he Hebrew Standard
hi Hindi Standard
hr Croatian Standard
hr_HR Croatian Croatia
hu Hungarian Standard
hu_HU Hungarian Hungary
in Indonesian Standard
is Icelandic Standard
is_IS Icelandic Iceland
it Italian Standard
it_CH Italian Switzerland
it_IT Italian Italy
iw_IL Hebrew Israel
ja Japanese Standard
ja_JP Japanese Japan
ji Yiddish Standard
ko Korean Johab
ko_KR Korean Korea
lt Lithuanian Standard
lt_LT Lithuanian Lithuania
lv Latvian Standard
lv_LV Latvian Latvia
mk Macedonian Standard
mk_MK Macedonian Macedonia
ms Malaysian Standard
mt Maltese Standard
nl Dutch Standard
nl_BE Dutch Belgium
nl_NL Dutch Netherlands
no Norwegian (Bokmal or Nynorsk) Standard
no_NO_B Norwegian (Bokmal) Norway
no_NO_NY Norwegian (Nynorsk) Norway
pl Polish Standard
pl_PL Polish Poland
pt Portuguese Standard
pt_BR Portuguese Brazil

Table continued on following page

L – Language codes (Definition)

1287

Code Language Country

pt_PT Portuguese Portugal
rm Rhaeto-Romanic Standard
ro Romanian Standard
ro_MO Romanian Moldavia
ro_RO Romanian Romania
ru Russian Standard
ru_MO Russian Moldavia
ru_RU Russian Russia
sb Sorbian Standard
sh_SP Serbian (Latin) Serbia
sk Slovak Standard
sk_SK Slovak Slovakia
sl Slovenian Standard
sl_SI Slovene Slovenia
sq Albanian Standard
sq_AL Albanian Albania
sr Serbian (Cyrillic) Cyrillic
sr_SP Serbian (Cyrillic) Serbia
sv Swedish Standard
sv_FI Swedish Finland
sv_SE Swedish Sweden
sx Sutu Standard
sz Sami Lapland
th Thai Standard
tn Tswana Standard
tr Turkish Standard
tr_TR Turkish Turkey
ts Tsonga Standard
uk Ukrainian Standard
uk_UA Ukrainian Ukraine
ur Urdu Standard
ve Venda Standard
vi Vietnamese Standard
xh Xhosa Standard
zh_CN Chinese People's Republic of China
zh_HK Chinese Hong Kong, S.A.R. China
zh_SG Chinese Singapore
zh_TW Chinese Taiwan
zu Zulu Standard

JavaScript Programmer's Reference

1288

The language codes are derived from the ISO 639 language standard and the ISO 3166 country codes
standard. A language code is an ISO 639 value followed by an underscore and the ISO 3166 value.

The language code is typically presented in lower case while the country code is in upper case,
although this is by no means consistent across browsers and platforms.

It is therefore probably safe to assume this value is case-insensitive.

See also: Anchor.hreflang, ISO 3166, LANG="...", LINK.hreflang,
Navigator.browserLanguage, Navigator.language,
Navigator.systemLanguage, Navigator.userLanguage,
Portability, Url.hreflang

Layer object (Object/Navigator)
An object representing an HTML <LAYER> tag.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

N myLayer = myDocument.aLayerName
JavaScript syntax:

N myLayer = myLayerArray[anIndex]

HTML syntax: <ILAYER><LAYER>

Argument list: anIndex An index into the layer array

Object properties:
above, background, below, bgColor, clip, document,
hidden, left, name, pageX, pageY, parentLayer,
siblingAbove, siblingBelow, src, top, visibility,
window, x, y, zIndex

Object methods:
load(), moveAbove(), moveBelow(), moveBy(),
moveTo(), moveToAbsolute(), offset(), resizeBy(),
resizeTo()

Functions:
captureEvents(), handleEvent(), releaseEvents(),
routeEvent()

Event handlers:
onBlur, onFocus, onLoad, onMouseOut, onMouseOver,
onMouseUp

Collections: layers[]

Each layer in Netscape is somewhat like a separate window or frame. This means it has its own
document associated with it which can itself also contain layers. The individual objects cannot be
positioned themselves but the layers they live in can be.

The Netscape Layer object has many properties that are similar to the MSIE Style object.
However although they bear some similarities, they also have many differences. Furthermore a
layer is not a style and therefore it is difficult to conveniently map one to the other and build cross-
platform solutions without constructing a compatibility layer.

Note that Netscape prior to version 6.0 instantiates an absolutely positioned <DIV> container as a
Layer object.

L – Layer object (Object/Navigator)

1289

Event handling support via properties containing function objects was added to Layer objects at
version 1.1 of JavaScript.

The example demonstrates how to control a scrolling panel and do it in a way that is cross browser
compliant for MSIE and Netscape version 4. There are a lot of issues to deal with, not least the fact
that Netscape supports layers but MSIE does not. It is necessary to use layers for scrolling in Netscape
because you can only scroll windows or frames in Netscape if they have visible and active scrollbars.
Also, the two browsers scroll vertically in opposing directions. If you are careful about the sizing of
your objects, and relate the size of the window/frame the layer is drawn in, you can accomplish a
continuous scrolling effect by duplicating items from the top of the list to the bottom. Then at an
appropriate point, you can jump scroll back to the top of the list. If you do this right, it will appear as
if the list is endless and scrolling gently in a continuous loop. This technique is a much simplified
example taken from the Video On Demand console at http://www.bbc.co.uk/news where there is a
panel showing a listing of live TV programs in a scrolling pane.

Warnings:
❑ If you are using layers to position items temporarily on the screen, then you should be careful when

using absolute positioning. This can cause the layer to be absolutely positioned relative to the current
mouse position and not the window border. The effect is that an item in the positioned layer will
appear to follow the mouse as it is clicked. You may need to work out the mouse position and then
calculate an offset to relocate the layer where you want it. You may be able to detect the mouse by
removing focus from the layer that has the problem, or it may be necessary to create an empty layer
which can be safely attached to the mouse. All of these issues are Netscape 4 specific.

❑ Layers are no longer supported in Netscape 6.0.

Example code:
<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript">
// Initialize globals
var theScrollValue = 0;
var theMaxScroll = 50;
// Work out what kind of browser we are on
function getBrowserType()
{
 var myUserAgent;
 var myMajor;
 myUserAgent = navigator.userAgent.toLowerCase();
 myMajor = parseInt(navigator.appVersion);
 if((myUserAgent.indexOf('mozilla') != -1) &&
 (myUserAgent.indexOf('spoofer') == -1) &&
 (myUserAgent.indexOf('compatible') == -1) &&
 (myUserAgent.indexOf('opera') == -1) &&
 (myUserAgent.indexOf('webtv') == -1)
)
 {
 if (myMajor > 3)
 {
 return "nav4";
 }
 return "nav";

http://www.bbc.co.uk/news

JavaScript Programmer's Reference

1290

 }
 if (myUserAgent.indexOf("msie") != -1)
 {
 if (myMajor > 3)
 {
 return "ie4";
 }
 return "ie";
 }
 return "other";
}
// Start the correct scroller for this browser
function startScroller()
{
 eval(getBrowserType() + "_scrollPage()");
}
// Browser specific scroller (IE)
function ie4_scrollPage()
{
 self.scrollTo(0,theScrollValue);
 theScrollValue++;

 if(theScrollValue == theMaxScroll)
 {
 theScrollValue = 0;
 }

 setTimeout("ie4_scrollPage()", 100);
}
// Browser specific scroller (Navigator)
function nav4_scrollPage()
{
 self.document.layer1.moveTo(0,-theScrollValue);
 theScrollValue++;

 if(theScrollValue == theMaxScroll)
 {
 theScrollValue = 0;
 }
setTimeout("nav4_scrollPage()", 20);
}
</SCRIPT>
</HEAD>
<BODY ONLOAD="startScroller();">
<LAYER TOP=0 LEFT=0 NAME="layer1">
<TABLE CELLPADDING=0 CELLSPACING=0 BORDER=0>
<TR HEIGHT=25><TD VALIGN=TOP>Headline 1
</TD></TR>
<TR HEIGHT=25><TD VALIGN=TOP>Headline 2
</TD></TR>
<TR HEIGHT=25><TD VALIGN=TOP>Headline 3
</TD></TR>
<TR HEIGHT=25><TD VALIGN=TOP>Headline 4
</TD></TR>
<TR HEIGHT=25><TD VALIGN=TOP>Headline 5
</TD></TR>
<TR HEIGHT=25><TD VALIGN=TOP>Headline 6
</TD></TR>
</TABLE>
</LAYER>
</BODY>
</HTML>

L – Layer object (Object/Navigator)

1291

See also: DIV object, Layer.siblingAbove, Layer.siblingBelow,
LayerArray object, style object (2)

Property JavaScript JScript N IE Opera Notes

above 1.2 + - 4.0 + - - Warning, ReadOnly,
Deprecated

background 1.2 + - 4.0 + - - Warning, Deprecated
below 1.2 + - 4.0 + - - Warning, ReadOnly,

Deprecated
bgColor 1.2 + - 4.0 + - - Warning, Deprecated
clip 1.2 + - 4.0 + - - Warning, Deprecated
document 1.2 + - 4.0 + - - Warning, ReadOnly,

Deprecated
hidden 1.2 + - 4.0 + - - Warning, Deprecated
left 1.2 + - 4.0 + - - Warning, Deprecated
name 1.2 + - 4.0 + - - Warning, ReadOnly,

Deprecated
pageX 1.2 + - 4.0 + - - Warning, Deprecated
pageY 1.2 + - 4.0 + - - Warning, Deprecated
parentLayer 1.2 + - 4.0 + - - Warning, ReadOnly,

Deprecated
siblingAbove 1.2 + - 4.0 + - - Warning, ReadOnly,

Deprecated
siblingBelow 1.2 + - 4.0 + - - Warning, ReadOnly,

Deprecated
src 1.2 + - 4.0 + - - Warning, Deprecated
top 1.2 + - 4.0 + - - Warning, Deprecated
visibility 1.2 + - 4.0 + - - Warning, Deprecated
window 1.2 + - 4.0 + - - Warning, Deprecated
x 1.2 + - 4.0 + - - Warning, Deprecated
y 1.2 + - 4.0 + - - Warning, Deprecated
zIndex 1.2 + - 4.0 + - - Warning, Deprecated

Method JavaScript JScript N IE Opera Notes

load() 1.2 + - 4.0 + - - Warning, Deprecated
moveAbove() 1.2 + - 4.0 + - - Warning, Deprecated
moveBelow() 1.2 + - 4.0 + - - Warning, Deprecated
moveBy() 1.2 + - 4.0 + - - Warning, Deprecated
moveTo() 1.2 + - 4.0 + - - Warning, Deprecated
moveToAbsolute() 1.2 + - 4.0 + - - Warning, Deprecated
offset() 1.2 + - 4.0 + - - Warning, Deprecated
resizeBy() 1.2 + - 4.0 + - - Warning, Deprecated
resizeTo() 1.2 + - 4.0 + - - Warning, Deprecated

JavaScript Programmer's Reference

1292

Event name JavaScript JScript N IE Opera Notes

onBlur 1.2 + - 4.0 + - - Warning
onFocus 1.2 + - 4.0 + - - Warning
onLoad 1.2 + - 4.0 + - - Warning
onMouseOut 1.2 + - 4.0 + - - Warning
onMouseOver 1.2 + - 4.0 + - - Warning
onMouseUp 1.2 + - 4.0 + - - Warning

Layer() (Constructor)
A means of creating new layers in Netscape.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N new Layer()

This constructor function should be used with the new operator to instantiate a new layer when
needed. This provides a way to create new layers without needing to describe them in the HTML
document source.

Warnings:
❑ No longer supported in Netscape 6.0.

Layer.above (Property)
The layer immediately above the receiving layer object, (or null, if this is the highest layer).

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Layer object

JavaScript syntax: N myLayer.above

Warnings:
❑ No longer supported in Netscape 6.0.

Property attributes:
ReadOnly.

L – Layer.background (Property)

1293

Layer.background (Property)
The background object of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Background object

JavaScript syntax: N myLayer.background

If a background image is available, then its URL is contained in the src property of the object.
Changing the Layer.background.src property value will replace the background with a new one.
However, there may be a perceptible delay while the new image is fetched from the web server.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Background object

Layer.below (Property)
The layer immediately below the receiving layer object.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Layer object

JavaScript syntax: N myLayer.below

The layers area arranged into a hierarchy and presented to the user as a stack viewed from one end.
Given that you are referencing any particular layer, if there is one below it in the stack, this
property will yield an object that encapsulates it.

Warnings:
❑ There are various intermediate layers created by the browser that may be placed into the layer

hierarchy without you having put <LAYER> tags into the document.

❑ No longer supported in Netscape 6.0.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1294

Layer.bgColor (Property)
The background color of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: N myLayer.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.The color can be set using a Hexadecimal triplet, or a plain
language color value. The default is a transparent background.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Color names, Color value

Layer.captureEvents() (Function)
Part of the Netscape 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: undefined

JavaScript syntax: N myLayer.captureEvents(anEventMask)

Argument list: anEventMask
A mask constructed with the manifest event
constants

This is part of the event management suite which allow events to be routed to handlers other than
just the one that defaults to being associated with an event.

The events to be captured are signified by setting bits in a mask.

This method allows you to specify what events are to be routed to the receiving Layer object.

The events are specified by using the bitwise OR operator (|) to combine the required event mask
constants into a mask that defines the events you want to capture. Refer to the Event Type
Constants topic for a list of the event mask values.

L – Layer.clip (Property)

1295

A limitation of this technique is that ultimately, only 32 different kinds of events can be combined
in this way and this may limit the number of events the browser can support. Since this is only
supported by Netscape, the functionality is likely to be deprecated when the standards bodies
agree on a standard way of handling events. Then we simply need to wait for the browser
manufacturers to support the standardized behavior.

In the meantime, we shall have to implement scripts using this capability if we need to build
complex event handling systems. A different script will be required for MSIE.

You may be able to factor your event handler so that you only have to make platform specific event
dispatchers and can call common handling routines that can be shared between MSIE and Netscape.

Warnings:
❑ Since a bit mask is being used, this must be an int32 value. This suggests that there can only be 32

different Event types supported by this event propagation model.

❑ This capability is deprecated and is not supported in Netscape 6.0. It never was supported by MSIE
which implements a completely different event model. As it turns out, the DOM level 2 event model
converges on the MSIE technique.

See also: captureEvents(), Document.captureEvents(),
Document.releaseEvents(), Element.onevent, Event
propagation, Event type constants, Frame object,
Layer.releaseEvents(), onMouseMove, Window object,
Window.captureEvents(), Window.releaseEvents()

Layer.clip (Property)
An object that represents the clip region within a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Rect object

JavaScript syntax: N myLayer.clip

This object represents a clipping rectangle that the visible part of a display object is viewed through.
This is most likely used with a layer object. The layer contents would be drawn off-screen and then
that part which falls within the clipping rectangle would be displayed in the window.

This can be useful for performing wipes and making parts of a layer progressively visible within
some kind of transition loop.

This object exposes the following properties for accessing Layer clip rectangles:

❑ clip.bottom

❑ clip.height

❑ clip.left

JavaScript Programmer's Reference

1296

❑ clip.right

❑ clip.top

❑ clip.width

If you are developing scripts that only run in MSIE, there is a rather nice collection of filters that
can provide these transitions very elegantly. It’s a pity they aren't available in other browsers. But
then layers and clip rectangles aren't supported in the same way in MSIE so at least there seems to
be some alternative approach to creating visual effects on each platform.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip object, Rect object

Layer.clip.bottom (Property)
The bottom edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

N myLayer.clip.bottom
JavaScript syntax:

N myRect.bottom

This defines the bottom edge of the clip region. You could modify this in a loop to create a vertical
downwards wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip.bottom, Rect.bottom

L – Layer.clip.height (Property)

1297

Layer.clip.height (Property)
The height of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

N myLayer.clip.height
JavaScript syntax:

N myRect.height

The clip region is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip.height, Rect.height

Layer.clip.left (Property)
The left edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

N myLayer.clip.left
JavaScript syntax:

N myRect.left

This defines the left edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip.left, Rect.left

JavaScript Programmer's Reference

1298

Layer.clip.right (Property)
The right edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

N myLayer.clip.right
JavaScript syntax:

N myRect.right

This defines the right edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip.right, Rect.right

Layer.clip.top (Property)
The top edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

N myLayer.clip.top
JavaScript syntax:

N myRect.top

This defines the top edge of the clip region. You could modify this in a loop to create a vertical
upward wipe transition effect.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip.top, Rect.top

L – Layer.clip.width (Property)

1299

Layer.clip.width (Property)
The width of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

N myLayer.clip.width
JavaScript syntax:

N myRect.width

The clip region is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Clip.width, Rect.width

Layer.document (Property)
The document object containing this layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Document object

JavaScript syntax: N myLayer.document

This is the document contained within a Netscape layer object. Because each layer has its own
separate document, you can use the document.open(), document.close() and
document.write() methods to operate on it.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Document object, Element.document

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1300

Layer.handleEvent() (Function)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: undefined

JavaScript syntax: N myLayer.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: handleEvent(), Layer.routeEvent()

Layer.hidden (Property)
A deprecated property that indicates whether a layer is hidden or not.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Boolean primitive

JavaScript syntax: N myLayer.hidden

You should not use this property in new projects. If you encounter it in existing ones, if you have
the time you should remove it and use the visibility property instead.

L – Layer.layers[] (Collection)

1301

Warnings:
❑ This property is deprecated in favor of the Layer.visibility property. However, even though it

is deprecated some versions of Netscape require that it is forcibly set to false otherwise the
visibility property will not function correctly.

❑ If an object is hidden, the gap will not be filled by any surrounding content.

❑ No longer supported in Netscape 6.0.

See also: Layer.visibility

Layer.layers[] (Collection)
A deprecated property providing a list of child layers within this layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: LayerArray object

JavaScript syntax: N myLayer.layers

You should access this collection via the document object associated with this layer. That is the
recommended technique for new projects. If you see this in an old project, then it should be
removed if possible and replaced with the preferred means of access.

Warnings:
❑ This property is deprecated in favor of using Layer.document.layers in its place.

❑ No longer supported in Netscape 6.0.

See also: Document.layers[], LayerArray object

Property attributes:
ReadOnly.

Layer.left (Property)
The x-coordinate relative to the containing layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.left

JavaScript Programmer's Reference

1302

In Netscape this defines the left coordinate of a layer. It corresponds to the pixelLeft property of
an MSIE style object.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: style.pixelLeft, style.posLeft

Layer.load() (Method)
A method to load a new URL and resize a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.load(aURL, aWidth)

aURL A document to load into the layerArgument list:
aWidth A new width value for the layer

This is an alternative way to load a new document into a layer. You can accomplish something
similar by assigning a new value to the src property. This method will adjust the width of the
layer at the same time.

This can work very effectively if you generate dynamic content via a javascript: URL as the
value passed to the load() method.

In fact this works so much better, that the Layer.src property can be ignored for most purposes.
This seems to work well with an absolutely positioned <DIV> container.

Warnings:
❑ This doesn't work for ILayer elements in Netscape 4.

❑ No longer supported in Netscape 6.0.

See also: javascript: URL, Layer.src

Layer.moveAbove() (Method)
Adjusts the Z ordering of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.moveAbove(aLayer)

Argument list: aLayer The layer object to be moved above

L – Layer.moveBelow() (Method)

1303

This method provides a way to move a layer above another layer without needing to do complex Z
index computations.

Warnings:
❑ No longer supported in Netscape 6.0.

Layer.moveBelow() (Method)
Adjusts the Z ordering of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.moveBelow(aLayer)

Argument list: aLayer The layer object to be moved below

This method provides a way to move a layer behind another layer without needing to do complex
Z index computations.

Warnings:
❑ No longer supported in Netscape 6.0.

Layer.moveBy() (Method)
Adjusts the X,Y position of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.moveBy(anX, aY)

anX A relative distance in the X axisArgument list:
aY A relative distance in the Y axis

This method provides a way to locate a Netscape layer to a new position relative to its old one, by
specified pixel amounts along both axes. Positive values move to the right or up, and negative
values to the left or down.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.offset()

JavaScript Programmer's Reference

1304

Layer.moveTo() (Method)
Adjust the X,Y position of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.moveTo(anX, aY)

anX An X coordinate relative to the parent elementArgument list:
aY A Y coordinate relative to the parent element

This method provides a way to locate a Netscape layer to a new absolute position relative to its
containing parent object.

Window

Layer 1

Layer 2

Offset X

Offset Y

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.parentLayer

L – Layer.moveToAbsolute() (Method)

1305

Layer.moveToAbsolute() (Method)
Adjust the X,Y position of a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.moveToAbsolute(anX, aY)

anX An X coordinate relative to the pageArgument list:
aY A Y coordinate relative to the page

This method provides a way to locate a Netscape layer to a new absolute position relative to the
document window.

Window

Layer 1

Layer 2

Offset X

Offset Y

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.pageX, Layer.pageY

JavaScript Programmer's Reference

1306

Layer.name (Property)
This corresponds to the NAME attribute of the <LAYER> tag.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: N myLayer.name

HTML syntax: <LAYER NAME="aName">

Argument list: aName A name for the layer object

Objects are identified either by the NAME="..." HTML tag attribute or by the ID="..." HTML
tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property.

W3C comes down fairly and squarely on the ID property as being the favorite.

However in many cases, both browsers support either technique and in some cases will locate items
named with either tag as if they existed in a single namespace.

Warnings:
❑ No longer supported in Netscape 6.0.

Property attributes:
ReadOnly.

Layer.offset() (Method)
A deprecated means of moving layers.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.offset(anX, aY)

anX A relative distance in the X axisArgument list:
aY A relative distance in the Y axis

You should now use the moveBy() method to change the layer ordering. This method should be
replaced when possible.

L – Layer.pageX (Property)

1307

Warnings:
❑ This method is deprecated in favor of the Layer.moveBy() method in Netscape 4.

❑ No longer supported in Netscape 6.0.

See also: Layer.moveBy()

Layer.pageX (Property)
The X-coordinate of the layer relative to the top level document.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.pageX

Window

Layer 1

Layer 2

Offset X

Offset Y

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.moveToAbsolute()

JavaScript Programmer's Reference

1308

Layer.pageY (Property)
The Y-coordinate of the layer relative to the top level document.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.pageY

Window

Layer 1

Layer 2

Offset X

Offset Y

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.moveToAbsolute()

Layer.parentLayer (Property)
The layer containing the current layer (for a single layer, this is the window object).

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Layer or Window object

JavaScript syntax: N myLayer.parentLayer

L – Layer.releaseEvents() (Function)

1309

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.moveTo()

Property attributes:
ReadOnly.

Layer.releaseEvents() (Function)
Part of the Netscape 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: undefined

JavaScript syntax: N myLayer.releaseEvents(anEventMask)

Argument list: anEventMask
A mask defined with the manifest event
constants

This is part of the event management suite which allows events to be routed to handlers other than
just the one that defaults to being associated with an event.

The events to be captured are signified by setting bits in a mask.

This method provides a means of indicating which events are no longer needing to be captured by
the receiving Layer object.

The events are specified by using the bitwise OR operator (|) to combine the required event mask
constants into a mask that defines the events you want to capture. Refer to the Event Type
Constants topic for a list of the event mask values.

Since this is only supported by Netscape, the functionality is likely to be deprecated when the
standards bodies agree on a standard way of handling events. In the meantime, we shall have to
implement scripts using this capability if we need to build complex event handling systems. A
different script will be required for MSIE.

You may be able to factor your event handler so that you only have to make platform specific event
dispatchers, and can call common handling routines that can be shared between MSIE and Netscape.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: captureEvents(), Document.captureEvents(),
Document.releaseEvents(), Element.onevent, Event
propagation, Event type constants, Event.modifiers, Frame
object, Layer.captureEvents(), onMouseMove, Window
object, Window.releaseEvents()

JavaScript Programmer's Reference

1310

Layer.resizeBy() (Method)
Adjusts the size of a layer by a relative amount.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.resizeBy(anX, aY)

anX A relative distance in the X axisArgument list:
aY A relative distance in the Y axis

The layer can have its size adjusted by a value measured in pixels. This can apply to the
horizontal or vertical axis or both if necessary. The value can be positive or negative causing the
layer to grow or shrink respectively.

Although the size changes, the top left corner will remain pinned to its current location growing or
shrinking the layer to the right and bottom of its extent.

Delta X

Delta Y

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.resizeTo()

L – Layer.resizeTo() (Method)

1311

Layer.resizeTo() (Method)
Adjusts the size of a layer to an absolute value.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayer.resizeTo(anX, aY)

anX An X axis valueArgument list:
aY A Y axis value

This method provides a way to set the absolute size of a layer as opposed to the relative sizing
offered by the resizeBy() method.

Although the size changes, the top left corner will remain pinned to its current location growing or
shrinking the layer to the right and bottom of its extent.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.resizeBy()

Layer.routeEvent() (Function)
Part of the Netscape event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: undefined

JavaScript syntax: N myLayer.routeEvent(anEvent)

Argument list: anEvent An event object

JavaScript Programmer's Reference

1312

Object 1

Object 2

Object 3

Object 4

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer.handleEvent(), Window.routeEvent()

Layer.siblingAbove (Property)
A layer that is related to this layer and above it in the Z ordering.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Layer object

JavaScript syntax: N myLayer.siblingAbove

Given that a layer arrangement is yet another example of a tree structured hierarchy within a page,
this property yields the next higher sibling belonging to the same parent (or null if this is the
highest element).

L – Layer.siblingAbove (Property)

1313

Any layers sharing a common parent layer will all be present in the same layers[] collection. They
are considered to be siblings and can be ordered with respect to one another. They are ordered
collectively by their parent's relationship with its siblings and you cannot interleave siblings from
different sets with one another; the set as a whole must be ordered within its parent's z-axis location.

Parent/Child

Siblings

Siblings

sibling above

sibling
above

sibling
above

JavaScript Programmer's Reference

1314

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Hierarchy of objects, Layer object, Layer.siblingBelow

Property attributes:
ReadOnly.

Layer.siblingBelow (Property)
A layer that is related to this layer and below it in the Z ordering.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Layer object

JavaScript syntax: N myLayer.siblingBelow

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Layer object, Layer.siblingAbove

Property attributes:
ReadOnly.

Layer.src (Property)
The source URL for a layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: N myLayer.src

Changing this layer property value forces the browser to load a new document into the layer.

This can work very effectively if you generate dynamic content via a javascript: URL as the
value assigned to the src property.

L – Layer.top (Property)

1315

Warnings:
❑ If you are having problems with this, try creating an absolute positioned <DIV> container and then

use the Layer.load() method instead. According to reports from other developers, that works
better in Netscape 4.

❑ This doesn't work with ILAYER elements, in Netscape 4.

❑ No longer supported in Netscape 6.0.

See also: javascript: URL, Layer.load()

Layer.top (Property)
The y-coordinate (in pixels) of the layer relative to its containing layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.top

In Netscape this defines the top edge coordinate of a layer. It corresponds to the pixelTop
property of an MSIE style object.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: style.pixelTop, style.posTop

Layer.visibility (Property)
Whether a layer is visible or not.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Boolean primitive

N myLayer.visibility

N myLayer.visibility = "hide"
JavaScript syntax:

N myLayer.visibility = "show"

JavaScript Programmer's Reference

1316

This controls the visibility of a Netscape layer.

It accepts the following values:

❑ hide

❑ inherit

❑ show

It also accepts these CSS syntax values (which it converts internally):

❑ hidden

❑ visible

Warnings:
❑ When set to hide, the gap won't be filled by surrounding content.

❑ No longer supported in Netscape 6.0.

See also: Layer.hidden, style.visibility

Layer.window (Property)
The window that this layer belongs to.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Window object

JavaScript syntax: N myLayer.window

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Frame object, Window object

L – Layer.x (Property)

1317

Layer.x (Property)
The present X position of this layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.x

The horizontal position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

Warnings:
❑ No longer supported in Netscape 6.0.

Layer.y (Property)
The present Y position of this layer.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.y

The vertical position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

Warnings:
❑ No longer supported in Netscape 6.0.

Layer.zIndex (Property)
The location of the layer within the Z ordered list of layers.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myLayer.zIndex

JavaScript Programmer's Reference

1318

In Netscape, this is a means of ordering the layers front to back and works identically to the
zIndex property of the MSIE Style object.

Warnings:
❑ No longer supported in Netscape 6.0.

See also: style.zIndex

LayerArray object (Object/Navigator)
An array containing a list of layers in the document.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

JavaScript syntax: N myLayerArray = myDocument.layers

Object properties: length

Each item in this array corresponds to a <LAYER> tag in the document. This array also includes layers
that are created in Netscape by setting the position attribute of an HTML <DIV> tag to absolute.

The layers in this array are ordered according to the order in which they appear in the document.
Layers can be accessed associatively if they have been given an ID with the ID="..." or
NAME="..." tag attribute. This means you can refer to an element whose ID is set to ABC by its
unique name either as document.ABC or document.layers["ABC"].

Warnings:
❑ There is a bug in the layer management code in Netscape. If a <LAYER> tag is placed into the

document without an ID="..." or NAME="..." HTML tag attribute, it will increment the length
count for the LayerArray but an object will not be placed into the array.

❑ Now if you try to enumerate through all the layers in the array using the length value, your
enumeration loop will cause errors when it tries to access elements beyond the physical length of the
array.

❑ To avoid this, you should always add NAME="..." HTML tag attributes to the <LAYER> tags to
ensure the layers are stored in the array. ID="..." HTML tags are important and helpful when
trying to access objects in MSIE and in Netscape 6.0.

❑ No longer supported in Netscape 6.0.

See also: Collection object, DIV object, Document.layers[], Layer object,
Layer.layers[]

L – LayerArray.length (Property)

1319

Property JavaScript JScript N IE Opera Notes

length 1.2 + - 4.0 + - - Warning, ReadOnly, Deprecated

LayerArray.length (Property)
This value reflects the number of <LAYER> tags that are in the document.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myDocument.layers.length

Warnings:
❑ No longer supported in Netscape 6.0.

See also: Collection.length

Property attributes:
ReadOnly.

.lck (File extension)
Netscape configuration file (old style).

See also: netscape.lck, Preferences

Left shift (Operator/bitwise)
A leftwards shift of a bit pattern.

Refer to:
Bitwise shift left (<<)

JavaScript Programmer's Reference

1320

Left-Hand-Side expression (Definition)
Left values are the destination of an assignment.

Availability: ECMAScript edition – 2

This kind of expression identified the destination of an assignment (even if that assignment
operation is only implied). Sometimes these are called LValues.

Left-hand-side expressions comprise the following:

❑ Variables

❑ Property accessors

❑ new operator

❑ Argument lists

See also: Argument list, Expression, Function, function(...) ..., LValue,
new, Property accessor

Cross-references:
ECMA 262 edition 2 – section – 11.2

ECMA 262 edition 3 – section – 11.2

Legend object (Object/HTML)
The Legend object relates to a field-set within a form.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Deprecated

Inherits from: Element object

IE myLegend = myDocument.all.anElementID

IE myLegend = myDocument.all.tags("LEGEND")[anIndex]

IE myLegend = myDocument.all[aName]

- myLegend = myDocument.getElementById(anElementID)

- myLegend = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myLegend = myDocument.getElementsByTagName
("LEGEND")[anIndex]

L – Legend object (Object/HTML)

1321

HTML syntax: <LEGEND> ... </LEGEND>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, align, form, padding, tabIndex

Event handlers:
onBlur, onChange, onClick, onDblClick, onDragStart,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onScroll, onSelectStart

This is the legend that is associated with the field-set. It must be placed immediately inside the
<FIELDSET> containing HTML tags in the document source.

Now that as CSS has become more widely available and is capable of doing the same thing, the
Legend object has become deprecated.

See also: Element object, FIELDSET object, Form object, Input object,
Input.accessKey

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Deprecated
align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

Deprecated
form 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Deprecated
padding - 3.0 + - 4.0 + - - - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Deprecated

Event name JavaScript JScript N IE Opera DOM HTML Notes

onBlur 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onChange 1.5 + 3.0 + 6.0 + 4.0 + - - - -
onClick 1.5 + 3.0 + 6.0 + 3.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning

Table continued on following page

JavaScript Programmer's Reference

1322

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onScroll - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Legend.align (Property)
The alignment of the legend object relative to its surrounding objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: - mylegend.align

The alignment of the Legend object with respect to its containing parent object is defined in this
property. The expected and widely available set of alignment specifiers are:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

L – Legend.padding (Property)

1323

Warnings:
❑ Note that there are sometimes problems with aligning Legend objects using the top and bottom

values in MSIE version 4.

Legend.padding (Property)
The padding around a Legend object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE mylegend.padding

The padding around the legend separates it from the container in much the same way as cells in a
table are padded apart from one another.

The value can be specified as a floating point value followed by a unit of measure indicator. These
indicators are valid:

❑ cm

❑ mm

❑ in

❑ pt

❑ pc

❑ px

The em and ex relative unit of measure are also available as well as a percentage value measured
against the width of the parent container.

See also: Measurement units

JavaScript Programmer's Reference

1324

length (Property)
The length, magnitude, or size of an object depending on its type.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera – 3.0

Property/method value type: Number primitive

- frames.length

- length

- myObject.length

- myWindow.frames.length

JavaScript syntax:

- myWindow.length

Many objects respond to the length property accessor message. They don't all yield the same sort
of value, although the value they yield will always be numeric.

For example, Window objects have a length property. In this case it will yield the number of
frames in the window, and it is also available as a global variable called length.

The other objects that provide a length property don't reflect its value into so many alternative
ways of accessing it. Apart perhaps from the Form.length value which is the same as the
Form.elements.length value. This is necessary because the Form.elements collection is
superimposed on the Form object so that you can access individual elements of the form as if they
were direct member properties of the Form object. If you try to enumerate the Form object, you get
lots of properties enumerated which are not form elements. You should therefore enumerate the
Form.elements array.

This table lists objects which have a length property, and describes what it counts.

Object Length value

AnchorArray The number of named anchors in a document
AppletArray The number of applets installed in a document
Arguments The number of arguments presented to a function when it was called
Array One greater than the highest numbered index in an array
Attributes The size of the complete set of HTML tag attributes defined for an

HTML Element object
CharacterData The length in characters of a DOM character data node
Collection One greater than the highest numbered index in a collection
Date The number of arguments expected (always 7)
EmbedArray The number of plugins installed into a document
Filters The number of filters stacked up on a displayable object in MSIE

Table continued on following page

L – length (Property)

1325

Object Length value

Form The number of input elements in a form
Form.elements The number of input elements in a form
FormArray The number of forms in a document
FormElementsArray The number of input elements in a form
FrameArray The number of frames in a frameset
Frames The number of frames in a frameset, window or iframes in a document
Function The number of arguments expected by a function
History The length of the historical record of pages visited
ImageArray The number of images in a document
JavaArray The length of a Java array encapsulated by JavaScript
JavaObject The number of MIME types supported by a plugin encapsulated in a

JavaObject
LayerArray The number of layers in a document
LinkArray The number of HREF links in a document
MimeTypeArray The number of discrete MIME types that the browser supports
NamedNodeMap The number of named DOM nodes in a node map.
NodeList The size of a DOM node collection
OptionsArray The range of options in a popup menu
Plugin The number of MIME types supported by a plugin
PluginArray The variety of plugins currently installed in the browser
ScriptArray The number of script blocks in a document
Select The range of options in a popup menu
SelectorArray The number of rules in a style sheet
String The length of a string in characters
style The number of individual style components in a style rule
styleSheets The number of style sheets called in by the document
textNode The length of a textNode in characters
Window The number of frames in a window

Although the length property is marked here as ReadOnly, in some circumstances it may be
useful to assign a value to it to extend, or truncate an Array object.

See also: Array.length, Form.elements.length, Form.length,
Window.length

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1326

Length units (Definition)
A sub-set of the available set of measurement units used with CSS style sheets and style
object properties.

See also: Legend.padding, style.layoutGridChar,
style.layoutGridLine, Measurement units

Less than (<) (Operator/relational)
Compare two operands to determine which is nearer to -Infinity.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 < anOperand2

anOperand1 A value that can be compared numerically
or lexically

Argument list:

anOperand2 A compatible value

Returns true if the left operand is numerically less than the right operand or is sorted earlier in the
Unicode collating sequence when two string values are compared.

In numeric comparisons, the presence of NaN in either or both operands will yield undefined
instead of true or false.

When comparing two strings, a prefixing plus sign is present, then a numeric coercion of a string takes
place before the comparison. Numeric coercion takes place when either of the operands is numeric.

In ECMA compliant JavaScript implementations, string values are simply compared according to the
Unicode character code point values with no attempt to provide the more complex semantically
oriented definitions of character and string equality defined in the Unicode version 2.0 specification.

The associativity is from left to right.

Refer to the operator precedence topic for details of execution order.

The result is the Boolean value true if anOperand1 is numerically or lexically less than
anOperand2, otherwise false is returned.

L – Less than or equal to (<=) (Operator/relational)

1327

See also: ASCII, Associativity, Equal to (==), Greater than (>), Greater than
or equal to (>=), Identically equal to (===), Less than or equal to
(<=), Logical expression, Logical operator, NOT Equal to (!=),
NOT Identically equal to (!==), Operator Precedence, Relational
expression, Relational operator, Unicode

Cross-references:
ECMA 262 edition 2 – section – 11.8.1

ECMA 262 edition 2 – section – 11.8.5

ECMA 262 edition 3 – section – 11.8.1

ECMA 262 edition 3 – section – 11.8.5

Less than or equal to (<=) (Operator/relational)
Compare two operands to determine which is nearer to -Infinity or whether they are equal.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 <= anOperand2

anOperand1 A value that can be compared numerically
or lexically

Argument list:

anOperand2 A compatible value

Returns true if the left operand is numerically less than or equal to the right operand or is sorted
earlier or identically in the Unicode collating sequence when two string values are compared.

In numeric comparisons, the presence of NaN in either or both operands will yield undefined
instead of true or false.

When comparing two strings, a prefixing plus sign is present, then a numeric coercion of a string takes
place before the comparison. Numeric coercion takes place when either of the operands is numeric.

In ECMA compliant JavaScript implementations, string values are simply compared according to the
Unicode character code point values, with no attempt to provide the more complex semantically
oriented definitions of character and string equality defined in the Unicode version 2.0 specification.

The associativity is from left to right.

JavaScript Programmer's Reference

1328

Refer to the operator precedence topic for details of execution order.

The result is the Boolean value true if anOperand1 is numerically or lexically less than or equal to
anOperand2, otherwise false is returned.

See also: ASCII, Associativity, Equal to (==), Greater than (>), Greater than or equal to (>=),
Identically equal to (===), Less than (<), Logical expression, Logical operator, NOT
Equal to (!=), NOT Identically equal to (!==), Operator Precedence, Relational
expression, Relational operator, Unicode

Cross-references:
ECMA 262 edition 2 – section – 11.8.3

ECMA 262 edition 2 – section – 11.8.5

ECMA 262 edition 3 – section – 11.8.3

ECMA 262 edition 3 – section – 11.8.5

Letter (Definition)
A valid and printable character.

Since JavaScript is available across such a wide variety of platforms, locales and environments, you may
introduce some characters that appear to mutate as the script moves from one environment to another.

It is fairly safe to use any character in the lower 128 set that corresponds to ASCII. Even then, you
may find that hash (#) and GB pound signs (£) get confused in some editors.

It is somewhat less safe to use the next 128 character codes up to 255 because these are mapped
quite differently on Macintosh, UNIX and Windows systems.

If you can use a Unicode compliant environment, these problems may be minimized and the
character you type will be the same on other platforms if they fully support Unicode. However they
may not appear the same on non Unicode platforms. In any case, a non-Unicode compliant
platform may not support the 16 bit (double-byte) characters that Unicode requires and may only
be able to cope with 8 bit characters.

Historically, only 7 bit character codes could be guaranteed to arrive intact, but these days 7 bit
serial connections are in decline. Even so, you may find them on some ancillary equipment; in
particular you may find rack mounted units that have an RS232 serial interface. You should be very
wary of these since they may not support 16 bit character values.

This set of characters (plus the space, newline and tab characters) is the smallest safe set to write
your script in. Any other characters can be encoded as escape sequences using these characters.

a b c d e f g h i j k l m

n o p q r s t u v w x y z

L – Lexical convention (Definition)

1329

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

0 1 2 3 4 5 6 7 8 9

! " # % & ' () * + , – .

/ : ; < = > ? [`] ^ _ { | } ~

A fully ECMA compliant interpreter should allow you the full use of the Unicode character set for
specifying identifier names but this whole area of localization and internationalization is under
discussion at the time of writing. Future versions of the ECMA 262 standard or appendices to it
may clarify the situation.

See also: isAlnum(), isAlpha(), isCtrl(), isDigit(), isGraph(), isLower(),
isODigit(), isPrint(), isPunct(), isSpace(), isUpper(), isXDigit(),
Printing character

Lexical convention (Definition)
ECMAScript defined certain lexical conventions.

Availability: ECMAScript edition – 2

According to the ECMAScript standard, a compliant interpreter should follow a certain logical
process when converting the source text of a script into an executable form. The standard defines a
set of logical entities, which can be combined to make a program. This abstract definition is broad
enough that all JavaScript interpreters can be considered to be ECMAScript compliant on this issue.

A script is composed of an unordered collection of the following kinds of entities:

❑ Whitespace

❑ Line terminators

❑ Comments

❑ Tokens

Whitespace is used to improve the readability of the script and to separate tokens from one
another, where they could be misinterpreted if they were concatenated together.

Line terminators are used to improve the readability of the source text and to separate tokens. However,
unlike whitespace, line terminators can affect the behavior of the script when placed in certain places. In
general, a line terminator can occur between any two tokens but cannot appear in a token or inside a
string literal. Line terminators in string literals must be escaped if they are required as part of the string.
Line terminators also affect the automatic semicolon insertion process.

Comments can be contained completely on a single line or can span multiple lines.

JavaScript Programmer's Reference

1330

A single line comment must finish at the end of the line and cannot contain a line terminator.
You can place multiple single line comments one after another if required, each one separated
by a line terminator.

Multiple line comments are replaced by a single line terminator during parsing. It doesn't matter
how many line terminators they actually contain. This means that a multiple line comment behaves
syntactically as if it were a line terminator.

Tokens are the actual components that your executable script is built from. They may be reserved
words, identifiers, punctuator symbols or literals.

See also: Automatic semicolon insertion, Comment, Comment (// and /* ... */),
Escape sequence (\), Line terminator, Multi-line comment, Script Source Text,
Token, Whitespace

Cross-references:
ECMA 262 edition 2 – section – 7

ECMA 262 edition 3 – section – 7

O'Reilly JavaScript Definitive Guide – page – 27

O'Reilly JavaScript Definitive Guide – page – 9-201

Lexical element (Overview)
A component from which a script is constructed.

A lexical element is a component from which you can construct a script. It is the smallest (or most
atomic) fragment that a script can be decomposed into to allow the execution mechanisms in the
interpreter to operate. Each lexical element is represented by a token and the script is tokenized
through a process of lexical analysis.

The following lexical elements are used to construct a script:

❑ Whitespace

❑ Line terminator

❑ Literal (Constant)

❑ Identifier

❑ Keyword

❑ Reserved word

❑ Operator

❑ Punctuator

❑ Comment

L – Lexical scoping (Definition)

1331

See also: Associativity, Comment, Constant, Identifier, int, JavaScript language,
Keyword, Line terminator, Literal, Operator, Operator Precedence, Punctuator,
Reserved word, Token, Whitespace

Lexical scoping (Definition)
The scope within which functions are executed.

Functions are lexically scoped in JavaScript and because they are not dynamically scoped, they are
static to within the location they are defined. This means they run in the global scope of the
document in which they live and not the one they are called from.

In versions of JavaScript prior to 1.2, the scope for a function declaration was limited to the global
scope. This was a simple scope arrangement and caused little confusion and difficulty. From
version 1.2 onwards, because functions can now be defined inside functions, they cannot be called
from outside those functions and the scoping rules start to become more complex.

There becomes an issue of persistence of the scope of a function and if a nested function is called
from outside its containing function, the containing function's scope is still present and added to
the scope chain along the way when the inner function is called.

To illustrate this, suppose a function AAA is created and within it, another BBB is created.

You can call AAA and while executing its code, a call to BBB might be made. Inside BBB, the scope
chain contains the global object, the call object of AAA and the call object of BBB. If BBB is
called from outside AAA, as in AAA.BBB(), then the exact same scope chain is constructed.

This can become even more complex if function objects are manufactured at run-time. It might be
possible to conceive a function object factory that can preserve the scope chain that persisted at the
time the functions were created. If those function objects are preserved and executed later, the
scope chain that was in existence at the time they were created will be restored when they are
executed. This is far too confusing to be of great use and may turn out to be somewhat non-portable.

This capability is realized by storing the function that has been manufactured in a special kind of
object. These are called Closure objects and are implemented visibly in Navigator 4.

See also: __parent__, Closure object

LI object (Object/HTML)
An object that represents an object in the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript Programmer's Reference

1332

Inherits from: Element object

IE myLI = myDocument.all.anElementID

IE myLI = myDocument.all.tags("LI")[anIndex]

IE myLI = myDocument.all[aName]

- myLI = myDocument.getElementById(anElementID)

- myLI =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myLI = myDocument.getElementsByTagName("LI")
[anIndex]

HTML syntax: ...

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: type, value

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The tag is a block-level tag. That means that it forces a line break before and after itself.

The DOM level 1 specification refers to this as a LIElement object

See also: Element object, OL.compact

Property JavaScript JScript N IE Opera DOM HTML Notes

type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
value 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning

Table continued on following page

L – LI.type (Property)

1333

Event name JavaScript JScript N IE Opera DOM HTML Notes

onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

LI.type (Property)
A type indicator that controls the presentation style of an item in the list that the object
belongs to.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLI.type

There are a variety of different list types that can be displayed. The type value can be defined on
an item by item basis within the ordered or unordered list collections.

Lists support an enumeration display of the following types:

/ Type code Presentation style

OL 1 Numeric

OL a Alphabetical – lower case

OL A Alphabetical – upper case

OL i Roman numerals – lower case

OL I Roman numerals – upper case

UL circle a small open circular bullet

UL disc a small solid circular bullet

UL square a small square bullet

Some browsers may provide extended functionality, and use of characters other than those
specified will yield undefined behavior. This is largely superseded by the CSS styling mechanisms
now and is likely to become deprecated in due course.

See also: OL.type, UL.type

JavaScript Programmer's Reference

1334

LI.value (Property)
A means of resetting an enumerator in an ordered list contained in an block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myLI.value

You may want to reset an enumerator in a list sequence. This allows you to start the list at zero or
one or perhaps to split the list and continue enumerating items after a body of text has been
interposed into the list.

Of course this property is meaningless in an unordered list and is only therefore useful when the
 tag and LI object are contained within an tag and its corresponding OL object.

See also: OL.start

Liberate TV Navigator (TV Set-top Box)
An interactive TV set-top box environment.

This is possibly the most advanced of the TV set top boxes that provide a 'Browser in a box'.

This system is gaining much popularity in the UK and Europe and is also becoming more prevalent
in the United States. It has the backing of several very large players in the digital TV market and
was founded as a joint venture between Netscape Communications and Oracle Inc.

Broadcast head end systems are generally built on Unix systems. Since the heritage of Liberate is
that of the Netscape browser, the Liberate platform relates to the Microsoft TV platform in much
the same way as the Netscape browser does to the MSIE browser.

From the consumer's point of view, one of the benefits of the Digital TV revolution is that generally
the set-top boxes are supplied by the broadcasters. The broadcaster already has control over what
gets transmitted from the head end and can now control how it is received. Although we have
competing standards for set-top boxes, a TV set-top box will generally receive a predictable content
model from the broadcast head end.

The Liberate platform does all that the WebTV and Microsoft TV platform does and possibly more
besides, although both are competing with one another and raising the stakes all the time, just like
it was during the 'Browser Wars'.

L – Light() (Filter/visual)

1335

For example, you can request content from an ISP via a dial-up connection or from an always-on cable
modem. This uses the normal HTTP request method. However, you can also request resources from
the in-band broadcast video signal. These are done with additional request methods. These will allow
you to request an item from a particular carousel. A carousel is a collection of assets that are
transmitted in a cyclic manner and are embedded into the digital TV transport stream. Requesting an
item from a carousel is no more complicated than requesting it from a web server. When the object is
delivered on the next carousel cycle it is displayed by the browser in the normal way. Pages can be
constructed with any mixture of in-band or online content.

Carousels can be associated with a particular channel or can be shared by many channels being
broadcast on a digital TV multiplex.

This platform works very well in Digital Satellite (DSat), Digital Cable (DCable) and Digital
Terrestrial (DTT) systems, although at this time it is becoming very popular on DCable.

The present version of Liberate in wide circulation is 1.1 and it is in the process of being upgraded
to 1.2. The upgrade process is accomplished by downloading a new browser core into the set-top
box which then updates its persistent Flash ROM.

Liberate 1.2 supports much enhanced carousel delivery, ATVEF triggers and also some basic Flash
animation support. The JavaScript support is basically 1.2 and the HTML is based on version 3.2,
which poses some difficulties in achieving the display effects people are used to deploying with
HTML 4. These limitations are imposed because the set-top box hardware is based on a cost-limited
CPU which has limited memory and performance. This is necessary to be able to deploy the boxes
at a cost that is commercially viable.

As the cost/performance ratio improves, boxes will become more capable and support higher level
functionality. It is likely that the Flash support for example will receive some considerable
attention, because it allows the designers of the program related material to achieve more advanced
and animated effects.

The JavaScript functionality has a few limiting factors when compared with the Netscape browser
used in a PC. This extends to a few objects and methods being unavailable. However, there are
additional TV-related objects and methods that provide the control of channel switching, volume
control and TV overlays. You can for example use HTML to design a semi-transparent overlay that
is placed on top of the video or you can place the window into a web page so it resembles an
embedded video player plugin.

Major Cable operators and AOL TV are among the services offering contents that work with the
Liberate platform.

See also: ATVEF, Interpret, TV Set-top boxes

Light() (Filter/visual)
A visual filter for simulating a lighting model.

Availability: JScript – 3.0
Internet Explorer – 4.0

See also: filter – Light()

JavaScript Programmer's Reference

1336

Limits (Definition)
A set of constraints within which the script must operate.

There are mainly two kinds of limits that an implementation imposes on a JavaScript script source
text. There are those constraints required by the environment and there are numerical limits
dictated by the internal data type representations.

Environmental limits are, for example, the security mechanisms in a web browser. Other
environmental limits may impose a maximum limit to the size of a JavaScript source text. It is
unusual to encounter this limit, but in an embedded interpreter the storage available to buffer the
script as it is interpreted may be limited to 32K or 64K in situations where the script interpreter is
used in a home appliance.

Numeric limits are those such as the size of the smallest and largest numeric value that can be
represented or the maximum length of a string.

In general, the limits are either self-evident from the context in which the script is being executed
or can be deduced by using certain properties of the Global object or the Number class.

See also: Compliance, Environment, Global object, Minima-maxima, Number object

Line (Definition)
A fragment of script source text.

A line of script source text is that fragment of script that is placed between two consecutive
line terminators.

The placement of comment blocks can affect where the line terminator appears to be.

Implementations may or may not strip off leading and trailing whitespace.

Trailing whitespace that is inside a string literal should not span a line terminator.

A line of script source is interpreted and executed as a whole.

Some implementations may place limits on the maximum length of a line of script source text.
These limitations are most likely to be a problem in embedded interpreters and are least likely to
cause any problems in web browsers.

See also: Comment, Comment (// and /* ... */), Line terminator, Multi-line comment, Single
line comment

L – Line terminator (Definition)

1337

Line terminator (Definition)
Line terminators separate individual lines of executable code.

Availability: ECMAScript edition – 2

Line terminators are used to improve the readability of the source text and to separate tokens.
However, unlike whitespace, line terminators can affect the behavior of the script when placed in
certain places.

In general, a line terminator can occur between any two tokens but cannot appear in a token or
inside a string literal. Line terminators in string literals must be escaped if they are required as part
of the string. Line terminators also affect the automatic semicolon insertion process.

Line terminators occurring during a single line comment delimited by a pair of slash characters
(//) are considered to be the end of the comment, and any remaining comment text be interpreted
as if it were executable code.

Line terminators occurring during a multiple line comment block (/* ... */) will be discarded
and the entire comment block will be replaced with a single line terminator.

The following characters are considered to be line terminators in ECMAScript conformant
JavaScript interpreters:

Escape Sequence Unicode Value Name Symbol

\n \u000A Line Feed <LF>

\r \u000D Carriage Return <CR>

- \2028 Line separator <LS>

- \2029 Paragraph separator <PS>

The terms Line Terminator and Newline can for most purposes be used interchangeably. Newline
is preferred when referring to a \n escape sequence since it more clearly suggests the meaning of
the escape.

ECMA edition 3 adds the Unicode line separator and paragraph separator code points to the list of
valid line terminators.

See also: Automatic semicolon insertion, Comment (// and /* ... */), Lexical
convention, Lexical element, Line, Newline, Semicolon (;), String literal

Cross-references:
ECMA 262 edition 2 – section – 7.2

ECMA 262 edition 2 – section – 7.8

ECMA 262 edition 3 – section – 7.3

JavaScript Programmer's Reference

1338

LINK object (Object/HTML)
An object that represents HTML <LINK> tags in documents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myLINK = myDocument.all.anElementID

IE myLINK = myDocument.all.tags("LINK")[anIndex]

IE myLINK = myDocument.all[aName]

- myLINK = myDocument.getElementById(anElementID)

- myLINK = myDocument.getElementsByName(aName)
[anIndex]

- myLINK = myLinkArray[anIndex]

JavaScript syntax:

- myLINK = myDocument.getElementsByTagName
("LINK")[anIndex]

HTML syntax: <LINK>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
charset, disabled, href, hreflang, media, readyState,
rel, rev, title, type

Event handlers:
onClick, onDblClick, onError, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange

The <LINK> tag is used to link in external style sheet files. You can link in CSS or JSS style sheets
with this technique. It allows the style sheets to be shared amongst many documents and for the
site appearance to be changed globally simply by modifying a single file.

When referring to style sheets, the REL attribute has the STYLESHEET value.

The TYPE attribute indicates that the style sheet is formatted as text and contains JavaScript source text.

The REL and TYPE attributes combined tell us it is a JSS file.

The HREF attribute points at the document containing the style sheet definition to be loaded at the
<LINK> point in the calling document.

This a LINK object because it refers to a document that is accessed via a URL.

The <LINK> tag conveys no apparent visible effect on the document. It is considered to be an
invisible tag.

MSIE supports a LINK object as a property of its styleSheet object.

L – LINK object (Object/HTML)

1339

Warnings:
❑ This object is related to but not identical to a Link object. It does share some property names but

adds others.

❑ This a special MSIE object class, although Netscape would probably support something functionally
similar internally.

See also: Anchor object, Area object, Document.anchors[], Element object,
Element.all[], LinkArray object, Location object,
String.link(), URL, Url object

Property JavaScript JScript N IE Opera DOM HTML Notes

charset 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
disabled 1.5 + 3.0 + 6.0 + 4.0 + - 2 + - -
href 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
hreflang 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
media 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
readyState - 3.0 + - 4.0 + - - - ReadOnly
rel 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
rev 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
title 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onError 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onLoad 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onReadyStateChange - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

1340

LINK.charset (Property)
The character set that the document at the other end of a link's URL is expected to use.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.charset

This would contain the character set being used by the target document at the other end of the link.
For example the value "iso-8859-1" is likely to be returned but the local variant of the browser
and OS may affect the value you get.

This property might contain a value such as:

csISO5427Cyrillic

Details of other aliases can be located at the IANA registry.

See also: Anchor.charset, Url.charset

Web-references:
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

LINK.disabled (Property)
A switch property to enable or disable a link.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myLINK.disabled

Setting this property to true will disable a link from performing any action when clicked on by the
user. Setting this property false restores its normal operation.

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

L – LINK.href (Property)

1341

LINK.href (Property)
The URL of a document belonging to the link object (this is readonly in IE4 on the Macintosh).

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.href

See also: Anchor.href, Location.href, Url.href

LINK.hreflang (Property)
The language that the document at the other end of the URL is expected to conform to.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.hreflang

This property should contain values that use the international language two-letter abbreviation
codes. These are not the same as the country codes, which are also two letter values.

Refer to the Language codes topic for a list of the available language codes.

See also: Anchor.hreflang, Language codes, Url.hreflang

JavaScript Programmer's Reference

1342

LINK.media (Property)
The target media that the document will be output to.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.media

This property is provided speculatively for a time when pages can be formatted differently
according to the medium they are being delivered to.

One of the following values would be appropriate:

❑ all

❑ print

❑ screen

❑ aural

❑ braille

❑ embossed

❑ handheld

❑ projection

❑ tty

❑ tv

Warnings:
❑ Note that although this is supported by MSIE version 4, it does not work on the Macintosh

implementation of that browser version.

LINK.readyState (Property)
The current disposition of the link as it is being loaded from the server.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myLINK.readyState

L – LINK.rel (Property)

1343

This property reflects the downloading state of an object associated with a <LINK> tag.

Sometimes, you can design scripts to execute while the document is downloading; inline scripts for
example. At that time, you may even be able to trigger interval-timed, deferred executions, as well.

If it is important that the document has completed loading before your script attempts to execute,
you can check this property for one of the following values:

State Value

uninitialized The object is first instantiated but has not begun loading.

loading The object has commenced loading.

loaded The object has completed loading.

interactive The object is loaded but not yet closed but is ready to handle
interaction.

complete The object body has been closed and the loading is finished.

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: LINK.title, onReadyStateChange

Property attributes:
ReadOnly.

LINK.rel (Property)
The relationship between the current element and the remote document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.rel

HTML syntax: <LINK REL="...">

This is sometimes called a forward link. Although the HREF="..." HTML tag attribute is normally
the only means used to identify a target document, the browser is permitted to use the REL="..."
HTML tag attribute to decide whether to use the HREF value or how it should be used.

JavaScript Programmer's Reference

1344

The following HTML version 4.0 standard link types are permitted in this property:

❑ alternate

❑ appendix

❑ bookmark

❑ chapter

❑ contents

❑ copyright

❑ glossary

❑ help

❑ index

❑ next

❑ prev

❑ section

❑ start

❑ stylesheet

❑ subsection

MSIE adds these as well:

❑ same

❑ next

❑ parent

❑ previous

When used or tested within a script, any comparisons should be case-insensitive.

See also: Anchor.rel, Url.rel

LINK.rev (Property)
The relationship between the remote document and the current element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.rev

L – LINK.title (Property)

1345

This is sometimes called a reverse link. It defines the relationship between a document and another
that calls it. The linkage is defined from the destination document's viewpoint.

This property supports the same HTML version 4.0 standard link types as the rel property. Refer
to that topic for details.

When used or tested within a script, any comparisons should be case-insensitive.

As rel and rev properties are complementary, the values in them are likely to be related. For
example, if one contains the value "next" then the other is likely to contain "previous".

See also: Anchor.rev, Url.rev

LINK.title (Property)
The title name text of the link.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.title

This is the text that is presented as a 'ToolTip' when the mouse rolls onto an object and pauses
there for a few moments. The MSIE browser will display this text as small popup comment box.

When aural style sheet support is provided by a browser, this value might be spoken as the mouse
rolls over it.

See also: Document.title, Element.title, LINK.readyState

LINK.type (Property)
The MIME type of the document that the link points at.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myLINK.type

JavaScript Programmer's Reference

1346

The MIME type of the document associated with the LINK is accessible through the value of this
property.

Refer to the MIME type topic for details of the available MIME types you will likely see in this property.

See also: Anchor.type, MIME types, Url.type

LinkArray object (Object/browser)
A collection of link object, belonging to a document.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

JavaScript syntax: - myLinkArray = myDocument.links

Object properties: length

This is a collection of Url objects. In Netscape, you can inspect the constructor to establish the class
name which is masked by the toString() method of the Url object. In MSIE, you cannot get at
the constructor so we have to assume that the object is a Url object.

Url objects are created when an <AREA> or <A> tag refers to a document. Anchors that are simply
named locations within a document but which don't have an HREF get added to the anchors array
but not to the links array.

Netscape prior to version 6.0 calls this a LinkArray (as opposed to a LinksArray which might be
more appropriate). In MSIE it is just a Collection and in Netscape version 6.0 it has become an
HTMLCollection because that is what DOM specifies it should be.

Warnings:
❑ Be careful not confuse the elements of this array with LINK objects. These are used in MSIE to

support styling of Url objects on the screen. Other documentation may refer to Link objects but
there is no evidence to support the existence of an object of that class. After inspection there appear
to be Url objects in Netscape, LINK objects in MSIE and an object in MSIE that corresponds to the
Netscape Url class but which provides no means of examining its constructor.

See also: Area object, Collection object, Document.anchors[],
Document.links[], HyperLink object, LINK object, Url object

Property JavaScript JScript N IE Opera HTML Notes

length 1.0 + 3.0 + 2.0 + 4.0 + - - ReadOnly.

L – LinkArray.length (Property)

1347

LinkArray.length (Property)
The number of HREF links in the current document.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - myDocument.links.length

The length of the links array, which indicates the number of <A> and <AREA> tags that contain
HREF attributes in the document.

See also: Collection.length, Document.links[], Url.name

Property attributes:
ReadOnly.

LinkStyle object (Object/DOM)
Added at DOM level 2 to support linked stylesheets.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myLinkStyle = new LinkStyle()

DOM level 2 specifies that this object should support the following property:

❑ sheet

List type (Definition)
An internal type used by the interpreter.

Availability: ECMAScript edition – 2

This is an internal type used by the interpreter for processing expression evaluation results. It
cannot be stored as an object property.

JavaScript Programmer's Reference

1348

Although the List type does not really exist as a data type accessible from a script, the internal
behavior of the interpreter appears as if it did. Especially when looking at the way argument lists
are processed in new operator expressions.

See also: new, Type

Cross-references:
ECMA 262 edition 2 – section – 11.2.4

ECMA 262 edition 2 – section – 8.8

ECMA 262 edition 3 – section – 8.8

ECMA 262 edition 3 – section – 11.2.4

LISTING object (Object/HTML)
An object that represents the <LISTING> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0
Deprecated

Inherits from: Element object

IE myLISTING = myDocument.all.anElementID

IE myLISTING =
myDocument.all.tags("LISTING")[anIndex]

IE myLISTING = myDocument.all[aName]

- myLISTING =
myDocument.getElementById(anElementID)

- myLISTING =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myLISTING = myDocument.getElementsByTagName
("LISTING")[anIndex]

HTML syntax: <LISTING>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The LISTING object is instantiated when the browser encounters a <LISTING> tag in the HTML
for a document. This tag is used to enclose a section of text that should be presented as if it were a
computer code listing.

L – Literal (Definition)

1349

The appearance will be similar to that rendered by a <CODE>, <PRE> or <KBD> tag.

Use of this tag is highly deprecated but it still persists in some legacy content.

See also: Element object, KBD object, PRE object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Literal (Definition)
Constant values used to initialize or assign a value.

Literals are constant values used in assignments or as arguments to functions or expressions. A
literal is considered to be a primary expression when it is being evaluated.

There are several kinds of literals. They are all based on the primitive types. The ECMA standard
defines four basic data types, which should be sufficient for most purposes; however, a hosted
interpreter may provide other more esoteric primitive values. Here are the four core standard types:

❑ Null

❑ Boolean

❑ Numeric

❑ String

JavaScript Programmer's Reference

1350

These are objects that can also be manufactured from literals:

❑ Array

❑ Date

❑ Regular expression

❑ Object

❑ Void

String literals also include escaped character literals which may also be used in regular expressions.

Host environments additionally define others for special purposes depending on the implementation.

See also: Boolean literal, Character constant, Constant, Lexical element, Null literal, Numeric
literal, Primary expression, String literal, Token

Cross-references:
ECMA 262 edition 2 – section – 7.7

ECMA 262 edition 2 – section – 11.1.3

ECMA 262 edition 3 – section – 7.8

ECMA 262 edition 3 – section – 11.1.3

O'Reilly JavaScript Definitive Guide – page – 30

Little endian (Definition)
A bit ordering standard for some CPU models.

Increasing bit value

1 2 4 8 16 32 64 128

See also: byte

L – LiveConnect (Product)

1351

LiveConnect (Product)
A Netscape Communications technology that provides a means of communicating between plugins
and Java applets.

In Netscape, communication between scripts and Java applets takes place via the LiveConnect
interface. LiveConnect was originally designed for just this purpose. LiveConnect is only
implemented in Netscape. However, similar but not identical functionality is available in MSIE via
the ActiveX interface.

LiveConnect is most effective if you can also understand the internals of Java applets and can
program in Java yourself. You can use LiveConnect to gain read and write access to the public
fields of an applet and you can also invoke public methods. You can also interact with standard
Java system classes that are built into the Netscape browser.

If a plugin is Java-enabled, then in Netscape you can interact with that plugin in the same way.

From the opposite direction, applets and Java-enabled plugins can invoke JavaScript functions and
can read and write JavaScript object properties. The Real Video plugin uses this to great effect as do
many other media plugins.

LiveConnect is constructed around some built-in objects that encapsulate various Java classes and
objects. These are:

❑ JavaObject – An encapsulation of an instance of a Java object that belongs to a JavaClass

❑ JavaClass – An encapsulation of a Java class for access to static properties and methods

❑ JavaPackage – A collection of JavaClass and JavaPackage objects in a tree-like hierarchy

With these encapsulations, you can operate on Java objects as if they were JavaScript objects. That
is necessary because although you can generally convert between primitive types, the object types
are too dissimilar to convert properly.

There are some interesting opportunities here for extending the capabilities of your scripts with the
facilities offered by Java. However, the downside is that you need to have a VM running. Netscape
supports its own internal VM at least up to version 4, but the trend is for browsers to use the OS
hosted VM and to not provide any embedded Java execution context. This may provide additional
benefits such as sharing Java classes amongst several applications and shortening the start-up time
since the VM could be expected to be running already.

LiveConnect becomes particularly useful when accessing the java.lang.System class from
scripts running in Netscape. In MSIE, you could create a special applet that then gained access to
the system class for you. Using this capability to any useful extent starts to impinge on the security
model and requires that trusted scripts are used. This is usually enough to deter most people from
exploring it more deeply. However, if you can gain that trust, by using signed scripts, you may
then be able to access the Java IO facilities and read/write files.

Working the other way, LiveConnect provides a way for Java code to execute a string as JavaScript.
This is very like an eval() call from the native JavaScript environment.

JavaScript Programmer's Reference

1352

Warnings:
❑ Be careful not to confuse the following:

❑ LiveWire

❑ LiveScript

❑ LiveConnect

❑ In Netscape version 3, a bug in the conversion routines yielded all Java primitives as JavaScript
objects instead of JavaScript primitives. This causes a few problems because Number and Boolean
objects in JavaScript behave slightly differently to the primitive representations, mostly to do with
operator overloading and precedence. Objects will prefer to concatenate as strings rather than add as
numbers for example. The valueOf() method will provide a way to work around this.

See also: ActiveX, Glue code, Java calling JavaScript, Java method calls, Java method data
conversion, Java to JavaScript values, JavaScript to Java values, LiveScript, Plugin
events, Plugin.isActive()

LiveScript (Product)
This was the original name for JavaScript when it was first introduced by Netscape Communications.

Maybe LiveScript wouldn't have caught on and become so popular, but now people routinely confuse
it with Java. Even more so now that interpreters for JavaScript are available written in Java and some
server-side application tools allow you to write Java code but run it in a script interpreter. That would
be Java script not JavaScript.

Warnings:
❑ Be careful not to confuse the following:

❑ LiveScript

❑ LiveWire

❑ LiveConnect

❑ LiveWire is the former name for Server-Side Javascript.

❑ LiveConnect is a mechanism for allowing JavaScript to talk to Java in a Netscape browser.

See also: JavaScript language, JavaScript version, LiveConnect, LiveWire

livescript: URL (Request method)
This is a pseudonym for the javascript: URL.

See also: URL, javascript: URL

L – LiveWire (Product)

1353

LiveWire (Product)
Netscape Communications' server-side JavaScript compiler.

This was the original name for JavaScript when used in the server. Now it is simply called Server-
Side JavaScript. Sometimes SSJS for short.

The LiveWire JavaScript interpreter is used in Netscape Enterprise Server. In this environment you
can also compile the JavaScript code which further blurs the distinction between Java and JavaScript.

Warnings:
❑ Be careful not to confuse the following:

❑ LiveWire

❑ LiveScript

❑ LiveConnect

See also: LiveScript, Server-side JavaScript

Local time (Definition)
The locale specific time value.

Availability: ECMAScript edition – 2

Local time is the calendar time for the current locale.

Local time and UTC time differ by an amount derived by adding the Local Time Zone Adjustment and
the Daylight Savings Time Adjustment together. Adding these to the UTC time gives the local time.

Conversion of UTC time (ut)to local time is defined by:

LocalTime(t) = ut + LocalTZA + DaylightSavingTA(ut)

Conversion from local time (lt)to UTC is defined by:

UTC(lt) = lt – LocalTZA – DaylightSavingTA(lt – LocalTZA)

The following expression may not always test true:

t = UTC(LocalTime(t))

JavaScript Programmer's Reference

1354

Converting from UTC to local time and back may not yield an identical value due to deficiencies in
daylight savings time computations. ECMA does not mandate that a compliant implementation needs to
take DST into account only that it be aware that DST may be in force. Some locales use the same DST
setting all year round in some years and that is difficult to predict and encapsulate into an algorithm.

See also: Broken down time, Calendar time, Date and time, Daylight savings time
adjustment, Local time zone adjustment

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.9

ECMA 262 edition 3 – section – 15.9.1.9

Local time zone adjustment (Definition)
An adjustment to locale specific time.

Availability: ECMAScript edition – 2

ECMA compliant implementations are expected to determine the local time zone adjustment.

The local time zone adjustment is a value (internally referred to as LocalTZA) which is measured in
milliseconds and can be added to the UTC value representing the local standard time.

The ECMA standard states that daylight savings time is not reflected in the LocalTZA value.
LocalTZA does not vary with time but depends only on the geographic location.

See also: Broken down time, Daylight savings time adjustment, Local time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.7

ECMA 262 edition 3 – section – 15.9.1.7

Locale-specific behavior (Definition)
Behavior that depends on a locale setting.

The locale setting is a way of defining how programs operate in an international or geographic
context. Running software in London and New York may be very similar apart from the
instantaneous time setting. The time in New York is 5 hours behind London. If the software
running in both locations needs to communicate with the other and will have to perform time
based operations on data, then to remain properly synchronized they may need to be aware of the
number of time zones between the two systems and make adjustments accordingly.

L – Localization (Definition)

1355

Other behavior may dictate date formats, currency symbols, the format of decimal values,
thousands separators and spelling. Non English speaking locales may use the same textual
presentation (Roman Scripting) but spell words in the local language. Character set substitution
may accomplish much of what's required although this is somewhat ameliorated by the use of
Unicode. Sometimes the direction that the text flows may be different. For example, European,
Middle-Eastern and Asian languages use different character alphabets and text directions.

The implementors should thoroughly document all of this locale specific behavior.

See also: Behavior, Broken down time, Character set, Character-case mapping, Unicode

Localization (Definition)
The process by which geographic, international and regional differences are managed.

JavaScript is used all over the world in a wide variety of environments, platforms and contexts.
Portability issues arise when moving between platforms. They are also present when relocating a
platform geographically. At the very least a time setting will need to change, and to record an event
in a coordinated time framework, the offset from that known time reference needs to be known.
There will be cultural, language and currency changes necessary as well as number formatting rule
variations that need to be taken account of.

Indeed the differences in some locales may completely change the native alphabet that the user is
prepared to work with. Even the direction of the text flow may change in extreme circumstances.
Moving around Europe certainly requires that different accented symbols be used in each country.

Fortunately the Unicode standard covers a great many of these national variants.

Even so, JavaScript is fundamentally based on the American English language and even with the
international support of the Unicode character set, the structural layout of the script source text
may still conform to the underlying English language form. Even so there are issues with the
spelling of words such as Color.

Typically, a localized implementation may allow the use of accented and national characters in
identifier names but would still retain the English spelled keywords and punctuation characters.

As well as character sets, the issue of collation into the correct sorting sequence needs to be
managed properly. In JavaScript, this issue is largely confined to the way that Array objects
manage their sort() method's behavior.

Date and time formats tend to be arranged differently in each country. The United States and the
United Kingdom commonly place the day number and month number the opposite way round. For
day numbers above 12, this can be detected automatically but otherwise the context needs to be
examined to decide which way round these values are.

Numeric formats may dictate a different punctuation symbol to be used for the decimal point and
thousands separator. Confusingly, the comma and period characters may be used in both contexts.
This means that a value could be misinterpreted and might yield a result that is several orders of
magnitude in error when parsed.

Currency symbols will need some attention. The United States dollars symbol is in the lower 128
character set. The cents symbol is not. The UK pounds symbol is within the lowest 255 characters.

JavaScript Programmer's Reference

1356

Warnings:
❑ Be careful of the following:

❑ Date formats

❑ Time settings

❑ Character sets

❑ Currency symbols

❑ Sort ordering

❑ Decimal points and thousands separators

❑ The entire concept and scope of localization of JavaScript is being discussed as part of the
standardization project. This area is prone to change or, at the very least, some definition of a
standard conforming behavior.

See also: Character set, Collation sequence, Currency symbol, Date and
time, Decimal point (.), Multi-byte character

location (Property)
An alias for the window.location property.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Location object

- location
JavaScript syntax:

- myWindow.location

See also: Window.navigate(), Window.location

Property attributes:
ReadOnly.

L – Location object (Object/DOM)

1357

Location object (Object/DOM)
An object that represents the location of a document.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Url object

JavaScript syntax: - myLocation = myWindow.location

Object properties:
hash, host, hostname, href, pathname, port,
protocol, search, target, text, x, y

Object methods:
assign(), reload(), replace()

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This is a more or less portable encapsulation of a URL value and is most commonly used to
describe the location of a document in a window. Changing its href property value has become
the preferred means of loading a new document into a window or frame.

This is useful because it can also operate very conveniently across frame boundaries. That is, a
script in one frame can modify the contents of another.

There are some security implications when accessing frames from different servers or domains.
These can overcome in Netscape by using signed scripts.

See also: Anchor object, Area object, Document.location, LINK object, Map
object, URL, Url object, Window.location, Window.navigate()

Property JavaScript JScript N IE Opera DOM HTML Notes

hash 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
host 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
hostname 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
href 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
pathname 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
port 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
protocol 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - ReadOnly.
search 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
target 1.0 + 1.0 + 2.0 + 3.02 + - - - -
text 1.2 + - 4.0 + - - - - -
x 1.2 + - 4.0 + - - - - -
y 1.2 + - 4.0 + - - - - -

JavaScript Programmer's Reference

1358

Method JavaScript JScript N IE Opera DOM HTML Notes

assign() 1.0 + 1.0 + 2.0 + 3.02 + - - - Warning,
Deprecated

reload() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - -
replace() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object, Url object

Location.assign() (Method)
Equivalent to setting the HREF attribute to load a new page.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Deprecated

JavaScript syntax: - myLocation.assign(aURL)

Argument list: aURL A new URL to load into the location.href

This is functionally equivalent to making an assignment with an equals (=) operator.

Warnings:
❑ This method was not originally intended for use by script level code and should be avoided.

See also: Assign value (=)

L – Location.hash (Property)

1359

Location.hash (Property)
The hash target portion of the href property. (The hash after the URL refers to an anchor location
in the document).

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myLocation.hash

See also: Anchor.hash, Url.hash

Location.host (Property)
The hostname and port number portion of the href property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myLocation.host

See also: Anchor.host, Url.host

Location.hostname (Property)
The hostname-only portion of the href property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myLocation.hostname

See also: Anchor.hostname, Url.hostname

JavaScript Programmer's Reference

1360

Location.href (Property)
The URL for the page currently on display in the window owning this location.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myLocation.href

If you set this property, the window will load the new URL in, and replace the old content with the new.

See also: Anchor.href, Url.href

Location.pathname (Property)
The file path portion of the href property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myLocation.pathname

See also: Anchor.pathname, Url.pathname

Location.port (Property)
The port number within the href property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

L – Location.protocol (Property)

1361

Property/method value type: Number primitive

JavaScript syntax: - myLocation.port

See also: Anchor.port, Url.port

Location.protocol (Property)
The protocol portion of the href property, such as: http:,ftp:,mailto:,file:,etc.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type:
String primitive

JavaScript syntax: - myLocation.protocol

See also: Anchor.protocol, IMG.protocol, URL, Url.protocol

Property attributes:
ReadOnly.

Location.reload() (Method)
Reload the currently displayed page in the window that owns this location object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

- myLocation.reload()
JavaScript syntax:

- myLocation.reload(aFlag)

Argument list: aFlag
A Boolean flag forcing a reload from the
server when set to true

This causes the document that owns the Location object to be reloaded. Any form elements
would be reset to their initial values.

JavaScript Programmer's Reference

1362

Unless you specify an unconditional reload, the page will be reloaded from the cache if the file is
still in the cache, and caching is still active. This may involve a check on the server to see if the
copy in the cache is up to date. If the cache copy is out of date, a new document may be fetched
from the server.

You can use the keyword unconditional as an argument in the location.reload(true) method
call to force a new copy of the document to be fetched from the server regardless of the disposition
of any documents in the local cache. This should also defeat any proxies and force them to reload
from the server but it depends on how they are configured.

Refer to the History.go() topic for details of how to perform a benign soft load.

See also: History.go()

Location.replace() (Method)
Load a new page and replace the history entry.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

JavaScript syntax: - myLocation.replace(aURL)

Argument list: aURL
A URL to load into the layer, window or frame this
location belongs to

This method is a useful way of loading new pages if you want to make sure the history list does not
get filled up with unwanted pages. This makes the back button more useful to the user.

While the replace goes on, the existing page will continue to be displayed. This also applies if the
replace is called during the <HEAD> portion of a page. The new URL is requested but the browser
will continue loading and building the previous page until the web server responds and delivers
the new replacement page. Termination of the old page therefore happens when the new page
begins to arrive and not when it is first requested.

Location.search (Property)
The query portion of the href property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

L – Location.target (Property)

1363

Property/method value type: String primitive

JavaScript syntax: - myLocation.search

See also: Anchor.search, Url.search

Location.target (Property)
The target window or frame that a location belongs to when its object represents an <A> tag.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String primitive

JavaScript syntax: - myLocation.target

This yields the value of the TARGET attribute in an <A>, <AREA> or <MAP> tag.

You can assign a new value to this property so that the URL will be directed to a different window
or frame.

Here are some example target values:

❑ _parent

❑ _self

❑ _top

❑ _blank

❑ Window name

❑ Frame name

See also: Anchor.target, BASE.target, Form.target, Url.target

Location.text (Property)
The text contained within the <A> and tags when the location describes an anchor.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: N myLocation.text

See also: Anchor.text, Url.text

JavaScript Programmer's Reference

1364

Location.x (Property)
The X coordinate of the anchor on the client display surface.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myLocation.x

The horizontal position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

See also: Anchor.x, Area.x, Url.x

Location.y (Property)
The Y coordinate of the anchor on the client display surface.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myLocation.y

The vertical position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrollTo() method for the window it lives in.

See also: Anchor.y, Area.y, Url.y

locationbar (Property)
An alias for the window.locationbar property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Bar object

- locationbar
JavaScript syntax:

- myWindow.locationbar

See also: Bar object, Window.locationbar

L – Lock object (Object/NES)

1365

Property attributes:
ReadOnly.

Lock object (Object/NES)
Provides a way of locking objects against multiple simultaneous access by several clients at once.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

NES myLock = Lock
JavaScript syntax:

NES myLock = new Lock()

Object properties: constructor, prototype

Object methods: isValid(), lock(), unlock()

In a server back end environment, you may have some objects which you share amongst several
sessions. This means that they could be accessed on behalf of several clients all at once. You may
want to prevent this happening by locking the object as the first client's request accesses it, and
then unlocking it again as the request handler for that client no longer needs access to it.

You can create new lock objects with the Lock() constructor.

It is good manners to unlock resources as soon as you can so that other processes can carry on
running. You should not rely on the script exit handler unlocking the locks you place on objects.

Warnings:
❑ Be careful when you use locks. It is possible to place mutually exclusive locks on objects and

introduce a deadlocking situation. There is a potential for this if your script is locking more than one
object and the locks are not correctly nested.

❑ If you don't implement locks when necessary, you run the risk of run-time errors as your system can
run out of resources.

See also: Netscape Enterprise Server, unwatch(), watch()

Property JavaScript JScript NES Notes

constructor 1.2 + - 3.0 + -
prototype 1.2 + - 3.0 + -

Method JavaScript JScript NES Notes

isValid() 1.2 + - 3.0 + -
lock() 1.2 + - 3.0 + -
unlock() 1.2 + - 3.0 + -

JavaScript Programmer's Reference

1366

Lock() (Constructor)
A constructor for creating new Lock objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Lock object

JavaScript syntax: NES new Lock();

See also: Lock object

Lock.constructor (Property)
A reference to the constructor for making new Lock objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Function object

JavaScript syntax: NES myLock.constructor

The constructor is that of the built-in Lock prototype object.

You can use this as one way of creating locks although it is more popular to use the
new Lock() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Lock.isValid() (Method)
A method that returns an indication as to the validity of the lock.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: NES myLock.isValid()

This method will return a Boolean true value if the Lock is still in force and a Boolean false
value if it has been relinquished.

See also: Lock.lock(), Lock.unlock()

L – Lock.lock() (Method)

1367

Lock.lock() (Method)
Place a lock on the object.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

JavaScript syntax: NES myLock.lock()

As you attempt to lock the object, the method first tests the Lock to see if another script already has
a lock pending. If it does, then this method stalls and will not return until it can successfully place a
lock on the object. That will happen when the previous locking script calls the unlock() method.

See also: Lock.isValid()

Lock.prototype (Property)
The prototype for the Lock object that can be used to extend the interface for all Lock objects, by
allowing you to add methods and properties.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Lock object

NES Lock.prototype
JavaScript syntax:

NES myLock.constructor.prototype

See also: prototype property

Lock.unlock() (Method)
Relinquish a lock on the object.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

JavaScript syntax: NES myLock.unlock()

You should always aim to relinquish a lock as soon as you can. They are not intended for use as a
means of reserving server facilities but as a means of preventing clashes between sessions. If the
unlocking is successful, then true will be returned, and false otherwise.

See also: Lock.isValid()

JavaScript Programmer's Reference

1368

Logical AND (&&) (Operator/logical)
Logical AND of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 && anOperand2

anOperand1 A Boolean valueArgument list:
anOperand2 Another Boolean value

Traditionally in programming environments, the logical AND operator yields true only when both
operands are true. However, the specifics of this are slightly different in JavaScript, and although the
results may appear to be functionally the same, there is a subtle but important difference.

First, lets deal with the normal and expected behavior of a Logical AND operator. The truth table
shows the result of this operator for two Boolean primitive values:

A B AND

false false false

false true false

true false false

true true true

Now, the implementation is expected to conform to the ECMA standard. This sets out the following
method of evaluation for a Logical AND operator:

❑ Evaluate and convert the first operand using the ToBoolean() method.

❑ If it is false, then evaluate and return the second operand.

❑ Otherwise return the evaluation of the first operand.

To all intents and purposes the external perceived behavior is the same because another
ToBoolean() conversion is likely to take place in the context that the expression is used – an
if() statement or an outer logical expression for example.

The associativity is from left to right.

Refer to the operator precedence topic for details of execution order.

The result is the Boolean value true if both operands are true, otherwise Boolean false is returned.

L – Logical AND (&&) (Operator/logical)

1369

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=1 CELLPADDING=2>
<TR>
<TH>A</TH>
<TH>B</TH>
<TH>AND</TH>
</TR>
<SCRIPT>
for(a=0; a<2; a++)
{
 for(b=0; b<2; b++)
 {
 document.write("<TR ALIGN=CENTER><TD>");
 document.write(Boolean(a));
 document.write("</TD><TD>");
 document.write(Boolean(b));
 document.write("</TD><TD>");
 document.write(Boolean(a && b));
 document.write("</TD></TR>");
 }
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Associativity, Binary logical operator, Bitwise AND (&), Bitwise AND then assign
(&=), Logical expression, Logical operator, Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

JavaScript Programmer's Reference

1370

Logical constant (Definition)
A Boolean constant value.

There are only two possible values for a Boolean constant. That is true or false.

A Boolean variable may contain the value undefined.

See also: Constant expression

Logical entity (Definition)
Boolean logical values are represented as an entity internally.

Availability: ECMAScript edition – 2

Logical entities always evaluate as a Boolean result.

Logical entities are used to form conditions and control branching among other uses. They are
often used to hold state information or control switches. A logical entity may be the result of a
relational expression or the use of one or more logical operators. A logical entity may be the result
of enquiring the property of an object that returns a Boolean value as a result. Logical entities can
only contain a true or false value.

Cross-references:
ECMA 262 edition 2 – section – 4.3.14

ECMA 262 edition 3 – section – 4.3.14

Logical expression (Definition)
An expression whose result is a Boolean value.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Logical operators perform a test of the Boolean value of the two operands either side of the operator.

See also: Equal to (==), Expression, Greater than (>), Greater than or equal
to (>=), Identically equal to (===), Less than (<), Less than or equal
to (<=), Logical AND (&&), NOT Equal to (!=), NOT Identically
equal to (!==)

Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

L – Logical NOT – complement (!) (Operator/logical)

1371

Logical NOT – complement (!) (Operator/logical)
Logical NOT operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - !anOperand

Argument list: anOperand A Boolean value to be complemented

The result is the Boolean complement of the operand value.

The exclamation mark is the logical negation operator. The operand is evaluated and its result
converted to a binary value. The value is then reversed and used to replace the expression in
whatever context it has been used.

The truth table shows the result of this operator for a Boolean primitive value:

A NOT

false true

true false

Although this is classified as a logical operator here, it is also classified as a unary operator since it
only has one operand.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=1 CELLPADDING=2>
<TR>
<TH>A</TH>
<TH>NOT</TH>
</TR>
<SCRIPT>
for(a=0; a<2; a++)
{

JavaScript Programmer's Reference

1372

 document.write("<TR ALIGN=CENTER><TD>");
 document.write(Boolean(a));
 document.write("</TD><TD>");
 document.write(Boolean(!a));
 document.write("</TD></TR>");
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Associativity, Bitwise NOT – complement (~), Logical operator,
NOT Equal to (!=), Operator Precedence, Unary expression,
Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.9

ECMA 262 edition 3 – section – 11.4.9

Logical operator (Definition)
An operator that creates a logical (Boolean) expression.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Logical operators perform a one bit operation on the Boolean value of the operands. The input
values may not be Boolean values but will be converted to a Boolean value using the toBoolean
rules for that type. The conversion happens automatically but may not always be what you expect.

The JavaScript interpreter is also quite smart, in that it can for some operator and value
combinations perform a lazy evaluation. For example if an expression like this is presented:

A AND B

Then if A is false, B does not need to be evaluated to know that the result will be false. This can
significantly speed up the interpreter because evaluating B might have involved an object reference
or perhaps an expression evaluation. It almost always would involve a type conversion from some
other type to a Boolean value. This suggests you may effect some performance gains by coding
your logical operations to take advantage of this.

There are specific logical operators in the set for performing logical AND as well as logical OR
operations. However, generally speaking any operator that yields a Boolean result could be used in
the same place. The following table summarizes the logical operators as well as those, which come
under that general heading of providing a Boolean result:

L – Logical operator (Definition)

1373

Operator Description

&& Logical AND
|| Logical OR
! Logical NOT
== Equal to
!= NOT equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

The Boolean constants true and false need to be considered too, because they are often used in
conditional tests to force the conditions to be true or false. Although they are not operators as
such they can be useful when constructing expressions for debugging purposes.

Type conversions indicate these relationships:

❑ false becomes 0

❑ true becomes 1

❑ 0 becomes false

❑ Any non-zero value becomes true

Note that this is going to lose some information if you convert a non-zero value other than 1 to a
Boolean value and back again.

Warnings:
❑ This is not to be confused with the bitwise operators, which yield a 32-bit integer value instead of the

Boolean value yielded by a logical expression.

❑ The bitwise operators may yield a value that in other languages is the same as the logical operator.
However although in C language, true and false are really integer values, in JavaScript the
Boolean and Number values are distinctly different types.

❑ Be careful to use the correct number of ampersands, and vertical bars to select the logical version of
the operator. Refer to the Bitwise operator topic for a list of operators to avoid in logical expressions.

See also: Associativity, Binary logical operator, Bitwise operator, Equal to (==), Expression,
Greater than (>), Greater than or equal to (>=), Identically equal to (===), Less than
(<), Less than or equal to (<=), Logical AND (&&), Logical NOT – complement (!),
Logical OR (||), NOT Equal to (!=), NOT Identically equal to (!==), Operator,
Operator Precedence, ToBoolean, Type, Type conversion

Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

Wrox Instant JavaScript – page – 19

JavaScript Programmer's Reference

1374

Logical OR (||) (Operator/logical)
Logical OR of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 || anOperand2

anOperand1 A Boolean valueArgument list:
anOperand2 Another Boolean value

Traditionally in programming environments, the logical OR operator yields true when either or
both of the operands are true. It yields false only when both are false. However, the specifics
of this are slightly different in JavaScript and although the results may appear to be functionally
the same, there is a subtle but important difference.

First, lets deal with the normal and expected behavior of a Logical OR operator. The truth table
shows the result of this operator for two Boolean primitive values:

A B OR

false false false

false true true

true false true

true true true

Now, the implementation is expected to conform to the ECMA standard. This sets out the following
method of evaluation for a Logical OR operator:

❑ Evaluate and convert the first operand using the ToBoolean() method.

❑ If it is true, then return that operand.

❑ Otherwise evaluate and return the second operand.

To all intents and purposes the external perceived behavior is the same because another
ToBoolean() conversion is likely to take place in the context that the expression is used – an
if() statement or an outer logical expression for example.

The associativity is from left to right.

Refer to the operator precedence topic for details of execution order.

L – Logical XOR (Operator/logical)

1375

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=1 CELLPADDING=2>
<TR>
<TH>A</TH>
<TH>B</TH>
<TH>OR</TH>
</TR>
<SCRIPT>
for(a=0; a<2; a++)
{
 for(b=0; b<2; b++)
 {
 document.write("<TR ALIGN=CENTER><TD>");
 document.write(Boolean(a));
 document.write("</TD><TD>");
 document.write(Boolean(b));
 document.write("</TD><TD>");
 document.write(Boolean(a || b));
 document.write("</TD></TR>");
 }
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Associativity, Binary logical operator, Logical operator, Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

Logical XOR (Operator/logical)
Logically exclusive OR of two values.

There isn't really an XOR logical operator, but the Bitwise XOR operator should work fine.

This is proven by evaluating the truth table in the example.

This seems to work fine even on MSIE where the sign bit exhibits some instability under Bitwise
operations.

JavaScript Programmer's Reference

1376

This is the truth table for two Boolean primitive values being operated on with the XOR operator.

A B XOR

false false false

false true true

true false true

true true false

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=1 CELLPADDING=2>
<TR>
<TH>A</TH>
<TH>B</TH>
<TH>XOR</TH>
</TR>
<SCRIPT>
for(a=0; a<2; a++)
{
 for(b=0; b<2; b++)
 {
 document.write("<TR ALIGN=CENTER><TD>");
 document.write(Boolean(a));
 document.write("</TD><TD>");
 document.write(Boolean(b));
 document.write("</TD><TD>");
 document.write(Boolean(a ^ b));
 document.write("</TD></TR>");
 }
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Bitwise XOR (^)

long (Reserved word)
Reserved for future language enhancements.

The inclusion of this reserved keyword in the ECMAScript standard suggests that future versions
of ECMAScript may be more strongly typed.

This keyword also represents a Java data type and the long keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

L – Low order bit (Definition)

1377

See also: double, float, Integer, java.lang.Long, LiveConnect, Reserved word,
short

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Low order bit (Definition)
The least significant bit in an integer value.

1 1 1 1 1 0 0 0

See also: Bit, Bit-field, Bitwise operator, byte

LValue (Definition)
LValues are placed on the left of an assignment.

Availability: ECMAScript edition – 2

An LValue is that expression or identifier reference that can be placed on the left hand side of an
assignment.

An LValue must be a modifiable entity.

These are called Left-Hand-Side expressions in the ECMA standard.

The C language refers to these as Locator Values.

See also: = (Assign), Add then assign (+=), Assign value (=), Assignment expression, Bitwise
AND then assign (&=), Bitwise OR then assign (|=), Bitwise shift left then assign
(<<=), Bitwise shift right and assign (>>=), Bitwise unsigned shift right and assign
(>>>=), Bitwise XOR and assign (^=), Concatenate then assign (+=), Conversion,
Divide then assign (/=), Left-Hand-Side expression, Multiply then assign (*=),
Property value, Remainder then assign (%=), RValue

Cross-references:
ECMA 262 edition 2 – section – 11.2

ECMA 262 edition 3 – section – 11.2

mailbox: URL (Request method)
Displays the Netscape Message Center window.

You can add keywords to access the individual components within the mailbox as necessary. The
following are all valid URL values in Netscape:

❑ mailbox:

❑ mailbox:Inbox

❑ mailbox:Unsent%20Messages

❑ mailbox:Drafts

❑ mailbox:Templates

❑ mailbox:Sent

❑ mailbox:Trash

Each of these will spawn an additional window as required to display the relevant folder within
the mailbox. Note that embedded spaces must be URL escaped for them to work. This mechanism
does not seem to provide access to sub-folders.

Warnings:
❑ Although Netscape 6.0 supports this request method, its support is incomplete as of the first non-

beta release.

See also: javascript: URL, mailto: URL, nethelp: URL, telnet: URL, URL

M

mailto:URL

M – mailto: URL (Request method)

1379

mailto: URL (Request method)
Activates the mail client to send an e-mail message.

Open up a mail client application or use the browser's built-in mail client to send a message to the
indicated recipient.

Netscape supports the predefiniton of the Subject:, Cc: and Bcc: fields in the mailto: URL. This
is illustrated in the example. This may not work on other browsers or JavaScript-capable mail clients.

Note that you can leave the spaces as they don't need to be escaped in the Subject text. In some
versions, you can also define the Body text for the e-mail by appending the Body operator. This is
also shown in the example.

Warnings:
❑ This is only allowed under script control if the script has the UniversalSendMail privilege.

Example code:
<!-- Simple example showing just a mail to link -->
Send Mail
<!-- Adding a subject header -->
<a href="mailto:someone@somewhere.com?Subject=Email From
Link&Cc=access@wrox.com&Bcc=backup@wrox.com">Send Mail
<!-- Adding a subject header -->
Send Mail
<!-- Adding CC and BCC fields -->
Send Mail
<!-- Adding a predefined message body -->
<a href="mailto:someone@somewhere.com?Subject=Email From
Link&Cc=access@wrox.com&Bcc=backup@wrox.com&Body=messageText">Send Mail

See also:
javascript: URL, mailbox: URL, nethelp: URL, UniversalSendMail,
URL

main() function (Definition)
The main entry point to a procedural language program.

Property/method value type: Implementation defined

Although JavaScript in many circumstances does not have a main() function, in some applications
of the language it may be necessary.

By implication, the main() function of a JavaScript is the global code that is present in a web page
in the <SCRIPT> tags, but is not part of a function declaration body.

When embedded in a browser, the language is invoked according to an event model and the browser
itself is the main() for the interpreter. Various script based functions are called by the browser.

mailto:URL
mailto:URL
mailto:URL
mailto:someone@somewhere.com">Send
mailto:someone@somewhere.com?Subject=Email
mailto:someone@somewhere.com?Subject=Email
mailto:someone@somewhere.com?Subject=Email
mailto:someone@somewhere.com?Subject=Email

JavaScript Programmer's Reference

1380

In a server-side environment, a script may be used as the result of a CGI call. In that case, a main()
with passed parameters is a more useful facility.

In some implementations, the main() function may be used to make the language accessible to C
programmers. Languages often borrow from one another and JavaScript borrows heavily from C
language and Java. The exact form of the main() function and possibly its name will be
implementation dependent and you should check the documentation for the interpreter just make
sure it behaves the way you expect.

The result of calling the main() function will be implementation specific, but probably an integer.

See also: argc parameter, argv parameter, Execution context, Execution
environment, Host environment, Host object

MakeDate() (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The MakeDate() operator calculates a number of milliseconds from its two arguments. Both
arguments must be ECMAScript number values.

All of the arguments must be numeric and finite values. The values should be integers. If they are
not then the result will be NaN.

The day argument is multiplied by the milliseconds per day and the time argument is added to the
result. The sum of the two is a millisecond coded date and time value.

Although this is called an operator in the standard, its behavior is more like that of a function. It is
not part of the formal language implementation but is a useful function to have available, and can
be simulated by writing a script-based function. It is documented in the standard to assist in the
algorithmic breakdown of the Date method handlers.

The result is a date value in milliseconds since the base date.

See also:
Cast operator, Date object, Date(), Date.UTC(), Time range,
Time value

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.13

ECMA 262 edition 3 – section – 15.9.1.13

M – MakeDay() (Time calculation)

1381

MakeDay() (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The MakeDay() operator calculates a number of days from its three arguments. Each argument
must be an ECMAScript number value.

All of the arguments must be numeric and finite values. The values should be integers. If they are
not then the result will be NaN.

The month number is used as a lookup to establish the number of days in the preceding months.
This will also take the year number into account because a leap year calculation may be necessary.

The standard does not mandate any range checking, however it would be sensible to include range
checks in the implementation of this functionality.

Although this is called an operator in the standard, its behavior is more like that of a function. It is
not part of the formal language implementation, but is a useful function to have available and can
be simulated by writing a script-based function. It is documented in the standard to assist in the
algorithmic breakdown of the Date method handlers.

The result is a day value in milliseconds since the base date.

See also:
Cast operator, Date object, Date(), Date.UTC(), Time range,
Time value

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.12

ECMA 262 edition 3 – section – 15.9.1.12

MakeTime() (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The MakeTime() operator calculates a number of milliseconds from its four arguments. Each
argument must be an ECMAScript number value.

All of the arguments must be numeric and finite values. The values should be integers. If they are
not then the result will be NaN.

JavaScript Programmer's Reference

1382

The constant time values giving milliseconds per hour, minute and second are used to multiply
each argument. The results are then summed to provide an equivalent time in milliseconds.

No range checking is performed according to the ECMA standard so some degree of overflow can
be expected.

Although this is called an operator in the standard, its behavior is more like that of a function. It is
not part of the formal language implementation, but is a useful function to have available and can
be simulated by writing a script-based function. It is documented in the standard to assist in the
algorithmic breakdown of the Date method handlers.

The result is a time value since midnight measured in milliseconds.

See also: Cast operator, Date object, Date(), Date.UTC(), Time range, Time value

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.11

ECMA 262 edition 3 – section – 15.9.1.11

<MAP TARGET="..."> (HTML Tag Attribute)
The frame or window to target by default with the links in an image map.

This is a non-standard tag attribute that is used as a means of linking frames and area maps. You
should use <AREA TARGET="..."> instead of <MAP TARGET="..."> for portable applications.

Warnings:
❑ Because this is a non-standard HTML tag attribute, most implementations will not support the

TARGET attribute on a <MAP> tag. In that case, apply the TARGET attribute to the <AREA> tags in the
map instead.

See also: Anchor.target, Form.target, Map.target, Window.frames[]

Deprecated usage:
Yes

M – Map object (Object/HTML)

1383

Map object (Object/HTML)
An object that represents a <MAP> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myMap = myDocument.all.anElementID

IE myMap = myDocument.all.tags("MAP")[anIndex]

IE myMap = myDocument.all[aName]

- myMap = myDocument.getElementById(anElementID)

- myMap = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myMap = myDocument.getElementsByTagName
("MAP")[anIndex]

HTML syntax: <MAP> ... </MAP>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: name, target

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Collections: areas[]

The <MAP> tag in the HTML document source is a container for the <AREA> tags. These all belong
to a parent Map object. This is a means of componentizing a client-side image map and building
complex non-rectangular shaped areas.

See also: A object, Area object, Element object, Location object

Property JavaScript JScript N IE Opera DOM HTML Notes

name 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
target 1.5 + 3.0 + 6.0 + 4.0 + - - - -

JavaScript Programmer's Reference

1384

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5+ 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

Map.areas[] (Collection)
A collection of Area objects belonging to the map object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Collection object

JavaScript syntax: - myMap.areas

The objects instantiated by <AREA> tags which are part of this image map, are collected together
and accessible as a collection. The collection object is referred to by this property.

Property attributes:
ReadOnly

M – Map.name (Property)

1385

Map.name (Property)
The value of the NAME="..." HTML tag attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMap.name

Objects are identified either by the NAME="..." HTML tag attribute or by the ID="..." HTML
tag attribute.

Netscape Navigator shows a marginal preference for the name property while MSIE seems slightly
better disposed towards the ID property. However, in many cases both browsers support either
technique and in some cases will locate items named with either tag as if they existed in a single
namespace.

See also: IMG.useMap

Map.target (Property)
The target window or frame to which a map applied.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMap.target

HTML syntax: <MAP TARGET="...">

This yields the value of the TARGET attribute in an <A>, <AREA> or <MAP> tag.

You can assign a new value to this property so that the URL will be directed to a different window
or frame.

JavaScript Programmer's Reference

1386

Here are some example target values:

❑ _parent

❑ _self

❑ _top

❑ _blank

❑ Window name

❑ Frame name

See also:
<MAP TARGET="...">, Anchor.target, BASE.target,
Form.target, Url.target

MARQUEE object (Object/HTML)
An object that represents a <MARQUEE> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE myMARQUEE = myDocument.all.anElementID

IE myMARQUEE = myDocument.all.tags("MARQUEE")
[anIndex]

IE myMARQUEE = myDocument.all[aName]

- myMARQUEE =
myDocument.getElementById(anElementID)

- myMARQUEE = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myMARQUEE = myDocument.getElementsByTagName
("MARQUEE")[anIndex]

HTML syntax: <MARQUEE>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
accessKey, behavior, bgColor, dataFld, dataFormatAs,
dataSrc, direction, height, hspace, loop,
scrollAmount, scrollDelay, tabIndex, trueSpeed,
vspace, width

Object methods: start(), stop()

Event handlers:
onAfterUpdate, onBlur, onBounce, onClick, onDblClick,
onDragStart, onFilterChange, onFinish, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onResize, onRowEnter, onRowExit, onScroll,
onSelectStart, onStart

M – MARQUEE object (Object/HTML)

1387

The MARQUEE object is only supported by MSIE and provides means of quickly and easily
generating a moving ticker display inside the window area. This can be accomplished with
Netscape using layers and some interval timed JavaScript function calls to scroll the layer.

The MSIE MARQUEE object is a little more aware of Font Metrics than your average script access can
achieve. This means making the MARQUEE bounce back and forth when the text hits the edge of the
extent rectangle is a lot easier to accomplish in MSIE than in Netscape.

See also: Element object, Input.accessKey

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey - 3.0 + - 4.0 + - - - -
behaviour - 3.0 + - 4.0 + - - - -
bgColor - 3.0 + - 4.0 + - - - -
dataFld - 3.0 + - 4.0 + - - - -
dataFormatAs - 3.0 + - 4.0 + - - - -
dataSrc - 3.0 + - 4.0 + - - - -
direction - 3.0 + - 4.0 + - - - -
height - 3.0 + - 4.0 + - - - -
hspace - 3.0 + - 4.0 + - - - -
loop - 3.0 + - 4.0 + - - - -
scrollAmount - 3.0 + - 4.0 + - - - -
scrollDelay - 3.0 + - 4.0 + - - - -
tabIndex - 3.0 + - 4.0 + - - - -
trueSpeed - 3.0 + - 4.0 + - - - -
vspace - 3.0 + - 4.0 + - - - -
width - 3.0 + - 4.0 + - - - -

Method JavaScript JScript N IE Opera DOM HTML Notes

start() - 3.0 + - 4.0 + - - - -
stop() - 3.0 + - 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onBounce - 3.0 + - 4.0 + - - - -
onClick 1.0 + 3.0 + 4.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -

Table continued on following page

JavaScript Programmer's Reference

1388

Event name JavaScript JScript N IE Opera DOM HTML Notes

onFilterChange - 3.0 + - 4.0 + - - - -
onFinish - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 3.0 + 4.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onScroll - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -
onStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

MARQUEE.behaviour (Property)
A attribute that controls the motion of the text in the MARQUEE object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myMARQUEE.behavior

The animated effect in the MARQUEE is controlled by this property. The following values are
appropriate:

❑ alternate

❑ scroll

❑ slide

The alternate behavior marches left and then on bouncing into a boundary, marches right until it
bounces again.

M – MARQUEE.bgColor (Property)

1389

The scroll and slide behaviors use the direction attribute to control the direction of movement.

When set to scroll, the MARQUEE starts empty, the text scrolls in, traverses the MARQUEE and scrolls
out again. A complete cycle begins and ends with an empty MARQUEE.

When set to slide, the MARQUEE again starts empty, the text scrolls in until it hits a boundary. Then
it is simply zapped out and does not scroll away. Again, a complete cycle begins and ends with an
empty MARQUEE.

MARQUEE.bgColor (Property)
The background color for the area occupied by the MARQUEE object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myMARQUEE.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact, it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: color names, color value

MARQUEE.direction (Property)
The direction of movement of the scrolling text in the MARQUEE.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myMARQUEE.direction

A MARQUEE object can scroll in all four cardinal directions. Leftward scrolling is most likely the
appropriate setting for textual content written in a Roman script that is read from left to right.
Diagonal scrolling is not possible with a MARQUEE but could be implemented using layers in
Netscape 4 or an IFRAME in MSIE and Netscape 6.0.

The following values are appropriate for this property:

❑ left

❑ right

❑ down

❑ up

JavaScript Programmer's Reference

1390

MARQUEE.height (Property)
The height of the area allocated to the MARQUEE object as it appears onscreen.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.height

The MARQUEE space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

MARQUEE.hspace (Property)
The height of the area allocated to the MARQUEE object as it appears onscreen.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.hspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The hspace property controls the margin to the left and right of the object.

MARQUEE.loop (Property)
A count of the number of times the MARQUEE text is to scroll.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.loop

You can define the number of cycles the MARQUEE animation will cycle round before stopping.
When it stops, the text will remain visible.

Continuous looping is specified by setting this property to a value of -1.

M – MARQUEE.scrollAmount (Property)

1391

MARQUEE.scrollAmount (Property)
The offset of the text between one scroll cycle and the next.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
Number primitive

JavaScript syntax: IE myMARQUEE.scrollAmount

This value is specified in pixels, and controls the distance that the text appears to move on each
scroll cycle of the MARQUEE. The larger the number, the faster the scrolling appears to travel.

MARQUEE.scrollDelay (Property)
The time-delay in milliseconds between each scroll update.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.scrollDelay

A short delay and small scroll distance will consume more CPU time but appear to be a smoother scroll.

MARQUEE.start() (Method)
A command method to start the MARQUEE scrolling.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myMARQUEE.start()

You can stop and start the MARQUEE animation whenever you want. Maybe it is appropriate to
scroll a MARQUEE when a mouse is positioned over an object. You can call this method as part of a
MouseOver event handler. Then, you can call its complementary MARQUEE.stop() method on the
MoveMouseOut event handler.

MARQUEE.stop() (Method)
A command method to stop the MARQUEE from scrolling.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myMARQUEE.stop()

Refer to:
MARQUEE.start()

JavaScript Programmer's Reference

1392

MARQUEE.trueSpeed (Property)
A switch attribute that controls whether the browser should honor very small scroll delay times.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.trueSpeed

Extremely small delay times may cause the MARQUEE to scroll more than once during each screen
retrace interval. It is wasteful of the CPU resources to scroll the MARQUEE faster than the viewer can
perceive the changes. A longer delay and greater scroll distance is more efficient although it may
appear jerky for extreme settings.

MARQUEE.vspace (Property)
The size of a vertical margin above and below the MARQUEE with respect to any adjacent objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.vspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The vspace property controls the margin at the top and bottom of the object.

MARQUEE.width (Property)
The width of the area allocated to the MARQUEE object as it appears onscreen.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myMARQUEE.width

The MARQUEE space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

M – Mask() (Filter/visual)

1393

Mask() (Filter/visual)
A visual filter for creating a transparent mask.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Filter – Mask()

MaskFilter() (Filter/visual)
Uses the transparent color pixels of an object as a mask.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – MaskFilter()

Math object (Object/core)
A globally available object containing a library of mathematical functions.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

JavaScript syntax: - Math

Object properties: constructor

Class constants: E, LN10, LN2, LOG10E, LOG2E, PI, SQRT1_2, SQRT2

Functions:
abs(), acos(), asin(), atan(), atan2(), ceil(),
cos(), exp(), floor(), log(), max(), min(), pow(),
random(), round(), sin(), sqrt(), tan()

The Math object is merely a single object owned by the Global Object and which cannot be
instantiated. It has some named properties, some of which are functions while others are constants.

The prototype for the Math prototype object is the Object prototype object.

JavaScript Programmer's Reference

1394

Although it cannot be instantiated, it does have a constructor which in turn has a prototype property. By
adding functions to that prototype, you can extend the capabilities of the Math object. Several examples
are provided in nearby topics to illustrate the addition of extra trigonometric and hyperbolic functions.

Warnings:
❑ The Math object provides a collection of static constant values by way of properties belonging to the

integral Math object. Because the mathematical mechanisms of any application tend to be provided
by the operating system, you should find that between different browsers on any particular
platform, the values that these constants yield will be very consistent.

❑ The ECMA standard lays down strict values for these properties and in general, the browser
manufacturers try to comply – however, there is always the possibility that an implementation may
use a non-compliant calculation.

❑ However, it may not be quite so reliable across platforms. You might enumerate one of these
constants as you are authoring and then hard code that value into your script. When that script is
executed on another platform, even in the same browser, the internal mathematics support may
yield a different value.

❑ You should always refer to the static constants using their symbolic names rather than hard code a
possibly platform-dependent value into your script.

❑ Note for the trigonometric functions in general that certain implied identities cannot be assumed in
JavaScript. For example:

❑ Math.sin(Math.PI/2) may not yield exactly 1

❑ Math.cos(Math.PI) may not return precisely zero

❑ Math.acos(0) may not return the same value as Math.PI

❑ Math.SQRT1_2 may not be exactly equal to the reciprocal of Math.SQRT2

See also: Constant, Exponent-log function, Global object, Integer arithmetic, Java to
JavaScript values, Native object, Object constant, Object object, Range error,
Trigonometric function, Type conversion, unwatch(), watch()

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.0 + 1.0 + 2.0 + 3.02 + - - - -

Cross-references:
ECMA 262 edition 2 – section – 10.1.5

ECMA 262 edition 2 – section – 15.1.4.1

ECMA 262 edition 2 – section – 15.8

ECMA 262 edition 3 – section – 10.1.5

ECMA 262 edition 3 – section – 15.1.5.1

ECMA 262 edition 3 – section – 15.8

M – Math.abs() (Function)

1395

Math.abs() (Function)
The absolute value of a positive or negative number.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.abs(aValue)

Argument list: aValue Some meaningful numeric value

This function returns the absolute value of the argument.

The absolute value of a number is its distance from zero.

In general, the result has the same magnitude as the argument but always has a positive sign.

Special boundary conditions that affect the results are:

Argument Result

0 0

NaN NaN

negative infinity positive infinity

On some implementations, the absolute value of the most negative integer number may not be
representable in the positive range.

This is not the same as Number.MIN_VALUE and Number.MAX_VALUE. They describe the largest
and smallest possible positive floating point values.

Warnings:
❑ It is possible that due to the underlying implementation of the math library, the absolute value of the

most negative number may not be representable and it may yield NaN instead.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
for(myEnum = 1.5; myEnum > -2; myEnum -= 0.1)

JavaScript Programmer's Reference

1396

{
 document.write(myEnum + " " + Math.abs(myEnum) + "
");
}
</SCRIPT>
</BODY>
</HTML>

See also: Integer arithmetic, Integer-value-remainder, Math object,
Math.ceil(), Math.floor(), Type conversion

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.1

ECMA 262 edition 3 – section – 15.8.2.1

Math.acos() (Function)
The inverse cosine of the passed-in value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.acos(aValue)

Argument list: aValue Some meaningful numeric value

This function returns the arc-cosine of the argument.

Special boundary conditions that affect the results are:

Argument Result

1 0

greater than 1 NaN

less than -1 NaN

NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

The result of this method is the arc-cosine of the passed-in value. The result is expressed in radians
and ranges from 0 to pi.

M – Math.asin() (Function)

1397

Warnings:
❑ Note that Math.acos(0) may not return the same value as Math.PI.

See also: Math object, Math.asin(), Math.atan(), Math.atan2(),
Math.cos(), Math.PI, Math.sin(), Math.tan(),
Trigonometric function

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.2

ECMA 262 edition 3 – section – 15.8.2.2

Math.asin() (Function)
The inverse sine of the passed-in value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.asin(aValue)

Argument list: aValue Some meaningful numeric value

This function returns the arc-sine of the argument.

Special boundary conditions that affect the results are:

Argument Result

0 0
greater than 1 NaN
less than -1 NaN
NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

The result of this method is the arc-sine of the passed-in value. The result is expressed in radians
and ranges from -pi/2 to +pi/2.

See also: Math object, Math.acos(), Math.atan(), Math.atan2(),
Math.cos(), Math.sin(), Math.tan(), Trigonometric
function

JavaScript Programmer's Reference

1398

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.3

ECMA 262 edition 3 – section – 15.8.2.3

Math.atan() (Function)
The inverse tangent of the passed-in value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.atan(aValue)

Argument list: aValue Some meaningful numeric value

This function returns the arc-tangent of the argument.

Special boundary conditions that affect the results are:

Argument Result

0 0

minus infinity -pi/2

NaN NaN

plus infinity +pi/2

The exact value yielded by this function may vary slightly from implementation to implementation
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

The result of this method is the arc-tangent of the passed-in value. The result is expressed in
radians and ranges from -pi/2 to +pi/2.

See also: Math object, Math.acos(), Math.asin(), Math.atan2(),
Math.cos(), Math.sin(), Math.tan(), Trigonometric
function

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.4

ECMA 262 edition 3 – section – 15.8.2.4

M – Math.atan2() (Function)

1399

Math.atan2() (Function)
The inverse tangent of the slope of the two arguments.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.atan2(aValue1, aValue2)

aValue1 Some meaningful numeric value
Argument list:

aValue2 Some meaningful numeric value

This function computes the quotient of arg2/arg1 and then returns the arc-tangent of the result. It
takes into account which quadrant the value falls into according to the signs of the two arguments.

It is provided in several languages other than JavaScript for those situations where very large
numbers are involved.

Traditionally, for this function, the Y argument is placed first and the X argument second.

Special boundary conditions that affect the results are:

Argument1 Argument2 Result

+infinity +infinity +pi/4

+infinity -infinity +3pi/4

+infinity non zero +pi/2

-infinity +infinity -pi/4

-infinity -infinity -3pi/4

-infinity non zero -pi/2

0 negative pi * sign of Argument1

0 positive 0

< 0 -infinity -pi

< 0 0 -pi/2

> 0 -infinity +pi

> 0 0 +pi/2

Any value NaN NaN

NaN Any value NaN

non zero +infinity 0

JavaScript Programmer's Reference

1400

The exact value yielded by this function may vary slightly from implementation to implementation
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

The result of this method is the arc-tangent of the slope of the two arguments. The result is
expressed in radians and ranges from -pi to +pi.

See also: Math object, Math.acos(), Math.asin(), Math.atan(),
Math.cos(), Math.sin(), Math.tan(), Trigonometric
function

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.5

ECMA 262 edition 3 – section – 15.8.2.5

Math.ceil() (Function)
The value rounded up to the next higher integer value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.ceil(aValue)

Argument list: aValue A meaningful numeric value

According to the ECMA standard, this function returns the smallest number value that is not less
than the argument and is equal to a mathematical integer. If the argument is already an integer, the
argument itself is returned.

Special boundary conditions that affect the results are:

Argument Result

+infinity +infinity

-1 < argument > 0 0

-infinity -infinity

0 0

NaN NaN

M – Math.constructor (Property)

1401

Note that if the value is negative, the magnitude decreases while it increases for positive numbers.
The ceil of 25.4 is 26 whereas the ceil of -25.4 is -25.

The result is the input value rounded up to the next higher integer value.

Warnings:
❑ Other reference sources on this function differ as to its functionality. Some indicate that it rounds up

to an integer, others that it rounds down. This suggests that some implementations may behave
differently since they may use the available documentation to design their interpreter. The ECMA
standard is probably the most reliable specification long term since manufacturers will attempt to
build ECMA compliance into their implementations as a selling point.

❑ Recent browsers from Microsoft, Netscape and Opera are all compliant with the ECMA standard on
this point.

❑ If you are uncertain, you should check the functionality by running some tests. For example, run the
test for negative and positive values. Checking a few boundary conditions won't hurt either.

See also: Integer, Integer arithmetic, Integer-value-remainder, Math object,
Math.abs(), Math.floor(), Math.round(), Number(),
Remainder (%), Remainder then assign (%=), Type conversion

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.6

ECMA 262 edition 3 – section – 15.8.2.6

Math.constructor (Property)
A means of creating a new Math object.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Math object

JavaScript syntax: - Math.constructor

Both Netscape and MSIE support a constructor property for the Math object. It is unlikely you
would ever want to construct a copy of the Math object.

However, this is useful not for the purpose of cloning the Math object but so that you can extend it
by adding your own properties and methods to its prototype.

This technique is demonstrated in the example which appears to add a pythag() function to the
Math object although it is really added to the Object() object prototype.

JavaScript Programmer's Reference

1402

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the capabilities of the Math object
function pythag(aValue1, aValue2)
{
 return Math.sqrt((aValue1*aValue1) + (aValue2*aValue2));
}
// Register the new function
Math.constructor.prototype.pythag = pythag;
// Test the Math.pythag() method
document.write(Math.pythag(3, 4))
document.write("
")
</SCRIPT>
</BODY>
</HTML>

Math.cos() (Function)
The cosine of the input argument.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.cos(aValue)

Argument list: aValue An angle measured in radians

This function returns the cosine of the argument. The argument must be expressed in radians.

Special boundary conditions that affect the results are:

Argument Result

+infinity NaN

-infinity NaN

0 1

NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation
due to differences in the underlying precision of the implementations math routines and the
specific algorithm selected to evaluate this function.

M – Math.cosec() (Simulated functionality)

1403

Warnings:
❑ Note that Math.cos(Math.PI) may not return precisely zero.

See also: Math object, Math.acos(), Math.asin(), Math.atan(), Math.atan2(),
Math.PI, Math.sin(), Math.tan(), Trigonometric function

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.7

ECMA 262 edition 3 – section – 15.8.2.7

Math.cosec() (Simulated functionality)
The cosec() function is not available in JavaScript but can be simulated to aid in the porting of
existing code.

The example demonstrates how to add the cosec() method to the Math object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Add the cosec function to the Math object
function cosec(aValue)
{
 return 1/Math.sin(aValue);
}

// Register the new function
Math.constructor.prototype.cosec = cosec;

// Test the Math.cosec() method
document.write(Math.cosec(2));
document.write("
")
</SCRIPT>
</BODY>
</HTML>

See also: Math.cot(), Math.sec()

JavaScript Programmer's Reference

1404

Math.cosh() (Simulated functionality)
The cosh() function is not available in JavaScript but can be simulated to aid in the porting of
existing code.

The example demonstrates how to add the cosh() method to the Math object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Add the cosh function to the Math object
function cosh(aValue)
{
 var myTerm1 = Math.pow(Math.E, aValue);
 var myTerm2 = Math.pow(Math.E, -aValue);
 return (myTerm1+myTerm2)/2;
}

// Register the new function
Math.constructor.prototype.cosh = cosh;

// Test the Math.cosh() method
document.write(Math.cosh(2));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

Math.cot() (Simulated functionality)
The cot() function is not available in JavaScript but can be simulated to aid in the porting of
existing code.

The example demonstrates how to add the cot() method to the Math object to provide the
capability to calculate cotangents.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Add the cot function to the Math object
function cot(aValue)
{
 return 1/Math.tan(aValue);
}

M – Math.E (Constant/static)

1405

// Register the new function
Math.constructor.prototype.cot = cot;

// Test the Math.cot() method
document.write(Math.cot(2));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

See also: Math.cosec(), Math.sec()

Math.E (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape Navigator – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.E

The numeric constant value for e, the base of natural logarithms.

The resulting value is approximately 2.718281828459045 (to 15 d.p.).

Warnings:
❑ The word approximately is used when describing the result, because the mathematical accuracy of

JavaScript implementations leaves something to be desired and there are some strange artifacts in
some of the calculations.

See also: Arithmetic constant, Exponent-log function, Floating point
constant, Math object, Math.exp()

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.1

ECMA 262 edition 3 – section – 15.8.1.1

JavaScript Programmer's Reference

1406

Math.exp() (Function)
The exponential function of the passed-in argument.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.exp(aValue)

Argument list: aValue A meaningful numeric value

This function returns the exponential function of the argument (e raised to the power of the
argument, where e is the base of the natural logarithms).

Special boundary conditions that affect the results are:

Argument Result

+infinity +infinity

-infinity 0

0 1

NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation,
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

See also: Exponent-log function, Math object, Math.E, Math.LN10,
Math.LN2, Math.log(), Math.LOG10E, Math.LOG2E

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.8

ECMA 262 edition 3 – section – 15.8.2.8

M – Math.floor() (Function)

1407

Math.floor() (Function)
The value is rounded down to the next integer.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape Navigator – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.floor(aValue)

Argument list: aValue A meaningful numeric value

Returns the greatest number value that is not greater than the argument and is equal to a
mathematical integer. If the argument is already an integer, the argument itself is returned.

Special boundary conditions that affect the results are:

Argument Result

+infinity +infinity

-infinity -infinity

0 0

0 < argument > 1 0

NaN NaN

Note that if the value is negative, the magnitude increases while it decreases for positive numbers.
The floor of 25.4 is 25 whereas the floor of -25.4 is -26.

The result is the input value rounded down to the next integer.

Warnings:
❑ Other reference sources on this function differ as to its functionality. Some indicate that it rounds up

to an integer, others that it rounds down. However, all implementations appear to conform to the
ECMA specified behavior.

See also: Integer, Integer arithmetic, Integer-value-remainder, Math object,
Math.abs(), Math.ceil(), Math.round(), Number(),
Remainder (%), Remainder then assign (%=), Type conversion

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.9

ECMA 262 edition 3 – section – 15.8.2.9

JavaScript Programmer's Reference

1408

Math.LN10 (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.LN10

This constant provides the numeric value for the natural logarithm of 10.

The resulting value value is approximately 2.302585092994046 (to 15 d.p.)

Warnings:
❑ The word approximately is used when describing the result, because the mathematical accuracy of

JavaScript implementations leaves something to be desired and there are some strange artifacts in
some of the calculations.

See also: Arithmetic constant, Exponent-log function, Floating point
constant, Math object, Math.exp()

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.2

ECMA 262 edition 3 – section – 15.8.1.2

Math.LN2 (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

M – Math.log() (Function)

1409

Property/method value type: Number primitive

JavaScript syntax: - Math.LN2

This constant provides the numeric value of the natural logarithm of 2.

The resulting value returned is approximately 0.693147180559945 (to 15 d.p.)

See also: Arithmetic constant, Exponent-log function, Floating point
constant, Math object, Math.exp()

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.3

ECMA 262 edition 3 – section – 15.8.1.3

Math.log() (Function)
The natural logarithm of the passed-in value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.log(aValue)

Argument list: aValue A meaningful numeric value

This function returns the natural (base e) logarithm of the input argument.

This function is the inverse of the Math.exp() function.

Special boundary conditions that affect the results are:

Argument Result

+infinity +infinity
0 -infinity
1 0
< 0 NaN
NaN NaN

JavaScript Programmer's Reference

1410

The exact value yielded by this function may vary slightly from implementation to implementation,
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

See also: Exponent-log function, Math object, Math.exp()

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.10

ECMA 262 edition 3 – section – 15.8.2.10

Math.LOG10E (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera browser – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.LOG10E

This constant provides the numeric value for the base-10 logarithm of e, the base of natural logarithms.

Note that the value of Math.LOG10E is approximately the reciprocal of the value of Math.LN10.

The result returned is approximately 0.434294481903252 (to 15 d.p.)

Warnings:
❑ The word approximately is used when describing the result, because the mathematical accuracy of

JavaScript implementations leaves something to be desired and there are some strange artifacts in
some of the calculations.

See also: Arithmetic constant, Exponent-log function, Floating point
constant, Math object, Math.exp()

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.5

ECMA 262 edition 3 – section – 15.8.1.5

M – Math.LOG2E (Constant/static)

1411

Math.LOG2E (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.LOG2E

This constant provides the numeric value for the base-2 logarithm of e, the base of natural logarithms.

By inspection, the resulting value returned is 1.4426950408889634 although this may vary from
platform to platform.

Warnings:
❑ Note that the value of Math.LOG2E is approximately the reciprocal of the value of Math.LN2. The

word approximately is used here, because the mathematical accuracy of JavaScript implementations
leaves something to be desired and there are some strange artifacts in some of the calculations.

See also: Arithmetic constant, Exponent-log function, Floating point
constant, Math object, Math.exp()

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.4

ECMA 262 edition 3 – section – 15.8.1.4

Math.max() (Function)
The maximum of the two or more input arguments is returned.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript Programmer's Reference

1412

Property/method value type: Number primitive

JavaScript syntax: - Math.max(aValue1, aValue2, ...)

aValue1 Some meaningful numeric valueArgument list:
aValue2 Some meaningful numeric value

Returns the larger of the two or more arguments.

Special boundary conditions that affect the results are:

Argument1 Argument2 Result

Any value NaN NaN

Any value The same value The value

larger smaller Argument1

NaN Any value NaN

smaller larger Argument2

See also: Math object

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.11

ECMA 262 edition 3 – section – 15.8.2.11

Math.min() (Function)
The minimum of the two or more input arguments is returned.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.min(aValue1, aValue2, ...)

aValue1 Some meaningful numeric valueArgument list:
aValue2 Some meaningful numeric value

This function returns the smaller of the two or more arguments.

M – Math.PI (Constant/static)

1413

Special boundary conditions that affect the results are:

Argument1 Argument2 Result

Any value NaN NaN

Any value The same value The value

larger smaller Argument2

NaN Any value NaN

smaller larger Argument1

See also: Math object

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.12

ECMA 262 edition 3 – section – 15.8.2.12

Math.PI (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.PI

This constant provides the numeric value for pi, the ratio of circumference of a circle to its diameter.

The resulting value returned is approximately 3.141592653589793 (to 15 d.p.)

Warnings:
❑ Note that Math.sin(Math.PI/2) may not yield exactly 1.

❑ Note that Math.cos(Math.PI) may not return precisely zero.

❑ Note that Math.acos(0) may not return the same value as Math.PI.

See also: Arithmetic constant, Floating point constant, Math object,
Math.acos(), Math.cos(), Math.sin()

JavaScript Programmer's Reference

1414

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.6

ECMA 262 edition 3 – section – 15.8.1.6

Math.pow() (Function)
The result of raising a value to the power of another value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.pow(aValue1, aValue2)

aValue1 Some meaningful numeric valueArgument list:
aValue2 Some meaningful numeric value

This function returns the result of raising the first argument to the power of the second.

Special boundary conditions that affect the results are:

Argument1 Argument2 Result

+0 < 0 +infinity

+infinity < 0 0

+infinity > 0 +infinity

-0 < 0 and is an even integer +infinity

-0 < 0 and is an odd integer -infinity

-infinity < 0 0

-infinity > 0 and is an even integer +infinity

-infinity > 0 and is an odd integer -infinity

0 > 0 0

1 Any value 1

< 0 and finite finite but non integer NaN

abs(arg) < 1 +infinity 0

Table continued on following page

M – Math.pow() (Function)

1415

Argument1 Argument2 Result

abs(arg) < 1 -infinity +infinity

abs(arg) == 1 +infinity NaN

abs(arg) == 1 -infinity NaN

abs(arg) > 1 +infinity +infinity

abs(arg) > 1 -infinity 0

Any value 0 1

Any value NaN NaN

NaN non zero NaN

The exact value yielded by this function may vary slightly from implementation to implementation,
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

The example shows a simple binary number converter which exhibits some instability in the most
significant bit on some platforms.

Warnings:
❑ There are many boundary conditions that make this function hard to understand and therefore hard

to diagnose if it goes wrong. Check both of the input arguments in case of doubt. They may have
evaluated out to a strange boundary condition that yields unexpected results.

❑ Using MSIE on the Macintosh exhibits a instability when you raise 2 to the power 31 and test the
resulting value in a bitwise expression. Netscape works correctly in this circumstance. This is
demonstrated in the example.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
document.write(-2 + " – " + binary32(-2) + "
");
document.write(-1 + " – " + binary32(-1) + "
");
document.write(0 + " – " + binary32(0) + "
");
document.write(1 + " – " + binary32(1) + "
");
document.write(2 + " – " + binary32(2) + "
");
document.write(3 + " – " + binary32(3) + "
");
function binary32(aValue)
{
 myArray = new Array(32);

 for(myEnum=0; myEnum<32; myEnum++)
 {
 if(aValue & Math.pow(2, myEnum))
 {
 myArray[31-myEnum] = "1";
 }
 else
 {

JavaScript Programmer's Reference

1416

 myArray[31-myEnum] = "0";
 }
 }
 return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

See also: Math object, Math.sqrt(), Power function, Zero value

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.13

ECMA 262 edition 3 – section – 15.8.2.13

Math.random() (Function)
Generates a pseudo-random value.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.02
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.random()

The Math.random() function generates and returns a pseudo-random value; a positive value
between 0 and 1.

The resulting value is chosen randomly (or pseudo randomly) depending on the implementation.

In any case, regardless of how it is selected, it should yield a uniform distribution over the range of
possible values.

The exact value yielded by this function may vary slightly from implementation to implementation,
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to generate the random numbers.

Some implementations may provide a way to seed the random number sequence although the
ECMAScript standard does not describe this capability.

Some implementations provide predictable series of random numbers that always start at the same
seed point.

The algorithm and strategy is implementation dependent and the standard offers no
recommendations as to which is best.

M – Math.round() (Function)

1417

Warnings:
❑ Although this is noted as being available in Netscape 2.02, that only applies to the Unix

platform. It wasn't widely available until JavaScript 1.1 was supported in Netscape 3.0 on
the remaining platforms.

See also: Math object, Pseudo-random numbers

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.14

ECMA 262 edition 3 – section – 15.8.2.14

Math.round() (Function)
Rounds to the nearest integer value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape Navigator – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.round(aValue)

Argument list: aValue A meaningful numeric value

This function returns the value that is closest to the argument and is a mathematical integer. It
rounds the input value to the nearest integer value either rounding up or down as necessary.

If the input value is equi-distant from two integer values, the result is rounded up towards positive
infinity. If the argument is already an integer, the argument itself is returned.

Special boundary conditions that affect the results are:

Argument Result

+infinity +infinity
-0.5 < arg < 0.5 0
-infinity -infinity
0 0
NaN NaN

Note that Math.round(3.5) returns the value 4 while Math.round(-3.5) returns the value 3.

See also: Integer arithmetic, Integer-value-remainder, Math object,
Math.ceil(), Math.floor(), Number(), Type conversion

JavaScript Programmer's Reference

1418

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.15

ECMA 262 edition 3 – section – 15.8.2.15

Math.sec() (Simulated functionality)
The sec() function is not available in JavaScript but can be simulated to aid in the porting of
existing code.

The example demonstrates how to add the sec() method to the Math object to provide the
capability to calculate secants.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Add the sec function to the Math object
function sec(aValue)
{
 return 1/Math.cos(aValue);
}

// Register the new function
Math.constructor.prototype.sec = sec;

// Test the Math.sec() method
document.write(Math.sec(2));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

See also: Math.cosec(), Math.cot()

Math.sin() (Function)
The sine of the passed in value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.sin(aValue)

Argument list: aValue An angle measured in radians

M – Math.sinh() (Simulated functionality)

1419

This function returns the sine of the input argument. The argument value must be expressed in radians.

Special boundary conditions that affect the results are:

Argument Result

+infinity NaN

-infinity NaN

0 0

NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation,
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

Warnings:
❑ Note that Math.sin(Math.PI/2) may not yield exactly 1.

See also: Math object, Math.acos(), Math.asin(), Math.atan(),
Math.atan2(), Math.cos(), Math.PI, Math.tan(),
Trigonometric function

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.16

ECMA 262 edition 3 – section – 15.8.2.16

Math.sinh() (Simulated functionality)
The sinh() function is not available in JavaScript but can be simulated to aid in the porting of
existing code.

The example demonstrates how to add the sinh() method to the Math object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Add the sinh function to the Math object
function sinh(aValue)
{
 var myTerm1 = Math.pow(Math.E, aValue);
 var myTerm2 = Math.pow(Math.E, -aValue);
 return (myTerm1-myTerm2)/2;
}

JavaScript Programmer's Reference

1420

// Register the new function
Math.constructor.prototype.sinh = sinh;

// Test the Math.sinh() method
document.write(Math.sinh(2));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

Math.sqrt() (Function)
The square root of the input argument.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.sqrt(aValue)

Argument list: aValue A meaningful numeric value

This function computes the square root of the input argument.

Special boundary conditions that affect the results are:

Argument Result

+infinity +infinity

0 0

< 0 NaN

NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation,
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

See also: Math object, Math.pow()

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.17

ECMA 262 edition 3 – section – 15.8.2.17

M – Math.SQRT1_2 (Constant/static)

1421

Math.SQRT1_2 (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.SQRT1_2

This constant returns the numeric value of the square root of 0.5.

The resulting value returned is approximately 0.707106781186548 (to 15.d.p.)

Warnings:
❑ Note that the value of Math.SQRT1_2 is approximately the reciprocal of the value of

Math.SQRT2. The word approximately is used here, because the mathematical accuracy of
JavaScript implementations leaves something to be desired and there are some strange artifacts in
some of the calculations.

See also: Arithmetic constant, Floating point constant, Math object,
Math.SQRT2

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.7

ECMA 262 edition 3 – section – 15.8.1.7

Math.SQRT2 (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript Programmer's Reference

1422

Property/method value type: Number primitive

JavaScript syntax: - Math.SQRT2

This constant provides the value of the square root of 2.

The resulting value returned is approximately 1.414213562373095 (to 15 d.p.)

Warnings:
❑ Note that Math.SQRT1_2 may not be exactly equal to the reciprocal of Math.SQRT2.

See also: Arithmetic constant, Floating point constant, Math object,
Math.SQRT1_2

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.8.1.8

ECMA 262 edition 3 – section – 15.8.1.8

Math.tan() (Function)
The tangent of the input argument.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Math.tan(aValue)

Argument list: aValue An angle measured in radians

This function returns the tangent of the input argument. The argument value must be expressed
in radians.

M – Mathematics (Definition)

1423

Special boundary conditions that affect the results are:

Argument Result

+infinity NaN

-infinity NaN

0 0

NaN NaN

The exact value yielded by this function may vary slightly from implementation to implementation
due to differences in the underlying precision of the implementations, math routines, and the
specific algorithm selected to evaluate this function.

See also: Math object, Math.acos(), Math.asin(), Math.atan(),
Math.atan2(), Math.cos(), Math.sin(), Trigonometric
function

Cross-references:
ECMA 262 edition 2 – section – 15.8.2.18

ECMA 262 edition 3 – section – 15.8.2.18

Mathematics (Definition)
Mathematical support.

The following table summarizes the support for mathematical computation in JavaScript:

Function Object Type Description

abs() Math Function Absolute value of a number
acos() Math Function Inverse cosine
asin() Math Function Inverse sine
atan() Math Function Inverse tangent
atan2() Math Function Inverse tangent of a slope
ceil() Math Function Round up
cos() Math Function Cosine of an angle
E Math Constant Exponential constant
exp() Math Function Exponent function
floor() Math Function Round down
isFinite() Global Function Test for infinity
isNaN() Global Function Test for Not-a-Number
LN10 Math Constant Natural log of 10
LN2 Math Constant Natural log of 2

Table continued on following page

JavaScript Programmer's Reference

1424

Function Object Type Description

log() Math Function Natural log of a number
LOG10E Math Constant Log to the base 10 of e
LOG2E Math Constant Log to the base 2 of e
max() Math Function Maximum of two values
MAX_VALUE Number Constant Maximum numeric value
min() Math Function Minimum of two values
MIN_VALUE Number Constant Minimum numeric value
NaN Number Constant Not a number
NEGATIVE_INFI
NITY

Number Constant Negative infinity

parseFloat() Global Function Floating point parser
parseInt() Global Function Integer parser
PI Math Constant The value of PI
POSITIVE_INFI
NITY

Number Constant Positive infinity

pow() Math Function A value rased to the power of another
random() Math Function A random value
round() Math Function Truncating round
sin() Math Function Sine of an angle
sqrt() Math Function Square root
SQRT1_2 Math Constant Square root of one half
SQRT2 Math Constant Square root of two
tan() Math Function Tangent of an angle

You should avoid the use of any of these function names as identifiers unless you are intentionally
overriding their behavior by adding function properties (methods) to a prototype.

See also: Arithmetic operator, Error, Integer arithmetic, Integer-value-remainder,
Operator, Power function, Range error, Trigonometric function

Matrix() (Filter/visual)
A means of applying sophisticated rotation, translate, and scaling effects to an image using matrix
transformation.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Matrix()

M – MAYSCRIPT (HTML Tag Attribute)

1425

MAYSCRIPT (HTML Tag Attribute)
An attribute on the <APPLET> tag to allow Java to access the JavaScript object space.

This is an HTML tag attribute that can significantly affect the success or failure to run applets and
plugins properly.

The MAYSCRIPT attribute must be present in the <APPLET> tag if you have applets that expect to
communicate with JavaScript. This is a way of allowing applets to script under the behest of the
web page author who may not be the person who programmed the applet. This way, the author has
to know and expect the applet to connect to JavaScript before the applet is able to do so.

Without this attribute, an applet is not able to access the JSObject class and communicate with
the JavaScript environment.

The MAYSCRIPT HTML tag attribute is not reflected into the JavaScript environment.

See also: JavaScript embedded in Java, JSObject object

Measurement units (Definition)
Style position and size properties use measurement units to locate objects on the screen.

Measurement units specify the units of measure of a quantity. These are typically used for length
measurement but may also be used for time measurement in aural style sheet properties.

The units include the following:

Unit Description

A hash precedes hex color triplet values.
% A percentage of the containing element's value.
cm Absolute measure of a centimeter.
deg A value used for angular positioning of sound sources.
em A floating point value indicating a fractional portion of the length of an em-dash in

the current font.
ex A floating point value used to multiply the height of a small x in the current font.
Hz A frequency value for aural style sheets.
in Absolute measure of an inch.
kHz A frequency value for aural style sheets.
mm Absolute measure of a millimeter.
ms A value in milli-seconds (used for aural style durations).
pc Absolute measure of a pica.
pi Absolute measure of a pica (possibly a misprint in some documentation).
pt Absolute measure using a font point size.
px An integer value measured in pixels on the screen.
s A value in seconds (used for aural style durations).

Measurement units referring to a spatial distance on the page are sometimes called Length units.

JavaScript Programmer's Reference

1426

MediaList object (Object/DOM)
This object is added to DOM level 2 to support media lists in style sheets.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myMedialist = new MediaList()

DOM level 2 specifies the following properties for this object:

❑ mediaText

❑ length

DOM level 2 specifies these methods:

❑ item()

❑ deleteMedium()

❑ appendMedium()

Member (Definition)
Elements within an object.

Members of structures and unions in other languages have some analogy with methods and
properties of an object. In a procedural language you can access members of a structure by name.
So also can you access properties within an object.

A member name is an identifier.

The notation for accessing structure members in C language and property values in JavaScript is
identical:

❑ anObject.aProperty

❑ aCStruct.aMember

There is a variation in JavaScript that allows properties to be called as functions, thus:

❑ anObject.aFunctionProperty()

This notation can also denote methods that belong to an object.

See also: Method, Namespace

M – Memory allocation (Definition)

1427

Memory allocation (Definition)
The process of locating and allocating some memory to store a string or object.

See also: Reference counting, Memory management

Memory leak (Definition)
The consumption of memory that is not recoverable.

When the reference count for an object is zero, the object can be garbage collected. Also, because
there are no references to it, you have no handle by which you can reach it, so if it isn't garbage
collected, it will waste the space it occupies. When that happens, you have a memory leak.

Memory leaks typically happen in web-based JavaScript when you create and destroy a lot of
strings in a loop. Concatenating many strings together and extending one string incrementally is a
typical leak-producing technique.

Garbage collection generally only happens in web browsers when the page is refreshed.

See also: delete, Garbage collection, Memory management, Object(), Option(),
Reference counting, Variable, Window.setInterval(),
Window.setTimeout()

Cross-references:
Wrox Instant JavaScript – page – 29

Memory management (Definition)
The process of organizing and keeping track of memory allocation and de-allocation.

Memory management in compiled languages tends to be a primary concern of software developers.
Because JavaScript is interpreted and is intended for use by designers as well as developers, a great
deal of the complexity of memory management is hidden from view.

It is still possible however to design a script that will consume large amounts of memory due to
what is called a memory leak.

A memory leak is when you allocate some storage and you don't subsequently relinquish it and
make it available to the system again.

A prime example of a memory leak in the context of a JavaScript execution is the allocation of
string data to String variables. When a new assignment is made, the old storage is unlinked from
the variable and some new storage is allocated. This means that the storage management is far
simpler because the strings tend to grow longer as new values are assigned. However, in a web
browser, the discarded string values continue to sit around in memory until the page is refreshed.
At that stage, all page local values are purged and the memory is freed.

JavaScript Programmer's Reference

1428

You cannot force a garbage collection in a JavaScript execution session in a web browser other than
by setting the location.href of the current page to itself. This has the side effect of reloading the
page from the web server, presenting the user with a possibly ugly transition artifact and
increasing net traffic. However, this may be far more preferable than consuming 50 Megabytes of
memory every few minutes in the client.

See also: Garbage collection, Memory leak

MENU object (Object/HTML)
An object that represents the contents of a <MENU> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myMENU = myDocument.all.anElementID

IE myMENU = myDocument.all.tags("MENU")[anIndex]

IE myMENU = myDocument.all[aName]

- myMENU = myDocument.getElementById(anElementID)

- myMENU =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myMENU =
myDocument.getElementsByTagName("MENU")[anIndex]

HTML syntax: <MENU> ... </MENU>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: compact

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The DOM level 1 specification refers to this as a MenuElement object.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

compact 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

M – MENU.compact (Property)

1429

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

MENU.compact (Property)
An attribute that controls the display of <MENU> items and the amount of space they require
on the screen.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myMENU.compact

Refer to:
DL.compact

menubar (Property)
An alias for the window.menubar property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Bar object

JavaScript Programmer's Reference

1430

- menubar
JavaScript syntax:

- myWindow.menubar

See also: Bar object, Window.menubar

Property attributes:
ReadOnly.

<META> (HTML Tag)
Document meta-information container.

Availability: JavaScript – 1.2
Netscape – 4.0

HTML syntax: <META HTTP-EQUIV="aName" CONTENT="aValue">

aName A pseudo header nameArgument list:
aValue A pseudo header value

The <META> tag is a way of adding information about the document to the document. This
information is never intended for display to the user but helps the browser and other server side
systems (and proxies) to manage the document.

There are many attributes to the <META> tag. We have only covered the ones that are helpful in the
context of script development here.

The items that are particularly useful to us are the HTTP_EQUIV and CONTENT attributes. These are
used to add information to the HTTP response body. The browser can see these values in the
<META> tag and interprets them as if they had been part of the HTTP header.

So:

<META HTTP-EQUIV="name" CONTENT="value">

is understood to be equivalent to an HTTP header like this:

name: value

As far as JavaScript is concerned, there are two <META> tags that are useful.

This one defines the default scripting language:

<META HTTP-EQUIV="Content-Script-Type" CONTENT="text/JavaScript">

M – META object (Object/HTML)

1431

If you have access to the server mechanism, you might be able to effect the same things by forcing
it to add this header to the response as it goes out:

Content-Script-Type: text/JavaScript

The second useful <META> tag is used to define the default style definition language. Given all the
warnings about JSS not being portable and it having been deprecated, you could use this in your
document <HEAD> block:

<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/JavaScript">

Again, if you have access to the server mechanism, you might be able to add this header to the
response as it goes out:

Content-Style-Type: text/JavaScript

Warnings:
❑ Since MSIE does not support JSS and Netscape ignores the tag variants, these <META> tags are of

limited use.

See also: <SCRIPT LANGUAGE="...">, <SCRIPT>, <STYLE TYPE="...">,
<STYLE>, JavaScript Style Sheets, META object

Cross-references:
Wrox Instant JavaScript – page – 52

META object (Object/HTML)
An object that represents the contents of a <META> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myMETA = myDocument.all.anElementID

IE myMETA = myDocument.all.tags("META")[anIndex]

IE myMETA = myDocument.all[aName]

- myMETA = myDocument.getElementById(anElementID)

- myMETA =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myMETA =
myDocument.getElementsByTagName("META")[anIndex]

HTML syntax: <META>

JavaScript Programmer's Reference

1432

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: charset, content, httpEquiv, name, scheme, url

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

These tags and their corresponding object instantiations are used to convey hidden information about
the document. This information might be useful to a search engine for example. Sometimes the server
uses the META information to control the way the pages are cached into a proxy. Likewise, a client
browser may use these values to control the local caching and expiry times of a document.

There may be several META objects associated with a document. There is no collection object that
provides an enumerable set containing only the META objects but you can traverse the
document.all[] collection and extract them in MSIE or use the collection returned by the DOM
compliant document.getElementsByTagName("META") method which is supported on
Netscape 6.0 and recent versions of MSIE. It is possible you might know the unique ID="..."
HTML tag attribute value in which case you can access the required object directly.

This is not currently supported at all in Netscape 4.0 although, because it is part of the DOM
specification, it is added to Netscape 6.0.

Warnings:
❑ Netscape 6.0 returns an undefined value for the charset property and incorrectly appends it to the

content property.

❑ For this meta tag:

❑ <META http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

❑ Netscape Navigator 6.0 returns these values:

❑ myMeta.httpEquiv is defined as "Content-Type"

❑ myMeta.content is defined as "text/html; charset=8859-1"

❑ myMeta.charset is undefined

See also: <META>, Element object, META.charset

Property JavaScript JScript N IE Opera DOM HTML Notes

charset - 3.0 + - 4.0 + - - - -
content 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
httpEquiv 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
name 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
scheme 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
url - 3.0 + - 4.0 + - - - -

M – META.charset (Property)

1433

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

META.charset (Property)
A value containing the character encoding of the content in the <META> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myMETA.charset

This would contain the character set being used by the document referred to by the HREF="..."
HTML tag attribute. For example the value "iso-8859-1" is likely to be returned but the local
variant of the browser and OS may affect the value you get.

This property might contain a value such as:

csISO5427Cyrillic

Details of other aliases can be located at the IANA registry.

See also: META object, META.content

Web-references:
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

JavaScript Programmer's Reference

1434

META.content (Property)
The contents of the VALUE="..." HTML tag attribute belonging to the <META> tag that the object
represents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMETA.content

A <META> tag will contain a name-value pair stored in two separate HTML tag attributes. The
content property relates to the value part of that name-value pair. The name property is contained
in a NAME="..." HTML tag attribute.

The web server hides additional information in header records that the client browser uses, but
which are invisible to the user and generally hard to access from JavaScript. The <META> tags
support an HTTP-EQUIV="..." HTML tag attribute which, although encoded as part of the
document source, will behave as if it were a server response header value. This is also used in
conjunction with the content property as an alternative way of forming a name-value pair.

See also: META.charset, META.httpEquiv

META.httpEquiv (Property)
The contents of the HTTP-EQUIV="..." HTML tag attribute belonging to the <META> tag that the
object represents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMETA.httpEquiv

This property will also reflect the value of the NAME-="..." HTML tag attribute if that was used
in preference to the HTTP-EQUIV="..." HTML tag attribute. However only one or the other may
be present in the <META> tag in the document source.

This property is used in conjunction with the content property to construct a name-value pair.

See also: META.content

M – META.name (Property)

1435

META.name (Property)
The name of the meta information this object describes.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMETA.name

This is the value of the NAME="..." HTML tag attribute in the <META> tag that instantiated this object.

META.scheme (Property)
A describer for the content form.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMETA.scheme

The meta data in the tags may use the same names in a name=value pair to mean something
different according to who defined the meta tag contents.

The scheme property reflects the SCHEME="..." HTML tag attribute and defines separate
namespaces so the meta information can be interpreted more correctly. It offers a context within
which the meta data values are defined.

META.url (Property)
A special MSIE supported property containing the URL associated with a <META> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myMETA.url

Occasionally, most likely in an auto-refresh META tag, you will need to specify a URL value. An auto-
refresh tag uses a client-pull technique to request a page update automatically after a timed interval.

JavaScript Programmer's Reference

1436

Metacharacter (Definition)
A special symbolic way of describing some property of a character. Used in regular expressions.

Refer to:
RegExp pattern

Method (Definition)
A method is an action that can be performed on an object.

Availability: ECMAScript edition – 2

Functions are implemented in the script interpreter objects and are accessed as methods when they
are themselves associated with an object.

Methods are owned by objects. An instance of a class can own some private methods, which it does
not share. It can also share methods it inherits from its prototype. Privately owned methods are
sometimes called instance methods.

Those functions that are associated with the Global object do not need an object prefix to be used.
The Global object is always present and available and in the scope chain and prototype
inheritance tree. Therefore the identifiers for those functions can be resolved easily, and in your
script code they appear to be like functions in C language.

When you declare functions in your script, as they are constructed they are associated with the
Global object and are also available in the same way.

Functions associated with the Math object require the Math object to be cited when they are called.
Because they are visibly associated with the object and are called via the object, they are methods.

You can specifically associate one of your own functions with an object other than the Global
object. If you do that, then you can refer to the owner object with the variable named 'this'. It is
a special variable that is like the 'self' variable in Smalltalk.

Because a function is an object and associating it with your own object is by means of a reference to
the function object, you can share function code between several objects.

So, a method is simply a function that is written in a particular way that means it works well when
associated with an object.

As soon as you start to use the 'this' variable, then it's likely your function is no longer useful as
a stand-alone function and ought to really be called as a method from that point onwards.

M – Microsoft TV (TV Set-top Box)

1437

Example code:
// Function to print an owner object property
function my_name()
{
 document.write(this.name);
}
// Create a new object instance
var myObject = new Object;
// Define the name property for the object
myObject.name = "Example";
// Associate the function so it can be used as a method,
// note that we omit the parentheses
myObject.my_name = my_name;
// Call the function via the method interface
myObject.my_name();
// Call the function normally
my_name();

See also: Accessor method, Function, function(...) ..., java.util, Member,
Property, Statement, this

Cross-references:
ECMA 262 edition 2 – section – 4.3.3

ECMA 262 edition 3 – section – 4.3.3

Wrox Instant JavaScript – page – 30

Microsoft TV (TV Set-top Box)
A digital TV set-top box.

This is a more enhanced version of the WebTV box. It may well work on analogue but is really
intended for deployment in a digital TV environment.

The triggering and standard HTML support is defined according to the ATVEF platform
specifications, which are evolving and are not yet complete but are looking to be the definitive
profile that 'Browser in a box' type of system needs to conform to.

Technically, this platform is more advanced than WebTV but it is fundamentally the same.

The JavaScript capabilities in this system would be broadly in line with what you would expect a
normal PC browser to cope with but there may be a few limitations here and there. There are also
likely to be extensions provided as new object types and possibly some additional methods added
to existing objects but these would be quite minimal.

Detecting that you are running in a set-top box may not always be easy. The user agent values may
not tell you that you have a DTV environment available and you may need to be a little more clever
and test for the existence of specific object classes. You need to do that in a way that does not cause
a run-time error of course. It's a good technique to practice to ensure your scripts run reliably
regardless of whether they are designed for use with Microsoft TV or not.

See also: ATVEF, WebTV

JavaScript Programmer's Reference

1438

MIME types (Definition)
An Internet standard way of distinguishing between different kinds of container files.

The MIME types mechanism was originally developed for sending attachments in mail messages.
Nowadays it has become a commonplace way of describing the content of a document in a way that
many non e-mail client applications can understand.

This is defined as part of the HTML 4.0 standard.

Here is a list of some relevant MIME types for JavaScript programmers:

MIMEType Description

* Wildcard match everything

/ Wild card match both parts separately

application/applefile AppleSingle file

application/AppleLink AppleLink Package

application/ArcMac PC ARChive

application/BBEdit ML Source

application/binary Application Binary Data

application/Canvas Canvas Drawing

application/cdf Channels

application/CodeWarrior Java Class File

application/Compact_Pro Compact Pro Archive

application/DeArj ARJ Archive

application/DiskCopy Apple DiskCopy Image

application/Envoy Envoy Document

application/Excel Lotus Spreadsheet r2.1

application/FileMaker_Pro FileMaker Pro Database

application/FileMaker_Pro_3 FileMaker Pro Database

application/Finder OpenType Font

application/FoxBase+ DBase Document

application/fractals Fractal Image Format

application/futuresplash FutureSplash Player

application/GraphicConverter Animated NeoChrome

application/gzip application/gzip

application/HexEdit Untyped Binary Data

application/java-archive Java Archive

application/JPEGView OS/2 Bitmap

application/mac-binhex40 Binhex File

application/MacAmp MPEG-1 Layer 3

Table continued on following page

M – MIME types (Definition)

1439

MIMEType Description

application/MacAnim_Viewer DL Animation

application/macbinary MacBinary

application/MacBooz Zoo Archive

application/MacLHA LHArc Archive

application/macwriteii MacWrite Document

application/Microsoft_Word Word for Windows Template

application/MoviePlayer DV Video

application/ms-powerpoint application/MS-PowerPoint

application/msword Word Document

application/netcdf Channels

application/octet-stream Binary Executable

application/oda ODA Document

application/PageMaker PageMaker 3 Document

application/pdf PDF File

application/PF_Encrypt Private File

application/pgp-keys PGP Key File

application/Photoshop PhotoShop Document

application/PictureViewer OS/2 Bitmap

application/PlayerPro 669 MOD Music

application/postscript PostScript File

application/pre-encrypted Pre-encrypted Data

application/QuarkXpress QuarkXpress Document

application/Replica Replica Document

application/ResEdit Resource File

application/rtf Rich Text Format File

application/sdp Session Description Protocol

application/self-extracting Self-Extracting Archive

application/Self_Extracting_Archive Self-Extracting Archive

application/SimpleText Apple documentation file

application/smil SMIL Document

application/SoftWindows MS-DOS Executable

application/SoundApp Amiga OctaMed music

application/SoundHack IRCAM Sound

application/streamingmedia Standard Streaming Metafile

application/StuffIt StuffIt Archive

application/StuffIt_Expander PackIt Archive

application/SunTar Unix BAR Archive

application/vnd.fdf Forms Data Format

Table continued on following page

JavaScript Programmer's Reference

1440

MIMEType Description

application/vnd.lotus-1-2-3 Lotus 123 Document

application/vnd.lotus-approach Lotus Approach Document

application/vnd.lotus-freelance Lotus Freelance Document

application/vnd.lotus-organizer Lotus Organizer Document

application/vnd.lotus-screencam Lotus ScreenCam Movie

application/vnd.lotus-wordpro Lotus WordPro Document

application/vnd.ms-access Microsoft Access Database

application/vnd.ms-excel Excel Worksheet

application/vnd.ms-powerpoint PowerPoint Presentation

application/vnd.ms-schedule Microsoft Schedule+ Application

application/vnd.rn-realmedia RealMedia File

application/vnd.rn-realplayer RealPlayer File

application/vnd.rn-realsystem-rjs RealSystem Skin

application/vnd.rn-realsystem-rmx RealSystem Secure Media Clip

application/vnd.rn-rn_music_package RealJukebox Music Package

application/vnd.rn-rsml RealSystem ML File

application/waf Website Archive

application/WordPerfect WordPerfect PC 4.2 Doc

application/wordperfect5.1 WordPerfect PC 5.1 Doc

application/x-authorware-map Authorware

application/x-cdf Channels

application/x-compress Unix Compressed (.z) Files

application/x-compressed application/x-compressed

application/x-conference application/x-conference

application/x-cpio Unix CPIO Archive

application/x-csh C Shell Program

application/x-director Shockwave

application/x-dvi TeX DVI Document

application/x-excel application/x-excel

application/x-fortezza-ckl Compromised Key List

application/x-gocserve CompuServe Inbound Link to CIM 3.0

application/x-gtar GNU Tape Archive

application/x-gzip GZIP File

application/x-hdf HDF Data File

application/x-JavaScript A .js file containing JavaScript source code

application/x-javascript JavaScript Program

application/x-javascript-config JavaScript Config

application/x-javascript-config JavaScript Config

Table continued on following page

M – MIME types (Definition)

1441

MIMEType Description

application/x-latex LaTeX Document

application/x-macbinary MacBinary File

application/x-netcdf Channels

application/x-ns-proxy-autoconfig Proxy Auto-Config

application/x-perl Perl Program

application/x-pkcs7-crl Certificate Revocation List

application/x-pkcs7-mime PKCS7 Encrypted Data

application/x-pkcs7-signature PKCS7 Signature

application/x-rtsp Real Time Streaming Protocol

application/x-sdp Scalable Multicast

application/x-sgml SGML Document

application/x-sh Bourne Shell Program

application/x-shar Unix Shell Archive

application/x-shockwave-flash Shockwave Flash

application/x-stuffit Stuffit Archive

application/x-tar TAR Archive

application/x-tcl TCL Program

application/x-tex TeX Document

application/x-texinfo GNU TeXinfo Document

application/x-x509-ca-cert Certificates

application/x-zip-compressed Zip Compressed Data

application/xml HTML Document

application/zip ZIP Archives

audio/aiff AIFF Audio

audio/basic AU Audio

audio/mid MIDI

audio/midi MIDI

audio/mp3 MPEG Movie

audio/mpeg MPEG audio stream

audio/mpegurl MP3 PlayLists (.m3u,.pls)

audio/mpg MP3 Audio

audio/rmf audio/rmf

audio/scpls MP3 PlayLists (.m3u,.pls)

audio/vnd.qcelp QCP Audio

audio/vnd.rn-realaudio RealAudio Clip

audio/wav WAV Audio

audio/x-aiff AIFF Audio

audio/x-midi MIDI

Table continued on following page

JavaScript Programmer's Reference

1442

MIMEType Description

audio/x-mp3 MPEG Movie

audio/x-mpeg MPEG audio stream

audio/x-mpegurl MP3 PlayLists (.m3u,.pls)

audio/x-mpg MP3 Audio

audio/x-pn-realaudio RealAudio

audio/x-pn-realaudio-plugin RealPlayer Plugin

audio/x-rmf audio/x-rmf

audio/x-scpls MP3 PlayLists (.m3u,.pls)

audio/x-wav WAV Audio

image/gif GIF Image

image/ief IEF image

image/jpeg JPEG Image

image/pict PICT Image

image/png PNG Image

image/tiff TIFF Image

image/vnd.rn-realflash RealFlash Clip

image/vnd.rn-realpix RealPix Clip

image/x-bmp Windows BMP Image

image/x-cmu-raster CMU Raster Image

image/x-fits Flexible Image Transport

image/x-macpaint MacPaint Image

image/x-macpict PICT Picture

image/x-MS-bmp Windows Bitmap

image/x-pbm Portable Bitmap

image/x-pgm Portable Graymap

image/x-photo-cd PhotoCD Image

image/x-photoshop Photoshop Image

image/x-pict PICT Image

image/x-png PNG Image

image/x-portable-anymap PBM Image

image/x-portable-bitmap Portable Bitmap

image/x-portable-graymap Portable Graymap

image/x-portable-pixmap Portable Pixmap

image/x-ppm Portable Pixmap

image/x-quicktime QuickTime Image

image/x-rgb SGI Image

image/x-sgi SGI Image

image/x-targa Targa Truevision Image

Table continued on following page

M – MIME types (Definition)

1443

MIMEType Description

image/x-tiff TIFF Image

image/x-xbitmap X Bitmap Image

image/x-xbm X-Windows Bitmap

image/x-xpixmap X-Windows Pixmap

image/x-xpm X-Windows Pixmap

image/x-xwd X-Windows Dump

image/x-xwindowdump X Window Dump Image

image/xbitmap X Bitmap Image

image/xbm X Bitmap Image

message/external-body URL Bookmark

Netscape/Source Special file type

Netscape/Telnet Netscape Telnet session

Netscape/tn3270 Netscape TN3270 session

text/cdf Channels

text/css Text File

text/html An HTML document.

text/JavaScript Text formatted JavaScript source code inside a <SCRIPT> block

text/Jscript Text formatted JScript source code inside a <SCRIPT> block

text/plain Form content and other plain text documents

text/url URL File

text/vbs Text formatted VBScript source code inside a <SCRIPT> block

text/vbscript Text formatted VBScript source code inside a <SCRIPT> block

text/vnd.rn-realtext RealText Clip

text/x-cdf Channels

text/x-vcard Visiting Card

text/xml HTML Document

undefined UUEncoded Data

video/avi Microsoft Video

video/flc FLC Animation

video/mpeg MPEG video/audio stream

video/msvideo Microsoft Video

video/quicktime QuickTime Movie

video/vnd.rn-realvideo RealVideo Clip

video/x-mpeg MPEG video/audio stream

video/x-mpeg2 MPEG2 Video

video/x-msvideo Microsoft Video

video/x-qtc video/x-qtc

x-world/x-3dmf QuickDraw 3D File

x-world/x-vrml VRML File

JavaScript Programmer's Reference

1444

MIME stands for Multi-part Internet Mail Extension but its usefulness has gone way beyond the
scope of a simple extension to the mail protocols.

See also: <SCRIPT ARCHIVE="...">, <SCRIPT SRC="...">, <SCRIPT
TYPE="...">, <STYLE TYPE="...">, Anchor.mimeType,
Anchor.type, blob.blobLink(), BUTTON.accept,
Document.open(), Form.encoding, JavaScript Image Source URL,
LINK.type, MimeType object, MimeType.type, OBJECT.codeType,
OBJECT.type, style.cueAfter, style.cueBefore, text/JavaScript,
XML.type

Cross-references:
Wrox Instant JavaScript – page – 42

MimeType object (Object/browser)
An object representing a MIME type.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

- myMimeType =
myWindow.navigator.mimeTypes[anIndex]

- myMimeType = navigator.mimeTypes[anIndex]

JavaScript syntax:

- myMimeType = myMimeTypeArray[anIndex]

Argument list: anIndex A reference to an element in a collection

Object properties: description, enabledPlugin, name, suffixes, type

Collections: suffixes[]

The example code fragment will list all the available MIME types supported by the browser.

Example code:
// List the available mimeTypes
for(ii=0; ii<navigator.mimeTypes.length; ii++)
{
 document.write(navigator.mimeTypes[ii].suffixes);
 document.write(" – ");
 document.write(navigator.mimeTypes[ii].type);
 document.write(" – ");
 document.write(navigator.mimeTypes[ii].description);
 document.write(" – ");

 if(navigator.mimeTypes[ii].enabledPlugin)
 {
 document.write(navigator.mimeTypes[ii].enabledPlugin.name);
 }
 else

M – MimeType.description (Property)

1445

 {
 document.write("<no_plugin>");
 }
 document.write("
");
}

See also:
MIME types, MimeTypeArray object,
Navigator.mimeTypes[]

Property JavaScript JScript N IE Opera HTML Notes

description 1.1 + 3.0 + 3.0 + 4.0 + - - ReadOnly
enabledPlugin 1.1 + 3.0 + 3.0 + 4.0 + - - ReadOnly
name 1.5 + 5.0 + 6.0 + 5.0 + - - ReadOnly
suffixes 1.1 + 3.0 + 3.0 + 4.0 + - - -
type 1.1 + 3.0 + 3.0 + 4.0 + - - ReadOnly

MimeType.description (Property)
The descriptive text for a MIME type.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myMimeType.description

This will not be consistent from browser to browser. In some cases there are similarities in the
description. In Netscape Navigator there are bugs in the descriptive text content for some MIME types.

Property attributes:
ReadOnly.

MimeType.enabledPlugin (Property)
The plugin object that handles this MIME type.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Plugin object

JavaScript syntax: - myMimeType.enabledPlugin

JavaScript Programmer's Reference

1446

You can use this property to check for the existence of an enabled plugin and generate some kind of
dialog that gracefully degrades the performance of your web pages for users who need to
download and install a vital plugin module.

Property attributes:
ReadOnly.

MimeType.name (Property)
The name of this particular MIME type.

Availability: JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myMimeType.name

Although the MIME type names are more consistent between browsers than the descriptive text, there
are still significant and annoying differences between them. Use with caution as part of your graceful
degradation when you find local client support lacks some vital functionality your pages require.

Property attributes:
ReadOnly.

MimeType.suffixes[] (Collection)
A list of file type suffixes that contain data of this MIME type.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - myMimeType.suffixes

This is another example of cross browser inconsistencies. In addition, the result of accessing this
property is not truly a collection but a comma delimited string which needs to be unpacked into an
array. In some cases, the string is empty where there are no appropriate file types.

Any code you develop needs to take account of the separator being a comma in MSIE and a
comma+space in Netscape.

Property attributes:
ReadOnly.

M – MimeType.type (Property)

1447

MimeType.type (Property)
The name of a MIME type.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

JavaScript syntax: - myMimeType.type

This value is the recognized MIME type value for this object.

See also: MIME types

Property attributes:
ReadOnly.

MimeTypeArray object (Object/browser)
A collection of MimeType objects.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - myMimeTypeArray = navigator.mimeTypes

Object properties: length

On MSIE, this array contains an element for each supported MimeType object that the browser can
respond to.

Likewise on Netscape, a collection of somewhat different MimeType objects are available.

Warnings:
❑ MSIE prior to version 5.0 does not support this facility and returns the undefined value even though

it has a place holder for the property.

❑ Note that Netscape 4.7 on Macintosh exhibits some careless MimeType instantiation with at least
two of the items in this array.

JavaScript Programmer's Reference

1448

❑ Item 50 does not exhibit an associative value because the type property for that MimeType is
undefined. There is no apparent fix because the type property of a MimeType object is read-only
although there is no error generated when trying to assign a new value to it. The proper type value
for this item should be "application.gzip".

❑ Item 64 has a similar problem but just presents a null string rather than its index. This MimeType
represents UU encoded files. It doesn't show up in the list of applications that map to file types in the
Netscape preferences.

❑ This problem may be extant on other platforms, although it is possible that the problems may be
related to your user preference settings and the indices that have problems may not be the same
number or MimeType values.

❑ The implications are that GZIP and UU encoded files are handled internally by the browser and
therefore, although it creates MimeType objects, they may not be derived from the preferences
settings although changing your preferences may relocate these objects to different positions in
the collection.

❑ Build an enumerator to examine the MimeType objects in the collection. You'll see a fragment of
script that would do this in the example. There is no real fix for this other than to build some
conditional check into any enumeration or iterative loop that examines the MimeTypes array.

❑ Note that Netscape 6.0 does not enumerate this collection properly and the example does not yield
the correct result, in fact it only seems to work with Netscape 4.

Example code:
// Inline this script fragment to display all mime types
// supported by your browser (except for NNav 6.0 which exhibits
// a strange bug).

for(myProp in navigator.mimeTypes)
{
 document.write(myProp);
 document.write("
");
}

See also:
Collection object, MimeType object,
Navigator.mimeTypes[]

Property JavaScript JScript N IE Opera HTML Notes

length 1.1 + 3.0 + 3.0 + 4.0 + - - ReadOnly

MimeTypeArray.length (Property)
The number of discrete MIME types that the browser supports.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: - navigator.mimeTypes.length

M – Minima-maxima (Definition)

1449

Property attributes:
ReadOnly.

Refer to:
Collection.length

Minima-maxima (Definition)
Limits for values in the environment or script.

The ECMA standard defines some limits for numeric values and the conditions under which it
should evaluate numeric values according to the IEEE 754 standard behavior.

The standard provides for the implementation to support some enquiry functions so you can
determine these limits.

The IEEE 754 computation logic further provides for error conditions to be handled gracefully by
supplying not a number (NaN) values, infinity and undefined values in cases where a computation
would normally generate a domain error and possibly crash the application.

If JavaScript did not provide such a forgiving environment in which to execute scripts, it is likely
that some of the most trivial script errors would result in the hosting environment crashing. In the
context of a web browser you would lose the session and have to restart the browser. On a desktop
platform, this could be fatal to the OS and you might have to reboot the machine.

See also: Limits, Range error, Type conversion

Minus (-) (Operator/additive)
Subtract one operand from another.

Availability: ECMAScript edition – 2

See also: Add (+), Additive operator, Subtract (-)

Cross-references:
ECMA 262 edition 2 – section – 11.6.2

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.6.2

JavaScript Programmer's Reference

1450

Minus then assign (-=) (Operator/assignment)
Subtract the right value from the left, modifying the left value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also:
Add then assign (+=), Additive operator, Assignment operator,
Decrement value (--), LValue, Subtract then assign (-=)

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

mocha: URL (Request method)
This is a pseudonym for the JavaScript: URL. It is relevant to Netscape and is probably not
supported on other browsers.

See also: URL, javascript: URL

ModElement object (Object/DOM)
A DOM level 1 object that describes a modification to a document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myModElement = new ModeElement()

Object properties: cite, dateTime

The MSIE browser implements deletions and insertions as separate object types (DEL and INS
respectively). The DOM level 1 standard includes both in a single object class.

See also: DEL object, INS object

M – ModElement.cite (Property)

1451

Property JavaScript JScript N IE Opera DOM Notes

cite 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
dateTime 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

ModElement.cite (Property)
A URL that references a document that describes why the item was modified.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myModElement.cite

The URL of the document that describes why the text was marked as modified is noted in this property.

See also: DEL.cite

ModElement.dateTime (Property)
The date and time that the modification occurred.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myModElement.dateTime

This is the date and time value for when the modification change occurred. If you are maintaining
change control down to the sub-document level in a content management system, these values can
be defined from change records in the database.

See also: DEL.dateTime

JavaScript Programmer's Reference

1452

Modulo (Operator/multiplicative)
Modulo operations are called remainder in JavaScript. They may also be called modulus.

See also: Days in year, Multiplicative expression, Remainder (%)

Money (Definition)
A locale specific value.

See also: Localization, Currency symbol

Month from time (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

In an ECMA compliant implementation, given a time measured in milliseconds from 01-January-
1970 UTC, the month number can be calculated from the value.

The formula for calculating day number is shown here:

Day(t) = floor(t/msPerDay), where:

t = an instant in time measured in milliseconds relative to 01-January-1970 UTC.

msPerDay = 86400000

All non-leap years have 365 days with the usual number of days in each month. Leap years have an
extra day in February. The calculation shown below uses known leap years and non-leap years to
adjust the day numbers and yield the day number of the first day of the given year and then use
that to work out the time in milliseconds when the year started:

DayFromYear(y) =

365 * (y – 1970) +

floor((y – 1969) / 4) -

floor((y – 1901) / 100) +

floor((y – 1601) / 400)

TimeFromYear(y) = msPerDay * DayFromYear(y)

YearFromTime(t) = The largest integer y to make TimeFromYear(y) less than or equal to t.

DayWithinYear(t) = Day(t) – DayFromYear(YearFromTime(t))

M – Month from time (Time calculation)

1453

The month value is worked out with this formulaic framework:

MonthFromTime(t) = lookup according to DayWithinYear(t) falling into a range according to
the following table:

Greater than Less than Month Name

000 031 0 January

031 059 + InLeapYear(t) 1 February

059 + InLeapYear(t) 090 + InLeapYear(t) 2 March

090 + InLeapYear(t) 120 + InLeapYear(t) 3 April

120 + InLeapYear(t) 151 + InLeapYear(t) 4 May

151 + InLeapYear(t) 181 + InLeapYear(t) 5 June

181 + InLeapYear(t) 212 + InLeapYear(t) 6 July

212 + InLeapYear(t) 243 + InLeapYear(t) 7 August

243 + InLeapYear(t) 273 + InLeapYear(t) 8 September

273 + InLeapYear(t) 304 + InLeapYear(t) 9 October

304 + InLeapYear(t) 334 + InLeapYear(t) 10 November

334 + InLeapYear(t) 365 + InLeapYear(t) 11 December

Note that MonthFromTime(0) is 0 which corresponds to Thursday, 01-January-1970.

Example code:
// Work out a month number from a time value
var msPerDay = 86400000;
var myMilliseconds = Number(new Date());
document.write(monthFromDayNumber(myMilliseconds));
// Month from day number
function monthFromDayNumber(aMillisecondTime)
{
 var myMonthLookup = new Array();

 var myDayWithinYear = dayWithinYear(aMillisecondTime);
 var myYearFromTime = yearFromTime(aMillisecondTime);
 var myLeapNumber = +inLeapYear(myYearFromTime);
 myMonthLookup[0] = 0;
 myMonthLookup[1] = 31;
 myMonthLookup[2] = 59 + myLeapNumber;
 myMonthLookup[3] = 90 + myLeapNumber;
 myMonthLookup[4] = 120 + myLeapNumber;
 myMonthLookup[5] = 151 + myLeapNumber;
 myMonthLookup[6] = 181 + myLeapNumber;
 myMonthLookup[7] = 212 + myLeapNumber;
 myMonthLookup[8] = 243 + myLeapNumber;
 myMonthLookup[9] = 273 + myLeapNumber;
 myMonthLookup[10] = 304 + myLeapNumber;
 myMonthLookup[11] = 334 + myLeapNumber;

 for(var ii=0; ii<12; ii++)
 {
 if(myDayWithinYear < myMonthLookup[ii])
 {

JavaScript Programmer's Reference

1454

 return ii;
 }
 }
 return 12;
}
// Work out day number within year based on time value
function dayWithinYear(aMilliseconds)
{
 var myDayNumber = dayNumber(aMilliseconds);
 var myYearFromTime = yearFromTime(aMilliseconds);
 var myDayFromYear = dayFromYear(myYearFromTime);
 var myDayWithinYear = myDayNumber – myDayFromYear;
 return myDayWithinYear;
}
// Return year number based on time value
function yearFromTime(aMilliseconds)
{
 var myStartYear = 1970;
 while(timeFromYear(myStartYear) < myMilliseconds)
 {
 myStartYear++
 }
 return myStartYear-1;
}
// Work out milliseconds at start of year
function timeFromYear(aYear)
{
 var myTime = msPerDay * dayFromYear(aYear);
 return myTime;
}
// Work out day number from milliseconds
function dayNumber(aMillisecondTime)
{
 var myDay = Math.floor(aMillisecondTime/msPerDay);
 return myDay;
}
// Day from year function
function dayFromYear(aYear)
{
 var myDay = 365 * (aYear – 1970) +
 Math.floor((aYear – 1969) / 4) -
 Math.floor((aYear – 1901) / 100) +
 Math.floor((aYear – 1601) / 400);
 return myDay;
}
// Flag a leap year with a Boolean value
function inLeapYear(aYear)
{
 if((aYear % 4) != 0)
 {
 return false;
 }
 if(((aYear % 100) != 0) ||
((aYear % 400) == 0))
 {
 return true;
 }
 return false;
}

See also: Date from time, Date number, Day from year, Day number, Day within year, Month
number, Year from time

M – Month number (Time calculation)

1455

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.4

ECMA 262 edition 3 – section – 15.9.1.4

Month number (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

In ECMA compliant implementations, months are identified by an integer in the range 0 to 11, inclusive.

The month number is calculated by taking the number of the day at the target time and then taking
the day number at the start of that year. The difference is the day number within the year, which
can then be used via a compare and lookup mechanism to deduce the month. The InLeapYear()
method comes into play to offset the day number by one when it is a leap year.

See also: Day number, Day within year, Month from time, Time range

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.4

ECMA 262 edition 3 – section – 15.9.1.4

MotionBlur() (Filter/visual)
An enhanced motion blur artefact that replaces the older Blur() filter functionality.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
filter – MotionBlur()

Mouse events (Definition)
Mouse events are part of the browser's event handling complex and are triggered by physical
interaction with the mouse.

These events correspond to user actions as the mouse is moved over various elements on the screen
or as the user clicks the mouse buttons.

JavaScript Programmer's Reference

1456

Note that some of these events are triggered in multiples as a result of a single action.

For example, as a mouse button is pressed, a mouse-down event is fired. As it is released, a
mouse-up and a click event are fired. A click event is only fired once for each mouse-down
and mouse-up pair.

A double-click requires two down-up cycles within quick succession but the mouse-down and
mouse-up events will also fire.

The DOM standard refines the event model and creates a specific object class to handle Mouse
Events. The event model will evolve as more browsers take on the DOM specified model.

See also: onClick, onDblClick, onMouseDown, onMouseDrag, onMouseMove,
onMouseOut, onMouseOver, onMouseUp

MouseEvent object (Object/DOM)
This is part of the DOM level 2 mouse event set.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myMouseEvent = new MouseEvent()

Object properties:
altKey, bubbles, button, cancelable, clientX, clientY,
cllientX, ctrlKey, currentTarget, detail, eventPhase,
metaKey, relatedTarget, screenX, screenY, shiftKey,
target, timeStamp, type, view

Object methods:
initEvent(), initMouseEvent(), initUIEvent(),
preventDefault(), stopPropagation()

The availability of the MouseEvent object handling can be determined with the
Implementation.hasFeature() method call.

The available set of events is defined by HTML 4.0 and DOM level 0 with some additional events
having been added. These event types are enumerated in the DOM level 2 specification and are:

❑ click

❑ mousedown

❑ mouseup

❑ mouseover

❑ mousemove

❑ mouseout

The contextual information is carried in the detail property which is inherited from the UIEvent
object. This value is incremented for each complete mouse click cycle but is reset to zero if the
mouse is moved, even if that happens between mousedown and mouseup.

M – MouseEvent object (Object/DOM)

1457

This kind of event is a scenario where event bubbling is likely to be useful because the mouse may
click on a pixel sized item which is a child of the object that is really receiving a higher level event.

See also: AbstractView object, Event object,
Implementation.hasFeature(), onClick, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, UIEvent
object

Property JavaScript JScript Nav IE Opera DOM Notes

altKey 1.5 + - 6.0 + - - 2 + Warning, ReadOnly
bubbles 1.5 + - 6.0 + - - 2 + -
button 1.5 + - 6.0 + - - 2 + ReadOnly
cancelable 1.5 + - 6.0 + - - 2 + -
clientX 1.5 + - 6.0 + - - 2 + ReadOnly
clientY 1.5 + - 6.0 + - - 2 + ReadOnly
cllientX 1.5 + - 6.0 + - - 2 + -
ctrlKey 1.5 + - 6.0 + - - 2 + ReadOnly
currentTarget 1.5 + - 6.0 + - - 2 + -
detail 1.5 + - 6.0 + - - 2 + -
eventPhase 1.5 + - 6.0 + - - 2 + -
metaKey 1.5 + - 6.0 + - - 2 + Warning, ReadOnly
relatedTarget 1.5 + - 6.0 + - - 2 + ReadOnly
screenX 1.5 + - 6.0 + - - 2 + ReadOnly
screenY 1.5 + - 6.0 + - - 2 + ReadOnly
shiftKey 1.5 + - 6.0 + - - 2 + ReadOnly
target 1.5 + - 6.0 + - - 2 + -
timeStamp 1.5 + - 6.0 + - - 2 + -
type 1.5 + - 6.0 + - - 2 + -
view 1.5 + - 6.0 + - - 2 + -

Method JavaScript JScript Nav IE Opera DOM Notes

initEvent() 1.5 + - 6.0 + - - 2 + -
initMouseEvent() 1.5 + - 6.0 + - - 2 + -
initUIEvent() 1.5 + - 6.0 + - - 2 + -
preventDefault() 1.5 + - 6.0 + - - 2 + -
stopPropagation() 1.5 + - 6.0 + - - 2 + -

JavaScript Programmer's Reference

1458

MouseEvent.altKey (Property)
A Boolean value that represents the state of the [alt] key.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myMouseEvent.altKey

When an event is being processed, you may want to know the state of the [alt] key on the keyboard.

This Boolean property returns true when the [alt] key is pressed and false when it is not.

This property reflects the state of the [alt] key at the instant when the event was triggered. The
user may have released the [alt] key in the meantime so you should not assume that if the [alt]
key was pressed earlier on that it is still pressed when the event handler is being executed.

Warnings:
❑ The key may not always be labelled "ALT" on the keyboard.

See also: Event.altKey

Property attributes:
ReadOnly.

MouseEvent.button (Property)
The mouse button that was pressed to trigger the event.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myMouseEvent.button

If you need to determine which mouse button was pressed to trigger the event, this property will
contain a value to indicate the button.

Note that on a Macintosh, this value is meaningless as there is only one button on an Apple
Macintosh mouse.

M – MouseEvent.clientX (Property)

1459

Third party mice can be added to Apple Macintosh systems to provide multiple (2 or 3) button
functionality but they are by no means commonplace and it is probably safe to assume only a 1
button mouse on the Macintosh platform.

The values for the buttons are defined to cope with 1, 2 or 3 button mice.

The following values correspond with mouse buttons:

❑ 0 – No mouse button was pressed when the event was triggered

❑ 1 – The left button was pressed

❑ 2 – The right button was pressed

❑ 3 – The middle button was pressed

See also: Event.button, Event.which

Property attributes:
ReadOnly.

MouseEvent.clientX (Property)
Mouse position relative to the web page.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myMouseEvent.clientX

This is the horizontal position of the mouse when the event was triggered. The position is
calculated relative to the visible document area within the window or frame the mouse was
positioned in when the event triggered.

See also: Event.clientX

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1460

MouseEvent.clientY (Property)
Mouse position relative to the web page.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myMouseEvent.clientY

This is the vertical position of the mouse when the event was triggered. The position is calculated
relative to the visible document area within the window or frame the mouse was positioned in
when the event triggered.

See also: Event.clientY

Property attributes:
ReadOnly.

MouseEvent.ctrlKey (Property)
A Boolean value that represents the state of the [control] key.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myMouseEvent.ctrlKey

When an event is being processed, you may want to know the state of the [control] key
on the keyboard.

This Boolean property returns true when the [control] key is pressed and false when it is not.

This property reflects the state of the [control] key at the instant when the event was triggered. The
user may have released the key in the meantime so you should not assume that if the [control] key
was pressed earlier on that it is still pressed when the event handler is being executed.

See also: Event.ctrlKey

Property attributes:
ReadOnly.

M – MouseEvent.initMouseEvent() (Method)

1461

MouseEvent.initMouseEvent() (Method)
After creating a MouseEvent object, it must be initialised with this method call.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myMouseEvent.initMouseEvent(aType, aBubble,
aCancel, aView, aDetail, aScrnX, aScrnY,
aClntX, aClntY, aCtrl, anAlt, aShift, aMeta,
aButton, aRelTarg)

aType A string value describing the event type
aBubble A boolean flag indicating whether the event can bubble
aCancel A boolean flag indicating whether the event can be cancelled
aView A reference to an AbstractView object
aDetail A value describing the event detail
aScrnX A screen X coordinate value
aScrnY A screen Y coordinate value
aClntX A client X coordinate value
aClntY A client Y coordinate value
aCtrl A boolean value indicating the state of the control key
anAlt A boolean value indicating the state of the alt key
aShift A boolean value indicating the state of the shift key
aMeta A boolean value indicating the state of the meta key
aButton A numeric value indicating which button is being emulated

Argument list:

aRelTarg A reference to an EventTarget object

A new event object is manufactured by calling the DocumentEvent.createEvent() method.
That event should have been defined with a type specified as "MouseEvent". If it was, then it will
support an initMouseEvent() method. This must be called before the event is dispatched
otherwise the event object will not contain enough information for the event dispatcher/handler to
make sense of it and route it to the correct target objects.

Two boolean argument values define whether the event will be allowed to be cancelled and what
type of propagation to use (bubble or capture).

The view argument refers to an AbstractView object which DOM level 2 describes and which
may not yet be well supported by any browser.

The detail value can be used to pass context information into the event handling chain.

The screen and client coordinate values are measured in pixels and must be specified as numeric values.

Five boolean values then define the state of keyboard keys when the event was assumed to be triggered.

Finally a reference to a related target object is passed.

See also:
AbstractView object, EventTarget object,
UIEvent.initUIEvent()

JavaScript Programmer's Reference

1462

MouseEvent.metaKey (Property)
A Boolean value that represents the state of the [meta] key.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myMouseEvent.metaKey

When an event is being processed, you may want to know the state of the [meta] key on the keyboard.

This Boolean property returns true when the [meta] key is pressed and false when it is not.

This property reflects the state of the [meta] key at the instant when the event was triggered. The
user may have released the [meta] key in the meantime so you should not assume that if the [meta]
key was pressed earlier on that it is still pressed when the event handler is being executed.

Warnings:
❑ The key may not always be labelled "META" on the keyboard.

Property attributes:
ReadOnly.

MouseEvent.relatedTarget (Property)
A related EventTarget object is referred to.

Availability: DOM level – 2
JavaScript – 1.5
Netscape Navigator version – 6.0

Property/method value type: EventTarget object

JavaScript syntax: N myMouseEvent.relatedTarget

The particular EventTarget referred to depends on the event type and context. For example, the
standard suggests this might be the object the mouse has just moved off when a mouseOver is
being processed.

The target and relatedTarget property values would be exchanged vice versa if a mouseOut
event were being processed.

See also: EventTarget object

Property attributes:
ReadOnly.

M – MouseEvent.screenX (Property)

1463

MouseEvent.screenX (Property)
Mouse position relative to the screen display.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myMouseEvent.screenX

You may need to know the position of the mouse relative to the screen display coordinates and not
the browser window or objects within it. This property provides the horizontal coordinate of the
mouse within the screen.

See also: Event.screenX

Property attributes:
ReadOnly.

MouseEvent.screenY (Property)
Mouse position relative to the screen display.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myMouseEvent.screenY

You may need to know the position of the mouse relative to the screen display coordinates and not
the browser window or objects within it. This property provides the vertical coordinate of the
mouse within the screen.

See also: Event.screenY

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1464

MouseEvent.shiftKey (Property)
A Boolean value that represents the state of the [shift] key.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myMouseEvent.shiftKey

When an event is being processed, you may want to know the state of the [shift] key on the keyboard.

This Boolean property returns true when the [shift] key is pressed and false when it is not.

This property reflects the state of the [shift] key at the instant when the event was triggered. The
user may have released the key in the meantime so you should not assume that if the [shift] key
was pressed earlier on that it is still pressed when the event handler is being executed.

See also: Event.shiftKey

Property attributes:
ReadOnly.

moveBy() (Method)
An alias for the window.moveBy() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- moveBy(anOffsetX, anOffsetY)
JavaScript syntax:

- myWindow.moveBy(anOffsetX, anOffsetY)

anOffsetX A distance in pixelsArgument list:
anOffsetY A distance in pixels

M – moveTo() (Method)

1465

moveBy()

Delta X

See also: Window.onmove, Window.moveBy()

moveTo() (Method)
An alias for the window.moveTo() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- moveTo(aCoordX, aCoordY)
JavaScript syntax:

- myWindow.moveTo(aCoordX, aCoordY)

aCoordX A position in pixelsArgument list:
aCoordY A position in pixels

Offset X

Offset Y

See also: Window.onmove, Window.moveTo()

JavaScript Programmer's Reference

1466

MSIE (Web browser)
An acronym for the Microsoft web browser.

See also: JScript version, Undocumented features, Web browser, Internet Explorer

Multi-byte character (Definition)
Character sets using more than 8 bits to represent a code point.

JavaScript natively supports the Unicode character set. This means it is multi-byte character aware
at the most fundamental level.

Unicode and localization issues are related to one other and the one depends on the other. You
cannot effectively localize an environment properly without multi-byte character sets. The
extensions to ASCII to make it an international character set were workable but somewhat
inconvenient. All manner of escape sequences were required and ultimately, it consumes more
space than a multi-byte character would have.

Unicode extended the width of the code points from 8 bits to 16. This allows the character set to
increase from 256 to 65536 code points. To all intents and purposes, this is sufficient to encode
every glyph and character share required by all languages world-wide.

However, there may still be some limitations in the encoding used for Far-Eastern language
variants. These may be addressed in the Unicode version 3.0 standard.

See also: Character set, Localization, Unicode

Multi-dimensional arrays (Definition)
Useful techniques for manipulating matrices for math problems.

Multi-dimensional arrays are not supported directly in JavaScript but you can construct them with
arrays of arrays.

An array can refer to another array with one of its elements. This means you can build multi-
dimensional arrays, which are useful for working out 3D transformations. You probably wouldn't
implement a renderer or 3D modeller in JavaScript. However, you might have a Java applet that
takes rotation values or perhaps a 3D viewing plugin of some sort that does the hard work.

Warnings:
❑ The arrays are not truly multi-dimensional and you must be careful to construct them properly and

avoid damaging them inadvertently.

M – Multi-line comment (Definition)

1467

Example code:
// An example shamelessly stolen from Wrox Instant JavaSscript
// Create a 2x2 array and store an identity matrix in it.
var matrix = new Array(2);
matrix[0] = new Array(2);
matrix[1] = new Array(2);
matrix[0][0] = 1;
matrix[1][0] = 0;
matrix[0][1] = 0;
matrix[1][1] = 1;

See also: Array index delimiter ([]), Copying objects

Cross-references:
Wrox Instant JavaScript – page – 16

Multi-line comment (Definition)
Comment blocks that span several lines of script source text.

The character sequence /* introduces a multi-line comment. That comment block is terminated by
the next occurrence of the */ character sequence. This means you cannot nest these comments
within one another. That is arguably bad coding technique anyway.

If you are used to C language you will most likely have used conditional compilation blocks
controlled via the pre-processor. Most implementations of JavaScript do not support this, however
one or two recent implementations, especially those that operate outside the context of a web
browser, are beginning to introduce many C language-like facilities. One of those is the pre-
processor with its macro directives. This is particularly useful to developers even though it is
somewhat non-standard.

Multiple line comments are replaced with a single line terminator during the interpretation phase.
When the /* ... */ does not have a line terminator inside, it is simply removed prior to
interpretation of the remaining line content.

Everything between the start and end of a multi-line comment is ignored.

Warnings:
❑ You cannot nest these kinds of comment delimiters within one another.

See also: Comment, Comment (// and /* ... */), Lexical convention, Line

Cross-references:
ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 3 – section – 7.4

Wrox Instant JavaScript – page – 17

JavaScript Programmer's Reference

1468

Multiplicative expression (Definition)
An expression containing a multiply or divide operator.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Multiplicative expressions use the multiplicative operators to yield a result by operating on two
other values, which may themselves be nested.

See also: Divide (/), Expression, Modulo, Multiplicative operator,
Remainder (%)

Cross-references:
ECMA 262 edition 2 – section – 11.5

ECMA 262 edition 3 – section – 11.5

Multiplicative operator (Definition)
A multiply or divide operator.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Multiplicative operators are those that require multiplication or division to evaluate their result.

The following table lists all operators that are multiplicative and those, which are classified under
other categories, which are also multiplicative, by implication:

Operator Description

% Remainder
* Multiply
/ Divide
*= Multiply and assign to an LValue
/= Divide and assign to an LValue
%= Remainder and assign to an LValue

Operands that are used with multiplicative operators must have numeric values or be convertible
using the valueOf() method.

M – Multiply (*) (Operator/multiplicative)

1469

Warnings:
❑ The order of evaluation of the operands is described in the ECMA standard and a fully compliant

implementation should evaluate from left to right. This means that the expression:

❑ myFunctionA() * myFunctionB()

❑ should evaluate myFunctionA() before myFunctionB() and any side effects of executing
myFunctionA() will precede those for myFunctionB().

❑ However, you should test this and not rely on it being portable across implementations.

❑ Beware of expressions like this:

❑ 0 * myFunction()

❑ Even though you may not have put the zero in as a constant, the operand on the left may evaluate to
be zero. Some implementations may provide performance enhancements that depend on eliminating
unnecessary computation. A zero multiplied by any other value will yield a zero. The function may
never be executed.

❑ If you really want myFunctionA(), myFunctionB() or myFunction() to be executed reliably
and in a portable manner, you should evaluate them outside of the expression and assign their
results to variables, which you can then use in the expression in their place.

❑ There is a very marginal performance hit but the scripts will execute more reliably across a wider
variety of platforms.

See also: Arithmetic operator, Associativity, Binary operator, Divide (/),
Divide then assign (/=), Expression, Multiplicative expression,
Multiply (*), Multiply then assign (*=), Operator, Operator
Precedence, Remainder (%), Remainder then assign (%=)

Cross-references:
ECMA 262 edition 2 – section – 11.5

ECMA 262 edition 3 – section – 11.5

Multiply (*) (Operator/multiplicative)
Multiply one operand by another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 * anOperand2

anOperand1 A value to be multiplied
Argument list: anOperand2 The multiplier value

JavaScript Programmer's Reference

1470

The * operator performs multiplication, producing the product of its operands.

The multiplication is commutative. That means the operands being multiplied together can be
arranged in any order without affecting the outcome as long as they are at the same precedence
level. However, the multiplication may not always be associative in ECMAScript compliant
interpreters due to finite precision in the evaluations. This means that placing parentheses around
the operands may affect the outcome.

For example (A * B) * C may not evaluate identically to A * (B * C) to associative artifacts
but A * B * C should be identical to B * C * A because of commutation.

The rules of floating point multiplication should be governed by the rules of IEEE 754 double-
precision arithmetic.

If either operand is NaN then the result will be NaN.

The sign of the result is positive if both operands have the same sign, negative if the operands
have different signs.

Multiplication of an infinite value by zero results in NaN.

Multiplication of infinity by infinity results in infinity. The sign is determined by the sign
rules as normal.

Multiplying infinity by a finite non-zero value results in a signed infinity. The sign is
determined as normal.

Otherwise, where neither an infinite value or NaN is involved, the product is computed and
rounded to the nearest representable value. If the magnitude of the result is larger than the largest
value the interpreter can cope with, an infinity of the appropriate sign is substituted. If the
magnitude is too small to be represented, then a zero value is substituted.

Note that internally, zero values can be negative or positive and the sign may affect the result of
subsequent computations.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

See also: Associativity, Multiplicative operator, Multiply then assign (*=), Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.5.1

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.5.1

M – Multiply then assign (*=) (Operator/assignment)

1471

Multiply then assign (*=) (Operator/assignment)
Multiply two operands storing the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 *= anOperand2

anOperand1 A value to be multiplied and then assigned intoArgument list:
anOperand2 A multiplier value

Multiply the left operand by the right operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 * anOperand2;

Although this is classified as an assignment operator it is really a compound of an assignment and
a multiplicative operator.

The associativity is right to left.

Refer to the operator precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Assign value (=), Assignment expression, Assignment operator,
Associativity, LValue, Multiplicative operator, Multiply (*),
Operator Precedence

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

JavaScript Programmer's Reference

1472

MutationEvent object (Object/DOM)
A notification that the document content has changed should trigger a mutation event which is
described in one of these objects.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myMutationEvent = new MutationEvent()

Object properties:
attrChange, attrName, bubbles, cancelable,
currentTarget, eventPhase, newValue, prevValue,
relatedNode, target, timeStamp, type

Class constants: ADDITION, MODIFICATION, REMOVAL

Object methods:
initEvent(), initMutationEvent(), preventDefault(),
stopPropagation()

The availability of the MutationEvent object handling can be determined with the
Implementation.hasFeature() method call.

These event types are enumerated in the DOM level 2 specification and are:

❑ DOMSubtreeModified

❑ DOMNodeInserted

❑ DOMNodeRemoved

❑ DOMNodeRemovedFromDocument

❑ DOMNodeInsertedIntoDocument

❑ DOMAttrModified

❑ DOMCharacterDataModified

The DOM level 2 event module specification doesn't describe the binding of these events to event
handlers so although this event model is implemented in Netscape 6.0, you may need to explore
the event naming conventions to make effective use of it. Taking the event names and placing the
'on' prefix in front of them and using that as a property name to which you can attach a handler
function may work. The DOM level 2 event module also provides an EventListener registration
which allows you to register event types with EventTarget objects, using the
addEventListener() method.

The contextual information is carried in the detail property, and when it is present, will usually
describe a reference to a node object or an attribute value.

When the document content is modified, a MutationEvent object is instantiated to carry a
description of that change to the event handler.

Mutation events cannot be cancelled. This is because the DOM interface would become unwieldy if
the document changes were not properly completed. This may change later when the DOM
standard introduces transaction handling, although the DOM level 2 event specification does not
go to great lengths to explain in detail how that is likely to be implemented.

M – MutationEvent.attrChange (Property)

1473

A cascading effect is very likely with a single DOM tree change causing a number of subsequent
mutation events to be fired as lower portions of the tree are affected. The standard does not mandate
any particular ordering of these events and leaves it to the implementation to control the sequence. This
suggests that the cascaded mutations may occur in a different sequence depending on the browser. You
should therefore design your event handler so that it can be called in a re-entrant and random orders
and that there should be no dependency on things being traversed in a predictable sequence.

See also: DOM, DOM – Level 2, DOM Events, Event
management, Event model, Event-driven model,
EventListener object,
EventTarget.addEventListener(),
Implementation.hasFeature()

Property JavaScript JScript N IE Opera DOM Notes

attrChange 1.5 + - 6.0 + - - 2 + ReadOnly
attrName 1.5 + - 6.0 + - - 2 + ReadOnly
bubbles 1.5 + - 6.0 + - - 2 + -
cancelable 1.5 + - 6.0 + - - 2 + -
currentTarget 1.5 + - 6.0 + - - 2 + -
eventPhase 1.5 + - 6.0 + - - 2 + -
newValue 1.5 + - 6.0 + - - 2 + ReadOnly
prevValue 1.5 + - 6.0 + - - 2 + ReadOnly
relatedNode 1.5 + - 6.0 + - - 2 + ReadOnly
target 1.5 + - 6.0 + - - 2 + -
timeStamp 1.5 + - 6.0 + - - 2 + -
type 1.5 + - 6.0 + - - 2 + -

Method JavaScript JScript N IE Opera DOM Notes

initEvent() 1.5 + - 6.0 + - - 2 + -
initMutationEvent() 1.5 + - 6.0 + - - 2 + -
preventDefault() 1.5 + - 6.0 + - - 2 + -
stopPropagation() 1.5 + - 6.0 + - - 2 + -

MutationEvent.attrChange (Property)
The value in this property describes the kind of change that has taken place when the mutation
event was an attribute change.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myMutationEvent.attrChange

JavaScript Programmer's Reference

1474

This value is meaningful for DOMAttrModified events.

The MutationEvent class provides the following constant values for testing attribute change
property values:

Value Symbolic name

1 MODIFICATION

2 ADDITION

3 REMOVAL

See also: Attribute object, MutationEvent.newValue,
MutationEvent.prevValue, Node.attributes[]

Property attributes:
ReadOnly.

MutationEvent.attrName (Property)
The name of a node attribute that has changed for a DOMAttrChange event.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myMutationEvent.attrName

This is a string value containing the name of an attribute that has been changed. The old and new
values are available in the prevValue and newValue properties of the MutationEvent if you
need to inspect them.

See also: Attribute object, MutationEvent.newValue,
MutationEvent.prevValue, Node.attributes[]

Property attributes:
ReadOnly.

M – MutationEvent.initMutationEvent() (Method)

1475

MutationEvent.initMutationEvent() (Method)
After creating a MutationEvent object, it must be initialized with this method call.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

JavaScript syntax: N myMutationEvent.initMutationEvent(aType,
aBubble, aCancel, aNode, aPrev, aNew,
aName)

aType A string containing the event type
aBubble A boolean value indicating whether the event can

bubble
aCancel A boolean value indicating whether the event can be

cancelled
aNode A reference to a related Node object
aPrev A string containing the previous value
aNew A string containing the new value

Argument list:

aName A string containing the name of an attribute

A new event object is manufactured by calling the DocumentEvent.createEvent() method.
That event should have been defined with a type specified as "MutationEvent". If it was, then it
will support an initMutationEvent() method. This must be called before the event is
dispatched otherwise the event object will not contain enough information for the event
dispatcher/handler to make sense of it and route it to the correct target objects.

Two boolean argument values define whether the event will be allowed to be cancelled and what
type of propagation to use (bubble or capture).

You can add a reference to a related node and can also define previous and new values if you are
simulating an attribute change. Finally for an attribute change, the attribute name can be specified.

See also: Event.target, EventTarget object, Node object

MutationEvent.newValue (Property)
When an attribute changes, the new attribute value is available here.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myMutationEvent.newValue

You can use this value to check that the new attribute value is appropriate and if necessary modify it
to ensure it falls within your require range. You can compare it with the previous value if need be.

JavaScript Programmer's Reference

1476

See also: MutationEvent.attrChange, MutationEvent.attrName,
MutationEvent.prevValue

Property attributes:
ReadOnly.

MutationEvent.prevValue (Property)
When an attribute changes, the old attribute value is available here.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myMutationEvent.prevValue

This value preserves the old attribute value so you can restore it into the attribute if you inspect the
new value and find that it is inappropriate.

See also: MutationEvent.attrChange, MutationEvent.attrName,
MutationEvent.newValue

Property attributes:
ReadOnly.

MutationEvent.relatedNode (Property)
A Node object is referred to here which can be used to perform contextual examination of the event.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: N myMutationEvent.relatedNode

For attribute changes, this should contain a reference to the node that owned the attribute that was
changed. Other operations such as node addition or removal may contain parent nodes or indeed
the node that has just been added during an insertion.

See also: Node object, Node.parentNode

Property attributes:
ReadOnly.

name (Property)
An alias for the window.name property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

- name
JavaScript syntax:

- myWindow.name

HTML syntax: <FRAME NAME="...">Window.open(...)

aName A name for the window
aString A string value containing the new name for the window

Argument list:

aURL A URL to load into the window

Refer to:
Window.name

N

JavaScript Programmer's Reference

1478

NAME="..." (HTML Tag Attribute)
An HTML tag attribute that names an object.

Many objects are identified in the DOM hierarchy of the web browser by means of their name
property. This value is defined as an HTML tag attribute.

Some objects can be accessed using an ID="..." HTML tag attribute instead of, or as well as, the
NAME="..." HTML tag attribute. With browsers converging on the DOM specification and its
Nodal structure, the NAME="..." HTML tag attribute is expected to become deprecated in favor of
the ID="..." attribute.

See also: Anchor.name, Document.<form_name>, ID="...", Object.name,
OBJECT.name, Plugin.name, Window.name

NamedNodeMap object (Object/DOM)
Where nodes have a name attribute, they can be presented as members of a NamedNodeMap
collection object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Array object

JavaScript syntax: - myNamedNodeMap = new NamedNodeMap()

Object properties: length

Object methods:
getNamedItem(), item(), removeNamedItem(),
setNamedItem()

A NamedNodeMap is a collection of nodes that can be accessed by name. It does not inherit from
NodeList, and the DOM does not mandate any parentage. It will probably inherit from Collection
or Array but this appears to be implementation dependant. A general purpose Dictionary class
would be helpful as a starting point but these are not available in all implementations.

The nodes are not collated in any particular order and you can access them with a numeric index as
well as by associative name.

This implies a namespacing issue and clearly there may be problems with your document if nodes
share the same name and need to be collected into a NamedNodeList entity.

The DOM level 2 specification provides these new methods to cope with namespaces:

❑ getNamedItemNS()

❑ setNamedItemNS()

❑ removeNamedItemNS()

N – NamedNodeMap.getNamedItem() (Method)

1479

DOM 2 standardization is not quite stable and no browsers support it yet. At this time, browsers
have reached DOM level 1 capabilities and we can expect support for these namespace extensions
in the next round of browser upgrades.

See also: Collection object, DOM, DOM – Level 1, Node object,
Node.attributes[], NodeList object

Property JavaScript JScript N IE Opera DOM Notes

length 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Method JavaScript JScript N IE Opera DOM Notes

getNamedItem() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
item() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + Warning
removeNamedItem() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
setNamedItem() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Inheritance chain:
Array Object

Web-references:
http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1074577549

NamedNodeMap.getNamedItem() (Method)
Given the name of a node, it can be extracted from the collection by name.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNamedNodeMap.getNamedItem(aName)

Argument list: aName The name of the node to be accessed

If a node having the specified name exists in the node map, the a reference to it will be returned. If
there is no matching node, a null will be returned instead.

It isn't clear what happens if there are duplicate nodes with the same name. Some implementations
may choose to return a collection of all nodes with a matching name.

http://www.w3.org/TR/REC-DOM-Level-1/level-one-core.html#ID-1074577549

JavaScript Programmer's Reference

1480

NamedNodeMap.item() (Method)
The usual collection access by item number also applies to named node maps.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNamedNodeMap.item(anIndex)

Argument list: anIndex A reference to an element in a collection

This accesses nodes by their position in the linear sequence of nodes within the map. The index
value is zero-based so if the value specified is equal to or greater than the number of nodes in the
map, a null value will be returned instead.

Warnings:
❑ Note that the item() method for a NamedNodeMap is spelled with a lower case i. The MSIE

Collection class also has an Item() method that provides similar (but not identical) ways of
accessing items in a collection. Note that Collection.Item() is spelled with a capital I.

See also: Collection.Item()

NamedNodeMap.length (Property)
The number of members in the named node map is returned by this property.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myNamedNodeMap.length

This is zero-based length of the NamedNodeMap collection/array. It allows you to enumerate
through the collection with a for(...) loop, visiting each node in turn.

N – NamedNodeMap.removeNamedItem() (Method)

1481

NamedNodeMap.removeNamedItem() (Method)
Given that you know the name of an item, you can locate and remove it from the collection. If
necessary, the item is replaced by another containing the default attribute settings.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNamedNodeMap.removeNamedItem(aName)

Argument list: aName An associative array reference

The value returned is a reference to the node that was removed. The same rules used for the
getNamedItem() method apply. If no item is found then a null is returned instead. Multiple
matching nodes may result in unpredictable and implementation-specific results.

If this node is not referred to by any other means and you do not assign the value to a variable,
then the node will become detached and no longer has an owner. You will have no way to locate
that node again without reconstructing the document. The object representing the node should in
due course be garbage-collected automatically.

NamedNodeMap.setNamedItem() (Method)
A node is added to the collection having the specified node name. Any node already present with
that name will be replaced.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNamedNodeMap.setNamedItem(aNode)

Argument list: aNode The node to be set

If a replacement happens, the old node that occupied the same position in the document and which
was displaced by the new node will be returned as a result of this method call.

If you need to access that node again, you must make sure a reference to it is retained otherwise
you will need to reconstruct the document from scratch to manufacture another.

JavaScript Programmer's Reference

1482

Namespace (Definition)
A table where identifiers are stored.

A namespace behaves like a dictionary table where lexically sorted items can be stored. There may
be several namespaces. Each namespace is distinct from any other and so a particular value may be
present in more than one namespace and may mean a different thing in each.

For example, the collection of properties belonging to an object class is referenced via a namespace.
Each class maintains a separate namespace and so a property with a particular name can be added
to several objects without any collisions.

The namespace where variable names and functions belong is also the same namespace where
reserved words and keywords are accessed. Or at least this is the conceptual idea, when the standard
recommends that you should not name your identifiers with the same value as a reserved word.

A namespace could be conceived as a particular directory within a file system or a set of object ID
names within a document model. All of these operate with typical namespace behaviors regarding
collisions between dissimilar objects having the same name.

Namespace pollution can be alleviated by prefixing the names of certain kinds of objects. You
might have two functions that create named items in a namespace and to ensure they do not
operate on each other's entities, they could each add a different prefixing letter to the entity names.

Style sheets use namespaces as well to indicate different functionality during the cascading process.

The scope-chain rules of execution contexts within a JavaScript allow for namespaces to be
expanded and collapsed as functions are called and executed. Variables can be created with a scope
that is local to within a specific function. However the scope-chain mechanism allows the
namespace to be layered and cascaded so that a reference to an identifier that is not local to the
function but exists higher up the scope chain is still reachable. This means that the namespace for
variables in JavaScript operates in a tree-like manner.

You may find in some implementations that there are small variations in the namespace behavior.
Historically, language developers have found this to be a contentious area. In particular, there was
a stage during the development of the C language standard where members of all structures were
considered to live within the same namespace. Fortunately, the standard rejects this model and
members of structures live in separate namespaces, one per structure. So it should be for objects in
JavaScript, given the caveat that prototype inheritance can cloud the issue and a prototype tree for
objects operates essentially in the same way as the scope chain does for functions.

Typically the object, method and property names are spelled inconsistently for some items. There
are wide spread inconsistencies in the JavaScript language implementations. Although the core
language is specified reasonably consistently, the browser manufacturers have added a large
number of extensions that do not follow consistent naming conventions.

N – NaN (Constant/static)

1483

root

f1 f2

f1.1 f1.2

f1.1.1 f1.1.2

See also: Identifier, Member, OBJECT.name, Prototype Based Inheritance,
Scope chain

NaN (Constant/static)
A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 2.0
Internet Explorer – 4.0
Netscape – 4.06
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: - NaN

The primitive value NaN represents the IEEE 754 "Not-a-Number" value. This is returned when the
result of an evaluation is known to yield a numeric value but its magnitude and sign is uncertain.
Because the value is numeric but uncertain, you cannot compare NaN with anything else (including
itself). However you can test for its existence with the isNaN() function.

In IEEE 754, there are many millions of possible values for NaN. In ECMA-compliant JavaScript
interpreters, they are all collected together and referred to as a single value. This means you
cannot distinguish the reason for the NaN error as you may be able to in other languages that
use IEEE 754 arithmetic.

JavaScript Programmer's Reference

1484

It is possible in the hosting environment to provide additional facilities to determine what sort of
NaN values you have. This is implementation dependant however and not part of the standard.

If you are in an environment that does not have the NaN value implemented, then you may be able
to create one yourself like this:

var NaN = 0/0;

The value has existed since JavaScript 1.1 but it was given a property name in JavaScript 1.3.
Therefore from scripting point of view, its availability is defined as JavaScript 1.3 and not 1.1.

Warnings:
❑ Be careful not to assign your own values to this variable. You can corrupt it in some

implementations. In MSIE version 5 for Macintosh, assigning a value to the global NaN value
changes its setting but leaves Number.NaN unaffected. You cannot modify Number.NaN.

❑ Version 3.02 of MSIE with JScript version 1.0 silently converts NaN values to zero. It does not know
what NaN is.

❑ Netscape 2.02 cannot tell the difference between null and undefined.

❑ This constant is available as a property of the Global object in MSIE version 4 but not in Netscape 4.

See also: Arithmetic constant, Exception, Global object, Global special variable, IEEE 754,
Infinity, isNaN(), Not a Number, null, Number, Number.NaN, Range error, Special
number values, Value property

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 4.3.23

ECMA 262 edition 2 – section – 15.1.1.1

ECMA 262 edition 3 – section – 4.3.23

ECMA 262 edition 3 – section – 15.1.1.1

Wrox Instant JavaScript – page – 14

native (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

N – Native feature (Definition)

1485

Native feature (Definition)
That which is supported in the base level of the language.

Native features are those that are defined in the ECMA-262 standard (ECMAScript). That is
anything that is fundamentally and solely JavaScript.

Hooks to activate some piece of hardware or database loading facilities and document objects are
not considered fundamental and are therefore not native features of the language.

Adding two numbers together, instantiating objects with a new operator, or concatenating strings
are fundamental, even if the objects being instantiated are host objects. The functionality is native
because the new operator is a native capability of the language. You can instantiate any object of
any type with the new operator as long as there is a constructor function available.

However, some implementations may provide enhancements to the native features without them
being classified as host environment capabilities. These might be additional operators or extra
function in the Math object for example. Maybe you could do more sophisticated things with
String objects. This all fits under the category of enhancements to the fundamental language.

See also: ECMAScript, JavaScript language

Cross-references:
Wrox Instant JavaScript – page – 12

Native object (Definition)
One of the built-in objects that the core implementation provides.

Availability: ECMAScript edition – 2

A native object is any object supplied by the interpreter that is not considered part of the hosting
environment.

Some native objects are built into the core interpreter while others may be constructed by executing
script code. These are sometimes called built-in objects.

Here is a list of native object types that all ECMA-compliant interpreters must support:

❑ Array

❑ Boolean

❑ Date

❑ Function

❑ Math

❑ Number

❑ Object

❑ String

JavaScript Programmer's Reference

1486

The Global object is added to the scope chain of a program when it commences execution. Other
built-in objects are accessible as initial properties of the Global object. Some of these are added as
core functionality and are available in all implementations. Others are added as host objects
defined differently for each implementation.

Many built-in objects are functions. They can be invoked with arguments. Some of these are
constructors; most are associated with objects so that they can be used as methods. These are
functions that are intended to be used with the new operator.

See also: Array object, Boolean object, Built-in function, Built-in
object, Cast operator, Date object, Function object, Global
object, Math object, Navigator.appVersion, Number object,
Object object, prototype property, String object

Cross-references:
ECMA 262 edition 2 – section – 4.3.6

ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 2 – section – 15

ECMA 262 edition 3 – section – 4.3.6

ECMA 262 edition 3 – section – 8.6.2

ECMA 262 edition 3 – section – 15

navigate() (Method)
Load a new URL into the window.

Availability: JScript – 1.0
Internet Explorer – 3.02

Property/method value type: undefined

IE myWindow.navigate(aURL)
JavaScript syntax:

IE navigate(aURL)

Argument list: aURL A new location to navigate the window to

Warnings:
❑ This is variously referred to as a navigate() method and a Navigate() method. Note the

different capitalization.

❑ According to some (but not all) Microsoft documentation on this, it is also a shortcut to the
navigateFrame() method. However, this is at variance with the coverage under DHTML, which
does not mention navigateFrame() at all.

Refer to:
Window.navigate()

N – navigator (Property)

1487

navigator (Property)
An alias for the window.navigator property.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera – 3.0

Property/method value type: Navigator object

- myWindow.navigator
JavaScript syntax:

- navigator

See also: Cross-platform compatibility, Window.clientInformation,
Window.navigator

Property attributes:
ReadOnly.

Navigator object (Object/browser)
An object that contains properties that describe the browser (a.k.a. user agent or client).

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

- myWindow.navigator
JavaScript syntax:

- navigator

Object properties:
appCodeName, appMinorVersion, appName,
appVersion, browserLanguage, constructor,
cookieEnabled, cpuClass, language, onLine,
opsProfile, platform, securityPolicy,
systemLanguage, userAgent, userLanguage,
userProfile

Object methods:
javaEnabled(), plugins, preference(),
savePreferences(), taintEnabled()

Collections: mimeTypes[], plugins[]

The navigator object is named after Netscape Navigator but is also present in other browsers
since it has become the defacto standard way of enquiring as to a browser's provenance.

JavaScript Programmer's Reference

1488

You can inspect the various properties belonging to the navigator object and establish the name
and type of the browser, its version, and the platform it is running on.

The navigator object is available as a property of the window and also the Global object but it
will be the same navigator object. There is only one and you cannot instantiate another.

As this object is persistent, you might add properties to it that can be passed from window to
window. However this will only work on Netscape, because MSIE seems to initialize a new
navigator object for each window. MSIE does allow you to add properties to the navigator
object but they are private to that window. Netscape shares them across windows. The example
shows how to make this work.

You can accomplish the same thing in a cross-browser portable manner by using a frameset and
storing properties in the top-level frameset's Global object. You can also (if security allows) write
scripts to communicate between windows, in which case you may need to make sure the scripts are
aware of multiple document objects as well as windows. This can get tricky and you may need to
make sure the scripts run in the correct windows and return a value to a caller. This should ensure
they run in the correct scope.

Netscape 6.0 provides a sidebar, which you should expect to be persistent. There's a similar sidebar
in MSIE too. Netscape clearly intends you to script its sidebar but right now the implementation is
a bit buggy. It might be too much to hope for, but digging into the internals of these suggests that
RDF is involved, which may point to some commonality. Maybe we will be able to use the sidebar
in the browsers as a repository for session storage, or persistent values that we can access from
script, but it's not there and working yet.

Warnings:
❑ You cannot enumerate the properties of the navigator (clientInformation) object in

MSIE version 4.5 for Macintosh. This may apply to other platform implementations of MSIE
version 4.5 as well.

❑ The navigator object is much better supported in version 5.0 of MSIE for Macintosh, which was
released in the Spring of 2000.

❑ The example below was found not to work on Netscape 6, due to bugs.

Example code:
<!-- Save this in navigator.html -->

<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
navigator.myNewProperty = "session global value";
open("navigator1.html");
</SCRIPT>
</BODY>
</HTML>

N – Navigator object (Object/browser)

1489

<!-- Save this in navigator1.html -->
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
document.write(navigator.myNewProperty);
</SCRIPT>
</BODY>
</HTML>

See also: Cross platform compatibility, Window.navigator

Property JavaScript JScript N IE Opera HTML Notes

appCodeName 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - ReadOnly
appMinorVersion - 3.0 + - 4.0 + - - Warning,

ReadOnly
appName 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - ReadOnly
appVersion 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - ReadOnly
browserLanguage - 3.0 + - 4.0 + - - Warning,

ReadOnly
constructor 1.2 + - 4.0 + - - - Warning
cookieEnabled 1.5 + 3.0 + 6.0 + 4.0 + - - ReadOnly
cpuClass - 3.0 + - 4.0 + - - ReadOnly
language 1.2 + - 4.0 + - 5.0 + - Warning,

ReadOnly
onLine - 3.0 + - 4.0 + - - ReadOnly
opsProfile - 5.0 + - 5.0 + - - Warning,

ReadOnly
platform 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - ReadOnly
securityPolicy 1.4 + - 4.7 + - - - Warning,

ReadOnly
systemLanguage - 3.0 + - 4.0 + - - Warning,

ReadOnly
userAgent 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - Warning,

ReadOnly
userLanguage - 3.0 + - 4.0 + - - Warning,

ReadOnly
userProfile - 3.0 + - 4.0 + - - ReadOnly

Method JavaScript JScript N IE Opera HTML Notes

javaEnabled() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - -
plugins 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - Warning
preference() 1.2 + 3.0 + 4.0 + 4.0 + - - Warning
savePreferences() 1.2 + - 4.0 + - - - Warning
taintEnabled() 1.1 + 3.0 + 3.0 + 4.0 + 5.0 + - Warning,

Deprecated

JavaScript Programmer's Reference

1490

Navigator.appCodeName (Property)
The codename for the browser.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - navigator.appCodeName

This is generally used for internal purposes and is often just another name for the browser. Because
these properties are mostly evolved rather than thought out logically, there is a great deal of
duplication and ambiguity in the navigator object.

Most browsers appear to report that their code name is 'Mozilla'.

Property attributes:
ReadOnly.

Navigator.appMinorVersion (Property)
A version value supported by MSIE.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE navigator.appMinorVersion

This is the version code following the dot. Thus version 5.0 of MSIE would yield the value 0. At
least that is the theory. MSIE version 4.5 for Macintosh also yields the value 0 for this property.

Warnings:
❑ Be wary of the value returned by this property on MSIE. It may not be consistent with what you

expect. Bug fixes and patches are normally not reflected in this value although you can parse
appVersion or userAgent for further information and in the MSIE browser you can also get
access to script engine version and build number values.

See also: ScriptEngine(), ScriptEngineBuildVersion(),
ScriptEngineMajorVersion(),
ScriptEngineMinorVersion()

Property attributes:
ReadOnly.

N – Navigator.appName (Property)

1491

Navigator.appName (Property)
The generic type or model name of the web browser.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - navigator.appName

This is the name of the web browser with no version numbering information. It is not necessarily
the same as the application code name property.

Here are some example values:

❑ Netscape

❑ Microsoft Internet Explorer

Property attributes:
ReadOnly.

Navigator.appVersion (Property)
The version and release information for the browser.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - navigator.appVersion

This is the full version string for the browser.

Here are some typical values:

❑ 4.7 (Macintosh; I; PPC)

❑ 4.0 (compatible; MSIE 4.5; Macintosh; U; PPC)

❑ 4.0 (compatible; MSIE 5.0; Macintosh; I; PPC)

Note that Netscape provides a version number in the form X.XX while MSIE only describes
to X.X accuracy.

JavaScript Programmer's Reference

1492

See also: Native object

Property attributes:
ReadOnly.

Navigator.browserLanguage (Property)
The national language variant of the browser.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE navigator.browserLanguage

This is a value you can check to ensure the user is operating a suitably configured browser for your
pages. Nationality settings can affect many aspects of the script behavior such as:

❑ Font character sets

❑ Currency symbols

❑ Sort collation sequences

❑ Searching and comparing of strings

Refer to the Language codes topic for a list of the available codes.

This property is available in MSIE only. For scripts running in the Netscape browser, you should
use the Navigator.language property.

See also: Language codes, Navigator.language

Property attributes:
ReadOnly.

Navigator.browserLanguage (Property)
The national language version supported by the MSIE browser.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: - navigator.language

N – Navigator.constructor (Property)

1493

The value stored in this property will be the international standard code for languages. This may
not be the same as the values specified in the ISO 3166 standard but it should conform to the ISO
639 standard, which allocates two and three letter codes to countries.

Refer to the Language codes topic for a list of the available codes.

This is equivalent to the Navigator.language property in the Netscape browser.

Warnings:
❑ Beware that use of this property name for some objects describes a scripting language and not an

international language variant.

❑ On MSIE, this value is returned by the browserLanguage property of the Navigator object.

See also: Element.lang, Language codes,
Navigator.browserLanguage, Navigator.language,
Navigator.systemLanguage, Navigator.userLanguage

Property attributes:
ReadOnly.

Navigator.constructor (Property)
A constructor for creating new navigator objects.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Navigator object

JavaScript syntax: N navigator.constructor

Netscape supports a constructor property for the Navigator object. You won't find very many
circumstances where you will need to create a new instance of the Navigator object.

This is another example of where the generic approach to creating objects that Netscape employs
may be less optimal than the special individually-coded objects support that MSIE employs (even
though it leads to a more bulky implementation).

Warnings:
❑ Because Netscape supplies a constructor for virtually every object type that it supports, there is a

constructor for the Navigator object class. However, trying to access the
navigator.constructor value is quite hard. There seems to be a bug in its implementation that
prevents it being converted to a primitive. However it still responds to a request for its name or
prototype properties.

JavaScript Programmer's Reference

1494

❑ Since this object behaves in this strange way, building general-purpose scripts that access
constructors is quite hard. During our research, several general purpose inspector scripts
were written. One that examined constructors worked on most objects but failed on the
Navigator object.

❑ This may be a scope-chain problem, because if you pass a Navigator object to a function in
one of its arguments, then accessing the constructor of that argument may yield the source text
of the function. This problem is manifested in Netscape 4.7 for Macintosh and may be extant
on other platforms.

❑ This doesn't seem to affect whether the other properties that the Navigator object supports can be
enumerated in a for(... in ...) loop.

Navigator.cookieEnabled (Property)
A flag value indicating whether cookies are available or not.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - navigator.cookieEnabled

You can use this property to check whether the user has enabled cookie support. The content of this
property will be the Boolean true or false value. This may affect the way that you treat the user
when they access your site.

Property attributes:
ReadOnly.

Navigator.cpuClass (Property)
An indication of what sort of processor is in the hardware.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE navigator.cpuClass

This property reports the following types of CPU:

❑ x86

❑ PPC

N – Navigator.javaEnabled() (Method)

1495

The x86 value would be yielded on systems running on an Intel processor such as a Pentium or
when running a web browser inside a PC emulator on a Macintosh. The PPC value would be
returned when running the browser as a native application in the Macintosh.

Property attributes:
ReadOnly.

Navigator.javaEnabled() (Method)
A method that tells you whether Java support is enabled in the browser or not.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - navigator.javaEnabled()

You can use this property to check whether the user has enabled Java applet support. The value
returned by this method will be the Boolean true or false primitive. This may affect the way that
you treat the user when they access your site.

Navigator.language (Property)
The national language version supported by the browser.

Availability: JavaScript – 1.2
Netscape – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - navigator.language

The value stored in this property will be the international standard code for languages. This may
not be the same as the values specified in the ISO 3166 standard but it should conform to the ISO
639 standard, which allocates two and three letter codes to countries.

Refer to the Language codes topic for a list of the available codes.

Warnings:
❑ Beware that use of this property name for some objects describes a scripting language and not an

international language variant.

❑ On MSIE, this value is returned by the browserLanguage property of the Navigator object.

JavaScript Programmer's Reference

1496

See also: Element.lang, Language codes,
Navigator.browserLanguage,
Navigator.systemLanguage,
Navigator.userLanguage

Property attributes:
ReadOnly.

Navigator.mimeTypes[] (Collection)
This property returns an array of supported MIME types.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

JavaScript syntax: - navigator.mimeTypes

The MIME type array is a sub-class of the built-in Array class. It is called a MimeTypeArray.

Here is a list of MIME types supported in recent versions of MSIE and Netscape:

Type Description

application/mac-binhex40 Macintosh BinHex Archive

application/macbinary MacBinary application

application/msword Microsoft Word Document

application/pdf Adobe Portable Document Format (PDF)

application/postscript PostScript File

application/rtf Rich Text Format File

application/sdp Session Description Protocol

application/smil SMIL Document

application/streamingmedia Standard Streaming Metafile

application/vnd.ms-excel Microsoft Excel Worksheet

application/vnd.ms-powerpoint Microsoft PowerPoint Presentation

application/vnd.rn-realmedia RealMedia File

application/vnd.rn-realplayer RealPlayer File

application/vnd.rn-realsystem-rjs RealSystem Skin

application/vnd.rn-realsystem-rmx RealSystem Secure Media Clip

application/vnd.rn-rn_music_package RealJukebox Music Package

application/vnd.rn-rsml RealSystem ML File

application/wordperfect5.1 WordPerfect PC 5.1 Doc

Table continued on following page

N – Navigator.mimeTypes[] (Collection)

1497

Type Description

application/x-compress Unix Compressed (.z) Files

application/x-director Shockwave

application/x-dvi TeX DVI Document

application/x-javascript JavaScript Program

application/x-macbinary MacBinary File

application/x-rtsp Real Time Streaming Protocol

application/x-sdp Scalable Multicast

application/x-stuffit Macintosh StuffIt Archive

application/x-tar Unix TAR Archive

application/zip ZIP Archives

audio/basic ULAW/AU Audio

audio/mid MIDI

audio/mp3 MP3 Audio

audio/mpeg MPEG audio stream

audio/mpegurl MP3 PlayLists (.m3u,.pls)

audio/mpg MP3 Audio

audio/scpls MP3 PlayLists (.m3u,.pls)

audio/vnd.qcelp QCP Audio

audio/vnd.rn-realaudio RealAudio Clip

audio/x-aiff AIFF Audio

audio/x-mp3 MP3 Audio

audio/x-mpeg MPEG audio stream

audio/x-mpegurl MP3 PlayLists (.m3u,.pls)

audio/x-mpg MP3 Audio

audio/x-pn-realaudio RealPlayer File

audio/x-scpls MP3 PlayLists (.m3u,.pls)

audio/x-wav WAV Audio

image/gif GIF Image

image/ief IEF image

image/jpeg JPEG Image

image/pict PICT Image

image/png PNG Image

image/tiff TIFF Image

image/vnd.rn-realflash RealFlash Clip

image/vnd.rn-realpix RealPix Clip

image/x-pict PICT Image

image/x-portable-bitmap Portable Bitmap (PBM)

Table continued on following page

JavaScript Programmer's Reference

1498

Type Description

image/x-portable-graymap Portable Graymap (PGM)

image/x-portable-pixmap Portable Pixmap (PPM)

image/x-quicktime QuickTime Image

image/x-rgb SGI RGB Image

image/x-xbitmap X Bitmap Image

image/x-xpixmap X-Windows Pixmap

text/html HTML Document

text/plain Text File

text/vnd.rn-realtext RealText Clip

video/mpeg MPEG video/audio stream

video/msvideo Microsoft Video

video/quicktime QuickTime Movie

video/vnd.rn-realvideo RealVideo Clip

video/x-msvideo Microsoft Video

Some MIME types are only supported by Netscape:

Type Description

application/fractals Fractal Image Format

application/futuresplash FutureSplash Player

application/gzip application/gzip

application/java-archive Java Archive

application/ms-powerpoint application/ms-powerpoint

application/octet-stream Binary Executable

application/pre-encrypted Pre-encrypted Data

application/vnd.lotus-1-2-3 Lotus 123 Document

application/vnd.lotus-approach Lotus Approach Document

application/vnd.lotus-freelance Lotus Freelance Document

application/vnd.lotus-organizer Lotus Organizer Document

application/vnd.lotus-screencam Lotus ScreenCam Movie

application/vnd.lotus-wordpro Lotus WordPro Document

application/vnd.ms-access Microsoft Access Database

application/vnd.ms-schedule Microsoft Schedule+ Application

application/x-authorware-map Authorware

application/x-compressed application/x-compressed

application/x-conference application/x-conference

application/x-cpio Unix CPIO Archive

application/x-csh C Shell Program

Table continued on following page

N – Navigator.mimeTypes[] (Collection)

1499

Type Description

application/x-excel application/x-excel

application/x-fortezza-ckl Compromised Key List

application/x-gtar GNU Tape Archive

application/x-javascript-config JavaScript Config

application/x-latex LaTeX Document

application/x-ns-proxy-autoconfig Proxy Auto-Config

application/x-perl Perl Program

application/x-pkcs7-crl Certificate Revocation List

application/x-pkcs7-mime PKCS7 Encrypted Data

application/x-pkcs7-signature PKCS7 Signature

application/x-sh Bourne Shell Program

application/x-shar Unix Shell Archive

application/x-shockwave-flash Shockwave Flash

application/x-tcl TCL Program

application/x-tex TeX Document

application/x-texinfo GNU TeXinfo Document

application/x-zip-compressed Zip Compressed Data

audio/rmf audio/rmf

audio/x-rmf audio/x-rmf

image/x-cmu-raster CMU Raster Image

image/x-MS-bmp Windows Bitmap

image/x-photo-cd PhotoCD Image

image/x-portable-anymap PBM Image

image/x-xwindowdump X Window Dump Image

Netscape/Source Special file type

Netscape/Telnet Netscape/Telnet

Netscape/tn3270 Netscape/tn3270

text/x-vcard VCard

video/x-mpeg2 MPEG2 Video

video/x-qtc video/x-qtc

These MIME types are supported only by MSIE:

Type Description

application/applefile AppleSingle file

application/AppleLink AppleLink Package

application/ArcMac PC ARChive

Table continued on following page

JavaScript Programmer's Reference

1500

Type Description

application/BBEdit ML Source

application/binary Application Binary Data

application/Canvas Canvas Drawing

application/cdf Channels

application/CodeWarrior Java Class File

application/Compact_Pro Compact Pro Archive

application/DeArj ARJ Archive

application/DiskCopy Apple DiskCopy Image

application/Envoy Envoy Document

application/Excel Lotus Spreadsheet r2.1

application/FileMaker_Pro FileMaker Pro Database

application/FileMaker_Pro_3 FileMaker Pro Database

application/Finder OpenType Font

application/FoxBase+ DBase Document

application/GraphicConverter Animated NeoChrome

application/HexEdit Untyped Binary Data

application/JPEGView OS/2 Bitmap

application/MacAmp MPEG-1 Layer 3

application/MacAnim_Viewer DL Animation

application/MacBooz Zoo Archive

application/MacLHA LHArc Archive

application/macwriteii MacWrite Document

application/Microsoft_Word Word for Windows Template

application/MoviePlayer DV Video

application/netcdf Channels

application/oda ODA Document

application/PageMaker PageMaker 3 Document

application/PF_Encrypt Private File

application/pgp-keys PGP Key File

application/Photoshop PhotoShop Document

application/PictureViewer OS/2 Bitmap

application/PlayerPro 669 MOD Music

application/QuarkXpress QuarkXpress Document

application/Replica Replica Document

application/ResEdit Resource File

application/self-extracting Self-Extracting Archive

application/Self_Extracting_Archive Self-Extracting Archive

application/SimpleText Apple documentation file

Table continued on following page

N – Navigator.mimeTypes[] (Collection)

1501

Type Description

application/SoftWindows MS-DOS Executable

application/SoundApp Amiga OctaMed music

application/SoundHack IRCAM Sound

application/StuffIt StuffIt Archive

application/StuffIt_Expander PackIt Archive

application/SunTar Unix BAR Archive

application/vnd.fdf Forms Data Format

application/waf Website Archive

application/WordPerfect WordPerfect PC 4.2 Doc

application/x-cdf Channels

application/x-gocserve CompuServe Inbound Link to CIM 3.0

application/x-gzip GZIP File

application/x-hdf HDF Data File

application/x-netcdf Channels

application/x-sgml SGML Document

application/x-x509-ca-cert Certificates

application/xml HTML Document

audio/aiff AIFF Audio

audio/midi MIDI

audio/wav WAV Audio

audio/x-midi MIDI

audio/x-pn-realaudio-plugin RealPlayer Plugin

image/x-bmp Windows BMP Image

image/x-fits Flexible Image Transport

image/x-macpaint MacPaint Image

image/x-macpict PICT Picture

image/x-pbm Portable Bitmap

image/x-pgm Portable Graymap

image/x-photoshop Photoshop Image

image/x-png PNG Image

image/x-ppm Portable Pixmap

image/x-sgi SGI Image

image/x-targa Targa Truevision Image

image/x-tiff TIFF Image

image/x-xbm X-Windows Bitmap

image/x-xpm X-Windows Pixmap

image/x-xwd X-Windows Dump

Table continued on following page

JavaScript Programmer's Reference

1502

Type Description

image/xbitmap X Bitmap Image
image/xbm X Bitmap Image
message/external-body URL Bookmark
text/cdf Channels
text/css Text File
text/javascript Text File
text/Jscript Text File
text/url URL File
text/vbs Text File
text/vbscript Text File
text/x-cdf Channels
text/xml HTML Document
video/avi Microsoft Video
video/flc FLC Animation
video/x-mpeg MPEG video/audio stream
x-world/x-3dmf QuickDraw 3D File
x-world/x-vrml VRML File

The example inspects the available MIME types. For each one, it will display these properties (note
that only one is shown as an example):

type:audio/x-rmf

description:audio/x-rmf

suffixes:rmf

enabledPlugin:[object Plugin]

Warnings:
❑ In MSIE version 4.5 for Macintosh, this returns the undefined value and therefore you cannot

establish the MIME types that the browser will support. In MSIE for other platforms a null value
may be returned.

❑ In Netscape the array element property name values are the same as the type name. In MSIE version
5, the values are simply the numeric index. This may affect the way that you access the array.
However, you can access the type property of each element in the array and if you check that, you
should be able to build a portable script.

❑ MSIE and Netscape support different sets of MIME types. Some are supported on both and some
only on one. They also differ somewhat in the textual description of the MIME type so it is really
only safe to test the type property and ignore the description property.

❑ If you write an inspector script to dump the array values out to the screen, you may observe that
some types do not have a descriptive name and in a couple of cases, a MIME-type exists with a name
but no correctly defined type value. This may be version- and platform-specific. The values reported
by this array may also be modified according to what you do in the preferences panels regarding the
mapping of file types to helper applications.

N – Navigator.onLine (Property)

1503

❑ Many MIME types that are browser-specific may actually be similar to MIME types in other
browsers. Because these are created and defined by different browser manufacturers there are
always likely to be some browser-dependent differences.

❑ The associative array technique may not always work across browsers.

Example code:
<!-- Show all mime types installed -->
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
for (var myIndex=0; myIndex<navigator.mimeTypes.length; myIndex++)
{
 for (var myProperty in navigator.mimeTypes[myIndex])
 {
 document.write(myProperty);
 document.write(":");
 document.write(navigator.mimeTypes[myIndex][myProperty]);
 document.write("
");
 }
 document.write("<HR>");
}
</SCRIPT>
</BODY>
</HTML>

See also: MimeType object, MimeTypeArray object

Property attributes:
ReadOnly.

Navigator.onLine (Property)
This property tells you whether the browser is online to a network.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE navigator.onLine

If you select the work offline mode then this property will return false. It returns true when you
go back online. This allows you to write scripts that will operate differently when they are being
executed in an offline session.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1504

Navigator.opsProfile (Property)
An undocumented property of the Navigator object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Undefined

JavaScript syntax: IE navigator.opsProfile

This property is visible when the Navigator object is placed in a enumerating for(... in ...
) loop. However, there does not appear to be any documentation available on what it is used for.
Its name suggests that it might be something to do with user preferences.

It seems to be available only on some versions and platforms. It shows up on MSIE version 5.0 for
Macintosh but not on Windows.

Warnings:
❑ This yields the undefined value in MSIE and Netscape .

Property attributes:
ReadOnly.

Navigator.platform (Property)
The name of the hardware or operating system that the browser is running on.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - navigator.platform

Using this property to optimize the page content for the platform can yield some benefits in
performance at the expense of a little more work required to develop the site content.

Here are some possible values for this property:

❑ Win16

❑ Win32

❑ MacPPC

❑ Mac68K

N – Navigator.plugins.refresh() (Method)

1505

Other values will be received by users of Unix systems.

This at least lets you distinguish between users running on one of the modern versions of Windows
vs. a Macintosh user, or a user of an older platform. You can then opt to present simpler content
with less client-side rendering effort on a lesser platform.

Property attributes:
ReadOnly.

Navigator.plugins.refresh() (Method)
Refresh all the plugins in the current page.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

JavaScript syntax: - navigator.plugins.refresh()

This is not strictly a direct method belonging to the Navigator object but it is helpful to remind
you about it if you are looking at the Navigator.plugins property.

Calling this method is recommended if you suspect that a new plugin has been installed since the
current browsing session was started. Actually, this is likely to happen quite rarely, but
nevertheless, calling Navigator.plugins.refresh() as a matter of course at the start of your
plugin access script will not cause any undue harm.

Navigator.plugins[] (Collection)
An array of the plugins currently installed into the browser.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

JavaScript syntax: - navigator.plugins

The object returned is a sub-class of the Array object. It is a PluginArray.

Here is a list of some plugins displayed by using JavaScript to unwrap the plugins array:

❑ Headspace Beatnik Helper Stub Plugin V1.0.1

❑ LiveAudio

❑ Shockwave for Director

JavaScript Programmer's Reference

1506

❑ PDFViewer

❑ QuickTime Plug-in 4.1

❑ RealPlayer(tm) G2 LiveConnect-Enabled Plug-in (Mac)

❑ Shockwave Flash

The default plugin has been omitted since it is always there. However note that it is not always
spelled the same in all browsers. If you are displaying a list of plugins to the user, then be careful
how you eliminate unwanted items.

You may check for the existence of a plugin using the following logical expression:

(navigator.plugins["TheRequiredItem"] != null)

However, this may not always work due to the naming conventions.

The example enumerates some plugins and of course the output depends on the plugins you have
installed. You might typically see something like this listed:

❑ Headspace Beatnik Helper Stub Plugin V1.0.1

❑ Default Plug-in

❑ LiveAudio

❑ Shockwave for Director

❑ PDFViewer

❑ QuickTime Plug-in 4.1

❑ RealPlayer(tm) G2 LiveConnect-Enabled Plug-in (Mac)

❑ Shockwave Flash

Warnings:
❑ This sometimes yields the undefined value and therefore it is impossible to determine which

plugins are supported in MSIE version 4.5 for Macintosh and other browser/platform combinations
that do not support the plugins array.

❑ If this is supported in a target browser you are writing scripts for, the exact results will depend on
the user's configuration. There is enormous scope for users to install a variety of free and
downloadable plugins from the web. There is no guarantee as to what plugins they will have
installed. Their browser may only report a couple of plugins (theoretically the minimum is just the
one default plugin) or they may have many plugins installed.

❑ The associative array technique may not always work across browsers.

❑ Netscape and MSIE encapsulate plugin/embedded objects in different ways. In MSIE they are
objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class although they are really implemented as JavaObject objects. In MSIE, this is an
ActiveX object.

N – Navigator.preference() (Method)

1507

❑ There is additional confusion in that there is a plugins[] array that belongs to the document and
another than belongs to the navigator object. They both contain collections of objects but of
different types. This is further confused by the fact that the document.plugins[] array is another
name for the document.embeds[] array.

❑ To help clarify this confusing situation, the best recommendation is that we refer to
document.embeds[] and navigator.plugins[] and quietly ignore the
document.plugins[] array. Furthermore we shall refer to Plugin objects as being something
the browser can use to play embedded content and Embed objects will be an instance of a plugin that
is alive and running in a document.

Example code:
<!-- Display all plugin names -->
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
for (var myIndex=0; myIndex<navigator.plugins.length; myIndex++)
{
 document.write(navigator.plugins[myIndex].name);
 document.write("<HR>");
}
</SCRIPT>
</BODY>
</HTML>

See also: Plugin object, PluginArray object

Property attributes:
ReadOnly.

Navigator.preference() (Method)
A mechanism for allowing signed scripts to set a preference value in Netscape .

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

- navigator.preference()

- navigator.preference(aName)
JavaScript syntax:

- navigator.preference(aName, aValue)

aName The name of a preferenceArgument list:
aValue A new value to store in a preference

This is not portable but may be necessary in some captive intranet situations where you know what
the target client is going to be and have some control over it.

Although the method appears to be widely available, the values for specifying user preferences certainly
have not been standardized and the security implications are also not common to all the platforms. You
should be prepared to write some portability support code if you plan to deploy this functionality.

JavaScript Programmer's Reference

1508

Warnings:
❑ You cannot access this method unless the script has the UniversalPreferencesRead privilege.

Setting preferences requires the UniversalPreferencesWrite privilege.

See also:
UniversalPreferencesRead,
UniversalPreferencesWrite

Web-references:
http://developer.netscape.com/library/documentation/deploymt/jsprefs.htm

Navigator.savePreferences() (Method)
Save the preference values for the current user.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N navigator.savePreferences()

Any access to the preferences mechanisms in a browser for any purpose other than reading them
should be treated with some suspicion. It may be preferable to invite the user to adjust a preference
setting rather than to modify it for them. You might affect the behavior of other pages inadvertently.

Warnings:
❑ In Netscape, your script needs to be granted the UniversalPrefrencesWrite privilege before

this call can be executed successfully.

See also: UniversalPreferencesWrite

Navigator.securityPolicy (Property)
An indication of the current security policy settings.

Availability: JavaScript – 1.4
Netscape – 4.7

Property/method value type: String primitive

JavaScript syntax: N navigator.securityPolicy

This property contains the current security policy settings. Examining this property in a browser
session yields the value "Export policy".

Warnings:
❑ This yields the undefined value in MSIE for Macintosh.

http://developer.netscape.com/library/documentation/deploymt/jsprefs.htm

N – Navigator.systemLanguage (Property)

1509

Property attributes:
ReadOnly.

Navigator.systemLanguage (Property)
An MSIE-specific language property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE navigator.systemLanguage

This property describes the system-specified language and country code. It uses the same language
values as the navigator.language property.

Refer to the Language codes topic for a list of the available codes.

The most likely default value you will encounter will be "en" which signifies English but does not
make distinction between UK and US variants. The value is supposed to be case-insensitive.

Warnings:
❑ Note that some platforms will yield a language and country code while others may only yield a

language code.

See also: Element.lang, ISO 3166, Language codes,
Navigator.language, Navigator.userLanguage

Property attributes:
ReadOnly.

Navigator.taintEnabled() (Method)
This feature is no longer recommended. It is part of a now defunct security mechanism.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0
Deprecated

JavaScript syntax: - navigator.taintEnabled()

JavaScript Programmer's Reference

1510

This method is only supported in order to prevent scripts from crashing. The data-tainting support
was a short-lived means of sending data back to a server. The security implications became
unworkable and the whole data-tainting idea was deprecated.

The functionality was removed in JavaScript version 1.2. If you encounter this method in a script
you are maintaining, you should seek to remove it to prevent run-time errors in the future.

If a browser implements this at all, it should return the value false for this method. Some earlier
Netscape browsers may not. This functionality is highly deprecated and you can expect it to cause
run-time exceptions in future.

Warnings:
❑ DO NOT USE THIS FACILITY!

See also: taint(), untaint()

Navigator.userAgent (Property)
The identifying string for this browser.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - navigator.userAgent

This string is returned to a web server in the USER-AGENT: header of an HTTP request. This is often
logged and processed to analyze the distribution of browser types across the user base for a site.

The userAgent string contains much useful information and generally includes everything the
appVersion and appName properties would have told you as well.

Here are some typical values:

❑ Mozilla/4.7 (Macintosh; I; PPC)

❑ Mozilla/4.0 (compatible; MSIE 4.5; Mac_PowerPC)

❑ Mozilla/4.0 (compatible; MSIE 5.0; Mac_PowerPC)

Warnings:
❑ Beware that some customized browsers will encode a variety of strange textual values into their

userAgent property.

N – Navigator.userAgent (Property)

1511

❑ While this will only affect the user of the browser when they run your script, the nature of the
userAgent string may cause your script to fail.

❑ The following unusual values have been encountered in userAgent strings:

❑ - Null characters

❑ - Control characters

❑ - URL strings

❑ - HTML

❑ - C-Code

❑ - JavaScript

❑ - GIF image data

❑ - Very large text blocks

❑ These appear to be intended to cause server difficulties and possibly malfunctions in logging
analysis systems. They may, as a side effect, cause your script to crash and burn too.

Example code:
// A function to normalize the user agent string
function getBrowserType()
{
 var myUserAgent;
 var myMajor;
 myUserAgent = navigator.userAgent.toLowerCase();
 myMajor = parseInt(navigator.appVersion);
 if((myUserAgent.indexOf('mozilla') != -1) &&
 (myUserAgent.indexOf('spoofer') == -1) &&
 (myUserAgent.indexOf('compatible') == -1) &&
 (myUserAgent.indexOf('opera') == -1) &&
 (myUserAgent.indexOf('webtv') == -1))
 {
 if (myMajor > 4)
 {
 return "nav6";
 }
 if (myMajor > 3)
 {
 return "nav4";
 }
 return "nav";
 }
 if (myUserAgent.indexOf("msie") != -1)
 {
 if (myMajor > 4)
 {
 return "ie5";
 }
 if (myMajor > 3)
 {
 return "ie4";
 }

JavaScript Programmer's Reference

1512

 return "ie";
 }
 return "other";
}

alert(getBrowserType());

See also: server.agent

Property attributes:
ReadOnly.

Navigator.userLanguage (Property)
An MSIE specific language property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE navigator.userLanguage

This property describes the user-selected language code. It uses the same language values as the
navigator.language property.

Refer to the Language codes topic for a list of the available codes.

Warnings:
❑ Note that some platforms will yield a language and country code while others may only yield a

language code.

See also: Element.lang, ISO 3166, Language codes,
Navigator.language, Navigator.systemLanguage

Property attributes:
ReadOnly.

N – Navigator.userProfile (Property)

1513

Navigator.userProfile (Property)
This yields a user profile object in MSIE browsers.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: UserProfile object

JavaScript syntax: IE navigator.userProfile

User profiles are available only on MSIE. The same arguments regarding uninvited modification
and possible knock-on effects apply here just as much as they do to Netscape. Even though the
scripting techniques may be different, the consequences may be similar.

See also: vCard object

Property attributes:
ReadOnly.

Negation operator (-) (Operator/unary)
Negate an operand's value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - -anOperand

Argument list: anOperand A numeric value that can be negated

The operand is evaluated and converted to a numeric value. The result is negated.

A positive value becomes negative and a negative value becomes positive.

This is functionally equivalent to:

anOperand *= -1

JavaScript Programmer's Reference

1514

Which is equivalent to:

anOperand = anOperand * -1

And also:

anOperand = 0 - anOperand

Although this is classified as a unary operator, its functionality is really that of an additive operator.

The associativity is from right to left.

Refer to the Operator Precedence topic for details of execution order.

See also: Add (+), Additive expression, Additive operator, Associativity, Decrement value (--
), Operator Precedence, Subtract (-), Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.7

ECMA 262 edition 3 – section – 11.4.7

NES (Product)
An abbreviation for Netscape Enterprise Server.

Refer to:
Netscape Enterprise Server

nethelp: URL (Request method)
A special URL access mode for Netscape help screens.

Availability: JavaScript – 1.2
Netscape – 4.0

This is a special request method provided by the Netscape browser to gain access to local client-
side help resources. The resources are loaded from files that live in a help folder within the folder
containing the browser application. You can access the files with a text editor and study how they
work. They are just plain HTML and JavaScript; however, they provide a quite helpful embedded
help system. In a large enterprise where you control the deployment of the browsers, you may
want to augment the browser help with some internal help pages. You might want to add details of
your help desk and how to contact it for instance.

These special URLs are not present in MSIE although there will be some internal resources in that
browser that may provide customization opportunities in a similar way. Indeed, Microsoft
provides an administrator kit which you can use to customize the browser installation.

N – Netscape Enterprise Server (Product)

1515

You may also be able to obtain admin tools from Netscape and Microsoft to carry out legitimate
customizations on the browsers before deploying them throughout your organization.

This can be called from JavaScript by setting the location.href of a window to a valid
nethelp: location.

Here are some examples:

URL Description

nethelp:netscape/home:start_here Front page of the help system
nethelp:netscape/collabra:HELP_SEC_CERTS_CRYPTOMODS Security help
nethelp:netscape/collabra:HELP_SEC_CERTS_ISSUERS Security help
nethelp:netscape/collabra:HELP_SEC_INFO Security help
nethelp:netscape/collabra:HELP_SEC_PASS_UNSET Security help
nethelp:netscape/collabra:HELP_SEC_PREFS_APPLET Security help
nethelp:netscape/collabra:HELP_SEC_PREFS_MESSENGER Security help
nethelp:netscape/collabra:HELP_SEC_PREFS_NAVIGATOR Security help

Mostly, these special URLs will be useful for debugging. Getting details of the disk cache for
example may be useful. Pulling up the JavaScript debugger page if you detect an error in your
script might also be a cool trick.

This appears to have changed somewhat in Netscape 6.0, which is likely to provide a whole range
of new possibilities. Once the browser is fully debugged and working we can spend many happy
hours inspecting it to discover them.

Warnings:
❑ This is not present in MSIE at all. It displays help using a completely different mechanism altogether.

See also: about: URL, javascript: URL, mailbox: URL, mailto: URL, URL

Netscape Enterprise Server (Product)
A web server that supports JavaScript on the server side.

Server-side scripting is accomplished by enclosing the JavaScript code inside <SERVER> tags in the
HTML. These will be parsed out as the pages is processed and sent onwards. They will be replaced
by the output of the script enclosed in the tags.

The main difference is that where you might have used a document.write() method in the
client-side script, on the server side, you use a write() method.

If the <SERVER> tag remains intact and is forwarded in the document sent onwards to the browser,
the browser should ignore it. However, this could give away much valuable information about the
inside of the server and middle-ware. That could aid the wily hacker in an intrusion attack.

See also: blob object, client object, Connection object, Cursor object, database object,
DbPool object, File object, Lock object, project object, request object, response
object, ResultSet object, SendMail object, server object, Stproc object

mailto:URL

JavaScript Programmer's Reference

1516

Cross-references:
Wrox Instant JavaScript – page – 64

Netscape Navigator (Web browser)
One of the two major web browser platforms.

Netscape has made the source of the Communicator product available (which includes the
Navigator browser). You can download this from the Netscape web site and participate in the
development of the browser project. Netscape 6.0 is only just released for public use but is likely to
contain some bugs.

We refer to this browser consistently as Netscape regardless of whether you are running
Communicator or any other packaged version.

Here is a brief guide to versions of Netscape vs. JavaScript:

Version JavaScript

2.0 JavaScript 1.0

3.0 JavaScript 1.1

4.0 to 4.05 JavaScript 1.2

4.06 to 4.75 JavaScript 1.3

5.0 JavaScript 1.4

6.0 JavaScript 1.5

Note that version 5.0 never shipped although if you search on the web you can find some
installable binaries may satisfy your curiosity regarding browser history. Some reports suggest that
those version 5.0 browsers only supported JavaScript 1.3. Because Mozilla is factored into
components, it’s feasible that you could build any version of the browser with whatever version of
JavaScript you want.

Many values that Netscape exposes as JavaScript properties reflect the value of an HTML tag
attribute. Likewise, many of its special objects are counterparts to the HTML tags. However it does
not map objects so completely or consistently to HTML tags as the MSIE browser. Nor does it
support the attributes and style mechanisms as elegantly.

Where the information is available, we have indicated the version number of JavaScript (or JScript)
when HTML tags and attributes became accessible as objects or properties. In many cases, this may be
a later version than when the instantiating HTML tag or attribute was first supported by the browser.

We constructed many scripts to inspect and enumerate the various properties of the objects in the
MSIE and Netscape browsers. These uncovered many object types and properties that were
hitherto undocumented. They might have been available in earlier versions of the browser.
However, where language elements were discovered for the first time, they are initially
documented as being available from version 4 of Netscape. A limited amount of further testing was
applied where it was suspected that language elements may have been available in earlier releases
and the availability modified accordingly.

N – netscape (Java package)

1517

Version 5 of Netscape was scrapped because its codebase became too unwieldy to work with. There
seems little point in documenting its peculiarities. Netscape version 6.0 was in beta trials and until
PR3 was so unstable and crash-prone that most of our testing bore little fruit. Right at the point
where content was being finalized for publication Netscape 6.0 was released as a final product. It is
clearly still a work in progress and there are quite a few non-working components. It looks good
though. The potential for exercising the DOM standard document navigation is really exciting.
There is a great deal yet to discover about the new browser and it will stabilize as bugs get fixed
and new releases are shipped.

Perhaps browser versions may become less important as they converge on a single standard
benchmark of functionality. For the time being, current practice suggests that version 4 browsers of
both traditions are rapidly being taken over by version 5 MSIE browsers. Version 2 and 3 of MSIE
and Netscape have declined to such small usage levels as to not require any further serious
attempts to support them on new projects. Netscape 6.0 may win back some market share but only
if its bugs are fixed quickly. Version 6.0 of MSIE is about to go to beta testers and the standards
bodies are still some way ahead of the browser manufacturers so there is a long way to go yet.

Warnings:
❑ Netscape 2.02 does not cope gracefully with dollar signs in identifier names.

See also: Identifier, Platform, Script execution, Undocumented features,
Web browser

Cross-references:
Wrox Instant JavaScript – page – 14

Web-references:
http://www.mozilla.org/ http://www.netscape.com/ http://home.netscape.com/browsers/6/index.html

netscape (Java package)
A short-cut reference to the Packages.netscape object. It allows JavaScript to access the Java
class hierarchy to instantiate Java objects.

Availability: JavaScript – 1.1
Netscape – 3.0
Netscape Enterprise Server – 2.0

Property/method value type: JavaPackage netscape

N myWindow.netscape

N myWindow.Packages.netscape

N netscape

JavaScript syntax:

N Packages.netscape

See also: Window.java, Window.netscape, Window.Packages,
Packages.netscape

http://www.mozilla.org/
http://www.netscape.com/
http://home.netscape.com/browsers/6/index.html

JavaScript Programmer's Reference

1518

netscape.applet (Java package)
The root node of the Java hierarchy where the applets are built. A shortcut to the
Packages.netscape.applet package.

Availability: JavaScript – 1.1
Netscape – 3.0

This property returns a Java package that is encapsulated inside a JavaScript object belonging to the
JavaPackage class.

You need to know quite a lot about the underlying Java objects to make use of this because the
properties and methods it supports are not exposed in an enumerable fashion. This means you
would have difficulty in writing a JavaScript inspector to examine these objects.

See also: JavaPackage object

netscape.cfg (Java package)
A new style configuration file for Netscape. Not to be confused with the Packages.netscape
Java classes.

Availability: JavaScript – 1.1
Netscape – 3.0

See also: netscape.lck, Preferences

netscape.javascript (Java package)
A Java package for supporting JavaScript inside Java. A shortcut to the
Packages.netscape.javascript package.

Availability: JavaScript – 1.1
Netscape – 3.0

Refer to:
JavaPackage object

N – netscape.javascript.JSObject (Java class)

1519

netscape.javascript.JSObject (Java class)
The full definition of the JSObject class for encapsulating JavaScript objects in Java. A shortcut to
the Packages.netscape.javascript.JSObject class.

Availability: JavaScript – 1.1
Netscape – 3.0

Class methods: getWindow()

Values of this type are visible to JavaScript as the encapsulated object that was originally passed to
Java. Effectively, the wrapper is removed.

Note that you cannot use this as a constructor. There wouldn't be any point anyway because you
can create JavaScript objects within the JavaScript environment; there is no need to go through the
Java bridge to accomplish that.

See also: Java calling JavaScript, Java to JavaScript values, JavaScript to Java values,
JSObject object

netscape.lck (Java package)
A configuration file as used in older versions of Netscape. Not to be confused with
Packages.netscape.

Availability: JavaScript – 1.1
Netscape – 3.0

This is provided as support for preference management in older versions of Netscape.

See also: Preferences

Cross-references:
Wrox Instant JavaScript – page – 59

netscape.plugin (Java package)
The top of a hierarchy of Java packages that support plugins. This is a shortcut to the
Packages.netscape.plugin package.

Availability: JavaScript – 1.1
Netscape – 3.0

Refer to:
JavaPackage object

JavaScript Programmer's Reference

1520

netscape.plugin.Plugin (Java class)
A special class for encapsulating plugins so they present a common API. This is a shortcut to the
Packages.netscape.plugin.Plugin class.

Availability: JavaScript – 1.1
Netscape – 3.0

HTML syntax: <EMBED>

Object methods:
destroy(), equals(), getClass(), getPeer(), getWindow(),
hashCode(), init(), isActive(), notify(), notifyAll(),
toString(), wait()

See also: <EMBED>, LiveConnect, Plugin object

Method JavaScript JScript N IE Opera Notes

destroy() 1.1 + - 3.0 + - - -
equals() 1.1 + - 3.0 + - - -
getClass() 1.1 + - 3.0 + - - -
getPeer() 1.1 + - 3.0 + - - -
getWindow() 1.1 + - 3.0 + - - -
hashCode() 1.1 + - 3.0 + - - -
init() 1.1 + - 3.0 + - - -
isActive() 1.1 + - 3.0 + - - -
notify() 1.1 + - 3.0 + - - -
notifyAll() 1.1 + - 3.0 + - - -
toString() 1.1 + - 3.0 + - - -
wait() 1.1 + - 3.0 + - - -

netscape.security (Java package)
The top of a hierarchy of Java packages that provide security facilities. This is a shortcut to the
Packages.netscape.security package.

Availability: JavaScript – 1.1
Netscape – 3.0

See also: Security policy, JavaPackage object

N – netscape.security.PrivilegeManager (Java class)

1521

netscape.security.PrivilegeManager (Java class)
Part of the Netscape security model implemented with Java.

Availability: JavaScript – 1.1
Netscape – 3.0

Class properties:
EQUAL, NO_SUBSET, PROPER_SUBSET,
SIGNED_APPLET_DBNAME, TEMP_FILENAME, theDebugLevel

Class methods:
checkPrivilegeEnabled(), checkPrivilegeGranted(),
disablePrivilege(), enablePrivilege(),
enableTarget(), getMyPrincipals(),
getPrivilegeManager(), getSystemPrincipal(),
revertPrivilege()

Object methods:
disablePrivilege(), enablePrivilege(),
getPrivilegeTableFromStack()

Because the Netscape security model is based on the Java security model, the Netscape browser
requests its privileges through the Java mechanisms. These are encapsulated in a class that you can
access from inside JavaScript.

The downside of this is that there is no meaningful value returned when the request is made.
If the request for a privilege is denied, the error causes a Java exception, which is difficult to
trap from JavaScript. It is possible that more recent browser versions will support an exception-
handling mechanism.

See also: PrivilegeManager object, Requesting privileges,
UniversalBrowserAccess, UniversalBrowserRead,
UniversalBrowserWrite, UniversalFileRead,
UniversalPreferencesRead, UniversalPreferencesWrite,
UniversalSendMail

Method JavaScript JScript N IE Opera Notes

disablePrivilege() 1.1 + - 3.0 + - - -
enablePrivilege() 1.1 + - 3.0 + - - -
getPrivilegeTable
FromStack()

1.1 + - 3.0 + - - -

JavaScript Programmer's Reference

1522

new (Operator/unary)
An object construction operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: An object whose type depends on the constructor

- myObject = new aConstructor
JavaScript syntax:

- myObject = new
anObject(someArguments)

aConstructor An object constructor function
anObject An object to clone

Argument list:

someArguments A collection of initial values for the new
instance

The new operator creates a new instance of the object it is operating on.

As the object is created, the receiver's Construct method is called with no arguments passed to it.
Any initialization is only carried out by the Construct method.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

Typically this would be used to instantiate core objects of the following types:

❑ Array

❑ Boolean

❑ Date

❑ Function

❑ Number

❑ Object

❑ RegExp

❑ String

This can also be used to instantiate some host objects.

See also: Array(), Associativity, Boolean(), Date(), Function(),
Left-Hand-Side expression, List type, Number(), Object(),
Operator Precedence, RegExp(), String()

N – Newline (Escape sequence)

1523

Cross-references:
ECMA 262 edition 2 – section – 11.2.2

ECMA 262 edition 2 – section – 11.2.4

ECMA 262 edition 2 – section – 15

ECMA 262 edition 3 – section – 11.2.2

Wrox Instant JavaScript – page – 15

Wrox Instant JavaScript – page – 21

Newline (Escape sequence)
A means of introducing line breaks into string content texts.

Availability: ECMAScript edition – 2

The newline escape sequence \n can be placed in string literals if you want to break the output text
over more than one line.

Warnings:
❑ Do not use a line terminator even with a backslash to escape it. In other words, don't think that

placing a backslash as the last character of a line will hide the line terminator. While that may work
in other languages, it won't work in JavaScript.

See also: Escape sequence (\), Line terminator

Cross-references:
ECMA 262 edition 2 – section – 7.2

ECMA 262 edition 2 – section – 7.7.4

ECMA 262 edition 3 – section – 7.3

Newlines are not
 tags (Pitfall)
A newline in a script does not display a line break in HTML output.

Because HTML is fairly freely formatted, you have to explicitly tell it when a line break is to
appear. You can do this a variety of block-level tags. Its most likely done with a
 or <P> tag.

When you use the document.write() method, you need to explicitly include the necessary

or <P> tags otherwise the HTML output that gets displayed will all run onto a single line. Placing a
\n newline escape into the output may make the HTML source look nice but it won't affect the
displayed output.

JavaScript Programmer's Reference

1524

A line break is also introduced when you use block structured elements in the HTML. Here is a list
of common HTML tags that do this (there are others too):

❑ <BLOCKQUOTE>

❑ <BODY>

❑

❑ <DD>

❑ <DL>

❑ <DIV>

❑ <DT>

❑ <H1> etc

❑ <HR>

❑ <HTML>

❑

❑ <OBJECT>

❑

❑ <P>

❑ <PRE>

❑

See also: Pitfalls

Cross-references:
Wrox Instant JavaScript – page – 46

News posts containing JavaScript (Advice)
You can embed JavaScript into news postings composed using HTML.

When you compose and post a news message, you may use HTML as a way to improve the
presentation. This means you can include some JavaScript to be executed in the client mail-
reader application.

Not all news-reading clients can support HTML let alone JavaScript. However, if your recipient
does (and that is likely if its a web browser), then you can do some creative things to link topics in
threads and pre-format replies so that they associate correctly into the news topic tree. You simply
construct your HTML document in the normal way.

N – news: URL (Request method)

1525

Warnings:
❑ There are significant security and virus related risks with JavaScript enabled news. The possibilities

are so catastrophic that the best reccomendation is to deactivate JavaScript and Java in any news-
reading client application.

❑ Just because something is possible does not mean it is advisable or good to do.

❑ On the other hand, within the confines of a closely controlled intranet or workgroup, this could find
many useful applications. Just so long as you know where the news posts came from and you can
absolutely trust that they have not been compromised.

❑ Personally, I'd recommend that you turn it off. It might be useful for including the odd diagram but
mostly you need to get the informational content and it doesn't really need to be very pretty.

See also: E-mail containing JavaScript

Cross-references:
Wrox Instant JavaScript – page – 60

news: URL (Request method)
A request from a web browser to a news server to send a document.

Use the browser to download and browse some news content.

Warnings:
❑ This is only allowed under script control if the script has the UniversalSendMail privilege.

See also: javascript: URL, UniversalSendMail, URL

Node object (Object/DOM)
A node is the primary component from which documents are built (in the context of a DOM hierarchy).

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myNode = myMutationEvent.relatedNode

Object properties:
firstChild, lastChild, nextSibling, nodeName,
nodeType, nodeValue, ownerDocument, parentNode,
previousSibling

JavaScript Programmer's Reference

1526

Class constants:
ATTRIBUTE_NODE, CDATA_SECTION_NODE, COMMENT_NODE,
DOCUMENT_FRAGMENT_NODE, DOCUMENT_NODE,
DOCUMENT_TYPE_NODE, ELEMENT_NODE, ENTITY_NODE,
ENTITY_REFERENCE_NODE, NOTATION_NODE,
PROCESSING_INSTRUCTION_NODE, TEXT_NODE

Object methods:
appendChild(), cloneNode(), hasChildNodes(),
insertBefore(), removeChild(), replaceChild()

Collections: attributes[], childNodes[]

Here is a list of the available node types:

Constant Type Description

undefined null A member of the attributes collection
ELEMENT_NODE 1 HTML element object node
ATTRIBUTE_NODE 2 HTML tag attribute object
TEXT_NODE 3 Text object node
CDATA_SECTION_NODE 4 CDATA section
ENTITY_REFERENCE_NODE 5 Entity reference
ENTITY_NODE 6 Entity node
PROCESSING_INSTRUCTION_NODE 7 Processing instruction node
COMMENT_NODE 8 Comment node
DOCUMENT_NODE 9 Document object
DOCUMENT_TYPE_NODE 10 Doctype object
DOCUMENT_FRAGMENT_NODE 11 Document fragment node
NOTATION_NODE 12 Notation node

The DOM level 2 specification adds the following methods:

❑ supports()

❑ normalize()

It also adds the following properties:

❑ namespaceURI

❑ prefix

❑ localName

At DOM level 3, the interface to the Node object is expected to evolve further to allow nodes to be
compared and to be able to extract a serialized version of a DOM tree branch into a string
primitive. This functionality is still under review as this is being written. The following additional
properties are expected to be supported:

❑ baseURI

❑ textContent

❑ key

N – Node object (Object/DOM)

1527

DOM level 3 is expected to add the following methods to the Node object:

❑ compareDocumentOrder()

❑ compareTreePosition()

❑ isSameNode()

❑ lookupNamespacePrefix()

❑ lookupNamespaceURI

❑ normalizeNS()

❑ setUserData()

❑ getUserData()

If the implementation supports the DOM level 2 event model (this is the case with Netscape 6.0), then
the Node object should also support the methods and properties defined by the EventTarget object.

See also: Attribute.nodeType, Document object, DocumentFragment object,
Element object, EventTarget object,
MutationEvent.initMutationEvent(),
MutationEvent.relatedNode, NamedNodeMap object,
Node.firstChild, Node.insertBefore(), Node.lastChild,
Node.nextSibling, Node.parentNode, Node.previousSibling

Property JavaScript JScript N IE Opera DOM Notes

firstChild 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
lastChild 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
nextSibling 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
nodeName 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
nodeType 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
nodeValue 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
ownerDocument 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
parentNode 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
previousSibling 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Method JavaScript JScript N IE Opera DOM Notes

appendChild() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
cloneNode() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
hasChildNodes() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
insertBefore() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
removeChild() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
replaceChild() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

JavaScript Programmer's Reference

1528

Node.appendChild() (Method)
A new child node object is added to the end of the list of immediate children of this node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.appendChild(aNode)

Argument list: aNode The node to be appended

Node.attributes[] (Collection)
A NamedNodeMap collection of attributes for this node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: NamedNodeMap object

JavaScript syntax: - myNode.attributes

See also: Element.attributes[], MutationEvent.attrChange,
MutationEvent.attrName, NamedNodeMap object

Node.childNodes[] (Collection)
A NodeList containing the immediate children of this node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: NodeList object

JavaScript syntax: - myNode.childNodes

See also: Element.childNodes[], NodeList object

N – Node.cloneNode() (Method)

1529

Node.cloneNode() (Method)
The node object is cloned but the new instance has no parent node defined.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.cloneNode(aSwitch)

Argument list:
aSwitch Indicates whether a deep or shallow clone

is required

Node.firstChild (Property)
The first object in the collection of direct children of this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.firstChild

See also: Element.firstChild, Node object

Node.hasChildNodes() (Method)
A convenience method to provide a flag indicating whether there are any children belonging
to this node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myNode.hasChildNodes()

See also: Element.contains(), Element.firstChild

JavaScript Programmer's Reference

1530

Node.insertBefore() (Method)
This method inserts a child element into the collection at the indicated position.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.insertBefore(aNode1, aNode2)

aNode1 The node to be insertedArgument list:
aNode2 The node indicating the insertion point

See also: Element.insertAdjacentText(), Node object

Node.lastChild (Property)
The last child object contained within the DOM hierarchy that descends from this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.lastChild

See also: Element.lastChild, Node object

Node.nextSibling (Property)
An HTML element at the same level within the document hierarchy.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.nextSibling

See also: Element.nextSibling, Node object

N – Node.nodeName (Property)

1531

Node.nodeName (Property)
The name value for this node object. This is provided by the HTML tag attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNode.nodeName

See also:
Element.nodeName

Node.nodeType (Property)
The nodes are created for a variety of purposes. This property indicates what sort of node has been
instantiated.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myNode.nodeType

The values in this parameter correspond to the values of the Static Constants belonging to the
Node Class.

Here is a list of the available node types:

Constant Type Description

undefined null A member of the attributes collection
ELEMENT_NODE 1 HTML element object node
ATTRIBUTE_NODE 2 HTML tag attribute object
TEXT_NODE 3 Text object node
CDATA_SECTION_NODE 4 CDATA section
ENTITY_REFERENCE_NODE 5 Entity reference
ENTITY_NODE 6 Entity node

Table continued on following page

JavaScript Programmer's Reference

1532

Constant Type Description

PROCESSING_INSTRUCTION_NODE 7 Processing instruction node
COMMENT_NODE 8 Comment node
DOCUMENT_NODE 9 Document object
DOCUMENT_TYPE_NODE 10 Doctype object
DOCUMENT_FRAGMENT_NODE 11 Document fragment node
NOTATION_NODE 12 Notation node

See also: Element.nodeType

Node.nodeValue (Property)
The value of the node depends on the kind of node that the object encapsulates. Some nodes have
null values.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNode.nodeValue

See also: Element.nodeValue

Node.ownerDocument (Property)
The document that the node belongs to can be accessed via this property.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Document object

JavaScript syntax: - myNode.ownerDocument

The Node.ownerDocument property is similar to the document property of an Element object.
In this case, because we are considering only DOM nodes, whether the document is HTML or not is
of no consequence. For now it probably is because the work centers around browser capabilities,
but the DOM specification is far more than just a better way to describe a web page.

N – Node.parentNode (Property)

1533

They have very cleverly separated the description of an abstract document and the 'HTMLness' of
it into two layers. That way, implementors can superimpose other types of document content on
top of a generic DOM foundation built on the Node structure.

This property is effectively provided by MSIE version 5 as a property of an Element object.
Netscape 6.0 makes it available here in a more DOM-compliant manner.

It is a convenience property because accessing a containing document object in this way is far
easier than walking down a document.childNode sequence to locate a contained document.

See also: Document object, Element.ownerDocument

Node.parentNode (Property)
The direct parent node of the current object. This object will be a member of the childNodes
collection for that object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.parentNode

See also: Element.parentNode, MutationEvent.relatedNode,
Node object

Node.previousSibling (Property)
The object immediately before this one in the childNodes collection of their joint parent node.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.previousSibling

See also: Element.previousSibling, Node object

JavaScript Programmer's Reference

1534

Node.removeChild() (Method)
A method for removing child nodes from the collection.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.removeChild(aNode)

Argument list: aNode The node object to be removed

Node.replaceChild() (Method)
A means of replacing child objects with new nodes and discarding the old ones.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNode.replaceChild(newNode, oldNode)

newNode The node to be placed into the hierarchyArgument list:
oldNode The node to be replaced

NodeList object (Object/DOM)
A generic collection of nodes, not presented in any particular order.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myNodeList = myDocument.getElements
ByTagName(aTagName)

Argument list: aTagName The name of an HTML tag

Object properties: length

Object methods: item()

N – NodeList.item() (Method)

1535

This object is based on an Array object and contains a set of Node items contained within a
DOM hierarchy.

Do not confuse DOM NodeList arrays with Enumerator or Collection objects. The
NodeListitem() method is subtly different to the Enumerator.Item() method.

See also: Collection object,
Document.getElementsByTagName(),
Element.getElementsByTagName(), Enumerator
object, NamedNodeMap object, Node.childNodes[]

Property JavaScript JScript N IE Opera DOM Notes

length 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + 1 + ReadOnly

Method JavaScript JScript N IE Opera DOM Notes

item() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

NodeList.item() (Method)
An item extractor to retrieve a Node from within a NodeList collection.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: - myNodeList.item(anIndex)

Argument list: anIndex A numeric index to a Node in the collection

You should node that in MSIE, the Collection object has an Item() method whereas DOM
mandates that a NodeList should have an item() method. Note the difference in the case of the
initial letter.

Even though an implementation may forgive an upper-lower case error when it parses the script
source text, an item() call on NodeList can only return a Node object referenced using an integer
index location within the collection.

Because the NodeList is based on an Array, NodeList.item(anIndex) is functionally
equivalent to NodeList[anIndex] and one can enumerate through the set of Node objects using
either technique.

JavaScript Programmer's Reference

1536

NodeList.length (Property)
Returns the length of a collection array.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myNodeList.length

The NodeList collection behaves exactly like an Array object and returns a number representing
a count of all the Node objects in the collection.

Example code:
myCount = document.all.length;

See also: Array.length, Collection.length

Property attributes:
ReadOnly.

NOFRAMES object (Object/HTML)
An object that represents the content of a <NOFRAMES> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE myNOFRAMES = myDocument.all.anElementID

IE myNOFRAMES = myDocument.all.tags("NOFRAMES")
[anIndex]

IE myNOFRAMES = myDocument.all[aName]

- myNOFRAMES = myDocument.getElementById
(anElementID)

- myNOFRAMES = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myNOFRAMES = myDocument.getElementsByTagName
("NOFRAMES")[anIndex]

N – NOFRAMES object (Object/HTML)

1537

HTML syntax: <NOFRAMES> ... </NOFRAMES>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, tabIndex, dir

Event handlers:
onClick, onDblClick, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp

This was added to the MSIE browser at revision 4. It is a sub-class of the basic Element object and
therefore shares many properties with other objects in the MSIE browser. Although it is
implemented as an Element, it is not a DOM specified item.

See also: Element object, NOSCRIPT object

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey - 3.0 + - 4.0 + - - - -
tabIndex - 3.0 + - 4.0 + - - - -
dir - 5.0 + - 5.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

1538

NOFRAMES.dir (Property)
The direction of rendering of text contained within the block owned by the <NOFRAMES> tag.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myNOFRAMES.dir

The dir property may be set to indicate a left-to-right or right-to-left parsing direction.

This is part of the localization support and represents the contents of the DIR="..." tag attribute.

If you assign a value to this property it is case-sensitive and must be either "ltr" or "rtl". Note
that this is at variance with some documentation which says it is case-insensitive.

This property works in conjunction with the lang property to control the direction of text flow.

See also: BDO.dir, Element.dir, NOSCRIPT.dir

Nombas ScriptEase (Product)
A standalone JavaScript interpreter.

This is an example of a JavaScript interpreter than can be used in several contexts.

The ScriptEase Web Server Edition (SEWSE) can be used in the backend of a server to accomplish
much of what you might do with <SERVER> tags in the Netscape Enterprise Server or with
Microsoft ASP. SEWSE is called as part of the CGI mechanism in the web server.

The Script Ease Desk Top implementation provides a way to use JavaScript to control desktop
actions. This is available cross-platform and accomplishes the kind of things you might do with
AppleScript on a Macintosh or Windows Script Host in the Microsoft Windows environment.

The SEWSE interpreter can also be used for general purpose scripting in the Unix environment in
much the way you would use Bourne, Korn or C shells or the Perl interpreter.

You can also embed Script Ease into your own applications and add scriptability to them.

See also: Standalone JavaScript

N – Nondigit (Definition)

1539

Nondigit (Definition)
A non-digit letter that can be used in an identifier.

In the context of creating identifier names, a non-digit character is a member of the following set:

a b c d e f g h i j k l m

n o p q r s t u v w x y z

A B C D E F G H I J K L M

N O P Q R S T U V W X Y Z

_ (Underscore)

See also: Digit, Identifier

<NOSCRIPT> (HTML Tag)
A special tag that allows browsers that don't support scripting to display alternative content.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Browsers that support the <SCRIPT> tag should also support the <NOSCRIPT> tag. However, their
support for the <NOSCRIPT> tag should be to hide or ignore anything between the <NOSCRIPT>
tag and its corresponding </NOSCRIPT> closure.

Warnings:
❑ This is not supported by Netscape 2.

See also: <SCRIPT>, Compatibility

NOSCRIPT object (Object/HTML)
An object representing the <NOSCRIPT> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

JavaScript Programmer's Reference

1540

IE myNOSCRIPT = myDocument.all.anElementID

IE myNOSCRIPT =
myDocument.all.tags("NOSCRIPT")[anIndex]

IE myNOSCRIPT = myDocument.all[aName]

- myNOSCRIPT =
myDocument.getElementById(anElementID)

- myNOSCRIPT =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myNOSCRIPT = myDocument.getElementsByTagName
("NOSCRIPT")[anIndex]

HTML syntax: <NOSCRIPT> ... </NOSCRIPT>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, tabIndex, dir

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This was added to the MSIE browser at revision 4. It is a sub-class of the basic Element object and
therefore shares many properties with other objects in the MSIE browser. Although it is
implemented as an Element, it is not a DOM-specified item.

See also: Element object, NOFRAMES object

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey - 3.0 + - 4.0 + - - - -
tabIndex - 3.0 + - 4.0 + - - - -
dir - 5.0 + - 5.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning

N – NOSCRIPT.dir (Property)

1541

Inheritance chain:
Element object, Node object

NOSCRIPT.dir (Property)
The direction of rendering of text contained within the block owned by the <NOSCRIPT> tag.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myNOSCRIPT.dir

The dir property may be set to indicate a left-to-right or right-to-left parsing direction.

This is part of the localization support and represents the contents of the DIR="..." tag attribute.

If you assign a value to this property it is case-sensitive and must be either "ltr" or "rtl". Note
that this is at variance with some documentation which says it is case-insensitive.

This property works in conjunction with the lang property to control the direction of text flow.

See also: BDO.dir, Element.dir, NOFRAMES.dir

Not a number (Definition)
A special numeric value used to handle computational error conditions.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

IEEE 754 describes a numeric regime that includes the ability to flag exceptions when calculations
generate invalid results. The result of such an expression may be signified by the NaN or Not a
Number exception.

See also: IEEE 754, NaN

Cross-references:
ECMA 262 edition 2 – section – 4.3.23

ECMA 262 edition 3 – section – 4.3.23

JavaScript Programmer's Reference

1542

NOT Equal to (!=) (Operator/equality)
Compare two operands for inequality.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 != anOperand2

anOperand1 A value to be comparedArgument list:
anOperand2 Another value to be compared

The two operands are compared, and the Boolean true value is returned if they are not equal,
otherwise false if they are equal. Note that JavaScript will attempt to convert both operands to
the same type for comparison.

When testing for inequality, the following rule is invariant:

A != B

is equivalent to:

!(A == B)

Also, the rule of positioning allows that:

A == B

is identical to:

B == A

(Apart from the fact that exchanging the operands in this way alters the order in which they are
evaluated.)

Exchanging the operands may have undesirable side effects if they are expressions. For example,
they may call functions and test the results. If the functions are not totally independent of one
another, you may get unexpected results.

The associativity is from left to right.

Refer to the Operator Precedence topic for details of execution order.

Refer to the Equality expression topic for a discussion on the ECMA standard definition of the
equality testing rules.

N – NOT Identically equal to (!==) (Operator/identity)

1543

See also: ASCII, Associativity, Equal to (==), Equality expression, Equality
operator, Greater than (>), Greater than or equal to (>=),
Identically equal to (===), Less than (<), Less than or equal to (<=),
Logical expression, Logical NOT – complement (!), Logical
operator, NOT Identically equal to (!==), Operator Precedence,
Relational expression, Relational operator, typeof, Unicode

Cross-references:
ECMA 262 edition 2 – section – 11.9.2

ECMA 262 edition 2 – section – 11.9.3

ECMA 262 edition 3 – section – 11.9.2

ECMA 262 edition 3 – section – 11.9.3

NOT Identically equal to (!==) (Operator/identity)
Compare two values for non-equality and identical type.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.06

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand1 !== anOperand2

anOperand1 A value to be comparedArgument list:
anOperand2 Another value of the same type to be compared

The two operands are compared and Boolean false is returned if both values are equal, and of the
same type, otherwise Boolean true is returned.

The associativity is from left to right.

Refer to the Operator Precedence topic for details of execution order.

Warnings:
❑ This is not available for use server-side with Netscape Enterprise Server 3.

JavaScript Programmer's Reference

1544

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myObject1 = 100;
myObject2 = "100";
if(myObject1 != myObject2)
{
 document.write("Objects are NOT equal
");
}
else
{
 document.write("Objects are equal
");
}

if(myObject1 !== myObject2)
{
 document.write("Objects are NOT identical
");
}
else
{
 document.write("Objects are identical
");
}
</SCRIPT>
</BODY>
</HTML>

See also: ASCII, Associativity, Equal to (==), Equality expression, Equality
operator, Greater than (>), Greater than or equal to (>=), Identically equal
to (===), Identity operator, JellyScript, Less than (<), Less than or equal to
(<=), Logical expression, Logical operator, NOT Equal to (!=), Operator
Precedence, Relational expression, Relational operator, typeof, Unicode

Cross-references:
ECMA 262 edition 3 – section – 11.9.5

Wrox Instant JavaScript – page – 39

N – Notation object (Object/DOM)

1545

Notation object (Object/DOM)
Notations are decalred in the DTD and are encapsulated in these Notation objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Node object

JavaScript syntax: - myNotation = new Notation()

Object properties: publicId, systemId

See also: Doctype object, Doctype.notations[]

Property JavaScript JScript N IE Opera DOM Notes

publicId 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly
systemId 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly

Inheritance chain:
Node object

Notation.publicId (Property)
The public identifier (if one was defined) for this notation. The value may be null if no identifier
was defined.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNotation.publicId

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1546

Notation.systemId (Property)
The system identifier (if one was defined) for this notation. The value may be null if no identifier
was defined.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNotation.systemId

Property attributes:
ReadOnly.

null (Primitive value)
A built-in primitive value.

Availability: ECMAScript edition – 2
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Null primitive

JavaScript syntax: IE null

The null value is a primitive value that represents the null, empty, or non-existent reference.

This is equivalent to the Java null data type when passing values back and forth between
JavaScript and Java.

If you don't have a null keyword, you may be able to simulate a null value like this:

var null = (void 0);

The null and undefined values are subtly different. An empty thing is not the same as a non-
existent thing. However in a browser it is difficult to distinguish between them.

The null value is now provided in some browsers as a built-in keyword, but the undefined
value is not.

See also: Cast operator, JavaScript to Java values, LiveConnect, NaN,
undefined

N – null (Type)

1547

Cross-references:
ECMA 262 edition 2 – section – 4.3.11

ECMA 262 edition 3 – section – 4.3.11

O'Reilly JavaScript Definitive Guide – page – 47

null (Type)
A native built-in type.

Availability: ECMAScript edition – 2

Property/method value type: Null primitive

The type null has exactly one value, called null.

You can use this value when testing for the undefined state of variables and objects in browsers
that do not support an explicit undefined value, to test for in logical expressions.

See also: Cast operator, Special type, Type

Cross-references:
ECMA 262 edition 2 – section – 4.3.12

ECMA 262 edition 2 – section – 8.2

ECMA 262 edition 3 – section – 4.3.12

ECMA 262 edition 3 – section – 8.2

Wrox Instant JavaScript – page – 14

Null literal (Primitive value)
A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Null primitive

JavaScript syntax: - null

The null literal is a value that represents the null or undefined state. It only has one value.

JavaScript Programmer's Reference

1548

Name: null

The null value is sometimes used in place of other values. For example, in some browser-based
interpreters, there is no specific value for the undefined condition. However, you can work around
this by testing for null. Strictly speaking they are distinctly different values with different
semantic meanings. Even so, the trick works well enough for most practical purposes.

Use null in place of undefined when testing for the existence of entities.

See also: Literal, Range error, Token, undefined

Cross-references:
ECMA 262 edition 2 – section – 7.7.1

ECMA 262 edition 3 – section – 7.8.1

Null statement (Definition)
An empty statement consisting of a semicolon on its own.

See also: Empty statement (;), Semicolon (;)

Number (Primitive value)
A built-in primitive value.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

A number value is a member of the type Number and is a direct representation of a number.

It is basically a floating-point number and there is no special integer number class. Integers are
simply floating-point values with a zero fractional part.

Numbers can be expressed as integers or floating-point values. They can be expressed in decimal,
octal, or hexadecimal notation. They can also be expressed in exponential form.

Typical limits for the number type allow for very large number values. You can find out what the
maximum value is by requesting the MAX_VALUE property from the built-in Number object. It will
probably give you a value in the region of 1 followed by some 300 or more zeros. The smallest
value is some 300 decimal places past the decimal point.

Actually the limits are 1.79e308 down to 5e-324 and both can be positive or negative.

N – Number (Type)

1549

There are special constants for the values Infinity and NaN. The Infinity value can be positive
or negative. The NaN value represents a quantity that is known to be numeric but is not a valid
value for the implementation. It can be tested for with the isNaN() function.

See also: Cast operator, Floating constant, Infinity, isNaN(), JavaScript to
Java values, Number.MAX_VALUE, Number.MIN_VALUE, Primitive
value

Cross-references:
ECMA 262 edition 2 – section – 4.3.19

ECMA 262 edition 3 – section – 4.3.19

Wrox Instant JavaScript – page – 14

Number (Type)
A native built-in type.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The number type defines objects that represent numbers and include the IEEE 754 NaN values in
the set if the implementation is fully ECMA-compliant.

The number range is huge, representing the double precision 64 bit IEEE 754 set of values.

The IEEE 754 standard defines a large number of values that are considered to be not an actual
number, and should be represented as NaN. Some implementations of IEEE 754 allow you to tell the
difference between an overflow error and a divide by zero error. In JavaScript, all of these values
are represented by a single NaN value and you cannot distinguish between them. The JavaScript
NaN value is globally defined as a variable.

The Number type includes the values positive and negative Infinity and, internally at least, positive
and negative zero are represented as two distinct values.

See also: Cast operator, Data Type, Floating point, Fundamental data type,
Hexadecimal value, IEEE 754, Infinity, Integer, NaN, Octal value,
Primitive value, ToBoolean, ToInt32, ToNumber, ToObject,
ToPrimitive, ToUint16, ToUint32, Type, Type conversion,
valueOf()

Cross-references:
ECMA 262 edition 2 – section – 4.3.19

ECMA 262 edition 2 – section – 8.5

ECMA 262 edition 3 – section – 4.3.20

ECMA 262 edition 3 – section – 8.5

O'Reilly JavaScript Definitive Guide – page – 34

JavaScript Programmer's Reference

1550

Number formats (.) (Definition)
The period character is used as numeric delimiter character. ECMA describes these formats as
Numeric literals.

Availability: ECMAScript edition – 2

See also: Decimal point (.), Numeric literal

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 7.8.3

Number object (Object/core)
An object of the class "Number".

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- myNumber = new Number()
JavaScript syntax:

- myNumber = Number

Object properties: constructor, prototype

Class constants:
MAX_VALUE, MIN_VALUE, NaN, NEGATIVE_INFINITY,
POSITIVE_INFINITY

Object methods:
toExponential(), toFixed(), toLocaleString(),
toPrecision(), toSource(), toString(), valueOf()

An instance of the class Number is created by using the new operator on the Number() constructor.
The new object adopts the behavior of the built-in prototype object through the prototype-
inheritance mechanisms.

All properties and methods of the prototype are available as if they were part of the instance.

A number object is a member of the type Object and is an instance of the built-in Number object.

N – Number object (Object/core)

1551

Number objects are created by cloning the built-in Number object. This is done by calling the
Number constructor with the new operator being applied to an existing Number object. Thus:

myNumber = new Number(1000);

A Number object can be coerced to a number value and can be used anywhere where a number
value would be expected.

Programmers familiar with object-oriented techniques may prefer to use the Number object while
procedural language programmers may implement the same functionality with a number value instead.

This is an example of the flexibility of JavaScript in its ability to accommodate a variety of users
from different backgrounds.

The prototype for the Number prototype object is the Object prototype object.

You might want to add useful methods to the Number.prototype to output numbers in unusual
formats. For example you could implement a roman numeral conversion method. Adding that to
the prototype would let you output year numbers in classical formats.

Warnings:
❑ The Number object provides a collection of static constant values by way of properties belonging to

the integral Number object. Because the mathematical mechanisms of any application tend to be
provided by the operating system, you should find that between different browsers on any
particular platform, the values that these constants yield will be very consistent.

❑ The ECMA standard lays down strict values for these properties and in general the browser
manufacturers try to comply, but there is always the possibility that an implementation may use a
non-compliant calculation.

❑ However, it may not be quite so reliable across platforms. You might enumerate one of these
constants as you are authoring and then hard code that value into your script. When that script is
executed on another platform, even in the same browser, the internal numeric support may yield a
different value.

❑ You should always refer to the static constants using their symbolic names and not define them
yourself, unless you are certain that the script is running on a platform that does not already define
the constant value.

See also: Constant, Limits, Native object, Number.Class, Number.prototype,
Object object

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.1 + 1.0 + 3.0 + 3.02 + - - 2 + -
prototype 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 2.0 + 2 + DontDelete,

DontEnum

JavaScript Programmer's Reference

1552

Method JavaScript JScript N IE Opera NES ECMA Notes

toExponential() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toFixed() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toLocaleString() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + Warning
toPrecision() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -
toSource() 1.3 + - 4.06 + - - - 3 + -
toString() 1.1 + 1.0 + 3.0 + 3.02 + 3.0 + - 2 + -
valueOf() 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + -

Cross-references:
ECMA 262 edition 2 – section – 4.3.20

ECMA 262 edition 2 – section – 10.1.5

ECMA 262 edition 2 – section – 15.7

ECMA 262 edition 3 – section – 4.3.21

ECMA 262 edition 3 – section – 10.1.5

ECMA 262 edition 3 – section – 15.7

Wrox Instant JavaScript – page – 33

Number() (Constructor)
A Number object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

Property/method value type: Number object

- new Number()JavaScript syntax:
- new Number(aValue)

Argument list: aValue A value to be converted to a Number object

The Number() constructor is used to manufacture a new instance of the built-in Number object
converting the input value to a number as it instantiates the new object.

The value of the Number object when the constructor is called in a new expression is the same as
value yielded by the type conversion function call.

Refer to the Number() Function topic for a table of rules for converting non-number values to
Number objects.

The result is a Number object whose value is equivalent to the that of the passed-in argument. If the
value is omitted, the Number object will assume a value of 0.

N – Number() (Function)

1553

Warnings:
❑ Note that unlike the Object() constructor, which can be called without its parentheses, calling the

Number() constructor without them yields an uninitialized object.

See also: Constructor function, constructor property, Global object,
new, Number.prototype, Object constant, Object()

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.6

ECMA 262 edition 2 – section – 15.7.1

ECMA 262 edition 2 – section – 15.7.3.1

ECMA 262 edition 3 – section – 15.7.2

Number() (Function)
A Number type convertor.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.0

Property/method value type: Number primitive

- Number()
JavaScript syntax:

- Number(aValue)

Argument list: aValue A value to be converted to a number.

When the Number() constructor is called as a function, it will perform a type conversion.

The following values are yielded as a result of calling Number() as a function:

Value Result

No value 0

Undefined Returns NaN
Null 0

Boolean false 0

Boolean true 1

Number No conversion, the input value is returned unchanged.
Non numeric string NaN

Numeric string The numeric value rounded down if the number of digits exceeds
the numeric accuracy specified by Number.MAX_VALUE.

Table continued on following page

JavaScript Programmer's Reference

1554

Value Result

Object Internally, a conversion to one of the primitive types happens followed by a
conversion from that type to a number. Some objects will return a number that is
readily usable; others will return something that cannot be converted and NaN will
result.

The result is a number value that is equivalent to the value of the passed in argument. If the
argument is omitted the value 0 is returned.

Warnings:
❑ When converting strings to numbers, the number of digits in the numeric string is significant. If it

exceeds the accuracy that the numeric storage can cope with, the value needs to be rounded before
conversion. This is an area where the implementations are notoriously weak. MSIE apparently does
a better job than Netscape. However, both are undergoing revision and its possible that the new
versions of each will cope better than the older ones did.

See also: Cast operator, Constructor function, constructor property, Implicit conversion,
Math.ceil(), Math.floor(), Math.round(), Number.prototype, String()

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.6

ECMA 262 edition 2 – section – 15.7.1

ECMA 262 edition 3 – section – 15.7.1

Wrox Instant JavaScript – page – 36

Number.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

This is an internal property that describes the class that a Number object instance is a member of.
The reserved words suggest that in the future, this property may be externalized.

See also: Class, Number object

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 2 – section – 15.7.2.1

ECMA 262 edition 3 – section – 8.6.2

N – Number.constructor (Property)

1555

Number.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

Property/method value type: Number object

JavaScript syntax: - myNumber.constructor

The initial value of the Number constructor is the built in Number object.

You can use this as one way of creating number objects although it is more popular to use the new
Number() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective, and there are some occasions when you
might wish for a constructor that is not available in MSIE.

See also: Number.MAX_VALUE, Number.MIN_VALUE, Number.NaN,
Number.NEGATIVE_INFINITY,
Number.POSITIVE_INFINITY, Number.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.7.2

ECMA 262 edition 3 – section – 15.7.2

Number.MAX_VALUE (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Number.MAX_VALUE

This is a constant value representing the largest realizable positive finite value of the Number type.

The value is approximately 1.7976931348623157e+308.

JavaScript Programmer's Reference

1556

Warnings:
❑ The word approximately is used when describing the result, because the mathematical accuracy of

JavaScript implementations leaves something to be desired and there are some strange artifacts in
some of the calculations.

See also: Arithmetic constant, Floating point constant, Number,
Number.constructor, Special number values

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.7.3.2

ECMA 262 edition 3 – section – 15.7.3.2

O'Reilly JavaScript Definitive Guide – page – 37

Number.MIN_VALUE (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Number.MIN_VALUE

This is a constant value representing the smallest realizable non-zero positive value of the number type.

The resulting value is approximately 5e-324

Warnings:
❑ Although the MAX_VALUE is generally correct across implementations there are variations in the

value of the MIN_VALUE constant.

See also: Arithmetic constant, Floating point constant, Number,
Number.constructor, Special number values

N – Number.NaN (Constant/static)

1557

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.7.3.3

ECMA 262 edition 3 – section – 15.7.3.3

O'Reilly JavaScript Definitive Guide – page – 37

Number.NaN (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Number.NaN

This is a value representing invalid numeric values. It should be identical to the NaN value
provided by the Global object in an ECMA-compliant implementation. Refer to the coverage of
the NaN topic for full details.

However, it is generally considered unreliable to compare against NaN values with a simple
equality test. To reliably test whether a numeric value is NaN or a good numeric value, use the
isNaN() function and select an appropriate action according to its result.

See also: Arithmetic constant, NaN, Number.constructor, Special
number values

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.7.3.4

ECMA 262 edition 3 – section – 15.7.3.4

O'Reilly JavaScript Definitive Guide – page – 37

JavaScript Programmer's Reference

1558

Number.NEGATIVE_INFINITY (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Number.NEGATIVE_INFINITY

This is a constant representing the value negative infinity. It should be identical to a negative sign
placed in front of the Infinity value provided as a property of the Global object in an ECMA-
compliant implementation. Refer to the Infinity topic for further discussion.

Warnings:
❑ Netscape 2.02 does not understand what Number.NEGATIVE_INFINITY is.

See also: Arithmetic constant, Infinity, Number.constructor, Special
number values

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.7.3.5

ECMA 262 edition 3 – section – 15.7.3.5

O'Reilly JavaScript Definitive Guide – page – 37

Wrox Instant JavaScript – page – 15

N – Number.POSITIVE_INFINITY (Constant/static)

1559

Number.POSITIVE_INFINITY (Constant/static)
A mathematical constant value.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - Number.POSITIVE_INFINITY

This is a constant value representing positive infinity. It should be identical to the Infinity value
provided as a property of the Global object in an ECMA-compliant implementation. Refer to the
Infinity topic for further discussion.

Warnings:
❑ Netscape 2.02 does not understand what Number.POSITIVE_INFINITY is.

See also: Arithmetic constant, Infinity, Number.constructor, Special
number values

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.7.3.6

ECMA 262 edition 3 – section – 15.7.3.6

O'Reilly JavaScript Definitive Guide – page – 37

Wrox Instant JavaScript – page – 15

JavaScript Programmer's Reference

1560

Number.prototype (Property)
The prototype for the Number object that can be used to extend the interface for all Number objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number object

- Number.prototype
JavaScript syntax:

- myNumber.constructor.prototype

The prototype property refers to the built-in Number prototype object.

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the capabilities of the Number object
function pythag(aValue1, aValue2)
{
 return Math.sqrt((aValue1*aValue1) + (aValue2*aValue2));
}

// Register the new function
Number.prototype.pythag = pythag;

// Create a number object and test the Number.pythag() method
myNumber = new Number();
document.write(myNumber.pythag(3, 4));
document.write("
");
</SCRIPT>
</BODY>
</HTML>

See also: Number object, Number(), Number(),
Number.constructor, Number.toString(),
Number.valueOf(), prototype property

Property attributes:
DontDelete, DontEnum.

N – Number.toExponential() (Method)

1561

Cross-references:
ECMA 262 edition 2 – section – 15.2.3.1

ECMA 262 edition 2 – section – 15.7.4

ECMA 262 edition 3 – section – 15.7.3.1

Number.toExponential() (Method)
Converts the number to an exponential format representation.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNumber.toExponential(aNumber)

Argument list: aNumber The number of digits after the decimal point

This method is useful for formatting number values. This is especially helpful when presenting
tables of scientific data, which may require values of a wide range of magnitudes to be presented in
a similar way.

The argument value indicates the precision or decimal places of accuracy to the right of the decimal
point character. If the argument is undefined, then as many digits as are necessary to completely
distinguish the value are presented (up to the mathematical accuracy of the implementation).

See also: Number.toFixed(), Number.toPrecision(),
Number.toString()

Cross-references:
ECMA 262 edition 3 – section – 15.7.4.6

Number.toFixed() (Method)
Converts the number to a fixed format representation.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNumber.toFixed(aNumber)

Argument list: aNumber The number of digits after the decimal point

JavaScript Programmer's Reference

1562

This method is useful for truncate formatting number values. This is especially helpful when
presenting tables of financial data that needs to be justified and padded to the same number of
digits after the decimal point.

The argument value indicates the precision or decimal places of accuracy to the right of the decimal
point character. If the argument is undefined, then zero is assumed and the value will be presented
as an integer.

This method may be useful for performing truncations from floating point to integer value. The
output of this method may also be more precise when a large number of integer digits are required
to present the number. According to the ECMA standard, the alternative toString() method
loses some accuracy for numbers having 19 digits for example.

See also: Number.toExponential(), Number.toPrecision(),
Number.toString()

Cross-references:
ECMA 262 edition 3 – section – 15.7.4.5

Number.toLocaleString() (Method)
Converts a number to a string taking locale-specific settings into account.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNumber.toLocaleString()

Locale conventions may include special formatting of numbers such as thousands separators and
decimal point symbols. The number will be converted according to the rules defined by the
implementation's locale setting.

Warnings:
❑ ECMA warns that the first argument of this method is reserved for future use. Beware if your

implementation makes use of an argument in this method as it may be non-compliant with a later
version of the ECMA standard.

Cross-references:
ECMA 262 edition 3 – section – 15.7.4.3

N – Number.toPrecision() (Method)

1563

Number.toPrecision() (Method)
Convert a number to a string automatically selecting fixed or exponential notation.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myNumber.toPrecision(aNumber)

Argument list: aNumber The number of digits after the decimal point

This method will convert a number to a string and will select either a fixed or exponential notation
according to the magnitude of the value being converted.

This would be useful where you have an arbitrary collection of values and don't want them
presented in a ragged looking column.

See also: Number.toExponential(), Number.toFixed()

Cross-references:
ECMA 262 edition 3 – section – 15.7.4.7

Number.toSource() (Method)
Output a number formatted as a Number literal contained in a string.

Availability: ECMAScript edition – 3
JavaScript – 1.3
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myNumber.toSource()

This is an alternative way to deliver a string version of a number value. In this case, it is formatted
as a Number literal and can then be used in an eval() function to assign another number.

If you run the example below, it should yield this as a result:

(new Number(1000))

The result of calling this method is a string version of the number formatted as a Number literal.

JavaScript Programmer's Reference

1564

Example code:
// Create a number and then examine its source
myNumber = new Number(1000);
document.write(myNumber.toSource());

Number.toString() (Method)
Return a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myNumber.toString(aRadix)

Argument list: aRadix A radix to base the string conversion of the value on

The result of this method is a String primitive representation of the numeric value of the receiving
object, rendered according to the passed-in radix value.

A radix is the number of discrete values in the counting sequence before a carry over digit is
generated. Thus, the radix of decimal numbers is 10. With this mechanism, you can generate values
to any radix. The radix is also called the base of the number system.

The radix value is in the range 2 to 36 and allows the numeric value to be reproduced in a variety
of number bases.

❑ A missing radix is assumed to be base 10.

❑ Octal numbers use a radix value of 8.

❑ Hexadecimal numbers use a radix value of 16.

❑ Binary numbers use a radix value of 2.

For an example, refer to the Decimal value topic where this is used to generate a lookup table.

Before the radix conversion was available, this method simply converted to a string, which most
commentators considered was unnecessary since JavaScript did this naturally without any need to
add special scripting support. However, now that we can convert numeric values from one base to
another, this function becomes far more useful.

See also: Cast operator, Decimal value, Hexadecimal value,
Number.prototype, Number.toExponential(),
Number.toFixed(), Octal value, toString()

N – Number.valueOf() (Method)

1565

Cross-references:
ECMA 262 edition 2 – section – 15.7.4.2

ECMA 262 edition 3 – section – 15.7.4.2

Number.valueOf() (Method)
Return the primitive numeric value of the object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myNumber.valueOf()

A Number object is converted to a simple Number primitive. You probably won't need to do this
very often yourself because JavaScript is smart enough to convert Number primitives to Number
objects and vice versa whenever it needs to. This is a whole lot better than having to cast data types
to get expressions to work, as you would have to in other programming languages. This help
makes JavaScript very accessible to non-programmers.

See also: Cast operator, Number.prototype, valueOf()

Cross-references:
ECMA 262 edition 2 – section – 15.7.4.3

ECMA 262 edition 3 – section – 15.7.4.4

Numeric literal (Primitive value)
A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Numeric literals are constant numeric values expressed in Decimal, Hexadecimal, or Octal notation.

Numeric values can be integer or floating-point.

Floating-point values can be specified with exponential notation.

JavaScript Programmer's Reference

1566

Hexadecimal values must always be integers, thus:

❑ 0xFF

❑ 0XABCD

Octal values must always be integers, must start with a zero and contain only the characters 0–7.

The standard does not mandate any particular rounding technique but recommends the use of IEEE
754 standard numeric computation. This standard has been in existence for some time now and is
likely to be the foundation numeric computation standard in most platforms.

See also: Floating constant, Implicit conversion, Literal, Number formats (.)

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 7.8.3

Numerical limits (Definition)
Limiting conditions for arithmetic values.

Refer to:
Limits

Obfuscation (Advice)
Needless complexity in the arrangement of tokens in a line of executable script.

There are competitions on the Internet to write the most egregious and highly functional code
fragment in the fewest lines of code. This is particularly easy to do in C language. Certain operators
lend themselves to the construction of extremely terse code, which, although functionally very
clever, is also very hard to understand when diagnosing faults or carrying out maintenance.

This entry is not to recommend against the use of such operators, but to urge a word of caution on
the basis that modern language parsing and execution engines may be smart enough to highly
optimize the code, making any performance gains negligible anyway.

These days, it is quite difficult to yield any noticeable performance gains by epitomizing the code at
the source level with compiled systems. There may still be some gains to be won with interpreted
code. A badly designed algorithm may continue to perform badly in an interpreter where there is a
possibility it might get corrected in an optimizing compiler.

The operators to be particularly cautious about are the assignment operators and the prefix/postfix
operators. The ternary conditional operator is also hard to read in source and may offer little
advantage over an if(…) … else construct. These are equivalent but intent is much more
obvious withthe if(…) … else form:

// Conditional ternary operator

myResult = (mySwitch) ? "TRUE VALUE" : "FALSE VALUE" ;

// Conditional block

if(mySwitch)

{ myResult = "TRUE VALUE";}

else

{ myResult = "FALSE VALUE";}

O

JavaScript Programmer's Reference

1568

Where this causes particular problems is in the maintenance phase where you might perhaps be
adding another line of code. In cutting and pasting an existing line, it can be easy to overlook an
operator and accidentally increment something twice or assign a value inadvertently.

Special care is necessary with iterators and conditional execution blocks. A particularly nasty habit
is to have a condition that when true, executes one statement. This is frequently written into the
source text without any enclosing braces. Those braces are important because they group the block
of code into a single syntactical unit. When you later try to unpick someone else's script, the
indentation may fool you into seeing several lines that appear to be conditionally executed when in
fact only one is. The same applies to iterators as well. It is highly recommended that you put in the
braces where they are required for multiple line conditional code and iterator blocks even when
there is only one line of code being executed. This safeguards against errors when more lines are
added to the conditional or iterated code block later on.

This is not recommended practice:

if(aCondition)

someCode;

while(aCondition)

someCode;

for(...)

someCode;

This is slightly better but requires more effort when adding lines to the code block:

if(aCondition) someCode;

while(aCondition) someCode;

for(...) someCode;

This is less dangerous than having no braces but makes the line long and twice as hard to scan visually:

if(Condition) { someCode }

This is fashionable, but the braces are hard to balance visually:

if(aCondition) {

someCode

}

O – Object (Definition)

1569

This is good because it thinks ahead to the possibility of maintenance and tends towards fewer
editing errors:

if(aCondition)

{
someCode

}

while(aCondition)

{

someCode

}

for(...)

{

someCode

}

If there is any downside to this it is that every balanced pair of braces will create a new execution
context. This may slow performance, but on the other hand it can allow locally scoped variables to
be created and destroyed at a level that is more granular than a function body.

There is also scope for a religious debate on indentation. Three space characters works great (for
me). I don't like tabs because if you move the source code to another editor, the indentation can go
awry. Space characters for indentation ensure that the source code looks the same in any
monospaced editing window and probably looks OK in a word processor too.

See also: Flow control, if(...) ..., while(...) ...

Object (Definition)
There is a distinct difference between an object and an Object.

We refer to the built-in Object class with a capitalised name. When referring generically to objects
of other classes, the word object is all lower case. Therefore we can have an Object object and a
String object. Native objects are built-in, host objects are also built in but created outside of the
JavaScript core functionality. User-defined objects are not covered here.

JavaScript Programmer's Reference

1570

Here is a list of object classes with a note about what sort of object they are and when how they
are managed:

Class Category Description

Array Native A collection of objects in a sequence
Boolean Native A logical value container
Date Native A date value container
Function Native A function code container
Global Built-in A container for global properties, methods, and functions
Image Hosted Web browser image wrapper
Math Built-in A container for math functions
Number Native A numeric value
Object Native A generic object
String Native A sequence of characters

Because you might refer to documents in many ways, possibly by means of object properties or as a
property belonging to another window, it is not safe to assume that the document property
belonging to the Global object the script is attached to is always the document object you are
trying to access. Because of this, the object references in the syntax examples assume the object is
being referred to via a variable called myDocument or myObject etc. For example, the value
myDocument is shown being assigned as a variable from the many alternative sources from which
you can obtain a document object reference.

Object (Type)
A native built-in type.

Availability: ECMAScript edition – 2

An Object is an unordered collection of properties. Each property consists of a name, a value and a
set of attributes.

See also: Alias, Data Type, Definition, Internal Method, Internal Property, Object object,
Property, Property attribute, Type

Cross-references:
ECMA 262 edition 2 – section 8.6

ECMA 262 edition 3 – section 8.6

Wrox Instant JavaScript – page 28

O – Object constant (Definition)

1571

Object constant (Definition)
Constant objects.

There are some constant objects defined by the standard. A host implementation may provide
a few more.

Here is a summary of the basic set of constant objects:

❑ Array constructor

❑ Boolean constructor

❑ Date constructor

❑ Function constructor

❑ Global object

❑ Math object

❑ Number constructor

❑ Object constructor

❑ RegExp constructor

See also: Array(), Boolean(), Closure(), Constant expression, Date(),
Function(), Global object, Math object, Number(), Object
literal, Object()

Cross-references:
Wrox Instant JavaScript – page 28

Object inspector (Useful tip)
A debugging tool for inspecting object properties and classes.

Here is a small debugging utility that breaks an object down and displays some of its properties.

Example code:
<!-- An example for use on Netscape only -->
<HTML>
<HEAD>
<SCRIPT>
function object_dump(anObject)
{
 document.write("<HR>");
 document.write("<TABLE BORDER=1>");
 table_row("Item", "Value");

 if(typeof anObject != "object")
 {

JavaScript Programmer's Reference

1572

 table_row("Value", anObject);
 table_row("Typeof", typeof(anObject));
 }
 else
 {
 table_row("Value", anObject.valueOf());
 table_row("String equiv", anObject.toString());
 table_row("Typeof", typeof(anObject));
 table_row("Class", anObject.constructor.name);
 table_row("Prototype", anObject.prototype);
 }

 document.write("</TABLE>");
 document.write("<HR>");
}

function table_row(anItem, aName)
{
 document.write("<TR>");
 document.write("<TD>");
 document.write(anItem);
 document.write("</TD>");
 document.write("<TD>");
 document.write(aName);
 document.write("</TD>");
 document.write("</TR>");
}
</SCRIPT>
</HEAD>
<BODY>
<SCRIPT>
function nest(abc)
{
 test("aa", bb, 100);
}
function test(aa, bb, cc, dd)
{
 object_dump(aa);
 object_dump(bb);
 object_dump(cc);
 object_dump(arguments.caller.callee.name);
 object_dump(arguments.callee.constructor.name);
}
var bb;
nest("aa", bb, 100);
object_dump(document);
</SCRIPT>
</BODY>
</HTML>

See also: Arguments object, Debugging – client side, typeof

O – Object literal (Definition)

1573

Object literal (Definition)
An object initialiser that creates the object as well.

Availability: ECMAScript edition – 3

Property/method value type: Object object

JavaScript version 1.2 introduces Object literals.

The object is created and returned by the expression. This would normally be assigned to a
variable, which effectively names the object. It isn't the object class but it can be copied. Its class is
still "Object".

Object literals can be nested so that the properties of the topmost object can in fact be object
literals themselves.

The values assigned to the properties as the object is created can be derived by evaluating a
JavaScript expression.

You can add as many properties as you care to but you must be careful to keep the nesting
properly balanced.

The result is an object with the properties containing the values described in the literal expression.

Example code:
// Create a simple object literal
var simple = { prop:100 };
// Create a nested object literal
var nested = { reference: { prop:100 } };
// Create a nested object literal with expression derived value
var evaluated = { reference: { prop:(Math.random()*100) } };

See also: Object constant, Object.constructor

Cross-references:
ECMA 262 edition 3 – section – 11.1.5

O'Reilly JavaScript Definitive Guide – page – 45

Object model (Definition)
There are several different object models that are realized in JavaScript implementations.

In the Netscape and MSIE web browsers, the object models are provided as representations of the
document, the browser, event capturing mechanisms, and the style sheet. In addition, some
implementations model the environs, the operating system, and the file system. Each of these object
models interacts with the others and is a way of representing the tangible real-world objects.

JavaScript Programmer's Reference

1574

Although these are generally arranged in a tree-like structure, there are many short cut references
that mean you can refer to the same object in a variety of ways. For example the Netscape
JavaPackage object can be referred to with the following properties in a Netscape browser:

❑ Netscape

❑ Packages.netscape

❑ window.Packages.netscape

Each one refers to an identical object but from the script writer’s point of view, some time can be
saved by using the short cuts. Scripts also appear simpler to read.

However, the downside is that the object model hierarchy becomes confusing unless you know
about the short-cuts. These shortcuts provided for 'so-called' convenience may in fact be exactly the
opposite if they are only available on one platform. Using them immediately renders your script
non-portable.

Object object (Object/core)
An object of the class "Object".

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server 2.0
Opera 3.0

- myObject = new Object()
JavaScript syntax:

- myObject = Object

Object properties: __parent__, __proto__, constructor, name, prototype

Object methods:
assign(), eval(), hasOwnProperty(), isPrototypeOf(),
propertyIsEnumerable(), toLocaleString(),
toSource(), toString(), unwatch(), valueOf(),
watch()

An instance of the class "Object" is created by using the new operator on the Object()
constructor. The new object adopts the behavior of the built-in prototype object through the
prototype-inheritance mechanisms.

All properties and methods of the prototype are available as if they were part of the instance.

An Object is a member of the type Object. It is an unordered collection of properties, each of
which may contain a primitive value, another object, or a function.

The constructor is invoked by the new operator or by calling it as a Constructor function. For example:

new String("Some Text");

O – Object object (Object/core)

1575

This will create a new object of the String type. You can invoke the constructor without the new
operator but the consequences will depend on the constructor as to what it will yield as a result. In
the case of the String data type, the constructor could be invoked like this:

String("Some Text");

However, you would get a primitive string as a result from this and not a String object. JavaScript
is somewhat forgiving and you may not notice this happening until later on when it becomes
important that you have a String object and not a simple string.

Because this object is the topmost parent object in the prototype inheritance hierarchy, all other
object classes inherit its methods and properties. However, in some cases they will get overridden
or nulled out.

DOM level 2 adds the following properties:

contentDocument

Although JavaScript is object-based, it does not support true object-oriented classes such as the ones
you find in C++, Smalltalk, Java or Objective C. Instead, it provides Constructor mechanisms, which
create objects by allocating space for them in memory and assigning initial values to their properties.

All functions, including constructors are themselves objects; however, not all objects are
constructors. Each constructor has a Prototype property that is used to facilitate inheritance based
on the prototype. It also provides for shared properties, which is similar to but not the same as the
Class properties that you find in true object-oriented languages.

Externally, the objects in JavaScript exhibit most of the attributes of a class based object oriented
system and some commentators argue that this qualifies JavaScript as being a genuine object
oriented system. However I think the following points declassify it as a truly object oriented
system, meaning that it is an "object like" system:

❑ Global variables and the scope chain mechanism

❑ Prototype based inheritance

❑ Creation of multiple objects and calling them within a single script

❑ Object data is not truly private

It’s a close enough call that JavaScript 2.0 may well move it into the class-based object-oriented
category at which time the prototype inheritance would be replaced with super-class/sub-class
mechanisms and the arguments become null and void.

Warnings:
❑ Be very careful not to confuse this generic top-level core object with the object that MSIE instantiates

to represent an <OBJECT> tag. MSIE creates OBJECT objects for that purpose but also supports
Object objects. For this reason, it may be the case that interpreters cannot become case-insensitive
when matching class names. If they did, then it would be impossible to distinguish between Object
and OBJECT class names.

JavaScript Programmer's Reference

1576

See also: Aggregate type, Array object, Boolean object, Date object, delete, Function
object, Math object, Native object, Number object, Object, OBJECT object,
Object(), Object(), Object.Class, Object.prototype, String object,
userDefined object

Property JavaScript JScript N IE Opera NES ECMA Notes

__parent__ 1.2 + - 4.0 + - - - - -
__proto__ 1.2 + - 4.0 + - - - - -
constructor 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 2 + -
name - 5.5 + - 5.5 + - - - -
prototype 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 2 + Warning,

ReadOnly,
DontDelete,
DontEnum

Method JavaScript JScript N IE Opera NES ECMA Notes

assign() 1.1 + - 3.0 + - - - - Warning,
Deprecated

eval() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + - Warning,
Deprecated

hasOwn
Property()

1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -

isPrototype
Of()

1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -

propertyIs
Enumerable()

1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -

toLocale
String()

1.5 + 5.5 + 6.0 + 5.5 + - - 3 + Warning

toSource() 1.3 + 3.0 + 4.06 + 4.0 + - - - Warning
toString() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 2 + -
unwatch() 1.2 + - 4.0 + - - 3.0 + - Warning
valueOf() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + -
watch() 1.2 + - 4.0 + - - 3.0 + - Warning

Cross-references:
ECMA 262 edition 2 – section 4.2.1

ECMA 262 edition 2 – section 4.3.3

ECMA 262 edition 2 – section 10.1.5

ECMA 262 edition 2 – section 15.2

ECMA 262 edition 3 – section 4.2.1

ECMA 262 edition 3 – section 4.3.3

O – Object() (Constructor)

1577

ECMA 262 edition 3 – section 10.1.5

ECMA 262 edition 3 – section 15.2

O'Reilly JavaScript Definitive Guide – page 44

Wrox Instant JavaScript – page 28

Object() (Constructor)
An Object object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server 2.0
Opera 3.0

Property/method value type: Object object

- new Object

- new Object()JavaScript syntax:
- new Object(aValue)

Argument list: aValue An initial value for the new object

When Object is called as part of a new expression, it is a constructor that may create an object instance.

There are limitations what is sensible for the new operator to be able to do with the Object
constructor. Since the Object is considered to be the highest ancestor of all objects in the prototype
inheritance chain, you cannot logically have more than one Object object. Passing other native
objects to the Object Constructor implies a type casting from their native object type to the
Object type. That's not logical either. The main use of the Object Constructor then is to
manufacturer object instantiations from non-object data types.

The table summarizes the resulting values from using the Object() constructor with the new operator.

Value Result

No argument Creates a new empty object

null Creates a new empty object

undefined Creates a new empty object

Boolean Create a new boolean object whose default value is the input value

Number Create a new number object whose default value is the input value

String Create a new string object whose default value is the input value

Native object Return the native object itself

Host object Host implementation dependant behavior. Objects are cloned if
necessary but some may not be

JavaScript Programmer's Reference

1578

Unless you assign the result of the new operation, an object will simply consume memory. You
need to store a reference to it at the time it is instantiated. You can do this by assigning it to a
variable or a property of another object, passing it in to a function and making sure it gets retained
in there, or storing it as an element in an array.

Warnings:
❑ You can refer to objects without the parentheses but then you are not referring to a constructor

function but to the object itself. The behavior varies between browsers and depends on the kind of
object being instantiated and probably depends on whether it is a wrapper for a primitive data type
or a more complex aggregated type.

❑ These all appear to create the same kind of object in both MSIE and Netscape

myObject = Object();

myNewObject = new Object();

myOtherObject = new Object;

These do not:

myBoolean = Boolean();

myNewBoolean = new Boolean();

myOtherBoolean = new Boolean;

❑ In the case of the Boolean, Number, and String object types, only the first form will initialize the new
object with a value. Placing the result of these examples in document.write() statements
illustrates the behavior. You may want to examine the objects returned in more detail by developing
an object inspector script.

See also: Boolean(), Constructor function, constructor property, Garbage collection, Global
object, Memory leak, new, Number(), Object constant, Object object,
Object.prototype, Reference counting, String()

Cross-references:
ECMA 262 edition 2 – section 15.1.1

ECMA 262 edition 2 – section 15.1.3.1

ECMA 262 edition 2 – section 15.2.2.2

ECMA 262 edition 3 – section 15.2.2

O – Object() (Function)

1579

Object() (Function)
An Object object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0

Property/method value type: An object of a type that depends on the passed in argument

- Object()
JavaScript syntax:

- Object(aValue)

Argument list: aValue A value to be stored in the new object.

The Object Constructor can be called as a function. When this happens, the value passed in
undergoes a type conversion.

In an ECMA-compliant implementation, the Object constructor function uses the ToObject
conversion. However it handles input values undefined and null as special cases and creates a
new object as if the constructor had been used with the new operator.

The table summarizes the results based on the input value data types.

Value Result

No argument Creates a new empty object as if new Object() had been called.
null Creates a new empty object as if new Object(null) had been

called.
undefined Creates a new empty object as if new Object(undefined) had

been called.
Boolean Create a new boolean object whose default value is the input value.
Number Create a new number object whose default value is the input value.
String Create a new string object whose default value is the input value.
Object No conversion, the input value is returned unchanged.

See also: Cast operator, Constructor function, constructor property, Implicit
conversion, Object object

Cross-references:
ECMA 262 edition 2 – section 15.1.1

ECMA 262 edition 2 – section 15.1.3.1

ECMA 262 edition 2 – section 15.2.2.2

ECMA 262 edition 3 – section 15.2

JavaScript Programmer's Reference

1580

Object.__parent__ (Property)
A special property in which to access the scope chain during function execution.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: ScopeChain object

JavaScript syntax: N myObject.__parent__

See also: Lexical scoping, __parent__

Object.__proto__ (Property)
A special property in which to access the prototype inheritance chain during construction.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Function object

JavaScript syntax: N myObject.__proto__

See also:
Lexical scoping, Prototype Based Inheritance, Prototype chain,
__proto__

Object.assign() (Method)
A deprecated mechanism for intercepting messages sent to objects.

Availability:
JavaScript – 1.1
Netscape – 3.0
Deprecated

JavaScript syntax: N myObject.assign()

Warnings:
❑ This method is deprecated in favor of the Object.watch() and Object.unwatch() methods.

See also: Object.unwatch(), Object.watch()

O – Object.Class (Property/internal)

1581

Object.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

This is an internal property that describes the class that an Object object instance is a member of.
The reserved words suggest that in the future, this property may be externalized.

See also: Class, Object object

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 2 – section – 15.2.2.1

ECMA 262 edition 3 – section – 8.6.2

Object.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Object object

JavaScript syntax: - myObject.constructor

The initial value of the Object.prototype.constructor is the built-in Object constructor.

You can use this as one way of creating objects although it is more popular to use the new
Object() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is
highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Object literal, Object.prototype

JavaScript Programmer's Reference

1582

Cross-references:
ECMA 262 edition 2 – section – 15.2.4.1

ECMA 262 edition 3 – section – 15.2.2

Object.eval() (Method)
Evaluate the JavaScript source text passed in a string argument.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0
Deprecated

Property/method value type: Function result

JavaScript syntax: - myObject.eval()

Warnings:
❑ This is now deprecated and may even be unavailable in recent versions of Netscape and JScript. You

should use the eval() function available from the global object.

See also: eval()

Object.hasOwnProperty() (Method)
A method that can be used to test whether a property exists and belongs to the receiving object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.hasOwnProperty(aName)

Argument list: aName The name of a property to test for

For this method to yield a Boolean true value, the property named in the argument must exist and
must belong to the receiving object. If the property is inherited from a prototype or earlier ancestor
then this method returns false.

O – Object.isPrototypeOf() (Method)

1583

This method would be useful if it could test for the existence of a property in the inheritance chain.
There is an internal HasProperty() method but the ECMA standard indicate that it is not
exposed to the script interface.

See also: HasProperty()

Cross-references:
ECMA 262 edition 3 – section – 15.2.4.5

Object.isPrototypeOf() (Method)
A test for the relationship between two objects to ascertain direct parentage.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.isPrototypeOf(anObject)

Argument list: anObject The object whose prototype is to be tested

The receiving object is tested for identity against the object referred to by the prototype property of
the object passed as an argument. If the object in the argument is a direct child object through the
prototype chain, then this method returns a true value.

See also: HasInstance()

Cross-references:
ECMA 262 edition 3 – section – 15.2.4.6

Object.name (Property)
This corresponds to the NAME attribute of the tag that creates the object.

Availability:
JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE myObject.name

JavaScript Programmer's Reference

1584

Objects are identified either by the NAME="… " HTML tag attribute or by the ID="… " HTML
tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However in many cases, both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

See also: NAME="..."

Object.propertyIsEnumerable() (Method)
A test for whether a property has the don't enumerate flag set or not.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.propertyIsEnumerable(aName)

Argument list: aName The name of the object property to test

If the receiving object has a member property of the name that is passed in the argument, and if the
DontEnum attribute of that property is false, then this method returns the Boolean true value.

Cross-references:
ECMA 262 edition 3 – section 15.2.4.7

Object.prototype (Property)
The prototype for the Object object, which can be used to extend the interface for all Object objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Object object

- Object.prototype
JavaScript syntax:

- myObject.constructor.prototype

The initial value of the prototype property of an Object object is the built in Object prototype object.

O – Object.prototype (Property)

1585

Object objects inherit the following properties from the Object.prototype:

❑ Object.constructor

❑ Object.prototype

Object objects inherit the following methods from their prototype:

❑ Object.toString()

❑ Object.valueOf()

The prototype property for the Object prototype object is null.

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Warnings:
❑ This is not supported on the WebTV platform.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the output capabilities of Object objects
function init()
{
 this.width = 100;
 this.height = 200;
 this.depth = 300;
 return "";
}
// Register the new function
Object.prototype.init = init;
// Create a new object
myObject = new Object();
myObject.init();
document.write(myObject.width + "
");
document.write(myObject.height + "
");
document.write(myObject.depth + "
");
</SCRIPT>
</BODY>
</HTML>

See also: Arguments object, Function.arguments[], JellyScript, Object
object, Object(), Object.constructor, Object.toString(),
Object.valueOf(), prototype property

JavaScript Programmer's Reference

1586

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section 15.2.3.1

ECMA 262 edition 2 – section 15.2.4

ECMA 262 edition 3 – section 15.2.3.1

Object.toLocaleString() (Method)
Returns a string primitive version of the object taking the present locale into account during
the translation.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myObject.toLocaleString()

The locale context supplies some special conversion rules for strings. Depending on the locale, this
might include special characters or a means of using double byte characters. It may also affect the
direction of the text, for certain Asian locales for example.

Warnings:
❑ The ECMA standard reserves the first argument of this method for future use. It does not specify

what that is but warns against implementations extending the syntax to include its use.

Cross-references:
ECMA 262 edition 3 – section – 15.2.4.3

Object.toSource() (Method)
Output a string describing the object contents.

Availability: JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myObject.toSource()

O – Object.toString() (Method)

1587

This is an alternative way to deliver a string version of an object's internal values. In this case, it is
formatted as an Object literal and can then be used in an eval() function to assign another object.

The exact format of what you see depends on the object being examined.

The result of calling this method is string version of the object formatted as an Object literal.

Warnings:
❑ Note that this is not available in the MSIE browser but can be useful when constructing an Object

inspector for use in Netscape.

Object.toString() (Method)
Return a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: String primitive

JavaScript syntax: - myObject.toString()

When the toString() method of an Object.prototype is invoked, the class name of the object
is returned as a string.

The result of calling this method will be the string:

[object "Object"]

See also: Cast operator, Object.prototype, toString()

Cross-references:
ECMA 262 edition 2 – section – 15.2.4.2

ECMA 262 edition 3 – section – 15.2.4.2

JavaScript Programmer's Reference

1588

Object.unwatch() (Method)
A method to disable a watch that was set up on a property change.

Availability: JavaScript – 1.2
Netscape – 4.0
Netscape Enterprise Server – 3.0

JavaScript syntax: N myObject.unwatch()

This is inherited by most object classes in Netscape.

Warnings:
❑ Because of the scoping rules, you cannot actually examine the value of the variable that has changed

since the event handler is running in a completely different scope chain.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
function watchFunct()
{
 alert("Variable changed");
}
watch("myVariable", watchFunct)
myVariable = 100;
myVariable = 200;
unwatch("myVariable")
myVariable = 300;
</SCRIPT>
</BODY>
</HTML>

See also: Object.assign(), Object.watch()

Object.valueOf() (Method)
The primitive numeric value of the object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Depends on the object value

JavaScript syntax: - myObject.valueOf()

O – Object.watch() (Method)

1589

As a general rule, the valueOf() method for an object simply returns the this property of the
object itself. However, the object may be a wrapper for a host object some kind. It may therefore
have been created by invoking the Object constructor. In that case, the host object should be
returned in an ECMA-compliant implementation.

Implementations may choose to return the this property of an object or some other value if they choose.

The result of this method will be implementation-and object-dependant. The native core objects are
well defined and will return predictable value types. Generally these will be defined by ECMA or
W3C standards. It is up to the hosting environment to provide the valueOf() interface to its own
suite of objects.

See also: Cast operator, Object.prototype, valueOf()

Cross-references:
ECMA 262 edition 2 – section – 15.2.2.1

ECMA 262 edition 2 – section – 15.2.4.3

ECMA 262 edition 3 – section – 15.2.4.4

Object.watch() (Method)
A means of establishing a call back when a property value changes.

Availability: JavaScript – 1.2
Netscape – 4.0
Netscape Enterprise Server version – 3.0

JavaScript syntax: N myObject.watch()

This is inherited by most object classes in Netscape.

Warnings:
❑ Because of the scoping rules, you cannot actually examine the value of the variable that has changed

since the event handler is running in a completely different scope chain.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
document.watch("myVariable", alert("Watch point triggered"))
document.myVariable = 100;
</SCRIPT>
</BODY>
</HTML>

See also: Object.assign(), Object.unwatch(), unwatch(), watch()

JavaScript Programmer's Reference

1590

Object property delimiter (.) (Delimiter)
A token to delimit object properties from their object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.0
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

- myObject.aProperty
JavaScript syntax:

- myObject.aProperty.aProperty

Argument list: aProperty The identifier name of property to be accessed

The dot delimits properties and objects. It can find properties of properties of objects too.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

You can also access the property values as if the object were an array. This:

anObject.aProperty

is equivalent to:

anObject["aProperty"]

The result will be the value of the property when it is an RValue or a reference to the property
when it is an LValue.

See also: Associativity, Decimal point (.), Operator Precedence, Postfix operator

Cross-references:
ECMA 262 edition 2 – section 8.6

ECMA 262 edition 2 – section 11.2

ECMA 262 edition 3 – section 8.6

ECMA 262 edition 3 – section 11.2.1

Wrox Instant JavaScript – page 28

O – OBJECT object (Object/HTML)

1591

OBJECT object (Object/HTML)
This is an object that encapsulates an ActiveX plugin. Do not confuse it with the Object object that
is the super-class of all objects in JavaScript.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myOBJECT = myDocument.all.anElementID

IE myOBJECT = myDocument.all.tags("OBJECT")[anIndex]

IE myOBJECT = myDocument.all[aName]

- myOBJECT = myDocument.applets[anIndex]

- myOBJECT = myDocument.getElementById(anElementID)

- myOBJECT = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myOBJECT = myDocument.getElementsByTagName
("OBJECT")[anIndex]

HTML syntax: <OBJECT> ... </OBJECT>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
accessKey, align, altHtml, archive, border, classid,
code, codeBase, codeType, data, dataFld, dataSrc,
declare, form, height, hspace, name, object, readyState,
standby, tabIndex, type, useMap, vspace, width

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDataAvailable, onDataSetChanged, onDataSetComplete,
onDblClick, onDragStart, onError, onErrorUpdate,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onReadyStateChange, onRowEnter,
onRowExit, onSelectStart

This is an object representing an <OBJECT> HTML tag.

The <OBJECT> tag is a block-level tag. That means that it forces a line break before and after itself.

This object is specific to the MSIE browser when it runs on the Windows operating system. No
other browser supports ActiveX as well as MSIE and no other operating system properly or
completely supports the ActiveX infrastructure.

The events handled, and the properties and the methods of this object will depend on the kind of
ActiveX object that is created.

The DOM level 1 specification refers to this as an ObjectElement object.

JavaScript Programmer's Reference

1592

Warnings:
❑ Be very careful not to confuse this object with the generic top level core Object object that is the

super-class of all objects in the interpreter.

❑ This is the object that MSIE instantiates to represent an <OBJECT> tag. MSIE creates OBJECT objects
for that purpose but also supports Object objects. For this reason, it may be the case that
interpreters cannot become case insensitive when matching class names. If they did, then it would be
impossible to distinguish between Object and OBJECT class names.

❑ Creating an OBJECT class when an Object class already exists must have been a moment of
insanity in an otherwise mostly excellent browser implementation project.

See also: ActiveXObject object, Document.applets[], Element object, Input.accessKey,
Object object

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
altHtml - 3.0 + - 4.0 + - - - -
archive 1.5 + - 6.0 + - - 1 + - Deprecated
border 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
classid - 3.0 + - 4.0 + - - - ReadOnly
code 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
codeBase 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
codeType 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
data 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
dataFld 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
dataSrc 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
declare 1.5 + - 6.0 + - - 1 + - -
form 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
height 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
hspace 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
name - 5.5 + - 5.5 + - - - -
object - 3.0 + - 4.0 + - - - ReadOnly
readyState - 3.0 + - 4.0 + - - - ReadOnly
standby 1.5 + - 6.0 + - - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
useMap 1.5 + - 6.0 + - - 1 + - -
vspace 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

O – OBJECT object (Object/HTML)

1593

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onClick 1.5+ 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDataAvailable - 3.0 + - 4.0 + - - - -
onDataSetChanged - 3.0 + - 4.0 + - - - -
onDataSetComplete - 3.0 + - 4.0 + - - - -
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onError 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onReadyStateChange - 3.0 + - 4.0 + - - - -
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Web-references:
http://www.w3.org/pub/WWW/TR/WD-object.htm

http://www.w3.org/pub/WWW/TR/WD-object.htm

JavaScript Programmer's Reference

1594

OBJECT.align (Property)
An alignment control for an <OBJECT> tag's position with respect to its parent object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.align

The alignment of the ActiveX OBJECT object with respect to its containing parent object is defined
in this property. The expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

OBJECT.altHtml (Property)
A block of alternative HTML to be used if the <OBJECT> tag fails to load its plugin correctly.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myOBJECT.altHtml

The alternative HTML is used in case the base <OBJECT> tag experiences a problem when loading
or the browser cannot use ActiveX objects as embeds. Of course if this property is accessible from
the OBJECT object during scripting, the browser must have parsed the <OBJECT> tag, although it
may still have had problems with the component.

This HTML is enclosed between the <OBJECT> and </OBJECT> tags in the HTML document source.

O – OBJECT.archive (Property)

1595

Certain tags are likely to be omitted from the altHTML property value. <OBJECT> blocks contain
<PARAMETER> tags for passing values to the embedded ActiveX component. Clearly you won't
want these appearing in the display if the component fails to load. The <PARAMETER> tags are
considered integral to the <OBJECT> and it’s smart enough to disregard them as it constructs its
alternative HTML block.

Browsers that cannot understand and render <OBJECT> tags should also ignore the <PARAMETER>
tags too.

OBJECT.archive (Property)
A space-separated archive list. This enumerates a set of classes that must be pre-loaded before the
object can execute.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0 Deprecated

Property/method value type: String primitive

JavaScript syntax: N myOBJECT.archive

This is a new attribute of the DOM HTMLObjectElement but is shown here as this is the existing
object type it is to be added to.

OBJECT.border (Property)
The width of the border around the object when it is rendered into the display.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.border

This property can be set from script and although its type is a String primitive, it will expect a
numeric value. JavaScript will coerce as necessary during the assignment.

JavaScript Programmer's Reference

1596

OBJECT.classid (Property)
The URL that locates the registered ActiveX control within the local file system when MSIE is used
on the Windows platform.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myOBJECT.classid

This is a special URL value used to locate ActiveX objects within the file system of the PC running
the client browser. This is likely only available in Windows versions of the MSIE browser because
that is the only platform that supports ActiveX objects. It is not supported on the Macintosh version
of MSIE because ActiveX objects aren't available there. This is because they are compiled x86 micro-
code and therefore cannot run in a non-Intel environment (unless the x86 CPU is being emulated).

The ActiveX control needs to have been registered and installed already. It is possible to construct
an <OBJECT> tag that conveys sufficient information to locate and install a missing ActiveX control
but this can be a quite involved process.

See also: clsid: URL, URL

Property attributes:
ReadOnly.

OBJECT.code (Property)
The name of a Java applet to be used with the <OBJECT> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.code

This specifies the main code class to be loaded when the object is instantiated. This value is added
to the codebase property to form a fully qualified URL.

There is conflicting information in the reference sources regarding the read/write ability of this
property. Some suggest it is ReadOnly and others suggest you can assign a value to it. It may be
that you can assign a value to it without the JavaScript interpreter complaining but that any value
you assign is ignored.

O – OBJECT.codeBase (Property)

1597

OBJECT.codeBase (Property)
The path to the directory where the Java applet denoted by the CLASS="… " HTML tag attribute is
to be found.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.codebase

The codebase is the path to the directory where the classes specified in the code property are
located. The actual path to the required files is generated by a string concatenation of
codebase+code to generate a fully specified URL.

Due to security limitations it is not permitted to access a codebase value that is outside the domain
specified by the containing document.

There is conflicting information in the reference sources regarding the read/write ability of this
property. Some suggest it is ReadOnly and others suggest you can assign a value to it. It may be
that you can assign a value to it without the JavaScript interpreter complaining but that any value
you assign is ignored.

OBJECT.codeType (Property)
A description of the type of code in the object referred to by the CLASSID="… " HTML tag attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.codeType

This is a MIME type value that describes the kind of code being embedded by the <OBJECT> tag.

There is conflicting information in the reference sources regarding the read/write ability of this
property. Some suggest it is ReadOnly and other suggest you can assign a value to it. It may be
that you can assign a value to it without the JavaScript interpreter complaining but that any value
you assign is ignored.

See also: MIME types

JavaScript Programmer's Reference

1598

OBJECT.data (Property)
A URL that points at a file containing data that the OBJECT element can access.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.data

This is intended for passing in a URL that the ActiveX object can use to access some data service
that is online and available for access via the network. It is not the URL of the ActiveX object itself.

Property attributes:
ReadOnly.

OBJECT.declare (Property)
A means of defining the object without activating it.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: N myOBJECT.declare

Declaring an OBJECT in this way may be useful when referring to the object from elsewhere in the
page or from within another object. Sometimes you simply want to know something about it,
perhaps one of its parameters. For video players, sometimes its useful to instantiate the OBJECT
into the display without playing the video right away.

OBJECT.form (Property)
The form that an object belongs to if it is used for form input.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Form object

JavaScript syntax: - myOBJECT.form

O – OBJECT.height (Property)

1599

Property attributes:
ReadOnly.

OBJECT.height (Property)
The height of an area reserved for displaying the contents of the <OBJECT> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myOBJECT.height

The object space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is the smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

OBJECT.hspace (Property)
A horizontal margin space either side of the <OBJECT> tag with respect to its surrounding objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myOBJECT.hspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The hspace property controls the margin to the left and right of the object.

JavaScript Programmer's Reference

1600

OBJECT.name (Property)
The value of the NAME="… " HTML tag attribute.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.name

Objects are identified either by the NAME="… " HTML tag attribute or by the ID="… "
HTML tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However in many cases, both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

See also: NAME="… ", Namespace

OBJECT.object (Property)
An accessor that yields a reference to the containing JavaScript object when there is a possibility of
naming conflicts between internally visible and externally visible property names.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Object object

JavaScript syntax: IE myOBJECT.object

If a property is a public property of the ActiveX object, and that name coincides with a property of
the JavaScript object that is instantiated by the <OBJECT> HTML tag, then access to the property
belonging to the containing object is difficult. This is because the search order will see the public
property of the ActiveX object first. By using the object property, once can access the containing
object explicitly and retrieve a property of that object even if there is an identically named property
belonging to the enclosed ActiveX object.

This access mechanism applies to method invocations as well.

See also: Applet.object

Property attributes:
ReadOnly.

O – OBJECT.readyState (Property)

1601

OBJECT.readyState (Property)
The current status disposition of the <OBJECT> tag as it is being loaded.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myOBJECT.readyState

This property reflects the loading status of an <OBJECT> tag and its corresponding OBJECT object
instantiation.

Sometimes, you can design scripts to execute while the document is downloading. Inline scripts for
example. At that time, you may even be able to trigger interval timed deferred executions as well.

If it is important that the document has completed loading, you can check this property for one of
the following values:

State Value

uninitialized The object is first instantiated but has not begun loading.

loading The object has commenced loading.

loaded The object has completed loading.

interactive The object is loaded but not yet closed but is ready to handle
interaction.

complete The object body has been closed and the loading is finished.

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: onReadyStateChange

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1602

OBJECT.standby (Property)
Sets or resets the message text displayed while the object is loading.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myOBJECT.standby

OBJECT.tabIndex (Property)
A control of where the OBJECT object appears in the tabbing order of the page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myOBJECT.tabIndex

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms or moving focus. Pressing the [tab] key
moves from one form element to the next according to the cascaded tabbing order defined by
building a tree-like structure with the tab index values.

OBJECT.type (Property)
An indication of the MIME type of the object if its codeType property is undefined.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.type

The MIME type of the object is accessible through the value of this property.

Refer to the MIME type topic for details of the available MIME types you will likely see in this property.

See also: MIME types

O – OBJECT.useMap (Property)

1603

OBJECT.useMap (Property)
The URL of a <MAP> defined hash element that defines a client-side image map.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myOBJECT.useMap

This property reflects the value of the USEMAP="… " HTML tag attribute, which should refer to the
named <MAP> tag containing an image map. The reference is by means of a "#NAME" value in this
property that corresponds to the NAME="… " HTML tag attribute of the <MAP> tag describing the
image map to use with the object.

OBJECT.vspace (Property)
A vertical spacing above and below the <OBJECT> with respect to its adjacent objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.vspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The vspace property controls the margin at the top and bottom of the object.

OBJECT.width (Property)
The height of an area reserved for displaying the contents of the <OBJECT> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOBJECT.width

JavaScript Programmer's Reference

1604

The object space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is the smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

Obsolescent (Definition)
A feature of the language that is no longer supported.

Warnings:
❑ If you use obsolescent functionality, your script may fail when it is deployed on other platforms.

See also: Deprecated functionality

Octal value (Definition)
A numeric value based on a radix of 8.

Availability: ECMAScript edition – 3

An octal value is an integer composed of only the following characters:

0 1 2 3 4 5 6 7

Octal values are always prefixed by a zero character.

The sequence carries over for the next increment when each column reaches the value 7. Thus:

00 01 02 03 04 05 06 07 010 011 012

Octal values have a historical significance from having been used in the earliest computer systems.
However these days, they are particularly useful since they map quite conveniently to the binary
system. Each octal digit corresponds to three binary digits.

The most significant of the three octal digits does not have a full range since it contains a carry over
bit and a three digit octal number actually represents a 9 bit value. However, an 8 bit value can be
encoded conveniently if the range is limited to 0377 as a maximum. Hexadecimal values map far
more conveniently although they are harder to compute mentally.

0 0 0

0 0 0 0 0 0 0 0 0

O – Off by one errors (Pitfall)

1605

Warnings:
❑ Beware when you prefix decimal values with a zero character. You may want to justify a column of

figures. If you add leading zero characters to a numeric string, if that string is subsequently parsed
back to a numeric value, you may inadvertently export the value as a decimal but import it as an
octal value. This can lead to an extremely difficult-to-diagnose fault in your software because the
parsers sometimes add some intelligence and will correctly interpret the value as decimal if the
characters 8 or 9 are present, but otherwise interpret it as octal notation.

❑ This may be implementation-dependant behavior to some extent.

❑ Be careful that you remove any leading zero characters from the text strings that you plan to convert
using the numeric parser. The example shows a simple function for doing this.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myString = "00123";
document.write(stripLeadingZeros(myString));
// Strip leading zero characters off a numeric string
function stripLeadingZeros(aString)
{
 return aString.substr(aString.search(/[1-9]/));
}
</SCRIPT>
</BODY>
</HTML>

See also: Decimal value, Hexadecimal value, Integer constant, Number, Number.toString()

Cross-references:
ECMA 262 edition 3 – section – B.1

O'Reilly JavaScript Definitive Guide – page – 35

Off by one errors (Pitfall)
An error caused by missing the target value by one.

This kind of errors are caused by the following:

❑ Forgetting than an index is zero-based and assuming it begins at 1. This typically affects arrays
and strings.

❑ Enumerating through a range of values and testing for equality with the target value rather than
testing that you are still less than the target value. This is typically a problem when you build for
loops.

See also: Array index delimiter ([]), Array.slice(), do ... while(...), for(...
) ..., Pitfalls, while(...) ...

JavaScript Programmer's Reference

1606

Off-screen image caching (Useful tip)
A technique for caching images locally in readiness for an animation.

Refer to:
Image preloading

offscreenBuffering (Property)
An alias for the window.offScreenBuffering property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Boolean or String primitive

- myWindow.offScreenBuffering

- myWindow.offScreenBuffering = aSetting

- offScreenBuffering

JavaScript syntax:

- offScreenBuffering = aSetting

Argument list: aSetting A new value to control this functionality

Refer to:
Window.offScreenBuffering

OL object (Object/HTML)
An object that represents the ordered list contained in an tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myOL = myDocument.all.anElementID

IE myOL = myDocument.all.tags("OL")[anIndex]

IE myOL = myDocument.all[aName]

- myOL = myDocument.getElementById
(anElementID)

- myOL = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myOL = myDocument.getElementsByTagName
("OL")[anIndex]

O – OL object (Object/HTML)

1607

HTML syntax: …

anIndex A reference to an element in a collection

aName An associative array referenceArgument list:
anElementID The ID value of an Element object

Object properties: compact, start, type

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The tag is a block-level tag. That means that it forces a line break before and after itself.

The DOM level 1 standard describes this as a HTMLOListElement object.

See also: Element object, UL object

Property JavaScript JScript N IE Opera DOM HTML Notes

compact 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
start 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

1608

OL.compact (Property)
A switching attribute that condenses the space required to display the ordered list on the screen.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myOL.compact

The collection of LI objects are presented in the normal spaced out style when the compact
property belonging to their owner OL object is set to false.

Setting the property to true should result in the list items being squeezed closer together. however
the functionality is rarely supported on web browsers.

Its more likely that you'll apply CSS style attributes to the list to achieve the same effect.

Warnings:
❑ Setting the property in MSIE and Netscape is quietly ignored by both browsers. No visible effect, no

error message.

See also: LI object

OL.start (Property)
The starting index of items in the ordered list. The enumerator can be set to a predetermined value
with this property.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myOL.start

Ordered lists can start at any value. This is somewhat related to the LI.value property, which
allows the list items to begin sequencing from any value you care to define. The value you specify
here must be a positive integer.

O – OL.type (Property)

1609

Warnings:
❑ This exhibits some bugs in Netscape 6.0. Setting a start value seems to be applied inconsistently to

the items in the list. They are renumbered but not correctly. For now, the best work around is to
construct the list and use the innerHTML trick to store it into the page. This will likely get fixed as
soon as people really get to grips with Netscape 6.0 and it does work fine in MSIE.

See also: LI.value

OL.type (Property)
The presentation style of the ordered list.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOL.type

Although the sequence numbers are incrementing in an ordered list, they may be displayed in a
variety of different formats selected by this property.

You can override this on an item-by-item basis and so this property is related to the LI.type property.

The following type values are appropriate for this list type:

❑ 1 - Numeric

❑ a – Alphabetical – lower case

❑ A – Alphabetical – upper case

❑ i – Roman numerals – lower case

❑ I – Roman numerals – upper case

See also: LI.type, style.listStyleType, UL.type

on ... (Event handler)
All event handlers begin with the word on.

The event handlers are many and various in their support across the browsers and in the way that
they are triggered. There is no one object that supports them all and even when an object does not
support them by default, the event-management capabilities of MSIE or Netscape can sometimes
set objects up to support them anyway.

JavaScript Programmer's Reference

1610

Here is a summary of the available supported events:

Event Handler Usage
Abort onabort When image loading is aborted.
AfterPrint onafterprint When printing has just finished.
AfterUpdate onafterupdate When an update is completed.
Back onback The user has clicked on the [BACK] button in the

toolbar.
BeforeCopy onbeforecopy Immediately before a copy to the clipboard.
BeforeCut onbeforecut Immediately before a cut to the clipboard.
BeforeEditFocus onbeforeeditfocus Immediately before the edit focus is directed to an

element.
BeforePaste onbeforepaste Immediately before the clipboard is pasted.
BeforePrint onbeforeprint Immediately before printing begins.
BeforeUnload onbeforeunload Called immediately prior to the window being

unloaded.
BeforeUpdate onbeforeupdate Called immediately before an update commences.
Blur onblur When an input element loses input focus.
Bounce onbounce Triggered when a marquee element hits the edge of its

element area.
Change onchange When edit fields have new values entered or a popup

has a new selection, this event's handler can check the
new value.

Click onclick When the user clicks the mouse button on the
Element object that represents the object on screen.

ContextMenu oncontextmenu Special handling for contextual menus.
Copy oncopy When a copy operation happens.
Cut oncut When a cut operation happens.
DataAvailable ondataavailable Some data has arrived asynchronously from an applet

or data source.
DataSetChanged ondatasetchanged A data source has changed the content or some initial

data is now ready for collection.
DataSetComplete ondatasetcomplete There is no more data to be transmitted from the data

source.
DblClick ondblclick When the user double-clicks on an object.
Drag ondrag When a drag operation happens.
DragDrop ondragdrop Some data has been dropped onto a window.
DragEnd ondragend When a drag ends.
DragEnter ondragenter When a dragged item enters the element.
DragLeave ondragleave When a dragged item leaves the element.
DragOver ondragover While the dragged item is over the element.
DragStart ondragstart The user has commenced some data selection with a

mouse drag.
Drop ondrop When a dragged item is dropped.
Error onerror Triggered if an error occurs when loading an image.

Table continued on following page

O – on ... (Event handler)

1611

Event Handler Usage
ErrorUpdate onerrorupdate An error has occurred in the transfer of some data

from a data source.
FilterChange onfilterchange A filter has changed the state of an element or a

transition has just been completed.
Finish onfinish A marquee object has finished looping.
Focus onfocus When the form element is selected for entry.
Forward onforward The user has clicked on the [FORWARD] button in

the toolbar.
Help onhelp The user has pressed the [F1] key or selected

[help] from the toolbar or menu.
KeyDown onkeydown When a key is pressed.
KeyPress onkeypress Pressing the key down and releasing it again elicits

this event.
KeyUp onkeyup When a key is released.
Load onload When an object has completed loading.
LoseCapture onlosecapture When an element loses event capturing permission.
MouseDown onmousedown When the mouse button is pressed.
MouseDrag onmousedrag An event handler for mouse drag operations.
MouseMove onmousemove When the mouse pointer is moved.
MouseOut onmouseout When the mouse pointer leaves the active area

occupied by the Element object that represents the
object on screen.

MouseOver onmouseover When the mouse pointer enters the active area
owned by the object.

MouseUp onmouseup When the mouse button is released.
Move onmove The browser window has been moved..
Paste onpaste When a paste operation happens.
PropertyChange onpropertychange When an object property is modified (similar to the

Netscape watch() method).
ReadyStateChange onreadystatechange An object in the window has changed its ready state.
Reset onreset The user has clicked a reset button in a form.
Resize onresize As the window is resized, this event is triggered.
RowEnter onrowenter The data in a field bound to a data source is about to

be changed.
RowExit onrowexit The data in a field bound to a data source has been

changed
Scroll onscroll The window has been scrolled.
Select onselect Some textual content in the window has been

selected.
SelectStart onselectstart A select action is beginning.
Start onstart A marquee element is beginning its loop.
Stop onstop When a stop action occurs.
Submit onsubmit The user has clicked on the submit button in a form
Unload onunload Triggered when the document is unloaded.

JavaScript Programmer's Reference

1612

Events are associated with HTML tags by means of the onEvent="..." tag attribute. This assigns
a function object to the onevent property of the Element object that represents a tag. Event
handlers can be associated with objects by assigning function object references to the event-handler
properties of the objects. However, this is also not consistently supported across the browsers.

Netscape supports event routing calls that can send events to objects by passing the Event object
to them. The objects then map the events to an appropriate handler according to their set-up.

The initial value of this property will be an anonymous function whose body contains the contents
of the onEvent="… " HTML tag attribute.

When the event is triggered and called, it will execute in the context of the Element object and not
the window. This means the execution scope will be that of the Element object.

In Netscape prior to version 6.0, event handlers are passed an event object as an argument when
they are called. In MSIE, no object is passed but the equivalent event object is available as the event
property of the window that contains the Element object that receives the event trigger.

On the return from a handler, other processing may take place. In pre-version 6.0 Netscape
browsers, the general technique for this is to return a false value. Returning nothing is equivalent
to returning true which may allow some default processing in the browser to be called. In MSIE,
this flag value is also supported, at least on later browser versions. In addition, the returnValue
property of the event object can be set to false.

Now with the version 6.0 release of Netscape the DOM level 2 event model has been introduced.
The event model is still undergoing some development at the W3C standards organisation and a
level 3 update is available for review. This at least is a turning point for event handling because all
browser manufacturers have stated that it is their goal to be standards-compliant. The new event
model is mainly based on the MSIE way of doing things but it is a slightly hybrid and takes some
ideas from the Netscape tradition too.

Warnings:
❑ Prior to version 6.0 of Netscape, anything more than simple event handling is managed differently

between the Netscape and MSIE browsers.

❑ Properties that can be assigned with a function handler vary between Netscape and MSIE. Generally,
MSIE allows this property assigning technique more completely and consistently across all its event
handlers and objects that own them.

❑ Be aware that you don't always get a meaningful event object passed as an argument to the event
handler in Netscape. On some platforms, the event object may have some useful properties, on
others it may have none. The MSIE event object is more complete but less flexible as it needs to be
shared between all events.

❑ Event handling support has radically changed in Netscape 6.0, and because it is a new code base and
a new standard, there are likely to be bugs and limitations in its support for a while yet.

See also: Element.onevent, Event object

O – onAbort (Event handler)

1613

onAbort (Event handler)
An event that happens when loading is interrupted.

Availability: JavaScript – 1.1
JScript – 1.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onabort = aHandler

HTML syntax: <HTMLTag onAbort="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects: IMG

This event is only supported by IMG objects. It is triggered if a page load is aborted partway
through the loading of an image.

See also:
Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onError, onLoad, Semantic
event

onAfterPrint (Event handler)
Called when printing is completed.

Availability:
JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onafterprint = aHandler

This provides a hook for cleaning up after printing a page.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBeforePrint, Semantic
event

JavaScript Programmer's Reference

1614

onAfterUpdate (Event handler)
An event that happens after an update.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onafterupdate = aHandler

HTML syntax: <HTMLTag onAfterUpdate="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:
APPLET, Checkbox, Input, TABLE, AREA, DIV,
MARQUEE,TD, BODY, Document, OBJECT, TEXTAREA,
BUTTON, FIELDSET, RadioButton, TH, CAPTION,
IMG, Select

If the contents of a page are database driven, this will be called after the database has been updated.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBeforeUpdate, Semantic event

onBack (Event handler)
Triggered by the back button.

Availability: JavaScript – 1.3
Netscape – 4.0

Property/method value type:
Boolean primitive

JavaScript syntax: N myObject.onback = aHandler

HTML syntax: <HTMLTag onBack="...">

Argument list: aHandler
A reference to a function object to handle
the event

This event is called when the user interacts with the browser. Some events like this are helpful for
blocking the operation of certain browser UI elements.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onForward, Semantic event,
Window events

O – onBeforeCopy (Event handler)

1615

onBeforeCopy (Event handler)
Called immediately before a copy operation.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onbeforecopy = aHandler

If a selected area of the page is about to be copied to the clipboard, this allows the event to be
intercepted and blocked if necessary.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBeforeCut,
onBeforePaste, Semantic event

onBeforeCut (Event handler)
Called immediately before a cut operation.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onbeforecut = aHandler

If a selected area of the page is about to be cut to the clipboard, this allows the event to be
intercepted and blocked if necessary.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBeforeCopy,
onBeforePaste, Semantic event

onBeforeEditFocus (Event handler)
Called immediately before focus is relocated to another object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onbeforeeditfocus = aHandler

If a field within a form is about to be edited, this allows the event to be intercepted and blocked
if necessary.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Semantic event

JavaScript Programmer's Reference

1616

onBeforePaste (Event handler)
Called immediately before a paste operation.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onbeforepaste = aHandler

If a form elements is about to have its contents pasted from the clipboard, this allows the event to
be intercepted and blocked if necessary.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBeforeCopy,
onBeforeCut, Semantic event

onBeforePrint (Event handler)
Called immediately before printing commences.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onbeforeprint = aHandler

This provides a hook to set the page up before printing. This may be necessary to change the
content of some items in the page so that they print more attractively.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onAfterPrint, Semantic
event

onBeforeUnload (Event handler)
An event before an unload happens.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onbeforeunload = aHandler

HTML syntax: <HTMLTag onBeforeUnload="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
BODY, Layer, SCRIPT, Window
FRAMESET, LINK, STYLE,

O – onBeforeUpdate (Event handler)

1617

This event is triggered immediately before an unload event. It provides a hook for cleaning up
immediately before a page is unloaded.

It is bad User Interface design to call an alert box at this point in the proceedings.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onUnload, Semantic event

onBeforeUpdate (Event handler)
An event called before an update happens.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onbeforeupdate = aHandler

HTML syntax: <HTMLTag onBeforeUpdate="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:
APPLET, Checkbox, Input, TD,AREA, DIV, OBJECT,
TEXTAREA, BODY, Document, RadioButton, TH,
BUTTON, FIELDSET, Select, CAPTION, IMG, TABLE,

Database updates my require some data-integrity checks to be carried out. This event trigger allows
some checking to take place at an opportune moment, immedately before the update happens.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onAfterUpdate, Semantic
event

onBlur (Event handler)
Triggered when the user selects another form element for input and the current one loses focus.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onblur = aHandler

HTML syntax:
<BODY onBlur="aHandler"> <FRAMESET
onBlur="aHandler"> <HTMLTag onBlur="aHandler">
<INPUT onBlur="aHandler">

Argument list: aHandler A reference to a function object to handle the event.

JavaScript Programmer's Reference

1618

Supported by objects:

A, Embed, OBJECT, TD, Anchor, FIELDSET,
Password, TEXTAREA, APPLET, FileUpload,
RadioButton, TextCell, AREA, IMG, ResetButton,
TH, BUTTON, Input, Select, TR, CAPTION, Layer,
SPAN, Url, Checkbox, LEGEND, SubmitButton, DIV,
MARQUEE, TABLE,

A blur event is caused by the user clicking on another window or frame or the blur() method
being called for an object. When this event is triggered, an onBlur event handler will be invoked.

The onblur event handler is a function which is represented by an object that is referred to by this
property. Because it is stored in a property, you can change the handler by storing a reference to a
different function object in this property. At least, you can on MSIE.

You cannot redefine the value of the window.onblur property from inside the onblur function
handler. This means you can't modify the onblur behavior while a blur event is in progress.

Netscape will pass an event object as an argument when it calls this event handler function. MSIE
does not pass an object but makes the event data available via the Event object that is stored and
accessed globally for all events.

DOM level 2 events refers to this as a DOMFocusOut event, which employs event bubbling for its
propagation and cannot be canceled.

Warnings:
❑ It is somewhat easy to create an onBlur/onFocus recursion which leads to an endless loop with

objects exchanging focus backwards and forwards. Focus on object A triggers a blur event on
object B, which tries to wrest back the focus again because it believes its content is incomplete.
Meanwhile object A isn't happy with its content either and so they play 'Tug-of-War' with one
another. This continues until the browser has a race hazard attack and GPFs – that is if it hasn't
already fallen over due to a stack overflow. If you're lucky only the browser will crash, but it could
bring down the OS as well.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Input.blur(), Input.focus(), onFocus,
Password object, Semantic event, UIEvent object, Window.onblur

onBounce (Event handler)
Triggered when a marquee element hits the edge of its element area.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
Boolean primitive

JavaScript syntax: IE myObject.onbounce = aHandler

HTML syntax: <HTMLTag onBounce="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
MARQUEE

O – onChange (Event handler)

1619

You may want to change the MARQUEE content or do some wizzy animation effect when the
bounce occurs.

Now that we can do pretty much the same things with dynamic HTML and style-driven
positioning, this could become deprecated.

Its still quite useful though, because it knows how big the marquee content is and it triggers the bounces
automatically. That's possible with CSS scripting but its not completely trivial because you need to
measure the extent rectangle of an object, which could involve some very messy font metric calculations.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onStart, onStop, Semantic
event

onChange (Event handler)
Triggered when the value belonging to an input element is changed.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onchange = aHandler

HTML syntax: <HTMLTag onChange="..."> <INPUT onChange="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
BODY, FIELDSET, LEGEND, TEXTAREA, CAPTION,
FileUpload, Password, TextCell, Checkbox, IMG,
RadioButton, DIV, Input, Select,

When the data in the input element is modified, the ONCHANGE event handler is called.

You can place some script code directly into this handler like this:

<INPUT TYPE="TEXT" ONCHANGE="alert('Changed');">

In this context, you can refer to the input element itself using the 'this' keyword. Thus:

<INPUT TYPE="TEXT" ONCHANGE="this.value=checkValue(this.value);">

This will check the value and reset it to an allowed value. That may be to force it to be all lower
case for example or to remove weird characters.

JavaScript Programmer's Reference

1620

Actually, you don't need to pass this.value because it’s accessible from within the function.
Functions inherit some scope according to how they are called so this would be better:

<INPUT TYPE="TEXT" ONCHANGE="this.value=checkValue();">

<SCRIPT>

function checkValue(anObject)

{

this.value = this.value + "XXX";

return true;

}

</SCRIPT>

This is also a particularly useful event to handle on behalf of a <SELECT>/<OPTION> control
although it is not supported fully in all browsers.

Because the MSIE version 3.0 browser doesn't trigger this event, it has become popular to place a
small input button beside the selector so the user can select and then trigger. If you do that, you really
should make that technique browser-version sensitive and 'do the automatic thing' when you can.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, FileUpload object, Handler, Password
object, Select object, Semantic event, TEXTAREA object,
TextCell object

Cross-references:
Wrox Instant JavaScript – page – 53

onClick (Event handler)
This event is triggered when the user clicks the mouse button with the pointer over the Element
object that represents the object on screen.

Availability: HTML version – 4.0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onclick = aHandler

HTML syntax:
 <AREA onClick="..."> <HTMLTag
onClick="..."> <INPUT onClick="...">

O – onClick (Event handler)

1621

Argument list: aHandler
A reference to a function object to handle
the event

Supported by objects:
A, Checkbox, FileUpload, LISTING, S, TEXTAREA,
ACRONYM, CITE, FONT, MAP, SAMP, TextCell, ADDRESS,
CODE, FORM, MARQUEE, Select, TFOOT
Anchor, DD, H1, MENU, SMALL, TH, APPLET, DEL, HR,
OBJECT, SPAN, THEAD, AREA, DFN, I, OL, STRIKE, TR, B,
DIR, IMG, P, STRONG, TT, BIG, DIV, Input, Password,
SUB, U, BLOCKQUOTE, DL, INS, PLAINTEXT, SubmitButton,
UL, BODY, Document, KBD, PRE, SUP, Url, BUTTON, DT,
LABEL, Q, TABLE, VAR, CAPTION, EM, LEGEND,
RadioButton, TBODY, CENTER, FIELDSET, LI, ResetButton,
TD,

The onClick event handler is invoked when the user clicks once on the object that it belongs to. This
might normally be a hypertext link. As of version 1.1 of JavaScript, if the handler returns the Boolean
false value then the browser will not follow the link to its HREF. If a true value is returned then it will.

This event applies to anchors, reset buttons, and submit buttons. A false return value inhibits the
browser from taking any default actions once your handler is completed.

Netscape indicates which mouse button was pressed in the which property of the Event object
that is passed as an argument to the event handler function. MSIE makes the value available in the
button property of the event object referenced by the window.event property.

DOM level 2 refers to this as a DOMActivate event, which employs event bubbling for its propagation
and can be canceled. The context info provides detail about whether its was a single or double click.

DOM level 2 also classifies this as a MouseEvent and specifies that it must follow a matching pair
of mousedown and mouseup events without any intervening mouse movement. As a MouseEvent
it uses bubbling propagation and can be canceled.

Warnings:
❑ When you add an onClick handler to an <A> tag object, MSIE and Netscape execute the click in the

same way but modify the browser history differently.

❑ An onClick event will also generate an onMouseDown event and an onMouseUp event. The
onClick will not be triggered until the onMouseUp event. There is no guarantee that the onClick
event will arrive after the onMouseUp event although that is the logical order.

See also: Button object, BUTTON object, Checkbox object, Element object,
Element.click(), Event, Event handler, Event model, Event names,
Event object, Event.button, Event.returnValue,
Event.which, Handler, Input.click(), Mouse events, MouseEvent
object, RadioButton object, ResetButton object, Semantic event,
SubmitButton object, UIEvent object

JavaScript Programmer's Reference

1622

onContentReady (Event handler)
A special event handler provided to facilitate the loading of behavior controls.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.oncontentready =
aHandler

This event is notified to the behavior handler when the content of the element that the behavior is
associated with has been loaded and parsed. This does not mean that the document is complete yet.
That is signified by the onDocumentReady event being notified to the behavior script.

See also: onDocumentReady

onContextMenu (Event handler)
Called when a context menu is requested by the user.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.oncontextmenu = aHandler

Contextual menus can trigger this event as an item is selected. This allows you you to activate some
context specific code at that time.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Semantic event

onCopy (Event handler)
Called when a copy operation is requested by the user.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.oncopy = aHandler

If the user copies some page content to the clipboard, you may want to know that it has happened
and do something about it or perhaps even block the action.

See also: dataTransfer.getData(), Event, Event handler, Event model, Event
names, Event object, Event.returnValue, Handler, onCut,
onPaste, Semantic event

O – onCut (Event handler)

1623

onCut (Event handler)
Called when a Cut operation is requested by the user.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.oncut = aHandler

If the user cuts some page content to the clipboard, you may want to know that it has happened
and do something about it or perhaps even block the action.

See also: dataTransfer.getData(), Event, Event handler, Event model,
Event names, Event object, Event.returnValue, Handler,
onCopy, onPaste, Semantic event

onDataAvailable (Event handler)
Some data has arrived asynchronously from an applet or data source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.ondataavailable = aHandler

HTML syntax: <HTMLTag onDataAvailable="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects: APPLET, AREA, BODY, IMG, OBJECT

This event fires periodically as data arrives from data source objects that asynchronously
transmit their data.

In a data-driven system, occasionally you will need to wait for the arrival of some data. This event
triggers when the data has arrived, and you can build a script that works with the data that is triggered
from this event, rather than build some polling code that sits there busily waiting for things to arrive.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onDataSetChanged,
onDataSetComplete, Semantic event, XML.event

JavaScript Programmer's Reference

1624

onDataSetChanged (Event handler)
A data source has changed the content or some initial data is now ready for collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.ondatasetchanged = aHandler

HTML syntax: <HTMLTag onDataSetChanged="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects: APPLET, AREA, BODY, IMG, OBJECT

This event fires when the data set exposed by a data source object changes.

When sharing data out of a database, it is possible that there are contentions or users trying to
access and change the same data. You may need to watch a piece of data and perform some
operation when it changes. This trigger is activated when that happens.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onDataAvailable, Semantic
event, XML.event

onDataSetComplete (Event handler)
There is no more data to be transmitted from the data source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.ondatasetcomplete = aHandler

HTML syntax: <HTMLTag onDataSetComplete="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects: APPLET, AREA, BODY, IMG, OBJECT

This event fires to indicate that all data is available from the data source object.

O – onDblClick (Event handler)

1625

In a data-driven loop, you may want to perform some processing at closure when the data has been
completely retrieved from the database. This event is triggered when that happens.

See also: Event, Event handler, Event model, Event names, Event object,
Event.reason, Event.returnValue, Handler,
onDataAvailable, Semantic event, XML.event

onDblClick (Event handler)
Triggered when the user double-clicks on an object.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.ondblclick = aHandler

HTML syntax:

 <AREA onDblClick="...">
<BODY onDblClick="..."> <HTMLTag
onDblClick="...">
<INPUT onDblClick="...">

Argument list: aHandler
A reference to a function object to handle
the event

Supported by objects:

A, DIR, LI, STRIKE,ACRONYM, DIV, LISTING,
STRONG,ADDRESS, DL, MAP, SUB,Anchor, Document,
MARQUEE, SubmitButton,APPLET, DT, MENU,
SUP,AREA, EM, OBJECT, TABLE,B, FIELDSET, OL,
TBODY,BIG, FileUpload, P, TD,BLOCKQUOTE, FONT,
Password, TEXTAREA,BODY, FORM, PLAINTEXT,
TextCell,BUTTON, H1, PRE, TFOOT,CAPTION, HR,
Q, TH,CENTER, I, RadioButton, THEAD,Checkbox,
IMG, ResetButton, TR,CITE, Input, S, TT,CODE,
INS, SAMP, U,DD, KBD, Select, UL,DEL, LABEL,
SMALL, Url,DFN, LEGEND, SPAN, VAR,

This event is generated when the user clicks on the receiving object twice.

Netscape indicates which mouse button was pressed in the which property of the event object
that is passed as an argument to the event handler function. MSIE makes the value available in the
button property of the event object referenced by the window.event property.

Warnings:
❑ This is not supported by Netscape 4.0 on Unix or Macintosh platforms.

❑ An onDblClick event will also trigger onMouseDown and onMouseUp events. There will also be
a possibility of onClick event triggering in some implementations, although a single click and
double click should be distinguishable from one another. There is no guarantee that the
onDblClick will arrive after the second onMouseUp although that is the logical order.

JavaScript Programmer's Reference

1626

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.button, Event.returnValue,
Event.which, Handler, Mouse events, onClick,
onMouseDown, onMouseUp, Semantic event

onDocumentReady (Event handler)
A special event to signify that a document is loaded and ready for use.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondocumentready = aHandler

This event is notified to the behavior handler when the document has been downloaded and
completely parsed. The handler needs to be able to distinguish between different events that may
trigger it and lock out any user interaction until after this notification has been received.

See also: onContentReady

onDrag (Event handler)
Called when a Drag is activated by the user.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondrag = aHandler

Drag and drop code is notoriously non-portable and hard to manage. This family of event triggers
greatly facilitate that process although they are not widely supported on all browsers.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onDragDrop, onDragEnd,
onDragEnter, onDragLeave, onDragOver,
onDragStart, onDrop, Semantic event

onDragDrop (Event handler)
Some data has been dropped onto a window.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.ondragdrop = aHandler

O – onDragEnd (Event handler)

1627

HTML syntax:
<BODY onDragDrop="aHandler"> <FRAMESET
onDragDrop="aHandler"> <HTMLTag
onDragDrop="aHandler">

Argument list: aHandler A reference to a function object to handle the event

This is triggered when some data is dropped onto an object in the window. You can then access the
data and decide what to do with it.

This event handler is most likely to be invoked when the user drags an item onto a window in Netscape.

To access the details of the entity that has been dragged into and dropped on the window, you
need to inspect the data property of the event object that is passed as an argument to the handler
when it is called.

The data is a single URL when a single entity is dropped into the window or an array of strings, each
containing a URL when a collection of entities are dropped onto a window. What you can then do with
those entity references really depends on your platform and browser capabilities and what you can do
to files on your client system given the security implications of browser access to the filesystem.

You will need UniversalBrowserRead privilege to access this data in Netscape.

The handler is registered either by assigning a function to the ondragdrop property or by defining
it with an HTML tag attribute.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onDrag, onDragEnd,
onDragEnter, onDragLeave, onDragOver, onDragStart,
onDrop, Semantic event, UniversalBrowserAccess,
UniversalBrowserRead, Window.ondragdrop

onDragEnd (Event handler)
Called when the drag finishes and the dragged object is dropped and released.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondragend = aHandler

This provides a more fine-grain approach to drag-drop management. It may be that you want to
display some active animated effect while the drag is in progress. This tells you the dragging is
now finished.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onDrag, onDragDrop,
onDragEnter, onDragLeave, onDragOver, onDragStart,
onDrop, Semantic event

JavaScript Programmer's Reference

1628

onDragEnter (Event handler)
Called when a dragged object enters the receiving object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondragenter = aHandler

Drag and drop may be fine-tuned to apply to only parts of the page. With this, you can do some artful
rollover effects to highlight locations on the page where drags and drop is OK and where its not.

See also: dataTransfer.dropEffect, Event, Event handler, Event model,
Event names, Event object, Event.returnValue, Handler, onDrag,
onDragDrop, onDragEnd, onDragLeave, onDragOver,
onDragStart, onDrop, Semantic event

onDragLeave (Event handler)
Called when a dragged object leaves the receiving object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondragleave = aHandler

Rolling off of a dragged 'hot' item triggers this event. This is like a rollover effect but it is active
only while dragging.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onDrag, onDragDrop,
onDragEnd, onDragEnter, onDragOver, onDragStart,
onDrop, Semantic event

onDragOver (Event handler)
Called repeatedly while the dragged object is over the receiving object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondragover = aHandler

Drag over effects to highlight objects while dragging can be achieved with this trigger. When it happens,
the mouse will have just crossed the boundary of an object while dragging some content with it.

See also: dataTransfer.dropEffect, Event, Event handler, Event model,
Event names, Event object, Event.returnValue, Handler, onDrag,
onDragDrop, onDragEnd, onDragEnter, onDragLeave,
onDragStart, onDrop, Semantic event

O – onDragStart (Event handler)

1629

onDragStart (Event handler)
The user has commenced some data selection with a mouse drag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.ondragstart = aHandler

HTML syntax: <HTMLTag onDragStart="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:

ACRONYM, DL, LI, STRONG, ADDRESS, Document,
LISTING, SUB, B, DT, MARQUEE, SUP, BIG, EM, MENU,
TABLE, BLOCKQUOTE, FIELDSET, OBJECT, TBODY, BODY,
FONT, OL, TD, BUTTON, FORM, P, TEXTAREA, CAPTION,
H1, PLAINTEXT, TFOOT, CENTER, HR, PRE, TH, CITE,
I, Q, THEAD, CODE, IMG, S, TR, DD, Input, SAMP,
TT, DEL, INS, Select, U, DFN, KBD, SMALL, UL,
DIR, LABEL, SPAN, VAR, DIV, LEGEND, STRIKE,

At the commencement of a drag, this event trigger can be used to initiate some kind of feedback
animation effect to tell the user where the dragged items can be deposited.

See also:
dataTransfer.clearData(),
dataTransfer.effectAllowed, Event, Event handler, Event
model, Event names, Event object, Event.returnValue,
Handler, onDrag, onDragDrop, onDragEnd,
onDragEnter, onDragLeave, onDragOver, onDrop,
Semantic event

onDrop (Event handler)
Called when a dragged object is dropped into a receiving window.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.ondrop = aHandler

This is the complement of the onDrag event. It provides a means to hook into the object drop when
it is deposited in the page.

See also:
dataTransfer.clearData(),
dataTransfer.dropEffect, Event, Event handler, Event model,
Event names, Event object, Event.returnValue, Handler,
onDrag, onDragDrop, onDragEnd, onDragEnter,
onDragLeave, onDragOver, onDragStart, Semantic event

JavaScript Programmer's Reference

1630

onError (Event handler)
Triggered if an error occurs when loading an image.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onerror = aHandler

HTML syntax: <HTMLTag onError="...">

Argument list: aHandler
A reference to a function object to handle
the event.

Supported by objects: IMG, LINK, OBJECT, SCRIPT, STYLE

There is an onError event defined as part of the set of events supported by JavaScript. However,
the onError event is actually only supported by Image objects when defined in HTML tag
attributes. You can add an error handler to a window object with the onerror property.

The tag attribute allows an error during image loading to be handled
gracefully.

Attaching an error handler to a window with the window.onerror property allows JavaScript
errors to be intercepted.

Error events have a slightly different parameter passing API so although they are events, they are
slightly different from the rest of the event model.

The API for the function that is associated with this event should take three parameters.

Warnings:
❑ This event handler cannot be set in HTML using the tag attribute technique apart from when it

applies to an tag. However, it also applies to windows and frames although there is no tag
attribute to connect it to. You can only associate it with a window or frame by using the script-driven
property assignment.

❑ Beware of the return values. Returning true from an error handler inhibits the browser
form carrying out any further action. This is exactly opposite to the return value from a form
element event handler, which requires that a false value be returned to inhibit any further
action by the browser.

❑ The range of objects you can register an onError handler with is platform and browser version
dependent and you should experiment with your target client base if you plan to use this other than
for debugging help.

O – onErrorUpdate (Event handler)

1631

See also: Error events, Event, Event handler, Event model, Event names,
Event object, Event.returnValue, Handler, onAbort,
onErrorUpdate, onLoad, Semantic event, Window.onerror

Cross-references:
Wrox Instant JavaScript – page – 55

onErrorUpdate (Event handler)
An error has occurred in the transfer of some data from a data source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onerrorupdate = aHandler

HTML syntax: <HTMLTag onErrorUpdate="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:
APPLET, CAPTION, FIELDSET, RadioButton, AREA,
Checkbox, Input, Select, BODY, Document, OBJECT,
TEXTAREA

Data-driven systems may generate errors. This event is triggered when the error status of a
database connection changes.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onError, Semantic event

onFilterChange (Event handler)
A filter has changed the state of an element or a transition has just been completed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onfilterchange =
aHandler

HTML syntax: <HTMLTag onFilterChange="...">

Argument list: aHandler
A reference to a function object to handle
the event.

JavaScript Programmer's Reference

1632

Supported by objects:
ACRONYM, DL, LISTING, STRONG, ADDRESS, DT,
MENU, SUB, B, EM, OBJECT, SubmitButton, BIG,
FIELDSET, OL, SUP, BLOCKQUOTE, FileUpload, P,
TBODY, BODY, FONT, PLAINTEXT, TD, BUTTON, FORM,
PRE, TEXTAREA, CAPTION, H1, Q, TFOOT, CENTER,
HR, RadioButton, TH, Checkbox, I, ResetButton,
THEAD,CITE, IMG, S, TR, CODE, Input, SAMP, TT,
DD, INS, Select, U, DEL, KBD, SMALL, UL, DFN,
LABEL, SPAN, VAR, DIR, LI, STRIKE,

Changing a filter will trigger this event. It is also triggered when a transition has just been
completed. Filters are a MSIE-specific means of providing more attractive on-screen effects when
things change.

Calling a function that changes a filter and executes a transition results in a further trigger for this
event handler. Thus, you can set up an animation loop with this handler but, be careful to avoid
stacking recursions or the browser will crash.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Filter object, Handler, Semantic event,
style.filter

onFinish (Event handler)
Triggered when a marquee object has finished looping.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onfinish = aHandler

HTML syntax: <HTMLTag onFinish="...">

Argument list: aHandler
A reference to a function object to handle
the event.

Supported by objects: MARQUEE

When the MARQUEE has completed its anticipated number of loops, this event is triggered so that
you can set up some new animation if necessary.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onStart, onStop, Semantic
event

O – onFocus (Event handler)

1633

onFocus (Event handler)
When the form element is selected for entry.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onfocus = aHandler

HTML syntax:
<BODY onFocus="aHandler"> <FRAMESET
onFocus="aHandler"> <HTMLTag onFocus="aHandler">
<INPUT onFocus="aHandler">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:

A, DIV, LEGEND, TABLE, Anchor, Embed, MARQUEE,
TEXTAREA, APPLET, FIELDSET, OBJECT, TextCell,
AREA, FileUpload, Password, Url, BUTTON, IMG,
RadioButton, CAPTION, Input, ResetButton,
Checkbox, Layer, SubmitButton,

When the input focus is directed onto a control, the browser will generally highlight the item to
indicate that the cursor is localized there and that any keyboard input will affect that <INPUT> item.

DOM level 2 events refers to this as a DOMFocusIn event, which employs event bubbling for its
propagation and cannot be canceled.

In MSIE, you can hide the visible effect of an object acquiring focus by means of the hideFocus
property on HTML elements.

Warnings:
❑ It is somewhat easy to create an onBlur/onFocus recursion, which leads to an endless loop with

objects exchanging focus backwards and forwards. Focus on object A triggers a blur event on
object B, which tries to wrest back the focus again because it believes its content is incomplete.
Meanwhile object A isn't happy with its content either and so they play 'Tug-of-War' with one
another. This continues until the browser has a race hazard attack and GPFs – that is, if it hasn't
already fallen over due to a stack overflow. If you're lucky, only the browser will crash, but it could
bring down the OS as well.

See also: Element.hideFocus, Event, Event handler, Event model, Event
names, Event object, Event.returnValue, Handler,
Input.blur(), Input.focus(), onBlur, Password object,
Semantic event, UIEvent object, Window.onfocus

JavaScript Programmer's Reference

1634

onForward (Event handler)
When the forward button is clicked.

Availability: JavaScript – 1.3
Netscape – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: N myObject.onforward = aHandler

HTML syntax: <HTMLTag onForward="...">

Argument list: aHandler A reference to a function object to handle the event

This event is called when the user interacts with the browser. Some events like this are helpful for
blocking the operation of certain browser UI elements.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBack, Semantic event,
Window events

onHelp (Event handler)
The user has pressed the [F1] key or selected [help] from the toolbar or menu.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onhelp = aHandler

HTML syntax:
<BODY onHelp="..."> <FRAMESET onHelp="...">
<HTMLTag onHelp="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:

A, DIR, LI, STRIKE, ACRONYM, DIV, LISTING,
STRONG, ADDRESS, DL, MAP, SUB, Anchor,
Document, MARQUEE, SubmitButton, APPLET, DT,
MENU, SUP, AREA, EM, OBJECT, TABLE, B,
FIELDSET, OL, TBODY, BIG, FileUpload, P, TD,
BLOCKQUOTE, FONT, Password, TEXTAREA, BODY,
FORM, PLAINTEXT, TextCell, BUTTON, H1, PRE,
TFOOT, CAPTION, HR, Q, TH, CENTER, I,
RadioButton, THEAD, Checkbox, IMG, ResetButton,
TR, CITE, Input, S, TT, CODE, INS, SAMP, U, DD,
KBD, Select, UL, DEL, LABEL, SMALL, Url, DFN,
LEGEND, SPAN, VAR

This handler is invoked if the [F1] key is pressed or the [help] item is selected from the menu
while the Element object has the input focus.

O – onKeyDown (Event handler)

1635

This handler is particularly applicable to the <BODY> and <FRAMESET> tags and will be defined for
Element objects that correspond to them.

In MSIE, after this event has been handled, the built-in help window will be displayed. This can be
suppressed by passing the value false back rather than true. Passing no value back defaults to true.

Warnings:
❑ On the Macintosh platform, this event is triggered by the [HELP] key and not the [F1] key.

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.returnValue, Handler, Semantic event

onKeyDown (Event handler)
Triggered when a key is pressed.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onkeydown = aHandler

HTML syntax:
<AREA onKeyDown="..."><BODY
onKeyDown="..."><HTMLTag onKeyDown="..."><INPUT onKeyDown="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:

A, DIR, LI, STRONG, ACRONYM, DIV, LISTING, SUB,
ADDRESS, DL, MAP, SubmitButton, Anchor,
Document, MARQUEE, SUP, APPLET, DT, MENU,
TABLE, AREA, EM, OL, TBODY, B, FIELDSET, P,
TD,BIG, FileUpload, Password, TEXTAREA,
BLOCKQUOTE, FONT, PLAINTEXT, TextCell, BODY,
FORM, PRE, TFOOT, BUTTON, H1, Q, TH, CAPTION,
HR, RadioButton, THEAD, CENTER, I, ResetButton,
TR, Checkbox, IMG, S, TT, CITE, Input, SAMP, U,
CODE, INS, Select, UL, DD, KBD, SMALL, Url,
DEL, LABEL, SPAN, VAR, DFN, LEGEND, STRIKE,

As the key is pressed down, this event is triggered. If you return the value true, the event will
be passed to the browser for further processing. Returning false inhibits this action and
discards the message.

In Netscape, the key code of the key that triggered the event is available in the which property of the
event object that is passed to the event handler as an argument. The equivalent value in MSIE is
available in the keyCode property of the event object referenced by the window.event property.

JavaScript Programmer's Reference

1636

The key value is the Unicode character code point value which, is a numeric value. This may need
to be converted to a character if you want to display it. You can do that with the
String.fromCharCode() static method which will create a one character string for you.

You may need to determine whether any of the modifier keys were pressed. In Netscape, you
retrieve a bitmask value from the modifiers property of the event object. This can then be
masked against the various bit flags available as static properties of the Event class.

In MSIE, modifier keys are available with a set of properties, which return the state of each
modifier key individually.

In MSIE, you can modify the value of the key that is passed back to the browser by storing a
different Unicode code point value in the returnValue property of the Event object.

Warnings:
❑ To use key-codes and modifier keys in a portable way, you will need to implement some browser-

specific support and then call an appropriate routine according to the browser the script is
executing in.

❑ This is not supported on the WebTV platform.

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.altKey, Event.ctrlKey,
Event.keyCode, Event.modifiers,
Event.returnValue, Event.shiftKey, Event.which,
Handler, JellyScript, Keyboard events, onKeyPress, onKeyUp,
Semantic event, String.fromCharCode(), TEXTAREA object,
TextCell object

onKeyPress (Event handler)
Pressing the key down and releasing it again triggers this event.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onkeypress = aHandler

HTML syntax:

 <AREA onKeyPress="...">
<BODY onKeyPress="..."> <HTMLTag
onKeyPress="..."> <INPUT
onKeyPress="...">

Argument list: aHandler A reference to a function object to handle the event

O – onKeyPress (Event handler)

1637

Supported by objects:
A, DIR, LI, STRONG, ACRONYM, DIV, LISTING, SUB,
ADDRESS, DL, MAP, SubmitButton, Anchor,
Document, MARQUEE, SUP, APPLET, DT, MENU,
TABLE, AREA, EM, OL, TBODY, B, FIELDSET, P, TD,
BIG, FileUpload, Password, TEXTAREA,
BLOCKQUOTE, FONT, PLAINTEXT, TextCell, BODY,
FORM, PRE, TFOOT, BUTTON, H1, Q, TH, CAPTION,
HR, RadioButton, THEAD, CENTER, I, ResetButton,
TR, Checkbox, IMG, S, TT, CITE, Input, SAMP, U,
CODE, INS, Select, UL, DD, KBD, SMALL, Url,
DEL, LABEL, SPAN, VAR, DFN, LEGEND, STRIKE,

This handler is sometimes more appropriate than the onKeyDown and onKeyUp handlers. They
should be used if you want some action to occur on each transition and to indicate by some
feedback mechanism to the user that the key is still down.

As the key is pressed down and then released again, this event is triggered. If you return the value
true, the event will be passed to the browser for further processing. Returning false inhibits this
action and discards the message.

In Netscape, the key code of the key that triggered the event is available in the which property of the
event object that is passed to the event handler as an argument. The equivalent value in MSIE is
available in the keyCode property of the event object referenced by the window.event property.

The key value is the Unicode character code point value, which is a numeric value. This may need
to be converted to a character if you want to display it. You can do that with the
String.fromCharCode() static method, which will create a one character string for you.

You may need to determine whether any of the modifier keys were pressed. In Netscape, you
retrieve a bitmask value from the modifiers property of the event object. This can then be
masked against the various bit flags available as static properties of the Event class.

In MSIE, modifier keys are available with a set of properties that return the state of each modifier
key individually.

In MSIE, you can modify the value of the key that is passed back to the browser by storing a
different Unicode code point value in the returnValue property of the Event object.

This event was only supported by TextCell objects in the WebTV platform from the Summer 2000
release onwards.

Warnings:
❑ An onKeyPress event will also trigger an onKeyDown event and an onKeyUp event. The

onKeyPress will not be triggered until the onKeyUp occurs. There is no guarantee that the
onKeyUp will happen before the onKeyPress although that is the logical sequence.

❑ You do not receive a message when a modifier key is held down on its own. However you could
sense the state of that as keys are processed. It isn't ideal but may be sufficient.

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.returnValue, Handler, JellyScript,
Keyboard events, onKeyDown, onKeyUp, Semantic event,
TEXTAREA object, TextCell object

JavaScript Programmer's Reference

1638

onKeyUp (Event handler)
Triggered when a key is released.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onkeyup = aHandler

HTML syntax:
<AREA onKeyUp="..."> <BODY onKeyUp="...">
<HTMLTag onKeyUp="...">
<INPUT onKeyUp="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:

A, DIR, LI, STRONG, ACRONYM, DIV, LISTING, SUB,
ADDRESS, DL, MAP, SubmitButton, Anchor,
Document, MARQUEE, SUP, APPLET, DT, MENU,
TABLE, AREA, EM, OL, TBODY, B, FIELDSET, P, TD,
BIG, FileUpload, Password, TEXTAREA,
BLOCKQUOTE, FONT, PLAINTEXT, TextCell, BODY,
FORM, PRE, TFOOT, BUTTON, H1, Q, TH, CAPTION,
HR, RadioButton, THEAD, CENTER, I, ResetButton,
TR, Checkbox, IMG, S, TT, CITE, Input, SAMP, U,
CODE, INS, Select, UL, DD, KBD, SMALL, Url,
DEL, LABEL, SPAN, VAR, DFN, LEGEND, STRIKE,

As the key is released, this event is triggered.

In Netscape, the key code of the key that triggered the event is available in the which property of the
event object that is passed to the event handler as an argument. The equivalent value in MSIE is
available in the keyCode property of the event object referenced by the window.event property.

The key value is the Unicode character code point value, which is a numeric value. This may need
to be converted to a character if you want to display it. You can do that with the
String.fromCharCode() static method, which will create a one character string for you.

You may need to determine whether any of the modifier keys were pressed. In Netscape, you
retrieve a bitmask value from the modifiers property of the event object. This can then be
masked against the various bit flags available as static properties of the Event class.

In MSIE, modifier keys are available with a set of properties that return the state of each modifier
key individually.

In MSIE, you can modify the value of the key that is passed back to the browser by storing a
different Unicode code point value in the returnValue property of the Event object.

O – onLoad (Event handler)

1639

Warnings:
❑ This is not supported on the WebTV platform.

See also: Element object, Event, Event handler, Event model, Event
names, Event object, Event.returnValue, Handler,
JellyScript, Keyboard events, onKeyDown, onKeyPress,
Semantic event, TEXTAREA object, TextCell object

onLoad (Event handler)
Triggered when an object has completed loading.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onload = aHandler

HTML syntax:
<BODY onLoad="aHandler"> <BODY
onUnload="aHandler"> <FRAMESET
onLoad="aHandler"> <FRAMESET
onUnload="aHandler"> <HTMLTag
onUnload="aHandler">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
APPLET, BODY, IMG, LINK, STYLE, AREA,
FRAMESET, Layer, SCRIPT, Window

This event is associated with <BODY> and <FRAMESET> tags. It is triggered when either have
finished loading.

In the case of a <BODY> tag, that is when all images are loaded and any <APPLET> or plugin items
have started running.

In the case of the <FRAMESET> tag, it is when all frames have loaded and arguably should be after
all <BODY> tags have triggered their onLoad events. However, you probably should not rely on the
last <BODY> onLoad event occurring before the <FRAMESET> onLoad event.

In any case, it would probably be bad form to have too many onLoad handlers activated during
a page load.

Although it is associated with <BODY> and <FRAMESET>, the event is owned by the window object
in the document object model.

JavaScript Programmer's Reference

1640

Warnings:
❑ This fails to trigger on images when they are loaded into version 4.0 of MSIE. If you need an onLoad

trigger for the page then you can trigger from the <BODY onLoad="..."> HTML tag attribute. At
least when the whole page is loaded your image should have loaded. However, even that isn't
always reliable.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onAbort, onError,
onUnload, Semantic event, Window events, Window.onload,
Window.onunload

onLoseCapture (Event handler)
Called when capturing is deactivated for an object.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myObject.onlosecapture = aHandler

External event capture control may leave an object in some strange state. You may want to know
when event capturing has been removed. This event is triggered when that happens.

See also: captureEvents(), Event, Event handler, Event model, Event
names, Event object, Event.returnValue, Handler, Semantic
event

onMouseDown (Event handler)
Triggered when the mouse button is pressed.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onmousedown = aHandler

HTML syntax:
 <AREA onMouseDown="...">
<BODY onMouseDown="..."><HTMLTag
onMouseDown="...">
<INPUT onMouseDown="...">

Argument list: aHandler A reference to a function object to handle the event.

O – onMouseDrag (Event handler)

1641

Supported by objects:
A, DIR, LI, STRONG, ACRONYM, DIV, LISTING, SUB,
ADDRESS, DL, MAP, SubmitButton, Anchor,
Document, MARQUEE, SUP, APPLET, DT, MENU,
TABLE, AREA, EM, OL, TBODY, B, FIELDSET, P, TD,
BIG, FileUpload, Password, TEXTAREA,
BLOCKQUOTE, FONT, PLAINTEXT, TextCell, BODY,
FORM, PRE, TFOOT, BUTTON, H1, Q, TH, CAPTION,
HR, RadioButton, THEAD, CENTER, I, ResetButton,
TR, Checkbox, IMG, S, TT, CITE, Input, SAMP,
U,CODE, INS, Select, UL, DD, KBD, SMALL, Url,
DEL, LABEL, SPAN, VAR, DFN, LEGEND, STRIKE,

As the mouse button is pressed down, this event is triggered. If you return the value true, the
event will be passed to the browser for further processing. Returning false inhibits this action and
discards the message.

Netscape indicates which mouse button was pressed in the which property of the event object
that is passed as an argument to the event handler function. MSIE makes the value available in the
button property of the event object referenced by the window.event property.

DOM level 2 classifies this as a MouseEvent and specifies that it uses bubbling propagation and
can be canceled.

Warnings:
❑ This is not supported on the WebTV platform.

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.button, Event.returnValue,
Event.which, Handler, JellyScript, Mouse events, MouseEvent
object, onClick, onDblClick, onMouseUp, onReset,
onSelect, onSubmit, Semantic event

onMouseDrag (Event handler)
An event handler for mouse drag operations.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onmousedrag = aHandler

HTML syntax: <HTMLTag onMouseDrag="...">

Argument list: aHandler A reference to a function object to handle the event

Holding down the mouse button and then moving the mouse across the window will initiate this event.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Mouse events, Semantic event

JavaScript Programmer's Reference

1642

onMouseMove (Event handler)
Triggered when the mouse pointer is moved.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onmousemove = aHandler

HTML syntax: <HTMLTag onMouseMove="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:
A, DIR, LI, STRONG, ACRONYM, DIV, LISTING, SUB,
ADDRESS, DL, MAP, SubmitButton, Anchor,
Document, MARQUEE, SUP, APPLET, DT, MENU,
TABLE, AREA, EM, OL, TBODY, B, FIELDSET, P, TD,
BIG, FileUpload, Password, TEXTAREA,
BLOCKQUOTE, FONT, PLAINTEXT, TextCell, BODY,
FORM, PRE, TFOOT, BUTTON, H1, Q, TH, CAPTION,
HR, RadioButton, THEAD, CENTER, I, ResetButton,
TR, Checkbox, IMG, S, TT, CITE, Input, SAMP, U,
CODE, INS, Select, UL, DD, KBD, SMALL, Url,
DEL, LABEL, SPAN, VAR, DFN, LEGEND, STRIKE,

When you move the mouse, the browser generates mouse move events and sends them to the
Element object that is under the mouse at that moment. As the mouse reaches the boundary of an
element a mouse event out and a mouse over event are generated and directed to the appropriate
elements for them to handle.

Netscape does not support this event handler on individual elements. You have to use the
captureEvents() method that belongs to a window or layer object and then delegate the
handling to the handler as you need to.

DOM level 2 classifies this as a MouseEvent and specifies that it uses bubbling propagation and
can be canceled.

Warnings:
❑ As a mouse is moved within an element, a large number of mouse move events will be triggered.

This can cause problems if your handler carries out a lot of lengthy computation. It can cause
severe browser crashing problems if you are creating and destroying objects under the mouse
while it is moving.

See also:
captureEvents(), Document.captureEvents(),
Document.releaseEvents(), Element object, Event, Event handler, Event
model, Event names, Event object, Event.returnValue, Handler,
Layer.captureEvents(), Layer.releaseEvents(), Mouse events,
MouseEvent object, Semantic event, Window.captureEvents(),
Window.releaseEvents()

O – onMouseOut (Event handler)

1643

onMouseOut (Event handler)
Triggered when the mouse pointer leaves the active area occupied by the Element object that
represents the object on screen.

Availability: HTML version – 4.0
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onmouseout = aHandler

HTML syntax:
 <AREA onMouseOut="...">
<HTMLTag onMouseOut="...">
<LAYER onMouseOut="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
A, DIR, LEGEND, STRIKE, ACRONYM, DIV, LI, STRONG,
ADDRESS, DL, LISTING, SUB, Anchor, Document, MAP,
SubmitButton, APPLET, DT, MARQUEE, SUP,AREA, EM, MENU,
TABLE, B, FIELDSET, OL, TBODY, BIG, FileUpload, P, TD,
BLOCKQUOTE, FONT, Password, TEXTAREA, BODY, FORM,
PLAINTEXT, TextCell, BUTTON, H1, PRE, TFOOT, CAPTION,
HR, Q, TH, CENTER, I, RadioButton, THEAD, Checkbox,
IMG, ResetButton, TR, CITE, Input, S, TT, CODE, INS,
SAMP, U,DD, KBD, Select, UL, DEL, LABEL, SMALL, Url,
DFN, Layer, SPAN, VAR

When you move the mouse, the browser generates mouse move events and sends them to the
Element object that is under the mouse at that moment. As the mouse reaches the boundary of an
element a mouse out event and a mouse over event are generated and directed to the appropriate
elements for them to handle.

DOM level 2 classifies this as a MouseEvent and specifies that it uses bubbling propagation and
can be canceled.

Warnings:
❑ You may need to implement some code for this handler to reset the status line after changing

it with an onMouseOver event handler. That would be necessary for Netscape 2.0 and 3.0 on
the Windows platform.

❑ As a mouse is moved over an element, an entry event is triggered. It can cause severe browser
crashing problems if you are creating and destroying objects under the mouse while it is moving. In
particular, the destruction of an object can mean that the mouse out has no logical destination since it
must somehow leave the element it entered.

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.returnValue, Handler, Mouse events,
MouseEvent object, onMouseOver, Semantic event, Status line,
Window.defaultStatus, Window.status

JavaScript Programmer's Reference

1644

onMouseOver (Event handler)
Triggered when the mouse pointer enters the active area owned by the object.

Availability: HTML version – 4.0
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onmouseover = aHandler

HTML syntax:
 <AREA onMouseOver="...">
<HTMLTag onMouseOver="..."> <LAYER onMouseOver="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
A, DIR, LEGEND, STRIKE, ACRONYM, DIV, LI, STRONG,
ADDRESS, DL, LISTING, SUB, Anchor, Document, MAP,
SubmitButton, APPLET, DT, MARQUEE, SUP, AREA, EM, MENU,
TABLE, B, FIELDSET, OL, TBODY, BIG, FileUpload, P, TD,
BLOCKQUOTE, FONT, Password, TEXTAREA, BODY, FORM,
PLAINTEXT, TextCell, BUTTON, H1, PRE, TFOOT, CAPTION,
HR, Q, TH, CENTER, I, RadioButton, THEAD, Checkbox,
IMG, ResetButton, TR, CITE, Input, S, TT, CODE, INS,
SAMP, U, DD, KBD, Select, UL, DEL, LABEL, SMALL, Url,
DFN, Layer, SPAN, VAR

As the mouse moves over the object, this event is triggered. Normally, passing over a link will
display its value in the status bar. You can inhibit this behavior by returning the Boolean true
value leaving the status line unchanged. Returning false allows the browser to overwrite the
status line with the URL value of the link.

DOM level 2 classifies this as a MouseEvent and specifies that it uses bubbling propagation and
can be canceled.

Warnings:
❑ You may need to implement an onMouseOut handler to clear the status line again if you used this

event handler to display a message in the status line. That would be necessary in particular for
Netscape 2.0 and 3.0 on the Windows platform.

❑ Be sure to set the Boolean return value correctly to either allow or deny the browser permission to
perform its normal default behavior on return from the event handler.

❑ As a mouse is moved over an element, an entry event is triggered. It can cause severe browser
crashing problems if you are creating and destroying objects under the mouse while it is moving. In
particular, the destruction of an object can mean that the mouse out has no logical destination since it
must somehow leave the element it entered.

See also: Element object, Event, Event handler, Event model, Event names,
Event object, Event.returnValue, Handler, Mouse events,
MouseEvent object, onMouseOut, Semantic event, Status line,
Window.defaultStatus, Window.status

O – onMouseUp (Event handler)

1645

onMouseUp (Event handler)
Triggered when the mouse button is released.

Availability: HTML version – 4.0
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onmouseup = aHandler

HTML syntax:

 <AREA onMouseUp="...">
<BODY onMouseUp="..."> <HTMLTag
onMouseUp="..."> <INPUT
onMouseUp="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:
A, DIR, LEGEND, STRONG, ACRONYM, DIV, LI, SUB,
ADDRESS, DL, LISTING, SubmitButton, Anchor,
Document, MAP, SUP, APPLET, DT, MARQUEE, TABLE,
AREA, EM, MENU, TBODY, B, FIELDSET, OL, TD,BIG,
FileUpload, P, TEXTAREA, BLOCKQUOTE, FONT,
Password, TextCell, BODY, FORM, PLAINTEXT,
TFOOT, BUTTON, H1, PRE, TH, CAPTION, HR, Q,
THEAD, CENTER, I, ResetButton, TR, Checkbox,
IMG, S, TT, CITE, Input, SAMP, U,CODE, INS,
Select, UL, DD, KBD, SMALL, Url, DEL, LABEL,
SPAN, VAR, DFN, Layer, STRIKE,

As the mouse button is released, this event is triggered. If you return the value true, the event will
be passed to the browser for further processing. Returning false inhibits this action and discards
the message.

Netscape indicates which mouse button was pressed in the which property of the event object
that is passed as an argument to the event handler function. MSIE makes the value available in the
button property of the event object referenced by the window.event property.

DOM level 2 classifies this as a MouseEvent and specifies that it uses bubbling propagation and
can be canceled.

Warnings:
❑ When you release the mouse button, you get a MouseUp raw event and a Click semantic event. Be

careful that you know you are only calling event handlers once.

❑ This is not supported on the WebTV platform.

See also: Element object, Event, Event handler, Event model, Event names, Event object,
Event.button, Event.returnValue, Event.which, Handler, JellyScript,
Mouse events, MouseEvent object, onClick, onDblClick, onMouseDown,
onReset, onSelect, onSubmit, Semantic event

JavaScript Programmer's Reference

1646

onMove (Event handler)
The browser window has been moved.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onmove = aHandler

HTML syntax:
<BODY onMove="aHandler"> <FRAMESET
onMove="aHandler"> <HTMLTag onMove="aHandler">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects: Window

Moving the browser window usually won't cause any problems. However, if you have some
window content that you want to position relative to the screen, or if you want to locate the
window at a specific location, perhaps locating it on a grid, this event may be useful.

The event is triggered when a window is moved on the screen to another location.

The handler is registered by defining it with an HTML tag attribute or by assigning a handler
function to the property.

The event is also triggered when a window is moved under control of a script with the moveTo()
or moveBy() methods.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Semantic event, Window events,
Window.onmove

onPaste (Event handler)
Called when a Paste operation is requested by the user.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onpaste = aHandler

This is useful if you want to intercept and possibly block a paste operation where the user may be
attempting to paste some external content into a text field. Perhaps you do want to let them do it
but you want to be sure the contents are checked for data integrity.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onCopy, onCut, Semantic event

O – onPropertyChange (Event handler)

1647

onPropertyChange (Event handler)
Called when a property belonging to the receiving object is changed.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myObject.onpropertychange = aHandler

This is part of the property monitoring facilities. It can be used as an alternative to the
watch()/unwatch() facilities in Netscape.

When this event is triggered, the handler can inspect the event object to determine what property
was changed and on what object.

The object affected is returned in the srcElement property and the property in its
propertyName property.

See also: Event, Event handler, Event model, Event names, Event object,
Event.propertyName, Event.returnValue,
Event.srcElement, Handler, Semantic event, unwatch(),
watch()

onReadyStateChange (Event handler)
An object in the window has changed its ready state.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onreadystatechange = aHandler

HTML syntax: <HTMLTag onReadyStateChange="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
APPLET, Document, OBJECT, STYLE, AREA, LINK,
SCRIPT,

This event fires when the state of the object has changed.

Some objects may need to be completely loaded before you can properly interact with them. This is
a means of getting a call-back when the ready state of an object changes. It saves the need for
watching the readyState in a polling loop, which is wasteful of resources and a generally
deprecated technique.

See also: Document.readyState, Element.readyState,
Embed.readyState, Event, Event handler, Event model, Event
names, Event object, Event.returnValue, Handler,
IMG.readyState, LINK.readyState,
OBJECT.readyState, SCRIPT.readyState, Semantic event,
STYLE.readyState, XML.event

JavaScript Programmer's Reference

1648

onReset (Event handler)
The user has clicked a reset button in a form.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onreset = aHandler

HTML syntax: <FORM onReset="..."> <HTMLTag onReset="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects: FORM

As the <FORM> reset button is clicked, this event is triggered. If you return the value true, the
event will be passed to the browser for further processing and the form will be reset. Returning
false inhibits this action and discards the message, and the form will not be reset. This provides a
means of inhibiting <FORM> resets altogether.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onClick, onMouseDown,
onMouseUp, onSubmit, Semantic event

onResize (Event handler)
As the window is resized, this event is triggered.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type:
Boolean primitive

JavaScript syntax: - myObject.onresize = aHandler

HTML syntax:
<BODY onResize="aHandler"> <FRAMESET
onResize="aHandler"> <HTMLTag
onResize="aHandler">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
APPLET, FIELDSET, MARQUEE, Input, AREA, FRAMESET,
Select, TD, BUTTON, IMG, TABLE, Window, DIV, , ,

Moving or resizing windows may be something your scripts will need to know about. A move is
generally harmless, but a resize may not be so benign to your page content. This event trigger
provides a means to fix up the display if the window aspect ration or size is changed.

O – onResize (Event handler)

1649

This event is triggered when a window is enlarged or reduced in size.

The handler is registered by defining it with an HTML tag attribute. The handler can also be
registered by assigning the function object to the onresize property of the window.

The event is also triggered when a window is resized under control of a script with the
resizeTo() or moveBy() methods.

Warnings:
❑ There are numerous issues with onResize events in Netscape 4.0. In particular, an onResize

causes Netscape to "forget" positioning information for <LAYER> objects and absolutely
positioned <DIV> blocks.

❑ This could be fixed by simply making this assignment:

self.onresize = self.reload;

❑ This attaches a reload call to the resize event handler. However registering event handlers in this
way on Netscape prior to version 6.0 has proven to be inconsistent. In this particular case it will
cause a browser-crashing endless loop.

❑ The crashing only happens on some versions of Netscape 4.0. The problem is caused because the
resize event handler will fire a second Resize event when the window scrollbars are drawn once
the page is loaded – odd behavior. We've sat in front these browsers for years now and watched
Netscape draw a page, then realize it can't fit all the content in and so decide it needs scroll bars and
draw it all again. However, up until recently we never realized that an onResize was being
triggered as well – if only we had a generic event watcher of some kind so we could see what is
going on behind the scenes!

❑ Anyway, the example suggests a fix and was provided by Jon Stephens. This demonstrates
other subtle and neat tricks such as storing persistent values as member properties of the
function object itself.

Example code:
// This checks to see if the window's dimensions have
// actually changed (because Netscape often fires a
// false onResize event when it forms scrollbars);
// if the dimensions have changed, the document is
// reloaded.
// Note that document.location is not supposed to be
// settable, but here's another case where the
// implementation does not match the specs.
function resizeFix()
{
 if((document.resizeFix.initWidth != window.innerWidth)
||(document.resizeFix.initHeight != window.innerHeight))
 {
 document.location = document.location;
 }
}

// This function checks to see if the browser supports the
// Layer object (i.e., Netscape 4.X);
// If it does, then it creates a new object with properties
// to hold the current window width & height and assigns
// the resizeFix() function to the window's onResize event.
function checkBrowser()

JavaScript Programmer's Reference

1650

{
 if(document.layers)
 { if(typeof document.fix == "undefined")
 {
 document.resizeFix = new Object();
 document.resizeFix.initWidth = window.innerWidth;
document.resizeFix.initHeight = window.innerHeight;
 }
 window.onresize = resizeFix;
 }
}

// This calls the browser check function above
checkBrowser();

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Semantic event, Window events,
Window.onresize

onRowEnter (Event handler)
The data in a field bound to a data source is about to be changed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onrowenter = aHandler

HTML syntax: <HTMLTag onRowEnter="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
APPLET, DIV, MARQUEE, TD, AREA, Document, OBJECT,
TEXTAREA, BODY, IMG, Select, TH, BUTTON, Input,
TABLE,

This event is triggered for those data driven systems that need to track row and column changes to
the data containers that are associated with a database. It fires to indicate that the current row has
changed in the data source and new data values are available on the object.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onRowExit, Semantic event, XML
object, XML.event

O – onRowExit (Event handler)

1651

onRowExit (Event handler)
The data in a field bound to a data source has been changed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onrowexit = aHandler

HTML syntax: <HTMLTag onRowExit="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
APPLET, DIV, MARQUEE, TD, AREA, Document, OBJECT,
TEXTAREA, BODY, IMG, Select, TH, BUTTON, Input,
TABLE,

This event fires just before the data source control changes the current row in the object.

On exiting from a row, you may want to check the contents and possibly update the database with
the changes.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onRowEnter, Semantic event,
XML object, XML.event

onRowsDelete (Event handler)
Some rows are about to be deleted from the database.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

This event fires when rows are about to be deleted from the recordset. You may want to intercept
this event and check whether you really do want to delete these rows.

See also: XML.event

onRowsInserted (Event handler)
Some new data is being inserted into the database.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

This event fires just after new rows are inserted in the current recordset. You may want to intercept
this event to fix up some relationships in the database to maintain data integrity.

JavaScript Programmer's Reference

1652

See also: XML.event

onScroll (Event handler)
The window has been scrolled.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onscroll = aHandler

HTML syntax: <HTMLTag onScroll="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
BODY, FIELDSET, MARQUEE, Window, CAPTION, IMG,
TABLE, DIV, LEGEND, TEXTAREA,

Scrolling windows is usually harmless. However, you might have some window content that want
to remain visible after the window has scrolled. Perhaps you have some navigation objects placed
in a layer that you want to leave positioned where it was regardless of the window scroll position.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, Semantic event, Window
events

onSelect (Event handler)
Some textual content in the window has been selected.

Availability: JavaScript – 1.0
JScript – 3.0
Internet Explorer – 4.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onselect = aHandler

HTML syntax: <HTMLTag onSelect="...">

Argument list: aHandler
A reference to a function object to handle
the event

Supported by objects:
CAPTION, FileUpload, RadioButton, TEXTAREA,
Checkbox, Input, ResetButton, TextCell,
FIELDSET, Password, SubmitButton,

Selecting text in the window may be a precursor to a cut or paste operation. If the elements are able
to support TextRanges, then you may want to receive a trigger when a text selection occurs.

O – onSelectStart (Event handler)

1653

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onClick, onMouseDown,
onMouseUp, onSelectStart, Semantic event

onSelectStart (Event handler)
A select action is beginning.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onselectstart = aHandler

HTML syntax: <HTMLTag onSelectStart="...">

Argument list: aHandler A reference to a function object to handle the event.

Supported by objects:
A, DIV, LI, SUB, ACRONYM, DL, LISTING, SUP,
ADDRESS, Document, MARQUEE, TABLE, Anchor, DT,
MENU, TBODY, B, EM, OBJECT, TD, BIG, FIELDSET,
OL, TEXTAREA, BLOCKQUOTE, FONT, P, TFOOT, BODY,
FORM, PLAINTEXT, TH, BUTTON, H1, PRE, THEAD,
CAPTION, HR, Q, TR, CENTER, I, S, TT, CITE,
IMG, SAMP, U, CODE, Input, Select, UL, DD, INS,
SMALL, Url, DEL, KBD, SPAN, VAR, DFN, LABEL,
STRIKE, , DIR, LEGEND, STRONG,

At the commencement of a selection, this event is triggered. This allows you to do some animation
or perhaps draw a bounding rectangle while the selection takes place.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onSelect, Semantic event

onStart (Event handler)
Fires when a MARQUEE element is beginning its loop.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myObject.onstart = aHandler

HTML syntax: <HTMLTag onStart="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects: MARQUEE

A MARQUEE element provides a suite of events that allow you to attach all manner of event driven
animations and wizzy effects to them. This event is triggered when the MARQUEE starts its loop.

JavaScript Programmer's Reference

1654

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBounce, onFinish,
onStop, Semantic event

onStop (Event handler)
Called when the user stops a page loading.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myObject.onstop = aHandler

This event is called when the user halts the page loading with the stop button on the toolbar.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onBounce, onFinish,
onStart, Semantic event

onSubmit (Event handler)
The user has clicked on the submit button in a form.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 3.0
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onsubmit = aHandler

HTML syntax: <FORM onSubmit="..."> <HTMLTag onSubmit="...">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects: FORM

As the <FORM> submit button is clicked, this event is triggered. If you return the value true, the
event will be passed to the browser for further processing and the form will be submitted.
Returning false inhibits this action and discards the message, the form will not be submitted. This
provides a means of inhibiting <FORM> submits when the form data is bad.

You can later on call the submit() method to send the form content back to the server.

Note that the submit() method will not trigger an onSubmit event.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, onClick, onMouseDown,
onMouseUp, onReset, Semantic event

O – onUnload (Event handler)

1655

onUnload (Event handler)
Triggered when the document is unloaded.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myObject.onunload = aHandler

HTML syntax:
<BODY onUnload="aHandler"> <FRAMESET
onUnload="aHandler"> <HTMLTag
onUnload="aHandler">

Argument list: aHandler A reference to a function object to handle the event

Supported by objects:
BODY, Layer, SCRIPT, Window, FRAMESET, LINK,
STYLE,

The onUnload event is triggered for a <BODY> or <FRAMESET> tag when the page is about to
disappear and be replaced with another. You should avoid doing anything lengthy or complex here
– it should just be used to do some cleaning up.

It is considered bad technique to place an alert or any other dialog in the onUnload handler. It is
also bad manners to tie the processing up in a lengthy piece of script execution at this stage.

You might use the unLoad handler to remove any values you put into the window status bar.

Although this is a tag attribute that is applied to the <BODY> tag, it is really associated with the
Window object in which the document body is loaded.

Warnings:
❑ This is not supported on the WebTV platform.

See also: Event, Event handler, Event model, Event names, Event object,
Event.returnValue, Handler, JellyScript, onBeforeUnload,
onLoad, Semantic event, Window events, Window.onunload

JavaScript Programmer's Reference

1656

open() (Method)
An alias for the window.open() method.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Window object

- myWindow.open()

- myWindow.open(aURL)

- myWindow.open(aURL, aName)

- myWindow.open(aURL, aName,
aFeatureList)

- myWindow.open(aURL, aName,
aFeatureList, aFlag)

- open()

- open(aURL)

- open(aURL, aName)

- open(aURL, aName, aFeatureList)

JavaScript syntax:

- open(aURL, aName, aFeatureList,
aFlag)

aFeatureList A list of attributes for the new window

aFlag
A flag to indicate how the history list is to be
modified

aName The name of a new or existing target window

Argument list:

aURL A URL to load into the window

Refer to:
Window.open()

opener (Property)
An alias for the window.opener property.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: Window object

- myWindow.opener
JavaScript syntax:

- opener

O – OpenTV (TV Set-top Box)

1657

Property attributes:
ReadOnly.

Refer to:
Window.opener

OpenTV (TV Set-top Box)
An interactive TV set-top box environment.

At present this system does not support HTML or JavaScript. However, there is a growing trend
among TV set-topbox manufacturers to provide integrated web browsing.

Because the developer environment for this system is based on the C language, it is theoretically
possible to download a minimal HTML and JavaScript browser into the set-top box. There would be
major considerations regarding bandwidth requirements for such an application but it could be done.

As the set-top boxes become more sophisticated, expect this kind of functionality to become
commonplace. It becomes even more likely with the advent of large hard disk caches and more
powerful CPUs driving the set-top box.

See also: Interpret, Platform, Script execution, TV Set-top boxes, Web browser

Opera (Web browser)
A web browser alternative to MSIE and Netscape.

The Opera web browser is an alternative browser to the Netscape and MSIE browsers on the
Windows platform. It is highly standards-based, and as a result has gained much respect.
However, because many pages do not contain strictly standard content, you should quality-check
your site on this browser to ensure its compliance. Using Opera as a reference browser can
significantly improve the likelihood of your site continuing to work in the future as all browsers
are likely to converge on the functionality embodied in the standards.

Details of what is supported in version 5 can be found at the web reference below.

See also: ECMA, ECMAScript, Platform, Script execution, Web browser

Web-references:
http:www.opera.com/opera5/

JavaScript Programmer's Reference

1658

Operator (Definition)
A special symbolic token that when placed adjacent to or between values creates an expression.

Availability: ECMAScript edition – 2

An operator is a token that represents a particular operation to be performed on one or two
operands. The combination of operands and operator is called an expression. The operation yields a
result, which can be used as an operand in subsequent expressions. Expressions can be nested
implicitly according to the precedence rules of the operators, or explicitly by using using the
parentheses grouping operator.

Depending on the operators and operands used, side effects may occur. This is particularly likely
when function calls are used as operands since a function call can invoke many lines of code.

For example, an expression calling two functions, each of which opens a pop-up browser window
would cause two new windows to appear as a side effect every time the expression was evaluated.

Here is a list of all the operators supported by JavaScript:

Operator Description

! Logical NOT
!= NOT equal to
% Remainder
%= Remainder and assign to an LValue
& Bitwise AND
&& Logical AND
&= Bitwise AND and assign to an LValue
(Function argument delimiter and precedence control
) Function argument delimiter and precedence control
* Multiply
*= Multiply and assign to an LValue
+ Add
+ Concatenate string
+ Unary convert the operand to a numeric value.
++ Increment LValue
+= Add and assign to an LValue
, Argument delimiter
- Subtract
- Unary negate the value
-- Decrement LValue

Table continued on following page

O – Operator (Definition)

1659

Operator Description

-= Subtract and assign to an LValue
. Property accessor
/ Divide
/= Divide and assign to an LValue
: Part of conditional operator
; Empty statement
< Less than
<< Bitwise left shift
<<= Bitwise shift left and assign to an LValue
<= Less than or equal to
= Simple assignment to an LValue
== Equal to
=== Identity
> Greater than
>= Greater than or equal to
>> Bitwise shift right
>>= Bitwise shift right and assign to an LValue
>>> Bitwise shift right (unsigned)
>>>= Bitwise shift right (unsigned) and assign to an LValue
? Conditional operator
[Array index delimiter
] Array index delimiter
^ Bitwise XOR (exclusive OR)
^= Bitwise exclusive XOR and assign to an LValue
delete Used to delete a property from an object if it can be deleted
false Boolean constant
new Invokes an object constructor
true Boolean constant
typeof Determines the type of an evaluation or value
void Regardless of the result of evaluating the expression that may be operated on, this

will always yield the undefined value
{ Start code block
| Bitwise inclusive OR
|= Bitwise inclusive OR and assign to an LValue
|| Logical OR
} End code block
~ Bitwise complement (NOT)

Refer to the Operator Precedence topic for details of the order in which operators and their
expressions are evaluated in complex lines of code. This is sometimes light-heartedly referred to as
"who's on first".

JavaScript Programmer's Reference

1660

See also: Additive operator, Assignment operator, Associativity, Binary operator,
Bitwise operator, Cast operator, Equality operator, Expression, Grouping
operator (), Lexical element, Logical operator, Mathematics,
Multiplicative operator, Operator Precedence, Postfix operator, Prefix
operator, Punctuator, typeof, Unary operator, void

Cross-references:
ECMA 262 edition 2 – section 11

ECMA 262 edition 3 – section 11

Operator Precedence (Definition)
A means of controlling execution priority in expressions.

Availability: ECMAScript edition – 2

The operators below are listed in decending order of precedence. The associativity colum indicates
the direction in which items are evaluated.

Operator Description Assoc

() Grouping operator L-R
[] Array index delimiter L-R
. Property accessor L-R
++ Postfix increment L-R
-- Postfix decrement L-R
! Logical NOT R-L
~ Bitwise NOT R-L
++ Prefix increment R-L
-- Prefix decrement R-L
- Negate operand L-R
delete Delete a property from an object R-L
new Invokes an object constructor R-L
typeof Determines the type of a value R-L
void Always yields the undefined value R-L
* Multiply L-R
/ Divide L-R
% Remainder L-R
+ Convert the operand to a numeric value L-R
+ Add L-R
- Subtract L-R

Table continued on following page

O – Operator Precedence (Definition)

1661

Operator Description Assoc

+ Concatenate string L-R
<< Bitwise shift left L-R
>> Bitwise shift right L-R
>>> Bitwise shift right (unsigned) L-R
< Compare less than L-R
<= Compare less than or equal to L-R
> Compare greater than L-R
>= Compare greater than or equal to L-R
in Property is in object L-R
instanceof Object is instance of another object L-R
== Compare equal to L-R
!= Compare NOT equal to L-R
=== Compare identically equal to L-R
!== Compare identically NOT equal to L-R
& Bitwise AND L-R
^ Bitwise XOR L-R
| Bitwise OR L-R
&& Logical AND L-R
|| Logical OR L-R
?: Conditional execution R-L
= Assign R-L
*= Multiply and assign R-L
/= Divide and assign R-L
%= Remainder and assign R-L
+= Add and assign R-L
-= Subtract and assign R-L
<<= Bitwise shift left and assign R-L
>>= Bitwise shift right and assign R-L
>>>= Bitwise shift right (unsigned) and assign R-L
&= Bitwise AND and assign R-L
|= Bitwise inclusive OR and assign R-L
^= Bitwise XOR and assign R-L
, Argument delimiter L-R
; Empty statement L-R
{ } Delimit code block L-R

JavaScript Programmer's Reference

1662

See also: Associativity, Object property delimiter (.), Primary expression

Cross-references:
ECMA 262 edition 2 – section 11.1.4

ECMA 262 edition 3 – section 11.1.6

OptGroupElement object (Object/HTML)
A means of grouping options together into logical sets.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Element object

IE myOPTGROUP = myDocument.all.anElementID

IE myOPTGROUP = myDocument.all.tags("OPTGROUP")
[anIndex]

IE myOPTGROUP = myDocument.all[aName]

- myOPTGROUP =
myDocument.getElementById(anElementID)

- myOPTGROUP = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myOPTGROUP = myDocument.getElementsByTagName
("OPTGROUP")[anIndex]

HTML syntax: <OPTGROUP> ... </OPTGROUP>

anElementID The ID value of the element required

anIndex A reference to an element in a collectionArgument list:
aName An associative array reference

Object properties: disabled, label

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Property JavaScript JScript N IE Opera DOM HTML Notes

disabled 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
label 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -

O – OptGroupElement.disabled (Property)

1663

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onHelp - 5.0 + - 5.0 + - - - Warning
onKeyDown 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseOut 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 5.0 + 6.0 + 5.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

OptGroupElement.disabled (Property)
A switch for activating or deactivating a grouped option set.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - .myOptGroupElement.disabled

OptGroupElement.label (Property)
A label that is applied to a group of options.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myOptGroupElement.label

JavaScript Programmer's Reference

1664

Option object (Object/HTML)
One of a set of objects belonging to a select object in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

Inherits from: Element object

- myOption = myDocument.aFormName.aSelectorName
.options[anIndex]

- myOption = myDocument.aFormName.elements
[anItemIndex].options[anIndex]

IE myOption = myDocument.all.anElementID

IE myOption = myDocument.all.anElementID.elements
[anIndex].options[anIndex]

IE myOption =
myDocument.all.anElementID.options[anIndex]

IE myOption = myDocument.all.tags("OPTION")[anIndex]

IE myOption = myDocument.all[aName]

- myOption = myDocument.forms[aFormIndex]
.aSelectorName.options[anIndex]

- myOption = myDocument.forms[aFormIndex].elements
[anIndex].options[anIndex]

- myOption = myDocument.getElementById(anElementID)

- myOption = myDocument.getElementsByName(aName)
[anIndex]

- myOption = myForm.aSelectorName.options[anIndex]

- myOption = myForm.elements[anItemIndex].options
[anIndex]

- myOption = myOptionsArray[anIndex]

- myOption = mySelector.options[anIndex]

JavaScript syntax:

- myOption =
myDocument.getElementsByTagName("OPTION")[anIndex]

HTML syntax: <OPTION> ... </OPTION>

anIndex A valid reference to an item in the collection
anItemIndex A valid reference to an item in the collection
aName The name attribute of an element
aFormIndex A reference to a particular form in the forms collection

Argument list:

anElementID The ID attribute of an element

Object properties:
defaultSelected, form, index, label, prototype,
selected, text, value

O – Option object (Object/HTML)

1665

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp

In Netscape, this sub-class of the Input object supports a couple of properties that may not be
available on other platforms.

The DOM level 1 specification calls this object type an OptionElement object.

Warnings:
❑ In Netscape, this object is easy to confuse with the Select object to which the options belong. Be

careful to maintain the correct structural relationship between Select popup menus and their
option sets.

❑ Netscape 6.0 PR3 exhibited some instabilities in the support of this object; however, it is not certain
whether the bug is still outstanding on the final release as well. The problem seemed related to the
creation of new Option objects by means of the constructor. This is not something that everyone is
going to be doing on all their pages so its not likely to be a show stopper unless its just that one thing
you need to use.

See also: Form.elements[], Input object, OptionsArray object,
response.getOptionValue(), response.getOptionValueCount(),
Select object

Property JavaScript JScript N IE Opera NES DOM HTML Notes

default
Selected

1.1 + 1.0 + 3.0 + 3.02 + 3.0 + 2.0 + 1 + - -

form 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 1 + - Warning
index 1.0 + 1.0 + 2.0 + 3.02 + - - - - ReadOnly
label 1.5 + - 6.0 + - - - 1 + - -
prototype 1.0 + 1.0 + 2.0 + 3.02 + - 2.0 + - - Warning
selected 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 1 + - -
text 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 1 + - ReadOnly
value 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 2.0 + 1 + - -

Event name JavaScript JScript N IE Opera NES DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning

Table continued on following page

JavaScript Programmer's Reference

1666

Event name JavaScript JScript N IE Opera NES DOM HTML Notes

onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

Option() (Constructor)
An Option object constructor.

Availability: JavaScript – 1.1
Netscape – 3.0

N new Option

N new Option()
JavaScript syntax:

N new Option(aValue)

Argument list: aValue An initial value for the new option object

You can dynamically create new option objects and add them to the options array belonging to
a Select object in a form.

See also: Constructor function, constructor property, Garbage collection,
Memory leak, Reference counting, Select.options[]

Option.defaultSelected (Property)
The selected state of this item when the form was created.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myOption.defaultSelected

This is a Boolean value that indicates whether the <OPTION> tag in the HTML document source
has the SELECTED HTML tag attribute present or not. Only one of the <OPTION> tags in a
<SELECT> block should have the SELECTED attribute, unless multiple sections are allowed.

You can refer to this value in the form checking script to see if the value of the select block has been
changed since the page was loaded.

O – Option.index (Property)

1667

Option.index (Property)
The index position within the select object set.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - myOption.index

When you define <OPTION> tags within a <SELECT> block, they instantiate objects to represent
each option. These are then made available as members of a collection belonging to the Select
object and accessible via its options[] property.

This property indicates the position of this Option object within that collection. The first Option
object in the collection is located at index position zero. Note that modifying the set of objects in
this collection can cause the index numbers of an option to change.

See also: Select.options[]

Property attributes:
ReadOnly.

Option.label (Property)
The text string that the user sees in the popup menu. This is another name for the
Option.text property.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myOption.label

Refer to:
Option.text

JavaScript Programmer's Reference

1668

Option.prototype (Property)
The prototype for the Option object that can be used to extend the interface for all Option objects.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0

Property/method value type: Option object

- Option.prototype
JavaScript syntax:

- myOption.constructor.prototype

Warnings:
❑ Of all the objects supported by MSIE, this is the only one to provide an enumerable property that

points at the prototype for the object. This is likely to be a bug in the enumeration flag settings for
the Option object type.

See also: prototype property

Option.selected (Property)
The selected state of this option item.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myOption.selected

This is the current selected state of the option item. If the user has not interacted with the parent
Select object, this value will be the same as its initial defaultSelected value. If the user has
chosen an alternative item from the collection, then this property will be set accordingly.

O – Option.text (Property)

1669

Option.text (Property)
The text string that the user sees in the popup menu.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

JavaScript syntax: - myOption.text

Option items have a textual value enclosed between the opening and closing tags. This is a means
of accessing that text without needing to resort to complex innerText or innerHTML tricks.

Property attributes:
ReadOnly.

Option.value (Property)
The text value that is returned to the server if this item is selected.

Availability: DOM level – 1
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

JavaScript syntax: - myOption.value

The text that the user sees is not necessarily the same as that sent back when the form is submitted.
Some degree of normalization is available so that the user may see a text string but a lookup
mechanism can replace that with a numeric value thereby saving some work in the server.

See also: Input.value

JavaScript Programmer's Reference

1670

OptionElement object (Object/DOM)
One of a set of objects belonging to a select object in a form.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myOptionElement = new OptionElement()

Refer to:
Option object

OptionsArray object (Object/browser)
A collection object that belongs to a select popup.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

JavaScript syntax: - myOptionsArray = mySelector.options

Object properties: length

Object methods: add(), item(), remove(), select()

Warnings:
❑ Netscape 6.0 implements this in a DOM-compliant manner. That means the object type is an

HTMLCollection object. This is a generic object type and there are no special methods or
properties added to it. The things you might have done with an OptionsArray object are not
going to work.

❑ MSIE appears to implement this as a NodeList although you cannot tell because it doesn't make a
constructor or prototype available for you to inspect.

See also: Collection object, Option object, Select object,
Select.options[]

Property JavaScript JScript N IE Opera HTML Notes

length 1.0 + 1.0 + 2.0 + 3.02 + - - ReadOnly

O – OptionsArray.add() (Method)

1671

Method JavaScript JScript N IE Opera HTML Notes

add() - 3.0 + - 4.0 + - - -
item() - 3.0 + - 4.0 + - - -
remove() - 3.0 + - 4.0 + - - -
select() - 3.0 + - 4.0 + - - -

OptionsArray.add() (Method)
Adds a new option item to a select popup object.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myOptionsArray.add(anObject)
JavaScript syntax:

IE myOptionsArray.add(anObject, anIndex)

anObject An object to be added to the collectionArgument list:
anIndex The index position at which it should be added

You can use this method call to add a new item to a list of options belonging to a Select object.
This would be manifested to the user as a new item being visible when the select menu is popped
onto the display.

OptionsArray.item() (Method)
Access to a particular item in the options collection of a select popup object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Option object

IE myOptionsArray.item(anIndex)

IE myOptionsArray.item(aSelector)
JavaScript syntax:

IE myOptionsArray.item(aSelector,
anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Because the OptionsArray is a sub-class of the generic Collection object, all the normal things
you can do with a collection are possible with an OptionsArray belonging to a Select object.

See also: Collection.Item()

JavaScript Programmer's Reference

1672

OptionsArray.length (Property)
The number of options in a select popup.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - myOptionsArray.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

OptionsArray.remove() (Method)
Removes an option from the collection belonging to a select popup object.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myOptionsArray.remove(anIndex)

Argument list: anIndex A zero-based index into the collection

This should affect the display causing the popup at least to be refreshed. Manipulating the popup
contents in this way may be useful and is particularly appropriate if you have two popups, one of
which is a secondary selector whose available choices depend on the settings of the first.

OptionsArray.select() (Method)
Select an item in an options array belonging to a select popup object.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myOptionsArray.select()

Behaves as if the user had selected an item. This should highlight the item in the popup's usual
user interface feedback manner and should set the appropriate values in the properties of the
previously selected and freshly selected Option objects.

See also: Input.select()

O – outerHeight (Property)

1673

outerHeight (Property)
An alias for the window.outerHeight property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

- myWindow.outerHeight
JavaScript syntax:

- outerHeight

outerWidth

outerHeight

Property attributes:
ReadOnly.

Refer to:
Window.outerHeight

outerWidth (Property)
An alias for the window.outerWidth property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

- myWindow.outerWidth
JavaScript syntax:

- outerWidth

JavaScript Programmer's Reference

1674

outerWidth

outerHeight

Property attributes:
ReadOnly.

Refer to:
Window.outerWidth

Overview (Background)
JavaScript language and functionality overview.

Availability: ECMAScript edition – 2

JavaScript originally started as a Netscape extension to provide some script-driven dynamic effects
within the web page. At this time, Netscape had by far the greater penetration and was much more
popular than the MSIE browser.

MSIE rapidly caught up with the scripting functionality and extended it in different directions. In the
typically competitive style of the Microsoft company, JScript rapidly became the equal of the Netscape
4.0 browser. However, now it's the turn of Netscape to up the stakes again with the introduction of
Netscape 6.0, although Microsoft has a new version of MSIE at the stage of beta testing.

In the two years Netscape has taken in releasing new browser, JavaScript has become standardized
through the ECMA organization and has been deployed in a variety of non-browser contexts. It is
now part of the fundamental scripting interface in Windows where its duty with the VBScript
interpreter lies in automating desktop operations.

JavaScript is now available on Unix platforms as a shell scripting language and in web servers for
server-side programming.

More recently, it has been adopted and modified to become WMLScript which is used in WAP-
standard mobile phone. Even more recently it is becoming popular in Digital TV set-top box
systems as part of the rapid merger of broadcast TV and web content. This is likely to be where
JavaScript becomes a fairly dominant tool for developing interactive TV content.

O – Overview (Background)

1675

The language continues to evolve and penetrate new markets and systems. The core language has
been standardized and several bindings are also reasonably stable through the efforts of the W3C,
but there is still much to be done to ensure the language operates consistently across browsers.
Now that Netscape and MSIE are implementing the standards-based features in similar ways for
the most part, the differences between the two browsers are being squeezed into more esoteric
areas such as sidebars and visual transition filters. Events still have some way to go, and it will be a
while before DOM-style control is completely supported. There are also several new DOM
components in level 2 and extensions in level 3.

See the web reference for the article by Brendan Eich on "The Birth of JavaScript".

See also: DOM, ECMA, ECMAScript, JavaScript language

Cross-references:
ECMA 262 edition 2 – section 4

ECMA 262 edition 3 – section 4

Web-references:
http://home.netscape.com/comprod/columns/techvision/innovators_be.html

http://home.netscape.com/comprod/columns/techvision/innovators_be.html

P object (Object/HTML)
An object that encapsulates a paragraph delimited by a <P> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myP = myDocument.all.anElementID

IE myP = myDocument.all.tags("P")[anIndex]

IE myP = myDocument.all[aName]

- myP = myDocument.getElementByID(anElementID)

- myP = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myP = myDocument.getElementsByTagName("P")[anIndex]

HTML syntax: <P>,<P> ... </P>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The <P> tag is a block-level tag. That means that it forces a line break before and after itself.

The DOM level 1 specification refers to this as a Paragraph object.

See also: Element object

P

Error! No text of specified style in document.

1677

Property JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - - - 1 + - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

P.align (Property)
The alignment of the paragraph object with respect to its parent object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myP.align

The alignment of the P object with respect to its containing parent object is defined in this property.
The expected and widely available set of alignment specifiers are available:

❑ absbottom

❑ absmiddle

Chapter number

1678

❑ baseline

❑ bottom

❑ center

❑ left

❑ middle

❑ right

❑ texttop

❑ top

.pac (File extension)
Proxy lookup conversion file.

This is a script container for a small and compact JavaScript function that returns a computed value
indicating whether to proxy-serve a URL or not.

See also: Proxies, proxy.pac

Cross-references:
Wrox Instant JavaScript – page – 58

package (Reserved word)
Reserved for future language enhancements.

See also: export, import, Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Packages (Property)
An alias for the window.Packages property.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

Property/method value type: JavaPackage object

N myWindow.Packages
JavaScript syntax:

N Packages

Error! No text of specified style in document.

1679

This property contains a read-only reference to a JavaPackage that sits at the top of the Java
package hierarchy, the root node of the tree. A JavaPackage is a container for other JavaPackage
objects and JavaClass objects. By default, the Netscape Navigator browser will have three packages
belonging to this top-level node (java, sun, and Netscape), and these will contain other packages.
There may be additional externally, supplied packages over and above these three default items.

It is understandable that Microsoft does not go very far with support for Java other than being able
to run a Java applet. There is no access to Java packages directly from script in the same way. You
can run a Java Applet and interact with that, but its not quite the same thing.

Perhaps because it is so platform-specific, not very many people have explored the use of packages
very deeply, even on Netscape Navigator. That seems a shame because within a captive intranet
situation, you might be able to accomplish some useful things by creating fragments of very
powerful Java code and then calling them from JavaScript. There doesn't seem to be the lengthy
start up time that's required to initiate an Applet either.

lang applet

netscape sun

io

java

root

See also: Window.Packages

Property attributes:
ReadOnly.

Packages.java (Java package)
A package containing a collection of generic Java classes maintained as a package.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

An example of a Package reference is the Java Date class stored in the java.util package.

Chapter number

1680

To access this from JavaScript you would use this kind of construction:

myJavaClass = Packages.java.util.Date;

That mode of access would yield a reference to the Class and would produce a JavaClass object
in the JavaScript environment. To create an instance and yield an object of that class, use the class
as a constructor. Like this:

myJavaObject = new Packages.java.util.Date;

That would create a JavaObject object in the JavaScript environment.

If necessary, you may want to access a collection of Classes, which is called a Package. Here is how
to create a JavaScript environment's JavaPackage object:

myJavaPackage = Packages.java.util;

See also: JavaClass object, JavaObject object, JavaPackage object,
Window.java

Packages.netscape (Java package)
A package containing a collection of Netscape-defined Java classes maintained as a package.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

This is a code support for Java applets that use LiveConnect to access JavaScript from within the
Java context.

See also: JavaClass object, JavaObject object, JavaPackage object,
Window.netscape

Packages.netscape.javascript (Java package)
A package containing support for Java code that needs to integrate with JavaScript via LiveConnect.

Availability: JavaScript – 1.1
Netscape – 3.0

Refer to:
Java calling JavaScript

Error! No text of specified style in document.

1681

Packages.netscape.plugin (Java package)
A package containing support for applets and plugins that integrate with JavaScript via LiveConnect.

Availability: JavaScript – 1.1
Netscape – 3.0

See also: Plugin.description Plugin object

Packages.sun (Java package)
A package containing a collection of Sun Microsystem- defined Java classes maintained as a
package. This includes some Sun Java security support as well.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

See also: JavaClass object, JavaObject object, JavaPackage object,
Window.sun
Java calling JavaScript

pageXOffset (Property)
An alias for the window.pageXOffset property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N myWindow.pageXOffset
JavaScript syntax:

N pageXOffset

Offset X

Offset Y

Chapter number

1682

Property attributes:
ReadOnly.

Refer to:
Window.pageXOffset

pageYOffset (Property)
An alias for the window pageYOffset property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N myWindow.pageYOffset
JavaScript syntax:

N pageYOffset

Property attributes:
ReadOnly.

Refer to:
Window.pageYOffset

ParamElement object (Object/HTML)
An object that encapsulates one of the parameters passed to an OBJECT object from its <PARAM> tags.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Element object

IE myParam = myDocument.all.anElementID

IE myParam = myDocument.all.tags("PARAMETER")
[anIndex]

IE myParam = myDocument.all.[aName]

- myParam =
myDocument.getElementByID(anElementID)

- myParam =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myParam = myDocument.getElementsByTagName
("PARAMETER")[anIndex]

HTML syntax: <PARAM>

Error! No text of specified style in document.

1683

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Object properties: name, type, value, valueType

Event handlers:
onClick, onDblClick, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp

This is a new object introduced with the DOM specification. Its full name is HTMLParamElement.
It can only exist as a child element within a block structured <OBJECT> tag.

Property JavaScript JScript N IE Opera DOM HTML Notes

name 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
type 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
value 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
valueType 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onDblClick 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onHelp - 5.0 + - 5.0 + - - - Warning
onKeyDown 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onKeyPress 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onKeyUp 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseDown 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseMove 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseOut 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseOver 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseUp 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

ParamElement.name (Property)
The name of the parameter passed to the OBJECT object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myParamElement.name

Chapter number

1684

ParamElement.type (Property)
The type of parameter being passed to an OBJECT object when the valueType property is set to "ref".

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myParamElement.type

ParamElement.value (Property)
The data value being passed to the OBJECT object in the parameter.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myParamElement.value

ParamElement.valueType (Property)
The type of the value data that is being passed.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myParamElement.valueType

Parameter (Definition)
The formal description of a function interface.

The arguments that a function expects to be passed when it is called are described as a set of formal
parameters when it is declared.

Error! No text of specified style in document.

1685

The parameters are called arguments from within the function when it is executed.

Since JavaScript is weakly data-typed, you do not need to specify the data type of the parameters in
the function declaration. Nor are the arguments tested for compliance with any data type when the
function is invoked. Rather the values of any arguments are coerced or cast as they are used
according to the context in which they are referred to. This makes it very important that you take
care with the type and value of parameters you are passing to functions. In particular with numeric
and string values.

See also: Argument, Argument list, Arguments object, Definition,
Function, Function object, function(...) ...,
Function.arguments[], Reserved word, Scope chain

parent (Property)
An alias for the window.parent property.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Window object

- myWindow.parent
JavaScript syntax:

- parent

Property attributes:
ReadOnly.

Refer to:
Window.parent

Parentheses () (Delimiter)
A precedence of execution control mechanism.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Expression evaluation order is controlled by enclosing expressions in parentheses.

Chapter number

1686

See also: Grouping operator ()

Cross-references:
ECMA 262 edition 2 – section – 11.1.4

ECMA 262 edition 3 – section – 11.1.6

parseFloat() (Function/global)
Parse a string to extract a floating-point value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - parseFloat(aNumericString)

Argument list: aNumericString A meaningful numeric value

The parseFloat() function returns a numeric value, unless the string cannot be resolved to a
meaningful value in which case NaN is returned instead.

It produces a number value dictated by interpreting the contents of the string as if it were a decimal
literal value. During conversion parseFloat() ignores leading white space characters so you
don't have to remove them from the string before conversion takes place.

Note that parseFloat() will only process the leading portion of the string. As soon as it
encounters an invalid floating-point numeric character it will assume the scanning is complete. It
will then silently ignore any remaining characters in the input argument.

See also: Cast operator, Global object, parseInt(), String concatenate (+)

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.1.2.3

ECMA 262 edition 3 – section – 15.1.2.3

Error! No text of specified style in document.

1687

parseInt() (Function/global)
Parse a string to extract an integer value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - parseInt(aNumericString,
aRadixValue)

aNumericString A string that comprises a meaningful numeric
value

Argument list:

aRadixValue A numeric value indicating the radix for
conversion

The parseInt() function produces an integer value dictated by interpreting the string argument
according to the specified radix. It can happily cope with hexadecimal values specified with the
leading 0x or 0X notation. During conversion parseInt() will remove any leading whitespace
characters. You don't need to do that to the string before parsing it.

Note also that parseInt() may only interpret the leading portion of a string. As soon as it
encounters an invalid integer numeric character it will assume the scanning is complete. It will then
silently ignore any remaining characters in the input argument.

Typical radix values are:

❑ 2 – Binary

❑ 8 – Octal

❑ 10 – Decimal

❑ 16 – Hexadecimal

The result of this function call is an integer value, unless the string cannot be resolved to a
meaningful value in which case NaN is returned instead.

See also: Cast operator, Function property, Global object,
parseFloat(), String concatenate (+)

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.1.2.2

ECMA 262 edition 3 – section – 15.1.2.2

Chapter number

1688

Password object (Object/DOM)
A text field in a form that echoes bullets instead of the typed character. Behaves as if it were a text
cell but you cannot see what was typed.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

- myPassword = myDocument.aFormName.anElementName

- myPassword =
myDocument.aFormName.elements[anItemIndex]

IE myPassword = myDocument.all.anElementID

IE myPassword = myDocument.all.tags("INPUT")[anIndex]

IE myPassword = myDocument.all[aName]

- myPassword =
myDocument.forms[aFormIndex].anElementName

- myPassword = myDocument.forms[aFormIndex].elements
[anItemIndex]

- myPassword = myDocument.getElementByID(anElementID)

- myPassword =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myPassword = myDocument.getElementsByTagName
("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="password">

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms collection

Object properties: maxLength, readOnly, size, type, value

Object methods: handleEvent(), select()

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onResize, onRowEnter, onRowExit,
onSelect, onSelectStart

Many properties, methods, and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

Error! No text of specified style in document.

1689

Event-handling support via properties containing function objects was added to Password objects
at version 1.1 of JavaScript.

Some implementations will not allow JavaScript to read the password string that the user has
entered. This is good. You might imagine otherwise on the grounds that you'd expect then that
JavaScript then won't be able to validate the password. If you think about this for a minute you'll
realize that View Source in a web browser exposes your entire security checking regime. Its
actually quite sensible to disallow JavaScript from inspecting the password field. But then, all the
user has to do is run different browser – one that does access the contents of the password field.

Realistically the validation of the password can only be done back at the server anyway and other
than some simple range checking in the client end access to password values from JavaScript is of
doubtful use.

See also: Element object, Form.elements[], FormElement object, Input object,
Input.accessKey, onBlur, onChange, onFocus,
Password.handleEvent()

Property JavaScript JScript N IE Opera DOM HTML Notes

maxLength - 3.0 + - 4.0 + - - - -
readOnly - 3.0 + - 4.0 + - - - ReadOnly
size - 3.0 + - 4.0 + - - - Warning
type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -
select() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning

Table continued on following page

Chapter number

1690

Event name JavaScript JScript N IE Opera DOM HTML Notes

onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelect 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

Cross-references:
O'Reilly JavaScript Definitive Guide – page – 645

Password.handleEvent() (Method)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myPassword.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event-handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent(), Password object

Password.maxLength (Property)
The maximum length allowed for a password entry field.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myPassword.maxLength

Error! No text of specified style in document.

1691

This defines the maximum number of characters that can be entered into the password field. The
browsers differ in how they handle this value. Some will warn the user with a beep or flash on the
screen, others simply stop accepting keystrokes when this number of characters has been entered.

See also: Input.maxLength, TextCell.maxLength

Password.readOnly (Property)
Set to true if the Password field cannot be changed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean value

JavaScript syntax: IE myPassword.readOnly

The password value is defined but cannot be changed by the user. The user should not be able to
see the password on the screen; however, you might be able to view source to see the value in the
HTML document source. Don't rely on this for hiding passwords in pages and assume that users
will discretely ignore them. You might as well publish the password in the page heading.

See also: Input.readOnly, TEXTAREA.readOnly,
TextCell.readOnly

Property attributes:
ReadOnly.

Password.select() (Method)
All text in the password text entry cell is selected and can be cut and pasted by the user.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myPassword.select()

If the browser supports a Selection object or TextRange objects, you may then be able to access
the selected text using JavaScript. Of course in a form object, the text of the whole object can also be
accessed but this may not be what was selected because the user may select all or part of a page
and that selection may span several form elements or select only part of a form element.

See also: Input.select(), Selection object

Chapter number

1692

Password.size (Property)
The width of the password text box measured in characters.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myPassword.size

This is an approximate measure at best. You cannot be sure how wide this box really needs to be
when using a proportionally spaced font in it. The browser will size the box close to an optimal size
to cope with the specified number of characters.

Warnings:
❑ It can be quite distracting if the box size is too small to accommodate the maxLength number of

characters. This can leave the user having to do some cumbersome select actions with the mouse or
use arrow keys to reveal the hidden parts of the textual content of the box.

See also: Input.size, TextCell.size

Password.type (Property)
The type value for the <INPUT> object that describes the password text entry field in a form.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myPassword.type

The type value for a password input text cell is always "password". This value is necessary to
determine the type of form element because this object is really an instance of the Input class and
not the Password class. There is actually no Password class.

See also: Input.type

Property attributes:
ReadOnly.

Error! No text of specified style in document.

1693

Password.value (Property)
The user-entered value for the password text cell.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myPassword.value

This is the string value that is sent back to the web server when the form is submitted. It is difficult
to store script-driven values in this property or to define default values in the HTML document
source without revealing the password value to the user. More experienced users will be able to
work out any default password values if you hide them.

See also: Input.value

Pattern matching (Definition)
Part of the regular expression support in some implementations of JavaScript.

Refer to:
RegExp pattern

PDF (Standard)
A de facto standard for portable documents, which is owned by Adobe Inc.

JavaScript is used inside Acrobat 4.0 as a forms-handling language. This provides a scripting
environment in which you can manipulate the form data whose layout is defined by PostScript but
whose content can then be 'activated' by JavaScript. There are a few minor limitations imposed due
to the fact that Acrobat is not a web browser. There are also several additional objects provided to
support the PDF forms environment.

See also: Host environment, Platform, Script execution

Web-references:
http://www.pdfzone.com/pdfs/PDFSPEC13.PDF

http://www.pdfzone.com/pdfs/PDFSPEC13.PDF

Chapter number

1694

Perl Connect (Product)
A mechanism for communicating between JavaScript and Perl scripts.

This is a means of allowing JavaScript code to call a Perl interpreter from inside the JavaScript
environment. It is functionally similar to using the eval() method but instead of evaluating
JavaScript, some Perl source is passed instead.

Web-references:
http://lxr.mozilla.org/mozilla/source/js/src/perlconnect/README.html

personalbar (Property)
An alias for the window.personalbar property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Bar object

- myWindow.personalbar
JavaScript syntax:

- personalbar

See also: Bar object

Property attributes:
ReadOnly.

Refer to:
Window.personalbar

Pitfalls (Advice)
There are many pitfalls for the unwary in JavaScript.

Although JavaScript is a very forgiving language, over the years it has become large and complex.
There are certainly ways in which the unwary can be caught out. Even long experienced script
developers are taken unawares from time to time.

http://lxr.mozilla.org/mozilla/source/js/src/perlconnect/README.html

Error! No text of specified style in document.

1695

We present warning sub-sections summarized under each topic. Several pitfalls are so large as to
warrant a topic of their own. These are some examples:

❑ Accidentally closing </SCRIPT> tags within the script itself

❑ Interpreting punctuation as tags

❑ Quotes can be a problem

❑ Hiding scripts from old browsers

❑ Line breaks in document.write() methods

❑ Browser detection for handling layers

The topic names (and hence their lexical order in this reference) are summarized in the See
Also list:

See also: </SCRIPT>, Deprecated functionality, Escaped JavaScript quotes in HTML,
Hiding scripts from old browsers, HTML entity escape, JavaScript entity,
Newlines are not
 tags, Off by one errors

Pixelate() (Filter/transition)
A transition effect with the appearance of a coarse pixelated dissolve.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
filter – pixelate()

Pixelate() (Filter/visual)
An effect that simulates the pixelation achieved when lowering the display resolution of an image.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Pixelate()

Pkcs11 object (Object/Navigator)
A hitherto undocumented object type supported by Netscape.

Availability: JavaScript – 1.2
Netscape – 4.04

N myPkcs11 = myWindow.pkcs11
JavaScript syntax:

N myPkcs11 = pkcs11

Chapter number

1696

The Pkcs11 object is part of the security model built into Netscape Navigator. It is otherwise
known as Cryptoki and is provided by RSA Data Security, Inc.

They implement a C language API that has now been mapped to Java as well. According to the
Netscape web site, it is not a fully-fledged object-oriented API, but can be readily understood by
programmers already familiar with Cryptoki.

According to the release notes, Netscape 4.04 added support for the FORTEZZA PKCS#11 module
for making use of the FORTEZZA Crypto Card and FORTEZZA cryptographic algorithms (KEA
and Skipjack) when using SSL and S/MIME. Although a link was provided for more details, it
appears that the support documents may have been moved or deleted.

See also: Cryptoki, Window.pkcs11

Property attributes:
ReadOnly.

Web-references:
http://developer.netscape.com/support/faqs/pkcs_11.html

PLAINTEXT object (Object/HTML)
An object that encapsulates a deprecated <PLAINTEXT> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0 Deprecated

Inherits from: Element object

IE myPLAINTEXT = myDocument.all.anElementID

IE myPLAINTEXT =
myDocument.all.tags("PLAINTEXT")[anIndex]

IE myPLAINTEXT = myDocument.all[aName]

- myPLAINTEXT =
myDocument.getElementByID(anElementID)

- myPLAINTEXT =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myPLAINTEXT = myDocument.getElementsByTagName
("PLAINTEXT")[anIndex]

HTML syntax: <PLAINTEXT>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

http://developer.netscape.com/support/faqs/pkcs_11.html

Error! No text of specified style in document.

1697

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Platform (Definition)
An environment is built to run on a platform that describes an OS and a hardware configuration.

JavaScript is becoming available on a variety of platforms:

❑ Web browsers

❑ TV set-top boxes

❑ Mobile phones

❑ Portable documents

Each of these uses JavaScript in a different way, although the core interpreted functionality is the
same. Generally the differences will be in the area of the object model they support as part of the
host environment. This is added to the core object model defined in the ECMA standard.

See also: CGI Driven JavaScript, Desktop JavaScript, Embedded JavaScript, File
extensions, Host environment, iCab, Internet Explorer, Netscape , OpenTV,
Opera, PDF, Script execution, Shell Scripting with JavaScript, Web browser,
WebTV, WScript

Chapter number

1698

Cross-references:
Wrox Instant JavaScript – page – 2

Wrox Instant JavaScript – page – 5

Plugin compatibility issues (Definition)
Not all plugins behave the same.

The area where you may experience the most difficulty with plugins is to do with video and media.
There are now three major competing technologies and many other minority plugins that can play
audio and video.

If you just concentrate on the main players, you still have a lot of work to do. These are:

❑ Apple QuickTime

❑ Progressive Networks Real Media

❑ Windows Media Services

Functionally they are all very similar. Some of the protocols are shared between them and they all
deliver multiple streams to a player plugin.

Other plugins that you'll encounter will be:

❑ Macromedia Shockwave

❑ Macromedia Flash

❑ LiveAudio

❑ Beatnik

❑ PDF viewer

❑ VRML viewer

Beyond that, some prefer an <EMBED> while others prefer <OBJECT> tags. This is platform- and
browser-dependant so on one browser a plugin may <EMBED> and on another, the same plugin will
work best in an <OBJECT> tag.

Be aware that using the same plugin in the same browser and implementing it as an <OBJECT> or
an <EMBED> may mean that certain functionality is only available in one or the other.

Given that you have got the plugin working with the correct tag and the features you need are
available, the call-back message they use are not the same, nor are the method calls you can make
on the plugin. Indeed, for some plugins, you may only be able to talk to them from JavaScript with
the very latest version. Older versions simply ignore the JavaScript messages.

Given that you now have your plugin running, in the right tags, and can talk to it, the functionality
is different. Some plugins may allow the clip to be played backwards while others won't. Some
may let you pause and play with different method calls, while at least one provides only a
play_pause command. In that scenario, you can play or pause the clip but you won't actually
know what state it is in.

Error! No text of specified style in document.

1699

Warnings:
❑ Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are

objects of the EMBED class. In Netscape they are objects commonly referred to as belonging to the
Plugin class.

❑ There is additional confusion in that there is a plugins[] array that belongs to the document and
another than belongs to the navigator object. They both contain collections of objects but of different
types. This is further confused by the fact that the document.plugins[] array is another name
for the document.embeds[] array.

❑ Due to this confusing situation, the best recommendation is that we refer to document.embeds[]
and navigator.plugins[] and quietly ignore the document.plugins[] array. Furthermore
we shall refer to Plugin objects as being something the browser can use to play embedded content
and, Embed objects, will be an instance of a plugin that is alive and running in a document.

See also: Compatibility, Plugin events

Plugin events (Definition)
The events that are triggered by plugins are commonly referred to as callbacks.

There are basically three kinds of plugins available with web browsers. These are:

❑ Microsoft <OBJECT> tags enclosing ActiveX objects

❑ Netscape <EMBED> tags enclosing browser plugins

❑ Java <APPLET> tags enclosing Java applets

In Netscape Navigator, the LiveConnect mechanisms can run specific functions by name. This call-
back mechanism is available to <EMBED> and <APPLET> plugins, but it isn't clear to what extent
this is supported by <OBJECT> plugins so you may need to experiment with your browser to see
what works and what doesn't. Use the <EMBED> and <APPLET> functionality as a guideline
because the plugin handlers are all likely to share some code. Even so, it requires the Java VM
(Virtual Machine) to be started for it to work. LiveConnect also requires that the <APPLET> tag
contains the MAYSCRIPT attribute to give the applet permission to communicate with JavaScript.

In MSIE, the callbacks are managed via ActiveX mechanisms. Again, an ActiveX object can call a
named JavaScript function.

Warnings:
❑ The distinctions between these different plugin architectures become increasingly blurred and

basically all of their functionality could probably have been provided with a single mechanism had
the browser manufacturers worked together more co-operatively and been less concerned with
carving out territory and gaining market share at each other's expense.

❑ Interacting with plugins using JavaScript is possibly one of the least portable and most frustrating
things to develop solutions for. The competing plugin suppliers have also utterly failed to develop
common API calls for media players such that you need to treat each one as a special case even if
you only want to play, pause, and stop video clips under JavaScript control.

Chapter number

1700

❑ Neither of the mainstream browsers supports the other's chosen technology fully or reliably. It is not
uncommon to find MSIE crashes on Windows with <EMBED> style plugins. Netscape Navigator
does not support <OBJECT> plugins at all well, and ActiveX code crashes a Macintosh horribly
when either browser tries to run it. That's understandable since it's usually X86 machine code and
right now Power PC processors don't like it. The latest MSIE version 5.0 for the Macintosh provides a
switch to disable ActiveX plugins altogether. Even Microsoft Windows Media Player on Macintosh
is supported by way of an <EMBED> tag. Real player is recommended to be used as an <OBJECT>
plugin on MSIE for Windows although it mostly works the same as an <EMBED>. There are some
JavaScript API calls that are not available in both modes though.

❑ This means for example to embed video into a page, even with the same kind of video, you basically
have to implement four different containers to support MSIE and Netscape on Macintosh and
Windows. Given that, there are now other browsers that can cope with plugins. That increases the
number of varieties of HTML page content that needs to be created. Now that QuickTime, Windows
Media Services and Real Media are all contending for market share, they all require different plugins
and that multiplies your problem threefold. Now, it is likely that some of the platform/media
combinations will be similar enough to share the same code. Even then, it still leaves you with
something like six radically different ways that you will need to construct the plugin container if you
want to do anything sophisticated and JavaScript driven.

See also: <EMBED>, Event, LiveConnect, Plugin compatibility issues, Plugin object

Cross-references:
Wrox Instant JavaScript – page – 55

Plugin object (Object/browser)
An object representing a plugin.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

- myPlugin = document.plugins[anIndex]

N myPlugin = navigator.plugins[anIndex]
JavaScript syntax:

- myPlugin = myPluginArray[anIndex]

HTML syntax: <APPLET><EMBED><OBJECT>

Argument list: anIndex A reference to an element in a collection

Object properties: description, filename, length, name

Object methods: isActive(), refresh()

Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape Navigator they are objects commonly referred to as
belonging to the Plugin class although they are really implemented as JavaObject objects. In
MSIE, this is an ActiveX object.

Error! No text of specified style in document.

1701

There is additional confusion in that there is a plugins[] array that belongs to the document and
another than belongs to the navigator object. They both contain collections of objects but of
different types. This is further confused by the fact that the document.plugins[] array is
another name for the document.embeds[] array.

Because of this confusing situation the best recommendation is that we refer to document.embeds[]
and navigator.plugins[] and quietly ignore the document.plugins[] array. Furthermore we
shall refer to Plugin objects as being something the browser can use to play embedded content and an
Embed object will be an instance of a plugin that is alive and running in a document.

Warnings:
❑ Do not confuse Plugin and Embed objects with one another. Plugin objects are owned by the

navigator.plugins array. Embed objects are owned by the document.embeds array.

See also: <EMBED>, Collection object, Embed object, EmbedArray object, Glue code,
Java, Navigator.plugins[], Plugin events, PluginArray object

Property JavaScript JScript N IE Opera HTML Notes

description 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - ReadOnly
filename 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - ReadOnly
length 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - Warning, ReadOnly
name 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - ReadOnly

Method JavaScript JScript N IE Opera HTML Notes

isActive() 1.3 + - 4.7 + - - - -
refresh() 1.1 + - 3.0 + - 3.0 + - -

Plugin.description (Property)
The descriptive text that a plugin yields when requested to do so.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myPlugin.description

The content of this string depends on what the plugin developer coded. It might be helpful for
debugging and maybe you could present a list of installed plugins to the user. The standardization
of the plugin descriptions is likely to be worse than that of the Navigator.userAgent string and
therefore trying to formulate rules for parsing these descriptions is going to be difficult.

Property attributes:
ReadOnly.

Chapter number

1702

Plugin.filename (Property)
The filename that a plugin is stored in.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myPlugin.filename

This property may help in diagnosing plugins that are not working. If you can find out where in
the file system it has installed, you may be able to go and replace it with an up-to-date copy if it is
failing to work.

Property attributes:
ReadOnly.

Plugin.isActive() (Method)
A means of detecting whether an applet or plugin is still active.

Availability: JavaScript – 1.3
Netscape – 4.7

Property/method value type: Boolean primitive

JavaScript syntax: N myPlugin.isActive()

Refer to:
LiveConnect

Plugin.length (Property)
The number of MIME types supported by the plugin.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myPlugin.length

Error! No text of specified style in document.

1703

Warnings:
❑ Be careful not to confuse this property with the document.plugins.length and

navigator.plugins.length properties.

❑ The Plugin.length property is the number of MIME types that a plugin can respond to.

❑ The document.plugins.length property gives a count of the number of plugins there are
embedded into a document.

❑ The navigator.plugins.length property is the number of plugin support modules that are
installed and available to the browser.

See also: Collection.length, PluginArray.length

Property attributes:
ReadOnly.

Plugin.name (Property)
This corresponds to the NAME attribute of the tag that contains the plugin.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myPlugin.name

HTML syntax: <EMBED NAME="aName">

Argument list: aName A name to identify the plugin object

Objects are identified either by the NAME="..." HTML tag attribute or by the ID="..." HTML
tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However in many cases, both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

See also: NAME="..."

Property attributes:
ReadOnly.

Chapter number

1704

Plugin.refresh() (Method)
A method to reload the plugin.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

JavaScript syntax: N myPlugin.refresh()

You need to refresh a plugin if you have installed it since the browser was started. This method is
sometimes placed in pages that use plugins so that a refresh is forced every time the page is loaded.
This is not strictly necessary but has been found to prevent some strange run-time errors in older
versions of Netscape Navigator.

PluginArray object (Object/browser)
A collection of plugin modules that the browser can use to playback embedded content.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

IE myPluginArray = document.plugins
JavaScript syntax:

N myPluginArray = navigator.plugins

Object properties: length

Object methods: item(), refresh()

Netscape and MSIE encapsulate plugin/embedded objects in a different way. In MSIE they are
objects of the EMBED class. In Netscape Navigator they are objects commonly referred to as
belonging to the Plugin class although they are really implemented as JavaObject objects. In
MSIE, this is an ActiveX object.

There is additional confusion in that there is a plugins[] array that belongs to the document and
another than belongs to the navigator object. They both contain collections of objects but of
different types. This is further confused by the fact that the document.plugins[] array is
another name for the document.embeds[] array.

Due to this confusing situation, the best recommendation is that we refer to document.embeds[]
and navigator.plugins[] and quietly ignore the document.plugins[] array. Furthermore
we shall refer to Plugin objects as being something the browser can use to play embedded content
and an Embed object will be an instance of a plugin that is alive and running in a document.

Error! No text of specified style in document.

1705

Warnings:
❑ Beware of confusion between document.plugins and navigator.plugins. One relates to the

plugins currently used in the document while the other lists the plugins currently available and
supported by the browser.

❑ In Netscape 4.7 for Macintosh, there is a strange enumeration problem. Immediately after starting
the Netscape browser, when you enumerate the properties of the netscape.plugins
PluginArray object, it appears to have no properties at all. If you explicitly ask for the length
property, you will get a value. During investigation, it returned the value 8 but this will depend on
the number of plugins you have installed.

❑ Now, this suggests that you should be able to access the plugins individually by index number. As
soon as you access one of the plugins by its numeric index, Netscape Navigator also adds an entry
using the plugin name so you can access it associatively. However, you can also enumerate the item
you just created until the browser clears the array (probably when the application exits). So,
although you cannot enumerate the plugins from cold, you can enumerate the ones that you have
accessed by index value.

❑ Sending a refresh message to a plugin object also allows it to be enumerable. Based on this idea, a
short fragment of code is given in the example that will force all the plugins to be added to the
collection as associative items, which can then be enumerated.

❑ MSIE allows the plugins to be enumerated and the length property is also enumerable. However, the
plugins can only be accessed by their numeric index.

❑ To make this properly portable, execute the bug fix code and access plugins by their numeric index
and your scripts should then be reasonably portable.

Example code:
// Execute this in Netscape Navigator to fix the
// navigator.plugins enumeration bug
for(ii=0; ii<navigator.plugins.length; ii++)
{
 navigator.plugins[ii].refresh;
}

See also: Collection object, EmbedArray object, Navigator.plugins[], Plugin
object

Property JavaScript JScript N IE Opera HTML Notes

length 1.1 + 3.0 + 3.0 + 4.0 + - - Warning, ReadOnly

Method JavaScript JScript N IE Opera HTML Notes

item() - 3.0 + - 4.0 + - - -
refresh() 1.1 + - 3.0 + - 3.0 + - -

Chapter number

1706

PluginArray.item() (Method)
An item selector for accessing a single plugin within the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Plugin object

IE myPluginArray.item(anIndex)

IE myPluginArray.item(aSelector)
JavaScript syntax:

IE myPluginArray.item(aSelector, anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

PluginArray.length (Property)
The number of plugin objects currently supported by the browser.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

- document.plugins.length
JavaScript syntax:

- navigator.plugins.length

Warnings:
❑ Be careful not to confuse this property with the Plugin.length property.

❑ The Plugin.length property is the number of MIME types that a plugin can respond to.

❑ The document.plugins.length property gives a count of the number of plugins there are
embedded into a document.

❑ The navigator.plugins.length property is the number of plugin support modules that are
installed and available to the browser.

See also: Collection.length, Plugin.length

Property attributes:
ReadOnly.

Error! No text of specified style in document.

1707

PluginArray.refresh() (Method)
Refresh all the plugins in the current page.

Availability: JavaScript – 1.1
Netscape – 3.0
Opera – 3.0

N document.plugins.refresh()
JavaScript syntax:

N navigator.plugins.refresh()

See also: Navigator.plugins.refresh(), Plugin.refresh()

Pointers (Overview)
JavaScript does not have pointers. On the other hand it does have good garbage collection.

Refer to:
Garbage collection

Polymorphic (Definition)
Operations that are workable on a variety of data types.

Refer to:
Type conversion

Portability (Definition)
The ability of your script to run on multiple platforms.

In general, JavaScript is highly portable. However, it is dubious as to whether a server-side script
would be useful on the client side, so some measure of discretion is required when talking about
portability. Even so, it is likely that many useful functions would work in different contexts
although the way they are used may be different.

Portability of code needs to be considered at the outset of any development project. A script is
portable to the extent that it can be used on a variety of platforms.

Generally, code in a function is more portable than an entire script-driven application. You might
reuse functional blocks of code from one project to another. JavaScript facilitates this reuse due to
its semi-object-oriented nature.

Chapter number

1708

If you adhere strictly to the ECMAScript standard, then your script may port between compliant
implementations with the minimum of difficulty.

Note that portability does not imply that a script you design to work client side is guaranteed to work
meaningfully on the server side. There is the small matter of fitness for purpose and suitability.

However, it is not unreasonable to expect a script be able to run identically in all versions and
flavors of web browsers. Realistically though, this is very difficult to accomplish because of the
browser developers having added proprietary extensions to their implementations. They also
increase the difficulty due to the amount of incomplete and incorrect support for standardized
behavior. Furthermore the standard is ambiguous in a few areas leading to functional
interpretations, which can vary from browser to browser.

For example, both MSIE and Netscape can scroll the contents of a window or frame. MSIE will
scroll under script control whether the window has a scroll bar or not. Netscape Navigator will
only scroll if a scroll bar is flagged true and is actually present.

Furthermore when scrolling is possible (on Netscape it can be accomplished without scroll bars by
using layers), each browser scrolls in the opposite direction, as the scroll value is incremented.

Do not assume that expressions will evaluate the operands in the order of presentation. There are
various ways to tokenize and interpret expressions and they can evaluate individual items in
different sequence order, or in some cases may omit to evaluate an operand, when an early
prediction of the outcome is possible.

Be wary of using non uniform character values that appear to display a certain character, which is
not the correct one, defined in the Unicode character set. Rather, escape the character either with a
Unicode escape or if it is appropriate for the context as an HTML character entity.

Be careful with quotes and escaping of them. If you escape a single quote using the HTML character
entity, then some web browsers will un-escape the source text before interpretation. This breaks:

myString = 'some text with a ' single quote';

the HTML character entity is decoded too soon, by the browser as the page is read into its memory
cache. Then the script is interpreted, and the interpreter sees this:

myString = 'some text with a ' single quote';

The additional quote terminates the string too soon and the remainder is interpreted as code. This
can have very unpredictable consequences. The apostrophe should be escaped like this:

myString = 'some text with a \' single quote';

Inevitably, there will be occasions where you need to factor your script to cope with machine-
dependant behavior. You should collect the machine-dependant code into clearly identified functions.
You can use the eval() function to great effect here by detecting the name of the browser and
algorithmically generating the name of a function to call, which you can then invoke via an eval().

See also: Compatibility, HTML Character entity, Language codes, Undefined behavior

Error! No text of specified style in document.

1709

Cross-references:
Wrox Instant JavaScript – page – 11

Positive value (+) (Operator/unary)
Indicate positive value or numeric cast a non-numeric value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - +anOperand

Argument list:
anOperand A value that can reasonably be converted to a

number

The operand is evaluated and converted to a numeric value.

A positive value is unchanged.

A negative value is unchanged.

A string value will be converted to a Numeric value and replaced in context.

Although this is classified as a unary operator, its functionality is really that of an additive operator.

The result will be the value of the operand, cast to a Numeric type.

See also: Additive operator, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.6

ECMA 262 edition 3 – section – 11.4.6

Chapter number

1710

Postfix decrement (--) (Operator/postfix)
Decrement after access.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand--

Argument list: anOperand A numeric value that can be decremented

The operand is decremented by one.

The operand is evaluated first and is then decremented when the evaluation is completed

The associativity is from right to left.

Refer to the Operator Precedence topic for details of execution order.

See also: Associativity, Decrement value (--), Operator Precedence, Postfix
expression, Postfix operator, Prefix decrement (--), Prefix
expression

Cross-references:
ECMA 262 edition 2 – section – 11.3.2

ECMA 262 edition 3 – section – 11.3.2

Postfix expression (Operator/postfix)
Increment or decrement an operand after access.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Postfix expressions operate on Left-Hand-Side (sometimes called LValue) expressions.

There are two postfix operators:

❑ ++ performs a numeric increment on the operand

❑ -- performs a numeric decrement on the operand

Error! No text of specified style in document.

1711

These can also be classified as additive operators and because they modify a value in place, they
also imply that an assignment takes place as well.

See also: Additive operator, Assignment operator, Decrement value (--),
Expression, Increment value (++), Postfix decrement (--), Postfix
increment (++), Prefix expression

Cross-references:
ECMA 262 edition 2 – section – 11.3

ECMA 262 edition 3 – section – 11.3

Postfix increment (++) (Operator/postfix)
Increment after access.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand++

Argument list: anOperand An incrementable numeric value

The operand is incremented by one.

The operand is evaluated first and is then incremented when the evaluation is completed.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

See also: Associativity, Decrement value (--), Increment value (++),
Operator Precedence, Postfix expression, Postfix operator, Prefix
expression

Cross-references:
ECMA 262 edition 2 – section – 11.3.1

ECMA 262 edition 3 – section – 11.3.1

Chapter number

1712

Postfix operator (Definition)
Operators that are placed after the operand.

Postfix operators are placed immediately after their operands. The following postfix operators
are supported:

Operator Description

() Function arguments delimiter
++ Increment the operand
-- Decrement the operand
. Object property delimiter
[] Array element delimiter

The meanings of some of these operators may vary in other contexts.

See also: Arithmetic operator, Array index delimiter ([]), Associativity, Object property
delimiter (.), Operator, Operator Precedence, Postfix decrement (--), Postfix
increment (++), Prefix operator, Unary operator

Cross-references:
Wrox Instant JavaScript – page – 19

Power function (Definition)
A function that deals with powers of numbers.

There are several mathematical functions that deal with powers of numbers and some pre-
computed constants that are useful in the same context. The following table summarizes JavaScript
capabilities in this area:

Item Type

Math.pow() Function
Math.sqrt() Function
Math.SQRT1_2 Constant
Math.SQRT2 Constant

See also: Exponent-log function, Integer-value-remainder, Math.pow(), Mathematics,
Trigonometric function

Error! No text of specified style in document.

1713

PRE object (Object/HTML)
An object that encapsulates the content of a <PRE> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myPRE = myDocument.all.anElementID

IE myPRE = myDocument.all.tags("PRE")[anIndex]

IE myPRE = myDocument.all[aName]

- myPRE = myDocument.getElementByID(anElementID)

- myPRE = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myPRE = myDocument.getElementsByTagName
("PRE")[anIndex]

HTML syntax: <PRE> ... </PRE>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: width

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The <PRE> tag is a block-level tag. That means that it forces a line break before and after itself.

See also: Element object, KBD object, LISTING object, style.overflow

Property JavaScript JScript N IE Opera DOM HTML Notes

width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -

Chapter number

1714

Event name JavaScript JScript N IE Opera DOM HTML Notes

onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

PRE.width (Property)
The width of a block of pre-formatted text.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myPRE.width

This width value has a an upper range limit of 100, which represents 100% of the available width of
the screen. This is not the usual percentage width of its parent containing element.

Pre-processing (Definition)
An extra processing step performed on the script source text before interpretation commences.

Programmers who come from a C programming background will be familiar with the C language
pre-processor.

This is a stage in the compilation process that performs some processing on the source code prior to
it being compiled.

Typically, this allows for the substitution of constant values, the expansion of macros (small
fragments of code that are used very often) and the conditional inclusion or exclusion of code
usually based on the platform being used.

Error! No text of specified style in document.

1715

Standard JavaScript does not support this functionality but several embedded interpreter products
do, as does the ScriptEase interpreter. Now, it is available in JScript although you should limit its
use to those situations where you know the script will be executed on a compliant system.

To avoid problems with non-compliant systems, you should place the pre-processor directives
inside comment blocks. This at least will hide them from the platforms that don't support this
capability. However, you need to be aware of how your script will behave if the pre-processor
directives are ignored. This can become quite complex and may outweigh any advantages of using
the pre-processor. You must make provision for this if your scripts need to run on Netscape
Navigator for example, because it will cause an interpretation error when it sees the @ symbol at
the beginning of each directive.

The leading comment should be placed immediately in front of the @ symbol. The trailing comment
delimiter should have an additional @ sign to indicate it matches the prefixing comment symbol. So
the activation directive:

@cc_on

Should be coded like this:

/*@cc_on@*/

In a predictable environment, there are no concerns about portability and you need not use the
comment encapsulation technique to hide the directives.

Placing the pre-processor directives inside quotes makes them ineffective.

Undefined values return the NaN value. There are no error reports when a directive that does not
exist is used. However, placing a trailing @ symbol without it being part of the comment hiding
mechanism will generate a parsing error.

Warnings:
❑ Note that each implementation of a pre-processor is implementation-specific. There are as yet no

standards for this and there are several alternative and mutually non-compliant alternatives. Some
copy the C language pre-processor directives and commence with a hash symbol (#) while others
use a completely different syntax altogether (for example, JScript with its @ symbol).

❑ Although this capability was introduced in JScript 3.0, which was available in version 4 of MSIE,
attempting to use the pre-processor directives may well crash a Macintosh version 4.5 MSIE browser.
Some directives may work in certain restricted situations.

❑ MSIE version 5 for Macintosh exhibits some shortcomings in its implementation of the platform
detection mechanisms.

See also: @*/, Pre-processing - /*@ ... @*/, Pre-processing - @<variable_name>,
Pre-processing - @_alpha, Pre-processing - @_jscript, Pre-processing -
@_jscript_build, Pre-processing - @_jscript_version, Pre-processing
- @_mac, Pre-processing - @_mc680x0, Pre-processing - @_PowerPC, Pre-
processing - @_win16, Pre-processing - @_win32, Pre-processing - @_x86,
Pre-processing - @cc_on, Pre-processing - @elif(...) ..., Pre-
processing - @else ..., Pre-processing - @end, Pre-processing - @if(
...) ..., Pre-processing - @set

Chapter number

1716

Pre-processing – /*@ ... @*/ (Delimiter)
A special form of the comment delimiters for enclosing pre-processor directives.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE /*@someDirectives@*/

Argument list: someDirectives One or more pre-processor directives

This form of the comment delimiters is important when you need to use the JScript pre-processor
directives. Enclosing them in a comment block hides them from non-compliant browsers and script
interpreters.

The pre-processor directive has the following general format:

@<some_keyword>

To hide it within comments, you need to modify it so it resembles this general form:

/*@<some_keyword> @*/

There are special requirements for enclosing entire blocks of code when the conditional inclusion
directives are used. Refer to the @if topic for more details.

It seems to be convention to place a space character in front of the closing @*/ comment delimiter.
This may not be strictly necessary for functional reasons but aids the readability of the directives
when placed into portable code.

See also: @*/, Pre-processing, Pre-processing - @<variable_name>, Pre-
processing - @_alpha, Pre-processing - @_jscript, Pre-processing -
@_jscript_build, Pre-processing - @_jscript_version, Pre-
processing - @_mac, Pre-processing - @_mc680x0, Pre-processing -
@_PowerPC, Pre-processing - @_win16, Pre-processing - @_win32,
Pre-processing - @_x86, Pre-processing - @cc_on, Pre-processing -
@elif(...) ..., Pre-processing - @else ..., Pre-processing -
@end, Pre-processing - @if(...) ..., Pre-processing - @set

Pre-processing – @<variable_name>
(Pre-processor)

A special pre-processor variable container.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method
value type:

User defined

Error! No text of specified style in document.

1717

IE @aVariable
JavaScript syntax:

IE @aVariable=aValue

aValue A value to be assignedArgument list:
aVariable A variable created with the @set directive

The pre-processor sub-system supports the definition and use of a special kind of variable. These
are defined and modified with the @set pre-processor directive.

Once created, the variable can be used anywhere in the code, like this:

myString = "***" + @myvariable;

If you intend to hide this directive inside some comments, it must be done like this:

/*@myvariable @*/

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_alpha (Pre-processor)
A pre-processor constant indicating whether the script is running in a DEC alpha workstation.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_alpha

This pre-processor constant yields true when used on a DEC alpha processor and NaN otherwise.

Since MSIE only runs on Macintosh and Windows platforms, and a DEC alpha is not a Macintosh,
there is an implication here that this will be true only when MSIE is running on Windows NT on a
DEC alpha. It should also be the case that the @_win32 directive returns true as well.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_alpha @*/

See also: Pre-processing, Pre-processing – /*@ ... @*/

Chapter number

1718

Pre-processing – @_jscript (Pre-processor)
A pre-processor constant indicating whether the script is executing in a JScript interpreter.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_jscript

This preprocessor constant yields true if the script is running in a genuine Microsoft JScript
interpreter, and NaN if it is JavaScript but not JScript.

These directives may have been defined with a @ symbol rather than a # symbol for reasons of
consistency across a variety of Microsoft platforms. Therefore, this directive may be useful to be
able to conditionally include script source that depends on the kind of interpreter being used.

For now this directive will always return the true value when used in the MSIE browser.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_jscript @*/

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_jscript_build (Pre-processor)
A pre-processor constant indicating the build version of the JScript environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE @_jscript_build

This preprocessor constant returns the build number of the interpreter (but not the browser) in
which the script is running.

For example, in version 5.0 of MSIE for Macintosh, the browser build number is 2022 but the JScript
build number reported by this pre-processor directive is 3715.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_jscript_build @*/

Error! No text of specified style in document.

1719

Warnings:
❑ Oddly enough, in version 4.5 of MSIE, the value reported is also 3715 even though the build number

of the browser is 0408 and is therefore much older.

❑ Because both versions of the browser were tested in the same machine, it is possible that by
installing the MSIE 5 browser, some components of the browser are stored in the System folder.
These may well have overwritten components that the version 4.5 browser was using and so you
need to be aware of the possibility of MSIE browsers exhibiting odd behavior due to the way the
application is factored into components. In fact this is confirmed by the fact that the
@_jscript_version directive reports JScript 5 from within MSIE 4.5 which is not correct. Other
aspects of the interpreter that interact with the browser core may exhibit JScript 3 functionality. So
installing MSIE 5 on a Macintosh over the top of an MSIE 4.5 yields an interesting hybrid variant of
the version 4.5 browser. Performing upgrades of your browser and JScript components on a
Windows platform may yield similar hybrid variants.

❑ You should be careful that if you code for a version of something you should be testing that same
thing. Don't test browser versions to conditionally execute JScript version-specific code.

❑ The Netscape Navigator browser code is contained more integrally within its own application space
and you may be able to have several versions of that browser without any subtle interaction between
low-level shared library modules.

❑ You may assume the version of the interpreter tells you something useful but don't assume any
other implications regarding browser versions based on the interpreter version.

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_jscript_version (Pre-
processor)

A pre-processor constant indicating the version number of the JScript interpreter.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE @_jscript_version

This preprocessor constant provides the version number of the interpreter (but not the browser) in
which the script is running.

For example, in version 5.0 of MSIE for Macintosh, the version of JScript expected is version 5.0 and
you do get the value 5 reported by this directive.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_jscript_version @*/

Chapter number

1720

Warnings:
❑ As is the case with the @_jscript_build directive, this one may be affected by the installation

history of your workstation.

❑ Installing MSIE 5 on a Macintosh over the top of an MSIE 4.5 yields an interesting hybrid variant of
the version 4.5 browser. Due to the component nature of Microsoft browsers and interpreters, the
same is true on the Windows platform and you can very easily find the versions of browser and
JScript integerpreter have diverged as a result of installing another application that may upgrade
some shared components.

❑ You may assume the version of the interpreter tells you something useful but don't assume any
other implications regarding browser versions based on the interpreter version or vice versa. Test the
thing you need to know about and do not assume that the browser and interpreter are directly
related to one another.

❑ The version history tables suggest they are related but this simply lists the versions of JScript that
were shipped as part of the browser install kit for a fresh and complete installation.

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_mac (Pre-processor)
A pre-processor constant indicating whether the script is running in a Macintosh workstation.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_mac

This directive should yield the value true when tested on any Macintosh system.

In MSIE version 5, it yields the value NaN which is what you would expect on a non-Macintosh system.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_mac @*/

Warnings:
❑ This does not appear to work in MSIE 5 for Macintosh.

See also: Pre-processing, Pre-processing – /*@ ... @*/

Error! No text of specified style in document.

1721

Pre-processing – @_mc680x0 (Pre-processor)
A pre-processor constant indicating whether the system contains a Motorola 68000 CPU.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_mc680x0

This directive should yield the value true when tested on any older pre Power PC equipped
Macintosh system and NaN when tested on a modern Power PC machine.

In MSIE version 5, it yields the value NaN regardless of the CPU, which is what you would expect
on a non-68K equipped system.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_mc680x0 @*/

Warnings:
❑ This does not appear to work in MSIE 5 for Macintosh.

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_PowerPC (Pre-processor)
A pre-processor constant indicating whether the system contains a Motorola PowerPC CPU.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_PowerPC

This directive should yield the value true when tested on any newer Power PC equipped
Macintosh system and NaN when tested on an older 68K machine.

In MSIE version 5, it yields the value NaN regardless of the CPU, which is what you would expect
on a non Power PC system.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_PowerPC @*/

Chapter number

1722

Warnings:
❑ This does not appear to work in MSIE 5 for Macintosh.

❑ Be careful with capitalization on this directive; none of the others seem to require capital letters but
this one does.

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_win16 (Pre-processor)
A pre-processor constant indicating whether the script is running in a 16 bit Windows environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_win16

This directive should yield the value true when tested on any older 16 bit Windows system.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_win16 @*/

See also: Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @_win32 (Pre-processor)
A pre-processor constant indicating whether the script is running in a 32 bit Windows environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE @_win32

This directive should yield the value true when tested on any modern 32 bit Windows system.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_win32 @*/

See also: Pre-processing, Pre-processing – /*@ ... @*/

Error! No text of specified style in document.

1723

Pre-processing – @_x86 (Pre-processor)
A pre-processor constant indicating whether the system contains an Intel X-86 series CPU.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
Boolean primitive

JavaScript syntax: IE @_x86

This directive should yield the value true when tested on any system equipped with an Intel X86
CPU. It should yield NaN on any non Intel system and always read NaN on a Macintosh.

If you intend to hide this directive inside some comments, it must be done like this:

/*@_x86 @*/

See also: Pre-processing, Pre-processing - /*@ ... @*/

Pre-processing – @cc_on (Pre-processor)
A switch to activate the pre-processor phase of the script interpreter.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE @cc_on

The pre-processor directives will not work unless they are first activated by placing this directive
near the top of the script.

If you intend to hide this directive inside some comments, it must be done like this:

/*@cc_on @*/

See also: Conditional code block, Pre-processing, Pre-processing – /*@ ...
@*/

Pre-processing – @elif(...) ... (Pre-processor)
An optional else-if pre-processor token.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE ... @elif(aCondition) ...

Argument list: aCondition A pre-processor supported condition test

Chapter number

1724

This can be used in a conditional code block to indicate a supplementary conditional block.

Refer to the @if() topic for more details.

If you intend to hide this directive inside some comments, you must place the comment around the
entire construct and not the individual pre-processor directives.

See also: Conditional code block, Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @else ... (Pre-processor)
Part of the conditional code use directive.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE ... @else ...

This can be used in a conditional code block to indicate an alternative conditional block.

Refer to the @if() topic for more details.

If you intend to hide this directive inside some comments, you must place the comment around the
entire construct and not the individual pre-processor directives.

See also: Conditional code block, Pre-processing, Pre-processing – /*@ ... @*/

Pre-processing – @end (Pre-processor)
Terminator for a conditional code block.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE ... @end

This should be used to terminate a conditional code block.

Refer to the @if() topic for more details.

If you intend to hide this directive inside some comments, you must place the comment around the
entire construct and not the individual pre-processor directives.

See also: Conditional code block, Pre-processing, Pre-processing – /*@ ... @*/

Error! No text of specified style in document.

1725

Pre-processing – @if(...) ... (Pre-processor)
Conditionally include a block of code.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE @if(aCondition) someCode @elif(aCondition)
someCode @else someCode @end

IE @if(aCondition) someCode @elif(aCondition)
someCode @end

IE @if(aCondition) someCode @else someCode
@end

JavaScript syntax:

IE @if(aCondition) someCode @end

aCondition A condition that yeilds a Boolean valueArgument list:
someCode A block of code that is conditionally included

The @if() directive is very flexible, having two optional associated directives (@elif() and
@else), which provide a variety of different configurations.

The simplest form is where a section of code is included or not. That would be organized like this:

@if(anExpression)

...

someCode

...

@end

If the expression yields a true value then the code will be included, otherwise it will be skipped,
as if it had been completely commented out.

The next simplest form is to place an alternative section of code in the conditional section and have
that used when the expression yields a false value. That would be laid out like this:

@if(anExpression)

...

someCode

...

@else

...

someOtherCode

...

@end

The result of the expression selects one block of code or the other.

Chapter number

1726

A third and somewhat more complex configuration allows a series of conditions to be tested. This
is somewhat like a switch tree although it is a little less elegant in its presentation. You can test for
several conditions and include an appropriate block of code for the one that holds true. However,
only one will be selected. This is accomplished with the @elif() directive. This is only tested
when a prior @if() or @elif() test proves false.

Here is an configuration that tests for three possible conditions:

@if(anExpression)

...

someCode

...

@elif(anExpression)

...

someCode

...

@elif(anExpression)

...

someCode

...

@end

Note that in this form, there is no alternative block of code associated with an @else directive. One
of these expressions must prove true for any code to be included. If none of them prove true,
then the entire conditional block is ignored.

The final configuration provides a fall-back alternative code block and is constructed like this:

@if(anExpression)

...

someCode

...

@elif(anExpression)

...

someCode

...

@elif(anExpression)

...

someCode

Error! No text of specified style in document.

1727

...

@else
...

someOtherCode

...

@end

You may be able to nest these directives but it is recommended that you avoid complexity when
building conditional code structures as it makes the code more difficult to maintain.

If you intend to hide this directive inside some comments, it must be done like this:

/*@if(anExpression)

...

someCode

...

@elif(anExpression)

...

someCode

...

@elif(anExpression)

...

someCode

...

@else

...

someOtherCode

...

@end @*/

See also: Conditional code block, Pre-processing, Pre-processing - /*@ ... @*/

Chapter number

1728

Pre-processing – @set (Pre-processor)
Set the contents of a pre-processor variable.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE @set aVariable=aValue

aValue A value to assignArgument list:
aVariable A pre-processor variable name

You can define variables that exist in the namespace of the pre-processor and which can then be
used as if they were directives that you had created. For example, you might test some complex set
of conditions and set a variable so that you can simply test for its existence later. Or you might use
that variable in some fragment of code as a manifest constant, perhaps to specify the size of an
array or a flag to activate some capability.

You should note that these pre-processor directives will likely not survive from one script block to
another or for any duration in the time domain. They are not variables in the sense of a script variable.

To create a new pre-processor variable, use the @set directive, name the variable, and assign a
value to it, like this:

@set @myvariable=1000

You can then use the variable in the source text like this:

document.write(@myvariable);

You may need to experiment to establish how long one of these variables actually persists. It is
unlikely to still be defined when an event handler is called. However, that event handler may have
been interpreted and stored when the script was loaded, in which case the variable would have
been replaced by its value at that time.

If you intend to hide this directive inside some comments, it must be done like this:

/*@set @myvariable=1000 @*/

See also: Pre-processing, Pre-processing – /*@ ... @*/

Precedence (Definition)
The logical order of evaluation of expressions according to predefined rules.

Availability: ECMAScript edition – 2

See also: Associativity, Expression, Grouping operator (), Operator, Parentheses (),
Operator Precedence

Error! No text of specified style in document.

1729

Cross-references:
ECMA 262 edition 2 – section – 11.1.4

ECMA 262 edition 3 – section – 11.1.6

Wrox Instant JavaScript – page – 18

Preferences (Definition)
Browser preferences can sometimes be manipulated from JavaScript.

Netscape 4.0 introduced some new methods for storing preference settings in external JavaScript
configuration files. Earlier version required an Admin Kit to be used to set defaults and the user
could then only modify preferences from the options menu.

The JavaScript preferences information is contained in:

❑ prefs.js

❑ netscape.cfg

❑ config.jsc

The prefs.js file contains a collection of user preferences. It is read by the browser as it starts up
and written by the browser as it shuts down. If you want to modify prefs.js by hand, you will
need to do it while Netscape is not running. There are a few modifications that can be done to this
file that will help when you are developing JavaScript source code.

Note that you can have a different prefs.js file for each user profile. On UNIX versions of
Netscape Navigator, the prefs.js file becomes preferences.js instead.

Additional preference information may be stored in a file called netscape.cfg, which replaces
the netscape.lck found on older versions of Netscape. This file overrides the settings in
prefs.js but is not written to by the browser. It is an encrypted file that you cannot unwrap
without a lot of work. It is possible to edit it carefully by hand but you really need the admin tools
from Netscape to work on it. There is a tool called Mission Control that contains a configuration
editor. There is also an install builder for delivering an encrypted file to the target system.

The third file is called config.jsc and overrides the other two. This file will likely only be present if
you are running under the supervision of an administrator who uses the admin tools to configure
hundreds of browsers. The config.jsc file can be loaded from a URL defined in netscape.cfg.
Furthermore it can be read frequently and regularly by the browser so it is possible to turn features
on and off during the day having configured netscape.cfg to re-read it from time to time.

Using these configuration scripts and the tools that Netscape provides, you can alter hundreds of
parameter settings within the browser.

See also: .js, netscape.lck

Chapter number

1730

Cross-references:
Wrox Instant JavaScript – page – 59

preferences.js (Special file)
A special Netscape Navigator file containing preference information.

See also: .js Preferences

Cross-references:
Wrox Instant JavaScript – page – 59

Prefix decrement (--) (Operator/prefix)
Decrement an operand before access.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - --anOperand

Argument list: anOperand A numeric value that can be decremented

The operand is evaluated, converted to a numeric value, and decremented by 1.

Although this is classified as a unary operator, its functionality is really that of an additive operator.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

See also: Additive operator, Arithmetic operator, Associativity, Decrement
value (--), Operator Precedence, Postfix decrement (--), Prefix
expression, Prefix operator, Unary expression

Cross-references:
ECMA 262 edition 2 – section – 11.4.5

ECMA 262 edition 2 – section – 11.6.3

ECMA 262 edition 3 – section – 11.4.5

Error! No text of specified style in document.

1731

Prefix expression (Operator/prefix)
Increment or decrement an operand before access.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Prefix expressions operate on Left-Hand-Side (sometimes called LValue) expressions.

There are two prefix operators:

❑ ++ performs a numeric increment on the operand

❑ -- performs a numeric decrement on the operand

These can also be classified as additive operators and because they modify a value in place; they
also imply that an assignment takes place as well.

See also: Additive operator, Assignment operator, Decrement value (--),
Expression, Increment value (++), Postfix decrement (--), Postfix
expression, Postfix increment (++), Prefix decrement (--), Prefix
increment (++)

Cross-references:
ECMA 262 edition 2 – section – 11.3

ECMA 262 edition 3 – section – 11.3

Prefix increment (++) (Operator/prefix)
Increment an operand before access.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - ++anOperand

Argument list: anOperand An incrementable numeric value

The operand is evaluated, converted to a numeric value, and incremented by 1.

Chapter number

1732

Although this is classified as a unary operator, its functionality is really that of an additive operator.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

See also: Additive operator, Arithmetic operator, Associativity, Decrement value (--),
Operator Precedence, Prefix expression, Prefix operator, Unary expression

Cross-references:
ECMA 262 edition 2 – section – 11.4.4

ECMA 262 edition 2 – section – 11.6.3

ECMA 262 edition 3 – section – 11.4.4

Prefix operator (Definition)
Operators that are placed before the operand.

Prefix operators are placed immediately before their operands. The following prefix operators
are supported:

Operator Description

++ Increment the operand
-- Decrement the operand

The meanings of some of these operators may vary in other contexts.

See also: Arithmetic operator, Associativity, Operator, Operator Precedence, Postfix
operator, Prefix decrement (--), Prefix increment (++), Unary operator

Cross-references:
Wrox Instant JavaScript – page – 19

prefs.js (Special file)
A special Netscape Navigator file containing preference information.

See also: .js, Preferences

Cross-references:
Wrox Instant JavaScript – page – 59

Error! No text of specified style in document.

1733

Primary expression (Definition)
Primary expressions are used with operators to form more complex expression types.

Availability: ECMAScript edition – 2

A primary expression is one that needs no further evaluation to resolve its value.

A Primary expression is a specific object, identifier or literal and may also be the result of
evaluating another nested expression that is surrounded by the grouping operators (parentheses).

The this keyword is classed as a Primary expression. The value returned by the this keyword
depends on the execution context currently being processed.

An identifier is a primary expression if it refers to an object or function.

Constants and string literals are by definition primary expressions.

Any expression within the grouping operators (parentheses) becomes a primary expression since
the rules of precedence dictate that it must be resolved completely before being replaced into the
expression to which it is an operand.

An identifier is evaluated according to the current scoping rules presently in force. This would
return an internal reference value inside the interpreter but this would be transparent to the user.

Literal values of the following types are considered to be primary expressions:

❑ Null literal

❑ Boolean literals

❑ Numeric literals

❑ String literals

Expressions can be evaluated in the desired order by using the grouping operator or parentheses to
nest the expressions. This allows the delete and typeof operations to be applied to expressions.

See also: Constant, Execution context, Expression, Grouping operator (), Identifier
resolution, Literal, Operator Precedence, this

Cross-references:
ECMA 262 edition 2 – section – 7.7

ECMA 262 edition 2 – section – 10.1.4

ECMA 262 edition 2 – section – 11.1

ECMA 262 edition 3 – section – 10.1.4

ECMA 262 edition 3 – section – 11.1

Chapter number

1734

Primitive value (Definition)
A built-in native value type.

Availability: ECMAScript edition – 2

A primitive value is one of the types Undefined, Null, Boolean, Number, or String.

The foundation set of primitive values is represented at the lowest level of the language implementation
within the core functionality sub-set. The host environment may add other primitive values.

Type Name Description

Aggregate A collection of atomic types assembled collectively into an object.

Arithmetic All types that yield a value that can be operated on numerically.

Array Collections of objects and identifiers assembled into a sequence.

Basic The fundamental simple, non-object types.

Boolean This type can store and yield true or false values.

Completion Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

List Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

Null This has exactly one value, null and is distinct from undefined.

Number Integer and floating-point values are all stored in a generic number type.

Object An object is an unordered collection of properties. Each property consists of a
name, a value, and a set of attributes.

Reference Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

Scalar The non-object types.

String Strings are arrays of characters that are accessible individually by indexing their
position in the sequence.

Undefined This value is returned by variables that have not yet been assigned a value.

Note that arrays and objects are not primitive types.

See also: Cast operator, Character constant, Number, Number

Cross-references:
ECMA 262 edition 2 – section – 4.3.2

ECMA 262 edition 3 – section – 4.3.2

Wrox Instant JavaScript – page – 14

Error! No text of specified style in document.

1735

print() (Method)
An alias for the window.print() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- myWindow.print()
JavaScript syntax:

- print()

Refer to:
Window.print()

Printing character (Definition)
A character with a visible glyph.

A printing character is one that given the current locale, represents a printable glyph or character shape.

The isprint() function (that is described elsewhere in this manual) lists printable characters.

See also: Character handling, Control character, isPrint(), Letter

private (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Chapter number

1736

PrivilegeManager object (Java class)
A Java class that administers privileges.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myPrivilegeManager =
netscape.security.PrivilegeManager

Object methods: disablePrivilege(), enablePrivilege()

Because the Netscape security model is based on the Java security model, the Netscape Navigator
browser requests its privileges through the Java mechanisms. These are encapsulated in a class that
you can access from inside JavaScript.

The downside of this is that there is no meaningful value returned when the request is made. If the
request for a privilege is denied, the error causes a Java exception that is difficult to trap from JavaScript.
It is possible that more recent browser versions will support an exception-handling mechanism.

There are two principle methods that are useful here, one to request the privilege and the other to
relinquish it.

❑ enablePrivilege() – Requests the privilege passed as a string argument

❑ disablePrivilege() – Relinquishes the privilege based on a string argument

It is good practice to disable the privilege as soon as you no longer need it. In any case the privilege
is given up when the function that requested it exits.

Trying to examine an instance of this class leads to some interesting run-time errors. That is
perhaps understandable since the object is involved with keeping things secret. Even after
requesting privileges, you cannot examine the internals of an instance of this class.

See also: netscape.security.PrivilegeManager, Requesting
privileges, UniversalBrowserAccess,
UniversalBrowserRead, UniversalBrowserWrite,
UniversalFileRead, UniversalPreferencesRead,
UniversalPreferencesWrite, UniversalSendMail

Method JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

disable
Privilege()

1.2 + - 4.0 + - - - - - - - -

enable
Privilege()

1.2 + - 4.0 + - - - - - - - -

Error! No text of specified style in document.

1737

PrivilegeManager.disablePrivilege() (Method)
A method for removing a privilege from a user.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myPrivilegeManager.disablePrivilege
(aPrivName)

Argument list: aPrivName The name of a privilege to be relinquished

The method should be called with a string argument containing the name of the privilege that is no
longer required.

Example code:
// Relinquish the file reading priviledge
netscape.security.PrivilegeManager.disablePrivilege("UniversalFileRead");

See also: Requesting privileges, UniversalBrowserAccess,
UniversalBrowserRead, UniversalBrowserWrite,
UniversalFileRead, UniversalPreferencesRead,
UniversalPreferencesWrite, UniversalSendMail

PrivilegeManager.enablePrivilege() (Method)
A method for granting an additional privilege to a user.

Availability: JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N myPrivilegeManager.enablePrivilege(aPrivName)

Argument list: aPrivName The name of a privilege to be requested

The method should be called with a string argument containing the name of the privilege that is
needed to gain access to the secure facilities of the browser.

Example code:
// Request the file reading priviledge
netscape.security.PrivilegeManager.enablePrivilege("UniversalFileRead")

See also: Requesting privileges, UniversalBrowserAccess,
UniversalBrowserRead, UniversalBrowserWrite,
UniversalFileRead, UniversalPreferencesRead,
UniversalPreferencesWrite, UniversalSendMail

Chapter number

1738

Privileges (Definition)
Secure access can be controlled by privileges.

Refer to:
Restricted access

Procedural surfaces (Definition)
A means of space filling an area within an HTML Element object using a shading algorithm.

This can be a means of making web page downloads much smaller because you specify an
algorithm to use to fill a space rather than a pixel image map.

These are the available procedural surface generators you can use with MSIE:

❑ AlphaImageLoader()

❑ Gradient()

These procedural shaders compute the alpha channel transparency and the pixel color of the area in
RGB coordinates.

See also: filter – alphaimageloader(), filter – gradient(), style.filter,
Visual filters

Procedure (Definition)
A procedure is a function that does not return a meaningful result and which is meant to be called
outside of a context where its value will be assigned or substituted in an expression.

Refer to:
function(...) ...

ProcessingInstruction object (Object/DOM)
Part of the DOM level support for XML that relates to the handling of a processing instruction
embedded in the text of the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Node object

JavaScript syntax: - myProcessingInstruction = new
ProcessingInstruction()

Object properties: data, target

Error! No text of specified style in document.

1739

See also: Document.createProcessingInstruction()

Property JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes

data 1.5 + 5.0 + 6.0 + 5.0 + - - - 1 + - - -
target 1.5 + 5.0 + 6.0 + 5.0 + - - - 1 + - - ReadOnly

Inheritance chain:
Node object

ProcessingInstruction.data (Property)
The data content of the processing instruction.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myProcessingInstruction.data

ProcessingInstruction.target (Property)
The target of the processing instruction is defined by XML as being the first token following the
markup that begins the processing instruction.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myProcessingInstruction.target

Property attributes:
ReadOnly.

Chapter number

1740

Program (Definition)
Another name for a JavaScript script.

Refer to:
Script

project object (Object/NES)
A server-side host object provided inside NES. This object represents a running application inside
the server.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES project

Object methods: lock(), unlock()

The client object provides a means of maintaining state during a client session. This object is
used for maintaining state across all sessions running in a single application. There may be several
applications running in a server.

If you need to maintain state across the entire server then you need to access the server object
which is discussed in a separate topic.

See also: client object, Netscape Enterprise Server, response.project, server
object, unwatch(), watch()

Method JavaScript JScript NES Notes

lock() 1.1 + - 2.0 + -
unlock() 1.1 + - 2.0 + -

project.lock() (Method)
A means of locking resources that might be shared by several sessions.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES project.lock()

The project lock would be used at a higher hierarchical level than the Lock object that you might
use for general purpose locking within a session.

Error! No text of specified style in document.

1741

It is even more important that you don't hog a lock on the project object as this can cause severe
performance problems.

The lock will stall if another script currently has a lock extant on this project. The method will then
return when that lock is relinquished.

If you are accessing files for writing in a server-side application (within NES), you should make
sure the project locking is activated to avoid file corruption happening if there are multiple
simultaneous accesses to the file.

Example code:
<SERVER>
// An example file access with project level locking to prevent
// file corruption.
project.lock();
myFileObject.open("a");
myFileObject.writeln("Append this line to the file.");
myFileObject.close();
project.unlock();
</SERVER>

See also: File.open(), server.lock()

project.unlock() (Method)
Relinquish a lock on a project object.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES project.unlock()

You should try and unlock any resources you have reserved with a lock as soon as you can.

See also: server.unlock()

prompt() (Method)
An alias for the window.prompt() method.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

Chapter number

1742

- myResult = myWindow.prompt(aString,
aDefaultValue)JavaScript syntax:

- myResult = prompt(aString, aDefaultValue)

aDefaultValue An initial content for the text boxArgument list:
aString Some text to explain what to enter

See also: Window.alert(), Window.confirm()

Refer to:
Window.prompt()

Property (Definition)
A property consists of a name, a value, and a set of attributes.

Availability: ECMAScript edition – 2

A property consists of a name, a value, and a set of attributes. It belongs to an object.

Since it belongs to an object, each instance of a particular object class can own its own private
properties as well as inheriting shared properties from its prototype. Privately owned properties
are sometimes called instance variables.

A property can have zero or more attributes. The attributes control how the property is accessed
both internally from inside the interpreter and externally from your script.

A property is somewhat like a method, at least in the way it is described in a script. However,
properties are containers whereas methods are actions. Properties can have values assigned to them
or can have their values retrieved. A method will generally cause something within the receiving
object to change. Properties are read-only, write-only, or read and write. Some properties are
internal and private to the object and are not therefore exposed as scriptable items.

Methods are really references to function objects that can be called.

See also: Function, Global object, java.util, Method, Object, Property accessor,
Property attribute, Property name, Property value

Cross-references:
ECMA 262 edition 2 – section – 15.1

ECMA 262 edition 3 – section – 15.1

Error! No text of specified style in document.

1743

Property accessor (Definition)
Properties are accessed by name.

Availability: ECMAScript edition – 2

Properties are accessed by name either using the dot notation or the square bracket notation.

The dot and bracket notations are generally exchangeable with one another.

The object to which the property-access message is being directed can be derived from an expression.

The name of the identifier can be derived from an expression but it must yield a meaningful string
value that corresponds to a genuine or potential property of the receiver.

See also: Decimal point (.), Left-Hand-Side expression, Property

Cross-references:
ECMA 262 edition 2 – section – 11.2.1

ECMA 262 edition 3 – section – 11.2.1

Property attribute (Definition)
A property can have zero or more attributes.

Availability: ECMAScript edition – 2

A property can have zero or more attributes. The attributes control how the property is accessed
both internally from inside the interpreter and externally from your script.

Here is a list of the property attributes defined by the ECMA Script standard:

Attribute Description

ReadOnly The property is a read-only value. Scripts will not be allowed to change the value
although the value may change from time to time if it is dependant on some host
related facility.

DontEnum You cannot enumerate this property with a for in repetition.
DontDelete You cannot delete this property.
Internal This is an internal property, which you normally won't have any access to. It's likely

it would be hidden inside the host-managed objects and inaccessible to your scripts.

Where properties are ReadOnly, this is flagged in the documentation. Read/Write access is
assumed to be the default case otherwise.

Chapter number

1744

There is conflicting information in the reference sources regarding the read/write ability of some
properties. Some suggest a particular property is ReadOnly and others suggest you can assign a
value to it. It may be that you can assign a value to it without the JavaScript interpreter
complaining but that any value you assign is ignored.

See also: delete, Object, Property

Cross-references:
ECMA 262 edition 2 – section – 8.6.1

ECMA 262 edition 3 – section – 8.6.1

Property name (Definition)
The name of an object property.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Accessing properties of an object by name simply requires the name to be added to the object
reference with a dot separator between them.

However, the properties in an object are also kept in an array. You can access items in an array by
index number. However, the objects are really accessed by name and so item 4 is really accessed as
item "4". You can use the property names as symbolic names for an array index.

Now, assuming that we had deduced that the property we were interested in was stored in item 4 of the
property array and had the name property4 as well, all of these would access the same property:

❑ myObject.4

❑ myObject.property4

❑ myObject[4]

❑ myObject["4"]

❑ myObject["property4"]

See also: Array index delimiter ([]), Property

Cross-references:
ECMA 262 edition 2 – section – 8.6.1

ECMA 262 edition 3 – section – 8.6.1

Wrox Instant JavaScript – page – 32

Error! No text of specified style in document.

1745

Property value (Definition)
The value of an object property that is returned when that property is requested.

Availability: ECMAScript edition – 2

Objects own a set of properties that are named containers for values. You can create new properties
belonging to the object itself or to its prototype if you want to share them among all instances of an
object class. Using the object and property reference as an LValue allows you to assign a new value
to the property. To retrieve the property value, use it as you would any other RValue.

See also: LValue, Property, RValue

Cross-references:
ECMA 262 edition 2 – section – 8.6.1

ECMA 262 edition 3 – section – 8.6.1

protected (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Prototype–Based Inheritance (Definition)
JavaScript supports an inheritance chain based on prototypes.

Availability: ECMAScript edition – 2

JavaScript supports an inheritance chain based on prototypes. Every constructor has an associated
prototype and every object created with that constructor has a link to the prototype as an integral
part of its instantiation. This is called the Object's Prototype.

A prototype may have an implicit reference to it's parent prototype. This provides inheritance
through a Prototype Chain that is analogous to the Super-Class and Sub-Class mechanisms in a
class-based object-oriented language.

Chapter number

1746

This allows for properties to be overridden or provided by parent prototypes if the properties are
not implemented in the target object.

In a class-based object-oriented environment, as a general rule, state values are embodied in object
instances of a class but methods are contained in the classes themselves so the inheritance only
projects structure and behavior down through the sub-classing mechanism.

In the prototype-based inheritance the state AND methods are carried by the objects so structure,
state, and behavior are all inherited down the prototype chain.

All objects that do not contain a particular property and that are descended via the inheritance tree
from a single object that does contain that property will all share that one single property instance.

String prototype

Object prototype

null

Number prototype

A number object A number object An Object objectA string objectA string object

See also: function(...) ..., Hierarchy of objects, Inheritance, Namespace, Prototype
chain, prototype property, Shared Property

Cross-references:
ECMA 262 edition 2 – section – 4.2.1

ECMA 262 edition 3 – section – 4.2.1

Prototype chain (Definition)
JavaScript supports an inheritance chain based on prototypes.

Availability: ECMAScript edition – 2

A prototype chain is analogous to the super/sub-class inheritance mechanisms in an object-
oriented environment. It is not quite the same, however, because the inheritance takes place at the
object level and there are no true classes to instantiate. Instead you clone existing objects.

Error! No text of specified style in document.

1747

String prototype

Object prototype

null

Number prototype

A number object A number object An Object objectA string objectA string object

See also: Prototype Based Inheritance, prototype property, Shared Property

Cross-references:
ECMA 262 edition 2 – section – 4.2.1

ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 4.2.1

ECMA 262 edition 3 – section – 8.6.2

Prototype object (Definition)
Prototypes are analogous to default instances in a truly object-oriented system.

Availability: ECMAScript edition – 2

Prototypes are analogous to default instances in a truly object-oriented system. A constructor
would copy this default instance to create a new instance of its object class.

A prototype is an object that implements structure, state, and behavior inheritance. When a
constructor creates a new object, that new object implicitly refers to the constructor's associated
prototype to resolve property references.

Chapter number

1748

Prototypes can be referenced using the dot separated object hierarchy notation. With an object
constructor called myObject, its prototype would be accessed like this:

myObject.prototype

If any properties are added to the prototype, they will be shared by and available to all objects
created by the constructor associated with that prototype. Such objects may override the
inheritance by having identically named properties added to them directly.

A Prototype would be expected to support the following property by default:

❑ constructor

It should also support the following method by default:

❑ toString()

Cross-references:
ECMA 262 edition 2 – section – 4.3.5

ECMA 262 edition 3 – section – 4.3.5

prototype.constructor (Definition)
The prototype object has a constructor that refers to the object that the prototype object is a
property of.

See also: Shared Property Constructor property

prototype.toString() (Definition)
A method that you should redefine in your own classes to yield a meaningful string value.

When you create a custom object type of your own, you add various methods to it to give it some
capabilities that are unique to that type (otherwise why are you creating a new object type?).

Unless you override the default toString() method will be provided by the object that you
cloned to make your class. By default that will be the global Object object.

The example show how to do this in a way that is consistent with normal JavaScript behavior.

Error! No text of specified style in document.

1749

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>

// Make a constructor for a new class
function Car()
{
 this.myClass = "Car";
}

// Create a special toString() override
function myToString()
{
 return "[object " + this.myClass + "]";
}

// Register our overriding toString()
Car.prototype.toString = myToString;

// Instantiate an object from the new class
var myCar = new Car();

// Test the new object
document.write("To string : " + myCar.toString() + "
");
</SCRIPT>
</BODY>
</HTML>

See also: toString()

prototype property (Definition)
An internal method that returns a prototype.

Availability: ECMAScript edition – 2

Property/method value type: Depends on the object

This property returns the prototype for the containing object.

The prototype property for an object returns a reference to the object that is the parent of the
receiver in the prototype inheritance chain.

Any methods, properties, or functions present in the prototype will also be available in the child
unless they are overridden.

This means that you can locate the parent prototype for a group of objects and store a value into a
property there and it will be immediately available as a property of all the objects that share the
same prototype.

Chapter number

1750

The typical time you do this is when you are creating a prototype for a new class of object of your
own. In that case you would also create a constructor function to initialize new instances of the
object as well.

This property will either return null or an object that is the prototype for the object responding to
the property request. This is used for maintaining the inheritance through the prototype chain.

Properties of the prototype object are exposed to the child object through the get accessor method.
However since they are shared, they cannot be changed with the put accessor through the child. If they
are changeable at all, the specific object that explicitly owns them is the only one with rights to modify
the values as long as they are not read-only. This prevents a child object from modifying a property and
that change propagating across all the objects that share the same property between them.

There is an internal property called Prototype, which yields the same value. Note the
capitalization. Internal properties are not generally exposed to the scripting language. The
Prototype property is one of the few that are.

Prototypes are also useful as a means of extending the interface for a particular type of object. By adding
new properties and methods to the prototype, you make them available to all objects of that class.

Warnings:
❑ Do not create your own object properties with this name. You can assign new values to the prototype

property in some implementations if you want to modify the inheritance chain but you should not
use this property name for any other purpose.

❑ You cannot assign values to the prototype of the native objects in MSIE version 3.

❑ Be careful if you are adding to the prototype for some of the more obscure classes as this may reveal
some shortcomings in the prototype-constructor mapping, which is implemented incorrectly for
some objects.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Make a constructor for a new class
function Car(engineSize)
{
 this.enginesize = engineSize;
 this.totalMileage = 0;
}

// Create a special toString() override
function myToString()
{
 return "This is a car object";
}

// Register our overriding toString()
Car.prototype.toString = myToString;

Error! No text of specified style in document.

1751

// Make a couple of other methods to add to it
function mileage()
{
 return this.totalMileage;
}
function addMiles(newMiles)
{
 this.totalMileage += newMiles;
}

// Add some shared properties
Car.prototype.wheels = "Alloy";
Car.prototype.body = "Cabriolet";

// Register the mileage methods
Car.prototype.mileage = mileage;
Car.prototype.addMiles = addMiles;

// Instantiate an object from the new class
var myCar = new Car(2000);

// Drive it around some to add miles to its clock
myCar.addMiles(100);
myCar.addMiles(150);
myCar.addMiles(200);

// Display its properties and call its methods
document.write("To string : " + myCar.toString() + "
");
document.write("Engine size : " + myCar.enginesize + "
");
document.write("Wheels : " + myCar.wheels + "
");
document.write("Body : " + myCar.body + "
");
document.write("Mileage : " + myCar.mileage() + "
");
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype, Boolean.prototype, Constructor function, constructor
property, Date.prototype, Error.prototype, Function.prototype, Global
object, Internal Property, Native object, Number.prototype, Object.prototype,
Option.prototype, Prototype-Based Inheritance, Prototype chain,
RegExp.prototype, Shared Property, String.prototype

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 3 – section – 8.6.2

Wrox Instant JavaScript – page – 31

Chapter number

1752

Proxies (Definition)
A proxy server mediates on your behalf to span a firewall and gather items that your
browser has requested.

This won't generally have any impact on the coding of your JavaScript but in the case of the
Netscape Navigator browser, the proxy connection setup can be defined in a proxy.pac file that is
coded using JavaScript to describe the proxy preference settings.

See also: .pac, FindProxyForURL(), isInNet(), proxy.pac

proxy.pac (Special file)
This is a special file containing rules for accessing sites through proxy servers.

If you are using a browser inside a firewall, you will likely reach the internet by using a proxy
server. This is a special kind of web server that spans or bridges the firewall and fetches things
across the internet for you.

Generally these proxy servers will also limit access or log details of everything you fetch.

You can operate with no proxies, manually defined proxies, or automatic proxies in the case of
Netscape Navigator.

When you select Automatic mode, you are connecting in to a piece of JavaScript code that can work
out whether to use a proxy or not and if so, which one.

In this context, some language features may be unavailable but then others are provided to assist in
the deconstruction of URL values, and are only available in this context.

The only purpose of a proxy.pac file is to define the content of the FindProxyForURL() function.

The proxy.pac file can be retrieved from any location that can be defined by a URL. This means it
could be a local file on your desktop or served directly by a web server inside your firewall. In
theory it could be served by a web server outside your firewall so long as your firewall had a 'hole'
in it to allow you to gain direct access to the server. That could lead to problems where the file you
pull back might thereafter prevent access to that location, and it obviates the whole purpose of
having a firewall in the first place.

Providing this file on a local web server inside your firewall means that it can be shared by all your
Netscape Navigator browser users and maintained from a central locations. This is not very much
use if you only have one user but when you have 500 it is a great time saver. However, the
downside is that if you publish a broken proxy.pac file, all of your users go offline as soon as
their browsers download it.

You cannot browse a proxy.pac file with a Netscape Navigator browser; however, you might be
able to download one with MSIE if you are curious to see what it looks like.

To set this mechanism working, you need to go to the proxy configuration panel in your browser
preferences and choose automatic proxy configuration. Then you need to type in the URL where
the proxy.pac file lives.

Error! No text of specified style in document.

1753

See also: .pac, File extensions, FindProxyForURL(), isInNet(),
isPlainHostName(), Proxies

Cross-references:
Wrox Instant JavaScript – page – 57

Pseudo-random numbers (Definition)
A series of numbers having an apparently random distribution.

A random number is generated from a genuinely unpredictable and non repeating sequence.

A pseudo-random number is generated from a series of numbers having a distribution which may
not be truly random, but which is sufficiently complex and/or nonlinear that it is not readily
distinguishable from a random sequence.

See also: Math.random()

public (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Punctuator (Definition)
Punctuators are composed of special non-alphabetic characters.

Availability: ECMAScript edition – 2

Punctuators are composed of special non alphabetic characters and are considered to be valid
tokens by the interpreter.

Chapter number

1754

Here is a summary of all the valid tokens:

Value Meaning

! Logical not
!= Not equal to
!== Not exactly equal to (ECMA edition 3)
% Remainder
%= Remainder and assign
& Bitwise AND
&& Logical AND
&= Bitwise AND and assign
(Function argument delimiter and precedence control
) Function argument delimiter and precedence control
* Multiply
*= Multiply and assign
+ Unary plus, add, concatenate string
++ Postfix and prefix increment
+= Add and assign
, Argument delimiter
- Unary minus, subtract
-- Postfix and prefix decrement
-= Subtract and assign
. Property accessor
/ Divide
/= Divide and assign
: Part of conditional operator
; Statement terminator
< Less than
<< Bitwise shift left
<<= Bitwise shift left and assign
<= Less than or equal to
= Assign value
== Equal to
=== Exactly equal to (ECMA edition 3)
> Greater than
>= Greater than or equal to
>> Bitwise shift right
>>= Bitwise shift right and assign

Table continued on following page

Error! No text of specified style in document.

1755

Value Meaning

>>> Bitwise shift right (unsigned)
>>>= Bitwise shift right (unsigned) and assign
? Conditional operator
[Array index delimiter
] Array index delimiter
^ Bitwise XOR
^= Bitwise XOR and assign
{ Start code block
| Bitwise OR
|= Bitwise OR and assign
|| Logical OR
} End code block
~ Bitwise NOT

Refer to the items in the see-also list for more details of their functionality.

The [], { }, and () punctuators must be used in pairs and must also be nested correctly.

Some punctuator symbols are also used as operators.

See also: Code block delimiter {}, Lexical element, Operator,
Operator Precedence, Statement, Token

Cross-references:
ECMA 262 edition 2 – section – 7.6

ECMA 262 edition 3 – section – 7.7

Put() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function is used to store a new value into an internal property.

The property is set or not according to the result of the CanPut function for the property. If the
property does not exist, then a new property is created with its attributes set to an empty condition.

The Put internal function may indeed allow a property value to be changed when received by a
host object, even if that host object would respond to the HasProperty function with a false
result indicating that the property does not exist.

Chapter number

1756

See also: Internal Method, PutValue()

Property attributes:
Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.2

ECMA 262 edition 3 – section – 8.6.2.2

put() (Method/internal)
Write publicly accessible properties.

Availability: ECMAScript edition – 2

Used to store new values into publicly exposed properties.

See also: Accessor method

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.2

ECMA 262 edition 3 – section – 8.6.2.2

PutValue() (Function/internal)
Internal private function.

Availability: ECMAScript edition – 2

This internal function stores a value in the property belonging to the reference item passed
as its argument.

A run-time error is generated if the argument passed in is not a reference item.

If the target object does exist, the usual Put() function logic is invoked to store the value in the
object property.

If the target object does not exist, then the property is added to the global object and takes the value
that is passed as a new value.

See also: Global object, Put(), Reference

Error! No text of specified style in document.

1757

Property attributes:
Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.7.4

ECMA 262 edition 3 – section – 8.7.2

Q object (Object/HTML)
An object instantiated by the HTML <Q> tag which indicates that a part of the document
content is a quotation.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myQ = myDocument.all.anElementID

IE myQ = myDocument.all.tags("Q")[anIndex]

IE myQ = myDocument.all[aName]

- myQ = myDocument.getElementById(anElementID)

- myQ = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myQ = myDocument.getElementsByTagName("Q")[anIndex]

HTML syntax: <Q> ... </Q>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID An ID attribute value

Object properties: cite

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Q

Q – Queue manipulation (Useful tip)

1759

Property JavaScript JScript N IE Opera DOM HTML Notes

cite 1.5 + 3.0 + 6.0 + 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Queue manipulation (Useful tip)
With the enhanced array manipulation tools of JavaScript, you can build queue managers.

With the Array object methods push(), pop(), unshift() and shift(), you can build various
stacks and queues.

'First In First Out' queues can be built with either unshift() and pop() or push() and shift()
depending on which direction you want the objects to be queued in.

These capabilities have been available in Netscape since version 4, but are only available in MSIE at
version 5.5, having been added to gain ECMA edition 3 compliance.

JavaScript Programmer's Reference

1760

Array
instance

Array
instance

0

A

1

B

2

C

3

Array.pop()

Array
instance

A

B

C

Array
instance

A

B

C

X

Array.push("X")

Array
instance

Array
instance

0

B

1

C

2

D

3

Array.shift()

Array
instance

A

B

C

Array
instance

X

A

B

C

Array.unshift("X")

See also: Array.pop(), Array.push(), Array.shift(), Array.unshift(),
Stack manipulation

Q – Quotation mark (" and ') (Delimiter)

1761

Quotation mark (" and ') (Delimiter)
String literal delimiter.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.0
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

- 'ABCDEF'
JavaScript syntax:

- "ABCDEF"

See also: ASCII, Escape sequence (\), Escaped JavaScript quotes in HTML,
Line terminator, Literal, Punctuator, String, Unicode, var, String
literal

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 2 – section – 7.7.4

ECMA 262 edition 3 – section – 7.8.4

R.E. (Definition)
Another name for a regular expression.

Refer to:
Regular expression

RadialWipe() (Filter/transition)
A transition effect similar to that seen on radar displays.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – RadialWipe()

RadioButton object (Object/DOM)
A toggle button that acts together with a group of radio buttons in a family. Clicking one deselects
any others in the group. These are used in forms to choose one item from a set.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

R

R - RadioButton object (Object/DOM)

1763

- myRadioButton =
myDocument.aFormName.anElementName

- myRadioButton = myDocument.aFormName.elements
[anItemIndex]

IE myRadioButton = myDocument.all.anElementID

IE myRadioButton = myDocument.all.tags("INPUT")
[anIndex]

IE myRadioButton = myDocument.all[aName]

- myRadioButton = myDocument.forms[aFormIndex]
.anElementName

- myRadioButton = myDocument.forms[aFormIndex]
.elements[anItemIndex]

- myRadioButton = myDocument.getElementById
(anElementID)

- myRadioButton = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myRadioButton = myDocument.getElementsByTagName
("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="radio">

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms collection

Object properties: checked, defaultChecked, status, type, value

Object methods: handleEvent()

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDblClick, onErrorUpdate, onFilterChange, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onRowEnter, onRowExit

Many properties, methods, and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

There isn't really a RadioButton object class but it is helpful when trying to understand the wide
variety of input element types if we can reduce the complexity by discussing only the properties and
methods of a radio button. In actual fact, the object is represented as an item of the Input object class.

The RadioButton sub-class of the Input object does not support the select() method or the
defaultValue property except on MSIE.

JavaScript Programmer's Reference

1764

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="RESULT">?</DIV>
<FORM onClick="handleClick()">
<INPUT TYPE="radio" VALUE="A" NAME="SET">Selection A

<INPUT TYPE="radio" VALUE="B" NAME="SET">Selection B

<INPUT TYPE="radio" VALUE="C" NAME="SET">Selection C

<INPUT TYPE="radio" VALUE="D" NAME="SET">Selection D

</FORM>
<SCRIPT>
//Code for IE only
function handleClick()
{
 myString = "[";
 myString += document.forms[0].elements[0].checked;
 myString += "] [";
 myString += document.forms[0].elements[1].checked;
 myString += "] [";
 myString += document.forms[0].elements[2].checked;
 myString += "] [";
 myString += document.forms[0].elements[3].checked;
 myString += "]";
 document.all.RESULT.innerText = myString;
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object, Form.elements[], FormElement object, Input object,
Input.accessKey, onClick, RadioButton.handleEvent()

Property JavaScript JScript N IE Opera DOM HTML Notes

checked 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
defaultChecked 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
status - 3.0 + - 4.0 + - - - -
type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -

Table continued on following page

R - RadioButton.checked (Property)

1765

Event name JavaScript JScript N IE Opera DOM HTML Notes

onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

RadioButton.checked (Property)
The state of the button is returned by this property.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myRadioButton.checked

HTML syntax: <INPUT CHECKED>

If the radio button has a mark in it (it is the only one of the family it belongs to that is selected),
then this value will return true. Otherwise it will return false.

JavaScript Programmer's Reference

1766

RadioButton.defaultChecked (Property)
The default checked state for a radio button in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - myRadioButton.defaultChecked

HTML syntax: <INPUT CHECKED>

The defaultChecked state of an Input item is the value that was defined in the HTML document
source when the page was loaded. You can use this value if you need to reset the status of a page or
determine whether the user changed the settings on an input item since the page was loaded.

RadioButton.handleEvent() (Method)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myRadioButton.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape Navigator prior to version 6.0. From that release onwards, event
management follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent(), RadioButton object

R - RadioButton.status (Property)

1767

RadioButton.status (Property)
The current status of a particular radio button.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myRadioButton.status

This is the current status of the radio button item. It is either checked or not. If the radio button has
not been changed since the page was loaded from the server, then this value will be the same as the
defaultChecked state of the radio button.

RadioButton.type (Property)
The type value for the <INPUT> object that describes the radio button.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myRadioButton.type

The type value for a RadioButton is always "radio". This value is necessary to determine the type
of form element because this object is really an instance of the Input class and not a RadioButton
class, because there is no RadioButton class.

See also: Input.type

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1768

RadioButton.value (Property)
The text string value of this particular radio button.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myRadioButton.value

This value is returned to the server during a submit only if the checked state for this radio button is on.

Warnings:
❑ The state of the checkbox is in the checked property not the value property.

See also: Input.value

RandomBars() (Filter/transition)
A transition effect with the appearance of random bars sliding down.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – RandomBars()

RandomDissolve() (Filter/transition)
A transition effect with the appearance of a fine pixelated dissolve.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – RandomDissolve()

R - Range error (Definition)

1769

Range error (Definition)
Some functions (especially math functions) have a limited range of valid arguments.

Range errors occur when the value passed to a function falls outside the range of possible valid
values for that function. This problem is most prevalent with functions belonging to the Math object.

An out-of-range error is caused because the function cannot resolve the input value to a meaningful
output value.

Because JavaScript is more forgiving than a compiled language, these exceptions are managed by
returning one of the following values:

❑ NaN

❑ +Infinity

❑ -Infinity

❑ undefined

❑ null

The host implementation may provide other values and, if it so chooses, can deliver a specific range
error value for its own function calls.

Refer to descriptions of the Math object and its functions for details of the range of suitable values
for each function call.

See also: Infinity, Math object, Mathematics, Minima-maxima, NaN, Null literal,
undefined, Undefined behavior

RangeError object (Object/core)
A native error object based on the Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
Netscape – 6.0

Inherits from: &Error object

N myError = new RangeError()

N myError = new RangeError(aNumber)
JavaScript syntax:

N myError = new RangeError(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

This sub-class of the Error object is used when an exception is caused by a numeric value
exceeding its allowable range.

See also: catch(...), Error object, EvalError object, ReferenceError
object, SyntaxError object, throw, try ... catch ... finally,
TypeError object, URIError object

JavaScript Programmer's Reference

1770

Inheritance chain:
Error object

Cross-references:
ECMA 262 edition 3 – section – 15.1.4.11

ECMA 262 edition 3 – section – 15.11.6.2

Raw event (Definition)
An event that describes a physical action.

See also: onBlur, onFocus, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseDrag, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, Event propagation

ReadOnly (Property attribute)
An internal property attribute that controls whether a property value can be changed.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

This is intended to prevent the script from modifying a property value.

You should note however that this does not mean that the property must always be ReadOnly.
There may be times when the hosting environment changes the ReadOnly settings for a property.

Generally, the ReadOnly state would not change very often but the standard mandates that it does
not mean constant and unchanging, only that while the ReadOnly state is true, the property
should be locked out against any attempts to change its value.

Note that this is not the readOnly property that belongs to a Form Input element. That is intended
to stop the user from altering the current state of an input item.

See also: DontDelete, DontEnumerate, Input.readOnly

Cross-references:
ECMA 262 edition 2 – section – 8.6.1

ECMA 262 edition 3 – section – 8.6.1

R - Rect object (Object/browser)

1771

Rect object (Object/browser)
A rectangle object used for Layer clip rectangles.

Availability: JavaScript – 1.2
Netscape – 4.0

N myRect = myLayer.clip
JavaScript syntax:

N myRect = myStyle.clip

Object properties: bottom, height, left, right, top, width

This object represents a clipping rectangle that the visible part of a display object is viewed through.
This is most likely used with a layer object. The layer contents would be drawn off-screen and then
that part which falls within the clipping rectangle would be displayed in the window.

This can be useful for performing wipes and making parts of a layer progressively visible within
some kind of transition loop.

In the MSIE browser, these rectangular objects are manufactured as needed with the rect()
constructor function.

These rectangles are not the same as you can create with the getBoundingClientRect()
method, which applies to a TextRange object. That method creates TextRectangle which
responds differently to the pixel rectangle we have here.

<HTMLTAG TAGATTRIB="AAA">

Element
object of
sub-class

"HTMLTAG"

Property called

"TAGATTRIB" having

a value of "AAA"

Attribute
object

Property called
"name" having a value

of "TAGATTRIB"

Property called
"value" having a value

of "AAA"

JavaScript Programmer's Reference

1772

See also: Clip object, Layer.clip, style.clip,
TextRange.getBoundingClientRect(), textRectangle object

Property JavaScript JScript N IE Opera HTML Notes

bottom 1.2 + - 4.0 + - - - -
height 1.2 + - 4.0 + - - - -
left 1.2 + - 4.0 + - - - -
right 1.2 + - 4.0 + - - - -
top 1.2 + - 4.0 + - - - -
width 1.2 + - 4.0 + - - - -

Rect.bottom (Property)
The bottom edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myRect.bottom

This defines the bottom edge of the rectangle described by the object. You could modify this in a
loop to create a vertical upwards wipe transition effect.

See also: Clip.bottom, Layer.clip.bottom

Rect.height (Property)
The height of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myRect.height

The clip region is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

See also: Clip.height, Layer.clip.height

R - Rect.left (Property)

1773

Rect.left (Property)
The left edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myRect.left

This defines the left edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

See also: Clip.left, Layer.clip.left

Rect.right (Property)
The right edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myRect.right

This defines the right edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

See also: Clip.right, Layer.clip.right

Rect.top (Property)
The top edge of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myRect.top

This defines the top edge of the clip region. You could modify this in a loop to create a vertical
downwards wipe transition effect.

See also: Clip.top, Layer.clip.top

JavaScript Programmer's Reference

1774

Rect.width (Property)
The width of a layer's clip region.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myRect.width

The clip region is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

See also: Clip.width, Layer.clip.width

Reference (Definition)
An internal type used by the interpreter.

Availability: ECMAScript edition – 2

This is an internal type used by the interpreter for processing expression evaluation results. It
cannot be stored as an object property.

JavaScript supports references to objects via variables that contain them. This is a useful facility to
be able to make use of as it can increase performance and also allow code to be reused.

Conceptually at least, the storage of objects in variables works as if the variable assumed a
Reference type.

A Reference item points at the property of an object. Therefore it consists of two parts: the base
object and the property name.

It is ephemeral and is not necessarily implemented in the interpreter, but it is used in the ECMA
standard to help explain how some of the internal algorithms operate.

It facilitates a simplified syntax grammar and therefore adds value in the understanding of how the
internals of the grammar should behave.

It helps describe the operation of the delete and typeof operators, the assignment of values and
function calls. It also assists in the grammar of the 'this' value for function calls that are associated
with objects and used as methods.

See also: Assign value (=), Function arguments, GetBase(),
GetPropertyName(), GetValue(), PutValue(), this,
Type, typeof

R - Reference counting (Definition)

1775

Cross-references:
ECMA 262 edition 2 – section – 8.7

ECMA 262 edition 3 – section – 8.7

Reference counting (Definition)
The manner in which we keep track of object usage.

Using the new operator creates a new object with a reference count of zero. Assigning that object
creation to a variable increments the reference count as does storing it in an array or saving it as an
object property. Deleting a variable containing a reference to an object decrements the reference
count for that object.

When you assign the result of a new operation to a variable, first the object gets instantiated and
stored and a reference to it is stored in the variable. If you assign the variable to another, you copy
the reference. Now two variables are referring to the same object. Modifying the object that one
points at modifies the other.

Using the delete operator on one variable removes a reference to the object. The other variable
continues to refer to it and the object must remain persistent while it does. When no variables are
referring to the object and there are no other references such as items in arrays or properties in
other objects, the reference count is zero.

When the reference count is zero, the object can be garbage collected. Also, because there are no
references to it, you have no handle by which you can reach it, so if it isn't garbage collected, it will
waste the space it occupies. When that happens, you have a memory leak.

You would not normally have any access to the reference count for a variable and indeed, some
implementations may use a different technique to manage garbage collection. However, it is a useful
concept and allows the idea of objects, references and garbage collection be more easily understood.

See also: delete, Function arguments, Garbage collection, Memory leak,
Object(), Option(), Variable

ReferenceError object (Object/core)
A native error object based on the Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
Netscape – 6.0

Inherits from: Error object

N myError = new ReferenceError()

N myError = new ReferenceError(aNumber)
JavaScript syntax:

N myError = new ReferenceError(aNumber,
aText)

aNumber An error numberArgument list:
aText Text describing the error

JavaScript Programmer's Reference

1776

This sub-class of the Error object is used when an exception is caused by an incorrect reference
being made to an object.

See also: catch(...), Error object, EvalError object, RangeError object,
SyntaxError object, throw, try ... catch ... finally, TypeError
object, URIError object

Inheritance chain:
Error object

Cross-references:
ECMA 262 edition 3 – section – 15.1.4.12

ECMA 262 edition 3 – section – 15.11.6.3

Regex (Definition)
Another name for regular expression handling.

See also: RegExp pattern – character literal, Regular expression

RegExp literal (Definition)
A way of creating and initializing regular expression objects.

Availability: ECMAScript edition – 3

A RegExp literal is defined as some matching expression enclosed in slash characters.

The grammar for building regular expressions is somewhat complex. The rules are basically
straightforward with there being a sequence of individual matching rules assembled together
and enclosed in slashes. There can be some modifier flags placed after the second (terminating)
slash delimiter.

Here are some example Regular Expression literals:

/^JavaScript/

/19[0-9][0-9]*/

/\binterpreter/i

/squeek/g

You can assign these expressions to variables, which will then contain a RegExp object.

R - RegExp object (Object/core)

1777

Warnings:
❑ You cannot define a RegExp literal that is empty simply with a pair of slash characters. This would

define a single line comment delimiter instead.

❑ You must specify an empty RegExp literal like this:

❑ /(?:)/

Example code:
// Declare a variable and assign a RegExp literal to it
var myPattern = /x$/;
// Now do the same thing with a RegExp constructor
var myPattern = new RegExp("x$");

See also: RegExp pattern – character literal, RegExp()

Cross-references:
ECMA 262 edition 3 – section – 7.8.5

O'Reilly JavaScript Definitive Guide – page – 49

RegExp object (Object/core)
An object that encapsulates regular expressions.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

- myRegExp = RegExp

- myRegExp = new RegExp()

- myRegExp = RegExp(aPattern)

JavaScript syntax:

- myRegExp = RegExp(aPattern, someAttribs)

aPattern A regular expression patternArgument list:
someAttribs One or more regular expression attributes

Class properties:
$n, index, input, lastMatch, lastParen, leftContext,
multiline, rightContext

Object properties:
$&, $', $*, $+, $_, $`, constructor, global,
ignoreCase, index, lastIndex, prototype, source

Object methods: compile(), exec(), test(), toSource(), toString()

The RegExp object implements some class (or static) methods which is fairly untypical of classes
that support a constructor. There are also instance methods and properties.

JavaScript Programmer's Reference

1778

Warnings:
❑ The static properties of a regular expression object do not conform to the same static scoping rules as

the rest of JavaScript. Their static or class based properties are dynamically scoped and available in
the scope chain from which they are executed. This is not the same as the scope rules for functions,
which dictates that they run in the scope in which they are declared and not the scope from which
they are called. This means that if a regular expression object is accessed in a function declared in
one frame, when that function is called, the static properties are modified for the global built-in
regular expression object that belongs to the calling frame. This avoids all manner of multithreaded
simultaneous execution problems that would be difficult to deal with if the scoping rules for regular
expression objects were the same as the rest of JavaScript.

❑ In Netscape Navigator, many properties of the RegExp built-in object are enumerable but they are
not available in this way in MSIE.

❑ IE 5 does not properly support the RegExp object on the Macintosh platform. Many properties such
as lastMatch, leftContext, etc. return an undefined value regardless of the RegExp result.

Example code:
// Create a RegExp object using a constructor
var myRegExp = new RegExp("sque[ea]ky", "g");
// Create the same RegExp object with a RegExp literal
var myRegExp = /sque[ea]ky/g;

See also: Function scope, RegExp pattern – character literal, RegExp(),
RegExp.multiline, unwatch(), watch()

Property JavaScript JScript N IE Opera NES ECMA Notes

$& 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
$' 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
$* 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
$+ 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
$_ 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + - -
$` 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
constructor 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - 3 + -
global 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + ReadOnly
ignoreCase 1.2 + 5.5 + 4.0 + 5.5 + 5.0 + 3.0 + 3 + ReadOnly
index - 3.0 + - 4.0 + 5.0 + - - -
lastIndex 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
prototype 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - 3 + -
source 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + ReadOnly

Method JavaScript JScript N IE Opera NES ECMA Notes

compile() 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + - -
exec() 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + Warning
test() 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 3.0 + 3 + -
toSource() 1.3 + - 4.06 + - - - - -
toString() 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - 3 + -

R - RegExp() (Constructor)

1779

Cross-references:
ECMA 262 edition 3 – section – 15.1.4.8

ECMA 262 edition 3 – section – 15.10.3

ECMA 262 edition 3 – section – 15.10.4

RegExp() (Constructor)
A constructor function for creating new regular expression objects.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera 5.0

- new RegExp(aPattern)
JavaScript syntax:

- new RegExp(aPattern, someAttribs)

aPattern A regular expression-matching pattern contained in
a string

Argument list:

someAttribs A string containing the regular expression attributes

A RegExp constructor is used to create a new regular expression object containing a search pattern.

The first argument is a string containing a properly escaped pattern. Because the backslash
character (\) is an escape when used in a string, for the back slashes to remain in the regular
expression pattern, they will need to be double escaped. For example, this pattern:

/\d+/

Must be escaped like this when used in a string:

"\\d+"

The second argument is the attributes for the pattern. You should not put the attributes on the end
of the pattern but specify them separately. These are available:

Operator Description JavaScript

i Ignore case JavaScript 1.2
g Match globally JavaScript 1.2
ig Ignore case and match globally JavaScript 1.2
m Multiple line parsing JavaScript 1.5

The regular expression constructor is useful for those occasions when you cannot easily predict
what string you will need to match. If you could, it is likely you would use a regular expression
literal. If the user is going to enter some value that determines what the search characteristics are to
be then a RegExp() constructor may be useful.

JavaScript Programmer's Reference

1780

Example code:
// Declare a variable and assign a RegExp literal to it
var myPattern = /x$/;
// Now do the same thing with a RegExp constructor
var myPattern = new RegExp("x$");

See also: new, RegExp literal, RegExp object, RegExp pattern – attributes,
RegExp pattern – character literal, RegExp.constructor,
Regular expression

Cross-references:
ECMA 262 edition 3 – section – 15.10.4

RegExp() (Function)
Another way to call the exec() method for the regular expression object.

Availability: ECMAScript edition – 3
JavaScript – 1.2
Netscape – 4.0

JavaScript syntax: N RegExp()

See also: RegExp.$n, RegExp.input, RegExp.lastMatch,
RegExp.lastParen, RegExp.leftContext,
RegExp.multiline, RegExp.rightContext,
RegExp.exec()

Cross-references:
ECMA 262 edition 3 – section – 15.10.3.1

RegExp.$_ (Property)
An alias for the input buffer of the regular expression.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

Property/method value type: String primitive

JavaScript syntax: - myRegExp.$_

R - RegExp.$n (Property/static)

1781

Refer to:
RegExp.input

RegExp.$n (Property/static)
A property of the global RegExp object.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

- RegExp.$1

- RegExp.$2

- RegExp.$3

- RegExp.$4

- RegExp.$5

- RegExp.$6

- RegExp.$7

- RegExp.$8

JavaScript syntax:

- RegExp.$9

There are nine similarly named properties whose name is a dollar symbol followed by a single digit,
each of these holding text matched by a sub-expression (in parentheses) for the most recent match.

The ECMAScript edition 3 specification suggests that the range of values for this is $01 to $99 and
for an implementation to be ECMA compliant, it should support that range of possibilities, as well
as the $1 to $9 values.

Warnings:
❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object.

This means it is shared by all RegExp object instances and therefore is very transient and will
be overwritten as soon as the next regular expression is evaluated. If you want to preserve the
value, you will need to copy it immediately your regular expression has evaluated and before
you call another.

❑ Note that there are only 9 of these. If you create a complex pattern that has more than 9 sub-
expressions, you won't be able to access the sub-expressions above the ninth one unless the
implementation is fully compliant with ECMAScript edition 3.

❑ Early versions of MSIE did not fully support this numbered property mechanism.

See also: RegExp pattern – grouping, RegExp pattern – references,
RegExp.exec(), RegExp.test()

JavaScript Programmer's Reference

1782

Property attributes:
ReadOnly.

Cross-references:
ECMA 262 edition 3 – section – 15.5.4.11

RegExp.compile() (Method)
Recompile a regular expression object's search mechanics.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

- myRegExp.compile(aPattern)
JavaScript syntax:

- myRegExp.compile(aPattern, someAttribs)

aPattern A regular expression-matching pattern contained
in a string

Argument list:

someAttribs A string containing the regular expression attributes

This takes the same argument as the constructor and can be used to recycle an existing RegExp
object with a freshly initialized search pattern and attributes.

The first argument is a string containing a properly escaped pattern. Because the backslash
character (\) is an escape when used in a string, for the backslashes to remain in the regular
expression pattern, they will need to be double escaped. For example, this pattern:

/\d+/

Must be escaped like this when used in a string:

"\\d+"

The second argument is the attributes for the pattern. You should not put the attributes on the end
of the pattern but specify them separately. These are available:

Operator Description JavaScript

i Ignore case JavaScript 1.2

g Match globally JavaScript 1.2

ig Ignore case and match globally JavaScript 1.2

m Multiple line parsing JavaScript 1.5

R - RegExp.constructor (Property)

1783

The regular expression compile() method is useful for those occasions when you cannot easily
predict what string you will need to match. As is the case with the constructor you can define the
pattern based on a user-specified value. With the compile() method, you can replace the pattern
as needed without destroying and recreating the object again.

Calling the compile() method on a RegExp object is a good way to gain some performance
improvements if the regular expression is used frequently during a session. It will need compiling
again each time it is instantiated.

RegExp.constructor (Property)
A reference to the constructor object for regular expressions.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera 5.0

Property/method value type: RegExp object

JavaScript syntax: - myRegExp.constructor

The constructor is that of the built-in RegExp prototype object.

You can use this as one way of creating regular expressions although it is more popular to use the
new RegExp() technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape Navigator provides constructors for many objects, virtually all of them in fact, even when
it is highly inappropriate to do so. MSIE is far more selective and there are some occasions when
you might wish for a constructor that MSIE does not make available.

See also: RegExp()

Cross-references:
ECMA 262 edition 3 – section – 15.10.6.1

JavaScript Programmer's Reference

1784

RegExp.exec() (Method)
This performs a non-destructive match on a target string.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

Property/method value type: Array object

- myRegExp.exec()
JavaScript syntax:

- myRegExp.exec(aString)

Argument list:
aString A string object to run a regular expression

match against

This is functionally similar to the String.match() method. It returns an enhanced array object in
the same way. You would use this if you need to know the location of the matched string and
whether it occurs more than once.

The g attribute is ignored for RegExp.exec() methods unlike the String.match() method.

When the exec() method is received by a global RegExp object, the lastIndex property of that
RegExp object is set to point at a character location immediately following the previous match.
This means you can use sub-stringing techniques to walk through the string calling exec() in an
iterator until a null value is returned. This lets you build an iterator based on the pattern and the
number of times it recurs in the searched string. The RegExp.exec() method does most of the
work for you since it continues where it left off during the previous search. This also means you
can reset the search point or commence searching wherever you like in the target string.

A shortcut mechanism to calling the exec() method is to call the RegExp itself as a function. Thus
we can create a regular expression object and a target string object:

myRegExp = new RegExp("/\\d+/");

myString = "aaa 111 bbb 222 ccc";

We can execute the regular expression either like this:

myRegExp.exec(myString);

Or like this:

myRegExp(myString);

The result of calling this method is the null value if no match occurs. Otherwise, an array as per
the String.match() method is returned.

The array object has an additional property named index, which contains the character location
where the match occurred. It also has an additional property called input, which contains the
original string that was searched for a match.

R - RegExp.global (Property)

1785

Warnings:
❑ Support for this method is bugged in IE 4.

❑ If you do not pass a string to the RegExp.exec() method, it will match against the current value
of the RegExp.input property that belongs as a static class property of the built-in RegExp object.

❑ The input property gets set automatically by client-side event handlers for FormElement objects in
a web page form.

See also: Array.index, Array.input, RegExp pattern, RegExp.$n,
RegExp.input, RegExp.lastIndex, RegExp.lastMatch,
RegExp.lastParen, RegExp.leftContext,
RegExp.multiline, RegExp.rightContext,
RegExp.test(), Regular expression, String.match(),
String.replace(), String.search(), String.split()

Cross-references:
ECMA 262 edition 3 – section – 15.10.6.2

RegExp.global (Property)
An instance property of a regular expression object.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

Property/method value type: Boolean primitive

JavaScript syntax: - myRegExp.global

A Boolean value that indicates the state of the g attribute on the regular expression pattern.

Property attributes:
ReadOnly.

Cross-references:
ECMA 262 edition 3 – section – 15.10.7.2

JavaScript Programmer's Reference

1786

RegExp.ignoreCase (Property)
An instance property of a regular expression object.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3
Internet Explorer – 4
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

Property/method value type: Boolean primitive

JavaScript syntax: - myRegExp.ignoreCase

A Boolean value that indicates the state of the i attribute on the regular expression pattern.

Property attributes:
ReadOnly.

Cross-references:
ECMA 262 edition 3 – section – 15.10.7.3

RegExp.index (Property)
The position of the first match in the string.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myRegExp.index

A character index position into the source string where the first match is located.

RegExp.input (Property/static)
A property of the global RegExp object.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera 5.0

JavaScript syntax: - RegExp.input

R - RegExp.lastIndex (Property)

1787

A default string to search when the exec() and test() methods are called with no arguments.

You can set this and then call the RegExp.exec() or RegExp.test() methods without passing a
string argument value. They will then use this property of the built-in global RegExp object as their
target search string.

Warnings:
❑ This behaves slightly differently in JavaScript version 1.2 in Netscape Navigator.

❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object.
This means it is shared by all RegExp object instances and therefore is very transient and will
be overwritten as soon as the next regular expression is evaluated. If you want to preserve the
value, you will need to copy it immediately your regular expression has evaluated and before
you call another.

❑ In Netscape 4, event handlers for FormElement objects in a web page form automatically load the
input property of the built-in RegExp object as the event handlers are fired. Hence, you should not
rely on the input property remaining consistent once your function call exits. Set it immediately
before you need to parse the string and do not bank on it being there later.

❑ This property was not supported fully in IE 4 as it was read-only. The work-around was to always
pass in a value to the exec() method when it is invoked.

See also: RegExp.exec(), RegExp.test()

RegExp.lastIndex (Property)
A character index within the searched string immediately following the previous match.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myRegExp.lastIndex

The lastIndex property is set to point at the character following the previous match. This allows
you to build an iterator that cycles according to the matches for the search pattern within the
source string.

When a null result is returned from the RegExp.exec() method, this value is set to 0.

The RegExp.exec() method uses the lastIndex property as its starting point for the next
search. This means that if you prematurely exit the pattern searching iterator, you should also
manually set this value to 0 as well. This will allow the same RegExp object to be used with
another pattern (or the same one) to search a different string.

JavaScript Programmer's Reference

1788

Warnings:
❑ The lastIndex property will be reset to 0 when the regular expression is called by

String.search(), String.replace() and String.match().

❑ The lastIndex behaviour is only appropriate when the g attribute is applied to the pattern that
searches the target string. It is of no consequence in a non-global pattern match.

See also: RegExp.exec(), String.match(), String.replace(),
String.search()

Cross-references:
ECMA 262 edition 3 – section – 15.10.7.5

RegExp.lastMatch (Property/static)
A property of the global RegExp object.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

JavaScript syntax: - RegExp.lastMatch

This property returns the most recently matched text.

Warnings:
❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object. This

means it is shared by all RegExp object instances and therefore is very transient and will be
overwritten as soon as the next regular expression is evaluated. If you want to preserve the value,
you will need to copy it immediately after your regular expression has been evaluated and before
you call another.

See also: RegExp.exec(), RegExp.test(), RegExp["$&"]

Property attributes:
ReadOnly.

R - RegExp.lastParen (Property/static)

1789

RegExp.lastParen (Property/static)
A property of the global RegExp object.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

JavaScript syntax: - RegExp.lastParen

This property returns the text matched by the last sub-expression which was part of the most recent
match. It will contain a null or undefined value if there was no previous match.

Warnings:
❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object. This

means it is shared by all RegExp object instances and therefore is very transient and will be
overwritten as soon as the next regular expression is evaluated. If you want to preserve the value,
you will need to copy it immediately after your regular expression has been evaluated and before
you call another.

See also: RegExp pattern – grouping, RegExp pattern – references,
RegExp.exec(), RegExp.test(), RegExp["$+"]

Property attributes:
ReadOnly.

RegExp.leftContext (Property/static)
A property of the global RegExp object.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

JavaScript syntax: - RegExp.leftContext

This property returns the text to the left of the most recent match.

JavaScript Programmer's Reference

1790

Warnings:
❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object. This

means it is shared by all RegExp object instances and therefore is very transient and will be
overwritten as soon as the next regular expression is evaluated. If you want to preserve the value,
you will need to copy it immediately after your regular expression has been evaluated and before
you call another.

See also: RegExp.exec(), RegExp.test(), RegExp["$`"]

Property attributes:
ReadOnly.

RegExp.multiline (Property/static)
A regular expression attribute to control the scope of the pattern.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5

Property/method value type: Boolean primitive

JavaScript syntax: - RegExp.multiline = aBoolean

Argument list: aBoolean A switch to set the property true or false

When you want the regular expression to apply to multiple lines separated by newline characters,
this property should be set to true. When it is false the pattern is applied only to a single line.

Warnings:
❑ In JavaScript version 1.2 in Netscape Navigator, this is the only way to set the pattern to operate on

multiple lines.

❑ The 'm' attribute is provided in JavaScript version 1.3 in some implementations.

❑ Note that client-side JavaScript used in Netscape 4 will set the multi-line property to true when it is
used in an event handler for a TextArea object. The value is restored to whatever it was before
exiting the handler. This suggests that you should explicitly set the multi-line property to the value
you require when to parse a regular expression. You cannot rely on the stability of any value you
may have stored in that attribute previously.

❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object. This
means it is shared by all RegExp object instances and therefore is very transient and will be
overwritten as soon as the next regular expression is evaluated. If you want to preserve the value,
you will need to copy it immediately before your regular expression has been evaluated and before
you call another.

R - RegExp.prototype (Property)

1791

Example code:
RegExp.multiline = true;
RegExp.multiline = false;

See also: RegExp object, RegExp pattern – attributes, RegExp pattern –
position, RegExp.exec(), RegExp.test(), RegExp["$*"]

Cross-references:
ECMA 262 edition 3 – section – 15.10.7.4

RegExp.prototype (Property)
The prototype for the RegExp object that can be used to extend the interface for all RegExp objects.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: RegExp object

- RegExp.prototype
JavaScript syntax:

- myRegExp.constructor.prototype

You can use this to extend the interface to the object class and provide additional capabilities to
your regular expressions.

See also: prototype property, RegExp.toString()

Cross-references:
ECMA 262 edition 3 – section – 15.10.5.1

ECMA 262 edition 3 – section – 15.10.6.1

RegExp.rightContext (Property/static)
A property of the global RegExp object.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5

JavaScript syntax: - RegExp.rightContext

This property returns the text to the right of the most recent match.

JavaScript Programmer's Reference

1792

Warnings:
❑ Since this is a class property (a static property), it belongs to the global built-in RegExp object. This

means it is shared by all RegExp object instances and therefore is very transient and will be
overwritten as soon as the next regular expression is evaluated. If you want to preserve the value,
you will need to copy it immediately after your regular expression has been evaluated and before
you call another.

See also: RegExp.exec(), RegExp.test(), RegExp["$'"]

Property attributes:
ReadOnly.

RegExp.source (Property)
An instance property of a regular expression object.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myRegExp.source

This is a read-only property that returns the regular expression pattern text.

Property attributes:
ReadOnly.

Cross-references:
ECMA 262 edition 3 – section – 15.10.7.1

R - RegExp.test() (Method)

1793

RegExp.test() (Method)
Another name for the RegExp.exec() method when used with global RegExp objects.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

Property/method value type: Boolean primitive

JavaScript syntax: - myRegExp.test(aString)

Argument list: aString The string to be examined by the regular expression

This is not quite like the exec() method. In this case, you cannot establish whether the match
occurs more than once or where in the string the match occurs.

This method simply returns true or false to indicate whether the pattern matches anything in
the search string.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
document.write("1 " + testForYearNumber("1") + "
");
document.write("12 " + testForYearNumber("12") + "
");
document.write("123 " + testForYearNumber("123") + "
");
document.write("1234 " + testForYearNumber("1234") + "
");
document.write("12345 " + testForYearNumber("12345") + "
");
function testForYearNumber(aString)
{
 var myRegExp = /^\d{4}$/;
 return myRegExp.test(aString);
}
</SCRIPT>
</BODY>
</HTML>

See also: RegExp.$n, RegExp.exec(), RegExp.input,
RegExp.lastMatch, RegExp.lastParen,
RegExp.leftContext, RegExp.multiline,
RegExp.rightContext

Cross-references:
ECMA 262 edition 3 – section – 15.10.6.3

JavaScript Programmer's Reference

1794

RegExp.toSource() (Method)
Outputs a regular expression object formatted as a RegExp literal contained in a string.

Availability: JavaScript – 1.3
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: N myRegExp.toSource()

This is an alternative way to deliver a string version of a regular expression object. In this case, it is
formatted as a RegExp literal and can then be used in an eval() function to assign another
regular expression.

RegExp.toString() (Method)
Returns a string primitive version of a RegExp object.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myRegExp.toString()

This method returns a String primitive representation of the value of the present RegExp value.

See also: Cast operator, RegExp.prototype, toString()

Cross-references:
ECMA 262 edition 3 – section – 15.10.6.4

R - RegExp["$&"] (Property)

1795

RegExp["$&"] (Property)
An alternative way to refer to the text of the most recent successful pattern match.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myRegExp["$&"]

This property uses the array index notation because the property name contains punctuation
characters that would cause syntactic errors if the property name were not in quotes.

Warnings:
❑ This is provided as a convenience to Perl programmers who may be familiar with its syntax in this

form. However, it is recommended that you use the named property form when assigning values to
regular expression objects.

See also: RegExp.lastMatch

Property attributes:
ReadOnly.

RegExp["$'"] (Property/static)
An alternative means of referring to the text to the right of the most recent match.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5.0

JavaScript syntax: - RegExp["$'"]

This property uses the array index notation because the property name contains punctuation
characters that would cause syntactic errors if the property name were not in quotes.

JavaScript Programmer's Reference

1796

Warnings:
❑ This is provided as a convenience to Perl programmers who may be familiar with its syntax in this

form. However, it is recommended that you use the named property form when assigning values to
regular expression objects.

See also: RegExp.rightContext

Property attributes:
ReadOnly.

RegExp["$*"] (Property/static)
A switch property to determine whether multi-line matching is performed or not.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5

JavaScript syntax: - RegExp["$*"]

This property uses the array index notation because the property name contains punctuation
characters that would cause syntactic errors if the property name were not in quotes.

Warnings:
❑ This is provided as a convenience to Perl programmers who may be familiar with its syntax in this

form. However, it is recommended that you use the named property form when assigning values to
regular expression objects.

See also: RegExp.multiline

RegExp["$+"] (Property/static)
An alias for the text that matches the most recent sub-expressions.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5

JavaScript syntax: - RegExp["$+"]

R - RegExp["$`"] (Property/static)

1797

This property uses the array index notation because the property name contains punctuation
characters that would cause syntactic errors if the property name were not in quotes.

Warnings:
❑ This is provided as a convenience to Perl programmers who may be familiar with its syntax in this

form. However, it is recommended that you use the named property form when assigning values to
regular expression objects.

See also: RegExp.lastParen

Property attributes:
ReadOnly.

RegExp["$`"] (Property/static)
An alias for the text to the left of the most recent match.

Availability: JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server – 3.0
Opera – 5

JavaScript syntax: - RegExp["$`"]

This property uses the array index notation because the property name contains punctuation
characters that would cause syntactic errors if the property name were not in quotes.

Warnings:
❑ This is provided as a convenience to Perl programmers who may be familiar with its syntax in this

form. However, it is recommended that you use the named property form when assigning values to
regular expression objects.

See also: RegExp.leftContext

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1798

RegExp pattern (Definition)
The sequence of characters that comprise a regular expression.

Availability: ECMAScript edition – 3

The rules for creating patterns are complex and involved, hence this topic has been broken into
several related sub-topics.

The syntax is similar and almost as complete as that used for Perl.

A pattern is constructed using a sequence of characters. Most of the typeable characters can be used
as matches for that particular character, but some special characters are used in the regular
expression to mean something more abstract. Some characters need to be escaped, however they
are not escaped in the same way as the normal escape sequences that are used in string literals. The
literal characters are described in their own sub-topic.

There are other special character sequences, called meta-characters, that describe groups or classes
of characters; these are also described in their own topic. They are called meta-characters.

You can build repetitions of literal characters and special character classes, which is also covered in
a sub-topic.

See also: RegExp pattern – alternation, RegExp pattern – attributes, RegExp pattern –
character class, RegExp pattern – character literal, RegExp pattern – grouping,
RegExp pattern – position, RegExp pattern – references, RegExp pattern – repetition,
RegExp pattern – sub-patterns, RegExp.exec(), Regular expression,
String.match(), String.replace(), String.search(), String.split()

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

RegExp pattern – alternation (Definition)
Sometimes you will want to match either one pattern or another using alternatives.

Availability: ECMAScript edition – 3

You can group sub-expressions and offer them as alternatives. For example, you might want to
match "AB" or "CD". The alternation operator can be placed between each sub-expression to
indicate choices like this:

/AB|CD/

This technique can be used in combinations with character literals, classes and repetition operators.
Like this:

/[a-z]{3}|[0-9]{40}/

R - RegExp pattern – attributes (Definition)

1799

This matches with three lower case letters or 40 numeric digits and nothing else will match.

See also: RegExp pattern, RegExp pattern – character class, RegExp pattern – character literal,
RegExp pattern – repetition

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

ECMA 262 edition 3 – section – 15.10.2.3

ECMA 262 edition 3 – section – 15.10.2.4

RegExp pattern – attributes (Definition)
The attributes of a regular expression.

Availability: ECMAScript edition – 3

When you specify a regular expression, it will by default only match the first occurrence that it
encounters. It is possible to specify a pattern to match that can occur several times in a line. To
match all of these, you can use the 'g' attribute. The 'g' stands for global matching.

There is one other attribute that allows the matching to be carried out in a case-insensitive manner.
That is the 'i' attribute.

Both of these attributes are placed after the closing slash at the end of the pattern.

The case-insensitive match works like this:

/javascript/i

would match the following strings

JavaScript

javascript

JAVASCRIPT

JaVaScRiPt

The g attribute applied like this, would cause the pattern:

/0/g

to match every zero in the string:

'0100, 00123, "00067", 666000'

JavaScript Programmer's Reference

1800

There is another attribute to control whether the pattern is applied to single lines or multiple lines.
Because the regular expression is realized as an object, this is controlled by means of an object property
accessed via the multi-line identifier, the letter 'm' in JavaScript 1.5 (shipped with Netscape 6.0)

Here is a list of the available attributes:

seq Pattern Description JS

00 g Global match for every occurrence of the pattern throughout the
line.

1.2

01 i Case-insensitive matching. 1.2

02 ig Case-insensitive global match. 1.2

13 m Multiple lines to be processed. Available only in JavaScript 1.5 and
mutually exclusive with the 's' attribute.

1.5

15 gm Global match on multiple lines. 1.5

15 im Case-insensitive matching on multiple lines. 1.5

16 igm Case-insensitive global match on multiple lines. 1.5

See also: RegExp pattern, RegExp pattern – position, RegExp(),
RegExp.multiline

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

ECMA 262 edition 3 – section – 15.10.2.1

RegExp pattern – character class (Definition)
RegExp pattern components for describing character classes.

Availability: ECMAScript edition – 3

Character classes are a group of RegExp character literals enclosed in square brackets. This set of
characters can then be placed into a RegExp pattern to provide a match for any character that is
considered to be a member of the class.

You can use character classes to include or exclude groups of characters. An exclusion is called a
negated class and is signified by placing a circumflex (^) character as the first one inside the square
brackets. Thus, [abcd] will match true if the character being tested at that position in the pattern
is the letter "a", "b", "c" or "d".

The character class [^abcd] will match any character as long as it is not one of those four.

You can indicate a range of characters by using a hyphen. Therefore [abcd] is the same as saying
[a-d]. Other examples are summarized in the following table.

R - RegExp pattern – character class (Definition)

1801

There are special character classes already built in so that you don't have to create your own. These
are done using escaped characters very similar to those in the literal character set. These can also be
used inside the square brackets to construct other class groups of characters.

Pattern Description

[...] Any single character that is one of the set enclosed in the square brackets.
[^ ...] Any single character that is not one of the set enclosed in the square brackets.
[^abcd] Any character that is not one of the letters "a", "b", "c" or "d".
[abcd] Any one of the letters "a", "b", "c" or "d".
[a-z] Any single lower case character.
[A-Z] Any single upper case character.
[a-zA-Z] Any single alphabetic character.
[0-7] Any octal numeric digit.
. Any character apart from newline.
\d Any decimal digit character.
\s Any whitespace character.
\w Any word character (which is any letter, number or underscore). This does not

mean a whitespace character.
\D Any non-digit character.
\S Any non-whitespace character. This is not necessarily a valid word character.
\W Any non-word character.
[\b] A literal backspace not to be confused with a word boundary match (using the \b

outside of the square brackets)
[0-1] Any binary numeric digit.
[0-9A-F] Any hexadecimal numeric digit.
[\dA-F] Any hexadecimal numeric digit (alternative form).
[a-zA-Z0-9] Any single alphanumeric character.
[a-zA-Z\d] Any single alphanumeric character (alternative form).
[^a-zA-Z0-
9_\$]

Any character that is not valid within an identifier name.

[a-zA-Z0-
9_\$]

Any character that is valid within an identifier name.

[0-9] Any decimal numeric digit, (alternative version).
[^0-9] Any any character that is not a digit, (alternative version).
[\t\n\r\f\v] Any whitespace character, (alternative version).
[^\t\n\r\f\v] Any non-whitespace character, (alternative version).
[^\n] Any character apart from newline, (alternative version).
[^a-zA-Z0-9_] Any non-word character, (alternative version).
[a-zA-Z0-9_] Any word character, (alternative version).

JavaScript Programmer's Reference

1802

Warnings:
❑ Beware of the backspace escape \b. To match against a backspace it must be enclosed in square

brackets to create a character class. If it is used outside of the brackets, it is interpreted to mean a
word boundary.

See also: RegExp pattern, RegExp pattern – alternation, RegExp pattern –
character literal

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

ECMA 262 edition 3 – section – 15.10.2.6

ECMA 262 edition 3 – section – 15.10.2.12

RegExp pattern – character literal (Definition)
These are the characters that can be used in the pattern to match against themselves.

Availability: ECMAScript edition – 3

The literal characters in a regular expression denote a particular character and have no special
meaning other than to match that character at the position in the string they are defined within the
overall pattern.

Simple, fixed and constant patterns can be defined purely with literal characters.

The string "JavaScript" can be matched exactly and exclusively with the pattern /JavaScript/.
Unless some additional information is added to the pattern description, neither /javascript/
nor /JAVASCRIPT/ will match. However, the pattern /Java/ will match strings containing both
"JavaScript" and "Java".

Here is a list of the literal characters as they would be used in the pattern:

Pattern Description

0 to 9 Itself

a to z Itself

A to Z Itself
\$ A single dollar sign ($)
* A single asterisk (*)
\+ A single plus sign (+)
\, A single comma (,)
\. A single period (.)

Table continued on following page

R - RegExp pattern – character literal (Definition)

1803

Pattern Description

\/ A single slash (/)
\? A single question mark (?)
\\ A single backslash (\)
\^ A single circumflex (^)
\d Any digit character as per [0-9]
\D Any non-digit character as per [^0-9]
\f A form feed
\n A newline
\r A carriage return
\S A non-space character
\s A space character
\t A tab character
\v A vertical tab
\w An alphanumeric character and underscore as per [0-9a-zA-Z_]
\W An non-alphanumeric character and underscore as per [^0-9a-zA-Z_]
\| A single vertical bar (|)
\(A single opening parenthesis (()
\) A single closing parenthesis ())
\[A single opening square bracket ([)
\] A single closing square bracket (])
\{ A single opening curly brace ({)
\} A single closing curly brace (})
\nnn The ASCII character encoded by the octal value nnn
\onnn The ASCII character encoded by the octal value nnn
\uhhhh The Unicode character encoded by the hexadecimal value hhhh
\xhh The ASCII character encoded by the hexadecimal value hh
\c* The control character equivalent to ^*
\c@ (NUL) – Null character
\c[(ESC) – Escape
\c\ (FS) – File separator (Form separator)
\c] (GS) – Group separator
\c^ (RS) – Record separator
\c_ (US) – Unit separator
\cA (SOH) – Start of header
\cB (STX) – Start of text
\cC (ETX) – End of text
\cD (EOT) – End of transmission
\cE (ENQ) – Enquiry

Table continued on following page

JavaScript Programmer's Reference

1804

Pattern Description

\cF (ACK) – Positive acknowledge
\cG (BEL) – Alert (bell)
\cH (BS) – Backspace
\cI (HT) – Horizontal tab
\cJ (LF) – Line feed
\cK (VT) – Vertical tab
\cL (FF) – Form feed
\cM (CR) – Carriage return
\cN (SO) – Shift out
\cO (SI) – Shift in
\cP (DLE) – Data link escape
\cQ (DC1) – Device control 1 (XON)
\cR (DC2) – Device control 2 (tape on)
\cS (DC3) – Device control 3 (XOFF)
\cT (DC4) – Device control 4 (tape off)
\cU (NAK) – Negative acknowledgement
\cV (SYN) – Synchronous idle
\cW (ETB) – End of transmission block
\cX (CAN) – Cancel
\cY (EM) – End of medium
\cZ (SUB) – Substitute

\0 to \9 The last remembered substring as per the $n property
[\b] A literal backspace not to be confused with a word boundary match (using the \b

outside of square brackets)

It is necessary to escape the punctuation characters as they assume special meanings when used in
a pattern on their own. Refer to the other RegExp topics for further details.

See also: RegExp literal, RegExp object, RegExp pattern, RegExp pattern – alternation,
RegExp pattern – character class, RegExp(), Regular expression

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

ECMA 262 edition 3 – section – 15.10.2.2

ECMA 262 edition 3 – section – 15.10.2.10

ECMA 262 edition 3 – section – 15.10.2.11

R - RegExp pattern – extension syntax (Definition)

1805

RegExp pattern – extension syntax (Definition)
A Perl 5 capability for specifying anchors with look-ahead patterns.

Availability: ECMAScript edition – 3

Positional anchors can be constructed using patterns. These are enclosed in grouping operators and
commence with a question mark.

A logical negation is also possible. However the syntax for this uses the JavaScript convention of an
exclamation mark (!) rather than the regular expression convention of a circumflex (^).

A positional anchor, marking the location immediately before a capital letter would look like this:

(?=[A-Z])

A positional anchor marking a location immediately before any non-capital letter would look like this:

(?![A-Z])

The second example uses the logical negation operator.

Note that these are positional anchors that behave like the ^ and $ which denote the start and end
of a line. They do not select any characters.

See also: RegExp pattern – grouping, RegExp pattern – position,
RegExp pattern – references

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

ECMA 262 edition 3 – section – 15.10.2.7

ECMA 262 edition 3 – section – 15.10.2.14

RegExp pattern – grouping (Definition)
Sometimes you may want to group several items to treat them conditionally or repetitively. The
grouping operator provides the means to do that.

Availability: ECMAScript edition – 3

The parentheses grouping operator works inside regular expressions much as you would expect it
to. Everything inside the parentheses can be operated on by a repetition. This example matches the
word java or javascript:

/java(script)?/

JavaScript Programmer's Reference

1806

The grouping operator is also used to delimit sub-strings.

See also: RegExp pattern, RegExp pattern – extension syntax, RegExp pattern – references,
RegExp pattern – sub-patterns, RegExp.$n, RegExp.lastParen

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

ECMA 262 edition 3 – section – 15.10.2.8

RegExp pattern – position (Definition)
Aligning the pattern to one or other end of the string sometimes helps to remove ambiguity from
the match.

Availability: ECMAScript edition – 3

Occasionally, you may want to match a string that is explicitly at the front or back end of a line.
You can do this by adding the special characters to the expression to mark the location of the start
of the line or the end of the line. You can also align the pattern with word boundaries as well. Here
is a summary of some special patterns that are position aligned:

Pattern Description

^ Indicate the start of the line
$ Indicate the end of the line
\b Indicate a word boundary. Note that this cannot be used in a bracketed character

class [\b] means backspace not word boundary
\B Indicate any non-word boundary location
.$ The last character at the end of the line (the dot matches one character)
\b\d*\b A complete word composed only of numeric digits
\b\w*\b A complete word
\s*$ All of the trailing whitespace
^$ A line with nothing between the start and end, an empty line
^. The first character at the beginning of the line (the dot matches one character)
^.*$ The entire line regardless of its contents
^\s A leading whitespace character

Warnings:
❑ In multi-line mode, the markers for the start and end of the line apply to each line in turn.

See also: RegExp pattern, RegExp pattern – attributes, RegExp pattern – extension syntax,
RegExp.multiline

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

R - RegExp pattern – references (Definition)

1807

RegExp pattern – references (Definition)
Groups of characters in a pattern can be referred to symbolically later in the expression.

Availability: ECMAScript edition – 3

We can use parentheses to repeat a match so that the same text is matched in more than one place in
the expression. It is not the pattern that is repeated but the matched value. We do this by referring to
the sub-expression according to its indexed location within the pattern. The index is incremented for
every left parenthesis encountered. The first is referred to as \1, the second as \2 and so on. This is
useful for balancing matching quote symbols around a text string that might have either single or
double quote marks around it. Unless we can relate the matches at each end, we might find that we
do in fact have either one of the two quote symbols but we don't necessarily have a balanced pair.

This matches a single or double quote character:

/['"]/

This matches a single or double quote character at either end of any other character sequence:

/['"].*['"]/

However, the text between the quotes could contain a quote so we'll replace the match between
them with any non-quote character. Like this:

/['"][^'"]*['"]/

To use a reference to a previous sub-expression, we need to mark the sub-expression with parentheses:

/(['"])[^'"]*['"]/

Now we can refer to the first sub-expression at a later stage and require that the same characters be
repeated:

/(['"])[^'"]*\1/

This ensures that the sequence of characters 'AAA' would match but 'AAA" would not even
though "AAA" would.

A grouped sub-expression can be prevented from being indexed by placing a question mark and
colon immediately inside the parentheses and then the item cannot be indexed as a reference. This
works in JavaScript version 1.3 onwards.

Warnings:
❑ Beware that you do not use an index greater than the number of sub-patterns available. The

backslash and digit will be interpreted as a character escape otherwise.

❑ Because the backslash can also be interpreted as a character escape you must be unambiguous as to
your intentions. To ensure that it is interpreted as a character escape, use a value that is more than
one digit long.

JavaScript Programmer's Reference

1808

See also: RegExp pattern, RegExp pattern – extension syntax, RegExp pattern – grouping,
RegExp pattern – sub-patterns, RegExp.$n, RegExp.lastParen

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

RegExp pattern – repetition (Definition)
Parts of a matching pattern can be repeated for multiple characters.

Availability: ECMAScript edition – 3

We can create matching patterns that will match a fixed number of characters. For example, a
pattern for a zero padded decimal number that is 4 digits long would be:

/\d\d\d\d/

Or it could be expressed like this:

/[0-9][0-9][0-9][0-9]/

Or even like this:

/[0123456789][0123456789][0123456789][0123456789]/

These are fine for fixed length formatted numbers but very often the formatting of some text can be
variable and unless numbers are zero padded, we don't know how long they are. We can extend a
matching pattern to signify that it should match a certain number of times or an unspecified and
variable number of times.

The curly braces are used to indicate a repetition count. A single value indicates a repeat count that
is a fixed length. So our first example could be expressed like this:

/\d{4}/

If the curly braces include a pair of comma separated values, the first is a minimum number and
the second is a maximum. So if we wanted to match a value that was between 10 and 1000 and it
was not zero padded, we could do this:

/\d{2,4}/

UK style postcodes are formatted in general with a standard layout. Mostly they conform to the
pattern:

AANN NNAA

That is two letters, up to two numbers, a space and then up to two numbers and two letters.

R - RegExp pattern – repetition (Definition)

1809

You could match a UK style postcode with something like this:

/\w{2}\d{1,2}\s\d{1,2}\w{2}/

A United States Zip code is simpler, being made up of two letters, a space and 5 digits. So it could
be matched with:

/\w\w\s\d{5}/

There is a way to indicate that characters are optional with the question mark character (?).

The UK postcode example could then be simplified to allow the second character group to be
optional as could the inner space character. Like this:

/\w\w\d\d?\s?\d?\d?\w?\w?/

The plus sign is used to match one or more instances of the character to its left and the asterisk to
match zero or more occurrences. Here are some examples:

Seq Pattern Description

01 {a,b} Match the item to the left between a and b times.

02 {a,} Match the item to the left at least a times or more.

03 {a} Match the item to the left exactly a times, no more, no less.

04 ? Match the item to the left zero or one times.

05 + Match the item to the left 1 or more times.

05 +? Match the item to the left 1 or more times using a minimal matching
technique. (JavaScript 1.3)

06 * Match the item to the left zero or more times.

06 *? Match the item to the left zero or more times using a minimal
matching technique. (JavaScript 1.3)

99 {0,1} Match the item to the left zero or one times (alternative form).

99 {0,} Match the item to the left zero or more times (alternative form).

99 {1,} Match the item to the left 1 or more times (alternative form).

The minimal matching technique is implemented in JavaScript version 1.3 and is based on the
facilities of Perl version 5 interpreters. Minimal matching is where a match occurs with the
minimum number of characters necessary to make a match. This is as opposed to the normal
technique, which matches as many characters as possible.

See also: RegExp pattern, RegExp pattern – alternation

Cross-references:
ECMA 262 edition 3 – section – 15.10.2.5

ECMA 262 edition 3 – section – 15.10.10

JavaScript Programmer's Reference

1810

RegExp pattern – sub-patterns (Definition)
When a pattern matches, it is possible to extract a portion of that for re-use.

Availability: ECMAScript edition – 3

By using parentheses creatively in a regular expression a sub-pattern can be marked out such that
when a match occurs, that sub-pattern can be extracted.

Here is a pattern that matches a date format:

/[0-9]{2}-[a-zA-Z]{3}-[0-9]{4}/

We might want to extract just the month name. We can place parentheses around that so it can be
extracted later. Like this:

/[0-9]{2}-([a-zA-Z]{3})-[0-9]{4}/

The example shows how this works:

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Make the RegExp from a literal
myRegExp = /[0-9]{2}-([a-zA-Z]{3})-[0-9]{4}/;
// Create the input search string
myString = "01-Jan-1954";
// Run the search
myArray = myRegExp.exec(myString);
// How many items are there in the array
document.write(myArray.length);
document.write("
");
// Display the source string
document.write(myArray[0]);
document.write("
");
// Display the month name sub-match
document.write(myArray[1]);
document.write("
");
</SCRIPT>
</BODY>
</HTML>

See also: RegExp pattern, RegExp pattern – grouping, RegExp pattern – references

Cross-references:
ECMA 262 edition 3 – section – 15.10.1

R - Regular expression (Definition)

1811

Regular expression (Definition)
A means of matching patterns of text in string values.

Regular expressions are a way of describing a pattern match that can be used to select a group of
characters from an input string. This usually then leads on to replacing them with some other set of
characters. It is analogous to the find and replace capability in a word processor.

JavaScript version 1.2 introduced regular expression support by way of a specialized object, a
utility that UNIX developers have long known about and used. It has migrated into many desktop
applications now and has become a somewhat portable way of matching text strings with one
another and performing edits on them. The regular expression syntax adopted by JavaScript
version 1.2 emulates that which is commonly used in Perl interpreters, specifically the syntax that
is supported is generally called Perl version 4. In JavaScript version 1.3, the regular expression
syntax was expanded to support Perl version 5 syntax.

Regular expressions are managed by creating a RegExp object with the RegExp() constructor.
RegExp objects support a literal syntax and can be created on the fly without needing a constructor
call which makes them extremely convenient to deploy.

The ECMAScript standard ratifies regular expressions in the third edition. They were not present in
the second edition.

Warnings:
❑ Regular expressions are still an area of concern when developing portable content. For example,

they are completely unsupported on the WebTV platform as of the Summer 2000 release of the
JellyScript interpreter.

See also: Fundamental data type, JellyScript, RegExp pattern, RegExp
pattern – character literal, RegExp(), RegExp.exec(),
String.match(), String.replace(), String.search(),
String.split()

Cross-references:
O'Reilly JavaScript Definitive Guide – page – 49

Relational expression (Definition)
Relational expressions yield a Boolean result.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Relational expressions yield a Boolean result according to the relational test of the values either
side of the operator.

JavaScript Programmer's Reference

1812

Numerical values are compared according to sign and magnitude while string values are compared
according to the Unicode collating sort sequence.

Relational operators will attempt to convert both arguments to a Number, and if at least one
argument can be converted to a Number then the other will be forced to be a Number for comparison
purposes. If both arguments are Strings or string-like objects, the relational test will be String-based.

If a prefixing plus sign is present, then a numeric coercion of a string takes place before the comparison.

Example code:
// Force a string comparison
myResult = (a+'' <= b+'');
// Force a numeric comparison
myResult = (a-0 <= b-0);
// Force a boolean comparison
myResult = (!a <= !b);

See also: Equal to (==), Equality expression, Expression, Greater than (>),
Greater than or equal to (>=), Identically equal to (===), Less than
(<), Less than or equal to (<=), NOT Equal to (!=), NOT Identically
equal to (!==), Relational operator, Type conversion

Cross-references:
ECMA 262 edition 2 – section – 11.8

ECMA 262 edition 3 – section – 11.8

Wrox Instant JavaScript – page – 37

Wrox Instant JavaScript – page – 39

Relational operator (Definition)
Relational operators are used to create relational expressions.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

Relational operators are used in relational expressions and always yield a Boolean result.

Although generally considered to be members of the relational operator set, equality and non-
equality tests are classified as equality operators in the ECMA standard.

R - releaseEvents() (Function)

1813

The following table lists all operators that could be loosely classified or specifically classified as
relational operators:

Operator Description

== Equal to
=== Identically equal to
!= NOT equal to
!== NOT identically equal to
< Less than
<= Less than or equal to
> Greater than
>= Greater than or equal to

It follows that all equality operators are generally classifiable as relational operators and all relational
operators are members of the set of logical operators, since they all yield a Boolean value as a result.

See also: Equal to (==), Equality operator, Greater than (>), Greater than or
equal to (>=), Identically equal to (===), Less than (<), Less than or
equal to (<=), NOT Equal to (!=), NOT Identically equal to (!==),
Relational expression

Cross-references:
ECMA 262 edition 2 – section – 11.8

ECMA 262 edition 3 – section – 11.8

Wrox Instant JavaScript – page – 19

releaseEvents() (Function)
Netscape Navigator 4 event management function.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N myWindow.releaseEvents(anEventMask)
JavaScript syntax:

N releaseEvents(anEventMask)

Argument list:
anEventMask A mask defined with the manifest event

constants

See also: captureEvents(), Document.captureEvents(),
Document.releaseEvents(), Element.onevent, Event
handler, Event management, Event propagation, Event type
constants, Event.modifiers, Frame object, handleEvent(),
Layer.captureEvents(), Layer.releaseEvents(),
onLoseCapture, onMouseMove, Window object,
Window.routeEvent(), Window.releaseEvents()

JavaScript Programmer's Reference

1814

Remainder (%) (Operator/multiplicative)
Divides one operand by another and yields the remainder.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 % anOperand2

anOperand1 The dividend valueArgument list:
anOperand2 The divisor value

The % operator yields the remainder after dividing the left operand by the right. This is otherwise
known as the modulo or modulus operator.

In an ECMAScript compliant interpreter, the remainder is a floating-point value and, unlike the C
and C++ languages, the input operands can also be floating point values.

The result of performing a remainder on floating point values is not the same as the IEEE 754
remainder operation. IEEE 754 mandates a remainder computed via a rounding division whereas
ECMA mandates a truncating remainder. In ECMAScript the remainder behaves similarly to the Java
integer remainder operator and is analogous to the fmod() library function in C language compilers.

The behavior in an ECMA complaint JavaScript implementation should obey these rules:

❑ If either operand is NaN then the result is NaN.

❑ The sign of the result is the same as the sign of the dividend (the operand on the left).

❑ If the dividend is an infinity, the result is NaN.

❑ If the divisor is zero, the result is NaN.

❑ If the dividend is a finite value and the divisor is infinity, the result equals the dividend.

❑ If the dividend is zero and the divisor is finite, the result is zero.

Otherwise, as long as neither an infinity, zero or NaN is involved, the floating remainder is
calculated like this. The dividend n is divided by the divisor d to produce a quotient, q. The
quotient is forced to be an integer and multiplied again by d and the result subtracted from n to
yield the remainder. Thus:

q = n/d

r = n – (d * q)

The value q will be forced to be an integer although the resulting value r may not be.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

R - Remainder then assign (%=) (Operator/assignment)

1815

Warnings:
❑ JScript version 1.0 truncates floating-point values to integers before applying the remainder

operator. This means that the expression 5.5 % 2.2 yields the value 1.

See also: Arithmetic operator, Associativity, Divide (/), Divide then assign (/=), Integer
arithmetic, Integer-value-remainder, Math.ceil(), Math.floor(), Multiplicative
expression, Multiplicative operator, Operator Precedence, Remainder then assign (%=)

Cross-references:
ECMA 262 edition 2 – section – 11.5.3

ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.5.3

Wrox Instant JavaScript – page – 19

Remainder then assign (%=)
(Operator/assignment)

Divide one operand by another, leaving the remainder in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 %= anOperand2

anOperand1 The dividend value where the result is also
assigned

Argument list:

anOperand2 The divisor value

Divide the left operand by the right operand and assign the remainder to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 % anOperand2;

Although this is classified as an assignment operator it is really a compound of an assignment and
a multiplicative operator.

JavaScript Programmer's Reference

1816

The associativity is right to left.

Refer to the operator precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Arithmetic operator, Assign value (=), Assignment expression, Assignment
operator, Associativity, Integer arithmetic, Integer-value-remainder, LValue,
Math.ceil(), Math.floor(), Multiplicative operator, Operator
Precedence, Remainder (%)

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

request object (Object/NES)
A server-side object maintained by NES for each HTTP: request.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES request

Object properties:
<input_name>, <urlExtension>, agent, imageX, imageY,
ip, method, protocol

Whenever a user requests a page from a Netscape Enterprise Server, a request object is created to
manage storage, methods and properties for that request. When the request is returned, the object
can be destroyed as it will have no further use.

The request object contains details of the URL, form data and search criteria. This is the way that
you access the data in a form submit for example.

There are other properties belonging to this object that can tell you a lot about the client and what
is happening there.

The ASP server also supports a Request object, whose name is capitalized. It's there for the same
purpose and manages the incoming requests from the the clients' browsers.

Warnings:
❑ The Request object supported by ASP is quite different to that supported by NES. Since the tag

introducer is quite different for each server-side system, it is unlikely you'll deploy common scripts
across NES and ASP running on IIS.

See also: Netscape Enterprise Server, response.client, response.request,
unwatch(), watch()

R - request.<input_name> (Property)

1817

Property JavaScript JScript NES Notes

<input_name> 1.1 + - 2.0 + -
<urlExtension> 1.1 + - 2.0 + -
agent 1.1 + - 2.0 + -
imageX 1.1 + - 2.0 + -
imageY 1.1 + - 2.0 + -
ip 1.1 + - 2.0 + Warning
method 1.1 + - 2.0 + -
protocol 1.1 + - 2.0 + -

request.<input_name> (Property)
Input elements can be accessed associatively by name.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES request.anInputElement

Argument list: anInputElement The value of the NAME="..." tag attribute

The NAME="..." attribute of an <INPUT> element in a <FORM> can be used as a key to access the
item as a property of the request object.

For example, a text filed can be created like this:

<INPUT NAME="MyNamedTextObject" TYPE="TEXT">

You can then access it as a property belonging to the response with this object and property reference:

response.MyNamedTextObject

request.<urlExtension> (Property)
Additional properties can be passed from URL extensions.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES request.<urlExtension>

When you submit a request, you can pass parameter values in the request with a special coding
technique that allows them to convey information in the URL that is reflected into special
properties in the request object.

JavaScript Programmer's Reference

1818

The question mark (?) is the control sequence introducer for this. Sometimes these values are
referred to as the query or search portion of the URL when they are accessed as properties of an
Anchor, Url, or Area object in the client.

The properties are then added as a name=value pair with multiple name=value pairs separated
by an ampersand (&) character.

See also: Anchor.search, Url.search

request.agent (Property)
A string containing the user agent details.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES request.agent

This property contains the name and version of the client software making the request. This is a
means of building client user agent dependent responses that deliver pages that are tailored to the
particular browser being used.

You might use this to respond with a Netscape Navigator version of a page that behaves differently
to the page you return to a user who requested the page from an MSIE browser.

request.imageX (Property)
The X coordinate of the mouse when an image map is clicked on.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES request.imageX

If a client-side input object whose type is "image" was used, this is the horizontal coordinate value
of the mouse relative to the origin of the image when the user clicked the button on the image.

This would have been placed into the page with a tag like this:

<INPUT TYPE="image" NAME="imageName" SRC="...">

R - request.imageY (Property)

1819

request.imageY (Property)
The Y coordinate of the mouse when an image map is clicked on.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES request.imageY

If a client-side input object whose type is "image" was used, this is the vertical coordinate value of
the mouse relative to the origin of the image when the user clicked the button on the image.

This would have been placed into the page with a tag like this:

<INPUT TYPE="image" NAME="imageName" SRC="...">

request.ip (Property)
The IP address of the client.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES request.ip

IP addresses are interesting and useful if you know their provenance but should not be relied upon
to uniquely identify a user.

Warnings:
❑ Be careful when using this value. Proxy servers and firewalls can modify the value you actually see

and can completely mask the IP address of the client. This can make all users behind the firewall or
proxy appear to be using the same machine.

❑ Multiple users running Netscape Navigator via an X-Windows environment may indeed all
be running the browser core on the same machine and only viewing the windows on their
desktop systems.

❑ Finally, clients connected via an ISP may have floating IP address values and may be served through
proxy and firewall systems. Indeed, some ISP-based users may even submit each request during a
session through a different firewall. The session state can then only be identified by means of hidden
values in the URL or with a cookie.

JavaScript Programmer's Reference

1820

request.method (Property)
The request method determines to some extent how a server should respond to the request.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES request.method

The request method could be one of the following:

❑ get

❑ post

❑ head

❑ put

❑ delete

❑ options

❑ trace

These values may be in upper or lower case so you should use a case-insensitive test if you need to
check them.

request.protocol (Property)
The client may not support all the available protocols. This is the level of HTTP protocol that the
client is prepared to accept.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES request.protocol

HTTP/1.1 protocol is much more efficient than HTTP/1.0 because it reduces the number of TCP
connections required. However, not all browsers support it and you may need to check this value if
you are sending back multiple items in a single response.

R - Request-response loop (Definition)

1821

Request-response loop (Definition)
The mechanism by which a web server handles a request and serves a page back to a browser.

The web browser sends a request to a web server. This is passed to the middleware application
server which may create a special object to represent the request. Values passed to the web server
by the browser will be reflected as properties of that request object.

This mechanism will invoke an appropriate handler. That handler may be compiled code or
perhaps a script, possibly written in JavaScript in some middleware implementations.

As the handler is invoked, it is passed the request object and also an empty response object. The
handler then populates the response object with headers and body contents. This may be done by
means of property accessors or method calls.

Eventually the response is despatched back to the requesting browser. At this point some clean-up
takes place, the request logging takes place and the request response loop is completed.

See also: Storage duration

Requesting privileges (Security related)
Your script needs to request privileges when it requires them.

So long as you can sign scripts for Netscape Navigator, you can then make requests for privileges
when those scripts run. This is done by means of the privilege manager.

Because the Netscape Navigator security model is based on the Java security model, the Netscape
Navigator browser requests its privileges through the Java mechanisms. These are encapsulated in
a class that you can access from inside JavaScript.

The downside of this is that there is no meaningful value returned when the request is made. If the
request for a privilege is denied, the error causes a Java exception which is difficult to trap from
JavaScript. It is possible that new browser versions will support an exception handling mechanism.

There are two principle methods that are useful here, one to request the privilege and the other to
relinquish it.

enablePrivilege() – Requests the privilege passed as a string argument

disablePrivilege() – Relinquishes the privilege based on a string argument

Example code:
// Request the file reading
privilegenetscape.security.PrivilegeManager.enablePrivilege("UniversalFileRead")

See also: netscape.security.PrivilegeManager, PrivilegeManager object,
PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Signed scripts,
UniversalBrowserAccess, UniversalBrowserRead,
UniversalBrowserWrite, UniversalFileRead,
UniversalPreferencesRead, UniversalPreferencesWrite,
UniversalSendMail

JavaScript Programmer's Reference

1822

Reserved Word (Definition)
JavaScript reserves certain words and maps computational functionality to them.

Availability: ECMAScript edition – 2

Reserved words are keywords that the interpreter uses to determine the instructions your script is
going to execute.

Generally, reserved words will be one of the following:

❑ A keyword

❑ A reserved word

❑ A null literal

❑ A Boolean literal

Here is a complete list of reserved words as defined by the ECMA 262 standard. It also includes
words that are dangerous because they are properties or method names.

Name Notes

abstract Java keyword reserved

alert Identifier name

arguments Identifier name

Array Object type

blur Identifier name

boolean Java keyword reserved

Boolean Object type

break Keyword

byte Java keyword reserved

callee Identifier name

caller Identifier name

captureEvents Identifier name

case Keyword

catch Reserved word

char Java keyword reserved

class Reserved word

clearInterval Identifier name

clearTimeout Identifier name

close Identifier name

closed Identifier name

Table continued on following page

R - Reserved Word (Definition)

1823

Name Notes

confirm Identifier name

const Reserved word

constructor Identifier name

continue Keyword

Date Object type

debugger Reserved word

default Keyword

defaultStatus Identifier name

delete Keyword

do Keyword

document Identifier name

double Java keyword reserved

else Keyword

enum Reserved word

escape Identifier name

eval Identifier name

export Keyword

extends Reserved word

false Boolean literal

final Java keyword reserved

finally Keyword

find Identifier name

float Java keyword reserved

focus Identifier name

for Keyword

frames Identifier name

function Keyword

Function Object type

goto Java keyword reserved

history Identifier name

home Identifier name

if Keyword

implements Java keyword reserved

import Keyword

in Keyword

Infinity Global special variable

innerHeight Identifier name

innerWidth Identifier name

Table continued on following page

JavaScript Programmer's Reference

1824

Name Notes

instanceof Keyword

int Java keyword reserved

interface Java keyword reserved

isFinite Identifier name

isNaN Identifier name

java Identifier name

length Identifier name

location Identifier name

locationbar Identifier name

long Java keyword reserved

Math Object type

menubar Identifier name

moveBy Identifier name

moveTo Identifier name

name Identifier name

NaN Global special variable

native Java keyword reserved

netscape Identifier name

new Keyword

null Null literal

Number Object type

Object Object type

open Identifier name

opener Identifier name

outerHeight Identifier name

outerWidth Identifier name

package Java keyword reserved

Packages Identifier name

pageXOffset Identifier name

pageYOffset Identifier name

parent Identifier name

parseFloat Identifier name

parseInt Identifier name

personalbar Identifier name

print Identifier name

private Java keyword reserved

prompt Identifier name

Table continued on following page

R - Reserved Word (Definition)

1825

Name Notes

protected Java keyword reserved

prototype Identifier name

public Java keyword reserved

RegExp Identifier name

releaseEvents Identifier name

resizeBy Identifier name

resizeTo Identifier name

return Keyword

routeEvent Identifier name

scroll Identifier name

scrollbars Identifier name

scrollBy Identifier name

scrollTo Identifier name

self Identifier name

setInterval Identifier name

setTimeout Identifier name

short Java keyword reserved

static Java keyword reserved

status Identifier name

statusbar Identifier name

stop Identifier name

String Object type

super Reserved word

switch Keyword

synchronized Java keyword reserved

this Keyword

throw Keyword

throws Java keyword reserved

toolbar Identifier name

top Identifier name

toString Identifier name

transient Java keyword reserved

true Boolean literal

try Keyword

typeof Keyword

unescape Identifier name

unwatch Identifier name

valueOf Identifier name

Table continued on following page

JavaScript Programmer's Reference

1826

Name Notes

var Keyword

void Keyword

volatile Reserved word

watch Identifier name

while Keyword

window Identifier name

with Keyword

Looking at the some of the particular keywords being reserved, it suggests that future revisions of
ECMAScript will become more object oriented. Or at least even if the underlying implementation is
not truly object oriented, then the visible interface to the interpreter from a script will behave very
much as if it is.

The third edition of the ECMA standard does not add any new keywords but removes those that
have been defined as part of the upgrade to the standard. There are still several that are classed as
reserved words that have already been implemented in some browser versions. Simply avoiding
parse errors does not qualify them as features to be documented as being available in the browser.

On the Netscape developer web site, there is talk of developing a version 2.0 of the JavaScript
language, to change JavaScript into a truly class-based object oriented language. At that time, many
of the currently reserved words will likely become functional parts of the language.

Warnings:
❑ You must not use reserved words as identifier names.

❑ The table lists words you should avoid in a client-side context. You could argue that because alert
is not a reserved word on the server-side that it would be safe to use it there. I would recommend
against that because it is possible you might develop a library of JavaScript functions for general
purpose use. It wouldn't be hard to imagine how an identifier that was server-side safe could
eventually end up being executed client-side.

❑ The list in the table is not exhaustive and you should always think carefully about the identifier
names you choose for properties, methods, functions, and variables.

See also: goto, Label, Token

Cross-references:
ECMA 262 edition 2 – section – 7.4.1

ECMA 262 edition 3 – section – 7.5.1

O'Reilly JavaScript Definitive Guide – page – 31

R - ResetButton object (Object/DOM)

1827

ResetButton object (Object/DOM)
A button in a form that will reset the form fields to their default values.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

- myResetButton =
myDocument.aFormName.anElementName

- myResetButton = myDocument.aFormName.elements
[anItemIndex]

IE myResetButton = myDocument.all.anElementID

IE myResetButton = myDocument.all.tags("INPUT")
[anIndex]

IE myResetButton = myDocument.all[aName]

- myResetButton = myDocument.forms[aFormIndex]
.anElementName

- myResetButton = myDocument.forms[aFormIndex]
.elements[anItemIndex]

- myResetButton = myDocument.getElementById
(anElementID)

- myResetButton = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myResetButton = myDocument.getElementsByTagName
("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="reset">

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms
collection

Object properties: type, value

Object methods: handleEvent()

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDblClick, onFilterChange, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onRowEnter, onRowExit

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

JavaScript Programmer's Reference

1828

There isn't really a ResetButton object class, but it is helpful when trying to understand the wide
variety of input element types if we can reduce the complexity by discussing only the properties and
methods of a reset button. In actual fact, the object is represented as an item of the Input object class.

Event handling support via properties containing function objects was added to ResetButton
objects at version 1.1 of JavaScript.

Unlike MSIE, Netscape Navigator does not support the defaultValue property or the select()
method in this sub-class of the Input object.

See also: Element object, Form.elements[], FormElement object, Input object,
Input.accessKey, onClick, ResetButton.handleEvent()

Property JavaScript JScript N IE Opera DOM HTML Notes

type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

R - ResetButton.handleEvent() (Method)

1829

ResetButton.handleEvent() (Method)
Passes an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myResetButton.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape Navigator prior to version 6.0. From that release onwards, event
management follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent(), ResetButton object

ResetButton.type (Property)
The type value for the <INPUT> object that describes the reset button.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myResetButton.type

The type value for a ResetButton is always "reset". This value is necessary to determine the
type of form element because this object is really an instance of the Input class and not the
ResetButton class. There is actually no ResetButton class.

See also: Input.type

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

1830

ResetButton.value (Property)
The text string in the button.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myResetButton.value

Although this value may be sent back to the web server when the form is submitted, the main
purpose of a ResetButton is to reset the form element contents to the values defined in the HTML
document source. This property provides a convenient means of labelling the button.

Warnings:
❑ This may be changed on some platforms but not others.

See also: Input.value, SubmitButton.value

resizeBy() (Method)
An alias for the window.resizeBy() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- myWindow.resizeBy(aChangeX, aChangeY)
JavaScript syntax:

- resizeBy(aChangeX, aChangeY)

aChangeX The difference in pixelsArgument list:
aChangeY The difference in pixels

R - resizeTo() (Method)

1831

Delta X

Delta Y

See also: Window.onresize, Window.resizeBy()

resizeTo() (Method)
An alias for the window.resizeTo() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- myWindow.resizeTo(aSizeX, aSizeY)
JavaScript syntax:

- resizeTo(aSizeX, aSizeY)

aSizeX A distance in pixelsArgument list:
aSizeY A distance in pixels

JavaScript Programmer's Reference

1832

Height

Width

See also: Window.onresize, Window.resizeTo()

response object (Object/NES)
Part of the server-side support for JavaScript. This is the Global object in NES.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES response

Object properties: client, database, project, request, server

Object methods:
addClient(), addResponseHeader(), blob(), callC(),
debug(), deleteResponseHeader(), flush(),
getOptionValue(), getOptionValueCount(), redirect(),
registerCFunction(), ssjs_generateClientID(),
ssjs_getCGIVariable(), ssjs_getClientID(), trace(),
write()

The response object in NES is the global object as well. This means the methods and properties that
belong to the global object also belong to the response.

Because it is the global object there is no explicit way of referring to it.

We have collated all the response object methods and properties together in a group to aid the
rapid location of related topics. Additional index entries are provided for the properties and
methods as they would be addressed as members of the global object.

R - response.addClient() (Method)

1833

Warnings:
❑ The Response object is the Global object in a NES request-response context.

See also: Netscape Enterprise Server, unwatch(), watch()

Property JavaScript JScript NES Notes

client 1.1 + - 2.0 + -
database 1.1 + - 2.0 + -
project 1.1 + - 2.0 + -
request 1.1 + - 2.0 + -
server 1.1 + - 2.0 + -

Method JavaScript JScript NES Notes

addClient() 1.1 + - 2.0 + -
addResponseHeader() 1.2 + - 3.0 + -
blob() 1.1 + - 2.0 + -
callC() 1.1 + - 2.0 + -
debug() 1.1 + - 2.0 + -
deleteResponseHeader() 1.2 + - 3.0 + -
flush() 1.1 + - 2.0 + -
getOptionValue() 1.1 + - 2.0 + -
getOptionValueCount() 1.1 + - 2.0 + -
redirect() 1.1 + - 2.0 + -
registerCFunction() 1.1 + - 2.0 + -
ssjs_generateClientID() 1.2 + - 3.0 + -
ssjs_getCGIVariable() 1.2 + - 3.0 + -
ssjs_getClientID() 1.2 + - 3.0 + -
trace() 1.1 + - 2.0 + -
write() 1.2 + - 3.0 + -

response.addClient() (Method)
Information about the client is added to a URL.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES addClient()

JavaScript Programmer's Reference

1834

Use this method to maintain state across requests by hiding information about the client in the
URL. This allows you to send a page to the client and when they submit a form you can associate
that request with the previous one.

See also: Netscape Enterprise Server

response.addResponseHeader() (Method)
Adds a header record to the response object.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES addResponseHeader()

The header to be added is presented as a name-value pair.

See also: Netscape Enterprise Server

response.blob() (Method)
Extracts a binary large object from a data file in the server's file system.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: blob object

JavaScript syntax: NES blob()

BLOBs can be pulled out of the database and presented as images or as links (that is, documents).

See also: Netscape Enterprise Server

response.callC() (Method)
Calls a native function within the server.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES callC(aFunctionName, arguments, ...)

aFunctionName The name of a function that has been registeredArgument list:
arguments A set of arguments to be passed to it when

called

R - response.client (Property)

1835

External library functions can be registered with the Netscape Enterprise Server and can then be
called from scripts running in the request-response loop.

Such registered functions are invoked with the callC() method.

The function name is the one that was used when it was registered. Registering a function creates a
wrapper that will always return a string primitive value.

See also: Netscape Enterprise Server

response.client (Property)
A reference to a client object when scripts are used in NES.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: client object

JavaScript syntax: NES client

This global property points at a client object that is created automatically. The transactions between
the Netscape Enterprise Server and the client browser maintain sufficient session state information
that this object can be made available between one page request and the next.

See also: client object, Netscape Enterprise Server, request object

response.database (Property)
A property that points at a globally available database access object.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: database object

JavaScript syntax: NES database

The object referred to by this property can be used to create connections to whatever database you
have available in the server back-end environment.

See also: database object

JavaScript Programmer's Reference

1836

response.debug() (Method)
Prints a debugging message or value in the trace window.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES debug()

This is a server-side method to assist in debugging script execution when developing scripts for NES.

This provides a means of watching the progress of a request-response handler which is running in
a context that has no terminal I/O capabilities.

See also: Netscape Enterprise Server

response.deleteResponseHeader() (Method)
Removes a specified header record from the response.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES deleteResponseHeader(aHeader)

Argument list: aHeader The name of the header to be removed

This is part of the management of the request-response loop in the server. Many response headers
will be added automatically by the NES server, and you may want to add others. Occasionally, the
server may place a header into the response that you don't want to send back to the user. This
method can be used to remove such a header.

See also: Netscape Enterprise Server

response.flush() (Method)
Sends the current contents of the output buffer to the client.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES flush()

R - response.getOptionValue() (Method)

1837

Response writing tends to involve a certain amount of buffering by the response manager in the server
back-end. This is necessary to improve performance and throughput. The data is only physically
transferred to the client when a buffer full of data is ready or when the response is completed. This can
mean that a JavaScript error can leave the response incomplete if it fails in a way that prevents the
response from being completed properly. A run-time error would normally not write any pending
response data out to a client or it might result in part of the data being sent but probably not all.

The flush() method allows you to force the response output to the client to be updated so that
the response is complete up to this point and there are no pending contents yet to be transmitted.
You might force a flush() at the end of a database record being read and processed for example.

See also: File.flush(), Netscape Enterprise Server

response.getOptionValue() (Method)
Returns the value of the selected option items in a <SELECT> block.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: String primitive

JavaScript syntax: NES getOptionValue()

Server-side access to the <OPTION> tag contents in a <SELECT> block is accomplished slightly
differently in an NES server than in a Netscape Navigator browser. This is because the viewpoint is
different as you look at the DOM. The DOM standard relates predominantly to how the document
is modelled in the client.

See also: Netscape Enterprise Server, Option object, Select object

response.getOptionValueCount() (Method)
Returns the number of items in a <SELECT> block.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES getOptionValueCount()

This would normally be the length property of a collection or array.

See also: Netscape Enterprise Server, Option object, Select object

JavaScript Programmer's Reference

1838

response.project (Property)
A reference to a project object when scripts are executed in NES.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: project object

JavaScript syntax: NES project

This global property points at a project object that is created when the server application is
starts running. The project object is created automatically and a reference to it is stored here for
use when needed.

See also: Netscape Enterprise Server, project object

response.redirect() (Method)
Send the appropriate headers and meta information to cause the client to do a redirect to a
different URL.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES redirect(URL)

This is a convenience method for populating headers in the response.

See also: Netscape Enterprise Server

response.registerCFunction() (Method)
Register a native C language function for use with callC().

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: Boolean primitive

JavaScript syntax: NES registerCFunction(aFunctionName,
aLibrary, aCFunction)

aCFunction The name of the C function in the library
aFunctionName The name of the function in the JavaScript

environment

Argument list:

aLibrary A path to the library containing the C function

R - response.request (Property)

1839

External library functions can be registered with the Netscape Enterprise Server and can then be
called from scripts running in the request-response loop.

Such registered functions are invoked with the callC() method.

The registration process creates a mapping between the JavaScript environment and the C language
environment. This suggests that the two need not be named the same although it is good practice to
preserve the names recognizably across such wrapping mechanisms.

The C function is encapsulated in a JavaScript object wrapper.

A Boolean true value is returned if the registration succeeds and a Boolean false if it fails.

See also: Netscape Enterprise Server

response.request (Property)
A reference to a request object that encapsulates a client request arriving in an NES server.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: request object

JavaScript syntax: NES request

This global property points at a request object that is created when the client submits a request to
the server. The request object is created automatically and a reference to it is stored here for use
when needed.

See also: Netscape Enterprise Server, request object

response.server (Property)
A reference to the server object is created automatically when the server is started.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

Property/method value type: server object

JavaScript syntax: NES server

This property refers to the globally available server-wide shared server object. There is only one
of these and it is available to all sessions, application projects and client requests.

This is an object that allows you to share property values across all sessions running in all
applications across the entire server. The locking facilities permit you to lock resources while you
are using them.

JavaScript Programmer's Reference

1840

Because this applies server-wide, there is even more reason to ensure you lock objects for the
minimum of time and relinquish the locks as soon as possible. It is quite feasible to completely stall
the whole server by locking a vital resource during the processing of a single client request. The
effect of this is to make your server a single-threaded non-concurrent session server. That is, it will
only actually serve one client request at a time.

See also: Netscape Enterprise Server, server object

response.ssjs_generateClientID() (Method)
Generate a unique identifier for a new client object.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES ssjs_generateClientID()

There may be times during session-state management that you need a unique ID value for the
clients. This method provides a means of generating a guaranteed unique ID value.

See also: Netscape Enterprise Server

response.ssjs_getCGIVariable() (Method)
Return the value of the requested environment variable.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES ssjs_getCGIVariable()

The server-side execution occurs within an environment that may have been inherited from the
hosting operating system. Other environment values will have been provided by the web server.

See also: Netscape Enterprise Server

R - response.ssjs_getClientID() (Method)

1841

response.ssjs_getClientID() (Method)
Obtains the unique identifier value from a client object.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES ssjs_getClientID()

This is a somewhat inconsistent way of obtaining property values and there may be other
undocumented ways of obtaining client ID values.

See also: Netscape Enterprise Server

response.trace() (Method)
A server-side method to assist in tracing script execution when developing scripts for NES.

Availability: JavaScript – 1.1
Netscape Enterprise Server – 2.0

JavaScript syntax: NES trace()

Debugging server-side execution is difficult because you cannot normally see the execution
happening. Placing a debugging console onto the server is notoriously difficult, so this method may
provide some much needed assistance when trying to debug a non-working request handler.

See also: Netscape Enterprise Server

response.write() (Method)
Writes the string value passed as an argument to the outgoing HTML response stream.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES write()

This is a server-side method that is not to be confused with the method that belongs to the
document object.

The write() method can be used to output values generated by any legal JavaScript. It is the only
way that server-side JavaScript can generate any output and it should be used to generate HTML
for insertion into the document.

You can get some quite interesting output if you are prepared to study and exploit the server-side
environment.

See also: Document.write(), Document.writeln(),
Netscape Enterprise Server

JavaScript Programmer's Reference

1842

Restricted access (Definition)
There are ways in which security is restricted and controlled by means of privileges.

The private information in the history object can only be accessed if a script has
UniversalBrowserRead privileges.

See also: Data-tainting, Security policy, UniversalBrowserAccess,
UniversalBrowserRead, UniversalBrowserWrite,
UniversalFileRead, UniversalPreferencesRead,
UniversalPreferencesWrite, UniversalSendMail

ResultSet object (Object/NES)
This is part of the database access suite in Netscape Enterprise Server. It is returned by a stored
procedure call.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: nes myResultSet = myStProc.resultSet();

Object properties: prototype

Object methods: close(), columnName(), columns(), next()

When you call a stored procedure in a RDMS, you don't always get back a sequence of records in
the same layout and structure as when you just do a simple SQL select style query.

An SQL query would return a series of records separated by newline characters. A stored
procedure might return a mixed collection of records of different types.

A ResultSet object is created by asking the Stproc object for it when the stored procedure has
been called and returned from the database.

The traversing mechanisms provided with a result set allow you to move forwards through the
data but you cannot move backwards. Also, you can only read values from a result set as opposed
to a cursor which allows you to update it and write new values back.

Example code:
<SERVER>
// An example derived from Wrox Professional JavaScript
database.connect("ODBC", "myDatabase", "me", "myPassword", "");
myStoredProc = database.storedProc("myProcedure", 40);
myResultSet = myStoredProc.resultSet();
</SERVER>

See also: database.storedProc(), Netscape Enterprise Server,
Stproc.resultSet(), unwatch(), watch()

R - ResultSet.close() (Method)

1843

Property JavaScript JScript NES Notes

prototype 1.2 + - 3.0 + -

Method JavaScript JScript NES Notes

close() 1.2 + - 3.0 + -
columnName() 1.2 + - 3.0 + -
columns() 1.2 + - 3.0 + -
next() 1.2 + - 3.0 + -

ResultSet.close() (Method)
Closes the ResultSet object when you have finished accessing its contents.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myResultSet.close()

Although closures generally get dealt with automatically for you when a request handler exits, it's
good style to call the closure methods yourself when you no longer need the database connection.

See also: Stproc.close()

ResultSet.columnName() (Method)
Returns the name of the column with the specified index number.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: String primitive

JavaScript syntax: NES myResultSet.columnName(anIndex)

Argument list: anIndex A valid column number

If you are enumerating through the columns in the result set, this yields up the name of the indexed
column. You may need to use this technique if you have a table structure that could change.

JavaScript Programmer's Reference

1844

ResultSet.columns() (Method)
Returns the number of columns in the result set.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: Number primitive

JavaScript syntax: NES myResultSet.columns()

If your tables are being modified in the database or you are changing the way the result set is requested,
the number of columns may be indeterminate until you actually make the request. This method
provides a column count so you can enumerate through the columns to extract the values from them.

See also: Stproc.outParamCount()

ResultSet.next() (Method)
Moves the access pointer to the next row in the result set.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

JavaScript syntax: NES myResultSet.next()

When building tables of extracted database content, this provides a way to enumerate through the
rows one at a time.

ResultSet.prototype (Property)
The prototype for the ResultSet object that can be used to extend the interface for all
ResultSet objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server – 3.0

Property/method value type: ResultSet object

NES ResultSet.prototype
JavaScript syntax:

NES myResultSet.constructor.prototype

Refer to:
prototype property

R - return (Statement)

1845

return (Statement)
Returns control back to the caller of a function.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

- return(anExpression);

- return anExpression;
JavaScript syntax:

- return;

Argument list: anExpression A value to return to the function caller

A return keyword is a jump statement. It is used to unconditionally exit from a function, pass
back a result, and make execution flow to the caller of the function.

When the return statement is executed, the execution context is disposed of and removed from
the stack. Execution continues at the point in the caller where the function was invoked. The
function is replaced by the value being returned.

If the function is not being assigned to an LValue or Left Hand Side expression or has been cast to a
void type, the result will be discarded.

If the expression is omitted in the return statement, the undefined value is returned in its place.
While compiled languages are far more particular about the presence or absence of this expression,
JavaScript is far more forgiving.

Functions that return undefined values are likely to be used as procedures rather than functions. A
procedure is invoked as a statement that stands alone. The intent of a function is to return a result
that will be substituted in its place.

It is considered illegal for the return statement to be present in any statement block other than
that belonging to a function. However it can exist inside the statement block associated with a
conditional statement or iterator statement as long as they themselves are within a function block.
They may be nested more than one level deep but must ultimately belong to a function.

Warnings:
❑ It is considered to be a syntax error to use the return statement anywhere other than in a function

body.

❑ You will not get the return value back properly if there is a line terminator between the return
keyword and the value it was supposed to return. There is a temptation to break long strings over
several lines like this:

return

"A very long string goes here ...";

JavaScript Programmer's Reference

1846

❑ This will return the value undefined and not the string you intended to return. It is probably better
style to assign the string to a variable and return that but there are implications there of string
construction-destruction, garbage collection, and potential memory leaks and to trade those
problems off it's best to try and eliminate string creation and memory usage if possible.

Example code:
// Declare a procedure with an implied return
function aProcedure()
{
document.write("Hello");
}
// Declare a procedure that returns an undefined value
function anotherProcedure()
{
 alert("Click OK to continue");
 return;
}
// Declare a function that returns a result
function aRealFunction()
{
 return 1000;
}
// Use the functions and procedures
aProcedure();
anotherProcedure();
x = aRealFunction();

See also: break, Completion type, continue, function(...) ...,
Iteration statement, Jump statement, Statement

Cross-references:
ECMA 262 edition 2 – section – 12.9

ECMA 262 edition 3 – section – 12.9

Wrox Instant JavaScript – page – 27

returnValue (Property)
An alias for the window.returnValue property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: User defined

IE myWindow.returnValue

IE myWindow.returnValue = aNewValue

IE returnValue

JavaScript syntax:

IE returnValue = aNewValue

Argument list:
aNewValue The value to be returned when the modal

dialog closes

R - RevealTrans() (Filter/reveal)

1847

Refer to:
Window.returnValue

RevealTrans() (Filter/reveal)
A reveal filter for controlling transitions.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
filter – RevealTrans()

rgb() (Function)
A special color definition function used in style sheet color specifications.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - rgb(rValue gValue bValue)

bValue Blue intensity
gValue Green intensity

Argument list:

rValue Red intensity

The values are separated by spaces and you must specify all three. This value can then be used in
the property assignment for a style property that controls color. You can use it in any position
where a color value would be used.

See also: Color value, style.backgroundColor, style.borderColor,
style.color, style.outlineColor

Right shift (Operator/bitwise)
A rightwards shift of a bit pattern.

Refer to:
Bitwise shift right (>>)

JavaScript Programmer's Reference

1848

routeEvent() (Function)
Part of the Netscape Navigator 4 event propagation complex.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N myWindow.routeEvent(anEvent)
JavaScript syntax:

N routeEvent(anEvent)

Argument list: anEvent An event object

Object 1

Object 2

Object 3

Object 4

See also: captureEvents(), Event handler, Event management,
handleEvent(), Window.routeEvent()

Cross-references:
Wrox Instant JavaScript – page – 55

R - rows object (Definition)

1849

rows object (Definition)
Some documentation sources describes a rows object class that contains an object representing each
row in a table. There is no such class, it's simply a collection.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Object properties: length

Object methods: item(), tags()

Property JavaScript JScript N IE Opera DOM HTML Notes

length 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

item() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
tags() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Refer to:
Collection object

RT object (Object/HTML)
This is the ruby text associated with a RUBY object.

Availability: JScript – 5.0
Internet Explorer – 5.0

Inherits from: Element object

IE myRT = myDocument.all.anElementID

IE myRT =
myDocument.all.tags("RT")[anIndex]

IE myRT = myDocument.all[aName]

- myRT = myDocument.getElementById
(anElementID)

- myRT = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myRT = myDocument.getElementsByTagName
("RT")[anIndex]

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Collections:
all[], attributes[], childNodes[], children[],
filters[]

JavaScript Programmer's Reference

1850

See also: RUBY object, style.rubyAlign, style.rubyOverhang,
style.rubyPosition, Element object

Inheritance chain:
Element object, Node object

RUBY object (Object/HTML)
A ruby is an annotation or pronunciation guide for a string of text. The string of text annotated
with a ruby is referred to as the base.

Availability: JScript – 5.0
Internet Explorer – 5.0

Inherits from: Element object

IE myRuby = myDocument.all.anElementID

IE myRuby = myDocument.all.tags("RUBY")
[anIndex]

IE myRuby = myDocument.all[aName]

- myRuby = myDocument.getElementById
(anElementID)

- myRuby = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myRuby = myDocument.getElementsByTagName
("RUBY")[anIndex]

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Collections:
all[], attributes[], childNodes[], children[],
filters[]

To create a RUBY object, you use the <RUBY> HTML tag like this:

<RUBY>

Some base text

<RT>Some ruby text

</RUBY>

The <RT> tag creates an RT object.

See also: Element object, style.rubyAlign, style.rubyOverhang,
style.rubyPosition

R - rule object (Object/DOM)

1851

Inheritance chain:
Element object, Node object

rule object (Object/DOM)
An object that contains a single CSS styling rule.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

IE myRule = myDocument.all.aStyleSheetID.rules
[anIndex]

IE myRule = myStyleSheet.rules[anIndex]

IE myRule = mySelectorArray[anIndex]

JavaScript syntax:

- myRule = myDocument.styleSheets[anIndex]
.cssRules[anIndex]

Argument list: anIndex A reference to an element in a collection

Object properties:
cssText, parentStyleSheet, readOnly, runtimeStyle,
selectorText, style

This is referred to as a selector and one or more declarations within a cascading style sheet (CSS). It
is supported by MSIE.

DOM level 2 calls this a CSSRule object. It also describes a CSSStyleRule object as a sub-class of
that object. The MSIE browser implements both as a single class. The CSSRule class maintains the
following named constants:

Value Name DOM

0 UNKNOWN_RULE 2

1 STYLE_RULE 2

2 CHARSET_RULE 2

3 IMPORT_RULE 2

4 MEDIA_RULE 2

5 FONT_FACE_RULE 2

6 PAGE_RULE 2

DOM level 2 specifies these additional properties:

❑ type

❑ parentRule

See also: Document.styleSheets[], SelectorArray object, StyleSheet
object, StyleSheet.rules[]

JavaScript Programmer's Reference

1852

Property JavaScript JScript N IE Opera DOM Notes

cssText 1.5 + 5.0 + 6.0 + 5.0 + - 2 + -
parentStyleSheet 1.5 + 5.0 + 6.0 + 5.0 + - 2 + -
readOnly - 3.0 + - 3.0 + - - ReadOnly
runtimeStyle - 5.0 + - 5.0 + - - -
selectorText 1.5 + 3.0+ 6.0 + 4.0+ - 2 + ReadOnly
style 1.5 + 5.0 + 6.0 + 5.0 + - 2 + -

rule.cssText (Property)
The CSS text belonging to a style sheet rule.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myRule.cssText

This is the text that would be entered into a style sheet to describe a particular CSS rule. Since it is
returned as text, there is no implied structure to it so you will need to parse it out if necessary.

rule.parentStyleSheet (Property)
The style sheet that owns this rule object.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: StyleSheet object

JavaScript syntax: - myRule.parentStyleSheet

There is a hierarchy of objects contained in the CSS style sheet support. Rules describe a style and
are collected together into owning parent style sheets.

See also: Hierarchy of objects

R - rule.readOnly (Property)

1853

rule.readOnly (Property)
Some rules can be set read-only to prevent their styles from being changed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myRule.readOnly

You may want to define a style in a style sheet and lock it down to prevent the JavaScript code
from altering its appearance. Setting this property to true will lock the rule and prevent it from
being changed.

See also: StyleSheet.readOnly

Property attributes:
ReadOnly.

rule.runtimeStyle (Property)
The style values at run-time taking into account all cascades and dynamic style changes.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Style object

JavaScript syntax: IE myRule.runtimeStyle

Various objects are used to describe the cascading style effect. Rules are associated with style sheets
and yet more are instantiated and associated with objects. The current style takes into account the
cascaded effect and run-time style further extends this to include style changes that are driven by
scripts. This gives you a level of access that may help to un-cascade a style and apply new styling
effects dynamically as needed.

rule.selectorText (Property)
The selector text for a rule.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myRule.selectorText

JavaScript Programmer's Reference

1854

This is the part of the CSS style definition text that associates the rule with a document element. For
example, a rule that applies to the BODY of a document has the value "BODY" stored in its
selectorText property.

See also: SelectorArray object

Property attributes:
ReadOnly.

rule.style (Property)
The style settings for a rule.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Style object

JavaScript syntax: - myRule.style

The rule is the owner of a style object which contains properties governing the various style
attributes. The order and priority of the rules dictate how the style objects cascade to create the
currentStyle and the runtimeStyle objects.

See also: style object (2)

runtimeStyle object (Object/JScript)
A style that applies to an object at run-time and overrides other style settings.

Availability: JScript – 5.0
Internet Explorer – 5.0

Inherits from: style object

JavaScript syntax: IE myRuntimeStyle = myElement.runtimeStyle

Object methods:
getAttribute(), getExpression(),
removeExpression(), setAttribute(),
setExpression()

This represents the cascaded format and style of its parent object. The value in this object overrides
global style-sheets, inline styles and HTML tag attribute values. It overwrites the values provided
by currentStyle objects but not those supplied by the style object.

R - RValue (Definition)

1855

The properties belonging to this object correspond closely to those of the style object and so there
is little point in discussing them again here. Refer to the style object property descriptions for
details of the various properties.

Because the style values are cascaded from style sheet to style sheet and may include some inline
styles as well as some explicit styles, objects need to maintain a current style value that is the result
of all the inheritances applied on top of one another.

In addition they maintain a run-time style which reflects dynamic changes as well. The
runtimeStyle is based on the currentStyle originally.

See also: currentStyle object, Element.currentStyle,
Element.runtimeStyle, style object (2)

Method JavaScript JScript N IE Opera Notes

getAttribute() - 5.0 + - 5.0 + - -
getExpression() - 5.0 + - 5.0 + - -
removeExpression() - 5.0 + - 5.0 + - -
setAttribute() - 5.0 + - 5.0 + - -
setExpression() - 5.0 + - 5.0 + - -

RValue (Definition)
The result of evaluating an expression.

An RValue is the value of an expression. This is based on the assignment expression in its general
form being like this:

LValue = RValue;

This is otherwise known as the "value of an expression".

An RValue can be a variable or a constant whereas an LValue must be a variable or some other
identifier that indicates a modifiable storage location.

See also: Assignment expression, Definition, LValue, Property value

S object (Object/HTML)
An object that represents the font style controlled by the <S> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Deprecated: Yes

Inherits from: Element object

IE myS = myDocument.all.anElementID

IE myS = myDocument.all.tags("S")[anIndex]

IE myS = myDocument.all[aName]

- myS = myDocument.getElementById(anElementID)

- myS = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myS = myDocument.getElementsByTagName("S")[anIndex]

HTML syntax: <S> ... </S>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript Nav IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning

onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning

onDragStart - 3.0 + - 4.0 + - - - -

onFilterChange - 3.0 + - 4.0 + - - - -

Table continued on following page

S

Error! No text of specified style in document.

1857

Event name JavaScript JScript Nav IE Opera DOM HTML Notes

onHelp - 3.0 + - 4.0 + - - - Warning

onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning

onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning

onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning

onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning

onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning

onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning

onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning

onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning

onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Same origin (Security related)
A policy for granting access across window boundaries.

The same origin policy is a foundational concept as far as browser security is concerned. Put simply,
it states that a script can access the contents of another window or frame if the HREF for that target
was loaded from the same host at the same IP port number and with the same protocol.

This ensures that http: pages cannot read https: content and that pages served by a web server on
port 80 cannot read values from a potentially different web server on port 8080 for example. Both of
those also require that the host be the same.

This can be circumvented with UniversalBrowserRead privilege which allows properties to be
read from windows containing objects that were from a different origin. The
UniversalBrowserWrite property allows those objects with a different origin to be modified.
Granting both would allow a script to read and write properties in a window with a different origin.

The same origin policy applies to most but not all properties of a window. It does apply to almost
every property belonging to a document object.

You can allow documents from different origins to access properties belonging to your window and
document but you need to provide a public API to let them do this. You can alias the private
properties by publishing them as user-defined values.

Chapter number

1858

You can also relax the same origin policy as far as hostnames are concerned by setting the domain
property. You could set the domain value inside a document as long as it is a genuine fragment of the
host name. If you do this in two documents, both served from different hosts belonging to a higher
level domain that is the same, the same origin policy is relaxed when the domain value is identical for
both documents.

Warnings:
❑ The common domain access relaxation technique only works for JavaScript version 1.1 and higher.

See also: export, import, Security policy, Signed scripts,
UniversalBrowserAccess, UniversalBrowserRead,
UniversalBrowserWrite

SAMP object (Object/HTML)
An object representing the HTML content delimited by the <SAMP> tags.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE mySAMP = myDocument.all.anElementID

IE mySAMP = myDocument.all.tags("SAMP")[anIndex]

IE mySAMP = myDocument.all[aName]

- mySAMP = myDocument.getElementById(anElementID)

- mySAMP =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySAMP =
myDocument.getElementsByTagName("SAMP")[anIndex]

HTML syntax: <SAMP> ... </SAMP>

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 1.0 + - 3.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning

Table continued on following page

Error! No text of specified style in document.

1859

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 1.0 + - 3.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Scalar type (Definition)
Data types composed of a single arithmetic atomic component.

Scalar type values are those which are not aggregate and which are numeric or arithmetic in capability.

See also: Aggregate type, Type

Scope (Definition)
The part of the script within which an identifier is reachable.

An identifier is scoped to be globally available everywhere or locally available only within a function block.

However, JavaScript allows identifier names in local contexts to override those in the global context.

This means that an identifier name can be reused within a function and the local value will be used in
place of the global value. Other global variables not overridden will be accessed from the global pool.

Example code:
// Declare a global value
var myVariable = "Global Value";
// Declare a local value inside a function
 bodyfunction local_scope(){var myVariable = "Local Value";
document.write(myVariable);}
// Demonstrate the scope override local replacing global
document.write(myVariable);
local_scope();

Chapter number

1860

See also: __parent__, Scope chain, Variable

Cross-references:
Wrox Instant JavaScript – page – 27

Scope chain (Definition)
A scope chain is a logical list of objects associated with an execution context.

Availability: ECMAScript edition – 2

Identifiers are accessible within the scope of the function body they are created in, or within the
global scope.

A scope chain is a logical list of objects associated with an execution context and which indicates the
order in which target objects are bound to identifiers.

When the flow of control enters an execution context, the scope chain is created and populated with
an initial set of objects. What objects these are depends on the type of code being executed. The scope
chain is destroyed on exit from the execution context. This means that factors that affect the
construction and ordering of a scope chain may cause it to be created differently each time a
particular execution context is entered.

Calling one function from within another builds an increasingly deep scope chain containing each
function's identifiers as it builds.

During execution, the scope chain of an execution context is only affected by the presence of a with
code block. If a with block is entered, the scope chain has the with block added to the front of it.
This is because variables may be local to the with block and may override earlier defined variables
during the name binding process. When the with block is left, the scope chain is bumped to remove
the item at the front. This happens when the code exits normally, with a break or because of a
continue statement.

This scope chain behaviour is different to that you may be used to with a procedural language where
the scope is block structured.

The scoping rules allow for identifiers in the global pool to be overridden by identifiers in the local
context that have the same name.

Scope chains are only affected by with blocks and function calls. An if block or an iterator loop
block does not have a context in which to create a new scope item. In a compiled language, such as
ANSI C, you can create variables that are local to conditional and iterator blocks. The code in a
conditional and iterator block in a JavaScript session uses the scope chain as it was when the block
was entered.

Error! No text of specified style in document.

1861

Global

Function call

Function call

Function call

Function call

Function call

Function call

See also: __parent__, break, Call by value, Completion type, Compound statement,
continue, Declaration, Execution context, Identifier, Identifier resolution,
Implementation-supplied function, Namespace, Parameter, Scope, Storage
duration, Variable, with ...

Cross-references:
ECMA 262 edition 2 – section – 10.1.1

ECMA 262 edition 2 – section – 10.1.4

ECMA 262 edition 3 – section – 10.1.4

Wrox Instant JavaScript – page – 27

Scope of event handler (Definition)
The scope of an event handler is somewhat different to the normal scope.

Refer to:
Event handler scope

Chapter number

1862

screen (Property)
An alias for the window.screen property.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type:
Screen object

- myWindow.screen
JavaScript syntax:

- screen

Property attributes:
ReadOnly.

Refer to:
Window.screen

Screen object (Object/browser)
An object that represents the screen display and its rendering capabilities.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

- myScreen = myWindow.screen
JavaScript syntax:

- myScreen = screen

Object properties:
availHeight, availLeft, availTop, availWidth,
bufferDepth, colorDepth, fontSmoothingEnabled,
height, pixelDepth, updateInterval, width

The properties of this object describe the physical attributes of the display screen the browser is
currently operating in. The values reflected by users of desktop computers will describe a much
higher resolution than a WebTV set-top box, for example. Other set-top boxes for use with TV should
conform to the same resolution but it is likely that they will all vary slightly from one another.

Warnings:
❑ Some documentation resources have referred to this object as a screen object rather than a Screen

object. Note the capitalization. When examined, we found that several browsers spell the object with
a capital S.

See also: JellyScript, Window.screen

Error! No text of specified style in document.

1863

Property JavaScript JScript N IE Opera DOM HTML Notes

availHeight 1.2 + 3.0 + 4.0 + 4.0 + 5.0+ - - ReadOnly
availLeft 1.2 + - 4.0 + - - - - ReadOnly
availTop 1.2 + - 4.0 + - - - - ReadOnly
availWidth 1.2 + 3.0 + 4.0 + 4.0 + 5.0+ - - ReadOnly
bufferDepth - 3.0 + - 4.0 + - - - -
colorDepth 1.2 + 3.0 + 4.0 + 4.0 + 5.0+ - - ReadOnly
fontSmoothing
Enabled

 - 3.0 + - 4.0 + - - - -

height 1.2 + 3.0 + 4.0 + 4.0 + 5.0+ - - ReadOnly
pixelDepth 1.2 + - 4.0 + - 5.0+ - - ReadOnly
updateInterval - 3.0 + - 4.0 + - - - -
width 1.2 + 3.0 + 4.0 + 4.0 + 5.0+ - - ReadOnly

Screen.availHeight (Property)
The available height taking task bars and menu bars into consideration.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myScreen.availHeight

This property is extremely important when developing content for platforms with different screen
sizes. Although historically, screen sizes have been more or less the same, with the advent of web on
TV set-top boxes, this property can have a much wider range of possble values.

Property attributes:
ReadOnly.

Screen.availLeft (Property)
The left-most pixel that is accessible in this screen.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myScreen.availLeft

Chapter number

1864

Property attributes:
ReadOnly.

Refer to:
Screen.availHeight

Screen.availTop (Property)
The top-most pixel that is accessible in this screen.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: N myScreen.availTop

Property attributes:
ReadOnly.

Refer to:
Screen.availHeight

Screen.availWidth (Property)
The available width taking task bars and menu bars into account.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myScreen.availWidth

Property attributes:
ReadOnly.

Refer to:
Screen.availHeight

Error! No text of specified style in document.

1865

Screen.bufferDepth (Property)
The pixel Z-depth for the off-screen buffer.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myScreen.bufferDepth

This property is important if you are trying to match colors properly. Knowing that you have a
limited display palette available means you can optimize your content accordingly.

Screen.colorDepth (Property)
The number of bits available to resolve color values.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myScreen.colorDepth

To establish the number of available colours, raise the value 2 to the power of this value.

The technical description of this value is that it is the base-2 logarithm of the number of colours
available.

You will likely get one of the following values:

❑ 1 bit – black and white

❑ 8 bits – 256 colours

❑ 16 bits – thousands of colours

❑ 24 bits – millions of colours

❑ 32 bits – millions of colours (possibly with transparency thrown in)

Other values are possible but unlikely.

Property attributes:
ReadOnly.

Chapter number

1866

Screen.fontSmoothingEnabled (Property)
A switch to control the kind of font rendering on the screen.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myScreen.fontSmoothingEnabled

This may not be supported on all available platforms. The effects of font smoothing are subtle but can
significantly improve readability of the content on the screen.

Screen.height (Property)
The physical height of the screen display in pixels.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myScreen.height

Property attributes:
ReadOnly.

Refer to:
Screen.availHeight

Error! No text of specified style in document.

1867

Screen.pixelDepth (Property)
The pixel Z-depth for the screen display.

Availability: JavaScript – 1.2
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: N myScreen.pixelDepth

Property attributes:
ReadOnly.

Refer to:
Screen.colorDepth

Screen.updateInterval (Property)
The screen refresh rate.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myScreen.updateInterval

This may be important for creating animated effects. You can avoid strobing and flickering artefacts if
you are aware of the refresh rate of the screen and don't try to update the display too often for the
available refresh rate.

Screen.width (Property)
The physical width of the screen display in pixels.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Property/method value type: Number primitive

JavaScript syntax: - myScreen.wiidth

Chapter number

1868

Property attributes:
ReadOnly.

Refer to:
Screen.availHeight

screenLeft (Property)
The left edge of the display screen.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

IE myWindow.screenLeft
JavaScript syntax:

IE screenLeft

Refer to:
Window.screenLeft

screenTop (Property)
The top edge of the display screen.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

IE myWindow.screenTop
JavaScript syntax:

IE screenTop

Refer to:
Window.screenTop

screenX (Property)
The X coordinate of the window within the screen display.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

Error! No text of specified style in document.

1869

N myWindow.screenX

N myWindow.screenX = aCoordinate

N screenX

JavaScript syntax:

N screenX = aCoordinate

Argument list: aCoordinate A pixel position on the screen

Refer to:
Window.screenX

screenY (Property)
The Y coordinate of the window within the screen display.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Number primitive

N myWindow.screenY

N myWindow.screenY = aCoordinate

N screenY

JavaScript syntax:

N screenY = aCoordinate

Argument list: aCoordinate A pixel position on the screen

Refer to:
Window.screenY

Script (Definition)
A collection of source elements and optional function declarations.

Availability: ECMAScript edition – 2

The ECMAScript standard describes a script as a collection of source elements and optional function
declarations.

Any statements that are not part of a function body are considered to be part of the global code. The
statements encountered as part of the global code are executed as they are parsed. Any statements
that are inside a function body are simply stored and deferred for execution until the function is
actually called.

See also: Function code, function(...) ..., Global code, Script
execution, Script source text, Script termination

Chapter number

1870

Cross-references:
ECMA 262 edition 2 – section – 14

ECMA 262 edition 3 – section – 14

Script execution (Definition)
The process of running script.

Scripts are executed in several different ways according to the context and environment in which they
are run.

Script code enclosed inside <SCRIPT> tags in a web page is executed as the page is rendered or when
the browser generates events. Some of the code (the global code) is executed as the page is loaded.
Code contained in functions is called as it is needed, however it’s probably a good idea not to call
function code that is defined in <SCRIPT> tags within the <BODY> from global code that is in the
<HEAD> of a web page. Some implementations may not mind but others may fail.

Some web browsers will allow you to access objects within the document while it is being built,
others will only allow access to objects once the closing </BODY> tag has been processed. This
suggests that there is some fixing up of the internal object referencing structures that is required
before the DOM tree can be traversed. An example of this is the way that MSIE handles <DIV> and
<OBJECT> tags. You may not reference an <OBJECT> tag from a script until the body.onLoad
event. You can sometimes access <DIV> blocks after they have been created but before the </BODY>
has been reached. This behaviour may be version-1specific and also OS-specific and it may be that
Macintosh and Windows versions of a browser behave differently. In the case of MSIE and Netscape
Navigator, the rendering engines of both were rewritten at versions 5 and 6 respectively, and
therefore many previous problems will be gone, only to be replaced by many new ones.

Scripts may be activated by a CGI interface when they are used in the middle-ware part of a server-
side solution. These implementations will generally lack any kind of document model but instead will
have a file system model and possible a means of reaching a database.

Scripts in embedded implementations may be triggered by a variety of situations. TV set-top boxes
may trigger a JavaScript in receipt of a URL encoded into the vertical interval of the TV signal. This is
a way of hiding URL data in the same way as closed caption and teletext information. Analogue TV is
being phased out over the next few years but similar mechanisms will be provided with the new
digital TV platforms.

Scripts used in WAP phones provided a card and stack metaphor very like HyperCard. This is
embodied in WML and WScript. The scripts are the mechanism by which the pages are presented to the
user. They are transmitted in a compact byte-code form, which needs to be compiled before delivery.

Warnings:
❑ In Navigator 2, when a window is resized, all the scripts in a page are executed again. You may not

want this to happen.

See also: <SCRIPT EVENT="...">, Event, Event handler in <SCRIPT>,
Host environment, iCab, Internet Explorer, Netscape Navigator,
OpenTV, Opera, PDF, Platform, Script, Script termination, Side
effect, Storage duration, WebTV, WScript

Error! No text of specified style in document.

1871

Cross-references:
O'Reilly JavaScript Definitive Guide – page – 221-5

Wrox Instant JavaScript – page – 5

Script fragment (Definition)
A small portion of a script source text.

A script fragment is so small that it hardly qualifies as a script in its own right.

You might find a fragment of script in a <SCRIPT> block that is placed into am <HTML> document and
executed inline as the page is loaded. It might contain only a single document.write() statement.

Another likely candidate for being called a script fragment is an event handler in an anchor tag. This
might call a function or just set a variable value. It might be one or even several lines of JavaScript
code separated by semi-colons.

See also: Script Source Text, Statement

Cross-references:
Wrox Instant JavaScript – page – 16

SCRIPT object (Object/HTML)
An object that represents a <SCRIPT> block within the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE mySCRIPT = myDocument.all.anElementID

IE mySCRIPT = myDocument.all.tags("SCRIPT")[anIndex]

IE mySCRIPT = myDocument.all[aName]

- mySCRIPT = myDocument.getElementById(anElementID)

- mySCRIPT = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- mySCRIPT = myDocument.getElementsByTagName
("SCRIPT")[anIndex]

HTML syntax: <SCRIPT> ... </SCRIPT>

Chapter number

1872

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties:
charset, defer, event, htmlFor, readyState,
recordNumber, src, text, type

Event handlers:
onClick, onDblClick, onError, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange

Given that you can access a SCRIPT object, you may be tempted to write some self-modifying code.
This is not recommended. You should be able to accomplish everything you need to do in that respect
with an eval() method and that would be more widely supported across browsers.

Accessing the script block may be useful to ascertain whether a particular function is available, although
you should know that since you wrote the page yourself. On the other hand, if you imported a script
block with a reference to a .js file, you may not know the provenance of its contents.

In the example, the source text is extracted from a script block and executed with an eval() function.
The variable value is set according to the evaluated script which replaces the default value.

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT ID="ONE">
block = "ONE";
</SCRIPT>
<SCRIPT ID="TWO">
block = "TWO";
</SCRIPT>
<SCRIPT ID="THREE">
block = "THREE";
</SCRIPT>
<SCRIPT ID="FOUR">
block = "FOUR";
mySourceText = eval(document.scripts.THREE.text);

document.write(block);
</SCRIPT>
</BODY>
</HTML>

See also: Document.scripts[], Element object

Error! No text of specified style in document.

1873

Property JavaScript JScript N IE Opera DOM HTML Notes

charset 1.5 + - 6.0 + - - 1 + - Warning
defer 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
event 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly
htmlFor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly
readyState - 3.0 + - 4.0 + - - - ReadOnly
recordNumber - 3.0 + - 4.0 + - - - Warning,

ReadOnly
src 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly
text 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onError 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onLoad 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onReadyStateChange - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

SCRIPT.charset (Property)
The character set that a script conforms to.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Chapter number

1874

Property/method value type: String primitive

JavaScript syntax: N mySCRIPT.charset

This would contain the character set being used by the script file referred to by the SRC="..."
HTML tag attribute. For example the value "iso-8859-1" is likely to be returned but the local
variant of the browser and OS may affect the value you get.

This property might contain a value such as:

csISO5427Cyrillic

Details of other aliases can be located at the IANA registry (see web reference below).

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

Web-references:
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

SCRIPT.defer (Property)
Whether the execution of a script object is to be deferred during page loading to speed the
construction of a page.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - mySCRIPT.defer

Deferring script execution can sometimes get round some tricky problems with accessing a page
before it is ready. There are certain stages that the page object model undergoes which are not
apparent from the outside.

For example, when loading a page a complex object hierarchy needs to be built. That is not going to be
complete until the closing </BODY> tag is encountered. Before that time, certain objects may be accessed
but others may not. For instance, prior to the body closure, you cannot use a document.write() to
insert an ActiveX <OBJECT> tag using inline coding techniques. You can do a <DIV> block replacement
when the body has closed but an error results if you try to do this too soon.

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

See also: XML.defer

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Error! No text of specified style in document.

1875

SCRIPT.event (Property)
Scripts can be associated with events in the event model.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySCRIPT.event

Although this is not portable, it might be very useful as a debugging aid when developing scripts.

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

Property attributes:
ReadOnly.

SCRIPT.htmlFor (Property)
The element ID associated with the FOR="..." HTML tag attribute in the <SCRIPT> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySCRIPT.htmlFor

Scripts can be bound to a named document element object. This returns the ID value for the HTML
element to which the script object is bound.

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

Property attributes:
ReadOnly.

Chapter number

1876

SCRIPT.readyState (Property)
The current status disposition of a <SCRIPT> block as it is being loaded.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE mySCRIPT.readyState

This property reflects the loading state of a <SCRIPT> block that is loaded from a source file.

Sometimes, you can design scripts to execute while the document is downloading, inline scripts for
example. At that time, you may even be able to trigger interval timed deferred executions as well.

If it is important that the document has completed loading before execution, you can check this
property for one of the following values:

State Value

uninitialized The object is first instantiated but has not begun loading.
loading The object has commenced loading.
loaded The object has completed loading.
interactive The object is loaded but not yet closed but is ready to handle

interaction.
complete The object body has been closed and the loading is finished.

An object may not need to reflect the complete status before you can commence operating on it. Other
objects may require that they are completely loaded. For example, you cannot create an OBJECT
object that represents an <OBJECT> tag until the <BODY> has completed loading. This is because the
ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: onReadyStateChange

Property attributes:
ReadOnly.

SCRIPT.recordNumber (Property)
The record number within the data set that created the script's content.

Availability: JScript – 3.0
Internet Explorer – 4.0

Error! No text of specified style in document.

1877

Property/method value type: Number primitive

JavaScript syntax: IE mySCRIPT.recordNumber

This is a property that is part of the MSIE data binding support. It contains an integer value that is the
record number within the data set that created this object.

This is useful when you are building pages with ASP and Active Data Objects (ADO).

Warnings:
❑ This is not supported by Netscape Navigator.

See also: Active Server Pages, ADO

Property attributes:
ReadOnly.

SCRIPT.src (Property)
The URL where the source text for a script block is kept.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySCRIPT.src

This property is read-only. There would be little point in reloading the script code from a new URL
and it could be quite dangerous to allow this to happen under script control.

MSIE may yet still provide some access to the contents of a script object in a way that lets you change
the script source contained in a <SCRIPT> block. It certainly lets you read the source text.

Warnings:
❑ This is not supported by Netscape Navigator.

See also: <SCRIPT SRC="...">

Property attributes:
ReadOnly.

Chapter number

1878

SCRIPT.text (Property)
The textual content of a script block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySCRIPT.text

You can use this to check for the existence of a function before attempting to call it.

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

Property attributes:
ReadOnly.

SCRIPT.type (Property)
The MIME type of the <SCRIPT> block's content.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - mySCRIPT.type

HTML syntax:
<SCRIPT TYPE="...">

The MIME type of the script object is accessible through the value of this property.

Refer to the MIME type topic for details of the available MIME types you will likely see in this property.

Warnings:
❑ This is not supported by Netscape Navigator prior to version 6.0.

Error! No text of specified style in document.

1879

See also: <SCRIPT TYPE="...">, <STYLE TYPE="...">,
StyleSheet.type

Property attributes:
ReadOnly.

Script Source Text (Definition)
The original source text that is interpreted and executed.

Availability: ECMAScript edition – 2

JavaScript implementations that conform to ECMAScript are embodied as a source text that a human
can read and edit in a programming environment or text editor. The text of the script source must be
expressed using the lower 128 character entities in the Unicode version 2.0 character set.

You can use other Unicode characters but only within comments and string literals.

Any Unicode character can be represented with an escape sequence composed only of characters in
the lower 128 range. The escape sequence follows the normal tradition of specifying the character
value (in hex) using its numeric position within the character set, like this:

\u47AD

Within a comment, such an escaped Unicode character is effectively ignored while within a string
literal, it contributes a single character to the string.

Although all the characters in a conforming script are Unicode, they are treated with any context
dependent interpretation as specified in the Unicode standard. The value of a 16 bit character is
sometimes called a code point.

In JavaScript, escape sequences inside comments are never interpreted. That's actually a good thing,
because the \u000A escape sequence is a line terminator and if you had one and commented out the
line suddenly your script would break.

See also: Comment, Escape sequence (\), Formal Parameter List,
function(...) ..., Lexical convention, Script,
Script fragment, Variable Declaration, Variable instantiation

Cross-references:
ECMA 262 edition 2 – section – 6

ECMA 262 edition 3 – section – 6

Chapter number

1880

<SCRIPT SRC="..."> (HTML Tag Attribute)
The URL to access an insertable fragment of JavaScript contained in an include file.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

HTML syntax: <SCRIPT SRC="..."></SCRIPT>

Argument list: ... A URL to reach an includable .js file.

This provides a way to include JavaScript from an external file and share some common functionality
among several pages. No data is transported from page to page apart from that which is in the
included file as assignment statements, so this is not a means of maintaining state between pages.

Although this behaves in the same way as script that is in the HTML page itself, some people prefer
not to call this inline code because it’s held in a separate file. It depends whether you are referring to
the location of the code when you use the term inline or whether you are talking about how it is
executed; included script code is executed inline.

You can refer to javascript .js files on your local client-side hard disk as long as the page is not being
requested from a web server. To access a local client file in a page coming from a web server would be
to break the security regimes established to prevent client systems being hacked by intruders.

This is a really useful technique for debugging because you can build an entire library of object
disassembly and diagnostic tools and include them in a script block which you can then eliminate
when the code goes into production use.

A lot of the undocumented features of the browsers were uncovered in this way.

Warnings:
❑ Included files sometimes do not work as expected. Browsers do not always support the capability, or

may not be configured to accept the application/x-JavaScript MIME type as an executable
file with a .js file extension.

❑ Note also that although you can examine the properties of SCRIPT objects within the MSIE browser,
the SCRIPT objects that are created as a result of a SRC="..." include will not enumerate their
properties without causing a run-time error in your script.

Example code:
<SCRIPT SRC="include.js">
</SCRIPT>

// This content goes into include.js
function getBrowserType()
{
 var myUserAgent;
 var myMajor;
 myUserAgent = navigator.userAgent.toLowerCase();
 myMajor = parseInt(navigator.appVersion);

Error! No text of specified style in document.

1881

 if((myUserAgent.indexOf('mozilla') != -1) &&
 (myUserAgent.indexOf('spoofer') == -1) &&
 (myUserAgent.indexOf('compatible') == -1) &&
 (myUserAgent.indexOf('opera') == -1) &&
 (myUserAgent.indexOf('webtv') == -1)
)
 {
 return "N";
 }
 if (myUserAgent.indexOf("msie") != -1)
 {
 return "msie";
 }
 return "other";
}

document.write(getBrowserType());

See also: .js, <SCRIPT ARCHIVE="...">, <SCRIPT>, Adding JavaScript to HTML,
File extensions, Inline script, MIME types, SCRIPT.src, Security policy

Cross-references:
Wrox Instant JavaScript – page 42

Script termination (Definition)
The act of halting the execution of a script.

Scripts may terminate in an expected and normal way or abnormally due to some problem. The
predominant reason for premature aborts of scripts is some kind of programmer error, most likely a
syntax error or a reference to a non-existent object.

Web browsers behave in different ways and you may be able to add development tools around the
browser to catch the exception as it happens and carry out some debugging.

Generally speaking the debugging tools for JavaScript are weak by comparison with those that you
use with a compiled language. Some environments provide better tools than others do.

See also: Environment, Error handling, Execution environment, Script,
Script execution, Storage duration

<SCRIPT TYPE="..."> (HTML Tag Attribute)
The MIME type for a block of script code.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

HTML syntax: <SCRIPT TYPE="..."> someCode </SCRIPT>

... A MIME type that signifies JavaScript source text.Argument list:
someCode Some script source text

Chapter number

1882

This is an alternative method of selecting the interpreter to be used for the <SCRIPT> block. It has
limited support prior to the version 4.0 browsers and so it may be less portable for a while.

Warnings:
❑ If a browser does not understand this attribute and if there is not a corresponding LANGUAGE

attribute that it does understand, it is possible that the script block will be ignored and the script
code may not be executed.

Example code:
<SCRIPT TYPE="text/JavaScript">document.write("Basic functionality")</SCRIPT>

See also: <SCRIPT LANGUAGE="...">, <SCRIPT>, <STYLE TYPE="...">, MIME
types, SCRIPT.type, StyleSheet.type, text/JavaScript

Cross-references:
Wrox Instant JavaScript – page 42

</SCRIPT> (Pitfall)
Problems with closing <SCRIPT> tags.

You cannot use the string '</SCRIPT>' within an inline JavaScript fragment. Even if it is enclosed
inside quotation marks, it will still be seen by the parser and interpreted as a closure to the <SCRIPT>
tag. You will need to hide it by constructing the string from component parts and using concatenation
techniques to manufacture the string you need.

If you need to say this:

var myScriptTag = '</SCRIPT>';

Then you should do this:

var myScriptTag = '<' + '/SCRIPT' + '>';
which should hide the tag from the parser.

Another alternative is to escape the slash character with a backslash like this:

var myScriptTag = '<\/SCRIPT>';

Look at that previous line carefully, and see how the forward slash is preceeded by a backslash. After
a long day cranking code out that might look like an upper case V, so it might be best to use the
concatenation technique.

See also: <SCRIPT>, Pitfalls

Cross-references:
Wrox Instant JavaScript – page 45

Error! No text of specified style in document.

1883

<SCRIPT ARCHIVE="..."> (HTML Tag Attribute)
The URL to access an archive containing insertable fragments of JavaScript contained in a single file.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

HTML syntax: <SCRIPT ARCHIVE="..." SRC="..."></SCRIPT>

Argument list: ... A URL to reach an includable .js or .jar file

This tag attribute allows an archive file to be specified. This allows a whole collection of .js files to
be shipped as a single unit. The required .js file can then be included by extracting it from the
archive. If the archive is requested from the web server, it will likely persist in the cache and therefore
some time is saved by collecting these archives and referring to items contained within them.

The ARCHIVE tag attribute has no use on its own in this context and you must use it with the SRC
attribute.

Archives are called .jar files and are basically a zip-compressed collection of .js files. You will
probably find one of the Java development environments contains all the tools you need to create
these archives in a straightforward way. Actually you don't need anything more complex than a text
editor and a zip compression tool.

You can do this manually if you follow these steps:

❑ Create your collection of .js files

❑ Collect them into a zipped archive file whose file extension is .jar

❑ Construct some HTML to include them

❑ Call the functions as needed

Refer to the example for script and HTML code. Create the two files test1.js and test2.js and
store them in an archive called test.jar. Then create test.html with its <SCRIPT> tags to call in
the files from the archive. When you run it, you can see both functions are called during the
document.write() methods.

Example code:
// Save this into file test1.js
function test1()
{
 return "Test 1";
}

// Save this into file test2.js
function test2()
{
 return "Test 2";
}

Chapter number

1884

<!-- Save this as file test.html -->
<HTML>
<HEAD>
<SCRIPT ARCHIVE="./test.jar" SRC="test1.js"></SCRIPT>
<SCRIPT ARCHIVE="./test.jar" SRC="test2.js"></SCRIPT>
</HEAD>
<BODY>
<SCRIPT>
document.write(test1());
document.write("
");
document.write(test2());
document.write("
");
</SCRIPT>
</BODY>
</HTML>

See also: .jar, .js, <SCRIPT SRC="...">, <SCRIPT>, Adding JavaScript to HTML,
File extensions, Inline script, MIME types, Security policy

<SCRIPT EVENT="..."> (HTML Tag Attribute)
A tag attribute to associate a script block with an event to be handled.

Availability: JScript – 3.0
Internet Explorer – 4.0

This HTML tag attribute is quite useful when using ActiveX controls in web pages. You can use this
to attach a fragment of script to an event so that the screen gets updated.

Here is a skeleton of some HTML that attaches a script to an object that has been embedded:

<SCRIPT FOR="Xbutton" EVENT="Click()">

// Do some kind of stuff in here as a

// result of the ActiveX calling this

<SCRIPT>

<OBJECT ID="Xbutton" CLASSID="..." CODEBASE="..." STYLE="...">

<PARAM NAME="..." VALUE="...">

</OBJECT>

The CLASSID, CODEBASE, and other parameters depend on the ActiveX control you are embedding.
The point to make here is that as the page is loaded, the control will be displayed and when the user
clicks on it, the browser makes the association by mapping the FOR="..." HTML tag attribute in the
<SCRIPT> tag to the ID="..." attribute of the <OBJECT> tag. Then the event that the control
triggers is mapped to the EVENT="..." HTML tag attribute of the <SCRIPT> tag.

You can create a whole set of <SCRIPT> blocks, one for each event and control you expect to use.
This means the browser does the mapping and dispatching of events for you.

See also: <SCRIPT>, Event handler in <SCRIPT>, Script execution

Error! No text of specified style in document.

1885

<SCRIPT FOR="..."> (HTML Tag Attribute)
A tag attribute to associate a script block with an input element or for mapping script blocks to objects
embedded in web pages.

Availability: JScript – 3.0
Internet Explorer – 4.0

See also: <SCRIPT EVENT="...">, <SCRIPT>, Script execution

Refer to:
Event handler in <SCRIPT>

<SCRIPT ID="..."> (HTML Tag Attribute)
Script blocks can be given ID values so they can be identified within the document scripts array.

If you can identify a script block by its ID value, you should be able to locate the object and at least
read the contents of the script block. Some browsers may let you change the script block but it has
always been recommended practice to avoid self-modifying code.

See also: Document.scripts[]

<SCRIPT LANGUAGE="..."> (HTML Tag Attribute)
The required version of JavaScript to interpret the enclosed code.

HTML syntax: <SCRIPT LANGUAGE="..."> someCode </SCRIPT>

... The script language to use for this block of script sourceArgument list:
someCode Some script source text

As you embed the script code into an HTML page with the <SCRIPT> tag, you can indicate by means
of the LANGUAGE attribute which version of JavaScript (or indeed other scripting languages) the
interpreter should use to process the script. This is subtle and allows various aspects of the language
to be switched so that they behave differently according to the version selection.

It also provides a way to hide JavaScript written according to newer syntax conventions from older
browsers that cannot cope with it. In general, you should always try to specify the lowest version of
JavaScript to achieve maximum portability.

JavaScript version 1.2 implemented some different capabilities regarding equality tests where the
operands were different types. Selecting LANGUAGE="JavaScript" as opposed to
LANGUAGE="JavaScript1.2" affects how these tests are carried out when the script is executed.

Chapter number

1886

The following values are legal for the <SCRIPT> tag's LANGUAGE attribute:

Attribute Value Description

Nothing, attribute omitted Basic JavaScript functionality.
JavaScript Basic JavaScript functionality.
JavaScript1.1 Version 1.1 language capabilities.
JavaScript1.2 Version 1.2 language capabilities.
JavaScript1.3 Version 1.3 language capabilities.
JavaScript1.4 Version 1.4 language capabilities.
JavaScript1.5 Version 1.5 language capabilities.
VBScript Visual BASIC scripting in MSIE browsers.
Tcl In the HTML 4.0 specification, Tcl is used as an example.

The example below will display the text 1.3 in a Netscape 4.7 browser and the value 1.4 in version 5 of
MSIE for Macintosh.

Note with this technique that you should ensure you test for a high enough version. The browsers
will execute the versions indicated. If you only test up to version 1.2, then the variable assignment is
never going to reflect a 1.4 version capability.

Warnings:
❑ If a browser does not support the specified language, it may not execute the script block, even with a

degraded version of the interpreter.

❑ Be aware that Netscape 4 supports some special capabilities in JavaScript version 1.2 mode that are
not strictly correct according to the ECMA standard nor are they compatible with earlier versions of
Netscape Navigator and other browsers. If you find that you need to turn on JavaScript version 1.2
with the LANGUAGE attribute, check your scripts for portability very carefully.

Example code:
<!-- JavaScript version detector --->
<HTML>
<HEAD>
<SCRIPT LANGUAGE="JavaScript"> myVersion = "Generic";</SCRIPT>
<SCRIPT LANGUAGE="JavaScript1.0"> myVersion = "1.0";</SCRIPT>
<SCRIPT LANGUAGE="JavaScript1.1"> myVersion = "1.1";</SCRIPT>
<SCRIPT LANGUAGE="JavaScript1.2"> myVersion = "1.2";</SCRIPT>
<SCRIPT LANGUAGE="JavaScript1.3"> myVersion = "1.3";</SCRIPT>
<SCRIPT LANGUAGE="JavaScript1.4"> myVersion = "1.4";</SCRIPT>
<SCRIPT LANGUAGE="JavaScript1.5"> myVersion = "1.5";</SCRIPT>
</HEAD>
<BODY>
<SCRIPT>
document.write(myVersion);
</SCRIPT>
</BODY>
</HTML>

See also: <META>, <SCRIPT TYPE="...">, <SCRIPT>, Compatibility, Element.language

Error! No text of specified style in document.

1887

Cross-references:
Wrox Instant JavaScript – page 42

<SCRIPT> (HTML Tag)
A container for JavaScript in an HTML page.

HTML syntax: <SCRIPT> someCode </SCRIPT>

Argument list: someCode Some script source text

The <SCRIPT> tag is how the JavaScript code is embedded into a web page. There are several ways
to do this. Note that the <SCRIPT> tag must have an associated closing </SCRIPT> tag at the end of
the script source text. The following attributes may be useful:

❑ LANGUAGE

❑ SRC

❑ ARCHIVE

❑ TYPE

You can place the <SCRIPT> tag in the <HEAD> or <BODY> section of the page.

In the <HEAD> context, it is expected to provide some support to the rest of the page so you might
place useful functions and event handlers here. You can also put some global code here and it will get
executed inline, probably initializing some global variables. The intent is for the <HEAD> block to
contain only meta-information about the document. This implies you should not place a
document.write() method into the <HEAD> area such that it will be executed during page
loading. However, both the Netscape and MSIE browsers will allow the document.write() if it is
called during page loading even if it is located in the <HEAD> block.

It makes some sense to be sure that if you do a document.write() in the <HEAD> block, that you
make sure it writes something sensible. For example, you can write the document title from a script
that is executed inline. If you just write some textual output, the browsers are at least smart enough to
place it into the page body.

Because JavaScript is interpreted, it needs to have any functions declared before they are called.
However, this means they must be declared chronologically before they are called. This is not the
same as positionally defining them before they are called because the page content may be traversed
several times. For example, an event handler can probably be placed anywhere because very few
events happen before the </BODY> closure happens. Nevertheless, it is still probably good practice to
locate any functions that you can in <SCRIPT> blocks placed in the <HEAD> area.

You can place <SCRIPT> tags throughout the <BODY> of the document. These might also contain
functions but are more likely to contain inline code to be executed as the page is loading. Although
they are in different <SCRIPT> tag blocks, they are all conceptually part of the same script.

If your inline script code is going to do any document.write() calls to modify the HTML as the
page is loaded, then this is the optimum place to put the code. It’s quite sensible to break the code
into smaller <SCRIPT> blocks and place them appropriately throughout the document. If the code
starts to become complicated, then factor some of it into functions placed in the <HEAD> area and
then call it as needed from the <BODY> area.

Chapter number

1888

If you are using a frame-set, you can put the <SCRIPT> block after the <HEAD> tag but before the
<FRAMESET> tag. You could write the entire <FRAMESET> description at this point using
document.write() methods. You could do that with the entire <BODY> content too.

You can break your script code into smaller blocks, each one associated with a different
<SCRIPT></SCRIPT> area and, if necessary, each can be executed in a different version of
JavaScript. They will each have a different execution context and the scope chain may be affected,
although global variables should be reachable from anywhere.

When the browser encounters a <SCRIPT> tag, it pauses the processing of the HTML page
description and executes the <SCRIPT> tag's source code. That may affect subsequent HTML output
anyway, and may generate some HTML to be placed into the page at the point where the <SCRIPT>
block appears. Any lengthy script evaluation is going to slow down the display of your page. You
should defer any lengthy processing until you can use some sleight of hand to hide it. For example,
perhaps you can wait until the <BODY> tag is closed and then activate some processing with a <BODY
ONLOAD="..."> handler. This may be an issue if you are using included .js files since they will
need to be requested and fetched from a web server.

You can build event handlers and associate them with the event by means of the <SCRIPT> tag
attributes, but this only works in MSIE.

Warnings:
❑ Be aware that if you place <SCRIPT> blocks inside the <HEAD> of a document, you may be able to

initialize some data structures but you certainly won't be able to access any objects that belong to the
<BODY> since they won't yet exist.

❑ Note that during page loading, until you have reached the closing </BODY> tag, the page may be in
some intermediate state where objects and memory locations are not locked down. This may cause
some difficulties in writing to the document or changing the content of <DIV> blocks. In particular,
you cannot inline document.write() into the content of an <OBJECT> block. Until the page is
completed, the <OBJECT> is not properly linked into a structure in which you can access it from
JavaScript, this is the case with MSIE version 4 browsers, at least.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myResult = 100;
myExpr = myResult %= 1000;
document.write(myResult);
document.write("
");
document.write(myExpr);
document.write("
");
</SCRIPT>
</BODY>
</HTML>

Error! No text of specified style in document.

1889

See also: </SCRIPT>, <META>, <NOSCRIPT>, <SCRIPT ARCHIVE="...">,
<SCRIPT EVENT="...">, <SCRIPT LANGUAGE="...">, <SCRIPT
SRC="...">, <SCRIPT TYPE="...">, <STYLE TYPE="...">,
Adding JavaScript to HTML, Document.scripts[], Host
environment, HTML file, String, Web browser

Cross-references:
Wrox Instant JavaScript – page 42

ScriptArray object (Object/browser)
A collection of script blocks belonging to a document.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myScriptArray =
myDocument.scripts

Object properties: length

Object methods: item()

In the example, the document contains several script blocks. The script source is extracted and
formatted with an escape() function and line breaks are reinserted by means of the
String.split() and Array.join() methods.

Warnings:
❑ This is not supported by Netscape Navigator.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<TABLE BORDER=1>
<TH>Index</TH>
<TH>ID</TH>
<TH>Text</TH>
<SCRIPT ID="ONE">
block1 = "ONE";
</SCRIPT>
<SCRIPT ID="TWO">
block2 = "TWO";
</SCRIPT>
<SCRIPT ID="THREE">block3 = "THREE";</SCRIPT>
<SCRIPT ID="FOUR">
block4 = "FOUR";

Chapter number

1890

myLength = document.scripts.length;
for (myEnumerator=0; myEnumerator<myLength; myEnumerator++)
{
 mySourceText = escape(document.scripts[myEnumerator].text);
myArray = mySourceText.split("%0D");

 document.write("<TR><TD>");
 document.write(myEnumerator);
 document.write("</TD><TD>");
 document.write(document.scripts[myEnumerator].id);
 document.write("</TD><TD>");
 document.write(myArray.join("%0D
"));
 document.write("</TD></TR>");
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Collection object, Document.scripts[], ScriptArray.length

Property JavaScript JScript N IE Opera HTML Notes

length - 3.0 + - 4.0 + - - Warning, ReadOnly.

Method JavaScript JScript N IE Opera HTML Notes

item() - 3.0 + - 4.0 + - - -

ScriptArray.item() (Method)
An item selector for accessing a single script within the collection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
Script object

IE myScriptArray.item(anIndex)

IE myScriptArray.item(aSelector)
JavaScript syntax:

IE myScriptArray.item(aSelector, anIndex)

anIndex A zero based index into the collectionArgument list:
aSelector A textual value that selects all matching objects

Refer to:
Collection.Item()

Error! No text of specified style in document.

1891

ScriptArray.length (Property)
The number of script blocks in the current document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myDocument.scripts.length

Warnings:
❑ This is not supported by Netscape Navigator.

See also: Collection.length, ScriptArray object

Property attributes:
ReadOnly.

ScriptEase (Product)
A standalone JavaScript interpreter sold by Nombas Inc.

See also: Server-side JavaScript

Refer to:
Standalone JavaScript

ScriptEngine() (Function)
A special MSIE globally available function that describes the scripting engine currently installed for
use with the browser.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE ScriptEngine()

The following values will be returned by this function depending on the context in which it is called:

❑ JScript

❑ VBA

❑ VBScript

See also: Navigator.appMinorVersion

Chapter number

1892

ScriptEngineBuildVersion() (Function/global)
A special MSIE globally available function that describes the build version of scripting engine
currently installed for use with the browser.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

This is only available in the MSIE browser. It is useful if you are developing scripts and it is possible
that you could build a reference to this into a form that is submitted as part of an error handler. That
way you might determine what the error is, what caused it and note the build number of the script
interpreter. This may then yield a pattern. An essential part of the fault diagnosis process involves the
search for a pattern in the failures of a system. It is very possible that a certain build of the interpreter
could manifest a bug which is not present in other builds.

See also: Navigator.appMinorVersion

ScriptEngineMajorVersion() (Function/global)
A special MSIE globally available function that describes the major version number of the scripting
engine currently installed for use with the browser.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

See also: Navigator.appMinorVersion

Refer to:
ScriptEngineBuildVersion()

ScriptEngineMinorVersion() (Function/global)
A special MSIE globally available function that describes the minor version number of the scripting
engine currently installed for use with the browser.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

See also: Navigator.appMinorVersion

Error! No text of specified style in document.

1893

Refer to:
ScriptEngineBuildVersion()

Scriptlet (Definition)
A scripting component within the Windows Script Host environment.

Scriptlets are built in the WSH environment or in the web browser. They have evolved over time and
become useful for a variety of purposes.

Those items that used to be called scriptlets in the MSIE browser have evolved into what is now
called HTML components or HTCs for short.

The original kind of scriptlet (nowadays called a version 1 scriptlet) should now be referred to as a
DHTML scriptlet. It is used to construct an HTML object with XML and JavaScript.

A version 2 scriptlet is compiled from its XML and JavaScript source into an ActiveX object which can
be used in contexts other than web pages.

Standalone JavaScript scripts that run in WSH are not scriptlets but are simply scripts.

Scriptlets can be built in a variety of ways. Although we are mainly concerned with JavaScript, you
can use Perl or VBScript, too. They all use a similar XML framework.

See also: .htc, HTML Component

Cross-references:
Wrox Instant JavaScript – page – 284

Wrox Professional JavaScript – page – 776

Web-references:
news://msnews.microsoft.com/public.scripting.scriptlets
http://msdn.microsoft.com/scripting;
http://msdn.microsoft.com/workshop/languages/clinic/xmlscript.asp
http://wsh.glazier.co.nz/

scroll() (Method)
An alias for the window.scroll() method.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Deprecated: Yes

Property/method value type: undefined

news://msnews.microsoft.com/public.scripting.scriptlets
http://msdn.microsoft.com/scripting
http://msdn.microsoft.com/workshop/languages/clinic/xmlscript.asp
http://wsh.glazier.co.nz/

Chapter number

1894

- myWindow.scroll(aPositionX,
aPositionY)JavaScript syntax:

- scroll(aPositionX, aPositionY)

aPositionX A position in pixelsArgument list:
aPositionY A position in pixels

Refer to:
Window.scroll()

scrollbars (Property)
An alias for the window.scrollbars property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Bar object

- myWindow.scrollbarsJavaScript syntax:
- scrollbars

See also: Bar object

Property attributes:
ReadOnly.

Refer to:
Window.scrollbars

Error! No text of specified style in document.

1895

scrollBy() (Method)
An alias for the window.scrollBy() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- myWindow.scrollBy(anOffsetX,
anOffsetY)JavaScript syntax:

- scrollBy(anOffsetX, anOffsetY)

anOffsetX A distance in pixelsArgument list:
anOffsetY A distance in pixels

Document

Window

position 1

Window

position 2

Scroll by

distance

Refer to:
Window.scrollBy()

Chapter number

1896

scrollTo() (Method)
An alias for the window.scrollTo() method.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: undefined

- myWindow.scrollTo(aPositionX,
aPositionY)JavaScript syntax:

- scrollTo(aPositionX,
aPositionY)

aPositionX A location in pixelsArgument list:
aPositionY A location in pixels

Document

Window

position 1

Window

position 2

Scroll to

distance

Refer to:
Window.scrollTo()

Error! No text of specified style in document.

1897

secure (Property)
A flag indicating that a window was loaded from a secure source.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Boolean primitive

N myWindow.secure
JavaScript syntax:

N secure

false Window is not currently securely servedArgument list:
true Window was loaded from a secure location

Property attributes:
ReadOnly.

Refer to:
Window.secure

Security policy (Definition)
The rules about what can access local client-side resources.

The basic approach to security in JavaScript is to disallow anything that might be risky, which is quite
straightforward in the context of a web browser. However, there are ways to work around this with
signed scripts and calls to Java applets and ActiveX controls which may or may not be secure and in
any case are platform dependent.

JavaScript is now beginning to be used outside the browser and so scripts may be executed in all
kinds of contexts:

❑ Server side

❑ Unix command line shell

❑ Desktop standalone

❑ TV set-top box

❑ PDF forms

❑ WAP phones

Each of these has its own needs and limitations regarding security so there is not one overall approach
that works everywhere but rather a variety of techniques that apply on a platform by platform basis.
This means that particular fragments of script may work in one context but not in another.

In the browser, all networking capabilities are disabled. This is not so with some of the stand-alone or
some of the command-line shell environments where JavaScript may run.

Chapter number

1898

In Netscape 2, the security was very lax allowing JavaScript to send mail purporting to be from
another user.

Netscape 3 improved security while version 4 is built around a complete new security model.

MSIE supports different security models, in particular the Authenticode model that allows for signed
ActiveX objects to be used.

See also: .jar, <SCRIPT ARCHIVE="...">, <SCRIPT SRC="...">,
AuthentiCode, Code signing, Data-tainting, Document.domain,
Document.links[], Global object, https: URL, Netscape Enterprise
Server, Restricted access, Same origin, snews: URL, telnet: URL,
UniversalBrowserAccess, UniversalBrowserRead,
UniversalBrowserWrite, UniversalFileRead,
UniversalPreferencesRead, UniversalPreferencesWrite,
UniversalSendMail

Select object (Object/HTML)
A drop-down menu containing a list of <OPTION> items. These are used in forms to build menus and
pop-ups. They may select single items or multiple items.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Element object

IE mySelect = myDocument.all.anElementID

IE mySelect = myDocument.all.anElementID.elements
[anIndex]

IE mySelect = myDocument.all.tags("SELECT")[anIndex]

IE mySelect = myDocument.all[aName]

- mySelect = myDocument.getElementById(anElementID)

- mySelect = myDocument.getElementsByName(aName)
[anIndex]

- mySelect =
myDocument.getElementsByTagName("SELECT")
[anIndex]

- mySelect = myForm.aSelectName

- mySelect = myForm.elements[anIndex]

JavaScript syntax:

- mySelect = myForm[anIndex]

HTML syntax: <SELECT> ... </SELECT>

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element

Argument list:

aFormIndex A reference to a particular form in the forms collection

Error! No text of specified style in document.

1899

Object properties:
accessKey, dataFld, dataSrc, form, length, multiple,
selectedIndex, size, tabIndex, type, value

Object methods:
add(), remove(), tags()

Event handlers:
onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onDragStart, onFilterChange, onFocus, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onResize, onRowEnter, onRowExit, onSelectStart

Collections: options[]

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

Unusually, there actually is a Select object class where most other kinds of input are instances of an
Input object.

Event handling support via properties containing function objects was added to Select popup
objects at version 1.1 of JavaScript.

Unlike MSIE, the Netscape Navigator implementation of this object type does not support the
click() method.

The MSIE instance of this object is actually a SELECT object and not a Select object. This is another
example of class naming differences between browsers that may cause problems later.

Warnings:
❑ Note that this FormElement object type does not have a value property. You may need to make

allowances for that in generic form object handlers. Its value is reflected by the option item that is
currently selected. This FormElement object is not a sub-class of the Input object as many other
FormElements are.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="RESULT">???</DIV>
<FORM>
<HR>
<SELECT ID="IN1">
<OPTION VALUE="0">Sunday
<OPTION VALUE="1">Monday
<OPTION VALUE="2">Tuesday
<OPTION VALUE="3">Wednesday
<OPTION VALUE="4">Thursday
<OPTION VALUE="5">Friday
<OPTION VALUE="6">Saturday
</SELECT>
<INPUT TYPE="button" VALUE="CLICK ME" onClick="clickMe()">

Chapter number

1900

</FORM>
<SCRIPT>
//MSIE Only
function clickMe()
{
 selectedValue = document.all.IN1.value;
 document.all.RESULT.innerText = selectedValue;
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object, Form.elements[], FormElement object, Input object,
Input.accessKey, onChange, Option object, OptionsArray object,
response.getOptionValue(),
response.getOptionValueCount()

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
dataFld 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
dataSrc 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
form 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
length 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - ReadOnly.
multiple 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
selectedIndex 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
size 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
tabIndex 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly.
value 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

add() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
remove() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
tags() - 3.0 + - 4.0 + - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Table continued on following page

Error! No text of specified style in document.

1901

Event name JavaScript JScript N IE Opera DOM HTML Notes

onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Select.add() (Method)
Adds a new option object to a select list collection.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - mySelect.add(anElement, anIndex)

anElement The option element to addArgument list:
anIndex The index to insert it at

Select.length (Property)
The length of a select block for a popup menu.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - mySelect.length

Property attributes:
ReadOnly.

Chapter number

1902

Refer to:
Collection.length

Select.multiple (Property)
A flag indicating whether a select block can have multiple or single items only selected.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - mySelect.multiple

HTML syntax: <SELECT MULTIPLE>

If this flag is set to the Boolean true value, then several items in the list of options can be selected
simultaneously. They will be passed back in the form data as a comma separated list when the form is
sumitted.

See also: Select.options[], Select.selectedIndex, Select.size

Select.options[] (Collection)
An array of options objects one each per menu item.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Collection object

JavaScript syntax: - mySelect.options

You can create new option items dynamically with the Option() constructor. They can then be
assigned into the array of options. If you want to remove one, then simply assign null to its array
entry and the option will be removed from the popup menu.

See also: Option(), Option.index, OptionsArray object,
Select.multiple, Select.selectedIndex

Property attributes:
ReadOnly.

Error! No text of specified style in document.

1903

Select.remove() (Method)
Remove an item from a select list collection.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - mySelect.remove(anIndex)

Argument list: anIndex The option item to remove

Select.selectedIndex (Property)
The index of the selected item in a <SELECT> block.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - mySelect.selectedIndex

This is the index number of the Option object in the options[] collection belonging to the
receiving Select object. Note that this index number is only good while the options collection is not
modified. Adding new options or deleting options will change the ordering of the collection.

Feedback from several people suggests that in the case of a multiple selection taking place this
property returns the index of the first selected item.

See also: Select.multiple, Select.options[]

Select.size (Property)
The number of items currently chosen in the select popup.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - mySelect.size

Chapter number

1904

This is an integer value which is likely to be 1 most of the time. It is only meaningful if the
Select.multiple property is true and more than one item has been selected.

Here is a workaround for other browsers that don't have this property, kindly donated by Jon Stephens:

<SCRIPT>var mySize=0;for(var i=0; i<mySelect.options.length; i++){ mySize +=
mySelect.options[i].selected ? 1 : 0;}mySelect.size = mySize;</SCRIPT>

See also: Select.multiple

Select.tags() (Method)
A method for retrieving collections of objects belonging to a particular class and which are a subset of
the all[] collection for this object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Collection object

JavaScript syntax: IE mySelect.tags(aTagName)

Argument list: aTagName The name of a tag to be filtered

This is a technique that only works in MSIE. The tags() method is used on all manner of collections.

The collection is traversed and all objects are examined to see if they were created by an HTML tag
that is the same as that specified in the argument.

The argument must always be specified in upper case and the resulting collection will contain all
objects of that type selected from the receiving collection object.

You can then manipulate the sub-set collection in the normal way, accessing items within it by index
or by other means.

See also: Collection.tags()

Select.type (Property)
The type of select object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - mySelect.type

Error! No text of specified style in document.

1905

Because the Select object is not simulated by an Input object but by a specific class of its own, it
can support a non-standard behavior for the type property.

In this case, the type indicates the number of simultaneous selections within the popup.

The values for this property may be one of the following:

❑ SELECT-ONE

❑ SELECT-MULTI

Property attributes:
ReadOnly.

Select.value (Property)
The presently selected option value.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySelect.value

This is the string value that is sent back to the web server when the form is submitted.

This is equivalent to:

mySelect.options[mySelect.selectedIndex].value

It is the value of the first or only item selected in the popup. It will be the value of the first item when
multiple items have been selected.

See also: Input.value

Selection object (Object/browser)
An object representing a user selection in the current window.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE mySelection = myDocument.selection

Object properties: type

Object methods: clear(), createRange(), empty()

Chapter number

1906

This object represents a portion of the document in the current window that is currently highlighted,
having been selected by the user or by a script. The selection is operated on by means of a
TextRange object. This object is created by calling a createRange() method on the Selection
object. This step is necessary because a selection cannot by its very nature persist very long, so a
TextRange object encapsulates its value into a persistent store so it can be operated on, even though
the original selection may have been deselected.

In Netscape Navigator, an entirely different technique is used that involves the
document.getSelection() method.

Because it is easy to deselect the highlighted text by clicking on some other active object in the page,
you will need to access the selection inside an event handler that is triggered by the selection action
itself. This might be done quite effectively in an onSelectStart handler.

Warnings:
❑ Selection objects do not appear to be functional on any version of MSIE for the Macintosh. This

may be because the TextRange objects have not been mapped to the Macintosh cut and paste
architecture.

See also: Document.getSelection(), Document.selection,
Password.select(), TextRange object

Property JavaScript JScript N IE Opera HTML Notes

type - 3.0 + - 4.0 + - - ReadOnly.

Method JavaScript JScript N IE Opera HTML Notes

clear() - 3.0 + - 4.0 + - - -
createRange() - 3.0 + - 4.0 + - - -
empty() - 3.0 + - 4.0 + - - -

selection.clear() (Method)
A method to clear the area selected by the user.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE mySelection.clear()

The contects of the current selection are cleared. This is very tricky to do neatly and even harder to
accomplish in a portable manner. It is probably better to use the more structured innerHTML and
related properties of the DOM hierarchy to accomplish the effects you want.

Error! No text of specified style in document.

1907

selection.createRange() (Method)
A factory method for creating a text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextRange object

JavaScript syntax: myTextRange = IE mySelection.createRange()

You will need to create a TextRange to operate on a Selection object in the MSIE browser. Once
you have the TextRange you can then use script code to manipulate the content.

See also: TextRange object

selection.empty() (Method)
A means of emptying a selection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE mySelection.empty()

This deselects the text and sets the Selection object's type to "None". The document content is
unchanged and the only visible artifact is that the highlighted area returns to its normal
unhighlighted state.

selection.type (Property)
A property containing a type for the selection.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
String primitive

JavaScript syntax: IE mySelection.type

The selection type is reflected here. There are only two reasonable settings for this in the context of a
web browser (although there are potentially many other kinds of selection that are possible). The
property should contain either None or Text.

You can build a conditional check into your handler which only does something if the type of the
Selection object is set to "Text".

See also: Input.type

Chapter number

1908

Property attributes:
ReadOnly.

Selection statement (Definition)
A means of selecting one or other code block to be executed.

Selection statements provide a means of executing one of several possible blocks of code. The simplest
is the if(...) selector. The next most complex is the if(...) ... else ... selector.

A similar and related concept is the condition execution operator ?: which is functionally very
similar to an if (...) ... else ... selection.

The ECMAScript standard reserves the switch, case and default keywords at edition 2 and
mandates that they be supported functionally at edition 3.

See also: Conditionally execute (?:), else ..., if(...) ..., if(...) ...
else ..., switch(...) ... case: ... default: ...

SelectorArray object (Object/browser)
A collection of style sheet rules.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE mySelectorArray = myStyleSheet.rules

Object properties: length

Object methods: item()

This is sometimes referred to as a rules object which is not strictly true. It is often so named because
it is referenced by the rules property of a stylesheet.

DOM level 2 describes this object as a CSSRuleList object. It implies it is a sub-class of the
Collection object and therefore it supports the item() method.

See also: Collection object, rule object, rule.selectorText,
StyleSheet.rules[]

Property JavaScript JScript N IE Opera HTML Notes

length - 3.0 + - 4.0 + - - ReadOnly.

Method JavaScript JScript N IE Opera HTML Notes

item() - 3.0 + - 4.0 + - - -

Error! No text of specified style in document.

1909

SelectorArray.length (Property)
A count of the number of rules in a style sheet.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myStyleSheet.rules.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

self (Property)
An alias for the window.self property.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Window object

- myWindow.self

- self

- top

JavaScript syntax:

- window

This property yields a reference to the current window in which a script is running. This means that
the statement self.close() is effectively window.close().

This is another name for the window.window property in this context. However, self is useful
because you can build reusable scripts with it that can be used with a variety of object types and
instances. Don't forget that this can also refer to a Frame as well as a Window since they are both
represented by the Window object.

The self property can be used without the window prefix because it belongs to the global object in a
web browser window. Using the self keyword makes no difference to the functionality of a script
but it makes it easier to understand. For the same reason, you may want to use the window property
in the same way.

See also: Frame object, UniversalBrowserAccess,
UniversalBrowserWrite, Window object, Window.frame,
Window.self

Chapter number

1910

Property attributes:
ReadOnly.

Semantic event (Definition)
An event that has been mapped to the DOM.

See also: Error handler, Event propagation

Semi-colon (;) (Delimiter)
Semi-colon characters are used to mark the end of a statement.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

JavaScript syntax: - aStatement;

Argument list: aStatement A JavaScript statement

Semi-colon characters are used to mark the end of a statement, separating one from another.

JavaScript is somewhat forgiving and will place semi-colons into the script automatically as needed
except in some rare cases. Refer to the discussion on Automatic Semi-colon Insertion for more details.

Placing two semi-colons one after the other indicates a null statement. A line terminator can
separate them and an optional comment is also permitted.

See also: Automatic semi-colon insertion, Empty statement (;), Expression statement,
Line terminator, Statement, var

Cross-references:
ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 2 – section – 12.3

ECMA 262 edition 2 – section – 12.4

ECMA 262 edition 3 – section – 12.2

ECMA 262 edition 3 – section – 12.3

ECMA 262 edition 3 – section – 12.4

Wrox Instant JavaScript – page 18

Error! No text of specified style in document.

1911

SendMail object (Object/NES)
An object that encapsulates an outgoing e-mail message.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

NES mySendMail = SendMail
JavaScript syntax:

NES mySendMail = new SendMail()

Object properties:
Bcc, Body, Cc, constructor, ErrorsTo, From,
Organization, prototype, ReplyTo, Smtpserver,
Subject, To

Object methods: errorCode(), errorMessage(), send()

This provides a way for the Netscape Enterprise Server to send e-mail messages as a result of a client request.

You create a new message handling object with the SendMail() constructor. Then you define where
it is going to be sent, its subject matter and content by storing string values in its various properties.

Finally, you transmit the message via an SMTP server with the send() method.

Example code:
<SERVER>
mySendMail = new SendMail();
mySendMail.Smtpserver = "mailhost";
mySendMail.To = "someone@somewhere.com";
mySendMail.From = "me@here.com";
mySendMail.Subject = "A test message";
mySendMail.Body = "Some body text";
mySendMail.send();
</SERVER>

See also: Netscape Enterprise Server, SendMail(), unwatch(), watch()

Property JavaScript JScript NES Notes

Bcc 1.2 + - 3.0 + -
Body 1.2 + - 3.0 + -
Cc 1.2 + - 3.0 + -
constructor 1.2 + - 3.0 + -
ErrorsTo 1.2 + - 3.0 + -
From 1.2 + - 3.0 + -
Organization 1.2 + - 3.0 + -
prototype 1.2 + - 3.0 + -
ReplyTo 1.2 + - 3.0 + -
Smtpserver 1.2 + - 3.0 + -
Subject 1.2 + - 3.0 + -
To 1.2 + - 3.0 + -

Chapter number

1912

Method JavaScript JScript NES Notes

errorCode() 1.2 + - 3.0 + -
errorMessage() 1.2 + - 3.0 + -
send() 1.2 + - 3.0 + -

SendMail() (Constructor)
A constructor for creating objects that encapsulate an outgoing e-mail message.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: SendMail object

JavaScript syntax: NES new SendMail()

Use this as an alternative method of constructing instances by cloning objects rather than instantiating
fresh ones from the owning class.

See also: Netscape Enterprise Server, SendMail object

SendMail.Bcc (Property)
Defines the list of blind copy recipients.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.Bcc

This property contains the value that is transmitted in the BCC: header of the outgoing e-mail.

The value assigned to this property should be a comma separated list of BCC: recipient e-mail
addresses.

SendMail.Body (Property)
The body text for the e-mail message.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.Body

Error! No text of specified style in document.

1913

This property contains the value that is transmitted in the body of the outgoing e-mail.

You can store any valid 7 bit ASCII text here. If you want to get really sneaky, you can construct a
MIME type separator and embed some attachments or send a multi-part message.

SendMail.Cc (Property)
Defines a list of CC recipients.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.Cc

This property contains the value that is transmitted in the CC: header of the outgoing e-mail.

The value assigned to this property should be a comma separated list of CC: recipient e-mail addresses.

SendMail.constructor (Property)
A constructor function for object instances.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Function object

JavaScript syntax: NES mySendMail.constructor

The constructor is that of the built-in SendMail prototype object.

You can use this as one way of creating mail dispatchers although it is more popular to use the new
SendMail() technique.

This property is useful if you have an object that you want to clone but you don't know what sort of
object it is. Simply access the constructor belonging to the object you have a reference to.

SendMail.errorCode() (Method)
Retrieves an error code value after attempting to transmit.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Number primitive

JavaScript syntax: NES mySendMail.errorCode()

If the message sending failed, then you should be able to retrieve an error code value with this method.

Chapter number

1914

SendMail.errorMessage() (Method)
If there is an error, then you can obtain the message text with this method.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.errorMessage()

Use this method after calling the send() method to retrieve any pending error message text.

SendMail.ErrorsTo (Property)
Defines the recipient of error e-mails if the message fails to arrive.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.ErrorsTo

This property contains the value that is transmitted in the ErrorsTo: header of the outgoing e-mail.

The value assigned to this property should be a valid email address (or comma separated addresses).

If the receiving mail system experiences any problems during the onwards delivery to the recipient's
mailbox (for example, if it doesn't exist or is full), then a message is reflected back to the e-mail
address in the ErrorsTo: header.

SendMail.From (Property)
Defines the From address of the e-mail.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type:
String primitive

JavaScript syntax: NES mySendMail.From

This property contains the value that is transmitted in the From: header of the outgoing e-mail.

The value assigned to this property should be a valid e-mail address. It is considered to be bad
practice to forge From addresses in mail headers, and some mail systems will not allow you to do this
and will override the settings you define for this value.

Whatever value ends up in the From: header, the recipient can reply to this address if they mean to. It
makes sense for this to be a mail address that a human being will ultimately check although you may
want to put in some automation to read incoming e-mails if you expect a lot of responses.

Error! No text of specified style in document.

1915

SendMail.Organization (Property)
A standard header to describe the organisation you belong to.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.Organization

This property contains the value that is transmitted in the Organization: header of the outgoing e-mail.

The value assigned to this property can be any 7 bit ASCII string.

SendMail.prototype (Property)
The prototype for the SendMail object that can be used to extend the interface for all SendMail objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: SendMail object

NES SendMail.prototype
JavaScript syntax:

NES mySendMail.constructor.prototype

Refer to:
prototype property

SendMail.ReplyTo (Property)
The address to which replies should be sent.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.ReplyTo

This property contains the value that is transmitted in the ReplyTo: header of the outgoing e-mail.

The value assigned to this property should be a comma separated list of ReplyTo: recipient e-mail
addresses.

Beware that many mail clients do not honor this field, they will attempt to send messages back to the
ErrorsTo: or From: addresses or may even make one up. These header values are merely conventions
and although they are described in various RFC documents, mail clients are written by people whose
skills and attention to detail range from the plain careless to the highly professional.

Chapter number

1916

SendMail.send() (Method)
Sends the message encapsulated by this object.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

JavaScript syntax: NES mySendMail.send()

This connects to the sendmail process in the server and dispatches the message. There is an
implication here that because it uses sendmail, then the server can only run on platforms that
support sendmail. That further implies the platform is a Unix system, although sendmail is open
source and may be deployed on non-Unix platforms.

If sendmail is not available the results of calling this method are uncertain.

SendMail.Smtpserver (Property)
Defines the name of the SMTP server to which we shall connect and request that our message be sent.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.Smptpserver

You will need to consult your system administrator about this value. It is impossible to state with any
certainty what value you should assign to this property there are so many possible ways to configure
a mail server and deploy it. It may or may not be on the same machine as your web server.

SendMail.Subject (Property)
Defines the subject heading for the message.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.Subject

This property contains the value that is transmitted in the Subject: header of the outgoing e-mail.

The value assigned to this property should be a 7 bit ASCII string.

Error! No text of specified style in document.

1917

SendMail.To (Property)
Defines the To: address for the e-mail.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: NES mySendMail.To

This property contains the value that is transmitted in the To: header of the outgoing e-mail.

The value assigned to this property should be a comma separated list of To: recipient e-mail addresses.

These are the recipients of the e-mail and if you specify several, it may be more efficient as your
SMTP server can bulk deliver several messages at once.

server object (Object/NES)
An object that represents the server in server-side JavaScript implementations.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES server

Object properties: agent, host, hostname, port, protocol

Object methods: lock(), unlock()

This is a server-side host object representing the server. There is only one and you cannot instantiate
it although you can make references to it. All users on the web server share this object.

This is an object that allows you to share values across all sessions running in all applications across
the entire server. The locking facilities permit you to lock resources while you are using them.

Because this applies server-wide, there is even more reason to ensure you lock objects for the
minimum of time and relinquish the locks as soon as possible. It is quite feasible to completely stall
the whole server by locking a vital resource during the processing of a single client request. The effect
of this is to make your server a single-threaded non-concurrent session server. That is, it will only
actually serve one client request at a time.

See also: Netscape Enterprise Server, project object, response.server,
unwatch(), watch()

Chapter number

1918

Property JavaScript JScript NES Notes

agent 1.1 + - 2.0 + -
host 1.1 + - 2.0 + -
hostname 1.1 + - 2.0 + -
port 1.1 + - 2.0 + -
protocol 1.1 + - 2.0 + -

Method JavaScript JScript NES Notes

lock() 1.1 + - 2.0 + Warning
unlock() 1.1 + - 2.0 + -

Cross-references:
Wrox Instant JavaScript – page 65

Wrox Instant JavaScript – page 67

server.agent (Property)
Describes the server being used.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type:
String primitive

JavaScript syntax: NES server.agent

The userAgent property of the navigator object in a web browser describes the kind of browser
being used. This value is presented as a text string.

This is the corresponding property in a web server and provides a way to deploy scripts that are
shared amongst several variants of a server that are compatible but different.

See also:
Navigator.userAgent

Error! No text of specified style in document.

1919

server.host (Property)
The machine and domain name values for the server host.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type: String primitive

JavaScript syntax: NES server.host

This value will be the DNS name that you can use to reach the server.

You might use this value to manufacture URL values for use in HREF="..." HTML tag attributes for
example.

See also: Netscape Enterprise Server, unwatch(), watch()

server.hostname (Property)
The hostname and port property of the receiving server object.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type: String primitive

JavaScript syntax: NES server.hostname

This value will be the same as the host property if the port number the server listens on is 80.
Otherwise, the port number will be appended to the host value and that will be the hostname
value. A colon separator is introduced between the host and port values.

See also: Netscape Enterprise Server

server.lock() (Method)
A means of locking the server object to prevent contention between scripts.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES server.lock()

The server lock would be used at a higher hierarchical level than the project lock mechanism.

Chapter number

1920

It is vitally important that you don't hog a lock on the server object as this can deny server access to
all other users

The lock will stall if another script currently has a lock extant on this project. The method will then
return when that lock is relinquished.

Warnings:
❑ Locking the server object can lead to severe performance degradation. While it is locked, any lock

requests made by other scripts will stall pending the lock being relinquished with an unlock()
method call.

❑ You can render your server virtually useless by over-locking the server object. You should aim to
relinquish any locks as soon as you possibly can. Ideally you should seek to avoid locking the server
object if at all possible.

See also: project.lock()

server.port (Property)
The port number that the server listens on for incoming requests.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type: Number primitive

JavaScript syntax: NES server.port

This value is normally port number 80, but ports 81, 8080 or 8081 are also commonly used. It can be
any port number you like although there are many reserved ports for other services on the host. On a
Unix system, there is an /etc/services file that will enumerate the ports that are likely to be
reserved for other non web-server purposes.

You may also have difficulty in using ports below number 1024 unless you have access to the system
administrator account.

server.protocol (Property)
The protocol supported by the server is available from this property.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

Property/method value type: String primitive

JavaScript syntax: NES server.protocol

Typical values for this property will be "http:" or "https:". The latter will be used if the server is a
secure server providing e-commerce support for example.

Error! No text of specified style in document.

1921

server.unlock() (Method)
Relinquisesh a lock on the server object.

Availability: JavaScript – 1.1
Netscape Enterprise Server version – 2.0

JavaScript syntax: NES server.unlock()

If you ever lock the server object from a script, you should call this as soon as you possibly can after
you have completed your lock critical code. Retaining a lock on your server object is not only bad
manners but is seriously bad for the health and well-being of your server. Locking server objects
persistently will hog resources and your server performance will slow to a crawl.

See also: project.unlock()

Server side browser detection (Useful tip)
You can do a great deal of browser portability handling if you are prepared to serve browser specific
pages from your web server.

A wholly dynamic site may be able to serve browser, platform and version specific HTML according
to the value of the userAgent string that the browser sends when it makes a request. This technique
is fine for a few pages and when they don't experience high traffic. To serve static pages this way
needs a smarter server-side trick to be deployed.

You could render very browser specific copies of your pages and store them under document path
names that contain a component that could be derived by disassembling the userAgent string. Then
in your web server, you can trap every request that needs this capability, route it through a special
module and generate a browser-specific path modification. If you do this creatively, you could
provide a mechanism that allows the web pages to request an unmodified URL but the web server
serves a page that is as close to ideal as it can get.

For example, the browser might be Netscape 3 on a Macintosh. That might yield a string containing a 3
for the version, an N for the browser and an M for the platform. The 3 might become a 4 or even a 6 for
other versions of Netscape Navigator. The N might become an E for MSIE, an I for iCab or an O for
Opera. The M might become a W for windows. So we have a string that represents the browser, platform
and version in three letters. We might get a string such as NM3, for example. When the browser requests
a page called index.html, the web server would inspect the userAgent string and work out that its
normalized signature is NM3. The web server can then attempt to serve the page NM3index.html. If
this does not exist, the web server can fall back to NMindex.html and then Nindex.html before
eventually serving just plain old index.html. These tests in the web server will take fractions of a
second with something like a stat() function call to test for the existence of a file.

With this technique, your publishing logic can generate some very platform, browser and version
specific static files and the web server can locate them quickly and efficiently even when there are
high traffic loads on the server farm. It’s also workable for style sheets and can be deployed in a load-
balanced multi-machine server farm as well.

See also: Compatibility

Chapter number

1922

Server-side JavaScript (Definition)
That JavaScript which is executed in the web server, probably in response to a browser request and
accessed via CGI.

Server-side JavaScript is when the JavaScript source is executed in response to a request from a user's
client application. That request arrives as a server, which then determines that a JavaScript needs to
be executed to build the response. The server then runs the script and returns the output of it to the
user, most likely in the form of a web page but possibly in the form of some image data or other
textual or binary content.

Some server-side implementations are designed to yield performance improvements by semi-
compiling the JavaScript and retaining that byte-code form in a cache.

Each server may offer alternative ways to invoke the server-side scripting. It is hoped that all the
servers that use JavaScript and which conform to ECMAScript may well use the same tags for
enclosing the server-side script. However, since the tags are not defined in the standard, this may be a
vain hope.

See also: Active Server Pages, CGI Driven JavaScript, Desktop JavaScript,
Internet Information Server, LiveWire, Netscape Enterprise Server,
Shell Scripting with JavaScript

Cross-references:
Wrox Instant JavaScript – page 3

Wrox Instant JavaScript – page 5

Wrox Instant JavaScript – page 64

Wrox Professional JavaScript – page 59-90

setHotkeys() (Method)
Activate or deactivate keyboard shortcuts for this window.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N myWindow.setHotKeys(aSwitch)
JavaScript syntax:

N setHotKeys(aSwitch)

Argument list: aSwitch A Boolean switch value

Refer to:
Window.setHotkeys()

Error! No text of specified style in document.

1923

setInterval() (Method)
A method for setting timer intervals.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

- myWindow.setInterval(aFunction, anInterval,
someArguments)

- myWindow.setInterval(aSourceText, anInterval)

- setInterval(aFunction, anInterval,
someArguments)

JavaScript syntax:

- setInterval(aSourceText, anInterval)

aFunction A function object (not supported in MSIE)
anInterval A time interval in milliseconds
aSourceText Some valid JavaScript source text

Argument list:

someArguments The arguments to the function object (not
supported in MSIE)

See also: Timer events, Window.clearInterval(),
Window.setTimeout(), Window.setInterval()

setResizable() (Method)
Enable or inhibit the window resize capability.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N myWindow.setResizable(aSwitch)
JavaScript syntax:

N setResizable(aSwitch)

Argument list: aSwitch A Boolean value to control the functionality

Refer to:
Window.setResizable()

Chapter number

1924

setTimeout() (Method)
A method for setting a one shot timer.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Number primitive

- myWindow.setTimeout(aSourceText, aWaitTime)
JavaScript syntax:

- setTimeout(aSourceText, aWaitTime)

aSourceText Some valid JavaScript source textArgument list:
aWaitTime A delay in milliseconds

See also: Timer events, Window.setInterval(),
Window.setTimeout()

setZOptions() (Method)
Defines the window stacking behaviour.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N myWindow.setZOptions(anOptionValue)
JavaScript syntax:

N setZOptions(anOptionValue)

Argument list:
anOptionValue One of a range of possible settings for the

feature

Refer to:
Window.setZOptions()

Shadow() (Filter/visual)
A visual filter for creating a shadow.

Availability: JScript – 3.0
Internet Explorer – 4.0

Error! No text of specified style in document.

1925

Refer to:
Filter – Shadow()

Shallow copying (Definition)
Copying object references and not the objects.

See also: Array.toSource()

Refer to:
Copying objects

Shared Property (Definition)
A property contained in a prototype and shared between several instances.

Availability: ECMAScript edition – 2

You can create several objects and make them share a common ancestor. In a class-based object
oriented world, this would be called sub-classing. Instantiating each one means it would inherit
properties from its super-class, but objects of the same class in a real object oriented system do not
share property values unless the static (class) factory method that instantiates them presets the same
values as they are initialized.

In JavaScript, because the prototype chain is used to inherit properties from parent objects and not
parent classes, then objects will inherit property values unless they override them locally.

If you are used to the class-based object oriented way of doing things, this can be quite distracting.

String prototype

Object prototype

null

Number prototype

A number object A number object An Object objectA string objectA string object

Chapter number

1926

See also: Prototype Based Inheritance, Prototype chain, prototype property

Cross-references:
ECMA 262 edition 2 – section – 10.1.4

Shell Scripting with JavaScript (Definition)
Unix command line tools written in JavaScript.

Once you have a JavaScript interpreter installed on your system, possibly to provide a server-side or
CGI handling mechanism, you can easily use it then to do the things you might previously have done
in Perl, Tcl, Bourne, Korn or C-Shell.

Not that you would necessarily choose JavaScript over the other alternatives but for some projects it
might be better suited due to the kind of data you are manipulating or what you need to do to it.

The main strength of the Unix environment is the way multiple scripting languages can be used at
will and a project may be built from code that runs in many different environments and contexts.

See also: CGI Driven JavaScript, Host environment, Platform,
Server-side JavaScript

Cross-references:
Wrox Instant JavaScript – page 5

Shift expression (Definition)
Shifts the left value by an amount specified by the right value.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Bitwise shift operators convert their left operands to a 32-bit integer value and shift them according to
their right operation. The operator determines the kind of shifting that is applied.

See also: Bitwise shift operator, Expression

Cross-references:
ECMA 262 edition 2 – section – 11.7

ECMA 262 edition 3 – section – 11.7

Error! No text of specified style in document.

1927

Shift operator (Definition)
Used to create a shift expression.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Shift operators convert their left operands to a 32-bit integer value and shift them according to their
right operation. The operator determines the kind of shifting that is applied.

See also: Bitwise shift left (<<), Bitwise shift left then assign (<<=), Bitwise
shift operator, Bitwise shift right (>>), Bitwise shift right and assign
(>>=), Bitwise unsigned shift right (>>>), Bitwise unsigned shift
right and assign (>>>=)

Cross-references:
ECMA 262 edition 2 – section – 11.7

ECMA 262 edition 3 – section – 11.7

short (Reserved word)
Reserved for future language enhancements.

The inclusion of this reserved keyword in the ECMAScript standard suggests that future versions of
ECMAScript may be more strongly typed.

This keyword also represents a Java data type and the short keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: double, float, Integer, LiveConnect, long, Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Chapter number

1928

showHelp() (Method)
Displays the help window.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myWindow.showHelp()
JavaScript syntax:

IE showHelp()

Refer to:
Window.showHelp()

showModalDialog() (Method)
An alias for the window.showModalDialog() method.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: User defined

IE myWindow.showModalDialog(aURL,
someArguments)JavaScript syntax:

IE showModalDialog(aURL, someArguments)

aURL A URL to load into the modal dialogArgument list:
someArguments Arguments to pass to the modal dialog

Refer to:
Window.showModalDialog()

showModelessDialog() (Method)
An alias for the window.showModelessDialog() method.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type:
User defined

IE myWindow.showModelessDialog(aURL,
someArguments)JavaScript syntax:

IE showModelessDialog(aURL, someArguments)

aURL A URL to load into the modal dialogArgument list:
someArguments Arguments to pass to the modal dialog

Error! No text of specified style in document.

1929

Refer to:
Window.showModelessDialog()

.shtm (File extension)
Server-side processed HTML file.

Refer to:
File extensions

.shtml (File extension)
Server-side processed HTML file.

Refer to:
File extensions

Side effect (Definition)
The changes to the execution environment due to some code being executed.

When functions are executed, they may alter some item in memory or cause some change to occur
aside from simply returning a value. For example, a function may create an object and add it to a
persistent array and return some value such as the number of elements in that array. The calling
expression was not aware that the array was extended and simply received a numeric value as a
result of evaluating the function. The side effect was that the array became longer by one element.

See also: Expression, Script execution

Sidebar object (Object/Navigator)
A new object introduced with Netscape 6.0 to manage the left side navigation bar.

Availability: JavaScript – 1.5
Netscape – 6.0

N myWindow.sidebar
JavaScript syntax:

N sidebar

This is a new object which needs to be explored as we get to know the netscape Navigator 6.0
browser. It encapsulates the behavior and appearance of the sidebar frame on the left of the browser
window.

See also: Window.sidebar

Chapter number

1930

Signed scripts (Security related)
A means of giving scripts a privilege to access secure content.

Netscape Navigator allows scripts to have digital signatures attached to them. These signatures can
control the level of privilege that a script is allowed to have in a web browser. This is ultimately
under user control but if the user allows, the scripts can be secured at source.

The signature combines the identity of the signatory and a checksum of the content. The content
cannot be modified without invalidating the checksum and hence voiding the signature.

It would be difficult to establish the exact security criteria beforehand, so Netscape Navigator forces
scripts to request the privileges they need. Then, you can allow or deny the access which can be
stored and mapped against the identity of the person signing the script. This means a security policy
can gradually be established by training the browser to recognize and make decisions on access.
Initially, no access is available but after some time, your browser preferences will contain a very
sophisticated set of rules that govern the access to the secure values.

To sign your scripts, you will need additional tools and utilities. These are available from Netscape
and should form part of your publishing pipeline.

An alternative is to serve your scripts separately from a secure server. Scripts served in this way will
assumed to have been signed by the secure server itself.

As a way round the inconvenience of signing scripts after every minor correction, you can sign the
codebase of a script. This means you can establish a security setting for scripts from a specific web
server. It is slightly less secure than signing a checksum but more convenient during development. It
is recommended that proper signing be used; once the script changes are less frequent and the
development process is complete, the scripts will be more stable and signing will be carried out less
frequently. With some automation in the publishing work flow, you may be able to sign scripts as
part of the releasing procedure that your developers employ.

Your web page may contain more than one script. For signed script access control to work, all of the
scripts on a page must be signed. If an unsigned script is present, it defeats the entire signing status of
the whole page. Scripts can be signed by more than one person. Netscape Navigator will try and find
the highest most complete coverage of the scripts in a page. Ideally it will find a particular signer who
has signed all of the scripts. Other signers may have conferred a higher level of security but not on all
of the scripts. The more complete coverage will prevail.

Although these fairly strict same-signer policies apply to the scripts within a window, scripts in
multiple windows may operate under a slightly relaxed policy. The "same signer" policy is a variation
of the "same origin" policy. Different signers cause the browser to behave as if the pages were from
different origins. Both scripts may have rights to request UniversalBrowserRead access which
might work around the problem.

Unsigned scripts have quite restricted access to window properties for windows that contain signed
scripts. This means that untrusted and insecure scripts cannot access secure data by subverting an
already trusted script.

Error! No text of specified style in document.

1931

Warnings:
❑ MSIE version 4 does not support the Netscape Navigator privilege model. Therefore scripts are

always unprivileged. The MSIE security model is based on zones. This is a fairly coarse grained
approach and simply allows scripts to be executed or not as a whole. The Netscape Navigator model
allows access to be controlled object by object.

❑ Being so closely related to the MSIE browser, the WebTV box also does not support signed scripts.

See also: AuthentiCode, Code signing, Data-tainting, export, import, JellyScript,
Requesting privileges, Same origin

Web-references:
http://developer.netscape.com/software/signedobj/
http://developer.netscape.com/library/documentation/signedobj/signtool/

Single line comment (Definition)
A pair of slash characters (//) indicates single line comments.

Single line comments are indicated by a pair of slash characters (//) and are completed by a line
terminator.

The pair of slash characters and everything following them to the end of the line is considered to be a
comment. Comments are discarded during the interpretation phase of a line of script. A pair of slash
characters would not behave as a comment delimiter if one of them were escaped with a backslash
character or if they appeared inside a single or double quoted string literal.

See also: Comment, Comment (// and /* ... */), Line

Cross-references:
ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 3 – section – 7.4

Wrox Instant JavaScript – page – 17

Slide() (Filter/transition)
A transition effect with the appearance of one image sliding over another.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Slide()

http://developer.netscape.com/software/signedobj/
http://developer.netscape.com/library/documentation/signedobj/signtool/

Chapter number

1932

SMALL object (Object/HTML)
An object that represents the font style controlled by the <SMALL> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Deprecated: Yes

Inherits from: Element object

IE mySMALL = myDocument.all.anElementID

IE mySMALL = myDocument.all.tags("SMALL")[anIndex]

IE mySMALL = myDocument.all[aName]

- mySMALL = myDocument.getElementById(anElementID)

- mySMALL =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySMALL =
myDocument.getElementsByTagName("SMALL")[anIndex]

HTML syntax: <SMALL> ... </SMALL>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning

onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onDragStart - 3.0 + - 4.0 + - - - -

onFilterChange - 3.0 + - 4.0 + - - - -

onHelp - 3.0 + - 4.0 + - - - Warning

onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning

onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning

onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning

onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onSelectStart - 3.0 + - 4.0 + - - - -

Error! No text of specified style in document.

1933

Inheritance chain:
Element object, Node object

Refer to:
Element object

snews: URL (Request method)
A request from a web browser to a secure news server to send a document.

Use the browser to download and browse some content from a secure news site.

See also: javascript: URL, Security policy, URL

Sort ordering (Definition)
The mechanism by which items are arranged in sequence according to a locale.

See also: Localization

Refer to:
Collation sequence

Source files (Definition)
You can store JavaScript into external source files.

You can link JavaScript source files at the client end, which causes the browser to fetch them and bind
them into the page just like any other asset such as a style-sheet or image.

See also: .js

Cross-references:
Wrox Instant JavaScript – page – 65

Wrox Professional JavaScript – page – 103

Chapter number

1934

Source text (Definition)
Human readable script source text to be parsed and executed.

Availability: ECMAScript edition – 2

See also: Comment, Escape sequence (\), Lexical convention, Script

Refer to:
Script source text

Cross-references:
ECMA 262 edition 2 – section 6

ECMA 262 edition 3 – section 6

SPAN object (Object/HTML)
An object that encapsulates the contents of an inline tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE mySPAN = myDocument.all.anElementID

IE mySPAN = myDocument.all.tags("SPAN")[anIndex]

IE mySPAN = myDocument.all[aName]

- mySPAN = myDocument.getElementById(anElementID)

- mySPAN =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySPAN = myDocument.getElementsByTagName("SPAN")
[anIndex]

HTML syntax: ...

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: dataFld, dataFormatAs, dataSrc

Event handlers:
onBlur, onClick, onDblClick, onDragStart,
onFilterChange, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onSelectStart

Error! No text of specified style in document.

1935

 tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

Note that a positioned elements will appear as a member of the document.layers[]
collection in Netscape 4.

The example shows how properties of blocks can be moved from one to another. In this
example, the background color of each block is moved along to the next in a cyclic manner as the
mouse is clicked:

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
ONE
TWO
THREE
FOUR
FIVE
SIX
<FORM>
<INPUT TYPE="button" VALUE="CLICK ME" onClick="clickMe()">
</FORM>
<SCRIPT>
//IE only
function clickMe()
{
 mySpans = document.all.tags("SPAN");
 myStyle1 = mySpans[mySpans.length-1].style.cssText;

 for(myEnum=0; myEnum<mySpans.length; myEnum++)
 {
 myStyle2 = mySpans[myEnum].style.cssText;
 mySpans[myEnum].style.cssText = myStyle1;
 myStyle1 = myStyle2;
 }
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

dataFld - 3.0 + - 4.0 + - - - -
dataFormatAs - 3.0 + - 4.0 + - - - -
dataSrc - 3.0 + - 4.0 + - - - -

Chapter number

1936

Event name JavaScript JScript N IE Opera DOM HTML Notes

onBlur - 3.0 + - 4.0 + - - - Warning
onClick - 3.0 + - 4.0 + - - 4.0 + Warning

onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Special number values (Definition)
Special properties of the Global and Number objects.

Special number values are provided so that scripts can test for exceptional values yielded as a result
of arithmetic expressions.

You can check for infinity or non-number errors as a result of a divide by zero for example. Maximum
and minimum values are also available to range check input data to make sure it can be used in
arithmetic computations.

You cannot assign constant values of Infinity or NaN because you cannot type in a constant value
to denote them. However because they exist as properties of the Global object, you can refer to them
by name.

Warnings:
❑ Be careful that you don't accidentally assign new values to the Infinity and NaN properties of the

global object. Some implementations do not properly protect them against being written to and your
script may assign new values to them. This can lead to very unpredictable behavior.

See also: Infinity, NaN, Number.MAX_VALUE, Number.MIN_VALUE, Number.NaN,
Number.NEGATIVE_INFINITY, Number.POSITIVE_INFINITY

Cross-references:
Wrox Instant JavaScript – page 14

Error! No text of specified style in document.

1937

Special type (Definition)
Special data types are available to test variable content.

There are two special data types available to test references to objects or the contents of variables. If a
variable is currently of the type undefined, then it has not had any value stored in it. If it is a
property, perhaps it has been deleted from the object.

A variable reference would also yield the undefined value if it has not been declared. However, a
reference to an undeclared variable causes a run-time error.

Properties will yield the value null if they are supposed to contain an object and have been
purposely nulled out. They will be undefined unless they have been set to null by an assignment.

You can examine variables and object properties with the enquiry function to determine the type of
the value stored there. The enquiry functions are:

❑ isNaN()

❑ isFinite()

This operator behaves like an enquiry function:

❑ typeof

Testing for null and undefined or comparing them one with another can be problematical and is
certainly non-trivial. In older versions of the browsers, you can simulate missing values.

The null value can be simulated with this expression:

(void 0)

The undefined value can be simulated with this:

(void null)

Of course the simulations depend on the existence of some keywords that may or may not exist.

See also: isFinite(), isNaN(), null, typeof, undefined type

Spiral() (Filter/transition)
Reveals the new image with a spiral effect.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Spiral()

Chapter number

1938

SSJS (Definition)
An abbreviation for Server-Side JavaScript.

Refer to:
Server-side JavaScript

Stack manipulation (Useful tip)
In Netscape 4, you can build stack managers.

With the Array methods push(), pop(), unshift() and shift(), you can build various stacks
and queues.

A First In Last Out stack can be constructed with push() and pop(). This works from the end
of the array.

An alternative FILO stack can be constructed with unshift() and shift() but that will operate at
the start of the array.

Array
instance

Array
instance

0

A

1

B

2

C

3

Array.pop()

Array
instance

A

B

C

Array
instance

A

B

C

X

Array.push("X")

Array
instance

Array
instance

0

B

1

C

2

D

3

Array.shift()

Array
instance

A

B

C

Array
instance

X

A

B

C

Array.unshift("X")

Error! No text of specified style in document.

1939

See also: Array.pop(), Array.push(), Array.shift(),
Array.unshift(), Queue manipulation

Standalone JavaScript (Definition)
JavaScript that is executed in an application not associated with web pages at all.

A stand-alone JavaScript implementation is when the interpreter is embedded into an application
other than a web browser or web server. The application may utilize JavaScript as a mechanism for
connecting its user interface to its internal functionality. This gives some benefits in being able to
custom-tailor the way an application behaves and what is really delivered is a kit of components that
are joined up with JavaScript glue.

Stand-alone interpreters may have the scripts embedded inside the application or they may read them
in from external sources.

An example of a well known stand-alone interpreter is the Nombas ScriptEase range of JavaScript
interpreters. The ScriptEase implementations have many additional objects to provide a very rich
JavaScript programming environment indeed.

See also: Nombas ScriptEase

Cross-references:
Wrox Instant JavaScript – page 68

Statement (Definition)
A functional section of a program.

Availability: ECMAScript edition – 2

A statement is a discrete instruction in a script that causes something to happen.

The statements in JavaScript can be classified into several categories. Here are the basic set of
classifications:

❑ Block – Some code enclosed in braces.

❑ Variable statement – A declaration of a local or global variable.

❑ Empty statement – A semi-colon on its own.

❑ Expression statement – An operator and its require operand(s).

❑ If statement – Conditional execution of a block of code with an optional alternative block of code.

❑ Iterative statement – A means of executing a block of code repetitively until a test condition is
satisfied.

❑ Switch selector – A means of executing one of a variety of possible code blocks selecting the best
according to an input value.

❑ Continue statement – A way of cancelling an iteration and commencing the next.

Chapter number

1940

❑ Break statement – Means of breaking out of an iteration or a switch selector.

❑ Return statement – A way to unconditionally leave a function and return to its caller, optionally
handing back a value.

❑ With statement – A means of adding an object to a scope chain.

Statements are executed in the order in which they appear in the script source text except when the flow
of control is redirected by a conditional switching expression, function call, iterator or jump statement.

See also: break, Compound statement, continue, Empty statement (;), Expression statement,
if(...) ..., if(...) ... else ..., Iteration statement, JavaScript
language, Jump statement, Method, Punctuator, return, Script fragment,
Semi-colon (;), var, Variable statement, with ...

Cross-references:
ECMA 262 edition 2 – section 12

ECMA 262 edition 3 – section 12

Wrox Instant JavaScript – page 16

static (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Static filters (Definition)
These filters are used to define the appearance of an HTML Element object.

They are all members of the visual filter family and are invoked through the stylesheet mechanisms
or by the style object's filter property. Here is a list of the static filters:

❑ Alpha()

❑ BasicImage()

❑ Blur()

❑ Chroma()

❑ Compositor()

❑ DropShadow()

❑ Emboss()

❑ Engrave()

Error! No text of specified style in document.

1941

❑ FlipH()

❑ FlipV()

❑ Glow()

❑ Grayscale()

❑ Invert()

❑ Light()

❑ Mask()

❑ MaskFilter()

❑ Matrix()

❑ MotionBlur()

❑ Pixelate()

❑ Shadow()

❑ Wave()

❑ XRay()

Some of these may not be available with all versions of the MSIE browser. Refer to the individual
topics for availability.

See also: style.filter, Visual filters

Static method (Definition)
Defines static methods using function properties you add to a function object.

Static methods are also known as class methods. These are associated with a class rather than an
instance of a class. The constructor function is analogous to the factory class for objects in truly object
oriented systems.

Static methods have no real use for the this keyword, as it is meant to refer to the receiving instance.

These are called static methods because they are not associated with a local instance.

See also: Function object properties

Static variable (Useful tip)
Defines static variables using properties you add to a function object.

Static variables are also known as class variables.

If we want to create some class variables, we need to add properties to the constructor function object.

If we have made our own constructor function, we can add our own class variables to it.

We can also add class variables to the built-in objects in some implementations.

These are called static variables because they are not associated with a local instance.

See also: Function object properties

Chapter number

1942

status (Property)
An alias for the window.status property.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

- myWindow.status

- myWindow.status = aString

- status

JavaScript syntax:

- status = aString

Argument list: aString A string to display in the status bar

See also: Window.defaultStatus, Window.status

Status code (Result value/NES)
Many of the NES supported methods return a status code that is consistently defined across all
objects and methods.

The following methods will return a status code:

❑ database.execute()

❑ database.beginTransaction()

❑ database.commitTransaction()

❑ database.rollbackTransaction()

❑ cursor.insertRow()

❑ cursor.updateRow()

❑ cursor.deleteRow()

Error! No text of specified style in document.

1943

The status codes are summarized in the table:

Code Meaning

00 No error

01 Out of memory

02 Object was never initialized

03 Type conversion error

04 Database not registered

05 Error reported by database engine

06 Message from database engine

07 Error from database vendor's library

08 Lost connection

09 End of fetch

10 Invalid use of object

11 Column does not exist

12 Bounds error – invalid positioning within object

13 Unsupported feature

14 Null reference parameter

15 Database object not found

16 Required information missing

17 Object cannot support multiple readers

18 Object cannot support deletes

19 Object cannot support inserts

20 Object cannot support updates (1)

21 Object cannot support updates (2)

22 Object cannot support indices

23 Object cannot be dropped

24 Incorrect connection supplied

25 Object cannot support privileges

26 Object cannot support cursors

27 Unable to open

Status codes 5 and 7 are significant. It depends on the database being used as to which is important.

Status code 5 is important for Oracle and ODBC.

Status code 7 is important for Informix and Sybase.

If these values are detected, then the major and minor error codes and messages can be inspected for
further help in diagnosing the problems.

Chapter number

1944

See also: Connection.majorErrorCode(), Connection.majorErrorMessage(),
Connection.minorErrorCode(), Connection.minorErrorMessage(),
Cursor.deleteRow(), Cursor.insertRow(), Cursor.updateRow(),
database.beginTransaction(), database.commitTransaction(),
database.execute(), database.majorErrorCode(),
database.majorErrorMessage(), database.minorErrorCode(),
database.minorErrorMessage(), database.rollbackTransaction(),
Error handling

Status line (Definition)
An area in the browser frame that status messages can be presented in.

When browsers open a new window, they will have a status line at the bottom (unless you choose to
deactivate the status line).

This can have text messages presented to tell the user what is happening. One particularly popular
usage is to present rollover text messages associated with links.

There are two property values on each window that control the content of this status line.

The defaultStatus property contains the text that is displayed when the mouse is not rolled over
an active item.

The status property is set to a specific value by an onMouseOver event handler and resets when
the mouse leaves.

Warnings:
❑ The correct behavior is for the onMouseOver event handler to override the default behavior and

replace the text in the status bar. Then, when the mouse rolls off of the active item, the defaultStatus
value should be restored automatically.

❑ This is not the case with all browsers. Macintosh and X-Windows versions of Netscape 3 (and
possibly other browser versions) do not automatically restore the previous status line value. You will
need to add a onMouseOut handler to explicitly reset the status line.

See also: onMouseOut, onMouseOver, Window.defaultStatus,
Window.status

statusbar (Property)
An alias for the window.statusbar property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Bar object

- myWindow.statusbar
JavaScript syntax:

- statusbar

Error! No text of specified style in document.

1945

See also: Bar object, Window.statusbar

Property attributes:
ReadOnly.

.stm (File extension)
Server-side processed HTML file.

Refer to:
File extensions

stop() (Method)
An alias for the window.stop() method.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

N myWindow.stop()
JavaScript syntax:

N stop()

Refer to:
Window.stop()

Storage duration (Definition)
The time during which an entity is available for use.

Objects and other entities may be created and destroyed at will while a script is being executed.

Some are created automatically and some also get destroyed automatically. Some will be discarded
when the script terminates either intentionally or accidentally due to an error of some kind.

Objects may only persist while a function is being executed. They may vanish when the function
returns to its caller.

Chapter number

1946

In a web browser, generally speaking, objects persist for the life of a page. They will be destroyed
when the page is discarded or refreshed. Session storage can be accomplished effectively by
maintaining a frame set where the outermost frame remains available throughout the session even
though the pages it contains are replaced several times.

In a server-side environment, objects and entities will likely only persist during the request-response
loop. Items may persist longer if the server-side implementation is able to archive them or if it is able
to maintain session state information between one request and another.

In a TV set-top box environment, objects may persist for some time, perhaps for the duration of a
broadcast program or for as long as the TV set-top box is tuned to a particular channel. Changing
channels may purge out the object store. This particular kind of implementation is under constant and
rapid development. One of the major areas of research is that of persistent and browsable cache
systems where objects may repose and be recalled at will. In a system like that, objects may persist
forever, or until the user chooses to dispose of them explicitly.

See also: Identifier, Request-response loop, Scope chain, Script execution, Script
termination

Stproc object (Object/NES)
An object that encapsulates a call to a stored procedure on a database from a Netscape Enterprise
Server.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

NES myStproc = database.storedProc(aProcName,
aProcParm);JavaScript syntax:

NES myStproc = myConnection.storedProc(aProcName,
aProcParm)

aProcName The name of a stored procedure to callArgument list:
aProcParm A parameter value to pass to the stored procedure

Object properties: prototype

Object methods:
close(), outParamCount(), outParameters(), resultSet(),
returnValue()

This object provides a container to manage the call to the stored procedure and somewhere that the
results can be made available for further processing by your scripts.

You create Stproc objects by requesting them from the database or connection objects that are
accessing the target database you are interested in.

Example code:
<SERVER>
// An example derived from Wrox Professional JavaScript
database.connect("ODBC", "myDatabase", "me", "myPassword", "");
myStproc = database.storedProc("myProcedure", 40);
</SERVER>

Error! No text of specified style in document.

1947

See also: Connection.storedProc(), Netscape Enterprise Server

Property JavaScript JScript NES Notes

prototype 1.2 + - 3.0 + -

Method JavaScript JScript NES Notes

close() 1.2 + - 3.0 + -
outParamCount() 1.2 + - 3.0 + -
outParameters() 1.2 + - 3.0 + -
resultSet() 1.2 + - 3.0 + -
returnValue() 1.2 + - 3.0 + -

Stproc.close() (Method)
Closes a stored procedure object when it is no longer required.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

JavaScript syntax: NES myStproc.close()

Although closures generally get dealt with automatically for you when a request handler exits, it is
good style to call the closure methods yourself when you no longer need the database connection.

See also: ResultSet.close()

Stproc.outParamCount() (Method)
Retrieves a count of the number of parameter values the stored procedure has returned.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Number primitive

JavaScript syntax: NES myStproc.outParamCount()

Calling stored procedures is not like a normal database select. Because the results of a stored
procedure are not strictly the results of a simple select but have been cached and processed by the
procedure, the database will not generally return them as a record but as a collection of parameters.
This method tells you how many there are so you can enumerate them in your script.

See also: ResultSet.columns()

Chapter number

1948

Stproc.outParameters() (Method)
Retrieves an output parameter from the stored procedure.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: User defined

JavaScript syntax: NES myStproc.outParameters(anIndex)

Argument list: anIndex A parameter number

Given that we can obtain a count of the number of parameters returned by a stored procedure by
calling the outParamCount() method, we can then enumerate them all and access the values that
have been returned.

Stproc.prototype (Property)
The prototype for the Stproc object that can be used to extend the interface for all Stproc objects.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: Stproc object

NES Stproc.prototypeJavaScript syntax:
NES myStproc.constructor.prototype

Refer to:
prototype property

Stproc.resultSet() (Method)
Retrieves a result set object from the stored procedure.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: ResultSet object

JavaScript syntax: NES myStproc.resultSet()

When you call a stored procedure in a RDMS, you don't always get back a sequence of records in the
same layout and structure as when you just do a simple SQL select style query.

Error! No text of specified style in document.

1949

An SQL query would return a series of records separated by newline characters. A stored procedure
might return a mixed collection of records of different types.

A ResultSet object is created by asking the Stproc object for it when the stored procedure has
been called and returned from the database.

The traversing mechanisms provided with a result set allow you to move forwards through the data
but you cannot move backwards. You also can only read values from a result set as opposed to a
cursor which allows you to update and write new values back.

See also: ResultSet object

Stproc.returnValue() (Method)
Retrieves the return value of the stored procedure.

Availability: JavaScript – 1.2
Netscape Enterprise Server version – 3.0

Property/method value type: User defined

JavaScript syntax: NES myStproc.returnValue()

This is an indication of whether the stored procedure executed successfully or not. The values
returned by this may depend on the kind of database adapter your middleware employed when
connecting to the database.

Stretch() (Filter/transition)
A variation on a wipe effect except that the new image appears to stretch over the old one. The old
one is squashed until it disappears.

Availability: JScript – 5.5
Internet Explorer – 5.5

Refer to:
Filter – Stretch()

Chapter number

1950

Strictly equal to (===) (Operator/identity)
The two values must be exactly equal to one another in value and type.

Availability: JavaScript – 1.3
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.06

Property/method value type: Boolean primitive

Refer to:
Identically equal to (===)

STRIKE object (Object/HTML)
An object that represents the font style controlled by the <STRIKE> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE mySTRIKE = myDocument.all.anElementID

IE mySTRIKE = myDocument.all.tags("STRIKE")
[anIndex]

IE mySTRIKE = myDocument.all[aName]

- mySTRIKE = myDocument.getElementById
(anElementID)

- mySTRIKE = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- mySTRIKE = myDocument.getElementsByTagName
("STRIKE")[anIndex]

HTML syntax: <STRIKE> ... </STRIKE>

Deprecated: Yes

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart,
onFilterChange, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onSelectStart

Error! No text of specified style in document.

1951

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

String (Type)
A native built-in type.

Availability: ECMAScript edition – 2

Property/method value type: String primitive

Entities of type String are collections of zero or more Unicode characters.

A string is arranged so that the characters in it can be accessed by their position. The leftmost
character is considered to be at position 0 and the rightmost character is therefore at a position whose
value is one less than the length of the string.

This is convenient when processing strings in a for() loop since you can check the enumerator
against the length and as long as it is less than the length and is a positive value, it is indexing within
the string.

Zero length strings are a special case.

Strings can only be accessed read-only. You cannot change the contents of a string, you can only
replace it with another.

Chapter number

1952

Warnings:
❑ You cannot reference strings with negative position values.

See also: Cast operator, Data Type, Fundamental data type, String concatenate
(+), toString(), Type, Type conversion, Unicode

Cross-references:
ECMA 262 edition 2 – section 4.3.17

ECMA 262 edition 2 – section 6

ECMA 262 edition 2 – section 8.4

ECMA 262 edition 3 – section 4.3.17

ECMA 262 edition 3 – section 8.4

O'Reilly JavaScript Definitive Guide – page 38

O'Reilly JavaScript Definitive Guide – page 50

String (Primitive value)
A built-in primitive value.

Availability: ECMAScript edition – 2

Property/method value type: String primitive

A string value is a member of the type String and is a finite ordered sequence of zero or more Unicode
characters. There is no way to represent a single character other than by means of a very short string.

A string is not an array of characters as it would be in the C language. It is also not mutable as the other
object data types that are passed by reference are. Strings are immutable and therefore to change one,
you must manufacture a new string and discard the old one. This can lead to memory leaks.

Strings can contain any Unicode character code point, however, many are not available on even the
most international keyboard and must be escaped. You will need to check that the host environment
can render the international symbols correctly if you use them.

Strings can be delimited by either single or double quotes. This can be very useful for the occasions
when a fragment of JavaScript is contained within some HTML.

Refer to the String literal topic for a list of escape characters and more information on defining
string values.

Error! No text of specified style in document.

1953

Warnings:
❑ Beware that the HTML escaping rules come into play when JavaScript is contained within HTML

quote delimited name-value pairs in tags and you must be careful to escape any characters within
scripts using the JavaScript escape mechanisms and not the HTML escape mechanisms. JavaScript
inside <SCRIPT> tags may also be affected by the host environment's escaping mechanisms.

See also: <SCRIPT>, Cast operator, java.lang.String, JavaScript to Java
values, String concatenate (+), String literal

Cross-references:
ECMA 262 edition 2 – section 4.3.16

ECMA 262 edition 3 – section 4.3.16

Wrox Instant JavaScript – page 14

String concatenate (+) (Operator/string)
Joins two string values together.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - aString1 + aString2

aString1 A string valueArgument list:
aString2 Another string value

When the operands are a pair of strings, the plus sign will concatenate them together. This yields a
single string combining both values joined end to end.

The string concatenation is not commutative. That is, the position of the two operands will affect the
outcome if they are exchanged.

The addition/concatenation operator looks at the arguments and if either is a String already or
preferentially converts to one, then a concatenation occurs. If neither argument prefers to be a
String then a Number conversion happens and the values are added.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

Chapter number

1954

Warnings:
❑ Some conversion of type will occur if a mixture of data types is used in certain contexts.

❑ In string concatenations, when either of the operands is a string, the result will be a string
concatenation. The same does not apply when relational expressions are involved when the
subtraction operator can be used to coerce a string value into a numeric type.

See also: Add (+), Additive operator, Array.join(),
Array.toString(), Associativity, Operator Precedence,
parseFloat(), parseInt(), String value, String type, String
literal, String object, String operator, String.split(),
ToString, toString(), Type conversion

Cross-references:
ECMA 262 edition 2 – section 11.6.1

ECMA 262 edition 3 – section 11.6.1

Wrox Instant JavaScript – page 37

String literal (Primitive value)
A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition – 2

Property/method value type: String primitive

A string literal is zero or more characters enclosed in matching single or double quotes. Each
character may be represented by an escape sequence.

You can escape special characters with special escape sequences. You can also escape any character
and specify it by its octal, hexadecimal or Unicode equivalent code point. Note that the octal values
will be in the range 0 to 377 and the hexadecimal values will be in the range 0 to FF. The octal and
hexadecimal escapes can only cover the first 256 character codes, some of which are control codes and
should not be used anyway. The Unicode escape gives access to the full 65536 character codes in the
Unicode set. Although you can specify octal or hexadecimal values, there is presently no standardized
decimal-based escape mechanism. You'll just have to learn octal or hexadecimal, unfortunately.

Here are the valid common escape sequences:

Escape Sequence Name Symbol

\" Double Quote "

\' Single Quote (Apostrophe) '

\\ Backslash \

Table continued on following page

Error! No text of specified style in document.

1955

Escape Sequence Name Symbol

\a Audible alert (MSIE displays the letter a) <BEL>

\b Backspace (ignored silently in MSIE) <BS>

\f Form Feed (ignored silently in MSIE) <FF>

\n Line Feed (Newline – MSIE inserts a space) <LF>

\r Carriage Return (MSIE inserts a space) <CR>

\t Horizontal Tab (MSIE inserts a space) <HT>

\v Vertical tab (MSIE displays the letter v) <VT>

\0nn Octal escape -

\042 Double Quote "

\047 Single Quote (Apostrophe) '

\134 Backslash \

\xnn Hexadecimal escape -

\x22 Double Quote "

\x27 Single Quote (Apostrophe) '

\x5C Backslash \

\unnnn Unicode escape -

\u0022 Double Quote "

\u0027 Single Quote (Apostrophe) '

\u005C Backslash \

\uFFFE A special Unicode sentinel character for flagging byte reversed text -

\uFFFF A special Unicode sentinel character -

Here are some example string literals:

myString = "James Bond";

myString = 'Another String';

myString = 'A string with double " quotes';

myString = "He's got a single quote";

The characters in the quotes are converted to a String primitive value and will replace the expression
in the context in which it has been used. This would normally be an assignment of a variable or
perhaps part of a relational expression.

There are circumstances in HTML documents where JavaScript string delimiters may need to be
single quotes, because the fragment of JavaScript is already enclosed in double quotes that are part of
the HTML source code space.

For example:

ABCDEF;

Chapter number

1956

You can use double quotes without breaking the syntax rules of the HTML page containing the
JavaScript.

You can exchange the pairs of quotes around between the contexts but it is good to stick one or the
other. It tends to work out that double quotes are used in HTML which forces single quotes to be used
in the JavaScript fragments that are placed into HTML tag attributes.

This is discussed with examples in the "Escaped JavaScript quotes in HTML" topic .

Warnings:
❑ If you use quotes in JavaScript that you plan to use inside HTML, then be sensible about the use of

single and double quotes. Often you will find that double quotes will break, even though they are
enclosed in single quotes when you include them in an HREF for an anchor. For example, this can
break because the double quotes are seen by the HTML parser:

❑ Put an escape round the quotes. Sometimes a backslash is appropriate and sometimes an HTML
character entity depending on who you are trying to hide the quotes from.

❑ Be careful if you use HTML escape sequences such as ' in JavaScript string literals. Some
implementations will unescape that string in the JavaScript context and not the HTML context hoped
for. That will restore the single quote inside the JavaScript string literal causing a run-time error. You
should escape single quotes with a backslash.

❑ You cannot include a line terminator within a string literal. Instead use a newline (\n) escape
sequence.

❑ Currency symbols are notoriously non-portable. Check that your target audience can display
international currency symbols before using GB pounds or Euro symbols. Although these are
defined in the standards, they are often missing from the installed character sets.

See also: Escape sequence (\), Escaped JavaScript quotes in HTML, Identifier,
Implicit conversion, Line terminator, Literal, String, String concatenate
(+), Unicode

Cross-references:
ECMA 262 edition 2 – section 7.7.3

ECMA 262 edition 2 – section 7.7.4

ECMA 262 edition 3 – section 7.8.4

O'Reilly JavaScript Definitive Guide – page 38

Error! No text of specified style in document.

1957

String object (Object/core)
An object of the class "String".

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

- myString = new String()
JavaScript syntax:

- myString = String

Object properties: constructor, length, prototype

Class methods: fromCharCode()

Object methods:
anchor(), big(), blink(), bold(), charAt(),
charCodeAt(), concat(), fixed(), fontcolor(),
fontsize(), fromCharCode(), indexOf(), italics(),
lastIndexOf(), link(), localeCompare(), match(),
replace(), search(), slice(), small(), split(),
strike(), sub(), substr(), substring(), sup(),
toLocaleLowerCase(), toLocaleUpperCase(),
toLowerCase(), toSource(), toString(), toUpperCase(),
valueOf()

An instance of the class "String" is created by using the new operator on the String() constructor.
The new object adopts the behavior of the built-in prototype object through the prototype-inheritance
mechanisms.

All properties and methods of the prototype are available as if they were part of the instance.

A String object is a member of the type Object.

Cloning the built-in String object creates new String objects. This is done by calling the String
constructor with the new operator being applied to an existing String object, thus:

myString = new String("a string of text");

A String object can be coerced to a string value and can be used anywhere where a string value
would be expected.

Programmers familiar with object oriented techniques may prefer to use the String object while
procedural language programmers may implement the same functionality with a string value instead.

This is an example of the flexibility of JavaScript in its ability to accommodate a variety of users from
different backgrounds.

The prototype for the String prototype object is the Object prototype object.

Chapter number

1958

In Netscape Navigator, you can traverse a string as if it were an array and access characters
individually by their index position in the array. This doesn't work in MSIE.

See also: Native object, Object object, String concatenate (+), String.Class,
String.length, String.prototype, unwatch(), watch()

Property JavaScript JScript N IE Opera NES ECMA Notes

constructor 1.0 + 1.0 + 2.0 + 3.02 + - - 2 + -

length 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + ReadOnly,
DontDelete,
DontEnum.

prototype 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 3.0 + 2 + -

Method JavaScript JScript N IE Opera NES ECMA Notes

anchor() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - -

big() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

blink() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

bold() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

charAt() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -

charCodeAt() 1.2 + 5.5 + 4.0 + 5.5 + 3.0 + 3.0 + 2 + Warning

concat() 1.2 + 3.0 + 4.0 + 4.0 + - 3.0 + 3 + -

fixed() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

fontcolor() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

fontsize() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

fromCharCode() 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + 3.0 + 3 + -

indexOf() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -

italics() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

lastIndexOf() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -

link() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - -

localeCompare() 1.5 + 5.5 + 6.0 + 5.5 + - - 3 + -

match() 1.2 + 3.0 + 4.0 + 4.0 + - - 3 + Warning

replace() 1.2 + 3.0 + 4.0 + 4.0 + - - 3 + Warning

search() 1.2 + 3.0 + 4.0 + 4.0 + - - 3 + Warning

slice() 1.2 + 3.0 + 4.0 + 4.0 + - 2.0 + 3 + -

small() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

split() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 2.0 + 2 + -

strike() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - -

sub() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

substr() 1.2 + 3.0 + 4.0 + 4.0 + - 3.0 + 3 + -

Table continued on following page

Error! No text of specified style in document.

1959

Method JavaScript JScript N IE Opera NES ECMA Notes

substring() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -

sup() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + - Deprecated

toLocaleLowerCase() 1.5 + 5.5 + 6.0 + 5.5 + 3.0 + 2.0 + 3 + -

toLocaleUpperCase() 1.5 + 5.5 + 6.0 + 5.5 + 3.0 + 2.0 + 3 + -

toLowerCase() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -

toSource() 1.3 + 3.0 + 4.06 + 4.0 + - - 3 + -

toString() 1.3 + 1.0 + 4.06 + 3.02 + - - 2 + -

toUpperCase() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 2.0 + 2 + -

valueOf() 1.1 + 3.0 + 3.0 + 4.0 + - - 2 + -

Cross-references:
ECMA 262 edition 2 – section – 4.3.18

ECMA 262 edition 2 – section – 10.1.5

ECMA 262 edition 2 – section – 15.5

ECMA 262 edition 3 – section – 4.3.18

ECMA 262 edition 3 – section – 15.5

Wrox Instant JavaScript – page – 33

String() constructor (Constructor)
A String object constructor.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String object

- new String()
JavaScript syntax:

- new String(aValue)

Argument list: aValue Some value to be converted to a String object

When the String() constructor is used in a new expression it creates a new object based on the
String prototype.

The value property of the new object is the same as the string that would have been returned when
the constructor was invoked as a function call.

Chapter number

1960

The result of this function is a String object version of the value passed in. If there is no passed-in
argument an empty string "" is returned.

Refer to the String() conversion function topic for a list of rules for converting other data types
to strings.

Warnings:
❑ Note that unlike the Object() constructor which can be called without its parentheses, calling the

String() constructor without them yields an uninitialized object.

See also: Constructor function, constructor property, Global object,
new, Object()

Cross-references:
ECMA 262 edition 2 – section 15.1.3.4

ECMA 262 edition 2 – section 15.5.1

ECMA 262 edition 2 – section 15.5.3.1

ECMA 262 edition 3 – section 15.5.2

String() (Function)
A String object constructor called as a function.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.0

Property/method value type: String primitive

- String()
JavaScript syntax:

- String(aValue)

Argument list: aValue Some value to be converted to a string

When String() is called as a function rather than a constructor, it performs a type conversion.

The internal ToString conversion facilities are used for type conversion with the additional
handling of a missing argument provided by the constructor itself.

Error! No text of specified style in document.

1961

Value Result

No argument " An empty string ".

undefined "undefined".

null "null".

Boolean If the argument is true, then the result is "true" otherwise the result is
"false".

Number Special cases are provided for NaN and Infinity where "NaN" and "Infinity"
will be returned. Otherwise the string is a textual representation of the value.

String No conversion, the input value is returned unchanged.

Object An internal conversion to a primitive takes place followed by a conversion
from that primitive to a string. Some objects will return a string value that is
immediately useful.

The result of calling this function is a string version of the value passed in. If there is no value passed
in argument an empty string is returned.

Warnings:
❑ Converting numbers to strings can yield some strange effects due to rounding errors. Taking a

numeric value and simply converting it is fairly reliable. However, the result of a numeric
expression, being cast to a string directly rather than to a number variable and thence to a string,
seems to expose some weaknesses in the arithmetic in some implementations.

See also: Cast operator, Constructor function, constructor property, Implicit
conversion, Number()

Cross-references:
ECMA 262 edition 2 – section – 15.1.3.4

ECMA 262 edition 2 – section – 15.5.1

ECMA 262 edition 3 – section – 15.5.1

Wrox Instant JavaScript – page 36

String.anchor() (Method)
Encapsulates the string within an tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Chapter number

1962

Property/method value type: String primitive

- myString.anchor()
JavaScript syntax:

- myString.anchor(aName)

Argument list: aName The value of the NAME attribute in the result string

Passing in the string "An Anchor" with the parameter "Anchor1" will result in the following string:

An Anchor

This is useful for creating named anchors within the document.

See also: Anchor object, Anchor.name, String.link(), Url object

String.big() (Method)
Encapsulates the string within an <BIG> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.big()

Passing in the string "Big Text" will result in the following string:

<BIG>Big Text</BIG>

This is now officially deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.fontSize

Error! No text of specified style in document.

1963

String.blink() (Method)
Encapsulates the string within an <BLINK> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.blink()

Passing in the string "Blinking text" will result in the following string:

<BLINK>Blinking text</BLINK>

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.textDecoration, style.textDecorationBlink

String.bold() (Method)
Encapsulates the string within an tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated Yes

Property/method value type: String primitive

JavaScript syntax: - myString.bold()

Passing in the string "Bold text" will result in the following string:

Bold text

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.fontWeight

Chapter number

1964

String.charAt() (Method)
A character within the string.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myString.charAt(aPosition)

Argument list: aPosition A valid character position within the string

The character at the position in the string indicated by the argument value is returned by this method.

This may involve converting the receiving object to a string first. This means it can be used
generically on many kinds of object.

If there is no character at that position, an empty string will be returned.

The result will be a string value and not a String object.

Note that there is no complementary setCharAt() method because strings are immutable and
cannot be changed.

A B C D

charAt(3)

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<TABLE BORDER=1>
<TR>
<TH>Index</TH>
<TH>Char</TH>
</TR>
<SCRIPT>
myString = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
for(myEnum=0; myEnum<myString.length; myEnum++)
{
document.write("<TR>");
document.write("<TD>");
document.write(myEnum);

Error! No text of specified style in document.

1965

 document.write("</TD>");
 document.write(myString.charAt(myEnum));
 document.write("</TD>");
 document.write("</TR>");
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>

See also: Character handling, Character testing, File.stringToByte(),
String.prototype, Window.atob()

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.4

ECMA 262 edition 3 – section – 15.5.4.4

String.charCodeAt() (Method)
The Unicode code point value of a character within the string.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 5.5
Internet Explorer – 5.5
Netscape – 4.0
Netscape Enterprise Server version – 3.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myString.charCodeAt(aPosition)

Argument list: aPosition A valid character position within the string

This method returns the Unicode code point of the character at the indicated position.

Note that the string index positions start at 0 and not 1.

If there is no character at the indicated position the NaN value will be returned.

This method may involve the receiver being converted to a string and so it can be applied generically
to many kinds of objects.

65 66 67 68

charCodeAt(3)

A B C D Character glyph

Unicode value

Chapter number

1966

Warnings:
❑ If the result of calling this method creates a null string, then you may need to put in a special case

handler. At the point where the null character appears, any string value will be truncated.

❑ For example this:

"AAA" + String.fromCharCode(0) + "BBB";

will only display the "AAA" portion of the string.

❑ You can create other undesirable character values as well such as the delete character at the code
point 127.

❑ Characters at the code points 128 to 159 may display as question marks because they cannot be
resolved to meaningful characters.

❑ Character codes 208, 222, 240 and 254 render as a caret delimited character entity description word
rather than as a single character glyph. This suggests that you should not rely on the output string
having the same number of characters as the input numeric array. It also suggests there may be some
problems converting number arrays to binary BLOb objects using this technique.

❑ Note that the character code mapping does not necessarily correspond to the underlying code map
of the platform the browser is running in.

Example code:
<HTML><HEAD></HEAD><BODY><TABLE
BORDER=1><TR><TH>Index</TH><TH>Char</TH><TH>Code</TH></TR><SCRIPT>myString =
"ABCDEFGHIJKLMNOPQRSTUVWXYZ";for(myEnum=0; myEnum<myString.length;
myEnum++){document.write("<TR>");document.write("<TD>");document.write(myEnum);doc
ument.write("</TD>");document.write("<TD>");document.write(myString.charAt(myEnum)
);document.write("</TD>");document.write("<TD>");document.write(myString.charCodeA
t(myEnum));document.write("</TD>");document.write("</TR>");}</SCRIPT></TABLE></BOD
Y></HTML>

See also: Arithmetic type, Cast operator, Character handling, Character testing,
Character-case mapping, File.stringToByte(), Integer constant,
JavaScript to Java values, String.fromCharCode(),
String.prototype, Window.atob()

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.5

ECMA 262 edition 3 – section – 15.5.4.5

String.Class (Property/internal)
Internal property that returns an object class.

Availability: ECMAScript edition – 2

Error! No text of specified style in document.

1967

This is an internal property that describes the class that a String object instance is a member of. The
reserved words suggest that in the future this property may be externalized.

See also: Class, String object

Property attributes:
DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 – section – 8.6.2

ECMA 262 edition 2 – section – 15.5.2.1

ECMA 262 edition 3 – section – 8.6.2

String.concat() (Method)
A method for concatenating as opposed to the concatenate operator.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

JavaScript syntax: - myString.concat(aString)

Argument list: aString A string to be concatenated to the receiving string

The concatenation operator (+) is the more common method of concatenating strings together.

This method call:

myString1.concat(myString2)

is functionally equivalent to:

myString1 + myString2

The second form is more intuitive in its meaning, and hence is recommended in favor of the
concat() method.

Chapter number

1968

"A" "B" "C" "D"

"ABCD"

+++

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myString1 = "ABCDEFGHIJKLM";
myString2 = "NOPQRSTUVWXYZ";
document.write(myString1);
document.write("
");
document.write(myString2);
document.write("
");
document.write(myString1.concat(myString2));
document.write("
");
</SCRIPT>
</BODY>
</HTML>;

See also: Array.concat()

Cross-references:
ECMA 262 edition 3 – section – 15.5.4.6

String.constructor (Property)
A reference to a constructor object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: String object

JavaScript syntax: - myString.constructor

The initial value of the String.prototype.constructor is the built-in String constructor.

You can use this as one way of creating strings although it is more popular to use the new String()
technique.

This property is useful if you have an object that you want to clone but you don't know what sort of
object it is. Simply access the constructor belonging to the object you have a reference to.

Error! No text of specified style in document.

1969

Netscape Navigator provides constructors for many objects, virtually all of them in fact, even when it
is highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: String.fromCharCode(), String.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.1

ECMA 262 edition 3 – section – 15.5.2

String.fixed() (Method)
Encapsulates the string within an <TT> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.fixed()

Passing in the string "ABCD" will result in the following string:

<TT>ABCD</TT>

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.fontFamily

String.fontcolor() (Method)
Encapsulate the string within an tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

Chapter number

1970

- myString.fontcolor()
JavaScript syntax:

- myString.fontcolor(aColor)

Argument list: aColor A color value to embed as an HTML tag attribute

Passing in the string "Colored text" with the parameter "RED" will result in the following string:

ABCD

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: FONT.color, style.color

String.fontsize() (Method)
Encapsulates the string within an tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

- myString.fontsize()
JavaScript syntax:

- myString.fontsize(aSize)

Argument list: aSize A value to embed as an HTML tag attribute

Passing in the string "Small text" with the parameter "SMALL" will result in the following string:

ABCD

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: FONT.size, style.fontSize

String.fromCharCode() (Method/static)
A class-based factory method for converting numeric character codes to String objects.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server version – 3.0
Opera – 3.0

Error! No text of specified style in document.

1971

Property/method value type: String primitive

JavaScript syntax: - String.fromCharCode(aChar0, aChar1,
aChar2, ...)

Argument list: aCharN a character code value

Constructs a new string from a sequence of Unicode character code point values each passed as a
separate argument.

This is a static method. So called because it belongs to the String() constructor and not any of the
string objects. This means it is analogous to a class method in other object oriented environments.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
document.write(String.fromCharCode(72, 69, 76, 76, 79));
</SCRIPT>
</BODY>
</HTML>

See also: Arithmetic type, Cast operator, Character handling, Character
testing, Character-case mapping, File.byteToString(), Java
to JavaScript values, Keyboard events, onKeyDown,
String.charCodeAt(), String.constructor, ToUint16,
Window.atob(), Window.btoa()

Cross-references:
ECMA 262 edition 2 – section 15.5.3.2

ECMA 262 edition 3 – section 15.5.3.2

String.indexOf() (Method)
The location of a sub-string within a string.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

- myString.indexOf(aSearchString)JavaScript syntax:
- myString.indexOf(aSearchString, aPosition)

Chapter number

1972

aPosition An optional valid character position within
the string to indicate the search start

Argument list:

aSearchString A string to search for within the String
object

Returns a value indicating the location of the search string within the receiving String object.

If the search string is not found, the value -1 is returned.

You can indicate a starting position within the target string and if that argument is missing, the whole
string will be searched. The same happens if you put the value 0 into the second parameter.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myString = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
myIndex = myString.indexOf("MN");
document.write(myString.substr(myIndex));
</SCRIPT>
</BODY>
</HTML>

See also: String.prototype

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.6

ECMA 262 edition 3 – section – 15.5.4.7

String.italics() (Method)
Encapsulates the string within an <I> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.italics()

Error! No text of specified style in document.

1973

Passing in the string "Italicized text" will result in the following string:

<I>ABCD</I>

This is now deprecated in favor of the more sophisticated controls available with stylesheets.

See also: style.fontStyle

String.lastIndexOf() (Method)
The location of the rightmost sub-string within a string.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

- myString.lastIndexOf(aSearchString)
JavaScript syntax:

- myString.lastIndexOf(aSearchString,
aPosition)

aPosition An optional valid character position within the
string to indicate the search start. Missing value
or 0 indicates the entire string is to be searched

Argument list:

aSearchString A string to search for within the string object

Locates the rightmost occurrence of the search string within the receiving String object.

If the search string cannot be found, then the value -1 is returned.

If the starting position is not indicated, the entire string will be searched.

The result of this method is the index of the rightmost occurrence of the sub-string or -1 if it is not found.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myString = "AAABBBCCCAAABBBCCC";
myIndex = myString.lastIndexOf("AAA");
document.write(myString.substr(myIndex));
</SCRIPT>
</BODY>
</HTML>

See also: String.prototype

Chapter number

1974

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.7

ECMA 262 edition 3 – section – 15.5.4.8

String.length (Property)
The length of a String object's value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myString.length

The length of the String object's value measured in characters.

All String objects inherit properties and methods from the String prototype object. They will all
return a value as a result of requesting the length property.

The length value of a String object is immutable.

This suggests that changing the value of a String object actually creates a new String object. This
explains why continual string concatenations and modifications can sometimes cause a JavaScript
execution to leak large amounts of memory as it runs.

See also: String object, String.prototype

Property attributes:
ReadOnly, DontDelete, DontEnum.

Cross-references:
ECMA 262 edition 2 – section 15.5.5

ECMA 262 edition 3 – section 15.5.5.1

String.link() (Method)
Encapsulates the string within an tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Error! No text of specified style in document.

1975

Property/method value type: String primitive

- myString.link()
JavaScript syntax:

- myString.link(aURL)

Argument list: aURL The URL to be embedded into an HREF HTML tag attribute

Passing in the string "A link" with the parameter "Some site" will result in the following string:

ABCD

This is useful for creating hyperlinks within the document.

See also: LINK object, String.anchor(), Url object

String.localeCompare() (Method)
A locale sensitive string comparison.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myString.localeCompare(aString)

Argument list: aString A string to compare the value of this object against

The string passed as an argument is compared with the primitive value of the receiving String
object. Using simple character comparison techniques they may not match and would fail an A == B
test. The locale sensitive comparison takes special international characters and locale specific text
issues into account and properly matches the strings.

Cross-references:
ECMA 262 edition 3 – section – 15.5.4.9

String.match() (Method)
Searches a string using a regular expression and returns the matches in an array.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Chapter number

1976

Property/method value type: Array object

JavaScript syntax: - myObject.match(aPattern)

Argument list: aPattern A regular expression pattern

This is one of the additions to the String object to support regular expressions.

The matches are returned in an array with each match in a separate element. You can use this to strip
numeric values out of a string containing words and numbers by looking for a pattern such as:

/\d+/g

This would yield all the numeric values from a string.

The g attribute affects whether a single item matches or whether all of them match.

When the g attribute is not used, the array object has an additional property named index, which
contains the character location where the match occurred. It also has an additional property called
input, which contains the original string that was searched for a match.

Warnings:
❑ This resets the lastIndex property of a RegExp object to 0.

Example code:
myString = "JavaScript is good";
myLocation = myString.search(/GOOD/i);
document.write(myLocation);

See also: Array.index, Array.input, RegExp pattern,
RegExp.exec(), RegExp.lastIndex, Regular expression,
String.replace(), String.search(), String.split()

Cross-references:
ECMA 262 edition 3 – section 15.5.4.10

String.prototype (Property)
The prototype for the String object that can be used to extend the interface for all String objects.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server version – 3.0
Opera – 3.0

Property/method value type: String object

Error! No text of specified style in document.

1977

- String.prototype
JavaScript syntax:

- myString.constructor.prototype

The prototype property refers to the built-in String prototype object.

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that extends the capabilities of String objects
function reverse()
{
 myArray = new Array(this.length);

 for(myEnum=0; myEnum<this.length; myEnum++)
 {
 myArray[myEnum] = this.substr(myEnum,1)
 }

 myArray.reverse();

 return myArray.join("");
}
// Register the new function
String.prototype.reverse = reverse;
// Create a string object and test the String.reverse() method
myString = new String("ABCDEFGH");
document.write(myString.reverse())
document.write("
")
</SCRIPT>
</BODY>
</HTML>

See also: prototype property, String object, String.charAt(),
String.charCodeAt(), String.constructor,
String.indexOf(), String.lastIndexOf(),
String.length, String.split(), String.substring(),
String.toLocaleLowerCase(),
String.toLocaleUpperCase(), String.toLowerCase(),
String.toString(), String.toUpperCase(),
String.valueOf()

Chapter number

1978

Cross-references:
ECMA 262 edition 2 – section 15.2.3.1

ECMA 262 edition 2 – section 15.5.3.1

ECMA 262 edition 2 – section 15.5.4

ECMA 262 edition 3 – section 15.5.3.1

String.replace() (Method)
Searches a string using a regular expression and replace the matches.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: String primitive

JavaScript syntax: - myObject.replace(aPattern, aString)

aPattern A regular expression patternArgument list:
aString A replacement string

This is one of the additions to the String object to support regular expressions.

The search pattern locates matches, which are then replaced by the string value in the second argument.

The value is modified in place.

The replacement text can make use of the numbered sub-expression references and can use them in
the replaced string.

Warnings:
❑ This resets the lastIndex property of a RegExp object to 0.

Example code:
// Simple replacement
myString = "javascript, 'JAVASCRIPT', JavaScript";
myString.replace(/javascript/ig, "JavaScript");
document.write(myString);
myString.replace(/^.*\'([^\']*)\'.*$/, "---''$1''---")

See also: RegExp pattern, RegExp.exec(), RegExp.lastIndex,
Regular expression, String.match(), String.search(),
String.split()

Cross-references:
ECMA 262 edition 3 – section – 15.5.4.11

Error! No text of specified style in document.

1979

String.search() (Method)
Searches a string using a regular expression.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Property/method value type: Number primitive

JavaScript syntax: - myObject.search(
* aPattern
)

Argument list: aPattern A regular expression pattern

This is one of the additions to the String object to support regular expressions.

The character location where the match occurred is returned. If there is no match then the value -1 is
returned instead.

If you use the global attribute ('g'), then it will be ignored.

Warnings:
❑ This resets the lastIndex property of a RegExp object to 0.

❑ Don't mix this search() method up with the search property that belongs to the Location
object as they are totally different things. The temptation might be to refer to the position that the
string search yielded as a location. This could be very confusing for someone working on your
scripts later on.

Example code:
myString = "JavaScript is good";
myResult = myString.search(/GOOD/i);
document.write(myResult);

See also: RegExp pattern, RegExp.exec(), RegExp.lastIndex,
Regular expression, String.match(), String.replace(),
String.split()

Cross-references:
ECMA 262 edition 3 – section 15.5.4.12

Chapter number

1980

String.slice() (Method)
Returns a sub-string sliced out of the original.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server version – 2.0

Property/method value type: String primitive

- myString.slice(startPos)
JavaScript syntax:

- myString.slice(startPos,
endPos)

endPos The ending character positionArgument list:
startPos The starting character position

The sub-string is identified using the parameters passed as arguments in the method call.

The second argument is optional. If it is missing then it is assumed to mean the end of the string.

Start End

Sub-string

A B C D E F G H I J K M N O

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myString = "AAABBBCCCAAABBBCCC";
myIndex = myString.lastIndexOf("AAA");
document.write(myString.slice(myIndex, myIndex+4));
</SCRIPT>
</BODY>
</HTML>

See also: String.split(), String.substr(),
String.substring()

Cross-references:
ECMA 262 edition 3 – section – 15.5.4.13

Error! No text of specified style in document.

1981

String.small() (Method)
Encapsulates the string within an <SMALL> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.small()

Passing in the string "Small text" will result in the following string:

<SMALL>Small text</SMALL>

This is now somewhat deprecated in favor of the more sophisticated controls available with style
sheets.

See also: style.fontSize

String.split() (Method)
Splits a string and stores the components in an array.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Array object

- myString.split(aPattern)

- myString.split(aSeparator)
JavaScript syntax:

- myString.split(aSeparator, aCount)

aPattern A regular expression to define the splitting
sequence

aSeparator A separator string to use for slicing the string

Argument list:

aCount An iterator count to limit the number of splits

Chapter number

1982

This method returns an array that contains the separated elements.

The string is split using the separator string and each separate item is stored in an array element. The
items in the array are ordered in the same sequence they were presented in the original string.

This method is the complement of the join() method that is applied to arrays.

The separator string is used to sub-divide the target string and is removed from the string component
entities that result. The original string can be reconstructed by using the same separator in an
Array.join() operation.

If the separator string is omitted, then the string is simply stored in the first element of a new array
without being split. This is not the same as specifying an empty string. That will cause the split to
happen but because you have specified an empty string, and there is an empty string between each
character, the string will turned into an array of individual characters. This is amazingly useful
sometimes.

In JavaScript version 1.2, this method is extended to allow the use of a regular expression as its
argument. The match looks for the splitting delimiter. Using a constant character string inside the
regular expression is functionally identical to using a string as the splitting value. Where this becomes
powerful is where a character class or matching expression is used.

The example shows how a string of letters separated by a variety of numeric digits can be split apart
using a regular expression. This would be very difficult to do any other way and would require many
more lines of code.

"A"

"B"

"C"

"D"

Array
instance

1

2

3

4

"A" "B" "C" "D"

"A@B@C@D"

String.split("@")

Error! No text of specified style in document.

1983

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myRegExp = new RegExp("[0-9]", "g");
myString = "A0B1C2D3E4F5G";
myArray = myString.split(myRegExp);
for(myEnum=0; myEnum < myArray.length; myEnum++)
{
document.write(myArray[myEnum]);
document.write("
");
}
</SCRIPT>
</BODY>
</HTML>

See also: Array object, Array.join(), RegExp pattern, RegExp.exec(),
Regular expression, String concatenate (+), String.match(),
String.prototype, String.replace(), String.search(),
String.slice(), String.substr(), String.substring()

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.8

ECMA 262 edition 3 – section – 15.5.4.14

String.strike() (Method)
Encapsulates the string within an <STRIKE> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.strike()

Passing in the string "Struck out" will result in the following string:

<STRIKE>Struck out</STRIKE>

Chapter number

1984

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.textDecoration,
style.textDecorationLineThrough

String.sub() (Method)
Encapsulates the string within an <SUB> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.sub()

Passing in the string "Subscript text" will result in the following string:

_{Subscript text}

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.fontSize, style.fontStyle

String.substr() (Method)
Returns a sub-string extracted from the original.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server version – 3.0

Property/method value type: String primitive

- myString.substr(aStartPosition)
JavaScript syntax:

- myString.substr(aStartPosition, aLength)

aStartPosition The index of the first character in the substringArgument list:
aLength The length of the substring

Error! No text of specified style in document.

1985

This is a variation of the String.substring() method. The difference is that the substring length
is passed as the second argument rather than the substring ending character index.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myString = "ABCDEFGHIJKLMNOPQRSTUVWXYZ";
myIndex = myString.indexOf("MN");
document.write(myString.substr(myIndex, 5));
</SCRIPT>
</BODY>
</HTML>

See also: String.slice(), String.split(), String.substring()

Cross-references:
ECMA 262 edition 3 – section – B.2.3

String.substring() (Method)
Extracts a portion of a string.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myString.substring(aStartPosition,
anEndPosition)

anEndPosition A location within the string to end the sub-
string extraction. If this is omitted then the end
of the string is assumed to be the end position.

Argument list:

aStartPosition A location within the string to begin the sub-
string extraction.

If only one argument is provided, this method returns a sub-string starting at the indicated character
position and proceeding to the and of the string. Where two arguments are provided the start and end
points of the string are used to slice out a portion and return just that part.

When just one argument is provided, the second is supplied internally and is taken to be end
of the string.

Chapter number

1986

Where an argument is actually NaN rather than a meaningful value, then Zero is used instead.

If any argument is greater than the length of the string, then the length of the string is used instead.

Where the start point is larger than the end point, the two values are swapped over.

This method is intentionally generic and can be applied to non-string objects. Where necessary, the
receiving object may be converted to a string so that a sub-string can be extracted.

The result returned by this method is the sequence of characters between the start and end positions
of the source string. The value returned is a string primitive.

See also: String.prototype, String.slice(), String.split(),
String.substr()

Cross-references:
ECMA 262 edition 2 – section – 15.5.4.9

ECMA 262 edition 2 – section – 15.5.4.10

ECMA 262 edition 3 – section – 15.5.4.15

String.sup() (Method)
Encapsulates the string within an <SUP> tag context.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Deprecated: Yes

Property/method value type: String primitive

JavaScript syntax: - myString.sup()

Passing in the string "ABCD" will result in the following string:

^{ABCD}

This is now deprecated in favor of the more sophisticated controls available with style sheets.

See also: style.fontSize, style.fontStyle

Error! No text of specified style in document.

1987

String.toLocaleLowerCase() (Method)
Converts a string to all lower case using a locale sensitive character mapping.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myString.toLocaleLowerCase()

The result of this method will be a string primitive containing the value of the object with all
characters converted to lower case.

The original string is converted from arbitrary case to lower case on a character by character basis,
taking account of the locale when testing characters.

The characters in the output string will be the lower case equivalents of the characters in the input
string according to the rules defined by the Unicode 2.0 standard, and the locale specific rules
regarding special (accented) characters.

See also: Bit, Character handling, Character-case mapping,
String.prototype, String.toLocaleUpperCase(),
String.toLowerCase(), String.toUpperCase()

Cross-references:
ECMA 262 edition 3 – section 15.5.4.17

String.toLocaleUpperCase() (Method)
Converts a string to all upper case.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myString.toLocaleUpperCase()

The result of this method is a string primitive containing the value of the object with all characters
converted to upper case.

Chapter number

1988

The original string is converted from arbitrary case to upper case on a character by character basis,
taking account of the locale when testing characters.

The characters in the output string will be the upper case equivalents of the characters in the input
string according to the rules defined by the Unicode 2.0 standard, and the locale specific rules
regarding special (accented) characters.

See also: Bit, Character handling, Character-case mapping,
String.prototype, String.toLocaleLowerCase(),
String.toLowerCase(), String.toUpperCase()

Cross-references:
ECMA 262 edition 3 – section 15.5.4.19

String.toLowerCase() (Method)
Converts a string to all lower case.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myString.toLowerCase()

This method returns a string primitive containing the value of the object with all characters converted
to lower case.

The original string is converted from arbitrary case to lower case on a character by character basis.

The characters in the output string will be the lower case equivalents of the characters in the input
string according to the rules defined by the Unicode 2.0 standard.

The Canonical Unicode 2.0 mapping will be used and therefore no special international character
handling semantics take place. However non-ECMA compliant implementations may provide
localization support not specified by ECMA 262.

This method is intentionally generic and may be applied to a variety of object types other than strings.

The effect of this method may depend on the locale settings in a fully localizable implementation.

See also: Bit, Character handling, Character-case mapping,
String.prototype, String.toLocaleLowerCase(),
String.toLocaleUpperCase(), String.toUpperCase()

Error! No text of specified style in document.

1989

Cross-references:
ECMA 262 edition 2 – section 15.5.4.11

ECMA 262 edition 3 – section 15.5.4.16

String.toSource() (Method)
Outputs a string formatted as a string literal contained in a string.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myBoolean.toString()

This is an alternative way to deliver a string primitive version of a String object's value. In this case,
it is formatted as a string literal and can then be used in an eval() function to assign another string.

If you run the example below, it should yield this as a result:

(new String("ABCDEF"))

The result of calling this method is a string version of the String object formatted as a string literal.

Example code:
// Create a number and then examine its source
myString = new String("ABCDEF");
document.write(myString.toSource());

String.toString() (Method)
Returns a string primitive version of an object.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 2.0
Internet Explorer – 4
Netscape – 4.06

Property/method value type: String primitive

JavaScript syntax: - myString.toString()

Returns the string value as a primitive rather than an object.

Chapter number

1990

For a string object, the toString() method returns the same thing as the valueOf() method.

See also: String.prototype, String.valueOf(), toString()

Cross-references:
ECMA 262 edition 2 – section 15.5.4.2

ECMA 262 edition 3 – section 15.5.4.2

String.toUpperCase() (Method)
Converts a string to all upper case.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myString.toUpperCase()

The result of this method is a string primitive containing the value of the object with all characters
converted to upper case.

The original string is converted from arbitrary case to upper case on a character by character basis.

The characters in the output string will be the upper case equivalents of the characters in the input
string according to the rules defined by the Unicode 2.0 standard.

The Canonical Unicode 2.0 mapping will be used and therefore no special international character
handling semantics take place. However non-ECMA compliant implementations may provided
localization support not specified by ECMA 262.

This method is intentionally generic and may be applied to a variety of object types other than strings.

The effect of this method may depend on the locale settings in a fully localizable implementation.

See also: Bit, Character handling, Character-case mapping,
String.prototype, String.toLocaleLowerCase(),
String.toLocaleUpperCase(), String.toLowerCase()

Cross-references:
ECMA 262 edition 2 – section 15.5.4.12

ECMA 262 edition 3 – section 15.5.4.18

Error! No text of specified style in document.

1991

String.valueOf() (Method)
Returns the primitive value of the object.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: Number primitive

JavaScript syntax: - myString.valueOf()

The numeric equivalent of the string value is returned.

In the case of a String object, the valueOf() method returns the same thing as the toString()
method.

This is proven by taking a string object and then using the == or === operators to compare the two
values myString.toString() and myString.valueOf().

See also: Cast operator, String.prototype, String.toString(),
valueOf()

Cross-references:
ECMA 262 edition 2 – section 15.5.4.3

ECMA 262 edition 3 – section 15.5.4.3

String operator (Definition)
Operators that act on string values.

There is only one string operator in the sense of a token that you can build a string expression out of.
That is the concatenation operator. This may also be used to cast numeric values to string values by
concatenating them to an empty string.

See also: Additive operator, String concatenate (+)

Strips() (Filter/transition)
Reveals new image by sliding diagonal strips across the image.

Availability: JScript – 5.5
Internet Explorer – 5.5

Chapter number

1992

Refer to:
Filter – Strips()

STRONG object (Object/HTML)
An object representing the HTML content delimited by the tags.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE mySTRONG = myDocument.all.anElementID

IE mySTRONG = myDocument.all.tags("STRONG")[anIndex]

IE mySTRONG = myDocument.all[aName]

- mySTRONG = myDocument.getElementById(anElementID)

- mySTRONG =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySTRONG =
myDocument.getElementsByTagName("STRONG")[anIndex]

HTML syntax: ...

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

 tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

See also: Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning

Table continued on following page

Error! No text of specified style in document.

1993

Event name JavaScript JScript N IE Opera DOM HTML Notes

onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

STYLE object (1) (Object/HTML)
An object that encapsulates the <STYLE> tag in the document source as opposed to the internally
created style objects manufactured from CSS style sheet contents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE mySTYLE = myDocument.all.anElementID

IE mySTYLE = myDocument.all.tags("STYLE")[anIndex]

IE mySTYLE = myDocument.all[aName]

- mySTYLE = myDocument.getElementById(anElementID)

- mySTYLE =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySTYLE =
myDocument.getElementsByTagName("STYLE")[anIndex]

HTML syntax: <STYLE> ... </STYLE>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: disabled, media, readyState, type

Event handlers:
onClick, onDblClick, onError, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange

The <STYLE> tag conveys no apparent visible effect on the document. It is considered to be an
invisible tag.

Chapter number

1994

Warnings:
❑ Be careful not to confuse this DOM object with the internal CSS style object that MSIE supports. The

STYLE object is instantiated by the <STYLE> tag and is defined in the DOM standard. The style
object is based on the CSS attributes.

See also: CLASS="...", Element object

Property JavaScript JScript N IE Opera DOM HTML Notes

disabled 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

media 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

readyState - 3.0 + - 4.0 + - - - ReadOnly

type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5+ 3.0 + 6.0 + 4.0+ - - 4.0 + Warning

onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning

onError 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning

onHelp - 3.0 + - 4.0 + - - - Warning

onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onLoad 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 3.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onReadyStateChange - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Error! No text of specified style in document.

1995

STYLE.disabled (Property)
A switch to enable or disable a style object defined by the <STYLE> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - mySTYLE.disabled

If this value is set to Boolean true, the STYLE object will be inactive and will not be included in the
cascaded style.

Warnings:
❑ This is not supported on some versions of MSIE on the Macintosh platform.

STYLE.media (Property)
A description of the target presentation media that this <STYLE> tag is applicable to. This is not
widely or fully supported as yet.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySTYLE.media

At some time in the future style sheet support will allow a different styling model to be applied to the
document according to the context in which it is being used. At the very least one would expect
screen and print support to be available. The following values are allowed for in this property
(according the HTML 4.0 specification) although there is no active support for this yet in any browser:

❑ all

❑ aural

❑ braille

❑ handheld

❑ print

❑ projection

❑ screen

❑ tty

❑ tv

Chapter number

1996

For now at least, the MSIE browser supports all, print and screen.

Other values can be added and you can define multiple values by constructing a comma separated list
in this property. Obviously the all keyword should be used on its own.

One would expect the TV set-top boxes to support the tv media style. However, they currently don't
have very good support for stylesheets at all as they are predominantly based around the HTML 3.2
standard. This can only improve as time goes by.

See also: style.size

STYLE.readyState (Property)
The current status disposition of a <STYLE> object as it is being loaded.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE mySTYLE.readyState

This property reflects the downloading of a style sheet from a server.

Sometimes, you can design scripts to execute while the document is downloading, for example, inline
scripts and at that time, you may even be able to trigger interval timed deferred executions as well.

If it is important that the document has completed loading, you can check this property for one of the
following values:

State Value

uninitialized The object is first instantiated but has not begun loading.
loading The object has commenced loading.
loaded The object has completed loading.
interactive The object is loaded but not yet closed but is ready to handle

interaction.
complete The object body has been closed and the loading is finished.

An object may not need to reflect the complete status before you can commence operating on it.
Other objects may require that they are completely loaded. For example, you cannot create an
OBJECT object that represents an <OBJECT> tag until the <BODY> has completed loading. This is
because the ActiveX object construction requires a complete document body structure to attach itself to.

Every time this readyState value changes, it triggers an onReadyStateChange event call-back.

See also: onReadyStateChange

Error! No text of specified style in document.

1997

Property attributes:
ReadOnly.

STYLE.type (Property)
The MIME type that describes the kind of style information contained in the <STYLE> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - mySTYLE.type

The MIME type of the style is accessible through the value of this property.

Refer to the MIME type topic for details of the available MIME types you will likely see in this property.

style object (2) (Object/CSS)
An object that represents an individual style element within a style sheet.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Inherits from: Element object

IE myStyle = myDocument.all.anElementID.style
JavaScript syntax:

- myStyle = myElement.style

aClassName The value in a CLASS="..." tag attribute.
anElementName The value in a NAME="..." or ID="..."

tag attribute

Argument list:

aTagName An HTML tag name

Chapter number

1998

Object properties:
azimuth, background, backgroundAttachment, backgroundColor,
backgroundImage, backgroundPosition, backgroundPositionX,
backgroundPositionY, backgroundRepeat, behavior, border,
borderBottom, borderBottomColor, BorderBottomStyle,
borderBottomWidth, borderCollapse, borderColor, borderLeft,
borderLeftColor, borderLeftStyle, borderLeftWidth,
borderRight, borderRightColor, borderRightStyle,
borderRightWidth, borderSpacing, borderStyle, borderTop,
borderTopColor, borderTopStyle, borderTopWidth, borderWidth,
bottom, boxSizing, captionSide, cellSpacing, clear, clip,
color, colorProfile, columnSpan, content, counterIncrement,
counterReset, cssFloat, cssText, cue, cueAfter, cueBefore,
cursor, direction, display, elevation, emptyCells, filter,
float, floatStyle, font, fontFamily, fontSize, fontSizeAdjust,
fontStretch, fontStyle, fontVariant, fontWeight, height,
imeMode, important, layoutGrid, layoutGridChar,
layoutGridCharSpacing, layoutGridLine, layoutGridMode,
layoutGridType, left, length, letterSpacing, lineBreak,
lineHeight, listStyle, listStyleImage, listStylePosition,
listStyleType, margin, marginBottom, marginLeft, marginRight,
marginTop, markerOffset, marks, maxHeight, maxWidth,
minHeight, minWidth, orphans, outline, outlineColor,
outlineStyle, outlineWidth, overflow, overflowX, overflowY,
padding, paddingBottom, paddingLeft, paddingRight, paddingTop,
page, pageBreakAfter, pageBreakBefore, pageBreakInside, pause,
pauseAfter, pauseBefore, pitch, pitchRange, pixelBottom,
pixelHeight, pixelLeft, pixelRight, pixelTop, pixelWidth,
playDuring, posBottom, posHeight, position, posLeft, posRight,
posTop, posWidth, quotes, renderingIntent, richness, right,
rowSpan, rubyAlign, rubyOverhang, rubyPosition,
scrollbar3dLightColor, scrollbarArrowColor,
scrollbarBaseColor, scrollbarDarkShadowColor,
scrollbarFaceColor, scrollbarHighlightColor,
scrollbarShadowColor, size, speak, speakDate, speakHeader,
speakNumeral, speakPunctuation, speakTime, speechRate, stress,
styleFloat, tableLayout, textAlign, textAutospace,
textDecoration, textDecorationBlink,
textDecorationLineThrough, textDecorationNone,
textDecorationOverline, textDecorationUnderline, textIndent,
textJustify, textKashidaSpace, textShadow, textTransform,
textUnderlinePosition, top, unicodeBidi, verticalAlign,
visibility, voiceFamily, volume, whiteSpace, widows, width,
wordBreak, wordSpacing, wordWrap, writingMode, zIndex, zoom

Object methods:
getAttribute(), getExpression(), item(),
removeExpression(), setAttribute(), setExpression()

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

DOM level 2 mandates that this object should really be called a CSS2Properties object and not a
style object. It has become known as a style object due to the Element property name that points
at it.

The style objects supported by MSIE and Netscape Navigator 4.x are quite different. For a start, the
style objects are associated with each element in MSIE and are accessible quite easily via the style
property. For Netscape Navigator 4, the style properties are documented under the JSSTag object.
JSS style control permits the definition of element styles before an element has been instantiated into
the document. You cannot use JSS to make dynamic style alterations.

With the release of Netscape 6.0, the style manipulation is virtually the same across both browsers.
This works in both MSIE and Netscape 6 now:

document.getElementById("anID").style.backgroundColor="#003366";

Error! No text of specified style in document.

1999

Nearly all the attributes described in CSS level 1 and 2 are now supported by the style object.
Because the codebase in Netscape 6.0 is totally new and it has only just been released, you may
experience some minor instability in its support for styles.

When you look at the properties of the style object, you will observe that there are many alternative
ways to define properties. This is quite commonplace where Microsoft define an interface to an object
themselves or enhance one that has been defined by someone else (W3C or Netscape perhaps). For
example, you can specify border attributes for all four borders but there are also separately defined
attributes for each border. Although it's not that confusing, it does mean that there are a lot of
additional keywords to learn and, from a parsing point of view, the more keywords there are, the
slower the parser is going to be. It also means that programmers will employ a variety of different
techniques which then forces the competing browser manufacturers to support the Microsoft
extensions too.

Minimalist design is obviously not a priority here. Arguably there are benefits from this approach,
too, and some people prefer having a variety of alternative ways to script around a problem. The
style object could have been just as flexible with fewer properties at the expense of having scripts
with a few more lines.

In the case of the border attributes, we might easily have coped with having a single border attribute
that applied to all four sides because there are relatively few circumstances where we would want a
different border on each side of a cell. On the other hand, we would then have lost some functionality
so perhaps having individually addressable sides is beneficial, but then we could have omitted the
collective reference leading to a need to explicitly define all four. At least this way, everyone's needs
are catered for.

The properties for this object may apply styles to a variety of object types. Some are very specifically
applicable to only a particular sub-set of objects. You should generally assume that the style attribute
can apply to objects of any kind unless the property description topic enumerates a set of objects. In
that case, the style attribute should only be applied to those object types and will likely be ignored by
others. There is a possibility that applying a completely inappropriate styling to an object may cause
problems or unpredictable behavior.

Warnings:
❑ Note that the object type for MSIE is a style object spelled without capitalization. The

corresponding object type for Netscape 4 is a JSSTag object.

❑ MSIE also supports a STYLE object, which is instantiated by the <STYLE> tag. This is an object that
represents an inline style element within the HTML of the document.

See also: CLASS="...", Collection object, currentStyle object, Element
object, Element.currentStyle, Element.style, JSSTag object,
Layer object, rule.style, runtimeStyle object

Property JavaScript JScript N IE Opera DOM CSS HTML Notes

azimuth - - - - - 2 + 2 + - Warning
background 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 1 + - -
backgroundAttachment 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
backgroundColor 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 1 + - -

Table continued on following page

Chapter number

2000

Property JavaScript JScript N IE Opera DOM CSS HTML Notes

backgroundImage 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 1 + - -
backgroundPosition 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - Warning
backgroundPositionX 1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - -
backgroundPositionY 1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - -
backgroundRepeat 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
behavior 1.5 + 3.0 + 6.0 + 4.0 + - 2 + - - Warning
border 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderBottom 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderBottomColor 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
BorderBottomStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderBottomWidth 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderCollapse 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - Warning
borderColor 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderLeft 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderLeftColor 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderLeftStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderLeftWidth 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderRight 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderRightColor 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderRightStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderRightWidth 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderSpacing 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - Warning
borderStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
borderTop 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderTopColor 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderTopStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
borderTopWidth 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
borderWidth 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
bottom 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
boxSizing - 5.0 + - 5.0 + - - - - -
captionSide 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
cellSpacing - - - - - - 2 + - Warning
clear 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
clip 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - Warning
color 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 1 + - -
colorProfile - 5.0 + - 5.0 + - - - - -
columnSpan - - - - - - 2 + - Warning
content 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
counterIncrement 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
counterReset 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
cssFloat 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
cssText - 3.0 + - 4.0 + - - - - ReadOnly

Table continued on following page

Error! No text of specified style in document.

2001

Property JavaScript JScript N IE Opera DOM CSS HTML Notes

cue - - - - - 2 + 2 + - Warning
cueAfter - - - - - 2 + 2 + - Warning
cueBefore - - - - - 2 + 2 + - Warning
cursor 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
direction 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
display 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
elevation - - - - - 2 + 2 + - Warning
emptyCells 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
filter - 3.0 + - 4.0 + - - Proposed + - Warning
float - 3.0 + - 4.0 + - - 1 + - Warning
floatStyle - 5.0 + - 5.0 + - - - - -
font 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
fontFamily 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
fontSize 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
fontSizeAdjust 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
fontStretch 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
fontStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
fontVariant 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
fontWeight 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
height 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
imeMode - 5.0 + - 5.0 + - - Proposed + - -
important - 3.0 + - 4.0 + - - 1 + - -
layoutGrid - 5.0 + - 5.0 + - - Proposed + - -
layoutGridChar - 5.0 + - 5.0 + - - Proposed + - -
layoutGridCharSpacing - 5.0 + - 5.0 + - - Proposed + - -
layoutGridLine - 5.0 + - 5.0 + - - Proposed + - -
layoutGridMode - 5.0 + - 5.0 + - - Proposed + - -
layoutGridType - 5.0 + - 5.0 + - - Proposed

+
 - -

left 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 2 + - -
length - 5.0 + - 5.0 + - - - - ReadOnly
letterSpacing 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
lineBreak - 5.0 + - 5.0 + - - Proposed + - -
lineHeight 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
listStyle 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
listStyleImage 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
listStylePosition 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
listStyleType 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
margin 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
marginBottom 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
marginLeft 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
marginRight 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -

Table continued on following page

Chapter number

2002

Property JavaScript JScript N IE Opera DOM CSS HTML Notes

marginTop 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
markerOffset 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
marks 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
maxHeight 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
maxWidth 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
minHeight 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
minWidth 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
orphans 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
outline 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
outlineColor 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
outlineStyle 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
outlineWidth 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
overflow 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - Warning
overflowX 1.5 + 5.0 + 6.0 + 5.0 + - - - - -
overflowY 1.5 + 5.0 + 6.0 + 5.0 + - - - - -
padding 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
paddingBottom 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
paddingLeft 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
paddingRight 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
paddingTop 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
page 1.5 + 5.5 + 6.0 + 5.5 + - 2 + - - -
pageBreakAfter 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - Warning
pageBreakBefore 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - -
pageBreakInside 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
pause - - - - - 2 + 2 + - Warning
pauseAfter - - - - - 2 + 2 + - Warning
pauseBefore - - - - - 2 + 2 + - Warning
pitch - - - - - 2 + 2 + - Warning
pitchRange - - - - - 2 + 2 + - Warning
pixelBottom - 5.0 + - 5.0 + - - - - -
pixelHeight - 3.0 + - 4.0 + 5.0 + - - - -
pixelLeft - 3.0 + - 4.0 + 5.0 + - - - -
pixelRight - 5.0 + - 5.0 + - - - - -
pixelTop - 3.0 + - 4.0 + 5.0 + - - - -
pixelWidth - 3.0 + - 4.0 + 5.0 + - - - -
playDuring - - - - - 2 + 2 + - Warning
posBottom - 5.0 + - 5.0 + - - - - -
posHeight - 3.0 + - 4.0 + - - - - -
position 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 2 + - Warning,

ReadOnly
posLeft - 3.0 + - 4.0 + - - - - -
posRight - 5.0 + - 5.0 + - - - - -

Table continued on following page

Error! No text of specified style in document.

2003

Property JavaScript JScript N IE Opera DOM CSS HTML Notes

posTop - 3.0 + - 4.0 + - - - - -
posWidth - 3.0 + - 4.0 + - - - - -
quotes 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
renderingIntent - 5.0 + - 5.0 + - - - - -
richness - - - - - 2 + 2 + - Warning
right 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
rowSpan - - - - - - 2 + - -
rubyAlign - 5.0 + - 5.0 + - - Proposed + - -
rubyOverhang - 5.0 + - 5.0 + - - Proposed + - -
rubyPosition - 5.0 + - 5.0 + - - Proposed + - -
scrollbar3dLightColor - 5.5 + - 5.5 + - - - - -
scrollbarArrowColor - 5.5 + - 5.5 + - - - - -
scrollbarBaseColor - 5.5 + - 5.5 + - - - - -
scrollbarDark
ShadowColor

 - 5.5 + - 5.5 + - - - - -

scrollbarFaceColor - 5.5 + - 5.5 + - - - - -
scrollbar
HighlightColor

 - 5.5 + - 5.5 + - - - - -

scrollbarShadowColor - 5.5 + - 5.5 + - - - - -
size - - - - - 2 + 2 + - -
speak - - - - - 2 + 2 + - Warning
speakDate - - - - - - 2 + - Warning
speakHeader - - - - - 2 + 2 + - Warning
speakNumeral - - - - - 2 + 2 + - Warning
speakPunctuation - - - - - 2 + 2 + - Warning
speakTime - - - - - - 2 + - Warning
speechRate - - - - - 2 + 2 + - Warning
stress - - - - - 2 + 2 + - Warning
styleFloat 1.5 + 3.0 + 6.0 + 4.0 + - - - - -
tableLayout 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
textAlign 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
textAutospace - 5.0 + - 5.0 + - - Proposed + - -
textDecoration 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
textDecorationBlink 1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - Warning
textDecoration
LineThrough

1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - Warning

textDecorationNone 1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - Warning
textDecorationOverline 1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - Warning
textDecorationUnderline 1.5 + 3.0 + 6.0 + 4.0 + - - Proposed + - Warning
textIndent 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
textJustify - 5.0 + - 5.0 + - - Proposed + - -
textKashidaSpace - 5.5 + - 5.5 + - - Proposed + - -
textShadow 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
textTransform 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
textUnderlinePosition - 5.5 + - 5.5 + - - Proposed + - -

Table continued on following page

Chapter number

2004

Property JavaScript JScript N IE Opera DOM CSS HTML Notes

top 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 2 + - -
unicodeBidi 1.5 + 5.0 + 6.0 + 5.0 + - 2 + - - -
verticalAlign 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - -
visibility 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + 2 + 2 + - -
voiceFamily - - - - - 2 + 2 + - Warning
volume - - - - - 2 + 2 + - Warning
whiteSpace 1.5 + 5.5 + 6.0 + 5.5 + - 2 + 1 + - Warning
widows 1.5 + 5.0 + 6.0 + 5.0 + - 2 + 2 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 2 + 1 + - Warning
wordBreak - 5.0 + - 5.0 + - - Proposed + - -
wordSpacing 1.5 + 3.0 + 6.0 + 4.01 + - 2 + 1 + - Warning
wordWrap - 5.5 + - 5.5 + - - Proposed + - -
writingMode - 5.5 + - 5.5 + - - Proposed + - -
zIndex 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + 2 + 2 + - Warning
zoom - 5.5 + - 5.5 + - - - - -

Method JavaScript JScript N IE Opera DOM CSS HTML Notes

getAttribute() 1.5 + 3.0 + 6.0 + 4.0 + - - - - Warning
getExpression() - 5.0 + - 5.0 + - - - - -
item() - 3.0 + - 4.0 + - - - - -
removeExpression() - 5.0 + - 5.0 + - - - - -
setAttribute() 1.5 + 5.0 + 6.0 + 5.0 + - - - - -
setExpression() - 5.0 + - 5.0 + - - - - -

Event name JavaScript JScript N IE Opera DOM CSS HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 5.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

Error! No text of specified style in document.

2005

style.azimuth (Property)
Part of the aural style control suite that defines the horizontal angle of the sound source relative
to the listener.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.azimuth

CSS syntax: azimuth: anAngle aDirection

anAngle An angle specified with a value or keywordArgument list:
aDirection A direction specifier

The value of this property describes the angle or direction from which the sound is coming from. This
assumes you have a sound system that is capable of revolving a full 360 degree panorama. A stereo
system should be able to place the sound source in approximately the correct position left to right and
by careful use of phasing may be able to move the sound source in and out of the sound field.

The directional value can be specified either as a value in degrees or by using one or two keywords.

An azimuthal value specified in degrees must have the deg suffix. Thus 90 degrees would encoded as
90deg.

The keyword combinations and their azimuthal location are listed in the table:

Angle Keywords

0 center

20 center-right

40 right

60 far-right

90 right-side

120 far-right behind

140 right behind

160 center-right behind

180 center behind

200 center-left behind

220 left-behind

240 far-left behind

270 left-side

300 far-left

320 left

340 center-left

Chapter number

2006

In addition you can also specify these keywords:

❑ leftwards

❑ rightwards

These shift the sound source in the appropriate direction by 20 degrees.

Center

Center-right

Right

Far-right

Right-side

Far-right-behind

Right-behind

Center-right-behind

Center-behind

Center-left

Left

Far-left

Left-side

Far-left-behind

Left-behind

Center-left-behind

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, BGSOUND.balance, style.elevation

style.background (Property)
A shortcut to specify several background properties.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5

Property/method value type: String primitive

JavaScript syntax: - myStyle.background

Error! No text of specified style in document.

2007

CSS syntax:
background: anAttachment aColor anImage aPosition
aRepeat

anAttachment Scrollability of the background
aColor Base color value
anImage Background image URL
aPosition Image location reference

Argument list:

aRepeat Repeat flag

This is a convenience property for specifying several properties of the background all at once. It is
recommended that you specify the properties individually unless you plan to replace all of them with
this property value.

The individual value are space separated from one another and are specified individually as they
would be for their specific properties.

The following properties are collected into this convenience property:

❑ style.backgroundAttachment

❑ style.backgroundColor

❑ style.backgroundImage

❑ style.backgroundPosition

❑ style.backgroundRepeat

Note that the style.backgroundPosition value itself is composed of two values; the X
coordinate followed by the Y coordinate.

If, when you define this set of properties, you omit a keyword in the namespace of any particular
property, that property will be set to its default initial value.

See also: Background.src, style.backgroundAttachment,
style.backgroundColor, style.backgroundImage,
style.backgroundPosition,
style.backgroundPositionX,
style.backgroundPositionY, style.backgroundRepeat

style.backgroundAttachment (Property)
The means of attachment for the style.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

Chapter number

2008

JavaScript syntax: - myStyle.backgroundAttachment

CSS syntax: background-attachment: aSwitch

Argument list: aSwitch A switch setting for fixed or scrolling

This property determines how a background image, if you have one, is attached to the document on
display. The following values are appropriate for this property:

❑ fixed

❑ scroll

Fixing the image allows the document content to slide over it as if the two were on separate layers.

Warnings:
❑ This property may be named background-Attachment according to some documentation.

See also: style.background, style.backgroundImage

style.backgroundColor (Property)
A color of the styled object's background.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.backgroundColor

CSS syntax: background-color: acolor

HTML syntax: <BODY BGCOLOR="...">

Argument list: acolor A valid color specifier

This background color is applied to the element before any background image is drawn. You can
define both a background image and a background color. If you do, and if the background image
contains any pixels that are set to a transparent color, then the background color will show through.

There are several ways in which you can access the background color of a document or element.
Depending on how you do this, you may affect the entire document or just a part of it.

Error! No text of specified style in document.

2009

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="ONE" STYLE="background-color:RED">
The DIV block ONE
</DIV>
<DIV ID="TWO" STYLE="background-color:BLUE">
The DIV block TWO
</DIV>
<FORM>
<INPUT TYPE="button" VALUE="CLICK ME" onClick="clickMe()">
</FORM>
<SCRIPT>
//MSIE Only
function clickMe()
{
 myStyle1 = document.all.ONE.style.backgroundColor;
 myStyle2 = document.all.TWO.style.backgroundColor;

 document.all.ONE.style.backgroundColor = myStyle2;
 document.all.TWO.style.backgroundColor = myStyle1;
}
</SCRIPT>
</BODY>
</HTML>

See also: color names, color value, Document.bgColor,
JSSTag.backgroundColor, rgb(), style.background

style.backgroundImage (Property)
The image displayed as a background to the object.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.backgroundImage

CSS syntax: background-image: aURL

HTML syntax: <BODY BACKGROUND="...">

Argument list: aURL A reference to an image asset

Chapter number

2010

If a background image is available, then its URL is contained in this property. Changing the value in
this property will replace the background with a new one, however there may be a perceptible delay
while the new image is fetched from the web server.

The background image will be stationary or move with the document when it is scrolled according to
the setting of the style.backgroundAttachment property.

See also:
JSSTag.backgroundImage, style.background,
style.backgroundAttachment

style.backgroundPosition (Property)
The grid offset position for the background image.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.backgroundPosition

CSS syntax:
background-position: anX
* aY

anX A value describing the X coordinate positionArgument list:
aY A value describing the Y coordinate position

This property defines the reference position for the background image relative to the top left corner of
the extent rectangle containing the styled element.

Like the background property, this is a convenience property which can be used instead of
specifying the X and Y values separately.

This value should have both a top and a left position specified with a space character in between
them. If you omit the second value, the first and only value will be assumed to apply to the horizontal
axis while the value 50% will be used by default for the vertical axis.

The positioning of the image includes the padding space around the styled element.

Oddly enough, the default measurement units for this property are percentages. You will achieve a
more accurate positioning effect if you specify the value in pixels.

You can use the following keywords for vertical positioning:

❑ top

❑ center

❑ bottom

Error! No text of specified style in document.

2011

These keywords can be used for horizontal positioning:

❑ left

❑ center

❑ right

Warnings:
❑ Some versions of MSIE for the Macintosh do not use this value correctly and the image positioning

may be unpredictable.

Example code:
// Example background position assignments
myStyle.backgroundPosition = "top left";
myStyle.backgroundPosition = "10 left";
myStyle.backgroundPosition = "top 20";
myStyle.backgroundPosition = "50% 50%";
myStyle.backgroundPosition = "25% 0";

See also: Measurement units, style.background

style.backgroundPositionX (Property)
The X-coordinate of the background image grid position.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - myStyle.backgroundPositionX

CSS syntax: background-position-x: aValue

Argument list: aValue An X coordinate value

This property defines the horizontal coordinate of the reference position for the background image
relative to the left edge of the extent rectangle containing the styled element. The positioning of the
image includes the padding space around the styled element.

Unlike the backgroundPosition property, the default measurement units for this property are
pixels. This is the most accurate means of positioning background images. You can also use the value
"left" to equate symbolically to the value 0.

Chapter number

2012

Example code:
// Example background positionX assignments
myStyle.backgroundPositionX = "left";
myStyle.backgroundPositionX = "20";
myStyle.backgroundPositionX = "50%";
myStyle.backgroundPositionX = "0";

See also: Measurement units, style.background

style.backgroundPositionY (Property)
The Y-coordinate of the background image grid position.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.backgroundPositionY

CSS syntax: background-position-y: aValue

Argument list: aValue An Y-coordinate value

This property defines the vertical coordinate of the reference position for the background image
relative to the top edge of the extent rectangle containing the styled element. The positioning of the
image includes the padding space around the styled element.

Unlike the backgroundPosition property, the default measurement units for this property are
pixels. This is the most accurate means of positioning background images. You can also use the value
"top" to equate symbolically to the value 0.

Example code:
// Example background positionY assignments
myStyle.backgroundPosition = "top";
myStyle.backgroundPosition = "10";
myStyle.backgroundPosition = "50%";
myStyle.backgroundPosition = "0";

See also: Measurement units, style.background

Error! No text of specified style in document.

2013

style.backgroundRepeat (Property)
A property that controls the background step and repeat behavior.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.backgroundRepeat

CSS syntax: background-repeat: aValue

Argument list: aValue A selector for the kind of tiling algorithm

Depending on how you have designed the background image, you can use this property to control
how it is step repeated across or down the page. The following values are appropriate:

❑ repeat

❑ repeat-x

❑ repeat-y

❑ no-repeat

See also: style.background

style.behavior (Property)
Defines the URL location of a behavior HTC file.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.behavior

The behavior value may be specified as a file to be requested from the server or as a locally available
behavior object. There are also built-in behaviors that the MSIE browser makes available.

Web-references:
http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/behavior_1.asp#behavior

http://msdn.microsoft.com/workshop/author/dhtml/reference/properties/behavior_1.asp#behavior

Chapter number

2014

style.border (Property)
A border round the styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.border

CSS syntax: border: aWidth aStyle aColor

aWidth A border width value

aStyle A border style selector
Argument list:

aColor A color value

This property provides a way to set all four borders in one assignment. It takes three values.
However, you must specify the border style value for it to have any effect. The three values to define
are:

❑ borderStyle

❑ borderColor

❑ borderWidth

Of course, you can specify them individually if you prefer, but this property may provide a cleaner
display transition.

The three items should be space separated and defined as they would be for the specific properties
that operate on them individually. Because the properties use distinctly different namespaces, the
values can be defined in any order so long as the style value is always present.

You should include the width attribute. In fact unless you are specifying all three values, this
shortcut isn't much of a saving over the discrete property setting mechanisms.

Borders and outlines are similar but not the same. An outline is like a border but it is drawn within
the extent of the object. A border is drawn outside the object. The width of a border is measured
outwards from the edge of element while the outline width is measured inwards.

See also: color names, color value, Measurement units,
style.borderColor, style.borderStyle,
style.borderWidth, style.margin, style.outline,
style.padding

Error! No text of specified style in document.

2015

style.borderBottom (Property)
Set the color, width and style of the bottom edge of the style border.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderBottom

CSS syntax: border-bottom: aWidth aStyle aColor

aWidth A border width value
aStyle A border style selector

Argument list:

aColor A color value

See also: color names, color value, Measurement units,
style.borderColor, style.borderStyle,
style.borderWidth, style.border

style.borderBottomColor (Property)
The color of the bottom edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderBottomColor

CSS syntax: border-bottom-color: aColor

Argument list: aColor A color value

See also: color names, color value, Measurement units, rgb(),
style.borderColor

Chapter number

2016

style.borderBottomStyle (Property)
The type of line for the bottom edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderBottomStyle

CSS syntax: border-bottom-style: aStyle

Argument list: aStyle A border style selector

Refer to:
style.borderStyle

style.borderBottomWidth (Property)
The width of the bottom edge of the object's border.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderBottomWidth

CSS syntax: border-bottom-width: aWidth

Argument list: aWidth A border width value

Error! No text of specified style in document.

2017

Object

Padding

Border

Margin

Border bottom width

Margin bottom

Padding bottom

See also: JSSTag.borderBottomWidth, Measurement units,
style.borderWidth

style.borderCollapse (Property)
A switch that determines whether borders of adjacent elements are drawn independently of one
another or shared between the two items.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderCollapse

CSS syntax: border-collapse: aSwitch

Argument list: aSwitch A switching parameter value

Collapsing borders gives adjacent objects the same appearance as table cells. Cells in a table share
common borders. The downside of this is that it is sometimes hard to see which object a border
belongs to. You might turn off all the borders on an object that is surrounded by objects that have
active borders. Then collapsing the borders for all the objects would look no different than if the
middle object had its borders all active as well.

These keywords are appropriate for use with this property:

❑ collapse

❑ separate

Chapter number

2018

Warnings:
❑ This style property appears to be inoperable in the Netscape 6.0 release. However it can be simulated

by setting the border width to 0 for the edge that adjoins another bordered element. That should
work across all CSS-compliant browsers.

See also: style.borderSpacing

style.borderColor (Property)
The color of the border around an element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderColor

CSS syntax: border-color: aColor

Argument list: aColor A color value

This property lets you change the color of one or more of the borders around an object.

If you specify only one value, all four borders are set. Two values define the top and bottom with the
first and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right, while the third controls the bottom edge. When all
four values are specified, they are assumed to be in the order: top, right, bottom and left.

Color values can be specified using symbolic names, rgb() functions, or hash delimited hex values.

This property might be used to control the border color around a frame or in fact with style sheet
controls, you can control the border color around any object that can have a style associated with it.

See also: color names, color value, JSSTag.borderColor, rgb(),
style.border, style.outlineColor

Error! No text of specified style in document.

2019

style.borderLeft (Property)
Sets the color, width and style of the left edge of the style border.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderLeft

CSS syntax: border-left: aWidth aStyle acolor

aWidth A border width value

aStyle A border style selector
Argument list:

acolor A color value

See also: color names, color value, Measurement units,
style.borderColor, style.borderStyle,
style.borderWidth, style.border

style.borderLeftColor (Property)
The color of the left edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderLeftColor

CSS syntax: border-left-color: aColor

Argument list: aColor A color value

See also: color names, color value, rgb(), style.borderColor

Chapter number

2020

style.borderLeftStyle (Property)
The type of line used for the left edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderLeftStyle

CSS syntax: border-left-style: aStyle

Argument list: aStyle A border style selector

Refer to:
style.borderStyle

style.borderLeftWidth (Property)
The width of the border to the left of an element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderLeftWidth

CSS syntax: border-left-width: aWidth

Argument list: aWidth A border width value

See also: JSSTag.borderLeftWidth, Measurement units,
style.borderWidth

Error! No text of specified style in document.

2021

style.borderRight (Property)
Sets the color, width, and style of the right edge of the style border.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderRight

CSS syntax: border-right: aWidth aStyle acolor

aWidth A border width value

aStyle A border style selector
Argument list:

acolor A color value

See also: color names, color value, Measurement units,
style.borderColor, style.borderStyle,
style.borderWidth, style.border

style.borderRightColor (Property)
The color of the right edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderRightColor

CSS syntax: border-right-color: aColor

Argument list: aColor A color value

See also: color names, color value, rgb(),style.borderColor

Chapter number

2022

style.borderRightStyle (Property)
The kind of line used for the right edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderRightStyle

CSS syntax: border-right-style: aStyle

Argument list: aStyle A border style selector

Refer to:
style.borderStyle

style.borderRightWidth (Property)
The width of the border to the right of an element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderRightWidth

CSS syntax: border-right-width: aWidth

Argument list: aWidth A border width value

See also: JSSTag.borderRightWidth, Measurement units,
style.borderWidth

Error! No text of specified style in document.

2023

style.borderSpacing (Property)
This defines the spacing between the adjacent bordered edges of the two elements.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderSpacing

CSS syntax: border-spacing: aValue

Argument list: aValue A border spacing value

If borders are not collapsed and hence elements have borders that are independent of one another,
this defines the spacing between the adjacent bordered edges of the two elements.

You can space elements apart, taking into account the fact that they have borders; this interposes
some space between the objects so that you can clearly see the border around each one.

Warnings:
❑ Because the borderCollapse style property is not yet working correctly in Netscape 6.0, this one

may also not work properly in all situations.

See also: style.borderCollapse

style.borderStyle (Property)
The style of border that is drawn round a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderStyle

CSS syntax: border-style: aStyle

Argument list: aStyle A border style selector

Chapter number

2024

This property lets you change the style of one or more of the borders around an object.

If you specify only one value, all four borders are set. Two values define the top and bottom with the
first, and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right, while the third controls the bottom edge. When all
four values are specified, they are assumed to be in the order: top, right, bottom and left.

Style values can be specified using symbolic names as follows:

❑ solid

❑ dashed

❑ dotted

❑ double

❑ inset

❑ outset

❑ groove

❑ ridge

❑ hidden

❑ none

This property might be used to control the border style around a frame, or in fact with stylesheet
controls you can control the border style around any object that can have a style associated with it.

Warnings:
❑ There may be some differences in the way that browsers draw these border styles. In particular,

MSIE version 4 on Windows may not draw the dashed and dotted borders correctly.

See also: JSSTag.borderStyle, style.border,
style.outlineStyle

style.borderTop (Property)
Set the color, width and style of the top edge of the style border.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderTop

CSS syntax: border-top: aWidth aStyle aColor

Error! No text of specified style in document.

2025

aWidth A border width value

aStyle A border style selector
Argument list:

acolor A color value

See also: color names, color value, Measurement units,
style.borderColor, style.borderStyle,
style.borderWidth, style.border

style.borderTopColor (Property)
The color of the top edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - myStyle.borderTopColor

CSS syntax: border-top-color: aColor

Argument list: aColor A color value

See also: color names, color value, rgb(), style.borderColor

style.borderTopStyle (Property)
The kind of line used for the top edge of the style border.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - myStyle.borderTopStyle

CSS syntax:
border-top-style: aStyle

Argument list:
aStyle A border style selector

Chapter number

2026

Refer to:
style.borderStyle

style.borderTopWidth (Property)
The width of the border along the top edge of an element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderTopWidth

CSS syntax: border-top-width: aWidth

Argument list: aWidth A border width value

See also: JSSTag.borderTopWidth, Measurement units,
style.borderWidth

style.borderWidth (Property)
The thickness of the style border.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.borderWidth

CSS syntax: border-width: aWidth

Argument list: aWidth A border width value

This property lets you change the width of one or more of the borders around an object.

If you specify only one value, all four borders are set. Two values define the top and bottom with the
first, and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right, while the third controls the bottom edge. When all
four values are specified, they are assumed to be in the order: top, right, bottom and left.

Error! No text of specified style in document.

2027

Width values can be specified using symbolic names or pixel values. The following symbolic names
are available:

❑ thin

❑ medium

❑ thick

This property might be used to control the border width around a frame or in fact, with style sheet
controls you can control the border width around any object that can have a style associated with it.

See also: JSSTag.borderWidths(), Measurement units,
style.border, style.margin, style.outlineWidth

style.bottom (Property)
A positioning reference point.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.bottom

CSS syntax: bottom: aValue

Argument list: aValue A positioning value

A CSS-P positioning style attribute that controls the location of an element relative to its containing
parent element. The bottom edges of the two elements are used as the reference points.

The value can be specified in the usual pixel or fractional em-dash measurement units or the auto
keyword can be used to let the browser do the positioning itself.

The exact positioning is affected by settings for padding, border, margin, and (particularly the
mode of) the position property.

See also: Measurement units, style.left, style.pixelBottom,
style.posBottom, style.right, style.top

Chapter number

2028

style.boxSizing (Property)
A special style supported by MSIE to control the way that elements are boxed.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.boxSizing

CSS syntax: box-sizing: aControl

Argument list: aControl The box sizing control value

Although the property is present as an enumerable property, searching the Microsoft documentation
base yielded no useful information. Some very sparse web search results suggested this was some
kind of layout control facility.

style.captionSide (Property)
An attribute that controls the positioning of a caption with respect to its owning object.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.captionSide

CSS syntax: caption-side: aSwitch

Argument list: aSwitch A switching value

This property would normally be used on a style that is used with tables. It allows the caption
position relative to the owning element to be controlled.

The following keywords can be used with this property:

❑ top

❑ bottom

This is intended to replace the deprecated alignment controls that were formerly available with the
<CAPTION> HTML tag.

See also: CAPTION object, CAPTION.align, CAPTION.vAlign, TABLE
object

Error! No text of specified style in document.

2029

style.cellSpacing (Property)
Defines the cell spacing of items in a table.

Availability: CSS level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.cellSpacing

CSS syntax: cell-spacing: aValue

Argument list: aValue A spacing value

This property is intended to provide control over the cell spacing for tables. The property is able to
accept one or two length values specified in the normal measurement units.

If you specify just one value it is used for both horizontal and vertical cell spacing. If you specify both
values, the horizontal is taken to be first and the vertical spacing uses the second.

Assigning the none keyword to the property resets the cell spacing to the browser default value.

Warnings:
❑ This CSS 2 property is not yet supported by MSIE.

See also: Measurement units, TABLE object

style.clear (Property)
A means of controlling text flow and positioning of objects adjacent to one another to allow them to
coexist on the same horizontal line or to force a line break before or after them.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.clear

CSS syntax: clear: aValue

Argument list: aValue An alignment control value

Chapter number

2030

This property is useful for giving fine control over the text flow around images or other objects. You
can use it to clear alignment settings either side of the object, making it behave like a block structured
item as far as the text flow is concerned. The following values can be assigned to this property:

❑ none

❑ left

❑ right

❑ both

The exact behavior depends on the presence of adjacent elements and the settings of their
style.float properties being defined as either left or right.

See also: JSSTag.clear, style.float

style.clip (Property)
A clip region for a style.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.clip

CSS syntax: clip: aValue

Argument list: aValue
Either a rectangle object or a keyword
value

Positionable objects can have a clipping region defined for them. This defines the area of the styled
object that is visible. At present you can only clip to a rectangular shape. You can specify either a
clipping region measured in pixels, or use the symbolic name "auto" to use the extent rectangle
surrounding the object as its clip region. The coordinates should be specified in the order: top, right,
bottom and left and need to be enclosed in a rect() constructor function to instantiate a rect object
to be assigned to the property.

You should be careful not to exceed the extent rectangle of the containing parent element. This should
not cause a problem and the clipping regions should be clipped one within the other, but MSIE does
not handle this very gracefully sometimes.

If you access the left, right, top and bottom properties of the style.clip rect object
individually, you can specify a single numeric value for each as need be.

Error! No text of specified style in document.

2031

Warnings:
❑ This does not work in all versions of MSIE for Macintosh.

See also: Clip object, Rect object

style.clip.bottom (Property)
The bottom edge of an element object's clip region.

Availability: CSS level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.clip.bottom

Refer to:
style.clip

style.clip.left (Property)
The left edge of an element object's clip region.

Availability: CSS level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.clip.left

Refer to:
style.clip

Chapter number

2032

style.clip.right (Property)
The right edge of an element object's clip region.

Availability: CSS level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.clip.right

Refer to:
style.clip

style.clip.top (Property)
The top edge of an element object's clip region.

Availability: CSS level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.clip.top

Refer to:
style.clip

style.color (Property)
Defines the foreground color of any text drawn in the content of the styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Error! No text of specified style in document.

2033

Property/method value type: String primitive

JavaScript syntax: - myStyle.color

CSS syntax: color: aColor

Argument list: aColor A valid color value

The color of foreground text affected by this style object will be defined in this property.

The color can be specified in the normal way according to the HTML color specifiers.

See also: color names, color value, JSSTag.color, rgb(),
String.fontcolor(), style.renderingIntent

style.colorProfile (Property)
This is an extension to the style model that allows for accurate color models to be used for improved
color fidelity of the displayed image.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.colorProfile

CSS syntax: color-profile: aProfile

Argument list: aProfile A color profile selector

This is related to the ICC color profiling support in the browser and platform. See also the Apple
ColorSync technologies.

See also: style.renderingIntent

style.columnSpan (Property)
Defines the number of columns to span when displaying a table cell.

Availability: CSS level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.columnSpan

Chapter number

2034

CSS syntax: column-span: aCount

Argument list: aCount A number of columns to span

The columnSpan property is used to define how many columns a table cell should span. There are
other alternative ways to access the cell spanning controls for a table cell via the DOM representation
of tables through the TABLE, TD and TH objects.

You should specify a numeric value to indicate how many columns the table cell should span. This
can also be used with the COL and COLGROUP objects.

Warnings:
❑ This style property is not yet supported by MSIE.

See also: COL object, COLGROUP object, TABLE object, TABLE.cols,
TD.colSpan, TH.colSpan

style.content (Property)
A means of adding small fragments of HTML before and after an element without that HTML
needing to be coded into the document source with the styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.content

CSS syntax: content: someContentRef

Argument list: someContentRef
A URL, string or value to be placed before
or after an element

If you have a generic effect you want to achieve that goes beyond what is possible with a simple
property or style attribute and can only be accomplished by additional fragments of HTML, this
property provides a way to add fragments of HTML before and after an element.

The string to be assigned to this should be a valid fragment of CSS text that uses the before: and
after: pseudo elements to define leading and trailing fragments of HTML.

This is a relatively new part of the CSS standard and does not yet have a well defined JavaScript binding.

Error! No text of specified style in document.

2035

style.counterIncrement (Property)
A means of controlling the way that counters in enumerated items are to be incremented when they
are used in the document.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.counterIncrement

CSS syntax: counter-increment: aValue

Argument list: aValue An incrementing value for the counter

The value specified in this property is added to the counter as it is enumerated in an ordered list.

See also: style.listStyle, style.listStyleType

style.counterReset (Property)
A way to reset a counter at the start of a section.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.counterReset

CSS syntax: counter-reset: aValue

Argument list: aValue A new initial value for the counter

If you are building complex ordered list structures, you may want to force a counter to be reset to a
specific value. This property provides a means of assigning a new value to the list at the start of the
enumeration loop.

Chapter number

2036

style.cssFloat (Property)
An extension to the float attribute that is a standard CSS attribute. cssFloat is an MSIE-only
attribute and is not standardized. It appears to simply be another name for the float property.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.cssFloat

CSS syntax: css-float: anAlignment

Argument list: anAlignment A float control word

See also: style.styleFloat, style.float

style.cssText (Property)
The CSS style sheet specification source text for this style object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
String primitive

JavaScript syntax: IE myStyle.cssText

This property returns the contents of the entire style sheet rule that this style object belongs to. You
can also assign a new CSS text value to this property in accordance with the style sheet syntax rules.

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2037

style.cue (Property)
Part of the aural style control suite that defines the aural icon sound before and after an item is spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.cue

CSS syntax: cue: aBefore anAfter

aBefore A cue sound before the speechArgument list:
anAfter A cue sound after the speech

This property is part of the audible style sheet property set. It is used as a shortcut for defining the
value of the style.cueBefore and style.cueAfter properties in a single assignment.

Warnings:
❑ This style property is not yet supported by any browsers.

See also: Aural style sheets, style.cueAfter, style.cueBefore

style.cueAfter (Property)
Part of the aural style control suite that defines the aural icon sound after an item is spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.cueAfter

CSS syntax: cue-after: aSound

Argument list: aSound A sound to be played after speech

The cueAfter property provides a way to define a short audible sound after a spoken phrase. You
can specify the URI for an audio clip or define the value none to inhibit the audible cue following the
phrase.

The URI may be relative to the document or a fully specified URL value. It should locate an audio file
having a MIME type that the browser supports for playback.

Chapter number

2038

Warnings:
❑ This style property is not yet supported by any browsers.

See also: Aural style sheets, MIME types, style.cue

style.cueBefore (Property)
Part of the aural style control suite that defines the aural icon sound before an item is spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.cueBefore

CSS syntax: cue-before: aSound

Argument list: aSound A sound to be played after speech

The cueBefore property provides a way to define a short audible sound before a spoken phrase.
You can specify the URI for an audio clip or define the value none to inhibit the audible cue
preceding the phrase.

The URI may be relative to the document or a fully specified URL value. It should locate an audio file
having a MIME type that the browser supports for playback.

Warnings:
❑ This style property is not yet supported by any browsers.

See also: Aural style sheets, MIME types, style.cue

style.cursor (Property)
A cursor shape to display when the pointer hovers over the element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

Error! No text of specified style in document.

2039

JavaScript syntax: - myStyle.cursor

CSS syntax: cursor: aShape

Argument list: aShape One of the available cursor shapes

You can define the shape of the cursor when the mouse pointer moves over the element. This is far
more sensible than defining a onMouseOver and onMouseOut handler to set and reset the cursor
shape.

The following cursor names can be specified:

❑ default

❑ auto

❑ crosshair

❑ help

❑ move

❑ pointer

❑ text

❑ wait

❑ hand

❑ resize

❑ n-resize

❑ ne-resize

❑ e-resize

❑ se-resize

❑ s-resize

❑ sw-resize

❑ w-resize

❑ nw-resize

The CSS standard suggests that a URI value could be specified to allow for a downloadable cursor
shape to be defined although this is not currently supported in any browser.

Chapter number

2040

style.direction (Property)
Controls the direction of flow of inline content such as text and table cells.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.direction

CSS syntax: direction: aDirection

Argument list: aDirection One of the available text directions

The direction property may be set to indicate a left to right or right to left parsing direction.

This is part of the localization support and represents the contents of the DIR="..." tag attribute.

If you assign a value to this property it is case-sensitive and must be one of the following:

❑ ltr

❑ rtl

❑ ltr-override

❑ rtl-override

This property works in conjunction with the lang property to control the direction of text flow.

The variations with the override modifier keyword are intended to force the direction even when
the underlying language does not support it natively according to the Unicode rules.

style.display (Property)
A control attribute that defines how an element should be rendered into the display window.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

Error! No text of specified style in document.

2041

JavaScript syntax: - myStyle.display

CSS syntax: display: aType

Argument list: aType One of the supported display types

This is currently implemented as a simple visibility switch. If the property is set to the value "none",
then the object is hidden. To reveal the object again, set this property to its default value which is an
empty string ("").

When the object is hidden, the surrounding objects close up the space. This means you cannot use the
property to accomplish a blinking effect, because everything will dance around the screen as the
object appears and disappears.

The full CSS specification for this property allows for it to control the display of an object as either an
inline or block level element in the page.

The following keywords are defined for use with this property:

❑ none

❑ block

❑ compact

❑ inline

❑ inline-table

❑ list-item

❑ run-in

❑ table

❑ table-caption

❑ table-cell

❑ table-column-group

❑ table-footer-group

❑ table-header-group

❑ table-row

❑ table-row-group

See also: JSSTag.display

Chapter number

2042

style.elevation (Property)
Part of the aural style control suite that defines the height of a sound source within a 3D space.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.elevation

CSS syntax: elevation: aValue

Argument list: aValue One of the available elevation values

The sound source can be located in the vertical direction giving a full 3D spatial system around the
surface of a sphere when combined with the azimuth property.

The following values are appropriate:

value elevation

level On the same horizontal plane as the listener
above Directly overhead
below Directly underneath
higher Approximately 10 degrees higher than the previous value
lower Approximately 10 degrees lower than the previous value

Values can be specified in degrees with the deg suffix. The values +90deg and -90deg correspond
to the above and below keywords.

Warnings:
❑ This style property is not yet supported by any browsers.

See also: Aural style sheets, style.azimuth

style.emptyCells (Property)
An indication of how empty cells in a table should be displayed.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Error! No text of specified style in document.

2043

Property/method value type: String primitive

JavaScript syntax: - myStyle.emptyCells

CSS syntax: empty-cells: aControl

Argument list: aControl What to do with empty cells in a table

This property controls how the empty cells in a table are displayed. It can accommodate the following
values:

❑ show

❑ hide

Arguably it might be useful to be able to specify some alternatives to simply hiding or showing the
cells. Refer to the URL for an informative discussion on empty cells in tables.

See also: TABLE object

Web-references:
http://www.hut.fi/u/jkorpela/HTML/emptycells.html

style.filter (Property)
Defines the visual, reveal or blend filter for the object.

Availability: CSS level – Proposed
JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.filter

CSS syntax: filter: aFilter(aParam=aValue, ...) ...

aFilter A filter name

aParam A filter parameter name
Argument list:

aValue A filter parameter value

This property defines a visual effect that is used when the display is updated as the result of a change
to the content of an element.

http://www.hut.fi/u/jkorpela/HTML/emptycells.html

Chapter number

2044

There are three kinds of filters that can be applied to an object.

❑ Visual

❑ Reveal

❑ Blend

A visual filter is used to enhance the visual appearance of objects. For example, to flip them over, add
a glow effect or a drop shadow.

A reveal filter is used to apply a transition effect as the appearance changes.

A blend filter controls the speed at which a reveal filter is applied.

You can define more than one filter, they just need to be space-separated from one another.

Here is a list of the procedural filter function names:

❑ AlphaImageLoader()

❑ Gradient()

Here is a list of the static filters supported at version 5.5 of the MSIE browser:

❑ Alpha()

❑ BasicImage()

❑ Blur()

❑ Chroma()

❑ Compositor()

❑ DropShadow()

❑ Emboss()

❑ Engrave()

❑ Glow()

❑ Light()

❑ MaskFilter()

❑ Matrix()

❑ MotionBlur()

❑ Pixelate()

❑ Shadow()

❑ Wave()

Error! No text of specified style in document.

2045

The old blendTrans() and revealTrans() filters are now replaced by these transition filters:

❑ Barn()

❑ Blinds()

❑ CheckerBoard()

❑ Fade()

❑ GradientWipe()

❑ Inset()

❑ Iris()

❑ Pixelate()

❑ RadialWipe()

❑ RandomBars()

❑ RandomDissolve()

❑ Slide()

❑ Spiral()

❑ Stretch()

❑ Strips()

❑ Wheel()

❑ Zigzag()

Filters are defined as if they were a sequence of space delimited function calls. They aren't really
functions because their argument passing mechanism is not truly JavaScript based. Arguments to
each filter function are defined as name=value pairs. These correspond to the properties and method
invocations of the underlying filter object.

Refer to the specific topics on each filter function for details of what it does and how you can control it.

When using the filters in the context of the Style object, the function name for each filter must be
preceded by this string:

"progid:DXImageTransform.Microsoft."

You can apply the filters directly as properties of the filter object that belongs to HTML element
objects themselves.

Visual filters require that the target objects have enough layout information to enable the filter to
work. This means they require height and width to be defined using absolute positioning or setting
the contentEditable property flag to true.

Chapter number

2046

Warnings:
❑ Filters are not supported in all versions of MSIE on the Macintosh. In fact, they are not really well

supported outside of the MSIE browser on the Win32 platform.

❑ There are various sources of documentation about these filters. There is some difference between
them regarding the spelling of the filters' names and the availability of the filters. The naming
conventions are sometimes all lower case and at others a mixed upper and lower case. This suggests
that the filter name parser may be case-insensitive. This also applies to the name=value pairs that
are passed as arguments to the filter functions.

❑ Certain filter functions are no longer included in the MSDN reference material and so they may be
considered to be deprecated.

❑ We have conformed to the case style of the MSDN reference and have included all the filters that
were encountered in our source material. Those that appear not to be in the current MSDN reference
are marked as deprecated as follows:

FlipH()

FlipV()

Grayscale()

Invert()

Mask()

XRay()

❑ These are deprecated filters that used to provide blends and reveals:

BlendTrans()

RevealTrans()

❑ Note that the functionality and availability of the filters has changed significantly from version 4.0 to
version 5.5 of the MSIE browser.

❑ The old functionality has not been lost. Instead, it has been reorganized and factored into the new
filter suite. Nothing that you could have done before has been taken away but you will have to
address the filters differently.

See also: Element.filters[], onFilterChange, Procedural surfaces,
Static filters, style.textShadow, Transition, Visual filters

style.float (Property)
An alignment control that indicates how text is to be flowed round the object that the style is applied to.

Availability: CSS level – 1
JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

Error! No text of specified style in document.

2047

JavaScript syntax: IE myStyle.float

CSS syntax: float: anAlignment

Argument list: anAlignment A float control word

This property defines which side is used for the reference alignment so that text can flow round
the other.

Setting the property value to none allows the object to be placed inline according to where it appears
in the document source.

The following keywords can be used with this property:

❑ left

❑ right

❑ none

Warnings:
❑ IMG elements in Netscape Navigator 4 do not align in the same way as MSIE browser IMG elements.

Since you can't access the style model in the same way, this is maybe a moot point but there are
alternative ways to control alignment in each browser. So, assuming you could define the float
attribute in both, Netscape Navigator 4 would still not position the IMG objects in the same way.

❑ The JavaScript language reserves the float keyword and so it is dangerous to use it as a property
on any object. Because of this, a more consistent control of alignment for IMG objects can be achieved
with the align property instead.

❑ Netscape 6.0 supports the cssFloat property which is preferred and which avoids the conflict with
the float keyword.

See also: style.clear, style.styleFloat

style.floatStyle (Property)
An MSIE extension to the normal float style attributes. All the indications are that this is simply
another name for the styleFloat property.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.floatStyle

CSS syntax: float-style: anAlignment

Argument list: anAlignment A floating alignment control value

Chapter number

2048

See also: style.styleFloat

Refer to:
style.styleFloat

style.font (Property)
A special shortcut styling control that provides a way to define several font styling attributes in a
single assignment.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.font

CSS syntax:
font: aStyle aVariant aWeight aSize aLineHeight
aFamilyfont: aConstant

aStyle A font style value

aVariant A font variant

aWeight A font weight

aSize A font size

aLineHeight A line height value

aFamily A font family

Argument list:

aConstant A CSS font constant

This property can be assigned with a string containing space-separated keywords and values. The
values are then unpacked and assigned to individual font styling properties.

The following font styling properties are collected together into this item:

❑ style.fontFamily

❑ style.fontSize

❑ style.fontStyle

❑ style.fontVariant

❑ style.fontWeight

❑ style.lineHeight

Refer to the individual topics for these properties for details of the range of suitable values. For the
style.font property, the values can be presented in any order since their namespaces do not collide.

Error! No text of specified style in document.

2049

As an alternative the CSS font constant values can be used to define font appearance according to a
browser and platform specific macro. The following macros are supported:

❑ caption

❑ icon

❑ menu

❑ messagebox

❑ smallcaption

❑ statusbar

These appearance of fonts styled according to these values are not defined in any standard but they
will be consistent with text presented in the appropriate contexts on the client platform.

See also: style.fontFamily, style.fontSize, style.fontStyle,
style.fontVariant, style.fontWeight,
style.lineHeight

style.fontFamily (Property)
A list of fonts to be used for the element. The first one in the list that is available will be used.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontFamily

CSS syntax: font-family: aFamily ...

Argument list: aFamily A font family list

The ordering of the font family names dictates the priority with which they are used. The names
should be separated from one another by spaces but some font names may have spaces in them, so if
you use font names containing spaces, they should be enclosed inside quotes. Make sure that you use
a different kind of string delimiter quote for indicating font names to that which you use to enclose
the string of font names.

As well as the names of any font families that you think may be installed in the target client browser,
you can specify generic font families with the following keywords:

❑ serif

❑ sans-serif

❑ cursive

❑ fantasy

❑ monospace

Chapter number

2050

See also: JSSTag.fontFamily, String.fixed(), style.font, style.voiceFamily

style.fontSize (Property)
Controls the size of the text drawn with the current font. Note that different browsers support a text-
imaging model at varying resolutions, and it is difficult to obtain consistent results when older
browsers are used.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontSize

CSS syntax: font-size: aSize

Argument list: aSize A font size

Font sizes can be specified in a variety of measurement units.

There are some issues to do with font sizes that make fonts very difficult to control across platforms.
This is affected by several factors:

❑ Font digitizing

❑ Font design (x-height)

❑ Bitmap vs. Adobe vs. TrueType

❑ Pixel DPI settings

❑ Different defaults for symbolic sizes

There are differences between the way that fonts are rendered. Considering that the Macintosh
supports at least three simultaneous font rendering models at a time and historically there have been
several radically different font management schemes, it is amazing that fonts ever appear in the way
they were intended. The Windows platform must provide at least half as many again while the X-
Windows support on the Linux platform supports a completely different font rendering model.

Certain font families appear to render larger than others for the same point size. This difference is due
to the different x-height for the characters.

The differences between the Macintosh and the Windows environment are due to the 72 DPI vs. 96
DPI default pixel resolution of the screen displays. The latest versions of MSIE for the Macintosh
provide a 96 DPI switch to work round this.

Error! No text of specified style in document.

2051

The symbolic names for font sizes do not render identically across platforms nor do they render the same
across browsers within the same platform. These are the symbolic font size names for absolute sizes:

❑ xx-small

❑ x-small

❑ small

❑ medium

❑ large

❑ x-large

❑ xx-large

You can use numeric values with suffixes to indicate the units of measure:

❑ px

❑ em

❑ percentage

The px suffix means pixels while the em value means the width of an em-dash in the current font. You
can use floating point values for measurements in em units. You can also use floating point values for
percentage values. The percentage relates to the containing parent object's font settings.

Two additional symbolic names are reserved for relative font sizes:

❑ larger

❑ smaller

The larger and smaller keywords index up and down the scale defined by the absolute size keywords.

Warnings:
❑ Be very careful when defining styles with relative settings. This can cascade recursively in some

cases and you will end up with text that reduces or increases in size as it goes down the page.

See also: JSSTag.fontSize, String.big(), String.fontsize(),
String.small(), String.sub(), String.sup(),
style.font

style.fontSizeAdjust (Property)
A means of compensating for the differences in browser font rendering models.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Chapter number

2052

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontSizeAdjust

CSS syntax: font-size-adjust: aValue

Argument list: aValue An adjustment factor

This is a mechanism that is intended to help with adjustments for the x-height differences between
fonts. It provides a compensation effect that reduces fonts with large x-heights so that they appear to
be the same size as other fonts with small x-heights.

The following values can be assigned to this property:

❑ z

❑ none

style.fontStretch (Property)
A means of extending the font in the horizontal direction only.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontStretch

CSS syntax: font-stretch: aValue

Argument list: aValue A font stretch control value

This styling property is used to change the horizontal span of the text by expanding or contracting it.
The property can accept the following keywords:

❑ normal

❑ wider

❑ narrower

❑ ultra-condensed

❑ extra-condensed

❑ condensed

❑ semi-condensed

❑ semi-expanded

❑ expanded

❑ extra-expanded

❑ ultra-expanded

❑ inherit

Error! No text of specified style in document.

2053

style.fontStyle (Property)
Controls the italicization of a font. The oblique and italic styles affect the displayed font in different ways.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontStyle

CSS syntax: font-style: aStyle

Argument list: aStyle A font style value

Fonts can be styled to present themselves in a slanted appearance. It is not commonly realized that an
italic and oblique font are not the same. A fully featured font engine provides both oblique and italic
font styles. A less well featured font engine will simulate the effect by slanting the upright characters
to make them appear to be italic. Other systems may simulate italic with oblique and vice versa.

The differences between the italic and oblique faces is in the treatment of certain characters such as a
small letter a. In one model the same letter form as is used for the upright font is drawn with its
verticals tilted at an angle. In the other the letter form is still drawn tilted but an alternative shape is
used. In a properly supported system with all the special font renderings available, the characters will
be specially drawn so they look clean when slanted. Simply skewing the upright characters does not
preserve the character shape as accurately.

The following keywords can be applied to this property:

❑ normal

❑ italic

❑ oblique

Warnings:
❑ Netscape Navigator does not understand the oblique keyword when defining style values for

fontStyle properties.

❑ The MSIE browser understands both italic and oblique keywords but assumes that they both
mean italic.

See also: JSSTag.fontStyle, String.italics(), String.sub(),
String.sup(), style.font

Chapter number

2054

style.fontVariant (Property)
The small-caps variant of a font for a style.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontVariant

CSS syntax: font-variant: aVariant

Argument list: aVariant A font variant

This is a popular design trick which renders lower-case letters in upper-case but in a smaller font size.
This is often called small-caps.

The following keywords can be applied to this property:

❑ normal

❑ small-caps

See also: style.font

style.fontWeight (Property)
The boldness of text drawn in the current font.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.fontWeight

CSS syntax: font-weight: aWeight

Argument list: aWeight A font weight

Error! No text of specified style in document.

2055

The font weight is a continuous scale from 100 to 900. Printers can resolve the font weights to a finer
granular accuracy than a screen display. Screen displays can generally cope with discriminating a
difference between 100 and 200 but cannot manage any better than that due to the screen resolution.

The value can also be specified with the following keywords:

❑ bold

❑ bolder

❑ lighter

❑ normal

See also: JSSTag.fontWeight, String.bold(), style.font

style.getAttribute() (Method)
A method to extract attributes from a style.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myStyle.getAttribute(anAttribName)JavaScript syntax:

- myStyle.getAttribute(anAttribName,
aCaseSense)

aCaseSense A flag to indicate a case-sensitive lookupArgument list:
anAttribName An attribute of a style object

This is an accessor method which is used to access named attributes of an Element object. Attributes
are not properties in the strict sense of the word but may be accessible as if they were in some
implementations.

This accessor is intended to provide a means of managing custom attributes.

You need to know the names of the attributes you want to access. If you do, then you can pass the
attribute name as an argument to this method call.

The value of that attribute is returned by the method.

It would be logical to assume that attributes are named uniquely but if several share the same name,
differing only in case-sensitivity, then if a case-insensitive search is used you may not retrieve the one you
expect. It is likely that you'll be given the last one that occurs but this may be implementation dependent.

The case sensitive flag should be set to the Boolean true value to force a case-sensitive search and
false to ignore the case of letters in the attribute name.

Chapter number

2056

The following values can be passed in the optional case-sensitive flag argument:

❑ 0 – A case-insensitive search of property values is carried out by default. If several instances are
located, then only the last is returned.

❑ 1 – A case-sensitive search is carried out.

❑ 2 – The value is returned exactly as was originally defined in the document source regardless of
subsequent setAttribute() calls.

The result will be the value of the attribute. If the element does not have an attribute of the specified
name, a null value is returned.

Warnings:
❑ If a case-sensitive search is carried out using a property name stored in a variable, you should make

sure that the same setting was defined for a corresponding setAttribute() call. If you don't,
then it is possible that the name may have a case change if the 0 value was used in the
setAttribute() call. After that case change, the value in the variable will no longer match the
property defined for the receiving object.

See also: Element.getAttribute(), style.setAttribute()

style.getExpression() (Method)
An MSIE extension for managing style controls.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.getExpression(aProperty)

Argument list: aProperty
The name of a property whose expression is to be
retrieved

This is part of the MSIE support for managing behaviors. With this method, you can access the value
of an expression that was previously defined with the setExpression() method or which is
defined within a style rule.

The rules that are used to construct a style are comprised of multiple expressions. You can use this
method to extract the value of an expression from a style item.

Given the rule might contain a line such as:

width:200px

The getExpression() method can be applied to the style object containing the rule with that
expression like this:

myStyle.getExpression("width:")

The value 200px would be returned.

Error! No text of specified style in document.

2057

See also: Element.getExpression(),
Element.removeExpression(),
Element.setExpression(),
style.removeExpression(), style.setExpression()

style.height (Property)
The height of a sizing style.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.height

CSS syntax: height: aHeight

Argument list: aHeight An object height

The object space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This property
specifies the height of that extent rectangle.

When used to read the height on an object, this returns a value in pixel units with the px suffix.

You can also use this property to change the height of a styled element.

The normal range of values specified in measurement units can be used. You can also assign the auto
keyword to let the browser deduce the height of an object from the document source.

Warnings:
❑ Note that not all styled elements can be resized by assigning a new value to this property.

See also: JSSTag.height, Measurement units, style.pixelHeight,
style.posHeight, style.width

style.imeMode (Property)
An Input Method Editor mode specifier.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Chapter number

2058

Property/method value type: String primitive

JavaScript syntax: IE style.imeMode

CSS syntax: ime-mode: aControl

Argument list: aControl One of the available control keywords

Input Method Editors are provided to support Asian languages such as Chinese, Korean and Japanese.

This property maintains an IME specifier value.

The following keywords are valid:

❑ auto

❑ active

❑ inactive

❑ disabled

style.important (Property)
A means of adding emphasis to an object.

Availability: CSS level – 1
JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.important

CSS syntax: !important

Although the !important style attribute is supported in CSS style sheets used by MSIE and
Netscape 6.0, there is apparently no access to it from JScript at this time. If there were, then syntax
rules for JavaScript would preclude the use of the exclamation mark as a part of the identifier name
for the property so it would most likely be called simply style.important.

Although there are no values assigned to this style attribute in the CSS style sheet, it is likely that it
would be a Boolean value if it were accessible from JScript.

Error! No text of specified style in document.

2059

style.item() (Method)
When the style is treated as if it were a collection, objects belonging to it can be referenced by their
item numbers.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: style object

IE myStyle.item(anIndex)

IE myStyle.item(aSelector)
JavaScript syntax:

IE myStyle.item(aSelector, anIndex)

anIndex A zero based value in accordance with the
length attribute of the style object.

Argument list:

aSelector A textual value that selects all matching objects

You will have to use some JavaScript to inspect the values presented by this mechanism. The
following lines both yield a FONT-SIZE object:

document.all.tags("HTML")[0].currentStyle.item(0)

document.all.tags("TITLE")[0].currentStyle.item(0)

The style object in both cases only has a single item in its collection and so the length values for these
expressions always yield 1 for a simple document:

document.all.tags("HTML")[0].currentStyle.length

document.all.tags("TITLE")[0].currentStyle.length

If you begin to explore the MSIE browser in this way, there are many undocumented properties and
object references which are reasonably easy to figure out because of their names. However some are
quite obscure. We have tried to cover as many as we can. Discovering undocumented method calls is
far more difficult and you may need to reverse engineer the JScript interpreter to discover the names
of the methods that are implemented.

See also: Collection.Item()

style.layoutGrid (Property)
An MSIE extension that provides a means of laying out objects on a grid.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

Chapter number

2060

JavaScript syntax: IE myStyle.layoutGrid

CSS syntax: layout-grid: aLayout

Argument list: aLayout One of the available layout grid control keywords

The layout grid is especially useful when presenting Asian text. This uses ideographic characters where
each single character represents a word on its own. They need to be arranged in an orderly manner but
it is quite inconvenient to build a table with one cell for each character. A layout grid accomplishes the
lining up and justification of each column and row in a much more convenient manner.

This is a convenience method for specifying all of the grid control values in a single assignment.

The values for the following related properties should be used to specify this value:

❑ layoutGridChar

❑ layoutGridLine

❑ layoutGridMode

❑ layoutGridType

Only the style.layoutGridCharSpacing is not supported by this short cut.

Since the namespaces for the values that can be used in these properties clash with one another, they
should be presented in the following order:

<mode> <type> <line> <char>

Refer to the topics for these individual properties for details of the available values you can use.

See also: style.layoutGridChar, style.layoutGridCharSpacing,
style.layoutGridLine, style.layoutGridMode,
style.layoutGridType

style.layoutGridChar (Property)
Part of the MSIE grid layout control.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.layoutGridChar

CSS syntax: layout-grid-char: aSize

Argument list: aSize A size specifier for the layout grid

Error! No text of specified style in document.

2061

The grid is defined according to various metrics associated with the font or can be explicitly specified.
The following keyword values can be used:

❑ none

❑ auto

When set to auto, the largest character in the current font is used to define the height and width of
each grid cell.

The value can also be specified in measurement units or as a percentage of the parent containing object.

See also: Measurement units, style.layoutGrid

style.layoutGridCharSpacing (Property)
Spacing control for the MSIE grid layout extensions.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.layoutGridCharSpacing

CSS syntax: layout-grid-char-spacing: aValue

Argument list: aValue Character spacing value within the grid

This is an additional parameter to control spacing between characters in the grid.

See also: style.layoutGrid

style.layoutGridLine (Property)
Additional control for the MSIE grid layout extensions.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.layoutGridLine

CSS syntax: layout-grid-line: aControl

Argument list: aControl A control value

Chapter number

2062

This provides a fine level of control for adjusting the spacing between lines in the grid. The values
available for use can be one of the following keywords:

❑ none

❑ auto

You can also specify a value in length units or as a percentage.

See also: Measurement units, style.layoutGrid

style.layoutGridMode (Property)
Mode settings for the MSIE grid layout extensions.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.layoutGridMode

CSS syntax: layout-grid-mode: aControl

Argument list: aControl
A specifier for the mode of operation of the
layout grid

This property defines whether the layout grid uses one or two axes or neither for positioning
characters. The following keywords can be used:

❑ both

❑ none

❑ line

❑ char

The default is for both the line and character spacing to be used. Using the line or char keywords
signifies that only one axis is to be used for the grid.

See also: style.layoutGrid

Error! No text of specified style in document.

2063

style.layoutGridType (Property)
A type selector for the MSIE grid layout extensions.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.layoutGridType

CSS syntax: layout-grid-type: aType

Argument list: aType Select a type of layout grid

There are various kinds of grid supported. An appropriate grid type is selected with one of the
following keywords:

❑ loose

❑ strict

❑ fixed

The kind of grid you would select will depend on the language and kind of ideographic font being used.

See also: style.layoutGrid

style.left (Property)
A positioning reference point.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.left

CSS syntax: left: aPosition

Argument list: aPosition A left coordinate value

A CSS-P positioning style attribute that controls the location of an element relative to its containing
parent element. The left edges of the two elements are used as the reference points.

Chapter number

2064

The value can be specified in the usual pixel or fractional em-dash measurement units or the auto
keyword can be used to let the browser do the positioning itself.

The exact positioning is affected by settings for padding, border, margin, and whether the position
property is set to absolute or relative.

See also: Measurement units, style.bottom, style.pixelLeft,
style.posLeft, style.right, style.top

style.length (Property)
The style object can be treated as if it were a collection. This property indicates the number of
objects that are in the collection.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.length

Property attributes:
ReadOnly.

Refer to:
Collection.length

style.letterSpacing (Property)
The letter spacing of text in a style.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.letterSpacing

CSS syntax: letter-spacing: aValue

Argument list: aValue A letter spacing factor

Error! No text of specified style in document.

2065

The text can be spaced out to fill a larger space or provide some emphasis. This property may also
condense the spacing by specifying a negative value. The value specified is added to the normal
spacing between characters.

You can use the pixel or em-dash length values and a floating point value can be specified for
the em-dash measurement units. The normal keyword is reserved for restoring the value back
to its default setting.

The auto keyword is also defined in the CSS specification and can be assigned to the property to let
the browser assume control.

See also: Measurement units

style.lineBreak (Property)
Line breaking control style for Japanese text layouts.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE style.lineBreak

CSS syntax: line-break: aControl

Argument list: aControl One of the available keywords

This property controls the way that line breaks are handled for Japanese text.

The following keywords are supported:

❑ normal

❑ strict

style.lineHeight (Property)
Defines the height of a box that contains a line of text. This is the distance between the base lines of
two adjacent lines of text.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Chapter number

2066

Property/method value type: String primitive

JavaScript syntax: - myStyle.lineHeight

CSS syntax: line-height: aLineHeight

Argument list: aLineHeight A line height value

This property provides a way to adjust the leading or spacing between the lines of text. The value in
this property describes the height of a bounding box that surrounds a single line of text.

This property can have a length value specified in pixels or floating point multiples of an em-dash in
the current font. The normal keyword can also be used to restore the default behavior.

See also: JSSTag.lineHeight, style.font

style.listStyle (Property)
A shortcut property for defining several list style attributes in a single assignment.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.listStyle

CSS syntax: list-style: aType aPosition anImage

aType A list type
aPosition A bullet position control

Argument list:

anImage A bullet image URL

This property supports the assignment of values to the following properties in one single operation:

❑ style.listStyleImage

❑ style.listStylePosition

❑ style.listStyleType

Refer to the topics discussing each individual property for details of the values you can use.

The values can be specified in any order or combination because their namespaces do not collide.

See also: style.counterIncrement, style.listStyleImage,
style.listStylePosition, style.listStyleType

Error! No text of specified style in document.

2067

style.listStyleImage (Property)
A URL for an image resource to be used for bullets in a list style.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.listStyleImage

CSS syntax: list-style-image: anImage

Argument list: anImage A bullet image URL

You can modify the image used as a leading bullet in a list by defining a URL here. The image will be
fetched by the browser and then placed into the page at the front of each list item.

Note that this property is cascaded down and inherited by other elements so if you want to create
sub-lists you will need to redefine it in child list styles.

The none keyword will restore the list bullet to its default appearance.

See also: style.listStyle, style.listStyleType

style.listStylePosition (Property)
A position control for a list marker.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.listStylePosition

CSS syntax: list-style-position: aPosition

Argument list: aPosition A bullet position control

Chapter number

2068

The list item marker can be positioned inside or outside the extent rectangle for the list item. The
following keywords can be used with this property:

❑ inside

❑ outside

The bullet placement and indentation of the list item are left-justified differently according to the
value of this property.

Note that there is some relationship between the behavior of this property and the alignment settings
for the element in the list item.

See also: Measurement units, style.listStyle

style.listStyleType (Property)
The type of list presentation marker for an ordered () or unordered () list.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - myStyle.listStyleType

CSS syntax:
list-style-stype: aType

Argument list:
aType A list type

You can define the way that list items are enumerated on the page. The specific details depend on
whether the list item is a member of an ordered list () or an unordered list ().

The following keywords are appropriate for use with unordered lists:

❑ circle

❑ disc

❑ square

The default setting for an unordered list will be a disc.

The following keywords are appropriate for an ordered list:

❑ decimal

❑ lower-alpha

❑ lower-roman

❑ upper-alpha

❑ upper-roman

Error! No text of specified style in document.

2069

The default setting for an ordered list is decimal.

The keywords for this property correspond with the values defined in UL.type and OL.type object
properties. Although the notation is different the displayed artefacts will be the same.

This display control property is completely overridden if the listStyleImage property is set to a
URL for an image. As long as the listStyleImage property is set to "none" or an empty ("") string
this property comes into play.

See also: JSSTag.listStyleType, OL.type,
style.counterIncrement, style.listStyle,
style.listStyleImage, UL.type

style.margin (Property)
The margin around a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.margin

CSS syntax: margin: aWidth ...

Argument list: aWidth Up to four width values can be specified

This property lets you change the width of one or more of the margins around an object.

If you specify only one value, all four margins are set. Two values define the top and bottom with the
first, and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right,while the third controls the bottom edge. When all four
values are specified, they are assumed to be in the order: top, right, bottom and left.

Width values can be specified using pixel values, em-dash units or percentages of the next outermost
parent object. The auto keyword lets the browser decide for itself.

Warnings:
❑ Although both Netscape Navigator and MSIE support padding and margin control properties. It is

not clear from the documentation sources whether they are simply different names for the same
thing. Padding is a space that is placed outside the content rectangle of the element's extent. Margins
also are not calculated as part of the element's width and height so they appear to be the same thing,
although functionally they should be contained inside the extent rectangle if they behave in a
manner consistent with the way that margins are generally assumed to work.

❑ Be wary of using margins and padding in case they undergo a functional change in the future.

See also: JSSTag.margins(), Measurement units, style.border,
style.borderWidth, style.padding

Chapter number

2070

style.marginBottom (Property)
The thickness of the bottom margin of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.marginBottom

CSS syntax: margin-bottom: aWidth

Argument list: aWidth A margin width value

Object

Padding

Border

Margin

Border bottom width

Margin bottom

Padding bottom

See also: BODY.bottomMargin, JSSTag.marginBottom,
style.margin

Error! No text of specified style in document.

2071

style.marginLeft (Property)
The thickness of the left margin of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.marginLeft

CSS syntax: margin-left: aWidth

Argument list: aWidth A margin width value

See also: BODY.leftMargin, JSSTag.marginLeft, style.margin

style.marginRight (Property)
The thickness of the right margin of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.marginRight

CSS syntax: margin-right: aWidth

Argument list: aWidth A margin width value

See also: BODY.rightMargin, JSSTag.marginRight, style.margin

Chapter number

2072

style.marginTop (Property)
The thickness of the top margin of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.marginTop

CSS syntax: margin-top: aWidth

Argument list: aWidth A margin width value

See also: BODY.topMargin, JSSTag.marginTop, style.margin

style.markerOffset (Property)
A spacing distance between the list item marker and the list item content.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.markerOffset

CSS syntax: marker-offset: aValue

Argument list: aValue A control for marker offsets

The distance between the marker and the text it is marking can be specified in length units. That is
pixels or proportions of an em-dash. The auto keyword can be used to indicate default behavior, or
the inherit keyword can indicate that the value should be defined in a parent element object.

See also: Measurement units

Error! No text of specified style in document.

2073

style.marks (Property)
A control attribute that determines whether crop marks should be added to the page when it is printed.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.marks

CSS syntax: marks: aType

Argument list: aType A marker type

This is usually functionality that is reserved for printed pages. It is applied within the @page rule
which is a special rule in the style sheet for laying out pages.

The following mark types are supported:

❑ crop

❑ cross

Crop marks are used for trimming while cross marks are used for aligning each print color in the press.

style.maxHeight (Property)
Defines the maximum height of a styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.maxHeight

CSS syntax: max-height: aValue

Argument list: aValue A maximum height value

Chapter number

2074

This property provides a means of specifying the maximum height of an element so that it cannot get
any bigger, regardless of the implications of the document flow and automatic browser formatting.

The value is expressed in the usual measurement units (either pixels or fractions of an em-dash). You
can also use the percentage of the containing element as a maximum size.

The size of an element can be constrained using the minimum/maximum extents for the height and
width. This ensures that the element's size will fall within the permitted bounds but yet still have
some flexibility to allow the document flow to respond to window sizing.

See also: Measurement units, style.maxWidth, style.minHeight

style.maxWidth (Property)
Defines the maximum width of a styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.maxWidth

CSS syntax: max-width: aValue

Argument list: aValue A maximum width value

This property provides a means of specifying the maximum width of an element so that it cannot get
any bigger, regardless of the implications of the document flow and automatic browser formatting.

The value is expressed in the usual measurement units (either pixels or fractions of an em-dash). You
can also use the percentage of the containing element as a maximum size.

The size of an element can be constrained using the minimum/maximum extents for the height and
width. This ensures that the element's size will fall within the permitted bounds, but yet still have
some flexibility to allow the document flow to respond to window sizing.

See also: Measurement units, style.maxHeight, style.minWidth

Error! No text of specified style in document.

2075

style.minHeight (Property)
Defines the minimum height of a styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.minHeight

CSS syntax: min-height: aValue

Argument list: aValue A minimum height value

This property provides a means of specifying the minimum height of an element so that it cannot get
any smaller, regardless of the implications of the document flow and automatic browser formatting.

The value is expressed in the usual measurement units (either pixels or fractions of an em-dash). You
can also use the percentage of the containing element as a maximum size.

The size of an element can be constrained using the minimum/maximum extents for the height and
width. This ensures that the element's size will fall within the permitted bounds, but yet still have
some flexibility to allow the document flow to respond to window sizing.

See also: Measurement units, style.maxHeight, style.minWidth

style.minWidth (Property)
Defines the minimum width of a styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - myStyle.minWidth

CSS syntax:
min-width: aValue

Argument list:
aValue A minimum width value

Chapter number

2076

This property provides a means of specifying the minimum width of an element so that it cannot get
any smaller, regardless of the implications of the document flow and automatic browser formatting.

The value is expressed in the usual measurement units (either pixels or fractions of an em-dash). You
can also use the percentage of the containing element as a maximum size.

The size of an element can be constrained using the minimum/maximum extents for the height and
width. This ensures that the element's size will fall within the permitted bounds but yet still have
some flexibility to allow the document flow to respond to window sizing.

See also: Measurement units, style.maxWidth, style.minHeight

style.orphans (Property)
Defines the minimum number of lines of a paragraph of text that must be visible at the bottom of a
page when a page break is present. This is most likely to occur when printing documents.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.orphans

CSS syntax: orphans: aCount

Argument list: aCount A number of lines for an orphan count

Widows and orphans are fragments of text that appear to be formatted incorrectly when a paragraph
of text spans a page break.

Windows and orphans are usually controlled together and the usual technique is to specify that an
entire paragraph should be kept on the same page. This forces the paragraph to be taken over to the
next page in its entirety, even if the flow requires just a single word to be taken over.

The CSS styling controls allow a finer level of control in that you can allow for a paragraph to be split
across a page boundary, but specify a lower limit on the number of lines that must be kept on a single
page.

This is fine in principle, but there can be some contention for the right layout when a very short
paragraph is spanning a page break. This will generally be solved simply by forcing the page break to
happen before the paragraph causing the whole paragraph to be carried over to the next page.

An orphan is that fragment of text that is left at the bottom of a page when a paragraph encloses a
page break. It is the topmost few lines of the paragraph. The integer value in this property controls
the minimum number of lines that must be present, otherwise the paragraph will be taken over
entirely to the next page.

See also: style.pageBreakAfter, style.size, style.widows

Error! No text of specified style in document.

2077

style.outline (Property)
A shortcut attribute for defining all the outline settings together.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.outline

CSS syntax: outline: aColour aStyle aWidth outline: aControl

aColour An outline color value
aStyle A style of outlining
aWidth A thickness of the outline

Argument list:

aControl A control over inheritance

An outline is like a border but it is drawn within the extent of the object. It is intended to be drawn
and then removed and is useful for those times when you want to border something without the
border taking up any space. Its width is measured inwards from the outer edge of an object.

This property is a means of defining the following style properties with a single assignment:

❑ style.outlineColor

❑ style.outlineStyle

❑ style.outlineWidth

Because the namespaces do not collide, they can be specified in any order.

See also: style.border, style.outlineColor,
style.outlineStyle, style.outlineWidth

style.outlineColor (Property)
The color of a border outline around the styled element.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

Chapter number

2078

JavaScript syntax: - myStyle.outlineColor

CSS syntax: outline-color: aColor

Argument list: aColor An outline color value

This property lets you change the color of one or more of the outlines around an object.

If you specify only one value, all four outlines are set. Two values define the top and bottom with the
first, and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right, while the third controls the bottom edge. When all
four values are specified, they are assumed to be in the order: top, right, bottom and left.

Color values can be specified using symbolic names, rgb() functions or hash delimited hex values.

See also: Color names, Color value, rgb(), style.borderColor,
style.outline

style.outlineStyle (Property)
The border style for an outline around a styled element.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.outlineStyle

CSS syntax: outline-style: aStyle

Argument list: aStyle A style of outlining

This property lets you change the style of one or more of the outlines around an object.

If you specify only one value, all four outlines are set. Two values define the top and bottom with the
first, and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right, while the third controls the bottom edge. When all
four values are specified, they are assumed to be in the order: top, right, bottom and left.

Style values can be specified using symbolic names as follows:

❑ solid

❑ dashed

❑ dotted

Error! No text of specified style in document.

2079

❑ double

❑ inset

❑ outset

❑ groove

❑ ridge

❑ hidden

❑ none

See also: style.borderStyle, style.outline

style.outlineWidth (Property)
The width of a border that outlines a styled element.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.outlineWidth

CSS syntax: outline-width: aWidth

Argument list: aWidth A thickness of the outline

This property lets you change the width of one or more of the outlines around an object.

If you specify only one value, all four outlines are set. Two values define the top and bottom with the
first, and the second then applies to the left and right. If three values are specified, the first controls
the top, the second controls both left and right, while the third controls the bottom edge. When all
four values are specified, they are assumed to be in the order: top, right, bottom and left.

Width values can be specified using symbolic names or pixel values. The following symbolic names
are available:

❑ thin

❑ medium

❑ thick

See also: style.borderWidth, style.outline

Chapter number

2080

style.overflow (Property)
The overflow style that defines how to display content that is too large to fix the element's stated box size.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.overflow

CSS syntax: overflow: aType

Argument list: aType An overflow type specifier

Sometimes you may add content to an element and cause the element to overflow its bounding extent
rectangle. This property helps the browser determine what it should do with that overflowed content.

The following keywords may be applied to this property:

❑ auto

❑ hidden

❑ scroll

❑ visible

The general approach to handling overflow is to wrap the content within the width and increase the
height to accommodate the flow. This may not be appropriate for some objects whose width
formatting is fixed. This would be the case with a PRE object for example.

The visible setting allows the width to be expanded to accommodate the object in attempt to keep
it all visible at once.

The hidden setting preserves the settings for the height and width. It may rearrange the content to
better fill the extent rectangle, but it may clip the content within the extent rectangle so that the object
retains the size it had already been defined to be presented with.

The scroll setting allows for scroll bars to be placed within the extent rectangle of the object itself if
the content exceeds the present settings of the height and width extent rectangle. This behavior is not
consistent across all platforms.

The auto setting displays scrollbars within the extent rectangle of the object if necessary, but appears
to be functionally identical to the scroll value being defined. Again, this is not consistently supported
across the platforms.

The workings of this property may be affected by the value defined for the position property. That
is, this overflow technique is applicable to absolutely positioned elements.

Error! No text of specified style in document.

2081

Warnings:
❑ Some versions of the MSIE browser on the Macintosh platform cannot cope with a scroll or auto

attribute in this property. The scrollbars simply don't appear.

See also: PRE object, style.position

style.overflowX (Property)
A definition of how to handle horizontally overflowing content.

Availability: JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.overflowX

CSS syntax: overflow-x: aType

Argument list: aType An overflow type specifier

Refer to:
style.overflow

style.overflowY (Property)
A definition of how to handle vertically overflowing content.

Availability: JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.overflowY

CSS syntax: overflow-y: aType

Argument list: aType An overflow type specifier

Refer to:
style.overflow

Chapter number

2082

style.padding (Property)
A shortcut means of specifying all the padding attributes for a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type:
String primitive

JavaScript syntax: - myStyle.padding

CSS syntax:
padding: aWidth ...

Argument list:
aWidth Up to four padding widths

This property lets you change the width of one or more of the padding regions around an object.

If you specify only one value, all four padding regions are set. Two values define the top and bottom
with the first, and the second then applies to the left and right,. If three values are specified, the first
controls the top, the second controls both left and right while the third controls the bottom edge.
When all four values are specified, they are assumed to be in the order, top, right, bottom and left.

Width values can be specified using pixel values, em-dash units or percentages of the next outermost
parent object. The auto keyword lets the browser decide for itself.

You can also specify the values independently with the following properties:

❑ style.paddingBottom

❑ style.paddingLeft

❑ style.paddingRight

❑ style.paddingTop

Warnings:
❑ Although both Netscape Navigator and MSIE support padding and margin control properties, it is

not clear from the documentation sources whether they are simply different names for the same
thing. Padding is a space that is placed outside the content rectangle of the element's extent. Margins
also are not calculated as part of the element's width and height so they appear to be the same thing,
although functionally they should be contained inside the extent rectangle, if they behave in a
manner consistent with the way that margins are generally assumed to work.

❑ Be wary of using margins and padding in case the way they are implemented undergoes a functional
change in the future.

See also: JSSTag.paddings(), Measurement units, style.border,
style.margin

Error! No text of specified style in document.

2083

style.paddingBottom (Property)
A value for the thickness of the padding space at the bottom of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.paddingBottom

CSS syntax: padding-bottom: aWidth

Argument list: aWidth A padding width value

Object

Padding

Border

Margin

Border bottom width

Margin bottom

Padding bottom

See also: JSSTag.paddingBottom, Measurement units,
style.padding, style.margin

Chapter number

2084

style.paddingLeft (Property)
A value for the thickness of the padding space to the left of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.paddingLeft

CSS syntax: padding-left: aWidth

Argument list: aWidth A padding width value

See also: JSSTag.paddingLeft, Measurement units, style.padding,
style.margin

style.paddingRight (Property)
A value for the thickness of the padding space to the right of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.paddingRight

CSS syntax: padding-right: aWidth

Argument list: aWidth A padding width value

See also: JSSTag.paddingRight, Measurement units, style.padding,
style.margin

Error! No text of specified style in document.

2085

style.paddingTop (Property)
A value for the thickness of the padding space at the top of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.paddingTop

CSS syntax: padding-top: aWidth

Argument list: aWidth A padding width value

See also: JSSTag.paddingTop, Measurement units, style.padding,
style.margin

Refer to:

style.page (Property)
A means of placing a styled element onto a particular page. If necessary a page break will be created
to accommodate the required location.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.page

CSS syntax: page: aValue

Argument list: aValue A page identifier

This is part of the printing support in CSS. The property can accept either the auto keyword, which
allows the element to be printed on the current page. It can also have a named page layout cited as an
identifier value. That named layout must have been created earlier in the style sheet.

Chapter number

2086

When this style is deployed, one of two possibilities pertains. It names a page layout which is the
current layout being rendered or some other layout that is currently being written on. If the identifier
corresponds to the layout currently being rendered, then the element is simply added to the page
unless the page is full and then a new page is created in the normal way. If the page currently being
rendered is of another type, that is its layout is different, then a new page is started and the element is
the first item placed on it.

See also: style.size

style.pageBreakAfter (Property)
The placement of a page break after the styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.pageBreakAfter

CSS syntax: page-break-after: aSwitch

Argument list: aSwitch A page break control value

This is part of the support for printing pages. A browser doesn't need to mark the breaks between
pages because its pages are of unlimited length and width when the scrollbars are present. You need
this for printouts, though, because the paper has a finite size.

The following keywords can be applied to this property:

❑ auto

❑ left

❑ right

❑ always

❑ avoid

❑ inherit

These attributes are part of the CSS level 2 specification, which is not yet fully supported in most
browsers.

The auto setting allows the browser to use its best opinion on whether to place a page break
after the element.

Error! No text of specified style in document.

2087

The left and right keywords provide a swinging format capability based on whether the page is
an odd or even page (by implication odd number pages are rightwards). This allows page breaks to
be placed depending on whether element flows onto a right or leftwards facing page.

The always value requires that a page break happens after this element on every occasion regardless
of whether the page is odd or even.

The CSS level 2 standard allows for the property to contain the avoid value. This is not yet
supported in all browsers and simply inhibits page breaks after the element.

The above all applies equally to the pageBreakBefore property apart from noting that the page
break is placed prior to the object rather than after it.

The pageBreakInside property only honors the auto, avoid and inherit keywords.

Warnings:
❑ This property does not work consistently across browsers and platforms. Unusually, it works better

in MSIE for Macintosh than Windows.

See also: style.orphans, style.size, style.widows

style.pageBreakBefore (Property)
The placement of a page break before the styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.pageBreakBefore

CSS syntax: page-break-before: aSwitch

Argument list: aSwitch A page break control value

See also: style.size, style.pageBreakAfter

Chapter number

2088

style.pageBreakInside (Property)
Indicates whether a page break can occur inside the element if necessary.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.pageBreakInside

CSS syntax: page-break-inside: aSwitch

Argument list: aSwitch A page break control value

See also: style.page, style.size, style.pageBreakAfter

style.pause (Property)
Part of the aural style control suite that defines a momentary pause before or after an item is spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.pause

CSS syntax: pause: aTime

Argument list: aTime A pause duration between speeches

This is a shortcut property for defining the pauseBefore and pauseAfter values in a single
assignment. The two values should be space separated. If you only specify one, it will be assigned to
both properties. If you specify two values, the first is used as pauseBefore and the second as
pauseAfter.

The values are specified as time units. These are a floating point value with either the ms or s suffix to
denote the unit of measure.

You can specify a percentage value which is used to calculate a proportion of the time taken to speak
a single word at the words-per-minute rate defined in the speechRate property.

Error! No text of specified style in document.

2089

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, Measurement units, style.pauseAfter,
style.pauseBefore, style.speechRate

style.pauseAfter (Property)
Part of the aural style control suite that defines a momentary pause after an item is spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.pauseAfter

CSS syntax: pause-after: aTime

Argument list: aTime A pause duration after speech

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, style.pause

style.pauseBefore (Property)
Part of the aural style control suite that defines a momentary pause before an item is spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.pauseBefore

CSS syntax: pause-before: aTime

Argument list: aTime A pause duration before speech

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, style.pause

Chapter number

2090

style.pitch (Property)
Part of the aural style control suite that defines the average pitch frequency of the voice used to speak
the text.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.pitch

CSS syntax: pitch: aFrequency

Argument list: aFrequency A frequency to pitch the voice

You can specify the value in hertz or kilohertz. The measurement units specifier for these would be
Hz or kHz. The numeric values would normally be an integer for the Hz units and a floating point
value for the kHz units. If you prefer, the following keywords can be used:

❑ x-low

❑ low

❑ medium

❑ high

❑ x-high

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, Measurement units

style.pitchRange (Property)
Part of the aural style control suite that defines the variance of the spoken voice pitch when it is
capable of rendering emphasis by changing its average pitch.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.pitchRange

CSS syntax: pitch-range: aRange

Argument list: aRange A range of pitch variation

Error! No text of specified style in document.

2091

The pitch range allows for the voice to raise and fall during speech to make it sound more interesting.

The value of 0 can be used to prevent any pitch change during speech. This would cause speech to
use a monotone and sound very dull. A value of 50 would sound normal while a value of 100 would
sound somewhat excited.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, style.richness

style.pixelBottom (Property)
The location of the styled element measured in pixel units within the page.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.pixelBottom

CSS syntax: pixel-bottom: aValue

Argument list: aValue A positioning value

This object was added in version 5 of MSIE to complete the set of positioning properties already
available with the style object in earlier versions of MSIE.

Objects can be positioned on screen with this property. This value defines the location of the bottom
edge of a styled element. The bottom edge includes padding, borders and margins around the object
as well as its content. The position is located with reference to the next outermost (parent) container.

This property will be useful as an alternative to the style.bottom property which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in pixel measurement units only. This is
regardless of the settings of the measurement units in the CSS attribute. Refer to the
style.posBottom property for a more generalized value that can be operated on with different
measurement units.

See also: Measurement units, style.bottom, style.posBottom

Chapter number

2092

style.pixelHeight (Property)
The pixel height of the styled element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.pixelHeight

CSS syntax: pixel-height: aHeight

Argument list: aHeight A sizing value

Although this is a read and write property, it is most likely to be useful for measuring the height of an
object to get a numeric value without the trailing px suffix that you get when enquiring the
style.height value.

The value in this property will be an integer defined in pixel measurement units only. This is
regardless of the settings of the measurement units in the CSS attribute. Refer to the
style.posHeight property for a more generalized value that can be operated on with different
measurement units.

See also: Measurement units, style.height, style.pixelWidth,
style.posHeight

style.pixelLeft (Property)
The pixel position of the left edge of the styled element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.pixelLeft

CSS syntax: pixel-left: aValue

Argument list: aValue A positioning value

Objects can be positioned on screen with this property. This value defines the location of the left edge
of a styled element. The left edge includes padding, borders and margins around the object as well as
its content. The position is located with reference to the next outermost (parent) container.

The value in this property should be reflected in the Element.offsetLeft property.

Error! No text of specified style in document.

2093

This property will be useful as an alternative to the style.left property which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in pixel measurement units only. This is
regardless of the settings of the measurement units in the CSS attribute. Refer to the style.posLeft
property for a more generalized value that can be operated on with different measurement units.

See also: Element.offsetLeft, Layer.left, Measurement units,
style.left, style.posLeft

style.pixelRight (Property)
The pixel position of the right edge of the styled element.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.pixelRight

CSS syntax: pixel-right: aValue

Argument list: aValue A positioning value

This object was added in version 5 of MSIE to complete the set of positioning properties already
available with the style object in earlier versions of MSIE.

Objects can be positioned on screen with this property. This value defines the location of the right
edge of a styled element. The right edge includes padding, borders and margins around the object as
well as its content. The position is located with reference to the next outermost (parent) container.

This property will be useful as an alternative to the style.right property, which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in pixel measurement units only. This is
regardless of the settings of the measurement units in the CSS attribute. Refer to the
style.posRight property for a more generalized value that can be operated on with different
measurement units.

See also: Measurement units, style.posRight, style.right

Chapter number

2094

style.pixelTop (Property)
The pixel position of the top edge of the styled element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.pixelTop

CSS syntax: pixel-top: aValue

Argument list: aValue A positioning value

Objects can be positioned on screen with this property. This value defines the location of the top edge
of a styled element. The top edge includes padding, borders and margins around the object as well as
its content. The position is located with reference to the next outermost (parent) container.

The value in this property should be reflected in the Element.offsetTop property.

This property will be useful as an alternative to the style.top property which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in pixel measurement units only. This is
regardless of the settings of the measurement units in the CSS attribute. Refer to the style.posTop
property for a more generalized value that can be operated on with different measurement units.

See also: Element.offsetTop, Layer.top, Measurement units,
style.posTop, style.top

style.pixelWidth (Property)
The pixel width of the styled element.

Availability: JScript – 3.0
Internet Explorer – 4.0
Opera – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.pixelWidth

CSS syntax: pixel-width: aWidth

Argument list: aWidth A sizing value

Although this is a read and write property, it is most likely to be useful for measuring the width of an
object to get a numeric value without the trailing px suffix that you get when enquiring the
style.width value.

Error! No text of specified style in document.

2095

The value in this property will be an integer defined in pixel measurement units only. This is
regardless of the settings of the measurement units in the CSS attribute. Refer to the
style.posWidth property for a more generalized value that can be operated on with different
measurement units.

See also: Measurement units, style.pixelHeight,
style.posHeight, style.posWidth, style.width

style.playDuring (Property)
Part of the aural style control suite that controls the mix between foreground and background
sound effects.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.playDuring

CSS syntax: play-during: aControl

Argument list: aControl A mix control for background sounds

Foreground and background sound effects need to be controlled carefully and blended properly, so
that background noises such as music and sound effects do not distract from the speech.

The values for this comprise a URI value and an optional controlling parameter. The value should be
space-separated.

The URI specifies an audio file to be downloaded and played in the background.

The following keywords control how the background sound is mixed with any parent object's sound
effects:

❑ mix

❑ repeat

❑ auto

❑ none

The mix keyword combines any sounds already playing as defined by parent elements.

The repeat keyword allows for the background sound to be looped as required to extend it to the
same length as the spoken content.

The auto value allows the parent elements sound effects to be played without being interrupted by
this elements sounds.

The none value turns off any sound effects inherited from parent objects only playing sounds
controlled by this object.

Chapter number

2096

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.posBottom (Property)
A measurement unit independent positioning control property.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.posBottom

CSS syntax: pos-bottom: aValue

Argument list: aValue A positioning value

This object was added in version 5 of MSIE to complete the set of positioning properties already
available with the style object in earlier versions of MSIE.

Objects can be positioned on screen with this property. This value defines the location of the bottom
edge of a styled element. The bottom edge includes padding, borders and margins around the object
as well as its content. The position is located with reference to the next outermost (parent) container.

This property will be useful as an alternative to the style.bottom property, which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in the measurement units defined by the CSS
attribute. Refer to the style.pixelBottom property for a more specialized value that can be
operated on unambiguously in pixel measurement units.

See also: Measurement units, style.bottom, style.pixelBottom

style.posHeight (Property)
A measurement unit independent size control property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.posHeight

CSS syntax: pos-height: aHeight

Argument list: aHeight A sizing value

Error! No text of specified style in document.

2097

Although this is a read and write property, it is most likely to be useful for measuring the height of an
object to get a numeric value without the trailing measurement unit suffix that you get when
enquiring the style.width value.

The value in this property will be an integer defined in CSS attribute defined measurement units only.
Refer to the style.pixelHeight property for a more specialized value that can be operated on
unambiguously using pixel values.

See also: Measurement units, style.height, style.pixelHeight,
style.pixelWidth, style.posWidth

style.position (Property)
A flag to indicate relative or absolute positioning of an element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myStyle.position = "absolute"JavaScript syntax:
- myStyle.position = "relative"

CSS syntax: position: aControl

Argument list: aControl A positioning control

In MSIE, this value returns a floating point value reflecting the current value of the position attribute
for the styleSheet object.

You can define other values for this according to the available keywords:

❑ absolute

❑ relative

❑ fixed

❑ normal

❑ static

The absolute keyword applies to element objects that are positioned with respect to the document
boundaries.

The relative keyword applies to element objects that are positioned with respect to a parent or
containing element object.

Chapter number

2098

The fixed keyword is defined in the CSS standard to mean that an element object should be
positioned with respect to the display window.

The normal keyword is equivalent to the CSS defined static keyword and applies to objects whose
position is controlled by the text flow. These can be block or inline structured objects.

Warnings:
❑ Element objects in Netscape Navigator 4 are positioned by means of the layer capabilities of that

version of the browser. Any object that has its position property set to the absolute value will need to
be managed in a layer of its own, so that it can be positioned independently of any other objects in
the page. These layers are accessible via the layers[] property of the document.

❑ As of Netscape 6.0, layers are completely deprecated and have not been implemented. If you use
layers at all, your pages are going to break.

❑ The style.position property is not supported consistently across browsers. Nor is it supported
according to the defined default values in the CSS standard.

❑ The fixed keyword is not yet properly supported in MSIE.

❑ Netscape 6.0 does not support the normal keyword although it supports the functionally identical
static keyword.

See also: Document.layers[], Dynamic positioning, Measurement
units, style.overflow

Property attributes:
ReadOnly.

style.posLeft (Property)
A measurement unit independent positioning control property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.posLeft

CSS syntax: pos-left: aValue

Argument list: aValue A positioning value

Objects can be positioned on screen with this property. This value defines the location of the left edge
of a styled element. The left edge includes padding, borders and margins around the object as well as
its content. The position is located with reference to the next outermost (parent) container.

This property will be useful as an alternative to the style.left property which includes the
measurement units when a value is read back from it.

Error! No text of specified style in document.

2099

The value in this property will be an integer defined in the measurement units defined by the CSS
attribute. Refer to the style.pixelLeft property for a more specialized value that can be operated
on unambiguously in pixel measurement units.

See also: Element.offsetLeft, Layer.left, Measurement units,
style.left, style.pixelLeft

style.posRight (Property)
A measurement unit independent positioning control property.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.posRight

CSS syntax: pos-right: aValue

Argument list: aValue A positioning value

This object was added in version 5 of MSIE to complete the set of positioning properties already
available with the style object in earlier versions of MSIE.

Objects can be positioned on screen with this property. This value defines the location of the right
edge of a styled element. The right edge includes padding, borders and margins around the object as
well as its content. The position is located with reference to the next outermost (parent) container.

This property will be useful as an alternative to the style.right property which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in the measurement units defined by the CSS
attribute. Refer to the style.pixelRight property for a more specialized value that can be
operated on unambiguously in pixel measurement units.

See also: Measurement units, style.pixelRight, style.right

style.posTop (Property)
A measurement unit independent positioning control property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.posTop

Chapter number

2100

CSS syntax: pos-top: aValue

Argument list: aValue A positioning value

Objects can be positioned on screen with this property. This value defines the location of the top edge
of a styled element. The top edge includes padding, borders and margins around the object as well as
its content. The position is located with reference to the next outermost (parent) container.

This property will be useful as an alternative to the style.top property, which includes the
measurement units when a value is read back from it.

The value in this property will be an integer defined in the measurement units defined by the CSS
attribute. Refer to the style.pixelTop property for a more specialized value that can be operated
on unambiguously in pixel measurement units.

See also: Element.offsetTop, Layer.top, Measurement units,
style.pixelTop, style.top

style.posWidth (Property)
A measurement unit independent size control property.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.posWidth

CSS syntax: pos-width: aWidth

Argument list: aWidth A sizing value

Although this is a read and write property, it is most likely to be useful for measuring the width of an
object to get a numeric value without the trailing measurement unit suffix that you get when
enquiring the style.width value.

The value in this property will be an integer defined in CSS attribute defined measurement units only.
Refer to the style.pixelWidth property for a more specialized value that can be operated on
unambiguously using pixel values.

See also: Measurement units, style.pixelWidth,
style.posHeight, style.width

Error! No text of specified style in document.

2101

style.quotes (Property)
A list of quotation marks to use for progressively quoted content that may have nested quotation marks.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.quotes

CSS syntax: quotes: aValue

Argument list: aValue A string to use for quoting text

If you specify quotes, you should indicate pairs of quotes. Each quote should be enclosed it its own
set of delimiters, which then allows multiple characters to be used for each quotation symbol.

You can alternatively use the value none or inherit.

style.removeExpression() (Method)
An MSIE extension for managing style controls.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myStyle.removeExpression(aProperty)

Argument list: aProperty
The name of the property whose expression is to
be removed

This is part of the MSIE support for managing style expressions. With this method, you can remove
an expression that was previously defined with the setExpression() method.

See also: Element.getExpression(),
Element.removeExpression(),
Element.setExpression(), style.getExpression(),
style.setExpression()

Chapter number

2102

style.renderingIntent (Property)
An MSIE extension to control the rendering of the page. This is part of the color modeling and
preservation of true color representations.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.renderingIntent

CSS syntax: rendering-intent: aControl

Argument list: aControl A rendering intent specifier value

As yet, this is still being worked on. Early drafts suggest the following keywords will be available:

❑ auto

❑ perceptual

❑ relative-colorimetric

❑ saturation

❑ absolute-colorimetric

See also: Color names, Color value, style.color,
style.colorProfile

style.richness (Property)
Part of the aural style control suite that defines the forcefulness of the spoken voice.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.richness

CSS syntax: richness: aValue

Argument list: aValue A voice quality control value

This control affects the animation, sometimes called brightness or stridency, in the voice.

The value 50 is used as the default and with this setting the voice will sound as if it's normal.

Reducing this value makes the voice more mellow and soft. Extremely low values might almost be
whispered.

Error! No text of specified style in document.

2103

Increasing value to 100 makes the voice very forceful, almost shouting.

The value can be specified as a floating point value to control the richness very finely.

The behavior of the spoken voice when controlled by the aural style properties does very much
depend on the in-built speech capabilities of the platform. The Macintosh already supports a very
versatile and realistic voice synthesizer as an integral component of its operating system. It would be
interesting to experiment with this if it were integrated with a usable browser.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, style.pitchRange

style.right (Property)
A positioning reference point.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.right

CSS syntax: right: aPosition

Argument list: aPosition A right coordinate value

A CSS-P positioning style attribute that controls the location of an element relative to its containing
parent element. The right edges of the two elements are used as the reference points.

The value can specified in the usual pixel or fractional em-dash measurement units or the auto
keyword can be used to let the browser do the positioning itself.

The exact positioning is affected by settings for padding, border, margin and the position property.

See also: Measurement units, style.bottom, style.left,
style.pixelRight, style.posRight, style.top

Chapter number

2104

style.rowSpan (Property)
An indication of how many rows a table cell should span.

Availability: CSS level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.rowSpan

CSS syntax: row-span: aRowCount

Argument list: aRowCount A number of rows to span in a table

This is used when you want to create complex tables, and can be used as an alternative to nesting a
table. Avoiding nested tables is good because they can be quite unwieldy.

This is related somewhat to the rowSpan property of the TD and TH objects and controls the same
behavior.

See also: TABLE object, TD.rowSpan, TH.rowSpan

style.rubyAlign (Property)
An MSIE extension to support the alignment of ruby elements.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.rubyAlign

CSS syntax: ruby-align: aControl

Argument list: aControl An alignment control keyword

This controls the alignment of the ruby text with respect to the base text.

The following keywords are supported:

❑ auto

❑ left

❑ center

❑ right

❑ distribute-letter

❑ distribute-space

❑ line-edge

See also: RUBY object

Error! No text of specified style in document.

2105

style.rubyOverhang (Property)
An MSIE extension to support the alignment of styled elements.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type:
String primitive

JavaScript syntax: IE myStyle.rubyOverhang

CSS syntax: ruby-overhang: aControl

Argument list:
aControl A definition of the kind of overhang to

display

This defines the overhang of the ruby text with respect to its base text.

The following keywords are accepted:

❑ auto

❑ whitespace

❑ none

See also: RUBY object

style.rubyPosition (Property)
An MSIE extension to support the alignment of styled elements.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.rubyPosition

CSS syntax: ruby-position: aPosition

Argument list: aPosition A specifier for where the ruby is to be placed

This defines the position of the ruby text with respect to its base text.

The following keywords are accepted:

❑ above

❑ inline

See also: RUBY object

Chapter number

2106

style.scrollbar3dLightColor (Property)
Access to the scrollbar colors.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbar3dLightColor

CSS syntax: scrollbar-3d-light-color : aColor

Argument list: aColor A color value

This provides a means of reading or writing the color value for a scroll box and its scrollbar.

The value is one of the usual color values.

See also: Color names, Color value

style.scrollbarArrowColor (Property)
Defines the arrow color of a scrollbar.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbarArrowColor

CSS syntax: scrollbar-arrow-color: aColor

Argument list: aColor A color value

This is a color value specified in the normal way.

See also: Color names, Color value

Error! No text of specified style in document.

2107

style.scrollbarBaseColor (Property)
Defines the base color of a scrollbar.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbarBaseColor

CSS syntax: scrollbar-base-color: aColor

Argument list: aColor A color value

This is a color value specified in the normal way.

See also: Color names, Color value

style.scrollbarDarkShadowColor (Property)
Defines the dark shadow color of a scrollbar.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbarDarkShadowColor

CSS syntax: scrollbar-dark-shadow-color: aColor

Argument list: aColor A color value

This is a color value specified in the normal way.

See also: Color names, Color value

style.scrollbarFaceColor (Property)
Defines the face color of a scrollbar.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbarFaceColor

Chapter number

2108

CSS syntax: scrollbar-face-color: aColor

Argument list: aColor A color value

This is a color value specified in the normal way.

See also: Color names, Color value

style.scrollbarHighlightColor (Property)
Defines the highlight color of a scrollbar

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbarHighlightColor

CSS syntax: scrollbar-highlight-color: aColor

Argument list: aColor A color value

This is a color value specified in the normal way.

See also: Color names, Color value

style.scrollbarShadowColor (Property)
Defines the shadow color of a scrollbar.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.scrollbarShadowColor

CSS syntax: scrollbar-shadow-color: aColor

Argument list: aColor A color value

This is a color value specified in the normal way.

See also: Color names, Color value

Error! No text of specified style in document.

2109

style.setAttribute() (Method)
A method for setting attributes in styles.

Availability: JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myStyle.setAttribute(aName,
aValue)

aName The name of an attribute to setArgument list:
aValue The value to be stored in the attribute

This method is used to define attribute values that can be accessed or redefined later on.

See also: style.getAttribute()

style.setExpression() (Method)
An MSIE extension for managing style controls.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myStyle.setExpression(aName, anExpression,
aLanguage)

aName The name of the property
anExpressio
n

The expression to be evaluated
Argument list:

aLanguage The language to use when evaluating the expression

This is used to set the values for expressions within the style handling complex. You can later retrieve
the value of these expressions with the getExpression() method or delete them with the
removeExpression() method.

The rules that are used to construct a style are comprised of multiple expressions. You can use this
method to assign a new value to an expression within a style item with that value being generated by
a callback to a script function.

Given the rule might contain a line such as:

width:200px

the setExpression() method can be applied to the style object containing the rule with that
expression like this:

myStyle.setExpression("width:", "callBack()", "JavaScript")

Chapter number

2110

The value of the width parameter would then be defined by the result of calling the callBack()
function in the JavaScript context.

The expressions are attached to style properties and can be executed in a variety of languages. The
language argument can be one of the following:

❑ JavaScript

❑ JScript

❑ VBScript

See also: Element.getExpression(),
Element.removeExpression(),
Element.setExpression(), style.getExpression(),
style.removeExpression()

Style.size (Property)
Defines the size and orientation of a bounding box on a printed page.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.size

CSS syntax:
size: anAspectsize: aSize anAspectsize: aWidth
aHeight anAspect

aSize When only one length value is specified,
the page is square

anAspect An aspect ration control
aWidth A page width

Argument list:

aHeight A page height

This is part of the printing control mechanism in the CSS level 2 specification.

It provides a way to set the page size and aspect ration of the printed output. This should not affect
the display of the page on the screen.

There are three parameter values expected. The first two are numeric values describing the page size.
These are expressed in measurement units. You can optionally only include one because the third
parameter is a keyword. If you omit both of the numeric values, the page size is assumed to be that of
the printer by default. If only one is specified, then a square printable area is defined. Two values
control the page width and page height respectively.

Printers may apply a non-printable margin area to the page, and the value you specify here must fit
within it otherwise the content may be cropped when it is printed.

Error! No text of specified style in document.

2111

The last parameter value is specified using one of the following keywords:

❑ auto

❑ portrait

❑ landscape

See also: STYLE.media, style.orphans, style.page,
style.pageBreakAfter, style.widows

style.speak (Property)
Part of the aural style control suite that defines whether the content should be spoken out loud or not.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speak

CSS syntax: speak: aType

Argument list: aType A speech type

If the browser is equipped to utilize the platform's text to speech capabilities, this will cause the
content of the element to be spoken out.

Realistically, the element must have some textual content to speak. The element is not going to make
for a very interesting spoken phrase if it is an image, although the ALT text of the image might be
used if it is defined.

The kind of speech is controlled with these keywords:

❑ none

❑ normal

❑ spell-out

The none keyword inhibits the text to speech capabilities.

The normal keyword reads the word as best it can. Sometimes this might use phonetic rules to
pronounce the word and this may sound strange.

The spell-out keyword forces the content to be read out one letter at a time. This may be more
helpful if there are complex words that the phonetic rules don't cope with very well, or if the content is a
formula or other kind of algebraic expression. This may also be useful for abbreviations or acronyms.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

Chapter number

2112

style.speakDate (Property)
A format control that dictates the order in which date items are spoken.

Availability: CSS level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speakDate

CSS syntax: speak-date: aFormat

Argument list: aFormat A date format to speak

Date values may need to be spoken in a manner appropriate to the context of the listener.

This for example may require the order in which the date components should be spoken to manage
the regional differences. Typically the American English and UK English language variants exchange
the day and month values for example.

The following keywords are supported to select an order for reading out the Day, Month and Year
components of a date value:

❑ mdy

❑ dmy

❑ ymd

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.speakHeader (Property)
Part of the aural style control suite that defines whether a table cell's header description is spoken
before the content of the cell itself.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speakHeader

CSS syntax: speak-header: aSwitch

Argument list: aSwitch A control for how often to speak table headers

Error! No text of specified style in document.

2113

When the contents of a table are being read out, it can become confusing if the table content is simply
read out cell by cell. This property indicates how often the column headings should be read out prior
to reading the contents of each cell. It supports the keywords once and always.

The once keyword dictates that table column headings should be spoken once at the start of reading
out the table.

The always keyword mandates that the column heading be spoken immediately prior to each cell in
the row.

Other keywords may be added to this property in due course to allow more flexible ways of reading
out table headings.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.speakNumeral (Property)
Part of the aural style control suite that defines whether numbers are spoken individually or in a
compounded form.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speakNumeral

CSS syntax: speak-numeral: aType

Argument list: aType A manner in which to read numeric values

This property controls how numeric values are read out. Long numeric values would normally be
read out one digit at a time, but a year number might be read out as a compound string.

The CSS2 standard dictates that the language for reading the numbers should be defined with the
LANG="..." HTML tag attribute for the HTML tag that instantiates the object that this style applies to.

The following keywords can be used with this property:

❑ none

❑ digits

❑ continuous

The none keyword inhibits the reading out of numbers.

Chapter number

2114

The digits keyword forces numeric values to be read out one digit at a time. For example, 2000
would be pronounced as "Two zero zero zero" if the spoken language is English.

The continuous keyword forces numeric values to be read out as a word or string of words
compounded together. For example, 2000 would be pronounced as "Two thousand" if the spoken
language is English.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.speakPunctuation (Property)
Part of the aural style control suite that defines whether punctuation is spoken, or whether it affects
the phrasing and delivery of the speech.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speakPunctuation

CSS syntax: speak-punctuation: aType

Argument list: aType A manner in which to speak punctuation characters

For some textual content, it may be important that the punctuation is spelled out one punctuation
symbol at a time. In other contexts it may be appropriate for the text-to-speech handler to use the
punctuation to control the phasing and intonation of the voice.

The none and code keywords can be used with this property.

The none keyword means that punctuation is interpreted and should affect the phasing of the
spoken text.

The code keyword forces the text-to-speech output to enumerate each punctuation symbol as it is
encountered. How this might affect the inflection and enunciation of the voice may be platform
dependant.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

Error! No text of specified style in document.

2115

style.speakTime (Property)
Part of the aural style control suite that defines the format of time values and whether they are spoken
in 12 or 24 hour format.

Availability: CSS level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speakTime

CSS syntax: speak-time: aFormat

Argument list: aFormat
A format according to which time values
should be spoken

Spoken time values may be controlled with some very minimal keywords to determine whether to
use a 12 hour or 24 hour clock for the basis of the spoken time. The following keyword values are
appropriate:

❑ none

❑ 12

❑ 24

The none keyword inhibits time speaking, while the other two select an appropriate time pronunciation.

There is scope for more control over the way this property is used in future versions of the CSS standard.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.speechRate (Property)
Part of the aural style control suite that defines the rate at which the text is spoken out loud.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.speechRate

CSS syntax: speech-rate: aSpeed

Argument list: aSpeed A speed at which the text should be spoken

Chapter number

2116

The speech rate may be adjusted to provide a fast talking voice or a slower voice for more complex
spoken content.

The property may have a numeric value assigned to indicate how many words should be read per
minute. This would be an average value on the grounds that some words may take longer to
pronounce than others. The speech rate can be specified as a floating point value for very fine control
over the speech rate.

There are also a set of keywords so you can specify a generic absolute value. These are the keywords
that are supported:

❑ x-slow

❑ slow

❑ medium

❑ fast

❑ x-fast

Speech rates can be adjusted relative to a parent or containing element object. Assuming a speech rate is
defined for a parent object, then you can use the relative speech rate keywords slower and faster.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, style.pause

style.stress (Property)
Part of the aural style control suite that defines the amount of inflection in the voice as items are spoken.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.stress

CSS syntax: stress: aValue

Argument list: aValue A stress level for the speech

To make the spoken voice sound more interesting (and human-like), this property provides some
control over the stress or inflection in the voice as it reads the text contained in the element object.

This property takes a numeric value, either integer or floating point with the value 50 being the
normal default. Increasing the stress value of the voice will provide a greater variation in the way that
words are enunciated. A value of zero would make the voice sound dull and unexciting.

Error! No text of specified style in document.

2117

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.styleFloat (Property)
A property that allows styled elements to float.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.styleFloat

CSS syntax: style-float: anAlignment

Argument list: anAlignment A floating alignment control value

If you are flowing text around block-structured elements, this property provides some control over
which side the block-structured element is aligned on.

The following values can be assigned to this property:

❑ none

❑ left

❑ right

When the property is set to "none", the element will appear inline with the text at the position
determined by its location in the document source. For small objects this means they will appear to be
symbols within the text without casing any line break.

The style.float and style.floatStyle properties are related.

See also: style.float

Chapter number

2118

style.tableLayout (Property)
Controls how the browser primarily works out table sizing and layout from the content or the sizing
HTML tag attributes.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.tableLayout

CSS syntax: table-layout: aType

Argument list: aType A kind of table layout to use

When you have a table in a document, it can take some time before the page content first appears.
This is because the browser needs to traverse the entire table and load all its content, so that it can
work out the width and height of each cell and then sum them together to determine the overall size
of the table.

This property provides a switch that enables the browser to use this normal technique or to use an
accelerated method, whereby it takes the attributes that are specified with HTML tag attributes and
immediately draws the table using those values.

This property accepts the auto and fixed keywords.

The auto keyword selects the normal table sizing and drawing method.

The fixed keyword allows the HTML tag attributes controlling the size to be used to draw the table
outline, and the widths of the first row of cells are used to set the width of each columns. From there,
the table can be lengthened to accommodate any textual content. You should make sure that there is
enough size information in the first row of the table to allow it to establish realistic column widths.
This means the columns in the first row should have a width equal to or greater than the width of any
other cell in the remaining rows for optimum performance. This is less important when the table only
contains text, but may be a problem for tables that partially use graphical content.

See also: TABLE object

Error! No text of specified style in document.

2119

style.textAlign (Property)
Controls the horizontal alignment of text within the styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textAlign

CSS syntax: text-align: anAlignment

Argument list: anAlignment A style of text alignment to use

Text alignment in the horizontal axis can be controlled with this property. The style.verticalAlign
property can be used to align objects vertically with respect to their parents.

The following values are appropriate for this property:

❑ left

❑ center

❑ right

❑ justify

Assigning the center value is equivalent to placing the <CENTER> tags around the text to be center
justified. This aligns the text about the center of its width, but leaves the left and right hand sides of
the text looking ragged.

The left value lines up the left edge of the text but leaves the right side ragged.

The right value lines up the right side of the text and leaves the left side ragged.

The justify keyword is intended to line up both the left and right sides nice and neatly, using space
expansion between words to use up the additional space.

Warnings:
❑ The justify keyword is not defined in the CSS standard but is inconsistently supported across

browsers and platforms. In many cases, it may result in a left justified and ragged right appearance
rather than the left and right justified effect you would have expected.

See also: CAPTION.align, JSSTag.textAlign, style.textJustify,
style.verticalAlign, style.wordSpacing

Chapter number

2120

style.textAutospace (Property)
Support for spacing control in ideographic languages used in Asia.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.textAutospace

CSS syntax: text-autospace: aControl

Argument list: aControl One of the available keywords

This property accepts the following keywords:

❑ none

❑ ideograph-alpha

❑ ideograph-numeric

❑ ideograph-parenthesis

❑ ideograph-space

style.textDecoration (Property)
Controls decorative additions to the text such as underlines and strike-throughs.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textDecoration

CSS syntax: text-decoration: aStyle

Argument list: aStyle A set of decorative properties for the text

Text decoration is often confused with text style. In word processors you will commonly see italic and
bold in the same menu as underline and strike-through. In the context of a web browser they are
separated into fontStyle and text decoration.

Error! No text of specified style in document.

2121

The following decorations can be applied:

❑ blink

❑ line-through

❑ overline

❑ underline

❑ none

You can apply several of these decorations as long as they are space separated in the string being assigned.

To restore text decoration to its default state simply assign an empty string, "". It is also likely that the
value "none" will cancel the text decoration too, at least on the MSIE browser.

There are individual properties for each of these styles that you can use if you prefer. Those
properties are controlled with a Boolean primitive value.

Setting the properties to the value true will add that decoration to the text block.

Setting the style.textDecorationNone property to true will automatically set the others to
false and cancel the text decoration effect.

See also: JSSTag.textDecoration, String.blink(),
String.strike(), style.textDecorationBlink,
style.textDecorationLineThrough,
style.textDecorationNone,
style.textDecorationOverline,
style.textDecorationUnderline

style.textDecorationBlink (Property)
The blink attribute of the styled element.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textDecorationBlink

CSS syntax: text-decoration-blink: aSwitch

Argument list: aSwitch A Boolean switch for the text decoration

This is a Boolean value that needs to be set to true or false to activate the styled appearance.

Chapter number

2122

Warnings:
❑ The MSIE browser does not support text blinking so even though the property is provided and

supported, its effects are ignored.

❑ This property does not work on some versions of MSIE on the Macintosh platform.

See also: String.blink(), style.textDecoration,
style.textDecorationNone

style.textDecorationLineThrough (Property)
A text decoration style.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textDecorationLineThrough

CSS syntax: text-decoration-line-through: aSwitch

Argument list: aSwitch A Boolean switch for the text decoration

This is a Boolean value that needs to be set to true or false to activate the styled appearance.

Warnings:
❑ This property does not work on some versions of MSIE on the Macintosh platform.

See also: String.strike(), style.textDecoration,
style.textDecorationNone

style.textDecorationNone (Property)
A text decoration style.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

Error! No text of specified style in document.

2123

JavaScript syntax: - myStyle.textDecorationNone

CSS syntax: text-decoration-none: aSwitch

Argument list: aSwitch A Boolean switch for the text decoration

This is a Boolean value that needs to be set to true or false to activate the styled appearance.

Warnings:
❑ This property does not work on some versions of MSIE on the Macintosh platform.

See also: style.textDecoration, style.textDecorationBlink,
style.textDecorationLineThrough,
style.textDecorationOverline,
style.textDecorationUnderline

style.textDecorationOverline (Property)
A text decoration style.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textDecorationOverline

CSS syntax: text-decoration-overline: aSwitch

Argument list: aSwitch A Boolean switch for the text decoration

This is a Boolean value that needs to be set to true or false to activate the styled appearance.

Warnings:
❑ This property does not work on some versions of MSIE on the Macintosh platform.

See also: style.textDecoration, style.textDecorationNone

Chapter number

2124

style.textDecorationUnderline (Property)
A text decoration style.

Availability: CSS level – Proposed
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textDecorationUnderline

CSS syntax: text-decoration-underline: aSwitch

Argument list: aSwitch A Boolean switch for the text decoration

This is a Boolean value that needs to be set to true or false to activate the styled appearance.

Warnings:
❑ This property does not work on some versions of MSIE on the Macintosh platform.

See also: style.textDecoration, style.textDecorationNone

style.textIndent (Property)
Controls the indentation of text within the styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textIndent

CSS syntax: text-indent: aValue

Argument list: aValue An amount of text indentation

Text blocks can have the first line indented. This might be applied to an element that is instantiated
by a <P> tag for example.

Error! No text of specified style in document.

2125

The value is specified using the normal measurement units such as pixels or floating point fractional
em-dash values.

If you want to create a hanging indent effect, the first line can be moved leftwards by specifying a
negative value in this property.

Assigning a value of zero to this property restores it to its default condition with all lines being left
justified identically.

Warnings:
❑ Negative indents (sometimes called outdents or hanging indents) may not be supported correctly on

all browsers on all platforms. You may need to perform some experiments and platform testing to
verify it works on your target user's browsers.

❑ Some versions of MSIE on Macintosh do not properly support this feature.

See also: JSSTag.textIndent, Measurement units

style.textJustify (Property)
Controls the justification layout of textual content within the styled element.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.textJustify

CSS syntax: text-justify: aControl

Argument list: aControl One of the available control keywords

The text justification can accommodate any of the following keywords:

❑ auto

❑ distribute

❑ distribute-all-lines

❑ distribute-center-last

❑ inter-cluster

❑ inter-ideograph

❑ inter-word

❑ kashida

❑ newspaper

See also: style.textAlign

Chapter number

2126

style.textKashidaSpace (Property)
A means of controlling the Kashida expansion of an Asian font.

Availability: CSS level – Proposed
JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE myStyle.textKashidaSpace

CSS syntax: text-kashida-space: aValue

Argument list: aValue A space scaling value

The value for this property can be specified as a percentage value or with the inherit keyword.

style.textShadow (Property)
Controls artistic shadow effects for text in the styled element.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textShadow

CSS syntax:
text-shadow: aValueH aValueV aRadius, ...text-
shadow: aColor aValueH aValueV aRadius, ...

aColor A color for the blur

aValueH A horizontal blur factor

aValueV A vertical blur factor

Argument list:

aRadius A blur radius

This is an alternative to using the visual filter effects in MSIE. With this, you can add several shadows
to the text, each one having a different color. The shadows can be vertically and horizontally offset
from the text on an individual basis. This simulates the effect of the text being lit from several angles
with different light sources.

Although the text shadows are layered with the text itself, when the Z order of the text is changed
with respect to other elements in the page, the shadows move with it as if they were in some kind of
layer group.

Error! No text of specified style in document.

2127

The values for the one particular shadow are space separated and should be specified in the correct
order since several of them are length values and therefore they share the same namespace.

Each set of arguments for a shadow layer should be separated from the previous one by a comma so
there are two levels of delimiting going on.

As an alternative, the keyword value none can be assigned to the property to deactivate shadows
altogether.

The arguments for each shadow layer are as follows and should be defined in this order:

❑ A color value (optional and may be omitted).

❑ The horizontal offset value in spatial coordinates

❑ The vertical offset value in spatial coordinates

❑ The blur radius value in spatial coordinates

If the color value is omitted, the color of the element object itself will be used. This value may not
have been defined for the element object and may have been inherited from a parent containing
element object.

Negative values can be used for the horizontal and vertical offset values.

See also: Filter – Shadow(), Filter object, style.filter,
style.zIndex

style.textTransform (Property)
Controls capitalization of the text within the styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.textTransform

CSS syntax: text-transform: aControl

Argument list: aControl A text transformation to apply

Sometimes you may want to format a block of text for a heading. It's likely you will want to modify
the capitalization as well as the appearance.

Regardless of the actual upper/lower case combination of letters in the text block, they can be forced
to be displayed according to the case rules defined by this attribute.

Chapter number

2128

The following values can be assigned to this property:

❑ capitalize

❑ lowercase

❑ uppercase

❑ none

See also: JSSTag.textTransform

style.textUnderlinePosition (Property)
A means of controlling whether the underline is placed above or below the text.

Availability: CSS level – Proposed
JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE myStyle.textUnderlinePosition

CSS syntax: text-underline-position: aControl

Argument list: aControl One of the available keywords

This style property accepts the above and below keywords.

style.top (Property)
A positioning reference point.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

- myStyle.topJavaScript syntax:
- myStyle.top = yCoordinate

CSS syntax: top: aValue

Argument list: aValue A positioning value

Error! No text of specified style in document.

2129

A CSS-P positioning style attribute that controls the location of an element relative to its containing
parent element. The top edges of the two elements are used as the reference points.

The value can be specified in the usual pixel or fractional em-dash measurement units or the auto
keyword can be used to let the browser do the positioning itself.

The exact positioning is affected by settings for padding, border, margin and the position property.

See also: Measurement units, style.bottom, style.left,
style.pixelTop, style.posTop, style.right

style.unicodeBidi (Property)
Controls the bi-directionality of Unicode text within the styled element.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.unicodeBidi

CSS syntax: unicode-bidi: aControl

Argument list: aControl A setting for bi-directional Unicode text

This sets or returns the level of embedding within the bi-directional text drawing mechanism.

The property can accept the following keywords:

❑ normal

❑ embed

❑ bidi-override

style.verticalAlign (Property)
The vertical alignment of the style.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Chapter number

2130

Property/method value type: String primitive

JavaScript syntax: - myStyle.verticalAlign

CSS syntax: vertical-align: anAlignment

Argument list: anAlignment An alignment control value

The textAlign property controls the horizontal alignment, this property controls the vertical alignment.

The following values can be assigned to this property to control text alignment within the element's
extent rectangle:

❑ bottom

❑ top

These keywords can be assigned to control the way the box is aligned with respect to its surrounding
elements in the document content flow:

❑ baseline

❑ middle

❑ sub

❑ super

❑ text-bottom

❑ text-top

You can also define a value with measurement units or as a percentage relative to the next outermost
containing parent element.

These alignment values work as you would expect and as are commonly used in the HTML
document source.

See also: CAPTION.align, JSSTag.verticalAlign,
style.textAlign

style.visibility (Property)
The visibility of elements in this style.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Opera – 5.0

Error! No text of specified style in document.

2131

Property/method value type: String primitive

JavaScript syntax: - myStyle.visibility = aSwitch

CSS syntax: visibility: aSwitch

Argument list: aSwitch A visibility switch value

This controls the visibility of a DOM or HTML Element object. It corresponds to the visibility
property of the Netscape Navigator Layer object but uses different keywords.

The following keywords are appropriate for use with this property:

❑ inherit

❑ hide

❑ hidden

❑ show

❑ visible

The inherit keyword allows a child element to be visible only when its parent is visible.

If the child element is made explicitly visible or hidden then its visibility will be unaffected by its
parent element object. The parent can be invisible, possibly being used for positioning control while
the child is on display.

The hide and show keywords are considered Netscape Navigator 4 and are deprecated. Since
hidden and visible work even for layers, there is no need to ever use hide and show.

The hidden and visible keywords mean the same thing as hide and show but are more portable
across browsers and the CSS standard.

See also: Layer.visibility

style.voiceFamily (Property)
Part of the aural style control suite that defines which one of an available set of predefined voices is
used to speak the text.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.voiceFamily

CSS syntax: voice-family: aFamilyName ...

Argument list: aFamilyName A list of voice family names

Chapter number

2132

Most platforms that support spoken text will provide the facility to speak in a variety of alternative
voices. This is somewhat similar to text being displayed on different fonts.

However, the available voices are not likely to be platform independent.

Generic and portable family names have not yet been defined.

You can stack these in the same way that fonts are defined using a left to right precedence rule. The
first matching voice family will be used for the spoken text.

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets, style.fontFamily

style.volume (Property)
Part of the aural style control suite that defines the dynamic range from soft to loud that the spoken
voice will use.

Availability: CSS level – 2
DOM level – 2

Property/method value type: String primitive

JavaScript syntax: none myStyle.volume

CSS syntax: volume: aValue

Argument list: aValue A volume setting for speech

This controls the loudness of the spoken text. It can be specified with a numeric value which is
assumed to be an absolute volume level in the range 0 to 100 and is assumed to be the percentage of
the volume range for the platform.

If a percent sign is added, the value inherited from the parent containing element object is multiplied
by that percentage for the child element's volume setting.

In addition, these keywords are also supported for defining absolute values:

❑ silent

❑ x-soft

❑ soft

❑ medium

❑ loud

❑ x-loud

Error! No text of specified style in document.

2133

Warnings:
❑ This is not yet supported by any of the browsers.

See also: Aural style sheets

style.whiteSpace (Property)
Controls how the browser should treat whitespace characters within the document source when it is
rendered on the page.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 5.5
Internet Explorer – 5.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.whiteSpace

CSS syntax: white-space: aControl

Argument list: aControl A whitespace control value

When the HTML document source is authored, the browser by default will ignore any text formatting
within the document apart from that enclosed in <PRE> tags. Between words, multiple spaces are
collapsed to single spaces and carriage returns are ignored.

The following keywords can be used to control whitespace handling in the browser:

❑ normal

❑ nowrap

❑ pre

With the normal keyword, the browser behaves as it normally would.

The nowrap keyword forces the browser to ignore line breaks. There is an implication that
whitespace should be preserved, otherwise this setting is no different to the normal keyword.

The pre keyword honors all line breaks and whitespace in the text. Setting the pre keyword in this
property retains the proportional font and simply leaves linebreaks and whitespace intact, unlike text
that is enclosed in <PRE> tags, which will be rendered in a monospace font. This means that
whitespace used for alignment may still not do what you expect although it may be a way of
indenting text. It is not clear from the available documentation whether
 tags are honored inside
a block styled with the pre keyword, but it is likely that they are which is also not the case when
enclosing the text inside <PRE> tags. Netscape 6.0 does in fact honor
 tags inside an element
styled with the pre value.

Chapter number

2134

Warnings:
❑ There are reports that the CSS syntax for this property does not work correctly on Netscape

Navigator (even in version 6).

❑ MSIE 5 meanwhile has problems with the pre value when it is applied to this property.

See also: JSSTag.whiteSpace

style.widows (Property)
Defines the minimum number of lines of a paragraph of text that must be visible at the top of a page
when a page break is present. This is most likely to occur when printing documents.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.widows

CSS syntax: windows: aCount

Argument list: aCount A count of widow lines

Widows and orphans are fragments of text that appear to be formatted incorrectly when a paragraph
of text spans a page break.

Windows and orphans are usually controlled together and the usual technique is to specify that an
entire paragraph should be kept on the same page. This forces the paragraph to be taken over to the
next page in its entirety, even if the flow requires just a single word to be taken over.

The CSS styling controls allow a finer level of control in that you can allow for a paragraph to be
split across a page boundary, but specify a lower limit on the number of lines that must be kept on a
single page.

This is fine in principle but there can be some contention for the right layout when a very short
paragraph is spanning a page break. This will generally be solved simply by forcing the page break to
happen before the paragraph causing the whole paragraph to be carried over to the next page.

A widow is that fragment of text that is left at the top of a page when a paragraph encloses a page
break. It is the bottom few lines of the paragraph. The integer value in this property controls the
minimum number of lines that must be present. This has the effect of moving the page break earlier in
the paragraph to satisfy the requirements of the window setting. However, that itself may transgress
the setting for the orphan property, leading to the whole paragraph being taken onwards.

See also: style.orphans, style.pageBreakAfter, style.size

Error! No text of specified style in document.

2135

style.width (Property)
The width of a styled element.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.width

CSS syntax: width: aWidth

Argument list: aWidth An object width

The object space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This property
specifies the width of that extent rectangle.

When used to read the width of an object, this returns a value in pixel units with the px suffix.

You can also use this property to change the width of a styled element.

The normal range of values specified in measurement units can be used. You can also assign the auto
keyword to let the browser deduce the width of an object from the document source.

Warnings:
❑ Note that not all styled elements can be resized by assigning a new value to this property.

See also: JSSTag.width, Measurement units, style.height,
style.pixelWidth, style.posWidth

style.wordBreak (Property)
A means of controlling line breaking behavior within words.

Availability: CSS level – Proposed
JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyle.wordBreak

Chapter number

2136

CSS syntax: word-break: aControl

Argument list: aControl One of the available keywords

This is especially useful for controlling line breaking behavior when multiple languages are used.

The following keywords can be used:

❑ normal

❑ break-all

❑ keep-all

style.wordSpacing (Property)
Controls the spacing between words on the page.

Availability: CSS level – 1
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.01
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyle.wordSpacing

CSS syntax: word-spacing: aSwitch

Argument list: aSwitch A control value for word spacing

When the textAlign attribute is set to the justify keyword, this spacing may come into play.

A length value in measurement units can be specified to adjust the spacing between words or the
normal keyword can be assigned to let the browser calculate spacing on its own.

Warnings:
❑ As of MSIE 4.01, this is only available on the Macintosh platform.

See also: Measurement units, style.textAlign

Error! No text of specified style in document.

2137

style.wordWrap (Property)
Controls the word wrapping behavior when the content exceeds the bound of its containing element object.

Availability: CSS level – Proposed
JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE myStyle.wordWrap

CSS syntax: word-wrap: aControl

Argument list: aControl One of the available keywords

This property accepts the normal and break-word keywords.

style.writingMode (Property)
A typographic control for use with Asian fonts.

Availability: CSS level – Proposed
JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.writingMode

CSS syntax: writing-mode: aControl

Argument list: aControl One of the available keywords

This controls the direction that characters are written into the display.

The following keywords are accepted:

❑ lr-tb

❑ tb-rl

Chapter number

2138

style.zIndex (Property)
A value for the position of the element in a Z stacking order.

Availability: CSS level – 2
DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0
Opera – 5.0

Property/method value type: String primitive

- myStyle.zIndexJavaScript syntax:
- myStyle.zIndex = aZValue

CSS syntax: z-index: aZValue

Argument list: aZValue A position in the Z order

Elements can be placed in front of or behind other elements according to the Z index value.

The value should be defined with an integer or can be replaced by the auto keyword. The auto
value is the same as setting this property to zero.

Any elements that share the same zIndex value will be stacked in the display using their order as
presented in the document source.

Warnings:
❑ The CSS-P standard name for the property is z-index so this property may be accessible with a

different name on some implementations.

See also: Layer.zIndex, style.textShadow, style.zOrder

style.zoom (Property)
Reads and writes a zoom scaling factor for the receiving element object.

Availability: JScript – 5.5
Internet Explorer – 5.5

Property/method value type: String primitive

JavaScript syntax: IE style.zoom

CSS syntax: zoom: aScaleFactor

Argument list: aScaleFactor A zooming control value

Error! No text of specified style in document.

2139

This controls a magnification effect that is applied to an object. The value can be one of the following:

❑ normal

❑ A floating point multiplier

❑ A percentage scalar

style.zOrder (Pitfall)
In some documentation, this property is described as an alternative way of controlling the Z ordered
location of the styled object.

Warnings:
❑ So far, no examples of this property have been located. Use the zIndex property.

See also: style.zIndex

<STYLE> (HTML Tag)
Style controls can be effected from JavaScript code.

The style mechanisms allow the content and the appearance of the document to be separated. The
style sheet can now define the appearance of the page. This also means that styles can be shared and
if your server is up to the task, you can serve a different style sheet according to the user agent value
defined by the requesting browser.

Currently, CSS1 styling is widely used and CSS2 is gaining acceptance.

As far as we are concerned with JavaScript, we either need to create a style or apply it to part of a
document. To create a style in Netscape Navigator 4 we use JSSS (JavaScript Style Sheets), which is
functionally equivalent to CSS1. However JSSS is completely unavailable in any other browser,
including Netscape Navigator 6.0 and its use for scripts is discouraged.

See also: .htc, <META>, <STYLE TYPE="...">, CSS, CSS level 1, CSS level 2,
Document.attachEvent(), Document.detachEvent(), JavaScript
Style Sheets, Window.attachEvent(), Window.detachEvent()

Cross-references:
Wrox Instant JavaScript – page 50

Chapter number

2140

<STYLE TYPE="..."> (HTML Tag Attribute)
The MIME type for a block of JSSS style code.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Deprecated: Yes

HTML syntax: <STYLE TYPE="..."> some JSSS Code </STYLE>

... A MIME type that signifies JavaScript source text.Argument list:
someCode Some script based style text

The same MIME type values that apply to the <SCRIPT> tag are also used for the <STYLE> tag when
this attribute is applied.

When this JavaScript style sheet is evaluated, the interpreter adds the document to the scope chain so
that the tags, classes and ids properties of the document object can be accessed directly as if they
were global values. This saves accessing them with the document object prefix. Thus:

document.tags becomes tags

document.classes becomes classes

document.ids becomes ids

Warnings:
❑ This functionality is removed from Netscape Navigator 6.0.

See also: <META>, <SCRIPT TYPE="...">, <SCRIPT>, <STYLE>, Adding JavaScript
to HTML, JavaScript Style Sheets, MIME types, SCRIPT.type,
StyleSheet.type, text/JavaScript

Cross-references:
Wrox Instant JavaScript – page 50

StyleSheet object (Object/DOM)
An object that represents a style sheet.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Error! No text of specified style in document.

2141

- myStyleSheet = myDocument.styleSheets[anIndex]
JavaScript syntax:

IE myStyleSheet = myDocument.createStyleSheet()

Argument list:
anIndex A valid reference to an item in the collection

Object properties:
cssText, disabled, href, id, media, ownerNode,
owningElement, owningNode, parentStyleSheet, readOnly,
title, type

Object methods:
addImport(), addRule(), removeRule()

Collections:
cssRules[], imports[], rules[]

A style sheet contains many individual style objects which are managed as a collection. These style
sheet objects are created by means of the <STYLE> HTML tag or are imported with the <LINK> tag.
They can also be created by means of the @import statement inside a style definition.

The Document.styleSheets[] collection contains a reference for every styleSheet object in the
document.

Beware that a STYLE object and a style object are different things. A STYLE object is instantiated by
the <STYLE> HTML tag and contains properties that reflect its attributes.

This is quite different to a style object which is a member of a styleSheet and describes the rules
for a particular style.

DOM level 2 adds the following properties:

❑ title

❑ media

❑ ownerRule

It also adds the following methods:

❑ insertRule()

❑ deleteRule()

Warnings:
❑ Note that MSIE 5 incorrectly names this object class as styleSheet instead of StyleSheet (note

the capitalization).

See also: Document.createStyleSheet(), Document.styleSheets[],
Element.style, rule object, Style sheet,
StyleSheetList object

Property JavaScript JScript N IE Opera DOM Notes

cssText - 5.0 + - 5.0 + - - -

disabled 1.5 + 3.0 + 6.0 + 4.0 + - 2 + -

Chapter number

2142

Property JavaScript JScript N IE Opera DOM Notes

Href 1.5 + 3.0 + 6.0 + 4.0 + - 2 + ReadOnly.
id - 5.0 + - 5.0 + - - ReadOnly.
media 1.5 + 3.0 + 6.0 + 4.0 + - 2 + Warning,

ReadOnly.
ownerNode 1.5 + - 6.0 + - - 2 + ReadOnly.
owningElement - 3.0 + - 4.0 + - - ReadOnly.
owningNode - 5.0 + - 5.0 + - - Warning,

ReadOnly.
parentStyleSheet 1.5 + 3.0 + 6.0 + 4.0 + - 2 + ReadOnly.
readOnly 1.5 + 3.0 + 6.0 + 4.0 + - - ReadOnly.
title 1.5 + 3.0 + 6.0 + 4.0 + - 2 + Warning,

ReadOnly.
type 1.5 + 3.0 + 6.0 + 4.0 + - 2 + ReadOnly.

Method JavaScript JScript N IE Opera DOM Notes

addImport() - 3.0 + - 4.0 + - - -
addRule() - 3.0 + - 4.0 + - - -
removeRule() - 5.0 + - 5.0 + - - -

StyleSheet.addImport() (Method)
A method for importing to style sheets.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myStyleSheet.addImport(aUrl)
JavaScript syntax:

IE myStyleSheet.addImport(aUrl, anIndex)

anIndex An index position within the collection where the new style
sheet should be inserted

Argument list:

aUrl A URL value that points at a CSS documents

This method provides a way to import an external style sheet so its rules become part of the current
style sheet.

This is another example of how to build a document hierarchy in a web browser.

If you omit the index location for the style sheet that is being imported, it will be appended to the end
of the current collection of style sheets belonging to the document.

See also: Hierarchy of objects

Error! No text of specified style in document.

2143

StyleSheet.addRule() (Method)
A method for adding a rule to a style sheet.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myStyleSheet.addRule(aSelector, aStyle)
JavaScript syntax:

IE myStyleSheet.addRule(aSelector, aStyle,
anIndex)

anIndex A index in the collection where the new rule should be
inserted

aSelector The style rule selector string

Argument list:

aStyle A series of style settings for this rule

This method allows individual rules to be added to a style sheet. You may want to control the
precedence of the rules and so the optional index value can be used to determine where in the
collection of rules the new rule is to be inserted.

If the index is omitted, the new rule is simply appended to the style sheet.

You can override rules as long as you are not changing the type of rule being defined. Positional rules
must always be overridden by a new positioning rule and cannot be changed to an appearance rule
and vice versa.

See also: Document.createStyleSheet(), Hierarchy of objects,
StyleSheet.removeRule(), StyleSheet.rules[]

StyleSheet.cssRules[] (Collection)
A collection of CSS rules belonging to a style sheet. This is another name for the rules[] collection.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myStyleSheet.cssRules

Property attributes:
ReadOnly.

Refer to:
StyleSheet.rules[]

Chapter number

2144

StyleSheet.cssText (Property)
The CSS text belonging to a style sheet.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyleSheet.cssText

This is the source text of the entire CSS text for the whole style sheet. This is not the same as the
cssText property for individual style rules. It is equivalent to all of those individual cssText
values concatenated together.

StyleSheet.disabled (Property)
A property that disables a style sheet.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myStyleSheet.disabled

This is a Boolean primitive value that enables and disables the rules in a style sheet.

The DISABLED="..." HTML tag attribute does not work in all versions of MSIE even though the
styleSheet.disabled property does.

StyleSheet.href (Property)
The HREF location of a style sheet for download from a server.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyleSheet.href

The path to a document on the server where a style sheet can be loaded from. This will likely
correspond to an HREF="..." or SRC="..." HTML tag attribute in a <LINK> HTML tag.

Error! No text of specified style in document.

2145

Property attributes:
ReadOnly.

StyleSheet.id (Property)
The value of the ID="..." HTML tag attribute.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: String primitive

JavaScript syntax: IE myStyleSheet.id

HTML syntax: <LINK ID="anIDValue"><STYLE ID="anIDValue">

Argument list: anIDValue A unique ID value within the document

This property is initially defined by the ID="..." HTML tag attribute of the <LINK> or <STYLE>
tag that instantiates the styleSheet object.

Property attributes:
ReadOnly.

StyleSheet.imports[] (Collection)
A collection of all the imported style sheets defined for this style sheet object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: styleSheets object

JavaScript syntax: IE myStyleSheet.imports

See also: StyleSheetList object, Collection object

Property attributes:
ReadOnly.

Chapter number

2146

StyleSheet.media (Property)
A description of the target media.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: MediaList object

JavaScript syntax: - myStyleSheet.media

Warnings:
❑ DOM level 2 style specification details cover the use of style sheets for several different media. This

acts as a selector for one of several alternative appearances depending on the resolution and color
capabilities of the target medium the document will be presented on.

❑ Typically that might be print or video screen.

Property attributes:
ReadOnly.

StyleSheet.ownerNode (Property)
The DOM node that owns the style sheet.

Availability: DOM level – 2
JavaScript – 1.5
Netscape – 6.0

Property/method value type: Node object

JavaScript syntax: N myStyleSheet.ownerNode

This is part of the internal node structured hierarchy maintained by the browser as a foundation for
its implementation of the DOM model. In many cases this is likely to be the same object as that
returned by the owningElement property. This property is in preparation for the DOM level 2
styling support.

Note that this property is named incorrectly in MSIE 5 where it is called owningNode.

See also: StyleSheet.owningNode

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2147

StyleSheet.owningElement (Property)
The element that owns the style sheet.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: An object

JavaScript syntax: IE myStyleSheet.owningElement

This property refers to the owning LINK or STYLE object that is the parent for the style sheet. From
that you can establish a collection of sibling style sheets.

See also: Hierarchy of objects

Property attributes:
ReadOnly.

StyleSheet.owningNode (Property)
The DOM node that owns the style sheet.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Node object

JavaScript syntax: IE myStyleSheet.owningNode

This is part of the internal node structured hierarchy maintained by the MSIE browser as a foundation for
its implementation of the DOM model. In many cases this is likely to be the same object as that returned
by the owningElement property. This property is in preparation for DOM level 2 styling support.

Warnings:
❑ Note that this property is named incorrectly in MSIE 5 and should be called ownerNode according

to the DOM level 2 style specification.

See also: Hierarchy of objects, StyleSheet.ownerNode

Property attributes:
ReadOnly.

Chapter number

2148

StyleSheet.parentStyleSheet (Property)
The parent stylesheet that styles are cascaded from.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: StyleSheet object

JavaScript syntax: - myStyleSheet.parentStyleSheet

Where style sheets are imported and if the object reference is a StyleSheet object that was the result
of an import, then that StyleSheet object will have a parent. The value returned by this property is
another StyleSheet object.

See also: Hierarchy of objects

Property attributes:
ReadOnly.

StyleSheet.readOnly (Property)
The read-only property of a style sheet.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myStyleSheet.readOnly

In the same way that you can lock a rule and make it read-only, you can also use this property to lock
an entire style sheet to prevent it from being changed in the browser by JavaScript.

See also: rule.readOnly

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2149

StyleSheet.removeRule() (Method)
An accessor for removing rules belonging to a style sheet's rules collection.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myStyleSheet.removeRule(anIndex)

Argument list: anIndex The index number of the rule to be removed

If you used the addRule() method to create new rules, then this method operates as a
complementary tool to remove rules from the style sheet.

See also:
StyleSheet.addRule()

StyleSheet.rules[] (Collection)
An array of rules contained within this style sheet.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: SelectorArray object

JavaScript syntax: IE myStyleSheet.rules

The object class of the rule collection is called a SelectorArray.

See also: rule object, SelectorArray object,
StyleSheet.addRule()

Property attributes:
ReadOnly.

StyleSheet.title (Property)
This is an advisory title text.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyleSheet.title

Chapter number

2150

Warnings:
❑ The DOM standard notes that the title value is often specified in the ownerNode. That would be the

TITLE="..." HTML tag attribute for a <LINK> tag. It also relates to the pseudo-attribute for the
XML style sheet processing instruction.

Property attributes:
ReadOnly.

StyleSheet.type (Property)
What sort of style sheet the object represents.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myStyleSheet.type

HTML syntax: <STYLE TYPE="...">

This value returns a string that describes the MIME type for the style sheet document that was used to
instantiate the StyleSheet object.

Normally, you would see the value "text/css" in this property.

See also: <SCRIPT TYPE="...">, <STYLE TYPE="...">,
SCRIPT.type

Property attributes:
ReadOnly.

Style sheet (Definition)
A means of abstracting presentation style out of the content in a web page.

The style sheet support is now standardized around the CSS standards and provides a way to make
the HTML document relate to the content of the page, while the style sheet contains a definition of
how it should look. This has great benefits for the maintenance of a web site and allows you to
significantly change the appearance of the whole site simply by specifying a new style sheet.

See also: StyleSheet object

Error! No text of specified style in document.

2151

StyleSheetList object (Object/DOM)
An array of style sheet objects provided by MSIE.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myStyleSheets = myDocument.styleSheets

Object properties: length

Object methods: item()

Warnings:
❑ MSIE inconsistently names this as a styleSheets object rather than a StyleSheets,

StyleSheetCollection or StyleSheetArray object.

❑ DOM level 2 describes this as a StyleSheetList which is more consistent. Because this is a
collection, DOM allows for the item() method to be supported.

See also: Collection object, Document.styleSheets[], StyleSheet object

Property JavaScript JScript N IE Opera DOM Notes

length 1.5 + 5.0 + 6.0 + 5.0 + - 2 + ReadOnly.

Method JavaScript JScript N IE Opera DOM Notes

item() 1.5 + 5.0 + 6.0 + 5.0 + - 2 + -

StyleSheetList.item() (Method)
An accessor for objects in the StyleSheetList collection.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: StyleSheet object

- myStyleSheetList.item(anIndex)JavaScript syntax:
- myStyleSheetList[anIndex]

Argument list: anIndex The numeric index of the required style sheet

Chapter number

2152

Calling this method with a numeric value that can range from 0 to 1 less than the length value
selects the required StyleSheet object from the collection.

Note that the array like square bracket notation can be used as well.

StyleSheetList.length (Property)
The number of style sheets currently supported by the document.

Availability: DOM level – 2
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myStyleSheetList.length

See also: Collection.length

Property attributes:
ReadOnly.

SUB object (Object/HTML)
An object that encapsulates the contents of a <SUB> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: <classname relation="parent">Element object</classname>

IE mySUB = myDocument.all.anElementID

IE mySUB = myDocument.all.tags("SUB")[anIndex]

IE mySUB = myDocument.all[aName]

- mySUB =
myDocument.getElementById(anElementID)

- mySUB =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySUB = myDocument.getElementsByTagName
("SUB")[anIndex]

HTML syntax: _{...}

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Error! No text of specified style in document.

2153

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + - - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Refer to:
Element object

Subclasses (Definition)
Subclasses inherit the behavior from their superclass.

When you create a subclass in JavaScript, it is done by building a constructor function. To be
completely correct, the constructor should be linked by the constructor property of the prototype
property. We overwrite the prototype as an object is created, however the constructor is inherited
from the object that was cloned. We need to set the constructor manually. That is done like this:

MyNewClass.prototype.constructor = MyNewClass;

Warnings:
❑ There are some versions of Netscape Navigator that set the constructor property to be read-only and

this prohibits a script from changing it.

❑ In Navigator 4, a non-portable low level internal variable can be 'hacked' to fix up the prototype
rather than the constructor. This uses the __proto__ internal property.

Chapter number

2154

See also: __proto__, Anchor object, Superclasses

SubmitButton object (Object/DOM)
A button in a form that submits the form to the server.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera browser – 3.0

Inherits from: <classname relation="parent">Input object</classname>

- mySubmitButton =
myDocument.aFormName.anElementName

- mySubmitButton =
myDocument.aFormName.elements[anItemIndex]

IE mySubmitButton = myDocument.all.anElementID

IE mySubmitButton =
myDocument.all.tags("INPUT")[anIndex]

IE mySubmitButton = myDocument.all[aName]

- mySubmitButton =
myDocument.forms[aFormIndex].anElementName

- mySubmitButton =
myDocument.forms[aFormIndex].elements[anItemIndex]

- mySubmitButton =
myDocument.getElementById(anElementID)

- mySubmitButton =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySubmitButton =
myDocument.getElementsByTagName("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="submit">

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms
collection

Object properties: type, value

Object methods: handleEvent()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick, onDblClick,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onRowEnter, onRowExit

Error! No text of specified style in document.

2155

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all subclasses of the
Input object superclass.

There isn't really a SubmitButton object class, but it is helpful when trying to understand the wide
variety of input element types if we can reduce the complexity by discussing only the properties and
methods of a submit button. In actual fact, the object is represented as an item of the Input object class.

Event handling support via properties containing function objects was added to SubmitButton
objects at version 1.1 of JavaScript.

Unlike MSIE, Netscape Navigator does not support the select() method or defaultValue
property for this subclass of the Input object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<FORM>
<SELECT ID="IN1">
<OPTION VALUE="-1">Please select an item
<OPTION VALUE="0">Sunday
<OPTION VALUE="1">Monday
<OPTION VALUE="2">Tuesday
<OPTION VALUE="3">Wednesday
<OPTION VALUE="4">Thursday
<OPTION VALUE="5">Friday
<OPTION VALUE="6">Saturday
</SELECT>
<INPUT ID="SUBMIT" TYPE="Submit" VALUE="CLICK ME" onClick="clickMe()">
</FORM>
<SCRIPT>
//MSIE only
function clickMe()
{
 selectedValue = document.all.IN1.value;

 if(selectedValue == -1)
 {
 alert("You must select an item first!");
 }
 else
 {
 document.all.SUBMIT.click()
 }
}
</SCRIPT>
</BODY>
</HTML>

Chapter number

2156

See also: Element object, Form.elements[], FormElement object, Input
object, Input.accessKey, onClick,
SubmitButton.handleEvent()

Property JavaScript JScript N IE Opera DOM HTML Notes

type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly.
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
OnKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Input object, Node object

Error! No text of specified style in document.

2157

SubmitButton.handleEvent() (Method)
Passes an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N mySubmitButton.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape Navigator prior to version 6.0. From that release onwards, event
management follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: SubmitButton object, Window.handleEvent()

SubmitButton.type (Property)
The subclass type of this Input object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera browser – 3.0

Property/method value type: String primitive

JavaScript syntax: - mySubmitButton.type

The type value for a SubmitButton is always "submit". This value is necessary to determine the
type of form element, because this object is really an instance of the Input class. There is actually no
SubmitButton class.

See also: Input.type

Property attributes:
ReadOnly.

Chapter number

2158

SubmitButton.value (Property)
The text string in the button.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera browser – 3.0

Property/method value type: String primitive

JavaScript syntax: - mySubmitButton.value

Although this value may be sent back to the web server when the form is submitted, the main
purpose of a Submit button is to trigger the form submission. This property provides a convenient
means of labelling the button.

Warnings:
❑ This may be changed in some platforms but not others.

See also: Input.value, ResetButton.value

Subtract (-) (Operator/additive)
Subtracts the right operand from the left operand.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera browser – 3.0

Property/method value type: Number primitive

JavaScript syntax: - anOperand1 - anOperand2

anOperand1 A numeric value to be subtracted fromArgument list:
anOperand2 A numeric value to be subtracted

Subtraction is indicated when two operands are separated by a minus sign.

Error! No text of specified style in document.

2159

The value on the right is subtracted from the value on the left. The result is the difference between the
two values.

Subtraction behaves identically to addition, as if the formula:

a - b

had become:

a + (-b)

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

See also: Add (+), Additive operator, Arithmetic operator, Assign value (=),
Assignment expression, Associativity, Negation operator (-),
Operator Precedence, Subtract then assign (-=)

Cross-references:
ECMA 262 edition 2 – section 11.6.2

ECMA 262 edition 2 – section 11.6.3

ECMA 262 edition 3 – section 11.6.2

Subtract then assign (-=) (Operator/assignment)
Subtracts the right value from the left, modifying the left-hand value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

Property/method value type: Number primitive

JavaScript syntax: - anLValue -= anOperand

anLValue An operand that can be assigned intoArgument list:
anOperand A value to subtract

Subtracts the right operand from the left operand and assigns the result to the left operand.

This is functionally equivalent to the expression:

anOperand1 = anOperand1 - anOperand2;

Although this is classified as an assignment operator it is really a compound of an assignment and an
additive operator.

The associativity is right to left.

Refer to the operator precedence topic for details of execution order.

The new value of anOperand1 is returned as a result of the expression.

Chapter number

2160

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

See also: Add then assign (+=), Additive operator, Arithmetic operator,
Assignment operator, Associativity, Operator Precedence,
Subtract (-)

Cross-references:
ECMA 262 edition 2 – section 11.13

ECMA 262 edition 3 – section 11.13

sun (Java package)
A short cut reference to the Packages.sun object.

Availability: JavaScript – 1.1
Netscape – 3.0

Property/method value type: JavaPackage sun

N myWindow.Packages.sun

N myWindow.sun

N Packages.sun

JavaScript syntax:

N sun

lang applet

netscape sun

io

java

root

See also: Window.java, Window.sun, Window.Packages

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2161

SUP object (Object/HTML)
An object that encapsulates the contents of a <SUP> tag.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

IE mySUP = myDocument.all.anElementID

IE mySUP = myDocument.all.tags("SUP")[anIndex]

IE mySUP = myDocument.all[aName]

- mySUP = myDocument.getElementById(anElementID)

- mySUP =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- mySUP = myDocument.getElementsByTagName("SUP")
[anIndex]

HTML syntax: ^{...}

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

OnClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning

OnDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

OnDragStart - 3.0 + - 4.0 + - - - -

OnFilterChange - 3.0 + - 4.0 + - - - -

OnHelp - 3.0 + - 4.0 + - - - Warning

OnKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning

onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning

onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning

onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

Chapter number

2162

Refer to:
Element object

super (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section 7.4.3

ECMA 262 edition 3 – section 7.5.3

Superclasses (Definition)
Superclasses are the parent class of subclassed objects.

Superclass mechanisms are used in true object oriented systems to provide a means of generalizing
object descriptions and capturing common behaviors into a shared parent class.

A superclass of an object may also have a superclass of its own. Eventually, by walking up the class
hierarchy, you should arrive at the topmost class. That is probably the Object class but it can be
implementation dependent.

See also: Anchor object, Subclasses

switch(...) ... case: ... default: ... (Selector)
Selects one of a set of cases according to a switch value.

Availability: ECMAScript edition – 3
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0

JavaScript syntax: - switch(aValue) { aCaseTree }

aCaseTree A set of case statements to be selected.Argument list:
aValue An integer value used as a selector

The switch statement evaluates its expression and selects a labeled statement block for execution
according to the value resulting from the expression.

If there is no match, then a default case is used.

Error! No text of specified style in document.

2163

Each labeled case should be terminated by a break keyword to avoid the execution dropping down
through into the handler for the next case in the script source. On the other hand, this may be what
you intend and so omitting the break keyword allows several cases to be matched and handled with
a common fragment of code.

The use of switch is illustrated in the example. The value enclosed in parentheses is evaluated and
its result is used as a selector. It looks for a matching case label and executes the code in that block. If
it does not match, it uses the default block (if there is one).

Unlike the ANSI C version of switch, the JavaScript one will match strings as well as integers.

The break; statements prevent the code from dropping down into the next block.

The following are all legal case labels:

case 0:

case 100*23:

case "abc":

case "aaa" + "bbb":

case Number.NaN:

The C language environment dictates that a switch statement must be capable of supporting at least
256 individual cases. The ECMAScript standard does not define a limit.

You need to be careful when nesting switch statements. The case labels will be subordinate to the
closest enclosing switch given the rules of precedence and block structuring of the code. Case labels
must be unique within a single switch mechanism, but can duplicate case values in other switch
structures within the same or an enclosing code block.

Warnings:
❑ Primitive values are allowed as selectors but objects, arrays and functions are not. You could wrap

them with toString() or valueOf() functions though. However the results may be slightly
unpredictable unless you thoroughly test the effects of those functions in all your target
implementations.

❑ The value document.forms.length is valid for use in a case label at JavaScript version 1.2 but
may not be later. The values really do have to be constant, and it's possible that a later version of the
interpreter may check the ReadOnly attribute of any property value that is used in this context.

Example code:
// An example switch statement
switch(myValue){
 case 1: document.write("one");

break;
case 'too':
document.write("two");

 break;
default:
document.write("unknown");
break;

}

Chapter number

2164

See also: break, Colon (:), else ..., Flow control, if(...) ...,
if(...) ... else ..., Selection statement

Cross-references:
ECMA 262 edition 2 – section 7.4.3

ECMA 262 edition 3 – section 7.5.2

ECMA 262 edition 3 – section 12.11

synchronized (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section 7.4.3

ECMA 262 edition 3 – section 7.5.3

SyntaxError object (Object/core)
A native error object based on the Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
Netscape – 6.0

Inherits from: Error object

N myError = new SyntaxError()

N myError = new SyntaxError(aNumber)
JavaScript syntax:

N myError = new SyntaxError(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

This subclass of the Error object is used when an exception is caused by a script source text parsing error.

See also: catch(...), Error object, EvalError object, RangeError object,
ReferenceError object, throw, try ... catch ... finally,
TypeError object, URIError object

Error! No text of specified style in document.

2165

Inheritance chain:
Error object

Cross-references:
ECMA 262 edition 3 – section 15.1.4.13

ECMA 262 edition 3 – section 15.11.6.4

TABLE object (Object/HTML)
An object that represents a table within a document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myTABLE = myDocument.all.anElementID

IE myTABLE = myDocument.all.aTableID

IE myTABLE = myDocument.all.tags("TABLE")[anIndex]

IE myTABLE = myDocument.all[aName]

- myTABLE =
myDocument.getElementById(anElementID)

- myTABLE = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myTABLE = myDocument.getElementsByTagName
("TABLE")[anIndex]

HTML syntax: <TABLE> ... </TABLE>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align, background, bgColor, border, borderColor,
borderColorDark, borderColorLight, caption, cellPadding,
cellSpacing, cols, dataFld, dataPageSize, dataSrc, frame,
height, rules, summary, tabIndex, tFoot, tHead, width

T

JavaScript Programmer's Reference

2168

Object methods: createCaption(), createTFoot(), createTHead(),
deleteCaption(), deleteRow(), deleteTFoot(),
deleteTHead(), insertRow(), nextPage(), previousPage(),
refresh()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDblClick, onDragStart, onFilterChange, onFocus, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onResize, onRowEnter,
onRowExit, onScroll, onSelectStart

Collections: cells[], rows[], tBodies[]

Tables are a hierarchical means of describing a two dimensional array of cells containing HTML.

Generally speaking the DOM compliant browsers provide a more sophisticated model of the table
for access under control of a JavaScript program.

There are a set of related object types that need to be understood to utilize tables most effectively:

❑ CAPTION

❑ COL

❑ COLGROUP

❑ TBODY

❑ TD

❑ TFOOT

❑ TH

❑ THEAD

❑ TR

The following style object properties should also be considered:

❑ style.captionSide

❑ style.cellSpacing

❑ style.columnSpan

❑ style.emptyCells

❑ style.rowSpan

❑ style.tableLayout

See also: CAPTION object, COL object, COLGROUP object, Element object,
Element.offsetParent, style.captionSide,
style.cellSpacing, style.columnSpan, style.emptyCells,
style.rowSpan, style.tableLayout

T – TABLE object (Object/HTML)

2169

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
background - 3.0 + - 4.0 + - - - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
border 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
borderColor - 3.0 + - 4.0 + - - - -
borderColorDark - 3.0 + - 4.0 + - - - -
borderColorLight - 3.0 + - 4.0 + - - - -
caption 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly
cellPadding 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
cellSpacing 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
cols - 3.0 + - 4.0 + - - - -
dataFld 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
dataPageSize - 3.0 + - 4.0 + - - - -
dataSrc 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
frame 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
height 1.5 + 3.0 + 6.0 + 4.0 + - - - -
rules 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
summary 1.5 + - 6.0 + - - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
tFoot 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
tHead 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

createCaption() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
createTFoot() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
createTHead() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
deleteCaption() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
deleteRow() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
deleteTFoot() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
deleteTHead() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
insertRow() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
nextPage() - 3.0 + - 4.0 + - - - -
previousPage() - 3.0 + - 4.0 + - - - -
refresh() - 3.0 + - 4.0 + - - - -

JavaScript Programmer's Reference

2170

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onScroll - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

TABLE.align (Property)
A controlling property for the alignment of table cells within a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.align

T – TABLE.background (Property)

2171

The horizontal alignment of the TABLE object with respect to its containing parent object is defined
in this property. The following set of alignment specifiers are available:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TBODY.align, TD.align, TFOOT.align, TH.align,
THEAD.align, TR.align

TABLE.background (Property)
A URL of an image to be used as the background for a table.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTABLE.background

If a background image is available, then its URL is contained in this property. Changing the value
in this property will replace the background with a new one. However, there may be a perceptible
delay while the new image is fetched from the web server.

TABLE.bgColor (Property)
The background color value for a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value

JavaScript Programmer's Reference

2172

TABLE.border (Property)
The width of the border around cells in a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.border

The thickness of the border around the table should be specified as an integer value describing a
value measured in pixels. This describes the table border drawn with a 3D effect. If you add
borders around any elements with the style properties, those describe a different border.

See also: TABLE.frame

TABLE.borderColor (Property)
The color of the border around the cells in a table.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTABLE.borderColor

You can use this property to determine the color of a border surrounding a table. Note that there
are additional properties to determine the highlights and lowlights of the table border coloring.

TABLE.borderColorDark (Property)
The color value of the shadowed edge of the table border (assuming the table is lit from the top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTABLE.borderColorDark

Table borders are presented as having an engraved appearance. This means you may need to control
the highlights and lowlights. This property defines the color of the shadowed part of the table border.

T – TABLE.borderColorLight (Property)

2173

TABLE.borderColorLight (Property)
The color value of the highlighted edge of the table border (assuming the table is lit from the top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTABLE.borderColorLight

Table borders are presented as having an engraved appearance. This means you may need to control the
highlights and lowlights. This property defines the color of the highlighted part of the table border.

TABLE.caption (Property)
The caption text contained in a CAPTION object belonging to the TABLE object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: CAPTION object

JavaScript syntax: - myTABLE.caption

This property yields a reference to a CAPTION object belonging to the table. That is if you have
defined a caption with the <CAPTION> HTML tag.

Warnings:
❑ This property is not fully supported on all versions of the MSIE browser or across all platforms.

See also: CAPTION object

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2174

TABLE.cellPadding (Property)
The width of the cell padding around the cell contents within a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.cellPadding

The cell padding describes the space allowed inside the cell but around the cell content. The table
grows larger but the border thicknesses stay the same. The growth takes place inside the cells.

TABLE.cells[] (Collection)
A collection of all the cells in a <TABLE>.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Collection object

JavaScript syntax: IE myTABLE.rows

This collection includes any cells inside objects instantiated by <TBODY>, <TFOOT> and <THEAD> tags.

This is not necessarily the same as the cells collection returned from a TBODY object.

Addressing the table by means of its cells[] collection allows you to visit all the cells in a single
enumeration loop rather than having to nest a loop for each axis of the table.

The columns and rows are different axes of the table. However, they are described in different
ways. The cols value is simply an integer that is set to the number of columns. The rows property
is a reference to a collection of objects, one row object for each row in the table. Therefore to
establish how many cells there are in the table, you need to multiply the table.cols value by the
table.rows.length value.

The table.cols value should also be equivalent to table.rows.cells.length value as well.

See also: Collection object, TABLE.cols, TABLE.rows[],
TBODY.rows[], TFOOT.rows[], THEAD.rows[],
TR.rowIndex

Property attributes:
ReadOnly.

T – TABLE.cellSpacing (Property)

2175

TABLE.cellSpacing (Property)
The width of the cell spacing between cells in a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.cellSpacing

The cell spacing describes the space allowed between adjacent table cells. This moves the cells apart
by introducing a few pixels outside the cell border. It has the effect of thickening the border lines
between cells.

TABLE.cols (Property)
The number of columns in a table.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTABLE.cols

The columns and rows are different axes of the table. However, they are described in different
ways. The cols value is simply an integer that is set to the number of columns. The rows property
is a reference to a collection of objects, one row object for each row in the table. Therefore to
establish how many cells there are in the table, you need to multiply the table.cols value by the
table.rows.length value.

The table.cols value should also be equivalent to the table.rows.cells.length value.

See also: style.columnSpan, TABLE.cells[], TABLE.rows[],
TBODY.rows[], TFOOT.rows[], THEAD.rows[],
TR.cells[]

TABLE.createCaption() (Method)
Creates a new CAPTION object for use with the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript Programmer's Reference

2176

Property/method value type: CAPTION object

JavaScript syntax: - myTABLE.createCaption()

You can modify a caption by accessing its innerHTML property in MSIE and Netscape 6.0.

See also: CAPTION object

TABLE.createTFoot() (Method)
Creates a new TFOOT object for use with the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: TFOOT object

JavaScript syntax: - myTABLE.createTFoot()

See also: TFOOT object

TABLE.createTHead() (Method)
Creates a new THEAD object for use with the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: THEAD object

JavaScript syntax: - myTABLE.createTHead()

See also: THEAD object

T – TABLE.dataPageSize (Property)

2177

TABLE.dataPageSize (Property)
Part of the data-binding model in MSIE that maps table rows to database rows.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTABLE.dataPageSize

This is used in MSIE when the contents of a table are instantiated from a database fetch. Each row
corresponds to a record and the columns correspond to a field in the record structure.

This property determines how many records are assumed to be in each page full of data. That way
the table can be traversed one full page at a time.

The nextPage() and previousPage() methods are used to aid navigation of a table that is
paged in this manner.

See also: TABLE.nextPage(), TABLE.previousPage(),
TABLE.refresh()

TABLE.deleteCaption() (Method)
Deletes the CAPTION object currently belonging to the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTABLE.deleteCaption()

See also: CAPTION object

TABLE.deleteRow() (Method)
Deletes a specified row within the TABLE object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTABLE.deleteRow(anIndex)

Argument list: anIndex The row to delete

See also: TR object

JavaScript Programmer's Reference

2178

TABLE.deleteTFoot() (Method)
Deletes the table footer from the owning table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTABLE.deleteTFoot()

See also: TFOOT object

TABLE.deleteTHead() (Method)
Deletes the table header from the owning table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTABLE.deleteTHead()

See also: THEAD object

TABLE.frame (Property)
A control over which of the table cells sides are controlled by the BORDER tag attribute and border
property of the TABLE object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.frame

T – TABLE.height (Property)

2179

This property controls which parts of a table's outer framing border are rendered into the display.
The following keywords are supported by this property:

Keyword Description

above The top edge only

below The bottom edge only

border All four sides

box Same as border

hsides Top and bottom edges

lhs Left edge

rhs Right edge

void No sides framed at all

vsides Left and right sides

The frame property affects the outer border around the whole table. You should use the border
property to control the ruled edges between cells.

See also: TABLE.border, TABLE.rules

TABLE.height (Property)
The height of the TABLE in pixels.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.height

A table will be sized according to the content within it. The HTML tags for a table allow the table
height to be specified as a percentage of the height of the containing HTML element. When the
table is rendered, an extent rectangle can be drawn round it. An extent rectangle is the smallest
rectangle that will completely enclose the table. This height property returns the vertical size of
that extent rectangle.

Including height and width information on tables is optional, but it can significantly improve the
performance of the layout engine as it renders the web page. This is because the layout engine does
not need to wait until the table content has all been fetched before reserving sufficient space for it
in the display.

See also: TABLE.width

JavaScript Programmer's Reference

2180

TABLE.insertRow() (Method)
Insert a new row into the table at a specified row index.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: TR object

JavaScript syntax: - myTABLE.insertRow(anIndex)

Argument list: anIndex The row at which to insert a new row

See also: TR object

TABLE.nextPage() (Method)
Part of the data binding mechanism that pages the table according to the contents of a
database selection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTABLE.nextPage()

When this method is called from your script, the data handler will load the next group of records
from the data source and display them in the table cells. The number of records fetched from the
database corresponds to the dataPageSize property.

See also: TABLE.dataPageSize, TABLE.previousPage(),
TABLE.refresh()

TABLE.previousPage() (Method)
Part of the data binding mechanism that pages the table according to the contents of a
database selection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTABLE.previousPage()

When this method is called from your script, the data handler will load the previous group of
records from the data source and display them in the table cells. The number of records fetched
from the database corresponds to the dataPageSize property.

See also: TABLE.dataPageSize, TABLE.nextPage(),
TABLE.refresh()

T – TABLE.refresh() (Method)

2181

TABLE.refresh() (Method)
Part of the data binding mechanism that refreshes the table according to the contents of a
database selection.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTABLE.refresh()

When this method is called from your script, the data handler will load the current group of
records from the data source and display them in the table cells. The number of records fetched
from the database corresponds to the dataPageSize property.

This might be useful if the database is a means of communicating between several users who are
accessing the data at the same time. You might set up some means of refreshing automatically with
a timeout loop.

See also: TABLE.dataPageSize, TABLE.nextPage(),
TABLE.previousPage()

TABLE.rows[] (Collection)
A collection of all the rows in a <TABLE>.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Collection object

JavaScript syntax: - myTABLE.rows

This collection includes any rows inside objects instantiated by <TBODY>, <TFOOT> and <THEAD> tags.

This is not necessarily the same as the rows collection returned from a TBODY object.

The columns and rows are different axes of the table. However they are described in different
ways. The cols value is simply an integer that is set to the number of columns. The rows property
is a reference to a collection of objects, one row object for each row in the table. Therefore to
establish how many cells there are in the table, you need to multiply the table.cols value by the
table.rows.length value.

The table.cols value should also be equivalent to table.rows.cells.length value.

See also: Collection object, TABLE.cells[], TABLE.cols,
TBODY.rows[], TFOOT.rows[], THEAD.rows[],
TR.rowIndex

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2182

TABLE.rules (Property)
Controls the drawing of border rules around table cells.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.rules

This property controls which parts of a table's inner borders are rendered into the display. The
following keywords are supported by this property:

Keyword Description

all All borders are placed around all cells

cols Borders only delimit columns of cells

groups Borders are placed between cell groups

none No borders between cells are displayed at all

rows Borders only delimit rows

Where borders are used to delimit groups of cells, the groups are established with the <THEAD>,
<TBODY>, <TFOOT>, <COLGROUP> or <COL> HTML tags.

The rules property affects the inner borders around the cells in the table. The frame property
controls the ruled edges around the outside of the table. Table ruling and bordering is quite
complex and some time spent messing around with the property values is worthwhile.

Warnings:
❑ Be careful not to confuse this with the rules[] collection of a StyleSheet. These rules are ruled

borders not style sheet rules.

See also: COL object, COLGROUP object, TABLE.frame, TBODY object,
TFOOT object, THEAD object

T – TABLE.summary (Property)

2183

TABLE.summary (Property)
Adds a summary text object to the table.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTABLE.summary

This is a textual summary of the table for presentation where the table cannot be rendered out.
Braille browsers or speaking browsers for the sight impaired would utilize this and it might be
useful as a mouse rollover tooltip text.

TABLE.tBodies[] (Collection)
A collection of all TBODY objects within a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Collection object

JavaScript syntax: - myTABLE.tBodies

If a table has any <TBODY> HTML tags defined within its extent, then the TBODY objects
instantiated by those tags will become members of this collection.

See also: TABLE object, TBODY object

Property attributes:
ReadOnly.

TABLE.tFoot (Property)
A reference to a TFOOT object for the table if there is one defined.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: TFOOT object

JavaScript syntax: - myTABLE.tFoot

JavaScript Programmer's Reference

2184

If a table has a <TFOOT> HTML tag defined within its extent, then the TFOOT object instantiated by
those tags can be accessed via this property. Note that a table can own only one TFOOT object.

See also: TABLE object, TFOOT object

Property attributes:
ReadOnly.

TABLE.tHead (Property)
A reference to a THEAD object for the table if there is one defined.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: THEAD object

JavaScript syntax: - myTABLE.tHead

If a table has a <THEAD> HTML tag defined within its extent, then the THEAD object instantiated by
those tags can be accessed via this property. Note that a table can own only one THEAD object.

See also: TABLE object, THEAD object

Property attributes:
ReadOnly.

TABLE.width (Property)
The width of the TABLE in pixels.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTABLE.width

T – TableColElement object (Object/HTML)

2185

A table will be sized according to the content within it. The HTML tags for the table allow the table
width to be specified as a percentage of the width of the containing HTML element. When the table
is rendered, an extent rectangle can be drawn round it. An extent rectangle is the smallest rectangle
that will completely enclose the table. This width property returns the horizontal size of that
extent rectangle.

Including height and width information on tables is optional but it can significantly improve the
performance of the layout engine as it renders the web page. This is because the layout engine does
not need to wait until the table content has all been fetched before reserving sufficient space for it
in the display.

See also: TABLE.height

TableColElement object (Object/HTML)
A means of accessing cells in a particular column of the table without needing to traverse the rows.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: Element object

JavaScript syntax: - myTableColElement = new TableColElement()

Object properties: align, ch, chOff, span, vAlign, width

Event handlers: onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

See also: COL object, COLGROUP object, TABLE object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
ch 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
chOff 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
span 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
vAlign 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -
width 1.5 + 5.0 + 6.0 + 5.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onDblClick 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning

Table continued on following page

JavaScript Programmer's Reference

2186

Event name JavaScript JScript N IE Opera DOM HTML Notes

onHelp - 5.0 + - 5.0 + - - - Warning
onKeyDown 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onKeyPress 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onKeyUp 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseDown 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseMove 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseOut 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseOver 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning
onMouseUp 1.5 + 5.0 + 6.0 + 5.0 + - - 4.0 + Warning

Inheritance chain
Element object, Node object

TableColElement.align (Property)
The alignment settings for a column or column group in the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTableColElement.align

See also: COL object, COLGROUP object, TABLE object

TableColElement.ch (Property)
The alignment character for cells in the column.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTableColElement.ch

See also: COL object, COLGROUP object, TABLE object

T – TableColElement.chOff (Property)

2187

TableColElement.chOff (Property)
The offset of the alignment character.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTableColElement.chOff

See also: COL object, COLGROUP object, TABLE object

TableColElement.span (Property)
The number of columns that a column group should span.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTableColElement.span

See also: COL object, COLGROUP object, TABLE object

TableColElement.vAlign (Property)
The vertical alignment setting for a column within the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTableColElement.vAlign

See also: COL object, COLGROUP object, TABLE object

JavaScript Programmer's Reference

2188

TableColElement.width (Property)
The width of a column within the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTableColElement.width

See also: COL object, COLGROUP object, TABLE object

TableSectionElement object (Object/DOM)
DOM level 1 specifies a single object that MSIE implements as TFOOT and THEAD objects.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myTableSectionElement = new
TableSectionElement()

See also: THEAD object, TFOOT object

tags (Property)
An alternative reference to the document.tags property in JSS.

Availability: JavaScript – 1.2
Netscape – 4.0
Deprecated in Netscape 6.0

Property/method value type: Collection object

JavaScript syntax: N myDocument.tags

Warnings:
❑ This functionality is removed from Netscape 6.0.

See also: JavaScript Style Sheets, Document.tags[]

T – taint() (Function/global)

2189

taint() (Function/global)
A method for controlling secure access to data values.

Availability: JavaScript – 1.1
Netscape – 3.0
Deprecated

This was removed at version 1.2 of JavaScript. If you encounter it in a script you are maintaining, it
is probably wise to seek how it can be removed, otherwise it is likely to cause a run-time error.

Warnings:
❑ DO NOT USE THIS FUNCTION!

See also: Navigator.taintEnabled(), untaint()

TBODY object (Object/HTML)
An object that encapsulates a <TBODY> tag within a <TABLE> block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myTBODY = myDocument.all.anElementID

IE myTBODY = myDocument.all.tags("TBODY")[anIndex]

IE myTBODY = myDocument.all[aName]

- myTBODY =
myDocument.getElementById(anElementID)

- myTBODY = myDocument.getElementsByName
(aName)[anIndex]

- myTBODY = myTable.tBodies[anIndex]

JavaScript syntax:

- myTBODY = myDocument.getElementsByTagName
("TBODY")[anIndex]

HTML syntax: <TBODY> ... </TBODY>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, align, bgColor, chOff, rows, tabIndex, vAlign

JavaScript Programmer's Reference

2190

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Collections: rows[]

Each table owns at least one TBODY object which is created by default even if you don't enclose
some rows within <TBODY> tags. Additional TBODY objects can be created to break the table into
sections if you need to.

The TBODY object represents that part of the table which excludes any footer or header cells.

You can access TBODY objects by their ID HTML tag attribute in the DOM hierarchy or by selecting
them from the tBodies[] collection belonging to their parent TABLE object.

Warnings:
❑ Note that on some versions of the MSIE browser on the Macintosh platform, you cannot access the

innerHTML, innerText, outerHTML or outerText properties of a TBODY object.

See also: Element object, Input.accessKey, TABLE object, TABLE.rules,
TABLE.tBodies[], TD object, TR object

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
chOff 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
rows 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning

Table continued on following page

T – TBODY.align (Property)

2191

Event name JavaScript JScript N IE Opera DOM HTML Notes

onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

TBODY.align (Property)
A control for the alignment of cells within the TBODY object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTBODY.align

The alignment of the TBODY object with respect to its containing parent object is defined in this
property. The available set of alignment specifiers include:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TABLE.align, TD.align, TFOOT.align, TH.align,
THEAD.align, TR.align

TBODY.bgColor (Property)
The background color of a TBODY object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript Programmer's Reference

2192

Property/method value type: String primitive

JavaScript syntax: - myTBODY.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value

TBODY.rows[] (Collection)
A collection of objects, each one containing a description of a row described by a <TR> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTBODY.rows

This is not necessarily the same as the rows collection returned from a TABLE object. That is
because the rows[] collection belonging to a TBODY object can only list those TR objects that are
contained within the <TBODY> tags.

See also: Collection object, TABLE.cells[], TABLE.cols,
TABLE.rows[], TFOOT.rows[], THEAD.rows[],
TR.rowIndex

Property attributes:
ReadOnly.

TBODY.vAlign (Property)
A control for the vertical alignment of cells within the TBODY object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTBODY.vAlign

T – TD object (Object/HTML)

2193

The vertical alignment of the content within the table cells can be controlled across an entire TBODY
extent with this property. The following keywords can be assigned to it:

❑ baseline

❑ bottom

❑ middle

❑ top

These may be also available on some implementations:

❑ absbottom

❑ absmiddle

❑ baseline

❑ texttop

See also: TD.vAlign, TFOOT.vAlign, TH.vAlign, THEAD.vAlign, TR.vAlign

TD object (Object/HTML)
An object that encapsulates a single cell described by a <TD> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myTD = myDocument.all.anElementID

IE myTD = myDocument.all.tags("TD")[anIndex]

IE myTD = myDocument.all[aName]

- myTD = myDocument.getElementById(anElementID)

- myTD = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myTD = myDocument.getElementsByTagName
("TD")[anIndex]

HTML syntax: <TD> ... </TD>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: abbr, accessKey, align, axis, background, bgColor,
borderColor, borderColorDark, borderColorLight, cellIndex,
ch, chOff, colSpan, headers, height, noWrap, rowSpan, scope,
tabIndex, vAlign, width

JavaScript Programmer's Reference

2194

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onClick, onDblClick,
onDragStart, onFilterChange, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onResize, onRowEnter, onRowExit, onSelectStart

This object is instantiated by a <TD> tag that encloses the content of a single data cell.

Some of the property values in this object may be inherited from parent objects such as TABLE, TR
and TBODY.

Warnings:
❑ Note that on some versions of the MSIE browser on the Macintosh platform, you cannot access the

innerHTML, innerText, outerHTML or outerText properties of a TD object.

See also: Element object, Input.accessKey, TABLE object, TBODY object, TH
object, TR object

Property JavaScript JScript N IE Opera DOM HTML Notes

abbr 1.5 + - 6.0 + - - 1 + - -
accessKey 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
axis 1.5 + - 6.0 + - - 1 + - -
background - 3.0 + - 4.0 + - - - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
borderColor - 3.0 + - 4.0 + - - - -
borderColorDark - 3.0 + - 4.0 + - - - -
borderColorLight - 3.0 + - 4.0 + - - - -
cellIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning,

ReadOnly
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
colSpan 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
headers 1.5 + - 6.0 + - - 1 + - -
height 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
noWrap 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
rowSpan 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
scope 1.5 + - 6.0 + - - 1 + - -
tabIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

T – TD.abbr (Property)

2195

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onResize 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

TD.abbr (Property)
An abbreviation value to be used for header cells in the column where the data cell resides.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTD.abbr

See also: TH.abbr

JavaScript Programmer's Reference

2196

TD.align (Property)
A control for the alignment of content within the table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTD.align

The alignment of the TD object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TABLE.align, TBODY.align, TFOOT.align, TH.align,
THEAD.align, TR.align

TD.axis (Property)
The names group of related header cells.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTD.axis

See also: TH.axis

T – TD.background (Property)

2197

TD.background (Property)
A URL for an image to be loaded into the background of the table cell.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTD.background

If a background image is available, then its URL is contained in this property. Changing the value
in this property will replace the background with a new one. However there may be a perceptible
delay while the new image is fetched from the web server. You might be able to work around that
by preloading the image and keeping a reference to it in a variable.

See also: TH.background

TD.bgColor (Property)
The background color for this table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTD.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value, TH.bgColor

TD.borderColor (Property)
The color of the border around this table cell.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTD.borderColor

JavaScript Programmer's Reference

2198

You can use this property to determine the color of a border surrounding a table data cell. Note
that there are additional properties to determine the highlights and lowlights of the table data cell
border coloring.

See also: TH.borderColor

TD.borderColorDark (Property)
The color value of the shadowed edge of the table cell border (assuming the table is lit from the top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTD.borderColorDark

Table data cell borders are presented as having an engraved appearance. This means you may need
to control the highlights and lowlights. This property defines the color of the shadowed part of the
table data cell border.

See also: TH.borderColorDark

TD.borderColorLight (Property)
The color value of the highlighted edge of the table cell border (assuming the table is lit from the
top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTD.borderColorLight

Table data cell borders are presented as having an engraved appearance. This means you may need
to control the highlights and lowlights. This property defines the color of the highlighted part of
the table data cell border.

See also: TH.borderColorLight

TD.cellIndex (Property)
A zero-based integer value that indicates the position of this cell within the row. This is the
horizontal coordinate position of the cell within the table.

T – TD.ch (Property)

2199

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTD.cellIndex

You can access cells by means of the rows[] and cells[] collections belonging to the TABLE and
TR objects respectively. This property provides the horizontal coordinate to use in the TR.cells[]
collection to access the object describing this table cell.

Warnings:
❑ This is not supported on some versions of MSIE running on the Macintosh platform.

See also: TH.cellIndex

Property attributes:
ReadOnly.

TD.ch (Property)
The alignment character for cells in a column arrangement.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTD.ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR="..." HTML tag attribute is reflected in this
property and is active when the CHAROFF="..." HTML tag attribute is present.

See also: COL.ch, COLGROUP.ch, TH.ch, THEAD.ch, TR.ch

JavaScript Programmer's Reference

2200

TD.chOff (Property)
The offset of a column alignment character.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTD.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

See also: COL.chOff, COLGROUP.chOff, TH.chOff, THEAD.chOff,
TR.chOff

TD.colSpan (Property)
The number of columns that the table cell spans.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTD.colSpan

This corresponds to the COLSPAN attribute within a <TD> HTML tag for a table cell description. It
defines how many table columns this column is to span.

Warnings:
❑ Note that this may affect the value of the cellIndex property for subsequent cells within the same

row. Although you cannot alter the cellIndex value directly, operations that affect the way the
table is addressed may move cells around in the collection that represents all cells in the table.

See also: COL.span, COLGROUP.span, style.columnSpan,
TH.colSpan

T – TD.headers (Property)

2201

TD.headers (Property)
A list of ID attribute values for header cells.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTD.headers

See also: TH.headers

TD.height (Property)
The height in pixels of the table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTD.height

The table cell space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

See also: TH.height

TD.noWrap (Property)
Controls whether textual content is allowed to wrap within the table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myTD.noWrap

JavaScript Programmer's Reference

2202

This is a Boolean value that controls whether the textual content is wrapped at the right hand
window border or not.

If the value false is assigned to this property, then words will wrap as the page is drawn. This is
good and is the way you would expect a browser to behave. The text will flow according to the
space available.

If the value true is assigned to this property, the line of text will continue to the right until a

or other block level tag is encountered. This will force the horizontal width of the page to be
extremely large and the user will need to scroll furiously to be able to see the text and then scroll
back again for the start of the next line.

Warnings:
❑ Only use this if you plan to place line breaks at frequent intervals yourself and really do need to

control the line breaks manually. The effect is as if you had placed <PRE> tags around the content of
the cell, although the font may still be a proportional font rather than the monospaced font that
<PRE> sets up by default.

See also: TH.noWrap

TD.rowSpan (Property)
Indicates how many rows the table cell is intended to span.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTD.rowSpan

This is used when you want to create complex tables. This technique may be an alternative to
nesting a table. That is always good because sometimes nested tables can become very unwieldy.

See also: style.rowSpan, TH.rowSpan

TD.scope (Property)
The scope covered by header cells.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

T – TD.vAlign (Property)

2203

Property/method value type: String primitive

JavaScript syntax: N myTD.scope

See also: TH.scope

TD.vAlign (Property)
The vertical alignment of content within the table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTD.vAlign

The vertical alignment of the content within the table cells can be controlled for a single table cell
with this property. The following keywords can be assigned to it:

❑ baseline

❑ bottom

❑ middle

❑ top

These may be also available on some implementations:

❑ absbottom

❑ absmiddle

❑ baseline

❑ texttop

This value will override the setting for a row or TBODY extent.

See also: TBODY.vAlign, TFOOT.vAlign, TH.vAlign,
THEAD.vAlign, TR.vAlign

JavaScript Programmer's Reference

2204

TD.width (Property)
The width in pixels of the table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTD.width

The table cell space is defined by an extent rectangle that surrounds the space occupied by it on the
screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

See also: TH.width

telnet: URL (Request method)
Opens up a telnet client to do terminal mode access.

Open a telnet application and connect to the telnet port on the target server. You should be asked
for a username and password. This will then give you access to a command line interface on the
target host as long as you are validated.

See also: javascript: URL, mailbox: URL, Security policy, URL

Ternary operator (Definition)
An operator that requires three arguments.

There is only one ternary operator in JavaScript. It is the ?: conditional execution operator.

See also: Binary operator, Conditionally execute (?:), Unary operator

Cross-references:
Wrox Instant JavaScript – page – 18

Wrox Instant JavaScript – page – 21

T – Text object (Object/DOM)

2205

Text object (Object/DOM)
The DOM level 1 specification describes a Text object which MSIE and Netscape 6.0 implement as
a textNode object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

JavaScript syntax: - myText = new Text()

Refer to:
textNode object

text/JavaScript (MIME type)
A MIME type that indicates the content is a JavaScript source text.

This is otherwise known as application/x-javascript, although text/JavaScript should
be used.

See also: <SCRIPT TYPE="...">, <STYLE TYPE="...">, MIME types

TEXTAREA object (Object/DOM)
A multiple line text cell in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

IE myTEXTAREA = myDocument.all.anElementID

IE myTEXTAREA = myDocument.all.tags
("TEXTAREA")[anIndex]

IE myTEXTAREA = myDocument.all[aName]

- myTEXTAREA =
myDocument.getElementById(anElementID)

- myTEXTAREA = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myTEXTAREA = myDocument.getElementsByTagName
("TEXTAREA")[anIndex]

JavaScript Programmer's Reference

2206

HTML syntax: <TEXTAREA> ... </TEXTAREA>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: cols, readOnly, rows, type, value, wrap

Object methods: handleEvent(), select()

Event handlers: onAfterUpdate, onBeforeUnload, onBeforeUpdate, onBlur,
onChange, onDragStart, onErrorUpdate, onFilterChange, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, onRowEnter,
onRowEnter?, onRowExit, onScroll, onSelect, onSelectStart

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

Untypically, there actually is a TEXTAREA class supported by MSIE. Most other kinds of input are
simply an instance of the Input object class. Netscape prior to version 6.0 internally represents this
object as a sub-class of the Input object even though it is created by a different HTML tag.

Event handling support via properties containing function objects was added to TEXTAREA objects
at version 1.1 of JavaScript, but this will have changed to reflect the new DOM event model for
Netscape 6.0.

Unlike MSIE, the Netscape 4 implementation of this sub-class of the Input object does not support
the click() method or the onSelect event.

The example below seems to be supported by all browsers apart from Netscape 6.0. On this
browser, the escape sequence \x0D needs to be changed to \n in order for the example to work.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<FORM>
Type some lines of text into the text area, click the button and they will be
sorted.

<TEXTAREA VALUE="" NAME="BOX_A" ROWS=15 COLS=39></TEXTAREA>

<INPUT TYPE="button" VALUE="Reveal" onClick="handleClick()">
</FORM>
<SCRIPT>
function handleClick()
{
 myString = document.forms[0].BOX_A.value;
 myArray = myString.split("\x0d");
 myArray.sort();
 document.forms[0].BOX_A.value = myArray.join("\x0d");
}
</SCRIPT>
</BODY>
</HTML>

T – TEXTAREA object (Object/DOM)

2207

See also: Element object, Element.isTextEdit, Form.elements[], Input
object, Input.accessKey, onChange, onKeyDown, onKeyPress,
onKeyUp, TEXTAREA.handleEvent(), TextRange object

Property JavaScript JScript N IE Opera DOM HTML Notes

cols 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
readOnly 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
rows 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
wrap - 3.0 + - 4.0 + - - - -

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -
select() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUnload - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onDragStart - 3.0 + - 4.0 + - - - -
onErrorUpdate - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowEnter? 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
onRowExit - 3.0 + - 4.0 + - - - -
onScroll - 3.0 + - 4.0 + - - - -
onSelect 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onSelectStart - 3.0 + - 4.0 + - - - -

JavaScript Programmer's Reference

2208

Inheritance chain:
Element object, Input object, Node object

TEXTAREA.cols (Property)
The number of columns that a TextArea may contain.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTEXTAREA.cols

The text area in a form is sized by columns and rows in the default font used for input items.
This property reflects the COLS HTML tag attribute in the <TEXTAREA> HTML tag that
instantiates this object.

Style sheets are about the only way you can control the appearance of these cells because it is the
only way the default input font can be changed. If the font size changes then the size of the
TEXTAREA extent rectangle must change too. This might affect the layout of the page.

TEXTAREA.handleEvent() (Method)
Passes an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myTEXTAREA.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: TEXTAREA object, Window.handleEvent()

T – TEXTAREA.readOnly (Property)

2209

TEXTAREA.readOnly (Property)
When set to true, the TextArea cannot be modified.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean value

JavaScript syntax: - myTEXTAREA.readOnly

The TextArea content is defined but cannot be changed by the user. You may want to control this
property based on JavaScript code. If the property is set true from the HTML document source,
you will have to unlock the field before the user can modify the field content.

See also: Input.readOnly, Password.readOnly,
TextCell.readOnly

Property attributes:
ReadOnly.

TEXTAREA.rows (Property)
The number of rows in a text area.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTEXTAREA.rows

The text area in a form is sized by columns and rows in the default font used for input items.
This property reflects the ROWS HTML tag attribute in the <TEXTAREA> HTML tag that
instantiates this object.

Style sheets are about the only practical way you can control the appearance of these cells because
it is the only way the default input font can be changed. If the font size changes then the size of the
TEXTAREA extent rectangle must change too. This might affect the layout of the page.

JavaScript Programmer's Reference

2210

TEXTAREA.select() (Method)
Selects all the text within the <TEXTAREA> cell allowing it to be cut and pasted by the user.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera browser – 3.0

JavaScript syntax: - myTEXTAREA.select()

If the browser supports a Selection object or TextRange objects, you may then be able to access
the selected text using JavaScript. Of course in a form object, the text of the whole object can also
be accessed, but this may not be what was selected because the user may select all or part of a page,
and that selection may span several form elements or be only part of a form element.

See also: Input.select()

TEXTAREA.type (Property)
The type indicator for this Input object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myTEXTAREA.type

This property is supported to remain consistent with all other form elements. The value returned
by a TEXTAREA object should always be "textarea".

This allows you to determine the input type when the form elements array is traversed. Then you
can select appropriate handling based on the type value for the element.

See also: Input.type

Property attributes:
ReadOnly.

T – TEXTAREA.value (Property)

2211

TEXTAREA.value (Property)
The text string that has been entered into the text area.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myTEXTAREA.value

This may be the same as the defaultValue if the user has not yet entered any text into the TEXTAREA.

See also: Input.value, TextCell.value

TEXTAREA.wrap (Property)
Controls the kind of word wrapping effect within the text area.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTEXTAREA.wrap

You would normally want the text to wrap within a text area field so that you could see it all.
However there may be times when other text wrapping regimes could be useful.

This property will accept the following keywords:

❑ off

❑ physical

❑ virtual

The off keyword switches word wrapping off altogether.

The physical keyword wraps text as it reaches the right border. It will also send the carriage
returns back to the server when the form data is submitted.

The virtual keyword shows the word wrapping effect on the screen but the carriage returns are
not sent back to the server which remains unaware that any wrapping has occurred. This is
probably the most useful setting.

JavaScript Programmer's Reference

2212

TextCell object (Object/DOM)
A single line text cell in a form.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Inherits from: Input object

- myTextCell = myDocument.aFormName.anElementName

- myTextCell =
myDocument.aFormName.elements[anItemIndex]

IE myTextCell = myDocument.all.anElementID

IE myTextCell = myDocument.all.tags("INPUT")[anIndex]

IE myTextCell = myDocument.all[aName]

- myTextCell =
myDocument.forms[aFormIndex].anElementName

- myTextCell = myDocument.forms[aFormIndex].elements
[anItemIndex]

- myTextCell = myDocument.getElementById(anElementID)

- myTextCell = myDocument.getElementsByName(aName)
[anIndex]

JavaScript syntax:

- myTextCell = myDocument.getElementsByTagName
("INPUT")[anIndex]

HTML syntax: <INPUT TYPE="text">

anIndex A valid reference to an item in the collection
aName The NAME attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

Argument list:

aFormIndex A reference to a particular form in the forms collection

Object properties: maxLength, readOnly, size, type, value

Object methods: handleEvent(), select()

Event handlers: onAfterUpdate, onBeforeUpdate, onBlur, onChange,
onFilterChange, onFocus, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onRowEnter, onRowExit, onSelect

Many properties, methods and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input" prefix for details of common functionality across all sub-classes of
the Input object super-class.

T – TextCell object (Object/DOM)

2213

There isn't really a TextCell object class, but it is helpful when trying to understand the wide
variety of input element types if we can reduce the complexity by discussing only the properties and
methods of a text cell. In actual fact, the object is represented as an item of the Input object class.

Event handling support via properties containing function objects was added to TextCell objects
at version 1.1 of JavaScript.

The Netscape implementation of this sub-class of the Input object does not support as wide a
variety of events as the MSIE implementation. In particular, the keyboard events are not supported.

The WebTV set-top box does not support the onkeypress event handler for this object type prior
to the Summer 2000 release.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<DIV ID="RESULT">?</DIV>
<FORM>
<INPUT TYPE="text" VALUE="" NAME="BOX_A">

<INPUT TYPE="text" VALUE="" NAME="BOX_B">

<INPUT TYPE="text" VALUE="" NAME="BOX_C">

<INPUT TYPE="text" VALUE="" NAME="BOX_D">

<INPUT TYPE="button" VALUE="Reveal" onClick="handleClick()">
</FORM>
<SCRIPT>
function handleClick()
{
 myString = "[";
 myString += document.forms[0].elements.BOX_A.value;
 myString += "] [";
 myString += document.forms[0].elements.BOX_B.value;
 myString += "] [";
 myString += document.forms[0].elements.BOX_C.value;
 myString += "] [";
 myString += document.forms[0].elements.BOX_D.value;
 myString += "]";
 document.all.RESULT.innerText = myString;
}
</SCRIPT>
</BODY>
</HTML>

See also: Element object, Element.isTextEdit, Form.elements[],
FormElement object, Input object, Input.accessKey, JellyScript,
onChange, onKeyDown, onKeyPress, onKeyUp,
TextCell.handleEvent(), TextRange object

Property JavaScript JScript N IE Opera DOM HTML Notes

maxLength - 3.0 + - 4.0 + - - - -
readOnly - 3.0 + - 4.0 + - - - ReadOnly
size - 3.0 + - 4.0 + - - - Warning
type 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - ReadOnly
value 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

JavaScript Programmer's Reference

2214

Method JavaScript JScript N IE Opera DOM HTML Notes

handleEvent() 1.2 + - 4.0 + - - - - -
select() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUpdate - 3.0 + - 4.0 + - - - -
onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onChange 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelect 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - -

Inheritance chain:
Element object, Input object, Node object

TextCell.handleEvent() (Method)
Pass an event to the appropriate handler for this object.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: undefined

JavaScript syntax: N myTextCell.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

T – TextCell.maxLength (Property)

2215

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: TextCell object, Window.handleEvent()

TextCell.maxLength (Property)
The maximum length of values to be entered into the text cell.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextCell.maxLength

This defines the maximum number of characters that are allowed to be entered into the text field. The
browsers differ in how they handle this value. Some will warn the user with a beep or flash on the
screen, others simply stop accepting keystrokes when this number of characters have been entered.

See also: Input.maxLength, Password.maxLength

TextCell.readOnly (Property)
When set to true, the text cell contents cannot be changed.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextCell.readOnly

The TextCell content is defined but cannot be changed by the user. You may want to control this
property based on JavaScript code. If the property is set true from the HTML document source,
you will have to unlock the field before the user can modify the field content.

See also: Input.disabled, Input.readOnly, Password.readOnly,
TEXTAREA.readOnly

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2216

TextCell.select() (Method)
Selects all the textual content of a <INPUT> text cell allowing the user to cut and paste it if they so wish.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

JavaScript syntax: - myTextCell.select()

If the browser supports a Selection object or TextRange objects, you may then be able to access
the selected text using JavaScript. Of course in a form object, the text of the whole object can also
be accessed, but this may not be what was selected because the user may select all or part of a page
and that selection may span several form elements or only part of a form element.

See also: Input.select()

TextCell.size (Property)
The number of characters that have been typed into the text cell.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextCell.size

This is an approximate measure at best. You cannot be sure how wide this box really needs to be
when using a proportionally spaced font in it. The browser will size the box close to an optimal size
to cope with the specified number of characters.

Warnings:
❑ It can be quite distracting if the box size is too small to accommodate the maxLength number of

characters. This can leave the user having to do some cumbersome select actions with the mouse or
use arrow keys to reveal the hidden parts of the textual content of the box.

See also: Input.size, Password.size

T – TextCell.type (Property)

2217

TextCell.type (Property)
The type of this Input object.

Availability: DOM level – 1
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myTextCell.type

The value of this property for a TextCell object must always be "text".

This value is necessary to determine the type of form element because this object is really an
instance of the Input class and not the TextCell class. There is actually no TextCell class.

See also: Input.type

Property attributes:
ReadOnly.

TextCell.value (Property)
The text string that has been entered into the text cell.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: String primitive

JavaScript syntax: - myTextCell.value

This may be the same as the defaultValue if the user has not yet entered any text into the
TextCell.

See also: Input.value, TEXTAREA.value

JavaScript Programmer's Reference

2218

textNode object (Object/DOM)
A string of text represented as a node within the document hierarchy.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Inherits from: CharacterData object

IE myTextNode =
myDocument.all.tags("TEXT")[anIndex]JavaScript syntax:

- myTextNode =
myDocument.createTextNode(someData)

someData Textual content for the text nodeArgument list:
anIndex A selector within a collection of text nodes

Object properties: data, length

Object methods: splitText()

The MSIE browser models the document as a collection of nodes. Clearly, an HTML tag
corresponds to an object. However, what isn't so obvious is that the text in between HTML tags is
collected together and represented by a textNode object.

These textNodes are generally accessible as child objects belonging to an object instantiated by an
HTML tag.

For example:

AAA<P>BBB<P>CCC

can be accessed as follows:

The <P> tags are objects which are members of the document.getElementsByTagName("P")
collection. The text "BBB" is referenced through the firstChild property of the P object
instantiated by the first <P> tag. The text "CCC" is a textNode object referenced via the
firstChild property of the second <P> tag.

The DOM level 3 specification is expected to add the following method to the textNode object:

❑ isWhitespaceInElementContent()

See also: Attribute.nodeName, Document.createTextNode()

Property JavaScript JScript N IE Opera DOM Notes

data 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -
length 1.5 + 5.0 + 6.0 + 5.0 + - 1 + ReadOnly

T – textNode.data (Property)

2219

Method JavaScript JScript N IE Opera DOM Notes

splitText() 1.5 + 5.0 + 6.0 + 5.0 + - 1 + -

Inheritance chain:
CharacterData object, Node object

textNode.data (Property)
The data associated with a text node within the document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTextNode.data

A text node is that textual content in between objects that represent HTML tags. If the HTML tags
are bricks in a wall, then the text is the mortar joining them all together. The text nodes could also
be called interstitial nodes because they exist in the cracks between HTML Elements.

textNode.length (Property)
The length of the text in a textNode object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTextNode.length

The text enclosed in a text node can be measured for length by this property. However it is still
stored as a string value in the data property and you should not assume that it is an array simply
because it has a length property.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2220

textNode.splitText() (Method)
A means of splitting the text in a text node into two so that HTML can be placed in between them.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

Property/method value type: textNode object

JavaScript syntax: - myTextNode.splitText(anOffset)

Argument list: anOffset The location within the text data to split the text at

This is functionally similar to splitting a String object. The character index, using a zero-based
counting scheme where the split is to occur, should be passed as an argument.

The method returns the text to the right of the split. The receiving object is truncated at the split
point. You can then append some HTML to the receiving object and then append the text object
that was returned by the method.

TextRange object (Object/JScript)
An object that represents part of the text stream of an HTML document.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: Element object

JavaScript syntax: IE myTextRange = myElement.createTextRange()

Object properties: boundingHeight, boundingLeft, boundingTop,
boundingWidth, htmlText, text

Object methods: collapse(), compareEndPoints(), duplicate(),
execCommand(), expand(), findText(), getBookmark(),
getBoundingClientRect(), getClientRects(),
inRange(), isEqual(), move(), moveEnd(), moveStart(),
moveToBookmark(), moveToElementText(),
moveToPoint(), parentElement(), pasteHTML(),
queryCommandEnabled(), queryCommandIndeterm(),
queryCommandState(), queryCommandSupported(),
queryCommandText(), queryCommandValue(), select(),
setEndPoint()

The main purpose of a TextRange object is to encapsulate that part of the document text that
depends on the user having used the mouse to select a portion of text. A TextRange object can
also encapsulate an insertion point in the text of a document.

T – TextRange object (Object/JScript)

2221

An insertion point is encapsulated by creating a TextRange object that is of zero length.

A new TextRange object is instantiated with the createTextRange() method which can be
applied to the following object types which can contain selectable text:

❑ BODY

❑ TextCell

❑ TEXTAREA

The TextCell and TEXTAREA objects are members of the Form Element category, sometimes
called Input Elements.

When you have created a TextRange object, you can then manipulate its properties to select just
that portion of text in the document that you want.

Once you have marked the text you want within the start and end points, you can replace the
content of the TextRange with the pasteHTML() method to operate on the text in the document.
However, there may be limitations on when and how you can do this depending on the extent of
the TextRange object's boundaries.

Warnings:
❑ There are platform limitations to the TextRange object that mean it is only functional on the

Windows platform within MSIE. This limits the audience for your ingenuity in using it, but within a
captive environment, this capability can still be useful.

See also: BODY.createTextRange(), Button object, BUTTON object,
Element.isTextEdit, Element.parentTextEdit,
Input.createTextRange(), Selection object,
selection.createRange(), TEXTAREA object, TextCell
object

Property JavaScript JScript N IE Opera Notes

boundingHeight - 3.0 + - 4.0 + - ReadOnly
boundingLeft - 3.0 + - 4.0 + - ReadOnly
boundingTop - 3.0 + - 4.0 + - ReadOnly
boundingWidth - 3.0 + - 4.0 + - ReadOnly
htmlText - 3.0 + - 4.0 + - ReadOnly
text - 3.0 + - 4.0 + - -

Method JavaScript JScript N IE Opera Notes

collapse() - 3.0 + - 4.0 + - -
compareEndPoints() - 3.0 + - 4.0 + - -
duplicate() - 3.0 + - 4.0 + - -
execCommand() - 3.0 + - 4.0 + - -

Table continued on following page

JavaScript Programmer's Reference

2222

Method JavaScript JScript N IE Opera Notes

expand() - 3.0 + - 4.0 + - -
findText() - 3.0 + - 4.0 + - -
getBookmark() - 3.0 + - 4.0 + - -
getBoundingClientRect() - 5.0 + - 5.0 + - -
getClientRects() - 5.0 + - 5.0 + - -
inRange() - 3.0 + - 4.0 + - -
isEqual() - 3.0 + - 4.0 + - -
move() - 3.0 + - 4.0 + - -
moveEnd() - 3.0 + - 4.0 + - Warning
moveStart() - 3.0 + - 4.0 + - Warning
moveToBookmark() - 3.0 + - 4.0 + - -
moveToElementText() - 3.0 + - 4.0 + - -
moveToPoint() - 3.0 + - 4.0 + - -
parentElement() - 3.0 + - 4.0 + - -
pasteHTML() - 3.0 + - 4.0 + - -
queryCommandEnabled() - 3.0 + - 4.0 + - -
queryCommandIndeterm() - 3.0 + - 4.0 + - -
queryCommandState() - 3.0 + - 4.0 + - -
queryCommandSupported() - 3.0 + - 4.0 + - -
queryCommandText() - 3.0 + - 4.0 + - -
queryCommandValue() - 3.0 + - 4.0 + - -
select() - 3.0 + - 4.0 + - -
setEndPoint() - 3.0 + - 4.0 + - -

Inheritance chain:
Element object, Node object

TextRange.boundingHeight (Property)
The height of the extent rectangle around selected text on the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRange.boundingHeight

TextRange objects use the start and end points to map into the physical display of the text on the
screen. Although it may not be visible, the text range nevertheless corresponds to a spatial extent
rectangle that can be described using pixel coordinates. The value of this property is the height of
the extent rectangle that currently encloses the text encapsulated by the TextRange object.

See also: TextRange.boundingWidth

T – TextRange.boundingLeft (Property)

2223

Property attributes:
ReadOnly.

TextRange.boundingLeft (Property)
The left edge of a selected text on the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRange.boundingLeft

TextRange objects use their start and end points to map into the physical display of the text on the
screen. Although it may not be visible, the text range nevertheless corresponds to a spatial extent
rectangle that can be described using pixel coordinates. This property's value is the X coordinate of the
left edge of the extent rectangle that currently encloses the text encapsulated by the TextRange object.

Property attributes:
ReadOnly.

TextRange.boundingTop (Property)
The top edge of a selected text on the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRange.boundingTop

TextRange objects use their start and end points to map into the physical display of the text on the
screen. Although it may not be visible, the text range nevertheless corresponds to a spatial extent
rectangle that can be described using pixel coordinates. This property's value is the Y coordinate of the
top edge of the extent rectangle that currently encloses the text encapsulated by the TextRange object.

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2224

TextRange.boundingWidth (Property)
The width of a selected text on the page.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRange.boundingWidth

TextRange objects use their start and end points to map into the physical display of the text on the
screen. Although it may not be visible, the text range nevertheless corresponds to a spatial extent
rectangle that can be described using pixel coordinates. The value of this property is the width of
the extent rectangle that currently encloses the text encapsulated by the TextRange object.

See also: TextRange.boundingHeight

Property attributes:
ReadOnly.

TextRange.collapse() (Method)
A method that shrinks a text range to an insertion point.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myTextRange.collapse()
JavaScript syntax:

IE myTextRange.collapse(aFlag)

Argument list: aFlag
A Boolean value to indicate which end of the text
range should become the insertion point

You can call this method to shrink the TextRange to an insertion point either at the start or end of
the text range.

If no value is passed as an argument, then the insertion point is taken from the start of the text range.

A Boolean true value also uses the startpoint as the new insertion point.

A Boolean value of false selects the endpoint as the new insertion point.

T – TextRange.compareEndPoints() (Method)

2225

TextRange.compareEndPoints() (Method)
Compare two TextRange objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.compareEndPoints
(anOperator, aTextRange)

anOperator A selector for the kind of comparisonArgument list:
aTextRange A reference to another TextRange object

The typical means of comparing two objects is to pass a reference to one object as an argument to a
method invoked on the other. This method performs such a comparison. The first keyword is an
operator to indicate the kind of comparison to be carried out. The second argument is a reference to
the second TextRange object that it is to be compared with.

The following keywords can be passed in the first argument as string values:

❑ StartToEnd

❑ StartToStart

❑ EndToStart

❑ EndToEnd

The values returned by this method are -1, 0 or 1. These indicate whether the first value is before,
coincident with or after the second value. The operator dictates which values are to be tested.

See also: TextRange.isEqual(), TextRange.setEndPoint()

TextRange.duplicate() (Method)
Duplicate a TextRange object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextRange object

JavaScript syntax: IE myTextRange.duplicate()

This is a deep copy of a TextRange object. Simply assigning the value of one variable copies only
the reference to the same object. You need to call this method to create a new object whose
properties are set to the same values as its parent.

JavaScript Programmer's Reference

2226

TextRange.execCommand() (Method)
Part of an MSIE special document command handling mechanism. Execute a command across the
text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

IE myTextRange.execCommand(aCommand)

IE myTextRange.execCommand(aCommand,
aUIFlag)

JavaScript syntax:

IE myTextRange.execCommand(aCommand,
aUIFlag, aParameter)

aCommand An MSIE command to execute
aParameter Parameter value to the command

Argument list:

aUIFlag Display or inhibit UI appearance

The MSIE browser supports a special command handling interface that hooks through the
browser's user interface. It allows you to automate user actions in a way that other browsers and
non-Windows platform users cannot take advantage of. It is another example of the Microsoft
Embrace, Enhance and Eliminate approach to dominating the browser marketplace.

Although this is a method that can be applied to a document object, many of the commands that are
executed through this mechanism will require that a TextRange object is created and available first.

The result returned by this method is a Boolean true if the action succeeded and a Boolean false
if it failed in some way.

The flag parameter provides a way to suppress any user interface changes that may appear as a
result of executing the command.

Name Description

2D-Position Absolutely positioned elements can be moved by dragging.

AbsolutePosition Sets an element's position property to "absolute".

BackColor The background color for the current selection is set to the color
value passed in the parameter argument.

Bold The selected text has and tags placed at either end.

Copy The TextRange is copied to the clipboard.

CreateBookmark Carries out modifications to an existing <A> tag or creates one,
then adds the item to the bookmarks list. The parameter provides
the NAME value. The <A> tag is removed if there is no parameter.

CreateLink Wraps an tag around the selected text. The
parameter contains the URL value for the HREF.

Cut Performs a cut to clipboard.

Delete The text range is deleted. This is not the same as a Cut command.

Table continued on following page

T – TextRange.execCommand() (Method)

2227

Name Description

FontName Wraps tags round the selection. The required font face is passed in
the parameter.

FontSize Wraps tags round the selection and defines the font's size from the
parameter value.

ForeColor Redefines the foreground text color for the selection taking the color value
from the parameter.

FormatBlock Wraps a <BLOCK> tag round the TextRange.

Indent The TextRange is indented.

InsertButton A <BUTTON> tag is placed at the current insertion point in the document.
Its ID value is defined by the parameter.

InsertFieldset A <FIELDSET> tag is inserted with the ID value being taken from the
parameter.

InsertHorizontalRule An <HR> tag is added at the current insertion point.

InsertIFrame A new <IFRAME> is inserted with the content URL being provided in the
parameter.

InsertImage Overwrites an image on the current selection.

InsertInputButton An <INPUT TYPE="Button"> is added with its ID value coming from
the parameter.

InsertInputCheckbox An <INPUT TYPE="Checkbox"> tag is added with its ID value coming
from the parameter.

InsertInputFileUpload An <INPUT TYPE="FileUpload"> is added with its ID value coming
from the parameter.

InsertInputHidden An <INPUT TYPE="Hidden"> is added with its ID value coming from
the parameter.

InsertInputImage An <INPUT TYPE="Image"> is added with its ID value coming from the
parameter.

InsertInputPassword An <INPUT TYPE="Password"> is added with its ID value coming from
the parameter.

InsertInputRadio An <INPUT TYPE="Radio"> is added with its ID value coming from the
parameter.

InsertInputReset An <INPUT TYPE="Reset"> is added with its ID value coming from the
parameter.

InsertInputSubmit An <INPUT TYPE="Submit"> is added with its ID value coming from
the parameter.

InsertInputText An <INPUT TYPE="Text"> is added with its ID value coming from the
parameter.

InsertMarquee A new <MARQUEE> is added with the ID being taken from the parameter.
InsertOrderedList A new is added with the ID being taken from the parameter.
InsertParagraph A new <P> is added with the ID being taken from the parameter.
InsertSelectDropdown A new <SELECT TYPE="select-one"> is added with the ID being

taken from the parameter.
InsertSelectListbox A new <SELECT TYPE="select-multiple"> is added with the ID

being taken from the parameter.
Table continued on following page

JavaScript Programmer's Reference

2228

Name Description

InsertTextArea A new <TEXTAREA> is added with the ID being taken from the parameter.
InsertUnorderedList A new is added with the ID being taken from the parameter.
Italic The TextRange is enclosed with <I> tags.
JustifyCenter The TextRange is centered within its parent object.
JustifyFull The TextRange is fully justified.
JustifyLeft The TextRange is left justified.
JustifyRight The TextRange is right justified.
LiveResize Causes the MSHTML Editor to update an element's appearance continuously

during a resizing or moving operation, rather than updating only at the
completion of the move or resize.

MultipleSelection Allows for the selection of more than one site selectable element at a time
when the user holds down the SHIFT or CTRL keys.

Outdent The complement of the Indent command.
OverWrite The input-typing mode is set to overwrite if the parameter value is true and

insert if it is false.
Paste The contents of the clipboard are pasted into the TextRange.
PlayImage If an image represents a video clip, then it starts playing.
Refresh The document is reloaded.
RemoveFormat The complement of the FormatBlock command.
SaveAs Saves the current web page to a file.
SelectAll The entire document text is selected.
StopImage The complement of the PlayImage command.
UnBookmark The complement of the CreateBookmark command.
Underline Places <U> tags around the TextRange.
Unlink The complement of the CreateLink command.
Unselect Unselects whatever was selected to create the TextRange. Many commands

are now inappropriate until a new TextRange has been created.

None of these commands provides any greatly significant functionality as far as dynamic HTML is
concerned. A few of them allow you to manage the clipboard and bookmark lists. It is probably best
to avoid using these commands and use the more usual ways of accessing the document internals.

See also: Document.execCommand(), FileUpload.select(),
TextRange.queryCommandEnabled(),
TextRange.queryCommandIndeterm(),
TextRange.queryCommandState(),
TextRange.queryCommandSupported(),
TextRange.queryCommandText(),
TextRange.queryCommandValue()

T – TextRange.expand() (Method)

2229

TextRange.expand() (Method)
Expands a TextRange by a character, word, sentence or story.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.expand(aSelector)

Argument list: aSelector Indicates what to expand the TextRange by

This method has a single argument. The argument indicates what to look for when expanding the
TextRange object. The end point is modified according to the rules determined by this keyword.
The following keywords can be applied:

❑ character

❑ word

❑ sentence

❑ textedit

The character keyword causes the endpoint to be indexed onwards by a single character position.

The word keyword looks for the next word break in the document text. It also moves the start point
to he beginning of the word.

The sentence keyword looks for the next full stop at the end of a sentence. It also looks onwards
from this to move the start point to the beginning of the sentence.

The textedit keyword restores the TextRange so it encapsulates only the original selection.

This method returns a Boolean true if the range expansion succeeded and a Boolean false if it didn't.

See also: TextRange.move()

TextRange.findText() (Method)
Defines a text range according to a search.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextRange object

JavaScript syntax: IE myTextRange.findText(aString)

Argument list: aString A string to find in the TextRange object

This is a case-insensitive search for a matching text. If the text is located, then the start and end
points of the TextRange object are adjusted to encapsulate the found text chunk.

JavaScript Programmer's Reference

2230

The TextRange needs to be collapsed for this to work. It could be collapsed and made to point at
the start of the document if you want to search the whole text, otherwise the search commences at
the current insertion point.

This method returns a Boolean true if it found a match and a Boolean false if it didn't.

TextRange.getBookmark() (Method)
Bookmarks a position in a text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: TextRange bookmark

JavaScript syntax: IE myTextRange.getBookmmark()

These are not user bookmarks that are stored in the favorites menu but are special bookmarks for
remembering access points in TextRange objects.

This method generates a special value that can be stored in a variable and can later be passed to the
moveToBookmark() method to restore the start and end points of the TextRange to the current
values. It's a simple way to store and restore the settings of a TextRange.

See also: TextRange.moveToBookmark()

TextRange.getBoundingClientRect() (Method)
A method that returns a rectangle measured in pixels within the client display surface.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Rect object

JavaScript syntax: IE myTextRange.getBoundingClientRect()

This method evaluates the current start and end points of the text range and works out the
pixel locations of a bounding rectangle in the display screen. These are then used to instantiate
a textRectangle object which is returned with the extent rectangle of the TextRange object
as its values.

A TextRange may describe several discontinuous blocks of text. Each one of these would be
bounded by a separate client rectangle. This extent rectangle bounds the entire set.

See also: Rect object, textRectangle object

T – TextRange.getClientRects() (Method)

2231

TextRange.getClientRects() (Method)
A collection of textRectangle objects within the client display surface.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Collection object

JavaScript syntax: IE myTextRange.getClientRects()

A TextRange may describe several discontinuous blocks of text. Each one of these would be
bounded by a separate client rectangle.

This method evaluates the current start and end points of the text range and works out the pixel
locations of a bounding rectangle in the display screen for each of the different text areas. These are
then used to instantiate a textRectangle object which is added to a collection.

The collection of individual client textRectangle objects is then returned to the caller.

See also: textRectangle object

TextRange.htmlText (Property)
Returns a text range as HTML source.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextRange.htmlText

This is somewhat similar to the innerHTML of an Element object. In this case the start and end
points of the TextRange are taken as the delimiting boundaries. The HTML contained within
those boundaries can be returned to your script when the property is read.

Because this property is read-only, you will need to use the pasteHTML() method to replace the
HTML bounded by a TextRange object.

See also: TextRange.pasteHTML(), TextRange.text

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2232

TextRange.inRange() (Method)
Tests for one text range within another.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextRange.inRange(aTextRange)

Argument list: aTextRange Another TextRange to test against

Given that you have two distinctly separate TextRange objects, you can test whether one is
contained within the other by passing it as an argument to this method.

TextRange.isEqual() (Method)
Tests two text ranges for equality.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextRange.isEqual(aTextRange)

Argument list: aTextRange Another TextRange to compare against

Given that you have two distinctly separate TextRange objects, you can test whether they are both
equivalent to one another by passing one as an argument to this method being called on the other.
You may accomplish the same thing less conveniently with the compareEndPoints() method.

See also: TextRange.compareEndPoints()

TextRange.move() (Method)
Relocates the insertion point of a TextRange.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myTextRange.move(aSelector)
JavaScript syntax:

IE myTextRange.move(aSelector, aCount)

aCount Indicates how many times to iterateArgument list:
aSelector A rule selector

The TextRange is collapsed to an insertion point at the end of the current bounded range. Then
the keyword determines how the insertion point is indexed onwards or backwards.

T – TextRange.moveEnd() (Method)

2233

This method has two arguments. The first argument indicates what to look for when moving the
TextRange object. The second indicates how many times to apply that location search. A negative
value indicates a backwards search. The insertion point is modified according to the rules
determined by this keyword. If the second argument is omitted, it is assumed to be the value 1. The
following keywords can be applied:

❑ character

❑ word

❑ sentence

❑ textedit

The character keyword causes the insertion point to be indexed onwards by a
single character position.

The word keyword looks for the next word break in the document text.

The sentence keyword looks for the next full stop at the end of a sentence.

The textedit keyword moves the insertion point either to the beginning or end of
the original selection.

This method returns an integer describing how many times it was able to move the insertion pointer.

See also: TextRange.expand()

TextRange.moveEnd() (Method)
Relocates the end point of a TextRange.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myTextRange.moveEnd(aSelector)
JavaScript syntax:

IE myTextRange.moveEnd(aSelector,
aCount)

aCount Indicates how many times to iterateArgument list:
aSelector A rule selector

This works in almost the same way as the move() method but instead of collapsing the
TextRange first, it just operates on the end point of the current text range. Then the keyword
determines how the end point is indexed onwards or backwards.

This method has two arguments. The first argument indicates what to look for when adjusting the
TextRange object. The second indicates how many times to apply that location search. A negative
value indicates a backwards search. The end point is modified according to the rules determined by
this keyword. If the second argument is omitted, it is assumed to be the value 1. The following
keywords can be applied:

JavaScript Programmer's Reference

2234

❑ character

❑ word

❑ sentence

❑ textedit

The character keyword causes the endpoint to be indexed onwards by a single character position.

The word keyword looks for the next word break in the document text.

The sentence keyword looks for the next full stop at the end of a sentence.

The textedit keyword moves the end point either to the beginning or end of the original selection.

This method returns an integer describing how many times it was able to move the end point.

Warnings:
❑ Be careful that the start and end points do not get crossed over. It is possible that the internal logic of

the browser would cope with this and fix things up, but it is a likely area where the browser may be
expected to fail.

TextRange.moveStart() (Method)
Relocates the start point of a TextRange.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE myTextRange.moveStart(aSelector)
JavaScript syntax:

IE myTextRange.moveStart(aSelector,
aCount)

aCount Indicates how many times to iterateArgument list:
aSelector A rule selector

This works in almost the same way as the move() method but instead of collapsing the
TextRange first, it just operates on the start point of the current text range. Then the keyword
determines how the start point is indexed onwards or backwards.

This method has two arguments. The first argument indicates what to look for when adjusting the
TextRange object. The second indicates how many times to apply that location search. A negative
value indicates a backwards search. The start point is modified according to the rules determined
by this keyword. If the second argument is omitted, it is assumed to be the value 1. The following
keywords can be applied:

❑ character

❑ word

❑ sentence

❑ textedit

T – TextRange.moveToBookmark() (Method)

2235

The character keyword causes the startpoint to be indexed onwards by a single character position.

The word keyword looks for the next word break in the document text.

The sentence keyword looks for the next full stop at the end of a sentence.

The textedit keyword moves the start point either to the beginning or end of the original selection.

This method returns an integer describing how many times it was able to move the start point.

Warnings:
❑ Be careful that the start and end points do not get crossed over. It is possible that the internal logic of

the browser would cope with this and fix things up, but it is a likely area where the browser may be
expected to fail.

TextRange.moveToBookmark() (Method)
Restores a bookmarked TextRange.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.moveToBookmark(aBookmark)

Argument list: aBookmark A bookmark obtained from a getBookmark() method call

This is the complement of the getBookmark() method. It takes the result of the getBookmark()
method that would have been stored in a variable. The TextRange start and end points are then
reset to the value that was originally defined when the bookmark was recorded.

The Boolean value true is returned if the bookmarked locations could be restored and a Boolean
false value if they couldn't. It really depends on what has happened since the bookmark was
captured as to whether it can realistically be restored or not.

See also: TextRange.getBookmark()

TextRange.moveToElementText() (Method)
Expands the text range to encompass an HTML element.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.moveToElementText(anObject)

Argument list: anObject A reference to an object in the document

By passing an HTML Element object to this method, you can set the start and end points of the
TextRange object to neatly bound the text of the HTML Element object.

JavaScript Programmer's Reference

2236

TextRange.moveToPoint() (Method)
Expand the text range to include an x, y location.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.moveToPoint(anX, aY)

anX An X coordinate valueArgument list:
aY A Y coordinate value

The TextRange can be set to create an insertion point in the text that corresponds with the X-Y
coordinate point of an onscreen location. This is smart stuff indeed because it would be very
difficult to compute the text flow and correlate it with screen coordinates.

The result is that the TextRange is set to an insertion point.

TextRange.parentElement() (Method)
A reference to an object that is the next outermost item in the document hierarchy.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Element object

JavaScript syntax: IE myTextRange.parentElement()

Having established that a TextRange may correspond to some block of text within the document,
this returns a reference to an HTML Element object that fully encloses the TextRange.

For example, if a TextRange was set to bound a couple of Input elements within a Form, this
method might return the Form object because that is the next outermost logical object. Of course
you could get a TABLE object if the form contained a table with the input elements inside it.

TextRange.pasteHTML() (Method)
Pastes HTML or plain text into the text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.pasteHTML(someHTML)

Argument list: someHTML A string containing valid HTML

Because the htmlText property is a read-only value, you will need to use this method to replace the
HTML bounded by the TextRange or to insert HTML if the TextRange describes an insertion point.

See also: TextRange.htmlText

T – TextRange.queryCommandEnabled() (Method)

2237

TextRange.queryCommandEnabled() (Method)
Part of an MSIE special document command handling mechanism. Indicates the disposition of the
specified command.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextRange.queryCommandEnabled
(aCommandName)

Argument list: aCommandName An MSIE command name

This method returns a Boolean value that indicates whether the named command is enabled. Many
factors can affect the result of this command. It may depend on the ready state of the document or
whether a selection is in force.

Refer to the TextRange.execCommand() method for a list of the available commands.

See also: Document object, Document.queryCommandEnabled(),
TextRange.execCommand()

TextRange.queryCommandIndeterm() (Method)
Part of an MSIE special document command handling mechanism. Indicates whether the command
is in an indeterminate state.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextRange.queryCommandIndeterm
(aCommandName)

Argument list: aCommandName An MSIE command name

If the document is not fully loaded (you can check the readyState), or if a command might not be
available due to some of its prerequisites not being set (such a selection creating a TextRange),
this method will return a Boolean true value. If it returns a Boolean false, then the command
may be available as determined by the enabled test.

See also: Document object, Document.queryCommandIndeterm(),
TextRange.execCommand()

JavaScript Programmer's Reference

2238

TextRange.queryCommandState() (Method)
Part of an MSIE special document command handling mechanism. Returns the current state
of a command.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive or Null

JavaScript syntax: IE myTextRange.queryCommandState
(aCommandName)

Argument list: aCommandName An MSIE command name

This will return one of the following values:

❑ Boolean true if the command has completed.

❑ Boolean false if it is still in progress.

❑ Null if the state cannot be determined.

See also: Document object, Document.queryCommandState(),
TextRange.execCommand()

TextRange.queryCommandSupported() (Method)
Part of an MSIE special document command handling mechanism. Checks to see if a
command is supported.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextRange.queryCommandSupported
(aCommandName)

Argument list: aCommandName An MSIE command name

Some commands are not supported by the TextRange object but may be supported by the
document object.

This method returns a Boolean true value if the command is supported by the TextRange object.

See also: Document object, Document.queryCommandSupported(),
TextRange.execCommand()

T – TextRange.queryCommandText() (Method)

2239

TextRange.queryCommandText() (Method)
Part of an MSIE special document command handling mechanism. Returns the string associated
with a command.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextRange.queryCommandText
(aCommandName)

Argument list: aCommandName An MSIE command name

Some commands support the extraction of text from the document or TextRange. If the command
does support the extraction of text, it will be returned by this method.

See also: Document object, Document.queryCommandText(),
TextRange.execCommand()

TextRange.queryCommandValue() (Method)
Part of an MSIE special document command handling mechanism. Returns the value of the command.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextRange.queryCommandValue
(aCommandName)

Argument list: aCommandName An MSIE command name

The value of a command depends on the command itself and what is selected. This method returns
a value according to those criteria.

See also: Document object, Document.queryCommandValue(),
TextRange.execCommand()

TextRange.select() (Method)
Select the text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.select()

JavaScript Programmer's Reference

2240

If the browser supports a Selection object or TextRange objects, you may then be able to access
the selected text using JavaScript. Of course in a form object, the text of the whole object can also be
accessed, but this may not be what was selected because the user may select all or part of a page,
and that selection may span several form elements or only part of a form element.

Unless you call this method, the bounded area of the TextRange object will not be visible to the user.

TextRange.setEndPoint() (Method)
Set the end point of a text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextRange.setEndPoint
(anOperator, aTextRange)

anOperator A selector for the kind of copyArgument list:
aTextRange A reference to another TextRange object

This method provides a way to copy start and end points between distinctly different TextRange
objects. The first keyword is an operator to indicate the kind of copy to be carried out. The second
argument is a reference to the second TextRange object that is to act as a source for the new values.
Although this method is called setEndPoint(), it will allow both start and end points to be modified.

The following keywords can be passed in the first argument as string values:

❑ StartToEnd

❑ StartToStart

❑ EndToStart

❑ EndToEnd

There are no values returned by this method. The indicated end points are simply copied from the
source range to the target range.

See also: TextRange.compareEndPoints()

TextRange.text (Property)
Extract the text of a text range.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextRange.text

T – textRectangle object (Object/JScript)

2241

This is somewhat similar to the innerText of an Element object. In this case the start and end
points of the TextRange are taken as the delimiting boundaries. The text contained within those
boundaries can be returned to your script when the property is read. If there are any HTML tags
within the bounded extent of the TextRange, they will be filtered out so that the method yields
pure text only values.

Because this property is read-only, you will need to use the pasteHTML() method to replace the
HTML bounded by a TextRange object. However, because there appears not to be a
pasteText() method, you may need to do some complex reconstructive work if there was
embedded HTML and you only requested the text.

See also: TextRange.htmlText

textRectangle object (Object/JScript)
The extent rectangle that encloses a TextRange object.

Availability: JScript – 5.0
Internet Explorer – 5.0

JavaScript syntax: IE myTextRectangle =
myTextRange.getBoundingClientRect()

Object properties: bottom, left, right, top

This is a close relation to the rect object. This is a special case, used for describing rectangles on
the screen which are the bounding extent rectangles for TextRange objects.

You shouldn't try to modify the properties of this object directly. It's intended for you to read to
establish where on the screen the TextRange is located.

See also: Clip object, Rect object,
TextRange.getBoundingClientRect(),
TextRange.getClientRects()

Property JavaScript JScript N IE Opera Notes

bottom - 5.0 + - 5.0 + - -
left - 5.0 + - 5.0 + - -
right - 5.0 + - 5.0 + - -
top - 5.0 + - 5.0 + - -

textRectangle.bottom (Property)
The bottom of a textRectangle.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRectangle.bottom

JavaScript Programmer's Reference

2242

See also: Rect.bottom, textRectangle object

textRectangle.left (Property)
The left edge of a textRectangle.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRectangle.left

See also: Rect.left, textRectangle object

textRectangle.right (Property)
The right edge of a text rectangle.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRectangle.right

See also: Rect.right, textRectangle object

textRectangle.top (Property)
The top edge of a textRectangle.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextRectangle.top

See also: Rect.top, textRectangle object

T – TextStream object (Object/JScript)

2243

TextStream object (Object/JScript)
An object that represent an I/O text stream. Very useful in a server-side context.

Availability: JScript – 2.0
Internet Explorer – 4.0

IE myTextStream = myFile.OpenAsTextStream()
JavaScript syntax:

IE myTextStream = myFileSystem.OpenTextFile
(aName, aMode, aFlag, aFormat)

aName The name of the file to be created
aFlag A flag indicating whether the file can be created if necessary
aMode An access mode for the file

Argument list:

aFormat A format control for the file

Object properties: AtEndOfLine, AtEndOfStream, Column, Line

Object methods: Close(), Read(), ReadAll(), ReadLine(), Skip(), SkipLine(),
Write(), WriteBlankLines(), WriteLine()

This object is a wrapper for a file when opened for I/O. With this object you can read and write to
the file.

Files can be opened via methods belonging to the File object or by requesting that the
FileSystem object open a named file. Both techniques yield the same kind of TextStream object.

See also: Active Server Pages, File.OpenAsTextStream(),
FileSystem.OpenTextFile()

Property JavaScript JScript N IE Opera Notes

AtEndOfLine - 2.0 + - 4.0 + - -
AtEndOfStream - 2.0 + - 4.0 + - -
Column - 2.0 + - 4.0 + - -
Line - 2.0 + - 4.0 + - -

Method JavaScript JScript N IE Opera Notes

Close() - 2.0 + - 4.0 + - -
Read() - 2.0 + - 4.0 + - -
ReadAll() - 2.0 + - 4.0 + - -
ReadLine() - 2.0 + - 4.0 + - -
Skip() - 2.0 + - 4.0 + - -
SkipLine() - 2.0 + - 4.0 + - -
Write() - 2.0 + - 4.0 + - -
WriteBlankLines() - 2.0 + - 4.0 + - -
WriteLine() - 2.0 + - 4.0 + - -

JavaScript Programmer's Reference

2244

TextStream.AtEndOfLine (Property)
A Boolean value that indicates the status of the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextStream.AtEndOfLIne

This property returns a value true if the file pointer is immediately preceding an end of line character.

TextStream.AtEndOfStream (Property)
A Boolean value that indicates the status of the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

JavaScript syntax: IE myTextStream.AtEndOfStream

This property returns the Boolean value true if the file pointer is at the end of the text stream.

TextStream.Close() (Method)
A method that closes a text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextStream.Close()

The text stream is closed and any subsequent access will generate an error. You will need to re-
open the text stream to gain access to it again.

TextStream.Column (Property)
The column number within the file.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextStream.Column

This property facilitates the use of fixed length record structured files via a stream.

It yields the character column number within the current line.

T – TextStream.Line (Property)

2245

TextStream.Line (Property)
The line number within the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myTextStream.Line

The line number property is incremented for every newline character that is encountered within the
file. This is effectively the record number within the file.

TextStream.Read() (Method)
A method that reads text from the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextStream.Read(aCount)

Argument list: aCount A count of characters to read

This will read the specified number of characters from the file. Note that this may span a line break
and is intended for reading fixed length records.

TextStream.ReadAll() (Method)
A method that reads the entire text stream in one go.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextStream.ReadAll()

The entire text stream is returned in a single read. Be careful if you are dealing with extraordinarily
large files. You may get back more data than you expected.

JavaScript Programmer's Reference

2246

TextStream.ReadLine() (Method)
A method that reads a line from the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTextStream.ReadLine()

This method will read the remainder of a line up to but not including the newline character.

TextStream.Skip() (Method)
A method that skips a specified number of characters through the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextStream.Skip(aCount)

Argument list: aCount The number of characters to skip through the file

Refer to:
TextStream.Read()

TextStream.SkipLine() (Method)
A method that skips a line of the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextStream.SkipLine()

Refer to:
TextStream.ReadLine()

T – TextStream.Write() (Method)

2247

TextStream.Write() (Method)
A method that writes to the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextStream.Write(aString)

Argument list: aString Some text to write to the file

This writes exactly (and only) the text passed in its string argument.

See also: TextStream.WriteLine()

TextStream.WriteBlankLines() (Method)
A method that writes a specified number of blank lines to the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

JavaScript syntax: IE myTextStream.WriteBlankLines(aCoun
t)

Argument list: aCount The number of blank lines to write to the file

This writes just the newline characters. The count value specifies just how many.

See also: TextStream.WriteLine()

TextStream.WriteLine() (Method)
A method that writes a line to the text stream.

Availability: JScript – 2.0
Internet Explorer – 4.0

IE myTextStream.WriteLine()
JavaScript syntax:

IE myTextStream.WriteLine(aString)

Argument list: aString A string to be written to the file

This is similar to the Write() method except that it automatically places a newline character after
the string that has been written. In addition, the string value is optional in which case this is
functionally identical to calling WriteBlankLines(1).

See also: TextStream.Write(), TextStream.WriteBlankLines()

JavaScript Programmer's Reference

2248

TFOOT object (Object/HTML)
An object that encapsulates a <TFOOT> tag within a <TABLE> block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myTFOOT = myDocument.all.anElementID

IE myTFOOT =
myDocument.all.tags("TFOOT")[anIndex]

IE myTFOOT = myDocument.all[aName]

- myTFOOT =
myDocument.getElementById(anElementID)

- myTFOOT =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myTFOOT = myDocument.getElementsByTagName
("TFOOT")[anIndex]

HTML syntax: <TFOOT> ... </TFOOT>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align, bgColor, ch, chOff, vAlign

Object methods: deleteRow(), insertRow()

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Collections: rows[]

A table must contain one and only one TFOOT object. If you don't create one automatically, the
TABLE object instantiates one for you but it would be empty.

The TFOOT object is instantiated by a <TFOOT> HTML tag. This is a means of marking off a section
at the bottom of the table so that the rows can be grouped together and operated on separately to
the table body.

The DOM level 1 standard calls for the implementation of a TableSectionElement object which
includes both TFOOT and THEAD in its capabilities.

Warnings:
❑ Some earlier versions of MSIE for Macintosh have very limited capabilities implemented for this

object. You cannot access any of the HTML or text contained in the object, nor the rows collection.

T – TFOOT object (Object/HTML)

2249

See also: Element object, TABLE object, TABLE.createTFoot(),
TABLE.deleteTFoot(), TABLE.rules, TABLE.tFoot, THEAD object, TR
object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

deleteRow() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
insertRow() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

2250

TFOOT.align (Property)
The kind of horizontal alignment applied to items within the <TFOOT> block of a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTFOOT.align

The horizontal alignment of the TFOOT object with respect to its containing parent object is defined
in this property. The available set of alignment specifiers are:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TABLE.align, TBODY.align, TD.align, TH.align,
THEAD.align, TR.align

TFOOT.bgColor (Property)
The background color for items in the <TFOOT> block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTFOOT.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value, THEAD.bgColor

T – TFOOT.ch (Property)

2251

TFOOT.ch (Property)
The character used for alignment of columns within the table.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTFOOT.ch

TFOOT.chOff (Property)
The offset of character alignments within a column.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTFOOT.chOff

TFOOT.deleteRow() (Method)
In a multiple row footer, you can delete a particular row with this method.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTFOOT.deleteRow(anIndex)

Argument list: anIndex The row to delete

See also: THEAD.deleteRow()

JavaScript Programmer's Reference

2252

TFOOT.insertRow() (Method)
You can insert additional rows into a table footer with this method.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: TR object

JavaScript syntax: - myTFOOT.insertRow(anIndex)

Argument list: anIndex The row at which to place the new inserted TR object

See also: THEAD.insertRow()

TFOOT.rows[] (Collection)
A collection of rows within a <TFOOT> block belonging to a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Collection object

JavaScript syntax: - myTFOOT.rows

This is not the same as the rows collection returned from a TABLE object. That is because the
rows[] collection belonging to a TFOOT object can only list those TR objects that are contained
within the <TFOOT> tags.

See also: Collection object, TABLE.cells[], TABLE.cols,
TABLE.rows[], TBODY.rows[], THEAD.rows[],
TR.rowIndex

Property attributes:
ReadOnly.

T – TFOOT.vAlign (Property)

2253

TFOOT.vAlign (Property)
The vertical alignment applied to items within the <TFOOT> block of a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTFOOT.vAlign

The vertical alignment of the content within the table cells can be controlled across an entire TFOOT
extent with this property. The following keywords can be assigned to it:

❑ baseline

❑ bottom

❑ middle

❑ top

These may be also available on some implementations:

❑ absbottom

❑ absmiddle

❑ baseline

❑ texttop

See also: TBODY.vAlign, TD.vAlign, TH.vAlign, THEAD.vAlign,
TR.vAlign

TH object (Object/HTML)
An object that encapsulates a <TH> table header cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

JavaScript Programmer's Reference

2254

IE myTH = myDocument.all.anElementID

IE myTH = myDocument.all.tags("TH")[anIndex]

IE myTH = myDocument.all[aName]

- myTH = myDocument.getElementById(anElementID)

- myTH = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myTH =
myDocument.getElementsByTagName("TH")[anIndex]

HTML syntax: <TH> ... </TH>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: abbr, align, axis, background, bgColor, borderColor,
borderColorDark, borderColorLight, cellIndex, ch, chOff,
colSpan, headers, height, noWrap, rowSpan, scope, vAlign, width

Event handlers: onAfterUpdate, onBeforeUnload, onBlur, onClick, onDblClick,
onDragStart, onFilterChange, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onResize, onRowEnter, onRowExit, onSelectStart

This object is instantiated by a <TH> tag that encloses the content of a single data cell. This cell is
formatted differently to a TD cell because a TH cell is considered to be a table header cell whereas a
TD cell is a table data cell.

Some of the property values in this object may be inherited from parent objects such as TABLE, TR
and TBODY.

See also: Element object, TABLE object, TD object

Property JavaScript JScript N IE Opera DOM HTML Notes

abbr 1.5 + - 6.0 + - - 1 + - -
align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
axis 1.5 + - 6.0 + - - 1 + - -
background - 3.0 + - 4.0 + - - - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
borderColor - 3.0 + - 4.0 + - - - -
borderColorDark - 3.0 + - 4.0 + - - - -
borderColorLight - 3.0 + - 4.0 + - - - -
cellIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
colSpan 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning

Table continued on following page

T – TH object (Object/HTML)

2255

Property JavaScript JScript N IE Opera DOM HTML Notes

headers 1.5 + - 6.0 + - - 1 + - -
height 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
noWrap 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - Warning
rowSpan 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
scope 1.5 + - 6.0 + - - 1 + - -
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
width 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterUpdate - 3.0 + - 4.0 + - - - -
onBeforeUnload - 3.0 + - 4.0 + - - - -
onBlur 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onResize 1.5 + 3.0 + 6.0 + 4.0 + - - - Warning
onRowEnter - 3.0 + - 4.0 + - - - -
onRowExit - 3.0 + - 4.0 + - - - -
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

JavaScript Programmer's Reference

2256

TH.abbr (Property)
An abbreviation value to be used for header cells in the column where the data cell resides.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTH.abbr

See also: TD.abbr

TH.align (Property)
The alignment of content within a <TH> table cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTH.align

The alignment of the TH object with respect to its containing parent object is defined in this
property. The available set of alignment specifiers are:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TABLE.align, TBODY.align, TD.align, TFOOT.align,
THEAD.align, TR.align

T – TH.axis (Property)

2257

TH.axis (Property)
The names group of related header cells.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTH.axis

See also: TD.axis

TH.background (Property)
A URL for an image to load as the background for a table header cell.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTH.background

If a background image is available, then its URL is contained in this property. Changing the value
in this property will replace the background with a new one. However there may be a perceptible
delay while the new image is fetched from the web server.

See also: TD.background

TH.bgColor (Property)
The background color for a table header cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTH.bgColor

JavaScript Programmer's Reference

2258

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value, TD.bgColor

TH.borderColor (Property)
The border color around a table header cell.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTH.borderColor

You can use this property to determine the color of a border surrounding a table header cell. Note
that there are additional properties to determine the highlights and lowlights of the table header
cell border coloring.

See also: TD.borderColor

TH.borderColorDark (Property)
The color value of the shadowed edge of the table cell border (assuming the table is lit from the top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTH.borderColorDark

Table header cell borders are presented as having an engraved appearance. This means you may
need to control the highlights and lowlights. This property defines the color of the shadowed part
of the table header cell border.

See also: TD.borderColorDark

T – TH.borderColorLight (Property)

2259

TH.borderColorLight (Property)
The color value of the highlighted edge of the table cell border (assuming the table is lit from the
top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTH.borderColorLight

Table header cell borders are presented as having an engraved appearance. This means you may
need to control the highlights and lowlights. This property defines the color of the highlighted part
of the table header cell border.

See also: TD.borderColorLight

TH.cellIndex (Property)
A zero-based integer number that indicates the position of a <TH> cell within a <TR> row. This is
effectively the horizontal column coordinate of a table header cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTH.cellIndex

You can access cells by means of the rows[] and cells[] collections belonging to the TABLE and
TR objects respectively. This property provides the horizontal coordinate to use in the TR.cells[]
collection to access the object describing this table cell.

See also: TD.cellIndex

Property attributes:
ReadOnly.

JavaScript Programmer's Reference

2260

TH.ch (Property)
The alignment character for cells in a column arrangement.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTH.ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

See also: COL.ch, COLGROUP.ch, TD.ch, THEAD.ch, TR.ch

TH.chOff (Property)
The offset of a column alignment character.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTH.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

See also: COL.chOff, COLGROUP.chOff, TD.chOff, THEAD.chOff,
TR.chOff

T – TH.colSpan (Property)

2261

TH.colSpan (Property)
The number of columns that a header cell spans.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTH.colSpan

This corresponds to the COLSPAN attribute within a <TH> HTML tag for a table header cell
description. It defines how many table columns this column is to span.

Warnings:
❑ Note that this may affect the value of the cellIndex property for subsequent cells within

the same row.

See also: COL.span, COLGROUP.span, style.columnSpan,
TD.colSpan

TH.headers (Property)
A list of ID attribute values for header cells.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTH.headers

See also: TD.headers

JavaScript Programmer's Reference

2262

TH.height (Property)
The height in pixels of the table header cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTH.height

The table header cell space is defined by an extent rectangle that surrounds the space occupied by it
on the screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

See also: TD.height

TH.noWrap (Property)
Controls whether text in the table header cell is allowed to wrap.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myTH.noWrap

This is a Boolean value that controls whether the textual content is wrapped at the right hand
window border or not.

If the value false is assigned to this property, then words will wrap as the page is drawn. This is
good and is the way you would expect a browser to behave. The text will flow according to the
space available.

If the value true is assigned to this property, the line of text will continue to the right until a

or other block level tag is encountered. This will force the horizontal width of the page to be
extremely large and the user will need to scroll furiously to be able to see the text and then scroll
back again for the start of the next line.

T – TH.rowSpan (Property)

2263

Warnings:
❑ Only use this if you plan to place line breaks at frequent intervals yourself and really do need to

control the line breaks manually.

See also: TD.noWrap

TH.rowSpan (Property)
The number of rows that the table header will span.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTH.rowSpan

This is used when you want to create complex tables. This technique may be an alternative to
nesting a table. That is always good because sometimes nested tables can become very unwieldy.

See also: style.rowSpan, TD.rowSpan

TH.scope (Property)
The scope covered by header cells.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTH.scope

See also: TD.scope

JavaScript Programmer's Reference

2264

TH.vAlign (Property)
The vertical alignment of content within the table header cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTH.vAlign

The vertical alignment of the content within the table cells can be controlled for a single table cell
with this property. The following keywords can be assigned to it:

❑ baseline

❑ bottom

❑ middle

❑ top

These may be also available on some implementations:

❑ absbottom

❑ absmiddle

❑ baseline

❑ texttop

This value will override the setting for a row or TBODY extent.

See also: TBODY.vAlign, TD.vAlign, TFOOT.vAlign,
THEAD.vAlign, TR.vAlign

TH.width (Property)
The width in pixels of the table header cell.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTH.width

T – THEAD object (Object/HTML)

2265

The table header cell space is defined by an extent rectangle that surrounds the space occupied by it
on the screen. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

See also: TD.width

THEAD object (Object/HTML)
An object that encapsulates a <THEAD> tag within a <TABLE> block.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myTHEAD = myDocument.all.anElementID

IE myTHEAD = myDocument.all.tags("THEAD")[anIndex]

IE myTHEAD = myDocument.all[aName]

- myTHEAD = myDocument.getElementById(anElementID)

- myTHEAD = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myTHEAD = myDocument.getElementsByTagName
("THEAD")[anIndex]

HTML syntax: <THEAD> ... </THEAD>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align, bgColor, ch, chOff, vAlign

Object methods: deleteRow(), insertRow()

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Collections: rows[]

A table must contain one and only one THEAD object. If you don't create one automatically, the
TABLE object instantiates one for you, but it will be empty.

The THEAD object is instantiated by a <THEAD> HTML tag. This is a means of marking off a section
at the top of the table so that the rows can be grouped together and operated on separately to the
table body.

JavaScript Programmer's Reference

2266

The DOM level 1 standard calls for the implementation of a TableSectionElement object which
includes both TFOOT and THEAD in its capabilities.

See also: Element object, TABLE object, TABLE.createTHead(),
TABLE.deleteTHead(), TABLE.rules, TABLE.tHead, TFOOT object,
TR object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

deleteRow() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
insertRow() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

T – THEAD.align (Property)

2267

THEAD.align (Property)
The alignment of items within the <THEAD> block of a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTHEAD.align

The alignment of the THEAD object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TABLE.align, TBODY.align, TD.align, TFOOT.align,
TH.align, TR.align

THEAD.bgColor (Property)
The background color of items in the <THEAD> block of a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTHEAD.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value, TFOOT.bgColor

JavaScript Programmer's Reference

2268

THEAD.ch (Property)
The alignment character for cells in a column arrangement.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTHEAD.ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

See also: COL.ch, COLGROUP.ch, TD.ch, TH.ch, TR.ch

THEAD.chOff (Property)
The offset of a column alignment character.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTHEAD.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

See also: COL.chOff, COLGROUP.chOff, TD.chOff, TH.chOff,
TR.chOff

T – THEAD.deleteRow() (Method)

2269

THEAD.deleteRow() (Method)
In a multiple row footer, you can delete a particular row with this method.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTHEAD.deleteRow(anIndex)

Argument list: anIndex The row to be deleted

See also: TFOOT.deleteRow(), TR.deleteCell()

THEAD.insertRow() (Method)
You can insert additional rows into a table footer with this method.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTHEAD.insertRow(anIndex)

Argument list: anIndex The row at which to insert the new TR object

See also: TFOOT.insertRow()

THEAD.rows[] (Collection)
A collection of rows within a <THEAD> block of a table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Collection object

JavaScript syntax: - myTHEAD.rows

JavaScript Programmer's Reference

2270

This is not the same as the rows collection returned from a TABLE object. That is because the
rows[] collection belonging to a THEAD object can only list those TR objects that are contained
within the <THEAD> tags.

See also: Collection object, TABLE.cells[], TABLE.cols,
TABLE.rows[], TBODY.rows[], TFOOT.rows[],
TR.rowIndex

Property attributes:
ReadOnly.

THEAD.vAlign (Property)
A control for the vertical alignment of cells within the THEAD object.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTHEAD.vAlign

The vertical alignment of the content within the table cells can be controlled across an entire THEAD
extent with this property. The following keywords can be assigned to it:

❑ baseline

❑ bottom

❑ middle

❑ top

These may be also available on some implementations:

❑ absbottom

❑ absmiddle

❑ baseline

❑ texttop

See also: TBODY.vAlign, TD.vAlign, TFOOT.vAlign, TH.vAlign,
TR.vAlign

T – this (Keyword)

2271

this (Keyword)
A reference to the receiving object.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: An object

JavaScript syntax: - this

Every active execution context owns a this value. It is used for self-referring script statements.

The specific this value of an execution context depends on the caller and the type of code being
executed. This is determined on entry to an execution context. The this value associated with an
execution context is immutable and therefore cannot be changed from a script.

A this value is considered to be a primary expression.

The this keyword is often used inside function bodies that are registered with a prototype. When
it is executed, the function can refer to its owning object without having to know what sort of object
it is. We can use this to write a function that can be used with several kinds of object.

If the this keyword is used inside an event handler, it refers to the object that the event belongs to.
We can exploit this to build event handlers that support many objects and can be called by different
event types.

If the this keyword is used outside of all functions (in global code) it refers to the Global object.
A this property used in a script will therefore return that global object. In fact it will return an
object of type Window.

Other object types will be returned according the context in which the property is applied.

The example shows how the this keyword can be used to enhance the prototype of an object.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// See what the scope rules define for 'this'
document.write(this);
document.write("
");

JavaScript Programmer's Reference

2272

document.write(typeof this);
document.write("
");

// Create a user defined prototype
function AnimalClass()
{
 return "Animal";
}

function Animal(aSpecies, aHabitat)
{
 this.species = aSpecies;
 this.habitat = aHabitat;
 this.toString = AnimalClass;
}

// Instantiate an animal
myAnimal = new Animal("Cow", "Field");
document.write("Object: " + myAnimal + "
");
document.write("Species: " + myAnimal.species + "
");
document.write("Habitat: " + myAnimal.habitat + "
");
</SCRIPT>
</BODY>
</HTML>

See also: Execution context, Method, Primary expression, Reference

Cross-references:
ECMA 262 edition 2 – section – 10.1.6

ECMA 262 edition 2 – section – 10.1.7

ECMA 262 edition 2 – section – 11.1.1

ECMA 262 edition 3 – section – 10.1.6

ECMA 262 edition 3 – section – 10.1.7

ECMA 262 edition 3 – section – 11.1.1

Wrox Instant JavaScript – page – 30

Wrox Instant JavaScript – page – 53

Thousands separator (Definition)
A special locale specific character for indicating groups of digits.

See also: Decimal point (.), Localization

T – throw (Statement)

2273

throw (Statement)
Throw a custom exception in the hope it will be caught by an error handler.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

The throw statement provides a way to create an exception which will be passed to an associated
catch() handler in a try ... catch structure. It is really intended to be used in that context,
but you can use it outside of a try ... catch structure and trap the exception with the normal
onError event handling support.

You can use this mechanism to generate an error, perhaps as a result of testing some value. Placing a
throw statement into your code will force the error handling to be invoked. However if you use it
outside of a try ... catch block, the browser error handling will generate an error due to there
being no way of catching the thrown event. It forces an error dialog, but not the one you wanted. You
need to use a throw with a try ... catch block to force the catch code to be called.

You can work around this by assigning an error handler function to the onerror property and
making sure that the error handler returns a Boolean true value to signify that the error has no
further processing required.

Warnings:
❑ This is not supported by Netscape Enterprise Server 3, and so its error handling capabilities are not

available server -side.

❑ When using MSIE version 5 on the Macintosh platform, if you set the LANGUAGE HTML tag attribute
of the enclosing <SCRIPT> tag to JScript 1.3, this handler will not be invoked properly.

❑ The example below, while supported on Netscape 6.0, does not seem to be supported on Internet
Explorer 5.0 or 5.5.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define an error handler function
function myErrHandler(anException)
{
 alert("An error happened and was caught by this handler.");
 return true;
}

// Register the error handler
onerror = myErrHandler;

JavaScript Programmer's Reference

2274

// Throw an exception
throw "ERR";
</SCRIPT>
</BODY>
</HTML>

See also: catch(...), Error object, EvalError object, Exception
handling, finally ..., RangeError object,
ReferenceError object, SyntaxError object, try ...
catch ... finally, TypeError object, URIError object

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

ECMA 262 edition 3 – section – 12.13

throws (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Time from year (Time calculation)
A date and time algorithm defined by ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

To calculate any time values relative to the start of a year, we need to know what instant the year began.

All non-leap years have 365 days with the usual number of days in each month. Leap years have an
extra day in February. The calculation shown below uses known leap years and non leap years to
adjust the day numbers and yield the day number of the first day of the given year and then use
that to work out the time in milliseconds when the year started:

DayFromYear(y) = 365 * (y - 1970) + floor((y - 1969) / 4) - floor((y - 1901) /
100) + floor((y - 1601) / 400)

msPerDay = 86400000TimeFromYear(y) = msPerDay * DayFromYear(y)

T – Time from year (Time calculation)

2275

Subtracting this value from any absolute time value gives you a millisecond accurate offset from
the beginning of the specified year.

Example code:
// Work out days and milliseconds at start of a year
var msPerDay = 86400000;

// Test day from year
document.write("<TABLE BORDER=1>");
for(var ii=1980; ii<2009; ii++)
{
 document.write("<TR>");
 document.write("<TD>");
 document.write(ii);
 document.write("</TD>");
 document.write("<TD>");
 document.write(dayFromYear(ii));
 document.write("</TD>");
 document.write("<TD>");
 document.write(timeFromYear(ii));
 document.write("</TD>");
 document.write("</TR>");
}
document.write("</TABLE>");

// Work out milliseconds at start of year
function timeFromYear(aYear)
{
 var myTime = msPerDay * dayFromYear(aYear);
 return myTime;
}

// Day from year function
function dayFromYear(aYear)
{
 var myDay = 365 * (aYear - 1970) +
 Math.floor((aYear - 1969) / 4) -
 Math.floor((aYear - 1901) / 100) +
 Math.floor((aYear - 1601) / 400);
 return myDay;
}

See also: Broken down time, Date from time, Date number, Day from year,
Day number, Day within year, Time range, Time within day,
Year from time, Year number

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.3

ECMA 262 edition 3 – section – 15.9.1.3

JavaScript Programmer's Reference

2276

Time range (Definition)
ECMAScript measures time in milliseconds since 01-01-1970 UTC.

Availability: ECMAScript edition – 2

In ECMA compliant implementations, time is measured in milliseconds since the first of
January 1970 UTC.

In ECMA compliant implementations, leap seconds are ignored and it is assumed that there are
exactly 86,400,000 milliseconds per day. The available range of number values is 18 quadrillion,
which is sufficient to measure, to millisecond accuracy, over a time period of nearly 286,000 years
forwards or backwards from 01-January-1970 UTC.

Date objects don't use this entire range of values and only cope with 100 million days either side of
01-January-1970 UTC. Still, that is a time period that covers just over half a million years. So, no
Y2K crisis there (probably).

The exact moment of midnight at the beginning of 01-January-1970 UTC is represented by the value 0.

The time range may not be the same as that provided by the underlying host environment. For example,
Macintosh dates and times are based on a start time of the first of January 1904 measured in seconds.
The adjustment is trivial in computational terms but may be missing in some implementations.

See also: Broken down time, Calendar time, Date from time, Date number,
Date object, Day from year, Day number, Days in year, In leap
year, MakeDate(), MakeDay(), MakeTime(), Month number,
Time from year, Time value, Time within day, Week day

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.1

ECMA 262 edition 3 – section – 15.9.1.1

Time value (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The ECMA standard defines some useful methods for decomposing time values.

T – Time value (Time calculation)

2277

Some constant values need to be defined first:

❑ HoursPerDay = 24

❑ MinutesPerHour = 60

❑ SecondsPerMinute = 60

❑ msPerSecond = 1000

From these we can derive some other values:

❑ msPerMinute = msPerSecond * SecondsPerMinute = 60000

❑ msPerHour = msPerMinute * MinutesPerHour = 3600000

Now the methods can be defined in terms of these constants and their derivatives.

❑ HourFromTime(t) = floor(t / msPerHour) modulo HoursPerDay

❑ MinFromTime(t) = floor(t / msPerMinute) modulo MinutesPerHour

❑ SecFromTime(t) = floor(t / msPerSecond) modulo SecondsPerMinute

❑ msFromTime(t) = t modulo msPerSecond

Example code:
// Define some constants
HoursPerDay = 24;
MinutesPerHour = 60;
SecondsPerMinute = 60;
msPerSecond = 1000;

// Derived values
msPerMinute = msPerSecond * SecondsPerMinute;
msPerHour = msPerMinute * MinutesPerHour;

// Grab the time now in milliseconds
myMilliseconds = Number(new Date());
document.write("Hours ...: ");
document.write(HourFromTime(myMilliseconds));
document.write("
");
document.write("Minutes ...: ");
document.write(MinFromTime(myMilliseconds));
document.write("
");
document.write("Seconds ...: ");
document.write(SecFromTime(myMilliseconds));
document.write("
");
document.write("Milliseconds ...: ");
document.write(msFromTime(myMilliseconds));
document.write("
");

// Work out the hour number (Add 1 hour for BST)
function HourFromTime(aMillisecondTime)
{

JavaScript Programmer's Reference

2278

 return (Math.floor(aMillisecondTime/msPerHour) % HoursPerDay);
}

// Work out the minutes of the hour
function MinFromTime(aMillisecondTime)
{
 return (Math.floor(aMillisecondTime/msPerMinute) % MinutesPerHour);
}

// Work out the seconds of the minute
function SecFromTime(aMillisecondTime)
{
 return (Math.floor(aMillisecondTime/msPerSecond) % SecondsPerMinute);
}

// Work out the millisecond time value
function msFromTime(aMillisecondTime)
{
 return (aMillisecondTime % msPerSecond);
}

See also: Broken down time, Calendar time, Date object, MakeDate(),
MakeDay(), MakeTime(), Time range, Universal coordinated
time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.10

ECMA 262 edition 3 – section – 15.9.1.10

Time within day (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Calculating the time within a day uses modulo arithmetic to find the remainder after calculating
the day number.

The formula for calculating time within the day is shown here:

❑ t = an instant in time measured in milliseconds relative to 01-January-1970 UTC.

❑ msPerDay = 86400000

❑ TimeWithinDay(t) = t modulo msPerDay

T – TimeClip() (Time calculation)

2279

Example code:
// Define some constants
HoursPerDay = 24;
MinutesPerHour = 60;
SecondsPerMinute = 60;
msPerSecond = 1000;

// Derived values
msPerMinute = msPerSecond * SecondsPerMinute;
msPerHour = msPerMinute * MinutesPerHour;
msPerDay = msPerHour * HoursPerDay;

// Grab the time now in milliseconds
myMilliseconds = Number(new Date());
document.write("Time within day ...: ");
document.write(TimeWithinDay(myMilliseconds));
document.write("
");

// Work out the millisecond time value
function TimeWithinDay(aMillisecondTime)
{
 return (aMillisecondTime % msPerDay);
}

See also: Broken down time, Day number, Time from year, Time range

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.2

ECMA 262 edition 3 – section – 15.9.1.2

TimeClip() (Time calculation)
A date and time algorithm.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

The TimeClip() operator is provided internally to convert implementation dependent numeric
values to millisecond time values with a bounds check and sign handling fix up. Any date value is
trimmed off and discarded, hence the name TimeClip().

Implementations may represent number values internally in many ways. Time computations need
the millisecond value to be presented in a particular way. This operator does all the cleaning and
conversion necessary.

Although this is called an operator in the standard, its behavior is more like that of a function. It is
not part of the formal language implementation and is probably not useful to have simulated in
script form. It is documented in the standard to assist in the algorithmic breakdown of the Date
method handlers and is covered here for the sake of completeness.

JavaScript Programmer's Reference

2280

The result is a time value in milliseconds.

See also: Broken down time, Date object, Date(), Date.setTime(),
Date.UTC()

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.14

ECMA 262 edition 3 – section – 15.9.1.14

Timeout handlers (Definition)
You can set event handlers to be called when a timeout expires.

This is a mechanism for scheduling the execution of a script at some time in the future. The delay is
measured from the moment the setTimeout() method is invoked.

See also: Window.clearInterval(), Window.clearTimeout(),
Window.setInterval(), Window.setTimeout()

Timer events (Definition)
Events that are triggered after a delay time.

Timer events are created by calling a timer set-up function and giving it a delay value. You can also
cancel timeouts, but this can lead to problems because cancelling a timeout that has already been
processed is prone to crashing the browser. Managing timeouts is tricky and exposes you to an area
where the browser is somewhat less reliable than mainstream functionality.

Nevertheless, timer events are useful for managing refreshes and animation. You can interlock a
refresh with some animation or scrolling so that the refresh exhibits as few screen redrawing
artifacts as possible.

If you are really careful about memory leaks, you can build a ticker display with JavaScript.
Making this clickable with an anchor is useful, but also exposes some cross-platform shortcomings
and there are several ways to do this and each only works in one browser/platform combination
and crashes on the others.

Because setTimeout() defines a delay from the time of execution to the time when the event is
triggered, a cyclic mechanism takes no account of the processing time between setTimeout()
calls. This means that the animation can become jerky. You can smooth that out by calculating how
much time is left before you want the next scheduled event to occur. You need to access some kind
of tick count to establish a reference time. You can do this by extracting values from a Date object
and using its millisecond value. A modulo of that with the result subtracted from your ideal
schedule frequency should yield a value that takes account of any processing jitter.

Automatic refreshing is sometimes called client pull.

T – <TITLE> (HTML Tag)

2281

If you want to execute something on a regular basis, then setInterval()/clearInterval()
may be what you are looking for. These two methods manage an interval timer that you can set up
to execute a function periodically. Because this doesn't disappear, there is less likelihood of
crashing the browser if you try to clear one of these timers.

Warnings:
❑ Timer related crashes seem to be able to lock up a desktop system comprehensively enough that it

requires a reboot to recover. This applies equally to Macintosh and Windows based systems and
both MSIE and Netscape. There are many different causes, usually to do with runaway events,
trying to kill timers that don't exist, or handling mouse rollovers that cross from one object to
another. Multiple frames (especially <IFRAME> handling in MSIE on Macintosh) are especially
prone to rollover crashes when combined with timer events. The crashing is all to do with timer
events disposing of an object that the mouse has rolled over and triggered an interaction event for
dispatch. In the meantime the object has gone and the browser follows it.

See also: Event, Event handler, Event model, Event object, Window.clearInterval(),
Window.clearTimeout()

Cross-references:
Wrox Instant JavaScript – page – 55

<TITLE> (HTML Tag)
A tag that encloses the title block in a document header. It corresponds to the MSIE TITLE object.

The <TITLE> tag conveys no apparent visible effect on the document. It is considered to be an
invisible tag, although its value does appear in the window heading bar.

Warnings:
❑ Be careful not to confuse this with the TITLE attribute of an HTML tag and its corresponding

Element object's title property. They are just a means of naming objects and associating specific
tags with specific objects.

See also: Document.title, TITLE object

TITLE object (Object/HTML)
An MSIE object that represents the <TITLE> block of a document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript Programmer's Reference

2282

Inherits from: Element object

IE myTITLE = document.all.tags("TITLE")[0]

IE myTITLE = document.all[anIndex]

IE myTITLE = myDocument.all.anElementID

IE myTITLE =
myDocument.all.tags("TITLE")[anIndex]

IE myTITLE = myDocument.all[aName]

- myTITLE =
myDocument.getElementById(anElementID)

- myTITLE =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myTITLE = myDocument.getElementsByTagName
("TITLE")[anIndex]

HTML syntax: <TITLE> ... </TITLE>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: text

Event handlers: onClick, onDblClick, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp

The <TITLE> tag conveys no apparent visible effect on the document. It is considered to be an
invisible tag although its value does appear in the window heading bar.

See also: <TITLE>, Document.title

Property JavaScript JScript N IE Opera DOM HTML Notes

text 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 +
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning

T – TITLE.text (Property)

2283

Inheritance chain:
Element object, Node object

TITLE.text (Property)
The text contained inside the <TITLE> block for the current document.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTITLE.text

This yields the text of the title block. This is the same as the document.title property. Because it
is read-only, you cannot modify the value from script. You can't get at the content of the <TITLE>
tag with the innerHTML property either.

See also: Document.title

Property attributes:
ReadOnly.

ToBoolean (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts the public types to Boolean values.

The ToBoolean operator converts its argument to a value of type Boolean according to the
following table:

Input Type Result

Undefined Always false.
Null Always false.
Boolean No conversion, the input value is returned unchanged.
Number The result is false if the argument is 0 or NaN otherwise it is

true.
String Zero length strings return false otherwise the result is true.
Object Always true.

JavaScript Programmer's Reference

2284

See also: Cast operator, Conversion, Implicit conversion, Logical operator, Number, Type
conversion

Property attributes:
Internal.

Cross-references:
ECMA 262 edition 2 – section – 9.2

ECMA 262 edition 3 – section – 9.2

ToInt32 (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts its input value to a 32 bit signed integer value.

See also: Cast operator, Conversion, Implicit conversion, Number, Type conversion

Property attributes:
Internal.

Cross-references:
ECMA 262 edition 2 – section – 9.5

ECMA 262 edition 3 – section – 9.5

ToInteger (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts values to integers.

See also: Cast operator, Conversion, Implicit conversion, Type conversion

Property attributes:
Internal.

T – Token (Definition)

2285

Cross-references:
ECMA 262 edition 2 – section – 9.4

ECMA 262 edition 3 – section – 9.4

Token (Definition)
Tokens are the fundamental components that an executable script is built from.

Availability: ECMAScript edition – 2

A token is the smallest component of a source script text that can be interpreted.

Tokens are the actual components that an executable script is built from. They may be reserved
words, identifiers, punctuator symbols or literals.

You cannot use reserved words as identifier names.

The reserved word set is comprised of the structural statements that you use to make a script work.

The null literal is simply the keyword null.

The Boolean literals are the keywords true and false.

See the reserved words topic for a list of all currently defined reserved words.

See also: Boolean literal, Cast operator, Identifier, Keyword, Lexical convention, Lexical
element, Literal, Null literal, Punctuator, Reserved word, Reserved Word

Cross-references:
ECMA 262 edition 2 – section – 7.4

ECMA 262 edition 3 – section – 7.5

ToNumber (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts its argument to an appropriate numeric value.

JavaScript Programmer's Reference

2286

The ToNumber operator converts its input values according to the following table:

Input Type Result

Undefined Returns NaN

Null 0

Boolean 1 if true, 0 if false.

Number No conversion, the input value is returned unchanged.

String The value of a sequence of characters that can reasonably be converted to a
number, and if not then NaN is returned.

Object Internally, a conversion to one of the primitive types happens followed by a
conversion from that type to a number. Some objects will return a number that is
readily usable. Others will return something that cannot be converted and NaN
will result.

The string scanning algorithm copes with spelled out special values such as Infinity, exponential
values and can scan integers in Octal and Hexadecimal notation as well as decimal.

See also: Cast operator, Conversion, Implicit conversion, isFinite(), isNaN(),
Number, Type conversion

Cross-references:
ECMA 262 edition 2 – section – 9.3

ECMA 262 edition 3 – section – 9.3

ToObject (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts its input argument into an object.

The ToObject operator converts its input arguments according to the following table:

Input Type Result

Undefined Generates a run-time error.

Null Generates a run-time error.

Boolean Create a new Boolean object whose default value is the input value.

Number Create a new Number object whose default value is the input value.

String Create a new String object whose default value is the input value.

Object No conversion, the input value is returned unchanged.

T – toolbar (Property)

2287

See also:
Cast operator, Conversion, Implicit conversion, Number, Type
conversion

Cross-references:
ECMA 262 edition 2 – section – 9.9

ECMA 262 edition 3 – section – 9.9

http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz

http://cm.bell-labs.com/netlib/fp/dtoa.c.gz

http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz

toolbar (Property)
An alias for the window.toolbar property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Bar object

- myWindow.toolbar
JavaScript syntax:

- toolbar

See also: Bar object, Window.toolbar

Property attributes:
ReadOnly.

top (Property)
An alias for the window.top property.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Property/method value type: Window object

- myWindow.top
JavaScript syntax:

- top

http://cm.bell-labs.com/cm/cs/doc/90/4-10.ps.gz
http://cm.bell-labs.com/netlib/fp/dtoa.c.gz
http://cm.bell-labs.com/netlib/fp/g_fmt.c.gz

JavaScript Programmer's Reference

2288

Property attributes:
ReadOnly.

Refer to:
Window.top

Topic classification (Overview)
Descriptions of topic classifications.

The various classifications of topics in this manual are listed in this table:

Classification Description

Accessor method A means of accessing properties

Additive operator An operator that sums values

Arithmetic operator An operator that works with numeric values
Array A kind of object that is compounded from several others

ASP tag A tag that is only available in Microsoft ASP

Assignment operator An operator that assigns values

Attribute Attributes define how properties behave

Background Background information

Bitwise operator An operator that works with bit patterns

Blend filter A transition filter available only in MSIE

Boolean literal A Boolean constant value

Browser object An object only available in a browser

Built-in function A function provided by the implementation

Built-in object An object provided by the implementation

Collection A sub-class of the Array object that supports additional methods

Comma operator An expression delimiter

Conditional operator An operator that yields a Boolean result

Constant A fixed literal value

Constructor An object instance factory

Core object An object that is part of the core language

Declaration A specification of an identifier

Definition A specification of an identifier with storage

Delimiter A token separator

DOM object An object that belongs to the DOM specification

Environment variable Part of the implementation that an interpreter runs in

Escape sequence A means of generating non-typable characters

Event Events need to be considered a separate kind of language entity

Table continued on following page

T – Topic classification (Overview)

2289

Classification Description

Event handler Event handlers are many and various, each covered in its own topic

External code call Some environments support the calling of external code

File extension File types are identified by different file extensions

Function object attribute An attribute of a function object

Function property An object property that can be called as a method

Global function A function that belongs to the global object

Global variable Some variables are available as member properties of the global object

Host object Objects not defined as part of the core language

HTML tag A part of an HTML document

HTML Tag Some JavaScript language needs to be described in terms of its
underlying HTML tags

HTML Tag Attribute An attribute added to an HTML tag

Identifier The name of a function or variable

Idiom A familiar form or expression

Instance A copy of a built-in object

Internal function A function that cannot be called from a script

Internal method A method that cannot be invoked from a script

Internal object An object maintained internally by the interpreter and not generally
available to the script writer

Internal object An object that cannot be accessed from a script

Internal operator An operator that cannot be used in expressions contained in a script

Internal property A property that cannot be accessed from a script

Internal type A data type that cannot be created from a script

Interpreter There is now a wide choice of JavaScript interpreters available

Iterator Certain control structures that can be used to create loops

Java class Access to Java objects is via the wrappers that let you access the classes

Java method A method belonging to a Java object accessible via a JavaScript
wrapper

Java package A collection of Java classes enclosed in a JavaScript wrapper

Java static method A method belonging to a Java class accessible via a JavaScript wrapper

JScript object An object only available in Microsoft JScript

Keyword A reserved word in the language

Label Code can be labelled with entry points

Logical operator An operator that works with Boolean values

Method A message sent to a method performs an action inside the object

MIME type A means of telling the browser what kind of data is being supplied

Mobile communicator Web access is also possible from mobile devices

MSIE method A method that is only available in MSIE even though the object may be
more widely available

Table continued on following page

JavaScript Programmer's Reference

2290

Classification Description

MSIE object An object only available in MSIE

MSIE property A property that is only available in MSIE even though the object may be
more widely available

Native object A built-in object defined by the standard

NES result value A result value that a Netscape Enterprise Server method call returns

NES server method A method that is only available in Netscape Enterprise Server even
though the object may be more widely available

NES server object An object only available in Netscape Enterprise Server

NES server property A property that is only available in Netscape Enterprise Server even
though the object may be more widely available

Netscape object An object that is only available in the Netscape scripting environment

Null literal A null constant value

Object An object of no particular type

Object An object that can be instantiated

Object model There are several object models that describe various parts of the
JavaScript object space

Operator An operator that can be used to create expressions

Overview A descriptive outline text

Pitfall Some topics describe ways in which JavaScript can catch you out

Portable Documents JavaScript is used to handle forms in PDF

Postfix operator An operator that can be appended to an LValue

Pre-processor directive The Microsoft interpreters support a pre-processor rather like that in the
C language

Primitive value A fundamental value built-in to the implementation

Product Some JavaScript interpreters are available as part of a commercial
product

Property A named attribute of an object

Proxy.pac support Part of the Netscape proxy handler

References Sources of additional information

Relational operator An operator that yields the result of a comparison

Request method Several types of request method can be used in a URL

Reserved word Reserved functionality

Reveal filter A transition filter available only in MSIE

Script container Scripts may be carried in a variety of containers other than HTML
documents

Security model A particular way of implementing security

Security policy A policy regarding the way security is managed

Security privilege A privilege level in the security mechanism

Selector A means of choosing one of several possible outcomes

Table continued on following page

T – ToPrimitive (Operator/internal)

2291

Classification Description

Server object An object that is only available server-side

Server-side file Special files accessible only to the web server

Server-side method Some methods are available only on the server-side

Server-side object Some objects are only available on the server-side

Simulated functionality Some script that emulates capabilities of other languages

Special file JavaScript is implemented in a variety of ways and in some cases special
files are necessary

Standard Several standards affect the way that JavaScript works

Statement A single executable unit of code

Static method A method belonging to a class, not an object

Static property These properties belong to the class (or rather they would in a truly
object oriented system)

String operator An operator for working with string data

Summary A brief description of a subject

Support for preferences Preference handling requires a number of different topics to describe it

Symbol A special character

Time calculation A process of working out time values

Time operator An operator for time value expressions

Transition filter A transition filter available only in MSIE

TV Set-top Box Web access is now becoming more widely available in TV applications

Type A data value classification

Unary operator An operator that only requires one operand

Useful tip Some topics provide useful advice

Value A value of a variable or object

Value property A property of an object that yields a value and cannot be called as a
function

Visual filter A transition filter available only in MSIE

Web browser Each of the commonplace web browsers is described in its own topic

Web server Server-side code needs to be executed under control of a web server

See also: ECMA

ToPrimitive (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This operator converts objects to primitive values.

JavaScript Programmer's Reference

2292

The ToPrimitive operator takes a value argument and an optional preferred type argument and
converts its input to a primitive type from an object representation.

Input Type Result

Undefined No conversion, the input value is returned unchanged.

Null No conversion, the input value is returned unchanged.

Boolean No conversion, the input value is returned unchanged.

Number No conversion, the input value is returned unchanged.

String No conversion, the input value is returned unchanged.

Object The default value defined by the object's internal DefaultValue method is
returned. A coercion to the preferred type happens and is context dependent on
where the result is being assigned.

See also: Cast operator, Conversion, Implicit conversion, Number, Type conversion

Cross-references:
ECMA 262 edition 2 – section – 8.6.2.6

ECMA 262 edition 2 – section – 9.1

ECMA 262 edition 3 – section – 8.6.2.6

ECMA 262 edition 3 – section – 9.1

ToString (Operator/internal)
Returns a string primitive version of an object.

Availability: ECMAScript edition – 2

This internal operator converts its input argument to a string.

The ToString operator converts its input arguments according to the following table:

Input Type Result

Undefined "undefined"

Null "null"

Boolean If the argument is true, then the result is "true" otherwise the result is "false"

Number Special cases are provided for NaN and Infinity where "NaN" and "Infinity"
will be returned. Otherwise the string is a textual representation of the value. The
string is formatted into decimal or exponential formats as determined by the
magnitude of the value.

Table continued on following page

T – toString() (Function/global)

2293

Input Type Result

String No conversion, the input value is returned unchanged.

Object An internal conversion to a primitive takes place followed by a conversion from
that primitive to a string. Some objects will return a string value that is
immediately useful.

Warnings:
❑ In Microsoft environments, this is available most of the time but does not work for certain objects. In

particular, there may some objects in WSH for which it is not supported.

See also: Cast operator, Conversion, Implicit conversion, JSObject.toString(), String
concatenate (+), toString(), Type conversion

Cross-references:
ECMA 262 edition 2 – section – 9.8

ECMA 262 edition 3 – section – 9.8

toString() (Function/global)
Returns a string representation of the receiving object.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0

Property/method value type: String primitive

- myObject.toString()
JavaScript syntax:

- myObject.toString(aRadix)

Argument list: aRadix
Radix conversion can be applied when the
receiver is a number

The generic behavior of this method is to return a String primitive representation of the receiving
object. It is generally overridden on a class by class basis due to objects containing such different
properties and values.

The ToString internal operator is called. This doesn't usually tell you very much. The default
toString() handlers may be different for the built-in classes, but all you'll likely get from a class
you create yourself will be the string "[object Object]".

You will need to override the toString() function that is provided by default and add your own.
This should be added to the prototype of your class.

The generic version of the toString() method may be useful when debugging. You can use the
apply() method to force its use on objects you are trying to inspect and which may have
overridden the toString() method themselves.

JavaScript Programmer's Reference

2294

This method is supported by virtually every object by virtue of the fact that it is available as a
method of the Global object in Netscape. Therefore it gets inherited into the scope chain for every
script and function (method).

Warnings:
❑ At JavaScript version 1.2 in the Netscape version 4 browser, there is a slight difference in the way

that toString() works. It will output all the nested objects that are joined by properties. This gave
rise to a technique for deep copying objects. However, it wasn't ECMA compliant and it no longer
works in Netscape as of JavaScript 1.3.

❑ It might still work if you set the language version to JavaScript 1.2, but it's unreliable, not portable
and definitely not going to work in Netscape 6.0. If you are exploiting it, you need to find an
alternative because your scripts are going to break.

See also: Array.toString(), Boolean.toString(), Conversion,
Date.toString(), Error.toString(), Function.toString(),
Number.toString(), Object.toString(), prototype.toString(),
RegExp.toString(), String, String concatenate (+), String.toString(),
ToString

ToUint16 (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts its input argument into an unsigned 16 bit integer value.

See also: Cast operator, Conversion, Implicit conversion, Number,
String.fromCharCode(), Type conversion

Cross-references:
ECMA 262 edition 2 – section – 9.7

ECMA 262 edition 3 – section – 9.7

ToUint32 (Operator/internal)
An internal operator for converting values.

Availability: ECMAScript edition – 2

This internal operator converts its input argument to an unsigned 32 bit integer.

See also: Cast operator, Conversion, Implicit conversion, Number, Type conversion

T – TR object (Object/HTML)

2295

Cross-references:
ECMA 262 edition 2 – section – 9.6

ECMA 262 edition 3 – section – 9.6

TR object (Object/HTML)
An object that encapsulates the row content of a table contained in a <TR> tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Inherits from: Element object

IE myTR = myDocument.all.anElementID

IE myTR = myDocument.all.tags("TR")[anIndex]

IE myTR = myDocument.all[aName]

- myTR = myDocument.getElementById(anElementID)

- myTR = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myTR = myDocument.getElementsByTagName("TR")[anIndex]

HTML syntax: <TR> ... </TR>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: align, bgColor, borderColor, borderColorDark,
borderColorLight, ch, chOff, rowIndex, sectionRowIndex, vAlign

Object methods: deleteCell(), insertCell()

Event handlers: onBlur, onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Collections: cells[]

Tables are a two dimensional array of cells divided first into rows and then into columns. To access a
particular cell, you locate its row first and then index along the cells in a row to find the one you want.

Rows are enclosed in <TR> tags which instantiate a TR object. The TR objects in a table are available
as members of the rows[] collection.

They are also available in the rows[] collections that belong to TFOOT, TBODY and THEAD objects if
the rows have been grouped inside tags that instantiate those objects.

You can access the cells in a row by using the cells[] collection that belongs to the TR object for
the row you are interested in.

JavaScript Programmer's Reference

2296

Warnings:
❑ Some earlier versions of the MSIE browser did not support access to the innerHTML property and

related content when used on the Macintosh platform.

See also: Element object, TABLE object, TABLE.deleteRow(),
TABLE.insertRow(), TBODY object, TD object, TFOOT object, THEAD object

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
bgColor 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
borderColor - 3.0 + - 4.0 + - - - -
borderColorDark - 3.0 + - 4.0 + - - - -
borderColorLight - 3.0 + - 4.0 + - - - -
ch 1.5 + - 6.0 + - - 1 + - -
chOff 1.5 + - 6.0 + - - 1 + - -
rowIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
sectionRowIndex 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - ReadOnly
vAlign 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Method JavaScript JScript N IE Opera DOM HTML Notes

deleteCell() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
insertCell() 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onBlur 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - - Warning
onClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

T – TR.align (Property)

2297

TR.align (Property)
The alignment of content within table cells in the row.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTR.align

The alignment of the TR object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

❑ center

❑ left

❑ right

❑ char

❑ justify

See also: TABLE.align, TBODY.align, TD.align, TFOOT.align,
TH.align, THEAD.align

TR.bgColor (Property)
The background color of table cells within the row.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTR.bgColor

The background can be colored independently of whether an image is loaded into the background
of an object. In fact it may be advisable to set the background color to something similar to the
average color of the background image in case the image takes a long time to load or the browser is
unable to display a background image.

See also: Color names, Color value

JavaScript Programmer's Reference

2298

TR.borderColor (Property)
The color of the border around table cells in the row.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTR.borderColor

You can use this property to determine the color of a border surrounding a table row. Note that there
are additional properties to determine the highlights and lowlights of the table row border coloring.

TR.borderColorDark (Property)
The color value of the shadowed edge of the table row border (assuming the table is lit from the top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTR.borderColorDark

Table row borders are presented as having an engraved appearance. This means you may need to
control the highlights and lowlights. This property defines the color of the shadowed part of the
table row border.

TR.borderColorLight (Property)
The color value of the highlighted edge of the table cell border (assuming the table is lit from the
top left).

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myTR.borderColorLight

Table row borders are presented as having an engraved appearance. This means you may need to
control the highlights and lowlights. This property defines the color of the highlighted part of the
table row border.

T – TR.cells[] (Collection)

2299

TR.cells[] (Collection)
A collection of cells within this row of the table.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Collection object

JavaScript syntax: - myTR.cells

The table.cols value should also be equivalent to table.rows.cells.length value.

See also: TABLE.cols

Property attributes:
ReadOnly.

TR.ch (Property)
The alignment character for cells in a column arrangement.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: N myTR.ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

See also: COL.ch, COLGROUP.ch, TD.ch, TH.ch, THEAD.ch

TR.chOff (Property)
The offset of a column alignment character.

Availability: DOM level – 1
JavaScript – 1.5
Netscape – 6.0

Property/method value type: String primitive

JavaScript Programmer's Reference

2300

JavaScript syntax: N myTR.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

See also: COL.chOff, COLGROUP.chOff, TD.chOff, TH.chOff,
THEAD.chOff

TR.deleteCell() (Method)
In a multiple column table, you can delete a particular cell within a row with this method.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

JavaScript syntax: - myTR.deleteCell(anIndex)

Argument list: anIndex The horizontal cell address to be deleted

See also: THEAD.deleteRow()

TR.insertCell() (Method)
You can insert an additional cell into the row within a table with this method.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: TD object

JavaScript syntax: - myTR.insertCell(anIndex)

Argument list: anIndex The horizontal index at which to insert a cell

T – TR.rowIndex (Property)

2301

TR.rowIndex (Property)
A zero-based integer that indicates which row of the table this <TR> block represents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTR.rowIndex

The TR.rowIndex property is the vertical coordinate for cells in this row measured across the
entire table.

This property yields a zero-based index number for this table row within the rows[] collection
belonging to the TABLE object the row is a member of.

Note that this index will not hold true for the rows[] collections belonging to THEAD, TBODY and
TFOOT objects. For that, you should inspect the sectionRowIndex property.

See also: TABLE.cells[], TABLE.rows[], TBODY.rows[],
TFOOT.rows[], THEAD.rows[], TR.sectionRowIndex

Property attributes:
ReadOnly.

TR.sectionRowIndex (Property)
A zero-based integer that indicates which row of the table this <TR> block represents.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: Number primitive

JavaScript syntax: - myTR.sectionRowIndex

The TR.sectionRowIndex property is the vertical coordinate for cells in this row measured
within a THEAD, TBODY or TFOOT group and is reset to zero at the start of each section of the table.

This property yields a zero-based index number for this table row within the rows[] collection
belonging to the THEAD, TBODY or TFOOT object the row is a member of.

JavaScript Programmer's Reference

2302

Note that this index will not hold true for the rows[] collections belonging to TABLE object. For
that, you should inspect the rowIndex property.

See also: TR.rowIndex

Property attributes:
ReadOnly.

TR.vAlign (Property)
The vertical alignment of content in the table cells in this row.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape – 6.0

Property/method value type: String primitive

JavaScript syntax: - myTR.vAlign

The vertical alignment of the content within the table cells can be controlled across an entire TR
extent with this property. The following keywords can be assigned to it:

❑ baseline

❑ bottom

❑ middle

❑ top

These may be also available on some implementations:

❑ absbottom

❑ absmiddle

❑ baseline

❑ texttop

See also: TBODY.vAlign, TD.vAlign, TFOOT.vAlign, TH.vAlign,
THEAD.vAlign

transient (Reserved word)
Reserved for future language enhancements.

Refer to:
Reserved word

T – Transition (Definition)

2303

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

Transition (Definition)
A visual effect used during event handling in MSIE.

These are activated by means of the apply() and play() methods. When executed, the transition
will reveal the new display content. This mechanism obviously requires the use of a second display
buffer and so for large onscreen windows, you may find that MSIE requires much more memory to
utilize these effects properly.

See also: Element.filters[], filter – BlendTrans(), filter – RevealTrans(), Filter
object, style.filter

Translation (Definition)
The process of tokenizing and interpreting a script.

See also: Error handling, Interpret

Trigonometric function (Definition)
Functions for calculating angular values.

The trigonometric functions are provided by the Math object.

The following trigonometric functions are defined by the ECMA standard:

Function Description

acos() Inverse cosine
asin() Inverse sine
atan() Inverse tangent
atan2() Inverse tangent of two values
cos() Cosine of an angle
sin() Sine of an angle
tan() Tangent of an angle

See also: Exponent-log function, Integer-value-remainder, Math object, Math.acos(),
Math.asin(), Math.atan(), Math.atan2(), Math.cos(), Math.sin(),
Math.tan(), Mathematics, Power function

JavaScript Programmer's Reference

2304

true (Primitive value)
The Boolean true value.

Availability: ECMAScript edition – 2

Property/method value type: Boolean primitive

This is a Boolean primitive value representing the logically true state.

Conditional code execution depends on this value to signify the execution of a block of script code.

See also: Boolean, Boolean, Boolean literal, Definition, false

Cross-references:
ECMA 262 edition 2 – section – 9.2

ECMA 262 edition 2 – section – 15.6

ECMA 262 edition 3 – section – 9.2

ECMA 262 edition 3 – section – 15.6

try ... catch ... finally (Statement)
A mechanism for attempting to execute some potentially problematic code with a means of
catching the exception and continuing execution.

Availability: ECMAScript edition – 3
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape – 6.0

This was introduced in JavaScript 1.4 and JScript version 5.0. The intention is to provide a way to
execute a section of code in the try block and then if it has a problem, some recovery action can
trap the error and handle it gracefully.

There are three basic sections.

The try statement is followed by a block of code enclosed in braces that may be problematic.
Indeed, the problems may not be script-based errors but may be the result of testing for some
condition. That may lead to a custom exception being thrown.

If an exception of any kind happens in the try block, execution is immediately passed to the
catch() function following.

T – try ... catch ... finally (Statement)

2305

The catch function is passed an Error object containing details of the kind of exception
that has occurred.

When the catch function completes, execution drops into the block of code associated with the
finally statement. In the case of the try block not having any exceptional behavior, at the end of
that block execution also drops into the finally code block, bypassing the catch function
altogether. So the finally code gets executed always after the try block.

You might use the finally block to tidy up or discard some unwanted objects.

In the example, the try block makes sure two values are presented in the correct order. If they are
not in the right order, an exception is thrown and during the exception handling, they are swapped
over. We put up an alert and set a flag that is presented in the output just to be sure it really
happened like that.

Warnings:
❑ The functionality is not supported in Netscape prior to version 6.0.

❑ This is not supported by Netscape Enterprise Server 3 and so its error handling capabilities are not
available server-side.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
testThrow(100, 200);
testThrow(300, 100);
function testThrow(arg1, arg2)
{
 var switched = "NO";

 // Force an error condition
 try
 {
 if(arg1 < arg2)
 {
 throw "Wrong order";
 }
 }
 catch(myErr)
 {
 alert(myErr);
 var temp = arg1;
 arg1 = arg2;
 arg2 = temp;
 switched = "YES"
 }
 finally
 {

JavaScript Programmer's Reference

2306

 document.write("Biggest : " + arg1 + "
");
 document.write("Smallest : " + arg2 + "
");
 document.write("Switched : " + switched + "
");
 document.write("
");
 }
}
</SCRIPT>
</BODY>
</HTML>

See also: catch(...), Error object, EvalError object, Exception handling,
finally ..., RangeError object, ReferenceError object,
SyntaxError object, throw, TypeError object, URIError object

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

ECMA 262 edition 3 – section – 12.14

TT object (Object/HTML)
An object that represents the font style controlled by the <TT> HTML tag.

Availability: JScript – 3.0
Internet Explorer – 4.0
Deprecated

Inherits from: Element object

IE myTT = myDocument.all.anElementID

IE myTT = myDocument.all.tags("TT")[anIndex]

IE myTT = myDocument.all[aName]

- myTT = myDocument.getElementById(anElementID)

- myTT = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myTT = myDocument.getElementsByTagName("TT")
[anIndex]

HTML syntax: <TT> ... </TT>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers: onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

<TT> tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

T – TV Set-top boxes (Definition)

2307

See also: Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDblClick - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyPress - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onKeyUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseDown - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseMove - 3.0 + - 4.0 + - - 4.0 + Warning
onMouseOut - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseOver - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onMouseUp - 3.0 + - 4.0 + 3.0 + - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

TV Set-top boxes (Definition)
The integration of TV and Web content is resulting in new kinds of hardware that displays web
page content at TV resolution.

In the same way that we had a browser war, there is a similar activity going on with TV set-top
boxes. These are generally a slightly lower than normal functionality browser burned into a ROM
or upgradeable Flash PROM chip.

There are several varieties already available in various forms. From the MSIE tradition comes the
WebTV box. This is a browser originally based on MSIE 3 but now enhanced somewhat. There are
limitations due to the need for it to occupy as little memory as possible. For those who prefer the
Netscape browser, the Liberate box comes from a company initially formed as a joint venture
between Netscape Communications and Oracle. It now has significant backing from Cisco and all
things considered may well become the dominant platform.

Other alternatives exist from Bush Electronics and Netgem.

Because of the hardware limitations, these 'browser in a box' systems tend to support a reduced
functionality set when compared with the more recent desktop computer based browsers. Typically
the HTML support would be at version 3.2 of HTML and if JavaScript is supported it would be
based on JavaScript version 1.2 with some minor additions and a few features omitted or
compromised. This is very much a generalization however, and you will likely find some products
that exceed these specifications.

JavaScript Programmer's Reference

2308

A good source of information about the progress and development of the whole area of Digital
Interactive TV and set-top boxes can be found at the Ruel web site.

See also: JellyScript, Liberate TV Navigator, OpenTV, WebTV

Web-references:
http://ruel.net/top.box.news/

Type (Definition)
The ECMA 262 standard defines nine data types. A type is a set of data values.

Availability: ECMAScript edition – 2

A value is an entity that can take on the personality of one of the implemented data types. Some
types are reserved for internal use and are not generally made visible to the script developer
although this may be implementation dependent and they might be visible with a debugger.

The ECMA 262 standard defines nine data types. The host environment may add others depending
on what it needs. The various types are listed in the table, which indicates whether they are special
internal types:

Type Name Description

Aggregate A collection of atomic types assembled collectively into an object.

Arithmetic All types that yield a value that can be operated on numerically.

Array Collections of objects and identifiers assembled into a sequence.

Basic The fundamental simple, non-object types.

Boolean This type can store and yield true or false values.

Completion Used only as the intermediate result of expression evaluations and cannot be stored
in object properties.

List Used only as the intermediate result of expression evaluations and cannot be stored
in object properties.

Null This has exactly one value, null, and is distinct from undefined.

Number Integer and floating point values are all stored in a generic number type.

Object An object is an unordered collection of properties. Each property consists of a name,
a value and a set of attributes.

Reference Used only as the intermediate result of expression evaluations and cannot be stored
in object properties.

Scalar The non-object types.

String Strings are arrays of characters which are accessible individually by indexing their
position in the sequence.

Undefined This value is returned by variables that have not yet been assigned a value.

http://ruel.net/top.box.news/

T – Type conversion (Definition)

2309

Warnings:
❑ You cannot access values of type Reference, List and Completion from your scripts and they cannot

be stored as object properties.

See also: Aggregate type, Boolean, Cast operator, Completion type, const, enum, Identifier,
int, List type, Logical operator, null, Number, Object, Reference, Scalar type,
String, undefined type

Cross-references:
ECMA 262 edition 2 – section – 4.3.1

ECMA 262 edition 2 – section – 8

ECMA 262 edition 3 – section – 4.3.1

ECMA 262 edition 3 – section – 8

Type conversion (Definition)
Type conversion happens automatically as needed.

Availability: ECMAScript edition – 2

JavaScript on the one hand is very good for the beginning programmer because it is very forgiving
in regard to variable types. Other languages require that you define the type of a variable at the
outset and only ever store the correct kind of data in it. JavaScript doesn't actually care and
modifies the type of a variable on the fly according to the values being presented.

Type conversion happens automatically as needed. To support this, a set of polymorphic operators
are provided to make the conversion.

The following internal operators are provided:

❑ ToPrimitive

❑ ToBoolean

❑ ToNumber

❑ ToInteger

❑ ToInt32

❑ ToUint32

❑ ToUint16

❑ ToString

❑ ToObject

From the script writers point of view, these functions are inaccessible. However, you can call the
constructors to invoke these functions indirectly.

JavaScript Programmer's Reference

2310

The items of data themselves are still strongly typed, but the variable containers are smart enough
to cope. There are some subtle rules to this however and you can create some situations where a
very hard to diagnose problem occurs that is based on data typing inside the variables.

Type conversion happens during expression evaluation. You can still get rounding errors with
Unary operators but you only need to worry about converting a single type.

If you think there is some ambiguity in your expression, you should force a conversion to the most
appropriate type. Generally, object values should be converted to Numbers or Strings. Objects will
generally have a preferred type that they yield when converted. In most cases that will be a number
although Date objects prefer to become Strings.

Binary operators require two values and some require that both are of the same type or can be
converted to the same type. If the type of the two operands is different, then you can have
problems with some operators in expressions. If both need to be numeric for example, and once is
not a legal numeric value even after conversion, then an error will result. The arithmetic and
bitwise operators fall into that category.

The rest of the binary operators are polymorphic. That means they can cope with values of different
types. The assignment operators will change the LValue to whatever type the RValue is. There is
still some requirement here that the LValue is legally convertible. The comma operator doesn't
combine its two operands in any way whatsoever.

Occasionally the interpreter may generate an error message due to its inability to legally convert a
value to an appropriate type to complete the expression evaluation.

The relational operators cause some confusion since the values need to be converted for
comparison but the relational comparisons work for several types. It is difficult to know what type
will be used for the relational test unless you explicitly force a type conversion yourself.

The concatenation operator is also ambiguous because you may have two numeric strings and want
to add them but the concatenate operator may join them together to make a string composed of both.

The addition/concatenation operator looks at the arguments and if either is a String already or
preferentially converts to one, then a concatenation occurs. If neither operator prefers to be a String
then a Number conversion happens and the values are added.

Relational operators perform the same deductive test. However, the conversion to Strings is less
likely since relational operators are concerned with magnitude. However, they will test for
collation order if both arguments are Strings.

Relational operators will attempt to convert both arguments to a Number and if they cannot, then
they will use a String based compare. If at least one argument can be converted to a Number then
the other will be forced to be a Number for comparison purposes. So for a relation test to be String
based, both arguments must be Strings, or string-like objects.

Tests for equality require further deductive reasoning on the part of the interpreter. The values are
converted to their preferred types. If the types are the same then the values can be compared easily
either as Numbers or Strings. If the types are different, then further conversion is necessary before
the comparison can be completed. In that case, Boolean values become Numbers as do any other
non-Numeric values and Numeric comparison predominates.

Comparing null with undefined values does not require any conversion and they will compare equal.

T – Type conversion (Definition)

2311

Warnings:
❑ The ECMAScript compliant interpreters are based on comparison rules that prevailed prior to

ECMAScript being formalized. However, JavaScript version 1.2 incorrectly anticipated that the
standard would rule that equality required the type of the two operators to be identical. This means
that a number in quotes will not test equal to the numeric value itself. Therefore "10" != 10 yields a
true value instead of a false value. This will only come into play if you specify JavaScript version
1.2 in the language attribute of the <SCRIPT> tag in your web page. Placing a <SCRIPT
LANGUAGE=JavaScript"> tag is sufficient to work around this. In Netscape version 4.0, if you
don't explicitly ask for version 1.2 of JavaScript, you still have access to the JavaScript version 1.2
capabilities of the language except that this particular comparison works as per the pre-JavaScript
version 1.2 rules. That is to say, it works correctly.

❑ Version 6 of Netscape and version 5 of MSIE claim to be ECMAScript compliant and this problem
should go away. Other browsers strive for ECMA compliance too, so as long as you avoid specifying
JavaScript version 1.2 in your <SCRIPT> tags, you shouldn't encounter this problem.

❑ New operators === and !== are introduced with the ECMA standard at edition 3 to provide a test
that takes account of data typing. MSIE version 4.0 already supports them in anticipation of the third
edition of the standard. Netscape supports them at version 6.0.

❑ Earlier versions of MSIE and Netscape exhibited bugs in the comparison logic where the results of
comparisons involving NaN, null and 0 where type conversions led to inconsistent behavior.

Example code:
// String object scanned from numeric literal
a = String(50); // Equivalent to "50"

// Number object scanned from string literal
b = Number("22.22"); // Equivalent to 22.22

// String literal coerced to numeric
c = +("0x00FF"); // Equivalent to 255

// String with number subtracted
d = "22.22" - 11.11; // Equivalent to 11.11

// Logical operator on string and number
e = ("abcde" && 23); // Equivalent to 23

// Bitwise operator on string and number
f = ("0xF0" & 255); // Equivalent to 240

// Number coerced to string by concatenation
g = "100" + 10; // Equivalent to "10010"

// Test for equality of value
h = ("100.1" == 100.1); // Equivalent to true

// Test for identity of instantiation
i = ("100.1" === 100.1); // Equivalent to false

// Object coerced to string forcing number to be concatenated
j = (new Object) + 10; // Equivalent to "[object Object]10"

JavaScript Programmer's Reference

2312

See also: Add (+), Arithmetic operator, Bitwise operator, Boolean(), Cast operator,
Equal to (==), Equality expression, JSObject.toString(), Logical
operator, Math object, Math.abs(), Math.ceil(), Math.floor(),
Math.round(), Minima-maxima, Number, Relational expression, String,
String concatenate (+), ToBoolean, ToInt32, ToInteger, ToNumber,
ToObject, ToPrimitive, ToString, ToUint16, ToUint32

Cross-references:
ECMA 262 edition 2 – section – 9

ECMA 262 edition 3 – section – 9

Wrox Instant JavaScript – page – 35

Wrox Instant JavaScript – page – 37

TypeError object (Object/core)
A native error object based on the Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
Netscape – 6.0

Inherits from: Error object

N myError = new TypeError()

N myError = new TypeError(aNumber)
JavaScript syntax:

N myError = new TypeError(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

This sub-class of the Error object is used when an exception is caused by an operand having an
unexpected data type.

See also: catch(...), Error object, EvalError object, RangeError object,
ReferenceError object, SyntaxError object, throw, try ... catch
... finally, URIError object

Inheritance chain:
Error object

Cross-references:
ECMA 262 edition 3 – section – 15.1.4.14

ECMA 262 edition 3 – section – 15.11.6.5

T – typeof (Operator/unary)

2313

typeof (Operator/unary)
An operator that yields the type of an operand.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 1.0
Internet Explorer – 3.02
Netscape – 3.0
Opera – 3.0

Property/method value type: String primitive

- typeof anOperand
JavaScript syntax:

- typeof(anOperand)

Argument list: anOperand An object or variable to check for type

This operator produces a string that contains the operand's type.

The typeof operator inspects the operand and returns a string representing its type. The operand
is not evaluated. There are times when this is advantageous and can avoid a run-time error.

The string value returned depends on the operand type being evaluated. The typeof operator
returns these values:

Type Result

Undefined "undefined"

Infinity "number"

NaN "number"

Null "object"

Boolean primitive "boolean"

Number primitive "number"

String primitive "string"

Boolean() constructor "boolean"

Date() constructor "string"

Number() constructor "number"

RegExp() constructor "undefined"

String() constructor "string"

Boolean object instance "object"

Date object instance "object"

Math object instance "object"

Number object instance "object"

RegExp object instance "object"

Table continued on following page

JavaScript Programmer's Reference

2314

Type Result

String object instance "object"

Generic object instance "object"

Object not supporting a call interface "object"

Object that supports a call interface "function"

Other host objects Implementation defined

typeof any value "string"

Note that the values returned are lowercase and are not an exact match for the class of the operand.
String objects and primitive strings are both described as having a typeof "string" for instance.

In some documentation the typeof operator is referred to as a function. Since it has optional
parentheses and the operand is passed as an argument, it behaves as if it were a function.

The typeof operator is one of few ways in which you can use the contents of a variable that is not yet
defined. It will yield the undefined type for variables that have not yet had a value assigned to them.
And thus you can determine if it is safe to use them as an RValue in an assignment expression.

The associativity is right to left.

Refer to the operator precedence topic for details of execution order.

In JavaScript version 1.1, you can determine the difference between the undefined and null values.

In JavaScript version 1.3, the === operator will detect the difference.

You cannot distinguish between different kinds of objects. To do that you can compare the object
constructor property with one of the built-in types. You can ask the constructor property (if
there is one) for its name. Sometimes a toString() conversion on the object will yield a function
name and occasionally you may need to check prototype values or test for the existence of
properties. If all else fails, you have to assume that it's just an object of arbitrary type.

Warnings:
❑ The typeof operator is not available in Netscape version 2.02.

❑ In Microsoft environments, this is available most of the time, but does not work for certain objects. In
particular, there may some objects in WSH for which it is not supported.

Example code:
// Testing a string value
var aString = 'String text';
document.write(typeof(aString)); // Yields "string"

// Testing variables that exist but are not yet assigned
var aVar1;
document.write(typeof aVar1); // Yields "undefined"

// Testing variables that do not yet exist
document.write(typeof aVar2); // Yields "undefined"

T – typeof (Operator/unary)

2315

See also: Associativity, Cast operator, class, Enquiry functions, Equal to (==), Global
object, Grouping operator (), Identically equal to (===), NOT Equal to (!=), NOT
Identically equal to (!==), Object inspector, Operator, Operator Precedence,
Reference, Special type, Unary expression, Unary operator, void

Cross-references:
ECMA 262 edition 2 – section – 11.1.4

ECMA 262 edition 2 – section – 11.4.3

ECMA 262 edition 3 – section – 11.4.3

O'Reilly JavaScript Definitive Guide – page – 47

Wrox Instant JavaScript – page – 21

Wrox Instant JavaScript – page – 22

U object (Object/HTML)
An object that represents the font style controlled by the <U> HTML tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0
Deprecated

Inherits from: Element object

IE myU = myDocument.all.anElementID

IE myU = myDocument.all.tags("U")[anIndex]

IE myU = myDocument.all[aName]

- myU = myDocument.getElementById(anElementID)

- myU =
myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myU = myDocument.getElementsByTagName
("U")[anIndex]

HTML syntax: <U> ... </U>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

<U> tags and the objects that represent them are in-line elements. Placing them into a document
does not create a line break.

See also: Element object

U

U – UDI (Definition)

2317

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

UDI (Definition)
Universal Document Identifier.

This is another name for a URL. Arguably this is a sub-set of all the available URLs because it refers
specifically to a document and not a sound effect for example.

See also: URI, URL, URN

UIEvent object (Object/DOM)
This is part of the DOM level 2 user interface event set.

Availability: DOM level – 2
JavaScript – 1.5
Netscape version – 6.0

Inherits from: Event object

JavaScript syntax: N myUIEvent = new UIEvent()

Object properties: detail, view

Object methods: initUIEvent()

JavaScript Programmer's Reference

2318

The availability of the UIEvent object handling can be determined with the
Implementation.hasFeature() method call.

The available set of events is defined by HTML 4.0 and DOM level 0 with some additional events
added. These event types are enumerated in the DOM level 2 specification and are:

❑ DOMFocusIn

❑ DOMFocusOut

❑ DOMActivate

See also: AbstractView object, Event object,
Implementation.hasFeature(), MouseEvent object,
onBlur, onClick, onFocus

Property JavaScript JScript N IE Opera DOM Notes

detail 1.5 + - 6.0 + - - 2 + ReadOnly
view 1.5 + - 6.0 + - - 2 + ReadOnly

Method JavaScript JScript N IE Opera DOM Notes

initUIEvent() 1.5 + - 6.0 + - - 2 + -

Inheritance chain:
Event object

UIEvent.detail (Property)
Some detailed information about the Event object is made available as a numeric value.

Availability: DOM level – 2
JavaScript – 1.5
Netscape version – 6.0

Property/method value type: Number primitive

JavaScript syntax: N myUIEvent.detail

The value provided here depends on the Event type being inspected.

Property attributes:
ReadOnly.

U – UIEvent.initUIEvent() (Method)

2319

UIEvent.initUIEvent() (Method)
After creating a UIEvent object with document.createEvent(), it must be initialized with this
method call.

Availability: DOM level – 2
JavaScript – 1.5
Netscape version – 6.0

JavaScript syntax: N myUIEvent.initUIEvent(aType,
canBubble, canCancel, aView, aDetail)

aType A string containing the event type
canBubble A boolean flag indicating whether the event can

bubble
canCancel A boolean flag indicating whether the event can be

cancelled
aView A reference to an AbstractView object

Argument list:

aDetail A numeric detail value

A new event object is manufactured by calling the DocumentEvent.createEvent() method.
That event should have been defined with a type specified as "UIEvent". If it was, then it will
support an initUIEvent() method. This must be called before the event is dispatched, otherwise
the event object will not contain enough information for the event dispatcher/handler to make
sense of it and route it to the correct target objects.

The two boolean argument values define whether the event will be allowed to be cancelled, and
what type of propagation to use (bubble or capture).

The view argument refers to an AbstractView object which DOM level 2 describes and which
may not yet be well supported by any browser.

The detail value can be used to pass context information into the event handling chain.

See also: DocumentEvent.createEvent(),
MouseEvent.initMouseEvent()

UIEvent.view (Property)
A reference to the AbstractView object that generated the event.

Availability: DOM level – 2
JavaScript – 1.5
Netscape version – 6.0

Property/method value type: AbstractView object

JavaScript syntax: N myUIEvent.view

JavaScript Programmer's Reference

2320

A abstract view object is defined in the DOM level 2 views module. The support for this property in
Netscape 6.0 should extend to it providing a Window object. The support may not extend to the
complete view interface that allows you to select alternate document views.

Property attributes:
ReadOnly.

UL object (Object/HTML)
An object that encapsulates an unordered list in a tag.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0

Inherits from: Element object

IE myUL = myDocument.all.anElementID

IE myUL = myDocument.all.tags("UL")[anIndex]

IE myUL = myDocument.all[aName]

- myUL = myDocument.getElementById(anElementID)

- myUL = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myUL = myDocument.getElementsByTagName
("UL")[anIndex]

HTML syntax: ...

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: compact, start, type

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

The tag is a block-level tag. That means that it forces a line break before and after itself.

The DOM level 1 standard describes this as a UListElement object.

See also: DIR object, Element object, OL object

U – UL.compact (Property)

2321

Property JavaScript JScript N IE Opera DOM HTML Notes

compact 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
start 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object.

UL.compact (Property)
A switch that compacts the unordered list content to occupy less space on the screen.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0

Property/method value type: Boolean primitive

JavaScript syntax: - myUL.compact

The collection of LI objects are presented in the normal spaced-out style when the compact
property belonging to their owner OL object is set to false.

Setting the property to true should result in the list items being squeezed closer together.
However, the functionality is rarely supported on web browsers.

It's more likely that you'll apply CSS style attributes to the list to achieve the same effect.

JavaScript Programmer's Reference

2322

UL.type (Property)
A control for the type of listing style that is presented.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myUL.type

Although an unordered list does not support a sequence numbering scheme, they may be displayed
in a variety of different formats selected by this property.

You can override this on an item by item basis and so this property is related to the LI.type
property.

The following values are appropriate for this property:

❑ circle

❑ disc

❑ square

See also: LI.type, OL.type, style.listStyleType

Unary expression (Definition)
An operator prefixing an operand.

Availability: ECMAScript edition – 2

Unary expressions can also be considered to be prefix expressions and also operate on LValues.

See also: Add (+), delete, Expression, Logical NOT – complement (!), Prefix
decrement (--), Prefix increment (++), typeof, Unary operator, void

Cross-references:
ECMA 262 edition 2 – section – 11.4

ECMA 262 edition 3 – section – 11.4

U – Unary operator (Definition)

2323

Unary operator (Definition)
An operator that requires only one operand to create an expression.

Availability: ECMAScript edition – 2

Unary operators are those that operate on a single value or expression result.

Some of the unary operators use keywords to convey their meaning. Others are sequences of
punctuation characters. Here are the unary operators defined by ECMAScript:

Operator Meaning

+ Convert the operand to a numeric value.

++ Increment the numeric value of the operand.

- Convert the operand to a numeric value and negate it.

-- Decrement the numeric value of the operand.

~ Convert the operand to a 32 bit integer and perform a bitwise complement on it.

! Convert the operand to a boolean value and reverse its value.

new Invokes an object constructor

delete Used to delete a property from an object if it can be deleted.

void Regardless of the result of evaluating the expression that may be operated on, this will
always yield the undefined value.

Some of these operators have a different meaning when used with more than one operand.

See also: Add (+), Bitwise NOT – complement (~), delete, Expression, Logical NOT – complement
(!), Negation operator (-), Operator, Operator Precedence, Positive value (+), Postfix
operator, Prefix operator, Ternary operator, typeof, Unary expression, void

Cross-references:
ECMA 262 edition 2 – section – 11.4

ECMA 262 edition 3 – section – 11.4

Wrox Instant JavaScript – page – 19

JavaScript Programmer's Reference

2324

undefined (Constant/static)
A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition – 2
JavaScript – 1.3
JScript – 5.5
Internet Explorer – 5.5
Netscape version – 4.06

Property/method value type: Undefined primitive

The undefined value is a primitive value that is returned when a variable has not yet been assigned
a value.

In some implementations this value compares equal to the null value. They are not actually the
same, but this can sometimes provide a work-around for those implementations that do not
provide a way to explicitly test for an undefined value.

If a variable is declared and no value is assigned to it, then it will contain the undefined value. It
will exist and can be referred to in expressions and will affect them to the extent they can be
affected by the value 'undefined'.

If a variable has never been declared and it is referred to, a run-time error will result. It does not
exist let alone contain the 'undefined' value. There is one instance where referring to a non-existent
variable does not generate an error, and that is to use it as an LValue in an assignment. Only the =
operator can be used. The prefix and postfix increment/decrement operators should yield an error
and so should the compound assignment operators, since the value to the left does not exist until
after the assignment has taken place.

You cannot create an 'undefined' value explicitly in older interpreters since there is no keyword to
yield it as a constant. This is more of a problem with MSIE which only supported the undefined
keyword as of version 5.5 while Netscape has supported it since JavaScript 1.3. If you need to, you
can manufacture one of your own with this expression:

undefined = (void 0);

This whole area is somewhat mysterious and the (void 0) simulation really creates a null value
which some browsers cannot distinguish from the undefined value.

Warnings:
❑ Some implementations do not provide adequate protection against you corrupting this value. Be

careful not to assign your own values to this variable. It will lead to unpredictable results if you do.

❑ This is not available for use server-side with Netscape Enterprise Server 3.

U – Undefined behaviour (Definition)

2325

Example code:
// Assuming a or b has not been declared, this generates an error
a += 10;
// This doesn't
a = 10;
// This does
alert(b);

See also: Exception, Global object, null, Null literal, Range error, void

Cross-references:
ECMA 262 edition 2 – section – 4.3.9

ECMA 262 edition 3 – section – 4.3.9

O'Reilly JavaScript Definitive Guide – page – 47

Undefined behaviour (Definition)
Erroneous operations not described in the standard.

Undefined behavior is what happens when something goes wrong but the standard does not
provide any suggested behavior. In many languages, an attempt to divide by zero would yield an
undefined result. However JavaScript defines the NaN value for just such an occasion.

These situations generally manifest themselves as a run-time error which at the least would present
an alert to the user. Sometimes the implementation can catch these errors and may offer the
opportunity to stop executing scripts on that web page.

In some cases, the undefined behavior may degenerate to the worst case scenario where the hosting
application or even the environment itself is compromized and the system crashes. An example of
this is some versions of Netscape when presented with an <OBJECT> tag and some versions of
MSIE when onMouseover events cross from one DOM object to another. In both cases, the browser
crashes and does so in such a way that the underlying operating system is also stalled,
necessitating a complete reboot.

A portable script should not depend on any undefined behavior performing in a predictable way,
even if that behavior is benign. It is very likely that any undefined behavior will not survive
between versions of the implementation and almost certainly will not be portable across platforms.

See also: Behavior, Portability, Range error

undefined type (Type)
A native built-in type.

Availability: ECMAScript edition – 2

Property/method value type: Undefined primitive

JavaScript Programmer's Reference

2326

The undefined type has exactly one value, called undefined. It is returned by variables that have
not yet been assigned with a value.

This value is also returned in some browsers when referring to a part of the document object model
that is non-existent.

Sending a subsequent message to values that are currently undefined results in a run-time error.

See also: Cast operator, Special type, Type

Cross-references:
ECMA 262 edition 2 – section – 4.3.10

ECMA 262 edition 2 – section – 8.1

ECMA 262 edition 3 – section – 4.3.10

ECMA 262 edition 3 – section – 8.1

Wrox Instant JavaScript – page – 14

Undocumented features (Definition)
Aside from the features covered in official documentation, browsers support many other
hidden capabilities.

Warnings:
❑ There have always been undocumented features in the web browsers. Some of these were uncovered

during the preparation of this book and have been covered in their own topics.

❑ Generally, the undocumented features are methods and properties of objects that are not commonly
used and maybe an extension to the object that is platform specific. There are also objects that are
obscure and can only be discovered by inspection.

❑ Reading the standards documents, release notes, and manufacturer manuals, only reveals part
of the picture.

❑ The most powerful tool for uncovering these undocumented features is JavaScript itself. In particular
the for(... in ...) enumerator which will scan an object for any enumerable properties.
This won't reveal all the hidden features but it will uncover many of them.

❑ Armed with this knowledge, you can write inspection scripts to display the values of those
properties. Often they point at an object and if the property is undocumented, then it's likely the
object is as well.

❑ You can spend many hours examining a new browser release and learn much about how it's
organized internally. This helps to better understand DOM navigation and how to do 'extreme
JavaScript programming'.

❑ MSIE version 5.0 and 5.5 both introduce many interesting and undocumented features. Netscape
version 6.0 builds on that, and adds many more, in particular the sidebar. A great deal of Netscape's
user interface is written in JavaScript and by examining the Mozilla source code and the .js files
that are installed with it, you can learn and possibly customize your browsing experience.

See also: Netscape

U – unescape() (Function/global)

2327

unescape() (Function/global)
Un-URL-escape a string.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0
Deprecated

Property/method value type: String primitive

JavaScript syntax: - unescape(anInputString)

Argument list: anInputString A string to be converted

This function is the complement of the escape() function described in its own topic elsewhere.

A string that might have been escaped with the escape() function either locally or remotely, can
be converted back to a normal unescaped string with this function.

This function has Unicode support in MSIE version 4.

As far as ECMAScript is concerned, this is superceded in edition 3 with a set of generalized URI
handling functions. The JScript 5.5 documentation refers to this as a deprecated feature.

See also: Cast operator, decodeURI(), decodeURIComponent(),
encodeURI(), encodeURIComponent(), escape(),
Function property, Global object, URI handling functions

Property attributes:
DontEnum.

Cross-references:
ECMA 262 edition 2 – section – 15.1.2.5

ECMA 262 edition 3 – section – B.2.2

Unicode (Standard)
A character encoding standard.

Availability: ECMAScript edition – 2

JavaScript Programmer's Reference

2328

The Unicode standard is derived originally from ASCII. ASCII was an 8 bit coded character set with a
limited number of individual character values. Unicode is a 16 bit coding that supports all the
required characters for the major languages of the world, plus the technical symbols in common use.

Implementations of JavaScript that conform to the ECMA 262 standard must interpret character
values in accordance with the Unicode Standard, version 2.0, and ISO/IEC 10646-1 with UCS-2
(Universal Character Set) as the adopted encoding form, implementation level 3. If the adopted
10646 subset is not indicated, then it should be assumed to be the BMP subset, collection 300.

For most usage, the character set will be the lower 128 characters that roughly correspond to the
ASCII character table. However, internationalization and localization work in progress suggests
that non-English speaking users should be able to declare identifiers in their own natural language
with its particular character sets and special symbols. Internet web site domain name standards are
undergoing some revision to support double byte characters. The ECMAScript edition 3 improves
support for handling localized strings, numbers and dates.

The Unicode standard is due for updating to a new edition as the version 2.0 is somewhat old now
and does not support Euro currency symbols among other things. A version 3.0 standard is
reported to be on the way.

Unicode characters are more properly referred to as code points.

See also: Character set, Character-case mapping, Control character, Equal to (==), Greater than
(>), Greater than or equal to (>=), Identically equal to (===), isLower(), isUpper(),
Less than (<), Less than or equal to (<=), Locale-specific behavior, Multi-byte character,
NOT Equal to (!=), NOT Identically equal to (!==), String, String literal

Cross-references:
ECMA 262 edition 2 – section – 2

ECMA 262 edition 2 – section – 6

ECMA 262 edition 3 – section – 2

ECMA 262 edition 3 – section – 6

O'Reilly JavaScript Definitive Guide – page – 30

Web-references:
ftp://unicode.org/mail_list://unicode-request@unicode.org/
mailto://unicode-inc@unicode.org/
http://www.unicode.org/

ftp://unicode.org/mail_
list://unicode-request@unicode.org/
mailto://unicode-inc@unicode.org/
http://www.unicode.org/

U – Universal coordinated time (Standard)

2329

Universal coordinated time (Standard)
A universal standard time that is synchronized to GMT.

The universal coordinated time (AKA Universel Temps Cordonne – UTC) is a standard time value that
is based on an atomic clock, measured and calibrated according to astronomical observations of pulsars.

UTC is synchronized to Greenwich Mean Time which is coincident with the location of
the zero meridian.

Local time at any point on the earth's surface is computed relative to UTC by adding a positive or
negative offset to UTC. In general, the offsets are measured in complete hours of 60 minutes duration.

However there are some locations in the world where the offset is a fractional offset in hours. As a
general rule, each hour corresponds to a movement of 15 degrees further away from the meridian.
This is not completely strict since China spans almost 4 hours in terms of distance but is entirely in
one time-zone based on the time in Peking.

Some Islamic countries do not adopt the same time scale in any case, choosing instead to measure
the time from sunrise to sunset as 12 hours. Since days wax and wane according to the season, this
can cause some difficulty in converting local time to UTC and vice versa.

See also: Broken down time, Calendar time, Date and time, Daylight savings time
adjustment, java.util.Date, Time value

UniversalBrowserAccess (Security privilege)
A combination of both read and write access.

This is a combination of everything that UniversalBrowserRead and
UniversalBrowserWrite provide access control for in a single privilege.

See also: about: URL, Event object, Event.data, History object,
netscape.security.PrivilegeManager, onDragDrop,
PrivilegeManager object,
PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges,
Restricted access, Same origin, Security policy, self, Window.close()

UniversalBrowserRead (Security privilege)
A privilege to grant read access to browser internals.

Gives a script permission to read the properties of windows whose content comes from different
origins. This also controls script access to the history object among other things. Other internal
browser state information that is accessible via the about: URL is also controlled by this privilege.

This privilege is also necessary to read the data property of an event object that is passed to the
ondragdrop() event handler.

JavaScript Programmer's Reference

2330

See also: about: URL, Event object, Event.data, History object, History.current,
netscape.security.PrivilegeManager, onDragDrop,
PrivilegeManager object, PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges, Restricted
access, Same origin, Security policy

UniversalBrowserWrite (Security privilege)
A privilege that grants the ability to write to internal browser values.

This property allows scripts to close windows. Without this privilege, if a script opens a window, it
cannot create a window that is smaller than 100 pixels square. Scripts without this privilege also
cannot move a window off-screen, create one that is larger than the screen or create a window that
lacks a title-bar. Conferring this privilege allows scripts to do all these things. Without it, scripts
cannot hide from view or carry on running when the user thinks they have stopped.

This privilege grants the script permission to hide or show the various window furniture (menu-
bar, status-line, scroll-bars, tool-bar, location-bar, directory-bar or personal-bar). Without it, scripts
cannot change the visibility of these items.

It also affects event management. You cannot watch events in other windows if they come from
different sources without this privilege and you cannot set event object properties without it
either. The occasional bug in a browser lets you get round the security in odd ways.

This is how to put a toolbar back onto a window that didn't have one. You are supposed to require
privileges to do it, but it sometimes works regardless:

open('', '_top', 'status=0,toolbar=1');

Putting a toolbar back lets you view source because the menu is reinstated too.

See also: netscape.security.PrivilegeManager, PrivilegeManager object,
PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges, Restricted
access, Same origin, Security policy

UniversalFileRead (Security privilege)
A privilege to grant access to read a file in the file system.

If your script has this privilege, it can then select a file in the client file-system and upload it to the
server by means of a FileUpload object. This is done by setting the value property of that
FileUpload object.

If this capability is activated, the contents of any file on the local file-system can be presented to a
CGI script running on a web server.

See also: FileUpload object, FileUpload.value,
netscape.security.PrivilegeManager, PrivilegeManager object,
PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges, Restricted
access, Security policy

U – UniversalPreferencesRead (Security privilege)

2331

UniversalPreferencesRead (Security privilege)
A privilege that allows access to preferences information.

This privilege controls read access to preference settings. Scripts without it cannot see user
preference settings. It arbitrates the use of the Navigator.preference() method in read mode.

See also: History.next, History.previous, Navigator.preference(),
netscape.security.PrivilegeManager, PrivilegeManager object,
PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges, Restricted
access, Security policy

UniversalPreferencesWrite (Security privilege)
A privilege that grants the ability to change preferences settings.

This privilege controls whether scripts can change the current user preference settings. It controls
the use of the Navigator.preference() method.

See also: Navigator.preference(), Navigator.savePreferences(),
netscape.security.PrivilegeManager, PrivilegeManager object,
PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges, Restricted
access, Security policy

UniversalSendMail (Security privilege)
A privilege that grants the permission to send mail.

This controls whether a mailto: or news: URL can be used when submitting a form. A
confirmation dialog affirmative response is required if this privilege is not granted to the script.

The result of this is that an e-mail or Usenet news article is submitted that contains the user's
 e-mail address.

See also: mailto: URL, netscape.security.PrivilegeManager, news: URL,
PrivilegeManager object, PrivilegeManager.disablePrivilege(),
PrivilegeManager.enablePrivilege(), Requesting privileges, Restricted
access, Security policy

Unspecified behavior (Definition)
Correct behavior that is not specified in the standard.

Although the standard attempts to cover every possible eventuality, there will be parts of an
implementation that are not described in the standard. For example, the standard may not define
the order in which arguments to a function are to be processed. Some implementations may process
them from left to right and others from right to left.

See also: Behavior

mailto:or
mailto:URL

JavaScript Programmer's Reference

2332

untaint() (Function/global)
A deprecated method for controlling secure access to data values.

Availability: JavaScript – 1.1
Netscape version – 3.0
Deprecated

This was removed at version 1.2 of JavaScript. If you encounter it in a script you are maintaining, it
is probably wise to seek to have it removed, otherwise it is likely to cause a run-time error.

Warnings:
❑ DO NOT USE THIS FUNCTION!

See also: Navigator.taintEnabled(), taint()

unwatch() (Function/global)
Un-set a watch-point for a named property of an object.

Availability: JavaScript – 1.2
Netscape version – 4.0

JavaScript syntax: N myObject.unwatch(aProperty)

Argument list: aProperty A property to cease watching

This method is provided to ease the task of debugging JavaScript.

It is provided to disconnect the watcher that was set up with the watch() method.

Its calling circumstances are identical and you simply need to provide a complementary
unwatch() to deactivate the effects of a watch().

The new event model supported by Netscape version 6.0 and that already available in MSIE 5.0
present a propertyName property that belongs to the Event object. You can inspect that during
an onPropertyChanged event and achieve the same watch()/unwatch() behavior.

See also: Event, Event handler, Event management, Event model, Event object,
onPropertyChange, watch()

Cross-references:
Wrox Instant JavaScript ISBN 1-861001-27-4 – page – 56

U – URI (Definition)

2333

URI (Definition)
A Uniform Resource Identifier.

This is another name for a URL. Some commentators argue that a URI is different to a URL. One
identifies the target while the other locates it. There may be several copies at different URLs but
perhaps they would all be instances of the same URI.

A URI is composed like this (according to the ECMA standard):

scheme:first/second;third?fourth

See also: UDI, URL, URN

Cross-references:
RFC 1738, 1808

URI handling functions (Definition)
ECMA edition 3 describes a set of functions it refers to as URI handling properties.

Availability: ECMAScript edition – 3

According to the ECMA standard (edition 3), a URI is composed of component parts separated by
special characters. The special characters are:

❑ Colon (:)

❑ Slash (/)

❑ Semi-colon (;)

❑ Question-mark (?)

Other characters are reserved for future use.

A URI will need to be encoded without damaging these characters. Normal escape() function
techniques are not URI safe.

ECMA defines functions for encoding and decoding the entire URI and also functions for dealing
with its components individually.

See also: decodeURI(), decodeURIComponent(), encodeURI(),
encodeURIComponent(), escape(), unescape()

Cross-references:
ECMA 262 edition 3 – section – 15.1.3

JavaScript Programmer's Reference

2334

URIError object (Object/core)
A native error object based on the Error object.

Availability: ECMAScript edition – 3
JavaScript – 1.5
Netscape version – 6.0

N myError = new URIError()

N myError = new URIError(aNumber)
JavaScript syntax:

N myError = new URIError(aNumber, aText)

aNumber An error numberArgument list:
aText A text describing the error

Object properties: description, message, name, number

Object methods: toString()

This sub-class of the Error object is used when an exception is caused by one of the URI handler
functions being used inappropriately.

See also: catch(...), Error object, EvalError object, RangeError object,
ReferenceError object, SyntaxError object, throw, try ... catch ...
finally, TypeError object

Property JavaScript JScript N IE Opera NES ECMA Notes

description 1.5 + - 6.0 + - - - 3 + -
message 1.5 + - 6.0 + - - - 3 + -
name 1.5 + - 6.0 + - - - 3 + -
number 1.5 + - 6.0 + - - - 3 + -

Method JavaScript JScript N IE Opera NES ECMA Notes

toString() 1.5 + - 6.0 + - - - 3 + -

Cross-references:
ECMA 262 edition 3 – section – 15.1.4.15

ECMA 262 edition 3 – section – 15.11.6.6

URL (Definition)
A Uniform Resource Locator.

The URL is composed of several parts. The http: in the URL specifies a URL method, which is to
be used for retrieving the document or performing the action. There are several alternatives.

U – URL (Definition)

2335

The following URL methods may be found. Note that some of these are implementation dependent:

❑ http: – Hypertext Transfer Protocol. See RFC 2068

❑ https: – Secure Hypertext Transfer Protocol.

❑ ftp: – File Transfer Protocol. See RFC 1738

❑ news: – USENET news. See RFC 1738

❑ snews: – Secure USENET news.

❑ mailto: – Electronic mail address. See RFC 2368

❑ telnet: – Reference to interactive sessions. See RFC 1738

❑ file: – Host-specific file names. See RFC 1738

These are special Netscape URL request methods that invoke internal sub-systems. Some of these
may not be fully functional or may need to be activated by configuration options in the prefs.js file:

❑ nethelp: – Help manager.

❑ about: – Internal browser resources.

❑ mailbox: – Mailbox manager.

❑ view-source: – Source viewer.

❑ javascript: – JavaScript interpreter.

❑ livescript: – JavaScript interpreter.

❑ mocha: – JavaScript interpreter.

❑ imap: – internet message access protocol. See RFC 2192

❑ pop3: – Post Office Protocol v3. See RFC 2384

❑ ldap: – Local Directory Access Protocol.

❑ ldaps: – Local Directory Access Protocol (secure).

❑ rlogin: – Remote login.

❑ tn3270: – Interactive 3270 emulation sessions.

❑ wais: – Wide Area Information Servers. See RFC 1738

❑ wysiwyg: – JavaScript generated page content.

The MSIE browser also uses the clsid: URL to locate registered ActiveX controls that are loaded
with the <OBJECT> tag.

The IANA documention also lists these protocols:

❑ gopher: – The Gopher Protocol. See RFC 1738

❑ nntp: – USENET news using NNTP access. See RFC 1738

❑ prospero: – Prospero Directory Service. See RFC 1738

mailto:�

JavaScript Programmer's Reference

2336

❑ z39.50s: – Z39.50 Session. See RFC 2056

❑ z39.50r: – Z39.50 Retrieval. See RFC 2056

❑ cid: – content identifier. See RFC 2392

❑ mid: – message identifier. See RFC 2392

❑ vemmi: – versatile multimedia interface. See RFC 2122

❑ service: – service location. See RFC 2609

❑ nfs: – network file system protocol. See RFC 2224

❑ acap: – application configuration access protocol. See RFC 2244

❑ rtsp: – real time streaming protocol. See RFC 2326

❑ tip: – Transaction Internet Protocol. See RFC 2371

❑ data: – data. See RFC 2397

❑ dav: – dav. See RFC 2518

❑ opaquelocktoken: – opaquelocktoken. See RFC 2518

❑ sip: – session initiation protocol. See RFC 2543

❑ tel: – telephone. See RFC 2806

❑ fax: – fax. See RFC 2806

❑ modem: – modem. See RFC 2806

❑ afs: – Andrew File System global file names.

❑ mailserver: – Access to data available from mail servers

These are specified as part of the ATVEF standard to provide support for TV set top boxes:

❑ tv: – Display a TV picture where you might use an image.

❑ lid: – Local identifier for accessing cached and carousel delivered assets.

❑ uhttp: – Unidirectional (broadcast) HTTP content.

Warnings:
❑ As of autumn 2000, there are changes afoot to allow characters other than the English letters and

numbers to be used in URL values. The Verisign organisation will act as an arbiter of whether a URL
is valid but it may be composed of arabic and Chinese characters for example.

See also: about: URL, ATVEF, clsid: URL, file: URL, ftp: URL, http: URL, https: URL,
javascript: URL, mailbox: URL, mailto: URL, nethelp: URL, news: URL, snews: URL,
telnet: URL, UDI, URI, URN, view-source: URL

mailto:URL

U – Url object (Object/HTML)

2337

Url object (Object/HTML)
An object that represents URLs in Netscape but which has extensions in MSIE.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Inherits from:
Element object

JavaScript syntax: - myUrl = myDocument.links[anIndex]

Argument list: anIndex A reference to an element in a collection

Object properties:
charset, coords, hash, host, hostname, href,
hreflang, Methods, mimeType, name, nameProp,
pathname, port, protocol, protocolLong, rel, rev,
search, shape, tabIndex, target, text, type, urn, x,
y

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Objects of this type are contained in the document.links[] array.

Event handling support via properties containing function objects was added to Url objects at
version 1.1 of JavaScript.

See also: Anchor object, Area object, Document.links[], HyperLink object, LINK
object, LinkArray object, Location object, String.anchor(), String.link(),
Url.hash, Url.host, Url.hostname, Url.href, Url.name, Url.pathname,
Url.port, Url.protocol, Url.search, Url.target, Url.text

Property JavaScript JScript N IE Opera DOM HTML Notes

charset - - - - - - - -
coords 1.0 + 1.0 + 2.0 + 3.02 + - - - -
hash 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
host 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -
hostname 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
href 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
hreflang - - - - - - - -
Methods - 3.0 + - 4.0 + - - - -
mimeType - 3.0 + - 4.0 + - - - -
name 1.5 + 1.0 + 6.0 + 3.02 + - - - Warning
nameProp - 3.0 + - 4.0 + - - - -
pathname 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -

Table continued on following page

JavaScript Programmer's Reference

2338

Property JavaScript JScript N IE Opera DOM HTML Notes

port 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
protocol 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -
protocolLong - 3.0 + - 4.0 + - - - -
rel 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
rev 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
search 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -
shape 1.0 + 1.0 + 2.0 + 3.02 + - 1 + - -
tabIndex 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -
target 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - -
text 1.2 + - 4.0 + - - - - Warning
type 1.5 + 3.0 + 6.0 + 4.0 + - 1 + - -
urn - 3.0 + - 4.0 + - - - -
x 1.2 + - 4.0 + - - - - Warning,

Deprecated
y 1.2 + - 4.0 + - - - - Warning,

Deprecated

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onDblClick 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyPress 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onKeyUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseDown 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - 4.0 + Warning
onMouseOver 1.0 + 1.0 + 2.0 + 3.0 + 3.0 + - 4.0 + Warning
onMouseUp 1.2 + 3.0 + 4.0 + 4.0 + 3.0 + - 4.0 + Warning

Inheritance chain:
Element object, Node object

U – Url.charset (Property)

2339

Url.charset (Property)
The character set of the document pointed at by the HREF="… " HTML tag attribute of an anchor.

Property/method value type: String primitive

JavaScript syntax: none myUrl.charset

This would contain the character set being used by the document referred to by the HREF="..."
HTML tag attribute. For example the value "iso-8859-1" is likely to be returned but the local
variant of the browser and OS may affect the value you get.

This property might contain a value such as:

csISO5427Cyrillic

Details of other aliases can be located at the IANA registry.

See also: Anchor.charset, LINK.charset

Url.coords (Property)
The co-ordinates on screen where the object represented by the URL is located.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0

Property/method value type: Number primitive

JavaScript syntax: - myUrl.coords

When a shaped area is defined within an image map, the extent rectangle around the shape is defined
with the co-ordinates property. The value is defined with the COORDS="..." HTML tag attribute.

See also: Anchor.coords, Url.shape

JavaScript Programmer's Reference

2340

Url.hash (Property)
The hash delimited item at the end of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

- myUrl.hash
JavaScript syntax:

- myUrl.hash = aLocation

HTML syntax:
<LINK HREF="...">

Argument list: aLocation A new named location within the document

This property yields a text string that contains the hash suffix from the URL if there is one.

You can assign a new value to this property, which will become a new anchor location within
the document.

Warnings:
❑ This attribute may not work correctly when URLs are accessed from one frame to another in some

versions of MSIE. You should check your target platforms for compliance.

❑ If you assign a value to this property, you should omit the leading hash.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
Click
here

<SCRIPT>
//In testing, this did not work on Opera 5.0
document.write(document.links[0].hash);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, URL, Url object, Url.href, Url.pathname,
Url.port, Url.protocol, Url.search, Url.target

http://www.mydomain.com/folder/file.html#abcdef">Click

U – Url.host (Property)

2341

Url.host (Property)
The hostname and port number of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

- myUrl.host
JavaScript syntax:

- myUrl.host = aHost

HTML syntax: <LINK HREF="...">

Argument list: aHost A new hostname and optional port value

This property yields the hostname and colon delimited port number of the HREF value in an <A>
tag if there is one and an empty string if not.

You can redefine the host by assigning a new value to this property.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
document.write(document.links[0].host);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.host, URL, Url object, Url.href,
Url.pathname, Url.port, Url.protocol, Url.search,
Url.target

Url.hostname (Property)
The hostname of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

JavaScript Programmer's Reference

2342

- myUrl.hostname
JavaScript syntax:

- myUrl.hostname = aHostname

HTML syntax:
<LINK HREF="...">

Argument list: aHostname The name of a host

This property yields the host value of the HREF value in an <A> tag if there is one and an empty
string if not.

You can redefine the hostname by assigning a new value to this property.

Warnings:
❑ Be careful not to assign a port number with the host name, otherwise your new URL may acquire

two port numbers which makes it invalid.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
// In testing, this did not work on Opera 5.0
document.write(document.links[0].hostname);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.hostname, URL, Url object,
Url.href, Url.pathname, Url.port, Url.protocol,
Url.search, Url.target

Url.href (Property)
The complete HREF of an HREF URL if there is one.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

U – Url.hreflang (Property)

2343

- myUrl.href
JavaScript syntax:

- myUrl.href = aHREF

HTML syntax: <LINK HREF="...">

Argument list: aHREF A valid HREF value

This property yields a text string that contains the complete HREF value from the URL if there is
one and an empty string if not.

You can redefine the entire HREF content by assigning a new value to this property.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
document.write(document.links[0].href);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.href, Location.href, URL, Url
object, Url.hash, Url.host, Url.hostname, Url.pathname,
Url.port, Url.protocol, Url.search, Url.target

Url.hreflang (Property)
The language that the document at the HREF location is coded in.

Property/method value type: String primitive

JavaScript syntax: none myUrl.hreflang

This property should contain values that use the international language two-letter abbreviation
codes. These are not the same as the country codes, which are also two letter values.

Refer to the Language codes topic for a list of the available codes.

See also: Language codes, LINK.hreflang

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

JavaScript Programmer's Reference

2344

Url.Methods (Property)
A collection of methods belonging to the URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Collection object

JavaScript syntax: IE myUrl.Methods

HTML syntax: <LINK HREF="...">

The values here would be one of the valid methods for the HTTP protocol. It would be one
of the following:

❑ GET

❑ HEAD

❑ POST

❑ PUT

❑ DELETE

❑ OPTIONS

❑ TRACE

It is likely that only the GET and POST methods make any logical sense in this contents and on rare
occasions, the PUT method may be referred to although it is unusual to find a web server that
accepts documents with this request method.

See also: Anchor.Methods

Url.mimeType (Property)
The MIME type used to access the document pointed at by the URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myUrl.mimeType

The MSIE browser maps the file extension of the file belonging to the anchor to an extended
description of the file format, which it makes available through the mimeType property. Here is a
list of some mimeType values it pays special attention to.

U – Url.name (Property)

2345

File type MSIE expanded Mime type

.css Microsoft CSS1 Style Sheet (W3C would have been more
appropriate)

.gif GIF Image

.htc Microsoft HTML Component file for behaviours

.htm Microsoft HTML Document 4.0

.html Microsoft HTML Document 4.0

.jpg JPEG Image

.js Microsoft JScript File (this is a bit presumptuous)

.txt Text Document

.vbs Microsoft VBScript File

.xxx All unrecognized file types are returned as xxx File with no further
expansion

Microsoft assert that .htm and .html files are "Microsoft HTML" and .css files are "Microsoft
CSS1" style sheets. They also assert that .js files are "Microsoft JScript" files. This is not strictly
true because they don't own those file extensions across all platforms, nor indeed do they even own
them on the Windows platform.

See also: Anchor.mimeType

Url.name (Property)
In MSIE, the Url.name property is another way to access the anchor.name property.

Availability: JavaScript – 1.5
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myUrl.name

HTML syntax:

Argument list: aName A name for an anchor

The value of this property is defined by the NAME="..." tag attribute in the HTML that describes the
document. Without the NAME attribute the anchor object does not get added to the anchors[] array.

JavaScript Programmer's Reference

2346

Warnings:
❑ This only works on MSIE and not in Netscape. This is because Netscape maintains links and anchors

as strictly different things altogether. MSIE treats them as the same class of object.

❑ Logically there is not much purpose in changing the name of a link anyway.

❑ Be aware in MSIE that assigning a new name will affect the length of the document.anchors[]
array even though the item is rightly a link object.

See also: Anchor.name, Area.name, Document.links[],
LinkArray.length, Url object

Url.nameProp (Property)
The filename portion of the URL value.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myUrl.nameProp

This property extracts the filename portion of the HREF="..." value for this anchor object.

See also: Anchor.nameProp

Url.pathname (Property)
The pathname portion of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type:
String primitive

- myUrl.pathname
JavaScript syntax:

- myUrl.pathname = aPath

HTML syntax: <LINK HREF="...">

Argument list: aPath A new pathname value

This property yields a text string that contains the pathname value from the URL if there is one and
an empty string if not.

MSIE and Netscape support the use of this property as an LValue. If you write to it, the pathname
portion of the HREF value is modified. Be careful not to include a hash or search/query value.

U – Url.port (Property)

2347

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
document.write(document.links[0].pathname);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.pathname, URL, Url object,
Url.hash, Url.host, Url.hostname, Url.href,
Url.port, Url.protocol, Url.search, Url.target

Url.port (Property)
The port value of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

- myUrl.port
JavaScript syntax:

- myUrl.port = aPortNumber

HTML syntax: <LINK HREF="...">

Argument list: aPortNumber
A numeric value to be used as a port
number

This property yields the port number value of the HREF attribute in an <A> tag if there is one and
an empty string if not.

You can assign a value to this property as if it was an LValue.

Warnings:
❑ Do not include the delimiting colon when you assign a value to this property.

❑ Make sure you assign a numeric value. Non-numeric values will be rejected. This is to avoid the
possibility of a completely invalid port number being used.

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

JavaScript Programmer's Reference

2348

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
// In testing, this did not work in Opera 5.0
document.write(document.links[0].port);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.port, URL, Url object, Url.hash,
Url.host, Url.hostname, Url.href, Url.pathname,
Url.protocol, Url.search, Url.target

Url.protocol (Property)
The protocol value of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

- myUrl.protocolJavaScript syntax:
- myUrl.protocol = aProtocol

HTML syntax: <LINK HREF="...">

Argument list: aProtocol
A valid protocol for the URL that the
browser supports

This property yields text string that contains the protocol value from the URL if there is one and an
empty string if not.

Using this property as an LValue, you can redefine the protocol for the link if it has an HREF. You
might want to do this if you want to change the way you access a particular document.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

U – Url.protocolLong (Property)

2349

<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
// In testing, this did not work in Opera 5.0
document.write(document.links[0].protocol);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.protocol, IMG.protocol, URL, Url
object, Url.hash, Url.host, Url.hostname, Url.href,
Url.pathname, Url.port, Url.search, Url.target

Url.protocolLong (Property)
A long, human readable description of the protocol.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myUrl.protocolLong

Only the MSIE browser supports this, and it's of such limited use as to make one question its purpose.

See also: Anchor.protocolLong

Url.rel (Property)
The relationship of this element to the document pointed at by the URL.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myUrl.rel

HTML syntax: <LINK REL="...">

This is sometimes called a forward link. Although the HREF="..." HTML tag attribute is normally
the only means used to identify a target document, the browser is permitted to use the REL="..."
HTML tag attribute to decide whether to use the HREF value or how it should be used.

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

JavaScript Programmer's Reference

2350

The following HTML version 4.0 standard link types are permitted in this property:

❑ alternate

❑ appendix

❑ bookmark

❑ chapter

❑ contents

❑ copyright

❑ glossary

❑ help

❑ index

❑ next

❑ prev

❑ section

❑ start

❑ stylesheet

❑ subsection

MSIE adds these as well:

❑ same

❑ next

❑ parent

❑ previous

When used or tested within a script, any comparisons should be case insensitive.

See also: LINK.rel

Url.rev (Property)
The relationship of the document pointed at by the URL to this element.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myUrl.rev

U – Url.search (Property)

2351

This is sometimes called a reverse link. It defines the relationship between a document and another
that calls it. The linkage is defined from the destination document's viewpoint.

This property supports the same HTML version 4.0 standard link types as the rel property. Refer
to that topic for details.

When used or tested within a script, any comparisons should be case insensitive.

Because rel and rev properties are complementary, the values in them are likely to be related.
For example, if one contains the value "next" then the other is likely to contain "previous".

See also: LINK.rev

Url.search (Property)
The query portion of an HREF URL if there is one.

Availability: JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type:
String primitive

- myUrl.search
JavaScript syntax:

- myUrl.search = aString

HTML syntax: <LINK HREF="...">

Argument list: aString A new search string.

This property yields a text string that contains the query value from the URL if there is one and an
empty string if not.

This should really be called the query portion of the URL instead of the search attribute.

You can assign a new value to this property. This might be useful if the user needs to specify some
search parameters, which can be range checked at the client end. You will need to prefix the new
value with a question mark otherwise the assignment won't work.

It is probably named 'search' due to it having been used by search engines, and that being the way
people first noticed its widespread use when inspecting their web server's referrer logs.

JavaScript Programmer's Reference

2352

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE"
HREF="http://www.mydomain.com:8080/folder/file.html#abcdef">Click here

<SCRIPT>
// In testing, this did not work in Opera 5.0
document.write(document.links[0].search);
</SCRIPT>
</BODY>
</HTML>

See also: Anchor.hash, Anchor.search,
request.<urlExtension>, URL, Url object, Url.hash,
Url.host, Url.hostname, Url.href, Url.pathname,
Url.port, Url.protocol, Url.target

Url.shape (Property)
The shape of an area in an image map that this URL is associated with.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0

Property/method value type: String primitive

JavaScript syntax: - myUrl.shape

This property has a meaningful value when the Url object is instantiated via <MAP> and <AREA>
tag. It defines the shape of the hotspot within the extent rectangle, defined by the coords property.
It might contain one of the following values:

❑ default

❑ rect

❑ circle

❑ poly

See also: Anchor.shape, Area.shape, Url.coords

http://www.mydomain.com:8080/folder/file.html#abcdef">Click

U – Url.target (Property)

2353

Url.target (Property)
The target attribute of an <A> tag if there is one.

Availability: DOM level – 1
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape version – 2.0
Opera browser – 3.0

Property/method value type: String primitive

- myUrl.target
JavaScript syntax:

- myUrl.target = aTarget

HTML syntax: <LINK TARGET="...">

Argument list: aTarget The name of a new target window or frame

This property yields the value of the TARGET attribute in an <A>, <AREA> or <MAP> tag if there is
one and an empty string if not.

You can assign a new value to this property so that the URL will be directed to a different window
or frame.

Here are some example target values:

❑ _parent

❑ _self

❑ _top

❑ _blank

❑ Window name

❑ Frame name

Netscape version 6.0 adds the _content target value for use within HTML that exists in the sidebar
area. This ensures that the link is targeted at the main window and does not overwrite the sidebar.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<A NAME="EXAMPLE" HREF="http://www.mydomain.com:8080/folder/file.html#abcdef"
TARGET="_top">Click here

<SCRIPT>
document.write(document.links[0].target);
</SCRIPT>
</BODY>
</HTML>

http://www.mydomain.com:8080/folder/file.html#abcdef

JavaScript Programmer's Reference

2354

See also: Anchor.hash, Anchor.target, BASE.target,
Location.target, Map.target, URL, Url object,
Url.hash, Url.host, Url.hostname, Url.href,
Url.pathname, Url.port, Url.protocol, Url.search

Url.text (Property)
The text that appears between the <A> and tags.

Availability: JavaScript – 1.2
Netscape version – 4.0

Property/method value type:
String primitive on Netscape
Undefined value on MSIE

JavaScript syntax: N myUrl.text

This is equivalent to the innerText property that MSIE supports. On Netscape 4 Url.text is
ReadOnly while the Url.innerText property on MSIE 4 allows read and write access.

Assigning to this property in MSIE simply creates a text property but does not affect the text of
the anchor.

The value yielded by this property (when it does work) is the text between the <A> and tags.

Warnings:
❑ You will need to detect the browser type before attempting to use this property.

❑ Does not work properly on Netscape on the Macintosh.

❑ Even if it does work, you may only extract a portion of the text from the anchor.

See also: Anchor.text, Url object

Url.type (Property)
The MIME type of the document that the URL points at.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 3.0
Internet Explorer – 4.0
Netscape version – 6.0

Property/method value type: String primitive

JavaScript syntax: - myUrl.type

The MIME type of the document associated with the Url is accessible through the value of this property.

U – Url.urn (Property)

2355

Refer to the MIME type topic for details of the available MIME types you are likely to see in
this property.

See also: LINK.type

Url.urn (Property)
A URN value derived from the URL.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: String primitive

JavaScript syntax: IE myUrl.urn

Refer to:
URN

Url.x (Property)
The X co-ordinate of a link.

Availability: JavaScript – 1.2
Netscape version – 4.0
Deprecated

Property/method value type: Number primitive

JavaScript syntax: N myUrl.x

The horizontal position of the object in the display measured in pixels. You can use the x and y co-
ordinates of the object as targets of the scrollTo() method for the window it lives in.

Warnings:
❑ This is withdrawn from Netscape 6.0 and no longer supported.

See also: Location.x

Url.y (Property)
The Y co-ordinate of a link.

Availability: JavaScript – 1.2
Netscape version – 4.0
Deprecated

JavaScript Programmer's Reference

2356

Property/method value type: Number primitive

JavaScript syntax: N myUrl.y

The vertical position of the object in the display measured in pixels. You can use the x and y co-
ordinates of the object as targets of the scrollTo() method for the window it lives in.

Warnings:
❑ This is withdrawn from Netscape 6.0 and no longer supported.

See also: Location.y

URN (Definition)
A Uniform Resource Name.

The URN notation is an alternative means of formatting the URI portion of a URL. This is a
standard which is in the process of being defined and deployed. Details are available in RFC 2141.

The format is somewhat different to that of a URL placed in an HREF="..." HTML tag attribute.
It is not at present widely supported in browsers but may be in the future.

See also: UDI, URI, URL

User-generated object (Definition)
An object created under script control.

JavaScript allows the user (or script developer really) to create their own objects, properties and
methods. The prototypes for existing built-in objects can also be extended by the script developer.

This has generally been supported since the earliest versions of the main JavaScript interpreters. It
was made available in the WebTV platform effective from the Summer 2000 release. This means
that DHTML effects created by authoring tools such as DreamWeaver should work better in
WebTV boxes that are shipped after this date or are upgraded in the field.

See also: JellyScript

U – userDefined object (Object/DOM)

2357

userDefined object (Object/DOM)
You can define your own objects in several different ways.

Availability: DOM level – 1
JavaScript – 1.5
JScript – 5.0
Internet Explorer – 5.0
Netscape version – 6.0

- myObject = new Function()
JavaScript syntax:

- myObject = new Object()

Aside from the ways in which you can create custom objects with your own constructor functions,
you can also create your own HTML tags to make custom document elements.

Objects are instantiated from HTML tags and assume a class name from the HTML tag names in the
document. So you can invent your own tags that become objects in the document model in MSIE,
and inherit some basic capabilities from the environment. Netscape version introduces this
functionality at version 6.0.

See also: Object object

userProfile object (Object/JScript)
An object that encapsulates a user's profile within the system.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE myUserProfile = navigator.userProfile

Object methods:
addReadRequest(), clearRequest(), doReadRequest(),
getAttribute()

Through this object, a script can access details about the user from the profile that the system maintains.

This is accomplished by the arcane method of queueing requests for access. Then having queued all
the requests, you can ask the user for permission with a single dialog.

If the user grants permission, you can then access the userProfile values, after which the request
queue can be cleared.

Warnings:
❑ This is a not fully supported on some versions of MSIE for Macintosh.

See also: userProfile.addReadRequest(),
userProfile.clearRequest(), userProfile.doReadRequest(),
userProfile.getAttribute()

JavaScript Programmer's Reference

2358

Method JavaScript JScript N IE Opera Notes

addReadRequest() - 3.0 + - 4.0 + - -
clearRequest() - 3.0 + - 4.0 + - -
doReadRequest() - 3.0 + - 4.0 + - -
getAttribute() - 3.0 + - 4.0 + - ?

userProfile.addReadRequest() (Method)
Adds a request to read a property of the user profile. These are queued up to have permission
requested from the user.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE navigator.userProfile.addReadRequest
(anAttribute)

Argument list: anAttribute One of the valid vCard attribute names

This method adds a request to the queue. Each request denotes the parameters within the user
profile that the script needs to access. You may call this method several times, each time asking for
a different user preference. You won't initially be granted access to them until you have executed
the doReadRequest() method. If the user affirms that you can access these values, then on its
return, you can use the getAttribute() method to access the value you need. You can only
access values you have requested and which the user has affirmed.

Here is a list of all the user preference attributes that you can request:

❑ vCard.Business.City

❑ vCard.Business.Country

❑ vCard.Business.Fax

❑ vCard.Business.Phone

❑ vCard.Business.State

❑ vCard.Business.StreetAddress

❑ vCard.Business.URL

❑ vCard.Business.Zipcode

❑ vCard.Cellular

❑ vCard.Company

❑ vCard.Department

❑ vCard.DisplayName

❑ vCard.Email

❑ vCard.FirstName

❑ vCard.Home.City

❑ vCard.Home.Country

❑ vCard.Home.Fax

❑ vCard.Home.Phone

❑ vCard.Home.State

U – userProfile.clearRequest() (Method)

2359

❑ vCard.Home.StreetAddress

❑ vCard.Home.Zipcode

❑ vCard.Homepage

❑ vCard.JobTitle

❑ vCard.LastName

❑ vCard.MiddleName

❑ vCard.Notes

❑ vCard.Office

❑ vCard.Pager

See also: userProfile object, userProfile.clearRequest(),
userProfile.doReadRequest(), userProfile.getAttribute(),
vCard object

userProfile.clearRequest() (Method)
Clear all read requests from the queue.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE navigator.userProfile.clearRequest()

You should use this as soon as you have retrieved the necessary user information. It purges all
pending requests. If you don't use this call, then if you made some more requests, next time you
call the doReadRequest() method the user is asked for permission to access an ever increasing
list of preferences.

See also: userProfile object, userProfile.addReadRequest()

userProfile.doReadRequest() (Method)
Execute the current queue of read requests, asking the user for permission to access these
properties of the profile.

Availability: JScript – 3.0
Internet Explorer – 4.0

IE navigator.userProfile.doReadRequest(aCode)

IE navigator.userProfile.doReadRequest(aCode, aName)

IE navigator.userProfile.doReadRequest(aCode, aName,
aDomain)

IE navigator.userProfile.doReadRequest(aCode, aName,
aDomain, aPath)

JavaScript syntax:

IE navigator.userProfile.doReadRequest(aCode, aName,
aDomain, aPath, anExpire)

JavaScript Programmer's Reference

2360

aCode The use code selects an explanatory message
aDomain A server domain
aName A name denoting who is asking
anExpire An expiry date for the permissions

Argument list:

aPath A document path

Having queued some requests to read user preferences of course you would only request access to
ones you genuinely needed. Then you should call this method. It presents the user with a dialog
asking for permission to access the listed preference values. If the user decides to grant access, you
will have access to the user preferences, but only to the ones you have requested.

There are a set of optional parameters for this method although the first argument is mandatory.
These arguments are:

❑ A usage code. This is a numeric value but it is translated into an explanatory text in the dialog
presented to the user. This argument must be present.

❑ The name argument is available so that you can say who you are, when you ask for the permission to
access the user profile.

❑ You can specify a server domain, so that the permission granted can be recorded for that domain, to
save requests from that domain interrupting the user to ask for the same permission more than once.
This lasts for the session or until the expiry date if it is set.

❑ You can specify a document path within which permission granted will apply. This is much like the
way that cookies are allowed to be returned only for documents within a path tree. This lasts for the
session or until the expiry date if it is set.

❑ The last optional argument is an expiry date up to which time the permissions will be cached and
can be used again subject to the domain and path criteria being satisfied.

Here is a list of the usage codes for use with the first argument:

Code Description

0 System administrator request.
1 Research and development.
2 Complete current transaction.
3 Modify the site content.
4 Improve site content.
5 Notify about updates to the site.
6 Contacting for sales leads.
7 Linking to other information already collected.
8 Other unspecified purposes.
9 Disclosure to other parties for reasons of updating the site.
10 Disclosure to other parties for marketing purposes.
11 Disclosure to other parties for marketing purposes with your permission.
12 Disclosure to other parties for any other purposes.

See also: userProfile object, userProfile.addReadRequest()

U – userProfile.getAttribute() (Method)

2361

userProfile.getAttribute() (Method)
Get an attribute of the vCard object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type:
String primitive

JavaScript syntax: IE navigator.userProfile.getAttribute
(attribName)

Argument list: attribName The name of the required VCard attribute

If the user grants access to the userProfile data, this method will return the contents of the
named attribute. The same attribute names that were used when the request was queued should be
used here. These are all member attributes belonging to the vCard object.

You should call this method once for each attribute you need. If you have not been granted access
to any attribute you will simply receive a null value.

Warnings:
❑ Some documentary sources suggest that this method is largely dysfunctional on a variety of

platforms.

See also: userProfile object, userProfile.addReadRequest(),
vCard object

UTC (Standard)
Universel Temps Cordonne.

See also: Broken down time, Calendar time, Date and time, Daylight savings
time adjustment, Universal coordinated time

Utility objects (Definition)
Netscape Enterprise Server provides server-side utility objects to give assistance when running
server-side JavaScript.

Refer to:
Netscape Enterprise Server

Value of an expression (Definition)
The result obtained by evaluating an expression.

See also: LValue, RValue

Value preserving (Definition)
The act of converting values from one data type to another should preserve the value with no loss
of resolution.

See also: Integer promotion

Value property (Definition)
A property value of an object.

Availability: ECMAScript edition – 2

Property/method value type:
Depends on value type

A value property returns a generally constant value. Examples are the NaN and Infinity values
returned by core objects.

V

Error! No text of specified style in document.

2363

Warnings:
❑ Do not create your own object properties with the same name as internal or core value properties. If

you do, unpredictable behavior may result. Internal values should be protected against accidental
damage in this way and they would be, if the interpreter designers were infallible. Unfortunately, to
date, they have proven to everyone's dissatisfaction that infallibility is a lost art.

See also: Global object, Infinity, Internal Property, NaN

Cross-references:
ECMA 262 edition 2 – section – 15.1.1

ECMA 262 edition 3 – section – 15.1.1

valueOf() (Method)
Returns the primitive equivalent value of the receiving object.

Availability: JavaScript – 1.1
JScript – 3.0
Internet Explorer- 4.0
Netscape version – 3.0

Property/method value type: Primitive value

JavaScript syntax: - myObject.valueOf()

The primitive value of the receiving object is returned by this method.

This method is supported by virtually all objects due to the fact that it is available as a method of
the Global object in Netscape. Therefore it is inherited into the scope chain for every script and
function (method).

Host implementations will generally override this inherited support and provide specialized
output routines that yield a reasonable value.

Most likely the value will be a String primitive but it need not be. It could be any of the built-in
core primitive data types as specified in the ECMA-262 standard.

See also: Array.valueOf(), Boolean.valueOf(),
Date.valueOf(), Number, Number.valueOf(),
Object.valueOf(), String.valueOf()

Chapter number

2364

var (Declaration)
A variable declarator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer- 3.02
Netscape version – 2.0
Netscape Enterprise Server version – 2.0
Opera browser – 3.0

- var anIdentifier

- var anIdentifier = anInitialVaue

- var anIdentifier = anInitialVaue,
anIdentifier = anInitialVaue, ...

JavaScript syntax:

- var anIdentifier, anIdentifier, ...

anIdentifier The name of a variable.Argument list:
anInitialVaue An initial value for the variable

The var keyword prefaces a list of variable declarations. The list is terminated by a semi-colon.

Variables can be initialized in the declaration list that can declare a single variable or several at once.

If the var statement occurs inside a function declaration, the variables are defined with a scope
that is local to that function body. Otherwise they are defined with global scope and are created as
members of the Global object. When they are created as global variables, they take on the
DontDelete property attributes.

Variables are created when an execution scope is entered. A block does not indicate a new
execution scope, so variables cannot be created local to a code block unless it is a function body.
That means they are not local to an if(), while() or for() block of compound statements.

When variables are created, they are initialized to contain the value undefined. If an initializer is
added to the variable declaration, the value is assigned when the var statement is executed, which
may be some time after the execution scope has caused the variable to be created.

Warnings:
❑ If you fail to declare a variable with the var keyword, you will end up creating a global variable

automatically. If the variable should only have local scope and duration within a function, then you
may want to avoid this.

❑ You should use local variables as often as possible to avoid unwanted side effects.

Error! No text of specified style in document.

2365

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
var myGlobalVariable = 100;
function myLocalScope()
{
 var myLocalVariable = 200;
}

alert(myGlobalVariable);
alert(myLocalVariable);
</SCRIPT>
</BODY>
</HTML>

See also: = (Assign), Assign value (=), Assignment expression, Assignment operator,
Comma operator (,), Compound statement, function(...) ..., Global object,
Initialisation, Semi-colon (;), Statement, Variable Declaration, Variable
statement

Cross-references:
ECMA 262 edition 2 – section – 10.1.3

ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 10.1.3

ECMA 262 edition 3 – section – 12.2

VAR object (Object/HTML)
An object representing the HTML content delimited by the <VAR> tags.

Availability: JavaScript – 1.5
JScript – 3.0
Internet Explorer- 4.0
Netscape version – 6.0

Inherits from: Element object

IE myVAR = myDocument.all.anElementID

IE myVAR = myDocument.all.tags("VAR")[anIndex]

IE myVAR = myDocument.all[aName]

- myVAR = myDocument.getElementById(anElementID)

- myVAR = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myVAR =
myDocument.getElementsByTagName("VAR")[anIndex]

Chapter number

2366

HTML syntax: <VAR> ... </VAR>

anElementID The ID value of the element required
anIndex A reference to an element in a collection

Argument list:

aName An associative array reference

Event handlers:
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDblClick 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onDragStart - 3.0 + - 4.0 + - - - -
onFilterChange - 3.0 + - 4.0 + - - - -
onHelp - 3.0 + - 4.0 + - - - Warning
onKeyDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyPress 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onKeyUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseDown 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseMove 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOut 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseOver 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onMouseUp 1.5 + 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onSelectStart - 3.0 + - 4.0 + - - - -

Inheritance chain:
Element object, Node object

See also: Element object

Variable (Definition)
A named storage receptacle for script accessible values.

Availability: ECMAScript edition – 2

Variables are containers with names that you can manage from your JavaScript code. You can create
new ones when you need to, and change the values that are stored in them whenever you want.

Some variables are available only within the function block that is currently executing while others are
available all the time. The first kind are called local variables and the second are called global variables.

The availability of a variable is determined by the scope chain rules that are in force at any
particular time.

Error! No text of specified style in document.

2367

When a primitive value is stored in the variable, a unique copy of that value is associated with the
variable. However, when an object is stored in a variable, the variable contains only a reference to
the object. The object's reference count is incremented and is only decremented when a reference to
it is discarded. To discard the reference to an object that is contained in a variable, it must be
deleted explicitly. This will not affect the object but will reduce its reference count by one. When its
reference count is zero, the object can be purged from memory. Whether that happens or not
depends on the way that garbage collection is managed. It is possible that simply replacing an
object reference with some other value may not properly decrease the reference count in some
implementations. This can lead to a memory leak.

Example code:
// Simple variable declaration.
var myVariable;

// Declare and initialise a variable to a null value.
var emptyVar = null;

// Declare and initialise to a floating point value.
var priceData = 11.50;

// Assign a string value to a variable.
someString = "23 The Irons, Cleethorpes";

// Assign a boolean value to a variable.
aBooleanValue = true;

// Assign an exponential value to a variable.
scientificValue = 1.34e+17;

// Assign a hex value to a variable.
aHexValue = 0xFF34;

// Assign an octal value to a variable.
AnOctalValue = 0177;

// Use an unusual variable identifier name.
$_funnyVarName = "Be careful with var names";

// Declare and initialise several variables on one line.
var aaa = 1, bbb = 2, ccc = 3;

// Store an object reference in a variable.
myObject = new Object();

See also: Constant, Function arguments, Garbage collection, Memory leak, Reference
counting, Scope, Scope chain

Cross-references:
ECMA 262 edition 2 – section – 7.5

ECMA 262 edition 2 – section – 10.1.3

ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 7.6

Chapter number

2368

ECMA 262 edition 3 – section – 10.1.3

ECMA 262 edition 3 – section – 12.2

O'Reilly JavaScript Definitive Guide – page – 52

Wrox Instant JavaScript – page – 13

Variable Declaration (Definition)
Variable declarations are stored as properties in an object.

Availability: ECMAScript edition – 2

To create a variable called myVariable, you need to place a declaration like this in the script
source text:

var myVariable;

You can optionally assign an initial value to the variable as it is declared. Like this:

var myVariable = "Initial value";

The semantics of the ECMAScript standard dictate that variable declarations must follow Function
Declarations and Formal Parameter List processing.

The initial value of variables as they are declared is set to undefined. Any attributes of the property
in the variable object are defined by the type of code. If a variable already exists and a declaration
duplicates the same identifying name, the present value will not be replaced by the undefined
value. In particular, a variable declaration cannot replace a previously declared function definition
or formal parameter name.

See also: Declaration, Definition, Formal Parameter List, function(...) ..., Script Source Text,
var, Variable instantiation, Variable statement

Cross-references:
ECMA 262 edition 2 – section – 10.1.3

ECMA 262 edition 3 – section – 10.1.3

O'Reilly JavaScript Definitive Guide – page – 53

Error! No text of specified style in document.

2369

Variable instantiation (Definition)
Variables are local to one execution context.

Availability: ECMAScript edition – 2

Every execution context has its own variable object associated with it. Variables declared in the
source text are added as properties to the variable object.

This mechanism is a way of making sure that variables that are local to one execution context, do
not affect the values of variables in another.

In the case of global and eval() code, any functions that are declared in the script source text are
also added as properties of the variable object. JavaScript 1.3 and ECMAScript edition 3 introduces
nested functions which means they will be added too.

For function, anonymous, and implementation-supplied code contexts, any passed in arguments
(parameters) are also added as properties of the variable object.

Which particular variable object is used, and what attributes its properties take on depends on the
type of code.

See also: Execution context, Formal Parameter List, function(...) ..., Script Source Text,
Variable Declaration

Cross-references:
ECMA 262 edition 2 – section – 10.1.3

ECMA 262 edition 3 – section – 10.1.3

Variable name (Definition)
The name of a variable that is unique within a block but not necessarily within the scope chain.

See also: Variable, Identifier

Cross-references:
Wrox Instant JavaScript ISBN 1-861001-27-4 – page – 14

Variable statement (Definition)
A variable statement uses the var keyword to preface a list of variable declarations.

Availability: ECMAScript edition – 2

Chapter number

2370

A variable statement uses the var keyword to preface a list of variable declarations. The statement
is terminated with a semi-colon.

You can declare the variables one at a time or several at once with the same var statement.

When the variables are declared, an initial value can be assigned to them at the outset.

Variables can be declared inside a function body. When they are declared there, they become local
only to that function. When the function exits, the execution context is popped off the scope chain
and the variables are discarded.

Variables can also be declared and assigned within a for loop header block.

See also:
= (Assign), Assignment expression, delete, Statement, var, Variable
Declaration

Cross-references:
ECMA 262 edition 2 – section – 10.1.3

ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 10.1.3

ECMA 262 edition 3 – section – 12.2

VBArray object (Object/JScript)
A special JScript object for interacting with Visual Basic or VBScript array data.

Availability: JScript – 3.0
Internet Explorer- 4.0

IE myVBArray = new VBArray()

IE myVBArray = new VBArray(aVisBasArray)
JavaScript syntax:

IE myVBArray = VBArray

Argument list: aVisBasArray An array created inside Visual Basic or VBScript

Object methods:
dimensions(), getItem(), lbound(), toArray(), ubound()

Because VBScript is only available on the Windows platform, this object has limited use in
portable applications.

You might find it useful in an intranet scenario where you have total control over which browsers
are deployed to the users. In that case, you know that your pages will be viewed on a compatible
platform and can happily use this object with impunity.

Warnings:
❑ Because the Visual BASIC interpreter is only available on a limited number of platforms, this

functionality is likely to be limited only to those pages that need to work on the MSIE browser in a
Windows environment. This technique is unlikely to work in any other context.

Error! No text of specified style in document.

2371

Example code:
<!-- An example taken from Wrox: Professional JavaScript -->

<SCRIPT LANGUAGE="VBScript">
function getArray()
dim arrVB(1)
arrVB(0) = 100
arrVB(1) = 250
getArray = arrVB
End function
</SCRIPT>

<SCRIPT LANGUAGE="JavaScript">
var vbArr = new VBArray(getArray());
alert(vbArr.dimensions());
</SCRIPT>

Method JavaScript JScript N IE Opera Notes

dimensions() - 3.0 + - 4.0 + - -
getItem() - 3.0 + - 4.0 + - -
lbound() - 3.0 + - 4.0 + - -
toArray() - 3.0 + - 4.0 + - -
ubound() - 3.0 + - 4.0 + - -

VBArray() (Constructor)
A constructor function for creating new VBArray objects.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: VBArray object

JavaScript syntax: IE new VBArray(aVisBasArray)

Argument list: aVisBasArray
An array created inside Visual Basic or
VBScript

This constructor would be useful if you are interacting with Visual Basic scripts or functions that
need to have an array passed to them.

Chapter number

2372

VBArray.dimensions() (Method)
A method for requesting the number of dimensions of the array.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myVBArray.dimensions()

This tells you the number of axes in the array; you can then determine the maximum size they are
expected to occupy with the lbounds() and ubounds() methods.

VBArray.getItem() (Method)
An accessor method for retrieving items from the array.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: User defined

IE myVBArray.getItem(anIndex)
JavaScript syntax:

IE myVBArray.getItem(anIndex1, anIndex2,
...)

anIndex A reference to an item in the arrayArgument list:
anIndexN As many dimensions as are required to address the

required item

This acessor method is used to extract the values from cells within the array. You cannot address
the cells directly as you would with a native JavaScript, array although you can convert the
VBArray to a native JavaScript array. Be careful though with multi-dimensional arrays.

You can use the dimensions() method to find out how many axes there are for addressing a
multidimensional array. The lbounds() and ubounds() methods can be used to determine the
extent of those axes.

VBArray.lbound() (Method)
A method that returns the index position of the first element in the VBArray.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myVBArray.lbound(aDimension)

Argument list: aDimension
The dimension for which the lower bounds is
required

This is the lower boundary value for the indicated dimension. You will need to measure this for
each dimension individually if the array is multi-dimensional.

Error! No text of specified style in document.

2373

VBArray.toArray() (Method)
A conversion method for creating a JScript array object from a VBArray object.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Array object

JavaScript syntax: IE myVBArray.toArray()

You can convert an entire Visual Basic array to a JScript array. It is possible some data will get lost
along the way but simple data formats should survive the translation.

Multi-dimensional arrays consume a great deal more memory than you anticipate. The
compounded effect of adding each dimension usually increases storage by at least an order of
magnitude each time.

See also: Array object

VBArray.ubound() (Method)
A method that returns the index position of the last element in the VBArray.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

JavaScript syntax: IE myVBArray.ubound(aDimension)

Argument list:
aDimension The dimension for which the upper bounds is

required

This is the upper boundary value for the indicated dimension. You will need to measure this for
each dimension individually if the array is multi-dimensional.

vCard object (Object/JScript)
This is an object accessible only through the user preferences interface in the MSIE browser.

Availability: JScript – 3.0
Internet Explorer – 4.0

The vCard object is the parent object that contains all the user preferences settings.

Chapter number

2374

There are basically three kinds of properties:

❑ Those that are members of the vCard.Business object

❑ Those that are members of the vCard.Home object

❑ Those that are members of the vCard object directly

Here is a list of all the user preference attributes that you can request:

❑ vCard.Business.City

❑ vCard.Business.Country

❑ vCard.Business.Fax

❑ vCard.Business.Phone

❑ vCard.Business.State

❑ vCard.Business.StreetAddress

❑ vCard.Business.URL

❑ vCard.Business.Zipcode

❑ vCard.Cellular

❑ vCard.Company

❑ vCard.Department

❑ vCard.DisplayName

❑ vCard.Email

❑ vCard.FirstName

❑ vCard.Home.City

❑ vCard.Home.Country

❑ vCard.Home.Fax

❑ vCard.Home.Phone

❑ vCard.Home.State

❑ vCard.Home.StreetAddress

❑ vCard.Home.Zipcode

❑ vCard.Homepage

❑ vCard.JobTitle

❑ vCard.LastName

❑ vCard.MiddleName

❑ vCard.Notes

❑ vCard.Office

❑ vCard.Pager

See also: Navigator.userProfile, userProfile.addReadRequest(),
userProfile.getAttribute()

Error! No text of specified style in document.

2375

Version History (Background)
Historical details of JavaScript versions.

See also: JavaScript version, JScript version, History

view-source: URL (Request method)
You can use this for debugging in both Netscape and MSIE.

This is a useful debugging aid in some circumstances. Sometimes it is hard to download a file and
this may give you a workaround.

To display a window containing the HTMLized version of a directory in the client machine, try this:

view-source:/

It works at least on Netscape Navigator version 4.7 on a Macintosh. It likely works on other
platforms and versions of Netscape too.

The top level directory is the folder in which Netscape lives.

On a Macintosh at least, you can append a disk volume name, like this:

view-source:/MacintoshHD/

Beyond that you can build a path to any document in the Macintosh system, including this, which
is very interesting.

view-source:/MacintoshHD/System%20Folder/System

This displays a preferences file:

view-source:/MacintoshHD/System%20Folder/Preferences/Fetch%20Shortcuts

With this level of read access to your client machine, you might be able to browse various file
content that normally you wouldn't have time to do. Point at a file and its data is visible right there
on the screen in a browser window.

Warnings:
❑ Be very careful what you browse and how. This may void your warranty. Your mileage may vary.

You may corrupt your system although read-only access is unlikely to cause any harm.

See also: file: URL, javascript: URL, URL

Chapter number

2376

Visual filters (Definition)
The MSIE browser in version 4.0 and upwards now supports visual transition effects to use when
modifying page content or navigating from page to page.

These filters have been enhanced and added to at version 5.0 and 5.5 of JScript. As of version 5.5 of
MSIE, the performance of these filters is also optimized and enhanced.

The following kinds of visual filters are supported:

❑ Procedural surfaces

❑ Static filters

❑ Transitions

See also: Procedural surfaces, Static filters, style.filter

void (Operator/unary)
Force an undefined value to replace an operand.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 2.0
Internet Explorer – 4.0
Netscape version – 3.0
Opera browser – 3.0

Property/method value type: Undefined primitive

- void (anExpression)
JavaScript syntax:

- void anExpression

Argument list:
anExpression An expression to be evaluated

The void operator is used to allow the operand to be evaluated in the normal way (perhaps it is an
expression or function call), but to force an undefined value to be returned in its place.

A very useful place for this is when you create JavaScript: URLs. Making sure the result of the
expression is void helps the browser cope with the fact you are calling a script and not fetching a
document. Don't use void however if you want the result of the JavaScript execution to be used as
the content of a window.

This shows how to use void in a click handler:

Error! No text of specified style in document.

2377

This shows how to force JavaScript result data into a window:

<a HREF="javascript:'<HR>Some text here</HR>'">

You can also use the void operator to manufacture an undefined value in older browsers that have
no keyword already defined. The expression (void 0) is just such a value. This is unnecessary now
that JScript 5.5 supports an undefined value in compliance with ECMA edition 2.

The associativity is from right to left.

Refer to the operator precedence topic for details of execution order.

This keyword also represents a Java data type and the void keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

This technique is also useful if you want to evaluate an expression merely for the benefit of its side
effects and without any interest in the value it returns.

Warnings:
❑ The void keyword is not available in Netscape version 2.02, or MSIE version 3.02 or earlier versions

of either.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
if(document.myUndefinedProperty == (void 0))
{
 document.write("An undefined property has been referenced");
}
else
{
 document.write("A defined property was used");
}
</SCRIPT>
</BODY>
</HTML>

See also: Assignment expression, Associativity, javascript: URL, LiveConnect, Operator,
Operator Precedence, typeof, Unary expression, Unary operator, undefined

Cross-references:
ECMA 262 edition 2 – section – 11.4.2

ECMA 262 edition 3 – section – 11.4.2

Wrox Instant JavaScript – page – 21

Chapter number

2378

void expression (Definition)
An expression whose value is discarded and is evaluated purely for its side effects.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
function clickMe(aString)
{
 alert(aString);

 return "Some results to be ignored";
}
</SCRIPT>

Test
</BODY>
</HTML>

See also: Constant expression, Conversion, Side effect

volatile (Reserved word)
Reserved for future language enhancements.

The addition of this operator suggests that volatile identifiers may be supported in a later version
of the ECMAScript standard.

See also: const, Reserved word

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.3

WAP (Standard)
Wireless Application Protocol.

This is a popular standard for use in mobile computing devices. It uses a derivative of the
JavaScript standard language called WScript. This is constructed within a framework called WML,
which is built around a structure organized like a stack of cards rather than pages, although the
linkages between them are similar.

At the time of writing, this standard has become somewhat popular but there is already talk of it
only being a transitory system. Future mobile computing devices may use something more
sophisticated and therefore WAP may become less popular. Ultimately it will be made obsolete by
a new standard.

See also: Interpret, WML, WScript

watch() (Function/global)
Set a watch-point for a named property of an object.

Availability: JavaScript - 1.2
Netscape - 4.0

JavaScript syntax: N myObject.watch(aProperty, aHandler)

aHandler A handler that gets called when the property changesArgument list:
aProperty A property to watch

This method is provided to ease the task of debugging JavaScript.

It provides a general purpose way to call an unconnected function when a property value is
changed. The function does not need to be called explicitly. The function that gets called has a
particular API, which passes the following values:

❑ Property name

❑ Old value

❑ New value

Error! No text of specified style in document.

2381

It gets an opportunity to modify the new value or veto the change by returning the old value.
Whatever value is returned is stored in the property. You can carry out other JavaScript tasks
during this property call, although it is probably best to avoid making changes to other property
values with watch-points that call the same handler, because you could set up a recursive loop.

If you invoke the watch() method without specifying a receiving object, as if it were a function,
you are actually setting watch-points on global object properties. Since this is where global
variables live, you can monitor them as easily as object properties.

The new event model supported by Netscape 6.0 and that already available in MSIE 5.0 present a
propertyName property that belongs to the Event object. You can inspect that during an
onPropertyChanged event and achieve the same watch()/unwatch() behavior.

Example code:
<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
// Code works with Netscape 4+ only
// Define initial value for property
var XXX = 10;
// Define watch handler function
function watchHandler(aProp, anOldVal, aNewVal)
{
 var myText = "";

 myText += "Property name ...: ";
 myText += aProp;
 myText += "\n";

 myText += "Old value: ";
 myText += anOldVal;
 myText += "\n";

 myText += "New value: ";
 myText += aNewVal;
 myText += "\n";

 alert(myText);
 return aNewVal;
}
// Register the watch handler
watch("XXX", watchHandler);
</SCRIPT>
Some body text
<SCRIPT>
// Modify the property to trigger the watch handler
XXX = 1000;
</SCRIPT>
</BODY>
</HTML>

See also: Event, Event handler, Event management, Event model, Event object,
onPropertyChange, unwatch(), Watchpoint handler

Chapter number

2382

Cross-references:
Wrox Instant JavaScript – page - 56

Watchpoint handler (Interface)
The handler that is connected to a watch point has a special pre-defined API specification.

JavaScript syntax: - function anId(aProp, oldVal, newVal) {
someCode; return actualVal}

actualVal The value that will be placed into the property
anId A name for your handler function
aProp A formal parameter to pass the property name in
newVal A format parameter to pass the new value in

Argument list:

oldVal A formal parameter to pass the old value in

Your handler function is passed to the watch() method belonging to the object whose property
you want to monitor.

When that property changes, your handler will be called.

You will be passed the following:

❑ The property name

❑ The old value

❑ The new value

Whatever you return from this handler will be stored in the property and will become its new
value. This means you can return the old value, forcing the property to be read-only. You might
change the new value to something else. Perhaps you would force the value to be all uppercase
regardless of how it had been specified. You may even want to display an alert to warn the
operator that the property is being changed.

See also: watch()

Wave() (Filter/visual)
A visual filter for creating ripple effects.

Availability: JScript - 3.0
Internet Explorer - 4.0

Refer to:
filter - Wave()

Error! No text of specified style in document.

2383

.web (File extension)
A compiled JavaScript and HTML application for Netscape Enterprise Server.

See also: File extensions, Netscape Enterprise Server

Web browser (Definition)
A web browser can be used on a desktop computer, mobile device or TV set-top box to view web pages.

When JavaScript is built into a web browser, the interpreter is an integral part of the application.
However, it is technically possible to separate the JavaScript interpreter and provide it as a service
that is available to all applications in the system. This seems to be the way that JScript is going on
the Windows platform. Whether the browser-based script environment is truly sharing the
Windows Script Host facilities may depend on the browser version being used.

A web browser based interpreter will execute JavaScript that is provided in the following
containers:

❑ An HTML page

❑ A JavaScript include (.js file)

❑ A Java archive (.jar file)

To add JavaScript to your HTML pages, you need to add <SCRIPT> tags as containers for the script
source text.

See also: .jar, .java, .js, <SCRIPT>, Host environment, HTML, HTML file, iCab, Image object,
Image(), Image.Class, Internet Explorer, Netscape Navigator, OpenTV, Opera,
Platform, WebTV

Cross-references:
Wrox Instant JavaScript – page - 5

Wrox Instant JavaScript – page - 41

Web scripting (Definition)
Web browsers provide a host environment for client-side computation.

Availability: ECMAScript edition - 2

Chapter number

2384

Web browsers provide a host environment in which to view a web page downloaded from a remote
server or from a local file system. Scripts running in that browser use an object model
representation of the browser and the presently viewed document. These are called the Browser
Object Model and the Document Object Model respectively. There are objects to represent
windows, dialog boxes, alerts, text areas, anchors, frames and all the functionality that the browser
provides through its graphical user interface.

The host environment provides a means of connecting events to scripts and those scripts are then
triggered when the user interacts with the document or browser. Because the entire complex
provides a framework for execution and that execution is event driven, there is no main() function
as you would have with the C language for example.

JavaScript that executes in the browser is called client-side script code. Similar script code can be
executed in the web server as part of the web page request-response loop. That code would
generally be executed in a more serial fashion in response to a single event (generate a page). This
sort of activity is called server-side scripting.

A complete web-based application can be built with code distributed between the server and client
environments.

Cross-references:
ECMA 262 edition 2 – section - 4.1

ECMA 262 edition 3 – section - 4.1

Web server (Definition)
An application that delivers web content on request from a browser.

There are many web server products available. Here are a few:

Server Notes

Apache At the time of writing it is currently at version 1.3.12 although minor updates
happen all the time. The version 2.0 of Apache is now being seeded for beta
testing.

Enterprise Server A Netscape server product.

Fnord A free web server that runs on Windows platforms

IIS Internet Information Server. A Microsoft product

Intrabuilder A Borland server product.

PWS Personal Web Server. A Microsoft product

WebSite A commercial PC-based web server.

WebStar A Macintosh-based web server.

Cross-references:
Wrox Instant JavaScript – page - 5

Error! No text of specified style in document.

2385

WebTV (TV Set-top Box)
An analogue interactive TV set-top box.

Set-top boxes fall into several categories. From the point of view of a JavaScript developer, the most
important category is the 'Browser in a box' model. This takes a basic Netscape Navigator or MSIE
browser, places it inside a modest functionality PC and allows its page content to be overlaid on
top of the video that is broadcast off-air. The video can also be placed into a cell within the page to
allow the web page to be placed behind the video.

This is generally accomplished by allowing the tag to take its source from a new URL type.
Instead of an HTTP: protocol, the TV: protocol is used to trigger the video overlay hardware in
place of a web request.

The WebTV boxes have been available for several years and are an analogue TV-set top box.

The JellyScript interpreter used in the WebTV box underwent an upgrade in late Spring 2000 and was
released for public use during the Summer. It is generally referred to as the Summer 2000 release. You
should be somewhat careful with releases of interpreters in set-top boxes, as a new release is likely to
be presented for each manufacturing run. These will generally contain only minor changes. The set-
top boxes are also designed to allow the interpreters to be upgraded remotely when they connect.
This can lead to some interesting problems if you connect a UK PAL compatible box to an American
NTSC service because the video hardware is reconfigured and is then rendered unusable.

The integration of the web content with the TV service is by means of crossover links that are URL
values embedded into the video signal on a very low data rate channel that is part of the closed
captioning signal.

The URL is encoded with a checksum and arrives at a rate of about 100 characters per second.
Because the transfer is at such a low bit rate the URL values need to be short. When the box detects
a cross-over link, it displays a small icon in the top right of the screen and the user can elect to
request the associated page. The box then dials an ISP and the page is delivered in the normal way.

This is a quite good and workable enhancement to the TV service and although its deployment is
limited mainly to the United States, boxes have been trialled in Europe and elsewhere.

There are a few limitations imposed on the JavaScript supported by the box and the embedded
browser does not generally support extensions such as Java, plugins and ActiveX but nevertheless
you can still accomplish quite a lot.

See also: ATVEF, Interpret, JellyScript, Microsoft TV, Platform, Script execution, TV Set-top
boxes, Web browser

Cross-references:
http://developer.webtv.net/authoring/javascript/javascript.htm

http://developer.webtv.net/authoring/javascript/javascript.htm

Chapter number

2386

Week day (Time calculation)
A value between 0 and 6.

Availability: ECMAScript edition - 2

Property/method value type: Number primitive

Calculating weekdays is a simple modulo and offset of the day number derived from the time value.

The formula for calculating day number is shown here:

t = an instant in time measured in milliseconds relative to 01-January-1970 UTC.

msPerDay = 86400000

Day(t) = floor(t/msPerDay)

WeekDay(t) = (Day(t) + 4) modulo 7

The resulting values will be from 0 to 6 with Sunday being represented by 0 and Saturday by 6.

By way of proof, WeekDay(0) should yield 4 which represents Thursday, 01-January-1970.

Example code:
// Grab the time now in milliseconds
myMilliseconds = new Date().getTime();
document.write("Day number ...: ");
document.write(DayNumber(myMilliseconds));
document.write("
");
document.write("Weekday number ...: ");
document.write(WeekDayNumber(myMilliseconds));
document.write("
");
// Work out day number from milliseconds
function DayNumber(aMillisecondTime)
{
 msPerDay = 86400000
 myDay = Math.floor(aMillisecondTime/msPerDay);

 return myDay;
}
// Work out the week day number based on a thursday start
// This should be equivalent to Date.getDay().
function WeekDayNumber(aMillisecondTime)
{
 return ((DayNumber(aMillisecondTime) + 4) % 7);
}

See also: Day number, Time range

Error! No text of specified style in document.

2387

Cross-references:
ECMA 262 edition 2 – section - 15.9.1.6

ECMA 262 edition 3 – section - 15.9.1.6

Wheel() (Filter/transition)
Reveals the new image with a rotating wheel effect.

Availability: JScript - 5.5
Internet Explorer - 5.5

Refer to:
filter - Wheel()

while(...) ... (Iterator)
An iterator mechanism – a loop construct.

Availability: ECMAScript edition - 2
JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Netscape Enterprise Server version - 2.0
Opera - 3.0

- while (aCondition) { someCode }
JavaScript syntax:

- aLabel: while (aCondition) { someCode }

aCondition If true, the loop cycles once more
aLabel An optional identifier name for the loop

Argument list:

someCode The code that gets looped

Although the while() statement is an iterator, it is functionally related to the if() statement
since it will execute the statement block only as long as the condition evaluates to true.

The difference between if() and while() is that if() only processes the statement block once
whereas while() processes the statement block repeatedly until something causes the condition
enclosed in parentheses to evaluate to false.

A while loop tests the condition before execution of each pass through the loop. If a do loop is
supported by the implementations, it would test the condition after each pass through the loop.

A break statement can be used to terminate a while() iterator prematurely, perhaps within a
conditional test that is supplementary to the one in the while() heading.

Chapter number

2388

A continue statement can be used to initiate the next cycle of the while() iterator.

The unlabeled form is more commonly used and was available from earlier releases of the
JavaScript and JScript interpreters. Labeling was added later at version 1.2 but is not often used.

If a labeled continue is used, the condition is tested again, and the loop will cycle if necessary.

Warnings:
❑ Make sure that something in the statement block will cause the test condition to change to

false otherwise you will create an endless loop that can never exit. How this is dealt with
depends on what you are doing in the loop and whether the implementation can detect an
endless loop situation. It is likely the process containing the JavaScript interpreter will either
stall and hang or a runtime error may result. In extreme cases, the hosting application may
crash and on some platforms, the entire system may halt. At the very least, you could expect
memory and CPU usage to go up while the loop runs. On a multi-user system, you may be able
to use an administrator account to kill the offending process.

Example code:
// An enumerator built with a while statement
var a = 10;

while(a>0)
{
 document.write("*");
 a--;
}

document.write("
");

// a labelled enumerator
a=0;

while(a<20)
{
 document.write(a);
 a++;
 if(a>10)
 {
 continue;
 }
 document.write("*
");
}

See also: break, Compound statement, continue, do ... while(...), Flow control,
for(...) ..., for(... in ...) ..., if(...) ..., Iteration
statement, Label, Obfuscation, Off by one errors

Error! No text of specified style in document.

2389

Cross-references:
ECMA 262 edition 2 – section - 12.6.1

ECMA 262 edition 2 – section - 12.7

ECMA 262 edition 2 – section - 12.8

ECMA 262 edition 3 – section - 12.6.2

Wrox Instant JavaScript – page - 23

Wrox Instant JavaScript – page - 25

Whitespace (Definition)
Whitespace is used to separate tokens from one another.

Availability: ECMAScript edition - 2

Whitespace is used to improve the readability of the script and to separate tokens from one another
where they could be misinterpreted if they were concatenated together.

Whitespace characters are insignificant to the script execution apart from how they may affect the
interpretation of tokens. The placement of whitespace can affect the way an expression is
evaluated. For example:

a = 10000;

Will assign the value 10000 to the variable a, whereas:

a = 10 000;

May assign the value 10 to variable a but will likely generate a syntax error unless the interpreter is
especially forgiving. Strictly speaking the interpreter should reject this:

a = c ++;

Is also incorrect since the postfix operator is dissociated from the variable it operates on by the
whitespace in between.

Actually, there are remarkably few places that whitespace cannot be introduced.

Chapter number

2390

The following characters are considered to be whitespace in ECMAScript conforming JavaScript
interpreters:

Escape Sequence Unicode Value Name Symbol

\t \u0009 Tab <TAB>

- \u000B Vertical Tab <VT>

\f \u000C Form Feed <FF>

- \u0020 Space <SP>

- \00A0 No-break space <NBSP>

- Other category "Zs" Other Unicode space characters <USP>

ECMA edition 3 adds a couple of new whitespace character definitions. One is the non-breaking
space and the other refers generally to Unicode spacing characters.

See also: Lexical convention, Lexical element

Cross-references:
ECMA 262 edition 2 – section - 7.1

ECMA 262 edition 3 – section - 7.2

O'Reilly JavaScript Definitive Guide – page - 28

window (Property)
The window object also known as window.window.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Window object

- myWindow.window
JavaScript syntax:

- window

See also: self, Window.frame, Window.window

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2391

Window adornments (Definition)
Another name for the furniture that surrounds a window.

Refer to:
Window furniture

Window events (Definition)
Some events within the event-handling complex relate to windows and their behaviors.

These events are generally triggered by clicking on a window adornment or executing a method
call on a window that simulates the effect of clicking on a window border item.

See also: onBack, onForward, onLoad, onMove, onResize, onScroll, onUnload

Window feature list (Definition)
The list of available features that a window.open() method can apply.

The feature list defines how the new window that is to be created will appear. For example, you
can control the appearance of the various window adornments.

The features are generally presented as a name-value pair, thus:

name=value

The features are either available for use as simple switches and will control the functionality
depending on whether they are present or not. Some also support an optional value while others
require a mandatory value. Features requiring a mandatory value are generally numeric in nature.

The switching values may be "yes" or "1" to enable a feature and "no" or "0" to disable a feature.
Switching features can be used with no associated value. This will generally default to "yes".

As you would expect, MSIE and Netscape Navigator support a completely different and
incompatible set of features. Even controlling the same attribute of the window may require
different feature names to be used (for example width in MSIE and innerWidth/outerWidth in
Netscape Navigator).

The feature names are case insensitive but good style dictates that they are specified as shown in
the table.

Chapter number

2392

Here is a summary of the available features of a window.open() method:

Feature Value NNav MSIE Description

alwaysLowered - 4 No This dictates that a window should always be
at the bottom of the stack of windows.

alwaysRaised - 4 No This dictates that a window should always be
at the top of the stack of windows.

channelMode - No 4 Controls whether the window is presented in
channel mode.

dependent Yes/No 4 No If a window is not dependent, it can survive
after its creator has been closed.

directories Yes/No 4 No Controls the appearance of the Netscape
Navigator personal toolbar.

fullscreen - No 4 On the Windows platform, MSIE will fill the
screen with the window.

height Number 2 4 This will set the window to the height value.
hotkeys Yes/No 4 No Setting this value to "no" will disable most

keyboard shortcuts apart from the quit option.
innerHeight Number 4 No This will set the window to the height value

measured inside the window border.
innerWidth Number 4 No This will set the window to the width value

measured inside the window border.
left Number 4 4 The left edge of the window will be positioned

N pixels from the left edge of the screen.
location Yes/No 2 4 The location bar is visible.
menubar Yes/No 2 No The menubar is fully populated with menus

and menu items.
outerHeight Number 4 No This will set the window to the height value

measured outside the window border.
outerWidth Number 4 No This will set the window to the width value

measured outside the window border.
resizable Yes/No 2 4 The window displays resize facilities according

to the switch value.
screenX Number 4 No An alternative name for the left feature.
screenY Number 4 No An alternative name for the top feature.
scrollbars Yes/No 2 4 Scroll bars are explicitly displayed according to

the switch value.
status Yes/No 2 4 The window displays a status bar according to

the switch value.
toolbar Yes/No 2 4 The window displays a toolbar according to the

switch value.
top Number 4 4 The top edge of the window will positioned N

pixels from the top edge of the screen.
width Number 2 4 This will set the window to the width value.
z-lock - 4 No This dictates that a window should always be

at the same z-position in the stack of windows.

Error! No text of specified style in document.

2393

The following z-order feature switch values require the UniversalBrowserWrite privilege to be
enabled when they are used in Netscape Navigator:

❑ alwaysLowered

❑ alwaysRaised

❑ hotKeys

❑ z-lock

Warnings:
❑ You must not include spaces in the feature list. If you do include spaces in the feature list attribute,

the script may cause some versions of Netscape Navigator to crash horribly.

❑ Specifying a new window with a call to window.open() that has no arguments results in a
window that is completely unadorned in MSIE and one that has a full complement of furniture
(location, toolbar, etc.) in Netscape Navigator. Specifying even a single feature means the
browser will assume all others are deactivated.

❑ For those features that require UniversalBrowserWrite privilege in Netscape Navigator, the
time at which you request the feature may affect how the window is presented. This may be
platform specific and Netscape Navigator may behave differently according to the UI rules and
appearance of the hosting platform.

❑ In Netscape Navigator, on the Macintosh platform, setting the alwaysLowered feature will
place a window at the bottom of the Z stacking order. That window will be permanently
inactive as long as another window is open. It will be styled as a normal window. If the
alwaysRaised feature is applied, the window will be placed on top and will be permanently
active. In addition, the style is changed to that of a floating dialog (a Windoid in Macintosh UI
parlance). A floating dialog in the Macintosh has a slimmer window border and a window title
bar that is not as thick as a normal window.

❑ The fullscreen mode in the MSIE browser is not supported on the Macintosh platform.

❑ If you specify dimensions for the window, you must specify both the horizontal and vertical
values otherwise Netscape Navigator will ignore the setting. MSIE will happily take only one of
the values and provide a default for the other. Netscape Navigator requires both height and
width but doesn't care what sort. You can mix innerHeight and outerWidth or height and
innerWidth for example.

❑ Note that if the top or left values are specified on their own, the missing value will default to zero
in both MSIE and Netscape Navigator.

❑ The scrollbars feature forces scroll bars to be present or not according its value in both browsers.
However, scroll bars appear automatically if needed on MSIE even if the scrollbars feature is
omitted. On Netscape Navigator, they will only be available if you explicitly ask for them.

See also: Window furniture, Window.open()

Chapter number

2394

Window furniture (Definition)
The various controls and scrollbars on a window border. Sometimes called window
adornments or chrome.

The window furniture includes the following items:

❑ The location bar

❑ The active menu bar while the window is front-most

❑ The personal items bar

❑ Horizontal and vertical scrollbars

❑ The status bar at the bottom of the window

❑ The toolbar at the top of the window

These can all be controlled from scripts in Netscape Navigator. A script is always allowed to
modify its own window with a call like this:

open("", "_top", aFeatureList)

It may require privileges to be enabled if it is going to alter another window (depending on the
source of each window's documents). They can also be controlled in MSIE but only when a window
is created with the window.open() method.

See also: Window feature list, Window.locationbar, Window.menubar,
Window.personalbar, Window.scrollbars, Window.statusbar,
Window.toolbar

Window object (Object/browser)
An object representing a window or frame. This object exposes methods, properties, and events
associated with it to the script.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

- myWindow = aFrameName

- myWindow = frames[anIndex]

- myWindow = opener

- myWindow = parent

- myWindow = self

- myWindow = top

- myWindow = window

- myWindow = window.open()

IE myWindow = document.parentWindow

JavaScript syntax:

IE myWindow = frame

Error! No text of specified style in document.

2395

anIndex An index to a window objectArgument list:
aFrameName The name of a frame in the window

Object properties:
clientInformation, clipboardData, closed, crypto,
defaultStatus, dialogArguments, dialogHeight,
dialogLeft, dialogTop, dialogWidth, document, event,
external, frame, frameRate, history, innerHeight,
innerWidth, java, length, location, locationbar, Math,
menubar, name, navigator, netscape, offScreenBuffering,
opener, outerHeight, outerWidth, Packages, pageXOffset,
pageYOffset, parent, personalbar, pkcs11, returnValue,
screen, screenLeft, screenTop, screenX, screenY,
scrollbars, secure, self, sidebar, status, statusbar,
sun, toolbar, top, window

Object methods:
alert(), attachEvent(), back(), blur(),
clearInterval(), clearTimeout(), close(), confirm(),
detachEvent(), disableExternalCapture(),
enableExternalCapture(), execScript(), find(), focus(),
forward(), home(), moveBy(), moveTo(), navigate(),
open(), print(), prompt(), resizeBy(), resizeTo(),
scroll(), scrollBy(), scrollTo(), setHotkeys(),
setInterval(), setResizable(), setTimeout(),
setZOptions(), showHelp(), showModalDialog(),
showModelessDialog(), stop()

Functions:
atob(), btoa(), captureEvents(), handleEvent(),
releaseEvents(), routeEvent()

Event handlers:
onAfterPrint, onBeforePrint, onBeforeUnload, onBlur,
onDragDrop, onError, onFocus, onHelp, onLoad,
onMouseMove, onMove, onResize, onScroll, onUnload

Collections: frames[]

The window object was introduced when JavaScript was made available at version 1.0. It has been
revised several times and is likely to gain new functionality with every release.

This object is added to the scope chain as the global object when scripts are executed in a web browser.
This means that the properties and methods are available without needing the window prefix.

In a web browser this IS the global object. Adding properties (variables) during script execution
adds them to the window object for the window in which the page containing the script is loaded.

The window represents the browser container that the document object lives in.

Since the on-screen window persists as long as the window is open, you might think it may be a
useful place to store some session state data between documents. Clearly, storing session data in a
document object is no use if the document is going to be discarded and replaced. However,
anything created by a script belonging to a window is going to get zapped when the document
goes away, so you cannot store persistent values in the window object like that because the global
object for a web page is recreated each time a page is loaded.

Storing session state data is best accomplished with a frame-set and some accessor scripts that are
called within it.

Event handling support via properties containing function objects was added to window objects in
version 1.1 of JavaScript.

Chapter number

2396

Warnings:
❑ Be aware that if you store a reference to a window object and the window is closed, if you don't

dispose of the reference to the window object then it cannot be garbage collected. A window object
with no associated window is not much use unless you need to keep the object persistent due to
having added some properties to it. If this is the case, then, arguably, the window object was the
wrong place to put such things.

See also: BODY object, captureEvents(), Collection object, Document object,
Document.activeElement, Document.captureEvents(),
Document.frames[], Document.parentWindow,
Document.releaseEvents(), EventCapturer object, Frame object,
Frames object, Global object, IFRAME object, Layer.captureEvents(),
Layer.releaseEvents(), Layer.window, self, Window.frame

Property JavaScript JScript N IE Opera DOM HTML Notes

client
Information

 - 3.0 + - 4.0 + - - - Warning,
ReadOnly,
DontEnum.

clipboardData - 5.0 + - 5.0 + - - - -
closed 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning,

ReadOnly.
crypto 1.2 + - 4.04 + - - - - ReadOnly.
defaultStatus 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
dialog
Arguments

 - 3.0 + - 4.0 + - - - ReadOnly.

dialogHeight - 3.0 + - 4.0 + - - - -
dialogLeft - 3.0 + - 4.0 + - - - -
dialogTop - 3.0 + - 4.0 + - - - -
dialogWidth - 3.0 + - 4.0 + - - - -
document 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning,

ReadOnly.
event - 3.0 + - 4.0 + - - - Warning,

ReadOnly.
external - 5.0 + - 5.0 + - - - -
frame - 5.0 + - 5.0 + - - - Warning,

ReadOnly.
frameRate 1.2 + - 4.0 + - - - - ReadOnly.
history 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning,

ReadOnly.
innerHeight 1.2 + - 4.0 + - 5.0 + - - Warning
innerWidth 1.2 + - 4.0 + - 5.0 + - - Warning
java 1.1 + - 3.0 + - - - - ReadOnly.

Table continued on following page

Error! No text of specified style in document.

2397

Property JavaScript JScript N IE Opera DOM HTML Notes

length 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - ReadOnly.
location 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning,

ReadOnly.
locationbar 1.2 + - 4.0 + - 5.0 + - - Warning,

ReadOnly.
Math 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
menubar 1.2 + - 4.0 + - - - - Warning,

ReadOnly.
name 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + 1 + - Warning
navigator 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning,

ReadOnly.
netscape 1.1 + - 3.0 + - - - - ReadOnly.
offScreen
Buffering

1.2 + 3.0 + 4.0 + 4.0 + - - - Warning

opener 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning,
ReadOnly.

outerHeight 1.2 + - 4.0 + - 5.0 + - - Warning,
ReadOnly.

outerWidth 1.2 + - 4.0 + - 5.0 + - - Warning,
ReadOnly.

Packages 1.1 + - 3.0 + - 3.0 + - - ReadOnly.
pageXOffset 1.2 + - 4.0 + - 5.0 + - - ReadOnly.
pageYOffset 1.2 + - 4.0 + - 5.0 + - - ReadOnly.
parent 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning,

ReadOnly.
personalbar 1.2 + - 4.0 + - - - - Warning,

ReadOnly.
pkcs11 1.2 + - 4.04 + - - - - ReadOnly.
returnValue - 3.0 + - 4.0 + - - - Warning
screen 1.2 + 3.0 + 4.0 + 4.0 + 5.0 + - - Warning,

ReadOnly.
screenLeft - 5.0 + - 5.0 + - - - ReadOnly.
screenTop - 5.0 + - 5.0 + - - - ReadOnly.
screenX 1.2 + - 4.0 + - - - - -
screenY 1.2 + - 4.0 + - - - - -
scrollbars 1.2 + - 4.0 + - - - - Warning,

ReadOnly.
secure 1.2 + - 4.0 + - - - - ReadOnly.
self 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - ReadOnly.
sidebar 1.5 + - 6.0 + - - - - -

Table continued on following page

Chapter number

2398

Property JavaScript JScript N IE Opera DOM HTML Notes

status 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
statusbar 1.2 + - 4.0 + - - - - Warning,

ReadOnly.
sun 1.1 + - 3.0 + - - - - ReadOnly.
toolbar 1.2 + - 4.0 + - - - - Warning,

ReadOnly.
top 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning,

ReadOnly.
window 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning,

ReadOnly.

Method JavaScript JScript N IE Opera DOM HTML Notes

alert() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
attachEvent() - 5.0 + - 5.0 + - - - Warning
back() 1.2 + - 4.0 + - - - - Warning
blur() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + 1 + - Warning
clear
Interval()

1.2 + 3.0 + 4.0 + 4.0 + - - - Warning

clear
Timeout()

1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning

close() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
confirm() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - -
detachEvent() - 5.0 + - 5.0 + - - - -
disable
External
Capture()

1.2 + - 4.0 + - - - - Warning

enable
External
Capture()

1.2 + - 4.0 + - - - - Warning

execScript() - 3.0 + - 4.0 + - - - -
find() 1.2 + - 4.0 + - - - - -
focus() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
forward() 1.2 + - 4.0 + - - - - Warning
home() 1.2 + - 4.0 + - - - - -
moveBy() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
moveTo() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
navigate() - 1.0 + - 3.02 + - - - Warning
open() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
print() 1.2 + 5.0 + 4.0 + 5.0 + - - - Warning
prompt() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
resizeBy() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning

Error! No text of specified style in document.

2399

Property JavaScript JScript N IE Opera DOM HTML Notes

resizeTo() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
scroll() 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning,

Deprecated
scrollBy() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
scrollTo() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
setHotkeys() 1.2 + - 4.0 + - - - - Warning
setInterval() 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
Set
Resizable()

1.2 + - 4.0 + - - - - Warning

setTimeout() 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
setZOptions() 1.2 + - 4.0 + - - - - Warning
showHelp() - 3.0 + - 4.0 + - - - Warning
showModal
Dialog()

 - 3.0 + - 4.0 + - - - Warning

showModeless
Dialog()

 - 5.0 + - 5.0 + - - - -

stop() 1.2 + - 4.0 + - - - - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onAfterPrint - 5.0 + - 5.0 + - - - -
onBeforePrint - 5.0 + - 5.0 + - - - -
onBefore
Unload

 - 3.0 + - 4.0 + - - - -

onBlur 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onDragDrop 1.2 + - 4.0 + - - - - -
onError 1.1 + 3.0 + 3.0 + 4.0 + 3.0 + - - Warning
onFocus 1.0 + 3.0 + 2.0 + 4.0 + 3.0 + - - Warning
onHelp - 3.0 + - 4.0 + - - - Warning
onLoad 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning
onMouseMove 1.2 + 3.0 + 4.0 + 4.0 + - - 4.0 + Warning
onMove 1.2 + - 4.0 + - - - - -
onResize 1.2 + 3.0 + 4.0 + 4.0 + - - - Warning
onScroll - 3.0 + - 4.0 + - - - -
onUnload 1.0 + 1.0 + 2.0 + 3.02 + 3.0 + - - Warning

Chapter number

2400

Window.alert() (Method)
Present an alerting dialog box.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: undefined

- alert(aString)
JavaScript syntax:

- myWindow.alert(aString)

Argument list: aString Some text to display in the alert box

This presents a dialog containing the warning message and an OK button.

Note that the text that is presented in the dialog is unformatted text and you cannot use HTML in
the dialog box.

The title bar of the dialog box cannot be changed from its default setting that tells you that the
dialog was invoked by JavaScript. In some browsers, it may just display the name of the browser.
This is intended to stop script programmers from masquerading their dialog boxes as those of
operating system diagnostics and login screens.

The alert() dialog box is modal on most platforms. It also blocks the script from continuing
except on some versions of Netscape Navigator on Unix platforms. This behavior may become
more common as desktop operating systems become more Unix-like and the Netscape Navigator
core source code is deployed on newer operating systems. It is possible that this behavior will be
exhibited on Mac OS X.

This method is useful for debugging. You can use it much like you would have used a printf() in C
language debugging. Using alert() can sometimes be useful as an observable effect of calling a
function or event handler. If you don't see the alert box, it’s likely the event didn't call your handler.

You may be able to accomplish some rudimentary formatting but realistically due to font
differences on platforms the only meaningful formatting is to place newline characters (\n) into the
text to introduce a line break and to insert leading spaces for indentation.

This method does not return any meaningful value and if it is used in an assignment, the value
undefined will be used.

Error! No text of specified style in document.

2401

Warnings:
❑ Be aware that the dialog may be modal but that the script may or may not continue while the

alert() dialog is displayed. It depends on the platform. On Windows, the script execution pauses
until the OK button is clicked. On UNIX, the alert is displayed by a different process or thread and
the script execution continues. If you need truly modal behavior you should consider the
confirm() or prompt() dialogs instead.

See also: Debugging - client-side, Dialog boxes, Dialog object, Frame object,
Window object, Window.confirm(), Window.prompt()

Cross-references:
Wrox Instant JavaScript – page - 78

Window.atob() (Function)
Decode some base-64 encoded data.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: String primitive

N atob(aBase64String)
JavaScript syntax:

N myWindow.atob(aBase64String)

Argument list: aBase64String A string containing base-64 encoded data

This function provides a means of decoding base-64 encoded values which represent an encoded
form of some binary data. This encoding can be applied to text too, but is most useful where you
have a block of non-textual content.

The base-64 data is decoded and converted to a block of binary data. This is then stored in a string
primitive and returned to the caller as the result of the method.

To extract the binary data from the string, you will need to parse the string a character at a time
and extract the numeric character value with the String.charCodeAt() method. You can
modify the binary data directly by storing numeric values at each character position.

Note that the string will contain a sequence of 8-bit bytes and so you will need to be careful to
range-limit any values that you store in the binary string.

The result is a block of binary data in a string primitive. This is somewhat cumbersome and not
likely to be much used outside of a mail-reading client.

See also: String.charAt(), String.charCodeAt(),
String.fromCharCode(), Window.btoa()

Chapter number

2402

Window.attachEvent() (Method)
A means of attaching events to windows and documents.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type: Boolean primitive

IE attachEvent(anEventName,
anEventHandler)JavaScript syntax:

IE myWindow.attachEvent
(anEventName, anEventHandler)

anEventHandler A reference to an event handler functionArgument list:
anEventName The name of an event to be handled

This is part of the behavior handling in MSIE which involves the use of style sheets and .htc files.
It is a way of binding a function to an event so that when the event fires, the function is called. It
can be applied in a more general way than just with behaviors.

The mechanism is quite straightforward to apply. First, create a style that can be used to attach the
script to an HTML element. In that style, refer to a fragment of JavaScript contained in an external
file. That external file is called an HTML Component or HTC. It is stored in an .htc file. The .htc
file is invoked in a similar way to the <SCRIPT SRC="..."> mechanism.

Then, in that .htc file, you create a handler script that attaches itself to whatever event you want
the handler to be connected to. This attachEvent() method is what is used to accomplish that.

When the browser loads the page, the .htc file is loaded and installed and the script registers itself
with the event trapping mechanisms in the browser. When the event fires, the handler script in the
HTML component is executed.

There are many advantages regarding code re-use and efficiency that this technique facilitates.
However, the downside is that the HTML components can result in a large number of additional
requests for separate items from the web server and this can be detrimental to performance. So
detrimental, in fact, that it is possible that the items may not all be loaded by the time the user is
ready to interact with the page.

Two events are triggered which can be used to manage this scenario more elegantly. These are the
onContentReady and onDocumentReady events. They are sent to the behavior script as a
notification so you can take some action internally to prime your handler. These events would
typically cause the behavior handler to set flags internally that can be checked when the handler is
invoked by the user. Those flags can then lock out any interaction with the page until it is known
that the content of the element and the rest of the document have been loaded. At the very least,
the handler should wait until the first receipt of an onContentReady event.

Warnings:
❑ This functionality is unavailable on the Macintosh version of the MSIE browser up to at least

version 5.

See also: <STYLE>, Document.attachEvent(),
Document.detachEvent(), Window.detachEvent()

Error! No text of specified style in document.

2403

Window.back() (Method)
A method that mimics the user clicking on the back button.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N back()
JavaScript syntax:

N myWindow.back()

The browser will behave as if the user had clicked on the back button at the top of the window.

Warnings:
❑ If this is executed in a <FRAMESET> contained window, the behavior of the Window.back()

method may not always be consistent with the History.back() method. One may simply affect
the frame while the other may affect the entire browser window at the top of the frame-set hierarchy.

See also: Frame object, History.back(), Window object,
Window.forward()

Window.blur() (Method)
Send a blur event to the window object.

Availability: DOM level - 1
JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: undefined

- blur()
JavaScript syntax:

- myWindow.blur()

This will take the input focus away from the receiving window, usually the one at the top of the
window hierarchy. On some platforms, this will also make the window inactive and may put it to
the back of the window hierarchy.

There are good arguments for using the focus() method on another window rather than the
blur() method. Removing focus from a window should make it safe from inadvertent mouse clicks
at the expense of making the window inactive altogether, which could be frustrating for the user.

Chapter number

2404

Warnings:
❑ This method is not supported by MSIE version 3.

❑ It is possible that a window may become inactive with this method and since no window has focus
you could have an active application with no active window. This is a fairly sloppy way of providing
a UI interaction. A better technique is to use the focus() method to redirect the focus to the desired
window which, by implication, blurs() any other that may previously have had the focus. This
should result in a more consistent behavior for the user.

See also: Frame object, Input.blur(), Input.focus(), Window object,
Window.focus(), Window.onblur, Window.onfocus

Window.btoa() (Function)
Encode some data into base-64 form.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: String primitive

N btoa(aBinaryString)
JavaScript syntax:

N myWindow.btoa(aBinaryString)

Argument list: aBinaryString A string of binary data to be encoded

This function will encode the string passed as an argument and return a base-64 encoded version.
Base-64 encoding is used to convert binary data into a form that survives transmission across a
network, so the data passed in its input argument is really binary data. It is carried in a string value
because JavaScript doesn't support a special binary container. However, JavaScript strings will
happily accept 8 bit values and you can therefore store binary data in them. You would normally
create the string of binary data by means of the String.fromCharCode() static method.

The result is a string of binary data escaped in such a way that it will survive a serial transfer
through an "old-fashioned" connection. Network drivers and serial interfacing technology make
this technique largely redundant and there can be few genuine applications for this other than to
decode information from legacy systems or to interface to them somehow from a web browser. The
functionality has very limited portability and will likely be deprecated at some stage in the future.

See also: String.fromCharCode(), Window.atob()

Window.captureEvents() (Function)
Part of the Netscape Navigator event propagation complex.

Availability: JavaScript - 1.2
Netscape - 4.0

Deprecated: JavaScript - 1.5
Netscape - 6.0

Error! No text of specified style in document.

2405

Property/method value type:
undefined

N captureEvents(anEventMask)
JavaScript syntax:

N myWindow.captureEvents(anEventMask)

Argument list:
anEventMask A mask constructed with the manifest event

constants

This is part of the event management suite which allow events to be routed to handlers other than
just the one that defaults to being associated with an event.

The events to be captured are signified by setting bits in a mask.

This method allows you to specify what events are to be routed to the receiving window object.

The events are specified by using the bitwise OR operator to combine the required event mask
constants into a mask that defines the events you want to capture. Refer to the Event Type
Constants topic for a list of the event mask values.

A limitation of this technique is that, ultimately, only 32 different kinds of events can be combined
in this way and this may limit the number of events the browser can support. If you need to build
complex event handling systems in Netscape Navigator 4.x, you will have implement scripts using
this technique. A different script will be required for MSIE.

You may be able to factor your event handler so that you only have to make platform specific event
dispatchers and can call common handling routines that can be shared between MSIE and Netscape.

This method is supported by virtually every object by virtue of the fact that it is available as a
method of the Global object in Netscape Navigator. Therefore it gets inherited into the scope
chain for every script and function (method).

Warnings:
❑ Since a bit mask is being used, this must be an int32 value. This suggests that there can only be 32

different event types supported by this event propagation model.

❑ This capability is deprecated and is not supported in Netscape 6.0 . It has never been supported by
MSIE which implements a completely different event model. As it turns out, the DOM level 2 event
model converges on the MSIE technique.

Example code:
// Build and setup a mask for several events
myEventMask = Event.KEYDOWN | Event.MOUSEDOWN | Event.RESET;
window.captureEvents(myEventMask);
function EventHandler(anEventObject){//... some event handling code here}
window.onkeydown = EventHandler;
window.onmousedown = EventHandler;
window.onreset = EventHandler;

See also: captureEvents(), Document.captureEvents(), Element.onevent,
Event propagation, Event type constants, Frame object,
Layer.captureEvents(), onMouseMove, Window object,
Window.releaseEvents()

Chapter number

2406

Window.clearInterval() (Method)
Cancel a previous setInterval() timer that caused a function to be called periodically.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- clearInterval(anIntervalID)
JavaScript syntax:

- myWindow.clearInterval(anIntervalI
D)

Argument list:
anIntervalID The ID of an interval returned by the

setInterval() method

The interval timer mechanism can be used to repeat the execution of a block of script code at regular
intervals. You can establish several blocks of repeating code at once if necessary, so there could be a
number of pending interval timers. You must be able to identify the one that you want to clear.

When you create an interval timer with the setInterval() method, it will return back to you
with a value that corresponds uniquely to that interval's set-up context. You can use that value
later to clear the interval timer.

You must be careful not to clear an interval more than once.

Warnings:
❑ Be careful when clearing interval timers. If you try to clear one that does not exist, it can sometimes

crash the browser.

See also: Frame object, Interval handlers, Timeout handlers, Timer events,
Window object, Window.clearTimeout(),
Window.setInterval(), Window.setTimeout()

Window.clearTimeout() (Method)
Clear a previously established timeout function call.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Error! No text of specified style in document.

2407

Property/method value type: undefined

- clearTimeout(aTimeoutID)
JavaScript syntax:

- myWindow.clearTimeout(aTimeoutID)

Argument list: aTimeoutID
The ID of a timeout returned by the
setTimeout() method

The timeout mechanism can be used to defer the execution of a block of script code. You can defer
several blocks at once if necessary, so there could be a number of pending timeout triggers. You
must be able to identify the one that you want to clear.

When you create a timeout trigger with the setTimeout() method, it will return back to you with
a value that corresponds uniquely to that trigger's set-up context. You can use that value later to
clear the timeout trigger.

You must be careful not to clear timeout triggers more than once.

Warnings:
❑ Be careful when clearing interval timers. If you try to clear one that does not exist, it can sometimes

crash the browser.

❑ It is highly likely that the interval may have elapsed and the timeout no longer exists to be cleared. A
more reliable technique that is less prone to browser crashes is to set a flag value in a global variable
and then test that from within the timeout invoked function.

See also: clearTimeout(), Frame object, Timeout handlers, Timer
events, Window object, Window.clearInterval(),
Window.setTimeout()

Window.clientInformation (Property)
This is another more appropriate name for the navigator object.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: Navigator object

IE clientInformation
JavaScript syntax:

IE myWindow.clientInformation

This is an alternative name for the window.navigator property.

Warnings:
❑ Note that the clientInformation reference is another name for the navigator object. We

could be uncharitable and suggest that this is an attempt by Microsoft to avoid publicising a
competitor's browser name in any scripts that they publish. It is likely that scripts written by and for
Microsoft products would use this syntax rather than the navigator property, and will break on
Netscape Navigator.

Chapter number

2408

See also: Frame object, Window object, Window.navigator

Property attributes:
ReadOnly, DontEnum.

Window.clipboardData (Property)
An object containing data that represents the contents of the clipboard.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type:
clipboardData object

IE clipboardData
JavaScript syntax:

IE myWindow.clipboardData

If you want to move data in and out of the clipboard on a Windows platform from within the MSIE
browser, this property will yield a reference to a clipboardData object that encapsulates the
clipboard contents.

Example code:
// Example of how to use the clipboard object supplied by
// Martin Honnen.
clipboardData.setData('Text', 'All for Kibology');
alert(clipboardData.getData('Text'));
clipboardData.clearData();
alert(clipboardData.getData('Text'));

See also: clipboardData object

Window.close() (Method)
This will close the window.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type:
undefined

- close()
JavaScript syntax:

- myWindow.close()

Error! No text of specified style in document.

2409

The method window.close() will attempt to close the window in which the script is executing.
This is only possible without a user confirmation dialog if the script has the
UniversalBrowserWrite privilege. The statement self.close() is effectively
window.close() and will also attempt to close the window in which the script is executing.

A JavaScript running inside a window may close that window.

JavaScripts running outside a window may or may not be able to close that window. This may be
implementation dependent and may also depend on the value of the opener property of the target
window and the current security policy in force. Attempts to close windows that your JavaScript
did not open will elicit a user dialog to get permission to close the window. This is so that people
cannot write invasive scripts that wreak havoc on your browser session when they are loaded.

The default behavior is to allow JavaScript to close windows which were opened by scripts that
were originally served from the same server and which were not opened by the user. This may be
overridden if additional privileges are granted to scripts.

From version 1.1 of JavaScript, (generally speaking) you can only close windows that were opened
by JavaScript from within a script. Although, certain browser privileges will allow you to close
other windows and this behavior may be browser dependent.

Warnings:
❑ Do not confuse this method with the document.close() method. They are not the same.

❑ Do not call this for Window objects that represent frames, you cannot close a single frame
within a window.

See also: Frame object, Frame.close(), UniversalBrowserAccess,
UniversalBrowserWrite, Window object, Window.open(),
Window.opener

Window.closed (Property)
A property value that is true if the window is closed.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: Boolean primitive

- closed
JavaScript syntax:

- myWindow.closed

Chapter number

2410

From JavaScript version 1.1 onwards, a window object may persist after it has been closed. This
may seem odd but it is possible that the window object will have had other object references added
to it and for it to be deleted, it must relinquish those references. Without this object persistence, a
dangerous cascading delete effect may happen, inadvertently discarding all manner of objects
within your script context.

The only valid thing you should access at this point is the closed property. This allows you to
check for the window having been closed by the user before you try to do something with it.

Some programmers would argue that this is poor technique anyway and that a reference to a
window held externally should be nulled by the closing function. That way you can test a variable
that exists within the script's scope chain rather than an object that should probably have been
purged from memory. Given the bugs in the implementation of this feature, that is a better way to
determine whether a window is still in existence.

Warnings:
❑ This value can be read by an unsigned script in another window. However, Netscape Navigator (at

least on the Macintosh platform) exhibits some bugs with this whole mechanism and the property
value is of limited use in any case.

❑ For a start, you cannot access the closed property of the object that the Window.open() method
returns because it is an EventCapturer object and not a window object. You can contrive to store
a reference to the new window in the original window's properties by making it pass a reference to
its window.self property which needs to be stored in a property belonging to its
window.opener. However, if the child window is then closed, the object that refers to it becomes
void and there is no access to any of its properties, let alone its window.closed property.

❑ There are sufficient problems in this area that without some quite tricky scripting you cannot make
use of this facility in a portable manner.

See also: Frame object, Window object

Property attributes:
ReadOnly.

Window.confirm() (Method)
Present a confirmation dialog box.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Boolean primitive

Error! No text of specified style in document.

2411

- myResult = confirm(aString)
JavaScript syntax:

- myResult = myWindow.confirm(aString)

Argument list: aString Some text to explain what is to be confirmed

This presents a modal dialog containing the confirmation message and two buttons, OK and
Cancel. This is useful because you often need confirmation from a user.

This method is useful for debugging. An example showing how it can be used for debugging a
recursive function is given below.

Note that the text that is presented in the dialog is plain unformatted text and you cannot use
HTML text in the dialog box.

The title bar of the dialog box cannot be changed from its default setting which tells you that the
dialog was invoked by JavaScript. In some browsers, it may just display the name of the browser.
This is intended to stop script programmers from masquerading their dialog boxes as those of
operating system diagnostics and login screens.

The confirm() dialog box is modal and blocking. The script must wait for a response from the user.

When the user clicks on either of the buttons, the result returned by the method indicates which
one was chosen. The true value indicates the OK button was clicked and false indicates the
Cancel button.

Example code:
// Example showing the use of a confirm() dialog to
// debug recursive calls provided by Martin Honnen.
function showTime()
{
 if (confirm('Time is: ' + new Date() + '. Show again?'))
 {
 setTimeout('showTime()', 1000 * 5);
 }
}
showTime();

See also: Debugging - client-side, Dialog boxes, Dialog object, Frame object, Window object,
Window.alert(), Window.prompt()

Cross-references:
Wrox Instant JavaScript – page - 78

Chapter number

2412

Window.crypto (Property)
A reference to a Crypto object for security encoding.

Availability: JavaScript - 1.2
Netscape - 4.04

Property/method value type: Crypto object

N crypto
JavaScript syntax:

N myWindow.crypto

The object referred to by this property is used with the browser security model. Refer to the topic
that discusses the Crypto object for more details.

See also: Crypto object

Property attributes:
ReadOnly.

Window.defaultStatus (Property)
A property containing the text displayed in the status bar.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: String primitive

- defaultStatus

- defaultStatus = aString

- myWindow.defaultStatus

JavaScript syntax:

- myWindow.defaultStatus =
aString

Argument list: aString A new value for the default status

As the mouse rolls over active elements in the page, they may write values into the status bar. This
is the value that is restored when the mouse rolls out of the object.

Although this is called the defaultStatus value, you can change its setting by writing a new
value into the property.

A useful technique is to reset this value to an empty string using a <BODY> or <FRAMESET>
onUnload handler.

Error! No text of specified style in document.

2413

As an example of a way to use this property, it may be useful to give the user some helpful
message when loading a <FORM> into the window.

You can read or write the value in this property.

Because this also works with frames, you can set the value for this to be different according to the
frame that the mouse is over. That way, the message can give the user some context sensitive hints
on a frame by frame basis. You need to be careful about this because if you define the
defaultStatus value in a top level window that contains frames, when the mouse is in the
frames, the defaultStatus value will be that which is defined for the frame and not the window.
The window's default status will only be displayed when the mouse is over the border in between
the frames, hence you must define the defaultStatus value for all frames as well as the window.

If you only need to display a temporary message, then use the status property instead of the
defaultStatus property.

Warnings:
❑ The default status value may not be properly restored on some platforms. Macintosh and

X-Windows versions of Netscape 3 may exhibit this problem as may other browser and
platform combinations.

See also: Frame object, onMouseOut, onMouseOver, Status line, Window
object, Window.status

Window.detachEvent() (Method)
A means of detaching events from windows and documents that were previously attached with the
attachEvent() method.

Availability: JScript - 5.0
Internet Explorer - 5.0

IE detachEvent(anEventName)
JavaScript syntax:

IE myWindow.detachEvent(anEventName)

Argument list:
anEventName The name of an event to be handled

This is part of the behavior handling in MSIE which involves the use of style sheets and .htc files.

See also: <STYLE>, Document.attachEvent(),
Document.detachEvent(), Window.attachEvent()

Chapter number

2414

Window.dialogArguments (Property)
The arguments passed to a model dialog in a showModalDialog() call.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

IE dialogArguments
JavaScript syntax:

IE myWindow.dialogArguments

This is only available when the window is contained within a modal dialog. It is the value
contained in the second argument of the showModalDialog() method. You can use this to pass
values into the modal dialog and the returnValue property of the window object inside the
modal dialog to return a value to the caller.

Refer to the Window.showModalDialog() topic for an example of how this works.

See also: Window.showModalDialog()

Property attributes:
ReadOnly.

Window.dialogHeight (Property)
The height of a modal or modeless dialog window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

IE dialogHeight
JavaScript syntax:

IE myWindow.dialogHeight

Dialog windows are a special kind of window supported by MSIE, principally to provide a more
sophisticated alternative to an alert(), confirm() or prompt() dialog.

This property yields the height of such a dialog window which can be changed by assigning a
value to this property from a script running in the window.

The value returned will be a value and a measurement unit in the same style as would be used with
a CSS positioning style property. This means it will be a string and not a numeric value and will
need to be parsed carefully.

Error! No text of specified style in document.

2415

Window.dialogLeft (Property)
The left edge of a modal or modeless dialog window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

IE dialogLeft
JavaScript syntax:

IE myWindow.dialogLeft

Dialog windows are a special kind of window supported by MSIE, principally to provide a more
sophisticated alternative to an alert(), confirm() or prompt() dialog.

This property yields the position of the left edge of such a dialog window which can be changed by
assigning a value to this property from a script running in the window.

The value returned will be a value and a measurement unit in the same style as would be used with
a CSS positioning style property. This means it will be a string and not a numeric value and will
need to be parsed carefully.

Window.dialogTop (Property)
The top edge of a modal or modeless dialog window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

IE dialogTop
JavaScript syntax:

IE myWindow.dialogTop

Dialog windows are a special kind of window supported by MSIE, principally to provide a more
sophisticated alternative to an alert(), confirm() or prompt() dialog.

This property yields the position of the top edge of such a dialog window which can be changed by
assigning a value to this property from a script running in the window.

The value returned will be a value and a measurement unit in the same style as would be used with
a CSS positioning style property. This means it will be a string and not a numeric value and will
need to be parsed carefully.

Chapter number

2416

Window.dialogWidth (Property)
The width of a modal or modeless dialog window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: String primitive

IE dialogWidth
JavaScript syntax:

IE myWindow.dialogWidth

Dialog windows are a special kind of window supported by MSIE, principally to provide a more
sophisticated alternative to an alert(), confirm() or prompt() dialog.

This property yields the width of such a dialog window which can be changed by assigning a value
to this property from a script running in the window.

The value returned will be a value and a measurement unit in the same style as would be used with
a CSS positioning style property. This means it will be a string and not a numeric value and will
need to be parsed carefully.

Window.disableExternalCapture() (Method)
Part of the Netscape Navigator 4 event propagation complex.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N disableExternalCapture()
JavaScript syntax:

N myWindow.disableExternalCapture()

This method allows you to inhibit the receipt of events from other window objects that might have been
loaded from a server other than the one that provided the script it is called from. You need higher than
normal privilege to execute this method. However this method itself is quite harmless, the one that
really requires the security interlocking is the window.enableExternalCapture() method.

Warnings:
❑ Although this method can be called without any special privilege being necessary, your script will

need to be granted the UniversalBrowserWrite privilege to enable the external capture again.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.enableExternalCapture()

Error! No text of specified style in document.

2417

Window.document (Property)
A reference to the document object that is contained in the window.

Availability: DOM level - 1
JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Document object

- document
JavaScript syntax:

- myWindow.document

This property returns a reference to an object that represents the document that is currently loaded
into the window.

Warnings:
❑ Beware of recursion effects by referring to the document belonging to the window and then referring

back unintentionally via a property enumeration. The document.parentWindow property in
MSIE will come straight back to the source window.

❑ Beware that this refers to an object that belongs to the window and not the object that the window
belongs to.

See also: Document object, Document.parentWindow,
Element.document, Frame object, Window object

Property attributes:
ReadOnly.

Cross-references:
Wrox Instant JavaScript – page - 80

Window.enableExternalCapture() (Method)
Part of the Netscape Navigator 4 event propagation complex.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type:
undefined

- enableExternalCapture()
JavaScript syntax:

- myWindow.enableExternalCapture()

Chapter number

2418

This method allows you to begin capturing events from other window objects that might have been
loaded from a server other than the one that provided the script it is called from. This is not usually
permitted because you could build a script that watches for users typing a password, for example.
You need higher than normal privileges to execute this method.

Warnings:
❑ This method requires your script to be granted the UniversalBrowserWrite privilege to operate

properly in Netscape Navigator.

See also: disableExternalCapture(), Frame object,
UniversalBrowserWrite, Window object,
Window.disableExternalCapture()

Window.event (Property)
During event handling, MSIE stores a reference to an event object in this variable.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type:
Event object

IE event
JavaScript syntax:

IE myWindow.event

In MSIE, this property yields a reference to an event object. This only has any meaning during an
event handler call and it is shared by all events which you would assume will cause some problems
when multiple events are triggered. However, it seems to sort itself out most of the time. You will
most likely refer to the event property as a member of the Global object, omitting the window prefix.
The handler can acquire the object if it needs it to find out more about the context of the event.

In Netscape Navigator prior to version 6.0, the event object is passed as an argument to the event
handler function. Netscape 6.0 implements the DOM level 2 event model which works like the
MSIE technique.

This means your event handlers must be written slightly differently if they need to access an event
object that pertains to the event itself.

To get a roughly portable handler together, the MSIE event can be stored in a local variable. Then, as
it turns out, it is easier to convert the old style Netscape Navigator properties to MSIE compatible
properties. You may not need to convert all of them and you may need to do some experimentation to
see that the bit-masking of modifier keys is correctly set up for your target browser.

The Closure() object technique applies here when assigning function objects to be event handlers
although that is not supported by MSIE version 4.

This entire event managing complex is under review and some work on standardization happens at
DOM level 2 with more to come in DOM level 3. We may have to experience several more browser
revisions before we can rely on a truly portable approach and that won't solve legacy browser
issues until everyone has upgraded.

Error! No text of specified style in document.

2419

Warnings:
❑ The MSIE event-handling model is radically different to the Netscape Navigator event-handling

model. Unless you are doing only very simple event handling you will likely need to code for both
models and somehow make them both available in the same page.

Property attributes:
ReadOnly.

Window.execScript() (Method)
Execute a script on behalf of a window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type:
User defined

IE execScript(aSourceText)

IE execScript(aSourceText, aLanguage)

IE myWindow.execScript(aSourceText)

JavaScript syntax:

IE myWindow.execScript(aSourceText,
aLanguage)

aSourceText Some legal script source textArgument list:
aLanguage The language to execute the script source in

This is somewhat like an eval() call except that the script runs in the context and scope chain of
the target window and not the window whose script makes the call.

Because this is currently only supported in MSIE, you may not find it very useful.

See also: Frame object, Window object

Window.external (Property)
Reference to an external object outside of the interpreter.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type: External object

IE external
JavaScript syntax:

IE myWindow.external

The MSIE browser supports a means of access to the surrounding object space that contains the
browser and the desktop environment in which it executes. This of course is only available on the
Windows platform and its use is discouraged for reasons of portability.

See also: external

Chapter number

2420

Window.find() (Method)
This duplicates the behavior of the FIND button on the Netscape Navigator button bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Deprecated: Netscape - 6.0

Property/method value type: Boolean primitive

- find()

- find(aSearchKey)

- find(aSearchKey, aCaseSense)

- find(aSearchKey, aCaseSense,
aDirection)

- myWindow.find()

- myWindow.find(aSearchKey)

- myWindow.find(aSearchKey, aCaseSense)

JavaScript syntax:

- myWindow.find(aSearchKey, aCaseSense,
aDirection)

aCaseSense A switch for case sensitivity
aDirection A direction to search

Argument list:

aSearchKey The text to search for

All of the arguments are optional. However, you must specify the first argument if want to specify
the second and so on.

If no arguments are specified, a dialog box is presented to the user for them to specify the
search attributes.

The search key is a arbitrary string of characters. The search facility will look for this string in the
current page.

The case sensitive switch parameter must be true to force a case sensitive search and false to
ignore case. By default a case insensitive search is carried out if this argument is omitted.

The direction switch is a true for a backwards search and false for a forwards search. The
default is a forwards search if this argument is omitted.

Forward searches commence at the current cursor position or immediately after the current
selection if there is one, see position A on figure overleaf. If there is no selection or the cursor has
not been focussed into the page and positioned there, then the search begins at the top of the
document, see position C on figure overleaf. In the case of a backwards direction, the search starts
immediately in front of the selection if there is one , see position B on figure overleaf, or the end of
the document if not, see position D on figure overleaf.

The result is true if the text was found in the page and false if it was absent.

Error! No text of specified style in document.

2421

A

B

C

D

selection

See also: Frame object, Window object, Window.home(),
Window.print(), Window.stop()

Window.focus() (Method)
Send a focus event to the window object.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type:
undefined

- focus()
JavaScript syntax:

- myWindow.focus()

This restores focus to the receiving window or frame that the method is executed on. If the focus
goes to a frame, then by implication, the window it belongs to becomes active too.

On some platforms this will bring the receiving window to the foreground if it is not already the
active window. It is generally better technique to use the focus() method on another window
rather than call the blur() method if you want to remove focus from a window. However, that
may not always be possible if you want to completely remove focus from all windows. The
consequence may be that the window becomes inactive and on some platforms it means the
window will be placed at the rear of any other windows on the screen.

Chapter number

2422

Warnings:
❑ This method is not supported by MSIE version 3.

See also: Frame object, Input.blur(), Input.focus(), Window object,
Window.blur(), Window.onblur, Window.onfocus

Window.forward() (Method)
Mimics the effect of the user clicking on the FORWARD button.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type:
undefined

N forward()
JavaScript syntax:

N myWindow.forward()

The browser will behave as if the user had clicked on the FORWARD navigation button.

Warnings:
❑ If this is executed in a <FRAMESET> contained window, the behavior of the

window.forward() method may not always be consistent with the history.forward()
method. One may simply affect the frame while the other may affect the entire browser window
at the top of the frame-set hierarchy.

See also: Frame object, History.forward(), Window object,
Window.back()

Window.frame (Property)
This is another name for self and window.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type:
Window object

IE frame
JavaScript syntax:

IE myWindow.frame

This property yields an object that represents the frame that contains this window object. This is the
same value that the window property yields. It is another gratuitous extension that MSIE provides
so that scripts to run inside frames can look more consistent with what they are doing and yet
break on any non-MSIE browsers due to the frame property not being present.

Frame objects support all the methods and properties of window objects although they may not
always be meaningful in the context of a frame living in a frame-set.

Error! No text of specified style in document.

2423

Of course, you can emulate this in other browsers by assigning the value of the window.window
property to the window.frame property anyway.

This appears to be undocumented and does not appear in the Microsoft reference information.
Nevertheless, the property is visible by enumeration of the window object and appears to work.

Warnings:
❑ Using this property renders your scripts non-portable unless you code around the missing property

on non-MSIE browsers.

See also: Document.parentWindow, self, Window object,
Window.self, Window.top, Window.window

Property attributes:
ReadOnly.

Window.frameRate (Property)
An indication of the frame rate for the current display.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Number primitive

N frameRate
JavaScript syntax:

N myWindow.frameRate

This property was discovered accidentally by enumerating the properties of a window object in the
Netscape Navigator browser.

The name of this property suggests that it should yield the rate at which the display is refreshed.
This should be a constant value and you would expect this to be somewhere between 50 and 85.

Property attributes:
ReadOnly.

Window.frames[] (Collection)
An array containing window objects, each one referring to the content of a frame within the window.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Chapter number

2424

Property/method value type: Frames object

- frames
JavaScript syntax:

- myWindow.frames

HTML syntax: <FRAME><IFRAME>

The frames property yields an array containing objects, each one of which refers to a separate
frame. You can count how many there are with the window.frames.length property. In MSIE,
this also includes any inline floating frames created with an <IFRAME> tag.

You can cross-reference between frames in a window by means of the frames property. Every
window refers to a frames array, which contains a list of frames within that window. Each frame
contains a different window. This can get confusing, but it simply means that frames correspond to
windows at the basic object level.

You can also use the opener, parent and top properties as well when you are cross-referencing
between windows and frames.

Frames arrays may be nested where windows contain frames within frames. The frames array is
like all others, its first element is at index 0. This means that something as confusing as this is legal:

frames[0].frames[2].frames[1]

As a window reference, that looks in the current window for the first frame, then into the third
frame within that and then the second frame within that.

You can use the parent window reference to access windows that are all at the same hierarchical
level as the current one. This would be accomplished like this:

parent.frames[...]

Warnings:
❑ Be careful not to confuse this with the document.frames property supported by MSIE. That is

intended just to list the inline frames within a document.

❑ In Netscape Navigator the window.frames property points back at the window object and the
frame objects and frames.length property are stored there as global variables. This is arguably
a bug although not all commentators agree. The MSIE implementation is much neater however in
that environment, all elements having an ID HTML tag attribute are reflected as member
properties of the window. This is not correct either since they should be members of the
document and not the window.

❑ Strangely enough, it all seems to work from the scripting point of view. You can access the length
value to count the frames and the individual frame objects are available associatively by name from
the window.frames property.

Error! No text of specified style in document.

2425

See also: <MAP TARGET="...">, Document object,
Document.frames[], Frame object, Frames object, Window
object, Window.opener, Window.parent, Window.top

Property attributes:
ReadOnly.

Cross-references:
Wrox Instant JavaScript – page - 80

Window.handleEvent() (Function)
Pass an event to the appropriate handler for the window.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N handleEvent(anEvent)
JavaScript syntax:

N myWindow.handleEvent(anEvent)

Argument list: anEvent An event to be handled by this object

This applies to Netscape Navigator prior to version 6.0. From that release onwards, event
management follows the guidelines in the DOM level 2 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an event object that contains information about the event.

See also: Event object, Event propagation, Frame object,
handleEvent(), SubmitButton.handleEvent(),
TEXTAREA.handleEvent(), TextCell.handleEvent(),
Window object, Window.routeEvent()

Chapter number

2426

Window.history (Property)
This property returns a history object for this window.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: History object

- history
JavaScript syntax:

- myWindow.history

This property yields a reference to a history object for the session in this window. The history
object is somewhat like an array of history items. Netscape Navigator supports a slightly more
sophisticated history object than MSIE.

On MSIE, you can access methods belonging to the history object with a construct like this:

window.history.go(0);

Nevertheless, you cannot access member properties of the history object to examine URL values
as this contradicts the security requirements.

Warnings:
❑ This appears to be only partially supported on MSIE for Macintosh.

See also: Frame object, History object, Window object

Property attributes:
ReadOnly.

Window.home() (Method)
This duplicates the behavior of the HOME button on the Netscape Navigator button bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N home()
JavaScript syntax:

N myWindow.home()

Error! No text of specified style in document.

2427

The result of calling this method depends on what you have set up as your home page in the browser.
By default, it is likely to be a page on the web site belonging to the browser manufacturer. Commonly
though, it will be a blank page because after you have been irritated by your browser automatically
dialling in to your ISP, you'll likely have told it not to go to any home page by default.

See also: Frame object, Window object, Window.find(),
Window.print(), Window.stop()

Window.innerHeight (Property)
The height of the window inside the frame.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Number primitive

- innerHeight
JavaScript syntax:

- myWindow.innerHeight

This property is supported on Netscape Navigator and tells you what the current height of the
content area of the window is set to.

Assigning a value to this property will resize the window on Netscape Navigator. On MSIE it will
be ignored.

innerWidth

innerHeight

Warnings:
❑ This method requires your script to be granted the UniversalBrowserWrite privilege to set a

window size smaller than 100x100 pixels.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.innerWidth, Window.outerHeight,
Window.outerWidth

Chapter number

2428

Window.innerWidth (Property)
The width of the window inside the frame.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Number primitive

- innerWidth
JavaScript syntax:

- myWindow.innerWidth

This property is supported on Netscape Navigator and tells you what the current width of the
content area of the window is set to.

Assigning a value to this property will resize the window on Netscape Navigator. On MSIE it will
be ignored.

innerWidth

innerHeight

Warnings:
❑ This method requires your script to be granted the UniversalBrowserWrite privilege to set a

window size smaller than 100x100 pixels.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.innerHeight, Window.outerHeight,
Window.outerWidth

Error! No text of specified style in document.

2429

Window.java (Property)
A reference to the Java package object that is the root of the 'java.*' packages tree.

Availability: JavaScript - 1.1
Netscape - 3.0

Property/method value type: JavaPackage java

N java

N myWindow.java

N myWindow.Packages.java

JavaScript syntax:

N Packages.java

The object referred to by this property sits at the top of the java package name hierarchy. It is
through this property that you can access the java objects, properties and methods via LiveConnect.

This shortcut reference corresponds to a directory hierarchy where Java class, packages are stored.
Thus the java.lang.String class lives in a file called java/lang/String.class which on
some systems may be stored inside a ZIP archive.

The main shortcoming in this whole mechanism is that the browser cannot tell whether a reference
to an object is a request for a JavaPackage or a JavaClass. It will assume you mean a package by
default and if you misspell a class name, it won't tell you it couldn't find it.

The objects and classes supported by this access to the underlying Java engine cover a very wide
topic base. We have examined only the top level functionality to try and establish points of
connection between the two environments. For a full and in-depth reference coverage of the Java
language environment, consult the Wrox book "Java Programmer's Reference" by Grant Palmer.

lang applet

netscape sun

io

java

root

See also: JavaPackage object, LiveConnect, Packages.java,
Window.netscape, Window.Packages, Window.sun

Chapter number

2430

Property attributes:
ReadOnly.

Window.length (Property)
The number of frames in the window.

Availability: JavaScript - 1.0
JScript - 3.0
Internet Explorer - 4.0
Netscape - 2.0
Opera - 3.0

Property/method value type: Number primitive

- frames.length

- length

- myWindow.frames.length

JavaScript syntax:

- myWindow.length

The same value as the window.frames.length property.

This property is maintained in MSIE for consistency with Netscape Navigator. The frames in MSIE
are contained in a FrameArray object, but this does not prevent their names polluting the property
namespace of the Window object.

See also: Collection.length, Frame object, length, Window object

Property attributes:
ReadOnly.

Window.location (Property)
A reference to the location object that represents the URL of the current window content.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Location object

- location
JavaScript syntax:

- myWindow.location

Error! No text of specified style in document.

2431

The attributes of the object referred to by this property can be read or written to cause the window
content to be reloaded under script control.

The object itself ought to be considered read only but its properties are modifiable. Consult the
document for the location object for details of what you can read or write. In particular, refer to
the window.location.href value as a way to load a new document into the window.

Warnings:
❑ Do not confuse this location object with that belonging to the document. They are different.

❑ Older versions of the web browsers used to treat this property as a read/write string containing the
URL. The access to the URL value is now via the properties of the object referred to by this property
and not via the property itself.

See also: Document.location, Document.referrer,
Document.URL, Frame object, Location object, Window object,
Window.navigate()

Property attributes:
ReadOnly.

Window.locationbar (Property)
A reference to an object that represents the location bar.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Bar object

- locationbar
JavaScript syntax:

- myWindow.locationbar

This is a read only property containing a reference to a Bar object whose visible property contains
a Boolean value that controls the visibility of the screen furniture represented by the object.

In this case, it is supposed to control the visibility of the location bar.

The example shows how this can be done in a secure way that requires privilege to be granted and
in a non-secure way that does not.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to change

the visibility of the locationbar.

Chapter number

2432

Example code:
// Request necessary
privilegesnetscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrit
e");
// Hide location barwindow.locationbar.visible = false;
// There is another way that works without requesting privilegewindow.open('',
'_top', 'location=0');

See also: Bar object, Frame object, UniversalBrowserWrite, Window
furniture, Window object, Window.menubar,
Window.personalbar, Window.scrollbars,
Window.statusbar, Window.toolbar

Property attributes:
ReadOnly.

Window.menubar (Property)
A reference to an object that represents the menu bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Bar object

- menubar
JavaScript syntax:

- myWindow.menubar

This is a read-only property containing a reference to a Bar object whose visible property contains
a Boolean value that controls the visibility of the screen furniture represented by the object.

In this case, it is supposed to control the visibility of the menu bar.

The example shows how this can be done in a secure way that requires privilege to be granted and
in a non-secure way that does not.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to change

the visibility of the menubar.

❑ The Macintosh version of Netscape Navigator requires that the window be made inactive and then
active again after the status of this item has changed for there to be any noticeable effect.

❑ Even then, not all items in the menubar are hidden but most are.

❑ Be careful if you set the menubar and toolbar to invisible, you will then have no reload capability to
be able to refresh the screen. You will then only be able to quit.

Error! No text of specified style in document.

2433

❑ On some platforms, there may still be a refresh capability available on the contextual menu inside
the window. This will depend on whether the contextual menu is still available or whether it has
been changed to remove the refresh item.

Example code:
// Request necessary privileges
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
// Hide menu bar
window.menubar.visible = false;

// There is another way that works without requesting privilege
// window.open('', '_top', 'menubar=0');

See also: Bar object, Frame object, UniversalBrowserWrite, Window
furniture, Window object, Window.locationbar,
Window.personalbar, Window.scrollbars,
Window.statusbar, Window.toolbar

Property attributes:
ReadOnly.

Window.moveBy() (Method)
Move the window by a specified distance.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- moveBy(anOffsetX, anOffsetY)
JavaScript syntax:

- myWindow.moveBy(anOffsetX,
anOffsetY)

anOffsetX A distance in pixelsArgument list:
anOffsetY A distance in pixels

This method will translate a window across the screen. Positive values move the window to the
right and down while negative values move the window to the left and up.

Chapter number

2434

moveBy()

Delta X

Warnings:
❑ There are some security implications for moving windows in Netscape 4. They are intended to stop

you hiding a window by shifting it off-screen. Your script will need to be granted the
UniversalBrowserWrite privilege to allow it to move the window outside the screen area.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.moveTo(), Window.onmove,
Window.pageXOffset, Window.pageYOffset,
Window.resizeBy(), Window.resizeTo(),
Window.scrollBy()

Window.moveTo() (Method)
Move the window to a specific location.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- moveTo(aCoordX, aCoordY)
JavaScript syntax:

- myWindow.moveTo(aCoordX, aCoordY)

aCoordX A position in pixelsArgument list:
aCoordY A position in pixels

Error! No text of specified style in document.

2435

This method will locate a window at a specific position on screen.

Offset X

Offset Y

Warnings:
❑ There are some security implications for moving windows in Netscape 4. They are meant to stop you

hiding a window by shifting it off-screen. Your script will need to be granted the
UniversalBrowserWrite privilege to allow it to move the window outside the screen area.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.moveTo(), Window.onmove,
Window.pageXOffset, Window.pageYOffset,
Window.resizeBy(), Window.resizeTo(),
Window.scrollBy()

Window.name (Property)
The name of the window either from the <FRAME> tag, the Window.open() method call or an
assignment to this property.

Availability: DOM level - 1
JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: String primitive

Chapter number

2436

- myWindow.name

- myWindow.name = aString

- name

- name = aString

JavaScript syntax:

- window.open(aURL, aName, ...)

HTML syntax: <FRAME NAME="...">Window.open(...)

aName A name for the window
aString A string value containing the new name for

the window

Argument list:

aURL A URL to load into the window

This name value can be used with the target attribute of the HTML <A> anchor tag or the <FORM> tag.

At version 1.0 of JavaScript this is a read-only property.

JavaScript version 1.1 introduces the capability of changing the name of a window and makes this
property writable. This is particularly useful because the initial window has no name and cannot be
targeted directly until it has. You can fix this with an onLoad handler.

The name of a window can be set when the window is created with the open() method. It is also
assigned by the NAME="..." HTML tag attribute of a <FRAME> tag.

The example shows the window name being modified. Reload to see the persistence effect. Load
another document and then load this script again to see how the name persists through
intermediate document loads.

Warnings:
❑ This is not the title text for the window.

❑ Note that the name value persists through document loads and so you may need to be careful if you
are using the name property in a document script. It might have been set by an earlier page. This
also suggests that other window properties may be persistent between documents and might
provide a way to pass messages between pages and maintain state during a session.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
document.write("***"+window.name+"
");
window.name = "FRED";
document.write("***"+window.name+"
");
</SCRIPT>
</BODY>
</HTML>

Error! No text of specified style in document.

2437

See also: Frame object, IFRAME.name, NAME="...", Window object,
Window.open()

Window.navigate() (Method)
Load a new URL into the window.

Availability: JScript - 1.0
Internet Explorer - 3.02

Property/method value type: undefined

IE myWindow.navigate(aURL)
JavaScript syntax:

IE navigate(aURL)

Argument list: aURL A new location to navigate the window to

This is functionally similar to assigning a new value to the window.location.href property.
Because it is only available in MSIE you should avoid using this in cross-browser development.

Warnings:
❑ Because this is only supported in MSIE, you should not use it if you want to develop portable scripts.

A more portable technique is to assign the URL value to the href property of the location object
that is accessible from the window.location property.

❑ window.navigate("index.html"); and window.location.href = "index.html";
are functionally equivalent and guaranteed to be portable between Netscape Navigator and MSIE if
not across all available browsers.

Example code:
// Reload the window with a new relative URL valuewindow.navigate("_Window.html");

See also: Location object, Window.location

Window.navigator (Property)
A reference to a navigator object that describes the browser.

Availability: JavaScript - 1.0
JScript - 3.0
Internet Explorer - 4.0
Netscape - 2.0
Opera - 3.0

Property/method value type: Navigator object

- myWindow.navigator
JavaScript syntax:

- navigator

Chapter number

2438

The navigator object was originally provided by Netscape Navigator as a way of making client
properties available to scripts.

Warnings:
❑ Microsoft have property named clientInformation that points at the same object. This then

allows people to write scripts that are functionally identical but which will break on Netscape
Navigator and Opera, although perhaps we should give them the benefit of the doubt because really
this property should have been called clientInformation in the first place.

See also: Frame object, Navigator object, Window object,
Window.clientInformation

Property attributes:
ReadOnly.

Window.netscape (Property)
A reference to the Java package object that is the root of the 'netscape.*' Packages tree.

Availability: JavaScript - 1.1
Netscape - 3.0

Property/method value type: JavaPackage netscape

N myWindow.netscape

N myWindow.Packages.netscape

N netscape

JavaScript syntax:

N Packages.netscape

The object referred to by this property sits at the top of the Netscape package name hierarchy. It is
through this property that you can access the java objects, properties and methods via LiveConnect.

lang applet

netscape sun

io

java

root

See also: JavaScript to Java values, Packages.netscape, Window.java,
Window.Packages, Window.sun

Error! No text of specified style in document.

2439

Property attributes:
ReadOnly.

Window.offscreenBuffering (Property)
A property that controls off-screen buffering effects.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: Boolean or String primitive

- myWindow.offScreenBuffering

- myWindow.offScreenBuffering = aSetting

- offScreenBuffering

JavaScript syntax:

- offScreenBuffering = aSetting

Argument list: aSetting A new value to control this functionality

This property controls how screen updates are accomplished. This is especially useful with
DHTML-based animation. An off-screen buffer is used to draw the new window contents and then
copy it over the existing content when it is complete. This is much nicer to look at than the effects
you get with a non-buffered redraw which clears the screen first and then draws the entire page in
front of you.

The available settings are:

Boolean true - Activate off-screen buffering

Boolean false - Deactivate off-screen buffering

String "auto" - Let the browser decide for itself

In general, MSIE accomplishes slightly more attractive redraws with this facility enabled than
Netscape Navigator. However, new versions of Mozilla 5 and Netscape 6 may surpass the MSIE
version 5 support.

Warnings:
❑ Enabling this facility will slightly decrease CPU performance and consume more memory since a

copy of the onscreen window needs to be maintained in the application memory.

See also: Frame object, Window object

Chapter number

2440

Window.onblur (Property)
This is called when the window loses input focus.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: Function object

- myWindow.onblur

- myWindow.onblur = aHandler

- onblur

JavaScript syntax:

- onblur = aHandler

HTML syntax:
<BODY onBlur="aHandler"><FRAMESET
onBlur="aHandler">

Argument list: aHandler An event handler function object

A blur event is caused by the user clicking on another window or frame or the window.blur()
method being called. When this event is triggered, an onblur event handler will be invoked.

The onblur event handler is a function which is represented by an object that is referred to by this
property. Because it is stored in a property, you can change the handler by storing a reference to a
different function object in this property. At least, you can on MSIE.

You cannot redefine the value of the window.onblur property from inside the onblur function
handler. This means you can't modify the onblur behavior while a blur event is in progress.

The handler is registered either by assigning a function to the onblur property or by defining it
with an HTML tag attribute.

Warnings:
❑ Do not use <BODY ONBLUR="window.focus()"> to make sure the window is always on top.

This does not work as you expect. The problem is caused because the BODY receives a blur event
when any element inside the page takes the focus away from it (for example, when you click on a
link or form element). The page becomes unusable because every attempt to click elements in the
page triggers a javascript call that draws the focus straight back to the BODY/ window. So all you get
is a window that permanently blocks all the other windows but does not allow any elements inside it
to be used.

❑ In Netscape Navigator, the property is not enumerable if the value is defined with an
onBlur="..." HTML tag attribute. However, it is enumerable if the property is assigned within
JavaScript without there being a defining tag attribute. There may be a general rule that script
defined properties are always enumerable, while internally created properties may not be.

❑ Displaying an alert(), confirm() or prompt() dialog takes focus away from a window. Don't
forget that your blur handler will be called if this happens.

❑ The Macintosh version 4.7 of Netscape Navigator does not appear to support blur events.

Error! No text of specified style in document.

2441

See also: onBlur, Window.blur(), Window.focus(),
Window.onfocus

Property attributes:
DontEnum.

Window.ondragdrop (Property)
This event handler is called when an object is dropped into the browser window.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Function object

- myWindow.ondragdrop

- myWindow.ondragdrop = aHandler

- ondragdrop

JavaScript syntax:

- ondragdrop = aHandler

HTML syntax:
<BODY onDragDrop="aHandler"><FRAMESET
onDragDrop="aHandler">

Argument list: aHandler An event handler function object

This event handler is invoked when the user drags an item onto a window in Netscape Navigator.

To access the details of the entity that has been dragged into and dropped on the window, you
need to access the data property of the event object that is passed as an argument to the handler
when it is called.

The data is a single URL when a single entity is dropped into the window or an array of strings,
each containing an URL, when a collection of entities are dropped onto a window.

You will need UniversalBrowserRead privilege to access this data.

The handler is registered either by assigning a function to the ondragdrop property or by defining
it with an HTML tag attribute.

Warnings:
❑ Note that this does not appear to work in Netscape 4.7 for Macintosh.

See also: Event.data, onDragDrop

Property attributes:
DontEnum.

Chapter number

2442

Window.onerror (Property)
A reference to an error event handler for this window object.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: Function object

- myWindow.onerror

- myWindow.onerror = aHandler

- onerror

JavaScript syntax:

- onerror = aHandler

Argument list: aHandler An event handler function object

You can register an error handler function by assigning a function object to the window's onerror
property so that when an error occurs in the JavaScript within the window, that function will be called.

This can be a useful way of trapping and completely inhibiting the display of error messages to the
user. When the error handling function is called, it is passed three arguments:

❑ The textual message that explains the error

❑ The URL of the document that contains the error

❑ The line number within that document where the error occurred

The line number is the physical line number within the document, not a line number within a
script, so you should be able to open the document in a text editor and go to the indicated line and
identify the problem.

The only way to activate this error handling capability is to assign a function to the onerror
property. There is no HTML tag attribute mechanism for defining an error handler for a window
although you can associate one with the tag with an attribute value.

You can return either true or false as a result of calling your handler:

true - Inhibit any further error processing and abort the script.

false - Hand control back to the browser to deal with the error in the normal way.

Deactivate error handling altogether by calling a function that simply returns true. To restore
default error handling to the window later, assign a function handler to the property that merely
returns a false value as its result without intervening in the error process in any way.

Error! No text of specified style in document.

2443

Warnings:
❑ Beware of the return values. Returning true from an error handler inhibits the browser from

carrying out any further action. This is exactly opposite to the return value from a form element
event handler, which requires that a false value be returned to inhibit any further action by the
browser.

❑ This works on version 4 of Netscape Navigator. It is also fully supported by MSIE version 5. Version
4 of MSIE for Macintosh (and possibly other platforms) allows the error to be trapped but does not
pass any meaningful argument values. They are all undefined.

❑ This is not supported on the WebTV platform.

❑ There is a problem with this event handler hook in the Netscape 6.0 browser. The values are not
passed to the handler correctly although the handler is called.

See also: Debugging - client-side, Error events, Error handler, JellyScript,
onError

Property attributes:
DontEnum.

Window.onfocus (Property)
This event handler is called when a window gains the input focus.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: Function object

- myWindow.onfocus

- myWindow.onfocus = aHandler

- onfocus

JavaScript syntax:

- onfocus = aHandler

HTML syntax:
<BODY onFocus="aHandler"><FRAMESET
onFocus="aHandler">

Argument list: aHandler An event handler function object

A focus event is caused by the user clicking on the receiving window or frame or the
window.focus() method being called. When this event is triggered, an onfocus event handler
will be invoked.

The onfocus event handler is a function which is represented by an object that is referred to by
this property. Because it is stored in a property, you can change the handler by storing a reference
to a different function object in this property. At least, you can on MSIE.

Chapter number

2444

You cannot redefine the value of the window.onfocus property from inside the onfocus function
handler. This means you can't modify the onfocus behavior while a focus event is in progress.

The handler is registered either by assigning a function to the onfocus property or by defining it
with an HTML tag attribute.

Warnings:
❑ Displaying an alert(), confirm() or prompt() dialog may take focus away from a window on

some platforms and browsers. Don't forget that your focus handler could be called when the dialog
is dismissed if this happens.

❑ The Macintosh version 4.7 of Netscape Navigator does not appear to support focus events.

See also: onFocus, Window.blur(), Window.focus(),
Window.onblur

Property attributes:
DontEnum.

Window.onload (Property)
A reference to a loading completed event handler for this window object.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Function object

- myWindow.onload

- myWindow.onload = aHandler

- onload

JavaScript syntax:

- onload = aHandler

HTML syntax:
<BODY onLoad="aHandler"><FRAMESET
onLoad="aHandler">

Argument list: aHandler An event handler function object

This is called when a <BODY> or <FRAMESET> has completed loading. This event is generated
when all document parsing is done, all script blocks are fully operational and all functions defined
and accessible. The Document Object Model should have been fully constructed by this time.

The onload event handler is a function which is represented by an object that is referred to by this
property. Because it is stored in a property, you can change the handler by storing a reference to a
different function object in this property. However, because this is called when loading is
completed and not again after that, you can logically only modify this value during page loading.

The handler is registered either by assigning a function to the onfocus property or by defining it
with an HTML tag attribute.

Error! No text of specified style in document.

2445

Warnings:
❑ There are certain things you cannot do until this point in the page loading process. For example, you

cannot use inline document.write() methods to construct an <OBJECT> embed in MSIE. You
can however enclose a dummy <OBJECT> block inside a <DIV> and then replace the innerHTML
of that <DIV> with a script generated <OBJECT> block that is provided in an onload event
handler. There are some issues about how tightly that plugin is bound to the browser window. It is
possible that a plugin that plays video may not track window drags with live updates to the screen
quite as elegantly as an <OBJECT> block that is manifestly constant and not defined by a script.

❑ There is a bug in the way that the onload event handlers are invoked in Netscape Navigator 2.
Logically, one would assume that the onload handler for the <FRAMESET> would be called once
all of the individual frames within it have been fully loaded. However, Netscape 2 calls this
prematurely and so you should make sure that you have a way to check that every one of your
frames has loaded individually.

See also: onLoad, Window.onunload

Property attributes:
DontEnum.

Window.onmove (Property)
This event handler is called when a window is moved.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Function object

- myWindow.onmove

- myWindow.onmove = aHandler

- onmove

JavaScript syntax:

- onmove = aHandler

HTML syntax:
<BODY onMove="aHandler"><FRAMESET
onMove="aHandler">

Argument list: aHandler An event handler function object

This is called when a window is moved on the screen to another location.

The handler is registered by defining it with an HTML tag attribute.

The event is also triggered when a window is moved under control of a script with the moveTo()
or moveBy() methods.

Chapter number

2446

Warnings:
❑ This is not supported by Netscape Navigator 4 on the Unix platform.

❑ On the Macintosh platform, Netscape Navigator calls the onmove handler twice when the window
is moved.

See also: onMove, Window.moveBy(), Window.moveTo()

Property attributes:
DontEnum.

Window.onresize (Property)
A reference to a resized window event handler for this window object.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: Function object

- myWindow.onresize

- myWindow.onresize = aHandler

- onresize

JavaScript syntax:

- onresize = aHandler

HTML syntax:
<BODY onResize="aHandler"><FRAMESET
onResize="aHandler">

Argument list: aHandler An event handler function object

This is called when a window is enlarged or reduced in size.

The handler is registered by defining it with an HTML tag attribute. The handler can also be
registered by assigning the function object to the onresize property of the window.

The event is also triggered when a window is resized under control of a script with the
resizeTo() or moveBy() methods.

See also: onResize, Window.resizeBy(), Window.resizeTo()

Property attributes:
DontEnum.

Error! No text of specified style in document.

2447

Window.onunload (Property)
This event handler is called when a document is cleared from a window.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Function object

- myWindow.onunload

- myWindow.onunload = aHandler

- onunload

JavaScript syntax:

- onunload = aHandler

HTML syntax:
<BODY onUnload="aHandler"><FRAMESET
onUnload="aHandler">

Argument list: aHandler An event handler function object

This is called when a <BODY> or <FRAMESET> is about to be replaced by some new content.

The onunload event handler is a function which is represented by an object that is referred to by
this property. Because it is stored in a property, you can change the handler by storing a reference
to a different function object in this property.

The handler is registered either by assigning a function to the onfocus property or by defining it
with an HTML tag attribute.

In a frame-set collection, the individual onunload handlers for each frame will be called in turn
before the onunload event handler for the <FRAMESET> is called.

Use of this event handler is discouraged on the WebTV platform. There are limitations on its
availability at certain times during alert and refresh actions.

See also: JellyScript, onLoad, onUnload, Window.onload

Property attributes:
DontEnum.

Chapter number

2448

Window.open() (Method)
A means of creating new windows under script control.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Window object

- aNewWindow = myWindow.open()

- aNewWindow = myWindow.open(aURL)

- aNewWindow = myWindow.open(aURL,
aName)

- aNewWindow = myWindow.open(aURL,
aName, aFeatureList)

- aNewWindow = myWindow.open(aURL,
aName, aFeatureList, aFlag)

- aNewWindow = open()

- aNewWindow = open(aURL)

- aNewWindow = open(aURL, aName)

- aNewWindow = open(aURL, aName,
aFeatureList)

JavaScript syntax:

- aNewWindow = open(aURL, aName,
aFeatureList, aFlag)

aFeatureList A list of attributes for the new window
aFlag A flag to indicate how the history list is to be

modified
aName The name of a new or existing target window

Argument list:

aURL A URL to load into the window

All arguments are optional. However, since they are also positional, you must use commas and
empty strings as necessary to null out the entries you don't require if you need the later ones.

The URL value, if specified, will fetch and load the document into the window as the
window.open() method is executed. You may omit or null the URL with an empty string. This
will open a new window but not load anything into it.

The name identifies the target window. If that window name is not already used, then a new window
will be created, otherwise the URL will replace the existing content. When you direct a null URL to an
already open window being referenced by name just returns a reference to that window object. This
may be useful if you know the name of a window but do not have a handle on its object
representation. If you do not specify a name, then a new unnamed window will be created.

The feature list describes the attributes of the window. This may in some implementations allow
you to change a window's appearance but this may not always be possible. The feature list must be
comma separated and must not contain any spaces.

Error! No text of specified style in document.

2449

The flag value indicates what you want done with the history table for this window. Passing the
Boolean true value indicates that the new URL should replace the existing history entry. A
Boolean false value indicates that the new URL should be added to the tail of the history list. This
facility is available from JavaScript version 1.1 onwards.

The value returned by this open() method is a reference to the window object that represents the
window that has just been opened. You can store this in a variable so you can send messages to the
window when necessary.

See the Window features list topic for a list of the window feature names and the values that
they expect, and a discussion on the limitations and some subtle catch-outs and differences
between the browsers.

This method returns a reference to the window object for the window that was created or updated.
You should note this in some persistent variable if you plan to communicate with the window
some time later during the session.

Warnings:
❑ Do not confuse the window.open() method with the document.open() method. It is probably a

safer technique to explicitly refer to the window.open() method rather than rely on the
implication of the open() method being sent to a window object. It might be possible to modify the
scope chain to make this default to document.open() instead.

❑ A window.open() will create a new viewport window. A document.open() will clear the
current window contents and start writing new HTML into it.

❑ If you include spaces in the feature list attribute, the script may cause some versions of
Netscape Navigator to crash horribly and in others it will just ignore any features following the
space character.

❑ Netscape Navigator returns an EventCapturer object instead of a Window object.

❑ The window.open() method will behave differently in JellyScript on a WebTV set-top box when
compared with the behavior in a normal computer based web browser. It creates a pseudo-window
in an <IFRAME> and appends it to the end of the current display. The user can then scroll down to
this window.

See also: Document.open(), EventCapturer object, Frame object,
JellyScript, Window feature list, Window object, Window.close(),
Window.name, Window.opener

Cross-references:
Wrox Instant JavaScript – page - 74

Chapter number

2450

Window.opener (Property)
A reference to the window that contained the link that opened this one.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: Window object

- myWindow.opener
JavaScript syntax:

- opener

This allows you to build a hierarchy of parent and child windows. A window has a null value for
this property if the window was opened directly by the user.

If necessary, you can modify the value in this property since it supports read and write access.

Warnings:
❑ Not supported by Netscape 2 or version 3 of MSIE. You could simulate this property by storing the

self property of the opening window in a property of your own that belongs to the object
representing the new window. You could also check for the existence of this property and create it
yourself if it is missing. Refer to the example to see how you can do this.

❑ This value is meaningful for a top level window that contains a frame-set but it is not meaningful for
frames within that window. Logically, if this is to indicate a window parentage, it should also refer
to a top level window and not a frame within one, even if the window.open() method was
executed from within a frame.

❑ Although the value is apparently writable, it is difficult to think of a circumstance where you would
want to redefine the parent window object.

Example code:
// Create the new window
var myNewWindow = open('http://www.wrox.com', 'windowName');
// Now set its opener property if it doesn't already exist
if (!myNewWindow.opener)
{
myNewWindow.opener = window;
}

See also: Browser version compatibility, Document object, Frame object,
Window object, Window.close(), Window.frames[],
Window.open()

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2451

Window.outerHeight (Property)
The height of the window including the frame.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Number primitive

- myWindow.outerHeight
JavaScript syntax:

- outerHeight

This property is supported on Netscape Navigator and tells you what the current height of the
outer bordered area of the window is set to.

Assigning a value to this property will resize the window on Netscape Navigator. On MSIE it will
be ignored.

Note that the content window will be much smaller than the bordered area. The content area can be
controlled directly with the innerHeight and innerWidth properties.

outerWidth

outerHeight

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to set the

window size to less than 100x100 pixels.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.innerHeight, Window.innerWidth,
Window.outerWidth

Chapter number

2452

Window.outerWidth (Property)
The width of the window including the frame.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Number primitive

- myWindow.outerWidth
JavaScript syntax:

- outerWidth

This property is supported on Netscape Navigator and tells you what the current width of the
outer bordered area of the window is set to.

Assigning a value to this property will resize the window on Netscape Navigator. On MSIE it will
be ignored.

Note that the content window will be much smaller than the bordered area. The content area can be
controlled directly with the innerHeight and innerWidth properties.

outerWidth

outerHeight

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to set the

window size to less than 100x100 pixels.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.innerHeight, Window.innerWidth,
Window.outerHeight

Error! No text of specified style in document.

2453

Window.Packages (Property)
A top level JavaPackage object that is the root of a tree of Java packages.

Availability: JavaScript - 1.1
Netscape - 3.0
Opera - 3.0

Property/method value type: JavaPackage object

N myWindow.Packages
JavaScript syntax:

N Packages

This property contains a read-only reference to a JavaPackage that sits at the top of the Java
package hierarchy; the root node of the tree. A JavaPackage is a container for other
JavaPackage objects and JavaClass objects. By default, the Netscape Navigator browser will
have three packages belonging to this top level node (java, sun and Netscape). Each of these is a
package and will contain other packages. There may be additional externally supplied packages
over and above these default three items.

MSIE supports different mechanisms for encapsulating Java code.

lang applet

netscape sun

io

java

root

See also: JavaArray object, JavaClass object, JavaObject object,
JavaPackage object, Packages, Window.java,
Window.netscape, Window.sun

Property attributes:
ReadOnly.

Chapter number

2454

Window.pageXOffset (Property)
The amount that a window has been scrolled to the right.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Number primitive

N myWindow.pageXOffset
JavaScript syntax:

N pageXOffset

This read-only integer value tells you how far the window content has been scrolled in the
horizontal direction.

Note that Netscape Navigator is somewhat picky about whether you can even scroll the content of
a window. It insists on the scrollbars being visible even though the content may not cause them to
be active.

Netscape Navigator 4 will let you scroll layers and Netscape 6 provides sufficient DOM
standardized CSS positioning controls to satisfy your requirements.

In the MSIE browser, a similar value is available in the document.body.scrollLeft property.

See also: Document.body, Frame object, Window object,
Window.moveBy(), Window.moveTo(),
Window.pageYOffset, Window.scrollBy()

Property attributes:
ReadOnly.

Window.pageYOffset (Property)
The amount that a window has been scrolled downwards.

Availability: JavaScript - 1.2
Netscape - 4.0
Opera - 5.0

Property/method value type: Number primitive

N myWindow.pageYOffset
JavaScript syntax:

N pageYOffset

This read-only integer value tells you how far the window content has been scrolled in the vertical
direction.

Error! No text of specified style in document.

2455

Note that Netscape Navigator is somewhat picky about whether you can even scroll the content of
a window. It insists on the scrollbars being visible even though the content may not cause them to
be active.

Netscape Navigator 4 will let you scroll layers and Netscape 6 provides sufficient DOM
standardized CSS positioning controls to satisfy your requirements.

In the MSIE browser, a similar value is available in the document.body.scrollTop property.

See also: Document.body, Frame object, Window object,
Window.moveBy(), Window.moveTo(),
Window.pageXOffset, Window.scrollBy()

Property attributes:
ReadOnly.

Window.parent (Property)
A reference to the parent window in a framed pane.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Window object

- myWindow.parent
JavaScript syntax:

- parent

For top level windows, the parent property is the same as the self property.

For framed windows the parent will be a Window object.

In the same way that you can walk downwards through the frames hierarchy with a frames[...
].frames[...] construct, a parent.parent construct will walk upwards through the hierarchy.

It is important to know where you are so that this is as useful as possible. Relative locations in trees
need to have some awareness of the root. If you don't detect this, you might have problems.

Detecting whether you have reached the root can be accomplished by testing whether the parent
property of a window refers to the same object as the window itself.

When you reach the top of the tree, the parent property should yield the same value as the self
property. This means that the property will be equivalent to self for all windows unless they are
inside frames. In MSIE, this also means that they are possibly inside an <IFRAME> as well.

Chapter number

2456

Inside a modal dialog window, the parent will be a Dialog object.

Frame 1

Frame 2 Frame 3 Frame 4

Window

Frame 1

Frame 3 Frame 4Frame 2

Warnings:
❑ Be careful when building tree walking scripts that traverse the window hierarchy. You can reach the

top level and continue in an endless loop referring to the parent of an object that is the object itself.
You should test to see whether parent = self and then exit your tree walker knowing that you
have reached the root node.

See also: Dialog object, Frame object, Window object,
Window.frames[], Window.top

Property attributes:
ReadOnly.

Error! No text of specified style in document.

2457

Window.personalbar (Property)
A reference to an object that represents the personal preferences bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Bar object

- myWindow.personalbar
JavaScript syntax:

- personalbar

This is a read-only property containing a reference to a Bar object whose visible property contains
a Boolean value that controls the visibility of the screen furniture represented by the object.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to change

the visibility of the personal bar.

Example code:
// Request necessary privileges
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
// Hide personal bar
window.personalbar.visible = false;
// There is another way that works without requesting privilege
window.open('', '_top', 'directories=0');

See also: Bar object, Frame object, UniversalBrowserWrite, Window
furniture, Window object, Window.locationbar,
Window.menubar, Window.scrollbars,
Window.statusbar, Window.toolbar

Property attributes:
ReadOnly.

Window.pkcs11 (Property)
A hitherto undocumented property of a Netscape Navigator Window object.

Availability: JavaScript - 1.2
Netscape - 4.04

Property/method value type: Pkcs11 object

Chapter number

2458

N myWindow.pkcs11
JavaScript syntax:

N pkcs11

This is part of the Netscape Navigator security model. It's not something you would expect to
interact with from JavaScript as a rule.

There are some quite extensive documents covering the use of this facility on the Netscape web site
in the developer area.

Some examination with diagnostic scripts does not yield any useful properties, or at least none that
can be enumerated. There is a constructor which has a name and prototype property. The prototype
of the constructor points back at the Pkcs11 object itself.

It is somewhat worrying that this object is visible from JavaScript unless there is a genuine reason
for being able to access it from script. It may be related to the crypto property and also used in
conjunction with signed scripts.

If this is a subject you are interested in, there is more information to be studied which is available
from a variety of sources. A web search through www.altavista.com yielded over 150 references,
some of which document the availability of a Java interface to the PKCS11 security support.

Security in MSIE is supported via other mechanisms and you should search the MSDN web site for
relevant links. Links to topics in the MSDN site are relocated from time to time and it is best to
search there directly.

See also: Pkcs11 object

Property attributes:
ReadOnly.

Web-references:
http://developer.netscape.com/support/faqs/pkcs_11.html

Window.print() (Method)
This duplicates the behavior of the Print button on the Netscape Navigator or MSIE button bar.

Availability: JavaScript - 1.2
JScript - 5.0
Internet Explorer - 5.0
Netscape - 4.0

Property/method value type: undefined

- myWindow.print()
JavaScript syntax:

- print()

http://developer.netscape.com/support/faqs/pkcs_11.html

Error! No text of specified style in document.

2459

This is supposed to behave as if the user had clicked on the Print button or selected the Print item
from the pull-down menu.

Warnings:
❑ This does not appear to work on the Macintosh at version 4.7 of Netscape Navigator.

See also: Frame object, Window object, Window.find(),
Window.home(), Window.stop()

Window.prompt() (Method)
Present a text input prompt box.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: String primitive

- myResult =
myWindow.prompt(aString,
aDefaultValue)

JavaScript syntax:

- myResult = prompt(aString,
aDefaultValue)

aDefaultValue An initial content for the text boxArgument list:
aString Some text to explain what to enter

This presents a modal dialog containing the prompting text message, a text cell to type into and
two buttons, OK and Cancel.

This method is useful for debugging where you need to enter values.

Note that the text that is presented in the dialog is unformatted text and you cannot use HTML in
the dialog box.

The title bar of the dialog box cannot be changed from its default setting which tells you that the
dialog was invoked by JavaScript. In some browsers, it may just display the name of the browser.
This is intended to stop script programmers from masquerading their dialog boxes as those of
operating system diagnostics and login screens.

The prompt() dialog box is modal and blocking. The script must wait for a response from the user.

The value returned by the method is the text typed into the box by the user before pressing the OK
button to dismiss the dialog. If the Cancel button is clicked, the method will return null instead.

Chapter number

2460

Warnings:
❑ Earlier documentation refers to the presence of a Clear button but this is not in evidence when

testing this function on MSIE and Netscape Navigator. The Clear button is unnecessary since the text
is automatically selected and typing into the box clears any previous content. Pressing the Delete key
will also clear the text.

See also: Debugging - client-side, Dialog boxes, Dialog object, Frame
object, Window object, Window.alert(), Window.confirm()

Cross-references:
Wrox Instant JavaScript – page - 78

Window.releaseEvents() (Function)
Part of the Netscape Navigator 4 event propagation complex.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N myWindow.releaseEvents(anEventMask)
JavaScript syntax:

N releaseEvents(anEventMask)

Argument list:
anEventMask A mask defined with the manifest event

constants

This is part of the event management suite which allows events to be routed to handlers other than
just the one that defaults to being associated with an event.

The events to be captured are signified by setting bits in a mask.

This method provides a means of indicating which events are no longer needing to be captured by
the receiving window object.

The events are specified by using the bitwise OR operator to combine the required event mask
constants into a mask that defines the events you want to capture. Refer to the Event Type
Constants topic for a list of the event mask values.

Error! No text of specified style in document.

2461

We have to implement scripts using this capability if we need to build complex event handling
systems on Netcsape 4.x. A different script will be required for MSIE.

You may be able to factor your event handler so that you only have to make platform specific event
dispatchers and can call common handling routines that can be shared between MSIE and Netscape.

See also: captureEvents(), Document.captureEvents(),
Document.releaseEvents(), Element.onevent, Event
names, Event propagation, Event type constants,
Event.modifiers, Frame object, Layer.captureEvents(),
Layer.releaseEvents(), onMouseMove, Window object,
Window.captureEvents()

Window.resizeBy() (Method)
Resize the window by a specified amount.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- myWindow.resizeBy(aChangeX, aChangeY)
JavaScript syntax:

- resizeBy(aChangeX, aChangeY)

aChangeX A difference in pixelsArgument list:
aChangeY A difference in pixels

The window size will be altered by the horizontal and vertical amounts specified in the two
parameters. The left and top edges will stay in the same place but the right and bottom edges will
be adjusted to the new positions.

Delta X

Delta Y

Chapter number

2462

Warnings:
❑ There are some security implications for resizing windows in Netscape 4. This is to prevent you

hiding a window by making it too small.

❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to set the
window size to less than 100x100 pixels.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.moveBy(), Window.moveTo(), Window.onresize,
Window.resizeTo()

Window.resizeTo() (Method)
Resize the window to specified dimensions.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- myWindow.resizeTo(aSizeX, aSizeY)
JavaScript syntax:

- resizeTo(aSizeX, aSizeY)

aSizeX A distance in pixelsArgument list:
aSizeY A distance in pixels

The window size will be altered to the horizontal and vertical values specified in the two
parameters. The left and top edges will stay in the same place but the right and bottom edges will
be adjusted to reflect the new width and height.

Height

Width

Error! No text of specified style in document.

2463

Warnings:
❑ There are some security implications for resizing windows in Netscape 4. This is to prevent you

hiding a window by making it too small.

❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to set the
window size to less than 100x100 pixels.

See also: Frame object, UniversalBrowserWrite, Window object,
Window.moveBy(), Window.moveTo(), Window.onresize,
Window.resizeBy()

Window.returnValue (Property)
The return value for a modal dialog window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: User defined

JavaScript syntax: IE returnValue

Argument list: aNewValue
The value to be returned when the modal
dialog closes

The MSIE browser supports a special kind of window called a Modal Dialog. This is similar to
using the open() method to create a new window except that it is forced to always be on the top
and you cannot click outside of it to bring focus to another window within the browser.

When the modal window exits, you have the opportunity to store a value in the returnValue
property. Since the window is instantiated by a method call, the caller will expect a value to be
returned. This value will be null unless you specify something yourself.

Since you can pass arguments into the modal window, this provides a way to transmit user
interaction dependent values back to the caller.

Warnings:
❑ How this behaves in a truly multi-process environment such as Windows NT or Mac OS X may be

slightly different. In an operating system such as those, modality may only extend within the
application and it may be possible to switch to a different application. However on returning to the
MSIE browser, the modality will still be in force.

See also: Frame object, Window object, Window.showModalDialog()

Chapter number

2464

Window.routeEvent() (Function)
Part of the Netscape Navigator 4 event propagation complex.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N myWindow.routeEvent(anEvent)
JavaScript syntax:

N routeEvent(anEvent)

Argument list: anEvent An event object

This is part of the event management suite which allows events to be routed to handlers other than
just the one that defaults to being associated with an event.

Depending on the current setting of the event type mask for the receiving object, an event may be
available for processing with this method. An initial mask that enumerates the events to be
received might have been set up with the captureEvents() method. Then perhaps sometime
later, some of those events may have been deselected by means of the releaseEvents() method.
The remaining mask defines the finite set of events that will be visible to the object.

So, when a suitable event arrives and is captured, it can be passed on to the appropriately mapped
event handler function belonging to the next object in the event handling hierarchy or to another
handler belonging to the receiving object.

This means that an event can be
processed via several handlers within
an object before being passed to the
next object in sequence. The order in
which handlers and objects are visited
by the event is controlled by Netscape
Navigator. However, whether the
event is passed on or not is controlled
by the script in the handler. If it
chooses not to pass on the event, then
no subsequent handlers will see it, nor
will any other objects.

This trickle-down effect is somewhat
clumsy and uncontrolled. You can
gain some control over the way that
events are propagated with the
handleEvent() method and
applying it to the various objects that
need to take the event. This does
disperse the event handling around
the scripts somewhat and can be
difficult to maintain.

Object 1

Object 2

Object 3

Object 4

Error! No text of specified style in document.

2465

Warnings:
❑ This entire mechanism may become obsolete when the W3C standardizes the event handling process

for the Document Object Model.

See also: captureEvents(), Event handler, Event management, Event
propagation, Frame object, handleEvent(),
Layer.routeEvent(), Window object,
Window.handleEvent()

Window.screen (Property)
A reference to a Screen object that the window is being displayed in.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0
Opera - 5.0

Property/method value type: Screen object

- myWindow.screen
JavaScript syntax:

- screen

The object returned by this property is shared by all windows since there is only one Screen object
for the entire browser.

Refer to the Screen object topic for details of how you can examine its properties. There are some
minor differences between MSIE and Netscape Navigator regarding the properties that their
Screen objects support.

The WebTV box yields an object that describes the properties of a device that operates at TV
display resolution.

Warnings:
❑ This may not behave the same on all platform configurations. Consider the possibility of having

several monitor screens. Some OS platforms insist on all screens being the same size and resolution
in which case a single Screen object will suffice.

❑ In the case of the Macintosh Operating System, you may have several screens, each of which can be a
different size, orientation and color depth. Indeed, you can even mix monochrome and color screens.
One will be the main screen by virtue of it having the menubar placed on it. The screens can be
positioned relative to one another in any orientation.

❑ So for an OS such as Mac OS, a single Screen object may not suffice. However, the browser
manufacturers may not fully support this. You will need to test this if it is important to your
application. It is possible there will still be a single Screen object and that it will represent the
master screen. However it might represent the screen that the window is positioned on.

Chapter number

2466

❑ The Macintosh OS is somewhat unique in that a window may span several screen displays.
This would make it difficult for any Screen object (or even several) to accurately represent
the real world.

See also: JellyScript, Screen object

Property attributes:
ReadOnly.

Window.screenLeft (Property)
The left edge of the screen.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type: Number primitive

IE myWindow.screenLeft
JavaScript syntax:

IE screenLeft

This is the offset of the left edge of the window from the edge of the screen display.

The equivalent value in Netscape Navigator can be obtained from the Window.screenX property.

See also: Window.screenX

Property attributes:
ReadOnly.

Window.screenTop (Property)
The top edge of the screen.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type: Number primitive

IE myWindow.screenTop
JavaScript syntax:

IE screenTop

This is the offset of the top edge of the window from the top of the screen display.

The equivalent value in Netscape Navigator can be obtained from the Window.screenY property.

Error! No text of specified style in document.

2467

See also: Window.screenY

Property attributes:
ReadOnly.

Window.screenX (Property)
The X coordinate of the window within the screen display.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Number primitive

N myWindow.screenX

N myWindow.screenX = aCoordinate

N screenX

JavaScript syntax:

N screenX = aCoordinate

Argument list: aCoordinate A pixel position on the screen

This is the horizontal coordinate of the left edge of the Netscape Navigator window. For a Window
object that represents the contents of a frame in a frame-set, this value will be the left edge of the
containing top level window.

The equivalent value in MSIE can be obtained from the Window.screenLeft property.

See also: Window.screenLeft

Window.screenY (Property)
The Y coordinate of the window within the screen display.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Number primitive

N myWindow.screenY

N myWindow.screenY = aCoordinate

N screenY

JavaScript syntax:

N screenY = aCoordinate

Argument list: aCoordinate A pixel position on the screen

Chapter number

2468

This is thevertical coordinate of the top edge of the Netscape Navigator window. For a Window
object that represents the contents of a frame in a frame-set, this value will be the top edge of the
containing top level window.

The equivalent value in MSIE can be obtained from the Window.screenTop property.

See also: Window.screenTop

Window.scroll() (Method)
This is equivalent to the scrollTo() method but has been retained for backwards compatibility.

Availability: JavaScript - 1.1
JScript - 3.0
Internet Explorer - 4.0
Netscape - 3.0
Opera - 3.0

Property/method value type: undefined

- myWindow.scroll(aPositionX,
aPositionY)JavaScript syntax:

- scroll(aPositionX, aPositionY)

aPositionX A position in pixelsArgument list:
aPositionY A position in pixels

Deprecated: JavaScript - 1.2

The window content will be scrolled by the amount specified in the X and Y values.

Warnings:
❑ You should use the scrollTo() method in preference to this one as it is now deprecated.

❑ Vertical scrolling in Netscape Navigator moves in the reverse direction to MSIE. Because the
standard is ambiguous on this point, you will need to check this on other implementations.

❑ Netscape Navigator will only permit a document to be scrolled if the scroll bars are active and
visible. MSIE does not care whether the scroll bars are visible or whether you are scrolling the
document past its end point. Netscape Navigator however allows layers to be scrolled anyhow.

See also: Frame object, Window object, Window.scrollBy(),
Window.scrollTo()

Error! No text of specified style in document.

2469

Window.scrollbars (Property)
A reference to an object that represents the scroll bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Bar object

- myWindow.scrollbars
JavaScript syntax:

- scrollbars

This is a read-only property containing a reference to a Bar object whose visible property contains
a Boolean value that controls the visibility of the screen furniture represented by the object.

In this case, it is supposed to control the visibility of the scroll bars.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to change

the visibility of the scrollbars.

Example code:
// Request necessary privileges
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
// Hide scroll bars
window.scrollbars.visible = false;
// There is another way that works without requesting privilege
window.open('', '_top', 'scrollbars=0');

See also: Bar object, Frame object, UniversalBrowserWrite, Window
furniture, Window object, Window.locationbar,
Window.menubar, Window.personalbar,
Window.statusbar, Window.toolbar

Chapter number

2470

Property attributes:
ReadOnly.

Window.scrollBy() (Method)
Scroll the document in the window by a specific amount.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- myWindow.scrollBy(anOffsetX,
anOffsetY)JavaScript syntax:

- scrollBy(anOffsetX, anOffsetY)

anOffsetX A distance in pixelsArgument list:
anOffsetY A distance in pixels

This method will scroll the window relative to its current position by the indicated amount. You
can scroll in either the horizontal or vertical axis or even both at once.

Although the method is supported by MSIE and Netscape Navigator, they scroll in opposite
directions vertically. It was probably too much to expect them to support the feature in the same way.

Document

Window

position 1

Window

position 2

Scroll by

distance

Error! No text of specified style in document.

2471

Warnings:
❑ Vertical scrolling in Netscape Navigator moves in the reverse direction to MSIE. Because the

standard is ambiguous on this point, you will need to check this on other implementations.

❑ Netscape Navigator will only permit a document to be scrolled if the scroll bars are active and
visible. MSIE does not care whether the scroll bars are visible or whether you are scrolling the
document past its end point. Netscape Navigator however allows layers to be scrolled anyhow.

See also: Frame object, Window object, Window.moveBy(),
Window.moveTo(), Window.pageXOffset,
Window.pageYOffset, Window.scroll(),
Window.scrollTo()

Window.scrollTo() (Method)
Scroll the document in the window to a specific location.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: undefined

- myWindow.scrollTo(aPositionX,
aPositionY)JavaScript syntax:

- scrollTo(aPositionX, aPositionY)

aPositionX A location in pixelsArgument list:
aPositionY A location in pixels

This method will scroll the window to an absolute position specified by the two values. You can
scroll in either the horizontal or vertical axis or even both at once.

Although the method is supported by MSIE and Netscape Navigator, they scroll in opposite
directions vertically.

You can use this scrolling facility to bring a specific anchor into view. You would do this by
enquiring of the anchor what its X and Y coordinates are and then using that as a scroll destination.

You should use this method in preference to the window.scroll() method which is now deprecated.

Chapter number

2472

Document

Window

position 1

Window

position 2

Scroll to

distance

Warnings:
❑ Vertical scrolling in Netscape Navigator moves in the reverse direction to MSIE. Because the

standard is ambiguous on this point, you will need to check this on other implementations.

❑ Netscape Navigator will only permit a document to be scrolled if the scroll bars are active and
visible. MSIE does not care whether the scroll bars are visible or whether you are scrolling the
document past its end point. Netscape Navigator however allows layers to be scrolled anyhow.

See also: Anchor object, Frame object, Window object, Window.scroll(),
Window.scrollBy()

Window.secure (Property)
A flag indicating that a window was loaded from a secure source.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Boolean primitive

N myWindow.secure
JavaScript syntax:

N secure

false Window is not currently securely servedArgument list:
true Window was loaded from a secure location

Error! No text of specified style in document.

2473

This value will be set to true if the window contents were delivered from a secure source
(probably via the https: protocol). Normally this value will be false, as is the case if the
window is loaded from a local file. That would seem a little strange in that you probably have to
have local access control permissions to reach a file on the local file system and one would have
thought that would be secure and meriting a true value in this property.

Property attributes:
ReadOnly.

Window.self (Property)
A reference to the window itself.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Window object

- myWindow.self
JavaScript syntax:

- self

This is another name for the window.window property in this context. However, self is useful
because you can build reusable scripts with it that can be used with a variety of object types and
instances. Don't forget that this can also refer to a frame as well as a window since they are both
represented by the window object.

The self property can be used without the window prefix because it belongs to the global object in
a web browser window. Using the self keyword like this makes no difference to the functionality
of your script but it does make it easier to understand. For the same reason, you may want to use
the window property in the same way.

See also: Frame object, self, Window object, Window.frame,
Window.window

Property attributes:
ReadOnly.

Chapter number

2474

Window.setHotkeys() (Method)
Activate or deactivate keyboard shortcuts for this window.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N myWindow.setHotKeys(aSwitch)
JavaScript syntax:

N setHotKeys(aSwitch)

Argument list: aSwitch A Boolean switch value

This provides a way to turn keyboard short-cuts on and off. For windows that you create with the
window.open() method, you can control this with the feature list that you pass to the open() method.

Pass a true value to activate the hot keys and a false value to deactivate them.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to call this

method in Netscape Navigator.

❑ Beware of the spelling, the word 'keys' is not capitalized inside this function name.

See also: UniversalBrowserWrite

Window.setInterval() (Method)
Schedule a function to be executed at regular intervals.

Availability: JavaScript - 1.2
JScript - 3.0
Internet Explorer - 4.0
Netscape - 4.0

Property/method value type: Number primitive

Error! No text of specified style in document.

2475

- myWindow.setInterval(aFunction,
anInterval)

- myWindow.setInterval(aFunction,
anInterval, someArguments)

- myWindow.setInterval(aFunction,
anInterval, someArguments, aLanguage)

- myWindow.setInterval(aSourceText,
anInterval)

- myWindow.setInterval(aSourceText,
anInterval, someArguments)

- myWindow.setInterval(aSourceText,
anInterval, someArguments, aLanguage)

- setInterval(aFunction, anInterval)

- setInterval(aFunction, anInterval,
someArguments)

- setInterval(aFunction, anInterval,
someArguments, aLanguage)

- setInterval(aSourceText, anInterval)

- setInterval(aSourceText, anInterval,
someArguments)

JavaScript syntax:

- setInterval(aSourceText, anInterval,
someArguments, aLanguage)

aFunction A function object
aLanguage A scripting language to execute the script source

(MSIE only)
anInterval A time interval in milliseconds
aSourceText Some valid script source text

Argument list:

someArguments The arguments to the function object (not supported
in MSIE version 4)

The setInterval() method establishes a periodically scheduled execution timer that runs the
same fragment of script continuously with a delay timer between each cycle.

If you only want to delay the execution of some code and you want it to be executed just once, then
use the setTimeout() method instead. That will defer execution and clear its timer automatically
when it executed.

Passing a function as one of the arguments is only supported in MSIE from version 5.0 upwards
and Netscape Navigator from version 4 upwards. You can only specify the scripting language in
MSIE however.

The simpler form in which a script source text can be passed in a string with a second argument to
specify the interval is much more portable and recommended for use. You can pass a multiple line
script fragment in this argument as long as each line is separated by a semi-colon. Functionally, this
is very similar to the eval() method with an extra repeat periodicity value.

Chapter number

2476

Be careful that you note the value returned by this method if you intend to deactivate the periodic
execution. Without that value, you have no way to identify which one of possibly several timers
you want to cancel, and take care not to cancel the timer more than once. Cancelling a non-existent
periodic timer or deferred action is likely to crash your browser.

The result of this method is an identifying value that can be used with the clearInterval()
method to cancel this periodic execution.

Warnings:
❑ The functionality of this method is more limited in MSIE version 4. It does not support the passing of

a function object and its arguments in separate parameters. However since you can define a
fragment of JavaScript to call a function there are few circumstances where this will be a problem. It
does prevent you from manufacturing a function object and calling it though.

❑ On the other hand, implementing something that is non-portable across the MSIE and Netscape
Navigator browsers is a bad idea anyway.

❑ Be careful how you operate on these interval timers. You can store an identifier, which you can later
use to cancel the timer. However, if the timer has already been fired, some browsers may crash due
to you trying to cancel a non-existent timer.

❑ Write your periodically executed code carefully to avoid memory leaks, as any repetitive code that
leaks memory will rapidly slow the performance of the user's browser. It is not hard to leak as
much as 50K bytes per loop in JavaScript. This will rapidly fill your memory and eventually the
browser may crash. Even worse, memory leaks have a nasty habit of bringing the operating
system down as well.

See also: eval(), Frame object, Interval handlers, Memory leak, Timeout
handlers, Window object, Window.clearInterval(),
Window.setTimeout()

Window.setResizable() (Method)
Enable or inhibit the window resize capability.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

N myWindow.setResizable(aSwitch)
JavaScript syntax:

N setResizable(aSwitch)

Argument list: aSwitch A Boolean value to control the functionality

This provides a way to allow or deny user access to window resizing facilities.

This switches the resize feature on and off, which is something you can control in new windows
you create with the open() method when you specify the resizable feature.

Your script needs UniversalBrowserWrite privileges to use this method.

Error! No text of specified style in document.

2477

Warnings:
❑ Some platforms will not support this facility due to the way their window manager operates.

This is likely to be supported on desktop systems and less likely to work on workstations that
use X-Windows.

See also: UniversalBrowserWrite

Window.setTimeout() (Method)
A timeout control method.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method
value type:

Number primitive

- myWindow.setTimeout(aFunction, aWaitTime)

- myWindow.setTimeout(aFunction, aWaitTime,
someArguments)

- myWindow.setTimeout(aFunction, aWaitTime,
someArguments, aLanguage)

- myWindow.setTimeout(aSourceText,
aWaitTime)

- myWindow.setTimeout(aSourceText,
aWaitTime, someArguments)

- myWindow.setTimeout(aSourceText,
aWaitTime, someArguments, aLanguage)

- setTimeout(aFunction, aWaitTime)

- setTimeout(aFunction, aWaitTime,
someArguments)

- setTimeout(aFunction, aWaitTime,
someArguments, aLanguage)

- setTimeout(aSourceText, aWaitTime)

- setTimeout(aSourceText, aWaitTime,
someArguments)

JavaScript syntax:

- setTimeout(aSourceText, aWaitTime,
someArguments, aLanguage)

aFunction A function object
aLanguage A scripting language to execute the script source (MSIE

only)
aWaitTime A time interval in milliseconds
aSourceText Some valid script source text

Argument list:

someArguments The arguments to the function object (not supported in
MSIE version 4)

Chapter number

2478

The setTimeout() method provides a way to defer the execution of a fragment of script source
text. It is analogous to the eval() method with a delay before execution. Although this method
returns an ID value that can then be used with the clearTimeout() method to cancel the
execution, it is very likely that the deferred code will have executed already. You should set a flag
accordingly so that you can avoid killing a deferred task that has already been completed.
Attempting to kill deferred tasks that are no longer pending can crash your browser.

Code executed by this deferred mechanism will only be executed once. If you want it to be
executed continuously then setInterval() is a better alternative. On the other hand, you may
want to conditionally defer it again in which case you should call a handler function and, before
exiting it, make another call to setTimeout() to activate another deferred task.

As is the case with setInterval() and eval(), you can execute multiple statements as long as
they are separated by semi-colons.

Passing a function as one of the arguments is supported by MSIE in version 5 upwards and by
Netscape Navigator in version 4 upwards. The scripting language can only be defined in MSIE.

This facility may be used to present a message in the status bar and then clear it again after some
period of time has elapsed. It can be used to generate some animation in the status bar, although
many people consider this to be a design cliche and much overused. If you do animate the status
bar, you should consider whether it is useful and not distracting.

These timed animations are generally best triggered by an onLoad event handler.

Note that the deferred code is executed in the context and scope chain of the window object that
received the method call to set up the deferred task.

The example is a cut down version of the ticker script used in the BBC News Online web site. The
display techniques are the same but the example only shows one story. To see the real ticker in
operation, refer to http://www.bbc.co.uk/news and view it with an MSIE browser. In the News
Online ticker, many coding compromises were necessary to work round object boundary bugs in
the MSIE for Macintosh browser. Because the ticker is constantly being updated, the object
boundary is changing all the time and although this was played in an <IFRAME>, the mouse enter
and mouse out events caused the MSIE browser to crash frequently. Earlier versions of the ticker
also did a large amount of string creation/destruction which caused somewhat massive memory
leaks. You can alleviate this by using meta refresh tags to force the garbage collection to happen.

Warnings:
❑ Be careful how you operate on these interval timers. You can store an identifier, which you can later

use to cancel the timer. However, if the timer has already been fired, some browsers may crash due
to you trying to cancel a non-existent timer.

❑ This method leaks somewhat badly in Netscape 2.

http://www.bbc.co.uk/news

Error! No text of specified style in document.

2479

Example code:
<HTML>
<HEAD>
<STYLE TYPE="text/css">
<!--
A
{
 font-family: Verdana, Arial, Helvetica, sans-serif, "MS sans serif";
 font-size: 11px;
 line-height: 11px;
 text-decoration: none;
 color: #333366;
 font-weight: bold;
}

A.latest
{
 color: #CC3300;
}

A:hover
{
 color: #CC3300;
}
-->
</STYLE>
<SCRIPT LANGUAGE=JAVASCRIPT>
// This script will only work on MSIE
var theTickerText = "The ticker text goes here and plays out until it is
finished before repeating again.";
var theCharacterTimeout = 45;
var theStoryTimeout = 5000;
var theEnumerator = 0;
// --- Run the ticker
function doTheTicker()
{
 if((theEnumerator % 2) == 1)
 {
 writeTicker("_");
 }
 else
 {
 writeTicker("*");
 }

 theEnumerator++;

 if(theEnumerator == theTickerText.length+1)
 {
 writeTicker("");
 theEnumerator = 0;
 setTimeout("doTheTicker()", theStoryTimeout);
 }
 else
 {
 setTimeout("doTheTicker()", theCharacterTimeout);
 }
}

Chapter number

2480

function writeTicker(aWidget)
{
 document.all.hottext.innerHTML = theTickerText.substring(0,theEnumerator) +
aWidget;
}
</SCRIPT>
</HEAD>
<BODY onLoad="doTheTicker();">
LATEST: <A ID="hottext"
HREF="/">
</BODY>
</HTML>

See also: clearTimeout(), eval(), Frame object, Memory leak, Timeout
handlers, Window object, Window.clearInterval(),
Window.clearTimeout(), Window.setInterval()

Window.setZOptions() (Method)
Define the window stacking behavior.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type:
undefined

N myWindow.setZOptions
(anOptionValue)JavaScript syntax:

N setZOptions(anOptionValue)

Argument list:
anOptionValue One of a range of possible settings for the

feature

When you call the window.open() method, there are several feature values that can be used to
control the Z-Ordering of the windows. This method provides a way to modify the settings of the
Z-Ordering after the window has already been created.

The option value should be one of the following:

Feature Description

alwaysRaised The window should always be at the top of the stack of windows
even when it does not have input focus.

alwaysLowered The window should always be at the bottom of the stack of windows
even when it does have the input focus.

z-lock The window should always be at the same Z position in the stack of
windows regardless of which window has the focus.

empty The window exhibits normal stacking behavior; it is brought to the
top when it has the focus.

Error! No text of specified style in document.

2481

These options are spelled the same as they are when you use them in the window.open() method.
Naturally, they are mutually exclusive and you can use only one of them at a time.

With this special Netscape Navigator functionality and some careful use of the window.open()
method, you can effectively simulate the same behavior as that of the MSIE supported modal window.
You will need to use global variables and intra-window method calls to pass arguments, however.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to call this

method in Netscape Navigator.

See also: UniversalBrowserWrite, Window.showModalDialog()

Window.showHelp() (Method)
Display the help window.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: Window object

IE myWindow.showHelp(aURL)
JavaScript syntax:

IE showHelp(aURL)

Argument list: aURL The URL of a help page

This will call up the online help facility of the browser.

Warnings:
❑ This is not supported on the Macintosh platform.

See also: Dialog boxes, Dialog object

Window.showModalDialog() (Method)
Display a modal dialog.

Availability: JScript - 3.0
Internet Explorer - 4.0

Property/method value type: User defined

Chapter number

2482

IE myWindow.showModalDialog(aURL,
someArguments)

IE myWindow.showModalDialog(aURL,
someArguments, someFeatures)

IE showModalDialog(aURL, someArguments)

JavaScript syntax:

IE showModalDialog(aURL, someArguments,
someFeatures)

aURL A URL to load into the modal dialog
someArguments Aggregated arguments to pass to the modal dialog

Argument list:

someFeatures Window adornment features

The MSIE browser supports a special window that behaves like a normal window, except that it
does not permit any other action until it is dismissed.

To present a modal dialog, you call this method which does not return until the window is
dismissed. When the window is dismissed, whatever the returnValue property of that window
was set to will be returned as the result of this method call.

You must specify a URL to be loaded into the window and you can also pass arguments to it to
control the behavior of any content with some scripts that get loaded with the page. It is that script
code which will ultimately store something in the returnValue property of the window before
calling window.close() to dismiss the window. The arguments are passed by aggregating them
into an array or object which is then 'unpacked' inside the modal dialog's context.

This is only supported on MSIE but you can simulate most of its functionality quite easily in
Netscape Navigator. Passing values in and out becomes somewhat tricky but you can accomplish
that by passing property values via calls to scripts in other windows or by setting properties
belonging to objects that you know will persist long enough for them to be retrieved. However,
note that you may not be able to simulate the interlocking modality quite as easily.

A third optional argument can be specified in a similar way to the feature list of a window.open()
method. You might put values such as this in the third argument to control the size of the new dialog:

"dialogWidth:5cm; dialogHeight:10cm; dialogTop:0cm; dialogLeft:0cm"

Note that they are a number and a measurement unit in the manner of the CSS positioning style
controls. If you don't specify a measurement unit, then MSIE 4 assumes you are measuring in ems
and MSIE 5 assumes pixels.

Error! No text of specified style in document.

2483

Here is a list of the features that can be applied to a modal dialog window as it is opened:

Feature Range Default Description

center: yes, no, 1, 0, on,
off

yes Controls dialog window centering within the
desktop.

dialogHeight: height value none Sets the dialog window height
dialogHide: yes, no, 1, 0, on,

off
no Controls the dialog window visibility when

printing or using print preview. This feature is
only available when a dialog box is opened from
a trusted application.

dialogLeft: left position none Sets the left edge coordinate of the dialog
window relative to the upper-left corner of the
desktop.

dialogTop: top position none Sets the top edge coordinate of the dialog
window relative to the upper-left corner of the
desktop.

dialogWidth: width value none Sets the dialog window width
edge: sunken, raised raised Defines the dialog window edge style
help: yes, no, 1, 0, on,

off
yes Controls the context-sensitive Help icon.

resizable: yes, no, 1, 0, on,
off

no Controls the resize box.

scroll: yes, no, 1, 0, on,
off

yes Defines whether the dialog window has
scrollbars.

status: yes, no, 1, 0, on,
off

Varies Defines whether the dialog window has a status
bar. The default is yes for dialog windows that
aren't trusted and no for trusted dialog windows.

unadorned: yes, no, 1, 0, on,
off

no Controls the border window chrome. This
feature is only available when a dialog box is
opened from a trusted application.

The result of this method call is the value stored in the returnValue property of the modal
window before it is dismissed.

The example demonstrates how to pass some argument values in an array and how to return a
value entered by the user.

Warnings:
❑ Note that the feature list for a modal dialog is different to the feature list used in a

window.open() method.

❑ The Macintosh version of MSIE does not appear to support the dialog sizing controls although you
can write and then read back values in the properties that control size and position.

❑ On the Macintosh variant of MSIE version 5, a modal dialog is displayed but if its contents are
scrolled, they can degenerate the off-screen buffer resulting in weird tearing effects in the image
data. This may be due to having an <IFRAME> in the window or it may be caused by a timing
problem with multiple clicks on the scroll bar in rapid succession.

Chapter number

2484

Example code:
<!-- Save this in demo.html -->
<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
myArray = new Array(100, 200, "XXX", "YYY");
myReturnValue = showModalDialog("./page.html", myArray);
alert("Value returned from window is "+myReturnValue);
</SCRIPT>
</BODY>
</HTML>

<!-- Save this in page.html in the same folder -->
<HTML>
<HEAD>
</HEAD>
<BODY>
Hi there!!<HR>Input values are:

<SCRIPT>
for(myEnum=0; myEnum<dialogArguments.length; myEnum++){ document.write(myEnum);
document.write(" - "); document.write(dialogArguments[myEnum]);
document.write("
");
}
returnValue = prompt("What do you want to send back");
</SCRIPT>
</BODY>
</HTML>

See also: Dialog boxes, Dialog object, Frame object, Window object,
Window.dialogArguments, Window.returnValue,
Window.setZOptions()

Window.showModelessDialog() (Method)
Display a modeless dialog window.

Availability: JScript - 5.0
Internet Explorer - 5.0

Property/method value type: Window object

IE myWindow.showModelessDialog(aURL,
someArguments)

IE myWindow.showModelessDialog(aURL,
someArguments, someFeatures)

IE showModelessDialog(aURL, someArguments)

JavaScript syntax:

IE showModelessDialog(aURL, someArguments,
someFeatures)

Error! No text of specified style in document.

2485

aURL A URL to load into the modeless dialog
someArguments Arguments to pass to the modeless dialog

Argument list:

someFeatures Window adornment features

The MSIE browser supports a special window that behaves like a modal dialog but can be switched
into the background. This is therefore a modeless dialog. Because it does not operate in a modal
fashion, it does not lock out other activity in the browser. Having called this method to display a
modeless dialog, the function returns immediately and the script that called it will continue
execution. The opening window can continue to receive input if necessary, which you might find
useful for opening palette windows, for example.

The result of this method call is a reference to the window object that represents the modeless dialog.

You must specify a URL value in the first argument for a document to be loaded into the window.

The second argument passes some arguments to the modeless dialog in the same way as you might
to a modal dialog.

A third optional argument can be specified in a similar way to the feature list of a window.
showModalDialog() method. However, note that the feature list is different to that for a normal
window created with a window.open() method call. Refer to the window.showModalDialog()
topic for details of the feature list for modal or modeless dialog windows.

See also: Dialog boxes, Dialog objectWindow.showModalDialog()

Window.sidebar (Property)
A reference to an object that represents the sidebar frame in Netscape 6.0.

Availability: JavaScript - 1.5
Netscape - 6.0

Property/method value type: Sidebar object

N myWindow.sidebar
JavaScript syntax:

N sidebar

This is a new property introduced to support the sidebar in Netscape 6. In essence this introduces a
permanent second frame that can be used to hold navigational content. Actually its capabilities
seem quite powerful and since it can have HTML loaded into it and can be addressed with
JavaScript some interesting possibilities await us as we explore it further.

See also: Sidebar object

Chapter number

2486

Window.status (Property)
A property containing the text displayed in the status bar.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type:
String primitive

- myWindow.status

- myWindow.status = aString

- status

JavaScript syntax:

- status = aString

Argument list:
aString A string to display in the status bar

This property should be used to set a transient value for the status bar when providing some
rollover management.

This is ideal for use in event handlers or fragments of code being executed with a deferred task.
Normally setting this from a script would display the status text only momentarily until the user
moved the mouse or the document finished loading.

When the status text is erased, the defaultStatus value of the window will usually be the text that
overwrites it, unless some other text is called in the meantime. It really depends on what event
handlers are invoked as the mouse moves.

In Netscape Navigator, setting the status value in a submit button onClick handler instantly
updates the value displayed in the status bar. However as soon as you roll off the button, the
defaultStatus value is displayed instead and the transient status value is lost. Rolling back onto
the submit button won't display it again because it was set by the onClick handler.

In MSIE, the behavior of the status and defaultStatus properties is so nearly identical as to be
hard to distinguish one from the other.

The status message box belongs to the top level window. This means that it behaves with some
slight differences if there are multiple frames and the status and defaultStatus properties are
set from inside them. This is also prone to differences between browsers and it is recommended
that you experiment somewhat to achieve exactly the desired behavior you want to make sure it is
consistent across the two main browsers.

Setting this value in the onMouseOver event handler requires that you signal the browser to not
immediately update the status bar value when the handler exits. To do this, return a Boolean true
value to inhibit any further browser activity. Likewise, you'll also need to do this in a onMouseMove
handler. The example illustrates a simple "mouse'O'meter" to display the current mouse coordinates
as the mouse moves. This only works in MSIE, however, and then only while the window has focus.
This might be useful when working out where to position objects with dynamic HTML.

Error! No text of specified style in document.

2487

Frame-set contents that run script to set status bar values might operate better if you explicitly tell
them to set the status property that belongs to the top level window. That is accessible via the top
property, thus:

top.status = "ABCD";

window.top.status = "ABCD";

top.defaultStatus = "ABCD";

window.top.defaultStatus = "ABCD";

Warnings:
❑ Beware that some browsers do not correctly restore the status bar to its default condition after the

rollover is deactivated by moving the mouse pointer somewhere else. This is the case for Netscape
2 and 3 on the Windows platform. Adding an onMouseOut handler may provide a satisfactory
work around.

Example code:
<BODY onMouseMove="mouseOmeter();">
<SCRIPT>
// An example mouse coordinate display for MSIE

function mouseOmeter()
{
 window.status = window.event.x + "," + window.event.y;
 return true;
}

See also: Frame object, onMouseOut, onMouseOver, Status line, Window
object, Window.defaultStatus

Window.statusbar (Property)
A reference to an object that represents the status bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Bar object

- myWindow.statusbar
JavaScript syntax:

- statusbar

This is a read-only property containing a reference to a Bar object whose visible property
contains a Boolean value that controls the visibility of the screen furniture represented by the
object, in this case, the status bar.

Chapter number

2488

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to change

the visibility of the status bar.

Example code:
// Request necessary privileges
netscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrite");
// Hide status bar
window.statusbar.visible = false;
// There is another way that works without requesting privilege
// window.open('', '_top', 'status=0');

See also: Bar object, Frame object, UniversalBrowserWrite, Window
furniture, Window object, Window.locationbar,
Window.menubar, Window.personalbar,
Window.scrollbars, Window.toolbar

Property attributes:
ReadOnly.

Window.stop() (Method)
This duplicates the behavior of the Stop button on the Netscape Navigator button bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: undefined

- myWindow.stop()
JavaScript syntax:

- stop()

This is a means of immediately halting the script being executed. It’s likely this will mainly be used
in an error handler, although you may want to conditionally prevent a form from being submitted.

It is effectively the same as clicking on the Stop button in the toolbar.

Warnings:
❑ Since this is only supported on Netscape Navigator, it is not a portable feature and not

recommended for deployment.

See also: Frame object, Window object, Window.find(),
Window.home(), Window.print()

Error! No text of specified style in document.

2489

Window.sun (Property)
A reference to the Java package object that is the root of the 'sun.*' Packages tree.

Availability: JavaScript - 1.1
Netscape - 3.0

Property/method value type: JavaPackage sun

N myWindow.Packages.sun

N myWindow.sun

N Packages.sun

JavaScript syntax:

N sun

The object referred to by this property sits at the top of the sun package name hierarchy. It is
through this property that you can access the java objects, properties and methods via LiveConnect.

lang applet

netscape sun

io

java

root

See also: JavaPackage object, Window.java, Window.netscape,
Window.Packages

Property attributes:
ReadOnly.

Window.toolbar (Property)
A reference to an object that represents the tool bar.

Availability: JavaScript - 1.2
Netscape - 4.0

Property/method value type: Bar object

- myWindow.toolbar
JavaScript syntax:

- toolbar

Chapter number

2490

This is a read-only property containing a reference to a Bar object whose visible property
contains a Boolean value that controls the visibility of the screen furniture represented by the
object, which, in this case, is the toolbar.

Warnings:
❑ Your script will need to be granted the UniversalBrowserWrite privilege to allow it to change

the visibility of the toolbar.

❑ Be careful if you set both the menubar and toolbar to invisible, you will then have no reload
capability to be able to refresh the screen. You will then only be able to quit.

❑ In the Netscape Navigator 4 browser for Macintosh, setting the toolbar invisible and then visible
restores the tool bar but hides the menu items. On that platform, hiding the toolbar also hides all the
other window furniture such, as locationbar and statusbar.

Example code:
// Request necessary
privilegesnetscape.security.PrivilegeManager.enablePrivilege("UniversalBrowserWrit
e");// Hide tool barwindow.toolbar.visible = false;// There is another way that
works without requesting privilegewindow.open('', '_top', 'toolbar=0');

See also: Bar object, Frame object, UniversalBrowserWrite, Window
furniture, Window object, Window.locationbar,
Window.menubar, Window.personalbar,
Window.scrollbars, Window.statusbar

Property attributes:
ReadOnly.

Window.top (Property)
The topmost window in a framed hierarchy.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Window object

- myWindow.top
JavaScript syntax:

- top

Error! No text of specified style in document.

2491

The top property should consistently refer to the window at the top of the hierarchy. The window
property refers to the current window.

You can test attributes of the top window against attributes of the current window to see if your
script is running in a correctly framed context. This may be useful if you have a frame dependent
page that may have been linked to by a search engine. You can force the page into the correct
frame-set if you can detect that it has been invoked outside of it.

if(top != window)

{

// The window is in a frameset

}

This property will contain a meaningful value regardless of whether the window is in a frame or not.

If the pages are known to come from the same server, you may want to check the
window.location.href property against the top.location.href property. However, this
may cause problems if the pages come from different servers and cause the script to throw a
security related exception.

Warnings:
❑ Note that this value is not necessarily the same as the parent property.

See also: Frame object, Window object, Window.frame,
Window.frames[], Window.parent, Window.window

Property attributes:
ReadOnly.

Window.window (Property)
Another name for the self property.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Opera - 3.0

Property/method value type: Window object

- myWindow.window
JavaScript syntax:

- window

This is another name for the window.self property in this context. However, window is useful
because you can remove the ambiguity associated with accessing global object properties and
methods. Don't forget that this can also refer to a frame as well as a window since they are both
represented by the window object.

Chapter number

2492

If the script is running in the topmost window of a frame-set or within a non-frame-set window,
the top property will also be set to the same value.

This property is slightly odd, because the window object is also the global object for a web browser.
The global object is always placed in the scope chain for a script's execution context. So, all
properties that belong to the window are available without requiring the window object prefix.

So, these all refer to the same thing:

window

window.self

self

window.window

self.self

self.window.self

window.window.window.window.window.self.window

The main use of this property is to yield slightly better readability and clarity in the code you write.
The same applies to the self property. It is better to explicitly call window.open() rather than
just open(). Explicitly calling window.open() avoids an inadvertent call to document.open().
You might not be aware of an open() method belonging to another object that has been placed
into the scope chain ahead of the window object.

Frame 1

Frame 2 Frame 3 Frame 4

Window.top

Window.self

Error! No text of specified style in document.

2493

Warnings:
❑ Be careful if you are building recursive scripts to walk the window hierarchy, as you could find

yourself in an endless loop simply walking via the window property of the top level window.

See also: Frame object, Window object, Window.frame, Window.self, Window.top

Property attributes:
ReadOnly.

Windows Script Host (Product)
A scripting environment available on the Windows platform.

On the Apple Macintosh, the AppleScript operating system extension has provided a way for
applications to exploit AppleEvents and execute script-based control over one another.

On Windows, Microsoft introduced Windows Script Host (WSH), which provides a script-driven
interface to the underlying COM model. This is a great improvement on the DOS batch commands
that were available prior to this. Its still doesn't integrate applications in the way that AppleScript
does, instead it integrates data objects with one another, which in some ways may be more
powerful as it is a document-centric system. However, it can be difficult to exploit specific
capabilities of applications unless they are COM related.

Like AppleEvents, WSH is language independent and you have a choice of languages that you can
use for scripting. JScript is becoming more favored lately, although much has been made of
VBScript, although it's not as powerful as Visual Basic, on which it is based.

For an in-depth discussion on WSH, consult the Wrox Professional JavaScript book, where a whole
chapter is devoted to WSH.

with ... (Statement)
Adds an object to the front of the scope chain for use in the following block of script code.

Availability: ECMAScript edition - 2
JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.02
Netscape - 2.0
Netscape Enterprise Server - 2.0
Opera - 3.0

JavaScript syntax: - with(anObject) { someCode };

someCode Some code to execute with the enhanced scope chainArgument list:
anObject A reference to an object to add to the scope chain

This statement is provided as a convenience mechanism to simplify your script code and save time
and trouble.

Chapter number

2494

When a statement executes, your line of script is running in one context or another. Each context is
created and destroyed as functions are called and exit respectively. The contexts are added to an
inheritance chain, which allows variables to be shared globally or locally.

The with keyword adds an object to the front of the scope chain for the current execution context.
This saves you having to describe the full object reference since it is placed in the scope chain and
always available and implicitly provided by JavaScript when resolving references to identifiers.

The code in the statement block is then executed while this augmented scope chain is in place. The
object that is added to the scope chain is computed by the expression value in parentheses.

When the statement block is executed, the scope chain is restored to its original condition. This
happens regardless of how the statement block is completed. Although the ECMA standard is
ambiguous on this point, the implication is that a break might be appropriate in this context. A
continue or return in the statement block would be inappropriate unless perhaps the with()
construct is used within an iterator or function. Because of this ambiguity, you may find this
behaves differently according to the implementation you are using.

The with statement can save you effort typing object names over and over again.

Warnings:
❑ Even though it is very convenient, it is considered somewhat bad form to use this construct. The

code is hard to optimize inside the interpreter, which means it will likely run more slowly. Functions
and variables instantiated inside a with block do not behave consistently, so it is recommended that
you avoid using this construct.

Example code:
// Create a new object
var myObject = new Object;
// Add a property containing another object
myObject.itsObject = new Object;
// Add a property to that object
myObject.itsObject.someProperty = "String text";
// Now enhance the scope chain
with(myObject.itsObject)
{
 document.write(someProperty);
}

See also: Identifier, Identifier resolution, Scope chain, Statement

Cross-references:
ECMA 262 edition 2 – section - 10.1.4

ECMA 262 edition 2 – section - 12.10

ECMA 262 edition 3 – section - 10.1.4

ECMA 262 edition 3 – section - 12.10

Wrox Instant JavaScript – page - 35

Error! No text of specified style in document.

2495

WML (Standard)
Wireless Mark-up Language.

This is the markup language used to describe cards (analogous to pages) in a wireless mobile
device. This is the framework in which the WScript code will run. This is variously referred to as
WScript and WMLScript and should not be confused with the WScript that Microsoft refer to as
being a component of WSH.

See also: Interpret, WAP, WScript

WScript (Standard)
Otherwise known as WMLScript or WAP Script – a variation of JavaScript for use in mobile devices.

This is the somewhat modified version of JavaScript, which is used in WAP mobile devices
such as cellphones.

Warnings:
❑ Be aware that Microsoft have implemented a WScript object as part of the WSH environment. That

object has absolutely nothing to do with WAP or mobile telecommunications. It is a container for an
object model that is fundamental to WSH.

See also: Host environment, Interpret, Platform, Script execution, WAP, WML

WScript object (Object/WSH)
An object that represents the object model of the WSH framework.

Availability: JScript - 3.0

JavaScript syntax: WSH WScript

Object properties:
Application, Arguments, FullName, Name, Network, Path,
ScriptFullName, ScriptName, StdErr, StdIn, StdOut,
Version

Object methods:
CreateObject(), DisconnectObject(), Echo(),
GetObject(), Quit(), Sleep()

Property JavaScript JScript N IE Opera Notes

Application - 3.0 + - - - -
Arguments - 3.0 + - - - -
FullName - 3.0 + - - - -
Name - 3.0 + - - - -
Network - 3.0 + - - - -

Table continued on following page

Chapter number

2496

Property JavaScript JScript N IE Opera Notes

Path - 3.0 + - - - -
ScriptFullName - 3.0 + - - - -
ScriptName - 3.0 + - - - -
StdErr - 3.0 + - - - -
StdIn - 3.0 + - - - -
StdOut - 3.0 + - - - -
Version - 3.0 + - - - -

Method JavaScript JScript N IE Opera Notes

CreateObject() - 3.0 + - - - -
DisconnectObject() - 3.0 + - - - -
Echo() - 3.0 + - - - -
GetObject() - 3.0 + - - - -
Quit() - 3.0 + - - - -
Sleep() - 3.0 + - - - -

WScript.Application (Property)
Access to the IDispatch interface for the object.

Availability: JScript - 3.0

Property/method value type: IDispatch object

JavaScript syntax: WSH myApplication = WScript.Application

This mechanism describes how to gain access to the objects, properties, and methods belonging to
an external application.

See also: WScript.GetObject()

WScript.Arguments (Property)
This returns a collection of argument items.

Availability: JScript - 3.0

Property/method value type: WshArguments object

JavaScript syntax: WSH myArguments = WScript.Arguments

Error! No text of specified style in document.

2497

The arguments are passed to the WSH script when it is executed. This collection provides a way to
access the arguments, possibly by way of an enumerator.

Arguments from the command line or specified by the shortcut that executed the script are passed
by means of this collection.

WScript.CreateObject() (Method)
Creates an instance of an automation object.

Availability: JScript - 3.0

Property/method value type: WScript object

WSH myObject =
WScript.CreateObject(aProgID);JavaScript syntax:

WSH myObject =
WScript.CreateObject(aProgID,
aPrefix);

aProgID An application programme IDArgument list:
aPrefix A hook into the event model

Calling this method yields an object which can be used to communicate with another application
residing in the same computer.

For example, this code creates an object that references the Word application:

myWord = WScript.CreateObject("Word.Application");

From here we can reference the application via the object. This makes the Word application we just
instantiated visible to the user:

myWord.Visible = true;

WScript.DisconnectObject() (Method)
Discards an object.

Availability: JScript - 3.0

JavaScript syntax: WSH WScript.DisconnectObject(anObject)

Argument list: anObject An object previously created by WSH

This method is used to get rid of objects previously created with the CreateObject() and
GetObject() methods.

Chapter number

2498

WScript.Echo() (Method)
Echoes some output to the caller via standard output.

Availability: JScript - 3.0

Property/method value type: WScript object

WSH WScript.Echo(anArg)
JavaScript syntax:

WSH WScript.Echo(anArg, ...)

Argument list: anArg A string or numeric value

This works just like the echo command in a shell scripting environment.

It takes a variable number of arguments which can be strings or numbers.

The behavior depends on which interpreter is being used. In the cscript interpreter, the results are
concatenated together into the output stream. In the wscript interpreter, each Echo() call results in
an alert() dialog box which must be manually dismissed.

WScript.FullName (Property)
The full path and name for the file being executed.

Availability: JScript - 3.0

Property/method value type: String primitive

JavaScript syntax: WSH myName = WScript.FullName

This property contains the full name and path for the file being executed.

See also: WScript.ScriptFullName

WScript.GetObject() (Method)
Access an already existing object rather than creating a new one.

Availability: JScript - 3.0

Property/method value type: WScript object

WSH WScript.GetObject(aPath)

WSH WScript.GetObject(aPath, aProgID)
JavaScript syntax:

WSH WScript.GetObject(aPath, aProgID,
aPrefix)

Error! No text of specified style in document.

2499

aPath The path to an already existing document
aProgID An application programme ID

Argument list:

aPrefix A hook into the event model

You can use this method to access an object that you know already exists without needing to create
a fresh instance. An example of the difference is that CreateObject() is used to manufacture
new documents via the application while GetObject() is used to access existing documents.

Given the object that encapsulates the document, since it is a WScript object, you can access its
Application property to control the owning application.

See also: WScript.Application

WScript.Name (Property)
A human readable name for the script.

Availability: JScript - 3.0

Property/method value type: String primitive

JavaScript syntax: WSH myName = WScript.Name

Computers are happy to use arcane names for scripts but WSH provides a way to give your script a
human-friendly name. This property returns such a value.

WScript.Network (Property)
A reference to a network management object.

Availability: JScript - 3.0

Property/method value type: WshNetwork object

JavaScript syntax: WSH myNet = WScript.Network

With the object returned by this property, you can manage the network within the computer,
mapping in new drives or unmapping existing ones, for instance.

WScript.Path (Property)
The path to the activating WSH executive.

Availability: JScript - 3.0

Property/method value type: String primitive

JavaScript syntax: WSH myPath = WScript.Path

This property yields a string that describes which, of several, WSH run-time environments is used.

Chapter number

2500

WScript.Quit() (Method)
Terminates the script and returns an error code.

Availability: JScript - 3.0

JavaScript syntax: WSH WScript.Quit(anErrCode)

Argument list: anErrCode An error code to be sent back to the caller

The current instance of cscript or wscript is killed and an error returned to the calling shell.

WScript.ScriptFullName (Property)
The full path and script name.

Availability: JScript - 3.0

Property/method value type: String primitive

JavaScript syntax: WSH myName = WScript.ScriptFullName

With this property, you can dismantle the path to the file and generate relative paths that locate
temporary files adjacent to the script that is being executed. If the script is moved, the relative
locations move with it.

See also: WScript.FullName

WScript.ScriptName (Property)
A string containing the name of the script.

Availability: JScript - 3.0

Property/method value type: String primitive

JavaScript syntax: WSH myName = WScript.ScriptName

With this property, you can create scripts that will behave differently according to the name under
which they are executed.

Error! No text of specified style in document.

2501

WScript.Sleep() (Method)
Suspend the script execution for a while.

Availability: JScript - 3.0

JavaScript syntax: WSH WScript.Sleep(aDuration)

Argument list: aDuration A value specified in milliseconds

With this method, you can suspend execution for a while without creating a 'busy waiting' loop.

WScript.StdErr (Property)
A write-only stream used for output.

Availability: JScript - 3.0

Property/method value type: TextStream object

JavaScript syntax: WSH myStream = WScript.StdErr

This is only available to WSH scripts being executed from a command line interface. It provides a
way for the scripts to communicate error messages back to the caller.

WScript.StdIn (Property)
A read-only stream used for input.

Availability: JScript - 3.0

Property/method value type: TextStream object

JavaScript syntax: WSH myStream = WScript.StdIn

This is only available to WSH scripts being executed from a command line interface. It provides a
way for the scripts to receive messages input from the caller.

Chapter number

2502

WScript.StdOut (Property)
A write-only stream used for output.

Availability: JScript - 3.0

Property/method value type: TextStream object

JavaScript syntax: WSH myStream = WScript.StdOut

This is only available to WSH scripts being executed from a command line interface. It provides a
way for the scripts to communicate messages back to the caller.

WScript.Version (Property)
A string containing the WSH version number.

Availability: JScript - 3.0

Property/method value type: String primitive

JavaScript syntax: WSH myVersion = WScript.Version

With this, you can write version dependent code.

WSH (Object model)
The object model used in Windows Script Host.

See also: WScript.GetObject(), WScript object

WSH (Product)
Windows Script Host.

See also: .htc, Scriptlet, Web browser, Windows Script Host

wysiwyg: (Request method)
Special URL method to handle page content when resized in Netscape Navigator.

If a page is generated using JavaScript, then if the page is subsequently resized, this special method
is used to encapsulate the previous page location and invoke special handling to ensure that the
page is printed properly.

XML (Standard)
Extensible Mark-up Language.

This is gradually becoming commonplace as a way to exchange data between systems. It is also
supported by the MSIE browser and you can load in XML documents directly.

It is the future direction that HTML will evolve towards, beginning with XHTML.

This topic is the entry point to complete new subject area. Its too vast to attempt to cover it
meaningfully in just a few pages and yet it's probably going to become one of the most important
parts of the web programming landscape.

Refer to the Wrox XML reference manual for details of how to use it in earnest. Here we will just
scratch the surface to begin to see what it looks like.

This creates a new XML document via ActiveX:

myXMLDoc = new ActiveXObject("Microsoft.XMLDOM");

Having created it, now we can load the contents of a URL into the object:

myXMLDoc.load("http://xmlserver.domain.com/reports.xml");

This is useful because one big problem with JavaScript in a web browser is that it's very hard to
download a data file from a web server to a script without having to work around lots of security
issues. This might solve that problem a lot more elegantly.

Now we can begin to look at the contents of the file and extract information from it.

myXMLDoc.loadXML("JoeSmith");

Now that we have acquired the document we can use the DOM navigation techniques that already
work for HTML documents to walk through the XML structures:

var myXMLNodeList = myXMLDoc.getElementsByTagName(strNodeName);

X

http://xmlserver.domain.com/reports.xml"

Chapter number

2504

XML name (Definition)
A strict convention for naming items within an XML compliant document with a well formed token.

An XML name may start with a letter, underscore or colon. However the colon is reserved for use
with namespaces and is not fully standardized as of XML version 1.

Subsequent characters in the name may be any one of:

❑ Letter

❑ Digit

❑ Dot (period/full stop)

❑ Dash (minus sign)

❑ Underscore

❑ Colon

❑ CombiningChar

❑ Extender

Your name values should not begin with the string "XML" or any sequence of characters that might
degenerate to it after case conversion or international character substitution.

Combining characters and Extenders are enumerated in Appendix B of the XML version 1.0 standard.

See also: Event.type

XML object (Object/JScript)
An object that represents a block of XML page content within an HTML document.

Availability: JScript - 5.0
Internet Explorer version - 5.0

Inherits from: Element object

IE myXML = myDocument.all.anElementID

IE myXML = myDocument.all.tags("XML")[anIndex]

IE myXML = myDocument.all[aName]

- myXML = myDocument.getElementById(anElementID)

- myXML = myDocument.getElementsByName
(aName)[anIndex]

JavaScript syntax:

- myXML = myDocument.getElementsByTagName
("XML")[anIndex]

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Error! No text of specified style in document.

2505

Object properties: canHaveHTML, defer, event, htmlFor, src, text, type

Event handlers:
onDataAvailable, onDatasetChanged, onDatasetComplete,
onReadyStateChange, onRowEnter, onRowExit,
onRowsDelete, onRowsInserted

The MSIE browser can now cope with pages delivered as arbitrary blocks of XML. If it encounters
an <XML> tag, then it will instantiate one of these objects to provide JavaScript binding to it. This
can also be used to build a small island of XML based content in the middle of an HTML page.

The XML data can sit in an HTML page like this:

<XML ID="myBlock">

<METADATA>

<OWNER>Wrox</OWNER>

<DATATYPE>Example</DATATYPE>

<ABSTRACT>This is an example block of text</ABSTRACT>

</METADATA>

</XML>

Accessing the text property of the XML object will return all the inner text inside it. To access the
components you will need to access the XMLDocument property to expose a DOM document
interface. This can be explored using DOM compatible methods and properties.

See also: Document.readyState, onRowEnter, onRowExit

Property JavaScript JScript Nav IE Opera Notes

canHaveHTML - 5.0 + - 5.0 + - -
defer - 5.0 + - 5.0 + - -
event - 5.0 + - 5.0 + - -
htmlFor - 5.0 + - 5.0 + - -
src - 5.0 + - 5.0 + - -
text - 5.0 + - 5.0 + - -
type - 5.0 + - 5.0 + - -
onDataAvailable - 3.0 + - 4.0 + - -
onDatasetChanged - 3.0 + - 4.0 + - -

Chapter number

2506

Event name JavaScript JScript Nav IE Opera Notes

onDatasetComplete - 3.0 + - 4.0 + - -
onReadyStateChange - 3.0 + - 4.0 + - -
onRowEnter - 3.0 + - 4.0 + - -
onRowExit - 3.0 + - 4.0 + - -
onRowsDelete - 3.0 + - 4.0 + - -
onRowsInserted - 3.0 + - 4.0 + - -

Inheritance chain:
Element object, Node object

Web-references:
http://msdn.microsoft.com/xml/xmlguide/dom-guide-document.asp

XML.defer (Property)
A property containing a deferral status for the XML block.

Availability: JScript - 5.0
Internet Explorer version - 5.0

Property/method value type: String primitive

JavaScript syntax: IE myXML.defer

This can defer the processing of an XML object until later in the page loading and display process.

See also: SCRIPT.defer

XML.event (Property)
An event object associated with the XML block.

Availability: JScript - 5.0
Internet Explorer version - 5.0

Property/method value type: Event object

JavaScript syntax: IE myXML.event

Events can be associated with an XML object in much the same way that they would be used with
others. The model is slightly different because it is more generalised.

http://msdn.microsoft.com/xml/xmlguide/dom-guide-document.asp

Error! No text of specified style in document.

2507

The Microsoft documentation lists these event handlers as being appropriate for an XML object:

❑ onDataAvailable

❑ onDatasetChanged

❑ onDatasetComplete

❑ onReadyStateChange

❑ onRowEnter

❑ onRowExit

❑ onRowsDelete

❑ onRowsInserted

See also:
onDataAvailable, onDataSetChanged,
onDataSetComplete, onReadyStateChange,
onRowEnter, onRowExit, onRowsDelete,
onRowsInserted

XML.src (Property)
The URL where the contents of the XML block are to be loaded from.

Availability: JScript - 5.0
Internet Explorer version - 5.0

Property/method value type: String primitive

JavaScript syntax: IE myXML.src

You may be able to redefine this property value and reload the XML block from a different source.

XML.text (Property)
The textual content of the XML block.

Availability: JScript - 5.0
Internet Explorer version - 5.0

Property/method value type: String primitive

JavaScript syntax: IE myXML.text

Any textual content will be yielded up by this property, because XML support is still evolving this
property and the XML object may change.

For now, you will get all the text contained within the node and its children.

Chapter number

2508

This means that for the example:

<XML ID="myBlock">

<METADATA>

<OWNER>Wrox</OWNER>

<DATATYPE>Example</DATATYPE>

<ABSTRACT>This is an example block of text.</ABSTRACT>

</METADATA>

</XML>

The text for the top level object will be:

Wrox Example This is an example block of text.

The text for the object presented by the XMLDocument property will be the same as the text for the
contained <METADATA> node.

The text for <OWNER>, <DATATYPE> and <ABSTRACT> nodes will be their individual content.

This means it is important to walk down the tree to the node or group of nodes you want before
trying to extract the text.

XML.type (Property)
The MIME type of the XML data file.

Availability: JScript - 5.0
Internet Explorer version - 5.0

Property/method value type: String primitive

JavaScript syntax: IE myXML.type

The MIME type of the document associated with the XML object is accessible through the value of
this property.

Refer to the MIME type topic for details of the available MIME types you will likely see in this property.

See also: MIME types

XML.XMLDocument (Property)
A reference to the top of a DOM hierachy that describes the content of the XML data island.

Availability: JScript - 5.0
Internet Explorer version - 5.0

JavaScript syntax: IE myXML.XMLDocument

Error! No text of specified style in document.

2509

Given the example of a block of XML in an HTML document:

<XML ID="myBlock">

<METADATA>

<OWNER>Wrox</OWNER>

<DATATYPE>Example</DATATYPE>

<ABSTRACT>This is an example block of text.</ABSTRACT>

</METADATA>

</XML>

individual nodes in that so called data island can be accessed through this XMLDocument
property. The object returned by this property responds to the selectSingleNode() method.
The argument to this is the slash separated path to the node within the document you are looking
for. The slash separated values are the XML tagnames used to construct the document.

In this example, they all begin with the string "METADATA" and since the document only contains
one layer inside that, all nodes can be reached with the following strings:

❑ METADATA/OWNER

❑ METADATA/DATATYPE

❑ METADATA/ABSTRACT

Given that our XML block has an ID value of "myBlock" this line of script code should yield a
reference to an object that encapsulates the <ABSTRACT> node:

myBlock.XMLDocument.selectSingleNode("METADATA/ABSTRACT")

Having accessed the DOM node you want, its content can be examined by looking at its text property.

The example code illustrates this concept as it might be assembled together in a simple form.

Warnings:
❑ This property returns an undefined value in the Macintosh version of MSIE 5.0 instead of a reference

to a DOM document.

Example code:
<HTML>
<HEAD>
</HEAD>
<BODY>

<!-- Create an XML island -->
<XML ID="myBlock">
 <METADATA>
 <OWNER TYPE="PUBLISHER">Wrox</OWNER>
 <DATATYPE>Example</DATATYPE>
 <ABSTRACT>This is an example block of text.</ABSTRACT>
 </METADATA>

Chapter number

2510

</XML>

<SCRIPT>
// Get the DOM document
myXMLDocument = myBlock.XMLDocument;

// Find the node
myNode = myXMLDocument.selectSingleNode("METADATA/ABSTRACT");

// Display the text in the node
alert(myNode.text);

// Now access node attributes and content
myOwner = myXMLDocument.getElementsByTagName('OWNER')[0];
alert(myOwner.getAttribute('TYPE') + ': ' + myOwner.text);
</SCRIPT>
</BODY>
</HTML>

XMP object (Object/HTML)
A deprecated object that has been replaced by the PRE object.

Availability: JavaScript - 1.0
JScript - 1.0
Internet Explorer - 3.0
Netscape - 2.0
Deprecated

IE myXMP = myDocument.all.anElementID

IE myXMP = myDocument.all.tags("XMP")[anIndex]

IE myXMP = myDocument.all[aName]

- myXMP = myDocument.getElementById(anElementID)

- myXMP = myDocument.getElementsByName(aName)[anIndex]

JavaScript syntax:

- myXMP = myDocument.getElementsByTagName
("XMP")[anIndex]

HTML syntax: <XMP>

anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

See also: PRE object

XRay() (Filter/visual)
A visual filter that displays only the element edges.

Availability: JScript - 3.0
Internet Explorer version - 4.0

See also: filter - XRay()

Year from time (Time calculation)
A date and time algorithm defined as part of ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

Given a time value, it is helpful to be able to compute a year number from it. The ECMA
compliant implementations use the extrapolated Gregorian system to map days to years and
compute a time relative to the reference date of 01-January-1970 UTC. From there the year
number can be established.

All non-leap years have 365 days with the usual number of days in each month. Leap years have an
extra day in February. The calculation shown below uses known leap years and non-leap years to
adjust the day numbers and yield the day number of the first day of the given year and then use
that to work out the time in milliseconds when the year started:

DayFromYear(y) =

365 * (y - 1970) +

floor((y - 1969) / 4) -

floor((y - 1901) / 100) +

floor((y - 1601) / 400)

msPerDay = 86400000

TimeFromYear(y) = msPerDay * DayFromYear(y)

YearFromTime(t) = The largest integer y to make TimeFromYear(y) less than or equal
to t.

Y

Chapter number

2512

Example code:
<HTML>
<BODY>
<SCRIPT>
// Work out year number from time
var msPerDay = 86400000;
var myMilliseconds = Number(new Date());
document.write(yearFromTime(myMilliseconds));
// Return year number based on time value
function yearFromTime(aMilliseconds)
{
 var myStartYear = 1970;

 while(timeFromYear(myStartYear) < myMilliseconds)
 {
 myStartYear++
 }

 return myStartYear-1;
}

// Work out milliseconds at start of year
function timeFromYear(aYear)
{
 var myTime = msPerDay * dayFromYear(aYear);
 return myTime;
}

// Work out day number from milliseconds
function dayNumber(aMillisecondTime)
{
 var myDay = Math.floor(aMillisecondTime/msPerDay);

 return myDay;
}

// Day from year function
function dayFromYear(aYear)
{
 var myDay = 365 * (aYear - 1970) +
 Math.floor((aYear - 1969) / 4) -
 Math.floor((aYear - 1901) / 100) +
 Math.floor((aYear - 1601) / 400);
 return myDay;
}
</SCRIPT>
</BODY>
</HTML>

See also: Broken down time, Date from time, Date number, Day from year, Day within year, In
leap year, Month from time, Time from year, Year number

Error! No text of specified style in document.

2513

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.3

ECMA 262 edition 3 – section – 15.9.1.3

Year number (Time calculation)
A date and time algorithm defined as part of ECMAScript.

Availability: ECMAScript edition – 2

Property/method value type: Number primitive

In calculating year numbers, ECMA compliant implementations should use an extrapolated Gregorian
system. This allows for leap years and non leap years at the turn of the century, 3 out of every four.

There are various calculations related to year numbers. Refer to the various example calculations:

❑ Days in year

❑ Day from year

❑ Time from year

❑ Year from time

❑ In leap year

See also: Broken down time, Days in year, In leap year, Time from year,
Year from time

Cross-references:
ECMA 262 edition 2 – section – 15.9.1.3

ECMA 262 edition 3 – section – 15.9.1.3

Zero value (Definition)
ECMAScript interpreters must be able to distinguish between +0 and -0.

Availability: ECMAScript edition - 2

Property/method value type: Number primitive

In the real world, Zero is Zero is Zero. Inside a JavaScript interpreter, certain calculations (most
notably Math.pow() functions) require the sign of the zero value to be taken into account.

Internally, an ECMA compliant interpreter must be able to distinguish between +0 and -0 although
from a mathematical standpoint the values are identical. Where calculations involve the likelihood
of +infinity and -infinity, the sign can affect the outcome and so can the sign of the zero value. For
example the reciprocal of a very small number.

We have quietly ignored the sign of a zero value where it would make no difference. There
are some discussions where it becomes important and so the sign is retained here for
illustrative purposes.

See also: Infinity, Math.pow()

Cross-references:
ECMA 262 edition 2 - section - 8.5

ECMA 262 edition 3 - section - 8.5

Zigzag() (Filter/transition)
Reveals the new image with a zigzag effect.

Availability: JScript - 5.5
Internet Explorer version - 5.5

Refer to:
filter - Zigzag()

Z

Symbols

! (Logical NOT) (Operator/logical)
Logical NOT operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

See also: Bitwise NOT – complement (~), Logical operator, NOT Equal to
(!=), Logical NOT – complement (!), Unary expression, Unary
operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.9

ECMA 262 edition 3 – section – 11.4.9

JavaScript Programmer's Reference

2516

!= (NOT equal) (Operator/equality)
Inequality operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

See also: Equal to (==), Equality operator, Greater than (>), Greater than or
equal to (>=), Identically equal to (===), Less than (<), Less than or
equal to (<=), Logical NOT – complement (!), NOT Equal to (!=),
NOT Identically equal to (!==), Unary expression, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.9.2

ECMA 262 edition 3 – section – 11.9.2

!== (NOT identical) (Operator/identity)
Compares two values for non-equality and identical type.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.06

Property/method value type: Boolean primitive

See also: Equal to (==), Equality expression, Equality operator, Greater than
(>), Greater than or equal to (>=), Identically equal to (===),
Identity operator, Less than (<), Less than or equal to (<=), NOT
Equal to (!=), NOT Identically equal to (!==)

Symbols – " (Double quote) (Delimiter)

2517

Cross-references:
ECMA 262 edition 3 – section – 11.9.5

" (Double quote) (Delimiter)
Double quote string literal delimiter.

Availability: ECMAScript edition – 2
Opera – 3.0

Property/method value type: String primitive

Refer to:
String literal

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 7.8.4

$ (Dollar) (Symbol)
A special character allowed to be used in an identifier name.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Opera – 3.0

Refer to:
Identifier

Cross-references:
ECMA 262 edition 2 – section – 7.5

ECMA 262 edition 3 – section – 7.6

JavaScript Programmer's Reference

2518

$n (Numbered argument) (Property/static)
A property of the global RegExp object.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

JavaScript syntax: - RegExp.$n

Argument list: n An index number

Property attributes:
ReadOnly.

Refer to:
RegExp.$n

% (Modulo/remainder) (Operator/multiplicative)
Divides one operand by another and yields the remainder.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Divide (/), Multiplicative operator, Remainder (%), Remainder
then assign (%=)

Cross-references:
ECMA 262 edition 2 – section – 11.5.3

ECMA 262 edition 3 – section – 11.5.3

Symbols – %= (Modulo assign) (Operator/assignment)

2519

%= (Modulo assign) (Operator/assignment)
Divides one operand by another and stores the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, LValue, Multiplicative operator,
Remainder (%), Remainder then assign (%=)

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

& (Bitwise AND) (Operator/bitwise)
Bitwise AND of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Binary bitwise operator, Bitwise AND (&), Bitwise AND then
assign (&=),
Logical AND (&&)

JavaScript Programmer's Reference

2520

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

&& (Logical AND) (Operator/logical)
Logical AND of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

See also: Binary logical operator, Bitwise AND (&), Bitwise AND then
assign (&=), Logical AND (&&)

Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

&= (Bitwise AND assign) (Operator/assignment)
Bitwise AND of two operands, and assigns the result to the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, Bitwise AND then assign (&=), Bitwise
operator, Logical AND (&&), LValue

Symbols – ' (Single quote) (Delimiter)

2521

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

' (Single quote) (Delimiter)
Single quote string literal delimiter.

Availability: ECMAScript edition – 2
Opera – 3.0

Property/method value type: String primitive

See also: ASCII, Escape sequence (\), Line terminator, Literal, Punctuator,
String, String literal, Unicode, var

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 7.8.4

() (Argument delimiter) (Delimiter)
Delimits the arguments of a function call.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript syntax: - myFunction(someArguments)

Argument list:
someArguments An optional collection of arguments to the

function

JavaScript Programmer's Reference

2522

See also: Function, function(...) ..., Function call, Grouping operator (),
Operator, Operator Precedence, Parentheses (), Postfix operator, Primary
expression

Cross-references:
ECMA 262 edition 2 – section – 11.2

ECMA 262 edition 3 – section – 11.1.6

() (Grouping operator) (Delimiter)
Control of expression operator execution precedence and Function argument delimiters.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Function, Function call, function(...) ..., Grouping operator (),
Operator, Operator Precedence, Parentheses (), Postfix operator, Primary
expression

Cross-references:
ECMA 262 edition 2 – section – 11.1.4

ECMA 262 edition 3 – section – 11.1.6

* (Multiply) (Operator/multiplicative)
Multiply one operand by another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Symbols – */ (Close comment block) (Delimiter)

2523

Property/method value type: Number primitive

See also: Multiplicative operator, Multiply (*)

Cross-references:
ECMA 262 edition 2 – section – 11.5.1

ECMA 262 edition 3 – section – 11.5.1

*/ (Close comment block) (Delimiter)
Closing token for a multi-line comment.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Comment, Comment (// and /* ... */)

Cross-references:
ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 3 – section – 7.4

JavaScript Programmer's Reference

2524

*= (Multiply assign) (Operator/assignment)
Multiplies two operands and assigns the result to the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, LValue, Multiplicative operator, Multiply
then assign (*=)

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

+ (Add) (Operator/additive)
Adds two operands together.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Add (+), Additive operator, Positive value (+), String concatenate
(+), Unary expression, Unary operator

Symbols – + (Concatenate) (Operator/string)

2525

Cross-references:
ECMA 262 edition 2 – section – 11.6.1

ECMA 262 edition 3 – section – 11.6.1

+ (Concatenate) (Operator/string)
Joins string operators by concatenation.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: String primitive

See also: Add (+), Additive operator, Positive value (+),
String.concat(), String concatenate (+), Unary expression,
Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.6.1

ECMA 262 edition 3 – section – 11.6.1

+ (Unary plus) (Operator/unary)
Indicates positive value or numeric cast a non-numeric value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript Programmer's Reference

2526

See also: Add (+), Additive operator, Positive value (+), String
concatenate (+), Unary expression, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.6

ECMA 262 edition 3 – section – 11.4.6

++ (Post increment) (Operator/postfix)
Incrementing operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Decrement value (--), Increment value (++), Postfix increment
(++), Prefix increment (++), Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.3.1

ECMA 262 edition 3 – section – 11.3.1

Symbols – ++ (Pre increment) (Operator/prefix)

2527

++ (Pre increment) (Operator/prefix)
Increments an operand.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Additive operator, Decrement value (--), Increment value
(++), Postfix increment (++), Prefix increment (++), Unary
operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.4

ECMA 262 edition 3 – section – 11.4.4

+= (Add assign) (Operator/assignment)
Adds the second operand to the first, modifying the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Additive operator, Add then assign (+=), Assignment operator,
Concatenate then assign (+=), Increment value (++), LValue

JavaScript Programmer's Reference

2528

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

, (Comma) (Delimiter)
Comma separated argument list. The comma operator provides a way to evaluate several
assignment expressions at once.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Comma operator (,), Document.write(),
Document.writeln(), var

Cross-references:
ECMA 262 edition 2 – section – 11.14

ECMA 262 edition 3 – section – 11.14

- (Minus) (Operator/additive)
Subtracts one operand from another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Additive operator, Negation operator (-), Subtract (-), Unary
expression, Unary operator

Symbols – - (Unary minus) (Operator/unary)

2529

Cross-references:
ECMA 262 edition 2 – section – 11.6.2

ECMA 262 edition 3 – section – 11.6.2

- (Unary minus) (Operator/unary)
Negates the value of an operand.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Additive operator, Negation operator (-), Subtract (-), Unary
expression, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.7

ECMA 262 edition 3 – section – 11.4.7

-- (Post decrement) (Operator/postfix)
Decrementing operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript Programmer's Reference

2530

See also: Decrement value (--), Increment value (++), Postfix decrement (-
-), Prefix decrement (--), Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.3.2

ECMA 262 edition 3 – section – 11.3.2

-- (Pre decrement) (Operator/prefix)
Decrements an operand's value.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Additive operator, Decrement value (--), Increment value (++),
Postfix decrement (--), Prefix decrement (--), Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.5

ECMA 262 edition 3 – section – 11.4.5

Symbols – -= (Minus assign) (Operator/assignment)

2531

-= (Minus assign) (Operator/assignment)
Subtracts the right value from the left modifying the left.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Additive operator, Assignment operator, LValue, Subtract (-), Subtract then
assign (-=)

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

. (Decimal point) (Delimiter)
A delimiter character.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Floating point, Object property delimiter (.), Property accessor, Decimal point
(.)

Cross-references:
ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 7.8.3

JavaScript Programmer's Reference

2532

. (Period) (Delimiter)
A token to delimit object properties from their object or a decimal point.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Member, Object property delimiter (.), Property accessor

Cross-references:
ECMA 262 edition 2 – section – 8.6

ECMA 262 edition 2 – section – 11.2

ECMA 262 edition 3 – section – 11.2.1

/ (Divide) (Operator/multiplicative)
Divides one operand by another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Arithmetic operator, Divide (/), Multiplicative operator,
Remainder (%)

Symbols – / (Slash) (Delimiter)

2533

Cross-references:
ECMA 262 edition 2 – section – 11.5.2

ECMA 262 edition 3 – section – 11.5.2

/ (Slash) (Delimiter)
A delimiter character for regular expressions.

Availability: JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0

Refer to:
RegExp literal

/* ... */ (Comment block) (Delimiter)
A multi-line comment delimiting token.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

JavaScript syntax: - /*someCommentText*/

Argument list: someCommentText Any arbitrary comment text required

See also: Comment, Comment (// and /* ... */), Multi-line comment

Cross-references:
ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 3 – section – 7.4

JavaScript Programmer's Reference

2534

/*@ ... @*/ (Pre processing block) (Delimiter)
A special form of the comment delimiters for enclosing pre-processor directives.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: - /*@someDirectives@*/

Argument list: someDirectives One or more pre-processor directives

Refer to:
Pre-processing – /*@ ... @*/

// (Comment line) (Delimiter)
A single line comment delimiting token.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

See also: Comment, Comment (// and /* ... */), Single line comment

Cross-references:
ECMA 262 edition 2 – section – 7.3

ECMA 262 edition 3 – section – 7.4

Symbols – /= (Divide assign) (Operator/assignment)

2535

/= (Divide assign) (Operator/assignment)
Divides one operand by another, leaving the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Arithmetic operator, Assignment operator, Divide then assign
(/=), LValue, Multiplicative operator, Remainder (%)

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

: (Colon) (Delimiter)
A delimiter used with labels and conditional operators.

Availability: ECMAScript edition – 2
JavaScript – 1.2
JScript – 3.0
Internet Explorer – 4.0
Netscape – 4.0
Netscape Enterprise Server – 3.0

See also: Colon (:), switch(...) ... case: ... default: ...

Cross-references:
ECMA 262 edition 2 – section – 7.4.3

ECMA 262 edition 3 – section – 7.5.2

JavaScript Programmer's Reference

2536

; (Semicolon) (Delimiter)
Semicolon characters are used to separate one executable statement from another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: Empty statement (;), Expression statement, Punctuator, Semi-
colon (;), Statement

Cross-references:
ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 2 – section – 12.3

ECMA 262 edition 2 – section – 12.4

ECMA 262 edition 3 – section – 12.2

ECMA 262 edition 3 – section – 12.3

ECMA 262 edition 3 – section – 12.4

< (Less than) (Operator/relational)
Compares two operands to determine which is nearer to -Infinity.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

Symbols – <!-- ... --> (Comment block) (Object/HTML)

2537

See also: Equal to (==), Greater than (>), Greater than or equal to (>=), Identically
equal to (===), Less than (<), Less than or equal to (<=), NOT Equal to (!=),
NOT Identically equal to (!==), Relational operator

Cross-references:
ECMA 262 edition 2 – section – 11.8.1

ECMA 262 edition 3 – section – 11.8.1

<!-- ... --> (Comment block) (Object/HTML)
HTML comments can be used to hide scripts.

Availability: JScript – 3.0
Internet Explorer – 4.0

Inherits from: CharacterData object

JavaScript syntax: IE myDocument.all.tags("!")[anIndex]

HTML syntax: <!-- someCommentText -->

Argument list: anIndex A reference to an element in a collection

See also: COMMENT object, Element object, Hiding scripts from old browsers

Inheritance chain:
CharacterData object, Node object

<% ... %> (Server side code block) (ASP tag)
This is a special tag to delimit server-side code to be executed in the ASP back end of an IIS server.

Refer to:
ASP

JavaScript Programmer's Reference

2538

<< (Bitwise shift left) (Operator/bitwise)
Bitwise leftwards shift one operand according to another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Bitwise shift left then assign (<<=), Bitwise shift operator, Bitwise
shift left (<<), Bitwise shift right (>>), Bitwise shift right and
assign (>>=), Bitwise unsigned shift right (>>>), Bitwise
unsigned shift right and assign (>>>=), Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.7.1

ECMA 262 edition 3 – section – 11.7.1

<<= (Bitewise shift left assign)
(Operator/assignment)

Destructively bitwise leftwards shift the first of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, Bitwise operator, Bitwise shift left (<<),
Bitwise shift left then assign (<<=), Bitwise shift operator, Bitwise
shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), Bitwise unsigned shift right and
assign (>>>=), LValue

Symbols – <= (Less than or equal to) (Operator/relational)

2539

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

<= (Less than or equal to) (Operator/relational)
Compares two operands to determine which is nearer to -Infinity or whether they are equal.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

JavaScript syntax: - anOperand <= anOperand

Argument list: anOperand An operand that can be compared for magnitude

See also: Equal to (==), Greater than (>), Greater than or equal to (>=),
Identically equal to (===), Less than (<), Less than or equal to (<=),
NOT Equal to (!=), NOT Identically equal to (!==), Relational
operator

Cross-references:
ECMA 262 edition 2 – section – 11.8.3

ECMA 262 edition 3 – section – 11.8.3

JavaScript Programmer's Reference

2540

= (Assign) (Operator/assignment)
Assigns the right value to the left operand.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Depends on right value

Warnings:
❑ The operand to the left of the operator must be an LValue. That is, it should be able to take an

assignment and store the value.

❑ Be careful not to confuse the single equals with the double equals. Placing a double equals in place of
an assignment will not assign the value and may be considered to be a syntax error, since it may
perform a comparison in entirely the wrong context. The interpreter may be forgiving enough that a
run-time error isn't generated though, but the side effects could be subtle and make it hard to
diagnose the cause.

See also: Assign value (=), Assignment operator, Equal to (==), Equality
operator, Lvalue, var, Variable statement

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 2 – section – 12.2

ECMA 262 edition 3 – section – 11.13

ECMA 262 edition 3 – section – 12.2

== (Equal to) (Operator/equality)
Compares two operands for equality.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

Symbols – === (Identical to) (Operator/identity)

2541

See also: = (Assign), Equality operator, Equal to (==), Greater than (>),
Greater than or equal to (>=), Identically equal to (===), Less than
(<), Less than or equal to (<=), NOT Equal to (!=), NOT Identically
equal to (!==)

Cross-references:
ECMA 262 edition 2 – section – 11.9.1

ECMA 262 edition 2 – section – 11.9.3

ECMA 262 edition 3 – section – 11.9.1

ECMA 262 edition 3 – section – 11.9.3

=== (Identical to) (Operator/identity)
Compares two operands for equality and identical type.

Availability: ECMAScript edition – 3
JavaScript – 1.3
JScript – 1.0
Internet Explorer – 3.02
Netscape – 4.06

Property/method value type: Boolean primitive

See also: Equal to (==), Equality expression, Equality operator,
Greater than (>), Greater than or equal to (>=), Identically equal to
(===), Identity operator, Less than (<), Less than or equal to (<=),
NOT Equal to (!=),
NOT Identically equal to (!==)

Cross-references:
ECMA 262 edition 3 – section – 11.9.4

JavaScript Programmer's Reference

2542

> (Greater than) (Operator/relational)
Compares two operands to determine which is nearer to +Infinity.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

See also: Equal to (==), Greater than (>), Greater than or equal to (>=),
Identically equal to (===), Less than (<), Less than or equal to (<=),
NOT Equal to (!=), NOT Identically equal to (!==), Relational
operator

Cross-references:
ECMA 262 edition 2 – section – 11.8.2

ECMA 262 edition 3 – section – 11.8.2

>= (Greater than or equal to)
(Operator/relational)

Compares two operands to determine which is nearer to +Infinity or whether they are equal

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

See also: Equal to (==), Greater than (>), Greater than or equal to (>=),
Identically equal to (===), Less than (<), Less than or equal to (<=),
NOT Equal to (!=), NOT Identically equal to (!==), Relational
operator

Symbols – >> (Bitwise shift right) (Operator/bitwise)

2543

Cross-references:
ECMA 262 edition 2 – section – 11.8.4

ECMA 262 edition 3 – section – 11.8.4

>> (Bitwise shift right) (Operator/bitwise)
Bitwise rightward shifts one operand according to another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Bitwise shift left (<<), Bitwise shift left then assign (<<=), Bitwise
shift operator, Bitwise shift right (>>), Bitwise shift right and
assign (>>=), Bitwise unsigned shift right (>>>), Bitwise unsigned
shift right and assign (>>>=), Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.7.2

ECMA 262 edition 3 – section – 11.7.2

>>= (Bitwise shift right assign)
(Operator/assignment)

Destructively bitwise rightward shifts the first of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

JavaScript Programmer's Reference

2544

See also: Assignment operator, Bitwise operator, Bitwise shift left (<<),
Bitwise shift left then assign (<<=), Bitwise shift operator, Bitwise
shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), Bitwise unsigned shift right and assign
(>>>=), LValue

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

>>> (Bitwise unsigned shift right)
(Operator/bitwise)

Bitwise rightward shifts one operand according to another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server version – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Bitwise shift left (<<), Bitwise shift left then assign (<<=), Bitwise
shift operator, Bitwise shift right (>>), Bitwise shift right and
assign (>>=), Bitwise unsigned shift right (>>>), Bitwise unsigned
shift right and assign (>>>=), Shift operator

Cross-references:
ECMA 262 edition 2 – section – 11.7.3

ECMA 262 edition 3 – section – 11.7.3

Symbols – >>>= (Bitwise unsigned shift right assign) (Operator/assignment)

2545

>>>= (Bitwise unsigned shift right assign)
(Operator/assignment)

Destructively bitwise rightward shifts the first of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, Bitwise operator, Bitwise shift left (<<),
Bitwise shift left then assign (<<=), Bitwise shift operator, Bitwise
shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), Bitwise unsigned shift right and assign
(>>>=), LValue

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

?: (Conditional block) (Operator/conditional)
Conditionally executes one code branch or another. Otherwise known as the Ternary operator.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Depends on arguments

See also: Conditionally execute (?:), if(...) ..., if(...) ...
else ...

Cross-references:
ECMA 262 edition 2 – section – 11.12

ECMA 262 edition 3 – section – 11.12

JavaScript Programmer's Reference

2546

@*/ (Pre-processor)
The closing pre-processor directive comment delimiter.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript syntax: IE /*@someDirectives@*/

Argument list: someDirectives One or more directives

See also: Pre-processing, Pre-processing – /*@ ... @*/

@<variable_name> (Pre-processor)
Availability: JScript – 3.0

Internet Explorer – 4.0

Property/method value type: User defined

Refer to:
Pre-processing – @<variable_name>

@_alpha (Pre-processor)
A pre-processor constant indicating whether the script is running in a DEC alpha workstation.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Refer to:
Pre-processing – @_alpha

@_jscript (Pre-processor)
A pre-processor constant indicating whether the script is executing in a JScript interpreter.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Symbols – @_jscript_build (Pre-processor)

2547

Refer to:
Pre-processing – @_jscript

@_jscript_build (Pre-processor)
A pre-processor constant indicating the build version of the JScript environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

Refer to:
Pre-processing – @_jscript_build

@_jscript_version (Pre-processor)
A pre-processor constant indicating the version number of the JScript interpreter.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Number primitive

Refer to:
Pre-processing – @_jscript_version

@_mac (Pre-processor)
A pre-processor constant indicating whether the script is running in a Macintosh workstation.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Refer to:
Pre-processing – @_mac

JavaScript Programmer's Reference

2548

@_mc680x0 (Pre-processor)
A pre-processor constant indicating whether the system contains a Motorola 68000 CPU.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Refer to:
Pre-processing – @_mc680x0

@_PowerPC (Pre-processor)
A pre-processor constant indicating whether the system contains a Motorola PowerPC CPU.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Refer to:
Pre-processing – @_PowerPC

@_win16 (Pre-processor)
A pre-processor constant indicating whether the script is running in a 16 bit Windows environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Refer to:
Pre-processing – @_win16

@_win32 (Pre-processor)
A pre-processor constant indicating whether the script is running in a 32 bit Windows
environment.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Symbols – @_x86 (Pre-processor)

2549

Refer to:
Pre-processing – @_win32

@_x86 (Pre-processor)
A pre-processor constant indicating whether the system contains an Intel X-86 series CPU.

Availability: JScript – 3.0
Internet Explorer – 4.0

Property/method value type: Boolean primitive

Refer to:
Pre-processing – @_x86

@cc_on (Pre-processor)
A switch to activate the pre-processor phase of the script interpreter.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Pre-processing – @cc_on

@elif(...) ... (Pre-processor)
An optional else-if pre-processor token.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Pre-processing – @elif(...) ...

@else ... (Pre-processor)
Part of the conditional code use directive.

Availability: JScript – 3.0
Internet Explorer – 4.0

JavaScript Programmer's Reference

2550

Refer to:
Pre-processing – @else ...

@end (Pre-processor)
Terminator for a conditional code block.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Pre-processing – @end

@if(...) ... (Pre-processor)
Conditionally includes a block of code.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Pre-processing – @if(...) ...

@set (Pre-processor)
Sets the contents of a pre-processor variable.

Availability: JScript – 3.0
Internet Explorer – 4.0

Refer to:
Pre-processing – @set

Symbols – [] (Array index) (Delimiter)

2551

[] (Array index) (Delimiter)
Array index delimiting tokens.

Availability: ECMAScript edition – 2
JavaScript – 1.1
JScript – 3.0
Internet Explorer – 4.0
Netscape – 3.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Depends on array content

See also: Array index delimiter ([]), Property accessor

Cross-references:
ECMA 262 edition 2 – section – 7.6

ECMA 262 edition 2 – section – 11.2

ECMA 262 edition 3 – section – 7.7

[] (Property accessor) (Delimiter)
Properties can be accessed as if they were elements in an array.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0

See also: Property accessor, Property name

Cross-references:
ECMA 262 edition 2 – section – 8.6.1

ECMA 262 edition 3 – section – 8.6.1

JavaScript Programmer's Reference

2552

\ (Backslash) (Delimiter)
A means of escaping a character in quoted strings and regular expressions.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

Refer to:
Escape sequence (\)

Cross-references:
ECMA 262 edition 2 – section – 2

ECMA 262 edition 2 – section – 6

ECMA 262 edition 2 – section – 7.7.3

ECMA 262 edition 3 – section – 2

ECMA 262 edition 3 – section – 6

ECMA 262 edition 3 – section – 7.7

^ (Bitwise XOR) (Operator/bitwise)
Bitwises XOR one operand with another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Binary bitwise operator, Bitwise XOR (^)

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

Symbols – ^= (Bitwise XOR assign) (Operator/assignment)

2553

^= (Bitwise XOR assign) (Operator/assignment)
Bitwises XOR two operands and stores the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, Bitwise operator, Bitwise XOR and assign
(^=), LValue

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

_ (Underscore) (Symbol)
A special character allowed to be used in identifier names.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Refer to:
Identifier

Cross-references:
ECMA 262 edition 2 – section – 7.5

ECMA 262 edition 3 – section – 7.6

JavaScript Programmer's Reference

2554

__parent__ (Property)
A Netscape special scope chain inheritance property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: ScopeChain object

JavaScript syntax: N myClosure.__parent__

With the __parent__ property in Netscape, you can explicitly initialize the scope chain in your
own custom functions.

Using this facility is somewhat inelegant, and since it is not portable its use is likely to
be fairly restricted.

Warnings:
❑ It is unclear whether this property will be added to the ECMA standard. For now it is only available

in Netscape.

Example code:
// Create an objectvar myObject =
{ aaa:"Some text" };// A fragment
of script to place that object into
the scope chainmyObject.__parent__ =
 this.__parent__;this.__parent__ = myObject;

See also: __proto__, Lexical scoping, Scope, Scope chain

__proto__ (Property)
A Netscape special prototype inheritance property.

Availability: JavaScript – 1.2
Netscape – 4.0

Property/method value type: Function object

JavaScript syntax: N myClosure.__proto__

With the __proto__ property in Netscape, you can explicitly initialize the prototype inheritance
chain in your own custom constructors.

Symbols – ` (Backquote) (External code call)

2555

Warnings:
❑ It is unclear whether this property will be added to the ECMA standard. For now it is only available

in Netscape.

Example code:
// Create a cuboid objectvar AAA = { length:100,
width:200, height:300 };// Create a cuboid that
shares the height valuevar BBB = { length:50,
width:100, __proto__:AAA };

See also: __parent__, Subclasses

` (Backquote) (External code call)
Calls some external code during server side execution.

Refer to:
Backquote (`)

{ } (Braces) (Delimiter)
A delimiting token for a block of executable script source text.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

See also: if(...) ..., if(...) ... else ..., Code block
delimiter {}

Cross-references:
ECMA 262 edition 2 – section – 12.5

ECMA 262 edition 3 – section – 12.1

JavaScript Programmer's Reference

2556

| (Bitwise OR) (Operator/bitwise)
Bitwises OR one operand with another.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Binary bitwise operator, Bitwise OR (|)

Cross-references:
ECMA 262 edition 2 – section – 11.10

ECMA 262 edition 3 – section – 11.10

|= (Bitwise OR assign) (Operator/assignment)
Bitwises OR two operands storing the result in the first.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Assignment operator, Bitwise operator, Bitwise OR then assign
(|=), LValue

Cross-references:
ECMA 262 edition 2 – section – 11.13

ECMA 262 edition 3 – section – 11.13

Symbols – || (Logical OR) (Operator/logical)

2557

|| (Logical OR) (Operator/logical)
Logical OR of two operands.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server – 2.0
Opera – 3.0

Property/method value type: Boolean primitive

See also: Binary logical operator, Logical OR (||)

 Cross-references:
ECMA 262 edition 2 – section – 11.11

ECMA 262 edition 3 – section – 11.11

~ (Bitwise NOT) (Operator/bitwise)
Bitwise NOT of an operand.

Availability: ECMAScript edition – 2
JavaScript – 1.0
JScript – 1.0
Internet Explorer – 3.02
Netscape – 2.0
Netscape Enterprise Server– 2.0
Opera – 3.0

Property/method value type: Number primitive

See also: Bitwise NOT – complement (~), Bitwise operator, Logical NOT
– complement (!), Unary expression, Unary operator

Cross-references:
ECMA 262 edition 2 – section – 11.4.8

ECMA 262 edition 3 – section – 11.4.8

JavaScript Programmer's Reference

2558

! object (Object/HTML)
An object representing a <!DOCTYPE> DTD statement tag at the front of a document.

Availability: DOM level – 1
JScript – 5.0
Internet Explorer – 5.0

Inherits from: Element object

IE myDoctype = myDocument.all.tags("!")[0]

IE myDoctype = myDocument.all[anIndex]

IE myDoctype = myDocument.getElementById
(anElementID)

IE myDoctype = myDocument.getElementsByName(aName)
[anIndex]

IE myDoctype = myDocument.doctype

JavaScript syntax:

IE myDoctype = myDocument.getElementsByTagName("!")
[anIndex]

HTML syntax: <!DOCTYPE aDocumentDescription>

aDocumentDescription A reference to a DTD for this document
anIndex A reference to an element in a collection
aName An associative array reference

Argument list:

anElementID The ID value of an Element object

Object properties: accessKey, tabIndex

Event handlers:
onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

The MSIE implementation creates an object that has a constructor name that suggests its class is
"!". This is very odd, and if you intend to do any work on object classes, then naming a class with
what might be interpreted as a special character in the script source may lead to some problems.

This is really a Doctype object and is specified in the DOM standard as a <!DOCTYPE> element.

The recommended means of access is to retrieve the value of the doctype property of the
document you want to operate on. This is normally document.doctype for the current window
but in the case of multiple frames, layers or windows you may be referring to the doctype of a
different document object.

This object appears to inherit all of the properties of an HTML element.

See also: !.tabIndex, Document.doctype, Element object, Input.accessKey

Symbols – !.tabIndex (Property)

2559

Property JavaScript JScript N IE Opera DOM HTML Notes

accessKey - 5.0 + - 5.0 + - 1 + - -
tabIndex - 5.0 + - 5.0 + - - - Warning

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick - 5.0 + - 5.0 + - - 4.0 + Warning
onDblClick - 5.0 + - 5.0 + - - 4.0 + Warning
onHelp - 5.0 + - 5.0 + - - - Warning
onKeyDown - 5.0 + - 5.0 + - - 4.0 + Warning
onKeyPress - 5.0 + - 5.0 + - - 4.0 + Warning
onKeyUp - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseDown - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseMove - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseOut - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseOver - 5.0 + - 5.0 + - - 4.0 + Warning
onMouseUp - 5.0 + - 5.0 + - - 4.0 + Warning

Inheritance chain:
Element object, Node object

!.tabIndex (Property)
A tab index for a DTD statement.

Availability: JScript – 5.0
Internet Explorer – 5.0

Property/method value type: Number primitive

JavaScript syntax: IE myDTD.tabIndex

You'll likely only need to access properties of this object if you are writing 'extreme' JavaScript
code. Most script writers will never encounter this object.

Warnings:
❑ This property is probably a mistake. It appeared when enumerating the properties of this object but

the DTD contains no sensible tab accessible content nor is it part of a <FORM>. Under tests with
normal DTD values this returned a zero.

See also: ! object, Document.doctype

Cross Reference by Entry Type
Each entry in this reference has a type or class, for example, 'object/HTML' for the A
object. This cross-reference is ordered by entry type, with corresponding entries listed
alphabetically beneath.

The collections, events, methods and properties entry types are slightly different
because they list the collection, event, method or property name first and the actual
entry name (which incorporates the object name) second.

Collections, events, methods and properties often have their own detailed entries, but
information on browser support for them is also provided in the entry for the object to
which they belong. References to both entries are listed where they exist.

An asterisk is used to show which entries are in the book. Entries without an asterisk
will be found on the CD only.

Advice (see also Pitfall, Useful tip)
Adding JavaScript to HTML
Associative array indexing
Bookmarklets
Browser detection
Browser version compatibility
Character handling
Color value
Compatibility strategies
Cookie
Copying objects
Debugging - client side
Defensive coding
E-mail containing JavaScript
JavaScript Bookmark URLs
JavaScript debugger console
News posts containing JavaScript
Obfuscation
Pitfalls

ASP tag
<% ... %> (Server side code block)

Attribute
Cookie domain*
Cookie expires*
Cookie path*
Cookie secure*
Cookie value
ImplicitParents*
ImplicitThis*

Background (see also Definition,
Overview, Standard)
ECMAScript
History
Overview
Version History

Collection
all[], Document.all[]
all[], Element.all[]
anchors[], Document.anchors[]
applets[], Document.applets[]
areas[]
areas[], Map.areas[]
arguments[]
arguments[], Function.arguments[]
attributes[], Element.attributes[]
attributes[], Node.attributes[]
behaviorUrns[], Element.behaviorUrns[]
bookmarks[], Event.bookmarks[]
boundElements[], Event.boundElements[]
cells[], TABLE.cells[]
cells[], TR.cells[]
childNodes[], Element.childNodes[]
childNodes[], Node.childNodes[]
children[], Element.children[]
classes[], Document.classes[]
controlRange[], BODY.controlRange[]
cssRules[], StyleSheet.cssRules[]
Drives[], FileSystem.Drives[]
elements[], Form.elements[]
embeds[], Document.embeds[]
entities[], Doctype.entities[]
Files[], Folder.Files[]
filters[], Element.filters[]
forms[], Document.forms[]
frames[]
frames[], Document.frames[]
frames[], Window.frames[]
ids[], Document.ids[]
images[], Document.images[]
imports[], StyleSheet.imports[]
layers[], Document.layers[]
layers[], Layer.layers[]
links[], Document.links[]
mimeTypes[], Navigator.mimeTypes[]
notations[], Doctype.notations[]
options[], Select.options[]

Collection

2561

Collection (continued)
plugins[], Document.plugins[]
plugins[], Navigator.plugins[]
rows[], TABLE.rows[]
rows[], TBODY.rows[]
rows[], TFOOT.rows[]
rows[], THEAD.rows[]
rules[], StyleSheet.rules[]
scripts[], Document.scripts[]
styleSheets[], Document.styleSheets[]
SubFolders[], Folder.SubFolders[]
suffixes[], MimeType.suffixes[]
tags[], Document.tags[]
tBodies[], TABLE.tBodies[]

Constant/static
Event type constants*
Global.undefined
Infinity*
Math.E*
Math.LN10*
Math.LN2*
Math.LOG10E*
Math.LOG2E*
Math.PI*
Math.SQRT1_2*
Math.SQRT2*
NaN*
Number.MAX_VALUE*
Number.MIN_VALUE*
Number.NaN*
Number.NEGATIVE_INFINITY*
Number.POSITIVE_INFINITY*
undefined*

Constructor
ActiveXObject()
Anchor()
Applet()
Array()
Boolean()
Date()
DbPool()
Enumerator()
Error()
File()
Function()
Image()
Layer()
Lock()
Number()
Object()
Option()
RegExp()
SendMail()
String()
VBArray()

Declaration
Array literal
function(...) ...*
var*

Definition (see also Background,
Overview, Standard)
Accessor method
Additive expression
Additive operator
Adornments
Aggregate type
Alias
Anonymous code
Anonymous function
argc parameter
Argument
Argument list
argv parameter
Arithmetic constant
Arithmetic operator
Arithmetic type
Array simulation
Assignment expression
Assignment operator
Associativity
Aural style sheets
Automatic semi-colon insertion
Basic type
BeanConnect
Behavior
Big endian
Binary bitwise operator
Binary logical operator
Binary operator
Binding
Bit
Bit-field
Bitwise expression
Bitwise operator
Bitwise shift operator
Block-level tag
Broken down time
Browser wars
Built-in function
Built-in method
Built-in object
By reference
By value
Calendar time
Call a function
Call by reference
Call by value
Call-back event
Calling event handlers
Case Sensitivity
Cast operator
Category of an object
CGI Driven JavaScript
Character constant
Character display semantics
Character entity
Character set
Character testing
Character value
Class method
Class variable

Definition

2562

Client pull techniques
Client-side JavaScript
Code signing
Collation sequence
Color names
Comma expression
Comment
Compatibility
Completion type
Compound statement
Conditional expression
Conditional operator
Conformance
Constant
Constant expression
Constraint
Constructor function
constructor property
constructor.name
Content Model
Control character
Conversion
Conversion to a Boolean
Conversion to a number
Conversion to a string
Conversion to an object
Core JavaScript
Core Object
Cross browser compatibility
Cross platform compatibility
Currency symbol
Custom object
Data Type
Date and time
Date constant
Daylight savings time adjustment
Debugger
Debugging - server side
Decimal value
Declaration
Declared function
Deep copying
Definition
Desktop JavaScript
Developing JavaScript source code
DHTML Behavior
Diagnostic message
Dialog boxes
Digit
Document component
Document event handlers
Domain error
Double-precision
Dynamic HTML
Dynamic positioning
Embedded JavaScript
Enquiry functions
Enumeration constant
Environment
Equality expression
Equality operator
Error
Error events
Error handling
Escape sequence (\)
Eval code
Event

Event bubbling
Event handler
Event handler in <SCRIPT>
Event handler properties
Event handler scope
Event management
Event model
Event names
Event propagation
Event-driven model
Exception
Exception handling
Executable code
Execute a function
Execution context
Execution environment
Exponent-log function
Expression
Expression statement
File extensions
Filter
Floating constant
Floating point
Floating point arithmetic
Floating point constant
Flow control
Form
Form element
Form verification
Formal Parameter List
Free-format language
Function
Function arguments
Function call
Function call operator ()
Function code
Function definition
Function literal
Function object properties
Function property
Function prototype
Function scope
Fundamental data type
Furniture
Garbage collection
Global code
Global special variable
Glue code
Gotcha
Handler
Hexadecimal value
Hierarchy of objects
High order bit
Host environment
Host features
Host object
HTC
HTML Character entity
HTML Component
HTML file
HTML tag attribute
HyperLink
Identifier
Identifier resolution
Identity operator
Implementation
Implementation-defined behavior

Definition

2563

Definition (continued)
Implementation-supplied code
Implementation-supplied function
Implicit conversion
Included JavaScript files
Inheritance
Initialization
Inline script
Inline tags
Input event
Input-output
Instance method
Instance variable
Instantiating Function
Integer
Integer arithmetic
Integer constant
Integer promotion
Integer-value-remainder
Internal function
Internal Method
Internal Property
Interpret
Interval handlers
Intrinsic events
Invoke a function
Iteration statement
Java
Java calling JavaScript
Java exception events
Java method calls
Java method data conversion
Java to JavaScript values
JavaScript Document Source URL
JavaScript embedded in Java
JavaScript Image Source URL
JavaScript Style Sheets
JavaScript to Java values
JellyScript
JSS
Jump statement
Keyboard events
Keyword
Label
Language codes
Left-Hand-Side expression
Length units
Letter
Lexical convention
Lexical scoping
Limits
Line
Line terminator
List type
Literal
Little endian
Local time
Local time zone adjustment
Locale-specific behavior
Localization
Logical constant
Logical entity
Logical expression
Logical operator
Low order bit
LValue
main() function

Mathematics
Measurement units
Member
Memory allocation
Memory leak
Memory management
Metacharacter
Method
MIME types
Minima-maxima
Money
Mouse events
Multi-byte character
Multi-dimensional arrays
Multi-line comment
Multiplicative expression
Multiplicative operator
Namespace
Native feature
Native object
Nondigit
Not a number
Null statement
Number formats (.)
Numerical limits
Object
Object constant
Object literal
Object model
Obsolescent
Octal value
Operator
Operator Precedence
Parameter
Pattern matching
Platform
Plugin compatibility issues
Plugin events
Polymorphic
Portability
Postfix operator
Power function
Precedence
Preferences
Prefix operator
Pre-processing
Primary expression
Primitive value
Printing character
Privileges
Procedural surfaces
Procedure
Program
Property
Property accessor
Property attribute
Property name
Property value
Prototype Based Inheritance
Prototype chain
Prototype object
prototype property
prototype.constructor
prototype.toString()
Proxies
Pseudo-random numbers
Punctuator

Delimiter

2564

R.E.
Range error
Raw event
Reference
Reference counting
Regex
RegExp literal
RegExp pattern
RegExp pattern - alternation
RegExp pattern - attributes
RegExp pattern - character class
RegExp pattern - character literal
RegExp pattern - extension syntax
RegExp pattern - grouping
RegExp pattern - position
RegExp pattern - references
RegExp pattern - repetition
RegExp pattern - sub-patterns
Regular expression*
Relational expression*
Relational operator*
Request-response loop
Reserved Word
Restricted access
rows object
RValue
Scalar type
Scope
Scope chain
Scope of event handler
Script
Script execution
Script fragment
Script Source Text
Script termination
Scriptlet
Security policy
Selection statement
Semantic event
Server-side JavaScript
Shallow copying
Shared Property
Shell Scripting with JavaScript
Shift expression
Shift operator
Side effect
Single line comment
Sort ordering
Source files
Source text
Special number values
Special type
SSJS
Standalone JavaScript
Statement
Static filters
Static method
Status line
Storage duration
String operator
Style sheet
Subclasses
Superclasses
Ternary operator
Thousands separator
Time range
Timeout handlers
Timer events

Token
Transition
Translation
Trigonometric function
TV Set-top boxes
Type
Type conversion
UDI
Unary expression
Unary operator
Undefined behavior
Undocumented features
Unspecified behavior
URI
URI handling functions
URL
URN
User-generated object
Utility objects
Value of an expression
Value preserving
Value property
Variable
Variable Declaration
Variable instantiation
Variable name
Variable statement
Visual filters
void expression
Web browser
Web scripting
Web server
Whitespace
Window adornments
Window events
Window feature list
Window furniture
XML name
Zero value

Delimiter
 (Space)
(Single quote)
" (Double quote)
() (Argument delimiter)
() (Grouping operator)
*/ (Close comment block)
. (Decimal point)
. (Period)
/ (Slash)
/* ... */ (Comment block)
/*@ ... @*/ (Pre processing block)
// (Comment line)
: (Colon)
; (Semicolon)
[] (Array index)
[] (Property accessor)
\ (Backslash)
{ } (Braces)
Array index delimiter ([])*
Braces { }
Code block delimiter {}*
Colon (:)*
Comma operator (
Comment (// and /* ... */)*
Decimal point (.)*
Grouping operator ()*

Delimiter

2565

Delimiter (continued)
Object property delimiter (.)*
Parentheses ()*
Pre-processing - /*@ ... @*/*
Quotation mark (" and ')
Semi-colon (;)*

Environment variable
CLASSPATH

Escape sequence
Newline*

Event handler
on ...
onAbort
onAbort, Image object*
onAbort, IMG object*
onAfterPrint
onAfterPrint, Dialog object*
onAfterPrint, Frame object*
onAfterPrint, Global object*
onAfterPrint, Window object*
onAfterUpdate
onAfterUpdate, Applet object*
onAfterUpdate, Area object*
onAfterUpdate, BODY object*
onAfterUpdate, Button object*
onAfterUpdate, BUTTON object*
onAfterUpdate, CAPTION object*
onAfterUpdate, Checkbox object*
onAfterUpdate, DIV object*
onAfterUpdate, Document object*
onAfterUpdate, FIELDSET object*
onAfterUpdate, FileUpload object*
onAfterUpdate, FormElement object*
onAfterUpdate, Hidden object*
onAfterUpdate, IMG object*
onAfterUpdate, Input object*
onAfterUpdate, MARQUEE object*
onAfterUpdate, OBJECT object*
onAfterUpdate, Password object*
onAfterUpdate, RadioButton object*
onAfterUpdate, ResetButton object*
onAfterUpdate, Select object*
onAfterUpdate, SubmitButton object*
onAfterUpdate, TABLE object*
onAfterUpdate, TD object*
onAfterUpdate, TEXTAREA object*
onAfterUpdate, TextCell object*
onAfterUpdate, TH object*
onBack
onBeforeCopy
onBeforeCut
onBeforeCut, Document object*
onBeforeEditFocus
onBeforeEditFocus, Document object*
onBeforePaste
onBeforePaste, Document object*
onBeforePrint
onBeforePrint, Dialog object*
onBeforePrint, Frame object*
onBeforePrint, Global object*
onBeforePrint, Window object*
onBeforeUnload

onBeforeUnload, BODY object*
onBeforeUnload, Dialog object*
onBeforeUnload, Frame object*
onBeforeUnload, FRAMESET object*
onBeforeUnload, Global object*
onBeforeUnload, TEXTAREA object*
onBeforeUnload, TH object*
onBeforeUnload, Window object*
onBeforeUpdate
onBeforeUpdate, Applet object*
onBeforeUpdate, Area object*
onBeforeUpdate, BODY object*
onBeforeUpdate, Button object*
onBeforeUpdate, BUTTON object*
onBeforeUpdate, CAPTION object*
onBeforeUpdate, Checkbox object*
onBeforeUpdate, DIV object*
onBeforeUpdate, Document object*
onBeforeUpdate, FIELDSET object*
onBeforeUpdate, FileUpload object*
onBeforeUpdate, FormElement object*
onBeforeUpdate, Hidden object*
onBeforeUpdate, IMG object*
onBeforeUpdate, Input object*
onBeforeUpdate, OBJECT object*
onBeforeUpdate, Password object*
onBeforeUpdate, RadioButton object*
onBeforeUpdate, ResetButton object*
onBeforeUpdate, Select object*
onBeforeUpdate, SubmitButton object*
onBeforeUpdate, TABLE object*
onBeforeUpdate, TD object*
onBeforeUpdate, TEXTAREA object*
onBeforeUpdate, TextCell object*
onBlur
onBlur, A object
onBlur, Applet object*
onBlur, Area object*
onBlur, Button object*
onBlur, BUTTON object*
onBlur, CAPTION object*
onBlur, Checkbox object*
onBlur, Dialog object*
onBlur, DIV object*
onBlur, Embed object*
onBlur, FIELDSET object*
onBlur, File object*
onBlur, FileUpload object*
onBlur, FormElement object*
onBlur, Frame object*
onBlur, Global object*
onBlur, Image object*
onBlur, IMG object*
onBlur, Input object*
onBlur, Label object*
onBlur, Layer object*
onBlur, Legend object*
onBlur, MARQUEE object*
onBlur, OBJECT object*
onBlur, Password object*
onBlur, RadioButton object*
onBlur, ResetButton object*
onBlur, Select object*
onBlur, SPAN object*
onBlur, SubmitButton object*
onBlur, TABLE object*
onBlur, TD object*

Event handler

2566

onBlur, TEXTAREA object*
onBlur, TextCell object*
onBlur, TH object*
onBlur, TR object*
onBlur, Window object*
onBounce
onBounce, MARQUEE object*
onChange
onChange, BODY object*
onChange, CAPTION object*
onChange, DIV object*
onChange, FIELDSET object*
onChange, FileUpload object*
onChange, FormElement object*
onChange, IMG object*
onChange, Input object*
onChange, Legend object*
onChange, Password object*
onChange, Select object*
onChange, TEXTAREA object*
onChange, TextCell object*
onClick
onClick, ! object*
onClick, A object
onClick, ABBR object
onClick, ACRONYM object
onClick, ADDRESS object
onClick, Anchor object*
onClick, Applet object*
onClick, Area object*
onClick, B object
onClick, BASE object*
onClick, BASEFONT object*
onClick, BDO object*
onClick, BGSOUND object*
onClick, BIG object
onClick, BLOCKQUOTE object*
onClick, BODY object*
onClick, BR object*
onClick, Button object*
onClick, BUTTON object*
onClick, CAPTION object*
onClick, CENTER object
onClick, Checkbox object*
onClick, CITE object
onClick, CODE object
onClick, COL object*
onClick, COLGROUP object*
onClick, DD object*
onClick, DEL object*
onClick, DFN object
onClick, DIR object*
onClick, DIV object*
onClick, DL object*
onClick, Document object*
onClick, DT object*
onClick, Element object*
onClick, EM object*
onClick, Embed object*
onClick, FIELDSET object*
onClick, File object*
onClick, FONT object*
onClick, Form object*
onClick, FormElement object*
onClick, FRAMESET object*
onClick, HEAD object*
onClick, H<n> object*

onClick, HR object*
onClick, HTML object*
onClick, HyperLink object*
onClick, I object*
onClick, IFRAME object*
onClick, Image object*
onClick, IMG object*
onClick, Input object*
onClick, INS object*
onClick, ISINDEX object*
onClick, KBD object*
onClick, Label object*
onClick, Legend object*
onClick, LI object*
onClick, LINK object*
onClick, LISTING object*
onClick, Location object*
onClick, Map object*
onClick, MARQUEE object*
onClick, MENU object*
onClick, META object*
onClick, NOFRAMES object*
onClick, NOSCRIPT object*
onClick, OBJECT object*
onClick, OL object*
onClick, OptGroupElement object*
onClick, Option object*
onClick, P object*
onClick, ParamElement object*
onClick, PLAINTEXT object
onClick, PRE object*
onClick, Q object
onClick, RadioButton object*
onClick, ResetButton object*
onClick, S object
onClick, SAMP object
onClick, SCRIPT object*
onClick, SMALL object
onClick, SPAN object*
onClick, STRIKE object
onClick, STRONG object*
onClick, STYLE object (1)*
onClick, style object (2)*
onClick, SUB object
onClick, SubmitButton object*
onClick, SUP object
onClick, TABLE object*
onClick, TableColElement object*
onClick, TBODY object*
onClick, TD object*
onClick, TextRange object*
onClick, TFOOT object*
onClick, TH object*
onClick, THEAD object*
onClick, TITLE object*
onClick, TR object*
onClick, TT object*
onClick, U object*
onClick, UL object*
onClick, Url object*
onClick, VAR object
onContentReady
onContextMenu
onContextMenu, Document object*
onCopy
onCut
onCut, Document object*

Event handler

2567

Event handler (continued)
onDataAvailable
onDataAvailable, Applet object*
onDataAvailable, Area object*
onDataAvailable, BODY object*
onDataAvailable, IMG object*
onDataAvailable, OBJECT object*
onDataAvailable, XML object*
onDataSetChanged
onDataSetChanged, Applet object*
onDataSetChanged, Area object*
onDataSetChanged, BODY object*
onDataSetChanged, IMG object*
onDatasetChanged, OBJECT object*
onDataSetChanged, XML object*
onDataSetComplete
onDataSetComplete, Applet object*
onDataSetComplete, Area object*
onDataSetComplete, BODY object*
onDataSetComplete, IMG object*
onDatasetComplete, OBJECT object*
onDataSetComplete, XML object*
onDblClick
onDblClick, ! object*
onDblClick, A object
onDblClick, ABBR object
onDblClick, ACRONYM object
onDblClick, ADDRESS object
onDblClick, Applet object*
onDblClick, Area object*
onDblClick, B object
onDblClick, BASE object*
onDblClick, BASEFONT object*
onDblClick, BDO object*
onDblClick, BGSOUND object*
onDblClick, BIG object
onDblClick, BLOCKQUOTE object*
onDblClick, BODY object*
onDblClick, BR object*
onDblClick, Button object*
onDblClick, BUTTON object*
onDblClick, CAPTION object*
onDblClick, CENTER object
onDblClick, Checkbox object*
onDblClick, CITE object
onDblClick, CODE object
onDblClick, COL object*
onDblClick, COLGROUP object*
onDblClick, DD object*
onDblClick, DEL object*
onDblClick, DFN object
onDblClick, DIR object*
onDblClick, DIV object*
onDblClick, DL object*
onDblClick, Document object*
onDblClick, DT object*
onDblClick, Element object*
onDblClick, EM object*
onDblClick, Embed object*
onDblClick, FIELDSET object*
onDblClick, File object*
onDblClick, FONT object*
onDblClick, Form object*
onDblClick, FormElement object*
onDblClick, FRAMESET object*
onDblClick, HEAD object*
onDblClick, H<n> object*

onDblClick, HR object*
onDblClick, HTML object*
onDblClick, HyperLink object*
onDblClick, I object*
onDblClick, IFRAME object*
onDblClick, Image object*
onDblClick, IMG object*
onDblClick, Input object*
onDblClick, INS object*
onDblClick, ISINDEX object*
onDblClick, KBD object*
onDblClick, Label object*
onDblClick, Legend object*
onDblClick, LI object*
onDblClick, LINK object*
onDblClick, LISTING object*
onDblClick, Location object*
onDblClick, Map object*
onDblClick, MARQUEE object*
onDblClick, MENU object*
onDblClick, META object*
onDblClick, NOFRAMES object*
onDblClick, NOSCRIPT object*
onDblClick, OBJECT object*
onDblClick, OL object*
onDblClick, OptGroupElement object*
onDblClick, Option object*
onDblClick, P object*
onDblClick, ParamElement object*
onDblClick, PLAINTEXT object
onDblClick, PRE object*
onDblClick, Q object
onDblClick, RadioButton object*
onDblClick, ResetButton object*
onDblClick, S object
onDblClick, SAMP object
onDblClick, SCRIPT object*
onDblClick, SMALL object
onDblClick, SPAN object*
onDblClick, STRIKE object
onDblClick, STRONG object*
onDblClick, STYLE object (1)*
onDblClick, style object (2)*
onDblClick, SUB object
onDblClick, SubmitButton object*
onDblClick, SUP object
onDblClick, TABLE object*
onDblClick, TableColElement object*
onDblClick, TBODY object*
onDblClick, TD object*
onDblClick, TextRange object*
onDblClick, TFOOT object*
onDblClick, TH object*
onDblClick, THEAD object*
onDblClick, TITLE object*
onDblClick, TR object*
onDblClick, TT object*
onDblClick, U object*
onDblClick, UL object*
onDblClick, Url object*
onDblClick, VAR object
onDocumentReady
onDrag
onDrag, Document object*
onDragDrop
onDragDrop, Dialog object*
onDragDrop, Frame object*

Event handler

2568

onDragDrop, Global object*
onDragDrop, Window object*
onDragEnd
onDragEnd, Document object*
onDragEnter
onDragEnter, Document object*
onDragLeave
onDragLeave, Document object*
onDragOver
onDragOver, Document object*
onDragStart
onDragStart, ACRONYM object
onDragStart, ADDRESS object
onDragStart, B object
onDragStart, BIG object
onDragStart, BLOCKQUOTE object*
onDragStart, BODY object*
onDragStart, BUTTON object*
onDragStart, CAPTION object*
onDragStart, CENTER object
onDragStart, CITE object
onDragStart, CODE object
onDragStart, DD object*
onDragStart, DEL object*
onDragStart, DFN object
onDragStart, DIR object*
onDragStart, DIV object*
onDragStart, DL object*
onDragStart, Document object*
onDragStart, DT object*
onDragStart, EM object*
onDragStart, FIELDSET object*
onDragStart, FileUpload object*
onDragStart, FONT object*
onDragStart, Form object*
onDragStart, H<n> object*
onDragStart, HR object*
onDragStart, I object*
onDragStart, IMG object*
onDragStart, INS object*
onDragStart, KBD object*
onDragStart, Label object*
onDragStart, Legend object*
onDragStart, LI object*
onDragStart, LISTING object*
onDragStart, MARQUEE object*
onDragStart, MENU object*
onDragStart, OBJECT object*
onDragStart, OL object*
onDragStart, P object*
onDragStart, PLAINTEXT object
onDragStart, PRE object*
onDragStart, Q object
onDragStart, S object
onDragStart, SAMP object
onDragStart, Select object*
onDragStart, SMALL object
onDragStart, SPAN object*
onDragStart, STRIKE object
onDragStart, STRONG object*
onDragStart, SUB object
onDragStart, SUP object
onDragStart, TABLE object*
onDragStart, TBODY object*
onDragStart, TD object*
onDragStart, TEXTAREA object*
onDragStart, TFOOT object*

onDragStart, TH object*
onDragStart, THEAD object*
onDragStart, TR object*
onDragStart, TT object*
onDragStart, U object*
onDragStart, UL object*
onDragStart, VAR object
onDrop
onDrop, Document object*
onError
onError, Dialog object*
onError, Frame object*
onError, Global object*
onError, Image object*
onError, IMG object*
onError, LINK object*
onError, OBJECT object*
onError, SCRIPT object*
onError, STYLE object (1)*
onError, Window object*
onErrorUpdate
onErrorUpdate, Applet object*
onErrorUpdate, Area object*
onErrorUpdate, BODY object*
onErrorUpdate, Button object*
onErrorUpdate, CAPTION object*
onErrorUpdate, Checkbox object*
onErrorUpdate, Document object*
onErrorUpdate, FIELDSET object*
onErrorUpdate, OBJECT object*
onErrorUpdate, RadioButton object*
onErrorUpdate, TEXTAREA object*
onFilterChange
onFilterChange, ACRONYM object
onFilterChange, ADDRESS object
onFilterChange, B object
onFilterChange, BIG object
onFilterChange, BLOCKQUOTE object*
onFilterChange, BODY object*
onFilterChange, Button object*
onFilterChange, BUTTON object*
onFilterChange, CAPTION object*
onFilterChange, CENTER object
onFilterChange, Checkbox object*
onFilterChange, CITE object
onFilterChange, CODE object
onFilterChange, DD object*
onFilterChange, DEL object*
onFilterChange, DFN object
onFilterChange, DIR object*
onFilterChange, DL object*
onFilterChange, DT object*
onFilterChange, EM object*
onFilterChange, FIELDSET object*
onFilterChange, FileUpload object*
onFilterChange, FONT object*
onFilterChange, Form object*
onFilterChange, H<n> object*
onFilterChange, HR object*
onFilterChange, I object*
onFilterChange, IMG object*
onFilterChange, INS object*
onFilterChange, KBD object*
onFilterChange, Label object*
onFilterChange, Legend object*
onFilterChange, LI object*
onFilterChange, LISTING object*

Event handler

2569

Event handler (continued)
onFilterChange, MARQUEE object*
onFilterChange, MENU object*
onFilterChange, OBJECT object*
onFilterChange, OL object*
onFilterChange, P object*
onFilterChange, Password object*
onFilterChange, PLAINTEXT object
onFilterChange, PRE object*
onFilterChange, Q object
onFilterChange, RadioButton object*
onFilterChange, ResetButton object*
onFilterChange, S object
onFilterChange, SAMP object
onFilterChange, Select object*
onFilterChange, SMALL object
onFilterChange, SPAN object*
onFilterChange, STRIKE object
onFilterChange, STRONG object*
onFilterChange, SUB object
onFilterChange, SubmitButton object*
onFilterChange, SUP object
onFilterChange, TABLE object*
onFilterChange, TBODY object*
onFilterChange, TD object*
onFilterChange, TEXTAREA object*
onFilterChange, TextCell object*
onFilterChange, TFOOT object*
onFilterChange, TH object*
onFilterChange, THEAD object*
onFilterChange, TR object*
onFilterChange, TT object*
onFilterChange, U object*
onFilterChange, UL object*
onFilterChange, VAR object
onFinish
onFinish, MARQUEE object*
onFocus
onFocus, A object
onFocus, Applet object*
onFocus, Area object*
onFocus, Button object*
onFocus, BUTTON object*
onFocus, CAPTION object*
onFocus, Checkbox object*
onFocus, Dialog object*
onFocus, DIV object*
onFocus, Embed object*
onFocus, FIELDSET object*
onFocus, File object*
onFocus, FileUpload object*
onFocus, FormElement object*
onFocus, Frame object*
onFocus, Global object*
onFocus, Image object*
onFocus, IMG object*
onFocus, Input object*
onFocus, Label object*
onFocus, Layer object*
onFocus, Legend object*
onFocus, MARQUEE object*
onFocus, OBJECT object*
onFocus, Password object*
onFocus, RadioButton object*
onFocus, ResetButton object*
onFocus, Select object*
onFocus, SubmitButton object*

onFocus, TABLE object*
onFocus, TEXTAREA object*
onFocus, TextCell object*
onFocus, Window object*
onForward
onHelp
onHelp, ! object*
onHelp, A object
onHelp, ABBR object
onHelp, ACRONYM object
onHelp, ADDRESS object
onHelp, Applet object*
onHelp, Area object*
onHelp, B object
onHelp, BASE object*
onHelp, BASEFONT object*
onHelp, BDO object*
onHelp, BGSOUND object*
onHelp, BIG object
onHelp, BLOCKQUOTE object*
onHelp, BODY object*
onHelp, BR object*
onHelp, Button object*
onHelp, BUTTON object*
onHelp, CAPTION object*
onHelp, CENTER object
onHelp, Checkbox object*
onHelp, CITE object
onHelp, CODE object
onHelp, COL object*
onHelp, COLGROUP object*
onHelp, DD object*
onHelp, DEL object*
onHelp, DFN object
onHelp, Dialog object*
onHelp, DIR object*
onHelp, DIV object*
onHelp, DL object*
onHelp, Document object*
onHelp, DT object*
onHelp, Element object*
onHelp, EM object*
onHelp, Embed object*
onHelp, FIELDSET object*
onHelp, FileUpload object*
onHelp, FONT object*
onHelp, Form object*
onHelp, FormElement object*
onHelp, Frame object*
onHelp, FRAMESET object*
onHelp, Global object*
onHelp, HEAD object*
onHelp, Hidden object*
onHelp, H<n> object*
onHelp, HR object*
onHelp, HTML object*
onHelp, HyperLink object*
onHelp, I object*
onHelp, IFRAME object*
onHelp, Image object*
onHelp, IMG object*
onHelp, Input object*
onHelp, INS object*
onHelp, ISINDEX object*
onHelp, KBD object*
onHelp, Label object*
onHelp, Legend object*

Event handler

2570

onHelp, LI object*
onHelp, LINK object*
onHelp, LISTING object*
onHelp, Location object*
onHelp, Map object*
onHelp, MARQUEE object*
onHelp, MENU object*
onHelp, META object*
onHelp, NOFRAMES object*
onHelp, NOSCRIPT object*
onHelp, OBJECT object*
onHelp, OL object*
onHelp, OptGroupElement object*
onHelp, Option object*
onHelp, P object*
onHelp, ParamElement object*
onHelp, Password object*
onHelp, PLAINTEXT object
onHelp, PRE object*
onHelp, Q object
onHelp, RadioButton object*
onHelp, ResetButton object*
onHelp, S object
onHelp, SAMP object
onHelp, SCRIPT object*
onHelp, Select object*
onHelp, SMALL object
onHelp, SPAN object*
onHelp, STRIKE object
onHelp, STRONG object*
onHelp, STYLE object (1)*
onHelp, style object (2)*
onHelp, SUB object
onHelp, SubmitButton object*
onHelp, SUP object
onHelp, TABLE object*
onHelp, TableColElement object*
onHelp, TBODY object*
onHelp, TD object*
onHelp, TEXTAREA object*
onHelp, TextCell object*
onHelp, TextRange object*
onHelp, TFOOT object*
onHelp, TH object*
onHelp, THEAD object*
onHelp, TITLE object*
onHelp, TR object*
onHelp, TT object*
onHelp, U object*
onHelp, UL object*
onHelp, Url object*
onHelp, VAR object
onHelp, Window object*
onKeyDown
onKeyDown, ! object*
onKeyDown, A object
onKeyDown, ABBR object
onKeyDown, ACRONYM object
onKeyDown, ADDRESS object
onKeyDown, Applet object*
onKeyDown, Area object*
onKeyDown, B object
onKeyDown, BASE object*
onKeyDown, BASEFONT object*
onKeyDown, BDO object*
onKeyDown, BGSOUND object*
onKeyDown, BIG object

onKeyDown, BLOCKQUOTE object*
onKeyDown, BODY object*
onKeyDown, BR object*
onKeyDown, Button object*
onKeyDown, BUTTON object*
onKeyDown, CAPTION object*
onKeyDown, CENTER object
onKeyDown, Checkbox object*
onKeyDown, CITE object
onKeyDown, CODE object
onKeyDown, COL object*
onKeyDown, COLGROUP object*
onKeyDown, DD object*
onKeyDown, DEL object*
onKeyDown, DFN object
onKeyDown, DIR object*
onKeyDown, DIV object*
onKeyDown, DL object*
onKeyDown, Document object*
onKeyDown, DT object*
onKeyDown, Element object*
onKeyDown, EM object*
onKeyDown, Embed object*
onKeyDown, FIELDSET object*
onKeyDown, FileUpload object*
onKeyDown, FONT object*
onKeyDown, Form object*
onKeyDown, FormElement object*
onKeyDown, FRAMESET object*
onKeyDown, HEAD object*
onKeyDown, H<n> object*
onKeyDown, HR object*
onKeyDown, HTML object*
onKeyDown, HyperLink object*
onKeyDown, I object*
onKeyDown, IFRAME object*
onKeyDown, Image object*
onKeyDown, IMG object*
onKeyDown, Input object*
onKeyDown, INS object*
onKeyDown, ISINDEX object*
onKeyDown, KBD object*
onKeyDown, Label object*
onKeyDown, Legend object*
onKeyDown, LI object*
onKeyDown, LINK object*
onKeyDown, LISTING object*
onKeyDown, Location object*
onKeyDown, Map object*
onKeyDown, MARQUEE object*
onKeyDown, MENU object*
onKeyDown, META object*
onKeyDown, NOFRAMES object*
onKeyDown, NOSCRIPT object*
onKeyDown, OBJECT object*
onKeyDown, OL object*
onKeyDown, OptGroupElement object*
onKeyDown, Option object*
onKeyDown, P object*
onKeyDown, ParamElement object*
onKeyDown, Password object*
onKeyDown, PLAINTEXT object
onKeyDown, PRE object*
onKeyDown, Q object
onKeyDown, RadioButton object*
onKeyDown, ResetButton object*
onKeyDown, S object

Event handler

2571

Event handler (continued)
onKeyDown, SAMP object
onKeyDown, SCRIPT object*
onKeyDown, Select object*
onKeyDown, SMALL object
onKeyDown, SPAN object*
onKeyDown, STRIKE object
onKeyDown, STRONG object*
onKeyDown, STYLE object (1)*
onKeyDown, style object (2)*
onKeyDown, SUB object
onKeyDown, SubmitButton object*
onKeyDown, SUP object
onKeyDown, TABLE object*
onKeyDown, TableColElement object*
onKeyDown, TBODY object*
onKeyDown, TD object*
onKeyDown, TEXTAREA object*
onKeyDown, TextCell object*
onKeyDown, TextRange object*
onKeyDown, TFOOT object*
onKeyDown, TH object*
onKeyDown, THEAD object*
onKeyDown, TITLE object*
onKeyDown, TR object*
onKeyDown, TT object*
onKeyDown, U object*
onKeyDown, UL object*
onKeyDown, Url object*
onKeyDown, VAR object
onKeyPress
onKeyPress, ! object*
onKeyPress, A object
onKeyPress, ABBR object
onKeyPress, ACRONYM object
onKeyPress, ADDRESS object
onKeyPress, Applet object*
onKeyPress, Area object*
onKeyPress, B object
onKeyPress, BASE object*
onKeyPress, BASEFONT object*
onKeyPress, BDO object*
onKeyPress, BGSOUND object*
onKeyPress, BIG object
onKeyPress, BLOCKQUOTE object*
onKeyPress, BODY object*
onKeyPress, BR object*
onKeyPress, Button object*
onKeyPress, BUTTON object*
onKeyPress, CAPTION object*
onKeyPress, CENTER object
onKeyPress, Checkbox object*
onKeyPress, CITE object
onKeyPress, CODE object
onKeyPress, COL object*
onKeyPress, COLGROUP object*
onKeyPress, DD object*
onKeyPress, DEL object*
onKeyPress, DFN object
onKeyPress, DIR object*
onKeyPress, DIV object*
onKeyPress, DL object*
onKeyPress, Document object*
onKeyPress, DT object*
onKeyPress, Element object*
onKeyPress, EM object*
onKeyPress, Embed object*

onKeyPress, FIELDSET object*
onKeyPress, FileUpload object*
onKeyPress, FONT object*
onKeyPress, Form object*
onKeyPress, FormElement object*
onKeyPress, FRAMESET object*
onKeyPress, HEAD object*
onKeyPress, H<n> object*
onKeyPress, HR object*
onKeyPress, HTML object*
onKeyPress, HyperLink object*
onKeyPress, I object*
onKeyPress, IFRAME object*
onKeyPress, Image object*
onKeyPress, IMG object*
onKeyPress, Input object*
onKeyPress, INS object*
onKeyPress, ISINDEX object*
onKeyPress, KBD object*
onKeyPress, Label object*
onKeyPress, Legend object*
onKeyPress, LI object*
onKeyPress, LINK object*
onKeyPress, LISTING object*
onKeyPress, Location object*
onKeyPress, Map object*
onKeyPress, MARQUEE object*
onKeyPress, MENU object*
onKeyPress, META object*
onKeyPress, NOFRAMES object*
onKeyPress, NOSCRIPT object*
onKeyPress, OBJECT object*
onKeyPress, OL object*
onKeyPress, OptGroupElement object*
onKeyPress, Option object*
onKeyPress, P object*
onKeyPress, ParamElement object*
onKeyPress, Password object*
onKeyPress, PLAINTEXT object
onKeyPress, PRE object*
onKeyPress, Q object
onKeyPress, RadioButton object*
onKeyPress, ResetButton object*
onKeyPress, S object
onKeyPress, SAMP object
onKeyPress, SCRIPT object*
onKeyPress, Select object*
onKeyPress, SMALL object
onKeyPress, SPAN object*
onKeyPress, STRIKE object
onKeyPress, STRONG object*
onKeyPress, STYLE object (1)*
onKeyPress, style object (2)*
onKeyPress, SUB object
onKeyPress, SubmitButton object*
onKeyPress, SUP object
onKeyPress, TABLE object*
onKeyPress, TableColElement object*
onKeyPress, TBODY object*
onKeyPress, TD object*
onKeyPress, TEXTAREA object*
onKeyPress, TextCell object*
onKeyPress, TextRange object*
onKeyPress, TFOOT object*
onKeyPress, TH object*
onKeyPress, THEAD object*
onKeyPress, TITLE object*

Event handler

2572

onKeyPress, TR object*
onKeyPress, TT object*
onKeyPress, U object*
onKeyPress, UL object*
onKeyPress, Url object*
onKeyPress, VAR object
onKeyUp
onKeyUp, ! object*
onKeyUp, A object
onKeyUp, ABBR object
onKeyUp, ACRONYM object
onKeyUp, ADDRESS object
onKeyUp, Applet object*
onKeyUp, Area object*
onKeyUp, B object
onKeyUp, BASE object*
onKeyUp, BASEFONT object*
onKeyUp, BDO object*
onKeyUp, BGSOUND object*
onKeyUp, BIG object
onKeyUp, BLOCKQUOTE object*
onKeyUp, BODY object*
onKeyUp, BR object*
onKeyUp, Button object*
onKeyUp, BUTTON object*
onKeyUp, CAPTION object*
onKeyUp, CENTER object
onKeyUp, Checkbox object*
onKeyUp, CITE object
onKeyUp, CODE object
onKeyUp, COL object*
onKeyUp, COLGROUP object*
onKeyUp, DD object*
onKeyUp, DEL object*
onKeyUp, DFN object
onKeyUp, DIR object*
onKeyUp, DIV object*
onKeyUp, DL object*
onKeyUp, Document object*
onKeyUp, DT object*
onKeyUp, Element object*
onKeyUp, EM object*
onKeyUp, Embed object*
onKeyUp, FIELDSET object*
onKeyUp, FileUpload object*
onKeyUp, FONT object*
onKeyUp, Form object*
onKeyUp, FormElement object*
onKeyUp, FRAMESET object*
onKeyUp, HEAD object*
onKeyUp, H<n> object*
onKeyUp, HR object*
onKeyUp, HTML object*
onKeyUp, HyperLink object*
onKeyUp, I object*
onKeyUp, IFRAME object*
onKeyUp, Image object*
onKeyUp, IMG object*
onKeyUp, Input object*
onKeyUp, INS object*
onKeyUp, ISINDEX object*
onKeyUp, KBD object*
onKeyUp, Label object*
onKeyUp, Legend object*
onKeyUp, LI object*
onKeyUp, LINK object*
onKeyUp, LISTING object*

onKeyUp, Location object*
onKeyUp, Map object*
onKeyUp, MARQUEE object*
onKeyUp, MENU object*
onKeyUp, META object*
onKeyUp, NOFRAMES object*
onKeyUp, NOSCRIPT object*
onKeyUp, OBJECT object*
onKeyUp, OL object*
onKeyUp, OptGroupElement object*
onKeyUp, Option object*
onKeyUp, P object*
onKeyUp, ParamElement object*
onKeyUp, Password object*
onKeyUp, PLAINTEXT object
onKeyUp, PRE object*
onKeyUp, Q object
onKeyUp, RadioButton object*
onKeyUp, ResetButton object*
onKeyUp, S object
onKeyUp, SAMP object
onKeyUp, SCRIPT object*
onKeyUp, Select object*
onKeyUp, SMALL object
onKeyUp, SPAN object*
onKeyUp, STRIKE object
onKeyUp, STRONG object*
onKeyUp, STYLE object (1)*
onKeyUp, style object (2)*
onKeyUp, SUB object
onKeyUp, SubmitButton object*
onKeyUp, SUP object
onKeyUp, TABLE object*
onKeyUp, TableColElement object*
onKeyUp, TBODY object*
onKeyUp, TD object*
onKeyUp, TEXTAREA object*
onKeyUp, TextCell object*
onKeyUp, TextRange object*
onKeyUp, TFOOT object*
onKeyUp, TH object*
onKeyUp, THEAD object*
onKeyUp, TITLE object*
onKeyUp, TR object*
onKeyUp, TT object*
onKeyUp, U object*
onKeyUp, UL object*
onKeyUp, Url object*
onKeyUp, VAR object
onLoad
onLoad, Applet object*
onLoad, Area object*
onLoad, Dialog object*
onLoad, Frame object*
onLoad, FRAMESET object*
onLoad, Global object*
onLoad, Image object*
onLoad, IMG object*
onLoad, Layer object*
onLoad, LINK object*
onLoad, SCRIPT object*
onLoad, STYLE object (1)*
onLoad, Window object*
onLoseCapture
onMouseDown
onMouseDown, ! object*
onMouseDown, A object

Event handler

2573

Event handler (continued)
onMouseDown, ABBR object
onMouseDown, ACRONYM object
onMouseDown, ADDRESS object
onMouseDown, Anchor object*
onMouseDown, Applet object*
onMouseDown, Area object*
onMouseDown, B object
onMouseDown, BASE object*
onMouseDown, BASEFONT object*
onMouseDown, BDO object*
onMouseDown, BGSOUND object*
onMouseDown, BIG object
onMouseDown, BLOCKQUOTE object*
onMouseDown, BODY object*
onMouseDown, BR object*
onMouseDown, Button object*
onMouseDown, BUTTON object*
onMouseDown, CAPTION object*
onMouseDown, CENTER object
onMouseDown, Checkbox object*
onMouseDown, CITE object
onMouseDown, CODE object
onMouseDown, COL object*
onMouseDown, COLGROUP object*
onMouseDown, DD object*
onMouseDown, DEL object*
onMouseDown, DFN object
onMouseDown, DIR object*
onMouseDown, DIV object*
onMouseDown, DL object*
onMouseDown, Document object*
onMouseDown, DT object*
onMouseDown, Element object*
onMouseDown, EM object*
onMouseDown, Embed object*
onMouseDown, FIELDSET object*
onMouseDown, FileUpload object*
onMouseDown, FONT object*
onMouseDown, Form object*
onMouseDown, FormElement object*
onMouseDown, FRAMESET object*
onMouseDown, HEAD object*
onMouseDown, H<n> object*
onMouseDown, HR object*
onMouseDown, HTML object*
onMouseDown, HyperLink object*
onMouseDown, I object*
onMouseDown, IFRAME object*
onMouseDown, Image object*
onMouseDown, IMG object*
onMouseDown, Input object*
onMouseDown, INS object*
onMouseDown, ISINDEX object*
onMouseDown, KBD object*
onMouseDown, Label object*
onMouseDown, Legend object*
onMouseDown, LI object*
onMouseDown, LINK object*
onMouseDown, LISTING object*
onMouseDown, Location object*
onMouseDown, Map object*
onMouseDown, MARQUEE object*
onMouseDown, MENU object*
onMouseDown, META object*
onMouseDown, NOFRAMES object*
onMouseDown, NOSCRIPT object*

onMouseDown, OBJECT object*
onMouseDown, OL object*
onMouseDown, OptGroupElement object*
onMouseDown, Option object*
onMouseDown, P object*
onMouseDown, ParamElement object*
onMouseDown, Password object*
onMouseDown, PLAINTEXT object
onMouseDown, PRE object*
onMouseDown, Q object
onMouseDown, RadioButton object*
onMouseDown, ResetButton object*
onMouseDown, S object
onMouseDown, SAMP object
onMouseDown, SCRIPT object*
onMouseDown, Select object*
onMouseDown, SMALL object
onMouseDown, SPAN object*
onMouseDown, STRIKE object
onMouseDown, STRONG object*
onMouseDown, STYLE object (1)*
onMouseDown, style object (2)*
onMouseDown, SUB object
onMouseDown, SubmitButton object*
onMouseDown, SUP object
onMouseDown, TABLE object*
onMouseDown, TableColElement object*
onMouseDown, TBODY object*
onMouseDown, TD object*
onMouseDown, TEXTAREA object*
onMouseDown, TextCell object*
onMouseDown, TextRange object*
onMouseDown, TFOOT object*
onMouseDown, TH object*
onMouseDown, THEAD object*
onMouseDown, TITLE object*
onMouseDown, TR object*
onMouseDown, TT object*
onMouseDown, U object*
onMouseDown, UL object*
onMouseDown, Url object*
onMouseDown, VAR object
onMouseDrag
onMouseMove
onMouseMove, ! object*
onMouseMove, A object
onMouseMove, ABBR object
onMouseMove, ACRONYM object
onMouseMove, ADDRESS object
onMouseMove, Applet object*
onMouseMove, Area object*
onMouseMove, B object
onMouseMove, BASE object*
onMouseMove, BASEFONT object*
onMouseMove, BDO object*
onMouseMove, BGSOUND object*
onMouseMove, BIG object
onMouseMove, BLOCKQUOTE object*
onMouseMove, BODY object*
onMouseMove, BR object*
onMouseMove, Button object*
onMouseMove, BUTTON object*
onMouseMove, CAPTION object*
onMouseMove, CENTER object
onMouseMove, Checkbox object*
onMouseMove, CITE object
onMouseMove, CODE object

Event handler

2574

onMouseMove, COL object*
onMouseMove, COLGROUP object*
onMouseMove, DD object*
onMouseMove, DEL object*
onMouseMove, DFN object
onMouseMove, Dialog object*
onMouseMove, DIR object*
onMouseMove, DIV object*
onMouseMove, DL object*
onMouseMove, Document object*
onMouseMove, DT object*
onMouseMove, Element object*
onMouseMove, EM object*
onMouseMove, Embed object*
onMouseMove, FIELDSET object*
onMouseMove, FileUpload object*
onMouseMove, FONT object*
onMouseMove, Form object*
onMouseMove, FormElement object*
onMouseMove, Frame object*
onMouseMove, FRAMESET object*
onMouseMove, HEAD object*
onMouseMove, H<n> object*
onMouseMove, HR object*
onMouseMove, HTML object*
onMouseMove, HyperLink object*
onMouseMove, I object*
onMouseMove, IFRAME object*
onMouseMove, Image object*
onMouseMove, IMG object*
onMouseMove, Input object*
onMouseMove, INS object*
onMouseMove, ISINDEX object*
onMouseMove, KBD object*
onMouseMove, Label object*
onMouseMove, Legend object*
onMouseMove, LI object*
onMouseMove, LINK object*
onMouseMove, LISTING object*
onMouseMove, Location object*
onMouseMove, Map object*
onMouseMove, MARQUEE object*
onMouseMove, MENU object*
onMouseMove, META object*
onMouseMove, NOFRAMES object*
onMouseMove, NOSCRIPT object*
onMouseMove, OBJECT object*
onMouseMove, OL object*
onMouseMove, OptGroupElement object*
onMouseMove, Option object*
onMouseMove, P object*
onMouseMove, ParamElement object*
onMouseMove, Password object*
onMouseMove, PLAINTEXT object
onMouseMove, PRE object*
onMouseMove, Q object
onMouseMove, RadioButton object*
onMouseMove, ResetButton object*
onMouseMove, S object
onMouseMove, SAMP object
onMouseMove, SCRIPT object*
onMouseMove, Select object*
onMouseMove, SMALL object
onMouseMove, SPAN object*
onMouseMove, STRIKE object
onMouseMove, STRONG object*
onMouseMove, STYLE object (1)*

onMouseMove, style object (2)*
onMouseMove, SUB object
onMouseMove, SubmitButton object*
onMouseMove, SUP object
onMouseMove, TABLE object*
onMouseMove, TableColElement object*
onMouseMove, TBODY object*
onMouseMove, TD object*
onMouseMove, TEXTAREA object*
onMouseMove, TextCell object*
onMouseMove, TextRange object*
onMouseMove, TFOOT object*
onMouseMove, TH object*
onMouseMove, THEAD object*
onMouseMove, TITLE object*
onMouseMove, TR object*
onMouseMove, TT object*
onMouseMove, U object*
onMouseMove, UL object*
onMouseMove, Url object*
onMouseMove, VAR object
onMouseMove, Window object*
onMouseOut
onMouseOut, ! object*
onMouseOut, A object
onMouseOut, ABBR object
onMouseOut, ACRONYM object
onMouseOut, ADDRESS object
onMouseOut, Anchor object*
onMouseOut, Applet object*
onMouseOut, Area object*
onMouseOut, B object
onMouseOut, BASE object*
onMouseOut, BASEFONT object*
onMouseOut, BDO object*
onMouseOut, BGSOUND object*
onMouseOut, BIG object
onMouseOut, BLOCKQUOTE object*
onMouseOut, BODY object*
onMouseOut, BR object*
onMouseOut, Button object*
onMouseOut, BUTTON object*
onMouseOut, CAPTION object*
onMouseOut, CENTER object
onMouseOut, Checkbox object*
onMouseOut, CITE object
onMouseOut, CODE object
onMouseOut, COL object*
onMouseOut, COLGROUP object*
onMouseOut, DD object*
onMouseOut, DEL object*
onMouseOut, DFN object
onMouseOut, DIR object*
onMouseOut, DIV object*
onMouseOut, DL object*
onMouseOut, Document object*
onMouseOut, DT object*
onMouseOut, Element object*
onMouseOut, EM object*
onMouseOut, Embed object*
onMouseOut, FIELDSET object*
onMouseOut, FileUpload object*
onMouseOut, FONT object*
onMouseOut, Form object*
onMouseOut, FormElement object*
onMouseOut, FRAMESET object*
onMouseOut, HEAD object*

Event handler

2575

Event handler (continued)
onMouseOut, H<n> object*
onMouseOut, HR object*
onMouseOut, HTML object*
onMouseOut, HyperLink object*
onMouseOut, I object*
onMouseOut, IFRAME object*
onMouseOut, Image object*
onMouseOut, IMG object*
onMouseOut, Input object*
onMouseOut, INS object*
onMouseOut, ISINDEX object*
onMouseOut, KBD object*
onMouseOut, Label object*
onMouseOut, Layer object*
onMouseOut, Legend object*
onMouseOut, LI object*
onMouseOut, LINK object*
onMouseOut, LISTING object*
onMouseOut, Location object*
onMouseOut, Map object*
onMouseOut, MARQUEE object*
onMouseOut, MENU object*
onMouseOut, META object*
onMouseOut, NOFRAMES object*
onMouseOut, NOSCRIPT object*
onMouseOut, OBJECT object*
onMouseOut, OL object*
onMouseOut, OptGroupElement object*
onMouseOut, Option object*
onMouseOut, P object*
onMouseOut, ParamElement object*
onMouseOut, Password object*
onMouseOut, PLAINTEXT object
onMouseOut, PRE object*
onMouseOut, Q object
onMouseOut, RadioButton object*
onMouseOut, ResetButton object*
onMouseOut, S object
onMouseOut, SAMP object
onMouseOut, SCRIPT object*
onMouseOut, Select object*
onMouseOut, SMALL object
onMouseOut, SPAN object*
onMouseOut, STRIKE object
onMouseOut, STRONG object*
onMouseOut, STYLE object (1)*
onMouseOut, style object (2)*
onMouseOut, SUB object
onMouseOut, SubmitButton object*
onMouseOut, SUP object
onMouseOut, TABLE object*
onMouseOut, TableColElement object*
onMouseOut, TBODY object*
onMouseOut, TD object*
onMouseOut, TEXTAREA object*
onMouseOut, TextCell object*
onMouseOut, TextRange object*
onMouseOut, TFOOT object*
onMouseOut, TH object*
onMouseOut, THEAD object*
onMouseOut, TITLE object*
onMouseOut, TR object*
onMouseOut, TT object*
onMouseOut, U object*
onMouseOut, UL object*

onMouseOut, Url object*
onMouseOut, VAR object
onMouseOver
onMouseOver, ! object*
onMouseOver, A object
onMouseOver, ABBR object
onMouseOver, ACRONYM object
onMouseOver, ADDRESS object
onMouseOver, Anchor object*
onMouseOver, Applet object*
onMouseOver, Area object*
onMouseOver, B object
onMouseOver, BASE object*
onMouseOver, BASEFONT object*
onMouseOver, BDO object*
onMouseOver, BGSOUND object*
onMouseOver, BIG object
onMouseOver, BLOCKQUOTE object*
onMouseOver, BODY object*
onMouseOver, BR object*
onMouseOver, Button object*
onMouseOver, BUTTON object*
onMouseOver, CAPTION object*
onMouseOver, CENTER object
onMouseOver, Checkbox object*
onMouseOver, CITE object
onMouseOver, CODE object
onMouseOver, COL object*
onMouseOver, COLGROUP object*
onMouseOver, DD object*
onMouseOver, DEL object*
onMouseOver, DFN object
onMouseOver, DIR object*
onMouseOver, DIV object*
onMouseOver, DL object*
onMouseOver, Document object*
onMouseOver, DT object*
onMouseOver, Element object*
onMouseOver, EM object*
onMouseOver, Embed object*
onMouseOver, FIELDSET object*
onMouseOver, FileUpload object*
onMouseOver, FONT object*
onMouseOver, Form object*
onMouseOver, FormElement object*
onMouseOver, FRAMESET object*
onMouseOver, HEAD object*
onMouseOver, H<n> object*
onMouseOver, HR object*
onMouseOver, HTML object*
onMouseOver, HyperLink object*
onMouseOver, I object*
onMouseOver, IFRAME object*
onMouseOver, Image object*
onMouseOver, IMG object*
onMouseOver, Input object*
onMouseOver, INS object*
onMouseOver, ISINDEX object*
onMouseOver, KBD object*
onMouseOver, Label object*
onMouseOver, Layer object*
onMouseOver, Legend object*
onMouseOver, LI object*
onMouseOver, LINK object*
onMouseOver, LISTING object*
onMouseOver, Location object*
onMouseOver, Map object*

Event handler

2576

onMouseOver, MARQUEE object*
onMouseOver, MENU object*
onMouseOver, META object*
onMouseOver, NOFRAMES object*
onMouseOver, NOSCRIPT object*
onMouseOver, OBJECT object*
onMouseOver, OL object*
onMouseOver, OptGroupElement object*
onMouseOver, Option object*
onMouseOver, P object*
onMouseOver, ParamElement object*
onMouseOver, Password object*
onMouseOver, PLAINTEXT object
onMouseOver, PRE object*
onMouseOver, Q object
onMouseOver, RadioButton object*
onMouseOver, ResetButton object*
onMouseOver, S object
onMouseOver, SAMP object
onMouseOver, SCRIPT object*
onMouseOver, Select object*
onMouseOver, SMALL object
onMouseOver, SPAN object*
onMouseOver, STRIKE object
onMouseOver, STRONG object*
onMouseOver, STYLE object (1)*
onMouseOver, style object (2)*
onMouseOver, SUB object
onMouseOver, SubmitButton object*
onMouseOver, SUP object
onMouseOver, TABLE object*
onMouseOver, TableColElement object*
onMouseOver, TBODY object*
onMouseOver, TD object*
onMouseOver, TEXTAREA object*
onMouseOver, TextCell object*
onMouseOver, TextRange object*
onMouseOver, TFOOT object*
onMouseOver, TH object*
onMouseOver, THEAD object*
onMouseOver, TITLE object*
onMouseOver, TR object*
onMouseOver, TT object*
onMouseOver, U object*
onMouseOver, UL object*
onMouseOver, Url object*
onMouseOver, VAR object
onMouseUp
onMouseUp, ! object*
onMouseUp, A object
onMouseUp, ABBR object
onMouseUp, ACRONYM object
onMouseUp, ADDRESS object
onMouseUp, Anchor object*
onMouseUp, Applet object*
onMouseUp, Area object*
onMouseUp, B object
onMouseUp, BASE object*
onMouseUp, BASEFONT object*
onMouseUp, BDO object*
onMouseUp, BGSOUND object*
onMouseUp, BIG object
onMouseUp, BLOCKQUOTE object*
onMouseUp, BODY object*
onMouseUp, BR object*
onMouseUp, Button object*
onMouseUp, BUTTON object*

onMouseUp, CAPTION object*
onMouseUp, CENTER object
onMouseUp, Checkbox object*
onMouseUp, CITE object
onMouseUp, CODE object
onMouseUp, COL object*
onMouseUp, COLGROUP object*
onMouseUp, DD object*
onMouseUp, DEL object*
onMouseUp, DFN object
onMouseUp, DIR object*
onMouseUp, DIV object*
onMouseUp, DL object*
onMouseUp, Document object*
onMouseUp, DT object*
onMouseUp, Element object*
onMouseUp, EM object*
onMouseUp, Embed object*
onMouseUp, FIELDSET object*
onMouseUp, FileUpload object*
onMouseUp, FONT object*
onMouseUp, Form object*
onMouseUp, FormElement object*
onMouseUp, FRAMESET object*
onMouseUp, HEAD object*
onMouseUp, H<n> object*
onMouseUp, HR object*
onMouseUp, HTML object*
onMouseUp, HyperLink object*
onMouseUp, I object*
onMouseUp, IFRAME object*
onMouseUp, Image object*
onMouseUp, IMG object*
onMouseUp, Input object*
onMouseUp, INS object*
onMouseUp, ISINDEX object*
onMouseUp, KBD object*
onMouseUp, Label object*
onMouseUp, Layer object*
onMouseUp, Legend object*
onMouseUp, LI object*
onMouseUp, LINK object*
onMouseUp, LISTING object*
onMouseUp, Location object*
onMouseUp, Map object*
onMouseUp, MARQUEE object*
onMouseUp, MENU object*
onMouseUp, META object*
onMouseUp, NOFRAMES object*
onMouseUp, NOSCRIPT object*
onMouseUp, OBJECT object*
onMouseUp, OL object*
onMouseUp, OptGroupElement object*
onMouseUp, Option object*
onMouseUp, P object*
onMouseUp, ParamElement object*
onMouseUp, Password object*
onMouseUp, PLAINTEXT object
onMouseUp, PRE object*
onMouseUp, Q object
onMouseUp, RadioButton object*
onMouseUp, ResetButton object*
onMouseUp, S object
onMouseUp, SAMP object
onMouseUp, SCRIPT object*
onMouseUp, Select object*
onMouseUp, SMALL object

Event handler

2577

Event handler (continued)
onMouseUp, SPAN object*
onMouseUp, STRIKE object
onMouseUp, STRONG object*
onMouseUp, STYLE object (1)*
onMouseUp, style object (2)*
onMouseUp, SUB object
onMouseUp, SubmitButton object*
onMouseUp, SUP object
onMouseUp, TABLE object*
onMouseUp, TableColElement object*
onMouseUp, TBODY object*
onMouseUp, TD object*
onMouseUp, TEXTAREA object*
onMouseUp, TextCell object*
onMouseUp, TextRange object*
onMouseUp, TFOOT object*
onMouseUp, TH object*
onMouseUp, THEAD object*
onMouseUp, TITLE object*
onMouseUp, TR object*
onMouseUp, TT object*
onMouseUp, U object*
onMouseUp, UL object*
onMouseUp, Url object*
onMouseUp, VAR object
onMove
onMove, Dialog object*
onMove, Frame object*
onMove, Global object*
onMove, Window object*
onPaste
onPaste, Document object*
onPropertyChange
onPropertyChange, Document object*
onReadyStateChange
onReadyStateChange, Applet object*
onReadyStateChange, Area object*
onReadyStateChange, Document object*
onReadyStateChange, LINK object*
onReadyStateChange, OBJECT object*
onReadyStateChange, SCRIPT object*
onReadyStateChange, STYLE object (1)*
onReadyStateChange, XML object*
onReset
onReset, Form object*
onResize
onResize, Applet object*
onResize, Area object*
onResize, BUTTON object*
onResize, Dialog object*
onResize, DIV object*
onResize, FIELDSET object*
onResize, FileUpload object*
onResize, Frame object*
onResize, FRAMESET object*
onResize, Global object*
onResize, IMG object*
onResize, MARQUEE object*
onResize, Password object*
onResize, Select object*
onResize, TABLE object*
onResize, TD object*
onResize, TH object*
onResize, Window object*
onRowEnter
onRowEnter, Applet object*

onRowEnter, Area object*
onRowEnter, BODY object*
onRowEnter, Button object*
onRowEnter, BUTTON object*
onRowEnter, Checkbox object*
onRowEnter, DIV object*
onRowEnter, Document object*
onRowEnter, FileUpload object*
onRowEnter, FormElement object*
onRowEnter, Hidden object*
onRowEnter, IMG object*
onRowEnter, Input object*
onRowEnter, MARQUEE object*
onRowEnter, OBJECT object*
onRowEnter, Password object*
onRowEnter, RadioButton object*
onRowEnter, ResetButton object*
onRowEnter, Select object*
onRowEnter, SubmitButton object*
onRowEnter, TABLE object*
onRowEnter, TD object*
onRowEnter, TEXTAREA object*
onRowEnter, TextCell object*
onRowEnter, TH object*
onRowEnter, XML object*
onRowExit
onRowExit, Applet object*
onRowExit, Area object*
onRowExit, BODY object*
onRowExit, Button object*
onRowExit, BUTTON object*
onRowExit, Checkbox object*
onRowExit, DIV object*
onRowExit, Document object*
onRowExit, FileUpload object*
onRowExit, FormElement object*
onRowExit, Hidden object*
onRowExit, IMG object*
onRowExit, Input object*
onRowExit, MARQUEE object*
onRowExit, OBJECT object*
onRowExit, Password object*
onRowExit, RadioButton object*
onRowExit, ResetButton object*
onRowExit, Select object*
onRowExit, SubmitButton object*
onRowExit, TABLE object*
onRowExit, TD object*
onRowExit, TEXTAREA object*
onRowExit, TextCell object*
onRowExit, TH object*
onRowExit, XML object*
onRowsDelete
onRowsDelete, XML object*
onRowsInserted
onRowsInserted, XML object*
onScroll
onScroll, BODY object*
onScroll, CAPTION object*
onScroll, Dialog object*
onScroll, DIV object*
onScroll, FIELDSET object*
onScroll, Frame object*
onScroll, IMG object*
onScroll, Legend object*
onScroll, MARQUEE object*
onScroll, TABLE object*

Filter/transition

2578

onScroll, TEXTAREA object*
onScroll, Window object*
onSelect
onSelect, CAPTION object*
onSelect, FIELDSET object*
onSelect, FileUpload object*
onSelect, FormElement object*
onSelect, Input object*
onSelect, Password object*
onSelect, TEXTAREA object*
onSelect, TextCell object*
onSelectStart
onSelectStart, A object
onSelectStart, ACRONYM object
onSelectStart, ADDRESS object
onSelectStart, B object
onSelectStart, BIG object
onSelectStart, BLOCKQUOTE object*
onSelectStart, BODY object*
onSelectStart, BUTTON object*
onSelectStart, CAPTION object*
onSelectStart, CENTER object
onSelectStart, CITE object
onSelectStart, CODE object
onSelectStart, DD object*
onSelectStart, DEL object*
onSelectStart, DFN object
onSelectStart, DIR object*
onSelectStart, DIV object*
onSelectStart, DL object*
onSelectStart, Document object*
onSelectStart, DT object*
onSelectStart, EM object*
onSelectStart, FIELDSET object*
onSelectStart, FileUpload object*
onSelectStart, FONT object*
onSelectStart, Form object*
onSelectStart, H<n> object*
onSelectStart, HR object*
onSelectStart, I object*
onSelectStart, IMG object*
onSelectStart, INS object*
onSelectStart, KBD object*
onSelectStart, Label object*
onSelectStart, Legend object*
onSelectStart, LI object*
onSelectStart, LISTING object*
onSelectStart, MARQUEE object*
onSelectStart, MENU object*
onSelectStart, OBJECT object*
onSelectStart, OL object*
onSelectStart, P object*
onSelectStart, Password object*
onSelectStart, PLAINTEXT object
onSelectStart, PRE object*
onSelectStart, Q object
onSelectStart, S object
onSelectStart, SAMP object
onSelectStart, Select object*
onSelectStart, SMALL object
onSelectStart, SPAN object*
onSelectStart, STRIKE object
onSelectStart, STRONG object*
onSelectStart, SUB object
onSelectStart, SUP object
onSelectStart, TABLE object*
onSelectStart, TBODY object*

onSelectStart, TD object*
onSelectStart, TEXTAREA object*
onSelectStart, TFOOT object*
onSelectStart, TH object*
onSelectStart, THEAD object*
onSelectStart, TR object*
onSelectStart, TT object*
onSelectStart, U object*
onSelectStart, UL object*
onSelectStart, VAR object
onStart
onStart, MARQUEE object*
onStop
onStop, Document object*
onSubmit
onSubmit, Form object*
onUnload
onUnload, BODY object*
onUnload, Dialog object*
onUnload, Frame object*
onUnload, FRAMESET object*
onUnload, Global object*
onUnload, Window object*

External code call
` (Backquote)
Backquote (`)*

File extension (see also Special
file)
.cfg
.cgi
.htc*
.htm
.html
.jar*
.java*
.js*
.jsc
.jse
.jsh
.lck
.pac*
.shtm
.shtml
.stm
.web

Filter/blend
BlendTrans()
filter - BlendTrans()*

Filter/procedural
filter - AlphaImageLoader()*
filter - Gradient()*

Filter/reveal
filter - RevealTrans()*
RevealTrans()

Filter/transition
Barn()
Blinds()

Filter/transition

2579

Filter/transition (continued)
CheckerBoard()
Fade()
filter - Barn()*
filter - Blinds()*
filter - CheckerBoard()*
filter - Fade()*
filter - GradientWipe()*
filter - Inset()*
filter - Iris()*
filter - Pixelate()*
filter - RadialWipe()*
filter - RandomBars()*
filter - RandomDissolve()*
filter - Slide()*
filter - Spiral()*
filter - Stretch()*
filter - Strips()*
filter - Wheel()*
filter - Zigzag()*
GradientWipe()
Inset()
Iris()
Pixelate()
RadialWipe()
RandomBars()
RandomDissolve()
Slide()
Spiral()
Stretch()
Strips()
Wheel()
Zigzag()

Filter/visual
Alpha()
AlphaImageLoader()
BasicImage()
Blur()
Chroma()
Compositor()
DropShadow()
Emboss()
Engrave()
filter - Alpha()*
filter - BasicImage()*
filter - Blur()*
filter - Chroma()*
filter - Compositor()*
filter - DropShadow()*
filter - Emboss()*
filter - Engrave()*
filter - FlipH()*
filter - FlipV()*
filter - Glow()*
filter - Grayscale()*
filter - Invert()*
filter - Light()*
filter - Mask()*
filter - MaskFilter()*
filter - Matrix()*
filter - MotionBlur()*
filter - Pixelate()*
filter - Shadow()*
filter - Wave()*
filter - XRay()*

FlipH()
FlipV()
Glow()
Gradient()
Grayscale()
Invert()
Light()
Mask()
MaskFilter()
Matrix()
MotionBlur()
Pixelate()
Shadow()
Wave()
XRay()

Function
abs()*, Math.abs()*
acos()*, Math.acos()*
Array()*
asin()*, Math.asin()*
atan()*, Math.atan()*
atan2()*, Math.atan2()*
atob()*, Window.atob()*
Boolean()*
btoa()*, Window.btoa()*
captureEvents()*
captureEvents()*,

Document.captureEvents()*
captureEvents()*, Layer.captureEvents()*
captureEvents()*,

Window.captureEvents()*
catch(...)*
ceil()*, Math.ceil()*
cos()*, Math.cos()*
Date()*
decodeURI()*
decodeURIComponent()*
encodeURI()*
encodeURIComponent()*
Error()*
exp()*, Math.exp()*
floor()*, Math.floor()*
Function()*
getClass()
GetObject()*
handleEvent()*
handleEvent()*, Document.handleEvent()*
handleEvent()*, Layer.handleEvent()*
handleEvent()*, Window.handleEvent()*
Image()
log()*, Math.log()*
max()*, Math.max()*
min()*, Math.min()*
Number()*
Object()*
pow()*, Math.pow()*
random(), Crypto.random()
random()*, Math.random()*
RegExp()
releaseEvents()
releaseEvents()*,

Document.releaseEvents()*
releaseEvents()*, Layer.releaseEvents()*
releaseEvents()*, Window.releaseEvents()*
rgb()*
round()*, Math.round()*

Java package

2580

routeEvent()
routeEvent(), Document.routeEvent()
routeEvent()*, Layer.routeEvent()*
routeEvent()*, Window.routeEvent()*
ScriptEngine()*
signText(), Crypto.signText()
sin()*, Math.sin()*
sqrt()*, Math.sqrt()*
String()*
tan()*, Math.tan()*

Function/global
escape()*
eval()*
isFinite()*
isNaN()*
parseFloat()*
parseInt()*
ScriptEngineBuildVersion()*
ScriptEngineMajorVersion()
ScriptEngineMinorVersion()
taint()*
toString()*
unescape()*
untaint()*
unwatch()*
watch()*

Function/internal
Call*
CanPut()*
DefaultValue()*
Delete()*
Get()*
GetBase()*
GetPropertyName()*
GetValue()*
HasInstance()*
HasProperty()*
Put()*
PutValue()*

Function/proxy.pac
FindProxyForURL()*
isInNet()*
isPlainHostName()*

HTML Tag
<EMBED>*
<META>*
<NOSCRIPT>*
<SCRIPT>*
<STYLE>*
<TITLE>*
Conditional comment*
HTML Comment tag (<!-- ... -->)

HTML Tag Attribute
<MAP TARGET="...">*
<SCRIPT ARCHIVE="...">*
<SCRIPT EVENT="...">*
<SCRIPT FOR="...">
<SCRIPT ID="...">*
<SCRIPT LANGUAGE="...">*

<SCRIPT SRC="...">*
<SCRIPT TYPE="...">*
<STYLE TYPE="...">*
CLASS="..."*
HTTP-EQUIV="..."
ID="..."*
LANG="..."*
MAYSCRIPT*
NAME="..."

Interface
Error handler*
Watchpoint handler*

Iterator
do ... while(...)*
for(...) ...*
for(... in ...) ...*
while(...) ...*

Java class
java.awt.Button*
java.awt.image*
java.lang.Boolean*
java.lang.Character*
java.lang.Class*
java.lang.Double*
java.lang.Float*
java.lang.Integer*
java.lang.Long*
java.lang.Object*
java.lang.String*
java.util.Date*
JSObject object*
netscape.javascript.JSObject*
netscape.plugin.Plugin
netscape.security.PrivilegeManager*
PrivilegeManager object*

Java method
call()*, JSObject.call()*
eval()*, JSObject.eval()*
getMember()*, JSObject.getMember()*
getSlot()*, JSObject.getSlot()*
removeMember()*,

JSObject.removeMember()*
setMember()*, JSObject.setMember()*
setSlot()*, JSObject.setSlot()*
toString()*, JSObject.toString()*

Java method/static
JSObject.getWindow()*

Java package
java.awt*
java.lang*
java.util*
netscape
netscape.applet*
netscape.cfg
netscape.javascript
netscape.lck*
netscape.plugin

Java package

2581

Java package (continued)
netscape.security
Packages.java*
Packages.netscape*
Packages.netscape.javascript
Packages.netscape.plugin
Packages.sun
sun

Keyword
else ...*
in ...
this*

Label
case ... :
default:

Method
action(), java.awt.Button*
add(), Area object*
add(), Area.add()
Add(), Dictionary object*
Add(), Dictionary.Add()
Add(), Folders object*
Add(), Folders.Add()
add(), OptionsArray object*
add(), OptionsArray.add()
add(), Select object*
add(), Select.add()
addAmbient(), filter - Light()*
addBehavior(), Element object*
addBehavior(), Element.addBehavior()
AddChannel(), external object*
AddChannel(), external.AddChannel()
addClient(), Global object*
addClient(), response object*
addClient(), response.addClient()
addCone(), filter - Light()*
AddDesktopComponent(), external object*
AddDesktopComponent(),

external.AddDesktopComponent()
addEventListener(), EventTarget object*
addEventListener(),

EventTarget.addEventListener()
AddFavorite(), external object*
AddFavorite(), external.AddFavorite()
addImport(), StyleSheet object*
addImport(), StyleSheet.addImport()
addNotify(), java.awt.Button*
addPoint(), filter - Light()*
addReadRequest(), userProfile object*
addReadRequest(),

userProfile.addReadRequest()
addResponseHeader(), Global object*
addResponseHeader(), response object*
addResponseHeader(),

response.addResponseHeader()
addRule(), StyleSheet object*
addRule(), StyleSheet.addRule()
after(), java.util.Date*
alert()
alert(), Global object*
alert(), Window object*
alert(), Window.alert()

anchor(), String object*
anchor(), String.anchor()
appendChild(), Node object*
appendChild(), Node.appendChild()
appendData(), CharacterData object*
appendData(), CharacterData.appendData()
apply(), filter - Barn()*
apply(), filter - Blinds()*
apply(), filter - Compositor()*
apply(), filter - Fade()*
apply(), filter - GradientWipe()*
apply(), filter - Inset()*
apply(), filter - Iris()*
apply(), filter - Pixelate()*
apply(), filter - Pixelate()*
apply(), filter - RadialWipe()*
apply(), filter - RandomBars()*
apply(), filter - RandomDissolve()*
apply(), filter - Slide()*
apply(), filter - Spiral()*
apply(), filter - Stretch()*
apply(), filter - Strips()*
apply(), filter - Wheel()*
apply(), filter - Zigzag()*
apply(), Function object*
apply(), Function.apply()
applyElement(), Element object*
applyElement(), Element.applyElement()
Array()*
Array(), Global object*
assign(), Location object*
assign(), Location.assign()
assign(), Object object*
assign(), Object.assign()
atEnd(), Enumerator object*
atEnd(), Enumerator.atEnd()
atob()
atob()*, Window.atob()*
attachEvent()
attachEvent(), Document object*
attachEvent(), Document.attachEvent()
attachEvent(), Global object*
attachEvent(), Window object*
attachEvent(), Window.attachEvent()
AutoCompleteSaveForm(), external object*
AutoCompleteSaveForm(),

external.AutoCompleteSaveForm()
AutoScan(), external object*
AutoScan(), external.AutoScan()
back()
back(), Global object*
back(), History object*
back(), History.back()
back(), Window object*
back(), Window.back()
before(), java.util.Date*
beginTransaction(), Connection object*
beginTransaction(),

Connection.beginTransaction()
beginTransaction(), database object*
beginTransaction(),

database.beginTransaction()
big(), String object*
big(), String.big()
blink(), String object*
blink(), String.blink()
blob(), Global object*

Method

2582

blob(), response object*
blob(), response.blob()
blobImage(), blob object*
blobImage(), blob.blobImage()
blobImage(), Cursor object*
blobImage(), Cursor.blobImage()
blobLink(), blob object*
blobLink(), blob.blobLink()
blobLink(), Cursor object*
blobLink(), Cursor.blobLink()
blur()
blur(), Anchor object*
blur(), Element object*
blur(), File object*
blur(), Global object*
blur(), Input object*
blur(), Label object*
blur(), Window object*
blur(), Anchor.blur()
blur(), Input.blur()
blur(), Window.blur()
bold(), String object*
bold(), String.bold()
Boolean()*
Boolean(), Global object*
booleanValue(), java.lang.Boolean*
booleanValue(), JavaObject object*
booleanValue()*,

JavaObject.booleanValue()*
borderWidths(), JSSTag object*
borderWidths(), JSSTag.borderWidths()
bounds(), java.awt.Button*
btoa()
btoa()*, Window.btoa()*
BuildPath(), FileSystem object*
BuildPath(), FileSystem.BuildPath()
byteToString(), File object*
byteToString(), File.byteToString()
byteValue(), java.lang.Double*
byteValue(), java.lang.Float*
byteValue(), java.lang.Integer*
byteValue(), java.lang.Long*
call(), Function object*
call(), Function.call()
call(), JSObject object*
call()*, JSObject.call()*
callC(), Global object*
callC(), response object*
callC(), response.callC()
captureEvents()*
captureEvents(), Document object*
captureEvents()*,

Document.captureEvents()*
captureEvents()*, Layer.captureEvents()*
captureEvents()*,

Window.captureEvents()*
changeColor(), filter - Light()*
changeStrength(), filter - Light()*
charAt(), java.lang.String*
charAt(), String object*
charAt(), String.charAt()
charCodeAt(), String object*
charCodeAt(), String.charCodeAt()
charValue(), java.lang.Character*
checkImage(), java.awt.Button*
clear(), Document object*
clear(), Document.clear()

clear(), filter - Light()*
clear(), Selection object*
clear(), selection.clear()
clearAttributes(), Element object*
clearAttributes(), Element.clearAttributes()
clearData(), clipboardData object*
clearData(), dataTransfer object*
clearData(), dataTransfer.clearData()
clearError(), File object*
clearError(), File.clearError()
clearInterval()
clearInterval(), Global object*
clearInterval(), Window object*
clearInterval(), Window.clearInterval()
clearRequest(), userProfile object*
clearRequest(), userProfile.clearRequest()
clearTimeout()
clearTimeout(), Global object*
clearTimeout(), Window object*
clearTimeout(), Window.clearTimeout()
click(), BLOCKQUOTE object*
click(), COMMENT object*
click(), Element object*
click(), Element.click()
click(), File object*
click(), Input object*
click(), Input.click()
click(), Label object*
client.destroy()
cloneNode(), Node object*
cloneNode(), Node.cloneNode()
close()
close(), Cursor object*
close(), Cursor.close()
close(), Document object*
close(), Document.close()
close(), File object*
close(), File object*
close(), File.close()
close(), Frame object*
close(), Frame.close()
close(), Global object*
close(), ResultSet object*
close(), ResultSet.close()
Close(), Stproc object*
Close(), Stproc.close()
close(), TextStream object*
close(), TextStream.Close()
close(), Window object*
close(), Window.close()
collapse(), TextRange object*
collapse(), TextRange.collapse()
columnName(), Cursor object*
columnName(), Cursor.columnName()
columnName(), ResultSet object*
columnName(), ResultSet.columnName()
columns(), Cursor object*
columns(), Cursor.columns()
columns(), ResultSet object*
columns(), ResultSet.columns()
commitTransaction(), Connection object*
commitTransaction(),

Connection.commitTransaction()
commitTransaction(), database object*
commitTransaction(),

database.commitTransaction()
compareEndPoints(), TextRange object*

Method

2583

Method (continued)
compareEndPoints(),

TextRange.compareEndPoints()
compareTo(), java.lang.String*
compile(), RegExp object*
compile(), RegExp.compile()
componentFromPoint(), Element object*
componentFromPoint(),

Element.componentFromPoint()
concat(), Array object*
concat(), Array.concat()
concat(), java.lang.String*
concat(), String object*
concat(), String.concat()
confirm()
confirm(), Global object*
confirm(), Window object*
confirm(), Window.confirm()
connect(), database object*
connect(), database.connect()
connect(), DbPool object*
connect(), DbPool.connect()
connected(), Connection object*
connected(), Connection.connected()
connected(), database object*
connected(), database.connected()
connected(), DbPool object*
connected(), DbPool.connected()
connection(), DbPool object*
connection(), DbPool.connection()
contains(), Element object*
contains(), Element.contains()
contains(), Frame object*
contextual()
contextual(), Document object*
contextual(), Document.contextual()
Copy(), File object*
Copy(), File.Copy()
Copy(), Folder object*
Copy(), Folder.Copy()
CopyFile(), FileSystem object*
CopyFile(), FileSystem.CopyFile()
CopyFolder(), FileSystem object*
CopyFolder(), FileSystem.CopyFolder()
createAttribute(), Document object*
createAttribute(),

Document.createAttribute()
createCaption(), TABLE object*
createCaption(), TABLE.createCaption()
createCDATASection(), Document object*
createCDATASection(),

Document.createCDATASection()
createComment(), Document object*
createComment(),

Document.createComment()
createControlRange(), BODY object*
createControlRange(),

BODY.createControlRange()
createDocumentFragment(), Document

object*
createDocumentFragment(),

Document.createDocumentFragment()
createElement(), Document object*
createElement(),

Document.createElement()
createEntityReference(), Document object*

createEntityReference(),
Document.createEntityReference()

createEvent(), DocumentEvent*
createEvent(),

DocumentEvent.createEvent()
CreateFolder(), FileSystem object*
CreateFolder(), FileSystem.CreateFolder()
createImage(), java.awt.Button*
CreateObject(), WScript object*
CreateObject(), WScript.CreateObject()
createProcessingInstruction(), Document

object*
createProcessingInstruction(),

Document.createProcessingInstruction()
createRange(), Selection object*
createRange(), selection.createRange()
createStyleSheet(), Document object*
createStyleSheet(),

Document.createStyleSheet()
CreateTextFile(), FileSystem object*
CreateTextFile(),

FileSystem.CreateTextFile()
createTextNode(), Document object*
createTextNode(),

Document.createTextNode()
createTextRange(), BODY object*
createTextRange(),

BODY.createTextRange()
createTextRange(), BUTTON object*
createTextRange(), Input object*
createTextRange(), Input.createTextRange()
createTFoot(), TABLE object*
createTFoot(), TABLE.createTFoot()
createTHead(), TABLE object*
createTHead(), TABLE.createTHead()
cursor(), Connection object*
cursor(), Connection.cursor()
cursor(), database object*
cursor(), database.cursor()
Date()*
Date(), Global object*
debug(), Global object*
debug(), response object*
debug(), response.debug()
Delete(), File object*
Delete(), File.Delete()
Delete(), Folder object*
Delete(), Folder.Delete()
deleteCaption(), TABLE object*
deleteCaption(), TABLE.deleteCaption()
deleteCell(), TR object*
deleteCell(), TR.deleteCell()
deleteData(), CharacterData object*
deleteData(), CharacterData.deleteData()
DeleteFile(), FileSystem object*
DeleteFile(), FileSystem.DeleteFile()
DeleteFolder(), FileSystem object*
DeleteFolder(), FileSystem.DeleteFolder()
deleteResponseHeader(), Global object*
deleteResponseHeader(), response object*
deleteResponseHeader(),

response.deleteResponseHeader()
deleteRow(), Cursor object*
deleteRow(), Cursor.deleteRow()
deleteRow(), TABLE object*
deleteRow(), TABLE.deleteRow()

Method

2584

deleteRow(), TFOOT object*
deleteRow(), TFOOT.deleteRow()
deleteRow(), THEAD object*
deleteRow(), THEAD.deleteRow()
deleteTFoot(), TABLE object*
deleteTFoot(), TABLE.deleteTFoot()
deleteTHead(), TABLE object*
deleteTHead(), TABLE.deleteTHead()
deliverEvent(), java.awt.Button*
destroy(), client object*
destroy(), JavaObject object*
destroy(), netscape.plugin.Plugin
detachEvent()
detachEvent(), Document object*
detachEvent(), Document.detachEvent()
detachEvent(), Global object*
detachEvent(), Window object*
detachEvent(), Window.detachEvent()
dimensions(), VBArray object*
dimensions(), VBArray.dimensions()
disable(), java.awt.Button*
disable(), JavaObject object*
disableExternalCapture()
disableExternalCapture(), Global object*
disableExternalCapture(), Window object*
disableExternalCapture(),

Window.disableExternalCapture()
disablePrivilege(),

netscape.security.PrivilegeManager*
disablePrivilege(), PrivilegeManager

object*
disablePrivilege(),

PrivilegeManager.disablePrivilege()
disconnect(), database object*
disconnect(), database.disconnect()
disconnect(), DbPool object*
disconnect(), DbPool.disconnect()
DisconnectObject(), WScript object*
DisconnectObject(),

WScript.DisconnectObject()
dispatchEvent(), EventTarget object*
dispatchEvent(),

EventTarget.dispatchEvent()
doReadRequest(), userProfile object*
doReadRequest(),

userProfile.doReadRequest()
doScroll(), Element object*
doScroll(), Element.doScroll()
doubleValue(), java.lang.Double*
doubleValue(), java.lang.Float*
doubleValue(), java.lang.Integer*
doubleValue(), java.lang.Long*
doubleValue(), JavaObject object*
DriveExists(), FileSystem object*
DriveExists(), FileSystem.DriveExists()
duplicate(), TextRange object*
duplicate(), TextRange.duplicate()
Echo(), WScript object*
Echo(), WScript.Echo()
elementFromPoint(), Document object*
elementFromPoint(),

Document.elementFromPoint()
empty(), Selection object*
empty(), selection.empty()
enable(), java.awt.Button*
enable(), JavaObject object*
enableExternalCapture()

enableExternalCapture(), Global object*
enableExternalCapture(), Window object*
enableExternalCapture(),

Window.enableExternalCapture()
enablePrivilege(),

netscape.security.PrivilegeManager*
enablePrivilege(), PrivilegeManager object*
enablePrivilege(),

PrivilegeManager.enablePrivilege()
endsWith(), java.lang.String*
eof(), File object*
eof(), File.eof()
equals(), java.awt.Button*
equals(), java.lang.Boolean*
equals(), java.lang.Character*
equals(), java.lang.Double*
equals(), java.lang.Float*
equals(), java.lang.Integer*
equals(), java.lang.Long*
equals(), java.lang.Object*
equals(), java.lang.String*
equals(), java.util.Date*
equals(), netscape.plugin.Plugin
equalsIgnoreCase(), java.lang.String*
error(), File object*
error(), File.error()
errorCode(), SendMail object*
errorCode(), SendMail.errorCode()
errorMessage(), SendMail object*
errorMessage(), SendMail.errorMessage()
escape(), Global object*
etAttribute(), COMMENT object*
etData(), clipboardData object*
eval(), Global object*
eval(), JSObject object*
eval(), JSObject.eval()*
eval(), Object object*
eval(), Object.eval()
exec(), RegExp object*
exec(), RegExp.exec()
execCommand(), Document object*
execCommand(),

Document.execCommand()
execCommand(), TextRange object*
execCommand(),

TextRange.execCommand()
execScript()
execScript(), Global object*
execScript(), Window object*
execScript(), Window.execScript()
execute(), Connection object*
execute(), Connection.execute()
execute(), database object*
execute(), database.execute()
Exists(), Dictionary object*
Exists(), Dictionary.Exists()
exists(), File object*
exists(), File.exists()
expand(), TextRange object*
expand(), TextRange.expand()
expiration(), client object*
expiration(), client.expiration()
FileExists(), FileSystem object*
FileExists(), FileSystem.FileExists()
find()
find(), Global object*
find(), Window object*

Method

2585

Method (continued)
find(), Window.find()
findText(), TextRange object*
findText(), TextRange.findText()
fixed(), String object*
fixed(), String.fixed()
floatValue(), java.lang.Double*
floatValue(), java.lang.Float*
floatValue(), java.lang.Integer*
floatValue(), java.lang.Long*
flush, Global object*
flush(), File object*
flush(), File object*
flush(), File.flush()
flush(), response object*
flush(), response.flush()
focus()
focus(), Anchor object*
focus(), Anchor.focus()
focus(), Element object*
focus(), File object*
focus(), Global object*
focus(), Input object*
focus(), Input.focus()
focus(), Window object*
focus(), Window.focus()
FolderExists(), FileSystem object*
FolderExists(), FileSystem.FolderExists()
fontcolor(), String object*
fontcolor(), String.fontcolor()
fontsize(), String object*
fontsize(), String.fontsize()
forward()
forward(), Global object*
forward(), History object*
forward(), History.forward()
forward(), Window object*
forward(), Window.forward()
fromCharCode(), String object*
fromCharCode()*, String.fromCharCode()*
Function()*
Function(), Global object*
GetAbsolutePathName(), FileSystem

object*
GetAbsolutePathName(),

FileSystem.GetAbsolutePathName()
getAdjacentText(), Element object*
getAdjacentText(),

Element.getAdjacentText()
getAppletContext(), JavaObject object*
getAppletInfo(), JavaObject object*
getAttribute(), BASEFONT object*
getAttribute(), currentStyle object*
getAttribute(), Element object*
getAttribute(), Element.getAttribute()
getAttribute(), Frame object*
getAttribute(), runtimeStyle object*
getAttribute(), style object (2)*
getAttribute(), style.getAttribute()
getAttribute(), userProfile object*
getAttribute(), userProfile.getAttribute()
getAttributeNode(), Element object*
getAttributeNode(),

Element.getAttributeNode()
getBackground(), java.awt.Button*
getBackground(), JavaObject object*

GetBaseName(), FileSystem object*
GetBaseName(),

FileSystem.GetBaseName()
getBookmark(), TextRange object*
getBookmark(), TextRange.getBookmark()
getBoundingClientRect(), TextRange

object*
getBoundingClientRect(),

TextRange.getBoundingClientRect()
getBytes(), java.lang.String*
getChars(), java.lang.String*
getClass()
getClass(), java.awt.Button*
getClass(), java.lang.Boolean*
getClass(), java.lang.Character*
getClass(), java.lang.Double*
getClass(), java.lang.Float*
getClass(), java.lang.Integer*
getClass(), java.lang.Long*
getClass(), java.lang.Object*
getClass(), java.lang.String*
getClass(), java.util.Date*
getClass(), JavaObject object*
getClass(), JavaObject.getClass()*
getClass(), netscape.plugin.Plugin
getClientRects(), TextRange object*
getClientRects(),

TextRange.getClientRects()
getCodeBase(), JavaObject object*
getColorModel(), java.awt.Button*
getData(), dataTransfer object*
getData(), dataTransfer.getData()
getDate(), Date object*
getDate(), Date.getDate()
getDate(), java.util.Date*
getDay(), Date object*
getDay(), Date.getDay()
getDay(), java.util.Date*
getDocumentBase(), JavaObject object*
GetDrive(), FileSystem object*
GetDrive(), FileSystem.GetDrive()
GetDriveName(), FileSystem object*
GetDriveName(),

FileSystem.GetDriveName()
getElementById(), Document object*
getElementById(),

Document.getElementById()
getElementsByName(), Document object*
getElementsByName(),

Document.getElementsByName()
getElementsByTagName(), Document

object*
getElementsByTagName(),

Document.getElementsByTagName()
getElementsByTagName(), Element object*
getElementsByTagName(),

Element.getElementsByTagName()
getExpression(), currentStyle object*
getExpression(), Element object*
getExpression(), Element.getExpression()
getExpression(), runtimeStyle object*
getExpression(), style object (2)*
getExpression(), style.getExpression()
GetExtensionName(), FileSystem object*
GetExtensionName(),

FileSystem.GetExtensionName()
GetFile(), FileSystem object*

Method

2586

GetFile(), FileSystem.GetFile()
GetFileName(), FileSystem object*
GetFileName(), FileSystem.GetFileName()
GetFolder(), FileSystem object*
GetFolder(), FileSystem.GetFolder()
getFont(), java.awt.Button*
getFontMetrics(), java.awt.Button*
getForeground(), java.awt.Button*
getFullYear(), Date object*
getFullYear(), Date.getFullYear()
getGraphics(), java.awt.Button*
getHours(), Date object*
getHours(), Date.getHours()
getHours(), java.util.Date*
getItem(), VBArray object*
getItem(), VBArray.getItem()
getLabel(), java.awt.Button*
getLength(), File object*
getLength(), File.getLength()
getLocale(), java.awt.Button*
getLocale(), JavaObject object*
getMember(), JSObject object*
getMember(), JSObject.getMember()*
getMilliseconds(), Date object*
getMilliseconds(), Date.getMilliseconds()
getMinutes(), Date object*
getMinutes(), Date.getMinutes()
getMinutes(), java.util.Date*
getMonth(), Date object*
getMonth(), Date.getMonth()
getMonth(), java.util.Date*
getNamedItem(), NamedNodeMap object*
getNamedItem(),

NamedNodeMap.getNamedItem()
GetObject()*
GetObject(), WScript object*
GetObject(), WScript.GetObject()
getOptionValue(), Global object*
getOptionValue(), response object*
getOptionValue(),

response.getOptionValue()
getOptionValueCount(), Global object*
getOptionValueCount(), response object*
getOptionValueCount(),

response.getOptionValueCount()
getParameter(), JavaObject object*
getParameterInfo(), JavaObject object*
getParent(), java.awt.Button*
GetParentFolderName(), FileSystem

object*
GetParentFolderName(),

FileSystem.GetParentFolderName()
getPeer(), java.awt.Button*
getPeer(), netscape.plugin.Plugin
getPosition(), File object*
getPosition(), File.getPosition()
getPrivilegeTableFromStack(),

netscape.security.PrivilegeManager*
getSeconds(), Date object*
getSeconds(), Date.getSeconds()
getSeconds(), java.util.Date*
getSelection(), Document object*
getSelection(), Document.getSelection()
getSlot(), JSObject object*
getSlot(), JSObject.getSlot()*
GetSpecialFolder(), FileSystem object*

GetSpecialFolder(),
FileSystem.GetSpecialFolder()

GetTempName(), FileSystem object*
GetTempName(),

FileSystem.GetTempName()
getTime(), Date object*
getTime(), Date.getTime()
getTime(), java.util.Date*
getTimezoneOffset(), Date object*
getTimezoneOffset(),

Date.getTimezoneOffset()
getTimezoneOffset(), java.util.Date*
getToolkit(), java.awt.Button*
getToolkit(), JavaObject object*
getUTCDate(), Date object*
getUTCDate(), Date.getUTCDate()
getUTCDay(), Date object*
getUTCDay(), Date.getUTCDay()
getUTCFullYear(), Date object*
getUTCFullYear(), Date.getUTCFullYear()
getUTCHours(), Date object*
getUTCHours(), Date.getUTCHours()
getUTCMilliseconds(), Date object*
getUTCMilliseconds(),

Date.getUTCMilliseconds()
getUTCMinutes(), Date object*
getUTCMinutes(), Date.getUTCMinutes()
getUTCMonth(), Date object*
getUTCMonth(), Date.getUTCMonth()
getUTCSeconds(), Date object*
getUTCSeconds(), Date.getUTCSeconds()
getVarDate(), Date object*
getVarDate(), Date.getVarDate()
getWindow(), netscape.plugin.Plugin
getWindow(), JSObject.getWindow()*
getYear(), Date object*
getYear(), Date.getYear()
getYear(), java.util.Date*
go(), History object*
go(), History.go()
gotFocus(), java.awt.Button*
handleEvent()*
handleEvent(), Button object*
handleEvent(), Button.handleEvent()
handleEvent(), Checkbox object*
handleEvent(), Checkbox.handleEvent()
handleEvent(), Document object*
handleEvent(), Document.handleEvent()*
handleEvent(), FileUpload object*
handleEvent(), FileUpload.handleEvent()
handleEvent(), Form object*
handleEvent(), Form.handleEvent()
handleEvent(), Input object*
handleEvent(), Input.handleEvent()
handleEvent(), Layer.handleEvent()*
handleEvent(), Password object*
handleEvent(), Password.handleEvent()
handleEvent(), RadioButton object*
handleEvent(), RadioButton.handleEvent()
handleEvent(), ResetButton object*
handleEvent(), ResetButton.handleEvent()
handleEvent(), SubmitButton object*
handleEvent(), SubmitButton.handleEvent()
handleEvent(), TEXTAREA object*
handleEvent(), TEXTAREA.handleEvent()
handleEvent(), TextCell object*

Method

2587

Method (continued)
handleEvent(), TextCell.handleEvent()
handleEvent(), Window.handleEvent()*
hasChildNodes(), Node object*
hasChildNodes(), Node.hasChildNodes()
hasFeature(), Implementation object*
hasFeature(), Implementation.hasFeature()
hashCode(), java.awt.Button*
hashCode(), java.lang.Boolean*
hashCode(), java.lang.Character*
hashCode(), java.lang.Double*
hashCode(), java.lang.Float*
hashCode(), java.lang.Integer*
hashCode(), java.lang.Long*
hashCode(), java.lang.Object*
hashCode(), java.lang.String*
hashCode(), java.util.Date*
hashCode(), netscape.plugin.Plugin
hasOwnProperty(), Object object*
hasOwnProperty(), Object.hasOwnProperty()
hide(), java.awt.Button*
hide(), JavaObject object*
home()
home(), Global object*
home(), Window object*
home(), Window.home()
imageUpdate(), java.awt.Button*
ImportExportFavorites(), external object*
ImportExportFavorites(),

external.ImportExportFavorites()
indexOf(), java.lang.String*
indexOf(), String object*
indexOf(), String.indexOf()
init(), JavaObject object*
init(), netscape.plugin.Plugin
initEvent(), Event object*
initEvent(), Event.initEvent()
initEvent(), MouseEvent object*
initEvent(), MutationEvent object*
initMouseEvent(), MouseEvent object*
initMouseEvent(),

MouseEvent.initMouseEvent()
initMutationEvent(), MutationEvent object*
initMutationEvent(),

MutationEvent.initMutationEvent()
initUIEvent(), MouseEvent object*
initUIEvent(), UIEvent object*
initUIEvent(), UIEvent.initUIEvent()
inRange(), TextRange object*
inRange(), TextRange.inRange()
insertAdjacentHTML(), Element object*
insertAdjacentHTML(),

Element.insertAdjacentHTML()
insertAdjacentText(), Element object*
insertAdjacentText(),

Element.insertAdjacentText()
insertBefore(), Node object*
insertBefore(), Node.insertBefore()
insertCell(), TR object*
insertCell(), TR.insertCell()
insertData(), CharacterData object*
insertData(), CharacterData.insertData()
insertRow(), Cursor object*
insertRow(), Cursor.insertRow()
insertRow(), TABLE object*
insertRow(), TABLE.insertRow()
insertRow(), TFOOT object*

insertRow(), TFOOT.insertRow()
insertRow(), THEAD object*
insertRow(), THEAD.insertRow()
inside(), java.awt.Button*
intern(), java.lang.String*
intValue(), java.lang.Double*
intValue(), java.lang.Float*
intValue(), java.lang.Integer*
intValue(), java.lang.Long*
invalidate(), java.awt.Button*
isActive(), JavaObject object*
isActive(), netscape.plugin.Plugin
isActive(), Plugin object*
isActive(), Plugin.isActive()
isEnabled(), java.awt.Button*
isEnabled(), JavaObject object*
isEqual(), TextRange object*
isEqual(), TextRange.isEqual()
isFinite(), Global object*
isInfinite(), java.lang.Double*
isInfinite(), java.lang.Float*
isNaN(), Global object*
isNaN(), java.lang.Double*
isNaN(), java.lang.Float*
isPrototypeOf(), Object object*
isPrototypeOf(), Object.isPrototypeOf()
isShowing(), java.awt.Button*
isShowing(), JavaObject object*
IsSubscribed(), external object*
IsSubscribed(), external.IsSubscribed()
isValid(), java.awt.Button*
isValid(), JavaObject object*
isValid(), Lock object*
isValid(), Lock.isValid()
isVisible(), java.awt.Button*
isVisible(), JavaObject object*
italics(), String object*
italics(), String.italics()
Item(), Collection object*
Item(), Collection.Item()
Item(), Dictionary object*
Item(), Dictionary.Item()
item(), Enumerator object*
item(), Enumerator.item()
Item(), Files object*
Item(), Files.Item()
item(), Filters object
item(), Filters.item()
Item(), Folders object*
Item(), Folders.Item()
item(), FormArray object*
item(), FormArray.item()
item(), FrameArray object
item(), FrameArray.item()
item(), Frames object*
item(), ImageArray object*
item(), ImageArray.item()
item(), NamedNodeMap object*
item(), NamedNodeMap.item()
item(), NodeList object*
item(), NodeList.item()
item(), OptionsArray object*
item(), OptionsArray.item()
item(), PluginArray object*
item(), PluginArray.item()
item(), rows object
item(), ScriptArray object*

Method

2588

item(), ScriptArray.item()
item(), SelectorArray object*
item(), style object (2)*
item(), style.item()
item(), StyleSheetList object*
item(), StyleSheetList.item()
Items(), Dictionary object*
Items(), Dictionary.Items()
javaEnabled(), Navigator object*
javaEnabled(), Navigator.javaEnabled()
join(), Array object*
join(), Array.join()
Key(), Dictionary object*
Key(), Dictionary.Key()
keyDown(), java.awt.Button*
Keys(), Dictionary object*
Keys(), Dictionary.Keys()
keyUp(), java.awt.Button*
lastIndexOf(), java.lang.String*
lastIndexOf(), String object*
lastIndexOf(), String.lastIndexOf()
layout(), java.awt.Button*
lbound(), VBArray object*
lbound(), VBArray.lbound()
length(), java.lang.String*
link(), String object*
link(), String.link()
list(), java.awt.Button*
load(), Layer object*
load(), Layer.load()
localeCompare(), String object*
localeCompare(), String.localeCompare()
locate(), java.awt.Button*
location(), java.awt.Button*
lock(), Lock object*
lock(), Lock.lock()
lock(), project object*
lock(), project.lock()
lock(), server object*
lock(), server.lock()
longValue(), java.lang.Double*
longValue(), java.lang.Float*
longValue(), java.lang.Integer*
longValue(), java.lang.Long*
lostFocus(), java.awt.Button*
majorErrorCode(), Connection object*
majorErrorCode(),

Connection.majorErrorCode()
majorErrorCode(), database object*
majorErrorCode(),

database.majorErrorCode()
majorErrorCode(), DbPool object*
majorErrorCode(), DbPool.majorErrorCode()
majorErrorMessage(), Connection object*
majorErrorMessage(),

Connection.majorErrorMessage()
majorErrorMessage(), database object*
majorErrorMessage(),

database.majorErrorMessage()
majorErrorMessage(), DbPool object*
majorErrorMessage(),

DbPool.majorErrorMessage()
margins(), JSSTag object*
margins(), JSSTag.margins()
match(), String object*
match(), String.match()

mergeAttrbutes(), Document object*
mergeAttributes(), Element object*
mergeAttributes(),

Element.mergeAttributes()
minimumSize(), java.awt.Button*
minimumSize(), JavaObject object*
minorErrorCode(), Connection object*
minorErrorCode(),

Connection.minorErrorCode()
minorErrorCode(), database object*
minorErrorCode(),

database.minorErrorCode()
minorErrorCode(), DbPool object*
minorErrorCode(), DbPool.minorErrorCode()
minorErrorMessage(), Connection object*
minorErrorMessage(),

Connection.minorErrorMessage()
minorErrorMessage(), database object*
minorErrorMessage(),

database.minorErrorMessage()
minorErrorMessage(), DbPool object*
minorErrorMessage(),

DbPool.minorErrorMessage()
mouseDown(), java.awt.Button*
mouseDrag(), java.awt.Button*
mouseEnter(), java.awt.Button*
mouseExit(), java.awt.Button*
mouseMove(), java.awt.Button*
mouseUp(), java.awt.Button*
Move(), File object*
Move(), File.Move()
Move(), Folder object*
Move(), Folder.Move()
move(), java.awt.Button*
move(), TextRange object*
move(), TextRange.move()
moveAbove(), Layer object*
moveAbove(), Layer.moveAbove()
moveBelow(), Layer object*
moveBelow(), Layer.moveBelow()
moveBy()
moveBy(), Global object*
moveBy(), Layer object*
moveBy(), Layer.moveBy()
moveBy(), Window object*
moveBy(), Window.moveBy()
moveEnd(), TextRange object*
moveEnd(), TextRange.moveEnd()
MoveFile(), FileSystem object*
MoveFile(), FileSystem.MoveFile()
moveFirst(), Enumerator object*
moveFirst(), Enumerator.moveFirst()
MoveFolder(), FileSystem object*
MoveFolder(), FileSystem.MoveFolder()
moveLight(), filter - Light()*
moveNext(), Enumerator object*
moveNext(), Enumerator.moveNext()
moveStart(), TextRange object*
moveStart(), TextRange.moveStart()
moveTo()
moveTo(), Global object*
moveTo(), Layer object*
moveTo(), Layer.moveTo()
moveTo(), Window object*
moveTo(), Window.moveTo()
moveToAbsolute(), Layer object*

Method

2589

Method (continued)
moveToAbsolute(), Layer.moveToAbsolute()
moveToBookmark(), TextRange object*
moveToBookmark(),

TextRange.moveToBookmark()
moveToElementText(), TextRange object*
moveToElementText(),

TextRange.moveToElementText()
moveToPoint(), TextRange object*
moveToPoint(), TextRange.moveToPoint()
namedItem(), Collection object*
namedItem(), Collection.namedItem()
navigate()
navigate(), Global object*
navigate(), Window object*
navigate(), Window.navigate()
NavigateAndFind(), external object*
NavigateAndFind(),

external.NavigateAndFind()
next(), Cursor object*
next(), Cursor.next()
next(), ResultSet object*
next(), ResultSet.next()
nextFocus(), java.awt.Button*
nextPage(), TABLE object*
nextPage(), TABLE.nextPage()
normalize(), Element object*
normalize(), Element.normalize()
notify(), java.awt.Button*
notify(), java.lang.Boolean*
notify(), java.lang.Character*
notify(), java.lang.Double*
notify(), java.lang.Float*
notify(), java.lang.Integer*
notify(), java.lang.Long*
notify(), java.lang.Object*
notify(), java.lang.String*
notify(), java.util.Date*
notify(), netscape.plugin.Plugin
notifyAll(), java.awt.Button*
notifyAll(), java.lang.Boolean*
notifyAll(), java.lang.Character*
notifyAll(), java.lang.Double*
notifyAll(), java.lang.Float*
notifyAll(), java.lang.Integer*
notifyAll(), java.lang.Long*
notifyAll(), java.lang.Object*
notifyAll(), java.lang.String*
notifyAll(), java.util.Date*
notifyAll(), netscape.plugin.Plugin
Number()*
Number(), Global object*
Object()*
Object(), Global object*
offset(), Layer object*
offset(), Layer.offset()
open()
open(), Document object*
open(), Document.open()
open(), File object*
open(), File object*
open(), File.open()
open(), Global object*
open(), Window object*
open(), Window.open()
OpenAsTextStream(), File object*

OpenAsTextStream(),
File.OpenAsTextStream()

OpenTextFile(), FileSystem object*
OpenTextFile(), FileSystem.OpenTextFile()
outParamCount(), Stproc object*
outParamCount(), Stproc.outParamCount()
outParameters(), Stproc object*
outParameters(), Stproc.outParameters()
paddings(), JSSTag object*
paddings(), JSSTag.paddings()
paint(), java.awt.Button*
paintAll(), java.awt.Button*
parentElement(), TextRange object*
parentElement(),

TextRange.parentElement()
parse(), Date object*
parse(), Date.parse()*
parseFloat(), Global object*
parseInt(), Global object*
pasteHTML(), TextRange object*
pasteHTML(), TextRange.pasteHTML()
play(), filter - Barn()*
play(), filter - Blinds()*
play(), filter - Compositor()*
play(), filter - Fade()*
play(), filter - GradientWipe()*
play(), filter - Inset()*
play(), filter - Iris()*
play(), filter - Pixelate()*
play(), filter - Pixelate()*
play(), filter - RadialWipe()*
play(), filter - RandomBars()*
play(), filter - RandomDissolve()*
play(), filter - Slide()*
play(), filter - Spiral()*
play(), filter - Stretch()*
play(), filter - Strips()*
play(), filter - Wheel()*
play(), filter - Zigzag()*
plugins, Navigator object*
pop(), Array object*
pop(), Array.pop()
postEvent(), java.awt.Button*
preference(), Navigator object*
preference(), Navigator.preference()
preferredSize(), java.awt.Button*
prepareImage(), java.awt.Button*
preventDefault(), Event object*
preventDefault(), Event.preventDefault()
preventDefault(), MouseEvent object*
preventDefault(), MutationEvent object*
previousPage(), TABLE object*
previousPage(), TABLE.previousPage()
print()
print(), Global object*
print(), java.awt.Button*
print(), Window object*
print(), Window.print()
printAll(), java.awt.Button*
prompt()
prompt(), Global object*
prompt(), Window object*
prompt(), Window.prompt()
propertyIsEnumerable(), Object object*
propertyIsEnumerable(),

Object.propertyIsEnumerable()

Method

2590

push(), Array object*
push(), Array.push()
put()*
queryCommandEnabled(), Document

object*
queryCommandEnabled(),

Document.queryCommandEnabled()
queryCommandEnabled(), TextRange

object*
queryCommandEnabled(),

TextRange.queryCommandEnabled()
queryCommandIndeterm(), Document

object*
queryCommandIndeterm(),

Document.queryCommandIndeterm()
queryCommandIndeterm(), TextRange

object*
queryCommandIndeterm(),

TextRange.queryCommandIndeterm()
queryCommandState(), Document object*
queryCommandState(),

Document.queryCommandState()
queryCommandState(), TextRange object*
queryCommandState(),

TextRange.queryCommandState()
queryCommandSupported(), Document

object*
queryCommandSupported(),

Document.queryCommandSupported()
queryCommandSupported(), TextRange

object*
queryCommandSupported(),

TextRange.queryCommandSupported()
queryCommandText(), Document object*
queryCommandText(),

Document.queryCommandText()
queryCommandText(), TextRange object*
queryCommandText(),

TextRange.queryCommandText()
queryCommandValue(), Document object*
queryCommandValue(),

Document.queryCommandValue()
queryCommandValue(), TextRange object*
queryCommandValue(),

TextRange.queryCommandValue()
Quit(), WScript object*
Quit(), WScript.Quit()
random(), Crypto object*
random(), Crypto.random()
random(), Math.random()*
read(), File object*
read(), File object*
read(), File.read()
Read(), TextStream object*
Read(), TextStream.Read()
ReadAll(), TextStream object*
ReadAll(), TextStream.ReadAll()
readByte(), File object*
readByte(), File object*
readByte(), File.readByte()
ReadLine(), TextStream object*
ReadLine(), TextStream.ReadLine()
readln(), File object*
readln(), File.readln()
recalc(), Document object*
recalc(), Document.recalc()
redirect, Global object*

redirect(), response object*
redirect(), response.redirect()
refresh(), JavaObject object*
refresh(), Navigator.plugins.refresh()
refresh(), Plugin object*
refresh(), Plugin.refresh()
refresh(), PluginArray object*
refresh(), PluginArray.refresh()
refresh(), TABLE object*
refresh(), TABLE.refresh()
regionMatches(), java.lang.String*
registerCFunction(), Global object*
registerCFunction(), response object*
registerCFunction(),

response.registerCFunction()
release(), Connection object*
release(), Connection.release()
releaseCapture(), Element object*
releaseCapture(), Element.releaseCapture()
releaseEvents()
releaseEvents(), Document object*
releaseEvents(),

Document.releaseEvents()*
releaseEvents(), Layer.releaseEvents()*
releaseEvents(), Window.releaseEvents()*
reload(), Location object*
reload(), Location.reload()
Remove(), Dictionary object*
Remove(), Dictionary.Remove()
remove(), OptionsArray object*
remove(), OptionsArray.remove()
remove(), Select object*
remove(), Select.remove()
RemoveAll(), Dictionary object*
RemoveAll(), Dictionary.RemoveAll()
removeAttribute(), CENTER object
removeAttribute(), COMMENT object*
removeAttribute(), Element object*
removeAttribute(),

Element.removeAttribute()
removeAttribute(), Frame object*
removeAttributeNode(), Element object*
removeAttributeNode(),

Element.removeAttributeNode()
removeBehavior(), Element object*
removeBehavior(),

Element.removeBehavior()
removeChild(), Node object*
removeChild(), Node.removeChild()
removeEventListener(), EventTarget object*
removeEventListener(),

EventTarget.removeEventListener()
removeExpression(), currentStyle object*
removeExpression(), Element object*
removeExpression(),

Element.removeExpression()
removeExpression(), runtimeStyle object*
removeExpression(), style object (2)*
removeExpression(),

style.removeExpression()
removeMember(), JSObject object*
removeMember(),

JSObject.removeMember()*
removeNamedItem(), NamedNodeMap

object*
removeNamedItem(),

NamedNodeMap.removeNamedItem()

Method

2591

Method (continued)
removeNotify(), java.awt.Button*
removeRule(), StyleSheet object*
removeRule(), StyleSheet.removeRule()
repaint(), java.awt.Button*
replace(), java.lang.String*
replace(), Location object*
replace(), Location.replace()
replace(), String object*
replace(), String.replace()
replaceAdjacentText(), Element object*
replaceAdjacentText(),

Element.replaceAdjacentText()
replaceChild(), Node object*
replaceChild(), Node.replaceChild()
replaceData(), CharacterData object*
replaceData(), CharacterData.replaceData()
requestFocus(), java.awt.Button*
reset(), Form object*
reset(), Form.reset()
reshape(), java.awt.Button*
resize(), java.awt.Button*
resizeBy()
resizeBy(), Global object*
resizeBy(), Layer object*
resizeBy(), Layer.resizeBy()
resizeBy(), Window object*
resizeBy(), Window.resizeBy()
resizeTo()
resizeTo(), Global object*
resizeTo(), Layer object*
resizeTo(), Layer.resizeTo()
resizeTo(), Window object*
resizeTo(), Window.resizeTo()
resultSet(), Stproc object*
resultSet(), Stproc.resultSet()
returnValue(), Stproc object*
returnValue(), Stproc.returnValue()
reverse(), Array object*
reverse(), Array.reverse()
rgb(), JSSTag object*
rgb(), JSSTag.rgb()
rollbackTransaction(), Connection object*
rollbackTransaction(),

Connection.rollbackTransaction()
rollbackTransaction(), database object*
rollbackTransaction(),

database.rollbackTransaction()
routeEvent(), Document object*
savePreferences(), Navigator object*
savePreferences(),

Navigator.savePreferences()
scroll()
scroll(), Global object*
scroll(), Window object*
scroll(), Window.scroll()
scrollBy()
scrollBy(), Global object*
scrollBy(), Window object*
scrollBy(), Window.scrollBy()
scrollIntoView(), Element object*
scrollIntoView(), Element.scrollIntoView()
scrollTo()
scrollTo(), Global object*
scrollTo(), Window object*
scrollTo(), Window.scrollTo()
search(), String object*

search(), String.search()
select(), File object*
select(), FileUpload object*
select(), FileUpload.select()
select(), Image object*
select(), IMG object*
select(), Input object*
select(), Input.select()
select(), OptionsArray object*
select(), OptionsArray.select()
select(), Password object*
select(), Password.select()
select(), TEXTAREA object*
select(), TEXTAREA.select()
select(), TextCell object*
select(), TextCell.select()
select(), TextRange object*
select(), TextRange.select()
send(), SendMail object*
send(), SendMail.send()
setAttribute(), COMMENT object*
setAttribute(), currentStyle object*
setAttribute(), Element object*
setAttribute(), Element.setAttribute()
setAttribute(), Frame object*
setAttribute(), runtimeStyle object*
setAttribute(), style object (2)*
setAttribute(), style.setAttribute()
setAttributeNode(), Element object*
setAttributeNode(),

Element.setAttributeNode()
setBackground(), java.awt.Button*
setCapture(), Element object*
setCapture(), Element.setCapture()
setData(), clipboardData object*
setData(), dataTransfer object*
setData(), dataTransfer.setData()
setDate(), Date object*
setDate(), java.util.Date*
setDate(), Date.setDate()
setEndPoint(), TextRange object*
setEndPoint(), TextRange.setEndPoint()
setExpression(), currentStyle object*
setExpression(), Element object*
setExpression(), Element.setExpression()
setExpression(), runtimeStyle object*
setExpression(), style object (2)*
setExpression(), style.setExpression()
setFont(), java.awt.Button*
setForeground(), java.awt.Button*
setFullYear(), Date object*
setFullYear(), Date.setFullYear()
setHotkeys()
setHotkeys(), Global object*
setHotkeys(), Window object*
setHotkeys(), Window.setHotkeys()
setHours(), Date object*
setHours(), Date.setHours()
setHours(), java.util.Date*
setInterval()
setInterval(), Global object*
setInterval(), Window object*
setInterval(), Window.setInterval()
setLabel(), java.awt.Button*
setMember(), JSObject object*
setMember(), JSObject.setMember()*
setMilliseconds(), Date object*

Method

2592

setMilliseconds(), Date.setMilliseconds()
setMinutes(), Date object*
setMinutes(), Date.setMinutes()
setMinutes(), java.util.Date*
setMonth(), Date object*
setMonth(), Date.setMonth()
setMonth(), java.util.Date*
setNamedItem(), NamedNodeMap object*
setNamedItem(),

NamedNodeMap.setNamedItem()
setPosition(), File object*
setPosition(), File.setPosition()
setResizable()
setResizable(), Global object*
setResizable(), Window object*
setResizable(), Window.setResizable()
setSeconds(), Date object*
setSeconds(), Date.setSeconds()
setSeconds(), java.util.Date*
setSlot(), JSObject object*
setSlot()*, JSObject.setSlot()*
setTime(), Date object*
setTime(), Date.setTime()
setTime(), java.util.Date*
setTimeout()
setTimeout(), Global object*
setTimeout(), Window object*
setTimeout(), Window.setTimeout()
setUTCDate(), Date object*
setUTCDate(), Date.setUTCDate()
setUTCFullYear(), Date object*
setUTCFullYear(), Date.setUTCFullYear()
setUTCHours(), Date object*
setUTCHours(), Date.setUTCHours()
setUTCMilliseconds(), Date object*
setUTCMilliseconds(),

Date.setUTCMilliseconds()
setUTCMinutes(), Date object*
setUTCMinutes(), Date.setUTCMinutes()
setUTCMonth(), Date object*
setUTCMonth(), Date.setUTCMonth()
setUTCSeconds(), Date object*
setUTCSeconds(), Date.setUTCSeconds()
setVisible(), java.awt.Button*
setYear(), Date object*
setYear(), Date.setYear()
setYear(), java.util.Date*
setZOptions()
setZOptions(), Global object*
setZOptions(), Window object*
setZOptions(), Window.setZOptions()
shift(), Array object*
shift(), Array.shift()
shortValue(), java.lang.Double*
shortValue(), java.lang.Float*
shortValue(), java.lang.Integer*
shortValue(), java.lang.Long*
show(), java.awt.Button*
ShowBrowserUI(), external object*
ShowBrowserUI(),

external.ShowBrowserUI()
showHelp()
showHelp(), Global object*
showHelp(), Window object*
showHelp(), Window.showHelp()
showModalDialog()
showModalDialog(), Global object*

showModalDialog(), Window object*
showModalDialog(),

Window.showModalDialog()
showModelessDialog()
showModelessDialog(), Global object*
showModelessDialog(), Window object*
showModelessDialog(),

Window.showModelessDialog()
signText(), Crypto object*
signText(), Crypto.signText()
size(), java.awt.Button*
Skip(), TextStream object*
Skip(), TextStream.Skip()
SkipLine(), TextStream object*
SkipLine(), TextStream.SkipLine()
Sleep(), WScript object*
Sleep(), WScript.Sleep()
slice(), Array object*
slice(), Array.slice()
slice(), String object*
slice(), String.slice()
small(), String object*
small(), String.small()
sort(), Array object*
sort(), Array.sort()
splice(), Array object*
splice(), Array.splice()
split(), String object*
split(), String.split()
splitText(), textNode object*
splitText(), textNode.splitText()
SQLTable(), Connection object*
SQLTable(), Connection.SQLTable()
SQLTable(), database object*
SQLTable(), database.SQLTable()
ssjs_generateClientID(), Global object*
ssjs_generateClientID(), response object*
ssjs_generateClientID(),

response.ssjs_generateClientID()
ssjs_getCGIVariable(), Global object*
ssjs_getCGIVariable(), response object*
ssjs_getCGIVariable(),

response.ssjs_getCGIVariable()
ssjs_getClientID(), Global object*
ssjs_getClientID(), response object*
ssjs_getClientID(),

response.ssjs_getClientID()
start(), Applet object*
start(), Applet.start()
start(), JavaObject object*
start(), MARQUEE object*
start(), MARQUEE.start()
startsWith(), java.lang.String*
stop()
stop(), Applet object*
stop(), Applet.stop()
stop(), filter - Barn()*
stop(), filter - Blinds()*
stop(), filter - Fade()*
stop(), filter - GradientWipe()*
stop(), filter - Inset()*
stop(), filter - Iris()*
stop(), filter - Pixelate()*
stop(), filter - Pixelate()*
stop(), filter - RadialWipe()*
stop(), filter - RandomBars()*
stop(), filter - RandomDissolve()*

Method

2593

Method (continued)
stop(), filter - Slide()*
stop(), filter - Spiral()*
stop(), filter - Stretch()*
stop(), filter - Strips()*
stop(), filter - Wheel()*
stop(), filter - Zigzag()*
stop(), Global object*
stop(), JavaObject object*
stop(), MARQUEE object*
stop(), MARQUEE.stop()
stop(), Window object*
stop(), Window.stop()
stopPropagation(), Event object*
stopPropagation(), Event.stopPropagation()
stopPropagation(), MouseEvent object*
stopPropagation(), MutationEvent object*
storedProc(), Connection object*
storedProc(), Connection.storedProc()
storedProc(), database object*
storedProc(), database.storedProc()
storedProcArgs(), database object*
storedProcArgs(),

database.storedProcArgs()
storedProcArgs(), DbPool object*
storedProcArgs(), DbPool.storedProcArgs()
strike(), String object*
strike(), String.strike()
String()*
String(), Global object*
stringToByte(), File object*
stringToByte(), File.stringToByte()
sub(), String object*
sub(), String.sub()
submit(), Form object*
submit(), Form.submit()
substr(), String object*
substr(), String.substr()
substring(), java.lang.String*
substring(), String object*
substring(), String.substring()
substringData(), CharacterData object*
substringData(),

CharacterData.substringData()
sup(), String object*
sup(), String.sup()
tags(), Collection object*
tags(), Collection.tags()
tags(), rows object
tags(), Select object*
tags(), Select.tags()
taintEnabled(), Navigator object*
taintEnabled(), Navigator.taintEnabled()
test(), RegExp object*
test(), RegExp.test()
toArray(), VBArray object*
toArray(), VBArray.toArray()
toCharArray(), java.lang.String*
toDateString(), Date object*
toDateString(), Date.toDateString()
toExponential(), Number object*
toExponential(), Number.toExponential()
toFixed(), Number object*
toFixed(), Number.toFixed()
toGMTString(), Date object*
toGMTString(), Date.toGMTString()
toGMTString(), java.util.Date*
toLocaleDateString(), Date object*

toLocaleDateString(),
Date.toLocaleDateString()

toLocaleLowerCase(), String object*
toLocaleLowerCase(),

String.toLocaleLowerCase()
toLocaleString(), Array object*
toLocaleString(), Array.toLocaleString()
toLocaleString(), Date object*
toLocaleString(), Date.toLocaleString()
toLocaleString(), java.util.Date*
toLocaleString(), Number object*
toLocaleString(), Number.toLocaleString()
toLocaleString(), Object object*
toLocaleString(), Object.toLocaleString()
toLocaleTimeString(), Date object*
toLocaleTimeString(),

Date.toLocaleTimeString()
toLocaleUpperCase(), String object*
toLocaleUpperCase(),

String.toLocaleUpperCase()
toLowerCase(), java.lang.String*
toLowerCase(), String object*
toLowerCase(), String.toLowerCase()
toPrecision(), Number object*
toPrecision(), Number.toPrecision()
toSource(), Array object*
toSource(), Array.toSource()
toSource(), Boolean object*
toSource(), Boolean.toSource()
toSource(), Date object*
toSource(), Date.toSource()
toSource(), Function object*
toSource(), Function.toSource()
toSource(), Number object*
toSource(), Number.toSource()
toSource(), Object object*
toSource(), Object.toSource()
toSource(), RegExp object*
toSource(), RegExp.toSource()
toSource(), String object*
toSource(), String.toSource()
toString(), Array object*
toString(), Array.toString()
toString(), Boolean object*
toString(), Boolean.toString()
toString(), Connection object*
toString(), Connection.toString()
toString(), database object*
toString(), database.toString()
toString(), Date object*
toString(), Date.toString()
toString(), DbPool object*
toString(), DbPool.toString()
toString(), Error object*
toString(), Error.toString()
toString(), Function object*
toString(), Function.toString()
toString(), java.awt.Button*
toString(), java.lang.Boolean*
toString(), java.lang.Character*
toString(), java.lang.Double*
toString(), java.lang.Float*
toString(), java.lang.Integer*
toString(), java.lang.Long*
toString(), java.lang.Object*
toString(), java.lang.String*
toString(), java.util.Date*
toString(), JavaArray object*

Object/browser

2594

toString(), JavaArray.toString()
toString(), JavaObject object*
toString(), JSObject object*
toString(), JSObject.toString()*
toString(), netscape.plugin.Plugin
toString(), Number object*
toString(), Number.toString()
toString(), Object object*
toString(), Object.toString()
toString(), RegExp object*
toString(), RegExp.toString()
toString(), String object*
toString(), String.toString()
toString(), URIError object*
toTimeString(), Date object*
toTimeString(), Date.toTimeString()
toUpperCase(), java.lang.String*
toUpperCase(), String object*
toUpperCase(), String.toUpperCase()
toUTCString(), Date object*
toUTCString(), Date.toUTCString()
trace(), response object*
trace(), response.trace()
trim(), java.lang.String*
typeof(), Global object*
ubound(), VBArray object*
ubound(), VBArray.ubound()
unescape(), Global object*
unlock(), Lock object*
unlock(), Lock.unlock()
unlock(), project object*
unlock(), project.unlock()
unlock(), server object*
unlock(), server.unlock()
unshift(), Array object*
unshift(), Array.unshift()
unwatch(), Object object*
unwatch(), Object.unwatch()
update(), java.awt.Button*
updateRow(), Cursor object*
updateRow(), Cursor.updateRow()
UTC(), Date.UTC()*
validate(), java.awt.Button*
valueOf()
valueOf(), Array object*
valueOf(), Array.valueOf()
valueOf(), Boolean object*
valueOf(), Boolean.valueOf()
valueOf(), Date object*
valueOf(), Date.valueOf()
valueOf(), Function object*
valueOf(), Function.valueOf()
valueOf(), Number object*
valueOf(), Number.valueOf()
valueOf(), Object object*
valueOf(), Object.valueOf()
valueOf(), String object*
valueOf(), String.valueOf()
wait(), java.awt.Button*
wait(), java.lang.Boolean*
wait(), java.lang.Character*
wait(), java.lang.Double*
wait(), java.lang.Float*
wait(), java.lang.Integer*
wait(), java.lang.Long*
wait(), java.lang.Object*
wait(), java.lang.String*

wait(), java.util.Date*
wait(), netscape.plugin.Plugin
watch(), Object object*
watch(), Object.watch()
write(), Document object*
write(), Document.write()
write(), File object*
write(), File object*
write(), File.write()
write(), Global object*
write(), response object*
write(), response.write()
Write(), TextStream object*
Write(), TextStream.Write()
WriteBlankLines(), TextStream object*
WriteBlankLines(),

TextStream.WriteBlankLines()
writeByte(), File object*
writeByte(), File.writeByte()
WriteLine(), TextStream object*
WriteLine(), TextStream.WriteLine()
writeln(), Document object*
writeln(), Document.writeln()
writeln(), File object*
writeln(), File object*
writeln(), File.writeln()

Method/internal
put()*

Method/Java
booleanValue(),

JavaObject.booleanValue()*
getClass(), JavaObject.getClass()*

Method/static
parse(), Date.parse()*
UTC(), Date.UTC()*
fromCharCode(), String.fromCharCode()*

MIME type
text/JavaScript*

Object model
ASP*
Browser
Document*
WSH

Object/browser
Background object*
EmbedArray object*
FormArray object*
FormElement object*
FormElementsArray object
FrameArray object
Frames object*
History object*
ImageArray object*
InputArray object*
LinkArray object*
MimeType object*
MimeTypeArray object*

Object/browser

2595

Object/browser (continued)
Navigator object*
OptionsArray object*
Plugin object*
PluginArray object*
Rect object*
Screen object*
ScriptArray object*
Selection object*
SelectorArray object*
Window object*

Object/core
Arguments object*
Array object*
Boolean object*
Date object*
Error object*
EvalError object*
Function object*
Global object*
Math object*
Number object*
Object object*
RangeError object*
ReferenceError object*
RegExp object*
String object*
SyntaxError object*
TypeError object*
URIError object*

Object/CSS
style object (2)*

Object/DOM
AbstractView object*
AnchorArray object*
AppletArray object*
Attr object*
Attribute object*
Attributes object*
Button object*
CDATASection object*
CharacterData object*
Checkbox object*
ChildNodes object*
Collection object*
COMMENT object*
Doctype object*
DocumentEvent*
DocumentFragment object*
DocumentStyle object*
DocumentType object
DOMImplementation object
Entity object*
EntityReference object*
Event object*
EventException object*
EventListener object*
EventTarget object*
FileUpload object*
Frame object*
Hidden object*
Implementation object*

Input object*
LinkStyle object*
Location object*
MediaList object*
ModElement object*
MouseEvent object*
MutationEvent object*
NamedNodeMap object*
Node object*
NodeList object*
Notation object*
OptionElement object
Password object*
ProcessingInstruction object*
RadioButton object*
ResetButton object*
rule object*
StyleSheet object*
StyleSheetList object*
SubmitButton object*
TableSectionElement object
Text object
TEXTAREA object*
TextCell object*
textNode object*
UIEvent object*
userDefined object*

Object/HTML
! object*
<!-- ... --> (Comment block)
A object
ABBR object
ACRONYM object
ADDRESS object
Anchor object*
Applet object*
Area object*
B object
BASE object*
BASEFONT object*
BDO object*
BGSOUND object*
BIG object
BLOCKQUOTE object*
BODY object*
BR object*
BUTTON object*
CAPTION object*
CENTER object
CITE object
CODE object
COL object*
COLGROUP object*
DD object*
DEL object*
DFN object
DIR object*
DIV object*
DL object*
Document object*
DT object*
Element object*
EM object*
Embed object*
FIELDSET object*
FONT object*

Object/NES

2596

Form object*
FRAMESET object*
H<n> object*
HEAD object*
HR object*
HTML object*
HyperLink object*
I object*
IFRAME object*
Image object*
IMG object*
INS object*
ISINDEX object*
KBD object*
Label object*
Legend object*
LI object*
LINK object*
LISTING object*
Map object*
MARQUEE object*
MENU object*
META object*
NOFRAMES object*
NOSCRIPT object*
OBJECT object*
OL object*
OptGroupElement object*
Option object*
P object*
ParamElement object*
PLAINTEXT object
PRE object*
Q object
RT object
RUBY object*
S object
SAMP object
SCRIPT object*
Select object*
SMALL object
SPAN object*
STRIKE object
STRONG object*
STYLE object (1)*
SUB object
SUP object
TABLE object*
TableColElement object*
TBODY object*
TD object*
TFOOT object*
TH object*
THEAD object*
TITLE object*
TR object*
TT object*
U object*
UL object*
Url object*
VAR object
XMP object

Object/internal
Activation object
Call object
Closure object*

Object/JScript
ActiveXObject object*
Automation object
clipboardData object*
currentStyle object*
dataTransfer object*
Dialog object*
Dictionary object*
Drive object*
Drives object*
Enumerator object*
external object*
File object*
Files object*
FileSystem object*
Filter object*
Filters object
Folder object*
Folders object*
runtimeStyle object*
TextRange object*
textRectangle object*
TextStream object*
userProfile object*
VBArray object*
vCard object*
XML object*

Object/JSS
JSSClasses object*
JSSTag object*
JSSTags object*

Object/Navigator
Bar object*
Clip object*
Closure()*
Crypto object*
EventCapturer object*
JavaArray object*
JavaClass object*
JavaMethod object
JavaObject object*
JavaPackage object*
Layer object*
LayerArray object*
Pkcs11 object*
Sidebar object*

Object/NES
blob object*
client object*
Connection object*
Cursor object*
database object*
DbPool object*
File object*
Lock object*
project object*
request object*
response object*
ResultSet object*
SendMail object*
server object*
Stproc object*

Object/WSH

2597

Object/WSH
WScript object*

Operator/additive
- (Minus)
+ (Add)
Add (+)*
Minus (-)
Subtract (-)*

Operator/assignment
%= (Modulo assign)
&= (Bitwise AND assign)
*= (Multiply assign)
/= (Divide assign)
^= (Bitwise XOR assign)
|= (Bitwise OR assign)
+= (Add assign)
<<= (Bitewise shift left assign)
 = (Assign)*
 -= (Minus assign)
 >>= (Bitwise shift right assign)
 >>>= (Bitwise unsigned shift right assign)
 Add then assign (+=)*
 Assign value (=)*
 Bitwise AND then assign (&=)*
 Bitwise OR then assign (|=)*
 Bitwise shift left then assign (<<=)*
 Bitwise shift right and assign (>>=)*
 Bitwise unsigned shift right and assign

(>>>=)*
 Bitwise XOR and assign (^=)*
 Concatenate then assign (+=)*
 Divide then assign (/=)*
 Minus then assign (-=)
 Multiply then assign (*=)*
 Remainder then assign (%=)*
 Subtract then assign (-=)*

Operator/bitwise
 & (Bitwise AND)
 ^ (Bitwise XOR)
 | (Bitwise OR)
 ~ (Bitwise NOT)
 << (Bitwise shift left)
 >> (Bitwise shift right)
 >>> (Bitwise unsigned shift right)
 Bitwise AND (&)*
 Bitwise NOT - complement (~)*
 Bitwise OR (|)*
 Bitwise shift left (<<)*
 Bitwise shift right (>>)*
 Bitwise unsigned shift right (>>>)*
 Bitwise XOR (^)*
 Left shift
 Right shift

Operator/conditional
 ?: (Conditional block)
 Conditionally execute (?:)*

Operator/equality
 != (NOT equal)
 == (Equal to)
 Equal to (==)*
 NOT Equal to (!=)*

Operator/identity
 !== (NOT identical)
 === (Identical to)
 Exactly equal to (===)
 Identically equal to (===)*
 NOT Identically equal to (!==)*
 Strictly equal to (===)

Operator/internal
 ToBoolean*
 ToInt32*
 ToInteger*
 ToNumber*
 ToObject*
 ToPrimitive*
 ToString*
 ToUint16*
 ToUint32*

Operator/logical
 ! (Logical NOT)
 && (Logical AND)
 || (Logical OR)
 in*
 instanceof*
 Logical AND (&&)*
 Logical NOT - complement (!)*
 Logical OR (||)*
 Logical XOR*

Operator/multiplicative
 % (Modulo/remainder)
 * (Multiply)
 / (Divide)
 Divide (/)*
 Modulo
 Multiply (*)*
 Remainder (%)*

Operator/postfix
 -- (Post decrement)
 ++ (Post increment)
 Decrement value (--)*
 Increment value (++)*
 Postfix decrement (--)*
 Postfix expression*
 Postfix increment (++)*

Operator/prefix
 -- (Pre decrement)
 ++ (Pre increment)
 Prefix decrement (--)*
 Prefix expression*
 Prefix increment (++)*

Operator/relational
 < (Less than)
 <= (Less than or equal to)
 > (Greater than)
 >= (Greater than or equal to)
 Greater than (>)*
 Greater than or equal to (>=)*
 Less than (<)*
 Less than or equal to (<=)*

Property

2598

Operator/string
 + (Concatenate)
 Concatenate (+)
 String concatenate (+)*

Operator/unary
 - (Unary minus)
 + (Unary plus)
 delete*
 Negation operator (-)*
 new*
 Positive value (+)*
 typeof*
 void*

Overview (see also Background,
Definition)
 Character-case mapping
 Compliance
 JavaScript language
 Lexical element
 Pointers
 Topic classification

Pitfall (see also Advice, Useful tip)
 </SCRIPT>*
 Bar.visibility*
 Deprecated functionality*
 Escaped JavaScript quotes in HTML*
 Hiding scripts from old browsers*
 HTML entity escape*
 JavaScript entity*
 Newlines are not
 tags*
 Off by one errors*
 style.zOrder*

Pre-processor
 @*/*
 @_alpha
 @_jscript
 @_jscript_build
 @_jscript_version
 @_mac
 @_mc680x0
 @_PowerPC
 @_win16
 @_win32
 @_x86
 @<variable_name>
 @cc_on
 @elif(...) ...
 @else ...
 @end
 @if(...) ...
 @set
 Conditional code block*
 Pre-processing - @_alpha*
 Pre-processing - @_jscript*
 Pre-processing - @_jscript_build*
 Pre-processing - @_jscript_version*
 Pre-processing - @_mac*
 Pre-processing - @_mc680x0*
 Pre-processing - @_PowerPC*
 Pre-processing - @_win16*

 Pre-processing - @_win32*
 Pre-processing - @_x86*
 Pre-processing - @<variable_name>*
 Pre-processing - @cc_on*
 Pre-processing - @elif(...) ...*
 Pre-processing - @else ...*
 Pre-processing - @end*
 Pre-processing - @if(...) ...*
 Pre-processing - @set*

Primitive value
 Boolean literal*
 Boolean*
 false*
 Null literal*
 null*
 Number*
 Numeric literal*
 String literal*
 String*
 true*

Product
 Active Server Pages
 ActiveX
 ADO
 ASP
 fdlibm
 IIS
 Internet Information Server
 LiveConnect
 LiveScript
 LiveWire
 NES
 Netscape Enterprise Server
 Nombas ScriptEase
 Perl Connect
 ScriptEase
 Windows Script Host
 WSH

Property
!.tabIndex
$', RegExp object*
$&, RegExp object*
$*, RegExp object*
$_, RegExp object*
$_, RegExp.$_
$`, RegExp object*
$+, RegExp object*
__parent__
__parent__, Closure object*
__parent__, Closure.__parent__
__parent__, Object object*
__parent__, Object.__parent__
__proto__
__proto__, Closure object*
__proto__, Closure.__proto__
__proto__, Object object*
__proto__, Object.__proto__
<column_name>, Cursor object*
<column_name>, Cursor.<column_name>
<form_name>, Document object*
<form_name>, Document.<form_name>
<input_name>, request object*

Property

2599

Property (continued)
<input_name>, request.<input_name>
<tagName>, JSSTags object*
<tagName>, JSSTags.<tagName>
<urlExtension>, request object*
<urlExtension>, request.<urlExtension>
abbr, TD object*
abbr, TD.abbr
abbr, TH object*
abbr, TH.abbr
above, Layer object*
above, Layer.above
accept, BUTTON object*
accept, BUTTON.accept
accept, FileUpload object*
accept, FileUpload.accept
accept, Input object*
accept, Input.accept
acceptCharset, Form object*
acceptCharset, Form.acceptCharset
accessKey, ! object*
accessKey, A object
accessKey, Anchor object*
accessKey, Anchor.accessKey
accessKey, Applet object*
accessKey, Area object*
accessKey, Area.accessKey
accessKey, BODY object*
accessKey, BUTTON object*
accessKey, Embed object*
accessKey, FIELDSET object*
accessKey, Form object*
accessKey, FRAMESET object*
accessKey, FRAMESET.accessKey
accessKey, IMG object*
accessKey, Input object*
accessKey, Input.accessKey
accessKey, Label object*
accessKey, Legend object*
accessKey, MARQUEE object*
accessKey, NOFRAMES object*
accessKey, NOSCRIPT object*
accessKey, OBJECT object*
accessKey, Select object*
accessKey, TBODY object*
accessKey, TD object*
action, Form object*
action, Form.action
activeElement, Document object*
activeElement, Document.activeElement
Add, filter - MotionBlur()*
Add, filter - Wave()*
agent, request object*
agent, request.agent
agent, server object*
agent, server.agent
align, Applet object*
align, Applet.align
align, CAPTION object*
align, CAPTION object*
align, CAPTION.align
align, COL object*
align, COL.align
align, COLGROUP object*
align, COLGROUP.align
align, DIV object*
align, DIV.align

align, Embed object*
align, Embed.align
align, FIELDSET object*
align, FIELDSET.align
align, H<n> object*
align, H<n>.align
align, HR object*
align, HR.align
align, IFRAME object*
align, IFRAME.align
align, IMG object*
align, IMG.align
align, Input object*
align, Input.align
align, JSSTag object*
align, JSSTag.align
align, Legend object*
align, Legend.align
align, OBJECT object*
align, OBJECT.align
align, P object*
align, P.align
align, TABLE object*
align, TABLE.align
align, TableColElement object*
align, TableColElement.align
align, TBODY object*
align, TBODY.align
align, TD object*
align, TD.align
align, TFOOT object*
align, TFOOT.align
align, TH object*
align, TH.align
align, THEAD object*
align, THEAD.align
align, TR object*
align, TR.align
aLink, BODY object*
aLink, BODY.aLink
alinkColor, Document object*
alinkColor, Document.alinkColor
alt, Applet object*
alt, Applet.alt
alt, Area object*
alt, Area.alt
alt, BUTTON object*
alt, BUTTON.alt
alt, IMG object*
alt, IMG.alt
alt, Input object*
alt, Input.alt
altHTML, Applet object*
altHTML, Applet.altHTML
altHtml, OBJECT object*
altHtml, OBJECT.altHtml
altKey, Event object*
altKey, Event.altKey
altKey, MouseEvent object*
altKey, MouseEvent.altKey
appCodeName, Navigator object*
appCodeName, Navigator.appCodeName
Application, WScript object*
Application, WScript.Application
apply, JSSTag object*
apply, JSSTag.apply
appMinorVersion, Navigator object*

Property

2600

appMinorVersion,
Navigator.appMinorVersion

appName, Navigator object*
appName, Navigator.appName
appVersion, Navigator object*
appVersion, Navigator.appVersion
archive, Applet object*
archive, Applet.archive
archive, OBJECT object*
archive, OBJECT.archive
Arguments, WScript object*
Arguments, WScript.Arguments
arity, Function object*
arity, Function.arity
AtEndOfLine, TextStream object*
AtEndOfLine, TextStream.AtEndOfLine
AtEndOfStream, TextStream object*
AtEndOfStream,

TextStream.AtEndOfStream
attrChange, MutationEvent object*
attrChange, MutationEvent.attrChange
Attributes, File object*
Attributes, File.Attributes
Attributes, Folder object*
Attributes, Folder.Attributes
attrName, MutationEvent object*
attrName, MutationEvent.attrName
AvailableSpace, Drive object*
AvailableSpace, Drive.AvailableSpace
availHeight, Screen object*
availHeight, Screen.availHeight
availLeft, Screen object*
availLeft, Screen.availLeft
availTop, Screen object*
availTop, Screen.availTop
availWidth, Screen object*
availWidth, Screen.availWidth
axis, TD object*
axis, TD.axis
axis, TH object*
axis, TH.axis
azimuth, style object (2)*
azimuth, style.azimuth
background, BODY object*
background, BODY.background
background, Document object*
background, Document.background
background, JSSTag object*
background, Layer object*
background, Layer.background
background, style object (2)*
background, style.background
background, TABLE object*
background, TABLE.background
background, TD object*
background, TD.background
background, TH object*
background, TH.background
backgroundAttachment, style object (2)*
backgroundAttachment,

style.backgroundAttachment
backgroundColor, JSSTag object*
backgroundColor, JSSTag.backgroundColor
backgroundColor, style object (2)*
backgroundColor, style.backgroundColor
backgroundImage, JSSTag object*
backgroundImage,

JSSTag.backgroundImage

backgroundImage, style object (2)*
backgroundImage, style.backgroundImage
backgroundPosition, style object (2)*
backgroundPosition,

style.backgroundPosition
backgroundPositionX, style object (2)*
backgroundPositionX,

style.backgroundPositionX
backgroundPositionY, style object (2)*
backgroundPositionY,

style.backgroundPositionY
backgroundRepeat, style object (2)*
backgroundRepeat,

style.backgroundRepeat
balance, BGSOUND object*
balance, BGSOUND.balance
bands, filter - Blinds()*
bands, filter - Slide()*
Bcc, SendMail object*
Bcc, SendMail.Bcc
behavior, MARQUEE object*
behavior, MARQUEE.behaviour
behavior, style object (2)*
behavior, style.behavior
below, Layer object*
below, Layer.below
bgColor, BODY object*
bgColor, BODY.bgColor
bgColor, Document object*
bgColor, Document.bgColor
bgColor, JSSTag object*
bgColor, Layer object*
bgColor, Layer.bgColor
bgColor, MARQUEE object*
bgColor, MARQUEE.bgColor
bgColor, TABLE object*
bgColor, TABLE.bgColor
bgColor, TBODY object*
bgColor, TBODY.bgColor
bgColor, TD object*
bgColor, TD.bgColor
bgColor, TFOOT object*
bgColor, TFOOT.bgColor
bgColor, TH object*
bgColor, TH.bgColor
bgColor, THEAD object*
bgColor, THEAD.bgColor
bgColor, TR object*
bgColor, TR.bgColor
bgProperties, BODY object*
bgProperties, BODY.bgProperties
Bias, filter - Emboss()*
Bias, filter - Engrave()*
body, Document object*
body, Document.body
Body, SendMail object*
Body, SendMail.Body
border, FRAMESET object*
border, FRAMESET.border
border, Image object*
border, Image.border
border, IMG object*
border, IMG.border
border, OBJECT object*
border, OBJECT.border
border, style object (2)*
border, style.border
border, TABLE object*

Property

2601

Property (continued)
border, TABLE.border
borderBottom, style object (2)*
borderBottom, style.borderBottom
borderBottomColor, style object (2)*
borderBottomColor,

style.borderBottomColor
BorderBottomStyle, style object (2)*
borderBottomStyle,

style.borderBottomStyle
borderBottomWidth, JSSTag object*
borderBottomWidth,

JSSTag.borderBottomWidth
borderBottomWidth, style object (2)*
borderBottomWidth,

style.borderBottomWidth
borderCollapse, style object (2)*
borderCollapse, style.borderCollapse
borderColor, Frame object*
borderColor, Frame.borderColor
borderColor, FRAMESET object*
borderColor, FRAMESET.borderColor
borderColor, JSSTag object*
borderColor, JSSTag.borderColor
borderColor, style object (2)*
borderColor, style.borderColor
borderColor, TABLE object*
borderColor, TABLE.borderColor
borderColor, TD object*
borderColor, TD.borderColor
borderColor, TH object*
borderColor, TH.borderColor
borderColor, TR object*
borderColor, TR.borderColor
borderColorDark, TABLE object*
borderColorDark, TABLE.borderColorDark
borderColorDark, TD object*
borderColorDark, TD.borderColorDark
borderColorDark, TH object*
borderColorDark, TH.borderColorDark
borderColorDark, TR object*
borderColorDark, TR.borderColorDark
borderColorLight, TABLE object*
borderColorLight, TABLE.borderColorLight
borderColorLight, TD object*
borderColorLight, TD.borderColorLight
borderColorLight, TH object*
borderColorLight, TH.borderColorLight
borderColorLight, TR object*
borderColorLight, TR.borderColorLight
borderLeft, style object (2)*
borderLeft, style.borderLeft
borderLeftColor, style object (2)*
borderLeftColor, style.borderLeftColor
borderLeftStyle, style object (2)*
borderLeftStyle, style.borderLeftStyle
borderLeftWidth, JSSTag object*
borderLeftWidth, JSSTag.borderLeftWidth
borderLeftWidth, style object (2)*
borderLeftWidth, style.borderLeftWidth
borderRight, style object (2)*
borderRight, style.borderRight
borderRightColor, style object (2)*
borderRightColor, style.borderRightColor
borderRightStyle, style object (2)*
borderRightStyle, style.borderRightStyle
borderRightWidth, JSSTag object*

borderRightWidth,
JSSTag.borderRightWidth

borderRightWidth, style object (2)*
borderRightWidth, style.borderRightWidth
borderSpacing, style object (2)*
borderSpacing, style.borderSpacing
borderStyle, JSSTag object*
borderStyle, JSSTag.borderStyle
borderStyle, style object (2)*
borderStyle, style.borderStyle
borderTop, style object (2)*
borderTop, style.borderTop
borderTopColor, style object (2)*
borderTopColor, style.borderTopColor
borderTopStyle, style object (2)*
borderTopStyle, style.borderTopStyle
borderTopWidth, JSSTag object*
borderTopWidth, JSSTag.borderTopWidth
borderTopWidth, style object (2)*
borderTopWidth, style.borderTopWidth
borderWidth, style object (2)*
borderWidth, style.borderWidth
bottom, Clip object*
bottom, Clip.bottom
bottom, Rect object*
bottom, Rect.bottom
bottom, style object (2)*
bottom, style.bottom
bottom, textRectangle object*
bottom, textRectangle.bottom
bottomMargin, BODY object*
bottomMargin, BODY.bottomMargin
boundingHeight, TextRange object*
boundingHeight, TextRange.boundingHeight
boundingLeft, TextRange object*
boundingLeft, TextRange.boundingLeft
boundingTop, TextRange object*
boundingTop, TextRange.boundingTop
boundingWidth, TextRange object*
boundingWidth, TextRange.boundingWidth
boxSizing, style object (2)*
boxSizing, style.boxSizing
browserLanguage, Navigator object*
browserLanguage,

Navigator.browserLanguage
browserLanguage,

Navigator.browserLanguage
bubbles, Event object*
bubbles, Event.bubbles
bubbles, MouseEvent object*
bubbles, MutationEvent object*
bufferDepth, Screen object*
bufferDepth, Screen.bufferDepth
button, Event object*
button, Event.button
button, MouseEvent object*
button, MouseEvent.button
callee, Arguments object*
callee, Arguments.callee
caller, Arguments object*
caller, Arguments.caller
caller, Function object*
caller, Function.caller
cancelable, Event object*
cancelable, Event.cancelable
cancelable, MouseEvent object*
cancelable, MutationEvent object*

Property

2602

cancelBubble, Event object*
cancelBubble, Event.cancelBubble
canHaveChildren, Element object*
canHaveChildren,

Element.canHaveChildren
canHaveHTML, Element object*
canHaveHTML, Element.canHaveHTML
canHaveHTML, XML object*
caption, TABLE object*
caption, TABLE.caption
captionSide, style object (2)*
captionSide, style.captionSide
Cc, SendMail object*
Cc, SendMail.Cc
cellIndex, TD object*
cellIndex, TD.cellIndex
cellIndex, TH object*
cellIndex, TH.cellIndex
cellPadding, TABLE object*
cellPadding, TABLE.cellPadding
cellSpacing, style object (2)*
cellSpacing, style.cellSpacing
cellSpacing, TABLE object*
cellSpacing, TABLE.cellSpacing
ch, COL object*
ch, COL.ch
ch, COLGROUP object*
ch, COLGROUP.ch
ch, TableColElement object*
ch, TableColElement.ch
ch, TD object*
ch, TD.ch
ch, TFOOT object*
ch, TFOOT.ch
ch, TH object*
ch, TH.ch
ch, THEAD object*
ch, THEAD.ch
ch, TR object*
ch, TR.ch
characterset, Document object*
characterset, Document.characterset
charCode, Event object*
charCode, Event.charCode
charset, Anchor object*
charset, Anchor.charset
charset, Document object*
charset, Document.charset
charset, LINK object*
charset, LINK.charset
charset, META object*
charset, META.charset
charset, SCRIPT object*
charset, SCRIPT.charset
charset, Url object*
charset, Url.charset
checked, Checkbox object*
checked, Checkbox.checked
checked, Input object*
checked, Input.checked
checked, RadioButton object*
checked, RadioButton.checked
chOff, COL object*
chOff, COL.chOff
chOff, COLGROUP object*
chOff, COLGROUP.chOff
chOff, TableColElement object*

chOff, TableColElement.chOff
chOff, TBODY object*
chOff, TD object*
chOff, TD.chOff
chOff, TFOOT object*
chOff, TFOOT.chOff
chOff, TH object*
chOff, TH.chOff
chOff, THEAD object*
chOff, THEAD.chOff
chOff, TR object*
chOff, TR.chOff
cite, BLOCKQUOTE object*
cite, BLOCKQUOTE.cite
cite, DEL object*
cite, DEL.cite
cite, INS object*
cite, INS.cite
cite, ModElement object*
cite, ModElement.cite
cite, Q object
classes
classid, OBJECT object*
classid, OBJECT.classid
className, Element object*
className, Element.className
className, Frame object*
className, JSSClasses object*
className, JSSClasses.className
clear, BR object*
clear, BR.clear
clear, JSSTag object*
clear, JSSTag.clear
clear, style object (2)*
clear, style.clear
client, response object*
client, response.client
clientHeight, Element object*
clientHeight, Element.clientHeight
clientInformation
clientInformation, Global object*
clientInformation, Window object*
clientInformation, Window.clientInformation
clientLeft, Element object*
clientLeft, Element.clientLeft
clientTop, Element object*
clientTop, Element.clientTop
clientWidth, Element object*
clientWidth, Element.clientWidth
clientX, Event object*
clientX, Event.clientX
clientX, MouseEvent object*
clientX, MouseEvent.clientX
clientY, Event object*
clientY, Event.clientY
clientY, MouseEvent object*
clientY, MouseEvent.clientY
clip, JSSTag object*
clip, Layer object*
clip, Layer.clip
clip, style object (2)*
clip, style.clip
clip.bottom, Layer.clip.bottom
clip.bottom, style.clip.bottom
clip.height, Layer.clip.height
clip.left, Layer.clip.left
clip.left, style.clip.left

Property

2603

Property (continued)
clip.right, Layer.clip.right
clip.right, style.clip.right
clip.top, Layer.clip.top
clip.top, style.clip.top
clip.width, Layer.clip.width
clipboardData
clipboardData, Global object*
clipboardData, Window object*
clipboardData, Window.clipboardData
cllientX, MouseEvent object*
closed
closed, Global object*
closed, Window object*
closed, Window.closed
code, Applet object*
code, Applet.code
code, EventException object*
code, EventException.code
code, OBJECT object*
code, OBJECT.code
codeBase, Applet object*
codeBase, Applet.codeBase
codeBase, OBJECT object*
codeBase, OBJECT.codeBase
codeType, OBJECT object*
codeType, OBJECT.codeType
color, BASEFONT object*
color, BASEFONT.color
Color, filter - Chroma()*
Color, filter - DropShadow()*
Color, filter - Glow()*
Color, filter - Mask()*
Color, filter - MaskFilter()*
Color, filter - Shadow()*
color, FONT object*
color, FONT.color
color, HR object*
color, HR.color
color, JSSTag object*
color, JSSTag.color
color, style object (2)*
color, style.color
colorDepth, Screen object*
colorDepth, Screen.colorDepth
colorProfile, style object (2)*
colorProfile, style.colorProfile
cols, FRAMESET object*
cols, FRAMESET.cols
cols, TABLE object*
cols, TABLE.cols
cols, TEXTAREA object*
cols, TEXTAREA.cols
colSpan, TD object*
colSpan, TD.colSpan
colSpan, TH object*
colSpan, TH.colSpan
Column, TextStream object*
Column, TextStream.Column
columnSpan, style object (2)*
columnSpan, style.columnSpan
compact, DIR object*
compact, DIR.compact
compact, DL object*
compact, DL.compact
compact, MENU object*
compact, MENU.compact

compact, OL object*
compact, OL.compact
compact, UL object*
compact, UL.compact
complete, Image object*
complete, Image.complete
complete, IMG object*
complete, IMG.complete
constructor, Array object*
constructor, Array.constructor
constructor, Boolean object*
constructor, Boolean.constructor
constructor, Crypto object*
constructor, Crypto.constructor
constructor, Date object*
constructor, Date.constructor
constructor, Enumerator object*
constructor, Enumerator.constructor
constructor, Error object*
constructor, Error.constructor
constructor, File object*
constructor, File.constructor
constructor, Function object*
constructor, Function.constructor
constructor, Image object*
constructor, Image.constructor
constructor, Lock object*
constructor, Lock.constructor
constructor, Math object*
constructor, Math.constructor
constructor, Navigator object*
constructor, Navigator.constructor
constructor, Number object*
constructor, Number.constructor
constructor, Object object*
constructor, Object.constructor
constructor, RegExp object*
constructor, RegExp.constructor
constructor, SendMail object*
constructor, SendMail.constructor
constructor, String object*
constructor, String.constructor
content, META object*
content, META.content
content, style object (2)*
content, style.content
contentEditable, Element object*
contentEditable, Element.contentEditable
cookie, Document object*
cookie, Document.cookie
cookieEnabled, Navigator object*
cookieEnabled, Navigator.cookieEnabled
coords, Anchor object*
coords, Anchor.coords
coords, Area object*
coords, Area.coords
coords, Url object*
coords, Url.coords
Count, Dictionary object*
Count, Dictionary.Count
count, Drives object*
Count, Files object*
Count, Files.Count
Count, Folders object*
Count, Folders.Count
counterIncrement, style object (2)*

Property

2604

Property (continued)
counterIncrement, style.counterIncrement
counterReset, style object (2)*
counterReset, style.counterReset
cpuClass, Navigator object*
cpuClass, Navigator.cpuClass
crypto
crypto, Global object*
crypto, Window object*
crypto, Window.crypto
cssFloat, style object (2)*
cssFloat, style.cssFloat
cssText, rule object*
cssText, rule.cssText
cssText, style object (2)*
cssText, style.cssText
cssText, StyleSheet object*
cssText, StyleSheet.cssText
ctrlKey, Event object*
ctrlKey, Event.ctrlKey
ctrlKey, MouseEvent object*
ctrlKey, MouseEvent.ctrlKey
cue, style object (2)*
cue, style.cue
cueAfter, style object (2)*
cueAfter, style.cueAfter
cueBefore, style object (2)*
cueBefore, style.cueBefore
current, History object*
current, History.current
currentStyle, Element object*
currentStyle, Element.currentStyle
currentTarget, Event object*
currentTarget, Event.currentTarget
currentTarget, MouseEvent object*
currentTarget, MutationEvent object*
cursor, style object (2)*
cursor, style.cursor
data, CharacterData object*
data, CharacterData.data
data, Event object*
data, Event.data
data, OBJECT object*
data, OBJECT.data
data, ProcessingInstruction object*
data, ProcessingInstruction.data
data, textNode object*
data, textNode.data
database, response object*
database, response.database
dataFld, A object
dataFld, Anchor object*
dataFld, Anchor.dataFld
dataFld, Applet object*
dataFld, BUTTON object*
dataFld, DIV object*
dataFld, Event object*
dataFld, File object*
dataFld, Frame object*
dataFld, IFRAME object*
dataFld, IMG object*
dataFld, Input object*
dataFld, Input.dataFld
dataFld, Label object*
dataFld, MARQUEE object*
dataFld, OBJECT object*
dataFld, Select object*

dataFld, SPAN object*
dataFld, TABLE object*
dataFormatAs, BUTTON object*
dataFormatAs, DIV object*
dataFormatAs, IMG object*
dataFormatAs, Input object*
dataFormatAs, Input.dataFormatAs
dataFormatAs, Label object*
dataFormatAs, MARQUEE object*
dataFormatAs, SPAN object*
dataPageSize, TABLE object*
dataPageSize, TABLE.dataPageSize
dataSrc, A object
dataSrc, Anchor object*
dataSrc, Anchor.dataSrc
dataSrc, Applet object*
dataSrc, BUTTON object*
dataSrc, DIV object*
dataSrc, File object*
dataSrc, Frame object*
dataSrc, IFRAME object*
dataSrc, IMG object*
dataSrc, Input object*
dataSrc, Input.dataSrc
dataSrc, Label object*
dataSrc, MARQUEE object*
dataSrc, OBJECT object*
dataSrc, Select object*
dataSrc, SPAN object*
dataSrc, TABLE object*
dataTransfer, Event object*
dataTransfer, Event.dataTransfer
DateCreated, File object*
DateCreated, File.DateCreated
DateCreated, Folder object*
DateCreated, Folder.DateCreated
DateLastAccessed, File object*
DateLastAccessed, File.DateLastAccessed
DateLastAccessed, Folder object*
DateLastAccessed,

Folder.DateLastAccessed
DateLastModified, File object*
DateLastModified, File.DateLastModified
DateLastModified, Folder object*
DateLastModified, Folder.DateLastModified
dateTime, DEL object*
dateTime, DEL.dateTime
dateTime, INS object*
dateTime, INS.dateTime
dateTime, ModElement object*
dateTime, ModElement.dateTime
declare, OBJECT object*
declare, OBJECT.declare
defaultCharset, Document object*
defaultCharset, Document.defaultCharset
defaultChecked, Checkbox object*
defaultChecked, Checkbox.defaultChecked
defaultChecked, Input object*
defaultChecked, Input.defaultChecked
defaultChecked, RadioButton object*
defaultChecked,

RadioButton.defaultChecked
defaultSelected, Input object*
defaultSelected, Option object*
defaultSelected, Option.defaultSelected
defaultStatus
defaultStatus, Frame object*

Property

2605

Property (continued)
defaultStatus, Frame.defaultStatus
defaultStatus, Global object*
defaultStatus, Window object*
defaultStatus, Window.defaultStatus
defaultValue, File object*
defaultValue, Image object*
defaultValue, IMG object*
defaultValue, Input object*
defaultValue, Input.defaultValue
defer, SCRIPT object*
defer, SCRIPT.defer
defer, XML object*
defer, XML.defer
description, Error object*
description, Error.description
description, JavaObject object*
description, MimeType object*
description, MimeType.description
description, Plugin object*
description, Plugin.description
description, URIError object*
designMode, Document object*
designMode, Document.designMode
detail, MouseEvent object*
detail, UIEvent object*
detail, UIEvent.detail
dialogArguments
dialogArguments, Global object*
dialogArguments, Window object*
dialogArguments, Window.dialogArguments
dialogHeight
dialogHeight, Global object*
dialogHeight, Window object*
dialogHeight, Window.dialogHeight
dialogLeft
dialogLeft, Global object*
dialogLeft, Window object*
dialogLeft, Window.dialogLeft
dialogTop
dialogTop, Global object*
dialogTop, Window object*
dialogTop, Window.dialogTop
dialogWidth
dialogWidth, Global object*
dialogWidth, Window object*
dialogWidth, Window.dialogWidth
dir, BDO object*
dir, BDO.dir
dir, Element object*
dir, Element.dir
dir, NOFRAMES object*
dir, NOFRAMES.dir
dir, NOSCRIPT object*
dir, NOSCRIPT.dir
Direction, filter - Blinds()*
Direction, filter - CheckerBoard()*
Direction, filter - MotionBlur()*
Direction, filter - Shadow()*
direction, MARQUEE object*
direction, MARQUEE.direction
direction, style object (2)*
direction, style.direction
disabled, Input object*
disabled, Input.disabled
disabled, LINK object*
disabled, LINK.disabled

disabled, OptGroupElement object*
disabled, OptGroupElement.disabled
disabled, STYLE object (1)*
disabled, STYLE.disabled
disabled, StyleSheet object*
disabled, StyleSheet.disabled
display, JSSTag object*
display, JSSTag.display
display, style object (2)*
display, style.display
doctype, Document object*
doctype, Document.doctype
document
document, Element object*
document, Element.document
document, Global object*
document, Layer object*
document, Layer.document
document, Window object*
document, Window.document
documentElement, Document object*
documentElement,

Document.documentElement
domain, Document object*
domain, Document.domain
Drive, File object*
Drive, File.Drive
Drive, Folder object*
Drive, Folder.Drive
DriveLetter, Drive object*
DriveLetter, Drive.DriveLetter
DriveType, Drive object*
DriveType, Drive.DriveType
dropEffect, dataTransfer object*
dropEffect, dataTransfer.dropEffect
Duration, filter - Barn()*
Duration, filter - Blinds()*
Duration, filter - CheckerBoard()*
Duration, filter - Fade()*
Duration, filter - GradientWipe()*
Duration, filter - Inset()*
Duration, filter - Iris()*
Duration, filter - Pixelate()*
Duration, filter - Pixelate()*
Duration, filter - RadialWipe()*
Duration, filter - RandomBars()*
Duration, filter - RandomDissolve()*
Duration, filter - Slide()*
Duration, filter - Spiral()*
Duration, filter - Stretch()*
Duration, filter - Strips()*
Duration, filter - Wheel()*
Duration, filter - Zigzag()*
Dx, filter - Matrix()*
Dy, filter - Matrix()*
dynsrc, IMG object*
dynsrc, IMG.dynsrc
effectAllowed, dataTransfer object*
effectAllowed, dataTransfer.effectAllowed
elements, Form object*
elements.length, Form.elements.length
elevation, style object (2)*
elevation, style.elevation
emptyCells, style object (2)*
emptyCells, style.emptyCells
Enabled, filter - Alpha()*
Enabled, filter - AlphaImageLoader()*

Property

2606

Enabled, filter - Barn()*
Enabled, filter - BasicImage()*
Enabled, filter - Blinds()*
Enabled, filter - Blur()*
Enabled, filter - CheckerBoard()*
Enabled, filter - Chroma()*
Enabled, filter - Compositor()*
Enabled, filter - DropShadow()*
Enabled, filter - Emboss()*
Enabled, filter - Engrave()*
Enabled, filter - Fade()*
Enabled, filter - Glow()*
Enabled, filter - Gradient()*
Enabled, filter - GradientWipe()*
Enabled, filter - Inset()*
Enabled, filter - Iris()*
Enabled, filter - Light()*
Enabled, filter - Matrix()*
Enabled, filter - MotionBlur()*
Enabled, filter - Pixelate()*
Enabled, filter - Pixelate()*
Enabled, filter - RadialWipe()*
Enabled, filter - RandomBars()*
Enabled, filter - RandomDissolve()*
Enabled, filter - Slide()*
Enabled, filter - Spiral()*
Enabled, filter - Stretch()*
Enabled, filter - Strips()*
Enabled, filter - Wave()*
Enabled, filter - Wheel()*
Enabled, filter - Zigzag()*
enabled, Filter object*
enabled, Filter.enabled
Enabled , filter - MaskFilter()*
Enabled , filter - Shadow()*
enabledPlugin, MimeType object*
enabledPlugin, MimeType.enabledPlugin
encoding, Form object*
encoding, Form.encoding
enctype, Form object*
enctype, Form.enctype
EndColor, filter - Gradient()*
EndColorStr, filter - Gradient()*
ErrorsTo, SendMail object*
ErrorsTo, SendMail.ErrorsTo
event
event, Global object*
event, SCRIPT object*
event, SCRIPT.event
event, Window object*
event, Window.event
event, XML object*
event, XML.event
eventPhase, Event object*
eventPhase, Event.eventPhase
eventPhase, MouseEvent object*
eventPhase, MutationEvent object*
expando, Document object*
expando, Document.expando
external
external, Global object*
external, Window object*
external, Window.external
face, BASEFONT object*
face, BASEFONT.face
face, FONT object*
face, FONT.face

fgColor, Document object*
fgColor, Document.fgColor
fileCreatedDate, Document object*
fileCreatedDate, Document.fileCreatedDate
fileCreatedDate, IMG object*
fileCreatedDate, IMG.fileCreatedDate
fileModifiedDate, Document object*
fileModifiedDate,

Document.fileModifiedDate
fileModifiedDate, IMG object*
fileModifiedDate, IMG.fileModifiedDate
filename, JavaObject object*
filename, Plugin object*
filename, Plugin.filename
fileSize, Document object*
fileSize, Document.fileSize
fileSize, IMG object*
fileSize, IMG.fileSize
FileSystem, Drive object*
FileSystem, Drive.FileSystem
fileUpdatedDate, IMG object*
fileUpdatedDate, IMG.fileUpdatedDate
filter, style object (2)*
filter, style.filter
FilterType, filter - Matrix()*
FinishOpacity, filter - Alpha()*
FinishX, filter - Alpha()*
FinishY, filter - Alpha()*
firstChild, Element object*
firstChild, Element.firstChild
firstChild, Node object*
firstChild, Node.firstChild
float, style object (2)*
float, style.float
floatStyle, style object (2)*
floatStyle, style.floatStyle
font, style object (2)*
font, style.font
fontFamily, JSSTag object*
fontFamily, JSSTag.fontFamily
fontFamily, style object (2)*
fontFamily, style.fontFamily
fontSize, JSSTag object*
fontSize, JSSTag.fontSize
fontSize, style object (2)*
fontSize, style.fontSize
fontSizeAdjust, style object (2)*
fontSizeAdjust, style.fontSizeAdjust
fontSmoothingEnabled, Screen object*
fontSmoothingEnabled,

Screen.fontSmoothingEnabled
fontStretch, style object (2)*
fontStretch, style.fontStretch
fontStyle, JSSTag object*
fontStyle, JSSTag.fontStyle
fontStyle, style object (2)*
fontStyle, style.fontStyle
fontVariant, style object (2)*
fontVariant, style.fontVariant
fontWeight, JSSTag object*
fontWeight, JSSTag.fontWeight
fontWeight, style object (2)*
fontWeight, style.fontWeight
form, Applet object*
form, BUTTON object*
form, FIELDSET object*
form, Input object*

Property

2607

Property (continued)
form, Input.form
form, ISINDEX object*
form, ISINDEX.form
form, Label object*
form, Legend object*
form, OBJECT object*
form, OBJECT.form
form, Option object*
form, Select object*
frame
frame, Global object*
frame, TABLE object*
frame, TABLE.frame
frame, Window object*
frame, Window.frame
frameBorder, Frame object*
frameBorder, Frame.frameBorder
frameBorder, FRAMESET object*
frameBorder, FRAMESET.frameBorder
frameBorder, IFRAME object*
frameBorder, IFRAME.frameBorder
frameRate
frameRate, Global object*
frameRate, Window object*
frameRate, Window.frameRate
frameSpacing, FRAMESET object*
frameSpacing, FRAMESET.frameSpacing
frameSpacing, IFRAME object*
frameSpacing, IFRAME.frameSpacing
FreeSpace, Drive object*
FreeSpace, Drive.FreeSpace
Freq, filter - Wave()*
From, SendMail object*
From, SendMail.From
fromElement, Event object*
fromElement, Event.fromElement
FullName, WScript object*
FullName, WScript.FullName
Function, filter - Compositor()*
global, RegExp object*
global, RegExp.global
GradientSize, filter - GradientWipe()*
GradientType, filter - Gradient()*
GrayScale, filter - BasicImage()*
GridSizeX, filter - Spiral()*
GridSizeX, filter - Zigzag()*
GridSizeY, filter - Spiral()*
GridSizeY, filter - Zigzag()*
hash, A object
hash, Anchor object*
hash, Anchor.hash
hash, Area object*
hash, Area.hash
hash, Location object*
hash, Location.hash
hash, Url object*
hash, Url.hash
headers, TD object*
headers, TD.headers
headers, TH object*
headers, TH.headers
height, Applet object*
height, Applet.height
height, Clip object*
height, Clip.height
height, Document object*

height, Document.height
height, Embed object*
height, Embed.height
height, Event object*
height, Event.height
height, Frame object*
height, Frame.height
height, IFRAME object*
height, IFRAME.height
height, Image object*
height, Image.height
height, IMG object*
height, IMG.height
height, JSSTag object*
height, JSSTag.height
height, MARQUEE object*
height, MARQUEE.height
height, OBJECT object*
height, OBJECT.height
height, Rect object*
height, Rect.height
height, Screen object*
height, Screen.height
height, style object (2)*
height, style.height
height, TABLE object*
height, TABLE.height
height, TD object*
height, TD.height
height, TH object*
height, TH.height
hidden, Embed object*
hidden, Embed.hidden
hidden, Layer object*
hidden, Layer.hidden
hideFocus, Element object*
hideFocus, Element.hideFocus
history
history, Global object*
history, Window object*
history, Window.history
host, A object
host, Anchor object*
host, Anchor.host
host, Area object*
host, Area.host
host, Location object*
host, Location.host
host, server object*
host, server.host
host, Url object*
host, Url.host
hostname, A object
hostname, Anchor object*
hostname, Anchor.hostname
hostname, Area object*
hostname, Area.hostname
hostname, Location object*
hostname, Location.hostname
hostname, server object*
hostname, server.hostname
hostname, Url object*
hostname, Url.hostname
href, A object
href, Anchor object*
href, Anchor.href
href, Area object*

Property

2608

href, Area.href
href, BASE object*
href, BASE.href
href, IMG object*
href, IMG.href
href, LINK object*
href, LINK.href
href, Location object*
href, Location.href
href, StyleSheet object*
href, StyleSheet.href
href, Url object*
href, Url.href
hreflang, Anchor object*
hreflang, Anchor.hreflang
hreflang, LINK object*
hreflang, LINK.hreflang
hreflang, Url object*
hreflang, Url.hreflang
hspace, Applet object*
hspace, Applet.hspace
hspace, IFRAME object*
hspace, IFRAME.hspace
hspace, Image object*
hspace, Image.hspace
hspace, IMG object*
hspace, IMG.hspace
hspace, MARQUEE object*
hspace, MARQUEE.hspace
hspace, OBJECT object*
hspace, OBJECT.hspace
htmlFor, Label object*
htmlFor, Label.htmlFor
htmlFor, SCRIPT object*
htmlFor, SCRIPT.htmlFor
htmlFor, XML object*
htmlText, TextRange object*
htmlText, TextRange.htmlText
httpEquiv, META object*
httpEquiv, META.httpEquiv
iccProfile, IMG object*
iccProfile, IMG.iccProfile
id, Element object*
id, Element.id
id, StyleSheet object*
id, StyleSheet.id
ids
ignoreCase, RegExp object*
ignoreCase, RegExp.ignoreCase
imageX, request object*
imageX, request.imageX
imageY, request object*
imageY, request.imageY
imeMode, style object (2)*
imeMode, style.imeMode
implementation, Document object*
implementation, Document.implementation
important, style object (2)*
important, style.important
indeterminate, Checkbox object*
indeterminate, Checkbox.indeterminate
index, Array object*
index, Array.index
index, Option object*
index, Option.index
index, RegExp object*
index, RegExp.index

innerHeight
innerHeight, Global object*
innerHeight, Window object*
innerHeight, Window.innerHeight
innerHTML, Element object*
innerHTML, Element.innerHTML
innerText, Element object*
innerText, Element.innerText
innerWidth
innerWidth, Global object*
innerWidth, Window object*
innerWidth, Window.innerWidth
input, Array object*
input, Array.input
Invert, filter - BasicImage()*
ip, request object*
ip, request.ip
IrisStyle, filter - Iris()*
isContentEditable, Element object*
isContentEditable,

Element.isContentEditable
isDisabled, Element object*
isDisabled, Element.isDisabled
isMap, IMG object*
isMap, IMG.isMap
IsReady, Drive object*
IsReady, Drive.IsReady
IsRootFolder, Folder object*
IsRootFolder, Folder.IsRootFolder
isTextEdit, Element object*
isTextEdit, Element.isTextEdit
isTextEdit, Frame object*
java
java, Global object*
java, Window object*
java, Window.java
keyCode, Event object*
keyCode, Event.keyCode
label, OptGroupElement object*
label, OptGroupElement.label
label, Option object*
label, Option.label
lang, Element object*
lang, Element.lang
lang, Frame object*
language, Element object*
language, Element.language
language, Frame object*
language, Navigator object*
language, Navigator.language
lastChild, Element object*
lastChild, Element.lastChild
lastChild, Node object*
lastChild, Node.lastChild
lastIndex, RegExp object*
lastIndex, RegExp.lastIndex
lastModified, Document object*
lastModified, Document.lastModified
layerX, Event object*
layerX, Event.layerX
layerY, Event object*
layerY, Event.layerY
layoutGrid, style object (2)*
layoutGrid, style.layoutGrid
layoutGridChar, style object (2)*
layoutGridChar, style.layoutGridChar

Property

2609

Property (continued)
layoutGridCharSpacing, style object (2)*
layoutGridCharSpacing,

style.layoutGridCharSpacing
layoutGridLine, style object (2)*
layoutGridLine, style.layoutGridLine
layoutGridMode, style object (2)*
layoutGridMode, style.layoutGridMode
layoutGridType, style object (2)*
layoutGridType, style.layoutGridType
left, Clip object*
left, Clip.left
left, JSSTag object*
left, Layer object*
left, Layer.left
left, Rect object*
left, Rect.left
left, style object (2)*
left, style.left
left, textRectangle object*
left, textRectangle.left
leftMargin, BODY object*
leftMargin, BODY.leftMargin
length
length, AnchorArray object*
length, AnchorArray.length
length, AppletArray object*
length, AppletArray.length
length, Arguments object*
length, Arguments.length
length, Array object*
length, Array.length
length, Attributes object*
length, Attributes.length
length, CharacterData object*
length, CharacterData.length
length, Collection object*
length, Collection.length
length, Date object*
length, Date.length
length, EmbedArray object*
length, EmbedArray.length
length, Filters object
length, Filters.length
length, Form object*
length, Form.length
length, FormArray object*
length, FormArray.length
length, FormElementsArray object
length, FormElementsArray.length
length, FrameArray object
length, FrameArray.length
length, Frames object*
length, Frames.length
length, Function object*
length, Function.length
length, Global object*
length, History object*
length, History.length
length, ImageArray object*
length, ImageArray.length
length, Input object*
length, InputArray object*
length, JavaArray object*
length, JavaArray.length
length, JavaObject object*
length, LayerArray object*

length, LayerArray.length
length, LinkArray object*
length, LinkArray.length
length, MimeTypeArray object*
length, MimeTypeArray.length
length, NamedNodeMap object*
length, NamedNodeMap.length
length, NodeList object*
length, NodeList.length
length, OptionsArray object*
length, OptionsArray.length
length, Plugin object*
length, Plugin.length
length, PluginArray object*
length, PluginArray.length
length, rows object
length, ScriptArray object*
length, ScriptArray.length
length, Select object*
length, Select.length
length, SelectorArray object*
length, SelectorArray.length
length, String object*
length, String.length
length, style object (2)*
length, style.length
length, StyleSheetList object*
length, StyleSheetList.length
length, textNode object*
length, textNode.length
length, Window object*
length, Window.length
letterSpacing, style object (2)*
letterSpacing, style.letterSpacing
LightStrength, filter - Wave()*
Line, TextStream object*
Line, TextStream.Line
lineBreak, style object (2)*
lineBreak, style.lineBreak
lineHeight, JSSTag object*
lineHeight, JSSTag.lineHeight
lineHeight, style object (2)*
lineHeight, style.lineHeight
link, BODY object*
link, BODY.link
linkColor, Document object*
linkColor, Document.linkColor
listStyle, style object (2)*
listStyle, style.listStyle
listStyleImage, style object (2)*
listStyleImage, style.listStyleImage
listStylePosition, style object (2)*
listStylePosition, style.listStylePosition
listStyleType, JSSTag object*
listStyleType, JSSTag.listStyleType
listStyleType, style object (2)*
listStyleType, style.listStyleType
location
location, Document object*
location, Document.location
location, Global object*
location, Window object*
location, Window.location
locationbar
locationbar, Global object*
locationbar, Window object*
locationbar, Window.locationbar

Property

2610

longDesc, Frame object*
longDesc, Frame.longDesc
longDesc, IFRAME object*
longDesc, IFRAME.longDesc
longDesc, IMG object*
longDesc, IMG.longDesc
loop, BGSOUND object*
loop, BGSOUND.loop
loop, IMG object*
loop, IMG.loop
loop, MARQUEE object*
loop, MARQUEE.loop
lowsrc, Image object*
lowsrc, Image.lowsrc
lowsrc, IMG object*
lowsrc, IMG.lowsrc
M11, filter - Matrix()*
M12, filter - Matrix()*
M21, filter - Matrix()*
M22, filter - Matrix()*
MakeShadow, filter - Blur()*
margin, FIELDSET object*
margin, FIELDSET.margin
margin, style object (2)*
margin, style.margin
marginBottom, JSSTag object*
marginBottom, JSSTag.marginBottom
marginBottom, style object (2)*
marginBottom, style.marginBottom
marginHeight, Frame object*
marginHeight, Frame.marginHeight
marginHeight, IFRAME object*
marginHeight, IFRAME.marginHeight
marginLeft, JSSTag object*
marginLeft, JSSTag.marginLeft
marginLeft, style object (2)*
marginLeft, style.marginLeft
marginRight, JSSTag object*
marginRight, JSSTag.marginRight
marginRight, style object (2)*
marginRight, style.marginRight
marginTop, JSSTag object*
marginTop, JSSTag.marginTop
marginTop, style object (2)*
marginTop, style.marginTop
marginWidth, Frame object*
marginWidth, Frame.marginWidth
marginWidth, IFRAME object*
marginWidth, IFRAME.marginWidth
markerOffset, style object (2)*
markerOffset, style.markerOffset
marks, style object (2)*
marks, style.marks
Mask, filter - BasicImage()*
MaskColor, filter - BasicImage()*
Math, Global object*
Math, Window object*
maxHeight, style object (2)*
maxHeight, style.maxHeight
maxLength, Input object*
maxLength, Input.maxLength
maxLength, Password object*
maxLength, Password.maxLength
maxLength, TextCell object*
maxLength, TextCell.maxLength
MaxSquare, filter - Pixelate()*
MaxSquare, filter - Pixelate()*

maxWidth, style object (2)*
maxWidth, style.maxWidth
media, LINK object*
media, LINK.media
media, STYLE object (1)*
media, STYLE.media
media, StyleSheet object*
media, StyleSheet.media
menuArguments, external object*
menuArguments, external.menuArguments
menubar
menubar, Global object*
menubar, Window object*
menubar, Window.menubar
message, Error object*
message, Error.message
message, URIError object*
metaKey, MouseEvent object*
metaKey, MouseEvent.metaKey
method, Form object*
method, Form.method
method, request object*
method, request.method
Methods, A object
Methods, Anchor object*
Methods, Anchor.Methods
Methods, Url object*
Methods, Url.Methods
mimeType, A object
mimeType, Anchor object*
mimeType, Anchor.mimeType
mimeType, Url object*
mimeType, Url.mimeType
minHeight, style object (2)*
minHeight, style.minHeight
minWidth, style object (2)*
minWidth, style.minWidth
Mirror, filter - BasicImage()*
modifiers, Event object*
modifiers, Event.modifiers
Motion, filter - Barn()*
Motion, filter - GradientWipe()*
Motion, filter - Iris()*
Motion, filter - Strips()*
multiple, Select object*
multiple, Select.multiple
name
name, Anchor object*
name, Anchor.name
name, Applet object*
name, Applet.name
name, Area object*
name, Area.name
name, Attribute object*
name, Attribute.name
name, BUTTON object*
name, BUTTON.name
name, Doctype object*
name, Doctype.name
name, Embed object*
name, Embed.name
name, Error object*
Name, Error.name
Name, File object*
Name, File.Name
Name, Folder object*
name, Folder.Name

Property

2611

Property (continued)
name, Form object*
name, Form.name
name, Frame object*
name, Frame.name
name, Global object*
name, IFRAME object*
name, IFRAME.name
name, Image object*
name, Image.name
name, IMG object*
name, IMG.name
name, Input object*
name, Input.name
name, JavaObject object*
name, Layer object*
name, Layer.name
name, Map object*
name, Map.name
name, META object*
name, META.name
name, MimeType object*
name, MimeType.name
name, Object object*
name, OBJECT object*
name, Object.name
name, OBJECT.name
name, ParamElement object*
name, ParamElement.name
name, Plugin object*
name, Plugin.name
name, URIError object*
name, Url object*
name, Url.name
name, Window object*
Name, Window.name
Name, WScript object*
name, WScript.Name
nameProp, A object
nameProp, Anchor object*
nameProp, Anchor.nameProp
nameProp, Url object*
nameProp, Url.nameProp
navigator
navigator, Global object*
navigator, Window object*
navigator, Window.navigator
netscape, Global object*
netscape, Window object*
netscape, Window.netscape
Network, WScript object*
Network, WScript.Network
newValue, MutationEvent object*
newValue, MutationEvent.newValue
next, History object*
next, History.next
nextSibling, Element object*
nextSibling, Element.nextSibling
nextSibling, Node object*
nextSibling, Node.nextSibling
nodeName, Attribute object*
nodeName, Attribute.nodeName
nodeName, Element object*
nodeName, Element.nodeName
nodeName, Node object*
nodeName, Node.nodeName
nodeType, Attribute object*

nodeType, Attribute.nodeType
nodeType, Element object*
nodeType, Element.nodeType
nodeType, Node object*
nodeType, Node.nodeType
nodeValue, Attribute object*
nodeValue, Attribute.nodeValue
nodeValue, Element object*
nodeValue, Element.nodeValue
nodeValue, Node object*
nodeValue, Node.nodeValue
noHref, Area object*
noHref, Area.noHref
noResize, Frame object*
noResize, Frame.noResize
noResize, IFRAME object*
noResize, IFRAME.noResize
noShade, HR object*
noShade, HR.noShade
notationName, Entity object*
notationName, Entity.notationName
noWrap, BODY object*
noWrap, BODY.noWrap
noWrap, DD object*
noWrap, DD.noWrap
noWrap, DT object*
noWrap, DT.noWrap
noWrap, TD object*
noWrap, TD.noWrap
noWrap, TH object*
noWrap, TH.noWrap
number, Error object*
number, Error.number
number, URIError object*
object, Applet object*
object, Applet.object
object, OBJECT object*
object, OBJECT.object
offScreenBuffering
offScreenBuffering, Global object*
offscreenBuffering, Window object*
offscreenBuffering,

Window.offscreenBuffering
offsetHeight, Element object*
offsetHeight, Element.offsetHeight
offsetLeft, Element object*
offsetLeft, Element.offsetLeft
offsetParent, Element object*
offsetParent, Element.offsetParent
offsetTop, Element object*
offsetTop, Element.offsetTop
offsetWidth, Element object*
offsetWidth, Element.offsetWidth
offsetX, Event object*
offsetX, Event.offsetX
offsetY, Event object*
offsetY, Event.offsetY
OffX, filter - DropShadow()*
OffY, filter - DropShadow()*
onblur, Window.onblur
ondragdrop, Window.ondragdrop
onerror, Window.onerror
onevent, Element.onevent
onevent, Input.onevent
onfocus, Window.onfocus
onLine, Navigator object*
onLine, Navigator.onLine

Property

2612

onload, Window.onload
onmove, Window.onmove
onresize, Window.onresize
onunload, Window.onunload
Opacity, filter - Alpha()*
Opacity, filter - BasicImage()*
opener
opener, Global object*
opener, Window object*
opener, Window.opener
opsProfile, Navigator object*
opsProfile, Navigator.opsProfile
Organization, SendMail object*
Organization, SendMail.Organization
Orientation, filter - Barn()*
Orientation, filter - RandomBars()*
orphans, style object (2)*
orphans, style.orphans
outerHeight
outerHeight, Global object*
outerHeight, Window object*
outerHeight, Window.outerHeight
outerHTML, Element object*
outerHTML, Element.outerHTML
outerText, Element object*
outerText, Element.outerText
outerWidth
outerWidth, Global object*
outerWidth, Window object*
outerWidth, Window.outerWidth
outline, style object (2)*
outline, style.outline
outlineColor, style object (2)*
outlineColor, style.outlineColor
outlineStyle, style object (2)*
outlineStyle, style.outlineStyle
outlineWidth, style object (2)*
outlineWidth, style.outlineWidth
overflow, style object (2)*
overflow, style.overflow
overflowX, style object (2)*
overflowX, style.overflowX
overflowY, style object (2)*
overflowY, style.overflowY
Overlap, filter - Fade()*
ownerDocument, Element object*
ownerDocument, Element.ownerDocument
ownerDocument, Node object*
ownerDocument, Node.ownerDocument
ownerNode, StyleSheet object*
ownerNode, StyleSheet.ownerNode
owningElement, StyleSheet object*
owningElement, StyleSheet.owningElement
owningNode, StyleSheet object*
owningNode, StyleSheet.owningNode
Packages
Packages, Global object*
Packages, Window object*
Packages, Window.Packages
padding, Legend object*
padding, Legend.padding
padding, style object (2)*
padding, style.padding
paddingBottom, JSSTag object*
paddingBottom, JSSTag.paddingBottom
paddingBottom, style object (2)*
paddingBottom, style.paddingBottom

paddingLeft, JSSTag object*
paddingLeft, JSSTag.paddingLeft
paddingLeft, style object (2)*
paddingLeft, style.paddingLeft
paddingRight, JSSTag object*
paddingRight, JSSTag.paddingRight
paddingRight, style object (2)*
paddingRight, style.paddingRight
paddingTop, JSSTag object*
paddingTop, JSSTag.paddingTop
paddingTop, style object (2)*
paddingTop, style.paddingTop
page, style object (2)*
page, style.page
pageBreakAfter, style object (2)*
pageBreakAfter, style.pageBreakAfter
pageBreakBefore, style object (2)*
pageBreakBefore, style.pageBreakBefore
pageBreakInside, style object (2)*
pageBreakInside, style.pageBreakInside
pageX, Event object*
pageX, Event.pageX
pageX, Layer object*
pageX, Layer.pageX
pageXOffset
pageXOffset, Global object*
pageXOffset, Window object*
pageXOffset, Window.pageXOffset
pageY, Event object*
pageY, Event.pageY
pageY, Layer object*
pageY, Layer.pageY
pageYOffset
pageYOffset, Global object*
pageYOffset, Window object*
pageYOffset, Window.pageYOffset
palette, Embed object*
palette, Embed.palette
parent
parent, Frame object*
parent, Frame.parent
parent, Global object*
parent, Window object*
parent, Window.parent
parentElement, Element object*
parentElement, Element.parentElement
parentElement, Frame object*
ParentFolder, File object*
ParentFolder, File.ParentFolder
ParentFolder, Folder object*
ParentFolder, Folder.ParentFolder
parentLayer, Layer object*
parentLayer, Layer.parentLayer
parentNode, Element object*
parentNode, Element.parentNode
parentNode, Node object*
parentNode, Node.parentNode
parentStyleSheet, rule object*
parentStyleSheet, rule.parentStyleSheet
parentStyleSheet, StyleSheet object*
parentStyleSheet,

StyleSheet.parentStyleSheet
parentTextEdit, Element object*
parentTextEdit, Element.parentTextEdit
parentTextEdit, Frame object*
parentWindow, Document object*

Property

2613

Property (continued)
parentWindow, Document.parentWindow
Path, Drive object*
Path, Drive.Path
Path, File object*
Path, File.Path
Path, Folder object*
Path, Folder.Path
Path, WScript object*
Path, WScript.Path
pathname, A object
pathname, Anchor object*
pathname, Anchor.pathname
pathname, Area object*
pathname, Area.pathname
pathname, Location object*
pathname, Location.pathname
pathname, Url object*
pathname, Url.pathname
pause, style object (2)*
pause, style.pause
pauseAfter, style object (2)*
pauseAfter, style.pauseAfter
pauseBefore, style object (2)*
pauseBefore, style.pauseBefore
Percent, filter - Barn()*
Percent, filter - Blinds()*
Percent, filter - Fade()*
Percent, filter - GradientWipe()*
Percent, filter - Inset()*
Percent, filter - Iris()*
Percent, filter - Pixelate()*
Percent, filter - Pixelate()*
Percent, filter - RadialWipe()*
Percent, filter - RandomBars()*
Percent, filter - RandomDissolve()*
Percent, filter - Slide()*
Percent, filter - Spiral()*
Percent, filter - Stretch()*
Percent, filter - Strips()*
Percent, filter - Wheel()*
Percent, filter - Zigzag()*
personalbar
personalbar, Global object*
personalbar, Window object*
personalbar, Window.personalbar
Phase, filter - Wave()*
pitch, style object (2)*
pitch, style.pitch
pitchRange, style object (2)*
pitchRange, style.pitchRange
pixelBottom, style object (2)*
pixelBottom, style.pixelBottom
pixelDepth, Screen object*
pixelDepth, Screen.pixelDepth
pixelHeight, style object (2)*
pixelHeight, style.pixelHeight
pixelLeft, style object (2)*
pixelLeft, style.pixelLeft
PixelRadius, filter - Blur()*
pixelRight, style object (2)*
pixelRight, style.pixelRight
pixelTop, style object (2)*
pixelTop, style.pixelTop
pixelWidth, style object (2)*
pixelWidth, style.pixelWidth
pkcs11, Global object*

pkcs11, Window object*
pkcs11, Window.pkcs11
platform, Navigator object*
platform, Navigator.platform
playDuring, style object (2)*
playDuring, style.playDuring
pluginspage, Embed object*
pluginspage, Embed.pluginspage
port, A object
port, Anchor object*
port, Anchor.port
port, Area object*
port, Area.port
port, Location object*
port, Location.port
port, server object*
port, server.port
port, Url object*
port, Url.port
posBottom, style object (2)*
posBottom, style.posBottom
posHeight, style object (2)*
posHeight, style.posHeight
position, style object (2)*
position, style.position
Positive , filter - DropShadow()*
posLeft, style object (2)*
posLeft, style.posLeft
posRight, style object (2)*
posRight, style.posRight
posTop, style object (2)*
posTop, style.posTop
posWidth, style object (2)*
posWidth, style.posWidth
previous, History object*
previous, History.previous
previousSibling, Element object*
previousSibling, Element.previousSibling
previousSibling, Node object*
previousSibling, Node.previousSibling
prevValue, MutationEvent object*
prevValue, MutationEvent.prevValue
profile, HEAD object*
profile, HEAD.profile
project, response object*
project, response.project
prompt, ISINDEX object*
prompt, ISINDEX object*
prompt, ISINDEX.prompt
propertyName, Event object*
propertyName, Event.propertyName
protocol, A object
protocol, Anchor object*
protocol, Anchor.protocol
protocol, Area object*
protocol, Area.protocol
protocol, Document object*
protocol, Document.protocol
protocol, IMG object*
protocol, IMG.protocol
protocol, Location object*
protocol, Location.protocol
protocol, request object*
protocol, request.protocol
protocol, server object*
protocol, server.protocol
protocol, Url object*

Property

2614

protocol, Url.protocol
protocolLong, A object
protocolLong, Anchor object*
protocolLong, Anchor.protocolLong
protocolLong, Url object*
protocolLong, Url.protocolLong
prototype, Array object*
prototype, Array.prototype
prototype, Boolean object*
prototype, Boolean.prototype
prototype, Connection object*
prototype, Connection.prototype
prototype, Cursor.prototype
prototype, database object*
prototype, database.prototype
prototype, Date object*
prototype, Date.prototype
prototype, DbPool object*
prototype, DbPool.prototype
prototype, Error object*
prototype, Error.prototype
prototype, File object*
prototype, File.prototype
prototype, Function object*
prototype, Function.prototype
prototype, IMG object*
prototype, IMG.prototype
prototype, Lock object*
prototype, Lock.prototype
prototype, Number object*
prototype, Number.prototype
prototype, Object object*
prototype, Object.prototype
prototype, Option object*
prototype, Option.prototype
prototype, RegExp object*
prototype, RegExp.prototype
prototype, ResultSet object*
prototype, ResultSet.prototype
prototype, SendMail object*
prototype, SendMail.prototype
prototype, Stproc object*
prototype, Stproc.prototype
prototype, String object*
prototype, String.prototype
publicId, Entity object*
publicId, Entity.publicId
publicId, Notation object*
publicId, Notation.publicId
qualifier, Event object*
quotes, style object (2)*
quotes, style.quotes
readOnly, Input object*
readOnly, Input.readOnly
readOnly, Password object*
readOnly, Password.readOnly
readOnly, rule object*
readOnly, rule.readOnly
readOnly, StyleSheet object*
readOnly, StyleSheet.readOnly
readOnly, TEXTAREA object*
readOnly, TEXTAREA.readOnly
readOnly, TextCell object*
readOnly, TextCell.readOnly
readyState, Document object*
readyState, Document.readyState
readyState, Element object*

readyState, Element.readyState
readyState, Embed object*
readyState, Embed.readyState
readyState, IMG object*
readyState, IMG.readyState
readyState, LINK object*
readyState, LINK.readyState
readyState, OBJECT object*
readyState, OBJECT.readyState
readyState, SCRIPT object*
readyState, SCRIPT.readyState
readyState, STYLE object (1)*
readyState, STYLE.readyState
reason, Event object*
reason, Event.reason
recordNumber, Anchor object*
recordNumber, Anchor.recordNumber
recordNumber, BODY object*
recordNumber, BODY.recordNumber
recordNumber, Element object*
recordNumber, File object*
recordNumber, Input object*
recordNumber, Input.recordNumber
recordNumber, SCRIPT object*
recordNumber, SCRIPT.recordNumber
recordset, Event object*
referrer, Document object*
referrer, Document.referrer
RegExp["$&"]
rel, A object
rel, Anchor object*
rel, Anchor.rel
rel, LINK object*
rel, LINK.rel
rel, Url object*
rel, Url.rel
relatedNode, MutationEvent object*
relatedNode, MutationEvent.relatedNode
relatedTarget, MouseEvent object*
relatedTarget, MouseEvent.relatedTarget
renderingIntent, style object (2)*
renderingIntent, style.renderingIntent
repeat, Event object*
repeat, Event.repeat
ReplyTo, SendMail object*
ReplyTo, SendMail.ReplyTo
request, response object*
request, response.request
returnValue
returnValue, Event object*
returnValue, Event.returnValue
returnValue, Global object*
returnValue, Window object*
returnValue, Window.returnValue
rev, Anchor object*
rev, Anchor.rev
rev, LINK object*
rev, LINK.rev
rev, Url object*
rev, Url.rev
richness, style object (2)*
richness, style.richness
right, Clip object*
right, Clip.right
right, Rect object*
right, Rect.right
right, style object (2)*

Property

2615

Property (continued)
right, style.right
right, textRectangle object*
right, textRectangle.right
rightMargin, BODY object*
rightMargin, BODY.rightMargin
RootFolder, Drive object*
RootFolder, Drive.RootFolder
Rotation, filter - BasicImage()*
rowIndex, TR object*
rowIndex, TR.rowIndex
rows, FRAMESET object*
rows, FRAMESET.rows
rows, TBODY object*
rows, TEXTAREA object*
rows, TEXTAREA.rows
rowSpan, style object (2)*
rowSpan, style.rowSpan
rowSpan, TD object*
rowSpan, TD.rowSpan
rowSpan, TH object*
rowSpan, TH.rowSpan
rubyAlign, style object (2)*
rubyAlign, style.rubyAlign
rubyOverhang, style object (2)*
rubyOverhang, style.rubyOverhang
rubyPosition, style object (2)*
rubyPosition, style.rubyPosition
rules, TABLE object*
rules, TABLE.rules
runtimeStyle, Element object*
runtimeStyle, Element.runtimeStyle
runtimeStyle, rule object*
runtimeStyle, rule.runtimeStyle
scheme, META object*
scheme, META.scheme
scope, TD object*
scope, TD.scope
scope, TH object*
scope, TH.scope
scopeName, Element object*
scopeName, Element.scopeName
screen
screen, Global object*
screen, Window object*
screen, Window.screen
screenLeft
screenLeft, Global object*
screenLeft, Window object*
screenLeft, Window.screenLeft
screenTop
screenTop, Global object*
screenTop, Window object*
screenTop, Window.screenTop
screenX
screenX, Event object*
screenX, Event.screenX
screenX, Global object*
screenX, MouseEvent object*
screenX, MouseEvent.screenX
screenX, Window object*
screenX, Window.screenX
screenY
screenY, Event object*
screenY, Event.screenY
screenY, Global object*
screenY, MouseEvent object*

screenY, MouseEvent.screenY
screenY, Window object*
screenY, Window.screenY
ScriptFullName, WScript object*
ScriptFullName, WScript.ScriptFullName
ScriptName, WScript object*
ScriptName, WScript.ScriptName
scroll, BODY object*
scroll, BODY.scroll
scrollAmount, MARQUEE object*
scrollAmount, MARQUEE.scrollAmount
scrollbar3dLightColor, style object (2)*
scrollbar3dLightColor,

style.scrollbar3dLightColor
scrollbarArrowColor, style object (2)*
scrollbarArrowColor,

style.scrollbarArrowColor
scrollbarBaseColor, style object (2)*
scrollbarBaseColor,

style.scrollbarBaseColor
scrollbarDarkShadowColor, style object

(2)*
scrollbarDarkShadowColor,

style.scrollbarDarkShadowColor
scrollbarFaceColor, style object (2)*
scrollbarFaceColor,

style.scrollbarFaceColor
scrollbarHighlightColor, style object (2)*
scrollbarHighlightColor,

style.scrollbarHighlightColor
scrollbars
scrollbars, Global object*
scrollbars, Window object*
scrollbars, Window.scrollbars
scrollbarShadowColor, style object (2)*
scrollbarShadowColor,

style.scrollbarShadowColor
scrollDelay, MARQUEE object*
scrollDelay, MARQUEE.scrollDelay
scrollHeight, Element object*
scrollHeight, Element.scrollHeight
scrolling, Frame object*
scrolling, Frame.scrolling
scrolling, IFRAME object*
scrolling, IFRAME.scrolling
scrollLeft, Element object*
scrollLeft, Element.scrollLeft
scrollTop, Element object*
scrollTop, Element.scrollTop
scrollWidth, Element object*
scrollWidth, Element.scrollWidth
search, A object
search, Anchor object*
search, Anchor.search
search, Area object*
search, Area.search
search, Location object*
search, Location.search
search, Url object*
search, Url.search
sectionRowIndex, TR object*
sectionRowIndex, TR.sectionRowIndex
secure
secure, Global object*
secure, Window object*
secure, Window.secure
securityPolicy, Navigator object*

Property

2616

securityPolicy, Navigator.securityPolicy
selected, Input object*
selected, Option object*
selected, Option.selected
selectedIndex, Input object*
selectedIndex, Select object*
selectedIndex, Select.selectedIndex
selection, Document object*
selection, Document.selection
selectorText, rule object*
selectorText, rule.selectorText
self
self, Global object*
self, Window object*
self, Window.self
SerialNumber, Drive object*
SerialNumber, Drive.SerialNumber
server, response object*
server, response.server
ShadowOpacity, filter - Blur()*
shape, Anchor object*
shape, Anchor.shape
shape, Area object*
shape, Area.shape
shape, Url object*
shape, Url.shape
ShareName, Drive object*
ShareName, Drive.ShareName
shiftKey, Event object*
shiftKey, Event.shiftKey
shiftKey, MouseEvent object*
shiftKey, MouseEvent.shiftKey
ShortName, File object*
ShortName, File.ShortName
ShortName, Folder object*
ShortName, Folder.ShortName
ShortPath, File object*
ShortPath, File.ShortPath
ShortPath, Folder object*
ShortPath, Folder.ShortPath
siblingAbove, Layer object*
siblingAbove, Layer.siblingAbove
siblingBelow, Layer object*
siblingBelow, Layer.siblingBelow
sidebar, Window object*
sidebar, Window.sidebar
size, BASEFONT object*
size, BASEFONT.size
Size, File object*
Size, File.Size
size, FileUpload object*
size, FileUpload.size
Size, Folder object*
Size, Folder.Size
size, FONT object*
size, FONT.size
size, HR object*
size, HR.size
size, Image object*
size, IMG object*
size, Input object*
size, Input.size
size, Password object*
size, Password.size
size, Select object*
size, Select.size
size, style object (2)*

size, style.size
size, TextCell object*
size, TextCell.size
SizingMethod, filter - AlphaImageLoader()*
SizingMethod, filter - Matrix()*
SlideStyle, filter - Slide()*
Smtpserver, SendMail object*
Smtpserver, SendMail.Smtpserver
source, RegExp object*
source, RegExp.source
sourceIndex, Element object*
sourceIndex, Element.sourceIndex
sourceIndex, Frame object*
span, COL object*
span, COL.span
span, COLGROUP object*
span, COLGROUP.span
span, TableColElement object*
span, TableColElement.span
speak, style object (2)*
speak, style.speak
speakDate, style object (2)*
speakDate, style.speakDate
speakHeader, style object (2)*
speakHeader, style.speakHeader
speakNumeral, style object (2)*
speakNumeral, style.speakNumeral
speakPunctuation, style object (2)*
speakPunctuation, style.speakPunctuation
speakTime, style object (2)*
speakTime, style.speakTime
specified, Attribute object*
specified, Attribute.specified
speechRate, style object (2)*
speechRate, style.speechRate
spokes, filter - Wheel()*
SquaresX, filter - CheckerBoard()*
SquaresY, filter - CheckerBoard()*
src, Applet object*
src, Applet.src
src, Background object*
src, Background.src
src, BGSOUND object*
src, BGSOUND.src
src, Embed object*
src, Embed.src
Src, filter - AlphaImageLoader()*
src, Frame object*
src, Frame.src
src, IFRAME object*
src, IFRAME.src
src, Image object*
src, Image.src
src, IMG object*
src, IMG.src
src, Input object*
src, Input.src
src, Layer object*
src, Layer.src
src, SCRIPT object*
src, SCRIPT.src
src, XML object*
src, XML.src
srcElement, Event object*
srcElement, Event.srcElement
srcFilter, Event object*
srcFilter, Event.srcFilter

Property

2617

Property (continued)
srcUrn, Event object*
standby, OBJECT object*
standby, OBJECT.standby
start, IMG object*
start, IMG.start
start, OL object*
start, OL.start
start, UL object*
StartColor, filter - Gradient()*
StartColorStr, filter - Gradient()*
StartX, filter - Alpha()*
StartY, filter - Alpha()*
status
status, BUTTON object*
status, Checkbox object*
status, Checkbox.status
status, filter - Barn()*
status, filter - Blinds()*
status, filter - Fade()*
status, filter - GradientWipe()*
status, filter - Inset()*
status, filter - Iris()*
status, filter - Pixelate()*
status, filter - Pixelate()*
status, filter - RadialWipe()*
status, filter - RandomBars()*
status, filter - RandomDissolve()*
status, filter - Slide()*
status, filter - Spiral()*
status, filter - Stretch()*
status, filter - Strips()*
status, filter - Wheel()*
status, filter - Zigzag()*
status, Global object*
status, Input object*
status, RadioButton object*
status, RadioButton.status
status, Window object*
status, Window.status
statusbar
statusbar, Global object*
statusbar, Window object*
statusbar, Window.statusbar
StdErr, WScript object*
StdErr, WScript.StdErr
StdIn, WScript object*
StdIn, WScript.StdIn
StdOut, WScript object*
StdOut, WScript.StdOut
Strength, filter - Glow()*
Strength, filter - MotionBlur()*
Strength, filter - Wave()*
stress, style object (2)*
stress, style.stress
StretchStyle, filter - Stretch()*
style, Element object*
style, Element.style
Style, filter - Alpha()*
style, Frame object*
style, rule object*
style, rule.style
styleFloat, style object (2)*
styleFloat, style.styleFloat
SubFolders, Folder object*
Subject, SendMail object*
Subject, SendMail.Subject

suffixes, MimeType object*
summary, TABLE object*
summary, TABLE.summary
sun, Global object*
sun, Window object*
sun, Window.sun
systemId, Entity object*
systemId, Entity.systemId
systemId, Notation object*
systemId, Notation.systemId
systemLanguage, Navigator object*
systemLanguage,

Navigator.systemLanguage
tabIndex, ! object*
tabIndex, A object
tabIndex, Anchor object*
tabIndex, Anchor.tabIndex
tabIndex, Applet object*
tabIndex, Area object*
tabIndex, Area.tabIndex
tabIndex, BODY object*
tabIndex, BODY.tabIndex
tabIndex, BUTTON object*
tabIndex, Embed object*
tabIndex, FIELDSET object*
tabIndex, Form object*
tabIndex, Form.tabIndex
tabIndex, FRAMESET object*
tabIndex, FRAMESET.tabIndex
tabIndex, IFRAME object*
tabIndex, IFRAME.tabIndex
tabIndex, IMG object*
tabIndex, Input object*
tabIndex, Input.tabIndex
tabIndex, Label object*
tabIndex, Legend object*
tabIndex, MARQUEE object*
tabIndex, NOFRAMES object*
tabIndex, NOSCRIPT object*
tabIndex, OBJECT object*
tabIndex, OBJECT.tabIndex
tabIndex, Select object*
tabIndex, TABLE object*
tabIndex, TBODY object*
tabIndex, TD object*
tabIndex, Url object*
tableLayout, style object (2)*
tableLayout, style.tableLayout
tagName, Element object*
tagName, Element.tagName
tagName, Frame object*
tags
tagUrn, Element object*
tagUrn, Element.tagUrn
target, A object
target, Anchor object*
target, Anchor.target
target, Area object*
target, Area.target
target, BASE object*
target, BASE.target
target, Event object*
target, Event.target
target, Form object*
target, Form.target
target, Location object*
target, Location.target

Property

2618

target, Map object*
target, Map.target
target, MouseEvent object*
target, MutationEvent object*
target, ProcessingInstruction object*
target, ProcessingInstruction.target
target, Url object*
target, Url.target
text, Anchor object*
text, Anchor.text
text, Area object*
text, Area.text
text, BODY object*
text, BODY.text
text, COMMENT object*
text, COMMENT.text
text, Location object*
text, Location.text
text, Option object*
text, Option.text
text, SCRIPT object*
text, SCRIPT.text
text, TextRange object*
text, TextRange.text
text, TITLE object*
text, TITLE.text
text, Url object*
text, Url.text
text, XML object*
text, XML.text
textAlign, JSSTag object*
textAlign, JSSTag.textAlign
textAlign, style object (2)*
textAlign, style.textAlign
textAutospace, style object (2)*
textAutospace, style.textAutospace
textDecoration, JSSTag object*
textDecoration, JSSTag.textDecoration
textDecoration, style object (2)*
textDecoration, style.textDecoration
textDecorationBlink, style object (2)*
textDecorationBlink,

style.textDecorationBlink
textDecorationLineThrough, style object

(2)*
textDecorationLineThrough,

style.textDecorationLineThrough
textDecorationNone, style object (2)*
textDecorationNone,

style.textDecorationNone
textDecorationOverline, style object (2)*
textDecorationOverline,

style.textDecorationOverline
textDecorationUnderline, style object (2)*
textDecorationUnderline,

style.textDecorationUnderline
textIndent, JSSTag object*
textIndent, JSSTag.textIndent
textIndent, style object (2)*
textIndent, style.textIndent
textJustify, style object (2)*
textJustify, style.textJustify
textKashidaSpace, style object (2)*
textKashidaSpace, style.textKashidaSpace
textShadow, style object (2)*
textShadow, style.textShadow
textTransform, JSSTag object*

textTransform, JSSTag.textTransform
textTransform, style object (2)*
textTransform, style.textTransform
textUnderlinePosition, style object (2)*
textUnderlinePosition,

style.textUnderlinePosition
tFoot, TABLE object*
tFoot, TABLE.tFoot
tHead, TABLE object*
tHead, TABLE.tHead
timeStamp, Event object*
timeStamp, Event.timeStamp
timeStamp, MouseEvent object*
timeStamp, MutationEvent object*
title, Document object*
title, Document.title
title, Element object*
title, Element.title
title, Frame object*
title, HTML object*
title, HTML.title
title, LINK object*
title, LINK.title
title, StyleSheet object*
title, StyleSheet.title
To, SendMail object*
To, SendMail.To
toElement, Event object*
toElement, Event.toElement
toolbar
toolbar, Global object*
toolbar, Window object*
toolbar, Window.toolbar
top
top, Clip object*
top, Clip.top
top, Frame object*
top, Frame.top
top, Global object*
top, JSSTag object*
top, Layer object*
top, Layer.top
top, Rect object*
top, Rect.top
top, style object (2)*
top, style.top
top, textRectangle object*
top, textRectangle.top
top, Window object*
top, Window.top
topMargin, BODY object*
topMargin, BODY.topMargin
TotalSize, Drive object*
TotalSize, Drive.TotalSize
trueSpeed, MARQUEE object*
trueSpeed, MARQUEE.trueSpeed
type, Anchor object*
type, Anchor.type
type, Button object*
type, BUTTON object*
type, Button.type
type, BUTTON.type
type, Checkbox object*
type, Checkbox.type
type, Event object*
type, Event.type
Type, File object*

Property

2619

Property (continued)
Type, File.Type
type, FileUpload object*
type, FileUpload.type
Type, Folder object*
Type, Folder.Type
type, Hidden object*
type, Hidden.type
type, Input object*
type, Input.type
type, LI object*
type, LI.type
type, LINK object*
type, LINK.type
type, MimeType object*
type, MimeType.type
type, MouseEvent object*
type, MutationEvent object*
type, OBJECT object*
type, OBJECT.type
type, OL object*
type, OL.type
type, ParamElement object*
type, ParamElement.type
type, Password object*
type, Password.type
type, RadioButton object*
type, RadioButton.type
type, ResetButton object*
type, ResetButton.type
type, SCRIPT object*
type, SCRIPT.type
type, Select object*
type, Select.type
type, Selection object*
type, selection.type
type, STYLE object (1)*
type, STYLE.type
type, StyleSheet object*
type, StyleSheet.type
type, SubmitButton object*
type, SubmitButton.type
type, TEXTAREA object*
type, TEXTAREA.type
type, TextCell object*
type, TextCell.type
type, UL object*
type, UL.type
type, Url object*
type, Url.type
type, XML object*
type, XML.type
unicodeBidi, style object (2)*
unicodeBidi, style.unicodeBidi
uniqueID, Document object*
uniqueID, Document.uniqueID
uniqueID, Element object*
uniqueID, Element.uniqueID
units, Embed object*
units, Embed.units
updateInterval, Screen object*
updateInterval, Screen.updateInterval
URL, Document object*
URL, Document.URL
url, META object*
url, META.url
urn, Anchor object*

urn, Anchor.urn
urn, Url object*
urn, Url.urn
useMap, IMG object*
useMap, IMG.useMap
useMap, OBJECT object*
useMap, OBJECT.useMap
userAgent, Navigator object*
userAgent, Navigator.userAgent
userLanguage, Navigator object*
userLanguage, Navigator.userLanguage
userProfile, Navigator object*
userProfile, Navigator.userProfile
vAlign, CAPTION object*
vAlign, CAPTION object*
vAlign, CAPTION.vAlign
vAlign, COL object*
vAlign, COL.vAlign
vAlign, COLGROUP object*
vAlign, COLGROUP.vAlign
vAlign, HEAD object*
vAlign, HEAD.vAlign
vAlign, TableColElement object*
vAlign, TableColElement.vAlign
vAlign, TBODY object*
vAlign, TBODY.vAlign
vAlign, TD object*
vAlign, TD.vAlign
vAlign, TFOOT object*
vAlign, TFOOT.vAlign
vAlign, TH object*
vAlign, TH.vAlign
vAlign, THEAD object*
vAlign, THEAD.vAlign
vAlign, TR object*
vAlign, TR.vAlign
value, Attribute object*
value, Attribute.value
value, Button object*
value, BUTTON object*
value, Button.value
value, BUTTON.value
value, Checkbox object*
value, Checkbox.value
value, File object*
value, FileUpload object*
value, FileUpload.value
value, Hidden object*
value, Hidden.value
value, Input object*
value, Input.value
value, LI object*
value, LI.value
value, Option object*
value, Option.value
value, ParamElement object*
value, ParamElement.value
value, Password object*
value, Password.value
value, RadioButton object*
value, RadioButton.value
value, ResetButton object*
value, ResetButton.value
value, Select object*
value, Select.value
value, SubmitButton object*
value, SubmitButton.value

Property

2620

value, TEXTAREA object*
value, TEXTAREA.value
value, TextCell object*
value, TextCell.value
valueType, ParamElement object*
valueType, ParamElement.valueType
version, HTML object*
version, HTML.version
Version, WScript object*
Version, WScript.Version
verticalAlign, JSSTag object*
verticalAlign, JSSTag.verticalAlign
verticalAlign, style object (2)*
verticalAlign, style.verticalAlign
view, MouseEvent object*
view, UIEvent object*
view, UIEvent.view
visibility, JSSTag object*
visibility, Layer object*
visibility, Layer.visibility
visibility, style object (2)*
visibility, style.visibility
visible, Bar object*
visible, Bar.visible
vLink, BODY object*
vLink, BODY.vLink
vlinkColor, Document object*
vlinkColor, Document.vlinkColor
voiceFamily, style object (2)*
voiceFamily, style.voiceFamily
volume, BGSOUND object*
volume, BGSOUND.volume
volume, style object (2)*
volume, style.volume
VolumeName, Drive object*
VolumeName, Drive.VolumeName
vspace, Applet object*
vspace, Applet.vspace
vspace, IFRAME object*
vspace, IFRAME.vspace
vspace, Image object*
vspace, Image.vspace
vspace, IMG object*
vspace, IMG.vspace
vspace, MARQUEE object*
vspace, MARQUEE.vspace
vspace, OBJECT object*
vspace, OBJECT.vspace
which, Event object*
which, Event.which
whiteSpace, JSSTag object*
whiteSpace, JSSTag.whiteSpace
whiteSpace, style object (2)*
whiteSpace, style.whiteSpace
widows, style object (2)*
widows, style.widows
width, Applet object*
width, Applet.width
width, Clip object*
width, Clip.width
width, COL object*
width, COL.width
width, COLGROUP object*
width, COLGROUP.width
width, Document object*
width, Document.width
width, Embed object*

width, Embed.width
width, Event object*
width, Event.width
width, HR object*
width, HR.width
width, IFRAME object*
width, IFRAME.width
width, Image object*
width, Image.width
width, IMG object*
width, IMG.width
width, JSSTag object*
width, JSSTag.width
width, MARQUEE object*
width, MARQUEE.width
width, OBJECT object*
width, OBJECT.width
width, PRE object*
width, PRE.width
width, Rect object*
width, Rect.width
width, Screen object*
width, Screen.width
width, style object (2)*
width, style.width
width, TABLE object*
width, TABLE.width
width, TableColElement object*
width, TableColElement.width
width, TD object*
width, TD.width
width, TH object*
width, TH.width
window
window, Global object*
window, Layer object*
window, Layer.window
window, Window object*
window, Window.window
WipeStyle, filter - GradientWipe()*
WipeStyle, filter - RadialWipe()*
wordBreak, style object (2)*
wordBreak, style.wordBreak
wordSpacing, style object (2)*
wordSpacing, style.wordSpacing
wordWrap, style object (2)*
wordWrap, style.wordWrap
wrap, TEXTAREA object*
wrap, TEXTAREA.wrap
writingMode, style object (2)*
writingMode, style.writingMode
x, Anchor object*
x, Anchor.x
x, Area object*
x, Area.x
x, Event object*
x, Event.x
x, Image object*
x, Image.x
x, Layer object*
x, Layer.x
x, Location object*
x, Location.x
x, Url object*
x, Url.x
XMLDocument, XML.XMLDocument
XRay, filter - BasicImage()*

Property

2621

Property (continued)
y, Anchor object*
y, Anchor.y
y, Area object*
y, Area.y
y, Event object*
y, Event.y
y, Image object*
y, Image.y
y, Layer object*
y, Layer.y
y, Location object*
y, Location.y
y, Url object*
y, Url.y
zIndex, JSSTag object*
zIndex, Layer object*
zIndex, Layer.zIndex
zIndex, style object (2)*
zIndex, style.zIndex
zoom, style object (2)*
zoom, style.zoom

Property attribute
DontDelete*
DontEnumerate*
ReadOnly*

Property/internal
Array.Class*
Boolean.Class*
Class*
Construct*
Date.Class*
Function.Class*
Image.Class*
Number.Class*
Object.Class*
String.Class*

Property/static
$n (Numbered argument)
$n, RegExp.$n*
input, RegExp.input*
lastMatch, RegExp.lastMatch*
lastParent, RegExp.lastParent*
leftContext, RegExp.leftContext*
multiline, RegExp.multiline*
rightContext, RegExp.rightContext*
RegExp["$'"]
RegExp["$*"]
RegExp["$`"]
RegExp["$+"]

Request method
about: URL*
clsid: URL*
file: URL*
ftp: URL*
http: URL*
https: URL*
JavaScript interactive URL*
javascript: URL*
livescript: URL

mailbox: URL*
mailto: URL
mocha: URL
nethelp: URL*
news: URL*
snews: URL*
telnet: URL*
view-source: URL*
wysiwyg:*

Reserved word
abstract
boolean*
byte*
char*
class*
const*
debugger
double*
enum*
extends
final
float*
goto*
implements
int*
interface
long*
native
package
private
protected
public
short*
static
super
synchronized
throws
transient
volatile*

Security privilege
UniversalBrowserAccess*
UniversalBrowserRead*
UniversalBrowserWrite*
UniversalFileRead*
UniversalPreferencesRead*
UniversalPreferencesWrite*
UniversalSendMail*

Security related
AuthentiCode*
Cryptoki*
Data-tainting*
Requesting privileges*
Same origin*
Signed scripts*

Selector (see also Label)
else if(...) ...
if(...) ... else ...*
if(...) ...*
switch(...) ... case: ... default: ...*

mailto:URL

Web browser

2622

Simulated functionality
isAlnum()
isAlpha()
isCtrl()
isDigit()
isElementProperty()
isGraph()
isLower()
isObjectEqual()
isODigit()
isPrint()
isPunct()
isSpace()
isUpper()
isXDigit()
Math.cosec()
Math.cosh()
Math.cot()
Math.sec()
Math.sinh()

Special file (see also File
extension)
config.jsc
preferences.js
prefs.js
proxy.pac*

Standard (see also Background,
Definition, Overview)
ASCII*
ATVEF*
CSS level 1*
CSS level 2*
CSS*
CSS-P*
DHTML*
DOM - Level 0*
DOM - Level 1*
DOM - Level 2*
DOM - Level 3*
DOM Events*
DOM*
DVB-MHP*
ECMA*
ECMAScript - edition 2*
ECMAScript - edition 3*
ECMAScript version*
HTML*
IEEE 754*
ISO 3166*
ISO 639
JavaScript version*
JScript version*
PDF*
Unicode*
Universal coordinated time*
UTC
WAP*
WML*
WScript*
XML*

Statement
Block { }
break*
continue*
Empty statement (;)*
export*
finally ...*
import*
return*
throw*
try ... catch ... finally*
with ...*

Time calculation
Date from time
Date number
Day from year
Day number
Day within year
Days in year
In leap year
MakeDate()
MakeDay()
MakeTime()
Month from time
Month number
Time from year
Time value
Time within day
TimeClip()
Week day
Year from time
Year number

Type
Boolean*
null*
Number*
Object*
String*
undefined type*

Useful tip (see also Advice, Pitfall)
Determining the object type
Image animation
Image preloading
Object inspector
Off-screen image caching
Queue manipulation
Server-side browser detection
Stack manipulation
Static variable

Web browser
iCab*
Internet Explorer*
MSIE
Netscape Navigator*
Opera*

	Preliminaries
	Credits
	About the Author

	Introduction
	Who is This Book For?
	The Structure of the Book
	Differences between Browsers
	The Future
	What Do I Need to Use This Book?
	Conventions Used in This Book
	Customer Support

	A
	A object (Object/HTML)
	ABBR object (Object/HTML)
	about: URL (Request method)
	abstract (Reserved word)
	AbstractView object (Object/DOM)
	Accessor method (Definition)
	ACRONYM object (Object/HTML)
	object (Object/internal)
	Active Server Pages (Product)
	ActiveX (Product)
	ActiveXObject object (Object/JScript)
	ActiveXObject() (Constructor)
	Add (+) (Operator/additive)
	Add then assign (+=) (Operator/assignment)
	Adding JavaScript to HTML (Advice)
	Additive expression (Definition)
	Additive operator (Definition)
	ADDRESS object (Object/HTML)
	ADO (Product)
	Adornments (Definition)
	Aggregate type (Definition)
	alert() (Method)
	Alias (Definition)
	Alpha() (Filter/visual)
	AlphaImageLoader() (Filter/visual)
	Anchor object (Object/HTML)
	Anchor() (Constructor)
	Anchor.accessKey (Property)
	Anchor.blur() (Method)
	Anchor.charset (Property)
	Anchor.coords (Property)
	Anchor.dataFld (Property)
	Anchor.dataSrc (Property)
	Anchor.focus() (Method)
	Anchor.hash (Property)
	Anchor.host (Property)
	Anchor.hostname (Property)
	Anchor.href (Property)
	Anchor.hreflang (Property)
	Anchor.Methods (Property)
	Anchor.mimeType (Property)
	Anchor.name (Property)
	Anchor.nameProp (Property)
	Anchor.pathname (Property)
	Anchor.port (Property)
	Anchor.protocol (Property)
	Anchor.protocolLong (Property)
	Anchor.recordNumber (Property)
	Anchor.rel (Property)
	Anchor.rev (Property)
	Anchor.search (Property)
	Anchor.shape (Property)
	Anchor.tabIndex (Property)
	Anchor.target (Property)
	Anchor.text (Property)
	Anchor.type (Property)
	Anchor.urn (Property)
	Anchor.x (Property)
	Anchor.y (Property)
	AnchorArray object (Object/DOM)
	AnchorArray.length (Property)
	Anonymous code (Definition)
	Anonymous function (Definition)
	Applet object (Object/HTML)
	Applet() (Constructor)
	Applet.align (Property)
	Applet.alt (Property)
	Applet.altHTML (Property)
	Applet.archive (Property)
	Applet.code (Property)
	Applet.codeBase (Property)
	Applet.height (Property)
	Applet.hspace (Property)
	Applet.name (Property)
	Applet.object (Property)
	Applet.src (Property)
	Applet.start() (Method)
	Applet.stop() (Method)
	Applet.vspace (Property)
	Applet.width (Property)
	AppletArray object (Object/DOM)
	AppletArray.length (Property)
	Area object (Object/HTML)
	Area.accessKey (Property)
	Area.add() (Method)
	Area.alt (Property)
	Area.coords (Property)
	Area.hash (Property)
	Area.host (Property)
	Area.hostname (Property)
	Area.href (Property)
	Area.name (Property)
	Area.noHref (Property)
	Area.pathname (Property)
	Area.port (Property)
	Area.protocol (Property)
	Area.search (Property)
	Area.shape (Property)
	Area.tabIndex (Property)
	Area.target (Property)
	Area.text (Property)
	Area.x (Property)
	Area.y (Property)
	areas[] (Collection)
	argc parameter (Definition)
	Argument (Definition)
	Argument list (Definition)
	Arguments object (Object/core)
	Arguments.callee (Property)
	Arguments.caller (Property)
	Arguments.length (Property)
	arguments[] (Collection)
	argv parameter (Definition)
	Arithmetic constant (Definition)
	Arithmetic operator (Definition)
	Arithmetic type (Definition)
	Array index delimiter ([]) (Delimiter)
	Array literal (Declaration)
	Array object (Object/core)
	Array() (Constructor)
	Array() (Function)
	Array.Class (Property/internal)
	Array.concat() (Method)
	Array.constructor (Property)
	Array.index (Property)
	Array.input (Property)
	Array.join() (Method)
	Array.length (Property)
	Array.pop() (Method)
	Array.prototype (Property)
	Array.push() (Method)
	Array.reverse() (Method)
	Array.shift() (Method)
	Array.slice() (Method)
	Array.sort() (Method)
	Array.splice() (Method)
	Array.toLocaleString() (Method)
	Array.toSource() (Method)
	Array.toString() (Method)
	Array.unshift() (Method)
	Array.valueOf() (Method)
	Array simulation (Definition)
	ASCII (Standard)
	ASP (Object model)
	ASP (Product)
	Assign value (=) (Operator/assignment)
	Assignment expression (Definition)
	Assignment operator (Definition)
	Associative array indexing (Advice)
	Associativity (Definition)
	atob() (Method)
	attachEvent() (Method)
	Attr object (Object/DOM)
	Attribute object (Object/DOM)
	Attribute.name (Property)
	Attribute.nodeName (Property)
	Attribute.nodeType (Property)
	Attribute.nodeValue (Property)
	Attribute.specified (Property)
	Attribute.value (Property)
	Attributes object (Object/DOM)
	Attributes.length (Property)
	ATVEF (Standard)
	Aural style sheets (Definition)
	AuthentiCode (Security related)
	Automatic semi-colon insertion (Definition)
	Automation object (Object/JScript)

	B
	B object (Object/HTML)
	back() (Method)
	Background object (Object/browser)
	src (Property)
	Back-quote (`) (External code call)
	Bar object (Object/Navigator)
	visibility (Pitfall)
	Bar.visible (Property)
	Barn() (Filter/transition)
	BASE object (Object/HTML)
	BASE.href (Property)
	BASE.target (Property)
	BASEFONT object (Object/HTML)
	BASEFONT.color (Property)
	BASEFONT.face (Property)
	BASEFONT.size (Property)
	Basic type (Definition)
	BasicImage() (Filter/visual)
	BDO object (Object/HTML)
	BDO.dir (Property)
	BeanConnect (Definition)
	Behavior (Definition)
	BGSOUND object (Object/HTML)
	BGSOUND.balance (Property)
	BGSOUND.loop (Property)
	BGSOUND.src (Property)
	BGSOUND.volume (Property)
	Big endian (Definition)
	BIG object (Object/HTML)
	Binary bitwise operator (Definition)
	Binary logical operator (Definition)
	Binary operator (Definition)
	Binding (Definition)
	Bit (Definition)
	Bit-field (Definition)
	Bitwise AND (&) (Operator/bitwise)
	Bitwise expression (Definition)
	Bitwise NOT - complement (~) (Operator/bitwise)
	Bitwise operator (Definition)
	Bitwise OR (|) (Operator/bitwise)
	Bitwise OR then assign (|=) (Operator/ assignment)
	Bitwise shift left (<<) (Operator/bitwise)
	Bitwise shift left then assign (<<=) (Operator/ assignment)
	Bitwise shift operator (Definition)
	Bitwise shift right (>>) (Operator/bitwise)
	Bitwise shift right and assign (>>=) (Operator/ assignment)
	Bitwise unsigned shift right (>>>) (Operator/ bitwise)
	Bitwise unsigned shift right and assign (>>>=) (Operator/ assignment)
	Bitwise XOR (^) (Operator/bitwise)
	Bitwise XOR and assign (^=) (Operator/ assignment)
	BlendTrans() (Filter/blend)
	Blinds() (Filter/transition)
	blob object (Object/NES)
	blobImage() (Method)
	blob.blobLink() (Method)
	Block { } (Statement)
	Block-level tag (Definition)
	BLOCKQUOTE object (Object/HTML)
	BLOCKQUOTE.cite (Property)
	Blur() (Filter/visual)
	blur() (Method)
	BODY object (Object/HTML)
	BODY.aLink (Property)
	BODY.background (Property)
	BODY.bgColor (Property)
	BODY.bgProperties (Property)
	BODY.bottomMargin (Property)
	BODY.controlRange[] (Collection)
	BODY.createControlRange() (Method)
	BODY.createTextRange() (Method)
	BODY.leftMargin (Property)
	BODY.link (Property)
	BODY.noWrap (Property)
	BODY.recordNumber (Property)
	BODY.rightMargin (Property)
	BODY.scroll (Property)
	BODY.tabIndex (Property)
	BODY.text (Property)
	BODY.topMargin (Property)
	BODY.vLink (Property)
	Bookmarklets (Advice)
	Boolean (Primitive value)
	boolean (Reserved word)
	Boolean (Type)
	Boolean literal (Primitive value)
	Boolean object (Object/core)
	Boolean() (Constructor)
	Boolean() (Function)
	Boolean.Class (Property/internal)
	Boolean.constructor (Property)
	Boolean.prototype (Property)
	Boolean.toSource() (Method)
	Boolean.toString() (Method)
	Boolean.valueOf() (Method)
	BR object (Object/HTML)
	BR.clear (Property)
	Braces { } (Delimiter)
	break (Statement)
	Broken-down time (Definition)
	Browser (Object model)
	Browser detection (Advice)
	Browser version compatibility (Advice)
	Browser wars (Definition)
	btoa() (Method)
	Built-in function (Definition)
	Built-in method (Definition)
	Built-in object (Definition)
	Button object (Object/DOM)
	Button.handleEvent() (Method)
	Button.type (Property)
	Button.value (Property)
	BUTTON object (Object/HTML)
	BUTTON.accept (Property)
	BUTTON.alt (Property)
	BUTTON.name (Property)
	BUTTON.type (Property)
	BUTTON.value (Property)
	By reference (Definition)
	By value (Definition)
	byte (Reserved word)

	C
	Calendar time (Definition)
	Call (Function/internal)
	Call a function (Definition)
	Call by reference (Definition)
	Call by value (Definition)
	Call object (Object/internal)
	Call-back event (Definition)
	Calling event handlers (Definition)
	CanPut() (Function/internal)
	CAPTION object (Object/HTML)
	CAPTION.align (Property)
	CAPTION.vAlign (Property)
	captureEvents() (Function)
	case ... : (Label)
	Case Sensitivity (Definition)
	Cast operator (Definition)
	catch(...) (Function)
	Category of an object (Definition)
	CDATASection object (Object/DOM)
	CENTER object (Object/HTML)
	cfg (File extension)
	cgi (File extension)
	CGI-Driven JavaScript (Definition)
	char (Reserved word)
	Character constant (Definition)
	Character display semantics (Definition)
	Character entity (Definition)
	Character handling (Advice)
	Character set (Definition)
	Character testing (Definition)
	Character value (Definition)
	Character-case mapping (Overview)
	CharacterData object (Object/DOM)
	CharacterData.appendData() (Method)
	CharacterData.data (Property)
	CharacterData.deleteData() (Method)
	CharacterData.insertData() (Method)
	CharacterData.length (Property)
	CharacterData.replaceData() (Method)
	CharacterData.substringData() (Method)
	Checkbox object (Object/DOM)
	Checkbox.checked (Property)
	Checkbox.defaultChecked (Property)
	Checkbox.handleEvent() (Method)
	Checkbox.indeterminate (Property)
	Checkbox.status (Property)
	Checkbox.type (Property)
	Checkbox.value (Property)
	CheckerBoard() (Filter/transition)
	ChildNodes object (Object/DOM)
	Chroma() (Filter/visual)
	CITE object (Object/HTML)
	Class (Property/internal)
	class (Reserved word)
	Class method (Definition)
	Class variable (Definition)
	CLASS="..." (HTML Tag Attribute)
	classes (Property)
	CLASSPATH (Environment variable)
	clearInterval() (Method)
	clearTimeout() (Method)
	client object (Object/NES)
	client.destroy() (Method)
	client.expiration() (Method)
	Client pull techniques (Definition)
	Client-side JavaScript (Definition)
	clientInformation (Property)
	Clip object (Object/Navigator)
	Clip.bottom (Property)
	Clip.height (Property)
	Clip.left (Property)
	Clip.right (Property)
	Clip.top (Property)
	Clip.width (Property)
	clipboardData (Property)
	clipboardData object (Object/JScript)
	close() (Method)
	closed (Property)
	Closure object (Object/internal)
	(Object/Navigator)
	Closure.__parent__ (Property)
	Closure.__proto__ (Property)
	clsid: URL (Request method)
	Code block delimiter {} (Delimiter)
	CODE object (Object/HTML)
	Code signing (Definition)
	COL object (Object/HTML)
	COL.align (Property)
	COL.ch (Property)
	COL.chOff (Property)
	COL.span (Property)
	COL.vAlign (Property)
	COL.width (Property)
	COLGROUP object (Object/HTML)
	COLGROUP .align (Property)
	COLGROUP .ch (Property)
	COLGROUP .chOff (Property)
	COLGROUP .span (Property)
	COLGROUP .vAlign (Property)
	COLGROUP .width (Property)
	Collation sequence (Definition)
	Collection object (Object/DOM)
	Item() (Method)
	Collection.length (Property)
	Collection.namedItem() (Method)
	Collection.tags() (Method)
	Colon (:) (Delimiter)
	Color names (Definition)
	Color value (Advice)
	Comma expression (Definition)
	Comma operator (,) (Delimiter)
	Comment (Definition)
	Comment (// and /* ... */) (Delimiter)
	COMMENT object (Object/DOM)
	COMMENT.text (Property)
	Compatibility (Definition)
	Compatibility strategies (Advice)
	Completion type (Definition)
	Compliance (Overview)
	Compositor() (Filter/visual)
	Compound statement (Definition)
	Concatenate (+) (Operator/string)
	Concatenate then assign (+=) (Operator/ assignment)
	Conditional code block (Pre-processor)
	Conditional comment (HTML Tag)
	Conditional expression (Definition)
	Conditional operator (Definition)
	Conditionally execute (?:) (Operator/conditional)
	config.jsc (Special file)
	confirm() (Method)
	Conformance (Definition)
	Connection object (Object/NES)
	beginTransaction() (Method)
	Connection.commitTransaction() (Method)
	Connection.connected() (Method)
	Connection.cursor() (Method)
	Connection.execute() (Method)
	Connection.majorErrorCode() (Method)
	Connection.majorErrorMessage() (Method)
	Connection.minorErrorCode() (Method)
	Connection.minorErrorMessage() (Method)
	Connection.prototype (Property)
	Connection.release() (Method)
	Connection.rollbackTransaction() (Method)
	Connection.SQLTable() (Method)
	Connection.storedProc() (Method)
	Connection.toString() (Method)
	const (Reserved word)
	Constant (Definition)
	Constant expression (Definition)
	Constraint (Definition)
	Construct (Property/internal)
	Constructor function (Definition)
	constructor property (Definition)
	constructor.name (Definition)
	Content Model (Definition)
	contextual() (Method)
	continue (Statement)
	Control character (Definition)
	Conversion (Definition)
	Conversion to a Boolean (Definition)
	Conversion to a number (Definition)
	Conversion to a string (Definition)
	Conversion to an object (Definition)
	Cookie (Advice)
	Cookie domain (Attribute)
	Cookie expires (Attribute)
	Cookie path (Attribute)
	Cookie secure (Attribute)
	Cookie value (Attribute)
	Copying objects (Advice)
	Core JavaScript (Definition)
	Core Object (Definition)
	Cross-browser compatibility (Definition)
	Cross-platform compatibility (Definition)
	crypto (Property)
	Crypto object (Object/Navigator)
	constructor (Property)
	Crypto.random() (Function)
	Crypto.signText() (Function)
	Cryptoki (Security related)
	CSS (Standard)
	CSS level 1 (Standard)
	CSS level 2 (Standard)
	CSS-P (Standard)
	Currency symbol (Definition)
	currentStyle object (Object/JScript)
	Cursor object (Object/NES)
	Cursor.<column_name> (Property)
	Cursor.blobImage() (Method)
	Cursor.blobLink() (Method)
	Cursor.close() (Method)
	Cursor.columnName() (Method)
	Cursor.columns() (Method)
	Cursor.deleteRow() (Method)
	Cursor.insertRow() (Method)
	Cursor.next() (Method)
	Cursor.prototype (Property)
	Cursor.updateRow() (Method)
	Custom object (Definition)

	D
	Data Type (Definition)
	Data-tainting (Security related)
	database object (Object/NES)
	beginTransaction() (Method)
	database.commitTransaction() (Method)
	database.connect() (Method)
	database.connected() (Method)
	database.cursor() (Method)
	database.disconnect() (Method)
	database.execute() (Method)
	database.majorErrorCode() (Method)
	database.majorErrorMessage() (Method)
	database.minorErrorCode() (Method)
	database.minorErrorMessage() (Method)
	database.prototype (Property)
	database.rollbackTransaction() (Method)
	database.SQLTable() (Method)
	database.storedProc() (Method)
	database.storedProcArgs() (Method)
	database.toString() (Method)
	dataTransfer object (Object/JScript)
	clearData() (Method)
	dataTransfer.dropEffect (Property)
	dataTransfer.effectAllowed (Property)
	dataTransfer.getData() (Method)
	dataTransfer.setData() (Method)
	Date and time (Definition)
	Date constant (Definition)
	Date from time (Time calculation)
	Date number (Time calculation)
	Date object (Object/core)
	Date() (Constructor)
	Date() (Function)
	Date.Class (Property/internal)
	Date.constructor (Property)
	Date.getDate() (Method)
	Date.getDay() (Method)
	Date.getFullYear() (Method)
	Date.getHours() (Method)
	Date.getMilliseconds() (Method)
	Date.getMinutes() (Method)
	Date.getMonth() (Method)
	Date.getSeconds() (Method)
	Date.getTime() (Method)
	Date.getTimezoneOffset() (Method)
	Date.getUTCDate() (Method)
	Date.getUTCDay() (Method)
	Date.getUTCFullYear() (Method)
	Date.getUTCHours() (Method)
	Date.getUTCMilliseconds() (Method)
	Date.getUTCMinutes() (Method)
	Date.getUTCMonth() (Method)
	Date.getUTCSeconds() (Method)
	Date.getVarDate() (Method)
	Date.getYear() (Method)
	Date.length (Property)
	Date.parse() (Method/static)
	Date.prototype (Property)
	Date.setDate() (Method)
	Date.setFullYear() (Method)
	Date.setHours() (Method)
	Date.setMilliseconds() (Method)
	Date.setMinutes() (Method)
	Date.setMonth() (Method)
	Date.setSeconds() (Method)
	Date.setTime() (Method)
	Date.setUTCDate() (Method)
	Date.setUTCFullYear() (Method)
	Date.setUTCHours() (Method)
	Date.setUTCMilliseconds() (Method)
	Date.setUTCMinutes() (Method)
	Date.setUTCMonth() (Method)
	Date.setUTCSeconds() (Method)
	Date.setYear() (Method)
	Date.toDateString() (Method)
	Date.toGMTString() (Method)
	Date.toLocaleDateString() (Method)
	Date.toLocaleString() (Method)
	Date.toLocaleTimeString() (Method)
	Date.toSource() (Method)
	Date.toString() (Method)
	Date.toTimeString() (Method)
	Date.toUTCString() (Method)
	Date.UTC() (Method/static)
	Date.valueOf() (Method)
	Day from year (Time calculation)
	Day number (Time calculation)
	Day within year (Time calculation)
	Daylight savings time adjustment (Definition)
	Days in year (Time calculation)
	DbPool object (Object/NES)
	(Constructor)
	DbPool.connect() (Method)
	DbPool.connected() (Method)
	DbPool.connection() (Method)
	DbPool.disconnect() (Method)
	DbPool.majorErrorCode() (Method)
	DbPool.majorErrorMessage() (Method)
	DbPool.minorErrorCode() (Method)
	DbPool.minorErrorMessage() (Method)
	DbPool.prototype (Property)
	DbPool.storedProcArgs() (Method)
	DbPool.toString() (Method)
	DD object (Object/HTML)
	DD.noWrap (Property)
	Debugger (Definition)
	debugger (Reserved word)
	Debugging - client side (Advice)
	Debugging - server side (Definition)
	Decimal point (.) (Delimiter)
	Decimal value (Definition)
	Declaration (Definition)
	Declared function (Definition)
	decodeURI() (Function)
	decodeURIComponent() (Function)
	Decrement value (--) (Operator/postfix)
	Deep copying (Definition)
	default: (Label)
	defaultStatus (Property)
	DefaultValue() (Function/internal)
	Defensive coding (Advice)
	Definition (Definition)
	DEL object (Object/HTML)
	DEL.cite (Property)
	DEL.dateTime (Property)
	delete (Operator/unary)
	Delete() (Function/internal)
	Deprecated functionality (Pitfall)
	Desktop JavaScript (Definition)
	detachEvent() (Method)
	Determining the object type (Useful tip)
	Developing JavaScript source code (Definition)
	DFN object (Object/HTML)
	DHTML (Standard)
	DHTML Behavior (Definition)
	Diagnostic message (Definition)
	Dialog boxes (Definition)
	Dialog object (Object/JScript)
	dialogArguments (Property)
	dialogHeight (Property)
	dialogLeft (Property)
	dialogTop (Property)
	dialogWidth (Property)
	Dictionary object (Object/JScript)
	Add() (Method)
	Dictionary.Count (Property)
	Dictionary.Exists() (Method)
	Dictionary.Item() (Method)
	Dictionary.Items() (Method)
	Dictionary.Key() (Method)
	Dictionary.Keys() (Method)
	Dictionary.Remove() (Method)
	Dictionary.RemoveAll() (Method)
	Digit (Definition)
	DIR object (Object/HTML)
	DIR.compact (Property)
	disableExternalCapture() (Method)
	DIV object (Object/HTML)
	DIV.align (Property)
	Divide (/) (Operator/multiplicative)
	Divide then assign (/=) (Operator/assignment)
	DL object (Object/HTML)
	DL.compact (Property)
	do ... while(...) (Iterator)
	Doctype object (Object/DOM)
	Doctype.entities[] (Collection)
	Doctype.name (Property)
	Doctype.notations[] (Collection)
	Document (Object model)
	document (Property)
	Document component (Definition)
	Document event handlers (Definition)
	Document object (Object/HTML)
	Document.<form_name> (Property)
	Document.activeElement (Property)
	Document.alinkColor (Property)
	Document.all[] (Collection)
	Document.anchors[] (Collection)
	Document.applets[] (Collection)
	Document.attachEvent() (Method)
	Document.background (Property)
	Document.bgColor (Property)
	Document.body (Property)
	Document.captureEvents() (Function)
	Document.characterset (Property)
	Document.charset (Property)
	Document.classes[] (Collection)
	Document.clear() (Method)
	Document.close() (Method)
	Document.contextual() (Method)
	Document.cookie (Property)
	Document.createAttribute() (Method)
	Document.createCDATASection() (Method)
	Document.createComment() (Method)
	Document.createDocumentFragment() (Method)
	Document.createElement() (Method)
	Document.createEntityReference() (Method)
	Document.createProcessingInstruction() (Method)
	Document.createStyleSheet() (Method)
	Document.createTextNode() (Method)
	Document.defaultCharset (Property)
	Document.designMode (Property)
	Document.detachEvent() (Method)
	Document.doctype (Property)
	Document.documentElement (Property)
	Document.domain (Property)
	Document.elementFromPoint() (Method)
	Document.embeds[] (Collection)
	Document.execCommand() (Method)
	Document.expando (Property)
	Document.fgColor (Property)
	Document.fileCreatedDate (Property)
	Document.fileModifiedDate (Property)
	Document.fileSize (Property)
	Document.forms[] (Collection)
	Document.frames[] (Collection)
	Document.getElementById() (Method)
	Document.getElementsByName() (Method)
	Document.getElementsByTagName() (Method)
	Document.getSelection() (Method)
	Document.handleEvent() (Function)
	Document.height (Property)
	Document.ids[] (Collection)
	Document.images[] (Collection)
	Document.implementation (Property)
	Document.lastModified (Property)
	Document.layers[] (Collection)
	Document.linkColor (Property)
	Document.links[] (Collection)
	Document.location (Property)
	Document.open() (Method)
	Document.parentWindow (Property)
	Document.plugins[] (Collection)
	Document.protocol (Property)
	Document.queryCommandEnabled() (Method)
	Document.queryCommandIndeterm() (Method)
	Document.queryCommandState() (Method)
	Document.queryCommandSupported() (Method)
	Document.queryCommandText() (Method)
	Document.queryCommandValue() (Method)
	Document.readyState (Property)
	Document.recalc() (Method)
	Document.referrer (Property)
	Document.releaseEvents() (Function)
	Document.routeEvent() (Function)
	Document.scripts[] (Collection)
	Document.selection (Property)
	Document.styleSheets[] (Collection)
	Document.tags[] (Collection)
	Document.title (Property)
	Document.uniqueID (Property)
	Document.URL (Property)
	Document.vlinkColor (Property)
	Document.width (Property)
	Document.write() (Method)
	Document.writeln() (Method)
	DocumentEvent (Object/DOM)
	createEvent() (Method)
	DocumentFragment object (Object/DOM)
	DocumentStyle object (Object/DOM)
	DocumentType object (Object/DOM)
	DOM (Standard)
	DOM - Level 0 (Standard)
	DOM - Level 1 (Standard)
	DOM - Level 2 (Standard)
	DOM - Level 3 (Standard)
	DOM Events (Standard)
	Domain error (Definition)
	DOMImplementation object (Object/DOM)
	DontDelete (Property attribute)
	DontEnumerate (Property attribute)
	double (Reserved word)
	Double-precision (Definition)
	Drive object (Object/JScript)
	AvailableSpace (Property)
	Drive.DriveLetter (Property)
	Drive.DriveType (Property)
	Drive.FileSystem (Property)
	Drive.FreeSpace (Property)
	Drive.IsReady (Property)
	Drive.Path (Property)
	Drive.RootFolder (Property)
	Drive.SerialNumber (Property)
	Drive.ShareName (Property)
	Drive.TotalSize (Property)
	Drive.VolumeName (Property)
	Drives object (Object/JScript)
	(Filter/visual)
	DT object (Object/HTML)
	DT.noWrap (Property)
	DVB-MHP (Standard)
	Dynamic HTML (Definition)
	Dynamic positioning (Definition)

	E
	E-mail containing JavaScript (Advice)
	ECMA (Standard)
	ECMAScript (Background)
	ECMAScript – edition 2 (Standard)
	ECMAScript – edition 3 (Standard)
	ECMAScript version (Standard)
	Element object (Object/HTML)
	Element.addBehavior() (Method)
	Element.all[] (Collection)
	Element.applyElement() (Method)
	Element.attributes[] (Collection)
	Element.behaviorUrns[] (Collection)
	Element.canHaveChildren (Property)
	Element.canHaveHTML (Property)
	Element.childNodes[] (Collection)
	Element.children[] (Collection)
	Element.className (Property)
	Element.clearAttributes() (Method)
	Element.click() (Method)
	Element.clientHeight (Property)
	Element.clientLeft (Property)
	Element.clientTop (Property)
	Element.clientWidth (Property)
	Element.componentFromPoint() (Method)
	Element.contains() (Method)
	Element.contentEditable (Property)
	Element.currentStyle (Property)
	Element.dir (Property)
	Element.document (Property)
	Element.doScroll() (Method)
	Element.filters[] (Collection)
	Element.firstChild (Property)
	Element.getAdjacentText() (Method)
	Element.getAttribute() (Method)
	Element.getAttributeNode() (Method)
	Element.getElementsByTagName() (Method)
	Element.getExpression() (Method)
	Element.hideFocus (Property)
	Element.id (Property)
	Element.innerHTML (Property)
	Element.innerText (Property)
	Element.insertAdjacentHTML() (Method)
	Element.insertAdjacentText() (Method)
	Element.isContentEditable (Property)
	Element.isDisabled (Property)
	Element.isTextEdit (Property)
	Element.lang (Property)
	Element.language (Property)
	Element.lastChild (Property)
	Element.mergeAttributes() (Method)
	Element.nextSibling (Property)
	Element.nodeName (Property)
	Element.nodeType (Property)
	Element.nodeValue (Property)
	Element.normalize() (Method)
	Element.offsetHeight (Property)
	Element.offsetLeft (Property)
	Element.offsetParent (Property)
	Element.offsetTop (Property)
	Element.offsetWidth (Property)
	Element.onevent (Property)
	Element.outerHTML (Property)
	Element.outerText (Property)
	Element.ownerDocument (Property)
	Element.parentElement (Property)
	Element.parentNode (Property)
	Element.parentTextEdit (Property)
	Element.previousSibling (Property)
	Element.readyState (Property)
	Element.releaseCapture() (Method)
	Element.removeAttribute() (Method)
	Element.removeAttributeNode() (Method)
	Element.removeBehavior() (Method)
	Element.removeExpression() (Method)
	Element.replaceAdjacentText() (Method)
	Element.runtimeStyle (Property)
	Element.scopeName (Property)
	Element.scrollHeight (Property)
	Element.scrollIntoView() (Method)
	Element.scrollLeft (Property)
	Element.scrollTop (Property)
	Element.scrollWidth (Property)
	Element.setAttribute() (Method)
	Element.setAttributeNode() (Method)
	Element.setCapture() (Method)
	Element.setExpression() (Method)
	Element.sourceIndex (Property)
	Element.style (Property)
	Element.tagName (Property)
	Element.tagUrn (Property)
	Element.title (Property)
	Element.uniqueID (Property)
	else ... (Keyword)
	else if(...) ... (Idiom)
	EM object (Object/HTML)
	<EMBED> (HTML Tag)
	Embed object (Object/HTML)
	Embed.align (Property)
	Embed.height (Property)
	Embed.hidden (Property)
	Embed.name (Property)
	Embed.palette (Property)
	Embed.pluginspage (Property)
	Embed.readyState (Property)
	Embed.src (Property)
	Embed.units (Property)
	Embed.width (Property)
	EmbedArray object (Object/browser)
	EmbedArray.length (Property)
	Embedded JavaScript (Definition)
	Emboss() (Filter/visual)
	Empty statement (;) (Statement)
	enableExternalCapture() (Method)
	encodeURI() (Function)
	encodeURIComponent() (Function)
	Engrave() (Filter/visual)
	Enquiry functions (Definition)
	Entity object (Object/DOM)
	Entity.notationName (Property)
	Entity.publicId (Property)
	Entity.systemId (Property)
	EntityReference object (Object/DOM)
	enum (Reserved word)
	Enumeration constant (Definition)
	Enumerator object (Object/JScript)
	(Constructor)
	Enumerator.atEnd() (Method)
	Enumerator.constructor (Property)
	Enumerator.item() (Method)
	Enumerator.moveFirst() (Method)
	Enumerator.moveNext() (Method)
	Environment (Definition)
	Equal to (==) (Operator/equality)
	Equality expression (Definition)
	Equality operator (Definition)
	Error (Definition)
	Error events (Definition)
	Error handler (Interface)
	Error handling (Definition)
	Error object (Object/core)
	Error() (Constructor)
	Error() (Function)
	Error.constructor (Property)
	Error.description (Property)
	Error.message (Property)
	Error.name (Property)
	Error.number (Property)
	Error.prototype (Property)
	Error.toString() (Method)
	Escape sequence (\) (Definition)
	escape() (Function/global)
	Escaped JavaScript quotes in HTML (Pitfall)
	Eval code (Definition)
	eval() (Function/global)
	EvalError object (Object/core)
	Event-driven model (Definition)
	Event (Definition)
	event (Property)
	Event bubbling (Definition)
	Event handler (Definition)
	Event handler in <SCRIPT> (Definition)
	Event handler properties (Definition)
	Event handler scope (Definition)
	Event management (Definition)
	Event model (Definition)
	Event names (Definition)
	Event object (Object/DOM)
	altKey (Property)
	Event.bookmarks[] (Collection)
	Event.boundElements[] (Collection)
	Event.bubbles (Property)
	Event.button (Property)
	Event.cancelable (Property)
	Event.cancelBubble (Property)
	Event.charCode (Property)
	Event.clientX (Property)
	Event.clientY (Property)
	Event.ctrlKey (Property)
	Event.currentTarget (Property)
	Event.data (Property)
	Event.dataTransfer (Property)
	Event.eventPhase (Property)
	Event.fromElement (Property)
	Event.height (Property)
	Event.initEvent() (Method)
	Event.keyCode (Property)
	Event.layerX (Property)
	Event.layerY (Property)
	Event.modifiers (Property)
	Event.offsetX (Property)
	Event.offsetY (Property)
	Event.pageX (Property)
	Event.pageY (Property)
	Event.preventDefault() (Method)
	Event.propertyName (Property)
	Event.reason (Property)
	Event.repeat (Property)
	Event.returnValue (Property)
	Event.screenX (Property)
	Event.screenY (Property)
	Event.shiftKey (Property)
	Event.srcElement (Property)
	Event.srcFilter (Property)
	Event.stopPropagation() (Method)
	Event.target (Property)
	Event.timeStamp (Property)
	Event.toElement (Property)
	Event.type (Property)
	Event.which (Property)
	Event.width (Property)
	Event.x (Property)
	Event.y (Property)
	Event propagation (Definition)
	Event type constants (Constant/static)
	EventCapturer object (Object/Navigator)
	EventException object (Object/DOM)
	code (Property)
	EventListener object (Object/DOM)
	EventTarget object (Object/DOM)
	addEventListener() (Method)
	EventTarget.dispatchEvent() (Method)
	EventTarget.removeEventListener() (Method)
	Exactly equal to (===) (Operator/identity)
	Exception (Definition)
	Exception handling (Definition)
	execScript() (Method)
	Executable code (Definition)
	Execute a function (Definition)
	Execution context (Definition)
	Execution environment (Definition)
	Exponent-log function (Definition)
	export (Statement)
	Expression (Definition)
	Expression statement (Definition)
	extends (Reserved word)
	external (Property)
	external object (Object/JScript)
	external.AddChannel() (Method)
	external.AddDesktopComponent() (Method)
	external.AddFavorite() (Method)
	external.AutoCompleteSaveForm() (Method)
	external.AutoScan() (Method)
	external.ImportExportFavorites() (Method)
	external.IsSubscribed() (Method)
	external.menuArguments (Property)
	external.NavigateAndFind() (Method)
	external.ShowBrowserUI() (Method)

	F
	Fade() (Filter/transition)
	false (Primitive value)
	fdlibm (Product)
	FIELDSET object (Object/HTML)
	FIELDSET.align (Property)
	FIELDSET.margin (Property)
	File extensions (Definition)
	File object (Object/JScript)
	File.Attributes (Property)
	File.Copy() (Method)
	File.DateCreated (Property)
	File.DateLastAccessed (Property)
	File.DateLastModified (Property)
	File.Delete() (Method)
	File.Drive (Property)
	File.Move() (Method)
	File.Name (Property)
	File.OpenAsTextStream() (Method)
	File.ParentFolder (Property)
	File.Path (Property)
	File.ShortName (Property)
	File.ShortPath (Property)
	File.Size (Property)
	File.Type (Property)
	File object (Object/NES)
	(Constructor)
	File.byteToString() (Method)
	File.clearError() (Method)
	File.close() (Method)
	File.constructor (Property)
	File.eof() (Method)
	File.error() (Method)
	File.exists() (Method)
	File.flush() (Method)
	File.getLength() (Method)
	File.getPosition() (Method)
	File.open() (Method)
	File.prototype (Property)
	File.read() (Method)
	File.readByte() (Method)
	File.readln() (Method)
	File.setPosition() (Method)
	File.stringToByte() (Method)
	File.write() (Method)
	File.writeByte() (Method)
	File.writeln() (Method)
	file: URL (Request method)
	Files object (Object/JScript)
	Count (Property)
	Files.Item() (Method)
	FileSystem object (Object/JScript)
	FileSystem.BuildPath() (Method)
	FileSystem.CopyFile() (Method)
	FileSystem.CopyFolder() (Method)
	FileSystem.CreateFolder() (Method)
	FileSystem.CreateTextFile() (Method)
	FileSystem.DeleteFile() (Method)
	FileSystem.DeleteFolder() (Method)
	FileSystem.DriveExists() (Method)
	FileSystem.Drives[] (Collection)
	FileSystem.FileExists() (Method)
	FileSystem.FolderExists() (Method)
	FileSystem.GetAbsolutePathName() (Method)
	FileSystem.GetBaseName() (Method)
	FileSystem.GetDrive() (Method)
	FileSystem.GetDriveName() (Method)
	FileSystem.GetExtensionName() (Method)
	FileSystem.GetFile() (Method)
	FileSystem.GetFileName() (Method)
	FileSystem.GetFolder() (Method)
	FileSystem.GetParentFolderName() (Method)
	FileSystem.GetSpecialFolder() (Method)
	FileSystem.GetTempName() (Method)
	FileSystem.MoveFile() (Method)
	FileSystem.MoveFolder() (Method)
	FileSystem.OpenTextFile() (Method)
	FileUpload object (Object/DOM)
	FileUpload.accept (Property)
	FileUpload.handleEvent() (Method)
	FileUpload.select() (Method)
	FileUpload.size (Property)
	FileUpload.type (Property)
	FileUpload.value (Property)
	Filter (Definition)
	filter – Alpha() (Filter/visual)
	filter – AlphaImageLoader() (Filter/procedural)
	– Barn() (Filter/transition)
	filter – BasicImage() (Filter/visual)
	– BlendTrans() (Filter/blend)
	filter – Blinds() (Filter/transition)
	– Blur() (Filter/visual)
	filter – CheckerBoard() (Filter/transition)
	– Chroma() (Filter/visual)
	filter – Compositor() (Filter/visual)
	– DropShadow() (Filter/visual)
	filter – Emboss() (Filter/visual)
	– Engrave() (Filter/visual)
	– Fade() (Filter/transition)
	– FlipH() (Filter/visual)
	filter – FlipV() (Filter/visual)
	filter – Glow() (Filter/visual)
	filter – Gradient() (Filter/procedural)
	– GradientWipe() (Filter/transition)
	– Grayscale() (Filter/visual)
	filter – Inset() (Filter/transition)
	filter – Invert() (Filter/visual)
	filter – Iris() (Filter/transition)
	– Light() (Filter/visual)
	filter – Mask() (Filter/visual)
	filter – MaskFilter() (Filter/visual)
	– Matrix() (Filter/visual)
	– MotionBlur() (Filter/visual)
	– Pixelate() (Filter/transition)
	– Pixelate() (Filter/visual)
	– RadialWipe() (Filter/transition)
	– RandomBars() (Filter/transition)
	– RandomDissolve() (Filter/transition)
	– RevealTrans() (Filter/reveal)
	filter – Shadow() (Filter/visual)
	filter – Slide() (Filter/transition)
	– Spiral() (Filter/transition)
	– Stretch() (Filter/transition)
	– Strips() (Filter/transition)
	– Wave() (Filter/visual)
	filter – Wheel() (Filter/transition)
	– XRay() (Filter/visual)
	filter – Zigzag() (Filter/transition)
	object (Object/JScript)
	enabled (Property)
	Filters object (Object/JScript)
	Filters.item() (Method)
	Filters.length (Property)
	final (Reserved word)
	finally ... (Statement)
	find() (Method)
	FindProxyForURL() (Function/proxy.pac)
	FlipH() (Filter/visual)
	FlipV() (Filter/visual)
	float (Reserved word)
	Floating constant (Definition)
	Floating point (Definition)
	Floating point arithmetic (Definition)
	Floating point constant (Definition)
	Flow control (Definition)
	focus() (Method)
	Folder object (Object/JScript)
	Attributes (Property)
	Folder.Copy() (Method)
	Folder.DateCreated (Property)
	Folder.DateLastAccessed (Property)
	Folder.DateLastModified (Property)
	Folder.Delete() (Method)
	Folder.Drive (Property)
	Folder.Files[] (Collection)
	Folder.IsRootFolder (Property)
	Folder.Move() (Method)
	Folder.Name (Property)
	Folder.ParentFolder (Property)
	Folder.Path (Property)
	Folder.ShortName (Property)
	Folder.ShortPath (Property)
	Folder.Size (Property)
	Folder.SubFolders[] (Collection)
	Folder.Type (Property)
	Folders object (Object/JScript)
	Add() (Method)
	Folders.Count (Property)
	Folders.Item() (Method)
	FONT object (Object/HTML)
	FONT.color (Property)
	FONT.face (Property)
	FONT.size (Property)
	for(...) ... (Iterator)
	for(... in ...) ... (Iterator)
	Form (Definition)
	Form element (Definition)
	Form object (Object/HTML)
	Form.acceptCharset (Property)
	Form.action (Property)
	Form.elements.length (Property)
	Form.elements[] (Collection)
	Form.encoding (Property)
	Form.enctype (Property)
	Form.handleEvent() (Method)
	Form.length (Property)
	Form.method (Property)
	Form.name (Property)
	Form.reset() (Method)
	Form.submit() (Method)
	Form.tabIndex (Property)
	Form.target (Property)
	Form verification (Definition)
	Formal Parameter List (Definition)
	FormArray object (Object/browser)
	FormArray.item() (Method)
	FormArray.length (Property)
	FormElement object (Object/browser)
	FormElementsArray object (Object/browser)
	FormElementsArray.length (Property)
	forward() (Method)
	frame (Property)
	Frame object (Object/DOM)
	Frame.borderColor (Property)
	Frame.close() (Method)
	Frame.defaultStatus (Property)
	Frame.frameBorder (Property)
	Frame.height (Property)
	Frame.longDesc (Property)
	Frame.marginHeight (Property)
	Frame.marginWidth (Property)
	Frame.name (Property)
	Frame.noResize (Property)
	Frame.parent (Property)
	Frame.scrolling (Property)
	Frame.src (Property)
	Frame.top (Property)
	FrameArray object (Object/browser)
	FrameArray.item() (Method)
	FrameArray.length (Property)
	frameRate (Property)
	Frames object (Object/browser)
	Frames.length (Property)
	frames[] (Collection)
	FRAMESET object (Object/HTML)
	FRAMESET.accessKey (Property)
	FRAMESET.border (Property)
	FRAMESET.borderColor (Property)
	FRAMESET.cols (Property)
	FRAMESET.frameBorder (Property)
	FRAMESET.frameSpacing (Property)
	FRAMESET.rows (Property)
	FRAMESET.tabIndex (Property)
	Free-format language (Definition)
	ftp: URL (Request method)
	Function (Definition)
	Function arguments (Definition)
	Function call (Definition)
	Function call operator () (Definition)
	Function code (Definition)
	Function definition (Definition)
	Function literal (Definition)
	Function object (Object/core)
	Function() (Constructor)
	Function() (Function)
	Function.apply() (Method)
	Function.arguments[] (Collection)
	Function.arity (Property)
	Function.call() (Method)
	Function.caller (Property)
	Function.Class (Property/internal)
	Function.constructor (Property)
	Function.length (Property)
	Function.prototype (Property)
	Function.toSource() (Method)
	Function.toString() (Method)
	Function.valueOf() (Method)
	Function object properties (Definition)
	Function property (Definition)
	Function prototype (Definition)
	Function scope (Definition)
	function(...) ... (Declaration)
	Fundamental data type (Definition)
	Furniture (Definition)

	G
	Garbage collection (Definition)
	Get() (Function/internal)
	GetBase() (Function/internal)
	getClass() (Function)
	GetObject() (Function)
	GetPropertyName() (Function/internal)
	GetValue() (Function/internal)
	Global code (Definition)
	Global object (Object/core)
	Global.undefined (Constant/static)
	Global special variable (Definition)
	Glow() (Filter/visual)
	Glue code (Definition)
	Gotcha (Definition)
	goto (Reserved word)
	Gradient() (Filter/visual)
	GradientWipe() (Filter/transition)
	Grayscale() (Filter/visual)
	Greater than (>) (Operator/relational)
	Greater than or equal to (>=) (Operator/ relational)
	Grouping operator () (Delimiter)

	H
	handleEvent() (Function)
	Handler (Definition)
	HasInstance() (Function/internal)
	HasProperty() (Function/internal)
	HEAD object (Object/HTML)
	HEAD.profile (Property)
	HEAD.vAlign (Property)
	Hexadecimal value (Definition)
	Hidden object (Object/DOM)
	Hidden.type (Property)
	Hidden.value (Property)
	Hiding scripts from old browsers (Pitfall)
	Hierarchy of objects (Definition)
	High order bit (Definition)
	History (Background)
	history (Property)
	History object (Object/browser)
	History.back() (Method)
	History.current (Property)
	History.forward() (Method)
	History.go() (Method)
	History.length (Property)
	History.next (Property)
	History.previous (Property)
	H<n> object (Object/HTML)
	H<n>.align (Property)
	home() (Method)
	Host environment (Definition)
	Host features (Definition)
	Host object (Definition)
	HR object (Object/HTML)
	HR.align (Property)
	HR.color (Property)
	HR.noShade (Property)
	HR.size (Property)
	HR.width (Property)
	HTC (Definition)
	htc (File extension)
	htm (File extension)
	HTML (Standard)
	html (File extension)
	HTML Character entity (Definition)
	HTML Comment tag (<!-- ... -->) (HTML Tag)
	HTML Component (Definition)
	HTML entity escape (Pitfall)
	HTML file (Definition)
	HTML object (Object/HTML)
	HTML.title (Property)
	HTML.version (Property)
	HTML tag attribute (Definition)
	HTTP-EQUIV="..." (HTML Tag Attribute)
	http: URL (Request method)
	https: URL (Request method)
	HyperLink (Definition)
	HyperLink object (Object/HTML)

	I
	I object (Object/HTML)
	iCab (Web browser)
	ID="..." (HTML Tag Attribute)
	Identically equal to (===) (Operator/identity)
	Identifier (Definition)
	Identifier resolution (Definition)
	Identity operator (Definition)
	ids (Property)
	IEEE 754 (Standard)
	if(...) ... (Selector)
	if(...) ... else ... (Selector)
	IFRAME object (Object/HTML)
	IFRAME.align (Property)
	IFRAME.frameBorder (Property)
	IFRAME.frameSpacing (Property)
	IFRAME.height (Property)
	IFRAME.hspace (Property)
	IFRAME.longDesc (Property)
	IFRAME.marginHeight (Property)
	IFRAME.marginWidth (Property)
	IFRAME.name (Property)
	IFRAME.noResize (Property)
	IFRAME.scrolling (Property)
	IFRAME.src (Property)
	IFRAME.tabIndex (Property)
	IFRAME.vspace (Property)
	IFRAME.width (Property)
	IIS (Product)
	Image animation (Useful tip)
	Image object (Object/HTML)
	Image() (Constructor)
	Image() (Function)
	Image.border (Property)
	Image.Class (Property/internal)
	Image.complete (Property)
	Image.constructor (Property)
	Image.height (Property)
	Image.hspace (Property)
	Image.lowsrc (Property)
	Image.name (Property)
	Image.src (Property)
	Image.vspace (Property)
	Image.width (Property)
	Image.x (Property)
	Image.y (Property)
	Image preloading (Useful tip)
	ImageArray object (Object/browser)
	item() (Method)
	ImageArray.length (Property)
	IMG object (Object/HTML)
	IMG.align (Property)
	IMG.alt (Property)
	IMG.border (Property)
	IMG.complete (Property)
	IMG.dynsrc (Property)
	IMG.fileCreatedDate (Property)
	IMG.fileModifiedDate (Property)
	IMG.fileSize (Property)
	IMG.fileUpdatedDate (Property)
	IMG.height (Property)
	IMG.href (Property)
	IMG.hspace (Property)
	IMG.iccProfile (Property)
	IMG.isMap (Property)
	IMG.longDesc (Property)
	IMG.loop (Property)
	IMG.lowsrc (Property)
	IMG.name (Property)
	IMG.protocol (Property)
	IMG.prototype (Property)
	IMG.readyState (Property)
	IMG.src (Property)
	IMG.start (Property)
	IMG.useMap (Property)
	IMG.vspace (Property)
	IMG.width (Property)
	Implementation (Definition)
	Implementation object (Object/DOM)
	hasFeature() (Method)
	Implementation-defined behavior (Definition)
	Implementation-supplied code (Definition)
	Implementation-supplied function (Definition)
	implements (Reserved word)
	Implicit conversion (Definition)
	ImplicitParents (Attribute)
	ImplicitThis (Attribute)
	import (Statement)
	in (Operator/logical)
	in ... (Keyword)
	In leap year (Time calculation)
	Included JavaScript files (Definition)
	Increment value (++) (Operator/postfix)
	Infinity (Constant/static)
	Inheritance (Definition)
	Initialization (Definition)
	Inline script (Definition)
	Inline tags (Definition)
	innerHeight (Property)
	innerWidth (Property)
	Input event (Definition)
	Input object (Object/DOM)
	Input.accept (Property)
	Input.accessKey (Property)
	Input.align (Property)
	Input.alt (Property)
	Input.blur() (Method)
	Input.checked (Property)
	Input.click() (Method)
	Input.createTextRange() (Method)
	Input.dataFld (Property)
	Input.dataFormatAs (Property)
	Input.dataSrc (Property)
	Input.defaultChecked (Property)
	Input.defaultValue (Property)
	Input.disabled (Property)
	Input.focus() (Method)
	Input.form (Property)
	Input.handleEvent() (Method)
	Input.maxLength (Property)
	Input.name (Property)
	Input.onevent (Property)
	Input.readOnly (Property)
	Input.recordNumber (Property)
	Input.select() (Method)
	Input.size (Property)
	Input.src (Property)
	Input.tabIndex (Property)
	Input.type (Property)
	Input.value (Property)
	Input-output (Definition)
	InputArray object (Object/browser)
	INS object (Object/HTML)
	INS.cite (Property)
	INS.dateTime (Property)
	Inset() (Filter/transition)
	Instance method (Definition)
	Instance variable (Definition)
	instanceof (Operator/logical)
	Instantiating Function (Definition)
	int (Reserved word)
	Integer (Definition)
	Integer arithmetic (Definition)
	Integer constant (Definition)
	Integer promotion (Definition)
	Integer-value-remainder (Definition)
	interface (Reserved word)
	Internal function (Definition)
	Internal Method (Definition)
	Internal Property (Definition)
	Internet Explorer (Web browser)
	Internet Information Server (Product)
	Interpret (Definition)
	Interval handlers (Definition)
	Intrinsic events (Definition)
	Invert() (Filter/visual)
	Invoke a function (Definition)
	Iris() (Filter/transition)
	isAlnum() (Simulated functionality)
	isAlpha() (Simulated functionality)
	isCtrl() (Simulated functionality)
	isDigit() (Simulated functionality)
	isElementProperty() (Simulated functionality)
	isFinite() (Function/global)
	isGraph() (Simulated functionality)
	ISINDEX object (Object/HTML)
	ISINDEX.form (Property)
	ISINDEX.prompt (Property)
	isInNet() (Function/proxy.pac)
	isLower() (Simulated functionality)
	isNaN() (Function/global)
	ISO 3166 (Standard)
	ISO 639 (Standard)
	isObjectEqual() (Simulated functionality)
	isODigit() (Simulated functionality)
	isPlainHostName() (Function/proxy.pac)
	isPrint() (Simulated functionality)
	isPunct() (Simulated functionality)
	isSpace() (Simulated functionality)
	isUpper() (Simulated functionality)
	isXDigit() (Simulated functionality)
	Iteration statement (Definition)

	J
	.jar (File extension)
	Java (Definition)
	java (File extension)
	Java calling JavaScript (Definition)
	Java exception events (Definition)
	Java method calls (Definition)
	Java method data conversion (Definition)
	Java to JavaScript values (Definition)
	java (Property)
	java.awt (Java package)
	java.awt.Button (Java class)
	awt.image (Java class)
	java.lang (Java package)
	java.lang.Boolean (Java class)
	java.lang.Character (Java class)
	java.lang.Class (Java class)
	java.lang.Double (Java class)
	lang.Float (Java class)
	lang.Integer (Java class)
	lang.Long (Java class)
	lang.Object (Java class)
	java.lang.String (Java class)
	util (Java package)
	java.util.Date (Java class)
	JavaArray object (Object/Navigator)
	length (Property)
	JavaArray.toString() (Method)
	JavaClass object (Object/Navigator)
	JavaMethod object (Object/Navigator)
	JavaObject object (Object/Navigator)
	JavaObject.booleanValue() (Method/Java)
	JavaObject.getClass() (Method/Java)
	JavaPackage object (Object/Navigator)
	JavaScript Bookmark URLs (Advice)
	JavaScript debugger console (Advice)
	JavaScript Document Source URL (Definition)
	JavaScript embedded in Java (Definition)
	JavaScript entity (Pitfall)
	JavaScript Image Source URL (Definition)
	JavaScript interactive URL (Request method)
	JavaScript language (Overview)
	JavaScript Style Sheets (Definition)
	JavaScript to Java values (Definition)
	JavaScript version (Standard)
	javascript: URL (Request method)
	JellyScript (Definition)
	js (File extension)
	jsc (File extension)
	JScript version (Standard)
	jse (File extension)
	jsh (File extension)
	JSObject object (Java class)
	JSObject.call() (Java method)
	JSObject.eval() (Java method)
	JSObject.getMember() (Java method)
	JSObject.getSlot() (Java method)
	JSObject.getWindow() (Java static method)
	JSObject.removeMember() (Java method)
	JSObject.setMember() (Java method)
	JSObject.setSlot() (Java method)
	JSObject.toString() (Java method)
	JSS (Definition)
	JSSClasses object (Object/JSS)
	JSSClasses.className (Property)
	JSSTag object (Object/JSS)
	JSSTag.align (Property)
	JSSTag.apply (Property)
	JSSTag.backgroundColor (Property)
	JSSTag.backgroundImage (Property)
	JSSTag.borderBottomWidth (Property)
	JSSTag.borderColor (Property)
	JSSTag.borderLeftWidth (Property)
	JSSTag.borderRightWidth (Property)
	JSSTag.borderStyle (Property)
	JSSTag.borderTopWidth (Property)
	JSSTag.borderWidths() (Method)
	JSSTag.clear (Property)
	JSSTag.color (Property)
	JSSTag.display (Property)
	JSSTag.fontFamily (Property)
	JSSTag.fontSize (Property)
	JSSTag.fontStyle (Property)
	JSSTag.fontWeight (Property)
	JSSTag.height (Property)
	JSSTag.lineHeight (Property)
	JSSTag.listStyleType (Property)
	JSSTag.marginBottom (Property)
	JSSTag.marginLeft (Property)
	JSSTag.marginRight (Property)
	JSSTag.margins() (Method)
	JSSTag.marginTop (Property)
	JSSTag.paddingBottom (Property)
	JSSTag.paddingLeft (Property)
	JSSTag.paddingRight (Property)
	JSSTag.paddings() (Method)
	JSSTag.paddingTop (Property)
	JSSTag.rgb() (Method)
	JSSTag.textAlign (Property)
	JSSTag.textDecoration (Property)
	JSSTag.textIndent (Property)
	JSSTag.textTransform (Property)
	JSSTag.verticalAlign (Property)
	JSSTag.whiteSpace (Property)
	JSSTag.width (Property)
	JSSTags object (Object/JSS)
	JSSTags.<tagName> (Property)
	Jump statement (Definition)

	K
	KBD object (Object/HTML)
	Keyboard events (Definition)
	Keyword (Definition)

	L
	Label (Definition)
	Label object (Object/HTML)
	Label.htmlFor (Property)
	LANG="..." (HTML Tag Attribute)
	Language codes (Definition)
	Layer object (Object/Navigator)
	Layer() (Constructor)
	Layer.above (Property)
	Layer.background (Property)
	Layer.below (Property)
	Layer.bgColor (Property)
	Layer.captureEvents() (Function)
	Layer.clip (Property)
	Layer.clip.bottom (Property)
	Layer.clip.height (Property)
	Layer.clip.left (Property)
	Layer.clip.right (Property)
	Layer.clip.top (Property)
	Layer.clip.width (Property)
	Layer.document (Property)
	Layer.handleEvent() (Function)
	Layer.hidden (Property)
	Layer.layers[] (Collection)
	Layer.left (Property)
	Layer.load() (Method)
	Layer.moveAbove() (Method)
	Layer.moveBelow() (Method)
	Layer.moveBy() (Method)
	Layer.moveTo() (Method)
	Layer.moveToAbsolute() (Method)
	Layer.name (Property)
	Layer.offset() (Method)
	Layer.pageX (Property)
	Layer.pageY (Property)
	Layer.parentLayer (Property)
	Layer.releaseEvents() (Function)
	Layer.resizeBy() (Method)
	Layer.resizeTo() (Method)
	Layer.routeEvent() (Function)
	Layer.siblingAbove (Property)
	Layer.siblingBelow (Property)
	Layer.src (Property)
	Layer.top (Property)
	Layer.visibility (Property)
	Layer.window (Property)
	Layer.x (Property)
	Layer.y (Property)
	Layer.zIndex (Property)
	LayerArray object (Object/Navigator)
	LayerArray.length (Property)
	lck (File extension)
	Left shift (Operator/bitwise)
	Left-Hand-Side expression (Definition)
	Legend object (Object/HTML)
	Legend.align (Property)
	Legend.padding (Property)
	length (Property)
	Length units (Definition)
	Less than (<) (Operator/relational)
	Less than or equal to (<=) (Operator/relational)
	Letter (Definition)
	Lexical convention (Definition)
	Lexical element (Overview)
	Lexical scoping (Definition)
	LI object (Object/HTML)
	LI.type (Property)
	LI.value (Property)
	Liberate TV Navigator (TV Set-top Box)
	Light() (Filter/visual)
	Limits (Definition)
	Line (Definition)
	Line terminator (Definition)
	LINK object (Object/HTML)
	LINK.charset (Property)
	LINK.disabled (Property)
	LINK.href (Property)
	LINK.hreflang (Property)
	LINK.media (Property)
	LINK.readyState (Property)
	LINK.rel (Property)
	LINK.rev (Property)
	LINK.title (Property)
	LINK.type (Property)
	LinkArray object (Object/browser)
	LinkArray.length (Property)
	LinkStyle object (Object/DOM)
	List type (Definition)
	LISTING object (Object/HTML)
	Literal (Definition)
	Little endian (Definition)
	LiveConnect (Product)
	LiveScript (Product)
	livescript: URL (Request method)
	LiveWire (Product)
	Local time (Definition)
	Local time zone adjustment (Definition)
	Locale-specific behavior (Definition)
	Localization (Definition)
	location (Property)
	Location object (Object/DOM)
	Location.assign() (Method)
	Location.hash (Property)
	Location.host (Property)
	Location.hostname (Property)
	Location.href (Property)
	Location.pathname (Property)
	Location.port (Property)
	Location.protocol (Property)
	Location.reload() (Method)
	Location.replace() (Method)
	Location.search (Property)
	Location.target (Property)
	Location.text (Property)
	Location.x (Property)
	Location.y (Property)
	locationbar (Property)
	Lock object (Object/NES)
	Lock() (Constructor)
	Lock.constructor (Property)
	Lock.isValid() (Method)
	Lock.lock() (Method)
	Lock.prototype (Property)
	Lock.unlock() (Method)
	Logical AND (&&) (Operator/logical)
	Logical constant (Definition)
	Logical entity (Definition)
	Logical expression (Definition)
	Logical NOT – complement (!) (Operator/logical)
	Logical operator (Definition)
	Logical OR (||) (Operator/logical)
	Logical XOR (Operator/logical)
	long (Reserved word)
	Low order bit (Definition)
	LValue (Definition)

	M
	mailbox: URL (Request method)
	mailto: URL (Request method)
	main() function (Definition)
	MakeDate() (Time calculation)
	MakeDay() (Time calculation)
	MakeTime() (Time calculation)
	<MAP TARGET="..."> (HTML Tag Attribute)
	Map object (Object/HTML)
	Map.areas[] (Collection)
	Map.name (Property)
	Map.target (Property)
	MARQUEE object (Object/HTML)
	MARQUEE.behaviour (Property)
	MARQUEE.bgColor (Property)
	MARQUEE.direction (Property)
	MARQUEE.height (Property)
	MARQUEE.hspace (Property)
	MARQUEE.loop (Property)
	MARQUEE.scrollAmount (Property)
	MARQUEE.scrollDelay (Property)
	MARQUEE.start() (Method)
	MARQUEE.stop() (Method)
	MARQUEE.trueSpeed (Property)
	MARQUEE.vspace (Property)
	MARQUEE.width (Property)
	Mask() (Filter/visual)
	MaskFilter() (Filter/visual)
	Math object (Object/core)
	Math.abs() (Function)
	Math.acos() (Function)
	Math.asin() (Function)
	Math.atan() (Function)
	Math.atan2() (Function)
	Math.ceil() (Function)
	Math.constructor (Property)
	Math.cos() (Function)
	Math.cosec() (Simulated functionality)
	Math.cosh() (Simulated functionality)
	Math.cot() (Simulated functionality)
	Math.E (Constant/static)
	Math.exp() (Function)
	Math.floor() (Function)
	Math.LN10 (Constant/static)
	Math.LN2 (Constant/static)
	Math.log() (Function)
	Math.LOG10E (Constant/static)
	Math.LOG2E (Constant/static)
	Math.max() (Function)
	Math.min() (Function)
	Math.PI (Constant/static)
	Math.pow() (Function)
	Math.random() (Function)
	Math.round() (Function)
	Math.sec() (Simulated functionality)
	Math.sin() (Function)
	Math.sinh() (Simulated functionality)
	Math.sqrt() (Function)
	Math.SQRT1_2 (Constant/static)
	Math.SQRT2 (Constant/static)
	Math.tan() (Function)
	Mathematics (Definition)
	Matrix() (Filter/visual)
	MAYSCRIPT (HTML Tag Attribute)
	Measurement units (Definition)
	MediaList object (Object/DOM)
	Member (Definition)
	Memory allocation (Definition)
	Memory leak (Definition)
	Memory management (Definition)
	MENU object (Object/HTML)
	MENU.compact (Property)
	menubar (Property)
	<META> (HTML Tag)
	META object (Object/HTML)
	META.charset (Property)
	META.content (Property)
	META.httpEquiv (Property)
	META.name (Property)
	META.scheme (Property)
	META.url (Property)
	Metacharacter (Definition)
	Method (Definition)
	Microsoft TV (TV Set-top Box)
	MIME types (Definition)
	MimeType object (Object/browser)
	MimeType.description (Property)
	MimeType.enabledPlugin (Property)
	MimeType.name (Property)
	MimeType.suffixes[] (Collection)
	MimeType.type (Property)
	MimeTypeArray object (Object/browser)
	MimeTypeArray.length (Property)
	Minima-maxima (Definition)
	Minus (-) (Operator/additive)
	Minus then assign (-=) (Operator/assignment)
	mocha: URL (Request method)
	ModElement object (Object/DOM)
	cite (Property)
	ModElement.dateTime (Property)
	Modulo (Operator/multiplicative)
	Money (Definition)
	Month from time (Time calculation)
	Month number (Time calculation)
	MotionBlur() (Filter/visual)
	Mouse events (Definition)
	MouseEvent object (Object/DOM)
	MouseEvent.altKey (Property)
	MouseEvent.button (Property)
	MouseEvent.clientX (Property)
	MouseEvent.clientY (Property)
	MouseEvent.ctrlKey (Property)
	MouseEvent.initMouseEvent() (Method)
	MouseEvent.metaKey (Property)
	MouseEvent.relatedTarget (Property)
	MouseEvent.screenX (Property)
	MouseEvent.screenY (Property)
	MouseEvent.shiftKey (Property)
	moveBy() (Method)
	moveTo() (Method)
	MSIE (Web browser)
	Multi-byte character (Definition)
	Multi-dimensional arrays (Definition)
	Multi-line comment (Definition)
	Multiplicative expression (Definition)
	Multiplicative operator (Definition)
	Multiply (*) (Operator/multiplicative)
	Multiply then assign (*=) (Operator/assignment)
	MutationEvent object (Object/DOM)
	attrChange (Property)
	MutationEvent.attrName (Property)
	MutationEvent.initMutationEvent() (Method)
	MutationEvent.newValue (Property)
	MutationEvent.prevValue (Property)
	MutationEvent.relatedNode (Property)

	N
	name (Property)
	NAME="..." (HTML Tag Attribute)
	NamedNodeMap object (Object/DOM)
	NamedNodeMap.getNamedItem() (Method)
	NamedNodeMap.item() (Method)
	NamedNodeMap.length (Property)
	NamedNodeMap.removeNamedItem() (Method)
	NamedNodeMap.setNamedItem() (Method)
	Namespace (Definition)
	NaN (Constant/static)
	native (Reserved word)
	Native feature (Definition)
	Native object (Definition)
	navigate() (Method)
	navigator (Property)
	Navigator object (Object/browser)
	Navigator.appCodeName (Property)
	Navigator.appMinorVersion (Property)
	Navigator.appName (Property)
	Navigator.appVersion (Property)
	Navigator.browserLanguage (Property)
	Navigator.constructor (Property)
	Navigator.cookieEnabled (Property)
	Navigator.cpuClass (Property)
	Navigator.javaEnabled() (Method)
	Navigator.language (Property)
	Navigator.mimeTypes[] (Collection)
	Navigator.onLine (Property)
	Navigator.opsProfile (Property)
	Navigator.platform (Property)
	Navigator.plugins.refresh() (Method)
	Navigator.plugins[] (Collection)
	Navigator.preference() (Method)
	Navigator.savePreferences() (Method)
	Navigator.securityPolicy (Property)
	Navigator.systemLanguage (Property)
	Navigator.taintEnabled() (Method)
	Navigator.userAgent (Property)
	Navigator.userLanguage (Property)
	Navigator.userProfile (Property)
	Negation operator (-) (Operator/unary)
	NES (Product)
	nethelp: URL (Request method)
	Netscape Enterprise Server (Product)
	Netscape Navigator (Web browser)
	netscape (Java package)
	netscape.applet (Java package)
	netscape.cfg (Java package)
	netscape.javascript (Java package)
	netscape.javascript.JSObject (Java class)
	netscape.lck (Java package)
	netscape.plugin (Java package)
	netscape.plugin.Plugin (Java class)
	security (Java package)
	netscape.security.PrivilegeManager (Java class)
	new (Operator/unary)
	Newline (Escape sequence)
	Newlines are not
 tags (Pitfall)
	News posts containing JavaScript (Advice)
	news: URL (Request method)
	Node object (Object/DOM)
	Node.appendChild() (Method)
	Node.attributes[] (Collection)
	Node.childNodes[] (Collection)
	Node.cloneNode() (Method)
	Node.firstChild (Property)
	Node.hasChildNodes() (Method)
	Node.insertBefore() (Method)
	Node.lastChild (Property)
	Node.nextSibling (Property)
	Node.nodeName (Property)
	Node.nodeType (Property)
	Node.nodeValue (Property)
	Node.ownerDocument (Property)
	Node.parentNode (Property)
	Node.previousSibling (Property)
	Node.removeChild() (Method)
	Node.replaceChild() (Method)
	NodeList object (Object/DOM)
	item() (Method)
	NodeList.length (Property)
	NOFRAMES object (Object/HTML)
	NOFRAMES.dir (Property)
	Nombas ScriptEase (Product)
	Nondigit (Definition)
	<NOSCRIPT> (HTML Tag)
	NOSCRIPT object (Object/HTML)
	NOSCRIPT.dir (Property)
	Not a number (Definition)
	NOT Equal to (!=) (Operator/equality)
	NOT Identically equal to (!==) (Operator/identity)
	Notation object (Object/DOM)
	Notation.publicId (Property)
	Notation.systemId (Property)
	null (Primitive value)
	null (Type)
	Null literal (Primitive value)
	Null statement (Definition)
	Number (Primitive value)
	Number (Type)
	Number formats (.) (Definition)
	Number object (Object/core)
	Number() (Constructor)
	Number() (Function)
	Number.Class (Property/internal)
	Number.constructor (Property)
	Number.MAX_VALUE (Constant/static)
	Number.MIN_VALUE (Constant/static)
	Number.NaN (Constant/static)
	Number.NEGATIVE_INFINITY (Constant/static)
	Number.POSITIVE_INFINITY (Constant/static)
	Number.prototype (Property)
	Number.toExponential() (Method)
	Number.toFixed() (Method)
	Number.toLocaleString() (Method)
	Number.toPrecision() (Method)
	Number.toSource() (Method)
	Number.toString() (Method)
	Number.valueOf() (Method)
	Numeric literal (Primitive value)
	Numerical limits (Definition)

	O
	Obfuscation (Advice)
	Object (Definition)
	Object (Type)
	Object constant (Definition)
	Object inspector (Useful tip)
	Object literal (Definition)
	Object model (Definition)
	Object object (Object/core)
	Object() (Constructor)
	Object() (Function)
	Object.__parent__ (Property)
	Object.__proto__ (Property)
	Object.assign() (Method)
	Object.Class (Property/internal)
	Object.constructor (Property)
	Object.eval() (Method)
	Object.hasOwnProperty() (Method)
	Object.isPrototypeOf() (Method)
	Object.name (Property)
	Object.propertyIsEnumerable() (Method)
	Object.prototype (Property)
	Object.toLocaleString() (Method)
	Object.toSource() (Method)
	Object.toString() (Method)
	Object.unwatch() (Method)
	Object.valueOf() (Method)
	Object.watch() (Method)
	Object property delimiter (.) (Delimiter)
	OBJECT object (Object/HTML)
	OBJECT.align (Property)
	OBJECT.altHtml (Property)
	OBJECT.archive (Property)
	OBJECT.border (Property)
	OBJECT.classid (Property)
	OBJECT.code (Property)
	OBJECT.codeBase (Property)
	OBJECT.codeType (Property)
	OBJECT.data (Property)
	OBJECT.declare (Property)
	OBJECT.form (Property)
	OBJECT.height (Property)
	OBJECT.hspace (Property)
	OBJECT.name (Property)
	OBJECT.object (Property)
	OBJECT.readyState (Property)
	OBJECT.standby (Property)
	OBJECT.tabIndex (Property)
	OBJECT.type (Property)
	OBJECT.useMap (Property)
	OBJECT.vspace (Property)
	OBJECT.width (Property)
	Obsolescent (Definition)
	Octal value (Definition)
	Off by one errors (Pitfall)
	Off-screen image caching (Useful tip)
	offscreenBuffering (Property)
	OL object (Object/HTML)
	OL.compact (Property)
	OL.start (Property)
	OL.type (Property)
	on ... (Event handler)
	onAbort (Event handler)
	onAfterPrint (Event handler)
	onAfterUpdate (Event handler)
	onBack (Event handler)
	onBeforeCopy (Event handler)
	onBeforeCut (Event handler)
	onBeforeEditFocus (Event handler)
	onBeforePaste (Event handler)
	onBeforePrint (Event handler)
	onBeforeUnload (Event handler)
	onBeforeUpdate (Event handler)
	onBlur (Event handler)
	onBounce (Event handler)
	onChange (Event handler)
	onClick (Event handler)
	onContentReady (Event handler)
	onContextMenu (Event handler)
	onCopy (Event handler)
	onCut (Event handler)
	onDataAvailable (Event handler)
	onDataSetChanged (Event handler)
	onDataSetComplete (Event handler)
	onDblClick (Event handler)
	onDocumentReady (Event handler)
	onDrag (Event handler)
	onDragDrop (Event handler)
	onDragEnd (Event handler)
	onDragEnter (Event handler)
	onDragLeave (Event handler)
	onDragOver (Event handler)
	onDragStart (Event handler)
	onDrop (Event handler)
	onError (Event handler)
	onErrorUpdate (Event handler)
	onFilterChange (Event handler)
	onFinish (Event handler)
	onFocus (Event handler)
	onForward (Event handler)
	onHelp (Event handler)
	onKeyDown (Event handler)
	onKeyPress (Event handler)
	onKeyUp (Event handler)
	onLoad (Event handler)
	onLoseCapture (Event handler)
	onMouseDown (Event handler)
	onMouseDrag (Event handler)
	onMouseMove (Event handler)
	onMouseOut (Event handler)
	onMouseOver (Event handler)
	onMouseUp (Event handler)
	onMove (Event handler)
	onPaste (Event handler)
	onPropertyChange (Event handler)
	onReadyStateChange (Event handler)
	onReset (Event handler)
	onResize (Event handler)
	onRowEnter (Event handler)
	onRowExit (Event handler)
	onRowsDelete (Event handler)
	onRowsInserted (Event handler)
	onScroll (Event handler)
	onSelect (Event handler)
	onSelectStart (Event handler)
	onStart (Event handler)
	onStop (Event handler)
	onSubmit (Event handler)
	onUnload (Event handler)
	open() (Method)
	opener (Property)
	OpenTV (TV Set-top Box)
	Opera (Web browser)
	Operator (Definition)
	Operator Precedence (Definition)
	OptGroupElement object (Object/HTML)
	OptGroupElement.disabled (Property)
	OptGroupElement.label (Property)
	Option object (Object/HTML)
	Option() (Constructor)
	Option.defaultSelected (Property)
	Option.index (Property)
	Option.label (Property)
	Option.prototype (Property)
	Option.selected (Property)
	Option.text (Property)
	Option.value (Property)
	OptionElement object (Object/DOM)
	OptionsArray object (Object/browser)
	add() (Method)
	OptionsArray.item() (Method)
	OptionsArray.length (Property)
	OptionsArray.remove() (Method)
	OptionsArray.select() (Method)
	outerHeight (Property)
	outerWidth (Property)
	Overview (Background)

	P
	P object (object/HTML)
	P.align (Property)
	pac (File extension)
	package (Reserved word)
	Packages (Property)
	Packages.java (Java package)
	Packages.netscape (Java package)
	Packages.netscape.javascript (Java package)
	Packages.netscape.plugin (Java package)
	Packages.sun (Java package)
	pageXOffset (Property)
	pageYOffset (Property)
	ParamElement object (Object/HTML)
	ParamElement.name (Property)
	ParamElement.type (Property)
	ParamElement.value (Property)
	ParamElement.valueType (Property)
	Parameter (Definition)
	parent (Property)
	Parentheses () (Delimiter)
	parseFloat() (Function/global)
	parseInt() (Function/global)
	Password object (Object/DOM)
	Password.handleEvent() (Method)
	Password.maxLength (Property)
	Password.readOnly (Property)
	Password.select() (Method)
	Password.size (Property)
	Password.type (Property)
	Password.value (Property)
	Pattern matching (Definition)
	PDF (Standard)
	Perl Connect (Product)
	personalbar (Property)
	Pitfalls (Advice)
	Pixelate() (Filter/transition)
	Pixelate() (Filter/visual)
	Pkcs11 object (Object/Navigator)
	PLAINTEXT object (Object/HTML)
	Platform (Definition)
	Plugin compatibility issues (Definition)
	Plugin events (Definition)
	Plugin object (Object/browser)
	description (Property)
	Plugin.filename (Property)
	Plugin.isActive() (Method)
	Plugin.length (Property)
	Plugin.name (Property)
	Plugin.refresh() (Method)
	PluginArray object (Object/browser)
	PluginArray.item() (Method)
	PluginArray.length (Property)
	PluginArray.refresh() (Method)
	Pointers (Overview)
	Polymorphic (Definition)
	Portability (Definition)
	Positive value (+) (Operator/unary)
	Postfix decrement (--) (Operator/postfix)
	Postfix expression (Operator/postfix)
	Postfix increment (++) (Operator/postfix)
	Postfix operator (Definition)
	Power function (Definition)
	PRE object (Object/HTML)
	PRE.width (Property)
	Pre-processing (Definition)
	Pre-processing – /*@ ... @*/ (Delimiter)
	Pre-processing – @<variable_name> (Pre- processor)
	Pre-processing – @_alpha (Pre-processor)
	Pre-processing – @_jscript (Pre-processor)
	Pre-processing – @_jscript_build (Pre-processor)
	Pre-processing – @_jscript_version (Pre-processor)
	Pre-processing – @_mac (Pre-processor)
	Pre-processing – @_mc680x0 (Pre-processor)
	Pre-processing – @_PowerPC (Pre-processor)
	Pre-processing – @_win16 (Pre-processor)
	Pre-processing – @_win32 (Pre-processor)
	Pre-processing – @_x86 (Pre-processor)
	Pre-processing – @cc_on (Pre-processor)
	Pre-processing – @elif(...) ... (Pre-processor)
	Pre-processing – @else ... (Pre-processor)
	Pre-processing – @end (Pre-processor)
	Pre-processing – @if(...) ... (Pre-processor)
	Pre-processing – @set (Pre-processor)
	Precedence (Definition)
	Preferences (Definition)
	preferences.js (Special file)
	Prefix decrement (--) (Operator/prefix)
	Prefix expression (Operator/prefix)
	Prefix increment (++) (Operator/prefix)
	Prefix operator (Definition)
	prefs.js (Special file)
	Primary expression (Definition)
	Primitive value (Definition)
	print() (Method)
	Printing character (Definition)
	private (Reserved word)
	PrivilegeManager object (Java class)
	PrivilegeManager.disablePrivilege() (Method)
	PrivilegeManager.enablePrivilege() (Method)
	Privileges (Definition)
	Procedural surfaces (Definition)
	Procedure (Definition)
	ProcessingInstruction object (Object/DOM)
	ProcessingInstruction.data (Property)
	ProcessingInstruction.target (Property)
	Program (Definition)
	project object (Object/NES)
	lock() (Method)
	project.unlock() (Method)
	prompt() (Method)
	Property (Definition)
	Property accessor (Definition)
	Property attribute (Definition)
	Property name (Definition)
	Property value (Definition)
	protected (Reserved word)
	Prototype–Based Inheritance (Definition)
	Prototype chain (Definition)
	Prototype object (Definition)
	prototype.constructor (Definition)
	prototype.toString() (Definition)
	prototype property (Definition)
	Proxies (Definition)
	proxy.pac (Special file)
	Pseudo-random numbers (Definition)
	public (Reserved word)
	Punctuator (Definition)
	Put() (Function/internal)
	put() (Method/internal)
	PutValue() (Function/internal)

	Q
	Q object (Object/HTML)
	Queue manipulation (Useful tip)
	Quotation mark (" and ') (Delimiter)

	R
	R.E. (Definition)
	RadialWipe() (Filter/transition)
	RadioButton object (Object/DOM)
	RadioButton.checked (Property)
	RadioButton.defaultChecked (Property)
	RadioButton.handleEvent() (Method)
	RadioButton.status (Property)
	RadioButton.type (Property)
	RadioButton.value (Property)
	RandomBars() (Filter/transition)
	RandomDissolve() (Filter/transition)
	Range error (Definition)
	RangeError object (Object/core)
	Raw event (Definition)
	ReadOnly (Property attribute)
	Rect object (Object/browser)
	bottom (Property)
	Rect.height (Property)
	Rect.left (Property)
	Rect.right (Property)
	Rect.top (Property)
	Rect.width (Property)
	Reference (Definition)
	Reference counting (Definition)
	ReferenceError object (Object/core)
	Regex (Definition)
	RegExp literal (Definition)
	RegExp object (Object/core)
	RegExp() (Constructor)
	RegExp() (Function)
	RegExp.$_ (Property)
	RegExp.$n (Property/static)
	RegExp.compile() (Method)
	RegExp.constructor (Property)
	RegExp.exec() (Method)
	RegExp.global (Property)
	RegExp.ignoreCase (Property)
	RegExp.index (Property)
	RegExp.input (Property/static)
	RegExp.lastIndex (Property)
	RegExp.lastMatch (Property/static)
	RegExp.lastParen (Property/static)
	RegExp.leftContext (Property/static)
	RegExp.multiline (Property/static)
	RegExp.prototype (Property)
	RegExp.rightContext (Property/static)
	RegExp.source (Property)
	RegExp.test() (Method)
	RegExp.toSource() (Method)
	RegExp.toString() (Method)
	RegExp["$&"] (Property)
	RegExp["$'"] (Property/static)
	RegExp["$*"] (Property/static)
	RegExp["$+"] (Property/static)
	RegExp["$`"] (Property/static)
	RegExp pattern (Definition)
	RegExp pattern – alternation (Definition)
	RegExp pattern – attributes (Definition)
	RegExp pattern – character class (Definition)
	RegExp pattern – character literal (Definition)
	RegExp pattern – extension syntax (Definition)
	RegExp pattern – grouping (Definition)
	RegExp pattern – position (Definition)
	RegExp pattern – references (Definition)
	RegExp pattern – repetition (Definition)
	RegExp pattern – sub-patterns (Definition)
	Regular expression (Definition)
	Relational expression (Definition)
	Relational operator (Definition)
	releaseEvents() (Function)
	Remainder (%) (Operator/multiplicative)
	Remainder then assign (%=) (Operator/ assignment)
	request object (Object/NES)
	input_name> (Property)
	request.<urlExtension> (Property)
	request.agent (Property)
	request.imageX (Property)
	request.imageY (Property)
	request.ip (Property)
	request.method (Property)
	request.protocol (Property)
	Request-response loop (Definition)
	Requesting privileges (Security related)
	Reserved Word (Definition)
	ResetButton object (Object/DOM)
	ResetButton.handleEvent() (Method)
	ResetButton.type (Property)
	ResetButton.value (Property)
	resizeBy() (Method)
	resizeTo() (Method)
	response object (Object/NES)
	addClient() (Method)
	response.addResponseHeader() (Method)
	response.blob() (Method)
	response.callC() (Method)
	response.client (Property)
	response.database (Property)
	response.debug() (Method)
	response.deleteResponseHeader() (Method)
	response.flush() (Method)
	response.getOptionValue() (Method)
	response.getOptionValueCount() (Method)
	response.project (Property)
	response.redirect() (Method)
	response.registerCFunction() (Method)
	response.request (Property)
	response.server (Property)
	response.ssjs_generateClientID() (Method)
	response.ssjs_getCGIVariable() (Method)
	response.ssjs_getClientID() (Method)
	response.trace() (Method)
	response.write() (Method)
	Restricted access (Definition)
	ResultSet object (Object/NES)
	close() (Method)
	ResultSet.columnName() (Method)
	ResultSet.columns() (Method)
	ResultSet.next() (Method)
	ResultSet.prototype (Property)
	return (Statement)
	returnValue (Property)
	RevealTrans() (Filter/reveal)
	rgb() (Function)
	Right shift (Operator/bitwise)
	routeEvent() (Function)
	rows object (Definition)
	RT object (Object/HTML)
	RUBY object (Object/HTML)
	rule object (Object/DOM)
	cssText (Property)
	rule.parentStyleSheet (Property)
	rule.readOnly (Property)
	rule.runtimeStyle (Property)
	rule.selectorText (Property)
	rule.style (Property)
	runtimeStyle object (Object/JScript)
	RValue (Definition)

	S
	S object (Object/HTML)
	Same origin (Security related)
	SAMP object (Object/HTML)
	Scalar type (Definition)
	Scope (Definition)
	Scope chain (Definition)
	Scope of event handler (Definition)
	screen (Property)
	Screen object (Object/browser)
	Screen.availHeight (Property)
	Screen.availLeft (Property)
	Screen.availTop (Property)
	Screen.availWidth (Property)
	Screen.bufferDepth (Property)
	Screen.colorDepth (Property)
	Screen.fontSmoothingEnabled (Property)
	Screen.height (Property)
	Screen.pixelDepth (Property)
	Screen.updateInterval (Property)
	Screen.width (Property)
	screenLeft (Property)
	screenTop (Property)
	screenX (Property)
	screenY (Property)
	Script (Definition)
	Script execution (Definition)
	Script fragment (Definition)
	SCRIPT object (Object/HTML)
	SCRIPT.charset (Property)
	SCRIPT.defer (Property)
	SCRIPT.event (Property)
	SCRIPT.htmlFor (Property)
	SCRIPT.readyState (Property)
	SCRIPT.recordNumber (Property)
	SCRIPT.src (Property)
	SCRIPT.text (Property)
	SCRIPT.type (Property)
	Script Source Text (Definition)
	<SCRIPT SRC="..."> (HTML Tag Attribute)
	Script termination (Definition)
	<SCRIPT TYPE="..."> (HTML Tag Attribute)
	</SCRIPT> (Pitfall)
	<SCRIPT ARCHIVE="..."> (HTML Tag Attribute)
	<SCRIPT EVENT="..."> (HTML Tag Attribute)
	<SCRIPT FOR="..."> (HTML Tag Attribute)
	<SCRIPT ID="..."> (HTML Tag Attribute)
	<SCRIPT LANGUAGE="..."> (HTML Tag Attribute)
	<SCRIPT> (HTML Tag)
	ScriptArray object (Object/browser)
	item() (Method)
	ScriptArray.length (Property)
	ScriptEase (Product)
	ScriptEngine() (Function)
	ScriptEngineBuildVersion() (Function/global)
	ScriptEngineMajorVersion() (Function/global)
	ScriptEngineMinorVersion() (Function/global)
	Scriptlet (Definition)
	scroll() (Method)
	scrollbars (Property)
	scrollBy() (Method)
	scrollTo() (Method)
	secure (Property)
	Security policy (Definition)
	Select object (Object/HTML)
	Select.add() (Method)
	Select.length (Property)
	Select.multiple (Property)
	Select.options[] (Collection)
	Select.remove() (Method)
	Select.selectedIndex (Property)
	Select.size (Property)
	Select.tags() (Method)
	Select.type (Property)
	Select.value (Property)
	Selection object (Object/browser)
	clear() (Method)
	selection.createRange() (Method)
	selection.empty() (Method)
	selection.type (Property)
	Selection statement (Definition)
	SelectorArray object (Object/browser)
	SelectorArray.length (Property)
	self (Property)
	Semantic event (Definition)
	Semi-colon (;) (Delimiter)
	SendMail object (Object/NES)
	(Constructor)
	SendMail.Bcc (Property)
	SendMail.Body (Property)
	SendMail.Cc (Property)
	SendMail.constructor (Property)
	SendMail.errorCode() (Method)
	SendMail.errorMessage() (Method)
	SendMail.ErrorsTo (Property)
	SendMail.From (Property)
	SendMail.Organization (Property)
	SendMail.prototype (Property)
	SendMail.ReplyTo (Property)
	SendMail.send() (Method)
	SendMail.Smtpserver (Property)
	SendMail.Subject (Property)
	SendMail.To (Property)
	server object (Object/NES)
	server.agent (Property)
	server.host (Property)
	server.hostname (Property)
	server.lock() (Method)
	server.port (Property)
	server.protocol (Property)
	server.unlock() (Method)
	Server side browser detection (Useful tip)
	Server-side JavaScript (Definition)
	setHotkeys() (Method)
	setInterval() (Method)
	setResizable() (Method)
	setTimeout() (Method)
	setZOptions() (Method)
	Shadow() (Filter/visual)
	Shallow copying (Definition)
	Shared Property (Definition)
	Shell Scripting with JavaScript (Definition)
	Shift expression (Definition)
	Shift operator (Definition)
	short (Reserved word)
	showHelp() (Method)
	showModalDialog() (Method)
	showModelessDialog() (Method)
	shtm (File extension)
	shtml (File extension)
	Side effect (Definition)
	Sidebar object (Object/Navigator)
	Signed scripts (Security related)
	Single line comment (Definition)
	Slide() (Filter/transition)
	SMALL object (Object/HTML)
	snews: URL (Request method)
	Sort ordering (Definition)
	Source files (Definition)
	Source text (Definition)
	SPAN object (Object/HTML)
	Special number values (Definition)
	Special type (Definition)
	Spiral() (Filter/transition)
	SSJS (Definition)
	Stack manipulation (Useful tip)
	Standalone JavaScript (Definition)
	Statement (Definition)
	static (Reserved word)
	Static filters (Definition)
	Static method (Definition)
	Static variable (Useful tip)
	status (Property)
	Status code (Result value/NES)
	Status line (Definition)
	statusbar (Property)
	stm (File extension)
	stop() (Method)
	Storage duration (Definition)
	Stproc object (Object/NES)
	close() (Method)
	Stproc.outParamCount() (Method)
	Stproc.outParameters() (Method)
	Stproc.prototype (Property)
	Stproc.resultSet() (Method)
	Stproc.returnValue() (Method)
	Stretch() (Filter/transition)
	Strictly equal to (===) (Operator/identity)
	STRIKE object (Object/HTML)
	String (Type)
	String (Primitive value)
	String concatenate (+) (Operator/string)
	String literal (Primitive value)
	String object (Object/core)
	String() constructor (Constructor)
	String() (Function)
	String.anchor() (Method)
	String.big() (Method)
	String.blink() (Method)
	String.bold() (Method)
	String.charAt() (Method)
	String.charCodeAt() (Method)
	String.Class (Property/internal)
	String.concat() (Method)
	String.constructor (Property)
	String.fixed() (Method)
	String.fontcolor() (Method)
	String.fontsize() (Method)
	String.fromCharCode() (Method/static)
	String.indexOf() (Method)
	String.italics() (Method)
	String.lastIndexOf() (Method)
	String.length (Property)
	String.link() (Method)
	String.localeCompare() (Method)
	String.match() (Method)
	String.prototype (Property)
	String.replace() (Method)
	String.search() (Method)
	String.slice() (Method)
	String.small() (Method)
	String.split() (Method)
	String.strike() (Method)
	String.sub() (Method)
	String.substr() (Method)
	String.substring() (Method)
	String.sup() (Method)
	String.toLocaleLowerCase() (Method)
	String.toLocaleUpperCase() (Method)
	String.toLowerCase() (Method)
	String.toSource() (Method)
	String.toString() (Method)
	String.toUpperCase() (Method)
	String.valueOf() (Method)
	String operator (Definition)
	Strips() (Filter/transition)
	STRONG object (Object/HTML)
	STYLE object (1) (Object/HTML)
	STYLE.disabled (Property)
	STYLE.media (Property)
	STYLE.readyState (Property)
	STYLE.type (Property)
	style object (2) (Object/CSS)
	style.azimuth (Property)
	style.background (Property)
	style.backgroundAttachment (Property)
	style.backgroundColor (Property)
	style.backgroundImage (Property)
	style.backgroundPosition (Property)
	style.backgroundPositionX (Property)
	style.backgroundPositionY (Property)
	style.backgroundRepeat (Property)
	style.behavior (Property)
	style.border (Property)
	style.borderBottom (Property)
	style.borderBottomColor (Property)
	style.borderBottomWidth (Property)
	style.borderCollapse (Property)
	style.borderColor (Property)
	style.borderLeft (Property)
	style.borderLeftColor (Property)
	style.borderLeftWidth (Property)
	style.borderRight (Property)
	style.borderRightColor (Property)
	style.borderRightStyle (Property)
	style.borderRightWidth (Property)
	style.borderSpacing (Property)
	style.borderStyle (Property)
	style.borderTop (Property)
	style.borderTopColor (Property)
	style.borderTopStyle (Property)
	style.borderTopWidth (Property)
	style.borderWidth (Property)
	style.bottom (Property)
	style.boxSizing (Property)
	style.captionSide (Property)
	style.cellSpacing (Property)
	style.clear (Property)
	style.clip (Property)
	style.clip.bottom (Property)
	style.clip.left (Property)
	style.clip.right (Property)
	style.clip.top (Property)
	style.color (Property)
	style.colorProfile (Property)
	style.columnSpan (Property)
	style.content (Property)
	style.counterIncrement (Property)
	style.counterReset (Property)
	style.cssFloat (Property)
	style.cssText (Property)
	style.cue (Property)
	style.cueAfter (Property)
	style.cueBefore (Property)
	style.cursor (Property)
	style.direction (Property)
	style.display (Property)
	style.elevation (Property)
	style.emptyCells (Property)
	style.filter (Property)
	style.float (Property)
	style.floatStyle (Property)
	style.font (Property)
	style.fontFamily (Property)
	style.fontSize (Property)
	style.fontSizeAdjust (Property)
	style.fontStretch (Property)
	style.fontStyle (Property)
	style.fontVariant (Property)
	style.fontWeight (Property)
	style.getAttribute() (Method)
	style.getExpression() (Method)
	style.height (Property)
	style.imeMode (Property)
	style.important (Property)
	style.item() (Method)
	style.layoutGrid (Property)
	style.layoutGridChar (Property)
	style.layoutGridCharSpacing (Property)
	style.layoutGridLine (Property)
	style.layoutGridMode (Property)
	style.layoutGridType (Property)
	style.left (Property)
	style.length (Property)
	style.letterSpacing (Property)
	style.lineBreak (Property)
	style.lineHeight (Property)
	style.listStyle (Property)
	style.listStyleImage (Property)
	style.listStylePosition (Property)
	style.listStyleType (Property)
	style.margin (Property)
	style.marginBottom (Property)
	style.marginLeft (Property)
	style.marginRight (Property)
	style.marginTop (Property)
	style.markerOffset (Property)
	style.marks (Property)
	style.maxHeight (Property)
	style.maxWidth (Property)
	style.minHeight (Property)
	style.minWidth (Property)
	style.orphans (Property)
	style.outline (Property)
	style.outlineColor (Property)
	style.outlineStyle (Property)
	style.outlineWidth (Property)
	style.overflow (Property)
	style.overflowX (Property)
	style.overflowY (Property)
	style.padding (Property)
	style.paddingBottom (Property)
	style.paddingLeft (Property)
	style.paddingRight (Property)
	style.paddingTop (Property)
	style.page (Property)
	style.pageBreakAfter (Property)
	style.pageBreakBefore (Property)
	style.pageBreakInside (Property)
	style.pause (Property)
	style.pauseAfter (Property)
	style.pauseBefore (Property)
	style.pitch (Property)
	style.pitchRange (Property)
	style.pixelBottom (Property)
	style.pixelHeight (Property)
	style.pixelLeft (Property)
	style.pixelRight (Property)
	style.pixelTop (Property)
	style.pixelWidth (Property)
	style.playDuring (Property)
	style.posBottom (Property)
	style.posHeight (Property)
	style.position (Property)
	style.posLeft (Property)
	style.posRight (Property)
	style.posTop (Property)
	style.posWidth (Property)
	style.quotes (Property)
	style.removeExpression() (Method)
	style.renderingIntent (Property)
	style.richness (Property)
	style.right (Property)
	style.rowSpan (Property)
	style.rubyAlign (Property)
	style.rubyOverhang (Property)
	style.rubyPosition (Property)
	style.scrollbar3dLightColor (Property)
	style.scrollbarArrowColor (Property)
	style.scrollbarBaseColor (Property)
	style.scrollbarDarkShadowColor (Property)
	style.scrollbarFaceColor (Property)
	style.scrollbarHighlightColor (Property)
	style.scrollbarShadowColor (Property)
	style.setAttribute() (Method)
	style.setExpression() (Method)
	Style.size (Property)
	style.speak (Property)
	style.speakDate (Property)
	style.speakHeader (Property)
	style.speakNumeral (Property)
	style.speakPunctuation (Property)
	style.speakTime (Property)
	style.speechRate (Property)
	style.stress (Property)
	style.styleFloat (Property)
	style.tableLayout (Property)
	style.textAlign (Property)
	style.textAutospace (Property)
	style.textDecoration (Property)
	style.textDecorationBlink (Property)
	style.textDecorationLineThrough (Property)
	style.textDecorationNone (Property)
	style.textDecorationOverline (Property)
	style.textDecorationUnderline (Property)
	style.textIndent (Property)
	style.textJustify (Property)
	style.textKashidaSpace (Property)
	style.textShadow (Property)
	style.textTransform (Property)
	style.textUnderlinePosition (Property)
	style.top (Property)
	style.unicodeBidi (Property)
	style.verticalAlign (Property)
	style.visibility (Property)
	style.voiceFamily (Property)
	style.volume (Property)
	style.whiteSpace (Property)
	style.widows (Property)
	style.width (Property)
	style.wordBreak (Property)
	style.wordSpacing (Property)
	style.wordWrap (Property)
	style.writingMode (Property)
	style.zIndex (Property)
	style.zoom (Property)
	style.zOrder (Pitfall)
	<STYLE> (HTML Tag)
	<STYLE TYPE="..."> (HTML Tag Attribute)
	StyleSheet object (Object/DOM)
	addImport() (Method)
	StyleSheet.addRule() (Method)
	StyleSheet.cssRules[] (Collection)
	StyleSheet.cssText (Property)
	StyleSheet.disabled (Property)
	StyleSheet.href (Property)
	StyleSheet.id (Property)
	StyleSheet.imports[] (Collection)
	StyleSheet.media (Property)
	StyleSheet.ownerNode (Property)
	StyleSheet.owningElement (Property)
	StyleSheet.owningNode (Property)
	StyleSheet.parentStyleSheet (Property)
	StyleSheet.readOnly (Property)
	StyleSheet.removeRule() (Method)
	StyleSheet.rules[] (Collection)
	StyleSheet.title (Property)
	StyleSheet.type (Property)
	Style sheet (Definition)
	StyleSheetList object (Object/DOM)
	item() (Method)
	StyleSheetList.length (Property)
	SUB object (Object/HTML)
	Subclasses (Definition)
	SubmitButton object (Object/DOM)
	SubmitButton.handleEvent() (Method)
	SubmitButton.type (Property)
	SubmitButton.value (Property)
	Subtract (-) (Operator/additive)
	Subtract then assign (-=) (Operator/assignment)
	sun (Java package)
	SUP object (Object/HTML)
	super (Reserved word)
	Superclasses (Definition)
	switch(...) ... case: ... default: ... (Selector)
	synchronized (Reserved word)
	SyntaxError object (Object/core)

	T
	TABLE object (Object/HTML)
	TABLE.align (Property)
	TABLE.background (Property)
	TABLE.bgColor (Property)
	TABLE.border (Property)
	TABLE.borderColor (Property)
	TABLE.borderColorDark (Property)
	TABLE.borderColorLight (Property)
	TABLE.caption (Property)
	TABLE.cellPadding (Property)
	TABLE.cells[] (Collection)
	TABLE.cellSpacing (Property)
	TABLE.cols (Property)
	TABLE.createCaption() (Method)
	TABLE.createTFoot() (Method)
	TABLE.createTHead() (Method)
	TABLE.dataPageSize (Property)
	TABLE.deleteCaption() (Method)
	TABLE.deleteRow() (Method)
	TABLE.deleteTFoot() (Method)
	TABLE.deleteTHead() (Method)
	TABLE.frame (Property)
	TABLE.height (Property)
	TABLE.insertRow() (Method)
	TABLE.nextPage() (Method)
	TABLE.previousPage() (Method)
	TABLE.refresh() (Method)
	TABLE.rows[] (Collection)
	TABLE.rules (Property)
	TABLE.summary (Property)
	TABLE.tBodies[] (Collection)
	TABLE.tFoot (Property)
	TABLE.tHead (Property)
	TABLE.width (Property)
	TableColElement object (Object/HTML)
	TableColElement.align (Property)
	TableColElement.ch (Property)
	TableColElement.chOff (Property)
	TableColElement.span (Property)
	TableColElement.vAlign (Property)
	TableColElement.width (Property)
	TableSectionElement object (Object/DOM)
	tags (Property)
	taint() (Function/global)
	TBODY object (Object/HTML)
	TBODY.align (Property)
	TBODY.bgColor (Property)
	TBODY.rows[] (Collection)
	TBODY.vAlign (Property)
	TD object (Object/HTML)
	TD.abbr (Property)
	TD.align (Property)
	TD.axis (Property)
	TD.background (Property)
	TD.bgColor (Property)
	TD.borderColor (Property)
	TD.borderColorDark (Property)
	TD.borderColorLight (Property)
	TD.cellIndex (Property)
	TD.ch (Property)
	TD.chOff (Property)
	TD.colSpan (Property)
	TD.headers (Property)
	TD.height (Property)
	TD.noWrap (Property)
	TD.rowSpan (Property)
	TD.scope (Property)
	TD.vAlign (Property)
	TD.width (Property)
	telnet: URL (Request method)
	Ternary operator (Definition)
	Text object (Object/DOM)
	text/JavaScript (MIME type)
	TEXTAREA object (Object/DOM)
	TEXTAREA.cols (Property)
	TEXTAREA.handleEvent() (Method)
	TEXTAREA.readOnly (Property)
	TEXTAREA.rows (Property)
	TEXTAREA.select() (Method)
	TEXTAREA.type (Property)
	TEXTAREA.value (Property)
	TEXTAREA.wrap (Property)
	TextCell object (Object/DOM)
	TextCell.handleEvent() (Method)
	TextCell.maxLength (Property)
	TextCell.readOnly (Property)
	TextCell.select() (Method)
	TextCell.size (Property)
	TextCell.type (Property)
	TextCell.value (Property)
	textNode object (Object/DOM)
	textNode.data (Property)
	textNode.length (Property)
	textNode.splitText() (Method)
	TextRange object (Object/JScript)
	TextRange.boundingHeight (Property)
	TextRange.boundingLeft (Property)
	TextRange.boundingTop (Property)
	TextRange.boundingWidth (Property)
	TextRange.collapse() (Method)
	TextRange.compareEndPoints() (Method)
	TextRange.duplicate() (Method)
	TextRange.execCommand() (Method)
	TextRange.expand() (Method)
	TextRange.findText() (Method)
	TextRange.getBookmark() (Method)
	TextRange.getBoundingClientRect() (Method)
	TextRange.getClientRects() (Method)
	TextRange.htmlText (Property)
	TextRange.inRange() (Method)
	TextRange.isEqual() (Method)
	TextRange.move() (Method)
	TextRange.moveEnd() (Method)
	TextRange.moveStart() (Method)
	TextRange.moveToBookmark() (Method)
	TextRange.moveToElementText() (Method)
	TextRange.moveToPoint() (Method)
	TextRange.parentElement() (Method)
	TextRange.pasteHTML() (Method)
	TextRange.queryCommandEnabled() (Method)
	TextRange.queryCommandIndeterm() (Method)
	TextRange.queryCommandState() (Method)
	TextRange.queryCommandSupported() (Method)
	TextRange.queryCommandText() (Method)
	TextRange.queryCommandValue() (Method)
	TextRange.select() (Method)
	TextRange.setEndPoint() (Method)
	TextRange.text (Property)
	textRectangle object (Object/JScript)
	bottom (Property)
	textRectangle.left (Property)
	textRectangle.right (Property)
	textRectangle.top (Property)
	TextStream object (Object/JScript)
	TextStream.AtEndOfLine (Property)
	TextStream.AtEndOfStream (Property)
	TextStream.Close() (Method)
	TextStream.Column (Property)
	TextStream.Line (Property)
	TextStream.Read() (Method)
	TextStream.ReadAll() (Method)
	TextStream.ReadLine() (Method)
	TextStream.Skip() (Method)
	TextStream.SkipLine() (Method)
	TextStream.Write() (Method)
	TextStream.WriteBlankLines() (Method)
	TextStream.WriteLine() (Method)
	TFOOT object (Object/HTML)
	TFOOT.align (Property)
	TFOOT.bgColor (Property)
	TFOOT.ch (Property)
	TFOOT.chOff (Property)
	TFOOT.deleteRow() (Method)
	TFOOT.insertRow() (Method)
	TFOOT.rows[] (Collection)
	TFOOT.vAlign (Property)
	TH object (Object/HTML)
	TH.abbr (Property)
	TH.align (Property)
	TH.axis (Property)
	TH.background (Property)
	TH.bgColor (Property)
	TH.borderColor (Property)
	TH.borderColorDark (Property)
	TH.borderColorLight (Property)
	TH.cellIndex (Property)
	TH.ch (Property)
	TH.chOff (Property)
	TH.colSpan (Property)
	TH.headers (Property)
	TH.height (Property)
	TH.noWrap (Property)
	TH.rowSpan (Property)
	TH.scope (Property)
	TH.vAlign (Property)
	TH.width (Property)
	THEAD object (Object/HTML)
	THEAD.align (Property)
	THEAD.bgColor (Property)
	THEAD.ch (Property)
	THEAD.chOff (Property)
	THEAD.deleteRow() (Method)
	THEAD.insertRow() (Method)
	THEAD.rows[] (Collection)
	THEAD.vAlign (Property)
	this (Keyword)
	Thousands separator (Definition)
	throw (Statement)
	throws (Reserved word)
	Time from year (Time calculation)
	Time range (Definition)
	Time value (Time calculation)
	Time within day (Time calculation)
	TimeClip() (Time calculation)
	Timeout handlers (Definition)
	Timer events (Definition)
	<TITLE> (HTML Tag)
	TITLE object (Object/HTML)
	TITLE.text (Property)
	ToBoolean (Operator/internal)
	ToInt32 (Operator/internal)
	ToInteger (Operator/internal)
	Token (Definition)
	ToNumber (Operator/internal)
	ToObject (Operator/internal)
	toolbar (Property)
	top (Property)
	Topic classification (Overview)
	ToPrimitive (Operator/internal)
	ToString (Operator/internal)
	toString() (Function/global)
	ToUint16 (Operator/internal)
	ToUint32 (Operator/internal)
	TR object (Object/HTML)
	TR.align (Property)
	TR.bgColor (Property)
	TR.borderColor (Property)
	TR.borderColorDark (Property)
	TR.borderColorLight (Property)
	TR.cells[] (Collection)
	TR.ch (Property)
	TR.chOff (Property)
	TR.deleteCell() (Method)
	TR.insertCell() (Method)
	TR.rowIndex (Property)
	TR.sectionRowIndex (Property)
	TR.vAlign (Property)
	transient (Reserved word)
	Transition (Definition)
	Translation (Definition)
	Trigonometric function (Definition)
	true (Primitive value)
	try ... catch ... finally (Statement)
	TT object (Object/HTML)
	TV Set-top boxes (Definition)
	Type (Definition)
	Type conversion (Definition)
	TypeError object (Object/core)
	typeof (Operator/unary)

	U
	U object (Object/HTML)
	UDI (Definition)
	UIEvent object (Object/DOM)
	UIEvent.detail (Property)
	UIEvent.initUIEvent() (Method)
	UIEvent.view (Property)
	UL object (Object/HTML)
	UL.compact (Property)
	UL.type (Property)
	Unary expression (Definition)
	Unary operator (Definition)
	undefined (Constant/static)
	Undefined behaviour (Definition)
	undefined type (Type)
	Undocumented features (Definition)
	unescape() (Function/global)
	Unicode (Standard)
	Universal coordinated time (Standard)
	UniversalBrowserAccess (Security privilege)
	UniversalBrowserRead (Security privilege)
	UniversalBrowserWrite (Security privilege)
	UniversalFileRead (Security privilege)
	UniversalPreferencesRead (Security privilege)
	UniversalPreferencesWrite (Security privilege)
	UniversalSendMail (Security privilege)
	Unspecified behavior (Definition)
	untaint() (Function/global)
	unwatch() (Function/global)
	URI (Definition)
	URI handling functions (Definition)
	URIError object (Object/core)
	URL (Definition)
	Url object (Object/HTML)
	Url.charset (Property)
	Url.coords (Property)
	Url.hash (Property)
	Url.host (Property)
	Url.hostname (Property)
	Url.href (Property)
	Url.hreflang (Property)
	Url.Methods (Property)
	Url.mimeType (Property)
	Url.name (Property)
	Url.nameProp (Property)
	Url.pathname (Property)
	Url.port (Property)
	Url.protocol (Property)
	Url.protocolLong (Property)
	Url.rel (Property)
	Url.rev (Property)
	Url.search (Property)
	Url.shape (Property)
	Url.target (Property)
	Url.text (Property)
	Url.type (Property)
	Url.urn (Property)
	Url.x (Property)
	Url.y (Property)
	URN (Definition)
	User-generated object (Definition)
	userDefined object (Object/DOM)
	userProfile object (Object/JScript)
	userProfile.addReadRequest() (Method)
	userProfile.clearRequest() (Method)
	userProfile.doReadRequest() (Method)
	userProfile.getAttribute() (Method)
	UTC (Standard)
	Utility objects (Definition)

	V
	Value of an expression (Definition)
	Value preserving (Definition)
	Value property (Definition)
	valueOf() (Method)
	var (Declaration)
	VAR object (Object/HTML)
	Variable (Definition)
	Variable Declaration (Definition)
	Variable instantiation (Definition)
	Variable name (Definition)
	Variable statement (Definition)
	VBArray object (Object/JScript)
	(Constructor)
	VBArray.dimensions() (Method)
	VBArray.getItem() (Method)
	VBArray.lbound() (Method)
	VBArray.toArray() (Method)
	VBArray.ubound() (Method)
	vCard object (Object/JScript)
	Version History (Background)
	view-source: URL (Request method)
	Visual filters (Definition)
	void (Operator/unary)
	void expression (Definition)
	volatile (Reserved word)

	W
	WAP (Standard)
	watch() (Function/global)
	Watchpoint handler (Interface)
	Wave() (Filter/visual)
	web (File extension)
	Web browser (Definition)
	Web scripting (Definition)
	Web server (Definition)
	WebTV (TV Set-top Box)
	Week day (Time calculation)
	Wheel() (Filter/transition)
	while(...) ... (Iterator)
	Whitespace (Definition)
	window (Property)
	Window adornments (Definition)
	Window events (Definition)
	Window feature list (Definition)
	Window furniture (Definition)
	Window object (Object/browser)
	Window.alert() (Method)
	Window.atob() (Function)
	Window.attachEvent() (Method)
	Window.back() (Method)
	Window.blur() (Method)
	Window.btoa() (Function)
	Window.captureEvents() (Function)
	Window.clearInterval() (Method)
	Window.clearTimeout() (Method)
	Window.clientInformation (Property)
	Window.clipboardData (Property)
	Window.close() (Method)
	Window.closed (Property)
	Window.confirm() (Method)
	Window.crypto (Property)
	Window.defaultStatus (Property)
	Window.detachEvent() (Method)
	Window.dialogArguments (Property)
	Window.dialogHeight (Property)
	Window.dialogLeft (Property)
	Window.dialogTop (Property)
	Window.dialogWidth (Property)
	Window.disableExternalCapture() (Method)
	Window.document (Property)
	Window.enableExternalCapture() (Method)
	Window.event (Property)
	Window.execScript() (Method)
	Window.external (Property)
	Window.find() (Method)
	Window.focus() (Method)
	Window.forward() (Method)
	Window.frame (Property)
	Window.frameRate (Property)
	Window.frames[] (Collection)
	Window.handleEvent() (Function)
	Window.history (Property)
	Window.home() (Method)
	Window.innerHeight (Property)
	Window.innerWidth (Property)
	Window.java (Property)
	Window.length (Property)
	Window.location (Property)
	Window.locationbar (Property)
	Window.menubar (Property)
	Window.moveBy() (Method)
	Window.moveTo() (Method)
	Window.name (Property)
	Window.navigate() (Method)
	Window.navigator (Property)
	Window.netscape (Property)
	Window.offscreenBuffering (Property)
	Window.onblur (Property)
	Window.ondragdrop (Property)
	Window.onerror (Property)
	Window.onfocus (Property)
	Window.onload (Property)
	Window.onmove (Property)
	Window.onresize (Property)
	Window.onunload (Property)
	Window.open() (Method)
	Window.opener (Property)
	Window.outerHeight (Property)
	Window.outerWidth (Property)
	Window.Packages (Property)
	Window.pageXOffset (Property)
	Window.pageYOffset (Property)
	Window.parent (Property)
	Window.personalbar (Property)
	Window.pkcs11 (Property)
	Window.print() (Method)
	Window.prompt() (Method)
	Window.releaseEvents() (Function)
	Window.resizeBy() (Method)
	Window.resizeTo() (Method)
	Window.returnValue (Property)
	Window.routeEvent() (Function)
	Window.screen (Property)
	Window.screenLeft (Property)
	Window.screenTop (Property)
	Window.screenX (Property)
	Window.screenY (Property)
	Window.scroll() (Method)
	Window.scrollbars (Property)
	Window.scrollBy() (Method)
	Window.scrollTo() (Method)
	Window.secure (Property)
	Window.self (Property)
	Window.setHotkeys() (Method)
	Window.setInterval() (Method)
	Window.setResizable() (Method)
	Window.setTimeout() (Method)
	Window.setZOptions() (Method)
	Window.showHelp() (Method)
	Window.showModalDialog() (Method)
	Window.showModelessDialog() (Method)
	Window.sidebar (Property)
	Window.status (Property)
	Window.statusbar (Property)
	Window.stop() (Method)
	Window.sun (Property)
	Window.toolbar (Property)
	Window.top (Property)
	Window.window (Property)
	Windows Script Host (Product)
	with ... (Statement)
	WML (Standard)
	WScript (Standard)
	WScript object (Object/WSH)
	Application (Property)
	WScript.Arguments (Property)
	WScript.CreateObject() (Method)
	WScript.DisconnectObject() (Method)
	WScript.Echo() (Method)
	WScript.FullName (Property)
	WScript.GetObject() (Method)
	WScript.Name (Property)
	WScript.Network (Property)
	WScript.Path (Property)
	WScript.Quit() (Method)
	WScript.ScriptFullName (Property)
	WScript.ScriptName (Property)
	WScript.Sleep() (Method)
	WScript.StdErr (Property)
	WScript.StdIn (Property)
	WScript.StdOut (Property)
	WScript.Version (Property)
	WSH (Object model)
	WSH (Product)
	wysiwyg: (Request method)

	X
	XML (Standard)
	XML name (Definition)
	XML object (Object/JScript)
	XML.defer (Property)
	XML.event (Property)
	XML.src (Property)
	XML.text (Property)
	XML.type (Property)
	XML.XMLDocument (Property)
	XMP object (Object/HTML)
	XRay() (Filter/visual)

	Y
	Year from time (Time calculation)
	Year number (Time calculation)

	Z
	Zero value (Definition)
	Zigzag() (Filter/transition)

	Symbols
	! (Logical NOT) (Operator/logical)
	!= (NOT equal) (Operator/equality)
	!== (NOT identical) (Operator/identity)
	" (Double quote) (Delimiter)
	$ (Dollar) (Symbol)
	$n (Numbered argument) (Property/static)
	% (Modulo/remainder) (Operator/multiplicative)
	%= (Modulo assign) (Operator/assignment)
	& (Bitwise AND) (Operator/bitwise)
	&& (Logical AND) (Operator/logical)
	&= (Bitwise AND assign) (Operator/assignment)
	' (Single quote) (Delimiter)
	() (Argument delimiter) (Delimiter)
	() (Grouping operator) (Delimiter)
	* (Multiply) (Operator/multiplicative)
	*/ (Close comment block) (Delimiter)
	*= (Multiply assign) (Operator/assignment)
	+ (Add) (Operator/additive)
	+ (Concatenate) (Operator/string)
	+ (Unary plus) (Operator/unary)
	++ (Post increment) (Operator/postfix)
	++ (Pre increment) (Operator/prefix)
	+= (Add assign) (Operator/assignment)
	, (Comma) (Delimiter)
	(Minus) (Operator/additive)
	(Unary minus) (Operator/unary)
	(Post decrement) (Operator/postfix)
	(Pre decrement) (Operator/prefix)
	= (Minus assign) (Operator/assignment)
	(Decimal point) (Delimiter)
	(Period) (Delimiter)
	/ (Divide) (Operator/multiplicative)
	/ (Slash) (Delimiter)
	/* ... */ (Comment block) (Delimiter)
	/*@ ... @*/ (Pre processing block) (Delimiter)
	// (Comment line) (Delimiter)
	/= (Divide assign) (Operator/assignment)
	: (Colon) (Delimiter)
	; (Semicolon) (Delimiter)
	< (Less than) (Operator/relational)
	<!-- ... --> (Comment block) (Object/HTML)
	<% ... %> (Server side code block) (ASP tag)
	<< (Bitwise shift left) (Operator/bitwise)
	<<= (Bitewise shift left assign) (Operator/ assignment)
	<= (Less than or equal to) (Operator/relational)
	= (Assign) (Operator/assignment)
	== (Equal to) (Operator/equality)
	=== (Identical to) (Operator/identity)
	> (Greater than) (Operator/relational)
	>= (Greater than or equal to) (Operator/ relational)
	>> (Bitwise shift right) (Operator/bitwise)
	>>= (Bitwise shift right assign) (Operator/ assignment)
	>>> (Bitwise unsigned shift right) (Operator/ bitwise)
	>>>= (Bitwise unsigned shift right assign) (Operator/ assignment)
	?: (Conditional block) (Operator/conditional)
	@*/ (Pre-processor)
	@<variable_name> (Pre-processor)
	@_alpha (Pre-processor)
	@_jscript (Pre-processor)
	@_jscript_build (Pre-processor)
	@_jscript_version (Pre-processor)
	@_mac (Pre-processor)
	@_mc680x0 (Pre-processor)
	@_PowerPC (Pre-processor)
	@_win16 (Pre-processor)
	@_win32 (Pre-processor)
	@_x86 (Pre-processor)
	@cc_on (Pre-processor)
	@elif(...) ... (Pre-processor)
	@else ... (Pre-processor)
	@end (Pre-processor)
	@if(...) ... (Pre-processor)
	@set (Pre-processor)
	[] (Array index) (Delimiter)
	[] (Property accessor) (Delimiter)
	\ (Backslash) (Delimiter)
	^ (Bitwise XOR) (Operator/bitwise)
	^= (Bitwise XOR assign) (Operator/assignment)
	_ (Underscore) (Symbol)
	__parent__ (Property)
	__proto__ (Property)
	` (Backquote) (External code call)
	{ } (Braces) (Delimiter)
	| (Bitwise OR) (Operator/bitwise)
	|= (Bitwise OR assign) (Operator/assignment)
	|| (Logical OR) (Operator/logical)
	~ (Bitwise NOT) (Operator/bitwise)
	! object (Object/HTML)
	!.tabIndex (Property)

	Cross Reference

