PROGRAMMER TO PROGRAMMER ™

e-book includes this complete reference and 2000+ extra entries

JavaScript

Programmer’s Reference

Cliff Wootton

JavaScript Programmer's Reference

Cliff Wootton

Wrox Press Ltd. ®

JavaScript Programmer's Reference

© 2001 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted
in any form or by any means, without the prior written permission of the publisher, except in the case of
brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy
of the information. However, the information contained in this book is sold without warranty, either
express or implied. Neither the authors, Wrox Press nor its dealers or distributors will be held liable for
any damages caused or alleged to be caused either directly or indirectly by this book.

WFrOoX

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,
Birmingham, B27 6BH, UK
Printed in the United States
ISBN 1-861004-59-1

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits

Author
Cliff Wootton

Category Manager
Dave Galloway

Technical Editors
Timothy Briggs
Howard Davies
Phillip Jackson
Amanda Kay
Simon Mackie
Chris Mills
Peter Morgan

Project Manager

Chandima Nethisinghe

Production Coordinator

Tom Bartlett

Additional Layout
Simon Hardware
Pippa Wonson

e-Book Production
Tom Bartlett

Production Manager
Simon Hardware

Technical Reviewers
Alex Abacus

Jonny Axelsson
Chong Chang
Andrew Van Heusen
Martin Honnen
Ron Hornbaker
Kenneth Lo

Jim Macintosh

Jon Stephens

Peter Torr

Chris Ullman

Paul Vudmaska
Paul Wilton

Figures
Shabnam Hussain

Cover
Shelley Frazier

Proofreaders

Ian Allen
Christopher Smith
Agnes Wiggers

Index
Andrew Criddle

About the Author

Cliff Wootton lives in the south of England and works on multimedia systems and content management
software for large data driven web sites. Currently he is developing interactive TV systems for BBC
News Online in London (http://www.bbc.co.uk/news) and previously worked for other commercial
broadcasters on their web sites. Before that he spent several years developing geophysical software and
drawing maps with computers for oil companies.

Cliff is married with three daughters and a growing collection of bass guitars.

Acknowledgements

It's hard to believe I've actually reached the stage of writing the introductory pages to this book. It's been
a long process and I don't think I would have reached this point without the help of Tim Briggs at Wrox,
who very gently urged me onwards and gave me encouragement when I needed it. Tim's contribution to
this project was vital to its success because he developed the process which converted my DOCBOOK
output into something the Wrox editors could turn into a book. Tim also prepared the CD-ROM content
from the same XML files; truly amazing!

Thanks also to all the other folks at Wrox who have helped, organised, checked and collated my material
to present it in the form you now see it. Grateful thanks to my reviewers, who in a very short time
provided me with some useful guidance and support; in particular Jon Stephens and Martin Honnen,
who also provided some amazingly clever example code fragments for use as examples.

There are many other people who contributed without realising it. In particular Nick Cohen (formerly of
the BBC and now at Turner Broadcasting) who provided some helpful insights into TV set-top-box
workings. Also Matt Karas and Emyr Tomos (both ex-BBC, now at Talkcast) who threw down the
gauntlet of several interesting challenges for me to implement on the BBC News Online web site. I also
wouldn't be sitting here if it weren't for Bruce Morris at Carlton Online. It was through the happy chance
of an article I wrote for Bruce's Web Developer's Journal (WD]J) web site that led to Wrox contacting me
and the BBC inviting me to do some JavaScript work. What an amazing thing the web is.

Most importantly I dedicate this book to my family. To my wife, Julie and my daughters Hannah, Lydia
and Ruth who kept me going with cups of coffee, hugs and the occasional giggle when they saw the
photograph of me for the front cover.

http://www.bbc.co.uk/news

Introduction

The JavaScript language is constantly developing, and continues to increase in popularity. Its
evolution into a general purpose scripting language from what started life purely for scripting web
browsers, is a great success story. You can now find JavaScript interpreters in many different
environments and there are sure to be other new and interesting uses for the language in the
future, especially now that embeddable interpreters are available.

In this book, we have attempted to snapshot the browsers that exist currently, which need to be
supported by web sites, and collate that information together in a form that has broad scope and is
deep enough to be useful on a day-to-day basis. As the language is growing all the time, this is
likely to be an ongoing task.

Who is This Book For?

The book is aimed at people who already have some knowledge of JavaScript and need a
companion volume to their daily work. It is primarily aimed at the experienced practitioner, and so
does not attempt to be a tutorial for the beginner.

For a tutorial book, we suggest Paul Wilton's Beginning JavaScript
(Wrox Press, ISBN 1-861004-06-0).

Typical uses of the book include times when you:

Q Need to check out the specific details of a particular language construct or object property
0 Know what you want to do, but want to know how JavaScript helps you achieve that

Q Want information on cross-browser compatibility issues for your script

Q Have encountered a problem in your script and need help to debug it

One important motivation I had for writing this book was to reduce the amount of material I have
to carry around when I'm working on projects in my clients' offices. My library now contains
several shelves devoted purely to JavaScript, and in researching this book, I ended up with many
megabytes of material. There have been many fine books written about JavaScript but I simply
cannot carry them around on the train, even with a large rucksack! So, I set out to try and distil
enough useful information into one book and organize it so that the information is easy to find. I've
also put in material on issues that I've encountered in discussions with other programmers.

JavaScript Programmer's Reference

The Structure of the Book

To make it easy to navigate through the topics, titles describe the topic content and the topic type
and are organized alphabetically. Where a topic might be referred to using several headings, a brief
entry in the cross-reference at the end of the book shows the main topic for that subject.

I used a great deal of software automation to manage the book content and the whole thing was
built in a database and exported as an XML file set using the DocBook DTD. There are now in
excess of 3500 individual topics in this work. That is more than twice as many as we have room for
in the printed book, so we’ve had to put a useful subset of the reference into the printed book, and
the complete set of material onto the CD-ROM, which is available both in PDF and HTML formats.
Some additional reference information that is not strictly part of the JavaScript language, but that
you may find useful, is also included, such as country codes and MIME types.

Where we discuss an object all the important properties, methods, events, and any supporting material
are broken out into their own topics, and these detailed entries are included on the CD. Where objects
inherit properties and methods, they are listed in the object coverage, but to avoid duplication the
information about the inherited properties is described as a member of the super-class. This slightly
detracts from the lexical referencing but it saves space. In some cases these inherited
properties/methods are deemed important enough to merit a cross-referencing entry of their own.

This allows us to indicate availability of features at a very fine level of detail. Within each topic we
can also discuss bugs, gotchas, and areas of difficulty in a focused way.

Language syntax is illustrated by way of example code fragments that show how to access an
object, method, or property. More extensive examples are given where necessary.

Because of the scoping rules, properties are available without the need for the window object to be
specified as a prefix. Thus navigator as a topic is available under the window.navigator topic
as well. Once you have found an entry topic, you can then use the cross-referencing listings to
locate other related material.

The book content was developed inside a database system, which provided tools to relate topics.
The benefit is a rich source of cross-referencing links between topics. The cross-reference in the
printed book is complete; that is, it also includes entries found only on the CD. The italicized cross-
references in the printed book can also be found in the printed book.

We will now look at some of the 'features' of JavaScript programming, as an introduction to what
topics in the book will address.

Differences between Browsers

For some time, the most popular browsers have been Netscape Navigator 4.7 and Microsoft
Internet Explorer 5.0 (MSIE). Other, newer browsers make a point of being standards compliant
and so if your script conforms to the standards for core JavaScript as laid down by ECMA and the
W3C DOM specifications, it should function correctly.

However, the dominant browsers have for a long time been competing with one another to add
new features. Architecturally, this means their browsers have each gone in a completely different
direction. The penalty has been that support for various language features has been implemented
in each browser in ways that makes it difficult to use in a portable way. Indeed, to make use of
some features requires twice the work, since the same code has to be written in two different ways
and called after detecting which browser is being used.

Introduction

Because of the proliferation of browser versions and platforms, features are generally referred to as
being available in the revision in which they were first introduced. As the Netscape browser is
available on so many different platforms, to test for compliance across all platforms would require
a test suite of a dozen machines and 30 or more different installations of browser applications.
Indeed, when building such a test suite just prior to starting on this book, I found more than a
dozen distinctly different browser versions just for the Macintosh platform and many more than
that for Windows. Similarly, MSIE comes in a bewildering variety of versions and platform
variants. In addition, the JScript interpreter is a replaceable component that can be upgraded
without changing the containing browser.

Browsers and Standards

There is still much that is ambiguous or not yet defined in the standards and the browser manufacturers
continue to add new features in competition with one another. Even though they are standards
compliant at a functional level, there are still significant differences if you 'look under the hood'.

We have included coverage of the following standards:

ECMAScript core language up to edition 3 of the standard
DOM coverage to level 1

Some DOM coverage of level 2 where implemented in Netscape 6

[T

Discussion of the features being added at DOM level 3
JavaScript implementations we cover include:

Netscape 3.0, 4.0, 4.05, 6.0 (the final release came out as we went to press)
MSIE version 3.0, 4.0, 5.0, 5.5
Opera 3,4,5

0o 0 0 0O

Netscape Enterprise Server

By implication that means we cover JavaScript versions up to 1.5 and JScript up to 5.5. The
coverage of Netscape 6.0 is based on it supporting the W3C DOM standards and several bugs in the
currently released version prevented the verification of some functionality although that may be
platform dependent. There are also some new and unexpected features.

We concentrate our discussions on the peculiarities of Netscape and MSIE because the other
browsers that support JavaScript attempt to provide a fault-free standards-based implementation.
Since this is a sub-set of the functionality of Netscape and MSIE, other platforms should be
adequately covered.

Features and Versions

There are now a wide variety of sources of information about JavaScript and they don't all agree. In
particular there is some uncertainty over which release of JavaScript introduces certain features.

The source material was assimilated by examining the standards documents and by inspecting
objects with fragments of JavaScript. Then, the availability of features was checked against several
alternative reference works. Occasionally, when a consistency error showed up, it was necessary to
go back to the browser and test for the availability of a property or method.

3

JavaScript Programmer's Reference

Where there is some room for doubt, we have documented the release at which the feature became
useful. This is because in earlier releases it may have had a serious flaw or been significantly
revised later to make it work properly. Any implementation prior to that may be unreliable. So
where we may appear to disagree with other commentators our coverage is based on whether it is
practical to use a particular feature at a certain release.

Some browser features are available at an earlier release on some platforms than others are. We take the
Windows 32-bit release as our baseline although significant testing was also done on the Macintosh
versions, which disappointingly lagged somewhat in performance and feature availability. Both
platforms exhibited instabilities and crash-prone behavior but in quite different areas of the language.

As there are so many variants of the browsers, the availability matrix for objects and their member
properties/methods is huge and requires a large amount of work to test on all the available
combinations. So far, no single reference source has proven to be error free and whilst the
information here has been examined and cross-checked it is still likely that there are errors. If, in
your work, you disagree with the information provided here, please send feedback (see the end of
the Introduction for how to do this).

Core JavaScript

At first glance, the JavaScript environment appears to be built around a small core of objects and it
is easy to fall into the trap of assuming the language is small and compact. That is certainly true if
you are only considering core JavaScript functionality. The core language is defined by ECMA and
both Netscape and MSIE both claim to be ECMA compliant. They may well be, but you cannot
write much useful JavaScript for deployment in a web page by confining yourself only to the
functionality of the ECMA standard. It is at that point that the two browsers begin to diverge.

DOM Support

Likewise, both browsers (MSIE 5 upwards and Netscape 6) claim to be DOM compliant. Browser
support for the DOM is slowly converging but if you need to do any esoteric code development
that involves DOM traversal and class names, they are still somewhat different.

MSIE implements a DOM model that is structurally right, but the class names of the objects that
comprise that model are certainly not correct and do not conform to the DOM standard. Netscape 6
implements a DOM compliant model that does use the correct class names. Another slight
difference is that MSIE implements distinctly different classes for some objects whereas Netscape
Navigator instantiates the same class for several purposes.

These differences don't cause much grief to you when you are constructing simple scripts and web
page enhancements but can be quite a problem if you need to manipulate the DOM structure and
operate on objects by means of their class names. This difference did not become apparent until I
used inspection scripts to examine internal document structures.

There are also areas where DOM specifies objects in a way that the browsers can implement
ambiguously. For example, DOM describes documents as being a generic document class with an
HTML document as a sub-class. Browsers simply provide a single document class with no access to
the two separate class types.

Introduction

Object Classes

You might also assume that there is a small and finite set of different object types. However if you
inspect the constructor properties and examine the function names, you will find the opposite, there are
a large number of object types. For example, the applets property that returns a list of applets in a
document will give you an AppletArray object and nota Collection object in Netscape. Trying to
work out class names on MSIE is a bit more problematic and it tends to provide generic Collection
objects instead. By building fragments of JavaScript to inspect objects, you can determine these class
names and learn a lot about how the browser maintains the internal model of the page.

The topics are constructed around a browser-centric model. The objects are defined based on their
instantiation by an HTML tag in a web browser window. MSIE creates a distinct object class for each
tag. Netscape does a similar trick, but not so convincingly in earlier versions. At version 6, the objects
are DOM compliant and named differently to those in MSIE and earlier Netscape browsers. Netcsape
6 is so different as to be a new browser with little similarity to the earlier versions of Netscape.

There is an emerging standards-based model that frames the object hierarchy much more logically
and, while it is still evolving, it may become a more robust way of describing the catalog of
available classes. For now, though, the web and browser dominate use of JavaScript, so this seems
like the more appropriate model.

Document Objects

Another area of debate is the document object. Typically, the previous documentation describes access
to it as if there is only one document object. This is true within the context of a single script within a
page. However, it is not necessarily true of a window in a web browser. A window may contain many
frames or layers. Each one will have its own private document object. If you are writing scripts that
operate across multiple frames or windows, you may refer to several document objects, so the syntax
examples are designed to accommodate the different ways in which objects can be accessed.

The Future

JavaScript is becoming available in an ever-wider variety of applications. It is used in:
Q PDF forms for validation

Q For modifying the behavior of the GUI in developer tools

Q Embedded interpreters in cell phones and television set-top boxes

There was not space enough or time to cover these extensively. They are also changing continually
and will not be stable enough to document for a while yet.

What Do | Need to Use This Book?

All that is needed to use this book is a text editor and a JavaScript-enabled browser, such as
Microsoft Internet Explorer or Netscape Navigator.

To use the CD you will need a browser to read the HTML files and a copy of Adobe Acrobat
Reader/Adobe Acrobat eBook Reader to read the PDF files, which are freely available from
www.adobe.com. To make navigation easier, the PDF files contain interactive bookmarks,
thumbnails, and hyperlinks in the entries.

All of the code examples given in the book are available on the CD, and are also available to
download from our web site, www.wrox.com.

JavaScript Programmer's Reference

Conventions Used in This Book

The convention used for syntax naming is that a variable created within the local scope would be
prefixed with my while a global variable would be prefixed with the. Parameters passed into
function and method calls are prefixed with a, an, or some.

The syntax description for an object shows how a reference to an object of that class can be
retrieved via a property or method on another object. The syntax for properties and methods show
them as members of an object that is referred to with a variable. This manifests itself as an object
reference like this:

myDocument = document

myDocument = myElement.parentNode
myDocument = myFrame.document
myDocument = myLayer.document

Then a property reference looks like this,
myDocument .cookie

and not:
document .cookie

Of course you can omit the indirection through a referencing variable and any of these would be
equally valid:

document .cookie
myElement.parentNode.cookie
myFrame.document .cookie
myLayer .document .cookie

But by using the indirection, the syntax descriptions for the member properties and methods
are simplified.

In the tables, we have used the abbreviations N for Netscape, NES for Netscape Enterprise Server,
and IE for Internet Explorer.

As for styles in the text:

QO Filenames, and code in the text appear like so: dummy . xm1

QO Test on user interfaces, and URLs, are shown as: File/Save As...

Introduction

Customer Support

Wrox has three ways to support books. You can:

Q Post and check for errata at www.wrox.com
Q Enroll at the peer-to-peer forums at p2p.wrox.com

Q Email technical support a query or feedback on our books in general

Errata

You can check for errata for the book at our web site; www.wrox.com, simply navigate to the page
for this book. There will be a link to the list of errata.

P2P Lists

You can enroll in our peer to peer discussion forums at p2p.wrox.com. The JavaScript list is
available in the 'Web Design' section.

Email Support

If you wish to point out an errata to put up on the website or directly query a problem in the book
with an expert who knows the book in detail, then e-mail support@wrox.com. A typical email
should include the following things:

Q The name of the book, the last four digits of the ISBN and the entry name for the problem in the
Subject field

Q Your name, contact info and the problem in the body of the message
You may want to tell us your opinion of this book, or you may have ideas about how it can

be improved, in which case, e-mail feedback@wrox.com. We will do our utmost to act upon
your comments.

A object (Object/HTML)

An object that represents an <A> element when instantiated in MSIE.

Availability:

Inherits from:

JavaScript
syntax:

HTML syntax:

Argument list:

Object properties:

Event handlers:

See also:

JScript

-1.0

Internet Explorer —3.02

Element object, Node object

1E myA myDocument.all.anElementID

1E myA myDocument.all.tags ("A") [anIndex]

1E myA myDocument.all [aName]

1IE myA myDocument .anchors.item(aName) [anIndex]

= myA myDocument .anchors [aName]

= myA myDocument .anchors [anIndex]

= myA myDocument.getElementById (anElementID)

= myA myDocument.getElement sByName (aName) [anIndex]
= myA myDocument.getElementsByTagName ("A") [anIndex]
1E myA myDocument.links.item(aName) [anIndex]

- myA myDocument.links [aName]

- myA myDocument.links [anIndex]

<A>

anIndex A reference to an element in a collection
aName An associative array reference
anElementID The ID value of an Element object

accessKey,dataFld,dataSrc, hash, host, hostname, href, Methods,
mimeType, nameProp, pathname, port, protocol, protocolLong, rel,
search, tabIndex, target

onBlur,onClick,onDblClick, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onSelectStart

Element object, Input .accessKey, Map object, Anchor object

A —A object (Object/HTML)

Property JavaScript JScript N IE Opera DOM HTML Notes
accessKey - 3.0 + - 40+ - 1+ = -
dataFld - 1.0 + - 3.2+ - - = =
dataSrc - 1.0 + - 3.02+ - - - =

hash - 1.0 + - 3.02+ - - - -

host - 1.0 + - 3.02+ - - - -
hostname - 1.0 + - 3.02+ - = = =

href - 1.0 + - 3.02+ - 1+ - -
Methods - 1.0 + - 3.02+ - - - -
mimeType - 1.0 + - 3.02+ - - - -
nameProp - 1.0 + - 3.02+ - - - -
pathname - 1.0 + - 3.02+ - - - -

port - 1.0+ - 3.02+ - - - -
protocol - 1.0 + - 3.02+ - = = =
protocolLong - 1.0 + - 3.02+ - - = =

rel - 1.0 + - 3.02+ - - - -
search - 1.0 + - 3.02+ - - - -
tabIndex 1.5+ 3.0+ 6.0+ 40+ - 1+ - -
target - 1.0 + - 3.02+ - 1+ - -

Event name JavaScript JScript N IE Opera DOM HTML Notes
onBlur - 3.0+ - 40+ - - - Warning
onClick - 1.0 + - 30+ - - 40+ Warning
onDblClick - 3.0+ = 40+ - = 40+ Warning
onFocus = 3.0+ = 40+ - = = Warning
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown - 3.0+ - 40+ - - 40+ Warning
onKeyPress - 3.0+ = 40+ - = 40+ Warning
onKeyUp - 3.0+ - 4.0+ - - 4.0+ Warning
onMouseDown = 3.0+ = 40+ - = 40+ Warning
onMouseMove - 3.0+ - 40+ - - 40+ Warning
onMouseOut = 3.0+ = 40+ - = 40+ Warning
onMouseOver = 1.0 + = S0 | = = 40+ Warning
onMouseUp - 3.0 + - 4.0+ - - 4.0 + Warning
onSelectStart = 3.0 + = 4.0 + = = = =

JavaScript Programmer's Reference

ABBR object (Object/HTML)

An object representing the HTML content (an abbreviation) delimited by the <ABBR> HTML tags.

HTML version — 4.0

Availability:)
JScript - 3.0
Internet Explorer — 4.0
Inherits from: Element object, Node object
JavaScript syntax: 1E myABBR = myDocument.all.anElementID
1E myABBR = myDocument.all.tags ("ABBR") [anIndex]

1E myABBR = myDocument.all[aName]
= myABBR = myDocument.getElementById (anElementID)

- myABBR =
myDocument .getElement sByName (aName) [anIndex]
= myABBR =
myDocument .getElementsByTagName ("ABBR") [anIndex]
HTML syntax: <ABBR> ... </ABBR>
. nIind i i
Argument list: a ex A reference to an element in a collection
aName An associative array reference
ankElementID The ID value of an Element object

onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Event handlers:

See also: style.speak, Element object

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
onDblClick 15+ 3.0 + 60+ 40+ 3.0+ - 40+ Warning
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown 1.5+ 3.0 + 6.0 + 40+ 3.0+ - 4.0+ Warning
onKeyPress 1.5+ 3.0+ 60+ 40+ 30+ - 40+ Warning
onKeyUp 1.5+ 3.0+ 60+ 40+ 3.0+ = 40+ Warning
onMouseDown 1.5+ 3.0+ 60+ 40+ 3.0+ = 40+ Warning
onMouseMove 1.5+ 3.0 + 6.0 + 40+ - - 4.0+ Warning
onMouseOut 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
onMouseOver 1.5+ 3.0+ 6.0+ 40+ 30+ - 40+ Warning
onMouseUp 1.5+ 3.0+ 60+ 40+ 3.0+ = 40+ Warning

10

A — about: URL (Request method)

about: URL (Request method)

This is a special kind of URL that fetches content from a storage area inside the Netscape browser
instead from using HTTP to get it from a web server.

JavaScript - 1.1
JScript - 3.0

Internet Explorer — 4.0
Netscape - 3.0

Availability:

This is a special request method provided by the Netscape browser to gain access to local client-
side resources. The resources are loaded from inside the application itself.

In the Macintosh version of Navigator, this means they are stored in the resource fork of the
browser application. If you need to deploy a custom version of Navigator within an intranet
environment, with some care you can modify these resources with a resource-editing tool, such as
ResEdit. Always work on a copy of the application and test the changes thoroughly.

On other platforms, the resources are likely to be stored in files located in folders adjacent to the
application. You will need to study your own copy of Netscape to see what you can change.

These special URLs are mostly not present in early versions of MSIE, although there will
be some internal resources, which may provide customization opportunities. MSIE also
supports an about :blank URL that provides a blank page. There may be others hidden
away inside the application.

You may also be able to obtain administration tools from Netscape and Microsoft to carry out
legitimate customizations on the browsers before deploying them throughout your organization.

The following special URLs seem to work when typed into the location box:

URL Description

about:logo Netscape logo

about:mozilla A fire & brimstone quote from the book of Mozilla (Yes it's really there —
at least on some versions)

about:authors Shows a cryptic message about the page having been removed, although
the authors.html file is still present inside the application

about:cache Displays a disk cache report

about :document Displays the document info console

about: fonts Displays the font info console

about:global A global history report

about:image-cache A report on the internal image cache

about:license A hyperlink to the Netscape license document

about:mailintro Displays the Netscape mail info page

11

JavaScript Programmer's Reference

URL Description

about :memory-cache A report on the memory cache

about:pics Generates a security exception

about:plugins A page of information about the plugins

about:security?advisor=xxx Brings up a security console where XXX indicates
the window to operate on.

about:security?banner-insecure Serves an unlocked padlock image

about:security?banner-secure Serves a locked padlock image

about:security?issuer-logo=XXX Returns a graphic where XXX identifies which one

about:security?subject-logo=XXX Returns a graphic where XXX identifies which one

about:coslogo2 Cosmo logo

about: fclogo Full Circle software logo

about:hslogo Beatnik logo

about :hype An audio clip

about:insologo Inso logo

about:javalogo Java compatible logo

about:litronic Litronic logo

about :mclogo Marimba Castanet logo

about :mmlogo Macromedia logo

about:ncclogo Netcast logo

about:odilogo Object Design logo

about:gtlogo Apple QuickTime logo

about:rsalogo RSA secure logo

about:symlogo Symantec logo

about : tdlogo TrueDoc logo

about:visilogo VisiGenic logo

about:blank Presents a blank page on Netscape Navigator 3 and

MSIE version 5; used to create a blank page when
a new window is opened

Some of these URLs can be used in frames, but others can't. A few can be used as HREF values.
JavaScript complains that the about: request method is illegal. This means you cannot change
the location.href within a page to any of the "about :" URLs. However, you might be able to
write some innerHTML content into a <DIV> or to place a link to these assets.

Many of the built-in assets are used as image sources in the about page. It's possible you might
want to display the Netscape logo. If you are aware that you are using software provided by the
other third parties, you might (if they give you permission) place their logo on the screen when you
are using features of their software. You should ask first, although Netscape probably won't mind
their logo being served like this.

12

A — abstract (Reserved word)

The interesting thing about this is that you are effectively serving assets out of a static cache in the
client file system.

The URL that points at the license document may be useful as it is possible you might want to
display the Netscape license if you are redistributing the browser.

The about : plugins URL yields a page containing some useful JavaScript that displays the
plugins page. You may find some useful techniques in here for managing plugin facilities although
they may be Netscape compatible only.

Mostly, these special URLs will be useful for debugging. Getting details of the disk cache, for
example, may be useful. Pulling up the JavaScript debugger page if you detect an error in your

script might also be a cool trick.

The MSIE and Netscape browsers can both use the about : blank URL value as a default page
when the browser is started up.

Warnings:

Q The UniversalBrowserRead privilege is required for access to internal browser values and state
information such as the cache contents.

javascript: URL, nethelp: URL, UniversalBrowserAccess,

See also:
UniversalBrowserRead, URL

abstract (Reserved word)

Reserved for future language enhancements.

Refer to:

Reserved word
Cross-references:
ECMA 262 edition 2 — section — 7.4.3

ECMA 262 edition 3 — section — 7.5.3

AbstractView object (Object/DOM)

An object that belongs to the DOM level 2 views module.

DOM level -2
JavaScript - 1.5
Netscape - 6.0

Availability:

. myAbstractView = myMouseEvent.view
JavaScript syntax: N v v

N myAbstractView = myUIEvent.view

13

JavaScript Programmer's Reference

This is part of a new suite of functionality introduced at DOM level 2, which provides a way of
looking at documents from alternative points of view. At present only the Abstract and Document
views are standardized and, because the capabilities are quite new, implementations may be
incomplete at this stage.

MouseEvent Object, MouseEvent.initMouseEvent (),
UIEvent object

See also:

Accessor method (Definition)

A method for accessing publicly available object properties.

Availability: ~ECMAScript edition — 2

A method used to store or retrieve property values contained in objects.

In ECMAScript-compliant implementations, this is accomplished with internal functions named
Get () and Put ().

If you add new properties to an object of your own, you may want to implement functions that operate
by using the 'this' variable to access properties. These functions are then associated with the object or
its prototype, so that they can be shared. They are then referred to as methods rather than functions.

See also: function(...) .., Get (),Method, Put ()

Cross-references:
ECMA 262 edition 2 — section — 8.6.2

ECMA 262 edition 3 — section — 8.6.2

ACRONYM object (Object/HTML)

An object representing the HTML content delimited by the <ACRONYM> HTML tags.

Availability: JScript - 3.0
Internet Explorer — 4.0
Inherits from: Element object, Node object

1E myACRONYM = myDocument.all.anElementID
1IE myACRONYM = myDocument.all.tags ("ACRONYM") [anIndex]
1IE myACRONYM = myDocument.all [aName]

JavaScript syntax:

= myACRONYM = myDocument.getElementById (anElementID)

_ myACRONYM =
myDocument .getElement sByName (aName) [anIndex]

= myACRONYM =
myDocument.getElementsByTagName ("ACRONYM") [anIndex]

14

A - Activation object (Object/internal)

HTML syntax: <ACRONYM> ... </ACRONYM>

Argument list: anElementID The ID value of the element required

anIndex A reference to an element in a collection
aName An associative array reference

onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,

Event handlers:

onSelectStart
See also: style.speak, Element object
Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick 15+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
onDblClick 15+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
onDragStart - 3.0 + = 40+ - = - -
onFilterChange = 3.0 + = 40+ - = = =
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
onKeyPress 1.5+ 3.0+ 6.0+ 40+ 3.0+ = 40+ Warning
onKeyUp 1.5+ 3.0+ 6.0+ 40+ 3.0+ = 40+ Warning
onMouseDown 1.5+ 3.0+ 60+ 40+ 3.0+ - 40+ Warning
onMouseMove 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseOut 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
onMouseOver 1.5+ 3.0+ 6.0+ 40+ 3.0+ = 40+ Warning
onMouseUp 1.5+ 3.0+ 60+ 40+ 3.0+ - 40+ Warning
onSelectStart = 3.0 + = 40+ - = = =

Activation object (Object/internal)

The activation object is created when the flow of control first enters an execution context.
Availability: ECMAScript edition — 2

The activation object is created when the flow of control first enters an execution context for
declared function code, anonymous code or implementation-supplied code.

15

JavaScript Programmer's Reference

As the activation object is created, it is associated with the execution context. On
initialization, it has a property called arguments that cannot be deleted and that refers
to an arguments object.

This activation object is then used as the variable object for instantiating all the argument
variables. The activation object is discarded when the function returns its result to the caller.

The activation object is an internal mechanism and so cannot be passed to the outside world,
although members of the activation object may well be accessible to a running script.

See also: Execution context, function (...) ...

Cross-references:
ECMA 262 edition 2 — section — 10.1.6

ECMA 262 edition 3 — section — 10.1.6

Active Server Pages (Product)

A Microsoft web server product.

This is a server-side programming framework that supports JavaScript. More accurately, it
supports JScript, which is Microsoft's flavor of JavaScript.

For more information, see ASP 3.0 Programmer’s Reference, ISBN 1-861003-23-4 from Wrox Press.

BODY.recordNumber, Event .bookmarks [], Event .boundElements|[],
Input.recordNumber, SCRIPT. recordNumber, Server-side JavaScript,
TextStream object

See also:

ActiveX (Product)

This is a Microsoft technology for embedding and sharing code.

In MSIE (on Windows), interactions between scripts and applets takes place by means of ActiveX.
Microsoft prefers to treat applets as a special kind of ActiveX object. Netscape shows a similar
preference towards treating applets as Java components.

If you are developing web-based applications for a captive audience who you know will be
running MSIE on Windows, then this technology may be appropriate for your project.

However, ActiveX is not supported on Netscape and, in fact, is unlikely to be well supported on
any other browsers aside from MSIE.

Coupling this with the fact that it is not supported outside the Windows platform, you will almost

certainly find Java to be a more portable solution. The Java solution is also secured better than
ActiveX, which can expose the internals of your system in ways you would rather avoid.

16

A - ActiveXObject object (Object/JScript)

For a high degree of Windows integration and a very Microsoft-oriented solution, ActiveX is ideal.
For portability across platforms and browsers, it's likely you'll do much better to select Java.

See also: Applet object, Dictionary object, Glue code, LiveConnect

Web-references:

http://msdn.microsoft.com/scripting/

ActiveXObject object (Object/JScript)

A Windows and MSIE specific object that allows various document components to be embedded.

Availability: JScript - 3.0
Internet Explorer — 4.0
JavaScript syntax: 1E myActiveX = ActiveXObject
IE myActiveX = new ActiveXObject
(anApplication)
Argument list: anApplication References an external application
Collections: Depends on the object created by the constructor

This is an object for embedding other applications into web pages on the Windows platform. The
example shows the creation of an object that is managed by the Word application.

This is also used to create Dictionary objects by using the Scripting application to create a new
Dictionary object.

Warnings:

Q This is totally non-portable and non-standard, but if your scripts are likely to be deployed in a
Windows-only environment, it may be useful.

Q Using this construct in client-side scripting is subject to security restrictions. If a script in a web
browser could just instantiate Word, then that implies that it has rights of access to the local file
system. The normal IE security settings disallow that level of access.

Example code:

// An example that opens a Word document and writes
// text into it.

var myActiveX = new ActiveXObject ("Word.Document") ;
myActiveX.Application.Visible=true;

myString="Some text to be written to the document";
// now write the text to the word document
myActiveX.application.selection.typeText (myString) ;

See also: Dictionary object, OBJECT object

17

http://msdn.microsoft.com/scripting/

JavaScript Programmer's Reference

ActiveXObject() (Constructor)

Used for manufacturing new ActiveX objects.

Add (+) (Operator/additive)

18

Availability:

JavaScript syntax:

Argument list:

JScript - 3.0

Internet Explorer — 4.0

IE
IE

anObjectType

aLocation

new ActiveXObject (anObjectType)

new ActiveXObject (anObjectType,
aLocation)

What sort of application and object class type
to be created

A server name where the source object is
located

You can use this constructor for creating new objects. You need to specify the kind of object to be
created in the string argument value.For example, to create a Microsoft Word document, pass the
string "Word.Document" to the constructor.

You can also specify a second optional argument to locate the application on a remote server.

Here are some example applications you can invoke:

0 Word.Document — Create an empty Word document

0O Excel.Sheet — Create an empty Excel spreadsheet

QO Microsoft. XMLDOM - Create a new XML document

Other alternatives depend on the applications you have installed on your client system.

See also:

GetObject ()

Add two numeric operands together. See concatenation for Strings.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

ECMAScript edition — 2

JavaScript - 1.0
JScript - 1.0

Internet Explorer — 3.02

Netscape — 2.0

Netscape Enterprise Server — 2.0

Opera-3.0

Number primitive

anOperandl

anOperand2

anOperandl + anOperand?2

An expression that evaluates to a number

Another expression that evaluates to a
numeric value

A — Add (+) (Operator/additive)

The addition operator adds two numeric values together or concatenates one string onto another.
When used with numeric operands, the plus sign adds the values together.

The addition is commutative, meaning that the order of the operands does not affect the outcome
of the calculation. However, the calculation is not always associative (so (a+b) +c is not always
the same as a+ (b+c)) and so the precedence established with the grouping operator might affect
the outcome.

The associativity is left to right.

Refer to the operator precedence topic for details of execution order.

If either operand is NaN, the result will be NaN.

The sum of infinity and minus infinity will be NaN; they do not cancel one another out.

The sum of two infinity values of the same sign will be the infinity of that sign.

The sum of infinity and a finite value is equal to the infinite operand.

Internally the sum of two negative zero values is -0. However, the sum of two positive zero
value or a positive and negative zero value added together will be +0. At the scripting level
however, you cannot determine whether a zero is positive or negative, but its sense may affect
subsequent computations.

The sum of zero and a non-zero value will be the non-zero value.

The sum of two non-zero finite values of the same magnitude but opposite signs will be zero.
Provided neither an infinity, a zero nor NaN is involved, adding two finite values results in the sum
of the two values given that the result will be rounded to its nearest representable value. Where the
result exceeds the largest presentable value, infinity will be substituted. A negative infinity may
result from an underflow.

The addition/concatenation operator looks at the arguments and if either is a String already or

preferentially converts to one, then a concatenation occurs. If neither operator prefers to be a
String, then a Number conversion happens and the values are added.

Add then assign (+=), Additive expression, Additive operator, Associativity,
Negation operator (-), Operator Precedence, String concatenate (+), Subtract (-),
Type conversion, Unary expression, Unary operator

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.6.1

ECMA 262 edition 2 — section — 11.13
ECMA 262 edition 3 — section — 11.6.1
Wrox Instant JavaScript, ISBN 1-861001-27-4 — page — 37

19

JavaScript Programmer's Reference

Add then assign (+=) (Operator/assignment)

Add two numeric operands and assign the result to the first. See concatenation for Strings.

ECMAScript edition — 2

Availability:
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape - 2.0
Netscape Enterprise Server — 2.0
Opera -3.0
Property/method value type: Number primitive
JavaScript syntax: = anOperandl += anOperand2
Argument list: anOperandl An expression that evaluates to a number
anOperand2 Another numeric value

Add the right operand to the left operand and assign the result to the left operand.
This is functionally equivalent to the expression:
anOperandl = anOperandl + anOperand?2;

Although this is classified as an assignment operator, it is really a compound of an assignment and
an additive operator.

It also works with string values and will concatenate the second onto the first.
The associativity is right to left.
Refer to the operator precedence topic for details of execution order.

The new value of anOperandl is returned as a result of the expression.

Warnings:

QO The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Example code:

// Initialize with numeric valuesmyVarl = 100;myVar2 = 1000;
// After this myVarl contains 1100, myVar2 is unchanged
myVarl += myVar2;

See also: Add (+), Additive operator, Assign value (=), Assignment
expression, Assignment operator, Associativity, Concatenate then
assign (+=), Increment value (++), LValue, Operator Precedence,
Subtract then assign (-=)

20

A - Adding JavaScript to HTML (Advice)

Cross-references:
ECMA 262 edition 2 — section — 11.13

ECMA 262 edition 3 — section — 11.13

Adding JavaScript to HTML (Advice)

The most popular use of JavaScript is in web pages. Adding it is quite simple.
To add JavaScript to a web page, you can use the following techniques:

The <SCRIPT> HTML tag containing the script source text

From an external file using the <SCRIPT SRC="filename.js"> HTML tag and attribute
From an external file using the <SCRIPT ARCHIVE="" SRC=""> HTML tag and attributes
With an event handler attribute

Inajavascript: URL

By means of a JavaScript style sheet

I 1 A A A)

As a JavaScript entity value for an HTML attribute

Within a conditional comment

Refer to the individual topics for specific details covering each case.

<SCRIPT ARCHIVE="...">,<SCRIPT SRC="..."> <SCRIPT>, <STYLE

TYPE="...">, Conditional comment, Event handler, JavaScript entity,
javascript: URL

See also:

Additive expression (Definition)

This is an expression that adds or subtracts values.
Availability: ECMAScript edition — 2

Additive expressions use the additive operators to yield a result by operating on two values, which
may themselves be expressions.

Add (+), Decrement value (--), Expression, Increment value (++),

See also: ;
Negation operator (-)

Cross-references:
ECMA 262 edition 2 — section — 11.6

ECMA 262 edition 3 — section — 11.6

21

JavaScript Programmer's Reference

Additive operator (Definition)

An operator that adds or subtracts values.
Availability: ECMAScript edition — 2

Here is a table summarizing all operators that can be classified as additive, even those which are
primarily classified in other categories:

Value Meaning

+ Add

- Subtract

P Add and assign

== Subtract and assign
++ Increment

-= Decrement

Additive operators perform numeric addition and subtraction or string concatenation depending
on the native type of the operands.

It might seem perverse to call a subtraction symbol an additive operator, but the word additive is
used in the same context as multiplicative when talking about division. That is, a negative value is
added to perform subtraction. It's all about the kind of logic used in the interpreter kernel.

Add (+), Add then assign (+=), Arithmetic operator, Associativity,
Decrement value (--), Increment value (++), Negation operator (-),
Operator, Operator Precedence, Positive value (+), Postfix expression,
Prefix decrement (--), Prefix expression, Prefix increment (++), String
concatenate (+), String operator, Subtract (-), Subtract then assign (-=)

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.6

ECMA 262 edition 3 — section — 11.6

ADDRESS object (Object/HTML)

An object representing the HTML content delimited by the <ADDRESS> HTML tags.

Availability: JScript - 3.0
Internet Explorer — 4.0
Inherits from: Element object, Node object

Table continued on following page

22

A — ADDRESS object (Object/HTML)

JavaScript syntax:

HTML syntax:

Argument list:

Event handlers:

See Also

Event name
onClick
onDblClick
onDragStart
onFilterChange
onHelp
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp

onSelectStart

1E myADDRESS = myDocument.all.anElementID

1E myADDRESS = myDocument.all.tags
("ADDRESS") [anIndex]

1IE myADDRESS

= myADDRESS
myDocument.getElementById (anElementID)

myDocument.all [aName]

= myADDRESS = myDocument.getElementsByName
(aName) [anIndex]

= myADDRESS = myDocument.getElementsByTagName
("ADDRESS") [anIndex]

<ADDRESS> ... </ADDRESS>
anIndex A reference to an element in a collection
aName An associative array reference
anElementID The ID value of an EIement object
onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart
Element object
JavaScript JScript N IE Opera DOM HTML Notes
1.5+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
1.5+ 3.0+ 6.0+ 4.0+ 3.0+ - 40+ Warning
- 3.0 + - 40+ - - - -
- 3.0 + - 40+ - - - -
= 3.0+ - 40+ - - - Warning
1.5+ 3.0+ 60+ 40+ 30+ = 4.0+ Warning
1.5+ 3.0 + 60+ 40+ 30+ = 4.0+ Warning
1.5+ 3.0+ 60+ 40+ 30+ = 4.0+ Warning
1.5+ 3.0+ 6.0+ 4.0+ 3.0+ = 40+ Warning
1.5+ 3.0 + 6.0+ 40+ - - 4.0 + Warning
1.5+ 3.0+ 6.0+ 4.0+ 3.0+ = 40+ Warning
1.5+ 3.0+ 6.0+ 4.0+ 3.0+ = 40+ Warning
1.5+ 3.0+ 6.0+ 4.0+ 3.0+ = 40+ Warning
- 3.0+ - 40+ - - - -

23

JavaScript Programmer's Reference

ADO (Product)

ActiveX Data Objects is a Microsoft technology for accessing data.

This is a technology that enables an ASP server to access data from a data source. It provides an
easy-to-use object interface to the OLE database access mechanisms.

The ADO object model is built around a set of objects of the following kinds:

[m

Command
Connection

Record

0O 0 O

Recordset

Stream

The ADO object model includes the following collections containing objects of these types:
U Errors

Q Fields

0 Parameters

Q Properties

This is all covered in greater depth in the Wrox book ASP 3.0 Programmers Reference, ISBN 1-861003-23-4.

BODY.recordNumber, Event .bookmarks[], Input.recordNumber,
SCRIPT.recordNumber, Window furniture

See also:

Adornments (Definition)

The various control items that form the window border and can be selectively enabled as needed.

Aggregate type (Definition)

24

Data types built from several atomic components.

An aggregate data type is built by combining one or more atomic data types to build a more
sophisticated data type. In compiled non-object-oriented languages one might create structures as
aggregates of member variables. These are analogous to object classes.

Arrays are another example of an aggregate data type.

Other aggregate types include the various collection-based objects.

See also: Array object, Cast operator, Function object, Object object, Scalar type, Type

A — alert() (Method)

alert() (Method)

Present the alert dialog box to the user.

JavaScript — 1.0

Availability:

JScript -1.0

Internet Explorer — 3.02

Netscape — 2.0

Opera-3.0
Property/method value type: undefined
JavaScript syntax: - CLCE S (Ciarre)

- myWindow.alert (aString)
Argument list: aString Some text to display in the alert box
See Also Window.alert ()

Alias (Definition)

An indirect reference to an object.
By assigning an object to a variable, you are not copying that object but instead making a reference to it.

A reference is sometimes called an alias. The same technique is used in Java, and in non-object-oriented
languages you accomplish something similar with pointers.

See also: Object

Alpha() (Filter/visual)

A visual filter for controlling transparency.

JScript - 3.0

Availability:
¥ Internet Explorer — 4.0

25

JavaScript Programmer's Reference

AlphalmagelLoader() (Filter/visual)

An image is displayed in the object, with some additional control over how it is displayed.

Availability:

See Also

JScript - 5.5
Internet Explorer — 5.5

Filter - AlphaImageLoader ()

Anchor object (Object/HTML)

An object representing an HTML <A> tag.

26

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

DOM level -1
JavaScript —1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

Element object, Node object

= myAnchor = myDocument.
("A") [anIndex]
= myAnchor = myDocument.
= myAnchor = myDocument.
1E myAnchor = myDocument.
1E myAnchor = myDocument.
1E myAnchor = myDocument.
1E myAnchor =
myDocument.
1E myAnchor = myDocument.
<A>
aName
aName
anIndex
someText
anElementID

myAnchor =
myAnchor =
myAnchor =
myAnchor =

myAnchor =
myDocument .

myAnchor = myDocument.

myAnchorArray[aName]

myAnchorArray[anIndex]

myDocument.

myDocument.

anchors [aName]

anchors [anIndex]

getElementById (anElementID)

(aName) [anIndex]

getElementsByName

getElementsByTagName

links [aName]
links[anIndex]
all.anElementID
all.tags("A") [anIndex]
all [aName]

anchors.item(aName) [anIndex]

links.item (aName) [anIndex]

An associative array reference to the anchor object.

The name property of the anchor object

An index into the anchors collection

The text (or innerText) property of the anchor

The ID value of an Element object

Table continued on following page

A — Anchor object (Object/HTML)

accessKey, charset, coords, dataFld, dataSrc, hash, host,

Object properties: /
hostname, href, hreflang, Methods, mimeType, name, nameProp,
pathname, port, protocol, protocollLong, recordNumber, rel,
rev, search, shape, tabIndex, target, text, type, urn, x,y
Object methods: blur (), focus ()
Event handlers: onClick, onMouseDown, onMouseOut, onMouseOver, onMouseUp
See Also: Filter — Alpha ()

This object represents a named location in the HTML document. Only those <A> HTML tags that
have a NAME attribute will have anchor objects created for them. All the anchors are listed in the
anchors[] array object that belongs to the document object that represents the HTML.

Although the <A> tag is also used to create links using the HREF attribute, they are not anchors
unless they are named. Any <A> tags that have HREF attributes (whether or not they have NAME
attributes) will be listed in the 1inks[] array.

In Netscape, you can construct new instances of the Anchor object, but there is no constructor
property in MSIE to support this.

<A> tags and the objects that represent them are inline elements. Placing them into a document
does not create a line break.

Warnings:

Q If you put an anchor object into a document .write (), in Netscape you get a string
containing the object class. In MSIE, you will get the HREF string if there is one and an
empty string if there isn't.

Q MSIE provides access to properties that would normally be considered part of the 1ink object.
Internally MSIE probably maintains a single object type for anchors and links, whereas Netscape
implements two quite different classes.

QO Netscape supports an associative reference to an anchor object within the anchors[] array
according to the value of its NAME tag attribute. MSIE does not support this means of locating an
anchor object in quite the same way.

Q Note that although the syntax examples illustrate the use of an innerText property, Netscape does
not support this mode of access and it will generate an error.

Example code:

<!-- Example showing how to dynamically replace -->
<!-- the anchor text -->

<HTML>

<HEAD></HEAD>

<BODY>

Click here

27

JavaScript Programmer's Reference

Click here

Click here

<HR>
<SCRIPT>
myLength = document.anchors.length;
for (myEnumerator=0; myEnumerator<myLength; myEnumerator++)
{

document .anchors [myEnumerator] .innerText =
document .anchors [myEnumerator] .name; }

</SCRIPT>
</BODY>
</HTML>
See also: Document .anchors[], Document.links[], Element object,
Element.all[], Input.accessKey, LINK object, Location object,
String.anchor (), Subclasses, Superclasses, URL, Ur1 object,
Window.scrollTo ()
Property JavaScript JScript N IE Opera DOM HTML Notes
accessKey 1.5+ 3.0+ 6.0+ 40+ - 1+ - Warning
charset 1.5+ 5.0+ 60+ 50+ - 1+ - -
coords 1.5+ 5.0+ 60+ 50+ - 1+ - -
dataFld - 3.0 + - 4.0 + - - = =
dataSrc - 3.0+ - 4.0+ - - - -
hash 12+ 3.0+ 40+ 40+ - = = Warning
host 1.2+ 3.0 + 40+ 40+ - - - Warning
hostname 12+ 3.0+ 40+ 40+ - - - Warning
href 12+ 3.0+ 40+ 40+ - 1+ - Warning
hreflang 1.5+ 5.0 + 6.0+ 50+ - 1+ - -
Methods - 3.0+ - 4.0+ - - - -
mimeType - 3.0 + - 4.0+ - - - Warning,
ReadOnly
name 1.2 + 3.0 + 4.0 + 4.0 + - 1+ - Warning
nameProp - 3.0+ - 4.0+ - - - ReadOnly
pathname 1.2 + 3.0 + 40+ 40+ - - - Warning
port 1.2+ 3.0+ 40+ 40+ - - - Warning
protocol 1.2 + 3.0 + 40+ 40+ - - - Warning
protocolLong - 3.0+ - 4.0 + - - - ReadOnly
recordNumber - 3.0 + = 4.0 + = = = ReadOnly
rel 1.5+ 3.0+ 60+ 40+ - 1+ - -
rev 1.5+ 3.0+ 6.0 + 4.0 + = 1+ - -

Table continued on following page

28

A — Anchor() (Constructor)

Property JavaScript JScript N IE Opera DOM HTML Notes

search 12+ 3.0 + 40+ 4.0+ = = = Warning

shape 1.5+ 5.0 + 60+ 50+ - 1+ - -

tabIndex 1.5+ 3.0+ 6.0+ 40+ - 1+ - -

target 1.2 + 3.0+ 40+ 4.0+ - 1+ - Warning

text 1.2+ - 4.0 + - - - - Warning,
ReadOnly

type 1.5+ 3.0+ 6.0 + 4.0+ - 1+ - -

urn = 3.0+ - 4.0+ - - - -

X 1.2+ = 4.0+ = = = = Warning,
ReadOnly

Yy 1.2+ - 4.0 + - - - - Warning,
ReadOnly

Method JavaScript JScript N IE Opera DOM HTML Notes

blur() 1.5+ 3.0 + 6.0+ 4.0+ - 1+ - -

focus () 1.5+ 3.0+ 6.0+ 40+ - 1+ - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.2+ 3.0+ 40+ 40+ 3.0+ - 40+ Warning

onMouseDown 1.2 + 3.0+ 40+ 40+ 3.0+ - 40+ Warning

onMouseOut 1.2 + 3.0+ 40+ 40+ 30+ - 40+ Warning

onMouseOver 1.2 + 3.0+ 40+ 40+ 30+ - 40+ Warning

onMouseUp 1.2 + 3.0+ 40+ 40+ 3.0+ - 40+ Warning

Anchor() (Constructor)

You can construct new Anchor objects in Netscape.

JavaScript — 1.2

Availability:
Netscape — 4.0
Property/method value type: Anchor object
JavaScript syntax: N new Anchor
N new Anchor ()
N new myAnchor.constructor

Although you can construct new anchors in Netscape, inserting them into a document is somewhat
problematic since the correct way to do that would be to rewrite a fragment of HTML. You may
find that replacing an anchor object in the document . anchors array links your new object to the
<A> HTML tag at the appropriate location in the document.

29

JavaScript Programmer's Reference

Warnings:

Q This is only available on Netscape and is therefore not recommended for use in deployable
applications. MSIE generates a run-time error if you attempt to make a new Anchor object.
See also: Anchor object, Anchor .host

Anchor.accessKey (Property)

A key that needs to be pressed before the anchor object will respond to data entry.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: = myInputObject.accessKey

This is an extension that allows the anchor elements to be deadlocked unless a certain key is
held down.

On some browsers and operating systems, you may need to hold down one of the modifier keys for
this to work. The modifier key required depends on the environment you are using.

Warnings:

Q This is not supported in some versions of the MSIE browser on Macintosh.

Anchor.blur() (Method)

Remove input focus from the Anchor object.

Availability: ondl lzve. — 1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
JavaScript syntax: - myInputObject.blur ()

This will trigger the onblur event handler function attached to the onblur property of the object.

30

A — Anchor.charset (Property)

Anchor.charset (Property)

This property indicates the character encoding of the document at the location specified by the URL.

Availability: DOM level -1
JavaScript - 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myAnchor.charset

This would contain the character set being used by the document. For example the value "iso-8859-1"
is likely to be returned, but the local variant of the browser and OS may affect the value you get.

This property might contain a value such as:
csIS05427Cyrillic

Details of other aliases can be located at the IANA registry. In that registry are listed the names and
aliases of a wide variety of character sets. Even though there are nearly 800 names and aliases, it
seems on inspection that there are items missing.

See also: LINK.charset,Url.charset

Web-references:

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

Anchor.coords (Property)

This defines an area map within an image that is inside the <AREA> HTML tags.

Availability: DOM level -1

JavaScript — 1.5

JScript - 5.0

Internet Explorer — 5.0

Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myAnchor.coords

When a shaped area is defined within an image map, the rectangle around the shape is defined
with the coords property. The value is defined with the COORDS HTML tag attribute.

See also: Anchor.shape, Area.coords,Url.coords

31

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

JavaScript Programmer's Reference

Anchor.dataFld (Property)

A

32

This binds the anchor object to a remote data source in MSIE.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myInputObject.dataFld

This is part of the MSIE data-binding mechanism that associates a column name in the data source
with the value property of an Anchor object. You must also set the dataSrc property for the

object. Normally, both the dataF1d and dataSrc values would be defined with the DATAFLD and
DATASRC HTML tag attributes in the document source.

Note that the value is case-sensitive and must refer to a column that exists within the data source.

Setting both the dataF1ld and dataSrc properties to an empty string will disconnect the element
from the database.

nchor.dataSrc (Property)

The name of a remote ODBC data source is stored in this property.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: 1IE myInputObject.dataSrc

This is part of the MSIE data-binding support. It contains the name of an ODBC data source (which
might be any kind of SQL database that supports such an adapter). The data source and element
are bound together with each column of the data source providing a source value to different
element objects through their dataF1d property.

Normally, both the dataF1d and dataSrc values would be defined with the DATAFLD and
DATASRC HTML tag attributes in the document source.

Setting both the dataF1d and dataSrc properties to an empty string will disconnect the element
from the database.

A — Anchor.focus() (Method)

Anchor.focus() (Method)

Brings input focus back to the anchor object.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
JavaScript syntax: = myInputObject.focus ()

The receiving Anchor object will receive a Focus event trigger and execute its function referred to
by the onfocus event handler property.

The element that previously had focus (if any element did) will receive a Blur event trigger.

Anchor.hash (Property)

On MSIE the Url . hash property is also available as the Anchor.hash property.

Availability: } gV§Sirip;6 1.2
cript — 3.
Internet Explorer — 4.0
Netscape — 4.0

Property/method value type: String primitive

. = Anchor.hash
JavaScript syntax: [mmeeanes

= myAnchor.hash = newValue

HTML syntax:

This yields the hash suffix of the HREF value in an <A> tag.

You can assign a new value to this property, which will become a new anchor location within
the document.

Warnings:

Q This attribute may not work correctly when URLs are accessed from one frame to another in some
versions of MSIE. You should check your target platforms for compliance.

If you assign a value to this property in MSIE, you should omit the leading hash.

Since the hash property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Ur1 object to be able to work across MSIE
and Netscape.

Q As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

33

JavaScript Programmer's Reference

See also:

Anchor Object, Anchor .host, Anchor.hostname,
Anchor.href, Anchor.pathname, Anchor.port,
Anchor.protocol, Anchor.search, Anchor. target, URL,
Url.hash,Url.host,Url.hostname, Url.href,
Url.pathname, Url.port,Url.protocol,Url.search,
Url.target

Anchor.host (Property)

On MSIE the 1ink.host property is also available as the anchor.host property.

Availability:

Property/method value type:

JavaScript syntax:

HTML syntax:

JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

String primitive

- myAnchor.host

= myAnchor.host = newHostPort

This yields the host and port value of the HREF value in an <A> tag.

You can redefine the host to request the URL by assigning a new value to this property.

Warnings:

0O Since the host property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Ur1 object to be able to work across MSIE

and Netscape.

QO As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also:

34

Anchor object, Anchor (), Anchor.hash, Anchor.href,
Anchor .pathname, Anchor.port, Anchor.protocol,
Anchor.search, Anchor. target, URL, Url.host

A — Anchor.hostname (Property)

Anchor.hostname (Property)

On MSIE the 1ink.hostname property is also available as the anchor . hostname property.

JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

Availability:

Property/method value type: String primitive

JavaScript syntax: = myAnchor.hostname

= myAnchor.hostname = newHostname

HTML syntax:

This yields the host value of the HREF value in an <A> tag.

You can redefine the hostname to request the URL by assigning a new value to this property.

Warnings:

Q Be careful not to assign a port number with the host name, otherwise your new URL may acquire
two port numbers, which makes it invalid.

Q Since the hostname property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Ur1 object to be able to work across MSIE
and Netscape.

Q As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

Anchor object, Anchor.hash, Anchor.href,
Anchor .pathname, Anchor.port, Anchor.protocol,
Anchor.search, Anchor. target, URL, Url.hostname

See also:

Anchor.href (Property)

On MSIE the 1ink.href property is also available as the anchor . href property.

Availability:]Zgi\élclre;;il_—llz
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

Property/method value type:

JavaScript syntax:

HTML syntax:

String primitive

= myAnchor.href

= myAnchor.href = newHref

35

JavaScript Programmer's Reference

This yields the entire value of the HREF attribute in an <A> tag.

You can redefine the entire HREF content by assigning a new value to this property.

Warnings:

QO Since the href property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Ur1 object to be able to work across MSIE
and Netscape.

QO As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also: Anchor object, Anchor .hash, Anchor.host,
Anchor .hostname, Anchor .pathname, Anchor.port,
Anchor .protocol, Anchor.search, Anchor. target,
Location.href, URL, Url.href

Anchor.hreflang (Property)

The language code of the document at the location specified by the URL.

Availability: DOM level -1
JavaScript — 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myAnchor.hreflang

This property should contain values that use the international language two-letter abbreviation
codes. These are not the same as the country codes, which are also two letter values.

Refer to the Language codes topic for a list of the available language codes.

See also: Language codes, LINK . hreflang

Anchor.Methods (Property)

A property that can indicate some keywords regarding the action that the server provides when the
link is clicked on. These reflect the request methods.

Availability: JSeript - 3.0

Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myAnchor.Methods

36

A — Anchor.mimeType (Property)

The possible values of this property are those of the valid methods for the HTTP protocol. It could
be one of the following:

GET

HEAD

POST

PUT

DELETE

OPTIONS

0 0 o0 0 000

TRACE

It is likely that only the GET and POST methods make any logical sense in this context. On rare
occasions, the PUT method may be referred to, although it is unusual to find a web server that
accepts documents with this request method. Likewise DELETE is normally only supported within

very strict constraints.

The method name can be specified in upper or lower case.

See also: Url.Methods

Anchor.mimeType (Property)

Contains a long form human readable version of the MIME type of the document at the location
specified by the anchor's URL.

Availability: JScript - 3.0

Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myAnchor.mimeType

The MSIE browser maps the file extension of the file belonging to the anchor to an extended
description of the file format, which it makes available through the mimeType property. Here is a
list of some mimeType values it pays special attention to.

File type: MSIE expanded Mime type:

.css Microsoft CSS1 Style Sheet (W3C would have been more
appropriate)

.gif GIF Image

.htc Microsoft HTML Component file for behaviors

.htm Microsoft HTML Document 4.0

.html Microsoft HTML Document 4.0

-Jpg JPEG Image

37

JavaScript Programmer's Reference

File type: MSIE expanded Mime type:

-Js Microsoft JScript File

Ltxt Text Document

.vbs Microsoft VBScript File

. XXX All unrecognized file types are returned as xxx File with no

further expansion

Microsoft asserts that . htmand .html files are "Microsoft HTML" and . css files are "Microsoft CSS1"
style sheets. It also asserts that . js files are "Microsoft JScript" files. Microsoft doesn't really own those
file extensions across all platforms, nor indeed does it even own them on the Windows platform.

Warnings:

0 Do not confuse this value with other mimeType properties. For example the Navigator object has
amimeTypes [] collection property with references to mimeType objects. The mimeType property
of an MSIE Anchor object is a simple string primitive value and not a mimeType object.

See also: MIME types, Url.mimeType

Property attributes:

ReadOnly.

Anchor.name (Property)

This corresponds to the NAME attribute of the <A> HTML tag.

DOM level -1
JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

Availability:

Property/method value type: String primitive

q = Anchor.
JavaScript syntax: i dtineatss

- myAnchor.name = aName
HTML syntax:
Argument list: aName A new name for the anchor.

The value of this property is defined by the NAME tag attribute in the HTML that describes
the document. Without the NAME attribute, the anchor object does not get added to the
anchors|[] array.

38

A — Anchor.nameProp (Property)

This name property contains a case-sensitive value. It is case-sensitive because it can be used as a
value in one of the document hierarchies to locate an object.

The example should present the word "EXAMPLE" on all compliant browsers.
Warnings:

Q This value is read /write in MSIE, but read-only in Netscape. Logically there is not much purpose in
changing the name of an anchor anyway.

Beware that assigning a new name will affect the length of the document . anchors[].

Changing the name in MSIE actually adds a new item to the document . anchors[] array that can
be reached associatively with the new name. There will now be two entries for the same anchor and
you can continue to access it using the old name as well.

Q If you are writing portable code and expect it to work in both MSIE and Netscape Navigator, this is
the only property available in both browsers. Having located an anchor, being able to access only its
name without any browser dependencies is rather limiting.

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

Click
here

<SCRIPT>

document .write (document.anchors[0] .name) ;
</SCRIPT>

</BODY>

</HTML>

Anchor object, AnchorArray. length,
Document.anchors[],NAME="...", String.anchor (),
Url.name

See also:

Anchor.nameProp (Property)

The filename portion of the URL value.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myAnchor.nameProp

This property extracts the filename portion of the HREF value for this <A> tag.

See also: Url.nameProp

Property attributes:

ReadOnly.

39

http://www.mydomain.com/folder/file.html#abcdef">Click

JavaScript Programmer's Reference

Anchor.pathname (Property)

In MSIE the Url.pathname property is also available as the Anchor.pathname property.

Availability:

Property/method value type:

JavaScript syntax:

HTML syntax:

JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

String primitive

- myAnchor.pathname

- myAnchor.pathname = newPath

This yields the pathname portion of the HREF attribute in an <A> tag.

MSIE and Netscape support the use of this property as an LValue. If you write to it, the pathname
portion of the HREF value is modified. Be careful not to include a hash or search/query value.

Warnings:

QO Since the pathname property of an Anchor object is not portable in all older browser versions, you
should use the pathname property of the corresponding Ur1 object to be able to work across MSIE

and Netscape.

QO As features become deprecated, it may become necessary to support both techniques in browser-
specific code according to your needs regarding the support of legacy browsers.

See also:

Anchor object, Anchor .hash, Anchor . host,
Anchor .hostname, Anchor.href, Anchor.port,

Anchor.protocol, Anchor.search, Anchor. target, URL,
Url.pathname

Anchor.port (Property)

In MSIE the Url.port property is also available as the Anchor.port property.

Availability:

Property/method value type:

JavaScript syntax:

HTML syntax:

40

JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

String primitive

- myAnchor.port

= myAnchor.port = newPort

A — Anchor.protocol (Property)

This yields the port number value of the HREF attribute in an <A> tag.

You can assign a value to this property as if it were an LValue.

Warnings:

Q Since the port property of an Anchor object is not portable, you should use the port property of
the corresponding Ur1 object to be able to work across MSIE and Netscape.

Q Do not include the delimiting colon when you assign a value to this property.

Q Make sure you assign a numeric value. Non-numeric values will be rejected to avoid the possibility
of a completely invalid port number being used.

Anchor object, Anchor .hash, Anchor.host,
Anchor .hostname, Anchor.href, Anchor .pathname,

Anchor.protocol, Anchor.search, Anchor. target, URL,
Url.port

See also:

Anchor.protocol (Property)

In MSIE the Url.protocol property is also available as the Anchor.protocol property.

JavaScript — 1.2

Availability:
JScript - 3.0
Internet Explorer — 4.0
Netscape — 4.0
Property/method value type: String primitive

JavaScript syntax: = myAnchor.protocol

= myAnchor.protocol = newProtocol

HTML syntax:

This yields the protocol value of the HREF attribute in an <A> tag.

Using this property as an LValue, you can redefine the protocol for the link if it has an HREF. You
might want to do this if you want to change the way you access a particular document.

The URL topic enumerates a large number of available protocols that can be used in SRC and HREF
HTML tag attributes.

Warnings:

QO Since the protocol property of an Anchor object is not portable, you should use the protocol
property of the corresponding Ur1 object to be able to work across MSIE and Netscape.

Anchor object, Anchor . hash, Anchor.host,
Anchor.hostname, Anchor.href, Anchor.pathname,
Anchor .port, Anchor.search, Anchor. target,
IMG.protocol, URL,Url.protocol

See also:

41

JavaScript Programmer's Reference

Anchor.protocolLong (Property)

A long form description of the protocol used by the URL.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myAnchor.protocolLong

Only the MSIE browser supports this property. Its use would be limited even if it were available
across multiple platforms.

See also: Url.protocolLong

Property attributes:

ReadOnly.

Anchor.recordNumber (Property)

The record within the data set that defined the element content when the content came from a
data source.

Availability: JScript - 3.0

Internet Explorer — 4.0
Property/method value type: Number primitive
JavaScript syntax: IE myBody . recordNumber

This is a property that is part of the MSIE data-binding support. It contains an integer value that is
the record number within the data set that created this object.

This is useful when you are building pages with Active Server Pages (ASP) and ActiveX Data
Objects (ADO).

Property attributes:

ReadOnly.

42

A — Anchor.rel (Property)

Anchor.rel (Property)

A definition of the relationship between the current document and the document at the location

specified by the URL.

JavaScript syntax:

Availability:

Property/method value type:

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0

String primitive

- myAnchor.rel

This is sometimes called a forward link. Although the HREF HTML tag attribute is normally the
only means used to identify a target document, the browser is permitted to use the REL HTML tag
attribute to decide whether to use the HREF value or how it should be used.

The following HTML version 4.0 standard link types are permitted in this property:

Iy A T A S S S A A m

MSIE adds these as well:

0000

alternate
appendix
bookmark
chapter
contents
copyright
glossary
help
index
next

prev
section
start
stylesheet

subsection

same
next
parent

previous

When used or tested within a script, any comparisons should be case-insensitive.

See also:

Anchor.rev, LINK.rel

43

JavaScript Programmer's Reference

Anchor.rev (Property)

A complementary description of the link to the current document as viewed from the document at
the location specified by the URL.

Availability: DOM level -1

JavaScript — 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myAnchor.rev

This is sometimes called a reverse link. It defines the relationship between a document and another
that calls it. The linkage is defined from the destination document's viewpoint.

This property supports the same HTML version 4.0 standard link types as the rel property. Refer
to that topic for details.

When used or tested within a script, any comparisons should be case-insensitive.

Because rel and rev properties are complementary, the values in them are likely to be related. For
example, if one contains the value "next" then the other is likely to contain "previous".

Refer to the Anchor.rel topic for a list of the available types you can use in this property.

See also: Anchor.rel, LINK.rev

Anchor.search (Property)

The query portion of an HREF URL if there is one.

JavaScript — 1.2

Availability:
JScript - 3.0
Internet Explorer — 4.0
Netscape — 4.0
Property/method value type: String primitive

. - Anchor. h
JavaScript syntax: e el

= myAnchor.search = newSearch

HTML syntax:

Warnings:

QO Since the search property of an Anchor object is not portable, you should use the search
property of the corresponding link object to be able to work across MSIE and Netscape.

44

A — Anchor.shape (Property)

Anchor object, Anchor.hash, Anchor.host,

Anchor .hostname, Anchor.href, Anchor.pathname,
Anchor .port, Anchor.protocol, Anchor. target,
request.<urlExtension>, URL, Url.search

See also:

Anchor.shape (Property)

A map whose extent is defined by the coords property and which can be one of several
different shapes.

Availability: DOM level -1
JavaScript - 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: = myAnchor.shape

This property has a meaningful value when the Anchor object is instantiated via <MAP> and
<AREA> tag. It defines the shape of the hotspot within the extent rectangle defined by the coords
property. It might contain one of the following values:

0 default
Q rect
Q circle
Qa

poly

See also: Anchor.coords, Area.shape, Url. shape

Anchor.tablndex (Property)

A control of where the Anchor object appears in the tabbing order of the page.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: - myInputObject.tabIndex

45

JavaScript Programmer's Reference

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms or moving focus. Pressing the [tab] key
moves from one form element to the next according to the cascaded tabbing order defined by
building a tree-like structure with the tab index values.

Anchor.target (Property)

In MSIE the Url. target property is also available as the Anchor . target property.

DOM level -1
JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

Availability:

Property/method value type: String primitive

. - Anchor.
JavaScript syntax: myAnchor. target

- myAnchor.target = newTarget

HTML syntax:

This yields the value of the TARGET attribute in an <A>, <AREA>, or <MAP> tag.

You can assign a new value to this property so that the URL will be directed to a different window
or frame.

Here are some example target values:

_parent
_self
_top

_blank

Window name

0O 0 U 0O U0 O

Frame name

Warnings:

46

QO Since the target property of an Anchor object is not portable, you should use the target
property of the corresponding 1 ink object to be able to work across MSIE and Netscape.

<MAP TARGET="...">, Anchor object, Anchor.hash,
Anchor .host, Anchor.hostname, Anchor.href,
Anchor .pathname, Anchor.port, Anchor.protocol,
Anchor.search, BASE. target, Form. target,
Location.target,Map.target, URL, Url. target

See also:

A — Anchor.text (Property)

Anchor.text (Property)

The text between the <A> and HTML tags in Netscape.

Availability:

Property/method value type:

JavaScript syntax:

HTML syntax:

Argument list:

JavaScript — 1.2
Netscape — 4.0

String primitive

N myAnchor. text
N myAnchor.text = aString

<A>gsomeText

aString Some new text content for the anchor

This is equivalent to the innerText value that MSIE supports. It only works on Netscape and is
somewhat less reliable than the innerText property in MSIE.

Assigning to this property in MSIE simply creates a text property, but does not affect the text

of the anchor.

The value yielded by this property (when it does work) is the text between the <A> and tags.

Warnings:

O You will need to detect the browser type before attempting to use this property.

Q Does not work on Netscape Navigator version 4.7 on the Macintosh. Instead it displays some
fragment of body text that comes from outside the anchor tags.

Q Even if it does work, you may only extract a portion of the text from the anchor.

See also:

Property attributes:

ReadOnly.

Anchor object, Element . innerText, Url. text

Anchor.type (Property)

A MIME type value in its abbreviated machine recognizable form.

Availability:

Property/method value type:

JavaScript syntax:

DOM level -1
JavaScript - 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

String primitive

- myAnchor. type

47

JavaScript Programmer's Reference

The MIME type of the document associated with the Anchor object is accessible through the value

of this property.

Refer to the MIME type topic for details of the available MIME types you will likely see in

this property.

See also:

LINK. type, MIME types

Anchor.urn (Property)

An alternative format of the contents of the URL.

Availability:

Property/method value type:

JavaScript syntax:

See also:

JScript - 3.0
Internet Explorer — 4.0

String primitive

1IE myAnchor.urn

URN

Anchor.x (Property)

The X location of the anchor within the document.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

JavaScript — 1.2
Netscape — 4.0

Number primitive

N myAnchor.x
N myAnchor.x = aValue
aValue A new X coordinate value

The Anchor.x property yields the pixel distance of the anchor from the left edge of the document.
The horizontal position of the object in the display is measured in pixels. You can use the x and y
coordinates of the object as targets of the scrol1To () method for the window it lives in.

Warnings:

Q This is not supported by MSIE. Instead you can use the of fsetLeft property that is inherited from
the Element object super-class. There may be some occasions when this is not an exact equivalent

value though.

See also:

48

Anchor object, Element.offsetlLeft,Location.x

A — Anchor.y (Property)

Property attributes:

ReadOnly.

Anchor.y (Property)

The Y location of the anchor within the document.

Availability: {\alv?Script —41(.)2
etscape — 4.

Property/method value type: [UT0eT primitive

q Anchor.
JavaScript syntax: N myancaor.y
N myAnchor.y = aValue
Argument list: aValue A new Y coordinate value

The Anchor .y property yields the pixel distance of the anchor from the top edge of the document.
The vertical position of the object in the display is measured in pixels. You can use the x and y
coordinates of the object as targets of the scrol1To () method for the window it lives in.

Warnings:

Q This is not supported by MSIE. Instead you can use the of fsetTop property that is inherited from
the Element object super-class. There may be some occasions when this is not an exact equivalent
value though.

See also: Anchor Object, Element.offsetTop, Location.y

Property attributes:

ReadOnly.

AnchorArray object (Object/DOM)

An array of Anchor objects retrieved from the document . anchors property.

Availability: DOM level -1

JavaScript — 1.0

JScript - 3.0

Internet Explorer — 4.0

Netscape — 2.0
JavaScript syntax: - myAnchorArray = myDocument.anchors
Object properties: length

49

JavaScript Programmer's Reference

The AnchorArray object is a sub-class of the Array object but has no additional properties. It
responds to the length property request as you would expect.

Any Anchor objects in this array can be accessed by index value because the Array class supports
that. In Netscape, the individual Anchor objects are accessible associatively by their NAME
attribute. However, MSIE does not make this associative mechanism available.

In MSIE, the AnchorArray object is a kind of Collection object and so it can be searched with
the item () and tags () methods.

Warnings:

0O Netscape adds a constructor property to this object class from which you can request the name

to determine the object class. Actually Netscape provides constructors for virtually everything, but
MSIE only supports them when it's necessary and useful.

Be aware that renaming an anchor in MSIE will add a new item to the AnchorArray collection
without destroying the old one. However, the 1ength property remains the same. It does mean that
you could have problems enumerating the collection. But then, why would you ever want to rename
an anchor after it has been instantiated and named within the HTML tag?

Example code:

50

<!-- Catalog of anchors in an array -->
<HTML>
<HEAD>
</HEAD>
<BODY>
Apple

Wrox

Microsoft

<HR>
<TABLE BORDER=1>
<TH>Index</TH>
<TH>Name</TH>
<TH>Text</TH>
<TH>URL</TH>
<TH>Tab index</TH>
<TH>Protocol (long)</TH>
<SCRIPT>
myLength = document.anchors.length;
for (myEnumerator=0; myEnumerator<myLength; myEnumerator++)
{
document .write ("<TR><TD>") ;
document .write (myEnumerator) ;
document .write("</TD><TD>") ;
document .write (document .anchors [myEnumerator] .name) ;
document .write ("</TD><TD>") ;
document .write (document.anchors [myEnumerator] .innerText) ;
document .write ("</TD><TD>") ;
document .write (document.anchors [myEnumerator] .href) ;
(

document .write ("</TD><TD>") ;

http://www.apple.com/">Apple<BR
http://www.wrox.com/">Wrox<BR
http://www.msdn.com/">Microsoft<BR

A — AnchorArray.length (Property)

document .write (document .anchors [myEnumerator] . tabIndex) ;
document.write ("</TD><TD>") ;

document .write (document.anchors [myEnumerator] .protocollLong) ;
document .write ("</TD></TR>") ;

}

</SCRIPT>

</TABLE>

</BODY>

</HTML>

See also: Anchor object, Collection object, Document .anchors[]

Property JavaScript JScript N IE Opera DOM Notes
length 1.0 + 3.0 + 20+ 40+ - - ReadOnly

AnchorArray.length (Property)

The number of named anchors in the current document.

JavaScript - 1.0

Availability:
JScript - 3.0
Internet Explorer — 4.0
Netscape — 2.0
Property/method value type: Number primitive
JavaScript syntax: = myDocument .anchors.length

The length of the anchors array, which indicates the number of named <A> HTML tags
in the document.

See also: Anchor .name, Collection.length, Document.anchors|]

Property attributes:

ReadOnly.

Anonymous code (Definition)

Script source executed by function objects.
Availability: ECMAScript edition — 2

Anonymous code is script source text that is supplied to the constructor when an anonymous
function is being instantiated.

51

JavaScript Programmer's Reference

As the constructor creates the function, one of the arguments to the constructor call will contain the

script source text to be stored as the code block associated with that function. Only the code in the last
argument on the constructor call is used in this way. All but the last argument are concatenated together
separated by commas and are then passed as the formal parameter list to the anonymous function.

Anonymous code initializes the scope chain to include its activation object followed by the
global object.

Variable instantiation is performed using the activation object as the variable object and any
initial variables are flagged with a DontDelete attribute.

The caller provides this value, but in some situations the value null may be passed. In that case, the
global object will be used in its place.

If you need more information, the ECMA standard is the authoritative source on what anonymous
code is and how a compliant interpreter implementation should manage it.

See also: Executable code, Execution context

Cross-references:
ECMA 262 edition 2 — section — 10.1.2

ECMA 262 edition 2 - section — 10.1.6
ECMA 262 edition 2 — section — 10.2.3
ECMA 262 edition 3 - section — 10.1.2
ECMA 262 edition 3 — section — 10.1.6
ECMA 262 edition 3 — section — 10.2.3

Anonymous function (Definition)

A manually constructed function object with no identifying name.
Availability: ECMAScript edition — 2
Anonymous functions are created dynamically by using the built-in Function object as a

constructor in a function expression.

As they are called, the last argument is used to provide the script source, and all but the last
argument are used as a formal parameter list for the function.

Anonymous functions are properly supported by the WebTV set-top box from the Summer 2000
release onwards. Earlier versions of this product only partially supported anonymous functions.

See also: Function literal, Function object, Instantiating Function, JellyScript

Cross-references:
ECMA 262 edition 2 — section — 10.1.1

ECMA 262 edition 3 — section — 10.1.1
52

A - Applet object (Object/HTML)

Applet object (Object/HTML)

An object representing an HTML <APPLET> tag.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Object methods:

Event handlers:

DOM level -0
JavaScript - 1.1
JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Opera-3.0

Deprecated - HTML 4.0, DOM level 1

Element object
myApplet = alName
- myApplet = myAppletArray[aName]
= myApplet = myAppletArray|anIndex]
1IE myApplet = myDocument.all.anElementID
1IE myApplet = myDocument.all.tags ("APPLET") [anIndex]
1E myApplet = myDocument.all [aName]
= myApplet = myDocument.aName
= myApplet = myDocument.applets [aName]
= myApplet = myDocument.applets[anIndex]
= myApplet = myDocument.getElementById (anElementID)

- myApplet = myDocument.getElementsByName
(aName) [anIndex]

- myApplet = myDocument.getElementsByTagName
("APPLET") [anIndex]

<APPLET> ... </APPLET>

aName The name of an applet

anIndex An element in the applets collection
anElementID The ID value of an Element object

accessKey,align,alt,altHTML, archive, code, codeBase,
dataFld, dataSrc, form, height, hspace, name, object, src,
tabIndex, vspace,width

start (), stop()

onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDataAvailable, onDataSetChanged, onDataSetComplete,
onDblClick, onErrorUpdate, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange,
onResize, onRowEnter, onRowExit

The properties and methods of an Applet object are inherited from the public properties and
methods of the Java object it represents. However, in addition to these, MSIE also supports some

additional properties.

53

JavaScript Programmer's Reference

The Java applet itself is the concrete object whose properties are accessed.

In Netscape, Applets are encapsulated as instances of the JavaObject class and communicate by
means of the LiveConnect support. The mechanisms are quire different in MSIE, which uses
ActiveX facilities to access applets.

When you access an Applet (JavaObject) object, you are really interacting with the Java
applet itself.

The publicly accessible properties and methods depend on the applet, although all applets must
support the start () and stop () methods.

It is generally safer to interact with methods that you have provided as custom additions to the
applet, rather than hope that the applet supports any particular methods.

Because Java is so much more strongly data-typed than JavaScript, you must be careful with the kind
of values you try and send to and receive from a Java applet. Java will also not forgive the omission of
an argument. In JavaScript, all arguments are assumed to be optional as a general rule, although
leaving them out will have strange side effects sometimes. Java will not allow you to do this and a
run-time error will be generated if the arguments are not complete and all of the correct type.

In Netscape, you can build an enumerator loop to examine all the properties of an Applet object.
Enumerating applet interfaces like this will yield a long list of function objects. Each function object
represents an accessor for internal properties of the Java environment. Your applet may publish
additional properties. With these functions, you can enquire about certain attributes of the applet
and can change some of them from the script. Refer to the JavaObject topic for details about
these generic capabilities, but bear in mind they only work in Netscape.

In MSIE, the APPLET object inherits its behavior from the Element object. Refer to the topic
covering that for its generic properties and methods. MSIE supports many other properties and
methods that are not generally available to Element objects and these are detailed here as
properties and methods of the Applet object.

Warnings:

0 MSIE implements this object as a member of the class APPLET rather than Applet as you would
expect.

O Netscape implements it as a member of the class JavaObject, although this is masked by some
shortcomings in the implementation that prevent it from displaying its class type.

0 <APPLET> tags are deprecated in HTML 4.0 and DOM level 1, which suggests there may be some
changes to the JavaScript support for them in subsequent implementations of JavaScript in browsers.

ActiveX, Applet.start (), Applet.stop (), AppletArray object,
Document .applets[], Element object, Input .accessKey, JavaObject
object, LiveConnect

See also:

54

A - Applet object (Object/HTML)

Property

accessKey

align
alt
altHTML
archive
code
codeBase
dataFld

dataSrc
form

height
hspace
name
object
src
tabIndex

vspace
width

Method

start ()
stop ()

Event name

onAfterUpdate
onBeforeUpdate
onBlur

onClick
onDataAvailable
onDataSetChanged
onDataSetComplete
onDblClick
onErrorUpdate
onFocus

onHelp

onKeyDown

JavaScript
1.1+

1.5+
1.5+

1.1+
15+
15+
1.1+

1.1+
1.1+

15+
15+
1.5+
1.5+

1.1+

1.5+
1.5+

JavaScript

1.1+
1.1+

JavaScript

1.1+
1.1+

1.2+

1.1+

1.2+

JScript
3.0 +

3.0 +
5.0+
3.0+
50+
3.0 +
3.0 +
3.0+

3.0+
3.0+

3.0 +
3.0 +
3.0 +
3.0+
3.0 +
3.0 +

3.0+
3.0 +

JScript

3.0 +
3.0+

JScript

3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0 +

N
3.0 +

6.0 +
6.0 +
3.0+
6.0 +
6.0 +
3.0+

3.0 +

3.0 +

6.0 +
6.0 +
3.0 +
6.0 +

3.0 +

6.0 +
6.0 +

3.0 +
3.0+

2

3.0 +
3.0+

4.0+

3.0 +

4.0+

IE
4.0 +

4.0 +
5.0 +
4.0 +
5.0 +
4.0 +
4.0 +
4.0 +

4.0 +

4.0 +

4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +

4.0+
4.0 +

4.0 +
4.0 +

4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +
4.0 +

Opera DOM HTML Notes

3.0 +

Opera

3.0 +
3.0+

3.0 +

3.0 +

3.0 +

0+ -

1+ -
1+ -
1+ -
1+ -
1+ -
0+ -

0+ -

0+ -

1+ -
1+ -
1+ -
1+ -

DOM HTML

DOM HTML

- 4.0+

Warning,
Deprecated

ReadOnly
ReadOnly

Warning,
Deprecated

Warning,
Deprecated

Warning,
Deprecated

ReadOnly

ReadOnl.

ReadOnly

Warning,
Deprecated

ReadOnly

Notes

Warning
Warning
Warning
Warning

Table continued on following page

55

JavaScript Programmer's Reference

Inheritance chain:

Applet() (Constructor)

Event nhame
onKeyPress
onKeyUp
onLoad
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp
onReadyStateChange
onResize
onRowEnter

onRowExit

JavaScript

1.2 +
1.2 +
1.1+
1.2 +
1.2 +
1.1+
1.1+
1.2 +

1.2 +

Element object, Node object

JScript N IE Opera DOM HTML Notes

3.0+ 40+ 4.0+ 3.0+ = 40+ Warning
3.0+ 40+ 40+ 30+ - 40+ Warning
3.0+ 30+ 4.0+ 3.0+ - - Warning
3.0+ 40+ 4.0+ 3.0+ = 40+ Warning
3.0+ 40+ 40+ - = 40+ Warning
3.0+ 30+ 4.0+ 3.0+ - 40+ Warning
3.0+ 30+ 40+ 3.0+ - 40+ Warning
3.0+ 40+ 40+ 30+ - 40+ Warning
3.0 + - 40+ - - - -

3.0+ 40+ 40+ - - - Warning
3.0+ = 40+ - = = =

3.0 + = 40+ - = = =

You normally would not use the constructor to create new applets, but it is possible to do this if
you need to create an applet container.

Availability

Property/method value type:

Deprecated

Applet object

As is the case with many (but not all) objects in Netscape, you can call a constructor to create a new
instance of an object. MSIE does not generally support this unless a constructor is really justified.
Because this constructor is only supported in Netscape, you should avoid constructing new Applet
objects. In any case, they are of limited use since you cannot easily place them into the page and make
them visible, even if you could populate them with meaningful content. Because of this, the topic is
marked as deprecated, although the functionality is likely to continue to be available.

Applet.align (Property)

Determines how the applet area aligns with its surrounding content.

56

Availability:

Property/method value type:

JavaScript syntax:

DOM level -1
JavaScript - 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0

String primitive

- myApplet.align

A - Applet.alt (Property)

The alignment of the applet with respect to its containing parent object is defined in this property.
The following expected set of alignment specifiers are available:

absbottom
absmiddle
baseline
bottom
center
left
middle
right
texttop

1 I A

top

Applet.alt (Property)

The alternative text to be used instead of the applet block in case the applet fails to load or for use
as a tool-tip text.

Availability: DOM level -1

JavaScript - 1.5

JScript - 5.0

Internet Explorer — 5.0

Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.alt

If a browser loads a document containing an applet and discovers that it is unable to load the
applet, this text value of this property will be displayed in the space where the applet was
supposed to have been loaded.

The use of this property is somewhat problematical in some browsers and completely unsupported
in others.

Setting this property from a script is unlikely to be very useful, as the script is probably going to be
called after the applet has failed to load.

Applet.altHTML (Property)

Some alternative HTML to display if the applet fails to load.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myApplet.altHTML

57

JavaScript Programmer's Reference

If a browser loads a document containing an applet and discovers that it is unable to load
the applet, this HTML will be displayed in the space where the applet was supposed to have
been loaded.

However, this property cannot be set from an HTML tag attribute as the alt text can. It can only
be set from a script.

Setting this property from a script is unlikely to be very useful, as the script is probably going to
be called after the applet has failed to load.

Applet.archive (Property)

The name of a zip archive containing multiple class files.

Availability: DOM level -1
JavaScript - 1.1
JScript - 5.0
Internet Explorer — 5.0
Netscape — 3.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.archive

Netscape allows for multiple applet class files to be collected together into a single zipped archive
file. Useful performance gains are possible if an applet depends on several classes for its
implementation, because they can all be loaded at once.

For this to work, you must also specify the CODE HTML tag attribute so that the browser can
determine which one of the classes is the main one.

There is some variance here from the HTML 4.0 definition of this value, which suggests that a list
of space-separated URL values can be specified. That is intended for use with the <OBJECT> tag,
which, according to the W3C organization, is the successor to the <APPLET> tag, which is likely to
be come deprecated in due course. However, since the <APPLET> tag is used so widely, this is
likely to take some considerable time to take effect.

See also: Applet.code

Applet.code (Property)

The Java class code for the applet.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: = myApplet.code

58

A - Applet.codeBase (Property)

This specifies the main code class to be called when the applet is initially run. It is necessary to
identify the main item in case there was a collection of class files loaded as an archive.

See also: Applet.archive

Property attributes:

ReadOnly.

Applet.codeBase (Property)

The path to the directory containing the applet code.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.codeBase

The codebase is the path to the directory where the classes used in the code or archive properties
are located. The actual path to the required files is generated by a string concatenation of
codeBase+code or codeBase+archive to generate a fully specified URL.

Due to security limitations, it is not permitted to access a codebase value that is outside the domain
specified by the containing document.

Property attributes:

ReadOnly.

Applet.height (Property)

The height of the applet extent rectangle in pixels.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.height

59

JavaScript Programmer's Reference

The extent rectangle around the applet reserves some space in the display before the applet is loaded.
The height of that extent rectangle is specified in this property and is normally measured in pixels.
Length values controlled by CSS styles allow for sizes to be specified in other measurement units.

See also: Applet.width

Property attributes:

ReadOnly.

Applet.nhspace (Property)

The width of the horizontal margin spacing around an Applet object.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.hspace

Margins placed around objects are either modified separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The hspace property controls the margin to the left and right of the object.

Applet.name (Property)

This corresponds to the NAME attribute of the <APPLET> HTML tag.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.name
HTML syntax: <APPLET NAME="aName">
Argument list: aName A name to identify the Applet object

60

A — Applet.object (Property)

Objects are identified either by the NAME HTML tag attribute or by the ID HTML tag attribute.

Netscape shows a marginal preference for the name property while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

Property attributes:

ReadOnly.

Applet.object (Property)

An accessor that yields a reference to the containing JavaScript object when there is a possibility of
naming conflicts between internally visible and externally visible property names.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: Applet object
JavaScript syntax: = myApplet.object

There are occasional namespace conflicts when using applets. Public properties are created in a
different environment, but are published into the JavaScript namespace and take precedence over
the properties of the containing JavaScript object.

The problem is exhibited when the name of a public property collides with a property of the
containing JavaScript object instantiated by the <APPLET> HTML tag. Access to the property
belonging to the containing object is difficult because the scope search order will obtain the public
property of the applet first. By using the object property, you can access the containing object
explicitly and retrieve a property of that object even if there is an identically named property
belonging to the enclosed Applet object.

This access mechanism applies to method invocations as well.

See also: OBJECT .object

Applet.src (Property)

A supplementary property for passing in URL values to the applet.

Availability: JScript - 3.0

Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myApplet.src

61

JavaScript Programmer's Reference

Some applets may need to access a supplementary data file from the server. It is good practice to
abstract such data values from the code itself, and so a means of passing this parameter value in from
outside is necessary. The SRC HTML tag attribute is reflected into this property and is provided as a
somewhat standardized means of passing one of the parameter values most likely to be defined.

Property attributes:

ReadOnly.

Applet.start() (Method)

A public method that starts an applet running.

Availability: ;gva.SctripSta 1.1
cript — 3.
Internet Explorer — 4.0
Netscape - 3.0

JavaScript syntax: = myApplet.start ()

This method will start an applet running if it has previously been stopped. Note that, in general,

applets will run automatically by default unless you do something to prevent it (possibly by setting
HTML tag attributes).

See also: Applet object, Applet.stop ()

Applet.stop() (Method)

A public method that stops an applet running.

Availability: }gV§Sctrip;6 1.1
cript — 3.
Internet Explorer — 4.0
Netscape — 3.0

JavaScript syntax: - myApplet.stop ()

This method provides a way to stop the execution of an applet from outside. Applets may choose to
stop themselves if that is what you have designed them to do. Other applets may be embedded into

the page and instructed not to run automatically by setting the appropriate attributes in the
<APPLET> HTML tag.

See also: Applet object, Applet.start ()

62

A - Applet.vspace (Property)

Applet.vspace (Property)

The height of the vertical margin spacing around an Applet object.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.vspace

Margins placed around objects are modified either separately with all four margin sides having a
different property or by adjusting the horizontal margins and vertical margins using just two values.

The vspace property controls the margin at the top and bottom of the object.

Applet.width (Property)

The width of the applet extent rectangle in pixels.

Availability: DOM level -1

JavaScript — 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myApplet.width

The extent rectangle around the applet reserves some space in the display before the applet is
loaded. The width of that extent rectangle is specified in this property and is normally measured
in pixels. Length values controlled by CSS styles allow for sizes to be specified in other
measurement units.

See also: Applet.height

Property attributes:

ReadOnly.

63

JavaScript Programmer's Reference

AppletArray object (Object/DOM)

A sub-class of the Array object that implements an applet collection.

Availability: DOM level -1
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape - 2.0
JavaScript syntax: = myAppletArray = myDocument.applets
Object properties: length
Warnings:

QO Although Netscape supports a constructor for this object type, it appears to point at the wrong thing.
In any case, it's unlikely you'd want to create a new AppletArray.

Applet object, AppletArray.length, Collection object,

See also:

Document .applets|[]
Property JavaScript JScript N IE Opera NES ECMA DOM CSS HTML Notes
length 1.0 + 1.0 + 2.0 + 3.02 + - - - 1+ - - ReadOnly

AppletArray.length (Property)

The number of Applet objects in the collection.

Availability: DOM level -1
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape — 2.0
Property/method value type: Number primitive
JavaScript syntax: - myDocument .applets.length

The length of the applets array, which indicates the number of <APPLET> HTML tags in
the document.

See also: AppletArray object, Collection.length

Property attributes:

ReadOnly.

64

A - Area object (Object/HTML)

Area object (Object/HTML)

An object representing an <AREA> HTML tag.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Object methods:

Event handlers:

DOM level -1
JavaScript - 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape - 3.0

Opera - 3.0

Element object

1IE myArea = myDocument

1IE myArea = myDocument

IE myArea = myDocument.

1IE myArea = myDocument.

- myArea = myDocument.
(anElementID)

= myArea = myDocument.
(aName) [anIndex]

= myArea = myDocument.
("AREA") [anIndex]

- myArea = myDocument

<AREA>

anIndex

aName

anElementID

.all.aMapID.areas [anIndex]
.all.anElementID

all.tags ("AREA") [anIndex]
all[aName]
getElementById

getElementsByName

getElementsByTagName

.links [anIndex]

A reference to an element in a collection

An associative array reference

The ID value of an Element object

accessKey, alt, coords, hash, host, hostname, href, name, noHref,
pathname, port, protocol, search, shape, tabIndex, target, text,

X/y
add ()

onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDataAvailable, onDataSetChanged, onDataSetComplete,
onDblClick, onErrorUpdate, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onLoad, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onReadyStateChange,
onResize, onRowEnter, onRowExit

An Area object represents an area of an image map. They are generally referred to as Link objects,
although Netscape and MSIE instantiate them as different classes.

Netscape supports these objects as objects of the Ur1l class.

MSIE treats them as Link objects.

65

JavaScript Programmer's Reference

66

Event-handling support via properties containing function objects was added to Area objects at

version 1.1 of JavaScript.

See also:

Property
accessKey
alt
coords
hash
host
hostname
href
name
noHref
pathname
port
protocol
search
shape
tabIndex
target
text

X

Y

Method
add ()

Event name
onAfterUpdate
onBeforeUpdate
onBlur

onClick
onDataAvailable
onDataSetChanged
onDataSetComplete
onDblClick
onErrorUpdate

onFocus

Element object, HyperLink object, Input . accessKey, LINK object,
LinkArray object, Location object, Map object, Ur1l object

JavaScript

15+
15+
15+
1.1+
1.1+
1.1+
1.1+
1.1+
15+
1.1+
1.1+
1.1+
1.1+
15+
15+
1.1+
12+
12+
1.2+

JavaScript

JavaScript

1.1+
1.1+

1.2+

1.1+

JScript

3.0+
3.0+
3.0+
1.0+
1.0+
1.0+
1.0+
3.0+
3.0+
1.0+
1.0+
1.0+
1.0+
1.0+
3.0 +
1.0+

JScript
3.0 +

JScript

3.0 +
3.0 +
3.0 +
1.0+
3.0+
3.0+
3.0+
3.0 +
3.0 +
3.0 +

N

6.0 +
6.0 +
6.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0+
6.0 +
3.0+
3.0+
3.0 +
3.0 +
6.0 +
6.0 +
3.0+
4.0+
4.0+
4.0+

3.0 +
3.0+

4.0+

3.0 +

IE

4.0+
4.0+
3.02 +
3.02 +
3.02 +
3.02 +
3.02 +
4.0+
4.0+
3.02 +
3.02 +
3.02 +
3.02 +
3.02 +
4.0+
3.02 +

Opera DOM HTML Notes

- 1+ - -
- 1+ - -
- 1+ - -
3.0+ - - -
3.0+ - - -
3.0+ - - -
3.0+ 1+ - -
- 1+ - -
3.0+ = = =
3.0+ = = =
3.0+ - - -
3.0+ - - -
- 1+ - -
- 1+ - -
3.0+ 1+ - -

Opera DOM HTML Notes

Opera DOM HTML Notes

3.0+ = = Warning
3.0+ = 40+ Warning
3.0+ - 40+ Warning
3.0+ = = Warning

Table continued on following page

A - Area.accessKey (Property)

Event name JavaScript JScript N IE Opera DOM HTML Notes
onHelp - 3.0+ = 4.0+ = = = Warning
onKeyDown 1.2 + 3.0+ 4.0+ 4.0+ 3.0+ = 4.0+ Warning
onkKeyPress 12+ 3.0 + 4.0 + 4.0 + 3.0 + = 4.0+ Warning
onKeyUp 1.2 + 3.0+ 4.0+ 4.0+ 3.0+ - 4.0+ Warning
onLoad 1.1+ 1.0+ 3.0+ 302+ 3.0+ = = Warning
onMouseDown 12+ 3.0+ 40+ 40+ 3.0+ = 4.0+ Warning
onMouseMove 12+ 3.0+ 40+ 40+ - = 40+ Warning
onMouseOut 1.1+ 3.0 + 3.0 + 4.0+ 3.0 + = 4.0+ Warning
onMouseOver 11+ 1.0+ 3.0+ 302+ 3.0+ = 4.0+ Warning
onMouseUp 12+ 3.0+ 40+ 40+ 3.0+ - 4.0+ Warning
onReadyStateChange - 3.0+ - 4.0 + - - - -
onResize 1.2 + 3.0+ 40+ 40+ = = - Warning
onRowEnter - 3.0+ - 4.0+ = = - -
onRowExit - 3.0+ - 4.0+ = = S S

Inheritance chain:

Element object, Node object

Area.accessKey (Property)

A key that needs to be pressed before the mapped link will respond to data entry.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myArea.accessKey

The key defined in this property needs to be held down for any input events to be triggered on this
object or its children.

Area.add() (Method)

Add a new element to the Area object that describes the image map.

Availability: JScript - 3.0
Internet Explorer — 4.0
JavaScript syntax: 1E myArea.add (anObject)
IE myArea.add (anObject, anIndex)

anObject Anew link object to add
anIndex A position in the collection to add the new item

Argument list:

67

JavaScript Programmer's Reference

Image maps can be modified from the scripting interface. You might find this useful if you present
some new information and want to add a button to dismiss it. It is possible to avoid an unnecessary
screen redraw and image load by adding an item to an image map collection.

Area.alt (Property)

The tool-tip text for the Area object.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myArea.alt

Objects can have an alternative text string associated with them. Browsers that cannot cope with
the tag may display the text instead. If spoken styles are supported, the text may be read out to the
user. Some browsers will also display the alt text as a tool-tip if the mouse is positioned over the
object and remains static for a few seconds.

Area.coords (Property)

The extent rectangle for the Area object within a map.

Availability: DOM level -1

JavaScript — 1.5

JScript - 3.0

Internet Explorer — 3.02

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myArea.coords

When a shaped area is defined within a an image map, the extent rectangle around the shape is
defined with the coords property. The value is defined with the COORDS HTML tag attribute.

See also: Anchor.coords, Area.shape

Extent

QAles Height

Extent

Width

68

A - Area.hash (Property)

Area.hash (Property)

MSIE represents URLs in Link objects.

Availability:

Property/method value type:

JavaScript syntax:

See also:

JavaScript — 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape - 3.0
Opera-3.0

String primitive

- myArea.hash

Url.hash

Area.host (Property)

MSIE represents URLs in Link objects.

Availability:

Property/method value type:

JavaScript syntax:

See also:

JavaScript - 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape — 3.0
Opera-3.0

String primitive

- myArea.host

Url.host

Area.hostname (Property)

MSIE represents URLs in Link objects.

Availability:

Property/method value type:

JavaScript syntax:

See also:

JavaScript - 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape - 3.0
Opera-3.0

String primitive

- myArea.hostname

Url.hostname

69

JavaScript Programmer's Reference

Area.href (Property)

MSIE represents URLs in Link objects.

Availability:

Property/method value type:

JavaScript syntax:

HTML syntax:

See also:

DOM level -1
JavaScript - 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape - 3.0
Opera-3.0

String primitive
- myArea.href

<AREA HREF="...">

Location.href,Url.href

Area.name (Property)

This corresponds to the NAME attribute of the <AREA> HTML tag.

Availability:

Property/method value type:

JavaScript syntax:

JavaScript - 1.1
JScript - 3.0

Internet Explorer — 4.0
Netscape - 3.0

String primitive

- myArea.name

Objects are identified either by the NAME HTML tag attribute or by the ID HTML tag attribute.

Netscape shows a marginal preference for the name property, while MSIE seems slightly better
disposed towards the ID property. However, in many cases both browsers support either technique
and in some cases will locate items named with either tag as if they existed in a single namespace.

See also:

70

Url.name

A — Area.noHref (Property)

Area.noHref (Property)

A Boolean flag to indicate whether the area is a link or a dead spot within the map.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: Boolean primitive
JavaScript syntax: - myArea.noHref

When a shaped area is defined within a an image map, it can either define a live hotspot or a hole
that has been cut out in the map. In this way, both concave and convex shapes can be created. You
can also create shapes with holes in the middle.

Area.pathname (Property)

MSIE represents URLs in Link objects.

JavaScript - 1.1

Availability:
JScript - 1.0
Internet Explorer — 3.02
Netscape — 3.0
Opera-3.0
Property/method value type: String primitive
JavaScript syntax: - myArea.pathname
See also: Url.pathname

Area.port (Property)

MSIE represents URLs in Link objects.

JavaScript - 1.1

Availability:

JScript - 1.0

Internet Explorer — 3.02

Netscape — 3.0

Opera-3.0
Property/method value type: Number primitive
JavaScript syntax: - myArea.port
See also: Url.port

71

JavaScript Programmer's Reference

Area.protocol (Property)

MSIE represents URLs in Link objects.

Availability: }SV§SCtrip1ta 1.1
cript — 1.
Internet Explorer — 3.02
Netscape — 3.0

Opera -3.0
Property/method value type: String primitive
JavaScript syntax: - myArea.protocol
See also: IMG.protocol, URL, Url.protocol

Area.search (Property)

MSIE represents URLs in Link objects.

Availability: ;gv«a.Sctriplta 1.1
cript - 1.
Internet Explorer — 3.02
Netscape - 3.0

Opera -3.0
Property/method value type: String primitive
JavaScript syntax: = myArea.search
See also: request.<urlExtension>,Url.search

72

A - Area.shape (Property)

Area.shape (Property)

The shape of the extent area within the map.

Availability: DOM level -1

JavaScript - 1.5

JScript - 1.0

Internet Explorer — 3.02

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myArea.shape

This property has a meaningful value when the Area object is instantiated via <MAP> and <AREA>
tag. It defines the shape of the hotspot within the extent rectangle defined by the coords property.
It might contain one of the following values:

default

rect

circle

I T A

poly

See also: Anchor.shape, Area.coords,Url.shape

Area.tablndex (Property)

A control of where the Area object appears in the tabbing order of the page.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: - myArea.tabIndex

This value indicates where this object and any of its children will be placed in the tabbing
sequence. The tabbing order is used when filling in forms or moving focus. Pressing the [rab] key
moves from one form element to the next according to the cascaded tabbing order defined by
building a tree-like structure with the tab index values.

73

JavaScript Programmer's Reference

Area.target (Property)

MSIE represents URLs in Link objects.

Availability:

Property/method value type:
JavaScript syntax:

HTML syntax:

See also:

DOM level -1
JavaScript - 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape - 3.0
Opera-3.0

String primitive

- myArea. target

<AREA TARGET="...">

<MAP TARGET="...">, Anchor.target, BASE. target,

Form. target, Location. target,Map. target,
Url.target

Area.text (Property)

Netscape represents <AREA> tags as Ur1l objects and therefore they inherit this property.

Availability:

Property/method value type:

JavaScript syntax:

See also:

Area.x (Property)

JavaScript — 1.2
Netscape — 4.0

String primitive

N myArea.text

Url.text

Netscape provides this as an enumerable property because it represents an <AREA> as a Ur1 object.

Availability:

Property/method value type:

JavaScript syntax:

74

JavaScript — 1.2
Netscape — 4.0

Number primitive

N myArea.x

A — Area.y (Property)

The horizontal position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrol1To () method for the window it lives in.

See also: Location.x

Area.y (Property)

Netscape provides this as an enumerable property because it represents an <AREA> as a Ur1 object.

JavaScript — 1.2

Availability:

Netscape — 4.0
Property/method value type: Number primitive
JavaScript syntax: N myArea.y

The vertical position of the object in the display measured in pixels. You can use the x and y
coordinates of the object as targets of the scrol1To () method for the window it lives in.

See also: Location.y

areas[] (Collection)

A collection of all the Area objects that contribute to making an image map for the page.

Availability: JScript - 3.0

Internet Explorer — 4.0
JavaScript syntax: IE myMap.areas
See also: Map.areas|[]

Property attributes:

ReadOnly.

argc parameter (Definition)

A command-line argument count.

Since JavaScript can be used in many environments, it is possible that in a server-side application
you will have access to the command-line arguments.

If that is the case, then it is likely that you will have an argc property, which indicates how many
arguments have been passed.

75

JavaScript Programmer's Reference

A

In general, the first argument is the name of the script or program being executed. The argc value
should never be zero and as a minimum should indicate that there is at least one argument.

The actual values of the arguments are collected in an array called argv. You should be able to
access argv and argc in a similar manner.

See also: argv parameter, Execution context, Execution environment, Host
environment, main () function

reument (Definition)

A value passed to a function.

Arguments are passed to functions when they are called. They are substituted for the formal
parameters in the function declaration.

Because JavaScript is weakly typed, you will need to implement any type checking you need for yourself.
You can compare the arity property of the owning function with the 1ength property of

the arguments array. If they are unequal, then the function was called with the wrong number
of arguments.

You can then check the type of the arguments one by one to compare them against the expected types.

This is a lot of work for little gain unless it is an important aspect of your design.

S el Arguments object, Arguments . length, Conversion, Definition,
Function, function(..) ..., Function.arguments [], Parameter

Argument list (Definition)

76

A list of values that are passed to a function.
Availability: ECMAScript edition — 2

Argument lists are used to pass information into functions.
An argument list can have any of the following structures:

Q Empty —no arguments
0 Asingle argument

QO A series of arguments separated by commas

Each argument, if present, can be an expression that will be evaluated and whose resulting value
will be used as the argument when it is passed to the function.

See also: Arguments Object, Arguments.length, Function.arguments|[],
Left-Hand-Side expression, Parameter

A — Arguments object (Object/core)

Cross-references:
ECMA 262 edition 2 — section — 11.2.4

ECMA 262 edition 3 — section — 11.2.4

Arguments object (Object/core)

An object represented as an array containing the argument values passed to the function when
it is called.

ECMAScript edition — 2

Availability:

JavaScript - 1.1

JScript - 5.5

Internet Explorer — 5.5

Netscape - 3.0
JavaScript syntax: - myArguments = arguments
Object properties: callee,caller, length

When you call a function, you can pass zero or more arguments to it from outside. These
arguments are available as named variables whose names are defined in the function declaration.

However, they are also available as the elements in an array. The arguments array is referenced
by the arguments property of the call object. Since the call object is added to the scope chain,
you don't need to reference the arguments property with an object identifier prefix.

The array-based mechanism is useful for those times when you want to implement a function that
has a variable number of arguments passed to it according to how and when it is called.

A new arguments object is created for each execution context. When the flow of control enters an
execution context for a function block, a new arguments object is created. Declared functions,
anonymous code, and implementation-specific code all use this technique.

When creating the arguments object, the initial conditions are set up like this:

Q The internal Prototype property for the arguments object is that returned by calling
Object.Prototype.

Q A property is created with the name callee. The callee property cannot be enumerated. The
initial value of the callee property is the function object being executed. Anonymous functions
can then be executed recursively if you so desire.

Q A property named length is created whose value is the number of arguments passed to the
function. The 1ength property cannot be enumerated.

Q Each argument is associated with a property whose name is its integer position in an array of
arguments. The arguments are accessed in presentation order. Although the names are strings, they
represent purely numeric values and range from 0 to 1 less than the value in the 1ength property.
You can enumerate the arguments in a for loop.

Note that objects of this type can only exist within a function body in a web browser, because you
cannot pass parameters to a script from outside. It is possible that an embedded JavaScript
interpreter may provide a host object to the main entry point to perform the same function.

77

JavaScript Programmer's Reference

Warnings:

QO In Netscape, the arguments array is implemented as an object of type Arguments but in MSIE its

type is simply an Object object. In Netscape, the arguments object is extended with a

toString () mechanism that returns the arguments as a comma separated list in a String. In MSIE,

you get the object type.

None of the properties of the argument s object are enumerable.

Because the arguments object is meant to be used in a manner that is local to the function it was

created in, you get unpredictable results if you pass it to another function as an argument itself.

O Note that at the time of writing the example given below did not seem to work on Netscape 6.0.

Example code:

<HTML>

<BODY>

<SCRIPT>

// Call a function and use its arguments array find out the
// name of the function that called it. Demonstrates a one
// level call tracer.

levell () ;

function levell ()

{
testArgs(l, "ONE", true);

function testArgs(al, a2,a3)

{
document .write (callerName (arguments)) ;
document .write ("
") ;

function callerName (al)

{
myCallerObject = al.caller.callee;
myCallerSource = String(myCallerObject) ;

mySplitArrayl = myCallerSource.split(" ");
mySplitArray2 = mySplitArrayl[1l].split("(");
myCaller = mySplitArray2[0];

return (myCaller) ;
}
</SCRIPT>

<BODY>
</HTML>

See also: Argument, Argument list, Arguments.callee, Arguments.caller,

Arguments.length, arguments[], Collection object, Execution context,

Function arguments, Function call, Function call operator (), function (

)

.., Function.arguments [], Object inspector, Object . prototype, Parameter

78

A - Arguments.callee (Property)

Property JavaScript JScript N IE Opera NES ECMA Notes
callee 1.2 + 55 + 4.0 + 55+ - - - DontEnum
caller 1.1+ 55+ 30+ 55+ - - - Warning,
DontEnum,
Deprecated
length 1.1+ 5.5 + 30+ 55+ - - - ReadOnly,
DontEnum

Cross-references:
ECMA 262 edition 2 — section — 10.1.6

ECMA 262 edition 2 — section — 10.1.8

ECMA 262 edition 2 — section — 15.2.3.1

ECMA 262 edition 3 — section — 10.1.6

ECMA 262 edition 3 — section — 10.1.8

Wrox Instant JavaScript, ISBN 1-861001-27-4— page — 27

Arguments.callee (Property)

The function object being called.

Availability: } 2V§Sirip5t; 1.2
cript — 5.
Internet Explorer — 5.5
Netscape - 4.0

Property/method value type: Function object
JavaScript syntax: - myArguments.callee

The value yielded by this property is the function object that owns the arguments.

You can work out the calling tree by tracing the callee and caller relationships back up the tree.
The callee is a reference to the parent function that owns the arguments object.

This has no meaning outside of the context of a function.

See also: Arguments object, Arguments . caller, Debugging — client
side, Function object

Property attributes:

DontEnum.

79

JavaScript Programmer's Reference

Arguments.caller (Property)

The object that called the function that owns the arguments.

JavaScript — 1.1

Availability:
JScript - 5.5
Internet Explorer — 5.5
Netscape — 3.0
Deprecated
Property/method value type: Arguments.object
JavaScript syntax: - myArguments.caller

This property refers to an Arguments object belonging to a parent function. Function call tracing
can traverse a hierarchy based on Arguments objects to unwind a call stack. This might be useful
when debugging complex script projects.

You can work out the calling tree by tracing the callee and caller relationships back up
the execution context tree. The caller is a reference to the arguments object of the caller of
the function.

To reference the function that called the current one, use this:

arguments.caller.callee

To get the name of the function that called the current one use this (so long as the interpreter
supports the name property on functions):

arguments.caller.callee.name

With this, you could build a stack trace function that you can call and will unwind the calling
context stack to show you how you got to the location you are in. Tools such as this are useful to
have around and if they are in a separate . js file, you can include them when you need to debug a
script problem.

When the caller value is Null, it refers to the global code context because there is no arguments
array in that context — at least not in a web browser. Other host implementations may provide an
additional level of arguments according to how the script is executed.

This has no meaning outside of the context of a function.

The example shows how to walk up the calling tree and should yield the following output
when it is run:

level2
called by levell

called by global level

80

A — Arguments.caller (Property)

Warnings:

Q This property is incorrectly implemented in Netscape 3, which returned a reference to the calling
function and not its arguments. Since it works correctly in Netscape 4, you should consider that it is
only available there.

The example shown below did not work correctly on Netscape 6.0 at time of writing.

This is not part of the ECMA standard and is at some risk of becoming deprecated and
removed in later versions. In fact, it is deprecated as of JavaScript version 1.3 and should
not be used in new projects.

Q Itis recommended that you do not build this into functional deployed applications, although the
risks involved with using it for debugging are small.

Example code:

<HTML>
<BODY>

<SCRIPT>

// A function to extract the calling function name when

// passed the arguments object from a function. Demonstrates
// how to recursively walk up a call tree.levell();

levell () ;
function levell ()

level2 () ;
}

function level2 ()

{
testArgs(l, "ONE", true);

}

function testArgs(al, a2,a3)

{
document .write (callerName (arguments)) ;
document .write("
") ;

}

function callerName (al)
{
if (al.caller == null)

{

return("global level");
}

myCallerObject = al.caller.callee;
myCallerSource = String(myCallerObject) ;
mySplitArrayl = myCallerSource.split(" ");
mySplitArray2 = mySplitArrayl[1l].split("(");
myCaller = mySplitArray2[0];
return (myCaller+"
 called by "+callerName(al.caller));
}
</SCRIPT>
</BODY>
</HTML>
See also: Arguments object, Arguments.callee, Debugging — client

side, Function object, Function. caller, Hierarchy of objects

81

JavaScript Programmer's Reference

Property attributes:

DontEnum.

Arguments.length (Property)

The number of arguments passed to a function dictates the length of the array to hold them.

Availability:

Property/method value type:

JavaScript syntax:

JavaScript - 1.1
JScript-5.5

Internet Explorer — 5.5
Netscape - 3.0

Number primitive

- myArguments.length

The number of arguments passed to a function when it is called.

The length property of the Arguments object can be inspected or used in an enumeration loop to

access each argument in turn.

Even if no placeholder arguments are specified, you can still call a function and pass as many
arguments to it as you like. They will be assembled into an array that you can manipulate in the
way you would normally operate on any other array. You can build enumerators to process all the
elements and do something with them.

You can compare this value with the arity property of the owner function object. This will
allow you to determine whether the correct number of arguments was passed.

Example code:

<SCRIPT>

// Declare a function that processes a variable number of arguments

function summate ()
{

var total 0;

for(var ii=0; ii<arguments.length; ii++)

{

total += arguments[ii];

}
return total;

}

// Call the function

sum = summate(l, 2, 3, 4,

document .write (sum) ;
</SCRIPT>

See also:

82

5);

Argument, Argument list, Arguments object,
Collection.length, Function.arguments|[],
Function.arity, Function.length

A — arguments][] (Collection)

Property attributes:

ReadOnly, DontEnum.

Cross-references:
Wrox Instant JavaScript, ISBN 1-861001-27-4 — page — 27

myResult = myFunction(aaa, bbb, ccc, ddd);

Arguments array

bbb

length

cce

ddd

arguments[] (Collection)

A property that is available inside a function to access its Arguments object.

ECMAScript edition — 2
JavaScript - 1.1

JScript - 5.5

Internet Explorer — 5.5
Netscape — 3.0

Availability:

This property is only defined within a function body in a web browser. However, some
implementations may provide external arguments via this property.

See also: Arguments object, Function arguments, Function.arguments[]

Property attributes:

ReadOnly.

argv parameter (Definition)

A command-line argument collection.

Since JavaScript can be used in many environments, it is possible that in a server-side application
you will have access to the command-line arguments.

If that is the case, then it is likely that you will have an argv property, which contains the
argument values.

83

JavaScript Programmer's Reference

In general, the first argument is the name of the script or program being executed.
To establish the length of the argv array, you can inspect the argc value.

The values passed in the argv array are likely to be presented as strings, although they may be
automatically cast to number, Boolean or other types without you needing to perform any type
conversion yourself.

Warnings:

Q If you call one script from another, the command-line arguments that were used to invoke the
original script may not be propagated unless your calling script makes some arrangements to pass in
the arguments it was given. Each script is likely to run in a separate execution context.

argc parameter, Execution context, Execution environment,

See also: .) s .
Host environment, Host object, main () function

Arithmetic constant (Definition)

A constant derived from arithmetic (numeric) values.
An arithmetic constant is derived from one of the following:

Unicode character code value of a character constant
Enumeration constant

Floating-point constant

Integer constant

Math object property

Number object property

0O 000000

Global object property

Constant expression, Floating-point constant, Infinity, Integer constant, Math.E,
Math.LN10,Math.LN2,Math.LOG1l0E, Math.LOG2E, Math.PI,
Math.SQRT1_2,Math.SQRT2, NaN, Number .MAX_VALUE,

Number .MIN_VALUE, Number .NaN, Number .NEGATIVE_INFINITY,
Number . POSITIVE_INFINITY

See also:

Arithmetic operator (Definition)

84

An operator that works with numeric operands.
The collection of arithmetic operators includes the operators in the following categories:

QO Additive operator

Q Multiplicative operator
QO Postfix operator

QO Prefix operator

A - Arithmetic type (Definition)

Warnings:

Q Applying some operators causes a strange degenerative effect in the accuracy. On the Macintosh in
MSIE 5.0 and in Netscape 4, the following loop generates a very strange sequence of numbers that
are quite erroneous:

for (myEnum = 1.5; myEnum > -2; myEnum -= 0.1)
{

document .write (myEnum + "
");

Q There are some very odd and subtle mathematical errors in the arithmetic handling within the
Macintosh platform, and it surely must be the platform since the same behavior is found on both
MSIE and Netscape.

Additive operator, Expression, Mathematics, Multiplicative operator, Postfix
operator, Prefix decrement (--), Prefix increment (++), Prefix operator, Remainder
(%), Remainder then assign (%=), Subtract (-), Subtract then assign (-=), Type
conversion

See also:

Cross-references:
Wrox Instant JavaScript — page — 18

Arithmetic type (Definition)

A subset of the native types concerned with numeric values.

In the C language, programmers need to be aware of the many and various types of numeric value.
JavaScript hides a great deal of this complexity by presenting a Number data type.

However, internally it still uses 32 bit integer values, 16 bit integer values, signed and unsigned
integers, and floating-point values.

Arithmetic type values are used with arithmetic operators to build arithmetic expressions.
Characters are maintained as single character strings, but can be represented numerically by

converting them to their Unicode code point value using the method String.charCodeAt ().
You can convert back again using the String. fromCharCode () method.

See also: String.charCodeAt (), String.fromCharCode ()

85

JavaScript Programmer's Reference

Array index delimiter ([]) (Delimiter)

Access elements of an array with this delimiter.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Netscape Enterprise Server — 2.0
Opera-3.0
Property/method value type: Depends on array content
JavaScript syntax: = myArray[anIndex]
Argument list: anIndex A legal index value into the array, not greater than

the array length

Array elements are indexed by selecting them numerically within the set of elements contained in
the array. The 1ength property of an array indicates how many indexable locations there are.
Array elements begin with the zeroth item.

Storing values into indexes that are higher than the current value of the 1ength property will
automatically extend the array and reset the 1ength property. An array with only one entry in
the 100th element (index value 99) is very sparsely populated but still should report a length
value of 100.

In Netscape, referencing the array with no element delimiters will yield a comma-separated list of
the contents of the array. So this:

myArray = new Array(6);myArray[0] = O0;myArray[l] = "XXX";myArray[2] = O0;myArray[3]
= "XXX";myArray[4] = 0;myArray[5] = "XXX";document.write (myArray) ;

Yields this when executed:
0,XXX,0,XXX, 0, XXX

Accessing properties of an object by name simply requires the name to be added to the object
reference with a dot separator between them. Numeric values cannot be used in this way. You must
use a string to name the array element when it is assigned.

The associativity is left to right.
Refer to the operator precedence topic for details of execution order.

Although JavaScript does not properly support multi-dimensional arrays, you can simulate them
by storing references to one array in the elements of another. You need to create a separate array
for each row and then one master array to arrange them into a column.

True multi-dimensional arrays would use a notation like this:

multiArray([1,2]

86

A - Array index delimiter ([]) (Delimiter)

But in JavaScript we can at least manage this:

This is close enough that most programmers will be able to cope with it quite happily.

Another alternative way to do this is to use a single dimensional array, but calculate the indices.

multiArray[1][2]

For example to make a 5 x 5 array, you would create a single dimensional array that is 25 elements
long. Then to reach the rows you use the row number and multiply the value by 5 before adding
the column number to access the desired cell. You need to be careful though because if you have an
'off-by-one' error, it all goes wrong.

Warnings:

Q Be aware that your script is referring to array elements starting at zero. You can get subtle 'off-by-

a

a

one' errors if you assume that the array begins at item 1.
In Netscape 2.02, the 1ength property of an array cannot be relied on to hold the right value.

You should avoid putting spaces into associative names because it introduces a property whose

name cannot be reached other than via an array index. Not all implementations will trap this error
situation. A property name is an identifier and identifier names cannot contain spaces so it should

throw an exception.

Example code:

See also:

<SCRIPT>
// Multidimensional array simulation
hExtent = 5;
vExtent = 6;
theExtent = hExtent * vExtent;
myArray = new Array (theExtent) ;
document .write ("<TABLE BORDER=1>") ;
for (vEnum = 0; vEnum < vExtent; vEnum++)
{
document .write ("<TR>") ;
for (hEnum = 0; hEnum < hExtent; hEnum++)

{

targetCell = (vEnum * hExtent) + hEnum;

document .write ("<TD>") ;
document .write (vEnum) ;
document .write(",");
document .write (hEnum) ;
document.write(" = ");
document .write (targetCell) ;
document .write("</TD>") ;
}
document .write("</TR>") ;
}
document .write ("</TABLE>") ;
</SCRIPT>

Array object, Array.length, Associativity, Multi-dimensional

arrays, Off by one errors, Operator Precedence, Post fix operator,

Property name

87

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 2 — section — 7.6

ECMA 262 edition 2 — section — 11.2

ECMA 262 edition 3 — section - 7.7

Wrox Instant JavaScript ISBN 1-861001-27-4— page — 16
Wrox Instant JavaScript ISBN 1-861001-27-4— page — 32
Wrox Instant JavaScript ISBN 1-861001-27-4— page — 33

Array literal (Declaration)

A means of creating and initializing an array at once.

ECMAScript edition - 3

Availability:
JavaScript — 1.3
JScript - 5.0
Internet Explorer — 5.0
Netscape —4.7
Property/method value type: Array object
JavaScript syntax: = [anElement, ...]
Argument list: anElement An element to be stored in the array

JavaScript version 1.2 introduces the capability of assigning values to an array as it is created and
building the array without first using a constructor.

Now array construction can also be nested to create multi-dimensional arrays.

The result is an array containing the elements defined by the literal expression.

Warnings:

0 Netscape 4 does not mind an extra trailing comma (as per the C language convention). To force an
undefined element to be assigned to the end of the array, you must place two trailing commas.

0 MSIE adds an undefined element for each trailing comma. This means that MSIE creates arrays that
are one item longer than Netscape does if there is a trailing comma.

O Some revisions of Netscape exhibit a further problem in that a single numeric value in the square
brackets is interpreted as an array length value. This is consistent with the Array () constructor but
is not correct in this context. You can place a pair of trailing commas there to fix this at the expense
of some wasted array items that contain undefined values. This is not a problem on all versions and
may be encountered only rarely now.

88

A - Array object (Object/core)

Example code:

<SCRIPT>

// Create a simple array literal

var myArray = [100, 1.34, "String text", true, { prop:100 } 1;
// Create a nested multi-dimensional array

var matarray = [[1,0], [0,1]1];

// JavaScript expression in arrays

var exprarray = [Math.random()*10, Math.random()*100];

// Sparse array

var sparse = [100, , , , , 10007];

document .write (myArray[2] + "
" + matarray[0,1] + "
" +
exprarray[l] + "
" + sparsel[5]);
</SCRIPT>

See also: Array object

Cross-references:
ECMA 262 edition 3 — section — 11.1.4

O'Reilly JavaScript, The Definitive Guide ISBN 1-56592-392-8— page — 46

Array object (Object/core)

An object of the class "Array".

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Netscape Enterprise Server —2.0
Opera -3.0

= myArray = Array

Availability:

JavaScript syntax:
= myArray = myVBArray.toArray ()

= myArray = new Array ()

= myArray = new Array (aLength)

- myArray = new Array(anIteml, anItem2, anItem3, ...)
aLength An optional initial length to set the array to.

Argument list:
anItemN A variable number of initial elements to insert into the array.

Object properties: constructor, index, input, length, prototype

Object methods: concat (), join(),pop(),push(),reverse(),shift(),slice(),
sort(),splice(), toLocaleString(), toSource (), toString(),
unshift (), valueOf ()

An array is basically an indexed collection of references to other objects or values.

89

JavaScript Programmer's Reference

In JavaScript version 1.0, arrays were simple objects and had limited functionality, scarcely
enough really to be called arrays. Some commentators argue that the functionality was so limited
that they should be flagged as available from version 1.1 of JavaScript only. They were usually
simulated by creating an instance of the Object object and using its named properties as if the
object was an array.

Much additional functionality was added for JavaScript version 1.1. JavaScript version 1.0 lacked
the constructors and arrays had no special methods available. The ECMA standard enhances the
functionality and Netscape 4 provides additional functionality.

An instance of the class "Array" is created by using the new operator on the Array () constructor.
At JavaScript version 1.2, arrays can be created with an Array literal as well. The new object adopts
the behavior of the built-in prototype object through the prototype-inheritance mechanisms.

All properties and methods of the prototype are available as if they were part of the instance.

Note that the index and input properties are available only for arrays that are produced as the
result of a RegExp match. They are not generally available in Arrays or Collections.

An array is a collection of properties owned by an object and that can be accessed by name or by
index position in the array. Because they are collected together and accessible as a set, they may be
sorted into the order of the array.

Array objects give special treatment to property names, which are numeric values. These are used
as an index value and will affect the value of the 1ength property. The length supported depends
on the platform, but is usually based on a 32 bit integer being used for addressing. That limits the
range to 4 Billion array elements.

Array objects implement the Put () internal function slightly differently from non-array based objects.
The prototype for the Array prototype object is the Object prototype object.

In the C language, an array is referred to as an aggregate type since it is made from a collection or
aggregate of individual members.

Warnings:

QO Although arrays were partially supported prior to JavaScript version 1.1, the support was not
reliably or completely implemented. There was no way for the script developer to create and modify
the arrays. Netscape 2 lacks any realistic array support even though Array objects were returned by
some object properties.

0 The WebTV set top box limits the extent of the Array objects to contain only 32,768 elements instead
of the 4 Billion or so that is defined as the normal maximum. This is because WebTV uses 16 bit
integers for addressing arrays rather than 32 bit integers.

920

A - Array object (Object/core)

Example code:

<SCRIPT>

// Array object demonstration

var weekly summary = new Array(7);

weekly summary[1l] = 10;

weekly summary[2] = 25;

var day_names = new Array("Su","Mo","Tu", "We","Th","Fr","Sa");

for (var i=0; 1i<7; 1i++)

{
document .write ("Summary for day (");
document .write(day_names[i]) ;
document .write(") = ");
document .write (weekly_ summary[i]);
document .write ("
") ;

}

</SCRIPT>
See also: Aggregate type, Array index delimiter ([]), Array literal, Array () / Array (),
Array.Class,Array.length, Array.prototype,Collection ob]ect,
JavaArray object, JellyScript, Native object, Object object,
String.split(),unwatch(),VBArray.toArray(),watch()
Property JavaScript JScript N IE Opera NES ECMA Notes
constructor 1.1+ 3.0+ 3.0+ 40+ - - 2+ -
index 1.2 + 55+ 40+ 55+ - - = =
input 1.2 + 5.5 + 40+ 55+ - - - -
length 1.0 + 3.0 + 20+ 40+ - = = ReadOnly
prototype 1.1+ 3.0+ 30+ 40+ - - 23 ReadOnly,
DontDelete,
DontEnum
Method JavaScript JScript N IE Opera NES ECMA Notes
concat () 12+ 3.0+ 40+ 40+ - 3.0+ 3+ Warning
join() 1.1+ 3.0 + 30+ 40+ 3.0+ 2.0+ 2+ -
pop () 12+ 5.5+ 40+ 55+ - 3.0 + 3+ -
push () 12+ 5.5+ 40+ 55+ - 3.0 + 3+ -
reverse () 1.1+ 3.0+ 30+ 40+ 30+ 2.0+ 2+ -
shift () 12+ 5.5+ 40+ 55+ - 3.0+ 3+ -
slice() 12+ 3.0+ 40+ 40+ - 3.0+ 3+ Warning
sort () 1.1+ 3.0+ 30+ 40+ 30+ 2.0+ 2+ Warning
splice() 12+ 55+ 40+ 55+ - 3.0+ B Warning
toLocaleString() 15+ 55+ 60+ 55+ - = 3+ Warning
toSource () 1.3+ 3.0+ 406 40+ - = = =
+
tostring () 1.1+ 3.0+ 30+ 4.0+ 30+ 2.0+ 2+ Warning
unshift () 1.2+ 55+ 40+ 55+ - 3.0+ 3+ -
valueOf () 1.1+ 3.0 + 30+ 40+ - - = =

91

JavaScript Programmer's Reference

Cross-references:

ECMA 262 edition 2 — section — 8.6.2.2

ECMA 262 edition 2 — section — 15.4

ECMA 262 edition 3 — section — 8.6.2.2

ECMA 262 edition 3 — section — 15.4

Wrox Instant JavaScript ISBN 1-861001-27-4 — page — 15

Array() (Constructor)

92

An Array object constructor.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Property/method value type: Array object

JavaScript syntax: B new Array ()

= new Array (aLength)
- new Array(anIteml, anItem2, anItem3, ...)

. I 5 . -
Argument list: aLengt An optional initial length to set the array to

anItemN A variable number of initial elements to insert into
the array

The Array () constructor is used in a new expression to manufacture a new instance of
the Array object.

The arguments passed to the constructor affect the way that the array is initialized.

If no arguments are passed, then an empty array is created. Its length will be zero and it will only
have the properties it inherits from its prototype parent.

If it has a single argument, and if that argument is a numeric value that can be realized as an
unsigned 32-bit integer with no loss of precision, then it is taken as a length value to initialize the
array with. However, according the ECMA standard, a numeric value that is not convertible to a
Uint32 should cause a run-time error. This may not be the case with all host implementations and
would be considered a minor deviation from the standard. You may find that a single numeric value
results in a one-element array containing that value instead of a run-time error. A single argument of
non-numeric type results in an array containing one element and having a length value of 1.

If there is more than one argument, then each argument is placed into the array in the order of
presentation and the length value set according to the number of arguments provided.

A - Array() (Function)

Warnings:

Q Netscape 2.02 does not understand the new Array () syntax. MSIE 3.02 with JScript 1.0 does not
understand new Array () either. This can be simulated with objects however.

Array object, Array simulation, Array (), Array.prototype, Constructor

See also:) . ;
function, constructor property, Global object, new, Object constant

Cross-references:
ECMA 262 edition 2 — section — 15.1.3.3

ECMA 262 edition 2 — section — 15.4.1
ECMA 262 edition 2 — section — 15.4.2
ECMA 262 edition 2 — section — 15.4.3.1
ECMA 262 edition 2 — section — 15.4.4
ECMA 262 edition 3 — section — 15.4.2

Wrox Instant JavaScript ISBN 1-861001-27-4 — page — 16

Array() (Function)

An Array object constructor.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape — 3.0
Property/method value type: Array object

JavaScript syntax: - Array ()

- Array (aLength)
- Array (anIteml, anItem2, anItem3, ...)

Argument list: aLength An optional initial length for the array

anItemN A variable number of initial elements to insert into
the array

Calling the Array () constructor as a function behaves exactly the same as if it had been called
with the new operator.

The function call Array () is equivalent to the object creation expression new Array () with the

same arguments. With other primitive objects, calling the constructor as a function carries out a
type conversion instead of an object instantiation.

93

JavaScript Programmer's Reference

The arguments passed to the constructor affect the way that the array is initialized in the same way
as they do with a new Array () expression.

Array object, Array(),Array.prototype, Cast operator,

See also: . e :
Constructor function, constructor property, Implicit conversion

Cross-references:
ECMA 262 edition 2 — section — 15.1.3.3

ECMA 262 edition 2 — section — 15.4.1
ECMA 262 edition 2 — section — 15.4.2

ECMA 262 edition 3 — section — 15.4.1

Array.Class (Property/internal)

Internal property that returns an object class.
Availability: ECMAScript edition — 2

This is an internal property that describes the class that an Array object instance is a member of.
The reserved words suggest that in the future, this property may be externalized.

See also: Array object, Class

Property attributes:

DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 — section — 8.6.2

ECMA 262 edition 2 — section — 15.4.2.1

ECMA 262 edition 3 — section — 8.6.2

94

A - Array.concat() (Method)

Array.concat() (Method)

Concatenate arrays together.

ECMAScript edition — 3

Availability:
JavaScript - 1.2
JScript - 3.0
Internet Explorer — 4.0
Netscape — 4.0
Netscape Enterprise Server — 3.0
Property/method value type: Array object
JavaScript syntax: = myArray.concat (someValues, ...)
Argument list: someValues A sequence of values to concatenate onto the array

The result of this method is a new array consisting of the original array, plus the concatenation.
The values that are passed to the method are added to the end of the array.

If arrays are passed, they are flattened and their individual elements added.

The method returns an array consisting of the original Array plus the concatenated values.

If Arrayl contains "AAA", "BBB", "CCC" and Array?2 contains "000", "111", "222", then the method
call Arrayl.concat (Array2) will return an array with all the elements in a single collection.
The original arrays will be untouched.

Warnings:

Q The concat () method will flatten arrays that are passed as arguments. However, it will not
recursively flatten multi-dimensional arrays.

Example code:

<SCRIPT>

// Create two arrays and demonstrate concat () method
myArrayl = new Array("AAA", "BBB", "CCC");

myArray2 = new Array("000", "111", "222");

document .write ("Arrayl
") ;

displayArrayAsTable (myArrayl) ;

document .write ("Array2
")

displayArrayAsTable (myArray?2) ;

document ..write("Result returned from Arrayl.concat (Array2)
")
displayArrayAsTable (myArrayl.concat (myArray?2)) ;

document .write("Result returned from Arrayl.concat ('AAA')
")
displayArrayAsTable (myArrayl.concat ("AAA")) ;

document .write("Result returned from Arrayl.concat ('AAA') .concat ('DFG')
")
displayArrayAsTable (myArrayl.concat ("AAA") .concat ("DFG")) ;

// Display an array in a table
function displayArrayAsTable (anArray)
{

myLength = anArray.length;

document .write ("<TABLE BORDER=1>") ;

95

JavaScript Programmer's Reference

for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
(

document .write("</TD></TR>") ;
}
document .write ("</TABLE>

")
}
</SCRIPT>
See also: Array.prototype, String.concat ()

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.4

Al A2
Array Array
instance instance
0 A
1 B
2 C
3 D
Al.concat(A2)

Al
Array

instance

96

A — Array.constructor (Property)

Array.constructor (Property)

A reference to a constructor object.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Property/method value type: Array constructor
JavaScript syntax: - myArray.constructor

The constructor is that of the built-in Array prototype object.

You can use this as one way of creating arrays although it is more popular to use the new
Array () technique.

This property is useful if you have an object that you want to clone but you don't know what sort
of object it is. Simply access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is

highly inappropriate to do so. MSIE is far more selective and there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Array.length, Array.prototype

Cross-references:
ECMA 262 edition 2 — section — 15.4.2

ECMA 262 edition 3 — section — 15.4.2

ECMA 262 edition 3 — section — 15.4.4.1

Array.index (Property)

A special property provided only when the array results from a string match.

JavaScript — 1.2

Availability:

JScript - 5.5

Internet Explorer — 5.5

Netscape — 4.0
Property/method value type: Number primitive
JavaScript syntax: - myArray.index

97

JavaScript Programmer's Reference

When the String.match () method is used, it returns an array as a result. If the match used a

pattern that made only a single match (that is, the g attribute was not used) then the array returned
will have this additional index property.

The index property will contain the character location within the original string where

the match occurred.

See also:

Array.input, RegExp.exec (), String.match ()

Array.input (Property)

A special property provided only when the array results from a string match.

Availability:

Property/method value type:

JavaScript syntax:

JavaScript — 1.2
JScript-5.5

Internet Explorer — 5.5
Netscape — 4.0

String primitive

- myArray.input

When the String.match () method is used, it returns an array as a result. If the match used a

pattern that made only a single match (i.e. the g attribute was not used) then the array returned
will have this additional input property.

The input property will contain a copy of the original string that was searched.

See also:

Array.index, RegExp.exec (), String.match ()

Array.join() (Method)

Concatenate array elements to make a string.

98

Availability:

Property/method value type:
JavaScript syntax:

Argument list:

ECMAScript edition — 2
JavaScript — 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape — 3.0

Netscape Enterprise Server —2.0
Opera-3.0

String primitive
- myArray.join (aSeparator)

aSeparator A string to place between array elements as
the array is concatenated to form a string

A - Array.join() (Method)

The result of this method will be a String primitive containing the array elements interposed
with separators.

The elements in the array are converted to strings and are concatenated together to form a larger
string. Each element has the separator value placed between it and the next element.

If the separator is not specified, then a single comma is used to join the array elements. This means
that if you want no separation between the joined items you should pass an empty string as the
separator value.

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<SCRIPT>

// Demonstrate array joins

myStringl = "This is a sentence made of words.";
document .write("Original input string
")
document .write (myStringl)

myArray = myStringl.split(" ");
document .write ("

String split into an array
")
displayArrayAsTable (myArray) ;

myString2 = myArray.join("+");
document .write ("

Array joined up as a string
")
document .write (myString2)

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
document .write ("</TD></TR>") ;
}
document .write ("</TABLE>")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype, Cast operator, String concatenate (+), String.split ()

99

JavaScript Programmer's Reference

Cross-references:

ECMA 262 edition 2 — section — 15.4.4.3

ECMA 262 edition 3 — section — 15.4.4.5

100

Array
instance
0 A"
1 "B"
2 "c"
3 "D"

join string is "-"

"A-B-C-D"

A - Array.length (Property)

Array.length (Property)

The number of elements in an array.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Netscape Enterprise Server — 2.0
Opera-3.0
Property/method value type: Number primitive
JavaScript syntax: - myArray.length

The length property of an array indicates one more than the maximum numeric index value that
has currently been used. This is because Array elements start indexing from zero rather than one.

Note that this is not necessarily a count of the exact number of elements in the array just an
indication of its range of index values.

Whenever a property is added whose name is an array index, the 1ength property is recomputed
to allow the length of the array to contain the new element that was added.

Furthermore, when the length value is set explicitly, it may truncate the array and any properties
whose names are numeric values that falls outside the bounds indicated by the length value will
be deleted.

This does only affect properties that belong to an Array object itself though. Any properties that
are inherited from a parent or prototype are unaffected.

The maximum value for an Array length is 4,294,967,295. This is because a 32 bit integer is used to
index the array. Arrays of this length are unlikely to be encountered often! A web page containing
an array of that size could take several weeks to download, that is assuming you had 4 GBytes of
memory available and that your web browser could address that much storage.

Although this property is marked as ReadOnly, there are some sub-classes of the Array object that
allow you to modify the 1length property directly.

Warnings:

Q The length property is so unreliable as to be virtually unusable unless you strictly constrain the
way you add elements to the array. If you add elements to an array using associative names, the
length property is not changed at all and will return a zero value.

Q If you then add an element to the array whose index is a numeric value, then the 1ength property
will be set to a value that is one more than the highest numbered numerically indexed item in the
array. This following fragment of code yields an array 1ength property value of 3:

var myArray = new Array();myArray[2] = "ABC";myArray|["zero"] =
"ABC";myArray["one"] = "one";myArray["two"] = "two";myArray[0] = "ABC";

101

JavaScript Programmer's Reference

Q This behavior is correct according to the ECMA specification but it is not a genuine measurement of
the array length, merely an indication of the highest numerically indexed array element. It should be
used for controlling enumeration loops but not for measuring array element item counts.

0 WebTV platforms can only address array indices using a 16 bit value and can only access 32,768
items in an array.

Array index delimiter ([]), Array object, Array.constructor,

See also: ;)
Array.prototype,Collection.length, length, NodeList.length

Property attributes:

ReadOnly, DontDelete, Dont Enum.
Cross-references:

ECMA 262 edition 2 - section — 15.4.2

ECMA 262 edition 2 — section — 15.4.3.2

ECMA 262 edition 2 — section — 15.4.5.2

ECMA 262 edition 3 - section — 15.4.5.2

Wrox Instant JavaScript ISBN 1-861001-27-4 — page — 16

Array
instance
1 nAn
2 ng"
length
property
3 llCll
4 D"

102

A - Array.pop() (Method)

Array.pop() (Method)

Pops items off of the end of an array like a FILO stack.

ECMAScript edition — 3
JavaScript - 1.2

JScript - 5.5

Internet Explorer — 5.5

Netscape — 4.0

Netscape Enterprise Server — 3.0

Availability:

Property/method value type: Depends on the array content

JavaScript syntax: = myArray.pop ()

The pop () method returns the element at the end of the array. In doing so, it deletes the item from

the end of the array reducing the array length by one.

Elements are returned one at a time, even if several were pushed onto the stack together.

Arrays that were pushed onto the stack are returned as arrays.

Although this is very useful for programming stacks, it is not portable enough to deploy in a public

facing site.

The result of this method is the item that was on the end of the stack.

Example code:

// Create an array and test the Array.pop() method
myArray = new Array ("AAA", "BBB", "CCC");
document .write ("Array
")

displayArrayAsTable (myArray) ;

document .write ("Array.pop ()
")
document .write (myArray.pop())
document .write ("

")

document .write ("Array after pop() call
")
displayArrayAsTable (myArray) ;

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
document .write ("</TD></TR>") ;
}
document .write ("</TABLE>

")

See also: Array.prototype, Array.push (), Queue manipulation,

Stack manipulation

103

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.6

Array
instance

Array.pop()

Array
instance

Array.prototype (Property)

The prototype for the Array object, which can be used to extend the interface for all Array objects.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Property/method value type: Array object

) - A . tot
JavaScript syntax: i bt L

= myArray.constructor.prototype

The prototype for an array is the original Array prototype object.

Array objects inherit many methods and properties from their prototype parent. Enquiring the
prototype of a an object whose provenance is unknown will tell you what sort of object it is.

104

A - Array.prototype (Property)

Array objects inherit these properties from the built-in Array prototype:
O Array.constructor

O Array.prototype
Array objects inherit these methods from the built in Array prototype:
Array.join()

Array.reverse ()

Array.sort ()

0o o 0 o

Array.toString ()
Array instances provide these properties themselves even if the prototype has them:
0 Array.length

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:

<HTML>
<HEAD>
</HEAD>
<BODY>
<SCRIPT>
// Define a function that duplicates the item at the end of
// the array
function dupe ()
{
if(this.length != 0)
{
myTail = this[this.length-17;
this[this.length] = myTail;
return myTail;

// Register the new function
Array.prototype.dupe = dupe;

// Create an array and test the Array.dupe() method
myArray = new Array ("AAA", "BBB", "CCC");
document .write ("Array
") ;

displayArrayAsTable (myArray) ;

document .write ("Array.dupe ()
") ;
document .write (myArray.dupe()) ;

document .write ("
") ;

document .write ("
") ;

document .write("Array after dupe() call
");
displayArrayAsTable (myArray) ;

105

JavaScript Programmer's Reference

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;

(

(
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
document .write ("</TD></TR>") ;
document .write ("</TD></TR>") ;

}
document .write ("</TABLE>

")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array object, Array(),Array(),Array.concat(),Array.constructor,
Array.join(),Array.length,Array.pop (), Array.push(),
Array.reverse(),Array.shift(),Array.slice(),Array.sort (),
Array.splice(),Array.toSource(),Array.toString(),
Array.unshift (), prototype property

Property attributes:

ReadOnly, DontDelete, Dont Enum.

Cross-references:
ECMA 262 edition 2 — section — 15.4.3.1

ECMA 262 edition 3 — section — 15.4.3.1

Array.push() (Method)

Pushes items onto the end of an array like a FILO stack.

ECMAScript edition — 3

Availability:
JavaScript —1.2
JScript - 5.5
Internet Explorer — 5.5
Netscape — 4.0
Netscape Enterprise Server — 3.0
Property/method value type: Number primitive
JavaScript syntax: = myArray.push (someValue, ...)
Argument list: someValue A series of values to be pushed onto the stack

106

A - Array.push() (Method)

The value is added to the end of the array.
If the value is an array itself, it is not flattened. When it is eventually popped, you get the array back.

If several values are passed to the push () method, they will all be added to the stack, but only the
last one will be returned.

This modifies the receiving array, increasing the array length by the number of elements that were
pushed onto the end.

The result of this method is the new length of the receiving array after the pushed item has been
concatenated onto its tail.

Example code:

// Create an array and test the Array.push() method
myArray = new Array ("AAA", "BBB", "CCC");
document .write ("Array
") ;
displayArrayAsTable (myArray) ;

)
")
("XXX")) ;

document .write ("Array.push (
document .write (myArray.push
document .write ("

") ;
document .write ("Array after push('XXX') call
");
displayArrayAsTable (myArray) ;

// Display an array in a table
function displayArrayAsTable (anArray)
{

myLength = anArray.length;

document .write ("<TABLE BORDER=1>") ;

for (myIndex = 0; myIndex < myLength; myIndex++)

{

document .write ("<TR><TD>") ;

document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray[myIndex]) ;
document .write("</TD></TR>") ;

}
document .write ("</TABLE>

")

See also: Array.pop (),Array.prototype, Array.unshift (), Queue manipulation,
Stack manipulation

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.7

107

JavaScript Programmer's Reference

Array
instance

c

Array.push("X")

Array
instance

Array.reverse() (Method)

Reverse the order of array elements.

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Netscape Enterprise Server — 2.0
Opera - 3.0

Availability:

Property/method value type: Array object

JavaScript syntax: - myArray.reverse ()

The elements in the array are rearranged into reverse order. The Array object is returned as
the result.

Note that the reverse () method may possibly be applied to other object types. Host objects may
support the reverse () method, but it will be in an implementation-dependant manner.

The result of this method is the array with its elements in reversed order.

108

A - Array.reverse() (Method)

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<SCRIPT>

// Demonstrate array joins

myStringl = "This is a sentence made of words.";
document.write("Original input string
")
document .write (myStringl)

myArray = myStringl.split(" ");
document .write ("

String split into an array
")
displayArrayAsTable (myArray) ;

myArray.reverse () ;

document .write ("

Array reversed
")
displayArrayAsTable (myArray) ;

myString2 = myArray.join(" ");
document .write ("

Array joined up as a string
")
document .write (myString2)

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document.write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
document .write ("</TD></TR>") ;
}
document .write ("</TABLE>")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype

Cross-references:
ECMA 262 edition 2 — section — 15.4.4.4

ECMA 262 edition 3 — section — 15.4.4.8

109

JavaScript Programmer's Reference

Array
instance

T

Array
instance

00

Array.shift() (Method)

Pull off of a stack whose access is FILO from the start rather than the end.

ECMAScript edition — 3

Availability: ’

JavaScript — 1.2

JScript - 5.5

Internet Explorer — 5.5

Netscape — 4.0

Netscape Enterprise Server — 3.0
Property/method value type: Depends on array content
JavaScript syntax: = myArray.shift ()

This method pulls an item from the front of the array and removes that item.
The array elements are all moved down one index position.
This modifies the array in place.

The result of this method is the item that is deleted from the front of the stack.

110

A - Array.shift() (Method)

Example code:

// Create an array and test the Array.shift() method
myArray = new Array ("AAA", "BBB", "CCC");
document .write ("Array
")

displayArrayAsTable (myArray) ;
document.write("Array.shift ()
")

document .write (myArray.shift())

document .write ("
")

document .write ("
")

document.write("Array after shift() call
")
displayArrayAsTable (myArray) ;

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document.write ("</TD><TD>") ;
document .write (anArray[myIndex]) ;
document.write ("</TD></TR>") ;
}
document .write ("</TABLE>

")

See also: Array.prototype, Array.unshift (), Queue manipulation, Stack manipulation

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.9

111

JavaScript Programmer's Reference

Array
instance

Array.shift()

Array
instance

Array.slice() (Method)

Slice out a sub-array from the receiving array.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

112

ECMAScript edition — 3
JavaScript — 1.2

JScript - 3.0

Internet Explorer — 4.0

Netscape — 4.0

Netscape Enterprise Server — 3.0

Array object
- myArray.slice (aRange)

aRange A range of array elements

A - Array.slice() (Method)

This method returns the sliced-out sub-array presented as a new array.
The range values indicate which part of the receiving array is to be sliced out.
A positive value in the range specifier indicates a particular cell. The first cell index is 0.

A negative value in the range specifier indicates a cell counted back from the end of the array. The
last cell is index -1.

If only one value is indicated in the range specifier, then the second is assumed to be the end
of the array.

The first specifier should indicate an element earlier than the second although some
implementations may check and swap as necessary.

Warnings:

Q There are some bugs in the way this works in MSIE. These are mostly to do with specifying
negative values for range specifiers. These bugs are still extant as of version 5 of MSIE so you
should avoid using the negative indices, and instead measure the length of the array and compute
a positive index to use instead. Be careful of 'off-by-one' errors when you do this.

Example code:

// Create an array and test the Array.slice() method
myArray = new Array ("AAA", "BBB", "CCC", "DDD", "EEE");
document .write ("Array
")

displayArrayAsTable (myArray) ;

document .write("Array.slice(3)
")
displayArrayAsTable (myArray.slice(3))

document .write("Array.slice(2,4)
")
displayArrayAsTable (myArray.slice(2,4))

document .write("Array.slice(-1)
")
displayArrayAsTable (myArray.slice(-1)
document .write("Array.slice(-3)
")
displayArrayAsTable (myArray.slice(-3)

)
)

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray[myIndex]) ;
document .write ("</TD></TR>") ;
}
document .write ("</TABLE>

")

See also: Array.prototype, Off-by-one errors

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.10

113

JavaScript Programmer's Reference

Array
instance

Array.slice(0,0)

Array
instance

Array.slice(1,3)

Array
instance
Array.slice(2)
B Array
instance
C
C
D
D
Array.slice(-2) E
Array
instance F
G G
H H

Array.sort() (Method)

Sort the elements in an array.

Availability:

114

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Netscape Enterprise Server — 2.0
Opera - 3.0

A - Array.sort() (Method)

Property/method value type: Array object

JavaScript syntax: . myArray.sort ()

= myArray.sort (aComparator)

aComparator A function object that will compare two items
and returns a flag indicating their order in the
sort collating sequence

Argument list:

The elements in the array are sorted in place and the sorted array is returned as a result of this
method. The argument provides a comparator function to determine the relationship between any
two items.

The comparator function is necessary if you want to sort into any order other than alphabetically
ascending. You can observe the operation of the comparator by placing document .write ()
methods into its source text. These will demonstrate how the comparison is called during the sort.

In the example, a comparator function shows how to custom-sort items. The example demonstrates
sorting by length rather than charset collation sequence. You must make sure the comparator
returns one of the following three values:

O Negative integer — signifies that the first argument is less than the second.
Q Zero - Signifies that both arguments are the same.

Q DPositive integer — Signifies that the first argument is larger than the second.
You can reverse the sort direction by negating the result returned by this comparator function.

In the example, a more highly optimized comparator is shown as well. The more lengthy version is
presented first to illustrate the algorithmic requirements of the comparator, but the second is
functionally identical and can be accomplished in one line and therefore the sort is much faster.

The result of this method is the array with its elements sorted according to the comparator.

Warnings:
Q According to the ECMA standard, this sort may not be stable.

Q The sort () method is generic and may be applied to non-array objects. However, some objects
may not be conducive to sorting like this and the exact behavior may be host implementation-
dependant in some cases.

Q The custom comparator is not supported by the WebTV platform as of the Summer 2000 release of
the JellyScript interpreter.

Q Itis easy to make the mistake of returning true and false as a result of comparing the two values.
For example the following is wrong:

function compare(avValuel, aValue2) {
if (avaluel.length <= avValue2.length)
{
return false;
}

return true;}
Q This will not work properly and the resulting sort will be incorrect.

115

JavaScript Programmer's Reference

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<SCRIPT>

// Demonstrate array joins

myStringl = "This is a sentence made of words.";
document .write("Original input string
")
document .write (myStringl)

myArray = myStringl.split(" ");
document .write ("

String split into an array
")
displayArrayAsTable (myArray) ;

myArray.sort (compare) ;

document .write ("

Array sorted
")
displayArrayAsTable (myArray) ;

myString2 = myArray.join(" ");
document .write ("

Array joined up as a string
")
document .write (myString2)

// Comparator function

function compare (avValuel, aValue2)

{
if (avaluel.length < aValue2.length)
{

return -1;

if (avaluel.length > aValue2.length)
{

return 1;
return 0;

// Optimised comparator function
function optimalCompare (aValuel, aValue2)
{
return (aValuel.length - avalue2.length) ;

// Display an array in a table
function displayArrayAsTable (anArray)
{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document .write ("<TR><TD>") ;
document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
(

document .write ("</TD><TD>") ;

116

A - Array.sort() (Method)

document .write (anArray[myIndex].length) ;

document.write ("</TD></TR>") ;
}
document .write ("</TABLE>")
}
</SCRIPT>
</BODY>
</HTML>

See also: Array.prototype, JellyScript

Cross-references:
ECMA 262 edition 2 — section — 15.4.4.5

ECMA 262 edition 3 — section — 15.4.4.11

Array
instance

00

Array
instance

T

117

JavaScript Programmer's Reference

Array.splice() (Method)

An array editing tool.

ECMAScript edition — 3
JavaScript — 1.2

JScript-5.5

Internet Explorer — 5.5

Netscape — 4.0

Netscape Enterprise Server — 3.0

Availability:

Property/method value type: Array object

JavaScript syntax: - myArray.splice(startPos, aCount,

newElements)
Argument list; aCount An optional count of items to remove
newElements An optional list of items to add
startPos An entry at which to start splicing

The start position indicates where the splicing is to occur. If there are no other arguments, then the
remainder of the array is truncated.

If there is a count argument present, only that number of items will be removed and the subsequent
ones shuffled up to be adjacent to the front section of the array.

Any additional arguments are taken to be values to be inserted. They are not evaluated according
to the techniques used by the Array.concat () method. If arrays are specified, they will not be
flattened but will be inserted as they are.

This method operates on the array in place, therefore it modifies the original receiving array.

Specifying a count value of zero provides the functionality of an insert () method.

Specifying a count value larger than the array length does not cause an error, but instead truncates
the array, behaving like a replace () method.

The method call returns an array containing the elements that were removed. This provides an

alternative to the slice () method, but you should use slice () for portability since some MSIE
browsers do not support the splice () method.

Warnings:

QO In Netscape 4, there are some bugs with the values that get returned by this method. The receiving
array does get spliced, but the deleted items are not always properly returned.

118

A - Array.splice() (Method)

Example code:

// Create an array and test the Array.splice()
myArray = new Array ("AAA", "BBB", "CCC", "DDD",

document .write ("Array
")
displayArrayAsTable (myArray) ;
document.write("Array.splice() result
")

displayArrayAsTable (myArray.splice(3, 1, "XXX",

document .write("Array after splice
")
displayArrayAsTable (myArray) ;

// Display an array in a table
function displayArrayAsTable (anArray)

{
myLength = anArray.length;
document .write ("<TABLE BORDER=1>") ;
for (myIndex = 0; myIndex < myLength; myIndex++)
{
document.write ("<TR><TD>") ;
document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
document.write ("</TD></TR>") ;
}
document .write ("</TABLE>

")
}
See also: Array.prototype

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.12

"EEE") ;

"YYY", "ZZZ"));

119

JavaScript Programmer's Reference

Initial array A

Array
instance

A.splice(3,1, "X", "Y", "Z")

Array
instance

A.splice(3,0, "X", "Y", "Z")

Array
instance

A.splice(3,10, "X", "Y", "Z")

Array
instance

Array.toLocaleString() (Method)

Returns a string primitive version of the array taking the present locale into account during the

translation.

Availability:

Property/method value type:

JavaScript syntax:

The locale context supplies some special conversion rules for strings. Depending on the locale, this
might include special characters or a means of using double-byte characters. It may also affect the

ECMAScript edition — 3
JavaScript — 1.5

JScript - 5.5

Internet Explorer — 5.5
Netscape — 6.0

String primitive

myArray.toLocaleString ()

direction of the text, for certain Asian locales for example.

120

A - Array.toSource() (Method)

Warnings:

Q The ECMA standard reserves the first argument of this method for future use. It does not specify
what that is, but warns against implementations extending the syntax to include its use.

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.3

Array.toSource() (Method)

Output an array formatted as an Array literal contained in a string.

JavaScript - 1.3

Availability:
JScript - 3.0
Internet Explorer — 4.0
Netscape —4.06
Property/method value type: String primitive
JavaScript syntax: - myArray.toString ()

This is an alternative way to deliver a string version of an array. In this case, it is formatted as an
Array literal and can then be used in an eval () function to assign another array. It means that
Arrays can be deep copied more easily.

This functionality was previously available in Netscape 4 when the toString () method

was executed in a <SCRIPT> block that was evaluated under explicit JavaScript version 1.2
language selection.

If you run the example, it should yield something like this:
["one", 2, "III"]

This is quite different from the result of a toString () method which would yield this for the
same array contents:

one,2,III

The result of this method is a String primitive version of the array formatted as an Array literal.

Example code:

// Create an array and display its source
myObject = new Array("one", 2, "III");
document .write (myObject.toSource()) ;

See also: Array.prototype, Array.toString ()

121

JavaScript Programmer's Reference

Array.toString() (Method)

Return a string primitive version of an object.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Netscape Enterprise Server — 2.0
Opera-3.0
Property/method value type: String primitive
JavaScript syntax: - myArray.toString ()

The elements in the array are converted to strings and are concatenated together to form a larger string.
This is functionally identical to using the join () method with no join string argument.

If you run the example, it will yield the following:
one,2,III

This is quite different from what you get if you use the toSource () method, which presents this result:
["one", 2, "III"]

The result of this method is a String primitive version of the array assembled by concatenation.

Warnings:

Q Netscape supports a special conversion mechanism if this method is invoked within a <SCRIPT>
HTML tag whose LANGUAGE attribute is set to the "JavaScript1.2" value.

QO In that circumstance, the array is presented with enclosing square brackets. This means that it can be
used as an array literal in an eval () function. This behavior was added in anticipation of the
ECMA specification supporting some additional functionality. However, the standard mandates
very specific behavior for toString ().

Q InJavaScript 1.3, the toString () behavior will revert to what was expected. Because this source
form output is so useful, it will continue to be supported by a new method called toSource ().

Example code:

// Create an array and display it as a string
myObject = new Array("one", 2, "III");
document .write (myObject.toString()) ;

Array.prototype, Array.toSource (), Cast operator,
String concatenate (+), toString ()

See also:

122

A - Array.unshift() (Method)

Cross-references:

ECMA 262 edition 2 — section — 15.4.4.2

ECMA 262 edition 3 — section — 15.4.4.2

Array
instance

"ABCD"

Array.unshift() (Method)

Push onto a stack whose access is FILO from the start rather than the end.

Availability:

Property/method value type:
JavaScript syntax:

Argument list:

ECMAScript edition — 3
JavaScript —1.2

JScript - 5.5

Internet Explorer — 5.5

Netscape - 4.0

Netscape Enterprise Server — 3.0

Number primitive
= myArray.unshift (someValue, ...)

someValue A series of values to be pushed onto the stack

123

JavaScript Programmer's Reference

This operates very like the Array.push () method except that items are added to the front of the
stack rather than the end of the stack. The items are also pushed in reverse order if several are
presented at once. That is to say, the order of presentation is preserved within the array.

When the push is completed, the item at the front of the array is returned.
The number of items that were added increases the array length.

If arrays are presented, they will be pushed on as they are and not flattened. When they are
subsequently removed from the stack, they will still be arrays.

This method modifies the array in place.

The result of this method is the new length of the receiving array after the pushed item has been
concatenated onto its front.

Example code:

// Create an array and test the Array.unshift() method
myArray = new Array ("AAA", "BBB", "CCC");
document .write ("Array
")

displayArrayAsTable (myArray) ;

document .write ("Array.unshift ()
")

document .write (myArray.unshift ("XXX"))
document .write ("

")

document ..write("Array after unshift ('XXX') call
")
displayArrayAsTable (myArray) ;

// Display an array in a table
function displayArrayAsTable (anArray)
{

myLength = anArray.length;

document .write ("<TABLE BORDER=1>") ;

for (myIndex = 0; myIndex < myLength; myIndex++)

{

document .write ("<TR><TD>") ;

document .write (myIndex) ;
document .write ("</TD><TD>") ;
document .write (anArray [myIndex]) ;
document .write ("</TD></TR>") ;

}
document .write ("</TABLE>

")

Sbolalso: Array.prototype, Array.push(),Array.shift (), Queue manipulation, Stack
’ manipulation

Cross-references:
ECMA 262 edition 3 — section — 15.4.4.13

124

A - Array.unshift() (Method)

Array
instance

Array.unshift("X")

Array
instance

125

JavaScript Programmer's Reference

Array.valueOf() (Method)

Returns the contents of the array converted to a native primitive value.

JavaScript — 1.1

Availability:
JScript - 3.0
Internet Explorer — 4.0
Netscape — 3.0
Property/method value type: String primitive
JavaScript syntax: - myObject.valueOf ()

The primitive value of the receiving object is returned by this method. Because an array is an
aggregation of many elements, a simple type conversion is not appropriate. The individual
elements are converted to string values and are then concatenated together and returned as a single
string primitive value. This applies even if an array comprises a collection of numeric values.

See also: valueOf ()

Array simulation (Definition)

A means of simulating arrays in JavaScript.

With a constructor, you can simulate arrays by making them from objects and property
components. This may be useful if you want to run an array-based script in a very old JavaScript
implementation although these days that likelihood is diminishing rapidly.

This was necessary in JavaScript version 1.0. Numbered index locations within an Object object
could simulate Array objects. Named items simply allocate the next available numbered entry.

Thankfully we don't have to do this anymore.

Warnings:
QO In Netscape 2.02 and MSIE 3.02 you can operate on existing arrays, but you cannot make a new one.

QO In Netscape 2.02 the array length value does not work properly.

Example code:

// Simulate an array with an Object object
myArray = new Object () ;

myArray[0] = "One";

myArray[l] = "Two";

// Simulate an array with a constructor

function SimArray (aSize)
{

126

A — ASCII (Standard)

this.length = aSize;
for (var index = 0; index<aSize; index++)
{
this[index] = 0;
}
return this;

}

// Now make a simulated array
myArray = new SimArray (12);

See also: Array (), Cast operator, Constructor function

Cross-references:
Wrox Instant JavaScript ISBN 1-861001-27-4 — page — 32

ASCII (Standard)

A table of seven-bit binary numbers that encode the alphabet and other symbols.

ASCII stands for American Standard Code for Information Interchange. It describes an encoding
for letters, numbers and punctuation symbols that can be realized in seven bits. It uses only seven
of the 8 bits for historical reasons to allow the eighth bit to be used for parity control when the
characters are transmitted through serial interfaces.

Many of the character codes are reserved to send control signals to terminals and to manage the
communications. Modern networking provides this capability outside of the character encoding.

There is an extended ASCII encoding that provides all 8 bits for character code mapping. This
defines the upper 128 characters in addition to the lower 128 characters in the 7-bit representation.

There are many alternative interpretations of the ASCII character set that allow for national
extensions to the character set. In some cases, this may only result in the replacement of a few
currency symbols.

JavaScript uses the Unicode character set. The lower 128 characters of Unicode are purposely
mapped to the ASCII character. ASCII is described here to provide help when you are exchanging
data files with ASCII-based systems or applications.

It may also be useful in some situations if you are using JavaScript to drive a serial interface to
control some external system. Whether you could do that would depend on the hosting
environment. A browser wouldn't give you those capabilities, but an embedded JavaScript
interpreter in a process control system may well allow you to do that sort of thing.

This table summarizes the lower 128 characters in the ASCII character set:

Dec Hex Sym Unicode Description

000 00 NUL \u0000 <ctrl-@> Null character
001 01 SOH \u0001 <ctrl-A> Start of header
002 02 STX \u0002 <ctrl-B> Start of text

Table continued on following page

127

JavaScript Programmer's Reference

Dec Hex Sym Unicode
003 03 ETX \u0003
004 04 EOT \u0004
005 05 ENQ \u0005
006 06 ACK \u0006
007 07 BEL \u0007
008 08 BS \u0008
009 09 HT \u0009
010 0A LF \u000A
011 0B VT \u000B
012 0C FF \u000C
013 0D CR \u000D
014 0E SO \u000E
015 OF SI \u000F
016 10 DLE \u0010
017 11 DC1 \u0011
018 12 DC2 \u0012
019 13 DC3 \u0013
020 14 DC4 \u0014
021 15 NAK \u0015
022 16 SYN \u0016
023 17 ETB \u0017
024 18 CAN \u0018
025 19 EM \u0019
026 1A SUB \u001A
027 1B ESC \u001B
028 1C FS \u001C
029 1D GS \u001D
030 1E RS \u001E
031 1F US \u001F
032 20 SP \u0020
033 21 ! \u0021
034 22 " \u0022
035 23 # \u0023
036 24 $ \u0024
037 25 % \u0025
038 26 & \u0026
039 27 ' \u0027
040 28 (\u0028

128

Description

<ctrl-C> End of text
<ctrl-D> End of transmission
<ctrl-E> Enquiry
<ctrl-F> Positive acknowledge
<ctrl-G> Alert (bell)
<ctrl-H> Backspace
<ctrl-I> Horizontal tab
<ctrl-J> Line feed
<ctrl-K> Vertical tab
<ctrl-L> Form feed
<ctrl-M> Carriage return
<ctrl-N> Shift out
<ctrl-O> Shift in
<ctrl-P> Data link escape
<ctrl-Q> Device control 1 (XON)
<ctrl-R> Device control 2 (tape on)
<ctrl-S> Device control 3 (XOFF)
<ctrl-T> Device control 4 (tape off)
<ctrl-U> Negative acknowledgement
<ctrl-V> Synchronous idle
<ctrl-W> End of transmission block
<ctrl-X> Cancel
<ctrl-Y> End of medium
<ctrl-Z> Substitute
<ctrl-[> Escape
<ctrl-\> File separator (Form separator)
<ctrl-]> Group separator
<ctrl-~> Record separator
<ctrl-_> Unit separator
Space
Exclamation point (bang)
Double quote
Hash (number sign, pound sign, sharp)
Dollar sign (buck)
Percent sign
Ampersand
Apostrophe (single quote)
Left parenthesis
Table continued on following page

A — ASCII (Standard)

Dec

041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078

Hex

29
2A
2B
2C
2D
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E

Sym

O O N3 O U B WO DN P, O

NV AT

ZZOoORT T D oOTm@HgO®E>»>e

Unicode

\u0029
\u002A
\u002B
\u002C
\u002D
\u002E
\u002F
\u0030
\u0031
\u0032
\u0033
\u0034
\u0035
\u0036
\u0037
\u0038
\u0039
\u003A
\u003B
\u003C
\u003D
\u003E
\u003F
\u0040
\u0041
\u0042
\u0043
\u0044
\u0045
\u0046
\u0047
\u0048
\u0049
\u004A
\u004B
\u004C
\u004D
\u004E

Description

Right parenthesis

Asterisk (star)

Plus sign

Comma

Minus sign (hyphen)
Period (full stop, dot, point)
Slash (virgule, solidus)

Colon

Semi-colon

Left caret (less than, left angle bracket)

Equal sign

Right caret (greater than, right angle bracket)
Question mark

Commercial at sign

Table continued on following page

129

JavaScript Programmer's Reference

Dec Hex Sym Unicode Description

079 4F (@) \u004F -

080 50 P \u0050 -

081 51 Q \u0051 -

082 52 R \u0052 -

083 53 S \u0053 -

084 54 T \u0054 -

085 55 U \u0055 -

086 56 A% \u0056 -

087 57 W \u0057 -

088 58 X \u0058 -

089 59 Y \u0059 -

090 5A Z \u005A -

091 5B [\u005B Left square bracket
092 5C \ \u005C Backslash (reverse solidus)
093 5D] \u005D Right square bracket
094 5E 2 \u005E Circumflex accent
095 5F _ \u005F Underscore (low line)
096 60) \u0060 Grave accent (back quote, back tick)
097 61 a \u0061 -

098 62 b \u0062 -

099 63 C \u0063 -

100 64 d \u0064 -

101 65 e \u0065 -

102 66 f \u0066 -

103 67 g \u0067 -

104 68 h \u0068 -

105 69 i \u0069 -

106 6A j \u006A -

107 6B k \u006B -

108 6C 1 \u006C -

109 6D m \u006D -

110 6E n \u006E -

111 6F o \u006F -

112 70) \u0070 -

113 71 q \u0071 -

114 72 r \u0072 -

115 73 s \u0073 -

116 74 t \u0074 -

Table continued on following page

130

A — ASP (Object model)

Dec Hex Sym Unicode Description

117 75 u \u0075 -

118 76 v \u0076 =

119 77 w \u0077 -

120 78 X \u0078 =

121 79 y \u0079 =

122 7A V4 \u007A =

123 7B { \u007B Left brace (left curly bracket)
124 7C | \u007C Verical line (bar, pipe)

125 7D } \u007D Right brace (right curly bracket)
126 7E ~ \u007E Tilde

127 7F DEL \u007F Delete

Character set, Character-case mapping, Control character, Equal to (==),
Greater than (>), Greater than or equal to (>=), Identically equal to (===),
isLower (), isUpper (), Less than (<), Less than or equal to (<=), NOT Equal
to (!=), NOT Identically equal to (!==)

ASP (Object model)

The object model inside an ASP server module.

See also:

As of the time of writing the ASP object model is at version 3.0 and is now shipped with Windows
2000 as part of the core OS. It is a mechanism that enhances the Microsoft IIS product to provide
server-side dynamically generated pages and uses JScript 5.0 as its programming language. It also
supports VBScript.

Code that is executed in an ASP page is delimited with a special tag pair that does not conform to
the HTML standards, but nevertheless should be ignored by browsers if the unprocessed pages
ever escape out of the server.

Here is an ASP tag pair with an example fragment of code:
<%Response.Write('<HR>"') ;%>

More detailed and in-depth information on ASP can be found in the Wrox ASP 3.0 Programmer’s
Reference ISBN 1-861003-23-4.

ASP (Product)

Active Server Pages. A Microsoft product.

See also: ADO, Active Server Pages

131

JavaScript Programmer's Reference

Assign value (=) (Operator/assignment)

Assign one operand to a left value.

ECMAScript edition — 2

Availability:
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape - 2.0
Netscape Enterprise Server — 2.0
Opera -3.0
Property/method value type: Depends on right value
JavaScript syntax: - anLValue = anExpression
Argument list: anExpression Some operation that yields a suitable value to
assign
anLValue A target that can be assigned to

The expression value on the right is assigned to the target operand on the left.
The associativity is right to left.
Refer to the Operator Precedence topic for details of execution order.

The source expression to the right is called an RValue, the target expression to the left is called an
LValue. The LValue must be capable of having something assigned to it and the RVlaue must
evaluate to a meaningful and compatible value or a run-time exception will be thrown.

Warnings:

QO The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

QO Be careful not to confuse the single equals with the double equals. Placing a double equals in place of
an assignment will do a comparison without assigning the result. This is less dangerous than
mistakenly assigning a value where you intended to compare for equality. The interpreter may be
forgiving enough that a run-time error isn't generated, but the side effects could be subtle and make
it hard to diagnose the cause.

= (Assign), Add then assign (+=), Associativity, Concatenate then assign (+=), Equal to
(==), Location.assign (), LValue, Multiply then assign (*=), Operator Precedence,
Reference, Remainder then assign (%=), Subtract (-), var

See also:

Cross-references:
ECMA 262 edition 2 — section — 10.1.3

ECMA 262 edition 2 — section —11.1.2

132

A - Assignment expression (Definition)

ECMA 262 edition 2 — section — 11.13
ECMA 262 edition 2 — section — 12.2

ECMA 262 edition 3 — section — 10.1.3
ECMA 262 edition 3 — section — 11.1.2
ECMA 262 edition 3 — section — 11.13

ECMA 262 edition 3 — section — 12.2

Assignment expression (Definition)

An expression that causes an assignment as a by-product.
Availability: ECMAScript edition — 2

Assignment expressions can be broken down into a two-operand expression with the result being
assigned to the value on the left.

Note that assignment expressions can be used in their entirety as an RValue. You may want to
void the assignment expression in some cases to prevent the result of the assignment being used
inadvertently as an HREF.

Add then assign (+=), Assignment operator, Concatenate then assign (+=),
Expression, LValue, Multiply then assign (*=), Remainder then assign (%=), RValue,
Subtract (-), var, Variable statement, void

See also:

Cross-references:
ECMA 262 edition 2 — section — 12.2

ECMA 262 edition 3 — section — 12.2

Assignment operator (Definition)

An operator that causes an assignment as a by-product.
Availability: ECMAScript edition — 2

Here is a table summarizing the assignment operators, most of which can be secondarily classified
as members of other operator categories:

133

JavaScript Programmer's Reference

Operator: Equivalent: Meaning:
= a=b Simple assignment to an LValue
W= a=a+b Add and assign to an LValue
-= a=a-b Subtract and assign to an LValue
H= a=a*b Multiply and assign to an LValue
/= a=a/b Divide and assign to an LValue
%= a=a%b Remainder and assign to an LValue
&= a=a&b Bitwise AND and assign to an LValue
= a=alb Bitwise inclusive OR and assign to an LValue
A= a=a”b Bitwise exclusive XOR and assign to an LValue
<<= a=a<<b Bitwise shift left and assign to an LValue
>>= a=a>>b Bitwise shift right and assign to an LValue
>>>= a=a>>>b Bitwise shift right (unsigned) and assign to an LValue
++ a=a+1 Increment LValue
-= a=1-1 Decrement LValue

Assignment operators include the simple assignment as well as the compound OP= form where OP
is one of the shift, bitwise, multiplicative, or additive operators.

Warnings:

u]

134

Note that these operators are destructive. That is one of the source operands is overwritten
by the result. In most implementations, it is unlikely that this compound assignment executes
more efficiently than the long form version, which reads more clearly and is less prone to
accidental damage.

Although the ECMA standard describes the algorithms to be used for evaluating operators, there is
no guarantee that the operands themselves will be evaluated in any particular order. The right one
might appear to be the sensible choice for being evaluated first, since the final value of the left one is
dependant on it. However, this is implementation-dependant and certain interpreter designs are
based around a recursive descent model, which may partially evaluate the left operand before
pausing momentarily while the right is evaluated.

The operand on the left of the operator must be a modifiable LValue. You cannot use these
compound operators with a pair of constant literal values although the right-hand operand can be a
constant. The left one must be capable of being assigned to.

It is a general assumption that the left value will be a single variable. However it could be an array
element or object property in which case the resolution of the identifier may cause some side effects
that are undesirable and may interact with the right-hand operand value.

The compound operators are considered to be a single token and the characters that compose them
may not be separated by whitespace. The operator should be separated from the operands by
whitespace however. Some implementations may forgive the lack of whitespace, but this could lead
to ambiguities during interpretation. Such errors may be difficult to diagnose.

A — Associative array indexing (Advice)

= (Assign), Add then assign (+=), Assignment expression, Bitwise AND then
assign (&=), Bitwise OR then assign (| =), Bitwise shift left then assign (<<=),
Bitwise shift right and assign (>>=), Bitwise unsigned shift right and assign
(>>>=), Bitwise XOR and assign (=), Concatenate then assign (+=), Divide
then assign (/=), Multiply then assign (*=), Operator, Postfix expression,
Prefix expression, Remainder then assign (%=), Subtract then assign (-=), var

See also:

Cross-references:
ECMA 262 edition 2 — section —11.13

ECMA 262 edition 2 — section — 12.2
ECMA 262 edition 3 — section — 11.13
ECMA 262 edition 3 — section — 12.2

Wrox Instant JavaScript ISBN 1861001-27-4 — page — 20

Associative array indexing (Advice)

Accessing array elements with strings as symbolic names.

Arrays and collections can be accessed using numeric indexing where each pocket is referred to by
a number.

The array may be sparse and not all entries need to be assigned, but the length value will be set to
one greater than the highest numbered entry. The first numbered entry is item 0.

You can also use strings instead of numbers. These string values can be specified literally or be
passed with a variable.

These are all valid array element references:

myIndex = "three";
myArray[0] = "A";
myArray[100] = "B";
myArray|["one"] = "C";
myArray['two'] = "D";
myArray|[three] = "E";
See also: Array index delimiter ([])

Associativity (Definition)
A direction of evaluation of an operator-driven expression.

The associativity of an operator indicates the order of evaluation of its operands. An operator with
an associativity of left to right evaluates the expression in the operand to its left and then the one to
the right. The alternative is right to left associativity.

135

JavaScript Programmer's Reference

atob() (Method)

Decode some base-64 encoded data.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

See also:

JavaScript — 1.2
Netscape — 4.0

String primitive

N atob(aBaseé64String)
N myWindow.atob (aBase64String)

aBase64String A string containing base 64 encoded data

Window.btoa ()

attachEvent() (Method)

A means of attaching events to windows and documents.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

See also:

Cross-references:

JScript - 5.0
Internet Explorer — 5.0

Boolean primitive

1E attachEvent (anEventName, anEventHandler)

1E myWindow.attachEvent (anEventName,
anEventHandler)

anEventHandler A reference to an event handler function

anEventName The name of an event to be handled

.htc, <STYLE>, Document .attachEvent (),
Document .detachEvent (), HTML Component,
onContentReady, onDocumentReady,
Window.detachEvent (), Window.attachEvent ()

Wrox Professional JavaScript — page — 115

Attr object (Object/DOM)

This is implemented in MSIE as an Attribute object.

Availability:

136

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape — 6.0

A - Attribute object (Object/DOM)

Inherits from: Node object
JavaScript syntax: = myAttr = myDocument.createAttribute (aName)
Argument list: aName The name of the attribute to create

The DOM level 2 standard adds an ownerElement property to the Attr object specification. This
is not yet supported in browsers.

See also: Attribute object, Document.createAttribute ()

Inheritance chain:

Node object

Attribute object (Object/DOM)

A DOM object that represents an HTML tag attribute.

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape — 6.0

Availability:

Inherits from: Node object
. myAttribute = myAttributes.aPropertyName
JavaScript syntax: i e e
= myAttribute = myAttributes|[anIndex]
= myAttribute = myAttributes[aName]

= myAttribute = myDocument.createAttribute (aName)

Argument list: aPropertyName The name of the tag attribute
aName An attribute name
anIndex A valid numeric reference to an element in the
collection
Object properties: name, nodeName, nodeType, nodeValue, specified, value

This is used by the browser to maintain property values for HTML tag instantiated objects.

This object represents a single HTML tag attribute. The properties of this object indicate whether
the tag attribute has been specified or not, and if it has, what the current value is.

The Element object should contain enough information for you to be able to determine the
instantiating source tag name. The attributes can be inspected with a script and the complete source
HTML reconstructed from a combination of the information supplied by the element and its
associated attributes collection.

137

JavaScript Programmer's Reference

The attributes collection that belongs to an object also tells you what the expected complete set
of attributes are for the tag, although this may not be completely reliable.

The example script demonstrates how you can make an Attribute object inspector with a
fragment of JavaScript. These inspectors can be put into a library and called in for debugging when
you are experiencing problems.

Note that the example overleaf does not work on Netscape 6.0 due to the use of the all property.

Example code:

<HTML>
<HEAD>
</HEAD>
<BODY alink=red>
<SCRIPT>
// An example attributes object inspector
myAttributeObject = document.all[3].attributes.aLink;
displayAttributes ("BODY alink", myAttributeObject) ;
// Display attributes object
function displayAttributes(aTitle, anObject)
{
document .write ("<H3>") ;
document .write(aTitle) ;
document .write ("</H3>");
document .write ("<TABLE BORDER=1 CELLPADDING=2><TR>") ;
(
(

document .write ("<TH>Description</TH>") ;

document .write ("<TH>Property</TH>") ;

document .write ("<TH>Value</TH></TR>") ;

displayTableLine ("Tag attribute name:", "name", anObject.name) ;
displayTableLine ("Tag attribute value:", "value", anObject.value);
displayTableLine ("DOM node name:", "nodeName", anObject.nodeName) ;
displayTableLine ("DOM node type:", "nodeType", anObject.nodeType) ;
displayTableLine ("DOM node value:", "nodeValue", anObject.nodeValue) ;
displayTableLine("Specified flag:", "specified", anObject.specified);

document .write("</TABLE>") ;
}
// Display a table line
function displayTableLine (aDescription, aProperty, aValue)
{
document .write ("<TR><TH ALIGN=LEFT>") ;
document .write (aDescription) ;
document .write ("</TH><TD>") ;
document .write (aProperty) ;
document .write ("</TD><TD>") ;
document .write (avValue) ;
(

document .write ("</TD></TR>") ;
}
</SCRIPT>
</BODY>
</HTML>
See also: Attr object, Attributes object, Document .createAttribute(),

Element.getAttributeNode (), Element.removeAttribute(),
Element.removeAttributeNode (), Element.setAttributeNode (),

HasProperty (), HTML tag attribute, MutationEvent .attrChange,
MutationEvent.attrName

138

A - Attribute.name (Property)

Property JavaScript
name 1.5+
nodeName 1.5+
nodeType 1.5+
nodevValue 1.5+
specified 15+
value 1.5+

Inheritance chain:

Node object

JScript N IE Opera DOM Notes

5.0 + 6.0+ 50+ - 1+ ReadOnly
5.0 + 6.0+ 50+ - 1+ -

5.0 + 6.0+ 50+ - 1+ -

5.0 + 6.0+ 50+ - 1+ -

5.0 + 6.0+ 50+ - 1+ ReadOnly
5.0 + 6.0+ 50+ - 1+ -

Attribute.name (Property)

The name of the HTML tag attribute this object represents.

Availability:

Property/method value type:

JavaScript syntax:

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

String primitive

- myAttribute.name

The name of the HTML tag attribute that this object represents is reflected here. This is the same
value as the property name within the Attributes array that refers to this object. You can use
that value associatively or as if it were a property name.

This value is also the same as a property name belonging to the Element object that represents the
HTML tag that this is an attribute of.

Property attributes:

ReadOnly.

Attribute.nodeName (Property)

Another alias for the name property of an Attribute object.

Availability:

DOM level -1
JavaScript — 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

139

JavaScript Programmer's Reference

Property/method value type: String primitive

JavaScript syntax: - myAttribute.nodeName

This is provided to support some previous usage that accessed the tag name under the nodeName
property. The same value is available in the name property of the Attribute object. It may
contain some values that the name property does not support.

The following values may be seen in this property:

QO The tag name, also visible via the tagName property of the owning object
Q The attribute name for those nodes that are At tribute objects

QO The value #text for nodes that encapsulate a block of raw text and are textNode objects

See also: Element. tagName, textNode object

Attribute.nodeType (Property)

Part of the internal document hierarchy management within MSIE.

Availability: DOM level -1
JavaScript - 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: - myAttribute.nodeType

The node hierarchy is built from objects that represent a variety of different kinds of Document
Object Model content.

The two principle node types are HTML Element nodes (value 1) and Text content nodes (value 3).

Here is a list of the available node types:

Constant: Type: Description:
undefined null A member of the attributes collection
ELEMENT_NODE 1 HTML element object node

ATTRIBUTE_NODE HTML tag attribute object
Text object node
CDATA section

Entity reference

TEXT_NODE
CDATA_SECTION_NODE
ENTITY_ REFERENCE_NODE

U = W N

Table continued on following page

140

A - Attribute.nodeValue (Property)

Constant: Type: Description:
ENTITY_NODE 6 Entity node
PROCESSING_INSTRUCTION_NODE 7 Processing instruction node
COMMENT_NODE 8 Comment node
DOCUMENT_NODE 9 Document object
DOCUMENT_TYPE_NODE 10 Doctype object
DOCUMENT_FRAGMENT_NODE 11 Document fragment node
NOTATION_NODE 12 Notation node

See also: Node object

Attribute.nodeValue (Property)

Another name for the value property of this object.

Availability: DOM level -1
JavaScript — 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myAttribute.nodeValue

The value portion of the ATTRIBUTE="aValue" construct. Knowing the name and value of an attribute
provides sufficient information to reconstruct the source HTML code from scratch. Some nodevalues
may not be defined by ATTRIBUTE HTML tag attributes, but may be the content of the tag itself.

If the object that the attributes are associated with is a TxtNode object, then the nodevalue should
return the textual content encapsulated by that object. In that case, the nodevValue cannot be

modified although it may be writable for other object types.

If the nodeType is an attribute then the nodevalue reflects its HTML tag attribute value or null if
it has not been defined.

If the nodeType is an HTML Element object, then the nodeName should be used to determine
which tag it encapsulates. In that case the nodevalue should yield a null.

141

JavaScript Programmer's Reference

Attribute.specified (Property)

Whether the value has been specified or not.

Availability: DOM level -1
JavaScript - 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape - 6.0
Property/method value type: Boolean primitive
JavaScript syntax: - myAttribute.specified

This flag indicates whether the attribute is defined or not. This property is updated automatically
when you change the value of a property belonging to an Element object.

The attribute contains a meaningful value only if this property is set to true. If itis set to false,
the other properties belonging to the Attributes object don't hold any useful information.

The result is true if the value is specified by an HTML tag attribute and false if it is not
currently specified.

Property attributes:

ReadOnly.

Attribute.value (Property)

The value of the HTML tag attribute if it has been specified.

Availability: DOM level -1
JavaScript - 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myAttribute.value

This property reflects the value defined by the parent HTML tag attribute. It is part of the DOM
support for HTML tag attributes.

If an HTML tag attribute is specified, the attribute flag for that property of the HTML tag's object
will be set true. The actual value of the HTML tag attribute will be stored in this property. This
Attribute.value property gets updated automatically if the owner Element object's property
value is changed. Internally the two property accessors probably refer to the same storage location.

142

A — Attributes object (Object/DOM)

Attributes object (Object/DOM)

A sub-class of the Array object that contains a set of Element object attributes. This is a collection
of all attribute objects that apply to an element.

Availability: DOM level -1

JavaScript — 1.5

JScript - 5.0

Internet Explorer — 5.0

Netscape — 6.0
JavaScript syntax: - myAttributes = myElement.attributes
Object properties: length

The Attributes array object is associated with an Element object as a container for a set of
Attribute objects each of which relates to a property of the Element object. This is the correct
implementation of the DOM specified Attr object class.

Not all Element object properties have an Attribute object, but those that do have related to
HTML tag attributes. Thus the Attributes array corresponds to the HTML tag attributes for a tag.

The Attributes array has a length property so that you can enumerate all of the attributes of its
instantiating HTML tag. It also has as many additional properties as are required to reflect each
HTML tag attribute for that HTML tag. The properties reflected from the HTML tag attributes are
named consistently with the HTML source text.

Properties are reserved to support event handlers and other tag attributes and so from the Attributes
array for a particular ElLement object, you can establish what the supported features are for the HTML
tag it represents. This means that the 1ength property will vary from object to object.

The Attributes array seems to contain some properties that correspond to the imaginary HTML
generic Element class. Although this is not really a genuine object class, it is a convenient way of
documenting HTML object behaviors where they are common across a range of objects. The
Attributes array does not support a complete set of properties that correspond to the Element
class and therefore it is not true to say it inherits from that class.

The example script shows how you can inspect the attributes of an object. In this example, the
attributes of a <BODY> tag are exposed. Because they are enumerable, you can determine what
properties and what events the object instantiated by the <BODY> tag can respond to. Note that the
example does not work on Netscape 6.0 due to the use of the all property.

Example code:

<HTML>

<HEAD></HEAD>

<BODY alink=red vlink="blue" leftmargin="100">
<TABLE BORDER=1 CELLPADDING=2>

<SCRIPT>
myAttributesObject = document.all[3].attributes;
displayTableLine ("Object class:", myAttributesObject, "");

143

JavaScript Programmer's Reference

displayTableLine ("Number of attributes:", myAttributesObject.length, "");
for (myEnumerator=0; myEnumerator<myAttributesObject.length; myEnumerator++)
{
myAttrib = myAttributesObject [myEnumerator];
displayTableLine ("Attribute ("+ myAttrib.nodeName +"):", myAttrib.specified,
myAttrib.nodeValue) ;
}

// Output one line of a table

function displayTableLine (aHeading, aFlag, aValue)

{

document .write("<TR>") ;

document .write ("<TH ALIGN=LEFT>") ;

document .write (aHeading) ;

document .write ("</TH>") ;

document .write("<TD>") ;

document .write (aFlag) ;

document .write("</TD>") ;

document .write("<TD>") ;
(
(
(

document .write (avValue) ;

document .write("</TD>") ;
document .write("</TR>") ;
}
</SCRIPT>
</TABLE>
</BODY>
</HTML>
See also: Attrlbute.object, Attributes .' length, Collection object,
Element object, Element.attributes[],
Element.removeAttribute (), HasProperty (), HTML
object, HTML tag attribute
Property JavaScript JScript N IE Opera DOM Notes
length 1.5+ 5.0 + 6.0+ 5.0+ - 1+ ReadOnly

Attributes.length (Property)

The number of tag attributes supported in this Attributes array.

Availability: DOM level -1
JavaScript — 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: - myAttributes.length

144

A — ATVEF (Standard)

The number of attributes supported by the HTML tag that owns this Attributes object.

This is the principle property of an Attributes object. Most others depend on the object
that is represented.

See also: Attributes object, Collection.length

Property attributes:

ReadOnly.

ATVEF (Standard)

Advanced Television Enhancement Forum.

This extract from the ATVEF standard describes in outline the aims and scope of this web and TV
convergence project. You should consult the specification for a complete description of how this is
to be accomplished. There are several manufacturers already building and deploying these systems
on a variety of broadcast mediums.

The Advanced Television Enhancement Forum (ATVEF) is a group of people from the broadcast
TV and Internet industries who are working to specify a single public standard for delivering
interactive television experiences. The intention is that these should be authored once using a
variety of tools and deployed to a range of television, set-top, and PC-based receivers.

The Enhanced Content Specification defines the fundamental requirements that are necessary to
enable creation of HTML-enhanced television content. This goes beyond normal Internet-based
delivery to describe how it can be reliably broadcast across any network to any compliant receiver.
Because the broadcast requires that there is no bidirectional link, some changes to the delivery
protocols are outlined.

The ATVEF specification for enhanced television programming uses existing Internet technologies.
It describes how to deliver enhanced TV programming over both analog and digital video systems
using terrestrial, cable, satellite, and Internet networks. The specification can be used in both one-
way broadcast and two-way video systems, and is designed to be compatible with all international
standards for both analog and digital video systems.

See also: Interpret, Liberate TV Navigator, Microsoft TV, URL, WebTV

Web-references:
http://atvef.com/library/spec1_1a.html

Aural style sheets (Definition)

The CSS standard describes style properties for spoken text.

The aural style properties allow the control of spoken voice and other sound effects to be assigned
to element objects so that as they are displayed, their content may be spoken or read out to the
user. This then makes the World Wide Web more accessible to sight-impaired users.

145

http://atvef.com/library/spec1_1a.html

JavaScript Programmer's Reference

So far, not much of this capability has found its way into the currently available web browsers.

There are many issues that have not yet been addressed with this aspect of style sheets. For example,
controlling multi-lingual spoken text and dates may be somewhat problematic. Certainly the locale that
the browser is operating in may be used to select a national language variant for the spoken word.

Warnings:
Q This facility is not yet supported by any of the browsers.

AuthentiCode (Security related)

This is a security model that applies digital signatures to ActiveX objects in MSIE.

Warnings:

Q This technique does not currently support signed scripts in MSIE and only applies to
ActiveX objects.

See also: Security policy, Signed scripts

Automatic semi-colon insertion (Definition)

The action of adding semi-colons where they have been omitted.
Availability: ECMAScript edition — 2

A semi-colon explicitly placed in the source text must terminate certain statements. Your JavaScript
interpreter may help by adding some automatically, but this may not work as you expect. As they
say, "Your mileage may vary".

Semi-colons are used to explicitly terminate certain keywords so that the parser can determine
exactly where the fragment of code begins and ends. The semi-colon removes the ambiguity about
how a piece of code is intended to execute.

Line terminators greatly affect the automatic semi-colon insertion process.

The following statements must have trailing semi-colons:

empty statement
variable statement
expression statement
continue statement
break statement

return statement

0O 00000 0O

throw statement

146

A — Automatic semi-colon insertion (Definition)

There are cases where the the interpreter will automatically insert semi-colons as needed. You won't see
them in the script source, but the interpreter knows they should be there. You should not rely on the
interpreter doing your work for you. For example, semi-colons are never added inside for statement
headers. Here are some instances of how the browser deals with automatic semi-colon insertion:

Q Semi-colons are automatically placed before curly braces (}) that close code blocks if necessary.

Q A semi-colon is added at the end of a script source text if necessary to parse the source as a
complete program.

Q Semi-colons are added to prevent accidental postfix increment or decrement operations. Postfix ++
or -- operators should be on the same line as the operand to which they apply. Actually it is good
practice for there to be no whitespace between them.

Q Semi-colons are added after the return statement when it is the last statement on a line. An
expression to be evaluated as part of a return statement should be placed adjacent to it. It is good
practice to form the return as if it were a function, enclosing the expression in parentheses:

return (expression) ;

Q This is unaffected by automatic semi-colon insertion even though it is syntactically incorrect:
for (a; b)

Q This is transformed:
returna + b

And becomes:
return;a + b;

However, a + bis not returned as a result because the line terminator separates them from the
return statement.

Q People take a great many liberties with the formatting of i f..else constructions. This won't
get fixed:

if(a > b)else ¢ = 4d
Q This won't get fixed either:
a=D>b + c(d + e).print()

It doesn't get fixed because the parentheses look like a function call.

Warnings:

Q Careful programmers always put semi-colons in. If you come from a C or Java background, this may
be instinctive, but otherwise you should develop the habit so that it becomes instinctive.

See also: Free-format language, Lexical convention, Line terminator, Semi-colon (;)

147

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 2 — section — 7.8

ECMA 262 edition 3 — section — 7.9
O'Reilly JavaScript Definitive Guide — page — 28

Wrox Instant JavaScript — page — 17

Automation object (Object/JScript)

An object created in the JScript environment for connecting to other applications within
the host environment.

Availability: JScript - 3.0
Internet Explorer — 4.0
JavaScript syntax: IE myAutomation = GetObject (aLocation)
1IE myAutomation = GetObject (aLocation,
anObjectType)
1E myAutomation =
GetObject (aLocation!aSubObject)
1E myAutomation = GetObject
(aLocation!aSubObject, anObjectType)
Argument list: anObjectType What sort of application and object class type to be
| created
aLocation A path to the file for the object to be instantiated
aSubObject A fragment identifier for a sub-object within the file
See also: ActiveXObject object, GetObject ()

148

= -

B object (Object/HTML)

An object that represents the font style controlled by the HTML tag.

Availability:

Deprecated Usage:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Event handlers:

JScript -3.0
Internet Explorer —4.0

Yes

Element object

1E myB = myDocument.all.anElementID

1E myB = myDocument.all.tags ("B") [anIndex]

1E myB = myDocument.all[aName]

= myB = myDocument.getElementById (anElementID)

- myB =

myDocument .getElementsByName (aName) [anIndex]
- myB =

myDocument .getElementsByTagName ("B") [anIndex]
 ...
anIndex A valid reference to an item in the

collection

aName The name attribute of an element
anElementID The ID attribute of an element

onClick, onDblClick, onDragStart, onFilterChange,
onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver,
onMouseUp, onSelectStart

JavaScript Programmer's Reference

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick - 3.0 + - 40+ - - 4.0 + Warning
onDblClick - 3.0 + - 40+ - - 4.0 + Warning
onDragStart = 3.0+ = 40+ - = - -
onFilterChange = 3.0 + = 40+ - - - -
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown - 3.0+ - 40+ - - 4.0+ Warning
onKeyPress - 3.0+ - 40+ - - 4.0+ Warning
onKeyUp - 3.0+ - 40+ - - 4.0+ Warning
onMouseDown - 3.0+ - 40+ - - 4.0+ Warning
onMouseMove - 3.0+ - 40+ - - 4.0+ Warning
onMouseOut - 3.0+ - 40+ - - 4.0+ Warning
onMouseOver - 3.0+ - 40+ - - 4.0+ Warning
onMouseUp - 3.0+ - 40+ - - 4.0+ Warning
onSelectStart = 3.0 + - 40+ - - - -
Inheritance chain:
Element object, Node object
See also: Element object

back() (Method)

Perform the same action as pressing the [BACK] button in the toolbar.

JavaScript — 1.2

Availability:
JScript - 3.0
Internet Explorer — 4.0
Netscape — 4.0
Property/method value type: undefined

JavaScript syntax: - back ()

- myWindow.back ()

Cren History.back (), ,Window. forward (), Window.back()

150

B —Background object (Object/browser)

Background object (Object/browser)

A background image object associated with a Netscape Navigator layer.

JavaScript — 1.2

Availability: ‘ '
Netscape Navigator version —4.0
i c myBackground =
JavaScript syntax: N myLayer. background
Object properties: src

This object is used with a layer in Netscape Navigator and its properties correspond with
properties of the Image object in Netscape Navigator.

Background. src,BODY object,Image

See also: object,Layer .background
Property JavaScript JScript N IE Opera HTML Notes
src 1.2 + - 4.0 + - - - -

Background.src (Property)

The source location of an image to be associated with a layer and used as its background image.

JavaScript — 1.2

Availability:
Netscape — 4.0
Property/method value type: String primitive
JavaScript syntax: N myBackground.src

This corresponds to the src property of a Netscape Navigator Image object. It defines the URL of an
image to load into the background of a layer, as these are scriptable in Netscape Navigator whereas
the background image of a document object is not.

Background object, BODY . background,
BODY.bgProperties, JSSTag.
backgroundImage,style.background

See also:

Back-quote (°) (External code call)

Call some external code during server-side execution.

The back-quote substitutions operate much like you may have seen them work in command-line
shells and Perl interpreters. The text enclosed inside the back-quotes is parsed out from the HTML
and is then executed as JavaScript.

ASP provides a means of substituting the output of JavaScript code into a block enclosed in
<% ... %> markers which does a similar thing.

151

JavaScript Programmer's Reference

This allows us to include fragments of JavaScript into an HTML page and expect them to be parsed
server-side.

This is somewhat analogous to JavaScript entities but they operate at the client-side.

The server-side example wraps its result inside quote symbols so that the HTML tag attribute
syntax is preserved intact.

Example code:

<HTML>
<BODY>
<FORM>
<INPUT TYPE="text" VALUE=server.hostname; >
</FORM>
</BODY>
</HTML>

See also: JavaScript entity, Netscape Enterprise Server

Bar object (Object/Navigator)

An object used to hold properties for toolbars, location bars etc.

JavaScript — 1.2

Availability:
Netscape Version — 4.0

JavaScript syntax: N myEE = 1egaElom s
N myBar = menubar
N myBar = myWindow.locationbar
N myBar = myWindow.menubar
N myBar = myWindow.personalbar
N myBar = myWindow.scrollbars
N myBar = myWindow.statusbar
N myBar = myWindow.toolbar
N myBar = personalbar
N myBar = scrollbars
N myBar = statusbar
N myBar = toolbar

Object properties: visible

This object is used to represent various items of window furniture (otherwise called chrome or
adornments) in Netscape Navigator. It isn't supported by MSIE although the control facilities it
offers are available when a new window is created with the window.open () method.

It only has one usable property. That is the visible property, which can be set to a Boolean value.
Some early documentation referred to this as the visibility property but that is the wrong
property name.

152

B — Bar.visibility (Pitfall)

Bar.visible,Window.locationbar,

See also: i)
Window.menubar Window.personalbar,
Window.scrollbars,Window.statusbar,
Window. toolbar

Property JavaScript JScript N IE Opera Notes

visible 1.2 + - 4.0 + - - =

Bar.visibility (Pitfall)

An erroneous name for the visible property of a Bar object.

Warnings:

Q Some reference works refer to the visibility property of the Bar object, possibly due to early
prototype versions of the Netscape browser or in an attempt to document forthcoming features of
the browser. In between publishing and release of the browser, the property changed its name to the
visible property.

O You may even then have some difficulty in getting it to work on some platforms but you do
need to make sure you are trying to set the correct property value when changing the visibility
of Bar objects.

See also: Bar.visible

Bar.visible (Property)

A flag indicating whether the bar that this object represents is visible.

JavaScript — 1.2

Availability:
Netscape Navigator version —4.0

Property/method value type: Boolean primitive

JavaScript syntax: N myBar.visible
N myBar.visible = aBoolean
aBoolean A switch value to control the visibility of a

Argument list: . .
window control item

Setting this property to true makes the bar visible. Setting false hides the bar.

You must have been granted the UniversalBrowserWrite privilege to be able to set this
property value.

See also: Bar object,Bar.visibility

153

JavaScript Programmer's Reference

Barn() (Filter/transition)

A transition effect with the appearance of barn doors opening or closing.

Availability:

Refer to:

Filter — Barn()

JScript - 5.5
Internet Explorer — 5.5

BASE object (Object/HTML)

Represents the <BASE> HTML tag that describes a base URL for the document.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Event handlers:

DOM level - 1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0

Element object

1E myBASE = myDocument.all.anElementID
1E myBASE = myDocument.all.tags ("BASE") [anIndex]
1E myBASE = myDocument.all[aName]

= myBASE = myDocument.getElementById (anElementID)

= myBASE =
myDocument .getElement sByName (aName) [anIndex]

= myBASE = myDocument.getElementsByTagName
("BASE") [anIndex]

<BASE>

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element

href, target

onClick,onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

The <<BASE>> tag must appear inside the <<HEAD>> block of a document and is used to define a
base URL for the document, this can be useful if the document is not served from the same server
that subsequent pages need to be served from.

See also:

154

Element object

B — BASE.href (Property)

Property JavaScript JScript N IE Opera DOM HTML Notes
href 1.5+ 3.0 + 6.0+ 40+ - 1+ - -
target 1.5+ 3.0 + 6.0+ 40+ - 1+ - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onbblClick 1.5 + 3.0+ 60+ 40+ - - 40+ Warning
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown 1.5+ 3.0+ 60+ 40+ - = 4.0+ Warning
onKeyPress 1.5+ 3.0+ 60+ 40+ - = 4.0+ Warning
onKeyUp 1.5+ 3.0+ 60+ 40+ - - 40+ Warning
onMouseDown 1.5+ 3.0+ 6.0+ 40+ - = 4.0 + Warning
onMouseMove 1.5+ 3.0+ 6.0+ 40+ - = 4.0 + Warning
onMouseOut 1.5+ 3.0+ 6.0+ 40+ - = 4.0 + Warning
onMouseOver 1.5+ 3.0+ 6.0+ 40+ - = 4.0 + Warning
onMouseUp 1.5+ 3.0+ 6.0+ 40+ - = 4.0 + Warning

Inheritance chain:

Element object, Node object

BASE.href (Property)

The URL defined by the <<BASE>> HTML tag.

Availability: ﬁ(v)i\gclrel\;fl_ —115
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0

Property/method value
type:

String primitive
JavaScript syntax: = myBASE.href

The URL to be used as a base for any relative URLs in the remainder of the document.

BASE.target (Property)

The target window or frame defined by the <<BASE>> HTML tag.

155

JavaScript Programmer's Reference

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape Navigator version — 6.0
Property/method value type: String primitive
JavaScript syntax: - myBASE. target

The target window or frame to be added to any relative (or non targeted) URL values in the
remainder of the document.

You can assign a new value to this property so that any URLs that are built by the browser with a
relative location will be directed to a different window or frame.

Here are some example target values:

_parent
_self
_top

_blank

Window name

0O 0 U 0 U0 O

Frame name

Anchor.target, Form. target, Location. target,
Map.target,Url.target

BASEFONT object (Object/HTML)

A <<BASEFONT>> HTML tag is represented by this object and defines some generic font
information to be used as a default in this page.

See also:

DOM level -1

JavaScript — 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape Navigator version — 6.0

Availability:

Inherits from: Element object

156

B — BASEFONT object (Object/HTML)

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:
Object methods:

Event handlers:

1E myBASEFONT = myDocument.all.anElementID
1E myBASEFONT =

myDocument.all.tags ("BASEFONT") [anIndex]
1E myBASEFONT = myDocument.all [aName]

o myBASEFONT = myDocument.getElementById
(anElementID)

= myBASEFONT = myDocument.getElementsByName
(aName) [anIndex]

= myBASEFONT = myDocument.getElementsByTagName
("BASEFONT") [anIndex]

<BASEFONT>

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element

color, face, size

getAttribute ()

onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Historically web developers will have used the tag to set the attributes of blocks of text.
Latterly, they will be using style sheets to control this.

The <BASEFONT> tag provides a way to set the font presentation style from the position of this tag
to the end of the document unless overridden by further <BASEFONT> tags or settings.

See also:

Property
color
face

size

Method

getAttribute ()

Element object

JavaScript JScript N IE Opera DOM HTML Notes

15+ 3.0 + 6.0+ 4.0+ - 1+ - -
15+ 3.0 + 60+ 40+ - 1+ - -
15+ 3.0 + 60+ 40+ - 1+ - -

JavaScript JScript N IE Opera DOM HTML Notes
1.5+ 3.0 + 6.0+ 40+ - 1+ - -

157

JavaScript Programmer's Reference

Event name JavaScript JScript N IE Opera DOM HTML
onClick 1.5+ 3.0 + 6.0+ 40+ - - 4.0 +
onDblClick 1.5+ 3.0 + 60+ 4.0+ - - 4.0 +
onHelp - 3.0 + - 40+ - = =
onKeyDown 1.5+ 3.0+ 6.0+ 40+ - - 4.0+
onKeyPress 15+ 3.0+ 6.0+ 40+ - - 4.0 +
onKeyUp 1.5+ 3.0+ 6.0+ 40+ - - 4.0+
onMouseDown 1.5+ 3.0 + 60+ 40+ - - 4.0 +
onMouseMove 1.5+ 3.0 + 6.0+ 40+ - - 4.0 +
onMouseOut 1.5+ 3.0 + 60+ 40+ - - 4.0 +
onMouseOver 1.5+ 3.0 + 6.0+ 40+ - - 4.0 +
onMouseUp 1.5+ 3.0 + 60+ 40+ - - 4.0 +

Inheritance chain:

Element object, Node object

BASEFONT.color (Property)

The default color of text affected by the <BASEFONT> HTML tag.

Availability: DOM level -1

JavaScript — 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape Navigator version — 6.0
Property/method value type: String primitive
JavaScript syntax: = myBASEFONT.color

The color of text affected by this BASEFONT object will be defined in this property.

The color can be specified in the normal way according to the HTML color specifiers.

See also: Color value, FONT. color

158

Notes

Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning

B — BASEFONT.face (Property)

BASEFONT.face (Property)

The default font face for text affected by the <BASEFONT> HTML tag.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape Navigator version — 6.0
Property/method value type: String primitive
JavaScript syntax: - myBASEFONT . face

The font face to be used for subsequent text is defined by this property. It is appropriate to define a
list of font faces in priority order in the normal way. The browser will use the first one it
encounters that it has available.

BASEFONT.size (Property)

The default size of text affected by the <<BASEFONT>> HTML tag.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape Navigator version — 6.0
Property/method value type: String primitive
JavaScript syntax: - myBASEFONT. size

The size of text rendered by the browser under control of the BASEFONT object is controlled by this
property. Absolute and relative sizes are supported in the normal way.

Basic type (Definition)

Another name for the native types supported by the interpreter.

See also: Native object, Primitive value

159

JavaScript Programmer's Reference

Basiclmage() (Filter/visual)

Controls over the basic image display attributes of the containing HTML Element object.

JScript - 5.5

Availability:
y Internet Explorer — 5.5

Refer to:

Filter - BasicImage ()

BDO object (Object/HTML)

An object representing the <BDO> HTML tag for supporting bidirectional text algorithms.

Availability: JScript - 5.0
Internet Explorer — 5.0

Inherits from: Element object

JavaScript syntax: 1E myBDO = myDocument.all.anElementID
1E myBDO = myDocument.all.tags ("BDO") [anIndex]
1E myBDO = myDocument.all[aName]

= myBDO = myDocument.getElementById (anElementID)
= myBDO = myDocument.getElementsByName
(aName) [anIndex]

- myBDO =
myDocument.getElementsByTagName ("BDO") [anIndex]

HTML syntax: <BDO> ... </BDO>

Argument list: anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element

Object properties: dir

onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

Event handlers:

This is the Bi-Directional Override object. The LANG and DIR attributes of HTML tags in the
document will cover most eventualities but there may be times when you need to explicitly
override the direction of text flow.

160

B — BDO.dir (Property)

Usage of this is likely to be confined to scripts that operate in multiple-language environments and
on pages containing text in more than one language.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes
dir - 5.0+ - 5.0 + - = = =

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick - 5.0 + - 50+ - - 4.0+ Warning
onDblClick - 5.0 + - 50+ - - 4.0+ Warning
onHelp - 5.0 + - 5.0 + - - - Warning
onKeyDown - 5.0 + - 5.0 + - - 4.0+ Warning
onKeyPress - 5.0 + = 50+ - = 4.0 + Warning
onKeyUp - 5.0 + - 5.0 + - - 4.0+ Warning
onMouseDown - 5.0/ - 5.0 + - - 4.0+ Warning
onMouseMove - 5.0/ - 5.0 + - - 4.0+ Warning
onMouseOut - 50+ - 50+ - - 4.0+ Warning
onMouseOver - 50+ - 50+ - - 4.0+ Warning
onMouseUp - 50+ - 50+ - - 4.0+ Warning

Inheritance chain:

Element object, Node object

BDO.dir (Property)

The direction attribute of the <BDO> HTML tag.

Availability: JSeript-5.0

Internet Explorer — 5.0
Property/method value type: String primitive
JavaScript syntax: IE myBDO.dir

The dir property may be set to indicate a left to right or right to left parsing direction.
This is part of the localization support and represents the contents of the DIR="". .. " tag attribute.
If you assign a value to this property it is case-sensitive and must be either "1tr" or "rt1".

This property works in conjunction with the 1ang property to control the direction of text flow.

161

JavaScript Programmer's Reference

See also: Element.dir, NOFRAMES.dir, NOSCRIPT.dir

BeanConnect (Definition)

A Netscape Communications technology for interconnecting Java applets (Beans).

See also: Java,Java exception events

Refer to:

LiveConnect

Behavior (Definition)

Implementations respond to different constructs according to their behavior.

The ECMAScript standard defines how an implementation should react to a language construct.
Other non-ECMA-compliant implementations may behave in the same way most of the time and
may deviate from the standard at others.

When the implementation conforms to the standard, its behavior is predictable according to the
definitions of the standard. When an implementation is not conformant, it may behave according to
one of the following abnormal behavior models:

0 Unspecified behavior
0 Undefined behavior
QO Implementation-defined behavior

O Locale-specific behavior

Another meaning for the word behavior in the context of JavaScript is the way that MSIE supports
the addition of JavaScript functionality to style definitions. This is covered under the descriptions
of the addBehavior() and removeBehavior() methods that belong to the Element object.

Compliance, Element.addBehavior(),Element.filters[],
Element.removeBehavior (), Implementation-defined
behavior,Locale-specific behavior, Undefined behavior, Unspecified
behavior

BGSOUND object (Object/HTML)

An object representing a <BGSOUND> HTML tag that defines an audio track to play while the page
is displayed.

See also:

e JScript - 3.0
Availability: Internet Explorer — 4.0 (as HTML in IE 3.0)
Inherits from: Element object

162

B — BGSOUND object (Object/HTML)

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Event handlers:

1E myBGSOUND = myDocument.all.anElementID

1E myBGSOUND = myDocument.all.tags ("BGSOUND")
[anIndex]

1E myBGSOUND = myDocument.all [aName]

o myBGSOUND = myDocument.getElementById (anElementID)

= myBGSOUND = myDocument.getElementsByName
(aName) [anIndex]

- myBGSOUND = myDocument.getElementsByTagName
("BGSOUND") [anIndex]

<BGSOUND>

anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element

balance, loop, src, volume

onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This object is instantiated by the <BGSOUND> HTML tag and represents a sound effect that is to be
played in the background. As the BGSOUND object is created during document loading and requires
that a sound file be downloaded, there may some noticeable delay before the sound starts to play.

See also:

Property
balance
loop
src

volume

Event name

onClick
onDblClick
onHelp
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseMove
onMouseOut
onMouseOver

onMouseUp

Element object

JavaScript JScript N IE Opera DOM HTML Notes

- 3.0 + = 4.0 + = = = ReadOnly
- 3.0 + - 4.0 + - - - -

- 3.0+ - 4.0+ - - - -

- 3.0+ - 4.0+ - - - ReadOnly
JavaScript JScript N IE Opera DOM HTML Notes

- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - - Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning
- 3.0 + - 4.0+ - - 4.0+ Warning

163

JavaScript Programmer's Reference

Inheritance chain:

Element object, Node object

BGSOUND.balance (Property)

The stereo balance of the background sound.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Number primitive
JavaScript syntax: IE myBGSOUND.balance

The relative volume of the left and right channels will be adjusted according to the value of this
property. This provides a limited amount of control over the apparent direction of the sound source.

Creative use of the balance property may be tied in to the horizontal scrolling of a page for creating
virtual reality effects.

Much more sophisticated control is available through the aural style sheet properties, although
these are not yet properly supported by browsers.

See also: style.azimuth

Property attributes:

ReadOnly.

BGSOUND.loop (Property)

Whether the background sound should loop when it gets to the end.

Availability: JScript - 3.0

Internet Explorer — 4.0
Property/method value type: Number primitive
JavaScript syntax: IE myBGSOUND. loop

This indicates the number of times that the sound should play before stopping.

164

B — BGSOUND.src (Property)

BGSOUND.src (Property)

The URL that the background sound file can be fetched from.

Availability:

Property/method value type:

JavaScript syntax:

JScript - 3.0
Internet Explorer — 4.0

String primitive

1IE myBGSOUND. src

The sound will be loaded from this location while the page is being constructed. There may be
some delay between requesting the sound and being able to play it.

You can define a new value here to load a different sound and play it in the background.

BGSOUND.volume (Property)

The volume setting at which the background sound should play.

Availability:

Property/method value type:

JavaScript syntax:

JScript - 3.0
Internet Explorer — 4.0

Number primitive

1E myBGSOUND. volume

The volume setting of the background can be modified by this property.

The actual perceived volume may depend on other factors. If the sound has been digitized at an
unusually low volume, you may need to raise the volume setting quite high. This may yield a very
noisy sound as you will also be increasing the ambient noise in the sampled sound. Digitizing is a
complex activity but you should always strive for the highest possible signal to noise ratio.

Other factors that may affect the apparent volume would be the user preference settings in the
computer. There may also be system controls for blending and mixing sound sources and these

may be set to unhelpful values.

This property can obviously only control the source volume of the sound generated by the browser.

Property attributes:

ReadOnly.

165

JavaScript Programmer's Reference

Big endian (Definition)

A bit ordering standard for some CPU models.

128 64 32 16 8 4 2 1
<
Increasing bit value
Refer to:
byte
BIG object (Object/HTML)
An object that represents the font style controlled by the <<BIG>> HTML tag.
Availability: JScript - 3.0
Internet Explorer — 4.0
Deprecated Usage: Yes

Inherits from: Element object

. myBIG = myDocument.all.anElementID
JavaScript syntax: L ok .
1E myBIG = myDocument.all.tags ("BIG") [anIndex]
1E myBIG = myDocument.all[aName]
= myBIG = myDocument.getElementById
(anElementID)
- myBIG = myDocument.getElementsByName
(aName) [anIndex]
- myBIG = myDocument.getElementsByTagName
("BIG") [anIndex]
HTML syntax: <BIG> </BIG>
Argument list: anIndex A valid reference to an item in the
collection
aName The name attribute of an element
anElementID The ID attribute of an element
Event handlers: onClick, onDblClick, onDragStart, onFilterChange,
v - onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

166

B — Binary bitwise operator (Definition)

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick - 3.0+ - 40+ - - 40+ Warning
onDblClick - 3.0+ - 40+ - - 40+ Warning
onDragStart - 3.0 + - 40+ - - - =
onFilterChange - 3.0 + - 40+ - - - -
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown = 3.0 + - [40 |- = 40+ Warning
onKeyPress - 3.0+ - 40+ - - 40+ Warning
onKeyUp - 3.0+ - 40+ - - 40+ Warning
onMouseDown - 3.0+ - 40+ - - 40+ Warning
onMouseMove - 3.0+ - 40+ - - 40+ Warning
onMouseOut - 3.0+ - 40+ - - 40+ Warning
onMouseOver - 3.0+ - 40+ - - 40+ Warning
onMouseUp = 3.0 + - 40+ - - 40+ Warning
onSelectStart - 3.0 + - 40+ - - - -

Inheritance chain:

Element object, Node object

Refer to:

Element object

Binary bitwise operator (Definition)
An operator that applies in a bitwise fashion.
Availability: ECMAScript edition — 2

Property/method value type: Number primitive

A binary bitwise operator converts its operands to 32 bit values and performs the operation on each
corresponding bit in the two values.

Warnings:
Q The result of a bitwise expression is a 32 bit binary value and should not be confused with the

Boolean value returned by a logical operator.

Bitwise AND (&), Bitwise operator, Bitwise OR (1),

See also: Bitwise XOR (1)

167

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 2 — section — 11.10

ECMA 262 edition 3 — section — 11.10

Binary logical operator (Definition)
An operator that works with Boolean true or false values.
Availability: ECMAScript edition — 2

Property/method value type: Boolean primitive

Binary logical operators test a pair of Boolean values according to logical rules. If necessary,
JavaScript will convert the operands that are passed to the expression into Boolean values before
testing them. You should consult the toBoolean rules for each type of object being passed to
ensure that values are cast in a way that you expect.

The resulting value of a binary logical expression may be coerced to another data type on return.
There is no logical XOR operator. It can be simulated though by testing two Boolean values for

inequality, since that is going to occur when either is one and the other is zero; the inequality will
not test true if both are one or both are zero.

Warnings:

Q This is not to be confused with the bitwise operators, which yield a 32-bit integer value instead of the
Boolean value yielded by a logical expression.

See also: Logical AND (&&), Logical operator, Logical OR (I I)

Cross-references:
ECMA 262 edition 2 — section — 11.11

ECMA 262 edition 3 — section —11.11

168

B — Binary operator (Definition)

Binary operator (Definition)

An operator that works with two operands.

Availability:

Property/method value type:

ECMAScript edition — 2

Boolean primitive

Binary operators require two operands and with them form an expression. The operator determines

the kind of expression.

Here is a list of the binary operators supported by JavaScript:

Operator

1=

>>
>>=

>>>

Description
NOT equal to

Remainder
Remainder and assign to an LValue
Bitwise AND
Logical AND
Bitwise AND and assign to an LValue
Multiply
Multiply and assign to an LValue
Add
Concatenate string
Add and assign to an LValue
Subtract
Subtract and assign to an LValue
Divide
Divide and assign to an LValue
Less than
Bitwise left shift
Bitwise shift left and assign to an LValue
Less than or equal to
Simple assignment to an LValue
Equal to
Greater than
Greater than or equal to
Bitwise shift right
Bitwise shift right and assign to an LValue
Bitwise shift right (unsigned)
Table continued on following page

169

JavaScript Programmer's Reference

Operator Description
>>>= Bitwise shift right (unsigned) and assign to an LValue
~ Bitwise XOR (exclusive OR)

= Bitwise exclusive XOR and assign to an LValue
| Bitwise inclusive OR

| = Bitwise inclusive OR and assign to an LValue
[Logical OR

See also: Multiplicative operator, Operator, Ternary operator

Cross-references:
ECMA 262 edition 2 — section —11.5

ECMA 262 edition 3 - section — 11.6
ECMA 262 edition 3 — section — 11.7
ECMA 262 edition 3 — section — 11.8
ECMA 262 edition 3 - section — 11.9
ECMA 262 edition 3 — section — 11.10
ECMA 262 edition 3 — section — 11.11

ECMA 262 edition 3 — section — 11.13

Binding (Definition)

Binding is used to resolve identifiers via the scope chain.
Availability: ECMAScript edition — 2

Binding is the process of locating the appropriate object or property where a value is stored for a
particular identifier.

The binding process uses the scope chain belonging to the current execution context to locate the
earliest matching item according to the inheritance rules.

See also: Identifier resolution

170

B - Bit (Definition)

Cross-references:
ECMA 262 edition 2 — section — 10.1.4

ECMA 262 edition 3 — section — 10.1.4

Bit (Definition)
A binary digit.

A Boolean value can be represented as a bit. Since a bit can maintain exactly two states (true or
false), the two map very well to one another. Strictly speaking a Boolean value may yield an
undefined state as well.

A continuous series of 8 bits forms a byte and 16 form a word. In JavaScript, 16 bit values tend to be
the smallest that you operate with and correspond to a single character in a Unicode string. However,
you can probably represent most characters that you want to use in the English language with only 8
bits. In fact only 7 bits are sufficient to describe your script source text in an ASCII representation.

Bit manipulation of character values allows you to convert between upper and lower case. The
String.toUpperCase () and String. toLowerCase () methods allow you to convert
specifically to the case you want, but if the current case is unknown and you simply want to toggle
the case of a character, the difference between 'A" and 'a' is a single bit.

In most cases, you won't be operating with binary digits in JavaScript-based projects. However, the
language is quite capable of working with bit patterns provided you understand how they work.

Although you cannot store an individual bit on its own, you can keep collections of 32 of them in a
Number value.

In C language you operate on these using Bit-Fields. JavaScript does not support bit-fields but the
sort of things you do with them can be simulated.

This is likely to be of most use to people developing scripts for use in embedded interpreters and of
less use to browser script developers.

1 1 bit

1 1 1 1 1 0 0 0] 1 byte

(2] 2][2]2][2][o]o]0] (1] 2]{2][2][2] e][o]lo] a2 wor

(][a][a][1][1][o][o][o] [][a][1][2][z][o][o][o] [][2][1][1][z][0][0][0] [4][x][1][1][1][0][O][O] 1 long word

171

JavaScript Programmer's Reference

Example code:

// Demonstrate bit inversion to change character case
myString = "AbCdEfGh";

myLength = myString.length;

document .write("Original source string : ");

document .write (myString) ;

document .write ("
") ;

document .write ("
") ;

"<TABLE BORDER=1><TR><TH>") ;

"Orig char</TH><TH>") ;

"Char code</TH><TH>") ;

"Bit inverted
char code</TH><TH>") ;
document .write ("New char</TH></TR>") ;

for (myEnum = 0; myEnum < myLength; myEnum++)

{

document .write
document .write
document .write
document .write

(
(
(
(
(
(
(
(

myChar = myString.charAt (myEnum) ;
myCharCode = myString.charCodeAt (myEnum) ;
myNewCharCode = myCharCode © 32;

document .write ("<TR><TD>") ;
document .write (myChar) ;
document .write ("</TD><TD>") ;

(

(

(

document .write (myCharCode) ;

document .write ("</TD><TD>") ;

document .write (myNewCharCode) ;
(
(
(

document .write ("</TD><TD>") ;
document .write (String.fromCharCode (myNewCharCode)) ;
document .write ("</TD></TR>") ;

}
document .write ("</TABLE>") ;

Bit-field, String.toLocaleLowerCase (),
String.toLocaleUpperCase (), String.toLowerCase (),
String.toUpperCase ()

Bit-field (Definition)

A collection of binary digits.

See also:

Although JavaScript does not support bit-fields, you can perform many binary operations on
patterns of bits by using the bitwise operators and various simple mathematical expressions to
simulate other bit manipulation operators that are not provided as part of the standard.

Op Description

= Bitwise complement (NOT)
& Bitwise AND

<< Bitwise left shift

>> Bitwise right shift

>>> Bitwise right shift (unsigned)

172

B - Bit-field (Definition)

Op Description

| Bitwise inclusive OR

» Bitwise XOR (exclusive OR)

&= Bitwise AND and assign to an LValue

= Bitwise inclusive OR and assign to an LValue
= Bitwise exclusive XOR and assign to an LValue

<<= Bitwise shift left and assign to an LValue
>>= Bitwise shift right and assign to an LValue
>>>= Bitwise shift right (unsigned) and assign to an LValue

The bits are individually weighted according to their position relative to the least significant digit.

The single bit at the extreme right-hand end is defined by the integer value 1. The next significant
bit is derived by using a zero-based indexing scheme to raise 2 to the power of its index position.
Thus 2 raised to the power 0 is 1. The value 2 raised to the power 1 is 2 and thus the values proceed
like this, moving from right to left:

1,2,4,8,16,32, 64, 128, 256, 512, 1024, 2048, 4096 etc.

To build bit masks containing a set bit for several positions, simply add the component bit values
together. Thus a mask that includes all the four least significant bits in a value is equal to:

1+2+4+8

Here are some other useful mask values (note that we only show 8 bit values here to demonstrate
the concept):

Mask Value Description

0000 0001 1 Least significant bit

0000 1111 15 Least significant nibble

0010 0000 32 ASCII upper/lowercase character bit
0101 0101 85 Simple encryption pattern for XOR
0111 1111 127 Valid ASCII character mask

1111 0000 240 Most significant nibble

1111 1111 255 Low 255 UNICODE character set mask
See also: Bit,Bitwise AND (&), Bitwise AND then assign (&=), Bitwise

expression,Bitwise NOT — complement (~), Bitwise operator,Bitwise OR
(]), Bitwise OR then assign (| =), Bitwise shift left (<<), Bitwise shift left
then assign (<<=), Bitwise shift operator,Bitwise shift right (>>), Bitwise
shift right and assign (>>=), Bitwise unsigned shift right (>>>), Bitwise
unsigned shift right and assign (>>>=), Bitwise XOR ("), Bitwise XOR and
assign (~=),Expression

173

JavaScript Programmer's Reference

Bitwise AND (&) (Operator/bitwise)

Bitwise AND of two operands.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server — 2.0
Opera -3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: - anOperandl & anOperand?2

anOperandl A binary bit pattern

Argument list: anOperand?2 Another binary bit pattern

The result is the bitwise AND of both binary bit pattern values.

This operator performs a bit by bit AND of the 32-bit value derived from both operands.
Effectively, each corresponding bit pair has a logical AND applied to it.

The truth table shows the result of this operator for two Boolean primitive values:

A B AND
false false false
false true false
true false false
true true true

Where a corresponding bit is 1 in both values, a 1 bit is inserted into the result otherwise the value
is zero.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

174

B — Bitwise AND (&) (Operator/bitwise)

Example code:

<HTML>

<HEAD></HEAD>

<BODY>

<SCRIPT>

myValuel = OXFFFF;

myValue2 = 0xXFF00;

myValue3 = myValuel & myValue2;

document.write("Val 1 : " + binary32 (myValuel) + "
");
document.write("Val 2 : " + binary32 (myValue2) + "
");
document.write("AND : " + binary32 (myValue3) + "
");

// Binary convertor (ignore sign bit on MSIE)
function binary32 (aValue)

{
myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)

{
if (avalue & Math.pow (2, myEnum))

{
myArray[31-myEnum] = "1";

myArray [31-myEnum] = "0";

return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

Associativity, Binary bitwise operator,Bit-field, Bitwise AND then assign
(&=), Bitwise expression, Bitwise operator, Logical AND (&&),Operator
Precedence

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.10

ECMA 262 edition 2 — section — 11.13

ECMA 262 edition 3 — section — 11.10

175

JavaScript Programmer's Reference

Bitwise AND then assign (&=) (Operator/assignment)

Bitwise AND two operands and assign the result to the first.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape — 2.0

Netscape Enterprise Server — 2.0
Opera -3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: - anOperandl &= anOperand?2

anOperandl A binary value

Argument list:
9 anOperand?2 Another binary value

Bitwise AND the right operand with the left operand and assign the result to the left operand.
This is functionally equivalent to the expression:
anOperandl = anOperandl & anOperand?2;

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.
Refer to the Operator Precedence topic for details of execution order.
The new value of anOperandl is returned as a result of the expression.

The truth table shows the result of this operator for two Boolean primitive values:

A B AND
false false false
false true false
true false false
true true true

This is applied to each corresponding bit pair in the two values.

176

B — Bitwise expression (Definition)

Warnings:

Q The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Assignment operator, Associativity, Bit-field,Bitwise AND (&),
Bitwise expression, Bitwise operator, Logical AND (&&), LValue,
Operator Precedence

See also:

Cross-references:
ECMA 262 edition 2 — section —11.13

ECMA 262 edition 3 — section — 11.13

Bitwise expression (Definition)
An expression that applies in a bitwise manner.
Availability: ECMAScript edition — 2

Property/method value type: Number primitive

Bitwise expressions perform a bit by bit operation across the entire integer width of the values.

Bit-field, Bitwise AND (&), Bitwise AND then assign (&=),

See also: E !
xpressmn

Cross-references:
ECMA 262 edition 2 — section — 11.7

ECMA 262 edition 2 — section — 11.10
ECMA 262 edition 3 — section — 11.7

ECMA 262 edition 3 — section — 11.10

Bitwise NOT - complement (~) (Operator/bitwise)

Bitwise NOT of one operand.

ECMAScript edition — 2
JavaScript — 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape — 2.0

Netscape Enterprise Server — 2.0
Opera-3.0

Availability:

177

JavaScript Programmer's Reference

Property/method value type: Number primitive
JavaScript syntax: = ~anOperand
Argument list: anOperand A numerical value

The operand is evaluated and then converted to a 32-bit integer value. Every bit is complemented
and the result is a bitwise NOT.

The truth table shows the result of this operator for a Boolean primitive value:

A NOT
false true
true false

This operation is applied to each individual bit in the operand, inverting them one by one.

Note that this could be classified as a unary operator but here we have called it a bitwise operator
on account of its functionality rather than its placement.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

Warnings:

Q There are some deficiencies in the handling of bitwise operators in the MSIE 5.0 browser on the
Macintosh platform. It does not properly handle the sign bit and so you should observe some
caution when using this operator.

178

B - Bitwise operator (Definition)

Example code:

<HTML>

<HEAD></HEAD>

<BODY>

<SCRIPT>

myValuel = OxFFFF;

myValue2 = ~myValuel

document.write("Val 1 : " + binary32 (myValuel) + "
");
document.write ("NOT : " + binary32 (myValue2) + "
");

// Binary convertor (ignore sign bit on MSIE)
function binary32 (aValue)

{
myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)
{
if (avalue & Math.pow (2, myEnum))
{

myArray[31l-myEnum] = "1";
}
else
{

myArray[31l-myEnum] = "0";

}
}
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

Associativity, Bit-field,Logical NOT — complement (!), Operator

See also:
Precedence, Unary operator

Cross-references:
ECMA 262 edition 2 — section — 11.4.8

ECMA 262 edition 3 — section — 11.4.8

Bitwise operator (Definition)

An operator that is applied in a bitwise manner.

Availability: ECMAScript edition - 2

Property/method value type: Number primitive

Bitwise operators convert both operands to 32 bit integers and apply the operator to them on a bit-
by-bit basis.

179

JavaScript Programmer's Reference

Here is a table of all operators in the bitwise category and those are members of other categories
but perform bitwise operations:

Op Description
= Bitwise complement (NOT)
& Bitwise AND
<< Bitwise left shift
>> Bitwise right shift
>>> Bitwise right shift (unsigned)
Bitwise inclusive OR
~ Bitwise XOR (exclusive OR)
&= Bitwise AND and assign to an LValue

= Bitwise inclusive OR and assign to an LValue

= Bitwise exclusive XOR and assign to an LValue

<<= Bitwise shift left and assign to an LValue

>>= Bitwise shift right and assign to an LValue

>>>= Bitwise shift right (unsigned) and assign to an LValue
Warnings:

QO The result of a bitwise expression is a 32 bit binary value and should not be confused with the
Boolean value returned by a logical operator.

QO The bitwise operators may yield a value that in other languages is the same as the logical operator.
However although in the C language, true and false are really integer values, in JavaScript the
Boolean and Number values are distinctly different types.

QO Be careful to use the correct number of ampersands and vertical bars to select the bitwise version of
the operator. Refer to the Logical operator topic for a list of operators to avoid in bitwise expressions.

Associativity, Binary bitwise operator, Bit-field,Bitwise AND (&), Bitwise
AND then assign (&=), Bitwise OR then assign (| =), Bitwise shift left then
assign (<<=), Bitwise shift right and assign (>>=), Bitwise unsigned shift
right and assign (>>>=), Bitwise XOR and assign ("=),Logical operator,
Operator, Operator Precedence, Type conversion

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.10

ECMA 262 edition 3 — section — 11.10

Wrox Instant JavaScript — page — 19

180

B - Bitwise OR (|) (Operator/bitwise)

Bitwise OR (|) (Operator/bitwise)

Bitwise OR of two operands.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server — 2.0
Opera-3.0

Availability:

Property/method value type: Number primitive
JavaScript syntax: - anOperandl | anOperand2
Argument list: anOperandl A numeric value

- anOperand?2 Another numeric value

Performs a bit-by-bit OR of the 32-bit value derived from both operands.

Where a corresponding bit is 1 in either of the two operands, a 1 is inserted into the result. A zero is
inserted only when neither operand has a 1 bit at that position.

The associativity is left to right.
Refer to the Operator Precedence topic for details of execution order.

The truth table shows the result of this operator for two Boolean primitive values:

A B OR

false false false
false true true
true false true
true true true

This is applied to each corresponding bit pair in the operands.

Example code:

<HTML>

<HEAD></HEAD>

<BODY>

<SCRIPT>

myValuel = 0x00FF;

myValue2 = 0xXFF00;

myValue3 = myValuel | myValue2;

document.write("vVal 1 : " + binary32(myValuel) + "
");
document.write("Val 2 : " + binary32 (myValue2) + "
");

181

JavaScript Programmer's Reference

document.write("OR : " + binary32 (myValue3) + "
");
// Binary convertor (ignore sign bit on MSIE)

function binary32 (avValue)

{

myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)
{
if (avalue & Math.pow (2, myEnum))
{

myArray [31l-myEnum] = "1";
}
else
{
myArray [31l-myEnum] = "0";

}
}

return myArray.join("");
}

</SCRIPT>

</BODY>

</HTML>

Associativity, Binary bitwise operator, Bit-field,Bitwise OR then

See also:
assign (| =), Operator Precedence

Cross-references:
ECMA 262 edition 2 — section — 11.10

ECMA 262 edition 3 — section — 11.10

Bitwise OR then assign (|=)
(Operator/assignment)

Bitwise OR two operands and assign the result to the first.

ECMAScript edition — 2
JavaScript — 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape — 2.0

Netscape Enterprise Server —2.0
Opera-3.0

Availability:

Property/method value type: Number primitive
JavaScript syntax: - anOperandl |= anOperand2
Argument list: anOperandl A numeric value that can be assigned to

- anOperand?2 Another numeric value

182

B - Bitwise OR then assign (|=) (Operator/assignment)

Bitwise OR the right operand with the left operand and assign the result to the left operand.
This is functionally equivalent to the expression:

anOperandl = anOperandl | anOperand?2;

Performs a bit by bit OR of the 32-bit value derived from both operands.

Where a corresponding bit is 1 in either of the two operands, a 1 is inserted into the result. A zero is
inserted only when neither operand has a 1 bit at that position.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.
Refer to the Operator Precedence topic for details of execution order.
The new value of anOperandl is returned as a result of the expression.

The truth table shows the result of this operator for two Boolean primitive values:

A B OR

false false false
false true true
true false true
true true true

This is applied to each corresponding bit pair in the operands.

Warnings:

Q The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Assignment operator, Associativity, Bit-field, Bitwise operator, Bitwise OR

See also:
(1),LValue, Operator Precedence

Cross-references:
ECMA 262 edition 2 — section — 11.13

ECMA 262 edition 3 — section — 11.13

183

JavaScript Programmer's Reference

Bitwise shift left (<<) (Operator/bitwise)

Bitwise shift leftwards one operand according to another.

ECMAScript edition — 2

Availability:
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape - 2.0
Netscape Enterprise Server — 2.0
Opera-3.0
Property/method value type: Number primitive
JavaScript syntax: - anOperandl << anOperand?
A t list: anOperandl A value to be shifted
rgument list: anOperand? A distance to shift anOperandl

The bitwise shift left operator converts its left operand to a 32 bit integer and moves it leftwards by
the number of bits indicated by the right operand.

As the value is shifted leftwards, bits that roll out of the left end of the register are discarded. The
right-hand end of the register is filled with zero bits. Shifting leftwards by 32 bits will fill the
register with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

The right-hand operand is converted to a 5 bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

The associativity is left to right.
Refer to the Operator Precedence topic for details of execution order.

You can accomplish bitwise shift lefts by multiplying values using powers of 2. Multiplying a value
by 2 shifts leftwards by one bit position.

184

B - Bitwise shift left (<<) (Operator/bitwise)

Example code:

<HTML>
<HEAD></HEAD>
<BODY>
<SCRIPT>
myValuel = 0xO0O0FF;
myValue2 = myValuel << 4;
document .write("Val 1 : " + binary32 (myValuel) + "
");
document.write("Result : " + binary32 (myValue2) + "
");
// Binary convertor (ignore sign bit on MSIE)
function binary32 (avValue)
{
myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)
{
if (avalue & Math.pow (2, myEnum))
{

myArray[31l-myEnum] = "1";
}
else
{

myArray[31l-myEnum] = "0";

}
}
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

Associativity, Bit-field,Bitwise shift left then assign (<<=), Bitwise shift
operator, Bitwise shift right (>>), Bitwise shift right and assign (>>=),
Bitwise unsigned shift right (>>>), Bitwise unsigned shift right and assign
(>>>=), Operator Precedence, Shift operator

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.7.1

ECMA 262 edition 3 — section — 11.7.1

185

JavaScript Programmer's Reference

Bitwise shift left then assign (<<=)
(Operator/assignment)

Destructively bitwise leftwards shift the first of two operands.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server —2.0
Opera browser — 3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: = anOperandl <<= anOperand?2

anOperandl A value to be shifted and assigned to

Argument list:
9 anOperand?2 A distance to shift anOperandl

Bitwise shift leftwards the left operand by the number of bits in the right operand and assign the
result to the left operand.

This is functionally equivalent to the expression:
anOperandl = anOperandl << anOperand?2;

The bitwise shift left operator converts it left operand to a 32 bit integer and moves it leftwards by
the number of bits indicated by the right operand.

As the value is shifted leftwards, bits that roll out of the left end of the register are discarded. The
right-hand end of the register is filled with zero bits. Shifting leftwards by 32 bits will fill the left
operand with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.
The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an

expression that may yield a value larger than 32.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.

Refer to the Operator Precedence topic for details of execution order.

186

B - Bitwise shift operator (Definition)

The new value of anOperandl is returned as a result of the expression.

Warnings:

Q The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Assignment operator, Associativity, Bit-field,Bitwise operator,
Bitwise shift left (<<), Bitwise shift operator, Bitwise shift right (>>),
Bitwise shift right and assign (>>=), Bitwise unsigned shift right
(>>>), Bitwise unsigned shift right and assign (>>>=),
LValue,Operator Precedence,Shift operator

See also:

Cross-references:
ECMA 262 edition 2 — section —11.13

ECMA 262 edition 3 — section — 11.13

Bitwise shift operator (Definition)

A shift operator that moves the bits in an operand as if it were a shift register.
Availability: ECMAScript edition — 2
Property/method value type: Number primitive

Bitwise shift operators convert their left operands to a 32-bit integer value and shift them according
to their right operand. The operator determines the kind of shifting that is applied.

Bit-field, Bitwise shift left (<<), Bitwise shift left then assign (<<=),
Bitwise shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), Bitwise unsigned shift right and assign
(>>>=),Shift expression, Shift operator

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.7

ECMA 262 edition 3 — section — 11.7

187

JavaScript Programmer's Reference

Bitwise shift right (>>) (Operator/bitwise)

Bitwise shift right one operand according to another.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server — 2.0
Opera -3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: = anOperandl >> anOperand?2

A | anOperandl A value to be shifted
rgument list:
9 anOperand?2 A distance to shift the left operand

This is sometimes called shift right with sign extension.

The bitwise shift right operator converts its left operand to a 32 bit integer and moves it rightwards
by the number of bits indicated by the right operand.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is duplicated to sign-fill the value as it
shifts. Shifting rightwards by 32 bits will fill the register with all zero or all one bits according to
the value of the sign bit at the outset.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.
The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

You can accomplish bitwise shift rights by dividing values using powers of 2. Dividing a value by 2
shifts rightwards by one bit position.

188

B - Bitwise shift right (>>) (Operator/bitwise)

i

o

[N

Lo L
K
L L
HE

o

Example code:

<HTML>

<HEAD></HEAD>

<BODY>

<SCRIPT>

myValuel = 0x00FFO00;
myValue2 = myValuel >> 4;

document .write("val 1 : " + binary32 (myValuel)

document .write("Result : " + binary32(myValue2)
// Binary convertor (ignore sign bit on MSIE)

function binary32 (aValue)

{

myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)

{

if (avalue & Math.pow (2, myEnum))

{
myArray [31-myEnum] =
}
else
{
myArray [31-myEnum] =

}
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

0T p

non,;

"
") ;
"
") ;

189

JavaScript Programmer's Reference

. Associativity, Bit-field,Bitwise shift left (<<), Bitwise shift left then
See also:) L . L cer s :
assign (<<=), Bitwise shift operator, Bitwise shift right and assign
(>>=), Bitwise unsigned shift right (>>>), Bitwise unsigned shift
right and assign (>>>=), Operator Precedence, Shift operator

Cross-references:
ECMA 262 edition 2 — section — 11.7.2

ECMA 262 edition 3 — section — 11.7.2

Bitwise shift right and assign (>>=)
(Operator/assignment)

Destructively bitwise rightwards shift the first of two operands.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape — 2.0

Netscape Enterprise Server — 2.0
Opera-3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: = anOperandl >>= anOperand2

anOperandl A value to be shifted and assigned to

Argument list: .
9 ="c2">anOperand2 ="c3">A distance to shift anOperandl

Bitwise shift rightwards the left operand by the number of bits in the right operand and assign the
result to the left operand.
This is functionally equivalent to the expression:

anOperandl = anOperandl >> anOperand?2;

The bitwise shift right operator converts its left operand to a 32 bit integer and moves it rightwards
by the number of bits indicated by the right operand.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is duplicated to sign fill the value as it
shifts. Shifting rightwards by 32 bits will fill the left operand with all zero or all one bits according
to the value of the sign bit at the outset.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.

190

B - Bitwise shift right and assign (>>=) (Operator/assignment)

The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.
Refer to the Operator Precedence topic for details of execution order.

The new value of anOperandl is returned as a result of the expression.

Lo e e e e e e
Lo e e e e Jle e
KN I S N N N
KN S I N N

Warnings:

Q The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Assignment operator, Associativity, Bit-field, Bitwise operator,
Bitwise shift left (<<), Bitwise shift left then assign (<<=), Bitwise
shift operator, Bitwise shift right (>>), Bitwise unsigned shift right
(>>>), Bitwise unsigned shift right and assign (>>>=),LValue,
Operator Precedence, Shift operator

See also:

Cross-references:
ECMA 262 edition 2 — section —11.13

ECMA 262 edition 3 — section — 11.13

191

JavaScript Programmer's Reference

Bitwise unsigned shift right (>>>)
(Operator/bitwise)

Bitwise shift right one operand according to another.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server — 2.0
Opera-3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: = anOperandl >>> anOperand?2

A - anOperandl A value to be shifted
rgument list:
9 anOperand?2 A distance to shift the left operand

This is sometimes called shift right with zero extension.

The bitwise unsigned shift right operator converts its left operand to a 32 bit integer and moves it
rightwards by the number of bits indicated by the right operand. The sign bit is not propagated.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is zero-filled as the contents are shifted.
Shifting rightwards by 32 bits will fill the register with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.
The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an
expression that may yield a value larger than 32.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

192

B — Bitwise unsigned shift right (>>>) (Operator/bitwise)

Lo e e e e Jle e]
Lo e e e Jle e e]
Lo e e e e e e]
Lo e e e Jle e e]

<HTML>

<HEAD></HEAD>

<BODY>

<SCRIPT>

myValuel = -0x00FF00;

myValue2 = myValuel >>> 4;

document.write("Val 1 : " + binary32 (myValuel) + "
");

document .write("Result : " + binary32 (myValue2) + "
");

// Binary convertor (ignore sign bit on MSIE)
function binary32 (avValue)
{

myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)
{
if (avalue & Math.pow (2, myEnum))
{

myArray[31l-myEnum] = "1";
}
else
{

myArray[31l-myEnum] = "0";

}
}
return myArray.join("");
}
</SCRIPT>
</BODY>
</HTML>

Associativity, Bit-field,Bitwise shift left (<<), Bitwise shift left then assign
(<<=), Bitwise shift operator, Bitwise shift right (>>), Bitwise shift right
and assign (>>=), Bitwise unsigned shift right and assign (>>>=),
Operator Precedence, Shift operator

See also:

193

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 2 — section — 11.7.3

ECMA 262 edition 3 — section — 11.7.3

Bitwise unsigned shift right and assign (>>>=)
(Operator/assignment)

Destructively bitwise rightwards shift the first of two operands.

ECMAScript edition — 2
JavaScript — 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server — 2.0
Opera - 3.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: - anOperandl >>>= anOperand2

A A anOperandl A value to be shifted and assigned to
rgument list:
9 anOperand?2 A distance to shift the left operand

Bitwise unsigned shift rightwards the left operand by the number of bits in the right operand and
assign the result to the left operand.

This is functionally equivalent to the expression:
anOperandl = anOperandl >>> anOperand?2;

The bitwise unsigned shift right operator converts its left operand to a 32 bit integer and moves it
rightwards by the number of bits indicated by the right operand. The sign bit is not propagated.

As the value is shifted rightwards, bits that roll out of the right end of the register are discarded.
The left-hand end of the register containing the sign bit is zero-filled as the contents are shifted.
Shifting rightwards by 32 bits will fill the left operand with all zero bits.

Because the value is converted to an integer, any fractional part is discarded as the shift begins.
The right-hand operand is converted to a 5-bit value with a bitwise mask to limit the distance of the
shift to 32 bits. This can cause unexpected results if the right-hand side is derived from an

expression that may yield a value larger than 32.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

194

B - Bitwise unsigned shift right and assign (>>>=) (Operator/assignment)

The associativity is right to left.
Refer to the Operator Precedence topic for details of execution order.

The new value of anOperandl is returned as a result of the expression.

Lo e e el Jle JE e |
Lo e e e i JLe JEe |
Lo e e e e e Jf e]
Lo e e J e e e Jle |

Warnings:

Q The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Assignment operator, Associativity, Bit-field, Bitwise operator, Bitwise
shift left (<<), Bitwise shift left then assign (<<=), Bitwise shift operator,
Bitwise shift right (>>), Bitwise shift right and assign (>>=), Bitwise
unsigned shift right (>>>), LValue, Operator Precedence, Shift operator

See also:

Cross-references:
ECMA 262 edition 2 — section — 11.13

ECMA 262 edition 3 — section — 11.13

195

JavaScript Programmer's Reference

Bitwise XOR (#) (Operator/bitwise)

Bitwise XOR one operand with another.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0

Netscape Enterprise Server — 2.0
Opera-3.0

Number primitive

- anOperandl ~ anOperand?2

anOperandl A numeric value

anOperand?2 Another numeric value

Performs a bit-by-bit XOR of the 32-bit values derived from both operands.

Where a corresponding bit is different in both operands, a 1 bit will be inserted into the result. If
the corresponding bit is identical in both operands, regardless of whether they both have a 1 bit or
a zero bit, a zero will be inserted at that bit position in the result.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

This is the truth table for two Boolean primitive values being operated on with the XOR operator.

A

false
false
true

true

B XOR
false false
true true
false true
true false

The bitwise operator performs this operation on each corresponding bit pair in the two operands.

1 1 1 1 1 1 0 [0
0 0 0 1 1 1 1 1
ﬁ 1 0 9] 1 1 1

196

B - Bitwise XOR and assign (*=) (Operator/assignment)

Example code:

<HTML>

<HEAD></HEAD>

<BODY>

<SCRIPT>

myValuel = OxFFFF;

myValue2 = 0xOFFO0;

myValue3 = myValuel ~ myValue2;

document.write("Val 1 : " + binary32 (myValuel) + "
");
document.write("Val 2 : " + binary32 (myValue2) + "
");
document.write("XOR : " + binary32 (myValue3) + "
");

// Binary convertor (ignore sign bit on MSIE)
function binary32 (aValue)
{

myArray = new Array(32);

for (myEnum=0; myEnum<32; myEnum++)
{
if (avalue & Math.pow (2, myEnum))
{

myArray[31l-myEnum] = "1";
}
else
{

myArray[31l-myEnum] = "0";

}
}
return myArray.join("");
}
</SCRIPT>
</BODY>
< /HTML>

Associativity, Binary bitwise operator, Bit-field, Bitwise XOR and assign

See also:
("=),Logical XOR, Operator Precedence

Cross-references:
ECMA 262 edition 2 — section — 11.10

ECMA 262 edition 3 — section — 11.10

Bitwise XOR and assign (*=)
(Operator/assignment)

Destructively bitwise XOR two operands and store the result in the first.

ECMAScript edition — 2
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape — 2.0

Netscape Enterprise Server — 2.0
Opera -3.0

Availability:

197

JavaScript Programmer's Reference

Property/method value type: Number primitive
JavaScript syntax: = anOperandl "= anOperand2
anOperandl A numeric value that can be assigned to

Argument list:
9 anOperand?2 Another numeric value

Bitwise XOR the right operand with the left operand and assign the result to the left operand.

This is functionally equivalent to the expression:

anOperandl = anOperandl ~ anOperand2;

Performs a bit-by-bit XOR of the 32-bit values derived from both operands.

Where a corresponding bit is different in both operands, a 1 bit will be inserted into the result. If
the corresponding bit is identical in both operands, regardless of whether they both have a 1 bit or

a zero bit, a zero will be inserted at that bit position in the result.

Although this is classified as an assignment operator it is really a compound of an assignment and
a bitwise operator.

The associativity is right to left.
Refer to the Operator Precedence topic for details of execution order.
The new value of anOperandl is returned as a result of the expression.

This is the truth table for two Boolean primitive values being operated on with the XOR operator

A B XOR
false false false
false true true
true false true
true true false

The bitwise operator performs this operation on each corresponding bit pair in the two operands.

Warnings:

QO The operand to the left of the operator must be an LValue. That is, it should be able to take an
assignment and store the value.

Assignment operator, Associativity, Bit-field, Bitwise operator,

See also: LG
Bitwise XOR (*), LValue, Operator Precedence

198

B - BlendTrans() (Filter/blend)

Cross-references:
ECMA 262 edition 2 — section — 11.13

ECMA 262 edition 3 — section — 11.13
BlendTrans() (Filter/blend)
A blend filter for controlling transitions.

JScript - 3.0

Availability:
v Internet Explorer — 4.0

Refer to:

filter - BlendTrans()

Blinds() (Filter/transition)

A transition effect with the appearance of venetian blinds opening or closing.

JScript - 5

Availability:
y Internet Explorer — 5

Refer to:

filter - B1inds()

blob object (Object/NES)

A special object that is designed to contain binary data extracted from a database or file.

Availability: JavaScript - 1.1

Netscape Enterprise Server — 2.0
NES myBlob
NES myBlob

<methodname>blobImage () </methodname>,
<methodname>blobLink ()</methodname>

JavaScript syntax:

Object methods:

blob ()

myCursor.colName.blobImage(...)

A blob object is so called because it encapsulates a Binary Large OBject or BLOB. This is a block of
data, often quite large, that is stored in a binary form and which is likely to contain many non-

printable characters and probably some nulls as well.

You cannot instantiate a blob object directly in JavaScript but you can obtain one by fetching the

data from a database as shown in the example code.

199

JavaScript Programmer's Reference

Example code:

<SERVER>
// Example derived from Wrox Professional JavaScript
// This opens a database, selects some records
// Traverses the collection that was selected
// and for each one, outputs an image tag.
database.connect ("ODBC", "TargetDB", "", "", "");
myCursor = database.cursor ("SELECT * FROM TARGET TABLE") ;
while (myCursor.next ())
{

myBlob = myCursor.blobData;

write (myBlob.blobImage ("bmp")) ;
}

myCursor.close() ;

</SERVER>
See also: Netscape Enterprise Server, unwatch (), watch ()
Method JavaScript JScript NES Notes
blobImage () 1.1+ - 2.0 + =
blobLink () 1.1+ = 2.0+ -

blob.bloblmage() (Method)

This method creates an element having the appropriate MIME type for the blob object.

Availability:

JavaScript syntax:

Argument list:

200

JavaScript — 1.1
Netscape Enterprise Server — 2.0

Property/method value type: Image object

NES myBlob.blobImage (aFormat)
NES myBlob.blobImage (aFormat, aTxt)
NES myBlob.blobImage (aFormat, aTxt, anAlign)

NES myBlob.blobImage (aFormat, aTxt, anAlign,
aPixwid)

NES myBlob.blobImage (aFormat, aTxt, anAlign,
aPixWid, aPixHgt)

NES myBlob.blobImage (aFormat, aTxt, anAlign,
aPixwid, aPixHgt, aPixBrdr)

NES myBlob.blobImage (aFormat, aTxt, anAlign,
aPixwWid, aPixHgt, aPixBrdr, isMap)

aFormat Image file format
anAlign The alignment of the image
aPixBrdr The border value

aPixHgt The height of the image
aPixWid The width of the image
aTxt The alt text for the image

isMap Whether the image is a map

B — blob.blobLink() (Method)

The data is pulled out of the database according to the specified parameters. The BLOB can then be
displayed as if it were an image in an tag.

The format argument should contain an image specifier such as "GIF" or "JPEG" that can map
conveniently to a file extension or MIME type.

The remaining parameters to this method mainly correspond to the HTML tag attributes that can
be used with an tag and are optional.

This method generates the necessary tag to place into a document that refers to the BLOB
data as if it were an image file on the server. When the document is parsed, the browser will
request the image in the normal way; the contents of the BLOB are then returned in response to that
request. The browser is not aware that the image data was retrieved from the database and by
caching the image in memory when the link to it is placed in the document most of the latency
associated with requesting objects out of the database is eliminated, albeit at the cost of increased
memory usage in the server backend.

See also: Cursor.blobImage(),blob object, MIME types

blob.blobLink() (Method)

This method creates an <A> element that links to the BLOB data.

JavaScript - 1.1

Availability:
Netscape Enterprise Server — 2.0
Property/method value type: Anchor object

JavaScript syntax: NES myBlob.blobLink (aMimeType, aString)

aString The text inside the link

Argument list:
gument { aMimeType The MIME type of the document being displayed

The data is pulled out of the database according to the specified parameters. The BLOB can then be
displayed as if it were a document in an <A> tag.

This method generates the necessary URL to place into a document that links to it. If the user clicks
on the link, the contents of the BLOB are then returned in response to that request.

See also: Cursor.blobLink (), blob object, MIME types

201

JavaScript Programmer's Reference

Block { } (Statement)

A list of executable statements enclosed in curly braces.

Availability: ECMAScript edition — 2

Compound statement, 1£(...) ..., if(...) ... else

See also: . . ., Statement, Code block delimiter {}

Cross-references:
ECMA 262 edition 2 — section — 12.1

ECMA 262 edition 3 — section — 12.1

Wrox Instant JavaScript — page — 17

Block-level tag (Definition)

A block-level tag cannot exist inside a line. It must be placed on a line by itself.

By default, block-level items will be placed on a line by themselves because they force a line break
before and after they are displayed. However you can modify the alignment and text flow around a
block-level object to make it appear to be inline.

BLOCKQUOTE object (Object/HTML)

An object that represents a <BLOCKQUOTE> text area.

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0

Availability:

Inherits from: Element object

A BLOCK TE = D t.all. E1l tID
JavaScrlpt syntax: IE myBLOCKQUO myDocument.a anElemen

1E myBLOCKQUOTE = myDocument.all.tags
("BLOCKQUOTE") [anIndex]

1E myBLOCKQUOTE = myDocument.all [aName]

= myBLOCKQUOTE = myDocument.getElementById
(anElementID)

- myBLOCKQUOTE = myDocument.getElementsByName
(aName) [anIndex]

- myBLOCKQUOTE =
myDocument .getElementsByTagName ("BLOCKQUOTE") [
anIndex]

202

B - BLOCKQUOTE object (Object/HTML)

HTML syntax; <BLOCKQUOTE> </BLOCKQUOTE>
Argument list: anIndex A valid reference to an item in the
collection

aName The name attribute of an element
anElementID The ID attribute of an element

Object properties: cite

Object methods: click()

Event handlers: onClick, onDblClick, onDragStart, onFilterChange,

* onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,

onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onSelectStart

This is used to set off a long quote inside a document and is intended to place an extract from a
document into the displayed window with an active link to the document it quotes from. The style

and appearance is that of a block quote text.

The <BLOCKQUOTE> tag is a block-level tag. That means that it forces a line break before and after
unless the alignment and text flow around it are controlled very cleverly.

The DOM level 1 specification refers to this as a QuoteElement object.

See also: Element object

Property JavaScript JScript N IE Opera DOM HTML Notes
€ilEd 1.5+ 3.0 + 6.0+ 4.0+ - 1+ - -
Method JavaScript JScript N IE Opera DOM HTML Notes
click() 1.5+ 3.0+ 6.0+ 40+ - 1+ - -

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick 1.5+ 3.0+ 60+ 40+ - - 40+ Warning
onDblClick 15+ 3.0+ 60+ 40+ - - 40+ Warning
onDragStart - 3.0+ - 40+ - - - =
onFilterChange = 3.0+ - 40+ - - - -
onHelp - 3.0 + - 40+ - - - Warning
onKeyDown 1.5+ 3.0 + 6.0+ 4.0+ - - 4.0 + Warning
onKeyPress 1.5+ 3.0+ 6.0+ 40+ - - 4.0 + Warning
onKeyUp 1.5+ 3.0+ 6.0+ 40+ - = 40+ Warning
onMouseDown 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseMove 15+ 3.0 + 6.0+ 40+ - - 4.0 + Warning
onMouseOut 1.5+ 3.0+ 6.0+ 40+ - = 40+ Warning
onMouseOver 1.5+ 3.0+ 6.0+ 4.0+ - = 40+ Warning
onMouseUp 1.5+ 3.0+ 6.0+ 40+ - - 4.0 + Warning
onSelectStart = 3.0+ - 40+ - - - -

203

JavaScript Programmer's Reference

Inheritance chain:

Element object, Node object

BLOCKQUOTE.cite (Property)

A URL pointing at the document that a quote is attributed to.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: = myBLOCKQUOTE.cite

The URL of the document being quoted from is noted in this property.

Blur() (Filter/visual)

A visual filter for blurring objects.

JScript - 3.0

Availability:
g Internet Explorer — 4.0

Refer to:

Filter - Blur()

blur() (Method)

Move the input focus away from the receiving element.

Availability: Lt leve 1
JavaScript —1.1
JScript - 3.0
Internet Explorer — 3.0
Netscape - 3.0
Opera-3.0
Property/method value type: undefined
) = blur ()
JavaScript syntax: i P ——
See also: Input.blur(),Window. focus (), Window.blur ()

204

B - BODY object (Object/HTML)

BODY object (Object/HTML)

An object that represents the body of a document.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Object methods:

Event handlers:

Collections:

DOM level -1
JavaScript - 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

Element object

1E myBODY = myDocument.all.anElementID

1E myBODY = myDocument.all.tags("BODY") [anIndex]
1IE myBODY = myDocument.all [aName]

= myBODY = myDocument.body

= myBODY = myDocument.getElementById (anElementID)

= myBODY = myDocument.getElementsByName
(aName) [anIndex]

= myBODY = myDocument.getElementsByTagName
("BODY") [anIndex]

<BODY> ... </BODY>
anIndex A valid reference to an item in the collection (should be 0)
aName The name attribute of an element

anElementID The ID attribute of an element

accessKey, alLink, background,bgColor, bgProperties,
bottomMargin, leftMargin, link,noWrap, recordNumber,
rightMargin, scroll, tabIndex, text,topMargin, vLink

createControlRange (), createTextRange ()

onAfterUpdate, onBeforeUnload, onBeforeUpdate, onChange,
onClick, onDataAvailable, onDataSetChanged,
onDataSetComplete, onDblClick, onDragStart,
onErrorUpdate, onFilterChange, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onRowEnter,
onRowExit, onScroll, onSelectStart, onUnload

controlRangel[]

Although this generally represents the <BODY> tag, there are also properties that relate to the body
that belong to the Document and Window objects. In MSIE, there is also a HEAD object, which
contains related information.

The <BODY> tag is a block-level tag. You can't place a <BODY> tag into the document but taken in
the context of a framed environment it manifests itself as if it were a block-level tag.

See also:

Background object, Document object, Document.bgColor,
Document .body, Element object, Element.isTextEdit,
Element.offsetParent, Frame object, HEAD object,
Input.accessKey, Window object

205

JavaScript Programmer's Reference

Property JavaScript JScript N IE Opera DOM HTML Notes
accessKey 1.5+ 3.0 + 6.0 + 4.0+ - 1+ - -

aLink 1.5+ 3.0 + 6.0+ 40+ - 1+ - -
background 1.5+ 3.0+ 60+ 40+ - 1+ - Warning
bgColor 1.5+ 3.0+ 6.0+ 40+ - 1+ - -
bgProperties - 3.0 + - 4.0 + - - - _
bottomMargin - 3.0+ - 4.0+ - - - Warning
leftMargin - 3.0+ - 4.0+ - - - Warning
link 1.5+ 3.0 + 6.0+ 40+ - 1+ - -
nowWrap - 3.0+ - 4.0+ - - - Warning
recordNumber - 3.0 + - 4.0+ - - - ReadOnly
rightMargin - 3.0 + - 4.0 + - - - Warning
scroll - 3.0 + - 4.0+ - - - Warning
tabIndex 1.5+ 3.0+ 6.0+ 4.0+ - 1+ - -

text 1.5+ 3.0 + 6.0 + 4.0 + - 1+ - -
topMargin - 3.0 + - 4.0+ - - - Warning
vLink 1.5+ 3.0 + 6.0+ 40+ - 1+ - -
Method JavaScript JScript N IE Opera DOM HTML Notes
Ccreate = 5.0+ - 5.0 + - - - -
ControlRange ()

create - 3.0 + - 4.0+ - - - -
TextRange ()

Event name JavaScript JScript N IE Opera DOM HTML Notes
onAfterUpdate - 3.0 + = 4.0 + - - - -
onBeforeUnload = 3.0 + = 4.0 + - - - -
onBeforeUpdate - 3.0 + = 4.0 + - - - -
onChange 1.5+ 3.0+ 6.0+ 4.0+ - - - -
onClick 15+ 3.0+ 6.0+ 40+ - - 40+ Warning
onDataAvailable - 3.0 + - 4.0 + - - - _
onbata = 3.0+ - 4.0+ - - - -
SetChanged

onData - 3.0 + - 4.0 + - - - -
SetComplete

onDblClick 1.5+ 3.0 + 6.0+ 40+ - - 40+ Warning
onDragStart - 3.0 + - 4.0+ - - - =
onErrorUpdate - 3.0 + = 4.0 + - - - -
onFilterChange = 3.0 + = 4.0 + - - - -
onHelp - 3.0+ - 4.0 + - - - Warning

Table continued on following page

206

B — BODY.aLink (Property)

Event name JavaScript JScript N IE Opera DOM HTML Notes
onKeyDown 1.5+ 3.0+ 6.0 + 4.0+ - - 4.0+ Warning
onKeyPress 1.5+ 3.0+ 6.0 + 4.0+ - - 4.0+ Warning
onKeyUp 1.5+ 3.0+ 6.0 + 4.0+ - - 4.0+ Warning
onMouseDown 1.5+ 3.0+ 6.0 + 4.0+ - - 4.0+ Warning
onMouseMove 1.5+ 3.0+ 6.0+ 4.0+ - - 4.0 + Warning
onMouseOut 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseOver 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseUp 1.5+ 3.0 + 6.0 + 4.0 + - - 4.0 + Warning
onRowEnter = 3.0 + o 4.0 + - - - -
onRowExit = 3.0 + = 4.0+ = = - -
onScroll = 3.0 + = 4.0 + = - - -
onSelectStart = 3.0+ = 4.0 + - - - -
onUnload 1.5+ 3.0 + 60+ 302+ - - - Warning

Inheritance chain:

Element object, Node object

BODY.aLink (Property)

The colour of an active link in the current page.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: = myBODY .aLink

This value controls the text of active links in the document body. You should use the normal color
values to define the required color.

This property is equivalent to the ALINK attribute of the <BODY> HTML tag. This is the color that is
used while the mouse is over the link and the button is held down by the user.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall
into disuse.

Note also that its property name is not consistent with its counterpart, the
document .alinkColor property whose value it reflects.

BODY link, BODY .text, BODY.vLink, Color names, Color value,
Document.alinkColor, Document.bgColor, Document.fgColor,
Document.linkColor, Document.vlinkColor, HTML object

See also:

207

JavaScript Programmer's Reference

BODY.background (Property)

The URL of a background image for the current document.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myBODY . background

If a background image is available, then its URL is contained in this property. Changing the value
in this property will replace the background with a new one; however, there may be a perceptible
delay while the new image is fetched from the web server.

The background image for the document that is defined in the <BODY> tag is accessible via the
BODY . background property in MSIE.

Warnings:

0 You cannot access the background image directly in Netscape Navigator because the BODY object is
not reflected into the JavaScript environment.

Background.src, BODY .bgProperties, Document.background,
HTML object

BODY.bgColor (Property)

The background color of the current page.

See also:

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myBODY .bgColor
This corresponds to the BGCOLOR=". .. " HTML tag attribute on the <BODY> tag.

You can modify this value at any time, the result of which will be to change the background color
of the page.

208

B — BODY.bgProperties (Property)

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into
disuse. On the other hand it does work consistently on both MSIE and Netscape whereas style sheet
controls do not. Later, a DOM-standardized approach to style handling will provide a cross-
platform way to access style information from JavaScript. DOM level 2 introduces a first attempt at
standardizing this area.

The background can be colored whether an image is loaded into the background of a document or
not. In fact, it may be advisable to set the background color to something similar to the average
color of the background image in case the image takes a long time to load or the browser is unable
to display a background image.

The background color for the document that is defined in the <BODY> tag is also reflected in the
bgColor property of the document object, although that is now deprecated as of DOM level 1.

See also: Color namgs, Color value, Dogument.bgColor,
Document.linkColor ,HTML object

BODY.bgProperties (Property)

An attribute that controls the way the background image is managed when the page scrolls.

Availability: JScript -3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myBODY .bgProperties

The value of this property can be set to either the value "fixed" or an empty string (""). When the
"fixed" value is used, the background image (if it is specified) will be locked into position and if
the page is scrolled, the background will stay fixed where it is as if it were on a separate layer.

See also: Background.src, BODY .background

BODY.bottomMargin (Property)

A margin space at the bottom of the document in the current window.

JScript - 3.0

Availability:
y Internet Explorer — 4.0

Property/method value type: Number primitive

. BODY . bottomM i
JavaScript syntax: A myBO. e

Normally, you would not need to specify this property. It allows the document to have some clear
space at the bottom so, for example, the content could be made to scroll completely off the screen.

209

JavaScript Programmer's Reference

The distance is measured in pixels and can range from zero (which is the default) to any reasonably
sensible value.

If a page is being created dynamically with document.write () methods, and a script error
occurs, the margin is not appended. It appears to be added as a property of the body closure.

This corresponds to the style.marginBottom property and the margin-bottom attribute that is
defined in a style sheet.

Warnings:
0 Even when this value is set to zero, the Macintosh version of MSIE has a noticeable margin
at the bottom.
See also: BODY.topMargin

BODY.controlRange[] (Collection)

A collection of all the elements within the document body.

Availability: JSeript - 5.0
Internet Explorer — 5.0
JavaScript syntax: IE myBODY . controlRange

This collection is returned by the createControlRange () method. The items in this collection
would all represent component elements within the page but would not include simple text items.

See also: BODY.createControlRange ()

Property attributes:

ReadOnly.

BODY.createControlRange() (Method)

A constructor function to create a new controlRange object.

Availability: JScript - 5.0
Internet Explorer — 5.0
Property/method value type: ControlRange object
JavaScript syntax: IE myElement.createControlRange ()

This method creates a collection of non-text elements. These are selectable items based on controls
rather than text. If the controlRange (belonging to the BODY object) already exists, then it will be
overwritten by the results of this method call.

See also: BODY.controlRangel]

210

B — BODY.createTextRange() (Method)

BODY.createTextRange() (Method)

Used in MSIE for creating a text range.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: TextRange object
JavaScript syntax: IE myBODY .createTextRange ()

This method should only be used if the receiving object responds true to its isTextEdit
property request.

See also: TextRange object

BODY.leftMargin (Property)

A margin down the left edge of the document window.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Number primitive
JavaScript syntax: IE myBODY.leftMargin

This property controls the amount of space down the left margin of a page. This indents all of the
content away from the left edge of its containing window or frame.

This corresponds to the style.marginLeft property and margin-1left stylesheet attribute.

Warnings:

QO Note that the default values are platform-dependent and although it is only a couple of pixels
difference it can throw off the layout of a page significantly if you make the wrong assumption.

See also: BODY.rightMargin

211

JavaScript Programmer's Reference

BODY.link (Property)

The color of an as yet unvisited link in the page.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myBODY.link

This value controls the text of active links in the document body. You should use the normal color
values to define the required color.

This property is equivalent to the LINK attribute of the <BODY> HTML tag. This is the color that is
used for as yet unvisited links.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall
into disuse.

Note also that its property name is not consistent with its counterpart, the document.linkColor
property whose value it reflects.

BODY.aLink,BODY. text,BODY.vLink, Color names,Color
value, Document.alinkColor, Document.bgColor,
Document . fgColor, Document.linkColor,
Document.vlinkColor, HTML object

BODY.noWrap (Property)

A switch to control whether text should wrap or not within the page.

See also:

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Boolean primitive
JavaScript syntax: IE myBODY .noWrap

This is a Boolean value that controls whether the textual content is wrapped at the right-hand
window border or not.

If the value false is assigned to this property, then words will wrap as the page is drawn. This is
the way you would expect a browser to behave. The text will flow according to the space available.

If the value true is assigned to this property, the line of text will continue to the right until a

or other block level tag is encountered. This will force the horizontal width of the page to extremely
large and the user will need to scroll furiously to be able to see the text and then scroll back again
for the start of the next line.

212

B — BODY.recordNumber (Property)

Warnings:

Q Only use this if you plan to place line breaks at frequent intervals yourself and really do need to
control the line breaks manually.

BODY.recordNumber (Property)

The record within the dataset that defined the page content when the content came from a data source.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Number primitive
JavaScript syntax: IE myBODY . recordNumber

This is a property that is part of the MSIE data-binding support. It contains an integer value that is
the record number within the data set that created this object.

This is useful when you are building pages with ASP and Active Data Objects (ADO).
See also: Active Server Pages, ADO

Property attributes:

ReadOnly.

BODY.rightMargin (Property)

A margin space down the right hand side of the page.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Number primitive
JavaScript syntax: IE myBODY.rightMargin

This property controls the amount of space down the right-hand margin of a page. This indents all
of the content away from the right edge of its containing window or frame.

This corresponds to the style.marginRight property and margin-right stylesheet attribute.

Warnings:

QO Note that the default values are platform-dependent and, although it is only a couple of pixels
difference, it can throw off the layout of a page significantly if you make the wrong assumption.

See also: BODY leftMargin

213

JavaScript Programmer's Reference

BODY.scroll (Property)

A switch for whether the scrollbars appear or not.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: String primitive
JavaScript syntax: IE myBODY.scroll

If this property contains "yes", then scrollbars will appear if the window content exceeds the size
of the space available. If it is "no", then the scroll bars will not appear.

Although this is a switch, it is not strictly a Boolean value because it only takes the values "yes" and
"no". A true Boolean value would accept only "true" or "false". This may be because the property
might yield the value "auto" on some platform variants if it has been defined in the HTML tag
attributes for a frame.

Warnings:

QO Although the BODY object is not supported on Netscape Navigator, the HTML tag attribute
properties that control scrollbar visibility are the same on both MSIE and Netscape Navigator.

0 You should note, however, that the content of a page in Netscape Navigator cannot be scrolled
unless the scrollbars are visible. Even if the content does not exceed the space available, the scroll
bars will still be drawn but will be inactive. To scroll content in Netscape Navigator without
scrollbars being visible, you will need to create a <LAYER> and scroll that.

Q This leads to a further complication in that the vertical scroll value moves the content in the opposite
direction in MSIE and Netscape Navigator as it is incremented.

BODY.tabindex (Property)

An integer that represents the position of this document in the tabbing order.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: = myBODY . tabIndex

This value indicates where in the tabbing sequence this object and any of its children will be
placed. The tabbing order is used when filling in forms. Pressing the [tab] key moves from one form
element to the next according to the cascaded tabbing order defined by building a tree-like
structure with the tab index values.

214

B — BODY.text (Property)

BODY.text (Property)

The color of body text within the page.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myBODY . text

This value controls the foreground text in the document body. You should use the normal color
values to define the required color.

This is the default text color for the document. It corresponds to the TEXT attribute in the <BODY> tag.

Default foreground text is colored according to this setting unless it is in an <A> tag when the
alinkColor, linkColor and vlinkColor properties override it. The foreground text color can
be changed inline with the HTML tag attribute.

Now that the style control facilities are more sophisticated, this tag attribute is likely to fall
into disuse.

Note also that its property name is not consistent with its counterpart, the document . fgColor
property whose value it reflects.

BODY.aLink, BODY.link, BODY.vLink, Colornames,
Color value, Document.alinkColor,

Document .bgColor, Document.fgColor,
Document.linkColor, Document.vlinkColor, HTML
object

See also:

BODY.topMargin (Property)

A margin value at the top of the document window.

Availability: JScript - 3.0
Internet Explorer — 4.0

Property/method value type: Number primitive

JavaScript syntax: IE NSO s B g

Normally, you would not need to specify this property. It allows the document to have some clear space
at the top so for example the content could be made to scroll completely off the screen when it is loaded.

The distance is measured in pixels and can range from zero (which is the default) to any reasonably
sensible value. Making it any bigger than the screen size is pointless.

This corresponds to the style.marginTop property and the margin-top attribute that is
defined in a style sheet.

215

JavaScript Programmer's Reference

Warnings:
O Note that the default values are platform-dependant and although it is only a couple of pixels
difference it can throw off the layout of a page significantly if you make the wrong assumption.

See also: BODY.bottomMargin

BODY.vLink (Property)

The color of visited links within the page.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: = myBODY .vLink

This value controls the text of visited links in the document body. You should use the normal color
values to define the required color.

This corresponds to the VLINK attribute in the <BODY> tag.
Now that the style control facilities are more sophisticated, this tag attribute is likely to fall into disuse.

Note also that its property name is not consistent with its counterpart, the
document .vlinkColor property whose value it reflects.

BODY.aLink, BODY link, BODY.text, Document.alinkColor,
Document.bgColor, Document.fgColor, Document.linkColor,
Document.vlinkColor, HTML object

See also:

Bookmarklets (Advice)

A means of storing fragments of JavaScript for execution as bookmarks.

Creating a javascript: URL with some attached JavaScript code and storing it in the bookmarks
or favorites of your browser is a way of setting up some really useful debugging tools. It seems to
work in most browsers, although some have a size limit on the URL that you can use.

JavaScript Bookmark URLs, JavaScript interactive URL,
javascript: URL

See also:

216

B — Boolean (Primitive value)

Boolean (Primitive value)
A built-in primitive value.
Availability: ECMAScript edition — 2

Property/method value type: Boolean primitive

A Boolean value is a member of the Boolean type and may have one of two unique values, either
trueor false.

In some languages the values true and false also equate to numeric values. False is commonly 0
and true any non-zero value. In JavaScript this is not the case. The value false does not test equal
against zero. However, a false Boolean value does become zero when converted to a number.

If you create a Boolean object and set it to the value true, you cannot convert it to a number with
the toNumber () method, because this generates a run-time error. However, you can coerce the

Boolean value into a numeric value by preceding it with a unary plus sign. So +true is a numeric
primitive and yields the value 1, while false is converted to zero.

See also: false, JavaScript to Java values, true

Cross-references:
ECMA 262 edition 2 — section — 4.3.13

ECMA 262 edition 3 — section — 4.3.13

Wrox Instant JavaScript — page — 14

boolean (Reserved word)

Reserved for future language enhancements.
The boolean keyword represents both a Java data type and the native Boolean primitive data type

in JavaScript. This suggests some potential extensions of JavaScript interfaces to access Java applet
parameters and return values.

See also: java.lang.Boolean, LiveConnect, Reserved word

Cross-references:
ECMA 262 edition 2 — section —7.4.3

ECMA 262 edition 3 — section —7.5.3

217

JavaScript Programmer's Reference

Boolean (Type)

A native built-in type.

Availability: ECMAScript edition — 2

Property/method value type: Boolean primitive

Any object or expression that yields a result of type Boolean represents a logical entity.
Logical entities can only represent the true or false states.

These are useful as flags or conditional switches in your script.

See also: Data Type, false, Fundamental data type, true, Type

Cross-references:
ECMA 262 edition 2 — section —4.3.14

ECMA 262 edition 2 — section — 8.3
ECMA 262 edition 3 — section — 4.3.14
ECMA 262 edition 3 — section — 8.3

O'Reilly JavaScript Definitive Guide — page — 41

Boolean literal (Primitive value)

A literal constant whose type is a built-in primitive value.

Availability: ECMAScript edition — 2

Property/method value type: Boolean primitive

Boolean literals specify constant values for the true and false values used in relational
expressions and are the only two values a Boolean primitive or object can resolve to.

Cren false, Implicit conversion, Literal, Token, true

Cross-references:
ECMA 262 edition 2 — section —7.7.2

ECMA 262 edition 3 — section — 7.8.2

218

B — Boolean object (Object/core)

Boolean object (Object/core)

An object of the class "Boolean".

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Netscape Enterprise Server — 2.0

Availability:

Opera - 3.0
. - Bool = Bool Val
JavaScript syntax: st coteanvaiue
= myBoolean = new Boolean/()
- myBoolean = new Boolean (aValue)
A L BooleanValue A Boolean value (either true or false)
rgument List .
9 avalue A value to be converted to a Boolean object.
Object properties: constructor, prototype
Object methods: toSource (), toString(),valueOf ()

An instance of the class "Boolean" is created by using the new operator on the Boolean ()
constructor. The new object adopts the behavior of the built-in Boolean prototype object through
the prototype-inheritance mechanisms.

All properties and methods of the prototype are available as if they were part of the new instance.

A Boolean object is a member of the type Object and is an instance of the built-in Boolean object.

Cloning the built-in Boolean object creates Boolean objects. This is done by calling the
Boolean () constructor with the new operator. For example:

myBoolean = new Boolean(true) ;

A Boolean object can be coerced into a Boolean value and can be used anywhere that a Boolean
value would be expected.

Programmers familiar with object-oriented techniques may be happy to use the Boolean object,
while procedural language programmers may prefer to implement the same functionality with a

Boolean value instead.

This is an example of the flexibility of JavaScript in its ability to accommodate a variety of users
from different backgrounds.

The prototype for the Boolean prototype object is the Object prototype object.

Boolean. prototype, Native object, Object object, unwatch (),

ee also:
S watch ()

219

JavaScript Programmer's Reference

Property JavaScript JScript N IE Opera NES ECMA Notes
constructor 1.1+ 3.0+ 3.0+ 4.0+ - - 2 + -
prototype 1.1+ 3.0+ 3.0+ 4.0+ 3.0+ 20+ 2+ -
Method JavaScript JScript N IE Opera NES ECMA Notes
toSource () 1.3 + - 406+ - 3.0+ = = =
toString() 1.1+ 3.0 + 3.0+ 4.0+ 3.0+ 20+ 2+ -
valueOf () 1.1+ 3.0+ 3.0+ 4.0+ - - 2+ -

Cross-references:
ECMA 262 edition 2 — section —4.3.15

ECMA 262 edition 2 — section — 10.1.5
ECMA 262 edition 2 — section — 15.6
ECMA 262 edition 3 — section — 4.3.15

ECMA 262 edition 3 — section — 15.6

Boolean() (Constructor)

A Boolean object constructor.

ECMAScript edition — 2

Availability:
JavaScript — 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape — 3.0
Property/method value type: Boolean object

- new Boolean ()

JavaScrlpt SRS - new Boolean (aValue)

Argument list: avValue A value to be converted to a Boolean object.

The Boolean () constructor is used to manufacture new instances of the built-in Boolean object.

When the Boolean () constructor is called by the new operator, it initializes a brand new Boolean
object instance.

The value of the new Boolean object instance is the same as the Boolean value yielded by the type
conversion of the Boolean () constructor's parameter.

220

B — Boolean() (Constructor)

Value: Result:

No value Always false

undefined Always false

null Always false

Boolean No conversion, the input value is returned unchanged

Number The result is false if the argument is 0 or NaN, otherwise it is true
String Zero length strings return false otherwise the resultis true
Object Always true

The result of calling the constructor is a Boolean object whose value is true or false depending
on the input value. If the value-input parameter is omitted, then a Boolean object with value
false is returned by default.

Warnings:

QO Note that unlike the Object () constructor, which can be called without its parentheses, calling the
Boolean () constructor without parentheses yields an uninitialized object.

Q Note also that using Boolean objects in conditional code is prone to risks due to the fact that all
objects yield a Boolean true value when tested in logical expressions. This includes Boolean
objects whose present value is false.

Constructor function, constructor property, Global objectnew,

See also: . X
Object constant, Object ()

Cross-references:
ECMA 262 edition 2 — section — 15.1.3.5

ECMA 262 edition 2 — section — 15.6.1
ECMA 262 edition 2 — section — 15.6.2
ECMA 262 edition 2 — section — 15.6.3
ECMA 262 edition 2 — section — 15.6.3.1

ECMA 262 edition 3 — section — 15.6.2

221

JavaScript Programmer's Reference

Boolean() (Function)

A Boolean object constructor.

Availability:

Property/method value type:
JavaScript syntax:

Argument list:

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0
Netscape - 3.0

Boolean primitive

- Boolean()

- Boolean (aValue)

aValue A value to be converted to a Boolean result

When the Boolean () constructor is called as a function, it performs a type conversion on the
value that is passed to it as a parameter.

The following results are yielded by the Boolean () constructor function:

Value:

No value
undefined

null

Boolean false
Boolean true
NAN

0

Non zero number
Zero length string ""
Non zero length string
Object

Result:

false
false
false
false
true

false
false
true

false
true

true

The result will be true or false depending on the parameter's value. If the parameter value is
omitted, then false is returned by default.

See also:

Cross-references:

Cast operator, Constructor function, constructor property,
Implicit conversion, Type conversion

ECMA 262 edition 2 — section — 15.1.3.5

ECMA 262 edition 2 — section — 15.6.1

ECMA 262 edition 2 — section — 15.6.2

ECMA 262 edition 2 — section — 15.6.3

ECMA 262 edition 3 — section — 15.6.1

222

B - Boolean.Class (Property/internal)

Boolean.Class (Property/internal)

Internal property that returns an object class.
Availability: ECMAScript edition — 2

This is an internal property that describes the class that an instance of a Boolean object is a
member of. The reserved words suggest that this property may be externalized in the future.

See also: Boolean.constructor, Class

Property attributes:

DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 — section — 15.6.4

Boolean.constructor (Property)

A reference to the constructor for the boolean object.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape — 3.0
Property/method value type: Boolean constructor
JavaScript syntax: - myBoolean.constructor

The constructor referenced by this property is that of the built-in Boolean prototype object.

You can use this referenced constructor as one way of creating Boolean objects, although it is
more popular to use the new Boolean () technique. This property is especially useful if you have
an object that you want to clone, but you don't know what sort of object it is. Simply use the
property to access the constructor belonging to the object you have a reference to.

Netscape provides constructors for many objects, virtually all of them in fact, even when it is

highly inappropriate to do so. MSIE is far more selective, so there are some occasions when you
might wish for a constructor that MSIE does not make available.

See also: Boolean.Class, Boolean.prototype

223

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 2 — section — 15.6.1

ECMA 262 edition 2 — section — 15.6.2
ECMA 262 edition 2 — section — 15.6.3

ECMA 262 edition 3 — section — 15.6.2

Boolean.prototype (Property)

The prototype for the Boolean object that can be used to extend the interface for all Boolean objects.

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Netscape Enterprise Server — 2.0
Opera-3.0

Availability:

Property/method value type: Boolean object

- Boolean.prototype

avaScript syntax:
J S ptsy o myBoolean.constructor.prototype

The initial value of the prototype of a Boolean object is the built-in Boolean prototype object.

The example demonstrates how to provide extensions to all instances of this class by adding a
function to the prototype object.

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<SCRIPT>

// Define a function that extends the output capabilities of Boolean objects
function yesNo ()

{

if (this == true)

{

return "The switch is ON";

}

else

{

return "The switch is OFF";

}

}

// Register the new function
Boolean.prototype.yesNo = yesNo;

224

B — Boolean.toSource() (Method)

// Create a Boolean object and test the Boolean.yesNo () method
myBoolean = new Boolean(true) ;

document .write (myBoolean.yesNo ())

document .write ("
")

myBoolean = !myBoolean;

document .write (myBoolean.yesNo ())

document .write ("
")

</SCRIPT>

</BODY>

</HTML>

See also: Boolean object,Boolean.
constructor,Boolean.toSource(),
Boolean.toString(),Boolean.valueOf (), prototype
property, Boolean.prototype

Cross-references:
ECMA 262 edition 2 — section — 15.2.3.1

ECMA 262 edition 2 — section — 15.6.3.1
ECMA 262 edition 3 — section — 15.6.3.1

Boolean.toSource() (Method)

Returns a Boolean object formatted as a Boolean literal contained in a string.

Availability: JavaScript 1.3
Netscape —4.06
Opera-3.0
Property/method value type: String primitive
JavaScript syntax: N myBoolean.toSource ()

This is an alternative way to retrieve a string version of a Boolean value. In this case, it is formatted
as a Boolean literal and can then be used in an eval () function to assign another Boolean.

If you run the example below, it should yield this as a result:

(new Boolean (true))
However, you should note that this is not supported by MSIE browsers.

The result of calling this method is a string version of the Boolean formatted as a Boolean literal.

Example code:

// Create a boolean and then examine its source
myBoolean = new Boolean (true) ;
document .write (myBoolean.toSource()) ;

See also: Boolean.prototype, Boolean.toString ()

225

JavaScript Programmer's Reference

Boolean.toString() (Method)

Returns a string primitive version of an object.

ECMAScript edition — 2
JavaScript - 1.1

JScript - 3.0

Internet Explorer — 4.0

Netscape - 3.0

Netscape Enterprise Server — 2.0
Opera -3.0

Availability:

Property/method value type: String primitive

JavaScript syntax: - myBoolean.toString ()

The value of the object is converted to a string that represents its Boolean value.

Boolean.prototype, Boolean. toSource (), Cast operator,

See also: X
toString ()

Cross-references:
ECMA 262 edition 2 — section — 15.6.4.2

ECMA 262 edition 3 — section — 15.6.4.2

Boolean.valueOf() (Method)

Returns the primitive value of the Boolean object.

ECMAScript edition — 2

Availability:
JavaScript - 1.1
JScript - 3.0
Internet Explorer — 4.0
Netscape - 3.0
Property/method value type: Boolean primitive
JavaScript syntax: = myBoolean.valueOf ()

The Boolean object is converted to a Boolean primitive and returned to the caller.

See also: Boolean.prototype, Cast operator, valueOf ()

226

B - BR object (Object/HTML)

Cross-references:
ECMA 262 edition 2 — section — 15.6.4.3

ECMA 262 edition 3 — section — 15.6.4.3

BR object (Object/HTML)

An object that represents the
 HTML tag.

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

Availability:

Inherits from: Element object

JavaScript syntax: IE myBR = myDocument.all.anElementID
1IE myBR = myDocument.all.tags ("BR") [anIndex]

1E myBR = myDocument.all [aName]

= myBR = myDocument.getElementById (anElementID)

= myBR = myDocument.getElementsByName
(aName) [anIndex]

- myBR = myDocument.getElementsByTagName

("BR") [anIndex]
HTML syntax:

anIndex A valid index reference to an item in the collection
Argument list: aName The name attribute of an element
anElementID The ID attribute of an element
Object properties: clear

onClick, onDblClick, onHelp, onKeyDown, onKeyPress,
Event handlers: onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp

This object represents a line break in the text. There are very few appearance-modifying properties
you could apply to such an object.

The
 tag is a block-level tag. That means that it forces a line break before and after itself.

See also: Element object
Property JavaScript JScript N IE Opera DOM HTML Notes
clear 1.5+ 3.0+ 60+ 40+ - 1+ - -

227

JavaScript Programmer's Reference

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 4.0+ Warning
onDblClick 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 4.0+ Warning
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0 + Warning
onKeyPress 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0 + Warning
onKeyUp 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0 + Warning
onMouseDown 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
onMouseMove 15+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseOut 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
onMouseOver 15+ 3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
onMouseUp 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0+ Warning

Inheritance chain:

Element object, Node object

BR.clear (Property)

An property that controls how the browser treats the following paragraph alignment.

Availability: ﬁgi\gclrel\;fl_ —115
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

Property/method value type: String primitive

JavaScript syntax: = myBR.clear

The value of this property controls the way that text flows around inline images and other block-level
objects. How this works will depend on how the object is fixed to either the left or right page border.

This property can contain any of the following values, or may simply contain an empty string:

a all
a left

Q right

Additional accessor methods are defined in the DOM standard, but are yet to be implemented.
Since this property is read /write accessible, they are largely unnecessary.

228

B — Braces { } (Delimiter)

Braces { } (Delimiter)

A delimiting token for a block of executable script.

Availability: ECMAScript edition — 2

See also: if(...) ..., if(...) ... else ..., Codeblock delimiter {}

Cross-references:
ECMA 262 edition 2 — section — 12.5

ECMA 262 edition 3 — section — 12.1

break (Statement)

Exit unconditionally from a loop or switch.

ECMAScript edition — 2
JavaScript - 1.1

JScript - 1.0

Internet Explorer — 3.02
Netscape — 3.0

Netscape Enterprise Server — 2.0

Availability:

Opera-3.0
J S - break aLabelName;
avaScript syntax:
ptsy - break;
Argument list: aLabelName The name of a label associated with some code

The break keyword is a 'jump' statement. It is used in an loop to abort the current cycle and exit
from the smallest enclosing loop immediately. Execution continues at the line following the
statement block associated with the loop.

A break statement can only legally exist inside a while or for loop in an ECMA-compliant
implementation. Implementations that provide additional iterator types may also honor the same
behavior for the break statement.

The break statement would normally be executed conditionally, otherwise it would cause the
remaining lines in the loop to be redundant, since no execution flow would ever reach them.
Compilers generally warn you about this, but JavaScript would simply ignore it.

At version 1.2 of JavaScript, the break statement was enhanced to support a label as a breaking
destination. When the break is processed, it will jump to the end of the statement that has been
labeled. If an iterator is labeled, then the break is associated with that iterator. This mechanism
works like a 'goto’. It can work with an i f block and with a labeled block of brace delimited code.

See also: Completlor} type,continue,for(...) ..., for(... in ...)
. . ., Iteration statement,Jump statement, Label,return, Scope
chain,Statement, switch(...) ... case: ... default: ...,
while(...)

229

JavaScript Programmer's Reference

Cross-references:
ECMA 262 edition 2 — section — 10.1.4

ECMA 262 edition 2 — section — 12.8
ECMA 262 edition 3 — section — 10.1.4
ECMA 262 edition 3 — section — 12.8

Wrox Instant JavaScript — page — 25

Broken-down time (Definition)

Time disassembled into component parts, for example hours or minutes.

Broken-down time is handled with a time structure in the C language. Breaking down a time value
in that context can require several lines of code. However, JavaScript provides the Date object
class, which supports methods for accessing the separate time and date components.

The following time components are available:

Year number

Month in year

Date within month
Day of week

Hour within day
Minute within hour
Second within minute

Millisecond within second

0O 0 0 U U0 0 0 O

Time of day in milliseconds
These values are available measured in either local time or UTC time.

There are also facilities to convert back and forth between local time and UTC time.

Calendar time, Date and time, Date from time, Date number, Date object,
Day from year, Day number,Day within year, Daylight savings time
adjustment, Days in year, Local time, Local time zone adjustment, Locale-
specific behavior, Time from year, Time range, Time value, Time within
day,TimeClip (), Universal coordinated time, Year from time, Year
number

See also:

230

B — Browser (Object model)

Browser (Object model)

The collection of objects that a browser manages.

Refer to:

Document

Browser detection (Advice)

Browser detection techniques require some review in the light of recent browser upgrades.

Browser-detection techniques have been in use ever since the MSIE version 3 browser was
launched. Since the features of this browser differed from others, it became necessary to determine
what browser was being used to establish the features actually available.

The subject of browser detection is now extremely complex, with a wide variety of browsers. The
technique of simply distinguishing between Netscape and MSIE is no longer sufficient. This is even
more of an issue now that Netscape version 6.0 is shipping.

This Netscape version 6.0 browser was developed around a completely new source code base.
Having started completely afresh, Netscape has not implemented any unnecessary legacy features
and instead has pursued a strictly standards based approach. The most noticeable effect of this is
the complete lack of support for layers.

The reason why this is such a big problem is that in the past we might typically have written a
short script to determine whether we were running Netscape or MSIE, and coded accordingly. The
first example shows how we would have done this using a classical detection technique.

However, now we have millions of web pages using this technique that also use layers. They will
detect Netscape 6.0 and return a value saying "OK it's Netscape, so use the Netscape layers code
alternative". This is going to break a lot of pages.

We now need something that tells us whether a particular feature is available rather than a
particular browser. The second example is a skeleton of how we might do that. It adds a member
object called isAvailable to the global object, that can have additional properties added as we
need to extend it. In this example, it simply provides access to whether layers are available or not.
It provides for three possible cases:

Q NO - Layers are not available and no alternative simulation is possible
Q DIV - Layers are not available, use <DIV> blocks and CSS positioning
Q YES - Layers are available

So now we can build some code to exploit this using a switch statement thus:

isAvailable() ;
switch(isAvailable.Layers)
{
case "YES"
// Call the layer programmed version of our page
break;
case "DIV"
// Call the <DIV> simulated layers version of the page

231

JavaScript Programmer's Reference

break;
case "NO"
// Fall back to the legacy browser, no layers page
break;
default:
// Unexpected condition handled here
break;

}

Because we need to know what browser and version the code is being run on to determine simulation
capabilities, those get set as member properties of the isAvailable object.

Later you could add capabilities to access the DOM feature-detection mechanisms so that all these
related feature-detection facilities are in a single reusable code block.

Note that the appVersion value picks up the Mozilla/X.YY value and uses that. This means that
MSIE 5 reports an appVersion of 4 and Netscape version 6.0 reports an appVersion of 5, which
is odd to say the least. You can do a bit more work to parse out the correct version numbers from
the remainder of the user agent string or access special values that are platform dependant within a
fragment of code that is selected on a per platform basis.

Example code:

<SCRIPT>

// Classic browser detection returning browser types
// and versions

function getBrowserType ()

{

var myUserAgent;

var myMajor;

myUserAgent = navigator.userAgent.toLowerCase () ;
myMajor = parselnt (navigator.appVersion) ;
if((myUserAgent.indexOf ('mozilla') 1= -1) &&
(myUserAgent . indexOf ('spoofer') == -1) &&
(myUserAgent .indexOf ('compatible') == -1) &&
(myUserAgent . indexOf ('opera') == -1) &&
(myUserAgent . indexOf ('webtv') == -1)

)

{

if (myMajor > 4)

{

return "navé6";

}

if (myMajor > 3)

{

return "nav4d";

}

return "nav";

}

if (myUserAgent.indexOf ("msie") != -1)

if (myMajor > 4)
ieturn "ie5";
if (myMajor > 3)
éeturn "ied";
ieturn "ie";
ieturn "other";

}

232

B — Browser version compatibility (Advice)

</SCRIPT>

<SCRIPT>

isAvailable() ;

document .write("Browser family : " + isAvailable.Browser + "
");
document .write ("Browser version : " + isAvailable.Version + "
");
document .write ("Layer support : " + isAvailable.Layers + "
");

// Modern extensible browser feature detection
// Becomes a member property of the global object
function isAvailable()

{
// Get user agent stuff
var myUserAgent = navigator.userAgent.toLowerCase () ;

// Set initial conditions
isAvailable.Browser = "OTHER";
// Check for navigator

if ((myUserAgent.indexOf ('mozilla') 1= -1) &&
(myUserAgent . indexOf (' spoofer') == -1) &&
(myUserAgent . indexOf ('compatible') == -1) &&
(myUserAgent . indexOf (' opera') == -1) &&
(myUserAgent . indexOf ('webtv') == -1)

)

isAvailable.Browser = "NAV";
}
// Check for MSIE

if (myUserAgent.indexOf ("msie") != -1)
{
isAvailable.Browser = "MSIE";

}

// Store major version number from leading Moziilla/X.YY
// Portion of user agent string

isAvailable.Version = parselnt (navigator.appVersion) ;

// Work out if layers available
if (document.layers)

{

isAvailable.Layers = "YES";

}

else

if ((isAvailable.Browser = "MSIE") && (isAvailable.Version > 3) ||
(isAvailable.Browser = "NAV") && (isAvailable.Version > 4))
{

isAvailable.Layers = "DIV";

}

else

{

isAvailable.Layers = "NO";

}

}

}

// For further investigation look at the MSIE script engine version and build
number properties and map them to features.

</SCRIPT>

Browser version compatibility (Advice)

Browser upgrades are not always upwardly compatible.

It is fairly obvious that as browsers are improved, new features will be added. This suggests that
you might upgrade and begin to exploit those new features. At the next browser upgrade, these
features should still be available, while yet more are introduced. This is called upwards
compatibility. This is generally no problem.

233

JavaScript Programmer's Reference

Downwards compatibility, where code using features in a later browser does not cause errors in an
earlier browser, is a little more difficult to provide. HTML has good downwards compatibility due
mainly to the fact that if a tag is unrecognized, it is simply ignored. That means web pages
containing new features simply display any contained text inside the unrecognized block as if the
unsupported tag did not exist.

This may be easy to manage with HTML, but is not feasible with a scripting language because you
can't expect the browser simply not to execute a line of script. However, you can code defensively
in such a way that your scripts may be downwards compatible.

To code defensively means to check for the existence of a feature before using it, and also to check
that objects are defined before trying to modify their properties. You can check the version of the
browser and switch various features of your scripts on and off accordingly.

With a little thought and planning, you can design your script so that it degrades graceful if it is
run on less capable browser versions than that for which you originally designed it.

The differences between browsers are now so complex and so diverse that it is difficult to
encompass them all in a single reference source. This book is structured to allow it to be revised on
a component-by-component basis so that where browsers differ from one another, the granularity
of the book is approximately the same and can track those differences as they become known.

The differences between the browsers may change in very subtle ways even with minor browser
version changes. We concentrate on the differences between major versions and use annotations to
cover important differences between minor browser versions.

Any feedback or observations you care to submit will be welcomed, tested, and added to the future
editions of the book.

Good workaround techniques involve innovative use of scripts to create your own properties and
methods to emulate missing functionality. For example, the window.opener property is not
available on all versions of Netscape. You could create a property of your own that refers to the
parent window when a new window object is created. If that property is always present and
created under script control, then you can use that property rather than the one that may or may
not be present in the built-in object model. This is generally more robust, but may not exploit the
very latest features of the available browsers.

See also: Compatibility, Date object, Defensive coding, Internet Explorer, Window . opener

Browser wars (Definition)

The contest between browser manufacturers to gain dominance in the market.

As this is being written, it is clear that Microsoft has won the war of the browsers — for now at least.
The Netscape browser has lost market share, to the extent that it is fast becoming a minority browser.

This poses an interesting situation, in that Microsoft has sufficient market share that it can perhaps
reduce the effort that it puts into browser support.

Actually, it is at such a time that it should put even more resources into it. That is because, now
that it is so dominant, it should be obliged to make sure its browser is supported identically on
every platform it is available on, and make it available on any remaining platforms.

234

B - btoa() (Method)

Whether it will do this is open to question as it could detract from its dominance of the operating
system marketplace.

This conflict of interests is potentially damaging for the end-user and the web developer.

Right at this moment, there is a significant proportion of the feature set in MSIE that is not
supported on platforms other than Windows.

Granted, it is acceptable that COM and ActiveX cannot easily be provided on non-Windows
platforms, but the CSS support should be identical, as should the integration with clipboards and
other parts of the OS where it is possible.

Netscape 6.0 has just been released in its final form as this is being written. The new version is so
radically different as to classify it as being a different browser. Its internal document model follows
the DOM specification very closely. Netscape had adhered to the DOM specified class names where
Microsoft has not, even though it has constructed a DOM representative object model in the browser.

Maybe Netscape can win back some proportion of the users it has lost to Microsoft in the last few

years. However, there is still much to be done to correct some shortcomings in the released quality
of the new Netscape browser.

btoa() (Method)

Used to encode some data into base-64 form.

JavaScript — 1.2

Availability:
Netscape — 4.0
Property/method value type: String primitive
S N btoa(aBinaryString)
avaScript syntax:
J cript synta N myWindow.btoa (aBinaryString)
Argument list: aBinaryString A string of binary data to be encoded
See also: Window.atob (), Window.btoa ()

Built-in function (Definition)

Functions that are part of the core JavaScript implementation.
Availability: ECMAScript edition — 2

Built-in functions are implemented as Function objects.

235

JavaScript Programmer's Reference

Examples of built-in functions are parseInt () and Math.exp (). These are functions provided by
the Global object and the Math object respectively. They may be referred to as built-in methods in
some documentation.

None of the built-in functions implement the internal Construct () method and therefore they
cannot be used with the new operator to create another instantiation.

Generally, none of the built-in functions will have a prototype property, but since they cannot be
instantiated this should not cause any problems.

Built-in function objects have a length property whose value is an integer. This generally
indicates the number of arguments the function expects to be supplied with. Sometimes functions
may be supplied with optional arguments. The length value returns the maximum number of
arguments that are expected. The length property of a built-in function has the Readonly,
DontDelete and DontEnum attributes set for it.

Generally, all the other properties of a built-in function have the DontEnum attribute set.

See also: Function object,Native object

Cross-references:
ECMA 262 edition 2 — section — 15

ECMA 262 edition 3 — section — 15

Built-in method (Definition)

Object methods that are provided as part of the base JavaScript implementation.

Refer to:

Built-in function

Built-in object (Definition)

Objects that are part of the core JavaScript implementation.
Availability: ECMAScript edition — 2

A built-in object is provided by the core interpreter independently of the host environment.

Built-in objects are available at the outset of script execution and do not need to be created. They
are all native objects. Additional built-in objects may be added by the implementation over and
above those specified by the core functionality in the language specification.

See also: Native object

236

B — Button object (Object/DOM)

Cross-references:
ECMA 262 edition 2 — section —4.3.7

ECMA 262 edition 3 — section — 4.3.7

Button object (Object/DOM)

An object representing an <INPUT TYPE="button">; HTML button in a form.

DOM level -1
JavaScript — 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0
Opera-3.0

Availability:

Inherits from: Input object

JavaScript syntax- myButton = myDocument.aFormName.anElementName

= myButton = myDocument.aFormName.elements
[anItemIndex]

1IE myButton = myDocument.all.anElementID
1E myButton = myDocument.all.tags ("INPUT") [anIndex]
1E myButton = myDocument.all [aName]

= myButton = myDocument.forms[aFormIndex] .
anElementName

= myButton = myDocument.forms[aFormIndex] .
elements[anItemIndex]

= myButton = myDocument.getElementById (anElementID)

- myButton = myDocument.getElementsByName
(aName) [anIndex]

= myButton = myDocument.getElementsByTagName
("INPUT") [anIndex]

HTML syntax: <INPUT TYPE="button">
Argument list: anItemIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
aFormIndex A reference to a single form in the forms collection
anIndex A valid reference to an item in the collection
Object properties: type, value
Object methods: handleEvent ()

onAfterUpdate, onBeforeUpdate,onBlur, onClick, onDblClick,
onErrorUpdate, onFilterChange, onFocus,onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onRowEnter, onRowExit

Event handlers:

237

JavaScript Programmer's Reference

Many properties, methods and event handlers for this object are inherited from the Input object
class. Refer to topics grouped with the "Input” prefix for details of common functionality across all
sub-classes of the Input object super-class.

There isn't really a But ton object class in Netscape, but it is helpful when trying to understand the
wide variety of input element types if we can reduce the complexity by discussing only the properties
and methods of a button. In actual fact, the object is represented as an item of the Input object class.

In MSIE, there is a special BUTTON class that is used to represent a <BUTTON> tag. It is documented
separately in its own topics. The But ton object is the correct spelling for a DOM level 1 compliant
implementation.

Event handling support via properties containing function objects was added to But ton objects at
version 1.1 of JavaScript.

Warnings:

0 Note that on MSIE, Input objects are actually INPUT objects, because MSIE follows a general rule of
naming object classes after the capitalized name of the HTML tag that instantiates them. However, in
some special cases, MSIE creates other object types. For buttons, it uses the BUTTON class.

0 Netscape does not support the defaultValue property for this sub-class of the Input object.

Element Object, Element.isTextEdit, Form.elements]([],

See also: A)

FormElement object, Input object, Input .accessKey,

onClick, TextRange object
Property JavaScript JScript N IE Opera DOM HTML Notes
type 1.1+ 1.0 + 30+ 3.02+ 30+ 1+ - ReadOnly
value 1.0 + 1.0 + 20+ 3.02+ 30+ 1+ - Warning
Method JavaScript JScript N IE Opera DOM HTML Notes
handleEvent () 1.2 + = 40+ - = 5 - -
Event name JavaScript JScript N IE Opera DOM HTML Notes
onAfterUpdate - 3.0 + = 4.0 + - - - -
onBeforeUpdate - 3.0 + = 4.0 + - - - -
onBlur 1.1+ 3.0+ 30+ 40+ 3.0+ - - Warning
onClick 1.0 + 3.0+ 20+ 4.0+ 30+ = 40+ Warning
onDblClick 1.2 + 3.0+ 40+ 40+ 30+ - 40+ Warning
onErrorUpdate = 3.0 + = 4.0 + = - - -
onFilterChange = 3.0 + = 4.0 + - - - -
onFocus 1.0 + 3.0 + 20+ 40+ 3.0+ = = Warning
onHelp - 3.0+ - 40+ - - - Warning

238

B — Button.handleEvent() (Method)

Event name JavaScript JScript N IE Opera DOM HTML Notes
onKeyDown 1.2 + 3.0+ 40+ 40+ 3.0+ - 40+ Warning
onKeyPress 1.2 + 3.0+ 40+ 40+ 3.0+ - 40+ Warning
onKeyUp 1.2 + 3.0+ 40+ 4.0+ 3.0+ - 4.0+ Warning
onMouseDown 1.2 + 3.0+ 40+ 4.0+ 3.0+ - 4.0+ Warning
onMouseMove 1.2 + 3.0+ 40+ 4.0+ - - 40+ Warning
onMouseOut 1.1+ 3.0+ 3.0+ 4.0+ 3.0+ - 4.0+ Warning
onMouseOver 1.0 + 3.0+ 20+ 40+ 30+ = 40+ Warning
onMouseUp 1.2+ 3.0+ 40+ 40+ 3.0+ - 40+ Warning
onRowEnter - 3.0+ = 4.0 + = - - -
onRowExit = 3.0 + = 4.0+ - - - -

Inheritance chain:

Element object, Input object, Node object
Button.handleEvent() (Method)
Passes an event to the appropriate handler for this object.

JavaScript — 1.2

Availability:
Netscape — 4.0
Property/method value type: undefined
JavaScript syntax: N myResetButton.handleEvent (anEvent)
Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event

dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent ()

239

JavaScript Programmer's Reference

Button.type (Property)

The type value for the object.

Availability: DOk el =1
JavaScript - 1.1
JScript - 1.0
Internet Explorer — 3.02
Netscape - 3.0
Opera-3.0
Property/method value type: String primitive
JavaScript syntax: - myButton. type
HTML syntax: <INPUT TYPE="button">

The value of this property will be "button" when the <INPUT> HTML tag describes a form
Button object.

See also: Input.type

Property attributes:

ReadOnly.

Button.value (Property)

The text string displayed in the button.

DOM level -1
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0
Opera-3.0

Availability:

Property/method value type: String primitive

JavaScript syntax: = myButton.value

The value of a button is also used to place a legend into the button image on screen.

Warnings:

QO This property may be changed on some platforms, but not others.

See also: Input.value

240

B — BUTTON object (Object/HTML)

BUTTON object (Object/HTML)

An object that represents a special MSIE <BUTTON> element.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Object methods:

Event handlers:

DOM level -1
JavaScript - 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

Element object

IE myBUTTON = myDocument.all.anElementID

IE myBUTTON = myDocument.all.tags ("BUTTON") [anIndex]
IE myBUTTON = myDocument.all[aName]

= myBUTTON = myDocument.getElementById (anElementID)

= myBUTTON = myDocument.getElementsByName
(aName) [anIndex]

= myBUTTON = myDocument.getElementsByTagName
("BUTTON") [anIndex]

<BUTTON> ... </BUTTON>

anIndex A valid reference to an item in the collection
aName The NAME attribute of an element
anElementID The ID attribute of an element

accept,accessKey,alt,dataFld, dataFormatAs,dataSrc,
formmname, status, tabIndex, type, value

createTextRange ()

onAfterUpdate, onBeforeUpdate, onBlur, onClick, onDblClick,
onDragStart, onFilterChange, onFocus, onHelp, onKeyDown,
onKeyPress, onKeyUp, onMouseDown, onMouseMove, onMouseOut,
onMouseOver, onMouseUp, onResize,onRowEnter,
onRowExit,onSelectStart

This is an additional kind of button object, over and above that provided for the <INPUT

TYPE="Button"> tag.

Warnings:

Q This object is not the same as a But ton object, which is a convenience class that is really instantiated
as an Input object. Netscape only supports But ton (Input) objects and does not support BUTTON
objects. MSIE supports both. The properties of each type of button object are different.

See also:

Element object, Element.isTextEdit, Form.elements][],
FormElement object,Input object, Input.accessKey,
onClick,TextRange object

241

JavaScript Programmer's Reference

Property JavaScript JScript N IE Opera DOM HTML Notes
accept = 5.0+ = 80 +] = = = Warning
accessKey 1.5+ 3.0+ 60+ 40+ - 1+ - Warning
alt - 3.0+ - 40+ - - - -
datarld 1.5+ 3.0+ 6.0+ 40+ - 1+ - Warning
dataFormatAs 1.5+ 3.0+ 60+ 40+ - 1+ - Warning
dataSrc 1.5+ 3.0+ 6.0+ 40+ - 1+ - Warning
form 1.5+ 3.0+ 6.0+ 4.0+ - 1+ - Warning
name 1.5+ 3.0+ 6.0+ 40+ - 1+ = =
status 1.5+ 3.0+ 60+ 40+ - 1+ - Warning
tabIndex 1.5+ 3.0+ 60+ 4.0+ - 1+ - Warning
type 1.5+ 3.0+ 60+ 4.0+ - 1+ - ReadOnly
value 1.5+ 3.0+ 6.0+ 40+ - 1+ = Warning
Method JavaScript JScript N IE Opera DOM HTML Notes
createTextRange() 15+ 3.0 + 6.0+ 4.0+ - 1+ - Warning
Event name JavaScript JScript N IE Opera DOM HTML Notes
onAfterUpdate - 3.0 + = 4.0+ - - - -
onBeforeUpdate - 3.0+ = 4.0+ - - - -
onBlur 1.5+ 3.0+ 6.0+ 4.0+ - - - Warning
onClick 15+ 3.0 + 6.0+ 40+ - - 40+ Warning
onDblClick 15+ 3.0+ 6.0+ 40+ - - 40+ Warning
onDragStart - 3.0 + - 40+ - - - -
onFilterChange = 3.0 + = 40+ - = = =
onFocus 1.5+ 3.0+ 60+ 40+ - - - Warning
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown 1.5+ 3.0+ 6.0+ 4.0+ - = 40+ Warning
onKeyPress 1.5+ 3.0+ 6.0+ 4.0+ - = 40+ Warning
onKeyUp 1.5+ 3.0 + 6.0+ 40+ - - 4.0 + Warning
onMouseDown 1.5+ 3.0+ 60+ 40+ - - 40+ Warning
onMouseMove 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseOut 1.5+ 3.0+ 60+ 40+ - - 40+ Warning
onMouseOver 1.5+ 3.0+ 60+ 40+ - - 40+ Warning
onMouseUp 1.5+ 3.0+ 60+ 40+ - - 40+ Warning
onResize 15+ 3.0 + 6.0+ 40+ - - - Warning
onRowEnter - 3.0+ - 40+ - - - -
onRowExit = 3.0 + = 4.0+ - - - -
onSelectStart = 3.0+ = 4.0+ - - - -

Inheritance chain:

Element object, Node object

242

B — BUTTON.accept (Property)

BUTTON.accept (Property)

Defines an acceptable MIME type to be submitted to the server. Not supposed to be supported by
the BUTTON class.

S JScript - 5.0
Availability: Internet Explorer — 5.0
Property/method value type: String primitive
JavaScript syntax: 1IE myBUTTON. accept

Refer to the MIME types topic for a list of MIME types to use in this property.

Warnings:

Q This property is inherited, but is not applicable to a BUTTON object.

See also: MIME types

BUTTON.alt (Property)

The tool-tip text for the BUTTON object.

S JScript - 1.0
Availability: Internet Explorer — 3.02
Property/method value type: String primitive
JavaScript syntax: IE myBUTTON.alt

Objects can have an alternative text string associated with them. This is especially useful on
browsers that cannot cope with the tag, in which case they may display the alternative text. If
spoken styles are supported, the text may be read out to the user. Some browsers will also display
the text as a tool-tip if the mouse is positioned over the object and remains static for a few seconds.

BUTTON.name (Property)

This corresponds to the NAME attribute of the <BUTTON> HTML tag.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: = myBUTTON . name

243

JavaScript Programmer's Reference

Objects are identified either by the NAME tag attribute or by the ID tag attribute. MSIE seems
slightly better disposed towards the ID attribute than earlier versions of Netscape. However, in
many cases, both browsers support either technique and in some cases will locate items named
with either attribute as if they existed in a single namespace. Version 6.0 of Netscape may restore
parity with MSIE in this respect.

See also: Input.name

BUTTON.type (Property)

The type of this BUTTON object.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myBUTTON. type

The property should contain one of the following values:

Q button
U reset

Q submit

See also: Input.type

Property attributes:

ReadOnly.

BUTTON.value (Property)

The value of this BUTTON object.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: - myBUTTON.value

The value of a button is also used to place a legend into the button image on screen.

See also: Input.value

244

B — By reference (Definition)

By reference (Definition)

A means of passing data to functions, methods, and property accessors.

Passing a value by reference means that you pass a pointer to the data value. This means that when
you copy the reference to another variable, you then have two variables pointing at the same data.

The data for both is identical. Modifying the data value pointed at by one, changes the value for the
other variable also.

Non-primitive values (Objects) are passed in this manner.

Note that although JavaScript has a good pass-by-reference technique built-in to the
implementation, it does not support pointers as a specific data type as the C language does.

Passing a value by reference into a function allows the function to make changes that are visible
outside the function.

In JavaScript, you cannot manipulate these parameter passing mechanisms. It will choose to pass by
value or by reference according to the data type of the value being put into the argument. This is
often the result of evaluating an expression. JavaScript takes care of all the type conversions for you.

By value (Definition)
A means of passing data to functions, methods, and property accessors.

Passing data by value means that the data itself is stored in the variable. Assigning one variable to
another copies the value.

Changing the value in one variable leaves the other unaffected.
Non-object values (primitives) are generally passed in this manner.

Passing data by value to a function means that the function cannot affect the value outside the
function since it only has a copy of the value to work on.

In JavaScript, you cannot manipulate these parameter passing mechanisms. It will choose to pass by
value or by reference according to the data type of the value being put into the argument. This is
often the result of evaluating an expression. JavaScript takes care of all the type conversions for you.

byte (Reserved word)

Reserved for future language enhancements.

A byte is a set of 8 adjacent binary digits (bits). It is big enough to hold an 8 bit character code,
which will support the subset of 16 bit Unicode characters that most JavaScript users are likely to
need, at least for developing scripts for use with the English language.

The least significant bit is called the low-order bit and the most significant bit is called the high-
order bit. These do not necessarily map one to one to the bits stored in the memory of the
computer, which may be big-endian or little-endian. This is thankfully hidden from the JavaScript
programmer who will need to operate on a standardized IEEE-754 bit pattern when working with
binary values stored in Numeric primitive values.

245

JavaScript Programmer's Reference

The fact that the ECMAScript standard (edition 2) reserves this word for future use, suggests that
some byte level support is expected to be added to the language at some time in the future.

This keyword also represents a Java data type and the byte keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: char,IEEE 754, LiveConnect, Reserved word

Cross-references:
ECMA 262 edition 2 — section —7.4.3

ECMA 262 edition 3 — section —7.5.3

246

-

Calendar time (Definition)

Time values measured according to the Gregorian calendar.

Time values are one of the areas of least portability between languages and systems. Although
many languages make a brave attempt to provide portable facilities, it is rarely indeed that you will
find two systems that can sensibly exchange the binary or internal time values.

You can transfer time values between systems but you'll need to do it like this. First, you will need
to convert from internal time values to some textual representation that can then be scanned and
parsed back into an internal value on the other system. Then transmit the string to the other end
and invoke some local processing there to convert the time value back in its internal form.

There are a variety of names for this internal time value, one of which is Calendar time.

Broken down time, Date and time, Date object, Daylight savings time
adjustment, Local time, Time range, Time value, Universal coordinated time

See also:

Call (Function/internal)

An internal mechanism for executing function calls.
Availability: ECMAScript edition —2

This is the internal mechanism by which functions are implemented.
Objects supporting this method are called functions.

When they are called, they add themselves to the scope chain and any variables subsequently
declared are added to that scope. Hence local objects belong to the function being executed.

Another name for the function being executed is the call object.

JavaScript Programmer's Reference

Warnings:

0 The Global object does not have a Call property and therefore you cannot use it as a function.

See also: Function property, Internal Method, JSObject.call ()

Property attributes:

DontEnum, Internal.

Cross-references:
ECMA 262 edition 2 — section — 8.6.2

ECMA 262 edition 3 — section — 8.6.2

Call a function (Definition)

To invoke a function during script execution.

See also: Call by reference, Call by value, JSObject.call (), Function call

Call by reference (Definition)

Calling functions and passing references to receiving LValues in the arguments.

If you want to modify a value that is passed to a function, you need to pass a reference to it.
Normally you would depend on a function returning a single value.

You can do this by creating an object, passing the object but mutating the values of the object's
properties. This bridges the scope chain because the locally scoped copy refers to the outer
scoped LValue.

This is demonstrated in the example.

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<SCRIPT>

myObject = new Object () ;
myObject.myVar = 22;
callMe (myObject) ;

248

C —Call by value (Definition)

document .write ("
") ;

document .write (myObject.myVar) ;

function callMe (avalue)

{
document .write (avValue.myVar) ;
document .write ("
") ;
avValue.myVar = 100;
document .write (avValue.myVar) ;

}

</SCRIPT>

</BODY>

</HTML>

Call by value (Definition)

Calling functions and passing values in the arguments.

When you call by value, you are passing an immutable constant to a function. The function will
create a copy locally and that copy will be accessible in a locally scoped variable having the name
of the formal parameter.

However, on exit the local value is discarded leaving the original unchanged. It doesn't matter
whether you pass a literal constant value or a variable containing a value. This is easier to
understand if you already have a good grasp of the scope chain mechanism.

The example demonstrates this.

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<SCRIPT>

myVar = 22;

callMe (myVar) ;

document .write ("
") ;

document .write (myVar) ;

function callMe (avValue)

{
document .write (avalue) ;
document .write ("
") ;
avValue = 100;
document .write (avalue) ;

}

</SCRIPT>

</BODY>

</HTML>

See also: Scope chain

249

JavaScript Programmer's Reference

Call object (Object/internal)

The currently executing function is a call object.

Availability: ECMAScript edition — 2

See also: Arguments object, Function scope, Function.arguments[],
JSObject.call(),Call

Cross-references:
ECMA 262 edition 2 — section — 8.6.2

ECMA 262 edition 3 — section — 8.6.2

Call-back event (Definition)

A mechanism for creating frameworks that call user-supplied functions.

See also: Event, JSObject.call (), Plugin events, Event handler

Calling event handlers (Definition)

Event handlers can be called in many different ways.

If you implement an event handler as a function, then you can call it from other functions as needed.
For example, we can build a form validator and associate it with the onSubmit event for the form.

We might want to invoke that validator when something else changes on the page or as a result of
the user clicking on various buttons. Because the submission is still handled by the browser,
invoking the form validation event handler won't submit the form unless it is called as a result an
onSubmit event being triggered.

The form only gets submitted to the server if the form validator returns the correct Boolean flag
value when it is invoked in response to an onSubmit trigger event.

There is another way to submit the form's contents. That is by calling the submit () method
belonging to a Form object. That doesn't trigger an onSubmi t event if it is called within the context
of an onSubmit event handler. You could use this technique if you wanted the form contents to be
submitted by some action other than clicking on a submit button.

See also: Event handler, Event handler properties, Function call

250

C — CanPut() (Function/internal)

CanPut() (Function/internal)

Internal private function.
Availability: ECMAScript edition — 2
This internal function returns a Boolean value to indicate whether the named property can be

changed in the containing object.

If the property is found, the value of its ReadOnly attribute is checked. If it has a ReadOnly
attribute, the result of CanPut () must be false. Otherwise, having found the property, the true
result will be returned.

If the property does not exist in the receiving object, the prototype chain is walked until the
property or a null prototype is encountered. At each inheritance level, the CanPut () function is
used to determine the existence of the property.

If a null prototype is encountered, the result will be true, since the property can then be created in
the original receiving object.

If the prototype is a host object that does not implement the CanPut () function, then false is
returned as a result.

Because the prototype chain is walked extensively by the CanPut () function, if the prototype
chain is not finite and terminated with a null at some stage, a recursive loop is built and the
function never returns.

See also: Internal Method

Property attributes:

Internal.

Cross-references:
ECMA 262 edition 2 — section — 8.6.2.3

ECMA 262 edition 3 — section — 8.6.2.3

CAPTION object (Object/HTML)

An object that represents the <CAPTION> HTML tag, which is used inside a <TABLE>.

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0

Availability:

Inherits from: Element object

251

JavaScript Programmer's Reference

. IE myCAPTION = myDocument.all.anElementID
JavaScript syntax:

IE myCAPTION = myDocument.all.tags ("CAPTION") [anIndex]
IE myCAPTION = myDocument.all[aName]

= myCAPTION = myDocument.getElementById (anElementID)

= myCAPTION =
myDocument .getElementsByName (aName) [anIndex]
- myCAPTION =
myDocument.getElementsByTagName ("CAPTION") [anIndex]
HTML syntax: <CAPTION> ... </CAPTION>
. Ind
Argument list: anlndex A valid reference to an item in the collection
aName The name attribute of an element

anElementID The 1D attribute of an element

Object properties: align,vAlign,align, vAlign

onAfterUpdate, onBeforeUpdate, onBlur, onChange, onClick,
onDblClick, onDragStart, onErrorUpdate, onFilterChange,
onFocus, onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp, onScroll,
onSelect,onSelectStart

Event handlers:

The caption forms an integral part of the table to which it belongs. It needs to be defined inside the
<TABLE> tags.

The DOM level 1 standard describes these objects as TableCaptionElement objects.

Element object, style.captionSide, TABLE object, TABLE.caption,

See also: . -
TABLE.createCaption (), TABLE.deleteCaption ()
Property JavaScript JScript N IE Opera DOM HTML Notes
align 15+ 3.0 + 6.0+ 40+ - 1+ - Warning,
Deprecated
vAlign - 3.0+ - 40+ - - - Warning,
Deprecated
align 1.5+ 3.0 + 6.0+ 40+ - 1+ - Warning,
Deprecated
vAlign - 3.0 + - 40+ - - - Warning,
Deprecated
Event name JavaScript JScript N IE Opera DOM HTML Notes
onAfterUpdate - 3.0 + = 4.0+ - - - -
onBeforeUpdate - 3.0+ = 4.0+ - - - -
onBlur 1.5+ 3.0+ 6.0+ 40+ 30+ - - Warning
onChange 1.5+ 3.0 + 6.0+ 40+ 30+ - - -
onClick 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 4.0+ Warning
onDblClick 1.5+ 3.0+ 60+ 40+ 3.0+ - 4.0+ Warning

Table continued on following page

252

C — CAPTION.align (Property)

Event name

onDragStart

onErrorUpdate

onFilterChange

onFocus
onHelp
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp
onScroll

onSelect

onSelectStart

JavaScript

1.5+

1.5+
1.5+
1.5+
1.5+
1.5+
1.5+
1.5+
1.5+

1.5+

Inheritance chain:

Element object, Node object

CAPTION.align (Property)

The horizontal alignment of the caption with respect to its parent table.

Availability:

Property/method value type:

JavaScript syntax:

JScript N IE Opera DOM HTML Notes
3.0+ - 40+ - - - -

3.0+ - 40+ - - - -

3.0+ - 40+ - - - -

3.0+ 6.0+ 40+ 3.0+ - - Warning
3.0+ - 40+ - - - Warning
3.0+ 6.0+ 40+ 3.0+ - 4.0+ Warning
3.0+ 60+ 40+ 3.0+ - 40+ Warning
3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
3.0+ 60+ 40+ 3.0+ - 40+ Warning
3.0+ 60+ 40+ - - 4.0+ Warning
3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
3.0+ 60+ 40+ 3.0+ - 4.0+ Warning
3.0 + 6.0+ 40+ 3.0+ - 4.0+ Warning
3.0+ - 40+ - - - -

3.0+ 6.0+ 40+ 3.0+ - - -

3.0+ - 40+ - - - -

DOM level -1
JavaScript - 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0
Deprecated

String primitive

myCAPTION.align

The alignment of the CAPTION object with respect to its containing parent table object is defined in
this property. The expected and widely available set of alignment specifiers are available:

]

a
Q
a

absbottom
absmiddle
baseline

bottom

253

JavaScript Programmer's Reference

center
left
middle
right

texttop

0O 0O 00U 0 o

top
These may not all be supported by all browsers.

Note also that this property is deprecated in favor of using style properties such as textAlign and
verticalAlign, which correspond to the style sheet attributes text-align and vertical-align.

Warnings:

0 Browsers may not always render the caption identically. The left and right values in particular
are rendered differently between MSIE and Netscape. MSIE draws the caption at the top and
bottom but takes the left and right as a justification control. Netscape places the caption to the
left or right of the table.

QO Currently MSIE transgresses the rules laid down by the HTML 4.0 standard.

style.captionSide, style.textAlign,
style.verticalAlign

CAPTION.VAIlign (Property)

The vertical alignment of a caption with respect to its parent table.

See also:

Availability: JScript - 3.0
Internet Explorer — 4.0
Deprecated
Property/method value type: String primitive
JavaScript syntax: IE myCAPTION.vAlign

This is only supported by MSIE and is intended to provide for alignment correction, which the
align property handles incorrectly with respect to the HTML 4.0 standard.

This property is basically supported for backwards compatibility.
The vAlign property may be set to these values:

0 bottom

4 top

254

C - captureEvents() (Function)

Warnings:

Q Itis probably wise to use the <CAPTION> tag with discretion and care. You should probably do
some cross-browser testing to ensure its placement is what you intended.

See also: style.captionSide

captureEvents() (Function)

Part of the Netscape 4 event propagation complex.

JavaScript - 1.2
Netscape — 4.0
Deprecated

Availability:

Property/method value type: undefined

JavaScript syntax: N captureEvents (anEventMask)
N myObject.captureEvents (anEventMask)
N myWindow.captureEvents (anEventMask)

anEventMask A mask constructed with the manifest event

Argument list:
constants

Warnings:

Q Since a bit mask is being used, this must be an int32 value. This suggests that there can only be 32
different event types supported by this event propagation model.

Q This capability is deprecated and is not supported in Netscape 6.0 any more. It never was supported
by MSIE, which implements a completely different event model. As it turns out, the DOM level 2
event model converges on the MSIE technique.

Document .captureEvents (), Document.releaseEvents (),
Element.onevent, Event handler, Event management, Event
propagation, Event type constants, Frame object, handleEvent (),
Keyboard events, Layer . captureEvents (),
Layer.releaseEvents (), onLoseCapture, onMouseMove,
Window object, Window.captureEvents (),
Window.releaseEvents (), Window.routeEvent ()

See also:

Cross-references:
Wrox Instant JavaScript — page — 55

255

JavaScript Programmer's Reference

case ... : (Label)

Part of the switch ... case mechanism. The case keyword denotes a label associated with one
of the selectors.

ECMAScript edition — 3

Availability:
JavaScript — 1.2
JScript - 3.0
Internet Explorer — 4.0
Netscape — 4.0
Netscape Enterprise Server — 3.0
See also: break, Flow control, Label, Selection statement, switch(...) ... case:

default:

Cross-references:
ECMA 262 edition 2 — section —7.4.3

ECMA 262 edition 3 — section —7.5.2

ECMA 262 edition 3 — section — 12.11

Case Sensitivity (Definition)

Upper and lower case are not identical when used in identifiers.
Availability: ECMAScript edition — 2

Identifiers in JavaScript are case-sensitive.

This means that, for example, variables will refer to distinctly different values if they differ in the
case of any part of their names. Hence aaa is not the same variable as Aaa.

MSIE browsers prior to version 4 were less particular about case-sensitivity. Since the ECMA
standard requires strict case-sensitive behavior, this is now the norm.

Some early versions of the WebTV set top box prior to the Summer 2000 release also lacked case-
sensitive behavior regarding built-in method and property names.

Warnings:

QO In MSIE version 3, all client-side object and property names were case-insensitive. Beware of any old
scripts, which may have worked on MSIE version 3, but don't work on later browsers.

256

C — Cast operator (Definition)

Q JavaScript style sheets in Netscape 4 are also case-insensitive.

See also:

JavaScript Style Sheets, JellyScript

Cross-references:

ECMA 262 edition 2 — section — 7.5

ECMA 262 edition 3 — section — 7.6

O'Reilly JavaScript Definitive Guide — page — 27

Cast operator (Definition)

A way of converting data types.

Primitive values can be converted from one type to another or rendered as objects by using object
constructors to convert the values.

Type Name:

Aggregate
Arithmetic
Array

Basic
Boolean
Completion

List

Null
Number
Object

Reference

Scalar

String

Undefined

Description:

A collection of atomic types assembled collectively into an object.
All types that yield a value that can be operated on numerically.
Collections of objects and identifiers assembled into a sequence.
The fundamental simple, non-object types.

This type can store and yield true or false values.

Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

This has exactly one value, null, and is distinct from undefined.
Integer and floating-point values are all stored in a generic number type.

An object is an unordered collection of properties. Each property consists of a
name, a value, and a set of attributes.

Used only as the intermediate result of expression evaluations and cannot be
stored in object properties.

The non-object types.

Strings are arrays of characters that are accessible individually by indexing their
position in the sequence.

This value is returned by variables that have not yet been assigned a value.

In compiled languages, this is called casting. In JavaScript the values are actually converted using
methods and function calls on the objects. This yields a new value rather than making the old one
look like the new type that is required. It is really conversion rather than casting.

257

JavaScript Programmer's Reference

Aggregate type, Array simulation, Escape sequence (\), escape (),
MakeDate (), MakeDay (), MakeTime (), Native object, null, Operator
Precedence, Primitive value, unescape ()

See also:

catch(...) (Function)

Partof the try ... catch ...finally error-handling mechanism.

ECMAScript edition - 3
JavaScript — 1.5

JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

Availability:

JavaScript syntax: - catch (anError)

Argument list: ankError An instance of the error object

The ECMAScript standard (edition 2) defined the catch keyword and reserves it for future use.
Edition 3 mandates that this should now be supported in a compliant interpreter.

In anticipation of that, it is available in JavaScript version 1.4. This is also now supported in JScript
version 5.0 as well.

Refer to the try ... catch ... finally topic for more details.
S e Error object, Ev.alError object, Exceptlon. handling, finally e
RangeError object, ReferenceError object, SyntaxError object, throw,
try ... catch ... finally, TypeError object, URIError object

Cross-references:
ECMA 262 edition 2 — section — 7.4.3

ECMA 262 edition 3 — section — 7.5.2

ECMA 262 edition 3 — section — 12.14

Category of an object (Definition)

Why we categorize topics the way we do.

Objects, properties and methods fall into many categories. It helps to understand why an item is
available and what it does if you can map it into a particular context. Here is a summary of the
different categories we use:

Category: Description:

Browser Language elements that are really only useful on the browser side.
Core Language elements that form part of the core of the language.
Desktop Language facilities provided to aid desktop automation.

Table continued on following page

258

C — CDATASection object (Object/DOM)

Category:
Embedded

Generic

Microsoft

Server
Shell

Description:

Language facilities particularly intended for use in embedded interpreters.

Topics that discuss something that could be used server-side or client-side are
categorized as generic. Properties and objects may be defined server-side and
deployed client-side.

There are many proprietary additions by Microsoft. These are the particularly
noteworthy items and are generally non-portable.

Language elements that are really only useful on the server side.
Language facilities that are added for use in shell scripts.

CDATASection object (Object/DOM)

Part of the extended interface that DOM describes for supporting non-HTML content.

Availability:

Inherits from:
JavaScript syntax:

Argument list:

DOM level - 1
JavaScript — 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape — 6.0

textNode object

myCDATASection =
myDocument.createCDATASection (someData)

someData The data content for the new object

The extended interface supports various document forms other than HTML. This object is used to
encapsulate marked up XML without needing to escape all of the markup characters.

You can test for the availability of this feature by means of the Implementation.hasFeature()
method. In this case, test for a feature name of "XML" and a version value of "1.0"

See also:

Document.createCDATASection ()

Inheritance chain:

CharacterData object, Node object, textNode object

CENTER object (Object/HTML)

An object that represents the <CENTER> HTML tag.

Availability:

Inherits from:

JScript - 3.0
Internet Explorer — 4.0

Element object

259

JavaScript Programmer's Reference

. myCENTER = myDocument.all.anElementID
JavaScript syntax: Ik i i

1IE myCENTER = myDocument.all.tags ("CENTER") [anIndex]
1E myCENTER = myDocument.all [aName]
= myCENTER = myDocument.getElementById (anElementID)

= myCENTER =
myDocument .getElement sByName (aName) [anIndex]

= myCENTER = myDocument.getElementsByTagName
("CENTER") [anIndex]

HTML syntax: <CENTER> ... </CENTER>
. Ind
Argument list: anindex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The 1D attribute of an element
Object methods: removeAttribute ()

onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

Event handlers:

Method JavaScript JScript N IE Opera DOM HTML Notes
removeAttribute (0 - 3.0 + = 40+ - = = -

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick - 3.0+ - 40+ 3.0+ - 40+ Warning
onDblClick - 3.0 + - 40+ 3.0+ - 40+ Warning
onDragStart - 3.0 + = 40+ - o - -
onFilterChange = 3.0 + = 40+ - - - -
onHelp - 3.0 + - 40+ - - - Warning
onKeyDown - 3.0+ - 40+ 3.0+ - 40+ Warning
onKeyPress = 3.0+ - 40+ 3.0+ - 4.0+ Warning
onKeyUp - 3.0+ - 40+ 3.0+ - 4.0+ Warning
onMouseDown - 3.0+ = 40+ 3.0+ = 40+ Warning
onMouseMove = 3.0+ = 40+ - = 40+ Warning
onMouseOut - 3.0+ = 40+ 3.0+ = 40+ Warning
onMouseOver - 3.0+ = 40+ 3.0+ = 40+ Warning
onMouseUp - 3.0+ - 40+ 3.0+ - 4.0+ Warning
onSelectStart - 3.0 + - 40+ - - - -

Inheritance chain:

Element object, Node object

260

C - .cfg (File extension)

Refer to:

Element object

.cfg (File extension)

A configuration file for Netscape.

See also: netscape. lck, Preferences

.cgi (File extension)

Common gateway interface dynamic page.

Refer to:

File extensions

CGI-Driven JavaScript (Definition)

Using JavaScript in the request - response loop of a web server.
You can use JavaScript to generate the response to a web browser's incoming requests at the web server.
This is a useful and powerful way to extend the CGI capabilities of your web server. Forms handling

with products such as ScriptEase WSE (Web Server Edition) are streamlined due to the interpreter
having additional features that usefully package the request data before your script is called.

Host environment, Platform, Server-side JavaScript, Shell Scripting with

See also: .
JavaScript

Cross-references:
Wrox Instant JavaScript — page — 5

char (Reserved word)

Reserved for future language enhancements.

The ECMAScript (edition 2) reserves the char keyword for future use. This suggests some
additional C-like functionality may be added in the future. A char may be represented by a byte.

However in JavaScript, characters are really double-byte values since they encode a Unicode code
point in each character.

261

JavaScript Programmer's Reference

This keyword also represents a Java data type and the char keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

See also: byte, java.lang.Character, LiveConnect, Reserved word

Cross-references:
ECMA 262 edition 2 — section —7.4.3

ECMA 262 edition 3 — section — 7.5.2

Character constant (Definition)

A literal description of a single character.

Property/method value type: String primitive

A character constant in JavaScript is represented by a single character length String primitive.
Technically it is a string, not a character. In JavaScript the single quote delimiter encloses strings as
well as the double quote delimiter.

Beware of this if you are familiar with C language character constants. In C, the single quote
(apostrophe) is used to enclose a single character that can be represented by a byte.

Some character constant escape codes are listed in the following table:

Escape Sequence: Name: Symbol:
\ " Double Quote !

\! Single Quote (Apostrophe) '

\\ Backslash \

\a Audible alert (MSIE displays the letter a) <BEL>
\b Backspace (ignored silently in MSIE) <BS>

\ £ Form Feed (ignored silently in MSIE) <FF>
\n Line Feed (Newline - MSIE inserts a space) <LF>
\r Carriage Return (MSIE inserts a space) <CR>
\t Horizontal Tab (MSIE inserts a space) <HT>
\v Vertical tab (MSIE displays the letter v) <VT>
\ 0nn Octal escape -

\042 Double Quote !

\047 Single Quote (Apostrophe) '

\134 Backslash \
\xnn Hexadecimal escape =

Table continued on following page

262

C - Character display semantics (Definition)

Escape Sequence:
\x22

\x27

\x5C

\unnnn

\u0022

\u0027

\u005C

\uFFFE

\uFFFF

See also:

Name:

Double Quote

Single Quote (Apostrophe)
Backslash

Unicode escape

Double Quote

Single Quote (Apostrophe)
Backslash

A special Unicode sentinel character for flagging
byte reversed text

A special Unicode sentinel character

Character handling, Constant, Constant expression, Escape

sequence (\), Literal, Primitive value

Character display semantics (Definition)

How characters are displayed on the implementation's console.

Although the standard defines many escape sequences (see table), how these are displayed

depends very much on the way that the implementation uses the output of JavaScript:

Escape Sequence:
NG

\
\\
\a
\b

\ £
\n
\r
\t
\v

\ Onn
\042
\047
\134
\xnn
\x22
\x27

Name:

Double Quote

Single Quote (Apostrophe)

Backslash

Audible alert (MSIE displays the letter a)
Backspace (ignored silently in MSIE)
Form Feed (ignored silently in MSIE)
Line Feed (Newline - MSIE inserts a space)
Carriage Return (MSIE inserts a space)
Horizontal Tab (MSIE inserts a space)
Vertical tab (MSIE displays the letter v)
Octal escape

Double Quote

Single Quote (Apostrophe)

Backslash

Hexadecimal escape

Double Quote

Single Quote (Apostrophe)

Symbol:

Table continued on following page

263

JavaScript Programmer's Reference

Escape Sequence: Name: Symbol:
\x5C Backslash \
\unnnn Unicode escape -
\u0022 Double Quote !
\u0027 Single Quote (Apostrophe) '
\u005C Backslash \
\uFFFE A special Unicode sentinel character for flagging =

byte-reversed text
\uFFFF A special Unicode sentinel character -

Encoding line feeds, form feeds, and tabs into data that ultimately gets output as part of a
document .write () method suggests that the target is an HTML page. When HTML is rendered,
any embedded tabs and line terminators have no effect at all on the displayed output apart from
some undesirable side effects in older browsers, which used to display line terminators inside
anchor tags in a very odd way.

On the other hand, JavaScript that is generating a text data stream that is going to be returned via a
TCP socket may well want to encode all kinds of escaped control characters.

Warnings:

0 Generally a browser will ignore any escape sequences it cannot cope with. Some it will ignore
silently such as a \b which results in no output in the MSIE browser. For others, such as \ a, MSIE
ignores the backslash but writes the letter 'a’ into the document output. A few escape characters
result in a space character being inserted into the output text.

0 You should, as a matter of course, clean your HTML text of any unwanted escape characters if you can.

See also: Character set, Environment, Escape sequence (\)

Character entity (Definition)

A means of escaping difficult-to-type characters for use in HTML.

Refer to:
HTML Character entity

Character handling (Advice)

Functions for testing character attributes.

Developers who use the C language and who are converting to JavaScript may be used to having
support for testing various properties of character codes.

These functions are not formally part of the JavaScript language, although some of them are
provided as part of the host environment through additional objects that provide C-like
functionality. These are modeled on the Math object and cannot usually be instantiated by
belonging to the Global object in the same way as the Math object does.

264

C - Character set (Definition)

ScriptEase by Nombas is one interpreter that provides support for C language functionality
through its C1ib object.

If you are using other interpreters, you can simulate these character handling functions with
fragments of script and some bitwise operators.

The following functions that are normally available to C programmers are simulated with the script
examples in the following sections:

isalnum()
isalphal()
iscntrl ()
isdigit ()
isgraph ()
islower ()
isprint ()
ispunct ()
isspace()

isupper ()

Iy A S S N

isxdigit ()

isAlnum(),isAlpha(),isCtrl (), isDigit (), isGraph(),
isLower (),isODigit (), isPrint (), isPunct (), isSpace (),
isUpper (), isXDigit ()

See also:

Character set (Definition)

The collection of characters that the script can operate on.

Since JavaScript 1.3 and JScript 3.0, the language has been built around the Unicode standard. This
means its identifiers and hence its script source code is intended to be represented by a sequence of
Unicode characters. The benefit of this is that identifiers can be named using international
characters. The reality is that some implementations don't support this very well, even if they can
parse and process Unicode correctly as data.

As is the case with many languages, there may be a character set that can be used for data and a
smaller sub-set that is valid for use when editing script source text.

Strictly speaking, a JavaScript script source can be encoded with 7 bit ASCII characters since there
are mechanisms to escape generated character codes that are multi-byte Unicode code points.

The Unicode standard describes a large number of international character sets in terms of the character
glyphs supported by them. There are also a large number of ISO standardized character sets.

ASCII, Character display semantics, Character handling, Character-case
mapping, Environment, Escape sequence (\), isLower (), isUpper (),
Locale-specific behavior, Localization, Multi-byte character, Unicode

See also:

265

JavaScript Programmer's Reference

Character testing (Definition)

Testing characters for attributes.

The following functions that are normally available to C programmers are simulated with script
examples in the following sections:

isalnum
isalpha
iscntrl

isdigit

(
(
(
(
isgraph (
islower (
isprint(
ispunct (
isspace (
(

isupper

I 0 L T T I I N N A

)
)
)
)
)
)
)
)
)
)
(

isxdigit ()

Strictly speaking, these functions should be coded to be aware of locale-specific issues. You may
want to take example simulations provided here and modify them to your own needs to support
that. These are just basic working examples.

Character handling, Character-case mapping, isAlnum (), isAlpha (),
isCtrl(),isDigit(),isGraph(), isLower (),is0Digit (),
isPrint (), isPunct (), isSpace (), isUpper (), isXDigit (),
String.charAt (), String.charCodeAt (),
String.fromCharCode ()

See also:

Character value (Definition)

A numeric value based on the Unicode and ASCII character code points.

See also: ASCII, Integer constant, Unicode

Character-case mapping (Overview)

Character case conversion.

The conversion of characters from upper to lower case and vice versa is accomplished in JavaScript
by means of the String object. This provides two methods that can be applied to a String object
to change its case. However, this would not work on String primitives so you may need to do an
object conversion first.

266

C - CharacterData object (Object/DOM)

The ECMAScript standard mandates that only the base characters need be mapped between the
upper and lower case. Sorting and case conversion may support other international characters in
some implementations, but this is not covered by the standard.

Localization issues may affect this sort of operation.

The interpreter should automatically convert any String primitives to String objects so that the
method can be applied. This means that this should work:

"aaaa".toUpperCase ()
And you should not need to do this:

String("aaaa") .toUpperCase ()

ASCII, Character handling, Character set, Character testing, i sLower (),
isUpper (), Locale-specific behavior, String.charCodeAt (),
String.fromCharCode (), String.toLocaleLowerCase(),
String.toLocaleUpperCase (), String.toLowerCase (),
String.toUpperCase (), Unicode

CharacterData object (Object/DOM)

A sub-class of the node object with extensions to support access to character data within the object.

See also:

Availability: Et(\?;\gclrel;fl_ -115
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

Inherits from:
JavaScript syntax:
Object properties:

Object methods:

Node object

= myCharacterData = new CharacterData ()

data, length

appendData(),deleteData(),insertData(), replaceDatal(),
substringData ()

See also: COMMENT object

Property JavaScript JScript N IE Opera DOM Notes
data 1.5+ 5.0 + 6.0 + 5.0 + - 1+ -
length 1.5+ 5.0+ 6.0+ 50+ - 1+ -
Method JavaScript JScript N IE Opera DOM Notes
appendData () 15+ 5.0/ 6.0 + 5.0/ - 1+ =
deleteData () 1.5+ 5.0 + 6.0+ 5.0+ - 1+ -
insertData () 1.5+ 5.0 + 6.0+ 50+ - 1+ =
replaceData () 1.5+ 5.0+ 6.0 + 5.0 + - 1+ -
substringData () 1.5+ 5.0+ 60+ 50+ - 1+ -

267

JavaScript Programmer's Reference

Inheritance chain:

Node object

CharacterData.appendData() (Method)

Append some text to the end of the character data.

DOM level -1
JavaScript — 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

Availability:

JavaScript syntax: - myCharacterData.appendData (aString)

Argument list: aString Some data to append

CharacterData.data (Property)

The current contents of the character data node.

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape — 6.0

Availability:

Property/method value type: String primitive

JavaScript syntax: = myCharacterData.data

CharacterData.deleteData() (Method)

Remove a section of text from the data contained in the character data node.

DOM level -1
JavaScript — 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape — 6.0

Availability:

JavaScript syntax: = myCharacterData.deleteData (anOffset, aCount)

anOffset The start of the deleted section
aCount The length of the deleted section

Argument list:

268

C - CharacterData.insertData() (Method)

CharacterData.insertData() (Method)

Insert some additional text into the character data node.

Availability:

JavaScript syntax:

Argument list:

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

= myCharacterData.insertData (anOffset,

anOffset

aString

aString)

A location to insert the data at
The data to insert

CharacterData.length (Property)

Return the length (in characters) of the character data node.

Availability:

Property/method value type:

JavaScript syntax:

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

Number primitive

- myCharacterData.length

CharacterData.replaceData() (Method)

Replace a section of text in the character data node with some new text.

Availability:

JavaScript syntax:

Argument list:

DOM level -1
JavaScript — 1.5

JScript - 5.0

Internet Explorer — 5.0
Netscape — 6.0

= myCharacterData.replaceData (anOffset,

aCount, aString)
anOffset The location where the replacement starts
aCount The length of data to be replaced
aString The new data to insert

269

JavaScript Programmer's Reference

CharacterData.substringData() (Method)

Non destructively extract a section of the text from the character data node.

Availability: El(‘?;\;lclrei;?_—ll5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

Property/method value type: String primitive

myCharacterData.substringData (anOffset,

JavaScript syntax: 2Count)

anOffset Alocation where the substring starts
aCount The length of the substring

Checkbox object (Object/DOM)

A checkbox to be used in a form. It toggles as it is clicked, but is not related to other checkboxes in
the way that radio buttons are related to one another in families.

Argument list:

DOM level -1
JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape — 2.0
Opera-3.0

Availability:

Inherits from: Input object

. = myCheckbox = myDocument.aFormName.anElementName
JavaScript syntax:

- myCheckbox =
myDocument . aFormName.elements [anItemIndex]

IE myCheckbox = myDocument.all.anElementID

IE myCheckbox =
myDocument.all.tags ("INPUT") [anIndex]

IE myCheckbox = myDocument.all [aName]

- myCheckbox =
myDocument . forms [aFormIndex] . anElementName

= myCheckbox =
myDocument . forms [aFormIndex] .elements
[anItemIndex]

- myCheckbox =
myDocument.getElementById (anElementID)
= myCheckbox =
myDocument.getElementsByName (aName) [anIndex]

- myCheckbox =
myDocument .getElementsByTagName (" INPUT")
[anIndex]

270

C - Checkbox object (Object/DOM)

HTML syntax: <INPUT TYPE="checkbox">

. Ind
Argument list: anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element
anItemIndex A valid reference to an item in the collection

aFormIndex A reference to a particular form in the forms

collection
Object properties: checked, defaultChecked, indeterminate, status, type,
’ value
Object methods: handleEvent ()

onAfterUpdate, onBeforeUpdate, onBlur, onClick,
onDblClick, onErrorUpdate, onFilterChange, onFocus,
onHelp, onKeyDown, onKeyPress, onKeyUp, onMouseDown,
onMouseMove, onMouseOut, onMouseOver, onMouseUp,
onRowEnter, onRowExit

Event handlers:

Many properties, methods, and event handlers are inherited from the Input object class. Refer to
topics grouped with the "Input” prefix for details of common functionality across all sub-classes of
the Input object super-class.

There isn't really a Checkbox object class but it is helpful when trying to understand the wide variety
of input element types if we can reduce the complexity by discussing only the properties and
methods of a checkbox. In actual fact, the object is represented as an item of the Input object class.

Checkboxes may be used in groups where each one has the same name. However, this breaks the
mechanism by which a form element can be accessed associatively since there is now more than
one object with the same name. The fix for this is to support an InputArray so that you can access
the items with the same name from a collection.

Although Checkbox items should not deactivate other items in the same family in the way that Radio
buttons do, you can relate their states to one another by means of the onclick event handler.

Unlike MSIE, Netscape does not support the defaultValue property or the select () method
for this sub-class of the Input object.

Warnings:

Q If you enumerate a form object that has several elements having the same name, in Netscape these
will be represented by a single property of that name that refers to an InputArray. In MSIE, you
will get multiple properties with the same name, but each will refer to a collection object. This is
probably a bug in MSIE, which exhibits this behavior in version 5 for Macintosh and probably on
other platforms too.

O Note that on MSIE, Input objects are actually INPUT objects because MSIE follows a general rule of
naming object classes after the capitalised name of the HTML tag that instantiates them.

271

JavaScript Programmer's Reference

Example code:

<HTML>

<HEAD>

</HEAD>

<BODY>

<DIV ID="RESULT">?</DIV>

<FORM onClick="handleClick() ">

<INPUT TYPE="checkbox" VALUE="A" NAME="BOX_A">Selection
<INPUT TYPE="checkbox" VALUE="B" NAME="BOX_B">Selection
<INPUT TYPE="checkbox" VALUE="C" NAME="BOX_C">Selection
<INPUT TYPE="checkbox" VALUE="D" NAME="BOX_D">Selection

</FORM>

<SCRIPT>

function handleClick()
{

myString = "Selection [";
myString += event.srcElement.value;
myString += "], State [";

myString += event.srcElement.checked;

myString += "1";

document.all.RESULT.innerText = myString;
}

</SCRIPT>

</BODY>

</HTML>
See also: i

Input.accessKey,onClick

Property JavaScript JScript N IE
checked 1.0+ 1.0+ 20+ 3.02+
defaultChecked 1.0+ 1.0+ 20+ 3.02+
indeterminate = 3.0 + - 4.0 +
status - 3.0 + - 4.0+
type 1.1+ 1.0 + 3.0+ 3.02+
value 1.0 + 1.0 + 20+ 3.02+
Method JavaScript JScript N IE
handleEvent () 1.2 + - 40+ -
Event nhame JavaScript JScript N IE
onAfterUpdate = 3.0 + - 4.0+
onBeforeUpdate = 3.0+ - 4.0+
onBlur 1.1+ 3.0 + 30+ 40+
onClick 1.0+ 3.0+ 20+ 4.0+
onDblClick 1.2 + 3.0+ 40+ 4.0+

272

Opera

3.0 +
3.0 +

3.0+
3.0+

Opera

Opera

3.0+
3.0+
3.0 +

A

B

C

D

DOM

1+
1+

1+
1+

DOM

DOM

HTML

HTML

HTML

4.0+
4.0 +

Element object, Form.elements[], FormElement object, Input object,

Notes

Warning
ReadOnly
Warning

Notes

Notes

Warning
Warning
Warning

C - Checkbox.checked (Property)

Event name JavaScript JScript N IE Opera DOM HTML Notes
onErrorUpdate = 3.0+ = 4.0 + - - - -
onFilterChange = 3.0+ = 4.0 + = = = =
onFocus 1.0 + 3.0+ 20+ 40+ 3.0+ - - Warning
onHelp - 3.0+ - 4.0+ - - - Warning
onKeyDown 1.2 + 3.0+ 40+ 40+ 3.0+ - 40+ Warning
onKeyPress 1.2 + 3.0+ 40+ 4.0+ 3.0+ - 4.0+ Warning
onKeyUp 1.2+ 3.0+ 40+ 40+ 30+ = 40+ Warning
onMouseDown 1.2+ 3.0 + 40+ 40+ 3.0+ - 40+ Warning
onMouseMove 1.2+ 3.0+ 40+ 4.0+ = = 40+ Warning
onMouseOut 1.1+ 3.0+ 30+ 40+ 30+ = 40+ Warning
onMouseOver 1.0+ 3.0 + 20+ 40+ 3.0+ - 40+ Warning
onMouseUp 1.2+ 3.0+ 40+ 40+ 30+ = 40+ Warning
onRowEnter - 3.0+ = 4.0 + = = = -
onRowExit = 3.0 + = 4.0+ - - - -

Inheritance chain:

Element object, Input object, Node object

Checkbox.checked (Property)

The state of the checkbox is maintained in this property.

Availability: DOM level -1

JavaScript - 1.0

JScript - 1.0

Internet Explorer — 3.02

Netscape — 2.0

Opera-3.0
Property/method value type: Boolean primitive
JavaScript syntax: = myCheckbox.checked
HTML syntax: <INPUT CHECKED>

If the checkbox has a mark in it (depending on the UI display appearance guidelines, this may be a
tick or a cross), then this value will return true. Otherwise it will return false.

273

JavaScript Programmer's Reference

Checkbox.defaultChecked (Property)

The original initial default state of a checkbox.

Availability: DO ligwell =1
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape - 2.0
Opera-3.0
Property/method value type: Boolean primitive
JavaScript syntax: - myCheckbox.defaultChecked
HTML syntax: <INPUT CHECKED>

The defaultChecked state of an Input item is the value that was defined in the HTML document
source when the page was loaded. You can use this value if you need to reset the status of a page or
determine whether the user has changed the settings on an input item since the page was loaded.

Checkbox.handleEvent() (Method)

Pass an event to the appropriate handler for this object.

Availability: JavaScript - 1.2
Netscape — 4.0
Property/method value type: undefined
JavaScript syntax: N myResetButton.handleEvent (anEvent)
Argument list: anEvent An event to be handled by this object

This applies to Netscape prior to version 6.0. From that release onwards, event management
follows the guidelines in the DOM level 3 event specification.

On receipt of a call to this method, the receiving object will look at its available set of event-handler
functions and pass the event to an appropriately mapped handler function. It is essentially an event
dispatcher that is granular down to the object level.

The argument value is an Event object that contains information about the event.

See also: handleEvent ()

274

C - Checkbox.indeterminate (Property)

Checkbox.indeterminate (Property)

A checkbox is in this state if it was selected, but then disabled. The state cannot be accurately and
unambiguously determined.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Boolean primitive
JavaScript syntax: IE myCheckbox.indeterminate

Checkboxes may be enabled and disabled. If you have a checkbox that was enabled and then
checked, and then if it is subsequently disabled, this flag property is set to true which indicates
that the current state of the checkbox is indeterminate.

Checkbox.status (Property)

The current highlighted or checked status of the input element.

Availability: JScript - 3.0

Internet Explorer — 4.0
Property/method value type: Boolean primitive
JavaScript syntax: IE myCheckbox.status

This is the current status of the checkbox item. It is either checked or not. If the checkbox has not
been changed since the page was loaded from the server, then this value will be the same as the
defaultChecked property of the checkbox.

Warnings:

Q Because this is not supported on all browsers, you should use the Checkbox . checked property
instead if portable code is important to your project.

Checkbox.type (Property)

The type value for the <INPUT> tag that describes the form checkbox.

Availability: El(v)i\;lclrei;il_—lll
JScript - 1.0
Internet Explorer — 3.02
Netscape — 3.0
Opera-3.0

Property/method value type: String primitive

275

JavaScript Programmer's Reference

JavaScript syntax: - myCheckbox. type

HTML syntax: <INPUT TYPE="CHECKBOX">

The type value for a checkbox is always "checkbox". This value is necessary to determine the type
of form element because this object is really an instance of the Input class and not the Checkbox
class. There is actually no Checkbox class.

See also: Input.type

Property attributes:

ReadOnly.

Checkbox.value (Property)

The text string for this particular checkbox object.

Availability: DOM level -1
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape - 2.0
Opera-3.0
Property/method value type: String primitive
JavaScript syntax: - myCheckbox.value
HTML syntax: <INPUT VALUE="...">

This value is returned to the server during a submit only if the checked state for this radio button is on.

Warnings:

Q If the checkbox is used in a group or even if it isn't, the state of the checkbox is in the checked
property not the value property.

See also: Input.value

CheckerBoard() (Filter/transition)

A transition effect with the appearance of chequer board blinds opening or closing.

JScript - 5.5

Availability:
g Internet Explorer - 5.5

Refer to:

filter - CheckerBoard ()

276

C - ChildNodes object (Object/DOM)

ChildNodes object (Object/DOM)

A collection of all the children belonging to a DOM Node object.

DOM level -1
JavaScript - 1.5
JScript - 5.0

Internet Explorer — 5.0
Netscape - 6.0

Availability:

JavaScript syntax: - myChildNodes = myElement.childNodes

This is part of the internal DOM hierarchy model in the browser. There are several tree hierarchies
supported and this one maintains a tree of parent-child node relationships across the document.

See also: Element object, Element . childNodes [], Hierarchy of objects

Chroma() (Filter/visual)

A visual filter for chroma key effects.

JScript - 3.0

Availability:
y Internet Explorer — 4.0

Refer to:

Filter - Chroma ()

CITE object (Object/HTML)

An object representing the HTML content delimited by the <CITE> HTML tags.

Availability: JScript - 3.0
Internet Explorer — 4.0
Inherits from: Element object

JavaScript syntax: IE myCITE = myDocument.all.anElementID
IE myCITE = myDocument.all.tags ("CITE") [anIndex]
IE myCITE = myDocument.all[aName]

- myCITE = myDocument.getElementById (anElementID)

- myCITE =
myDocument.getElementsByName (aName) [anIndex]

- myCITE =
myDocument.getElementsByTagName ("CITE") [anIndex]

HTML syntax: <CITE> ... </CITE>

q El tID i
Argument list: anklemen The ID value of the element required
anIndex A valid reference to an item in the collection

aName The name attribute of an element

277

JavaScript Programmer's Reference

Event handlers:

Event name
onClick
onDblClick
onDragStart
onFilterChange
onHelp
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseMove
onMouseOut
onMouseOver
onMouseUp
onSelectStart

Inheritance chain:

onClick, onDblClick, onDragStart,onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,

onMouseOut, onMouseOver, onMouseUp, onSelectStart

JavaScript

Element object, Node object

Refer to:

Element object

Class (Property/internal)

JScript

3.0 +
3.0 +
3.0 +
3.0 +
3.0 +
3.0+
3.0+
3.0+
3.0+
3.0+
3.0+
3.0 +
3.0 +
3.0 +

Internal property that returns an object class.

Availability:

ECMAScript edition — 2

N

IE

4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0+
4.0 +
4.0+

Opera

3.0+
3.0+

3.0+
3.0+
3.0+
3.0+

3.0+
3.0 +
3.0+

DOM HTML

- 4.0 +
- 4.0 +

- 4.0+
- 4.0+
- 4.0+
- 4.0+
- 4.0+
- 4.0+
- 4.0 +
- 4.0 +

Notes

Warning
Warning

Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning

This internal property returns a string value containing the class name of the containing object.

Every object type must implement this property.

It is supported by all built-in native objects in an ECMA-compliant JavaScript interpreter.

Host objects may supply any value as a Class identifying string. They may even masquerade as
one of the built-in classes, but good sense suggests that if they do, then they must obey the protocol
of that built-in class in precisely the same way as if they were a real built-in object. It's probably
sensible for host implementers to avoid overloading the built-in class names like that.

278

C - class (Reserved word)

At edition 2 of the ECMA standard, there is no publicly accessible method to retrieve this property
in a script. However, the reserved keyword values suggest that this may be offered at a later
revision of the standard.

Array.Class,Boolean.Class,class,Date.Class,
Function.Class, Internal Property, Number.Class, Object.Class,
Reserved word, String.Class

See also:

Property attributes:

Internal.
Cross-references:
ECMA 262 edition 2 — section — 8.6.2

ECMA 262 edition 3 — section — 8.6.2

class (Reserved word)

Reserved for future language enhancements.

Although you cannot request the class of a particular object, you can probably establish what class
it belongs to with the typeof operator.

This keyword also represents a Java object type and the class keyword allows for the potential
extension of JavaScript interfaces to access Java applet parameters and return values.

Class, Internal Property, java. lang.Class, LiveConnect, Reserved

See also:
word, typeof

Cross-references:
ECMA 262 edition 2 — section — 7.4.3

ECMA 262 edition 2 — section —11.4.3
ECMA 262 edition 3 — section — 7.5.3
ECMA 262 edition 3 — section —11.4.3

Class method (Definition)

Methods owned by a constructor function object.

Refer to:

Static method

279

JavaScript Programmer's Reference

Class variable (Definition)

Static variables owned by a constructor function object.
See also: Property

Refer to:

Static variable

CLASS="..." (HTML Tag Attribute)

A means of associating a tag with a stylesheet class. Represented by the className property of an
Element object.

Availability: Eigi\élclr(;\;fl_—lls
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

In MSIE, virtually any object can be associated with a style object by means of the CLASS
attribute. This is reflected into the className property of the object. It is especially applicable to
DOM-related objects, which are considered to be sub-classed from the Element object. Netscape
6.0 brings that browser into line with these capabilities.

See also: DOM, Element object, Element .className,
’ Element.style, STYLE object (1), style object (2)

classes (Property)

An alternative reference to the document . classes property in JSS.

JavaScript — 1.2

Availability:

Netscape — 4.0

Deprecated — Netscape 6.0
Property/method value type: Collection object
JavaScript syntax: N classes

N myDocument.classes

Warnings:

QO This functionality is removed from Netscape 6.0.

See also: JavaScript Style Sheets, Document . classes[]

280

C — CLASSPATH (Environment variable)

CLASSPATH (Environment variable)

This is an important environment variable that helps Java code locate resources on your system. It

needs to be set correctly.

See also:

Java, LiveConnect

clearlnterval() (Method)

Cancel a previous setInterval () timer.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

See also:

JavaScript — 1.2
JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

undefined
- clearInterval (anIntervalID)
- myWindow.clearInterval (anIntervalID)

The ID of an interval returned by the

anIntervalID
setInterval () method

Window.clearTimeout (), Window.clearInterval ()

clearTimeout() (Method)

A function that removes a pending timeout event.

Availability:

Property/method value type:

JavaScript syntax:

Argument list:

JavaScript — 1.0

JScript - 1.0

Internet Explorer — 3.02
Netscape - 2.0
Opera-3.0

undefined
- clearTimeout (aTimeoutID)
- myWindow.clearTimeout (aTimeoutID)

The ID of a timeout returned by the

aTimeoutID .
setTimeout () method

281

JavaScript Programmer's Reference

Warnings:

QO This can cause problems if the timeout event you have identified has already been executed. Pending
timeouts quite reasonably can be removed. Already executed timeout actions cannot be removed
and may crash the browser if you try to remove them. Be sure that you are really removing a
pending timeout.

QO A better technique is to set flags in global variables and use them to inhibit the creation of a new
timeout event if you are using this for a kind of interval timer.

See also: Window.clearTimeout (), Window.setTimeout ()

client object (Object/NES)

A server-side object available in NES.

JavaScript - 1.1

ol Netscape Enterprise Server — 2.0
JavaScript syntax: NES client

HTML syntax: client

Object methods: destroy (), expiration()

One client object is created for each browser user. It is created when the user first accesses the
NES application and persists until some time after they have last visited. A timeout allows the
server to garbage-collect these session objects and purge them out. If a client comes back again
later, a new object will need to be created.

Because there is no session object in Netscape Enterprise Server, this object serves the purpose of
maintaining session state as well as holding details of the client.

To maintain state across all session in an application, you should use the project object discussed
in a separate topic.

Client objects have a limited lifetime. It is configurable but typically they will expire and be
discarded after 10 minutes of inactivity.

Netscape Enterprise Server, project object, response.client,

See also:

unwatch (),watch ()
Method JavaScript JScript NES Notes
destroy () 1.1+ - 2.0+ =
expiration () 1.1+ - 2.0 + =

282

C - client.destroy() (Method)

client.destroy() (Method)

This destroys the client object.

JavaScript — 1.1

Availability:
y Netscape Enterprise Server — 2.0

JavaScript syntax: NES client.destroy ()

Calling this method on a client object will remove it and if the user makes another request, a new
client object will have to be created.

This is slightly inconsistent with the normal way that objects are destroyed. Normally the delete
operator would be used.

client.expiration() (Method)

This method will define the timeout after which the client object will expire. Used to set the
life-span of a client object in an NES server.

JavaScript — 1.1

Availability:

Netscape Enterprise Server — 2.0
JavaScript syntax: NES client.expiration (aTime)
Argument list: aTime A time value measured in seconds

This method allows the number of seconds before a session times out to be defined. After this time,
the client object will be purged automatically and if the user connects again after that, a new
client object will need to be created.

The expiration time can be set for individual client objects. You may have one that needs to
persist longer based on the kind of session the user is experiencing.

For example, it might be useful to expire an e-commerce session quickly to prevent misuse. A
content administrator may need a session to be active for a much longer time than usual.

Typical expiry time for this sort of thing would be about 30 minutes. This is in line with current

practice of log analysis techniques and log auditing. Breaks of more than 30 minutes are considered
to be multiple sessions.

Client pull techniques (Definition)

This is a technique whereby the client end pulls content from the server at regular intervals.

Refer to:

Timer events

283

JavaScript Programmer's Reference

Client-side JavaScript (Definition)

The JavaScript that gets executed in the web browser or other client application.

.jar, . java, . Jjs, Desktop JavaScript, HTML file, Server-side

See also:
JavaScript, Web browser

Cross-references:
Wrox Instant JavaScript — page — 3

Wrox Instant JavaScript — page — 5

clientinformation (Property)

Details of the browser, A.K.A. the navigator object.

JScript - 3.0

Availability:
y Internet Explorer — 4.0

Property/method value type: Navigator object

JavaScript syntax: 1E clientInformation

1IE myWindow.clientInformation

Cross platform compatibility, Navigator object,

See also: . i X : 4
Window.clientInformation, Window.navigator

Property attributes:

ReadOnly, DontEnumn.

Clip object (Object/Navigator)

An object that represents a clip region within a layer.

JavaScript — 1.2

Availability:
Netscape — 4.0
Deprecated Netscape 6.0
. 1lip = L .cli
JavaScript syntax: N myClip = mylLayer.clip
N myClip = myStyle.clip
N myClip = myTextRectangle
N myClip = myRect
Object properties: bottom, height, left, right, top, width

284

C - Clip.bottom (Property)

This object represents a clipping rectangle that the visible part of a display object is viewed through.
This is most likely used with a 1ayer object. The layer contents would be drawn off-screen and then
that part that falls within the clipping rectangle would be displayed in the window.

This can be useful for performing wipes and making parts of a layer progressively visible within
some kind of transition loop.

In the MSIE browser, these rectangular objects are manufactured as needed with the rect ()
constructor function.

Warnings:
Q No longer supported in Netscape 6.0.
See also: Layer.clip, Rect object, style.clip, textRectangle
object

Property JavaScript JScript N IE Opera Notes

bottom 12+ - 4.0+ - - Warning, Deprecated
height 12+ - 4.0+ - - Warning, Deprecated
left 1.2 + = 4.0 + = = Warning, Deprecated
right 1.2+ - 4.0 + - - Warning, Deprecated
top 1.2+ = 4.0 + = = Warning, Deprecated
width 12+ - 4.0+ - - Warning, Deprecated

Clip.bottom (Property)

The bottom of a layer clip region.

Availability: JavaScript - 1.2

Netscape — 4.0

Deprecated Netscape 6.0
Property/method value type: Number primitive
JavaScript syntax: N myClip.bottom

This defines the bottom edge of the clip region. You could modify this in a loop to create a vertical
downwards wipe transition effect.

Warnings:
Q No longer supported in Netscape 6.0.

See also: Layer.clip.bottom, Rect.bottom

285

JavaScript Programmer's Reference

Clip.height (Property)

The height of a layer clip region.

JavaScript — 1.2

Availability:

Netscape — 4.0

Deprecated Netscape 6.0
Property/method value type: Number primitive
JavaScript syntax: N myClip.height

The clip region is defined by an extent rectangle that surrounds the space occupied by the clip
region. An extent rectangle is the smallest rectangle that completely encloses the item. This
property specifies the height of that extent rectangle.

Warnings:

0 No longer supported in Netscape 6.0.

See also: Layer.clip.height, Rect.height

Clip.left (Property)

The left of a layer clip region.

JavaScript — 1.2

Availability:
Netscape — 4.0
Deprecated Netscape 6.0
Property/method value type: Number primitive
JavaScript syntax: N myClip.left

This defines the left edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

Warnings:

0 No longer supported in Netscape 6.0.

See also: Layer.clip.left,Rect.left

Clip.right (Property)
The right of a layer clip region.
JavaScript — 1.2

Netscape — 4.0
Deprecated Netscape 6.0

Availability:

286

C - Clip.top (Property)

Property/method value type: Number primitive

JavaScript syntax: N myClip.right

This defines the right edge of the clip region. You could modify this in a loop to create a horizontal
wipe transition effect.

Warnings:
Q No longer supported in Netscape 6.0.

See also: Layer.clip.right, Rect.right

Clip.top (Property)

The top of a layer clip region.

Availability: {\aIV taScrip’c —41(.)2
etscape — 4.

Deprecated Netscape 6.0

Property/method value type: Number primitive

JavaScript syntax: N myClip.top

This defines the top edge of the clip region. You could modify this in a loop to create a vertical
downwards wipe transition effect.

Warnings:
Q No longer supported in Netscape 6.0.

See also: Layer.clip.top,Rect.top

Clip.width (Property)

The width of a layer clip region.

JavaScript —1.2
Netscape — 4.0
Deprecated Netscape 6.0

Availability:

Property/method value type: Number primitive

JavaScript syntax: N myClip.width

The clip region is defined by an extent rectangle that surrounds the space occupied by the clip
region. An extent rectangle is that smallest rectangle that completely encloses the item. This
property specifies the width of that extent rectangle.

287

JavaScript Programmer's Reference

Warnings:
0 No longer supported in Netscape 6.0.

See also: Layer.clip.width, Rect.width

clipboardData (Property)

A global browser variable that refers to the clipboardbData object for the window.

Availability: JSeript - 5.0
Internet Explorer — 5.0

Property/method value type: clipboardData object

. 1i D
JavaScript syntax: IE clipboardbata
1IE myWindow.clipboardData
See also: clipboardData object, Window.clipboardData

clipboardData object (Object/JScript)

An object that can be used with editing operations to provide script-driven access to the
clipboard contents.

Availability: JScript - 5.0

Internet Explorer — 5.0
JavaScript syntax: 1E myClipboardData = clipboardData

1IE myClipboardData = myWindow.clipboardData
Object methods: clearData(), getData(), setData ()

If you want to move data in and out of the clipboard on a Windows platform from within the MSIE
browser, this object encapsulates the clipboard contents.

Refer to the dataTransfer object for a description of the clearData (), getData (), and
setData () methods that may also be used with the clipboardData object.

B dataTransfer.clearData(),dataTransfer.getData(),
See also: . .
Window.clipboardData

Method JavaScript JScript N IE Opera Notes
clearData () - 5.0 + - 5.0+ - _
etData () - 5.0 + - 50+ - -
setData () - 5.0 + - 5.0 + - -

288

C - close() (Method)

close() (Method)

A function that closes the receiving window.

Availability: } gva'Sctriplt(; 1.0
cript — 1.
Internet Explorer — 3.02
Netscape — 2.0

Opera-3.0
Property/method value type: undefined
; - 1
JavaScript syntax: cloge(]
- myWindow.close ()
See also: UniversalBrowserAccess,UniversalBrowserWrite,

Window.close ()

closed (Property)

A flag indicating the window disposition.

JavaScript — 1.1

Availability:
JScript - 3.0
Internet Explorer version — 4.0
Netscape Navigator version — 3.0
Opera browser - 3.0
Property/method value type: Boolean primitive

, = 1 d
JavaScript syntax: crose
= myWindow.closed

false The window is still open

true The window has been closed

Argument list:

Property attributes:

ReadOnly.

Refer to:

Window.closed

289

JavaScript Programmer's Reference

Closure object (Object/internal)

A special kind of function object that preserves prototype inheritance and scope.

Availability: JavaScript - 1.2

Netscape — 4.0
JavaScript syntax: N myClosure = new Closure()
Object properties: __parent__,_ _proto__

This is a special kind of object, which maintains some contextual state information when it is created.

It can behave like a function, but is a kind of function wrapper that references a function and a
scope. Since it inherits everything from the Function object, it can behave like a function and can
be called as such.

Because it also stores the scope chain at the time it is manufactured, it can restore that scope chain
when it is executed.

See also: Lexical scoping

Property JavaScript JScript N IE Opera Notes
__parent__ 1.2 + - 40+ - - -
__proto__ 1.2 + - 40+ - - -

Closure() (Object/Navigator)

A Closure object constructor.
Availability: JavaScript - 1.2
Netscape — 4.0
JavaScript syntax: N new Closure (aFunction, aTarget)

A F ti 1 1
Argument list: arFunction The declaration of a function

aTarget An object to associate the function with

This constructor is used internally to create a Closure object containing the function associated
with a target object.

The Closure () constructor is used in Netscape 4 to create an event-handler function that can be
forced to run in a scope containing a target object.

290

C - Closure.__parent__ (Property)

Example code:

document . forml .myButton.onclick =
new Closure(
function ()
{
document .validated = false;
}
document . forml .myButton

) 5

See also: Copstructor function, constructor property, Global object,
Object constant

Closure.__parent__ (Property)

A reference to a scope-chain object that is preserved with the function by the Closure object.

Availability: JavaScript - 1.2
Netscape — 4.0
Property/method value type: ScopeChain object
JavaScript syntax: N myClosure.__parent_
See also: __parent__,__proto__, Lexical scoping, Closure object

Closure.__proto__ (Property)

A reference to a function that is encapsulated by the Closure object.

Availability: JavaScript - 1.2
Netscape — 4.0
Property/method value type: Function object
JavaScript syntax: N myClosure.__proto___
See also: __parent__,__proto__, Lexical scoping, Closure object

291

JavaScript Programmer's Reference

clsid: URL (Request method)

Used by MSIE to locate ActiveX controls for the <OBJECT> tag.
A special request method for loading ActiveX objects from the locally stored object repository.
This provides a portable, cross-platform, installation,independent way to refer to the folder where

you have installed shared ActiveX objects on your system. It is more or less equivalent to the
file: request method but without the need to specify a path to the folder.

See also: OBJECT.classid, URL

Code block delimiter {} (Delimiter)

A delimiting token for a block of executable script source text.

ECMAScript edition — 2

Availability:
JavaScript - 1.0
JScript - 1.0
Internet Explorer — 3.02
Netscape — 2.0
Netscape Enterprise Server — 2.0
Opera-3.0
JavaScript syntax: = aLabel: { someScript }
aLabel An optional identifier to name the code block

Argument list:
someScript Some legal JavaScript source text

A block is a list of statements that form one syntactic unit enclosed in curly brace characters ({ }).

This is particularly useful in conditional execution and iterative execution. Both of those are
expected to operate on a single syntactic unit. A block allows that single syntactic unit to be
composed of multiple lines of source script text.

Because the curly brace characters are used to delimit a block of code that comprises a list of semi-
colon terminated statements, you do not need to place any semi-colons after the closing curly brace.

A block of code is most often used like this with a iterator or conditional test to either call the
same section of code repetitively or to execute it as the result of a conditional expression returning
a true value.

In compiled languages, variables declared inside a block are sometimes local to that block and are
garbage-collected when the block exits. The ECMA standard indicates that variables created inside
a code block will be global unless that code block is the body of a function. In ECMA-compliant
interpreters, a block does not instantiate a new execution context, whereas in C language it does
create a new scope within which the variables exist.

This means that variables created inside an 'if keyword' controlled compound statement will
be function-local or globally accessible according to whether the 'i f keyword' is in a function or
global code section.

292

C - CODE object (Object/HTML)

Braces must be used in pairs. Although the JavaScript interpreters may forgive you when you miss
out some language elements, very subtle and difficult-to-diagnose errors can occur if you misplace

a brace character.

Modern text editors give you a lot of help when balancing pairs of braces.

The associativity is left to right.

Refer to the Operator Precedence topic for details of execution order.

At version 1.2 of JavaScript, you can name the code block and use the labeled form of the break
keyword to exit the block prematurely.

See also:

Associativity, else 1£(...) ..., if(...) ..., 1f(...)
else ..., Label, Operator Precedence, Punctuator

Cross-references:
ECMA 262 edition 2 — section — 12.5
ECMA 262 edition 3 — section — 12.1

Wrox Instant JavaScript — page — 18

CODE object (Object/HTML)

An object representing the HTML content delimited by the <CODE> HTML tags.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Event handlers:

JScript - 3.0
Internet Explorer — 4.0

Element object

1IE myCODE = myDocument.all.anElementID
1E myCODE = myDocument.all.tags ("CODE") [anIndex]
1E myCODE = myDocument.all[aName]
= myCODE = myDocument.getElementById (anElementID)
- myCODE =
myDocument .getElement sByName (aName) [anIndex]
= myCODE =
myDocument.getElementsByTagName ("CODE") [anIndex]

<CODE> ... </CODE>

anElementID The ID value of the element required
anIndex A valid reference to an item in the collection
aName The name attribute of an element

onClick, onDblClick, onDragStart, onFilterChange, onHelp,
onKeyDown, onKeyPress, onKeyUp, onMouseDown, onMouseMove,
onMouseOut, onMouseOver, onMouseUp, onSelectStart

293

JavaScript Programmer's Reference

See also: KBD object, LISTING object

Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick - 3.0+ - 40+ 3.0+ - 40+ Warning
onDblClick - 3.0+ - 40+ 3.0+ - 40+ Warning
onDragStart = 3.0 + - 40+ - - - -
onFilterChange = 3.0 + - 40+ - - - -
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown = 3.0+ - 40+ 3.0+ - 40+ Warning
onKeyPress - 3.0+ - 40+ 3.0+ - 40+ Warning
onKeyUp - 3.0+ - 40+ 3.0+ - 40+ Warning
onMouseDown - 3.0+ - 40+ 3.0+ - 40+ Warning
onMouseMove - 3.0+ - 40+ - - 40+ Warning
onMouseOut - 3.0+ - 40+ 3.0+ - 40+ Warning
onMouseOver = 3.0 + = 40+ 3.0+ = 40+ Warning
onMouseUp = 3.0 + = 40+ 3.0+ = 40+ Warning
onSelectStart - 3.0 + - 40+ - - - -

Inheritance chain:

Element object, Node object

Refer to:

Element object

Code signing (Definition)
A security mechanism to allow scripts to inter-communicate.

Signed scripts are allowed higher privileges to communicate with one another because the browser
assumes they are more secure.

See also: Security policy, Signed scripts

COL object (Object/HTML)

An object that represents a <COL> HTML tag.

Availability: E}S;\gclzfl_ —115
JScript — 3.0

Internet Explorer — 4.0
Netscape — 6.0

294

C - COL object (Object/HTML)

Inherits from: Element object

1E myCOL = myDocument.all.anElementID
1E myCOL = myDocument.all.tags ("COL") [anIndex]

JavaScript syntax:

1E myCOL = myDocument.all[aName]
= myCOL = myDocument.getElementById (anElementID)

= myCOL =
myDocument .getElement sByName (aName) [anIndex]
= myCOL =
myDocument .getElementsByTagName ("COL") [anIndex]

HTML syntax: <COL> ... </COL>

Argument list: anIndex A valid reference to an item in the collection
aName The name attribute of an element
anElementID The ID attribute of an element

Object properties: align, ch,chOff, span,vAlign,width

onClick, onDblClick, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp

Event handlers:

This object represents the <COL> tag, which is used within <TABLE> constructs to provide a way of
controlling an entire table column from a single definition. It is used in conjunction with a
<COLGROUP> construct.

The HTML 4 specification describes functionality that currently none of the widely available
browsers supports properly.

The DOM specification describes a HTMLTableColElement object, which is the standardized
interface to this class.

COLGROUP object, ELement object, style.columnSpan, TABLE object,

See also: . .
TABLE.rules, TableColElement ob]ect, TableColElement.align,
TableColElement.ch, TableColElement.chOff,
TableColElement.span, TableColElement .vAlign,
TableColElement.width

Property JavaScript JScript N IE Opera DOM HTML Notes

align 1.5+ 3.0+ 6.0+ 4.0+ - 1+ - -

ch 1.5+ - 6.0+ - - 1+ - -

chOff 1.5+ - 6.0+ - - 1+ - -

span 15+ 3.0 + 6.0+ 40+ - 1+ - -

vAlign 1.5+ 3.0+ 60+ 40+ - 1+ - -

width 1.5+ 3.0 + 60+ 40+ - 1+ - -

Event name JavaScript JScript N IE Opera DOM HTML Notes

onClick 15+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning

onDblClick 15+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning

295

JavaScript Programmer's Reference

Event nhame
onHelp
onKeyDown
onKeyPress
onKeyUp
onMouseDown
onMouseMove
onMouseOut
onMouseOver

onMouseUp

JavaScript JScript N IE Opera DOM HTML

1.5+
1.5+
1.5+
1.5+
1.5+
1.5+
1.5+
1.5+

Inheritance chain:

Element object, Node object

COL.align (Property)

An attribute controlling the alignment of a column contained in a <CoL> HTML tag.

Availability:

Property/method value type:

JavaScript syntax:

3.0+ - 40+ - - -

3.0+ 6.0+ 40+ 3.0+ - 4.0+
3.0+ 6.0+ 40+ 3.0+ - 4.0+
3.0+ 6.0+ 40+ 3.0+ - 4.0+
3.0+ 6.0+ 40+ 3.0+ - 4.0+
3.0+ 6.0+ 40+ - - 4.0+
3.0+ 6.0+ 40+ 30+ - 4.0+
3.0+ 6.0+ 40+ 30+ - 4.0+
3.0+ 6.0+ 40+ 30+ - 4.0+

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

String primitive

- myCOL.align

Notes

Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning
Warning

The alignment of the COL object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

absbottom
absmiddle
baseline
bottom
center
char
justify
left
middle
right
texttop

O00 00U 000000

top

296

C - COL.ch (Property)

Note that not all of these are available in every browser. In particular the justify and char
values are recent additions.

See also: COLGROUP.align

COL.ch (Property)

The alignment character for cells in a column arrangement.

Availability: DOM level -1

JavaScript — 1.5

Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: N myTHEAD. ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

See also: COLGROUP.ch, TD.ch, TH.ch, THEAD.ch, TR.ch

COL.chOff (Property)

The offset of a column alignment character.

Availability: DOM level - 1

JavaScript - 1.5

Netscape — 6.0
Property/method value type: String primitive
JavaScript syntax: N myTHEAD. chOf £

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

COLGROUP.chOff, TD.chOff, TH.chOff, THEAD.chOff,

See also: TR.chOff

297

JavaScript Programmer's Reference

COL.span (Property)

The number of columns that the style for this object spans.

Availability: DOM level -1

JavaScript - 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: Number primitive
JavaScript syntax: - myCOL. span

This corresponds to the COLSPAN attribute within a <TD> or <TH> table cell description. It defines
how many table columns this column is to span.

See also: COLGROUP. span, TD.colSpan, TH.colSpan

COL.VAlign (Property)

The vertical alignment of items within this column.

Availability: DOM level -1

JavaScript — 1.5

JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myCOL.vAlign

This property controls text alignment in the vertical axis. This applies to text cells in the column group.
The vAlign property may be set to these values:

baseline
bottom

middle

0O 0 0O O

top

See also: COLGROUP.vAlign

298

C - COL.width (Property)

COL.width (Property)

The width of each column in the column group.

Availability:

DOM level -1
JavaScript - 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape - 6.0

Property/method value type: Number

JavaScript syntax:

primitive

myCOL.width

The columns within the column group are set to a width defined by this property. Changing the
value will cause the page content to be re-flowed to reflect the new value.

See also:

COLGROUP.width

COLGROUP object (Object/HTML)

An object that represents the <COLGROUP> HTML tag.

Availability:

Inherits from:

JavaScript syntax:

HTML syntax:

Argument list:

Object properties:

Event handlers:

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0

Netscape - 6.0
Element object

IE myCOLGROUP
I[E myCOLGROUP

myDocument.

IE myCOLGROUP
- myCOLGROUP
- myCOLGROUP

myDocument.

- myCOLGROUP

myDocument.

<COLGROUP>

anIndex
aName

anElementID

align, ch, chOff,

= myDocument.all.anElementID
all.tags ("COLGROUP") [anIndex]
= myDocument.all [aName]

= myDocument.getElementById (anElementID)

getElementsByName (aName) [anIndex]

getElementsByTagName ("COLGROUP") [anIndex]

</COLGROUP>

A valid reference to an item in the collection
The name attribute of an element

The ID attribute of an element

span,vAlign,width

onClick, onDblClick, onHelp, onKeyDown, onKeyPress, onKeyUp,
onMouseDown, onMouseMove, onMouseOut, onMouseOver, onMouseUp

299

JavaScript Programmer's Reference

The <COL> and <COLGROUP> tags correspond to objects that represent the column or group of
columns within a <TABLE> construct. Individual columns map to the COL object and groups of
columns to the COLGROUP object. Attributes can be applied to a group of columns and overridden
on an individual column basis if necessary.

The DOM specification mentions an HTMLTableColElement object, which provides the
functionality of this class.

COL object, style.columnSpan, TABLE object, TABLE. rules,

See also: ;)
TableColElement object, TableColElement .align,
TableColElement.ch, TableColElement.chOff,
TableColElement.span, TableColElement.vAlign,
TableColElement.width
Property JavaScript JScript N IE Opera DOM HTML Notes
align 1.5+ 3.0 + 6.0+ 4.0+ - 1+ - -
ch 1.5+ - 6.0+ - - 1+ - -
chOff 1.5+ - 6.0+ - - 1+ - -
span 1.5+ 3.0+ 6.0+ 40+ - 1+ - -
vAlign 1.5+ 3.0+ 6.0+ 40+ - 1+ - -
width 1.5+ 3.0 + 60+ 40+ - 1+ - -
Event name JavaScript JScript N IE Opera DOM HTML Notes
onClick 15+ 3.0+ 6.0+ 40+ 3.0+ = 40+ Warning
onDblClick 15+ 3.0+ 6.0+ 40+ 3.0+ - 40+ Warning
onHelp - 3.0+ - 40+ - - - Warning
onKeyDown 1.5+ 3.0+ 6.0+ 40+ 3.0+ - 4.0+ Warning
onkKeyPress 1.5+ 3.0+ 6.0+ 40+ 30+ - 40+ Warning
onkKeyUp 1.5+ 3.0+ 6.0+ 40+ 30+ - 40+ Warning
onMouseDown 1.5+ 3.0+ 6.0+ 40+ 30+ - 40+ Warning
onMouseMove 1.5+ 3.0+ 6.0+ 40+ - - 40+ Warning
onMouseOut 1.5+ 3.0+ 6.0+ 40+ 30+ - 40+ Warning
onMouseOver 1.5+ 3.0+ 6.0+ 40+ 30+ - 40+ Warning
onMouseUp 1.5+ 3.0+ 6.0+ 40+ 3.0+ = 40+ Warning

Inheritance chain:

Element object, Node object

300

C — COLGROUP .align (Property)

COLGROUP.align (Property)

The alignment settings for a column group.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myCOLGROUP.align

The alignment of the COLGROUP object with respect to its containing parent object is defined in this
property. The following set of alignment specifiers are available:

absbottom
absmiddle
baseline
bottom
center
left
middle
right
texttop

Ty

top

See also: COL.align

COLGROUP.ch (Property)

The alignment character for cells in a column group arrangement.

Availability: DOM level -1

JavaScript - 1.5

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: N myTHEAD. ch

HTML 4.0 provides for text to be arranged in neat columns within table cells without the need to
create additional tables within tables. This method of alignment is selected by setting the
ALIGN="CHAR" HTML tag attribute. The CHAR HTML tag attribute is reflected in this property and
is active when the CHAROFF HTML tag attribute is present.

301

JavaScript Programmer's Reference

See also: COL.ch, TD.ch, TH.ch, THEAD.ch, TR.ch

COLGROUP.chOff (Property)

The offset of a column alignment character.

Availability: DOM level -1

JavaScript - 1.5

Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: N myTHEAD.chOff

The CHAR alignment style requires that an alignment character be specified with the ch property
and that an offset measured in pixels be defined as its value. The offset value can be defined with
the CHAROFF HTML tag attribute. The remainder of the string is offset by this distance from the
alignment character.

COL.chOff, TD.chOff, TH.chOff, THEAD.chOff,

Ses also: TR.chOff

COLGROUP.span (Property)

The span settings for a column group.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: = myCOLGROUP. span

This property contains a definition of the number of adjacent columns that are affected by the
<COLGROUP> tag's attributes. It corresponds to the COLSPAN attributes of the <TD> and <TH> tags
and the objects that encapsulate them.

See also: COL.span, TD.colSpan, TH.colSpan

302

C — COLGROUP .vAlign (Property)

COLGROUP.vVAlign (Property)

The vertical alignment of items in a column group.

Availability: DOM level -1
JavaScript - 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Property/method value type: String primitive
JavaScript syntax: - myCOLGROUP.vAlign

This property controls text alignment in the vertical axis. This applies to text cells in the column group.
The vAlign property may be set to these values:

baseline
bottom

middle

0o 0 0 o

top

See also: COL.vAlign

COLGROUP.width (Property)

The width of items in a column group.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape — 6.0
Property/method value type: Number primitive
JavaScript syntax: - myCOLGROUP.width

The columns within the column group are set to a width defined by this property. Changing the
value will cause the page content to be re-flowed to reflect the new value.

See also: COL.width

303

JavaScript Programmer's Reference

Collation sequence (Definition)

The order in which objects are sorted lexically according to the locale.

Collation sequences determine the way that information is sorted into the correct sequence. This is
likely to be very locale-dependant and therefore if you are going to sort data, you may need to
provide a means of plugging in a sort comparator function that is aware of the national language

variants if your scripts belong to sites that will be deployed in foreign languages.

This is covered in some depth in the Unicode standard manual.

See also: Localization

Collection object (Object/DOM)

An array of Element objects.

Availability: ﬁgi\élclsgctﬂ_ —115
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0
Opera browser - 3.0

JavaScript syntax: 1E myCollection = myDocument.all

1IE myCollection = myDocument.children
1E myCollection = myDocument.filters
= myCollection =

myDocument .getElementsByName (aName) [anIndex]
1E myCollection = myElement.all

1E myCollection = myElement.children
1E myCollection = myElement.filters

= myCollection =
myDocument.getElementsByTagName (aTag) [anIndex]
Argument list: aName The name attribute of an element
anIndex A valid reference to an item in the collection
aTag The name of a tag
Object properties: length
Object methods: Item(),namedItem(), tags()

A collection object is an enhancement to the basic array object to provide some additional
searching capabilities for managing the contents of the document object model in a web browser.

Do not confuse DOM NodeList arrays with Enumerator or Collection objects. The
NodeListitem () method is subtly different from the Enumerator.Item() method.

304

C - Collection.ltem() (Method)

See also: TABLE.cells[]

Property JavaScript JScript N IE Opera DOM Notes
length 15+ 3.0+ 6.0+ 40+ 30+ 1+ ReadOnly
Method JavaScript JScript N IE Opera DOM Notes
Item() 1.5+ 3.0+ 6.0+ 40+ 50+ 1+ Warning
namedItem () 1.5+ 5.0 + 6.0 + 5.0 + 5.0 + 1+ -

tags () - 3.0 + - 4.0 + - - -

Collection.ltem() (Method)

Select an Element object by index number.

Availability: DOM level -1
JavaScript — 1.5
JScript - 3.0
Internet Explorer — 4.0
Netscape - 6.0
Opera-5.0
Property/method value type: Node object

JavaScript syntax: = myCollection.item(anIndex)

= myCollection.item(aSelector)
= myCollection.item(aSelector, anIndex)
= myCollection[anIndex]

Argument list: anIndex A zero based index into the collection

aSelector A textual value that selects all matching objects

This is a search method that traverses a collection looking for an item or collection of items by the
index in the collection.

If the first argument is a numeric value, the object at the indexed position is returned. You may not
place a second argument in the call. This is the DOM standard specified behavior.

If the first argument is a string, then any object in the collection that has an ID or name property
that matches the selector will be assembled into another collection. If there is no second argument,
that new collection will be returned as a sub-set of the original receiving collection. This is an
extension to the DOM specified behavior.

If the first argument is a string and the second argument is a numeric value, the sub-set collection

is manufactured but the element in that collection indexed by the second argument is returned as a
single object. This is also an extension to the DOM specified behavior.

305

JavaScript Programmer's Reference

This extension is useful because you can apply a filter and selection in one call without needing to
extract and then store a sub-set collection. On the downside, this will repeat the sub-setting search
each time it is called which can lead to performance problems.

When using the myCollection.item(anIndex) syntax variation, it is functionally equivalent to

myCollection[anIndex].

Note that the DOM specification does not allow for the alternative array-like addressing mode,
which is implemented in browsers as a convenience.

Warnings:

O You may get back a single object if there is only one item that matches. However, if the selection
criteria match more than one item, you will get back an array of objects. This is slightly problematic;
it would be better if you consistently got back an array even if it contained zero or only one item.
You could then operate on it consistently.

0 The Item() method of an MSIE Collection object is not the same as the i tem () method for the
DOM NodeList object. The DOM specifies the method name in lower case, though it is upper case
in MSIE (although JScript is somewhat forgiving of upper-lower case errors in scripts).

0O Inaddition, the Ttem () method of an MSIE Collection supports several different addressing
modes, whereas the item () method of a Nodelist supports only one.

See also:

Collection object, NamedNodeMap.item(),
OptionsArray.item(), style.item()

Collection.length (Property)

Returns the length of a collection array.

Availability:

Property/method value type:

JavaScript syntax:

DOM level -1
JavaScript — 1.5
JScript - 3.0

Internet Explorer — 4.0
Netscape — 6.0
Opera - 3.0

Number primitive

- myCollection.length

The collection behaves exactly like an array object and returns a number representing a count of

all the elements in the collection.

See also:

306

AnchorArray.length, AppletArray.length,
Arguments.length, Array.length, Attributes.length,
Form.elements.length, Form. length,
FormArray.length, LayerArray.length,
LinkArray.length, NodeList.length, Plugin.length,
PluginArray.length, ScriptArray.length,
StyleSheetList.length, Window.length

C - Collection.namedltem() (Method)

Property attributes:

ReadOnly.

Collection.namedltem() (Method)

Select an Element object by name or ID value.

Availability: DOl
JavaScript — 1.5
JScript - 5.0
Internet Explorer — 5.0
Netscape — 6.0
Opera-5.0
Property/method value type: Node object

JavaScript syntax: - myCollection.namedItem (aString)

= myCollection[aString]

Argument list: asString A textual value that selects all matching objects

This is a search method that traverses a collection looking for a named item or collection of items.

The argument is a string containing the name or ID value of the Element to be located.

Collection.tags() (Method)

Extract a sub-list of Element objects of a particular tag type.

Availability: JScript - 3.0
Internet Explorer — 4.0
Property/method value type: Collection object
JavaScript syntax: 1E myCollection.tags (aTagName)
Argument list: aTagName The name of a tag to be filtered

The collection is traversed and all objects are examined to see if they were created by an HTML tag
that is the same as that specified in the argument.

The argument must always be specified in upper case and the resulting collection will contain all
objects of that type selected from the receiving collection object.

You can then manipulate the sub-set collection in the normal way, accessing items within it by
index or by other means.

See also: Collection object, Select.tags ()

307

JavaScript Programmer's Reference

Colon (:) (Delimiter)

A delimiter used with labels and conditional operators.

ECMAScript edition — 2
JavaScript — 1.2

JScript - 3.0

Internet Explorer — 4.0
Netscape — 4.0

Availability:

This delimiter is used with the case keyword and the default keyword in switch statement blocks.

Refer to the switch topic for details of how this is used.

See also: switch(...) ... case: ... default:

Color names (Definition)

There are standard definitions of color names for use in web pages.
Property/method value type: String primitive

Although the color names are used in HTML tags, you can use Hexadecimal values as well.

Here is a list of the standard color definitions:

Name: Value:

AliceBlue #FOF8FF
AntiqueWhite #FAEBD7
Aqua #00FFFF
Aguamarine #7FFFD4
Azure #FOFFFF
Beige #F5F5DC
Bisque #FFEA4AC4
Black #000000
BlanchedAlmond #FFEBCD
Blue #0000FF
BlueViolet #8A2BE2
Brown #A52A2A
BurleyWood #DEB887
CadetBlue #5F9EAQ
Chartreuse #7FFF00
Chocolate #D2691E
Coral #FF7F50
CornFlowerBlue #6495ED
CornSilk #FFF8DC
Crimson #DC143C

Table continued on following page

308

C - Color names (Definition)

Name:

Cyan

DarkBlue
DarkCyan
DarkGoldenrod
DarkGray
DarkGreen
DarkKhaki
DarkMagenta
DarkOliveGreen
DarkOrange
DarkOrchid
DarkRed
DarkSalmon
DarkSeaGreen
DarkSlateBlue
DarkSlateGray
DarkTurquoise
DarkvViolet
DeepPink
DeepSkyBlue
DimGray
DodgerBlue
Firebrick
FloralWhite
ForestGreen
Fuchsia
Gainsboro
GhostWhite
Gold
Goldenrod
Gray

Green
GreenYellow
Honeydew
HotPink
IndianRed
Indigo

Ivory

Khaki
Lavender
LavenderBlush
LawnGreen
LemonChiffon
LightBlue

Value:

#00FFFF
#00008B
#008B8B
#B8860B
#A9A9A9
#006400
#BDB76B
#8B008B
#556B2F
#FF8CO00
#9932CC
#8B000O
#E9967A
#8FBC8F
#483D8B
#2FAF4F
#00CED1
#9400D3
#FF1493
#00BFFF
#696969
#1E90FF
#B22222
#FFFAFO
#228B22
#FFOOFF
#DCDCDC
#F8F8FF
#FFD700
#DAA520
#808080
#008000
#ADFF2F
#FOFFFO
#FF69B4
#CD5C5C
#4B0082
#FFFFFO
#FOE68C
#E6E6FA
#FFFOF5
#7CFCO0
#FFFACD
#ADDBE6

Table continued on following page

309

JavaScript Programmer's Reference

Name:

LightCoral
LightCyan

LightGoldenrodYellow

LightGray
LightGreen
LightPink
LightSalmon
LightSeaGreen
LightSkyBlue
LightSlateGray
LightSteelBlue
LightYellow
Lime

LimeGreen

Linen

Magenta

Maroon
MediumAgquamarine
MediumBlue
MediumOrchid
MediumPurple
MediumSeaGreen
MediumSlateBlue
MediumSpringGreen
MediumTurquoise
MediumVioletRed
MidnightBlue
MintCream
MistyRose
Moccasin
NavajoWhite
Navy

OldLace

Olive

OliveDrab
Orange
OrangeRed
Orchid
PaleGoldenrod
PaleGreen
PaleTurquoise
PaleVioletRed
PapayaWhip
PeachPuff

Peru

310

Value:

#F08080
#EOFFFF
#FAFAD2
#D3D3D3
#90EE90
#FFB6C1
#FFAQ7A
#20B2AA
#87CEFA
#778899
#B0C4DE
#FFFFEQ
#00FFO0O
#32CD32
#FAFOE6
#FFOOFF
#800000
#66CDAA
#0000CD
#BA55D3
#9370DB
#3CB371
#7B68EE
#00FA9A
#48D1CC
#C71585
#191970
#F5FFFA
#FFE4E1l
#FFE4B5
#FFDEAD
#000080
#FDF5E6
#808000
#6B8E23
#FFAS500
#FF4500
#DA70D6
#EEE8AA
#98FBI98
#AFEEEE
#DB7093
#FFEFD5
#FFDAB9
#CD853F

Table continued on following page

C - Color names (Definition)

Name: Value:

Pink #FFCOCB
Plum #DDAODD
PowderBlue #BOEOE6
Purple #800080
Red #FF0000
RosyBrown #BC8F8F
RoyalBlue #4169E1
SaddleBrown #8B4513
Salmon #FA8072
SandyBrown #F42460
SeaGreen #2E8B57
SeaShell #FFF5EE
Sienna #20522D
Silver #C0C0CO
SkyBlue #87CEEB
SlateBlue #6A5ACD
SlateGray #708090
Snow #FFFAFA
SpringGreen #00FF7F
SteelBlue #4682B4
Tan #D2B48C
Teal #008080
Thistle #D8BFDS8
Tomato #FF6347
Turquoise #40E0DO
Violet #EE82EE
Wheat #F5DEB3
White #FFFFFF
WhiteSmoke #F5F5F5
Yellow #FFFFO0O
YellowGreen #9ACD32

If you prefer to compute the color names, there is a very neat color picker tool on the Netscape
developer's web site.

See also: Color value

Web-references:
http://home.netscape.com/computing/webbuilding/studio/feature19981111-5.html

311

http://home.netscape.com/computing/webbuilding/studio/feature19981111-5.html

JavaScript Programmer's Reference

Color value (Advice)

Color values can be specified numerically or mnemonically.
Property/method value type: String primitive

A numeric color specification is a 6 digit (3 pairs) hexadecimal value with a leading hash symbol.
Each pair of digits defines the intensity of a single color (RGB) in the display.

The web-safe palette of 216 colors is defined by every possible combination of the following values:
00, 33, 66, 99, CC and FF

There are other values supported through the mnemonic named color palette, which includes 100
shades of gray.

You can use non-web-safe values if you have a greater than 8 bit deep display. These days most
platforms can resolve at least 16 bits, but some legacy systems may have problems resolving
non-web-safe colors.

When using color values for defined styled colors, the rgb () function can be used.

In the MSIE browser, the values can also be specified as 32 bit integer values, although in practice
this is extremely difficult to manage.

In certain circumstances, where an alpha value is available, the color value can be specified using
hexadecimal notation to define a 32 bit integer. In this case, the value is comprised of four pairs of
hex digits as follows:

O0xAARRGGBB

The value AA controls the alpha channel transparency, while the RR, GG, and BB values are the
intensity of Red, Green and Blue respectively.

When passed as a string value, the same hexadecimal value can be used but must be preceded by a
hash rather than the 0x prefix. Thus 0OxAARRGGBB becomes #AARRGGBB

Warnings:

O Be wary of spellings when specifying color values. The UK English spelling of "colour"