
Malcolm Clark

Afrfl*iSti ~Cufc^

ifouXte.r&&j tytirnri c

Coventry
cfy ^AL

A plain Tf^X Primer

A plain T^K Primer

Malcolm Clark

OXFORD • NEW YORK • TOKYO

OXFORD UNIVERSITY PRESS

1992

Oxford University Press, Walton Street, Oxford 0X2 6DP

Oxford New York Toronto

Delhi Bombay Calcutta Madras Karachi

Kuala Lumpur Singapore Hong Kong Tokyo

Nairobi Dar es Salaam Cape Town

Melbourne Auckland Madrid

and associated companies in

Berlin Ibadan

Oxford is a trade mark of Oxford University Press

Published in the United States

by Oxford University Press Inc., New York

© Malcolm Clark, 1992

All rights reserved. No part of this publication may be reproduced, stored

in a retrieval system, or transmitted, in any form or by any means,

without the prior permission in writing of Oxford University Press.

Within the UK, exceptions are allowed in respect of any fair dealing for

the purpose of research or private study, or criticism or review, as

permitted under the Copyright, Designs and Patents Act, 1988, or in the

case of reprographic reproduction in accordance with the terms of licences

issued by the Copyright Licensing Agency. Enquiries concerning

reproduction outside those terms and in other countries should be sent to

the Rights Department, Oxford University Press, at the address above.

This book is sold subject to the condition that it shall not, by way of

trade or otherwise, be lent, re-sold, hired out, or otherwise circulated

without the publisher’s prior consent in any form of binding or cover

other than that in which it is published and without a similar condition

including this condition being imposed on the subsequent purchaser.

A catalogue record for this book is available from the British Library

Library of Congress Cataloging in Publication Data

Clark, Malcolm.

A plain TpjX primer / Malcolm Clark.

1. TpjX (Computer file). 2. Computerized typesetting-Computer

programs. 3. Mathematics printing-Computer programs. I. Title.

Z253.4.T47C46 686.2'2544536-dc20 92-25531

ISBN 0-19-853784-0 (Hbk)

ISBN 0-19-853724-7 (Pbk)

Text keyed and photoset by the author using TpjX

Printed in Great Britain by

Bookcraft (Bath) Ltd

Midsomer Norton, Avon

I looked at him from the corner of my eye and said:

You can’t beat a good pint.

He leaned over and put his face close to me in an earnest

manner.

Do you know what I am going to tell you, he said with

his wry mouth, a pint of plain is your only man.

When things go wrong and will not come right,

Though you do the best you can,

When life looks black as the hour of night —

A PINT OF PLAIN IS YOUR ONLY MAN.

from At Swim-Two-Birds

by Flann O’Brien

Preface

This book has evolved from courses which were first given at

Imperial College, London, in 1984. These first courses were based

around the Pascal version of 1^X78 running on a CDC mainframe

and outputting to an Autologic APS p-5 phototypesetter. Now the

course is based on the current version of T^X running on a variety

of mainframes, minis, workstations, and micros, generating output

for screens, laser printers, and phototypesetters. T^X has come a

long way.
Many people have contributed; some directly, some obliquely,

many unwittingly. It seems invidious to attempt to list them,

although a few will find themselves embedded in the text. I trust

the omission does not offend.
I am particularly grateful to P. J. Kavanagh and the Peters

Fraser & Dunlop Group Ltd. for permission to reprint an extract

from The Perfect Stranger. Acknowledgement is made to Russell

Hoban for permission to quote from The Medusa Frequency, pub¬

lished by Cape.
June 27th, 1992

-

*

Contents

1 Introduction 1

2 Getting started 17

3 Do it yourself 35

4 Beginning mathematics 53

5 Continuing mathematics 69

6 More words 83

7 Commands 99

8 More maths 115

9 Boxing 131

10 Commands#l 151
11 Matrix manipulations 171

12 Pages 191
13 Tables by tabs 215

14 Tables again 227

15 Rules 241

16 Further rules 257

17 Graphics 271

18 Fonts 285

19 More detailed fonts 301

20 Making pages 313

21 Breaking up 329

22 Delays and deferments 341

23 Collections 549

24 Last words 561
A Fonts 569
B Annotated bibliography and references 377

C Resources 591
D Solutions to the exercises 403

Index ^73

-

Introduction

T)gX predates the current concern with microcomputers. This is

both a boon and a bane. Its origins lie, in part, in a series of books,

The Art of Computer Programming, written by Donald Knuth.

This is a projected seven-volume work, as yet incomplete. The

first volume was published in 1968, to be followed by Volume 2

in 1969, and Volume 3 in 1973. As might be inferred from the

title of the series, the books contain an appreciable amount of

mathematics, of one sort or another.
In the contemporary typesetting environment mathematics was

described as ‘penalty copy’. The author’s text (perhaps typed,

perhaps even longhand) was annotated by the publisher’s copy

editor to include information about the page layout, the typefaces

to be used, and a myriad of other details traditionally part of the

publisher’s arcana. The job of the author is to write the text, the

job of the copy editor is to begin the translation into type. The

annotated copy or markup copy of the text is then presented to

a human typesetter to be typeset. The position of line breaks is

decided at this point. Page breaks may also be decided at this

time, or entire chapters can be set as galleys, where the proof

copy is in the form of long single-column strips; these galleys are

then used to decide where page breaks will occur.
Writing a series like The Art of Computer Programming is simi¬

lar to painting the Forth Rail Bridge. No sooner is it finished than

the job must be started again. The revision to the first editions

of the first three volumes was underway some time after 1973.

This coincided with a change in printing technology, away from

hot metal type to phototypesetting. Between the first editions

of The Art of Computer Programming, using the old hot metal

technology, and the second editions, Knuth detected a decline in

the quality of typesetting. Although he might have made a valiant

rearguard stand and insisted that the revised editions be set with

the old technology, Knuth was a realist. There were to be a fur¬

ther four volumes, and since it would take some years to complete

2 A plain TpjK primer

them he could hardly insist on the retention of hot metal to suit

him. Technology was bound to change in the interim ‘and the

quality would go down each time’.
Frustration and dissatisfaction by themselves do not necessar¬

ily lead to the development of a new computerized system to set

type. At about the same time, Knuth saw the proofs of a book on

artificial intelligence which had been prepared on a digital photo¬

typesetter. He says ‘it looked as good as any (book) I had ever

seen done with metal’. In 1977 Knuth decided to spend one year

developing a new computerized system which would be useful in

producing his books, and then go back to The Art of Computer

Programming. The design of T^X started on Thursday, May 5th,

1977.
Setting mathematics is inherently difficult in traditional type¬

setting. If we regard a typesetter as a linear device - after all, most

text is essentially linear, and text is what comprises most type¬

setting - coping with mathematics or other technical text, which

is often two dimensional, must impose its own set of problems.

Since mathematics is a minority interest, innovation to account

for this particular area is unlikely to be embraced by the whole of

the industry, especially if it requires significant relearning of skills.

The excellence of any alternative does not ensure its adoption.

The variation in quality which was observable between the first

and second editions of The Art of Computer Programming was

not unique to books, as Knuth’s examination of the changes which

had taken place in the Transactions of the American Mathemat¬

ical Society showed. He documents the fluctuations in typeset

presentation in the essay Mathematical Typography, where he

says that the reduction in quality culminated in his decision not

to submit papers to the AMS ‘since the finished product was just

too painful for me to look at’.

How can such a problem be resolved: how can an author ensure

that the end product is worthy of his or her efforts? Knuth’s

solution was straightforward, if ambitious: design and implement

a form of markup which would be understood by a computer

and which could generate the appropriate codes for a typesetting

machine to produce the ‘correct’ forms on the page. It is probable

that it seemed a simpler problem at the time. With hindsight it is

easy to see the difficulties which were to lie ahead. After all, it took

about a decade before a final version of this system was unveiled.

Introduction 3

Tau Epsilon Chi

We must also consider the hardware available at the time too. No

matter how good ideas are, they will not germinate and flower if

they are completely outside the context of their time.

The principal computer hardware available was a minicomputer

which could handle the computational side of things (a DEC-20

running the TOPS-20 operating system), and a raster (or dot

matrix) plotter which could provide some representation of the

results - in fact an obsolescent Xerox XGP printer, with a nominal

resolution of 180-200 dpi (dots per inch). A fully fledged typesetter

would have been convenient, and although these were uncommon

at the time, especially outside the printing and publishing indus¬

try, Knuth was able to obtain access to a CRS AlphaType, with

a resolution of 5333 lines per inch. Nevertheless, it is quite impor¬

tant to the development of the system that the output device

used for development was one which created its characters by

accumulating dots. In other words, it was a digital device, not an

analogue one. Traditional ‘hot metal’ type, photosetting, and even

typewriter type can all be regarded as involving the manipulation

of analogue images.
It is also important to appreciate that the ultimate goal which

Knuth set for TgX is that of publishing - real publishing, within

the structure of the existing publishing world. TgX was not

designed for memos, letters, and the like. Its aims were alto¬

gether loftier. That is not to say that it is inflexible. Having been

designed for maximum scrutiny and exposure, the more mun¬

dane tasks are still accessible. It is probably also significant that

Knuth’s publishers were Addison Wesley. He certainly had some

discussions with their technical staff, and some of the quirks of

TgX can easily be laid to the desire to emulate the house style of

this particular publisher.
A clue to Knuth’s aims is provided by the name he chose to give

to the software - T^X. Originally, TgX was subtitled ‘Tau Epsilon

Chi, a system for technical text’. The Greek rex is the first syl¬

lable of the word tekhne, which is the root from which we obtain

words like ‘technology’. But to the Ancient Greeks, ‘technology’

was closer in meaning to ‘art’. If we take art to imply ‘craft , then

we are probably getting closer to the sort of meaning both the

Greeks and Knuth intended. The Greek origin of the name T[^X

also helps to explain its pronunciation. The ‘X’ is really doing

duty for a ‘x\ and therefore has the same sort of sound as the ‘ch’

4 A plain Tf]X primer

in loch. Naturally, if you cannot pronounce ‘loch’ properly, but

say ‘lock’, this doesn’t really help you. Pronouncing ‘dj^X’ cor¬

rectly is really one of our lesser worries, except when it starts to

confuse. In that case, you can always say ‘Donald Knuth’s TgX’;

everyone then knows what you are talking about, and Knuth gets

the credit. This seems only fair.
Of course, TgX was not isolated in its development. There were

other efforts which were directed towards the same sorts of goals.

The UNIX tools nroff and its variants and extensions eqn, tbl, grap,

and pic were at an early stage of their development. Document

description systems like Brian Reid’s Scribe were in circulation,

as well as others which were less public, but probably known to

Knuth.

In developing dj^X, Knuth was assisted by many others. Equally

important, the program was made available to others to port to

other computing environments; this proved to be an excellent way

of locating bugs and fixing them. Although originally written in

SAIL (Stanford Artificial Intelligence Language), TgX was rewrit¬

ten in Pascal - a far more generally available language, and one

uncannily popular with computer scientists, who were among the

first groups to take up d’gX enthusiastically. (It has been said that

dj^X is one of the finest tests of any Pascal compiler, and that

it has found more bugs in Pascal compilers than any other piece

of software.) So development of d^X was not carried out in lofty

isolation. This also meant the facilities in the program were open

to criticism and review. Fortunately, the final word remained with

Knuth, and the substance of the achievement is his. No committee

decided what should or should not happen.

This public availability also meant that TgX could be found

running on a vast range of machines. It was not restricted to one

computer range, or one operating system. Any computer which

had a Pascal compiler could reasonably be expected to run d^X.

This also encouraged the production of interfaces from d^X to a

wide variety of output devices: not just typesetters, but impact

dot matrix printers, and, perhaps more significantly, laser printers.

Friends of TgX

All along, the American Mathematical Society had expressed

interest in systems like dj^X. Quite early, their Advisory Commit¬

tee on Composition Technology identified TgX as a possible useful

addition to the society’s capabilities. The AMS concern is perhaps

Introduction 5

obvious. They produce a very large range of journals. Reducing

the in-house overheads on their production could effect savings not

only of money, but also of time. Anyone who submits an article to a

scientific journal soon starts to wonder where the article has got to,

and even when it is accepted, publication still seems to take aeons.

The AMS estimate that 30-40% of the time a paper spends at

their offices in Providence is taken up by keyboarding and subse¬

quent checking and correction of that work; similarly, composition

costs are estimated to account for about 48% of the production

costs at John Wiley & Sons Ltd. If an author could prepare a

manuscript electronically (for example, using T£jX), by the time

it came to be accepted for publication, no rekeying would be

needed. The same electronic manuscript (perhaps with referees’

and editors’ amendments) would suffice. Anyone who has sub¬

mitted manuscripts with equations in them will be aware how a

printer (even a good one) can attack those equations, requiring

corrections to the proof. At least if authors prepare the equations

themselves, the onus is theirs alone.
A measure of the AMS’s belief in T^X is to be gained from

their selection of it as their preferred language for the input of

mathematics. They have been using T^X for the production of

various internally created documents (like their membership lists,

directories, and so on), and more recently the mainstream publi¬

cations which require input from authors. The most notable recent

development has been their ‘Electronic Manuscript Program’ to

encourage the submission of papers in Tj^X.
Knuth asked the AMS to hold the trademark ‘T^X’. He also

devised a testing procedure to ensure that any implementation

which describes itself as TgX meets certain minimum (but high)

standards. Anyone, anywhere, who uses a system called TgX can

be confident that it will be the same as other J^X systems in all

essential details.
The AMS has also given consistent and determined assistance in

promoting the use of T£X, through TUG (T^X Users Group). The

group formed in February 1980, and produced its first newslet¬

ter, TUGBOAT, later that year. At first TUG sheltered under the

AMS, but eventually it grew large enough to establish its own

offices. TUG has consistently provided an umbrella for all Tj^X

users. Membership confers benefits and TUG members are among

the nicest bunch of people you are ever likely to meet. TUG’s

address, and that of other national or language-oriented groups,

will be found at the end of this book, in Appendix C.

6 A plain T^X primer

Public Tf^X

The first ‘public’ reference to TgX was in January 1978. The

first major public release of T^X was the so-called TjgX78, which

is described in the book TppC and Metafont. This provided a

widespread standard, especially since it was supported by ade¬

quate documentation. Knuth’s writing style attracted many com¬

pliments; the general feeling seemed to be that at last someone had

mastered the blend of fact, exposition, and structured develop¬

ment which made reading a manual a delight rather than a chore.

In the next few years TgX was rewritten. By and large, the

changes made could be described as ‘upwards compatible’ - that

is to say, features which were present in TgX78 are also present

in TgX82 - although some details changed drastically. In general

terms, TgX became more comprehensive, simpler, more consistent,

and more coherent. The end product was TgX-(almost)-as-we-

know-it-now, originally termed Tj^X82. And accompanying it was

The T^Xbook. Some idea of the changes made between TeX78

and ljgX82 may be gauged from the fact that there were about

200 pages in the original manual, and about 500 in The TpjXbook.

The -(almost)- tag became necessary when, in 1989, Knuth agreed

to make some changes in TgX, chiefly in order to enhance its capa¬

bility in handling languages which use accents or diacriticals. For¬

tunately all the changes are upwards compatible, and if you write

only in English, you are unlikely to notice the changes at all. At

the time of the changeover, the ‘new’ TgX was being termed TgX3.

Other threads were present in T^X’s development. Knuth was

not completely satisfied with the typefaces which were avail¬

able to him. The typefaces which were provided on the early

digital devices tended to be emulations of typewriter characters

rather than true typefaces. He therefore invented METRFONT -

a language to describe fonts (also given its first public airing in

1978). This was no trivial task, especially since METRFONT was

to describe a font in such a way that it was scale or resolution

independent, an aspect which will be discussed later. METRFONT

also went through a metamorphosis, between the original attempt

and the final version, METRFONT84. The changes which took place

were far more fundamental than those between T^X78 and TgX82.

METRFONT provided the basis from which Knuth developed the

Computer Modern family of typefaces.

Not content with inventing a typesetting system TgX, a font

creation language, METRFONT, and the Computer Modern type-

Introduction 7

face family, Knuth also invented WEB. WEB is a structured program

documentation system which combines a programming language

and a document formatting language into a single language. As

you might anticipate, T^X is the document formatting language.

Pascal is the programming language. A WEB program without clear

exposition would be unthinkable. In this way Knuth hoped that

programs would become more portable, as well as becoming ‘lit¬

erate’. A post-processor could take a WEB program and WEAVE it

to select the comment structure to produce documentation, or

TANGLE it to extract the lower-level language. Diagrammatically,

the process looks like:

WEB document

TANGLE*/ \WEAVE

Pascal source T^X document

WEB itself is not a compiled language. Originally, the underlying

programming language was Pascal, but equally, other languages

could be substituted. There are currently several implementations

of WEB which support a wider variety of programming languages,

including C. One day there may even be AdaWEB. Similarly, the

underlying document formatting language need not be T[h]X. And

of course, work was still progressing on The Art of Computer

Programming.

T^rpC grows up

The story does not end with the rewriting of T^X in WEB. The late

70s saw the rise of the microcomputer. To begin with these were

rather limited devices, with restricted memory and rather primi¬

tive operating systems (of course, there were exceptions). TgX

required, as a minimum, a 16-bit machine. These began to appear

in quantity, and at a reasonable price, in the early 80s. In a rela¬

tively short time, TgX was running on 16-bit micros, such as the

IBM pc. By an amazing coincidence, two independent commercial

implementations appeared within a few months of one another in

1985. A fully fledged, inexpensive T^X system was now within the

reach of anyone. This brings with it some important consequences:

one of the most important is that the ‘community’ of T^X users

becomes even more diffuse. While there are strong pockets of T^X

users in various universities, industrial and commercial organiza¬

tions (including publishers), there are also individual users,

completely separate from any sort of group support. More than

8 A plain T^X primer

ever, TgX has to be able to stand on its own two feet. There is no

longer a guaranteed ‘local expert’ to whom tricky problems can

be assigned.

At the same time, we have seen the rise of Wysiwyg (what you

see is what you get) text formatting systems: these come from at

least two directions. The first direction is a typewriter enhance¬

ment, where the ability of a microcomputer to store files and

permit on-screen editing has encouraged the virtual replacement

of the typewriter by the micro. This is purely emulation. We

are simply replacing one technology for producing a typewritten

document with another. This has nothing to do with publishing.

In this context the micro has simply become a more sophisticated

typewriter. The other direction is much more micro dependent.

The development of the Apple Macintosh allowed the introduc¬

tion of what Apple described as ‘desktop publishing’, when the

extremely integrated wimp (window, icon, mouse, and pull-down

menu) environment was coupled to a good crisp screen and a

laser printer. All these components had been around already -

Interleaf (a broadly similar system for the production of technical

documentation) and TgX both ran on the Sun workstation in just

that sort of environment, but to Apple must go the credit of the

new buzzwords. The accompanying software permitted a variety

of typefaces to be used, at a variety of sizes - something the

typewriter emulators could never achieve. In both environments,

however, the document was closely related to its operating system.

You could not really expect to sit down at some arbitrary keyboard

and use the same commands to achieve the same results. In fact,

you could not be sure which commands did achieve the results,

since they tended to be hidden (non-visible) codes which produced

effects like emboldening, superscripts, paragraphing, and so on.

Despite this, many people quickly become adept at the correct

sequence of keystrokes or menu selections which give a particular

effect. This is also true of human typesetters, who memorize even

more extensive keystroke sequences for printing effects.

The key difference between these systems and T^X is that T^X

does not hide the keystroke sequences. They are there for all to

see. This has some advantages: changing the sequences is easier.

They are there to be changed. And the same set of sequences work

on any implementation of T^X, running on any machine. On the

other hand, changes to the ‘typeset’ or ‘T^Xed’ version can only

be effected by going back to the original, correcting it, and then

T^Xing it again. To the printing and publishing industry this has

Introduction 9

always been the natural order of things. You don’t see the final

product until you print it. To the ‘office’ environment, it seems

unnatural. Typing is the original Wysiwyg system where the per¬

son at the keyboard is accustomed to seeing their work develop

as they enter it, and to making large-scale changes by retyping,

rather than simple editing.

TgX was developed before there were screens with adequate

resolution to make direct screen previewing a practical proposi¬

tion. Since it used a fairly ordinary computing system, the special

function keys of today’s word processors were not available, nor

were extra characters. In fact TgX uses a conventional keyboard to

prepare text which will be typeset at arbitrary complexity. There

never was any intention of viewing ‘output’ or some approxima¬

tion of it on the screen - ordinary ‘glass’ or ‘dumb’ terminals had

no powers of displaying anything other than their own limited

range of fixed characters. In any case, given the breadth of pos¬

sible T^X machines, it is still an impossibility to write a single

program which could provide a sensible representation of TjnjX

output on each and every terminal which might be linked up to

a computer. T[^X strives for a universality and standardization

which is remarkable, especially in the computing industry.

The approach of embedding visible sequences of keystrokes

within a document is by no means unique to TgX. The family

of nroff formatters uses a similar approach, while SGML (the Stan¬

dard Generalized Markup Language) also adopts this mechanism.

In fact, looking back to how publishers would handle a manuscript,

we can see that they would take it and mark it up with agreed

codes which conveyed information to the typesetter. Few pub¬

lishers actually do the typesetting and printing themselves, but

subcontract these jobs to specialist typesetters and printers. The

publishers’ markup therefore has to be fairly standardized. All

that Tj^X has done is intercept the publisher’s markup stage and

the interpretation by the human typesetter, replacing them by

codes which talk directly to the printing machine. Again we come

back to the view that is a publishing engine.

Markup can permit enormous flexibility. Any arbitrary new

sequence can be introduced, at the convenience of the author. At

some point there must be a definition of what the markup ‘means’,

but this might be in the hands of the author or the publisher. And

altering the definition should affect only the finished appearance.

The original document remains unchanged. Markup also allows

the document to be prepared on any arbitrary system before being

10 A plain TpjK primer

run through T^X. The widespread availability of microcomputers

makes this a less vital attribute, but it is useful to know that

wherever you are, whatever machine is available, you can at least

prepare the text in a manner suitable for T^X, even though T^X

itself may not be available. The actual transfer of files from one

computer system to another is a well-trodden path by now.

There are many levels at which markup can be employed. At the

very highest level, markup can be abstract: we can consider enti¬

ties like ‘Preface’, ‘Chapter’, ‘Section’, and so on - in other words,

the logical structure of the document. This is the sort of approach

that SGML and Scribe adopt. The actual details of how the text

looks on the page are not considered. This is simply an arbitrary

realization of the overall concept book. This sort of markup is usu¬

ally termed ‘declarative’, and contrasts with ‘procedural’ markup,

where much more detailed and specific information is provided.

At this lower ‘procedural’ level, we say that we want a certain

typeface, we want subscripts to be a particular height, or the first

line of a paragraph to be indented by a particular amount. TpX

is capable of this degree of detail. There are strong arguments

that authors should not be permitted this sort of control. Some of

them seem valid. At the very least, authors should not really have

to consider these minutiae whilst in the throes of composition.

However, part of the beauty of T^X is that it can form the basis

of an abstract description, adequately bridging the gulf between

concept and realization. One way of doing this is through the use

of lATgX (which itself sets out to emulate Scribe). Although writ¬

ten entirely in Tj^X, this encourages an author to concentrate on

the text, without having to worry too much about the details of

the structure on the page (or the details of Tf^X). It is a reflection

of the intimate mixing of content, structure, and T^X that lATgX

only partly succeeds in its aim.

Declaration of independence

The overhead of going straight from text to typeset output was

obviously high, and Knuth introduced a very convenient way

around the problem. He introduced the device independent (dvi)

file: this was an intermediate file produced by T^X which con¬

tained an account of where everything was arranged on the pages,

which fonts were being used, and so on. But this dvi file was not

specific for any particular output device, whether laser printer,

typesetter, or whatever. The output device selected might be at

Introduction 11

any of a number of resolutions (say from 100 dpi to 5333 dpi), or

may use different technologies to represent its fonts (for exam¬

ple, bit-maps, vector or bezier outlines, run-length encoding). The

dvi file is simply independent of the characteristics of the output

device - it is a neutral file. It is a very powerful interchange stan¬

dard for T^X. Every Tf^X program, presented with the same input

information, produces an identical dvi file. The dvi file may then

be interrogated by any of a number of ‘printer driver’ programs,

each written specifically for a given output device:

Tf^X document

I
dvi file

S l \
a variety of output devices

T]gX itself is concerned only with the creation of the dvi file.

When a new output device comes along, T^X is not rewritten. It

is sufficient to write a new device driver. This modular approach

helps to distribute T^jX widely. A benefit of the approach is that it

is possible to examine the results on a low-resolution device (low

resolution often also means ‘cheap’), and, if these results seem

good, then to process the dvi file again for a higher-resolution

printer (like a phototypesetter). Higher-resolution printers tend

to be more expensive, and access to them may not be so straight¬

forward. The important aspect is that TgX does not have to be

used again, and that you will be confident after examining the

‘proof’ that the end product will be the same, only better. No

nasty surprises will lie in store.

Of course, the real world is never quite this simple. The main fly

in the ointment is font information. Different phototypesetters use

different fonts. Although Knuth designed the Computer Modern

family of typefaces, which are publicly available, they were not

embraced by all typeface manufacturers. Part of the problem lies

in the fact that METRFONT is really designed as a ‘pixel’ or bit¬

map font generator, and not all phototypesetters use this system.

Therefore they would have to generate Computer Modern fonts

from scratch, using their own system. This takes time and money,

and as suggested earlier, typesetting technical text is a minority

interest. Of course, you could also use the manufacturers’ own

fonts. The major drawbacks here are that the typeface informa¬

tion that TTgX requires, like the size of each character and so on,

is often a rather jealously guarded secret; that no lower-resolution

12 A plain TpjK primer

pixel representation may be available, so that proofing on a laser

printer or whatever has to be done using those typefaces avail¬

able to the laser printer - which may be a little different; and

lastly, that manufacturers’ typefaces may not contain the rich set

of characters which T^X takes for granted.

We should also be a little wary in our interpretation of ‘resolu¬

tion’. What does resolution really mean in this context? It means

the ability to address so many independent dots per linear inch.

It does not necessarily imply what size the individual dots are,

nor does it say anything about their shape. Let’s take an exam¬

ple. Many laser printers are rated at 300 dpi. They are able to

address 300 dots per inch, both horizontally and vertically. We

can reasonably expect the ‘grid’ to be Cartesian; this carries with

it the expectation of lots of little squares (pixels) - 90,000 for

every square inch on the page. If the page being marked is an

A4 page, and if each pixel requires 1 bit, then the total amount

of information (or better, the total number of bytes) required is

about 1 megabyte. Doubling the number of dots per inch would

quadruple the number of bytes required. The ‘marking engine’,

the device which places ‘marks’ on the page, will not create neat

little squares. It will tend to create little blobs, approximately

circular in shape (in fact they are rather fuzzy almost-circles, if

the machine is a laser printer). The blobs will likely overlap - they

may each have a diameter greater than our ‘nominal’ Vaooth of an

inch. They have to overlap to provide the necessary continuity for

a character built up of lots of discrete pixels. The characteristics

of the blob’s outline will determine how the edge of a character

looks, and will contribute to the overall look of the page.

Different technologies give different characteristics, and even

different laser printers give different results. Many laser printers

are ‘write-black’, which is to say that they are concerned with

placing overlapping blobs of ink (or toner) on the page. The other

major group is ‘write-white’. The page starts out ‘black’ and the

shapes on the page are formed by removing overlapping blobs of

‘black’ so that only the letters are left. One of the consequences of

write-white is that very thin lines are difficult to draw (or rather, it

is difficult to leave the thin line). In Figure 1.1, the grid represents

the resolution of the device, with the black circles representing the

action of the printer. On the left, a write-black printer creates a

blobby vertical line, while on the right, a write-white printer erodes

the surrounding area to leave a rather slimmer, shorter zone which

will attract toner and result in a rather different perceived line.

Introduction 13

Figure 1.1

Write-black
(left) and write-
white (right)

The differences in technologies also help to explain why Wysiwyg
is so difficult to attain. The dots on a screen are much squarer than
those on a laser printer and they do not overlap. On one of the
Apple Macintosh implementations of T^X, for example, you can
magnify the TgK characters so that you see the individual pixels
which will be sent to the laser printer. This preview tends to make
diagonal lines look very jagged (the staircase effect). On the laser
printer, the same lines look much smoother, simply because of the
shape of the individual pixels on the laser printer, and the smear¬
ing of the toner which takes place. The smearing or ‘de-focusing’
seems to help, and leads to a slightly more agreeable end product.

This does not imply that laser-printed output is perfect. Far
from it. It can be good, and it can be quite suitable for many
jobs. For books, it is generally agreed to be inadequate, although
a fair number of books have been produced from laser-printed
masters. With care, attention, and good-quality paper the end
product can be quite tolerable. When the next generation of laser
printers becomes generally available it should be possible to com¬
pete with traditional typesetting, which claims the capability of
addressing from 700 to 5333 dots per inch.

Book notes

As the title of this book implies, it is a T^K primer. Its inten¬
tion is to introduce T^X, and to provide the reader with sufficient
information to get started with the majority of tasks which she or
he wishes to tackle. It is in no way intended as a comprehensive
discussion of all the nuances of T^X. Even Knuth’s The T^Xbook
fails to cover all aspects of T^X. A major intention is to explain
why TgX approaches its subject in the way it does, and to try to
provide the ‘context’ into which it fits.

Not only is the book a ‘primer’, it is a ‘plain’ T£X primer. ‘Plain’
is not intended to imply ‘straightforward or unadorned’, it has a
much more direct meaning than that. Wherever Tj^X is running,
it comes with at least one basic style definition, called ‘plain’.

14 A plain TjgX primer

This is a common starting point for many T^X users. It is a useful

basic style, and lends itself to extension and modification to suit

individual needs. There are of course other ‘styles’ like IAT^X and

•4M^~TeX, but working with ‘plain Tj^X’ (plain, or plain TgX,

as we will call it from now on) has its advantages.
Another thread will be the emphasis placed on document struc¬

ture - and consequently on the ‘declarative’ side of markup, when

this is appropriate. Naturally stress is laid on practical work.

When the objective is to place marks on paper, placing marks on

paper is an instructive way to illustrate points. It may be possible

to obtain some impression of the scope of T^X by reading books on

the subject, or looking closely at books prepared using Tj^X (a few

of which are listed in Appendix B), but learning to use TgX, with¬

out the benefit of the software running on some sort of computer

and an output device, would be to make learning an arduous task.

Just how arduous is it to learn Tj^X? That all depends. If you

have a problem to solve - writing a book, a thesis, a paper -

you probably won’t find it very difficult. Remember that TgX

is a typesetting system. Traditionally, to achieve competence in

typesetting required an apprenticeship of many years. You do not

become an expert typesetter overnight, or just because you have

read the books. Some never become expert. We should not be

surprised therefore if it takes some time to be at ease in T^X’s

company. Always bear in mind that we are emulating the setting

of type, and not merely trying to improve on what a typewriter

can do. Ultimately, we are following in the footsteps of Johann

Gensfleisch zum Gutenberg and Aldus Manutius; the names of

premier exponents of typewriting have not been handed down in

the same way. The man credited with the design of the first prac¬

tical typewriter, Christopher Sholes, is hardly a household name.

But not only is Tj^X a typesetting system, it aspires to the high¬

est quality possible. Achieving quality demands some application

too. If you come to T^X with very definite ideas of how you want

things to look on the page, it will take some time before you see

how to ease I^X into your own mould. Therefore, don’t expect to

do everything immediately. One of the minor problems associated

with l^X is that many people come to it when all other packages

have failed them - when they are doing something rather diffi¬

cult. Not surprisingly, doing difficult things is sometimes difficult.

There are things to learn about T^X before you start to do the

really tricky things that it does to perfection. Let’s assume that we

can start close to the beginning. In that way the overall structure

Introduction 15

of d^X is much easier to grasp.

There is one terrible drawback to TgX that we must admit now:

attempting to produce beautifully typeset documents through

TfrjX can become compulsive. You end up using T£jX for all docu¬

ments, from shopping lists to books. Not only that, it becomes

difficult to pick up a book without looking for clues to reveal the

way it was produced, almost ignoring the content. Naturally this

book was produced with T^X. Whatever is good in it is due to

the excellence of TgX, and the far-sightedness of Donald Knuth.

Whatever is less acceptable must be laid firmly to my account.

First last words

A book like this has a number of ‘orthogonal’ axes. On the face

of it, it should be possible to lay out the material in a sequen¬

tial fashion, introducing and developing concepts which slowly

accrete to the whole body of knowledge. This is a rather naive

and oversimplified expectation. Naturally the aim of any author

is to make the obscure more straightforward, to sketch the grand

design into which everything else fits more snuggly. And naturally,

every author, despite the evidence, likes to hope that she or he

has done so. There is a grand design to T£X. The more I work

with it, the more convinced I am of it. But the closer I get to it,

the more difficult it is to grasp. It is a huge world, and we see

only facets of it. I suspect that even Knuth did not envisage the

scope and breadth of T^X. This indicates to me that it really is a

work of genius. It is more powerful than it was built to be. This

does not mean it is without flaws. Nothing ‘manufactured’ ever

is. Knuth has already discussed the ‘Errors of TeX’ in a paper

presented to the TgX Users Group annual meeting in 1989. There

are also some fundamental flaws and shortcomings.
There is another question lurking in the shadows. Ought we

really to be teaching TgX at all? TgX is a markup language. In its

rawest form it can be a very explicit form of typographic markup,

more or less describing every movement of the hypothetical pieces

of type. It is almost an environment in which Gutenberg or

Manutius would have felt (fairly) comfortable. It seems to me that

Knuth never really expected T^eX to be used in its rawer forms.

There are a number of places where he indicates that he expected

TeX to be hidden under layers of a user interface. This is of course

what AMS-T& and IATeX do. There are other examples around,

but none has achieved the widespread currency of these two. The

16 A plain T^K. primer

problem which arises with IATgX (for example) is that to extend it

beyond its present structures requires fairly advanced skills. Com¬

petence in iATf^X is not hard to acquire; even the most rushed

can end up with something which is acceptable. Doing something

which lies outside IATgX’s defaults requires much more than com¬

petence in LM?gX. So the answer to the question is ‘Yes, we should

be teaching T^X.’ But we should not necessarily be promoting T^X

as the tool for Everyman.

We should not lose sight of the objective. l^X is a typesetting

tool. In our environment, it is a software tool, like a multitude of

other software tools. In the final analysis, we are producing bits

of paper (some sort of written communication); that is how we

should be judged. Not for our craft with Tj^X; for our craft with

words on the page.

Getting started

First steps

TgX can do all sorts of very clever things, but it seems sensible

to try to do all sorts of ordinary things first, and then migrate to

the more esoteric later.
Experience is a potential, if expensive, teacher; let us examine

what happens when we run some text through TgX. An example

input file, named EXAMPLE, is listed in Figure 2.1, and the result

of running that file through T^X is shown in Figure 2.2. The text

presented was prepared using an ordinary editor, and was simply

typed in without any particular attention to line endings, or any

sort of ‘formatting’. The ‘formatting’ will be T^X’s concern, not

ours. The only concession to the ‘logical’ structure of the text has

been to divide the text into paragraphs, by leaving a blank line at

the end of each paragraph.
Before going through the details of running TgX now, examine

the input and output. From a brief glance of the input to Fig¬

ure 2.1, it appears that we had to do very little in order to turn

a text entered at the keyboard into something which looks fairly

presentable. Although TgX is a markup language, there is actually

very little visible markup in this example: in fact, a great deal has

been done for us by default. T^X has a ‘default’ set of descriptions

built into it, which specify things like:

> the typeface to be used and its size,
t> the height and width of the mass of text on the page,

> the gap between individual lines,

> the gap between each paragraph,
> the indentation on the first line of each paragraph,

> the style of page numbering to be used (Roman numerals or

Arabic), and
c> where the page number should be placed (if you choose to have

one at all),

18 A plain TpjK primer

just to mention a few of the straightforward and obvious ones.

These are all defaults, and may therefore be changed - you can

control them all. In fact, these are not even part of T^X. They are

part of a default style, available to Tj^X on a special file usually

termed plain; plain may be considered a ‘style-sheet’. We may

alter or add to this plain style.

Plain typesetting

Perhaps the first thing that we may notice is just how ordinary

the typeset text in Figure 2.2 looks. It almost looks like any other

printed page. This is rather comforting, since it is exactly what

we are aiming for. The typeface is just that - a ‘type’ face, recog¬

nizably similar to that used in printed documents.

The text is divided up into paragraphs. How did TgX ‘know’ to

paragraph? TgX has a number of ways of signifying paragraphs -

one of them is by leaving an entirely blank line. This text uses such

a blank line to indicate a paragraph break. The first line of every

paragraph is indented by a fixed amount. This is a fairly standard

convention. Typewritten text tends not to be indented, but there

is often an extra line inserted between paragraphs just to separate

them out. These typewriter conventions are not really appropri¬

ate with typeset material, so Tj^X substitutes new (appropriate)

conventions. You may notice that there is a shade more space

between paragraphs than between lines within paragraphs. Type¬

set material has more ‘fine’ control over the position of text than

typewritten.

While the ‘original’ text was entered with no regard to aligning

the right margin, Tf^X has also taken care to justify the text,

so that all lines (with the exception of the first and last in a

paragraph) are of the same length, and they all line up on their
left and right margins.

Ligatures

But there is nothing very much out of the ordinary here, until we

start to look more closely. TgX is a typesetting system, and has

built into it the expectations and requirements of genuine typset-

ting. One feature which often distinguishes typesetting is the use

of ligatures. Ligatures are recognized ‘runnings together’ of let¬

ters, to form a new symbol. The most common examples are fi,

ffi, fl, ffi, and ff. This is not simply a ‘very close’ duo or trio of

Getting started 19

I stuffed a shirt or two into my old carpet-bag, tucked

it under my arm, and started for Cape Horn and the

Pacific. Quitting the good city of old Manhatto, I duly

arrived in New Bedford. It was on a Saturday night in

December. Much was I disappointed upon learning that the

little packet for Nantucket had already sailed, and that

no way of reaching that place would offer, till the

following Monday.

As most young candidates for the pains and penalties of

whaling stop at this same New Bedford, thence to embark on

their voyage, it may as well be related that I, for one,

had no idea of so doing. For my mind was made up to sail

in no other than a Nantucket craft, because there was a

fine boisterous something about everything connected with

that famous old island, which amazingly pleased me.

Besides though New Bedford has of late been gradually

monopolizing the business of whaling, and though in this

matter poor old Nantucket is now much behind her, yet

Nantucket was her great original — the Tyre of this

Carthage; — the place where the first dead American

whale was stranded. Where else but from Nantucket did

those aboriginal whalemen, the Red-Men, first sally out in

canoes to give chase to the Leviathan? And where but from

Nantucket, too, did that first adventurous little sloop

put forth, partly laden with imported cobblestones — so

goes the story — to throw at the whales, in order to

discover when they were nigh enough to risk a harpoon from

the bowsprit?

Now having a night, a day, and still another

night following before me in New Bedford, ere I could

embark for my destined port, it became a matter of

concernment where I was to eat and sleep meanwhile. It was

a very dubious-looking, nay, a very dark and dismal

night, bitingly cold and cheerless. I knew no-one in the

place. With anxious grapnels I had sounded my pocket, and

only brought up a few pieces of silver, — ‘‘So, wherever

you go, Ishmael,’’ said I to myself, as I stood in the

middle of a dreary street shouldering my bag, and

comparing the gloom towards the north with the darkness

towards the south — ‘‘wherever in your wisdom you may

conclude to lodge for the night, my dear Ishmael, be sure

to inquire the price, and don’t be too particular.’’

Figure 2.1

Source (part)

20 A plain TppC primer

individual letters, but a complete new symbol. Historically, there

have been other ligatured letters. It was not uncommon to liga¬

ture c and t together up to the early 19th century. Other languages

expect other ligatures too - German, for example, has a ch liga¬

ture. Scandinavian languages usually have an fj ligature. Since

this letter combination is vanishingly rare in English, few English

or American typefaces will have this particular ligature. Ligatures

are not present in all typefaces. But even within a single typeface,

different realizations may have different conventions. The ‘generic’

Times family (a very commonly used typeface) normally has liga¬

tures, but The Times itself seems to have dispensed with their use.

Within the immediate world of personal typesetting and ‘desktop

publishing’ some typefaces which ‘should’ support ligatures may

not. It is a key question whether you would have noticed the lack

of these features before they were pointed out. If you did not, just

how important were they in the first place? Does this really look

any different and more difficult to read?

Kerning

Another feature of much typesetting is the use of kerning. Kerning

refers to the closing up of the gap between letters in a word to give

them the appearance of a more regular placement. In particular,

letters which have strong diagonal elements, like A, K, V, W, X,

and Y, may require kerning when placed next to some other letters.

‘AWE’ may look awfully ugly unless the gap between the A and

the W is closed up to give AWE. Of course the effect is not limited

to juxtapositions of capital letters, although the use of diagonals

for lower case is less prevalent (k, v, w, x, y). To obtain a ‘pleasing’

appearance when one of a number of lower-case letters follows a

capital T, we ought to kern. Did you notice an unsightly gap in

the first word of the previous sentence? Compare ‘To’ and ‘To’.

The presence and extent of kerning depends upon the typefaces

being used. Kerning is not supported in all fonts. In particular, you

would probably not want kerning in a font which was supposed to

have the appearance of typewriter characters.

Where did the information necessary for ligatures and kerning

come from? Each font which TgX uses has an associated ‘T^X font

metric’ (or tfm) file which contains information on the dimensions

of characters in that font; it also includes details of how particular

letter pairs should be kerned and which character combinations
are to be ligatured.

Getting started 21

I stuffed a shirt or two into my old carpet-bag, tucked it under my arm, and started for Cape Horn and

the Pacific. Quitting the good city of old Manhatto, I duly arrived in New Bedford. It was on a Saturday

night in December. Much was I disappointed upon learning that the little packet for Nantucket had already

sailed, and that no way of reaching that place would offer, till the following Monday.

As most young candidates for the pains and penalties of whaling stop at this same New Bedford, thence

to embark on their voyage, it may as well be related that I, for one, had no idea of so doing. For my mind

was made up to sail in no other than a Nantucket craft, because there was a fine boisterous something

about everything connected with that famous old island, which amazingly pleased me. Besides though New

Bedford has of late been gradually monopolizing the business of whaling, and though in this matter poor

old Nantucket is now much behind her, yet Nantucket was her great original the Tyre of this Carthage;

the place where the first dead American whale was stranded. Where else but from Nantucket did those

aboriginal whalemen, the Red-Men, first sally out in canoes to give chase to the Leviathan? And where but

from Nantucket, too, did that first adventurous little sloop put forth, partly laden with imported cobblestones

so goes the story to throw at the whales, in order to discover when they were nigh enough to risk a

harpoon from the bowsprit?
Now having a night, a day, and still another night following before me in New Bedford, ere I could

embark for my destined port, it became a matter of concernment where I was to eat and sleep meanwhile.

It was a very dubious-looking, nay, a very dark and dismal night, bitingly cold and cheerless. I knew no-one

in the place. With anxious grapnels I had sounded my pocket, and only brought up a few pieces of silver,

“So, wherever you go, Ishmael,” said I to myself, as I stood in the middle of a dreary street shouldering my

bag, and comparing the gloom towards the north with the darkness towards the south "wherever in your

wisdom you may conclude to lodge for the night, my dear Ishmael, be sure to inquire the price, and don t

be too particular.”
Moving on, I at last came to a dim sort of light not far from the docks, and heard a forlorn creaking in

the air; and looking up, saw a swinging sign over the door with a white painting upon it, faintly representing

a tall straight jet of misty spray, and these words underneath ‘The Spouter-Inn: Peter Coffin.
“Coffin? Spouter? Rather ominous in that particular connexion,” thought I. “But it is a common

name in Nantucket, they say, and I suppose this Peter is an emigrant from there.” As the light looked so

dim, and the place, for the time, looked quiet enough, and the dilapidated little wooden house itself looked

as if it might have been carted here from the ruins of some burnt district, and as the swinging sign had a

poverty-stricken sort of creak to it, I thought that here was the very spot for cheap lodgings, and the best

pea coffee.
It was a queer sort of place a gable-ended old house, one side palsied as it were, and leaning over

sadly. It stood on a sharp bleak corner, where that tempestuous wind Euroclydon kept up a worse howling

than it ever did about poor Paul’s tossed craft. Euroclydon, nevertheless, is a mighty pleasant zephyr to any

one in-doors, with his feet on the hob quietly toasting for bed. “In judging of that tempestuous wind called

Euroclydon,” says an old writer of whose works I possess the only copy extant ‘it maketh a marvellous

difference, whether you lookest out at it from a glass window where the frost is all on the outside, or whether

thou observest it from that sashless window, where the frost is on both sides, and of which the wight Death

is the only glazier.” True enough, thought I, as this passage occurred to my mind old black-letter, thou

reasonest well. Yes, these eyes are windows, and this body of mine is the house. What a pity they don t

stop up the chinks and crannies though, and thrust in a little lint here and there. But it s too late to make

any improvements now. The universe is finished; the copestone is on, and the chips were carted off a million

years ago. Poor Lazarus there, chattering his teeth against the curbstone for his pillow, and shaking off his

tatters with his shiverings, he might plug up both ears with rags, and put a corn-cob into his mouth, and

yet that would not keep out the tempestuous Euroclydon. What a fine frosty night; how Orion glitters;

what northern lights! Let them talk of their oriental summer climes of everlasting conservatories; give me

the privilege of making my own summer with my own coals.
But what thinks Lazarus? Can he warm his blue hands by holding them up to the grand northern lights.

Would not Lazarus rather be in Sumatra than here? Would he not far rather lay him down lengthwise along

the line of the equator; yea, ye gods! go down to the fiery pit itself, in order to keep out this frost.''

But no more of this blubbering now, we are going a-whaling, and there is plenty of that yet to come.

Let us scrape this ice from our frosted feet, and see what sort of place this Spouter may be.

1

Figure 2.2

After T^X

(reduced in

size)

22 A plain TpjK primer

Individually, the effects of ligaturing and kerning may seem very

slight and of limited significance. Taken cumulatively, over an

entire page, or a book, they do contribute to the feel and texture

of the text. The printed page is more than just the meaning of the

words. The patterning and presentation can help to influence our

interpretation, perhaps at rather subtle levels.

“Quotes”

There are other symbols used in typesetting (but not in type¬

writing) which TgX can supply. Quotation marks (that is, double

inverted commas) come in open and close varieties in many type¬

faces. Usually the ‘open quote’ looks like a miniaturized 66, while

the ‘close quote’ is like a 99. TeX employs the quote (also known as

apostrophe and prime) and grave. Unfortunately, some characters

like the grave do not have standardized positions, and their loca¬

tion may differ from keyboard to keyboard. On some keyboards,

especially those with ‘national’ characters, the grave is nowhere

to be found, but is accessible through the ‘alternate’ characters.

But in order to overcome these areas of potential confusion and

keyboard inadequacies, TgX does provide a way of accessing these

and other apparently absent symbols, which we will encounter

later. The keyboard provides you with only a single left or right

quote mark at a time: TgX ligatures two successive quote marks,

whether they be grave or ‘quote’, to form a single ‘double’ quote

mark. Thus, to form a double open quote mark on output, type

two graves - and to form the corresponding double close quote,

type two quotes - ’ ’. The double quote symbol on your keyboard

will probably not translate into the correct symbol on your type¬

set output. Most likely it will be treated as a ‘close double quote’

symbol, but this transformation is nowhere defined in TeX (except

in the typewriter font, where no distinction is made between open

and close quotes, and all ligatures are disabled anyway).

Dash

One other feature to note is the dash symbol. In fact, dashes come

in lots of forms. Formally we identify the following: the hyphen,

the en-dash, the em-dash, and the minus sign (Figure 2.3). In most

typestyles these will be different characters.

A hyphen is fairly obvious, and is conveyed to ffj^X as a - sym¬

bol. Hyphens are commonly used when a word has to be broken

Getting started 23

Name T^X Typeset Example

hyphen hy-phen

en-dash 1-7

em-dash - Knuth—the archiT^Xt Figure 2.3

minus - — x-y Dash

up between lines. Note that, should this happen, Tl^X normally

determines the hyphenation point, and actually inserts the hyphen

itself. If you explicitly type a hyphen - as in ‘pin-prick’ - TgX will

honour it. But there are two sorts of hyphen. One is used to indi¬

cate that a word has been divided in some way, usually at a line

boundary, but the ‘link-hyphen’ is used in words like ‘half-baked’

or ‘single-engined’ to indicate that the words are to be linked in

some way, not divided. Any word which contains such a ‘link-

hyphen’ will be permitted to break there, but will not be given

any other hyphens by T^X, no matter how long that word may be.

The text given here will not have many hyphens inserted by

Tf^K’s hyphenation algorithm, for reasons which become more

obvious later. You should only include deliberate hyphens in your

input text, ones which you wish to see in the typeset version. If

you are using a word processor as the source for input, make

sure that it does not do any hyphenation for you.
An en-dash is a longer symbol (historically the length of an

N in the current font, or, more correctly, half the length of an

em-dash), and is therefore conveyed to TfeK as —; an en-dash

is usually employed to convey the idea of a numerical range, for

example 1-10.
The em-dash is even longer, and is given to TgK as . The em-

dash is punctuation in text. An em-dash, as its name suggests, has

something to do with an M. Traditionally, an em was the width

of an M-squared: imagine the bounding square of an M in any

chosen font. (Why an M? Simple, it is the largest letter in any

particular font.) The length of that bounding square would be the

length of an em (in that font). In fact, a piece of type of those

dimensions was termed a ‘quad’. Which leads us into a rather

circular definition for a quad. But the length of both a quad and

an em are about the same as an M. More important, in TgX they

have the property of being font related.
In this book, the en-dash is used for punctuation in text. It also

differs from Knuth’s usage by having space on either side. This

has some interesting repercussions which will be noted later. The

em-dash should be nowhere to be found (except for this chapter).

24 A plain TpjX primer

Lastly, the minus is a mathematical symbol which has to be

given in maths mode as $-$. The whole topic of mathematical

setting will be addressed later.
The typeset text also has page numbers at the foot. You will

discover that you have great control over the layout and content

of whatever is printed both at the head and foot of a page.

If we measure the dimensions of the text on the page, it should

turn out to occupy an area 6.5 inches by 8.9 inches. These dimen¬

sions, set up in plain, are suitable for the US Letter page size

(275mm x 215mm'; or 10.8in x 8.46in): these are sufficiently

close to A4 (297 mm x 210 mm; or 11.7 in x 8.27 in) for now. Later

we will want to change them to something better. Naturally, mar¬

gins are left around the text, and the text is usually centred within

the (US Letter) page. The position of the text on output is not

actually Tf^X’s concern. It has no way of knowing what output

medium is likely to be selected. If you recall the device indepen¬

dent nature of T^X, this ignorance is clearly deliberate, and the

responsibility of appropriate positioning on the page is that of the

program which handles the printing of the page.

It would not be true to say that there was no explicit l^X

instruction in the input text. Right at the end is the command

Vend. This is a command to instruct TgX that it is to terminate

processing. Without this command, TgX will sit quietly, expecting

further text (or instructions). All TjgX commands are introduced

by the ‘backslash’ character. Fortunately, it is a character which

is seldom encountered in normal text.

Leaping into the dark

We now have to consider how to run T^X on the system you have

available. Since Tf^X is available on a very wide range of systems,

all that can be offered here is a broad outline of the likely routeway.

Almost inevitably, there will be a system command called TEX

which will run the program. If you are using a wimp - window,

icon, mouse, and pull-down menu - system, like a Macintosh or

an Atari, then this command may be replaced by a menu selec¬

tion. Assume that we have a file EXAMPLE which contains text

which we wish to process with T^X. The majority of computer

systems expect file names to have an ‘extension’ which in some

way identifies the type of file. If your system requires these file

name extensions, the appropriate one for a T^X file is .TEX. The

‘correct’ name for our input file is probably EXAMPLE.TEX. You

Getting started 25

can use either upper- or lower-case letters, the operating system

probably won’t mind. TgX itself is rather more fussy, but we are

not yet using TgX.

In order to start things happening, we should be able to issue a

command (or make a menu selection) like

TEX EXAMPLE
This starts the TgX processor off, and provides sufficient informa¬

tion to have it use the contents of the file EXAMPLE.TEX. Because

you have not provided a file name extension, Te)X is smart enough

to assume that the extension ought to be .TEX. If you were to

provide the extension explicitly, then the default extension .TEX

would be overridden by whatever you had typed at this point.

This operation creates the .dvi or device independent file:

example.tex

TEX

example.dvi

Unfortunately, the .dvi file is not immediately useful to us. It is

not ‘human-readable’, although it does contain masses of useful

information. We need some way of viewing the output, either in a

preview form, on a screen, or on hard copy from a matrix or laser

printer. How you do this is highly dependent on your particular

system. But it is not necessary to have ‘typeset’ output in order to

learn something useful. As you are running some information

will have flashed up on the screen before you. A transcript, an

even more extensive version of what is appearing on the screen,

will be written to a log file. If your system supports file name

extensions it will probably be given the extension .log or .list

and its name will be whatever was the first file to be input to TgX.

This is often a useful source of additional information. The log file

obtained from running EXAMPLE.TEX through T£X is given here:
Textures 1.4 (preloaded format=plain 91.6.24)

1 MAR 1992 15:21

(example [1]
Output written on example (1 page, 6699 bytes).

There is not a great deal of information here, but then not a great

deal untoward happened. The [1] shows the page number of the

pages being set, and is a useful indication of what TfrjX is doing.

Other log files can contain more information, some of it useful.

However, let’s be a little more honest and admit that typograph¬

ically we should not be entirely satisfied with the appearance of

our text as set by the default plain. The lines are rather too long

26 A plain T^X primer

for the size of type that we are using. The usual recommended line

length for this size of type would be somewhere between 3 and 4.5

inches (treat this recommendation as a guide, not a command).

The range is due to the fact that type size is not the only vari¬

able at work here. Why then are we using 6.5 inches for the line

length? If you are using either a matrix printer or a laser printer

as your output device, you will be able to work out why. Most

paper available in an office environment is A4 size (or the similar

US Letter size). Why should that be so? Because of the legacy of

typewriting: using a conventional typewriter, with an elite or pica

‘typeface’, constant character widths, and healthy margins, these

are good paper sizes; and not unnaturally, the manufacturers of

office equipment perpetuated this size when they manufactured

photocopiers, laser printers, and all the other paraphernalia that

we take for granted in a conventionally equipped office. This only

‘explains’ the line width, it does not account for the type size which

TgX selects by default. TgX’s type size default is appropriate for

books, especially scientific books.

Figure 2.4 indicates some recommendations made by a number

of typographers, document designers, and hacks. It requires just

a bit of interpretation, since almost every suggestion uses differ¬

ent units. Words and letters are easy enough to interpret, but

does ‘characters’ imply ‘all characters, including blanks’? It cer¬

tainly does for Lamport, but may not for Miles. Nevertheless, the

general consensus is about 10 words, or 60-65 letters/characters,

however we interpret that. The word count rather suggests ‘words

in English’, so the letter/character count is perhaps a more general

one, although there may well be stylistic differences between some

national printing conventions. Note how difficult it is to come up

with rules in this context.

Measurement

Before we can contemplate changing our line width, we must know

what units can understand. In fact, TgX is quite flexible, and

can cope with a variety of measurement systems, like printer’s

points, picas, didot points, millimetres and centimetres, as well as

inches. Curiously, there are two sorts of printer’s points in TgX.

One of them is termed a ‘big point’. In fact it is not very much

bigger at all, as the conversion table (Figure 2.5) shows. TgX’s

is the real and true printer’s point, but the ‘big point’ is the one

adopted by a fair number of computer terminal manufacturers,

Getting started 27

Guru Measure

Stanley Morison

Karl Treebus

John Miles

Leslie Lamport

Linotype

Alison Black

10-12 words

10-12 words, 60-70 letters

60-65 characters

< 75 characters

7-10 words, 50-65 letters

60-70 letters

Figure 2.4

Suggested line

widths

who make screens which give a resolution of ‘72 dots to the inch’.

The distortion introduced is not likely to be very noticeable.

You may use whichever of the dimensions you like, and you do

not have to stick to any one preferred system. But, although real

printers in the UK use picas and points together - ‘two picas and

four points’ - T^]X will insist that you use only one measurement

system for any one measurement.
uses the conversions as exact ratios. Any value preceding

one of these dimensions may be specified as either a whole (integer)

number, or one with a decimal point. Since Tf^X does not support

mixtures of dimensions, the ‘two picas and four points’ would only

be acceptable as 2.3333333 pc or 28 pt. The ‘scaled point’ is some¬

thing new, and something specific to T^^X. The scaled point is the

really fundamental, or ‘atomic’, dimension. Every measurement

is converted to scaled points inside TgX. Scaled points may take

only integer values. This helps ensure that every version of l^X

everywhere produces the same results, since every one works in

the same base units.

Abbreviation Name Exact conversion

pt point

pc pica lpc = 12 pt

in inch lin = 72.27 pt

bp big point 72 bp = 1 in

cm centimeter 1 in = 2.54 cm

mm millimeter 10 mm = 1cm

dd didot point 1157 dd = 1238 pt Figure 2.5

cc cicero 1 cc = 12 dd Printing

sp scaled point 65536 sp = 216 sp = 1 pt dimensions

em width of a quad understood by

ex height of ‘x’ T&.

The printer’s point makes some sort of sense as a base unit,

since all the fonts are described only in terms of their ‘point’ size.

28 A plain TgX primer

But outside that particular area, any other ‘size’ can be described

in any of the above dimensions. If you do not include a dimension,

l^X will often assume points are meant; it is safer to give the

dimension.

The structure of T^K commands

The one explicit IjgX command already used - \end - provides

a clue to the form of the commands we will use to control the

horizontal extent of the text. T^X has literally hundreds of spe¬

cial ‘commands’, which are all of a similar form - a backslash

followed by one or more characters. In very general terms, the

commands tend to have some sort of mnemonic quality. After all,

\end was fairly explicit. In any system, which employs mnemonic

commands there is a tension between explanation and brevity.

While it is very comforting to the beginner to have a command

which is self-explanatory (and therefore rather long-winded), the

more experienced user tends to prefer something which takes less

time to type in. To a large extent TgX has managed to accommo¬

date this by employing a small number of regular abbreviations;

almost every command which has to do with ‘horizontal’ will

start with an h (and ‘vertical’ with a v). The longer commands

are reserved for things which will in general be found only once

within the text. Thus the commands you tend to use frequently are

short (and because you use them frequently you tend to remember

them), while infrequently used commands are longer, and more

self-explanatory.

Professional typesetting systems tend to take the brevity of com¬

mands to extremes, insisting that a single letter will be sufficient

for a command. This tends to make such systems rather intimi¬

dating for the novice, but they are not systems used by novices.

Further, those who use them are often paid by the keystroke.

Short commands imply less keystroking (and perhaps higher pro¬
ductivity).

The page size

The command used by T^X to control the line length (or width) is

\hsize, that is to say, ‘horizontal size’. There is a corresponding

\vsize for the vertical extent of the text on the page. Both of the

Getting started 29

sizing commands require more information; they require a number

and a dimension:
\hsize=6.5in

\vsize=8.9in

The equals sign is entirely optional; its inclusion often helps to

make things clearer. Any l^X command which sets up a general

size characteristic for the document, where some ‘size’ is followed

by a number and a dimension, may also include an equals sign. The

dimension is always given as an abbreviation, never as its longer,

explicit form. Note also that all this dialogue is in lower case.

T^X is ‘case sensitive’, and will discriminate between commands

in upper and lower case: \hsize is different from \Hsize and

\HSIZE.
These two commands were presented on consecutive lines. We

could have written them both on the same line:

\hsize=6.5in\vsize=8.9in
but this is a little less easy to read. The choice is yours - it is largely

a stylistic one. From T^X’s viewpoint there is no difference.

T^X has a large number of predefined commands. If your com¬

mand is not recognized, it will tell you, and you have a slim chance

to correct the input interactively.

Fundamental commands

So far we have described three specific commands, two of which

allow us some control over layout. Besides the page dimensions,

T]gX needs to have information about the fonts we wish to use,

the distance between lines, the distance between paragraphs, the

indentation on the first line of a paragraph, and so on. Within the

plain description, this is set up by commands which have been

specified in a form like:
\baselineskip=12pt

\parskip=20pt

\parindent=15pt
These are not necessarily the actual values and dimensions which

appear in plain, they are simply examples of the commands which

control certain key features.
The vertical distance between character baselines is termed

\baselineskip by T]eX. It is easiest to view baselines in the con¬

text of characters like a, b, and c - those without descenders.

Descenders are found on letters like g, j, p, q, and y; except in

a few typefaces upper-case letters very rarely have descenders

30 A plain TpK primer

(Q and J are the common exceptions); on the other hand, the

height of a lower-case letter with an ‘ascender’ and the height of

an upper-case letter are usually (but not always) the same. The

baseline is then simply the base of the character. The ‘baseline

skip’ should normally be greater than the font size. A common

recommendation is that the baseline skip should be about 20%

greater than the type size. Since we shall tend to work with

10 point fonts to begin with, a good value for \baselineskip is

about 12 points. A typesetter might describe such an arrange¬

ment as TO on 12’ or 10/12: that is to say, a 10 point typeface on

baselines which are 12 points apart. In fact, the typesetter would

be more inclined to describe the typeset material as having ‘two

points of leading’, where the leading is the extra space in addition

to the notional minimum between lines - in this case, two points.

Sometimes you need more flexibility in where the baselines are,

but we will discuss this later. For the time being we will be rather

inflexible.
Where do these commands go? Since they describe a charac¬

teristic of the formatting which is intended to apply to all of the

text, they should be placed at the beginning of the text. TgX

reads these commands first, they override the default values built

into Te^) and formatting proceeds appropriately. There is no rea¬

son why commands need not be placed elsewhere within the text.

Note that since T^X handles a paragraph at a time, it adopts

whichever of the paragraph-relevant commands was last encoun¬

tered for that and any following paragraphs. In other words, even

if we place \baselineskip=20pt right in the middle of a para¬

graph, expecting that the lines before the command will take the

default baseline and those after will have the new value, we will

be sadly disappointed.

Paragraphs

The other two commands refer to paragraphs. While individual

lines have some identity in a typeset work, paragraphs represent

some sort of ‘logical entity’ from the viewpoint of meaning.

The distance between the end of one paragraph and the begin¬

ning of the next is the ‘paragraph skip’ or \parskip. If this value

is set to zero, the distance between paragraphs will simply be the

same as that between lines of text within a paragraph.

The first line of any paragraph is generally indented. The

amount of indentation is termed the \parindent. Indentation

Getting started 31

Typeface style Font name Command

Computer Modern Roman cmrlO \rm

Computer Modern Bold Extended Roman cmbxlO \bf

Computer Modern Slanted Roman cmsllO \sl

Computer Modern Text Italic cmtilO \it Figure 2.6

Computer Modern Typewriter cmttlO Ytt Basic fonts

is sometimes written ‘indention’, but that is pedantry.

In general terms, books have a paragraph skip of 0 point, and a

paragraph indentation of perhaps 20 or 30 points. (It is perhaps

better to express this as 2 or 3 ems since the em is a ‘context-

sensitive’ measure. Remember too the corresponding ‘ex’ for ver¬

tical measure - the height of the letter x.) Although these are

good values for books, they may not be appropriate for articles,

memos, letters, etc. A rather fuzzy rule sometimes used in type¬

setting is to indent lines of up to 3 inches by 1 em, and for every

additional inch or part of an inch, to increase the indent by half

an em. Again, this is only to be considered a guide.
Earlier the blank line was described as a way of indicating the

end of a paragraph. This is an implicit piece of markup. There is

another explicit command - \par. As soon as this is encountered

a paragraph will be terminated.

Fonts

T£X is at its very best with a few fonts: these fonts form the

Computer Modern family. At present we will concentrate on a

subset of this font family: CM Roman, CM Text Italic, CM Bold

Extended Roman, CM Slanted Roman, CM Typewriter, and, in

addition, the CM Math Symbol and CM Math Extension fonts -

they are sufficient for our immediate needs. These T^jX fonts are

often available at a wide variety of sizes, but right now we will

stick with a small range of sizes, based on 10 point.
In passing, note that ‘Modern’ of ‘Computer Modern’ does not

imply ‘contemporary’, or even recent. The first typefaces describ¬

ing themselves as ‘Modern’ were introduced towards the end of

the 18th century. Computer Modern itself is a reasonably faithful

emulation of Monotype Modern 8A, and many typographers would

consider it a little old-fashioned by contemporary standards.
I^X is unable to handle the extremely long and descriptive

names that we have used, and has to employ a shortened form to

refer to the font: the translation of the five fundamental 10 point

32 A plain TpjK primer

‘text’ fonts outlined above is given in Figure 2.6. The mnemonics

\rm, \it, and so on are relatively meaningful.

These are all 10 point fonts. What does that mean? One way to

create typefaces is with reference to a ‘design size’. Or put another

way, this particular font was designed to be seen at a particular

size. Had the designer been concerned to have the typeface used at

a different size, she or he would have designed another face, more

suited to that particular size. This is a somewhat idealized view¬

point. At a practical level, designers sometimes create typefaces

which may be ‘the same’ over a range of sizes, designing perhaps

four or five subtly different designs to cover a typical range from

4 pt to 72 pt or bigger. The real purist would argue that even two

faces 1 point different in size ought to be designed differently. But

life is too short. Some typefaces are merely magnified over their

entire range. This is probably an oversimplification, but for many

reasons it is a solution popular with the manufacturers of typeset¬

ting equipment. T^X adopts both solutions, as we shall see later.

Why bother giving the two names? After all, Computer Modern

Roman is reasonably unambiguous. The answer is twofold. Firstly,

‘Computer Modern Roman’ is a ‘type style’; that is to say, it is

simply one of a range of styles in the general typeface ‘Computer

Modern’. It does not describe the size that we will use. A ‘font’

is a particular realization of a type style, at a particular size. We

could therefore talk of ‘Computer Modern Roman at 10 point’

to describe a font. Secondly, from a computer’s viewpoint it is

more convenient to call the font cmrlO, rather than the longer,

descriptive, human-readable form. In the end we have to admit

that T^X is occasionally suborned by the realities of computing.

In fact, the short name is a sort of file name. This helps explain

the brevity, especially when we realize that on many operating

systems, file names are severely limited in length (perhaps to as
few as eight characters).

plain T^X sets up a connecting link for these five basic fonts,

so that the commands \rm, \it, \bf, \sl, and \tt will produce
the following effects:

\rm the quick brown fox comes to the aid of the party

\it the quick brown fox comes to the aid of the party

\bf the quick brown fox comes to the aid of the party

\sl the quick brown fox comes to the aid of the party

\tt the quick brown fox comes to the aid of the party

To those interested in typography in general, the slanted font

is really one of the few new developments in typographic design.

Getting started 33

Appendix A gives examples of the fonts which form the default

Computer Modern family.

By default plain T]gX assumes you will be starting your docu¬

ment with \rm. Thus if you make no conscious decision, you will

be in Computer Modern Roman at 10 point. This is a reasonably

good all-purpose font, very suitable for technical documentation,

where the information content of the typeface itself must be low,

in order that it does not detract from the material itself - that

is, where the medium should not interfere with the message. For

emphasis you can use slant and bold. Do not use underlining on

a laser printer or typesetter. It does not look right. (Like all rules,

this may be broken.) It is very tempting to use lots of different

fonts (and sizes, when you learn how to) in the same piece of work.

Unless you are preparing advertising material, where the function

is to arrest the eye and confuse the mind, you will probably find

that ‘less is best’. In general, the function of a change in type

style is to emphasize, or perhaps to separate, classes of text (for

example, spoken word, implied stress). If you employ too many

changes, the whole notion of emphasis or separation tends to fall

apart, and you are left with a patchwork of cute typefaces. Used

sparingly, a change in font can have great effect, at a rather subtle

level. Remember too that typefaces tend to be designed in ‘fami¬

lies’, where there is some sort of common theme between them - a

family relationship. Gaily swapping from family to family can lead

to a cacophonous jumble. In the end, the responsibility is yours.

You may want a cacophonous and slightly off-key presentation.

This is unusual in scholarly work, but can be entirely appropriate

in other areas.

Groups

has a very powerful feature which allows it to ‘group’ material

which is, in some sense, to be treated as a unit. The left and

right brace — f and } — form a transparent set of brackets, which

are useful in a myriad of circumstances. Braces may be used in

script itself, where chunks of text are braced. The braces

themselves will not appear in output, but their effects might. For

example
A {\bf bold} example is needed now

would have the effect of setting the word ‘bold’ in the bold font:

A bold example is needed now

34 A plain T^X primer

while the remainder would be in whatever was the current font.

Equally, we could have said
and here an even \bf bolder \rm example is needed

where we ‘flag’ the font changes. However, this has the effect of

putting us into roman type after bold, which might not be the

correct effect. To take a specific example, we might be including

a quotation within our text. Commonly, quotations are presented

in italics. If we are in a quotation and using \bf for emphasis,

then we have to remember to change back to the current font,

in this case \it. Why not let TgX remember the current font

by using grouping? Why should you have to retain all this extra

information? Similarly, it is not unknown to decide to change some

of the conventions used for presentation - to decide that quotes

really ought to be in \sl instead. Now we have to go through the

entire document changing every \it which occurs within a quote

to \sl. This need not be the same as changing every \it to \sl,

a relatively trivial task with a text editor.

Grouping can be carried on to any depth (that is, braces within

braces within braces...) with the only provision that they must

be balanced. Actually T^X will supply extra closing braces under

some circumstances, but this is hardly to be encouraged.

The notion of a braced group is pervasive within T^X. Without

the braces, and the concept underlying them, T^X would have far
less power.

Do it yourself 3

The handful of commands which were introduced in the last

chapter were introduced with the idea that we can now re-run

the EXAMPLE. TEX file, changing the various parameters. We can

generate more white space between lines by increasing the value

associated with the baseline skip, put more white space between

paragraphs, change the font we are using; but more useful at

this stage would be to alter the page dimensions. Changing the

page width in particular will most quickly generate interesting,

educational, results.
An A4 page has a width somewhere in the region of 600 points

(over 8 inches), but making the \hsize larger does not do anything

very interesting. We shall make the page narrower, as if we were

creating columns for a newspaper.
The object of this particular exercise (running some text through

TeX) is to note that things start to happen when you squeeze

T£X’s page width by altering the value of \hsize. If nothing had

happened, I would just have squeezed harder. Figure 3.1 shows the

first page with a much more slender column, produced by adding
the command \hsize=180pt (that is, two and a half inches), at

the very beginning of the input file.
The way that a file may be run through T£X has already been

outlined but it will be tackled in a bit more detail here, since there

are several useful alternatives. Assuming that the file is named

EXAMPLE. TEX we can say

TEX EXAMPLE
with or without the extension. TgX knows enough to know that if

no extension is given, it should use a .tex one.
A second alternative is to start TgX going, without mentioning

the file you wish to process:

TEX
where TfeX will give some header line and then provide a ‘double¬

asterisk’ prompt. This is fairly unique and indicates a very special

36 A plain TpjX primer

situation. It is T^X’s way of asking for a file to process. It is the

only time it is ever going to do this. Then supply an appropriate

file name:
TEX 3.14 preloaded format

**EXAMPLE

If the file had all the commands in that you wanted, this would

be quite an acceptable approach, but there is no real reason why

any commands which you have inserted should live in the same

file as the ‘text’. In fact, there are probably excellent reasons for

separating the two as far as possible. Although the ** expects a

file name, there are other things that can be done here, and there

are other ways to input a file when T^X is running. Let’s assume

a fairly crude situation, where we type in the commands, as T^X

is running. This is crude because we tend to forget them (who

reads the log file?). In general, we can type any command at the

prompt, but the recommended command here is a ‘do nothing’,

\relax (this provides another clue to the geographic location of

l^X’s origins). Basically the \relax says that we are not going

to provide a file name right away. So then we could type any

commands:
**\relax

*\baselineskipl2pt

*\hsize4in

Each time the <return> key is depressed to enter a command,

T^X responds with a single-asterisk prompt . This is the usual one

we expect to see. How do we tell T^)X to read a file? The \input
command will do this:

\input example

This is a very flexible approach, since we could have placed all the

commands in another file, say command.tex, and then said
**command

*\input example

or even
**\relax

*\input command

*\input example

Equally, the file command.tex might end with the command
\input example

There is something more. What will the name of the .dvi file

be? In general, it will take the name of the first file read in, unless

commands other than \input have been processed. So the pre-

Do it yourself 37

I stuffed a shirt or two into my old

carpet-bag, tucked it under my arm, and

started for Cape Horn and the Pacific.

Quitting the good city of old Manhatto, I

duly arrived in New Bedford. It was on a

Saturday night in December. Much was I

disappointed upon learning that the little

packet for Nantucket had already sailed,

and that no way of reaching that place

would offer, till the following Monday.
As most young candidates for the pains|

and penalties of whaling stop at this same

New Bedford, thence to embark on their

voyage, it may as well be related that I,

for one, had no idea of so doing. For

my mind was made up to sail in no other

than a Nantucket craft, because there was

a fine boisterous something about every¬

thing connected with that famous old is¬

land, which amazingly pleased me. Be¬

sides though New Bedford has of late been

gradually monopolizing the business of whal-|

ing, and though in this matter poor old

Nantucket is now much behind her, yet

Nantucket was her great original - the

Tyre of this Carthage; - the place where

the first dead American whale was stranded.!

Where else but from Nantucket did those

aboriginal whalemen, the Red-Men, first

sally out in canoes to give chase to the

Leviathan? And where but from Nan¬

tucket, too, did that first adventurous lit¬

tle sloop put forth, partly laden with im¬

ported cobblestones - so goes the story -

to throw at the whales, in order to dis¬

cover when they were nigh enough to risk

a harpoon from the bowsprit?

Figure 3.1

Narrow column

38 A plain primer

vious examples will create either EXAMPLE.DVI or COMMAND.DVI.

When we started off with
**\relax
*\baselineskipl2pt
*\hsize4in
T^X will have had to choose a name itself. The name chosen in
such a situation will be texput. dvi (texput is derived by analogy
to input and output).

Back to the formatting

To explain what is going on when TgX is formatting, we have to
reveal a little more about the way in which T^X works. T^X works
with boxes. The fundamental paradigm is that of boxes and glue.
If we go right back to basics and start to assemble a page of text
we can gain some insight into many aspects of Tj^X, and the way
it sees the world. In some respects, although we are using an elec¬
tronic system, the approach is very like that which a traditional
hot metal typesetter would use. We start with individual charac¬
ters (or glyphs): the components of the fonts (the 26 soldiers of
lead with which Beatrice Warde believed you could conquer the
world, or in TjjjX’s more realistic case, 256 characters).

What does Tj^jX actually know about these characters? Not very
much. It ‘knows’ three basic quantities: the width, height, and
depth. Where does this information come from - the T^jX font
metric, or tfm files. The width of the character is fairly obvious,
but why is there a height and depth? Notionally, every character
‘sits’ on the baseline. An adequate definition of baseline is difficult
to establish, although we appear to have an intuitive feel for it. If
we can agree that there is a baseline, then the height of a character
is the height above the baseline, while its depth is the depth below
it. In general terms, capital letters have no depth, and are usually
all of the same height. The letters with descenders (for example,
g, j, P, q, y) have both height and depth. But TjnjX knows nothing
about the contents (well, not very much): its interest is purely
geometric. Thus we could throw away the information on content
and just look at the form, and how it is handled.

When T^]X starts to handle a word like

Type
what it sees are the components:

Do it yourself 39

or rather:

□
Once it has actually assembled them into a word, what it sees

next is one single ‘word box’

It is this word box which is then joined together with other word

boxes to create the line. The size of characters is determined

rigidly. Therefore the size of a word is determined rigidly. There

is a rigid, fixed space between letters (characters). Letterspacing,

where the spacing between letters in a word can be altered, post¬

dates the Monotype system and really is a photosetting invention;

it is not easily obtainable in T^X.
Of course, in true Knuthian (or perhaps Chthonic) style, we

haven’t quite told the whole truth. There are at least two other

things going on which will affect the word: the first is kerning.

Certain letter combinations ‘look’ better if they are adjusted to

be a little closer. Traditionally, each piece of type was a rectangle.

Thus there was no possibility of adjustment. However, especially

as italic type became more widely used, it became common to

adjust the shape of the letters in order to close up some groups

of letters. In the example above, the ‘T’ and the ‘y’ are closer

together - they have been kerned. Once I put the boxes around

them, this implicit kerning does not apply. There is an important

distinction to be made in TgX between the combination Ty and the

combination {T}{y} or TOy. The grouping forces these characters

to be treated separately. Unfortunately, the kerning amounts are

not too easy to get hold of. They are found in the tfm files, which

we shall glance at later.
Besides assembling the boxes of a set of characters into a larger

box (a word), TjnjX has to assemble these into a line. If we think

of the assembly work in terms of a paste up, some of Knuth’s ter¬

minology (which spills over into command names) becomes more

straightforward. Between successive word boxes we can allow a

certain flexibility - white space is not absolute - which we can use

in order to spread out the word boxes in a line to form a line box.

The white space is not a box, it is ‘glue’ which has the capability of

expanding or shrinking (within some predefined limits) to achieve

some optimum results. This is one area of TgX where you do not

really have a lot of close control. Your choice of font has already

implicitly defined the glue which is allowed between words. Some

40 A plain TppC primer

fonts have greater glueyness than others. However, if you really

must play around with interword glue, you will find a way.

White space between words has a ‘natural’ width, but this can

be permitted to expand by some factor, or shrink by some factor

(not necessarily the same factor). The object of the exercise is to

end up with a ‘masterpiece of the publishing art’. This is the glue

of TJgX, but as Knuth points out somewhere, a better metaphor

would be a spring, but the notion of glue seems to have caught on.

What happens next? Although we have focused on lines, TjgX is

not really interested in lines at all. It is mostly interested in para¬

graphs. But to create a paragraph we normally have to divide the

text into line-length chunks. To do so, Tj^X determines ‘feasible’

breakpoints. This is a multiple pass procedure, and on the first

pass TgX ignores hyphenation. If we wanted to have a paragraph

with no hyphenation at all, one way to achieve this aim is to set

the value of \pretolerance to a high figure (say 10,000). This is

a ‘badness’ value. What is going on is T^X attempting to create a

paragraph which contains lines, each of which has badness below

a certain figure. On the first pass, the badness is compared to the

\pretolerance figure. Making it very high ensures that no fur¬

ther pass takes place, since the criterion is met. Otherwise, on the

next pass, when discretionary hyphens are inserted, the reference

value is \tolerance. The default value for \pretolerance is 100,

and for \tolerance is 200. Note that these values are, in a sense,

application specific. The wider the ‘measure’, the lower these tol¬

erances may be. If we are setting to a rather narrow measure,

then we should increase them somewhat. There is a tendency to
use lines of too great a measure.

Naturally, you cannot always accommodate words and allowed

white space on the line. The line may be still too long or too

short. By default, IjgX justifies text - that is, the left and right

margins occur at the same vertical position on each line. When

IfeX hyphenates, it calls on a powerful, if conservative, in-built

hyphenation algorithm. TjgX is believed to find 90% of known

hyphenations correctly (in American English). Unfortunately, as

you squeeze lines down, the glue associated with interword space

becomes insufficient, and however much you hyphenate, you can

end up with ‘overfull boxes’ - that is, boxes (lines) which are too

big for the line width that you specified with \hsize.

Each font has associated with it certain \fontdimen values;

among these are the interword space (the ideal space between

words), the interword stretch (the extra amount which may be

Do it yourself 41

put between words on any one line), and the interword shrink

(the amount by which the interword gap may shrink). In cmrlO

these are 3.33 pt, 1.67pt, and 1.11 pt respectively. Later we will

examine how these may be changed. The interword gaps are made

equal between all the words in a line; furthermore, TjnjX tries to

make adjacent lines have similar interword gaps. If the badness of

a line is 12 or less, T[<]X considers it to be ‘decent’. How does TgjX

evaluate the badness? It looks to see how much it must stretch or

shrink in order to be of the desired length. The available stretch

or shrink will depend on the number of words in the line (which is

why \tolerance is related to the measure). To take an example: if

the line has (say) seven words, the total shrinkability will be 6.67

points, and the maximum stretchability 10 points. If the glue is

then to be shrunk by 4 points to get the words on the line, T^X will

compute a badness of 100 x (4/6.67)3 ~ 21. On the other hand, if

it had to stretch the glue by 4 points the badness computed would

have been 100 x (4/10)3 « 6. If the glue has to stretch, the line is

‘loose’, and if it shrinks, ‘tight’. A line with a badness of over 100

(that is, where it exceeds the combined interword stretch) is ‘very

loose’. Tf^X will not allow the gaps between words to be shrunk

below the minimum value. When TgX is unable to put the words

on the line successfully it will complain of ‘overfull’ or ‘underbill’

boxes. By far the most common are ‘overfull’ boxes.
By default, whenever an overfull box is encountered, TgX does

two things: first, it issues a message in the log file, similar to
Overfull Yhbox (0.41714pt too wide) in paragraph at

lines 18—26
[]\tenrm The object of this particu-lar exer-cise

(run-ning some text through
which identifies the amount of the excess and also echoes the

line on which the problem was found, indicating the potential

hyphenation points; second, on output, TgX places a ‘black blob’

in the right-hand margin so that we can identify the line where

that overfull box occurred. The stridency ensures that we are

encouraged to do something about the problem.
The object of this exercise has been to create ‘overfull boxes’,

to illustrate the problems which often occur, and more important,

to indicate that there are always solutions made more straight¬

forward by some understanding of what is going on. In addition it

is useful to become familiar with the sorts of messages which Tf^X

will present to you. To begin with, these messages seem peremp¬

tory and intimidating.

42 A plain TpK primer

Becoming flexible

To every problem there is at least one solution. TeX has several

possible solutions to the ‘overfull box’ problem.

Hyphenation

We could force extra hyphenation - does not know all words.

You can hyphenate words yourself as they occur, by inserting

a special command which indicates a potential or discretionary

hyphenation. For example, in Tyr\-rhenian the \- indicates a

discretionary hyphenation. Note that this command is not fol¬

lowed by a space. As a general rule, any l^X command made up

of a control character (that is, a \) and a symbol (that is, a non-

alphanumeric) should not have a space after it. Declaring each

potential hyphenation is tedious, and one alternative is to declare

the hyphenations as:
\hyphenation{Tyr-rhenian manu-script manu-scripts}

That is, simply a list of hyphenated words, separated by spaces.

This has a global effect, since what happens here is that these

words are added (temporarily) to TeX’s ‘exception dictionary1. As

noted earlier, TeX hyphenates by algorithm, but there is a small

dictionary of exceptions. It is therefore a more hybrid approach

than it at first appears. There is usually a limit of 307 to the

number of exceptions which can be placed in this dictionary.

Note that TeX will not realize that manu-scripts is merely

a regularly formed plural of manuscript. Similarly, this mecha¬

nism can know nothing about any other regularly formed inflec¬

tions. On the other hand, the standard hyphenation can cope with

many inflections. As noted earlier, explicitly declaring hyphena¬

tion points will not help words which already contain hyphens.

While ‘pricking’ by itself can be hyphenated to ‘prick-ing’, ‘pin-

pricking1 is not hyphenated to ‘pin-prick-ing’. If we were to say

\hyphenation{pin-prick-ing}

we could easily end up with ‘pinpricking1. In this case we would

have to use pin-prick\-ing throughout the document.

There are some problems with hyphenation in foreign languages,

but which fortunately do not affect English: sometimes the spelling

changes around the hyphen. For example, in German, ‘Schiffahrt’

is hyphenated to ‘Schiff-fahrt1. To tackle this in TeX we can say

Schi\discretionary{ff-}{f}{ff}ahrt

This looks a bit formidable. What does it mean? The three groups

Do it yourself 43

of characters following the command \discretionary are treated

as follows: if there is no break, just use the third set - in this case,

the word typeset is Schiffahrt: if there is a break, then put the

first set of characters before the break, and the second set after -

Schiff-fahrt. The discretionary hyphen \- works like

\discretionary{-}{}{}
If a break ocurrs, put a hyphen at the end of the text before the

break, but nothing after it. If there is no break, the discretionary

hyphen does not appear.
We have to admit that until very recently T^X handled hyphena¬

tion in accented words very badly. Since some of these versions

of T^X may still be around, it is worth pointing out that words

would be hyphenated up to an accent, but not after it. Basically,

Tj^X realized at that point that it was a ‘foreign’ word, and that

therefore the in-built ‘American/English’ hyphenation would be

inappropriate. Therefore do nothing. Fortunately T^X3, unveiled

in 1989, has the potential to handle accented words correctly. But

if they are ‘foreign’ words, they may still be hyphenated wrongly.

It is possible to load other hyphenation schemes which use the

standard algorithm, but which have been trained to hyphenate

particular languages. Even in English, TeX has a tendency to

hyphenate words after the second letter: this is unconventional,

although apparently acceptable in American English. A pair of

new commands, \lef thyphenmin and \righthyphenmin, control

the length of the smallest ‘fragment’ of words at the beginning

and end of the word. For English, these should be set to 3 and 2

respectively, although the default is 2.
In order to find out what hyphenation points T^jX will identify,

you can type
\showhyphens-foxymoron}
at the * prompt, and TeX will repond with a few lines of output,

which will include the key line:

[] \tenrm oxy-moron
which is ‘oxymoron’ hyphenated the way that 4]eX would do it,

if pressed. Using \showhyphens adds nothing to the .dvi file.

Although T^X has done some processing, it has generated no print¬

able output.

Tolerance, tolerance

We could change the value of the \tolerance command; \tol-

erance takes a numeric argument, and is a kind of ‘accept worse’

44 A plain TgK primer

instruction. ‘Accept worse’ here only means accept worse gaps

between words. As noted above, T^X is hard at work looking at

the quality of each line. By default, the parameter which it uses to

determine whether it has found ‘acceptable’ breakpoints is \tol-

erance, which plain gives a value of 200. Recall that this selection

of breakpoints is normally a two-pass procedure, where the first

time round T^X does no hyphenation at all and uses the \pre-

tolerance command (set by default to 100). It is really only as

line measure is reduced that Tj^X finds the need to hyphenate at

all. With long lines there is generally enough flexibility to per¬

mit the interword gaps to be within the limits, and the second

pass may not even be needed. But work with narrow measure will

require that the defaults are changed to a larger value. It might

even be worth ignoring the first pass altogether, disabling it by

\pretolerance=-l. TeX3 introduced a new feature to counter¬

act one unfortunate by-product of T^X’s selection of breakpoints.

Under some circumstances TgX would prefer to have one truly

awful line rather than three or four moderately awful lines. If the

new command, \emergencystretch, is positive, T^X will perform

another pass and will incorporate this extra stretchability. Now it

should end up with several moderately bad lines instead.

This avoids the question of the actual set of breakpoints that

TgX chooses for a paragraph. T^jX determines a number of pos¬

sible routes which all satisfy the basic requirements in some way,

and then selects the one with fewest penalty points. Features like

hyphens automatically incur penalties or demerits. Hyphens on

two consecutive lines incur even more penalties. A hyphen on the

last full line of a paragraph is similarly frowned upon. These are

taken with the badness values for each of the possible lines, with

the notion that Tj^X selects the least bad solution. Chapter 20

delves into the way T^X breaks up lines and constructs paragraphs

in far more detail.

Raggedness

Or you could let the right-hand margin be a bit more ragged. Note

that we are not necessarily talking here of ‘ragged-right’ text set¬

ting. T^X uses the command \raggedright to allow the right mar¬

gin to be ragged, or non-justified (German uses the rather delight¬

ful term ‘butterfly-setting’ to describe ragged-right). It takes as

much work in T^X to set a ragged margin as to justify. Tj^X will

also be hard at work making sure that the interword gaps are

Do it yourself 45

acceptable, and will be hyphenating where it feels hyphenation is

needed. You do not save time or money.

Some current thinking argues that a ragged margin is more

‘friendly’. The reasoning goes: if it is justified, it must be com¬

puter set, and hence ‘unfriendly’ - therefore use the computer to

roughen it up again! What do we have in mind here? You can set

a command \hfuzz which permits lines to project into the margin

by a specified amount. The default value for \hfuzz set in plain

is a miserly 0.1 pt. In justified text you may be able to get away

with \hfuzz=lpt or thereabouts. Perhaps on high-quality type¬

setting, where the output medium is a high-resolution typesetter,

the smaller value would be used. On a 300 dpi laser printer, 1 pt

is only about 4 dots, and is extremely unlikely to be picked up.

Recall too that the right-hand margin is made up of letters whose

major characteristic is that they are not made up of straight lines.

Noticing the irregularity could be a real challenge, but to help you,

this paragraph has been set with an \hfuzz value of 1 pt.

If you use both \raggedright and \hf uzz, you could set \hf uzz

to a much larger value and it would be very difficult to notice,

since there would be no ‘standard’ length to use as a prototype.

Cheating!

Sometimes you are prepared to live with overfull boxes, but not

with the black blob. You can redefine the blob, or to give it its

correct name, the \overfullrule, to be a blob of no width:

\overfullrule-Opt

TgX will still report its overfull boxes, and will also typeset this

blob, which, having no width, will be invisible. While we might

cavil at the philosophical implications, it does make the output

look a bit better. Sadly there are times when the devil drives and

this must be done. IATgX does it all the time. It is surprising how

often books set with iATgX can be found with overfull horizontal

boxes. It is obvious that the warnings that issues are not

enough. The overfull rule must be there as well before people will

pay attention. The default setting for the width of this blob is 5 pt.

When all else fails

Last, but not least, rewrite the text. This is Knuth’s suggestion.

In fact it isn’t so absurd as it seems. He almost suggests that if

T£X cannot set your text properly, then there could be something

46 A plain TppC primer

amiss with your text. Of course, it is not always possible to rewrite

the text. If you were T^Xing someone else’s work, they may not

be pleased by your editorial hatchet work, far less the implication

that they should rewrite.

Underfull boxes too

You might also find an ‘underfull box’ from time to time. Most

often this is an underfull \vbox. Essentially what is happening

here is that you have set the vertical page size to some value which

cannot be divided exactly by the distance between baselines. If we

were using the default page height (8.9 in or 643.203 pt) together

with a \baselineskip=12pt and a \parskip=Opt we would find

that we had an underfull \vbox. T^C wants to place ‘53 and a

bit’ lines on the page. It is the ‘bit’ of a line which is creating the

‘underbill’ box. You have told l^X to create a particular page size,

it has failed to carry out your instructions to the letter, and it tells

you. In general it is not too harmful, and a simple \raggedbottom,

analogous to \raggedright, will cure it. There is also a \vfuzz

which could be used.

But both underfull and overfull boxes should not be ignored

entirely. There will be a good reason for both, and if you really

require something of the highest quality, you should try to resolve

the underlying problem which led to them.

is really an interactive program. Purists might claim that

since output does not appear immediately, this is a rash claim.

However, if you really wanted, you could type all your T^X at the

keyboard, whilst the system was running. This is hardly efficient.

Some mainframe implementations of T^X require a lot of memory,

and this can either prohibit interactive use, or make interaction

slow. If you do have to run in batch mode, you obviously cannot

correct errors as T^X is running. I^X still provides a ‘log’ file,

which will help to pinpoint errors. Frankly, anyone who has used

an interactive TgX would never want to use it in batch, unless

they had a really enormous file to process. The discussion which

follows assumes that you will be running T^X interactively.

Errors

Almost inevitably, you will make mistakes on input, and will

encounter T^X’s error processing capability. It is possible to cor¬

rect some errors interactively. If you should successfully correct

Do it yourself 47

the input in this way, you must also remember to correct the

original (assuming you might just need to re-run sometime). The

most common errors are probably typing errors, where either a

command is mis-spelled, or perhaps a space is missed out.

When you encounter an error, Tj^jX will respond with a message

like:
! Undefined control sequence.

1.1 Oh dear, I {\itknew

} this would happen!

?

T^X is trying hard to indicate where the error lies, principally by

breaking the line to indicate just where it has foundered. In the

example above, it is the \itknew which has caused the problem

(should be \it knew). T^X has correctly pointed out that this

is an undefined control sequence (that is, command), one it has

never been taught.
When an error is encountered and you are presented with the ?

prompt you have a number of alternatives. You may

> type ? - TgX gives a summary of the following options:
Type <return> to proceed, S to scroll future error

messages,

R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

1 or ... or 9 to ignore the next 1 to 9 tokens of

input,

H for help, X to quit.

> type <return> - just prod the return key if you have one.

Some computers (especially IBM pcs) rename this enter,

proceeds as best it can, until it encounters another error.

> type X or x - TgX stops (eXits); any pages which have already

been completed will not be lost, but the current one will cer¬

tainly be lost; the previous one might be as well.
> type E or e - this stands for Edit, and should drop you into

an editor. Not all systems have this linking of TgX and system

editors. The best way to find out if it does work on your system

is to try it. If it does work you would find yourself editing the

erroneous file, at about the right line.
> type I or i - you may now type text to be Inserted at the current

place in input. At first this seems intimidating, but with some

practice it does become a viable route. Its major drawback is

that you tend to forget these spontaneous corrections. In the

earlier example, the following dialogue could have occurred.

48 A plain TpjX primer

? i\it knew

and T)gX would have been well satisfied with the new command.

Note that we would also supply the ‘knew’ part, since T)gX

thought that that was part of the undefined command. Merely

typing i\it would have resulted in a line where the ‘knew’ was

omitted.
> type a number between 1 and 99 - TgX deletes this number

of characters and commands from input, then asks for more

information. Again, taking the last example:
? 1

1.1 Oh dear, I {\itknew}

this would happen!

? i>

Typing the 1 removes the next character, the }. TgX repeats the

line, noting where it has now read up to. Since there is an ‘open’

brace, we should insert a closing brace to balance things up. Note

that the offending command was automatically discarded.

T^X sees a command as a single item and also a character as

a single item - otherwise termed tokens.

> type H - l^X gives some sort of help. The best message you get

here, besides the useful ones, is the one which says:
Sorry, I already gave what help I could...

Maybe you should try asking a human?

An error might have occurred before I noticed any

problems.

‘‘If all else fails, read the instructions’

t> type S - this is like typing return (or enter) for every sub¬

sequent error message. The error messages are logged, but you

have no chance of interaction. The ‘S’ is an abbreviation for

\scrollmode, a T[^X command you could use to enter this con¬
dition directly.

> type R - this is like S only worse; under no circumstances stop.

This time, ‘R’ is a shorthand for \nonstopmode.

> type Q - even worse; T^X suppresses all output to the terminal

(goes a lot faster, subjectively), but perhaps not the best route

unless you are very confident that you know what you are doing,

which obviously you don’t, else you would not have made a

mistake in the first place. This state may also be entered by the
command \batchmode.

=> Exercise 3.1: You may note that the summary says you can delete
9 tokens of input, while the fuller description says you can delete up to 99.
Which is correct?

Do it yourself 49

While you are in this error mode, the prompt is ?. There is obvi¬

ously a temptation just to type return and let TgX surge ahead to

report on any other errors. Unfortunately the corrections TfjjX may

have made in order to do something apparently sensible may lead

to other mistakes later on. When I do not feel up to mental gym¬

nastics I much prefer to leave TgX (by typing X) and correct the

error, then return to d]gX. Obviously this is potentially expensive

with a large file, but with the ease of input through \input, a suit¬

able strategy is to assemble a succession of files, correcting them

one at a time, and then run them together through TgX. There

are other advantages to be accrued from this style of working.

There is another class of mistake which may be made, and from

which recovery is sometimes difficult. If you have \input thesis

in the text of the file you are processing, and djrjX is unable to find

that file thesis.tex, it will ask you to provide another file name.

The usual reason for T^X not finding a particular file is not really

that it does not exist, but rather that you have put it in another

directory, or on another drive. If you can provide the ‘full’ name

of the file, for example,

a:\tex\thesis\thesis

(if you were using MS-DOS), or whatever was appropriate to your

particular environment, then you would be able to input the cor¬

rect file. Unfortunately, panic often sets in, and the full name is

difficult to remember. What do you do? How do you stop TgX, find

the file, and start again? There is no universal answer to this. Sim¬

ply hitting the enter or return key will probably not help. The

machine will merely repeat the question. (Eventually dj^jX would

give up, but only after a long time.) Switching the computer off

is a little drastic. Most computer systems have a way of exiting

from an executing process (like T^X), and it will probably have

something to do with a Ctrl key combination. You really ought to

find out which ones. A more elegant alternative is to have a null

file available which you can use at this time. This null file can

be empty, or just contain \relax (very apt right now!). Whatever

it contains, it satisfies TfeX’s current problem. Many computer

systems will have a null.tex file which is universally available. If

whoever implemented djgX on the system you use was particularly

thoughtful, they may have named it nul .tex, or nultex.tex, and

a few other similar things as well.
It would be at least honest to admit that dftX’s error messages

are sometimes (often) a little cryptic. I often have the feeling that

TgX thinks I am a lot smarter than I am, providing me with

50 A plain TpjK primer

information which is decidedly unhelpful, but earnest. It is in such

situations that one suspects that T^X is a true expert system -

one that only experts can understand. But experts don’t make

mistakes..., do they?

If you are particularly interested in monitoring the progress of

your input file, you can make TgX divulge much more informa¬

tion. There are tracing commands which will report on things like

hyphenation, and lots lots more. You might like to try \tracin-

gall=l and \tracingcommands=l. The most feared error message

which apparently indicates some major problem is

!TeX capacity exceeded, sorry

and will suggest:
If you really absolutely need more capacity,

you can ask a wizard to enlarge me.

This is usually something of a red herring, since normally there is a

less spectacular reason for this, like an excessively long paragraph,

or you forgot to close a brace. It could just be that you have done

something legitimate, but TgX has been unable to cope. Unlikely,

but knowing that it is possible, you will be able to find a way.

While T^X is bug free, it does have some limitations. Software

is never bug free, but at the time of writing there were only a

couple of known bugs, neither of which were serious (honest). The

wide distribution of T^X does help to ensure that bugs are quickly

weeded out.

One of the peculiarities of TgX is that a page is not actually

set, as such, until it is complete. In fact, it often does not get set

then. Line boxes are built, in their turn, into paragraph boxes.

The paragraphs are assembled into pages, but T^X seeks to mini¬

mize widows and orphans. A widowed line is one at the end of a

paragraph which finds itself on a separate page from the rest of its

paragraph. They are also known as ‘club’ lines. In keeping with

the ‘widow’ metaphor are ‘orphan’ lines. These are the first lines

of paragraphs, living on a page separate from the remainder of the

text in that paragraph. l^X in fact looks ahead a little to decide

where to break a page. The result of all this is that a page is not

finalized until some way into the next page. If an error occurs, you

may lose information up to about a page and a half ago. Therefore

you will not be able to see your output up to the error which made
l^X collapse.

=>Exercise 3.2: What happens if you leave two blank lines? Or type
\par\par?

=>Exercise 3.3: Why does T^X require \end or \bye to tell it that we

Do it yourself 51

have finished? Why does the detection of the end of the file not signify
the end of input? <=
=> Exercise 3.4: How would you get ouput which looked like this —
(that is, successive hyphens)? •<=
=yExercise 3.5: Perhaps you don’t like ligatures. Can you suggest a
way of making the standard T^X Computer Modern Roman font ignore
ligatures? <=
=>Exercise 3.6: Suppose that you have a quote within a quote -
1 “Starboard”, he cried.’ How do you propose to set this? <=
=>Exercise 3.7: There is no complement to \raggedright. Once it
has been switched on, you cannot say \noraggedright or \justify.
Assuming you did want to set a part of your document ragged-right, how
would you restore justification? 4=
=>Exercise 3.8: Since the backslash character is not available by
merely typing \, what do you guess you will have to do to obtain a
backslash? •£=
=>•Exercise 3.9: Attempt to change the characteristics of a paragraph
in the middle of a paragraph; for example, change the baseline skip half
way through. <=

-*v

Beginning mathematics 4

In many respects this is where T)gX gets to be lots more fun.

There is something extraordinarily satisfying about being able to

set mathematical formulae. Tf^X permits this both within the text

(text style) and displayed on lines by themselves (display style).

The same expression can be given in text or display style, and

there will be a few stylistic changes, which T^X takes care of auto¬

matically.
All mathematical formulae are enclosed in special delimiters -

the dollar symbol, $. A few examples soon convey most of the

ideas and conventions behind this:

$x = y + z - 10 $

will result in x = y-\-z —10, with T^X setting the alphabetic char¬

acters in italics, and coping quite gamely with the other symbols,

the =, +, and —. Note that here we have a true minus sign (which

looks different from en-dash, em-dash, and the hyphen). TgX also

takes care of all the spacing. It matters not one whit whether you

type

$x=y+z-10$

or even

$ x= y +z - 1 0$
TeX will produce the same thing, and generally correctly: x =

y + z — 10.
=>Exercise 4.1: Although these few examples look rather trivial, they
help demonstrate the ease with which T^X handles simple mathematical
expressions, and in particular, how good they look, with no input of skill
on your part. You are left to guess how to input (and) to TgX. Typeset

the following:
Show that the volume V is given by V = l(a — 26) (a + 26).
Common factors: ab + ac = a(b + c).
s = kP, where k is a constant.
If y = kx, and y = 15 when x = 6, find the constant k.

54 A plain TppX primer

a \alpha P \beta

7 \gamma 5 \delta

£ \varepsilon e \epsilon c \zeta

7 \eta 9 \theta d \vartheta

L \iota K \kappa

X \lambda P \mu

V \nu z \xi

o 0 7T \pi w \varpi

Q \varrho p \rho <7 \sigma \varsigma

Figure 4.1 T \tau V \upsilon

Lower-case V \varphi <t> \phi X \chi

Greek symbols Ip Ypsi U) \omega

The examples given above are of the' text style of mathematics,

where the expression is embedded within the text, and may be

broken at line ends (according to some inbuilt rules on where such

breaks are acceptable). The text mathematics are surrounded by

single $ signs. Display style is handled almost identically, but is

‘signalled’ by double $ signs before and after the expression. Thus

$$x = y +z - 10$$
would produce the same expression as before, but it would be

displayed. That is, it would be centred over the page, and a cer¬

tain amount of space would be left after text which precedes it,

and before the text that follows it. Provided no extra blank lines

are inserted between the text and the displayed mathematics, the

text and maths are treated as part of the same paragraph, so no

annoying indentation of text occurs after the display.
=>Exercise 4.2: When ‘double dollars’, $$, are used to surround a
mathematical expression instead of single dollars, TpX handles the type¬
setting a little differently. You can take some of the last examples and
recast them slightly (take out the punctuation which follows the ‘closing’
double dollars; it won’t look right):

Show that the volume V is given by

V — l(a — 2b)(a + 26)

Common factors:

ab + ac = a(b + c)

There are a host of commands which are defined for use in

maths. In particular, you may access the Greek alphabet. Note

that this is not a Greek font as such, in the sense that you would

not use it in order to set Greek text. It is best considered as just

another set of symbols. Within maths (that is, within the $ or $$

Beginning mathematics 55

r \Gamma r \mit\Gamma A \Delta A \mit\Delta

0 \Theta 0 \mit\Theta A \Lambda A \mit\Lambda

d \Xi d \mit\Xi n \Pi n \mit\Pi

E \Sigma E \mit\Sigma T \Upsilon T \mit\Upsilon Figure 4.2

\Phi <f> \mit\Phi T \Psi E \mit\Psi Upper-case

0 \0mega Q \mit\0mega Greek symbols

‘environment’), the general form of access is much as you might

anticipate: a Greek a is obtained by \alpha, a 7 by \gamma -

the ‘English’ name for the letter, preceded by the backslash (Fig¬

ure 4.1). To obtain upper-case Greek, use \Gamma and so on. Since

some upper-case Greek letters have the same form as their Roman

equivalents, there are no entries for these overlaps (Figure 4.2).

For example, the upper-case Greek a is A. Similarly, there is no

lower-case omicron, although it has been included in the figure for

completeness. A few Greek symbols are frequently encountered in

a variant or alternate form. It would be uncommon to find some¬

one using (say) both 9? and (j> in the same paper, but T^jX gives

both forms and leaves the decision up to you.
There is an extension to the upper-case Greek fonts which may

also be useful. You can obtain ‘italic’ Greek (an oxymoron if ever

there was one) by $\mit\Lambda$ and so on. Note that upper-case

Greek is ‘upright’, while lower-case is ‘slanted’ or ‘italic’. On the

other hand, there is no way to obtain ‘upright’ lower-case Greek

symbols.
=7Exercise 4.3: It might be concluded that $\mit\sigma$ would be
a tautology, and therefore lead to odd results. Provide some evidence. <=
=7Exercise 4.4: Why ‘upper case’ ? And why is lower-case Greek not
upright like ‘normal’ upper-case Greek? <=
=>Exercise 4.5: The Greek symbols, just like all other mathematical
symbols, must occur in ‘maths mode’, that is within either single or double
dollar signs. Since it is not uncommon to forget to include the dollar signs,
or even to forget to terminate them at the end of a maths expression, it
is useful to become accustomed to the sort of error message which IRX
will produce under these circumstances, and what, if anything, you can
do to put TeX back on the rails. Try the following example:
When \alpha=0, the dispersive stress is greatest.
This example may be difficult to get out of since T£X will assume that
you forgot a $, insert it itself, and continue. When you then wish to
enter \end to terminate the exercise, you will still be in maths, and TeX
just won’t let you exit. One solution is to type $ at the * prompt (which
therefore ‘balances’ the $ which TeX inserted, and restores you to the
correct mode, where \end or \bye will work).

56 A plain TfjX primer

Now try this:

In the case of x+y-4x=0, the longest arc is given by:

which has different mistakes, although T^X apparently does not detect

them. What should it be? <=
Exercise 4.6: The Greek symbols are not really for typesetting

Greek text. But you can. How would you typeset reym?? What does it

mean? <=

Ups and downs

One of the things which mathematicians do is to use subscripts and

superscripts. These are so fundamental that T^X makes them very

easy. We employ two keyboard symbols to trigger these events: the

carat or circumflex “ to signal that the next character (or group

of characters) is to be superscripted, while the underline symbol

is used for subscripts. The underline or underscore or low bar

symbol is different from all the other dashes, hyphens, and minuses

we have met so far. In the remote chance that your keyboard does

not have these symbols, Tj^X will allow \sp (superscript) and \sb

(subscript) to be substituted.

Let us try this out:
SlOx'S - 3x~2 + 4x - 2 = 0$

or

$10x\sp3 - 3x\sp2 + 4x - 2 = 0$

You will find it easier if you space out your formulae into ‘logical’

groupings, just letting TgX take care of the spacing. Jamming all

the symbols together leads to problems. The result of this example

should be: 10x3 — 3a:2 + 4a: — 2 = 0

When we start handling sub- and superscripts it becomes obvi¬

ous that it may be necessary to have more than one symbol which

is sub- or superscripted. In other words, we need to produce some¬

thing like n31 or rxy, or even cip. The ‘commands’ ~ and _ take the

very next symbol or group of symbols, and make them into sub-

or superscripts. Therefore, to subscript the xy, first turn it into

a group by placing braces around it: {xy}. TgX is then happy to

take this and produce the subscripted pair of symbols. This is just

another application of the grouping feature. It may be interesting

to note in passing that $n\sp3$ is exactly equivalent to $n~3$. The

\sp is followed by a non-alphabetic character, and therefore there

is no ambiguity, or possible confusion with a command. On the

other hand, mh could not be written $m\spm$, although it could
be written nTn.

Beginning mathematics 57

Putting the expressions between single dollar signs employs text

style: that is, these are formulae which appear within the text. We

are really considering the situation like
The surface is $y=h_s(x)$, the bed is $y=h_b(x)$;

the slopes, if small, are $\alpha=-dh_s/dx$,

$\beta=-dh_b/dx$. If α, β are small,

which yields*:

The surface is y = hs(x), the bed is y — hb(x)', the slopes, if

small, are a = —dhs/dx, (3 = —dh^/dx. If a, (3 are small,

As an appropriate aside, we should note that if T^X has to divide

a text style equation over two lines, it will do so according to a

set of rules which favours breaking after a relation like =, or an

operator like + . Breaking after a relation is slightly preferred. Just

as normal text may have potential hyphenation points introduced,

there is a similar ‘discretionary x’ in maths. Since it is conven¬

tional for ab to mean a x b, while all the other operators are given

explicitly, T^X may be helped by the insertion of a discretionary

multiplication sign, *: $a*b$.
It may also be worth noting that all the punctuation has been

placed outside the text style mathematics. This does ensure that

T^X understands that it is punctuation, and not some mathe¬

matical operator, which it would treat in a slightly different way.

Although TgX is an extremely efficient mechanism for typesetting

both text and mathematics, it assumes that mathematics does not

normally contain text, or textual items, like punctuation.
=>Exercise 4.7: There is one other reason that the punctuation is ‘out¬

side’. Take the last example and place the punctuation inside the dollar

signs. Examine the output very carefully. You will note a difference in the

style of the punctuation. It will be more difficult to note TfiX’s unwill¬

ingness to break a line at such punctuation. <=

Had we been required to set any mathematics in display, we

would have used double dollar signs. This can be illustrated by

continuing the last example :
If α, β are small, the equation can be

transformed into this coordinate system to give the

approximate relation $$\tau_b=\rho gh\alpha+2G-T$$

where $h=h_s-h_b$, the ice thickness,

If we look at how this is set:

* The text is narrower here to make it easier to detect where such exam¬

ples start and end. Normally the typeset version would take up the whole

width of the text.

58 A plain T^X primer

If a, (3 are small, the equation can be transformed into this

coordinate system to give the approximate relation

Tb — pgha + 2 G — T

where h = hs — hb, the ice thickness,

we notice that a displayed equation is centred within its current

page width, and that a certain amount of space is left above and

below the displayed equation. The displayed equation is part of

the paragraph in which it occurs. Introducing the display does

not terminate one paragraph and begin another. Had you left a

blank line before and after the display, then it would be treated

as a paragraph on its own. Whatever follows will also be treated

as a new paragraph, by virtue of the blank line which precedes it.

When an equation is written down in T^X form, leave no blank

lines within the scope of the dollars or double dollars. If you do

leave blank lines, TgX will assume that you have made an error

and will try to help. It will get in a dreadful muddle.
=>Exercise 4.8: It is best to encounter errors under controlled circum¬

stances. Introduce a blank line in the middle of a displayed equation and

see what TpX makes of it. You might be able to interact your way out of

trouble. <=

The amount of space left above and below a displayed equa¬

tion will vary, depending on the length of the line of text which

immediately precedes or follows it.

Deeper and deeper

You can sub- or superscript as deeply as you wish; T^X will reduce

the size of the first level (by default to 7 point), but any further

sub- or superscripting will be at 5 point by default, however deeply

you do it. These reductions could be changed to some other value.
$a~{b~{c~{d~e}}}$

gives an expression where c, d, and e are all the same point size

(5pt). (An aside is appropriate here. If this expression, ab' ,

appears in text, T^X will by default insert a little extra space

between the lines so that the higher superscripts do not ‘interfere’

with the previous line.) They are all superscripted, but just do not
get any smaller. Do note that the sequence

$a~b~c~d~e$

is illegal. Tj^X will complain

Beginning mathematics 59

! Double superscript.

<recently read>

1.3 $a~b~

c~d~e $

but it will still go on and typeset things ‘correctly’, assuming

that what you meant was abcde. If you meant $a~{bcde}$ or

$a~{b~{c~{d~e}}»$ you should say so. Note too that when you

‘simultaneously’ sub- and superscript, for example x„, the sub-

and superscripts will be lined up (at their left-hand edge). We

could therefore have written that as $x~2_n$, and obtained the

same result: x\.
A set of examples is given below, which account for many situ¬

ations.

x~2 X2 x_2 X2

2"x 2X x"2y“2 x2y2

x “ 2y “ 2 x2y2 x_2y_2 X2V2

x_2y~2 X2V2 _2x"2 2X2

0_2x~2 2X2 x~{2y} x2y

x~{2~y> x2V x_{2~y> X2y
o3

x_{2_y~2> x2. x_{2_y~2}"{3_z~3> K
X2l

=^>Exercise 4.9: Can you see how the following are different? And how

to express them in T^X?

(((a4)3)2)1 (((a4)3)2)1

Before absorbing TgX’s handling of sub- and superscripts as ‘a

good thing’, look at the following:

2 2
a2 ci2 a

Although it is possible to see the reasoning behind placing sub-

and superscripts differently, depending on context, it does tend to

make ‘mixed’ expressions untidy. There is a simple, if inelegant,

solution, where ‘null’ superscripts are introduced: for example

$a_l~{} a_2~2 c~4$
Introducing a superscript on the first term forces its subscript to

be lower, bringing it in line with the others. There is a better way,

addressed in Chapter 18.

60 A plain Tf^X primer

=>Exercise 4.10: Although by now we have absorbed T^X’s basic
mathematical typesetting, Greek symbols, and sub- and superscripts, it
is still difficult to find any useful mathematics to set which does not
seem trivial. Nevertheless, the following displayed equations may provide
a little experience:

ho + £ = h + p = ho + hi + p

(m + l)hi/ho + mai/ao = 0

r+i«m = h™+1atf

_2 _2 , 2
T Txy ”b Tzx

A = Arn_1m = p

eMu/PMa = 0.623pe/P

=>Exercise 4.11: These examples in the previous exercise are rather

‘abstract’, since the real tasks come when mathematical expressions are

interspersed in text and display. The following short specimen comes a

little closer to the real world:

The number of atoms of a radioactive element at time t years

can be found from the original number present at time zero by the

relationship

Pt = Poe

where Pt is the number of atoms at time t. Pq is the original number

of atoms of the parent nuclide, and e is 2.7183.

At

If there are problems with mathematics so far, they are usually

problems of vocabulary. Even those with a scientific background

may be confused by some Greek symbols. The zu looks very like an

uj, and may easily be confused with, say, ui. Similarly v, v, v, and u

might be confused at first. Equally, some symbols are not generally

used and it may be difficult to remember the ‘English’ for v or rj.

For someone ‘translating’ a manuscript, this can be a nightmare.

It therefore gives T]eX the appearance of awkwardness, since it

seems to suggest that you have to know what an alpha looks like

before you can use it. Many first-class technical typists recognize

letters by their shapes and can remember where they are on the

keyboard, traditionally accessing them through some combination

of keystrokes. To someone familiar with T^rjX, typing control-shift-

a to obtain a on output seems even more perverse than does typing

\alpha to the T^X naive. Both approaches might just have their

place. I confess that once I understood that \alpha gave a, I could

guess how I obtained £. That seems like an advantage to me.

Beginning mathematics 61

More simple operators

Square roots can be expressed quite simply by the \sqrt command:

$\sqrt2$

produces a 2 with a square root symbol around it - y[2.

Note again how a TgK command works. A command is made up

of a backslash followed by either any number of alphabetic char¬

acters, or else a single non-alphabetic character. Thus $\sqrt2$

is the command \sqrt followed by the numeral 2, while \sqrtx

is a new (undefined) command. On the other hand \2 could be

a command, since it consists of the \ followed by a single non-

alphabetic character; \A4 could not be a command - although it

could be the command \A followed by a 4. There is therefore no

confusion with $\sqrt4$ or $\sqrt\alpha$, but to obtain y/x

you must type $\sqrt x$ or \sqrt{x}. If more than one sym¬

bol is to appear under the bar of the root, it must be grouped. For

example, y/4ac has to have the term within braces: $\sqrt{4ac}$.

When the term has a sub- or superscript, still takes the ‘next

term’, before applying the sub/superscript: in other words, in

the case of $\sqrt b~2$, T^X square-roots before placing the

exponent. If we mean y/ti2, we must say $\sqrt{b~2}$.

The bar over the square-rooted expression will be extended if

required: thus
$\sqrt{b~2-4ac}$

will have the bar over the whole of the grouped expression -

y/b2 — 4 ac.
=>Exercise 4.12: TgX would be quite happy with $\sqrt4ac$. What
does it produce? What about $\sqrtl6c~4$? <=

Both \overline and \underline work with individual and

grouped symbols. (Another name for ‘overline’ is vinculum, which

sounds a bit more specialized, and may convey the notion of

grouping.) Thus:
$\overline \alpha + \underline\gamma~2$

should do just what it says: a + y2.

We can combine these (with grouping) to form things like:

$\overline{\underline{\sqrt{xy}»$

or
$\sqrt{\underline{\underline{xy>}>$

or even
$\overline{\sqrt{\underline{xy}}}$

to obtain y/xy, /xy, and yTy.

62 A plain TppC primer

\hat a a

\check a a

\tilde a a

\acute a
/

a

\grave a a

\dot a a

Figure 4.3 \ddot a a

Accents \breve a a

available in \bar a a

maths \vec a
—k
a

=>•Exercise 4.13: Demonstrate the minimum grouping which is actu¬
ally required for y/x_. <=

In order to get nth roots, you can use the

$\root n\of a$
which would produce {Ja. It might appear that grouping was

needed to obtain something like n~\fa, but here the ‘structure’

provided by the \root and \of implies that whatever ocurrs

between them must be the ‘root’ term. So all we need type is

$\root n-l\of a$. It is interesting to note that typing \of in

any other circumstance will lead to trouble.
Exercise 4.14: What would $\root {n-l\of b~2}$ produce? <=

Mathematical acgents

Mathematicians often like to put modifiers over symbols (so do

other people, but we shall give them honorary mathematical status

for just now). As we shall see later, T^X supports some accents in

its ‘normal’, non-mathematical mode. In maths, it also supports

quite a wide range of accents (Figure 4.3).

These are genuinely mathematical accents; you cannot use them

in ‘normal’ text - TgX will complain loudly. Treat them as a type

of symbol. After all, the whole of mathematics appears to use

some symbols which may look identical, but which have different

meanings depending on context. It is partly this which makes set¬

ting mathematics appear rather tricky in the first place. Unlike

normal accents, which almost always modify a single letter, a

mathematical accent may apply to parts of a whole formula,

as well as a single symbol - but beware, the accent appears

centred over the whole group, whether a single character, or

many. Thus $\vec{a+b}$ gives us a + b. Perhaps we really meant

q T b.

Beginning mathematics 63

Exclude \overline and \underline from this. Although x and
x look rather alike, they are obtained differently. As the previous
section illustrated, an overline or underline will stretch over its
own group so that if we had written \bar{xy} - xy - it would
have been clearly differentiated from \overline{xy} - xy.

Similarly, there are two other ‘grouping’ accents, \widehat and
\widetilde, which grow to accommodate whatever is below them
- within limits. The hat or tilde grows with the expression, up to

a maximum size: for example, abc.
=>Exercise 4.15: Examine the differences between $\tilde x$ and
$\widetilde x$, and also see how both the \widetilde and \widehat
accents behave as their ‘group’ gets larger. <=

Mathematical accents have some interesting properties. They
may be stacked one above another. This provides us with the
capability of writing something like:

W i = W t + W r -T W l

But a small confession has to be made here. Often when accents
are stacked one on top of another, they appear to be misplaced,
either too far to the right or left. There seems no straightforward
way of guessing what is likely to be the extent of the problem. The
adjustment is trial and error by use of a command \skew. The
command is followed by a number which in some way specifies the
adjustment. The last example
$$\bar{\dot W}_I=

\bar{\dot W}_T+\bar{\dot W>_R+\bar{\dot W}_L$$

looks fine, but to obtain

X i = Xt + X r + X l,

we would require
$$\skew3\bar{\dot X}_I=\skew3\bar{\dot X}_T+

\skew3\bar{\dot X}_R+\skew3\bar{\dot X}_L$$

Hardly very elegant, but if it helps discourage the use of multiple

accents, it cannot be all bad.
The extra height the accent contributes to a symbol is not taken

into account for superscripts. An expression like

e2 = A2t6

looks quite satisfactory.

64 A plain primer

\aleph N \prime / \forall V

\hbar h \emptyset 0 \exists 3

\imath i \nabla V \neg or \lnot —1

\jmath j \surd V \f lat b

\ell £ Atop T \natural ti

\wp p \bot T \sharp #
\Re 3R I or \vert | \clubsuit *

Figure 4.4 \Im \ | or Wert || \diamondsuit 0
Some of the \partial d \triangle A \heartsuit V

many symbols \infty oo \backslash \ \spadesuit X
available \angle Z

The collection of mathematical accents may be insufficient. Pro¬

vided that the required symbols occur somewhere, it can be pos¬

sible to add new accents, for example you might need to be able

to write

XQB=BQB

where the mathematical accent ° means ‘open’. This turns out to

be fairly straightforward and will be covered later. On the other

hand, x is much more tedious in plain, although its construction

will also be examined later.

We have many ways of doing this...

The language of mathematics is a very rich one, and the vocab¬

ulary expects a very wide range of symbols and operators, much

larger than that encountered in normal text. T^X allows access

to many symbols: Figure 4.4 gives some useful new symbols, with

their commands. There are yet more, but exposure to the rich diet

of TgX might lead to indigestion.

While we might query the inclusion of b and 9 in the mathe¬

matical symbols, especially when useful chemical symbols are not

present in the default fonts, we must allow Knuth some indul¬

gences. After all, without him, we would have none of this. On

the other hand, ‘...infinite string Jj00-^00 ...’ occurs in a well-

known book on image processing.

Do note, however, that \angle will not get smaller when used

as a sub- or superscript - La and c^a both have the same sized L

(why would you want to do this anyway?). The p symbol is Weier-

strass p, and h is also known as ‘Planck’s constant over 2n\ The

K is the only Hebrew letter available in TgX’s standard character

Beginning mathematics 65

set. The ‘dotless’ i and j help to make accents on these symbols

‘look’ better: certainly i + j looks a little strange. The expres¬

sion i + j will probably always appear ambiguous. Is it $i+j$ or

$\dot\imath+\dot\jmath$?

Prime

The normal use of prime is as a superscript. The character you

should obtain by \prime is a rather large, non-superscript

symbol. To use it in its normal way, it is superscripted in the

form $x~\prime$. Similarly, you can use the right quote mark:

thus $x~\prime$ and $x’$ are equivalent and give x'. In a sense

TgK’s shorthand for the prime is even more powerful, since $x’ ’$

is accepted to give x", a much more agreeable outcome than

$x~{\prime\prime}$. You will find that even $x’’ 2$ works.

Unfortunately, though, the almost ‘equivalent’ $x~2’’$ gives a

message about Double superscript. One of the reasons that

\prime does not come ready superscripted is that that would limit

its capabilities, and under certain circumstances lead to strange

spacing. For example, $x\prime_2$ might yield x'2 or even x'2

instead of x'2. And it becomes possible, for example, to obtain xh

should you ever need to. But there is no ‘shorthand’ for that.

=> Exercise 4.16: Since one way to acquire confidence in using a new

vocabulary is to use it, set the following:

DT/Dt - kd2T = H/pc

u = A'r?

OA' = kOA'

ICOQ = 6

This only begins to scrape the surface. ^

Above and beyond

We place items ‘over’ other items with the command \over. This

is intended for fractions, so it also places a line between the items;

$a \over b$
produces the fraction Although available in text style, it is

really much better in display style, where it produces

a

b

It is important to note that \over has the peculiarity that it

applies to everything in the formula, so that

A plain TpjK primer

$$a+b+c+d \over \sqrt{x~2 - y_l} +a$$

will place the a+b+c+d over \sqrt{x~2 - y_l} +a:

cl -\- b -\~ c d,

\Jx2 - yi + a

In order to achieve fine control, use braces to group:

$$a + {b\over c} +d $$

$$a + b \over {c +d} $$

$${a + b \over c} +d $$

and so on. It is possible to get very confused with \over. It is

infuriatingly easy to end up with an expression like:

x = — b + Vb2 —2a

4 ac

It seems inconsistent that an operator like \sqrt refers only to

the next character or group, while \over applies to the whole of

the formula preceding and following, unless modified by grouping.

As with sub- and superscripts,

$$a \over b \over c$$

is illegal, although

$${a \over b} \over c$$

is acceptable, and produces

a

b_

C

in display. The first group is in smaller type, with a thinner frac¬

tion line.

=> Exercise 4.17: This opens a wide range of new possibilities. Try to
typeset the following:

cK _ _ m
d t dx dy

TpM = -e~iKr'

Beginning mathematics 67

Variations on this theme

There are a number of variants of \over, namely: \above, \atop,

\choose,\brack, and \brace.

The thickness of the fraction line is controlled in \above so that

$$x \above lpt y$$

places a fraction bar of thickness 1 pt between x and y\

x

y

The bar between the groups is omitted with \atop, so that

$$x \atop y$$

gives
x

y
The command \choose has similarities to \over: for example,

$$a\choose b$$ gives

Since this is very similar to \over, it also requires the same sort

of grouping when used in more complex situations. Note that this

is not an easy way of writing simple vectors. For that we would

use something altogether different which will be covered in the

next chapter. Because two things look alike does not necessarily

imply that they will use the same command. The \choose com¬

mand’s colleagxies, \brack and \brace, work in the same way, but

give square bracketed or braced results. The underlying command

which allows these to be created is called \atopwithdelims. The

reference to \atop gives a clue. The construction uses the \atop

structure, but expects to be told which two delimiters are to be

used. The two delimiters may be chosen from any of the delimiters

recognized by T^X (and considered in Chapter 8), and of course,

need not be ‘paired’ in any particular way (provided there are two

of them). Writing

$$a\atopwithdelims()b$$
is equivalent to $$a\choose b$$, but rather long-winded. There

are also two other constructs, \overwithdelims and \abovewith-

delims. This latter requires that the thickness of the line intro¬

duced is specified, just like \above.

*

Continuing mathematics 5

More uses of sub- and superscripts

The conventions described in the previous chapter for sub- and

superscripting may also be used for some of ‘large opera¬

tors’. Perhaps the two key operators are \sum for summation,

and \int for integral sign. Note that \Sigma and \sum are dif¬

ferent (they may look similar, but they behave differently): when

placed side by side - X and ~ the difference is quite apparent.

In order to place the limits on \sum and \int simply subscript

and/or superscript. TgX correctly understands that these special

operators must have their sub/superscripts placed below/above

the symbol. Like ‘normal’ sub- and superscripts, there is no order¬

ing implied: the top limit can precede or follow the bottom limit,

although it usually makes mores sense to put the lower limit first:

‘the summation from i = 1 to n; the integral from -oo to O’. For

example:

$$ S = \sum_{r=l}~7S_r $$

will produce
7

S = J2Sr
r= 1

and

$$ \int_{V_l}~{V_g} P(V,T) dV = 0 $$

gives

In text style, though, these two equations will look a little

different: S = El=iSr and f^s P(V,T)dV = 0. There is one

obvious difference to the way that IfeX treats these two operators

in display and text styles. One places the limits above and below,

while the other places them to the right. These defaults follow the

70 A plain TppC primer

mathematical convention. It is possible to override them with two

modifiers, \limits and \nolimits. Where the limits are placed

above and below corresponds to the case of \limits; where they

are to the right corresponds to \nolimits. In order to instruct

T^X that a summation should be in the \nolimits form, use

\sum\nolimits:

$$ S = \sum\nolimits~7_{r=l}S_r $$

and similarly, to put \int into the \limits form:

$$ \int\limits_{V_l>-{V_g> P(V,T) dV = 0 $$

This will give

S = V7 Sr

and

J P(V,T)dV = 0

v,
There are a number of these large operators (Figure 5.1), all

of which behave in a similar way, with the use of the sub- and

superscript conventions to handle the limits.

=>Exercise 5.1: Demonstrate what differences occur when the large

operators are used in text style and display style. <=
=>■Exercise 5.2: It is not immediately clear which of the large opera¬

tors default to the \limits and \nolimits form. Investigate both text

and display versions. <=

=>•Exercise 5.3: Turn the following into a suitable TgX form:
OO 2lT

fc=0 6»=0

A confession

does not always get it right. Especially when dealing with

integrals, T^jX often needs a bit of help. Most equations with inte¬

gral signs in them also have a d-something term or two. If we look

at an equation containing an integral like

I =
4 dz

2 z2 + 5 iz — 2

2 dz

(z + 2 i)(z + \i)

we notice that the dz term has a little extra space before it. This is

a fairly typical convention, which helps to emphasize that the dx

is a single concept, not the two variables d and x. T^X is simply

Continuing mathematics 71

\sum £ \prod n
\coprod II \int /
\oint / \bigcap n
\bigcup U \bigsqcup u
\bigvee v \bigwedge A
\bigodot o \bigotimes ® Figure 5.1

The large

\bigoplus © \biguplus W operators

not smart enough to anticipate this difference, and to help it we

must introduce a ‘thin space’. This is defined in maths mode to be

\,. The last example was therefore obtained by 4\,dz and 2\,dz

in the numerators.

On the other hand, double integral (or triple) integrals often

seem too far apart, especially if they are given without their lim¬

its. The reason for this is not too obscure. There are no implicit

kerns in maths. The integral signs have a strong diagonal element

to them, and since TgX is butting together rectangular boxes ‘con¬

taining’ the symbols, there seems to be too much space between

them. In the expression

Ei(y') eisya(y - y')dy ds

the two integrals have been drawn together by inserting ‘negative

thin space’ between them. This quantity is the same distance as \,

but removes space. In fact, in this case we use two such quantities.

The command is \!, so the integrals have been expressed as

\int\!\!\int
=$>Exercise 5.4: Reproduce that last example. <=

Even when multiple integrals are used which each have limits

associated with them, the inclusion of negative thin space seems

necessary. So when an integral has limits, and whether it uses the

\limits or \nolimits form, the negative thin space is required.

=>Exercise 5.5: Express the following integral equation in both the

\limits and \nolimits form, with suitable adjustment of negative thin

E(k, 9)dk dd

72 A plain Tppi primer

Other operators

T^X also has an extensive suite of ordinary (and extraordinary)

operators which are used in equations. Before presenting them

all, it is useful to try to establish some order, which helps in the

understanding of how TgX treats these operators. The first group

can be described as binary or dyadic operators since they are nor¬

mally preceded and followed by other symbols, for example x + y,

a x b, n -r- m, or a — /?. Obviously some of these might also exist

on their own as monadic (or unary) operators: x = —1.

Many people would be happy to make a distinction here, and

so too does TgX. It makes its difference in terms of spacing. The

spacing around the minus is different in the expressions $x=a-b$

and $ x=-y $.
Exercise 5.6: Illustrate the difference in spacing between monadic

and dyadic operators by examining the way TpX handles a simple expres¬
sion like -4-2\pi i <=

TgX recognizes no less than 32 ‘primitive’ operators (Figure

5.2), in addition to the operators already available from the key¬

board: +, —, /, and *. There are also facilities to define your own

if you wish. Once defined as a binary operator, will apply

the rules for binary operations. There appears to be no difference

in the way that T^K handles * and Vast in maths. Most of the

operators are ‘reasonably’ familiar, or at least their names follow

without too much difficulty, but \wr may be slightly more unusual.

Its ‘full name’ is ‘wreath product’. Some of them are also used in

normal text. The f and J are accessible ‘normally’ as \dag and

\ddag. It is not unusual to require •, •, or even *, but these have

no non-mathematical alternative description and to use them in

text you would have to include the $ symbols around them:

to require \bullet, \cdot, or even \star, but

As we have noted above, binary operators normally have extra

space around them. At the moment it is sufficient to say that if

the operator is not being used in a binary way, Tjgpt is ‘smart’

enough to treat it as a simple symbol (most times). Thus H2+,

/*, or even g° i-» g* will use the ‘operators’ as simple symbols,
leaving no extra space.
=> Exercise 5.7: Your enlarged vocabulary now permits the following

expressions to be expressed in TpX form:

x e b = x n x_h

X eB = \JXiQB

Continuing mathematics 73

\pm ± \mp T
\div q- \times X

\ast * \setminus \

\star 'k \diamond o

\bullet • \cdot

\cup u \cap n

\sqcup u \sqcap n
\triangleleft < \triangleright t>

\bigtriangleup A Ybigtriangledown V
\wr l \bigcirc 0

\vee or \lor V \wedge or \land A

\oplus © \ominus ©

\otimes (8) \oslash 0

\amalg II \uplus W Figure 5.2

\circ o \odot © Binary

\dagger

rB/2

/ R"
J—S/2

f \ddagger

\y-,y'W(y')dy' = d'V'G/)

t operators

jd) = j(o> _ (gi -/(0) znlai
U)\ ■ W\

((A V -F V C->D) A (-lE V ->F))

as well as permitting you the luxury of being able to write 6° Centigrade

or 9.46 x 1012 kilometres per year. But how? <=

Relations

As the Figure 5.3 shows, there are lots of relations in the family

of TgK. A fairly common mistake is to assume that > and <

are obtained by \gt and \lt. Unfortunately this is permitting

intuition to carry you away, and although < may be obtained

from the two commands, \le and \leq, the same privilege was

not extended to > and <. On the other hand, few people would

expect = to be accessed by \eq.

If you look back to Figure 4.4 which shows some of the many

symbols available, you will note that | and || appear there, under

the ‘names’ I or \vert and \l or Wert. Why then do they also

appear in Figure 5.3 under the names of \mid and \parallel?

In case the answer is not obvious, consider the different functions

the same symbol is performing. On the one hand they may be

simple symbols, while on the other they are treated as binary

operators. The context should determine whether a\b is somehow

74 A plain TgX primer

= = < < > >

\leq or \le < \geq or \ge > \equiv =

\prec \succ >- \sim

\preceq \succeq \simeq r^j

\11 < \gg » \asymp x

\subset C \supset D \approx

\subseteq C \supseteq D \cong rsj

\sqsubseteq c \sqsupseteq □ \bowtie \x

\in £ \ni or \owns 9 \notin i
\vdash h \dashv H \models h
\smile — \mid | \doteq =

Figure 5.3 \frown \parallel II \perp T

Relations \colon or : : \neq or \ne \propto oc

three symbols, or the | is an operator, in which case it should look

like a | b. In manuscript form it is seldom clear which is intended.

The colon is also present in the table as a relation. When used

in maths, it will be treated as a relation, and not as punctuation.

To obtain a colon as punctuation, you have to use \colon. This

is not quite as perverse as it sounds, since : tends to be used as a

relation, while the other ‘punctuation’ - comma, semi-colon, and

full point - tends to be used more conventionally. But if you are

accustomed to writing a: = a + 1, you may find having to type

\colon= an irritation.
^Exercise 5.8: Here, ‘|’ means ‘projection onto’; therefore it is an
operator:

1 1 72n
-U{X) = — / L(X\AQ)da
77 277 Jo

Turn it into T^X. <=

If you ever require a negated version of one of these relations,

like /q or more likely, then you precede the relation by \not

- \not\smile or \not\equiv. The positioning is not always per¬

fect, notably with \in, and there is another version \notin which
looks better.

There is a minor danger lurking within \neq. If the ‘truth’ be

told, it is really an abbreviation for \not=. This is hardly a sur¬

prise, but should we ever require to use the expression x^ we have

to be careful to write it as $x~{\neq}$, and not as $x~\neq$.

What TgX sees in the latter case is $x~\not=$, and what you see
is x/'—l
=> Exercise 5.9: Compare $ with ^ and decide which ‘not in’ looks
better. Which is which? <=

Continuing mathematics 75

=kExercise 5.10: A handful of equations to set:

7*1/to ~ 0.5p/h0

h/L 2> dh/dx

— > \fcgh

V2/(f,j) = Sx2f{i,j) + 5y2f(i,j)

Q e A(P) N(Q)
4=

If the vast array of relations is not sufficient for you, there are

also lots of arrows. Both \Longleftrightarrow and \iff give

the same symbol, but \iff has extra space around it: a <==> b

and a b.
=>Exercise 5.11: Again, this opens up all sorts of new possibilities:

(W 0 B) n (W © B)_h /
YcX^^x(Y)C<px(X)

X —> X\ ^ X2

2HC03- —* H20 + C02 t + COz2~
This last example demonstrates TgX’s weakness at handling chemical

equations through maths. <=

As if this was not enough, you can place symbols over left and

right arrows with the aid of the \buildrel command. For exam¬

ple, a^$b is obtained by

$a{\buildrel \rm def \over \rightarrow}b$

Note in particular that \over has nothing to do with fractions

here. The braces are not really necessary; they simply make the

construction more obvious. Shortly we will uncover a way of cre¬

ating commands which will make the use of these constructs less

awkward and more intuitive. This construction will also work with

= . For example, x=y is obtained from

$x{\buildrel \triangle\over=}y$
Exercise 5.12: The \buildrel works with the various relations, but

does not work easily with the negated relations. Although this is hardly

likely to be a very critical restriction, verify it, and then see if there is a

reasonably straightforward way around the problem.

Simple arrows (Figure 5.4) may be used in a manner similar

to \overline. Both \overrightarrow and \overleftarrow will

place an arrow above an expression, extending the shaft to span

the expression: for example, a + o is obtained from

$\overrightarrow{a+b}$

76 A plain TpjX primer

Text and display modes

This section is needed in order to explain some aspects of sizing

in very particular situations, chiefly associated with \over and its

variants. Most of it can be safely ignored most of the time, but if

things do appear a little strange this section may help provide an

explanation. You may have observed that T^]X handles the same

information slightly differently, depending on whether you are in

text style (between single dollars), or in display style (between

double dollars). Sometimes these differences are rather subtle. A

very obvious example would be something like

$${A\over B}\over{A-{B\over C}}$$

which turns out like
A
B

when we might really have wanted something like

A
B

Formally we recognize the following styles in maths mode: text

style, display style, script style, and scriptscript style. There are

corresponding commands which force the conventions associated

with each of these styles, and therefore allow you to override

what TgX thinks it wants to do. The first two styles, \textstyle

and \displaystyle, are those which are ‘triggered’ by $ or $$

respectively. Whenever an expression within single $ symbols is

encountered, defaults to ‘text style’ maths. Substituting the

double $$ symbols would mean the expression was set in ‘display

style’. Usually these look much the same, so that

setting $e~{i\pi}$ and $$e~{i\pi}$$ will be

identically set.

setting el7r and
ein

will be identically set. ‘Script’ style encompasses first-level sub-

and superscripts. In the previous example, the in part is set

in ‘script style’. This style is also accessible through \script-

style. Logically then, ‘scriptscript’ style applies to nth-order

sub- and superscripts, where n > 1, which are themselves applied

to sub- or superscripts. As implied earlier, there is no concept of

‘scriptscriptscript style’!

Continuing mathematics 77

\leftarrow or \gets <- \longleftarrow

\Leftarrow \Longleftarrow

\rightarrow or \to ->• \longrightarrow

\Rightarrow =4> \Longrightarrow

\leftrightarrow •H- \longleftrightarrow

\Leftrightarrow <t4> \Longleftrightarrow or \iff

\uparrow t \Uparrow

\downarrow \Downarrow

\updownarrow t \Updownarrow

\mapsto i—y \longmapsto

\hookleftarrow t—’ \hookrightarrow

\leftharpoonup \rightharpoonup

\leftharpoondown v- \rightharpoondown

\rightleftharpoons

\nearrow \searrow

\swarrow \nwarrow

fr

$

\
\

Figure 5.4

Arrows

This is all very straightforward up to now, and introduces noth¬

ing exceptional. However, there are variant styles where the expo¬

nents are not raised quite so much. These may be termed the

‘cramped’ styles.

How can we illustrate these differences easily? The use of the

\sqrt always changes an exponent to the ‘cramped’ style. There¬

fore we should be able to gauge the difference by comparing the

an in an expression like

a~n\sqrt{a~n}

The differences are not great - anyfcC, but you may be able

to observe that the exponent is a little lower in the case of the

\sqrt{a~n>. This effect also applies to \overline.

Note that the effect is confined to exponents. Therefore sub¬

scripts are totally unaffected, although superscripts of subscripts

could be. This is not quite true. All subscripts are rendered in a

‘cramped’ style. There is no such thing as an ‘uncramped’ sub¬

script. Why bother having such a category then? Probably for the

following reason: once a symbol has become ‘cramped’ all its sub-

or superscripts also become cramped. This was probably obvious

in the case of a super-superscript like a™"1, but it is slightly less

obvious that the m in anm is also cramped.

You might suppose that the height of an exponent is equivalent

in all the uncramped styles. It is not. Again the differences are

not large. We can compare display and text style:

amam

78 A plain primer

the second am has been forced to be treated as if it were in text

style.

The ‘trend’ continues through script and scriptscript styles,

although it becomes more difficult to demonstrate. By using

the \textstyle,\scriptstyle, and \scriptscriptstyle com¬

mands, it is possible to show what is happening:

$$

{\textstyle a~m}

{\displaystyle a~m}

{\scriptstyle{\displaystyle a}~{\scriptstyle m»

{\scriptscriptstyle{\displaystyle a}~{\scriptstyle m}}

$$

There is an extra pair of braces around each subexpression, just

to emphasize their apartness:

omamamam

It is in circumstances like these that criticism of long commands

becomes prevalent.

What are the effects in ‘cramped’ styles?

$$

{\textstyle a~m\sqrt{a~m}}

{\displaystyle a"m\sqrt{a~m}}

{\scriptstyle {\displaystyle a}~{\scriptstyle m>

\sqrt{{\displaystyle a}~{\scriptstyle m}}}

{\scriptscriptstyle {\displaystyle a}~{\scriptstyle m}

\sqrt{{\displaystyle a}~{\scriptstyle m>}}

$$

gives

arn\/arnarn' lVa™amy

where the finesse of the positioning becomes (barely) noticeable.

Similar effects are obtained when dealing with subscripts, but

are perhaps even less observable.

Leaving sub- and superscripts, the differences in style are more

apparent when we use fractions: the key example is one like

$a\over b$ or $$a\over b$$. The denominator will always be

cramped. Theoretically it is possible for the numerator to be

cramped, but illustrating this is especially obscure. If any of the

styles adopted for a start out as cramped, then the corresponding

b will also be cramped (Figure 5.5).

One interesting interaction which might not have been antici¬

pated is that in the expression $$a\over b$$, we are originally

Continuing mathematics 79

Original style a b Example

display text cramped text
a
b
n Figure 5.5

text script cramped script
Uj

b Mathematical

script, scriptscript scriptscript cramped scriptscript
a. a

b ’ b
styles

in display style, so the numerator and denominator are this time

rendered in text style.

What this all implies

Naturally, the reason all this information has been presented is so

that you can interfere with T^X’s ‘natural’ manipulations in order

to control the output more correctly. The commands already met

will allow this. There is, however, no way to force the ‘cramped’

styles - T^X does that itself.

Under what circumstances might you wish to control the sizes

yourself (or put another way, when do TgX’s own rules go wrong?).

Fortunately, this interference is seldom required. You will, how¬

ever, know instantly once you see the output - a little late perhaps,

but the alternative is to retain all this information about changing

styles as you go along (no easy task). Perhaps the most frequent

use for manipulating styles may be with the \over family, when

several are used together:

$$a \over {b+c \over{d+e+f \over{g+h+i+j»> $$

According to the style rules this will look decidedly odd:

o
b+c

d-j-e-j-f

the top line is in display style, the second in cramped script style,

the third in cramped scriptscript style, the fourth also in cramped

scriptscript style. It would seem more reasonable to make all four

lines the same style:
a

b + c

d + e + f

g + h + i + j

as with
$$a \over \displaystyle{b+c \over \displaystyle{d+e+f

\over \displaystyle{g+h+i+j}}} $$

80 A plain primer

You might even prefer something like:

a

b + c

d + e + /

9 + h + i + j

which is obtained from
$$a \above2pt \displaystyle{b+c

\abovel.5pt\displaystyle{d+e+f

\abovelpt \displaystyle-[g+h+i+j}}} $$

But even these examples are rather arcane. These are not

forms which are commonly used. It is noticeable that with the

\above form there appears to be a rather unexpected change into

‘uncramped’ style.

A slightly more relevant example crops up with the use of large

operators:
i=n
j — n

3 = 1

obtained from

$$ \sum_{i \ne j \atop j=l}~{i=n \atop j=n> X_{ij} $$

The subscript (in this case, a limit) on the summation is in

cramped script style, but since this itself is composed of two

components (a \atop b), the two elements a and b will be in

cramped scriptscript style. ‘Cramped’ style because they are sub¬

scripts - consider $a~{b \over c}$ where clearly the b \over

c part would be broken down to scriptscript style and cramped

scriptscript style. This ‘cramped’ aside is relatively unimportant

here. What is important is the shift to scripscript style. In the

summation, the limits are in scriptscript style and smaller than

they would have been if we had only single sets of limits. Thus a

better (more readable) solution when dealing with multiple limits

on large operators in general is:
$$ \sum_{\scriptstyle i \ne j \atop \scriptstyle j=l}“

{\scriptstyle i=n \atop \scriptstyle j=n} X_{ij} $$
to give us

i—n
j=n

i¥=i
3 = 1

Continuing mathematics 81

=>Exercise 5.13: You should now be able to set
A
B

‘correctly’. Do so. <=
This seems like a lot of work, and it comes as a great relief to

acknowledge that most times Tf^X gets it right and we do not

have to worry. But at least the tools are there, should you find

you need them.
=> Exercise 5.14: The examples have tended to concentrate on dis¬

played forms. To redress the balance slightly, set the following short

extracts:
The expected cost, c(i\z), is given by]TY p(j\z)\(i\j); if both A(i|z) =

0 and the A(i|j)’s are equal when j ± i, minimizing the expected

cost is equivalent to minimizing

The Laplacian d2f/dx2 +d2f/dy2 is an orientation-invariant deriva¬

tive operator.

The responses of yjA+2 + A_2 are h\J2, h\J2, h, and h.
•4=

=> Exercise 5.15: And lastly, as a passing-out exercise, return to dis¬

played equations and typeset the following equations. There are one or

two snags or deliberate catches, just to ensure that you examine the out¬

put fairly closely. As has been pointed out, TgX sometimes needs a little

help with its spacing. Some of these examples are remarkably tedious to

type in, but worthwhile nonetheless!

GP = FP = |J Fp+e = U Gp+e
e>0 e>0

d(Xi,X) ^ 0 =7 W{kn\Xi) -> W{kn\Y), Vn, k

lz{h) =

C*(k) =

(7 * K)h - (7 * K)0
A2(Z)

ELi MZx)-ci(k)

ELi MZx)
o /»C _q /*C dh

— pUadz = -— / {puaup + pSap) dz + (p)z=-h~K-
dtj_h dxpJ_h clx,

2 _ f^000w(x)c2(x)dx

cc2(x)dx

II”‘UFJF’

82 A plain T^K primer

p(l)p(z\l) + p{2)p(z\2)

p{h\r) = E q(z\r)q(z + h\r)

Z

e — m'/2 e—m"/2 g—m/2

v^.r' ' v^r" “ v/27rm^1m'a-2m"

/{(a:,y) = /(®, y) - /(a: + <5x, y + <5y)

3j :-k < j < N : X^ > 0 A Xj > 0 A ->(Bi : k < i < j : X{ > 0)

More words 6

Even the most erudite and involved mathematical treatise needs

the glue of words to hold the pieces together. Despite the incred¬

ible ease and simplicity with which TgK can handle equations, as

we have already discovered, it also handles non-technical mate¬

rial in a straightforward and direct way. Unfortunately, the rules

for ‘normal’ text are less rigid. Why unfortunately? The greater

the amount of choice, the greater the amount of disagreement.

We can generally agree when equations ‘look wrong , but decid¬

ing when text ‘looks right’ is rather more tricky. The general

approach adopted here is to concentrate on the plainer aspects,

assuming that the content is the important component, and that

the presentation should be as bland and anonymous as possible.

At the extreme, we hope the presentation will be invisible. If we

are very fortunate, it may even contribute subtly to the message.

But, before the heavyweight material, something carefree.

Trivial pursuits

It is time for something frivolous. One of the nice features of TgX

(although of marginal real use in English) is its excellent sup¬

port of diacritical marks and foreign letters. Naturally there is an

ulterior motive for introducing these now.

First the special letters. TgX recognizes commands for the lig¬

atures (E, M, oe, and ae (used in Latin, Old English, and modern

French, among others). It also recognizes the German ‘6’ or ‘ess-

thet’ symbol. It will handle the A, a, 0 and 0 of some Scandinavian

languages, although the Icelandic ‘th’ letters (eth and thorn) are

ignored. And lastly, it copes with the Polish suppressed-L, L and 1.

How do we get these into our text? As usual, does some¬

thing with a special command. The commands are given in Fig

ure 6.1.
' To begin with, each time you use one of these defined com¬

mands, leave a space before the next character. Thus to write

84 A plain TppC primer

(Edipus in TgX, you actual write \0E dipus. This helps to distin¬

guish \0E dipus from \0Edipus, which I^X would assume was a

new (probably undefined) command. Notice that any extra spaces

between \0E and dipus are ignored, as far as forming the out¬

put is concerned, but are essential for the syntax. Since all extra

spaces are ignored, leaving a few extra, or even typing

NOE

dipus

will not leave a space between the ligature and the text which

follows when the passage is set. This gobbling up of extra blanks

is a normal feature of Tj^X. We could also group the command,

in which case it should not be followed by a space; for example,

{\0E}dipus is an acceptable solution. Notice that the end of line

was just another space to T^X.

=>Exercise 6.1: What effect would the following have: {\0E }dipus,

\0E-Qdipus, \0E {dipus}, \0{E}dipus, {\0E> dipus?

What implication does this have for commands at the end of

words? Consider trying to write:

the SchloNss of the Rhine valley

The word SchloB would appear as we require, but the spaces which

follow would be ignored on output. The space after a command is

used to separate out the command so that Tj^X can recognize it.

Multiple spaces are treated as a single space. Thus the next word

would begin immediately after the 13. This is generally not what

we want. In order to solve this problem, a new command, \u], that

is the backslash followed by a space, introduces what is called a

‘control space’. This u symbol does not occur on the keyboard: it

is just a way of indicating that there really is a space. If there is

ever any particular requirement to indicate ‘spaces’, they will be

shown this way.

What we probably wanted was

the Schlo\ss\ of the Rhine valley

Earlier it was suggested that a command containing alphabetic

characters should be followed by a space, in order to let T^X know

where the command ends. If you look at this more closely, you

will realize that there are other ways to signify the end of a com¬

mand. One of them was illustrated with the {\0E}dipus sequence.

There the } was able to indicate the end of the command. Actu¬

ally, in that case, \0E{}dipus would have had the same effect. The

sequence {} looks odd, and seems to mean nothing, but from time

to time, even nothing has its uses. Another alternative is shown

with the Schlo\ss\u sequence. The occurrence of a \ ‘obviously’

More words 85

\ss gives the German 6

\0E gives the (E ligature

\oe gives the oe ligature

\AE gives the M ligature

\ae gives the ae ligature

\o gives the letter 0

\o gives the letter 0

\AA gives the letter A

\aa gives the letter a Figure 6.1

\L gives the letter L ‘National’

\1 gives the letter 1 letters

begins a new command, and therefore indicates the end of the

previous one.
=>■Exercise 6.2: There is a very real difference between \0E dipus and

\0E-Qdipus or even {\0E}dipus. What will happen to the implicit kern¬

ing? <=

Since we are in the realm of national letters, we may also men¬

tion two more ligatures. At least, as far as TgX is concerned,

they are ligatures. In Spanish, sentences which are questioning or

exclamatory begin with inverted question or exclamation marks.

This is rather a nice convention, since when read aloud such

sentences are usually given different intonation. In English you

usually find out too late! In order to obtain i and j T]eX uses the

ligature mechanism, but what we type are ? ‘ and ! ‘. In normal

circumstances this should never present an ambiguity. It is diffi¬

cult to see the circumstances in which ? or ! would be followed

by a single open quote, except by mistake.

TgK also has lots of diacriticals (Knuth refers to them as accents,

but some are not: diacriticals include all the accents, but also the

cedilla and dieresis/umlaut). The fist is given in Figure 6.2. By

and large, the commands are fairly logically named. The diacrit¬

icals fall into two main categories: those which are generated by

an alphabetic character, namely

\v \u \H \b \t \c \d

and those which are controlled by a non-alphabetic character —

\. V V V \= \" \~
To reiterate, one of TfcX’s important rules is that after a com¬

mand consisting of a non-alphabetic character, no space is required

(in fact any space left in such cases is treated as space, and is not

eaten). Thus we may type Veclat for eclat, but to type facade

properly, we will need to type fa\c cade or fa\c{c}ade. It is

86 A plain Tj^X primer

common (but not always correct) to see a space left after almost

all commands. In general terms, a command made up of a back¬

slash and a single non-alphabetic character should not be followed

by a space, or that space will be accepted by T^X as a real ‘to be

printed’ space. For example, the command \& gives the amper¬

sand, &: If we write

Had we World enough, \& time

the space after the \& is respected. But accents are not ‘normal’

non-alphabetic commands. Accenting a space is meaningless. TgX

looks for a character to modify.

You may wonder why Knuth bothered to make the cedilla a dia¬

critical divorced from the c itself (that is, why didn’t \c give the

c and the cedilla together?). Languages like Turkish, Lithuanian,

Latvian, Romanian, and Navajo use cedillas under other letters.

In order to get diacriticals over i and j, you really ought to take

the dot off first. As Figure 6.2 indicates, TgX supports a dotless

i and j, provided by \i and \j. These allow you to do things like

i (from \~\i), or even ij (from \t\i\j), should you ever find a

reason to do so.

The general rule with all these sequences is - diacritical first,

then letter. At first this sounds counter-intuitive, after all, we say

‘e-acute’, or ‘o-circumflex’.

None of these accents is really ‘fundamental’ to T£X, in the

sense that they are all created in much the same way, a way that

is accessible. You can create your own superior diacriticals with

the \accent command, should plain T^X be unable to provide

you with the marks you need. In essence, the ‘accent’ is superim¬

posed over the character which follows, and is centred; it is raised

or lowered as appropriate (essential to accommodate capital let¬

ters). Note that this applies only to the ‘superiors’, the accents

placed over a character. The cedilla and other ‘inferior’ diacriticals

require quite different manoeuvring.

There should be only a single character following a diacritical

- that is, a group will not be accented: r\~{o}le is acceptable,

as is r\~{ole>, but T^X merely modifies the next following char¬

acter, o. A font change may follow a diacritical: something like

r\“{\it o>le would work (although r{\it\~o>le might make

more sense), but r\~\it ole would end up by accenting a space.

The tie accent is clearly an exception, since it expects to handle

two characters, but strangely, the second one may be a space.

More words 87

Command Name Example

V grave Ve gives e

V acute or aigu Ve gives e

V circumflex or hat \~o gives 6

\v inverted circumflex (hacek accent) \v z gives z

\u breve \u g gives g

\= macron, long vowel \=u gives u

V umlaut or dieresis \"u gives ii

\H Hungarian umlaut \H u gives u

\~ tilde \~n gives ii

\. dot accent \.z gives z

\t tie \t oo gives do

\c cedilla \c c gives g

\d dot under \d u gives u

\b bar under \b a gives a

and although not diacriticals, we should mention Figure 6.2

\i dotless i \i gives i Diacriticals and

\j dotless j \j gives j their use

Speaking in tongues

However, it is still not especially clear why you would ever want to

create your own \accent sequences. You may, because Knuth was

not exhaustive in his handling of diacriticals, even for European

languages. The Swedish A is a letter; it is not an A with an accent.

Earlier versions of TeX merely treated it as an A with an accent.

In order to rectify this glaring anomaly, Knuth allowed the circle

accent to disappear. Unfortunately, Czech uses the circle as an

accent. For reasons that baffle me, I set some Czech in TeX and

came across this problem. In order to create u I had to type

\accent23u

This is unbearably clumsy. TeX does have a better way which we

shall uncover shortly.
Perhaps it might be appropriate to come a little cleaner about

baseline skip at this point: \baselineskip is a rather rigid struc¬

ture, and when we have characters with diacriticals, it is possible

that successive lines could run into one another. This is consid¬

ered undesirable. In order to solve this problem, there is another

command, \lineskip, which adds a certain amount of space (as

' specified) between lines to prevent this occurring. The default

setting for \lineskip in plain TgX is 1 point. Normally, this is

not likely to be needed. If we are using a 10 point font, we would

88 A plain TpjK primer

expect to set it with 11 or 12 point baselines. From time to time
it may be desirable to use 10 on 10 (for a telephone directory,
or somewhere where space was at a premium). That is to say, a
10 point font on 10 point baselines. Here the letters might run
into one another. On the other hand, when the extra space is
included, the irregular density of the lines obtained through the
extra line skip tends to look rather unpleasant. Really the deci¬
sion is between having a few letters run into one another, or the
density of lines on the page being irregular. An example of the

application of \lineskip was seen earlier in Chapter 4: ab
You will be pleased to know that diacriticals work on upper and

lower case alike. TgX will hyphenate words which contain dia¬
criticals and the letters which are accessed through commands.
But it will only hyphenate up to the first diacritical or command.
Since these tend to be foreign words, do not be surprised if the
hyphenated words contain embarrassing blunders.

You will also find that trying to get two diacriticals on a single
character is difficult - in fact, T^X is very reluctant to let you do
this. But you could find a way if you really wanted. If you were
Vietnamese, it would be essential: you would want to be able to

write things like Mag.
Diacriticals are available with almost all fonts, although the

typewriter font contains one or two surprises. However, you might
note that even with manipulation of existing l^X characters, as
with u, there are some missing diacriticals. I started looking at
some Polish, and, assuming that because 1 was there, all neces¬
sary symbols would be present for Polish, I was disappointed to
find that the ‘hook’ or ‘ogonek’ symbol (‘little tail’ - rather like a
cedilla in reverse) was missing. Doubtless there are others.

Typing in these command is tedious, especially if you have
a keyboard already equipped with accented characters. Knuth
suggests a strategy where l^X accepts certain combinations of
characters as ligatures: for example, typing ’eclat, the ’e com¬
bination would be recognized as a character pair and produce e.
It is not immediately clear whether every AE combination should
produce d5, or how this would accommodate cedillas or breves.
The simple examples above do not require any changes to TgX,
but can be achieved by altering the TgX font metric files (tfm
files). It would reduce the transportability of TpX. But real help
is at hand. TgX3 has much better support of diacritical marks,
and it will eventually remove the hyphenation problem.

More words 89

=kExercise 6.3: Typeset the following:

Zde se vsemozne snazf me preluvit, abych zustal jeste nekolik mesfcu

a napsal jeste jednu opera. Hayir! I§ oyle degil. Biiyugii kiigiigiine

takilmayi pek severdi. Ce fut d’ores et deja une idee degeneree et

ambigiie. jTelo crovl

4=

=>Exercise 6.4: How will you ensure that foreign words are hyphen¬

ated correctly? <=
Although the diacriticals do work in exactly the same way with

almost all the fonts, there is an exception, the typewriter font. In

any case, the typewriter font is a little special. It is a ‘mono-space’

font. That is to say, each character has the same width. The lig¬

atures fi, fl, ff, ffi, ffl are not required, nor are the em-dash and

en-dash. Similarly the opening and closing double quotes (again

accessed by the ligature mechanism in all the other fonts) are not

present. In typewriter font, the keyboard’s double-quote charac¬

ter can be used for opening and closing quotes. Lastly, it turns

out that the long Hungarian umlaut ("), the dot accent, and the

Polish silent 1 are not available.

Naturally, having removed these characters, some others are

substituted. In particular, we gain {, }, <, >, t, and i. The font

table in Appendix A will show how the font was rearranged.

Making it larger

Sometimes a document benefits from being printed in a larger font

size, or maybe just enlarging the title or other key elements would

provide better emphasis. There are several ways to achieve this.

Taking the simplest first, we can increase the size of the entire

document, including the fonts, through the use of the \magnif i-

cat ion command. To do this, we can place a command like

\magnification=\magstepl

right at the beginning of our document. This command has to

be in operation before anything substantial happens, or TeX will

complain. Put it first. There may only be one \magnif ication

command in any one document. If TjgX encounters more than one,

it will complain. Thus we cannot use this technique to change the

characteristics of the document ‘dynamically’.

There are various predefined ‘steps’ of magnification (Figure 6.3).

These are named \magsteps, and range from \magstephalf,

through \magstepl, to \magstep5 (and sometimes beyond). The

larger magnifications are not always supported in all fonts for

90 A plain TgX primer

every installation. All of these magnification steps are based on

powers of 1.2. The smallest, \magstephalf, takes the ‘base’ size

and enlarges it by \[\2. For \magstepl, the magnification is 1.21,

and so on.

This gives us some flexibility. If we are using a ‘normal’ 10

point font, then the effect of using \magstepl or \magstep5

is fairly obvious (an ‘effective’ size of 12 points or 24.88 points

respectively). Since Computer Modern Roman includes a 17 point

design size, it would also mean that the largest font easily available

would be 17 x 2.488 points, that is about 42 points.

The action of \magnif ication is not restricted to any one font,

or indeed, any one dimension. It is universal. Everything in the

document is magnified. If you had a \parskip of say 10 points, at

\magstepl the actual measured paragraph skip would be 12 points

- that is, 10 x 1.2. Similarly, an \hsize of 6 inches would become

7.2 inches. Obviously the paper in the laser printer or typesetter

does not magically stretch because T^X has magnified its text.

We can prevent particular dimensions from being magnified by

specifying them as true measurements. An \hsize of exactly 6.25

inches (as measured) could be obtained, no matter what \magni-

f ication had been selected, by saying

\hsize=6.25truein or \hsize=6.25 true in

This is very useful for setting the \hsize and \vsize so that

they accurately reflect the area available on your printer, separate

from any \magnif ication you may have selected. If you are using

international A4 paper size, you may find it useful to specify

\hsize=6.25truein

\vsize=8.9truein

T)gX then adopts a printed page size of 6.25 x 8.9 inches. Intui¬

tively you might expect that plain TgX sets up these values as

true dimensions. You would be wrong. There is some sort of TgX

magic going on in there, where despite these default dimensions

being set up in ‘ordinary’ inches, they come out in ‘true’ inches.

We shall look into this later.

If the line length remains constant when you use \magnif ica¬

tion, you will probably find an increase in the number of ‘overfull

boxes’, since the larger the font, the fewer words can be fitted on

the line, and hence fewer interword spaces; therefore there is less

scope for stretch and shrink.

=> Exercise 6.5: Repeat one of the previous exercises which involves

some text and try some of the levels of magnification. It could be wise to

reset \hsize and \vsize if you go much above \magstep2. <*=

More words 91

Magnification factor ‘Scale’

\magstep0 1.2° or 1.0 1000

\magstephalf 1.25 or 1.095 1095

\magstepl 1.21 or 1.2 1200

\magstep2 1.22 or 1.44 1440

\magstep3 1.2s or 1.728 1728 Figure 6.3

\magstep4 1.24 or 2.074 2074 The ‘standard’

\magstep5 1.25 or 2.488 2488 magnifications

=>Exercise 6.6: Use the \magnif ication command at the beginning

of a document. Within the document, issue another \magnification

command. How does TjgX react to this error? 4=

More fonts

So far we have met the standard upright roman font (cmrlO), plus

text italic (cmtilO), bold extended (cmbxlO), slanted roman

(cmsllO), and typewriter type (cmttlO). These are all at 10

point, as their names suggest. A very basic, or minimal, imple¬

mentation of T^X could make do with just 16 fonts. This minimum

subset is given in Chapter 18. It comprises the fonts mentioned

earlier, plus some maths symbol fonts (which we don’t yet need).

But notice also that some fonts are provided at 5 and 7 point sizes

as well. These are chiefly fonts intended for use in mathematics,

as well as, or instead of, text.

Many more fonts are available in a full implementation of T^X -

there are actually over 70. Some of these 70 are the same typeface

at different design sizes, so the true number of ‘different’ styles is

somewhat less. There are facilities for CAPS and small caps,

sans serif, a genuine 'designer’ font, and even unslanted italic, or

the truly bizarre. There is no use pretending that these are essential;

the gratuitous use of a multitude of fonts serves to confuse, not

delight. Nevertheless, they can be useful in moderation.

But how do we use them? They are not all there by default.

Each one needs to be separately named and assigned. This is done

through the \font command:

\fontAmyfont=cmr8

\font\sans=cmss8

which would assign the name \myfont to the font which T^X

knows as ‘cmr8’ - Computer Modern Roman at 8 points, \sans

would be Computer Modern Sans Serif at 8 point. Note that it

might not be a good idea to use \ss for ‘sans serif’, especially if

92 A plain TpjX primer

you planned to talk about a few SchlofS. We cannot name fonts

directly as cmr8 or cmss8. Nor can we have names like \cmr8 or

\cmss8. We must use this ‘pointing’ technique.

These new names can be used in the following manner

Here’s {\myfont some eightpoint} text and some

{\sans sans serif}.

This would produce:

Here’s some eightpoint text and some sans serif.

Individual fonts can be scaled in \magsteps. This gives greater

ranges to the point sizes we may employ, and also to the range of

point sizes which can be used in a single document. Somewhere in

plain, the sequence \bf is set up to give a boldface font. There

is a statement like

\font\bf=cmbxlO

We might reasonably want to use a bold font for titles too, but

at a larger size. We can say

\fontAbigbf=cmbxlO scaled\magstep2

in order to obtain a bold font at 14.4 points. The same base font

can therefore be used at different magnifications, within the same

document. If you also had \magnif ication in play, the result

would be cumulative. The combination

\magnification=\magstepl

\fontAbigbf=cmbxlO scaled\magstep2

would result in \bigbf being used at 17.28 points - that is,

\magstepl plus \magstep2. It may not be immediately obvious,

but \magstephalf must be used with caution. Take the previous

example, and imagine that it had read

\magnification=\magstephalf

\fontAbigbf=cmbxlO scaled\magstep2

The \bigbf font would now be at 10 x 1.22 5 (or 15.77) points.

Curiously, it is not TgX which would complain, although things

would probably not work out quite as you expect.

=>-Exercise 6.7: Sans serif style is not available by default. There are

no convenient names set up for its use. Given that three of the sans

serif Computer Modern fonts are cmsslO (CM Sans Serif), cmssilO (CM

Sans Serif Italic), and cmssbxlO (CM Sans Serif Bold Extended), set the

following piece of text:

In very general terms, type should seek to be unobtrusive. It

should never dominate the text. At some subtle levels it may

manage to influence the reader.

More words 93

Another (small) confession

When an ‘upright’ and a sloping font occur side by side, there

often appears to be insufficient space between them. This is par¬

ticularly noticeable when, for example, a tall sloping character like

an 1 or a d is followed by an upright b or k: ‘one bad knee, and one

good knee’. The distance measured along the baseline is probably

fine, but the letters still feel too close together. Unfortunately,

to avoid this problem, you have to intervene. The intervention is

in the form of the ‘italic correction’. This is rather inaccurately

named, since it is not confined to the italic font, or the slanting

fonts, but is present in all fonts. Although it is present, it may be

zero. The correction adds an extra amount of space (if appropri¬

ate). This is another of the pieces of information which lives in

the tfm file. The italic correction may therefore be different for

every character in a font. The command to insert the correction

is \/. In the example, the preferred expression would have been

one {\sl bad\/} knee, and one {\sl good\/} knee

which will now give a slight adjustment, which, it must be agreed,

does look a little nicer: ‘one bad knee, and one good knee’. Does

it matter? That is for you to decide.

The italic correction may also be necessary when one of the bold

fonts is used. This may seem a little contrived, but ‘ “Off”, they

shouted’, really ought to have the italic correction inserted after

the word in bold. Trying to create a rule set for the application

of the correction is fraught with exceptions. The ‘best’ solution

seems to be: to be aware, to be vigilant, and to look at the out¬

put. The time and effort spent in anticipating problems like these

could be better spent in reading the output (you might even find

a typo too). But with experience you will begin to anticipate the

‘problems’.

Plumbing

Let’s go a little deeper: an alternative approach to scaling a font

to (say) \magstepl is to say

\font\new=cmbxlO scaled 1200

The use of \magstepl is only a shorthand, more convenient,

way of saying 1200. Referring back to Figure 6.3, note that \mag-

stepl is equivalent to a magnification factor of 1.2. Since T^X

prefers to work with integer values, it uses this value multiplied

by 1000. Therefore \magstep5 is equivalent to scaling by a T^X

94 A plain TpK primer

factor of 2488. T^X is oblivious of whether there really is a font

which is scaled in this way. All it cares about is whether it can

find a tfm file for the font mentioned. It is the same tfm file

which is used whatever the scaling factor. The tfm file determines

the characteristics of each letter in a given font. The scaling is a

purely linear transformation. The problem will arise when the dvi

file is presented to an output driver. If the fonts at a particular

scaled size are not present, what will happen? I wish I knew. It all

depends. Some drivers are better than others. Some will substitute

‘intelligently’ (and tell you). Some may substitute blank space for

‘missing’ or ‘unobtainable’ characters. All drivers should tell you

if they are substituting. Some drivers will even scale up an existing

font to the requested size. This is rarely entirely satisfactory (at

least, not with bit mapped fonts).
=>Exercise 6.8: By experiment, find out how the drivers available to

you handle ‘missing’ fonts. <=
=$>Exercise 6.9: If you encounter the problem of ‘substitute’ fonts,

whose responsibility is it? Is it TgX’s, Knuth’s, whoever wrote your driver,

or do you bear any responsibility? •<=

True triumphs

You can prevent the automatic magnification of fonts by using

true dimension again. Defining

\font\larger=cmrlO at 14.40truept

\font\sc=cmcsclO at 10.95truept

would ensure that \larger would always print at 14.4 points irre¬

spective of any global magnification superimposed by a \magnif i-

cation command. Similarly, \sc would always be at 10.95 points.

=> Exercise 6.10: What happens when you try to set up a font at

\magstep6? <=

Is there a solution to the ‘missing’ font problem? There is, but

it is not particularly direct or foolproof. METAFONT allows the

creation of suitable fonts. There is no real reason why you should

not generate your own fonts at the sizes you want. After all, the

METAFONT descriptions are widely available. There is at least one

full T^jX implementation on the Amiga whose driver multi-tasks

METAFONT to generate particular sizes if it does not ‘have them

in stock’. Similarly, the driver supplied with the NeXT imple¬

mentation generates all its fonts as required, slowly building up

an extensive set. Of course, generating your own means that the

portability of your document may be a little compromised.

More words 95

If you look at the list of standard TgX fonts, you will note

that there are several versions of, for example, Computer Mod¬

ern Roman. It comes in the following varieties: cmr5, cmr6, cmr7,

cmr8, cmr9, cmrlO, cmrl2, cmrl7. Obviously if I want a 12 point

font all I have to do is magnify the 10 point font by \magstepl.

Why go to the bother of having all these extra fonts?

The main reason revolves around the concept of the design size.

Going back to the tfm hies, you may recall that a font has a

‘design’ size. This is the size at which it was meant to be read. In

the (good) old days, every letter in every size was ‘different’. It was

not just scaled up or down geometrically, but there were subtle

non-linear changes as we went up the scale from a 6 pt to a 24 pt

character. Since each piece of type was a separate hand-crafted

artefact, there were likely to be differences. Photosetting rather

killed this idea, since in photosetting there is often just one master

shape, from which all sizes are generated. In some cases there may

be three or four ‘masters’, each applicable to a particular range.

Knuth emulated the traditional technique of providing several

different design sizes for a given style. Terminology becomes dif¬

ficult here. Computer Modern is a typeface, and as such encom¬

passes everything from CM Roman to the awful CM Funny Font.

The whole assembly is a ‘family’ (despite Knuth using the ‘family’

concept in another context within T^X). An individual realiza¬

tion, like cmrlO is a font; so is cmr9, or cmrl7. How then do we

describe all the different design sizes of cmr? Despite this atten¬

tion to design size, he also provided the scaled fonts (it turns out

that this is awfully easy to do once you have the correct METfl-

FONT description). The advantage of the scaled fonts is that the

tfm information is identical for all the \magsteps of (say) cmrlO.

The tfms are not the same for cmr5, cmr6, cmr7..., nor are they

simple geometric increases.

In fact there is a slight flaw with \magsteps, if they are to be

used to generate larger fonts. The interletter spacing increases too

much and the same letter combinations may appear to have an

overgenerous amount of white space between them. Thus the use

of, say, cmr 17 rather than cmrlO scaled \magstep3 (\magstep3

is a factor of 1728) should give ‘better’ spacing between letters,

although cmrlO’s letter spacing should be satisfactory.

What difference does it make, you ask? Look at the following:

the quick brown fox jumps to the aid of

the party

96 A plain T^K primer

the quick brown fox jumps to the aid of the

party
the quick brown fox jumps to the aid of the party

the quick brown fox jumps to the aid of the party
the quick brown fox jumps to the aid of the party

the quick brown fox jumps to the aid of the party

These six examples are nominally about the same ‘size’, approxi¬

mately 12 points. They were obtained by scaling particular design

sizes of the CM Roman to the following particular sizes.

\font\five=cmr5 at 12.44 truept

\font\six=cmr6 at 12.44 truept

\font\seven=cmr7 at 12.09 truept

\font\eight=cmr8 at 11.52 truept

\font\ten=cmrlO at 12 truept

\font\twelve=cmrl2 at 12 truept

%1 true’\magstep5

%‘true’\magstep4

%‘true’\magstep3

7, ‘ true ’ \magstep2

%‘true’\magstepl

%‘true’\magstepO

They should illustrate that not only do the characteristics of the

individual letterforms change, but also the spacing grows to give

a rather odd appearance. This is the first time that the ’/. symbol

has appeared. It can be considered to signal a comment. The '/,,

and anything following it on the same line, is ignored. Thus, if

any material is to be ignored by it can still be included in

the text to be processed.

=>Exercise 6.11: Take a ruler to examine whether the change in length

above is approximately linear. In other words, allow for the fact that we

don’t quite manage to get to 12 pt each time. There is about 1 pt difference

between the smallest and the largest of those nominal 12 fonts. <=
Exercise 6.12: Similarly, look at the length of the same piece of text

but set with the same font at different \magstep values. The increase in

length should be linear. Is it? How readable are the different sizes? <=

Recall that T^K has a \baselineskip command which sets the

distance between successive baselines. If you use a different font

size you should change the \baselineskip appropriately. There

are few hard and fast rules in typography, but in general the dis¬

tance between baselines is usually about 1.2 times the font size.

=> Exercise 6.13: To emphasize that using two fonts at the same

apparent size but based on different design sizes yields different results,

take a chunk of text from one of the earlier exercises and set it with

cmrl2 and cmrlO scaled\magstepl. <$=

Although it may seem that the optimal solution is to use fonts at

their design size, there are some good reasons for using \magnif i-

cation to scale an entire document. For drafting, where revision

is likely to take place, and where the drafts will be printed on a

More words 97

low-resolution device like a 300 dpi laser printer, a scaled docu¬

ment is likely to be easier to read, while at the same time it retains

the line and page breaks of the final ‘true’ size document. If the

end product is to be presented on an A4 or similar size page, slip¬

ping a \magstephalf or \magstepl at the beginning does make

it so much easier to read. I prefer \magstepl, and no doubt as

I get older I will begin to prefer \magstep2. Rearranging all the

necessary bits of plain to ensure that a true 12 pt. is the principal

size used requires a fair amount of effort. To be honest, it would

require a dedicated typographer to be too critical of the difference

between cmrlO magnified to \magstepl and cmrl2.

The adoption of the magnification approach allows the finished

document to be printed at a higher apparent resolution. If a basic

10 pt document is printed on a 300 dpi laser printer, but at \mag-

step2, it may then be reduced photographically back to the 10 pt

type size that was originally intended. This would have the effect

of emulating a resolution of 432 dpi.

One other application of magnification is in the preparation of

overhead transparencies. The whole notion of design size rather

falls apart when we are planning to project the characters on to

a screen. We seldom have any idea of the size at which the image

will be presented.

In defence of Computer Modern

From time to time there is some criticism of the Computer Mod¬

ern family. Many would like to have other fonts available to

There is really no problem here. It is possible to use TgX with any

font, provided the tfm files can be made available. There are many

examples of T^X used to typeset using either the Adobe Post¬

Script fonts, or the Bitstream outline fonts. Often the screen

preview is poorer, or non-existent, since the fonts are not available

in an appropriate form for the screen. When it comes to setting

mathematics, few other typefaces have the richness required. It is

not uncommon to see Computer Modern mixed with some other

typeface, with CM handling the maths, and the other typeface

handling the text.

Computer Modern is a reasonable, unobtrusive typeface. It is

well suited to scientific and technical documentation. Its collec¬

tion of special characters is unrivalled among the widely available

contemporary digital typefaces.

-

Commands 7

A great many of l^K’s mysteries are bound up in commands.

Alternative terms are ‘macros’, ‘control sequences’, or ‘defini¬

tions’: although Knuth refers to them as macros, unless you are

familiar with computer science jargon, there is no advantage in

this usage. The 300 or so fundamental Tj^X commands are the

building blocks which can be assembled quite easily (and all too

readily) into rather arcane powerful commands. It is easy to be

overwhelmed by the apparent simplicity and sheer power of com¬

mands. It is this feature of IjgX which gives it the appearance of

a programming language, rather than a simple set of commands.

One of the first places we might look to see working commands

could be plain.tex which is the record of all that plain Tf^X

knows about, and is what The TfiKbook discusses. However, there

is a problem here for the would-be TgXnician or T^Xpert. The

commands provided in plain.tex and in The T^Kbook are devel¬

oped commands which are efficient, often using cute aspects of

the language to achieve their effects. There is also an additional,

but lesser, problem in that the definition given in The T^Kbook

may not be identical to the one in plain.tex

... because the actual macros have been ‘optimized’ with

respect to memory space and running time. Unoptimized ver¬

sions of the macros are easier for humans to understand...;

plain.tex contains equivalent constructions that work better

on a machine.

Knuth does document them, but you end up having to read large

chunks of The IJgXbook in order to do something which seems

pretty straightforward. It sometimes feels as if Knuth’s approach

is like that of an automobile manufacturer who demands that

users of their car should be able to take it to pieces and reassem¬

ble it from scratch - a point of view often encountered in the

computing world. This is of course unfair to Knuth.

100 A plain TfiX primer

It is possible to write very convoluted and obscure code which

can only be understood with great difficulty. Since very few peo¬

ple can ever manage to do this correctly first time, and some

errors (also known as ‘bugs’ or ‘features’) may be present, fully

understanding the implications of a command may be fraught

with problems. The problems may be compounded by the fact

that is, to a large extent, an interpreted language: an error

in a command will not be detected until that command is used.

Syntactic errors are usually picked up pretty quickly, but detec¬

tion of errors in the use of a command may require the use of that

command in a variety of circumstances.

A command is tautologically something which has been defined

somewhere using a \def command. There are one or two other

devious routes which may be taken to create commands. If a com¬

mand has not been defined in some way, you will get the Unde¬

fined control sequence message which we all come to know

and love. You can actually have Tj^X tell you what it thinks a given

command means, by using the \show command, at the * prompt:

\show\anycommand

will tell you what Tf^X thinks \anycommand is. It will start to

‘expand’ it into ‘simpler’ components. In this case, the response

will be

*\show\anycommand

(show

> \anycommand=undefined.

1.1 \show\anycommand
?

Note that we end up with the ? prompt, not the *. therefore

expects some sort of ‘error correction’ response. This is inapplic¬

able here, and the chances are you just want to enter return.

^Exercise 7.1: Use the \show mechanism on some of the commands

which have already been encountered. Some of the expansion will seem

unintelligible at present, but some should be interpret able. <=

Some commands do not expand. These are T^X’s primitive

commands (the ones marked with an asterisk in the index of The

TpjKbook). They are not really commands, since they have never

been defined, but rather are the atoms from which everything else

is built. If you use \show on them they will respond by saying

that they are themselves: for example, \show\hsize will provide

the enlightening information that

> \hsize=\hsize.

Essentially this is saying that it can be broken down no further.

Commands 101

=>Exercise 7.2: There are 312 T^K atoms: that is, primitive, indivis¬

ible commands. What does this indicate about the complexity of text

as opposed to something natural like the universe, which just might be

explicable in terms of quarks, leptons, and a couple of bosons? 4=

TjgX, or rather plainT^X, has its own set of commands built

into it. Other T^jX-based ‘packages’, like IATfijX or MA/fN-T^X, will

also have their own commands. Some commands in plain, iATj^X,

and ylAd^S-TgX may have the same name, but they need not nec¬

essarily have the same function. Beware. Fortunately, we are only

looking at plain T^jX. But do not assume that everything that

is present in plain may be applied to any other package without

some careful thought or attention.

In a very broad and generalized way, the use of the primitive

commands is rather like using traditional typographic markup

where every movement is specified rather minutely. Creating com¬

mands should distance us from this detailed approach and allow

us to concentrate on broader concepts. Naturally the writer of

commands will have to try to bridge the conceptual gaps between

the detailed setting of type and the needs of documents. That this

is a complex task is confirmed by the length of time it took Lam¬

port to create IAT^X, or Spivak Ma/(<S-TeX and LAvfN-TgX. Very

few other T^X-based packages have achieved such wide currency.

The problems are anything but trivial. But don’t let that stop us.

The very simplest commands are just ‘substitution’ commands:

\def\me{Malcolm}

so that whenever I employ the command \me, Tj^X expands it to

Malcolm. Straightforward, but let us first note that the substitu¬

tion part is enclosed in braces. The braces are an integral part of

the syntax.

What does this really mean? As far as TgX is concerned, every

character which is presented to it falls into one of 16 different cate¬

gories. These are termed the \catcodes. All 256 characters which

you might type from the keyboard fall into one of these categories.

The default plain format sets up the transformations. There is

nothing fixed or immutable about the transformations. We could

choose to change the escape character, ignored characters, or any

other of these 16 categories.

The category code table (Figure 7.1) requires some explanation,

chiefly because it refers to some concepts we have yet to meet. It

should be obvious by now that there is a lot of translation going

on between what is entered from the keyboard, and what comes

out of TfeX. The NUL, DEL, and return are simply keyboard entries

102 A plain Tj?X primer

which Tj^X intercepts and deals with, just as \ss is a string of

entries which is output as a single character. As mentioned above,

256 characters can be entered from the keyboard (some, like NUL,

DEL, and return have no physical representation on the screen);

in any one font, up to 256 characters may be output. There need

not be a one to one correspondence.

=>Exercise 7.3: Again \show can be employed with the characters in

the \catcode table. Try it with #, &, and {; also see what \show responds

with a single letter. Note that \showf yields something useful, but that

\showA does not. By now you should know why.

At this point, the important concept is that the open brace has

category code 1, for beginning of group; and the close brace has

category code 2, for end of group. If we set other symbols to have

these category codes, they could be used too. This is not just a

whim. There is some relevance here. In Scandinavia, the { and }

keys on the keyboard are replaced by something odd like a and

0. Although this still works, it does look awkward, and has none

of the feeling of ‘grouping’; one alternative is to give [and] the

appropriate category codes for opening and closing a group. The

\ is missing too, but since that too has a category code (of 0 this

time), there are ways around that problem too. For example, to

reassign the [and] to have the characteristics usually adopted

by { and } we may write

\catcode‘\[=1

\catcode‘\]=2

The syntax of the \catcode command is explained later (in Chap¬

ter 18) but essentially it is setting the characters [and] to

category codes 1 and 2 respectively. The ‘\ part of the \catcode

is a robust way of specifying the character to be \catcoded. To

be consistent, the category codes of { and } should be reset to

12 (for ‘other’). Perhaps the most commonly found occurrence of

resetting the category code is to reassign @ to the code for ‘letter’,

and back again to ‘other’, so that it can be used as part of a

command name. Provided this is hidden in commands which are

never used explicitly, TgX is happy with this manoeuvre.

T^X permits you to redefine any of its commands. It will not

check to see if a command already has a meaning. TgX assumes

you know what you are doing. This ‘dynamic’ redefinition of

commands is a mixed blessing. Equally, there are some built-in

commands which you rarely see, and whose accidental redefinition

can lead to problems. Among these are the apparently innocuous

\big, \radical, and \body.

Commands 103

Category Description Default

0 escape character \

1 opening of a group {

2 closing of a group >

3 math ‘shift’ $

4 alignment tab &

5 end of line carriage return

6 parameter #

7 superscript

8 subscript _

9 ignored character NUL

10 space u

11 letter A. . . z and a. . . z

12 other character everything else Figure 7.1

13 active character ~ Category codes

14 comment character 1 employed by

15 invalid character DEL default

Many of the simplest commands involve font changes. Con¬

sider, for example, the ‘currency sign’ command, where Knuth,

in a short-sighted moment, placed both the dollar sign and the

pounds sterling sign in the same position in different fonts. He rec¬

ommends or provides \it\$ as a mechanism to obtain £. Ignoring

any criticism of this fundamental error (a far better font to use is

emu), we need a convenient command: in IAT^X, Lamport provides

one he calls \pounds, but I prefer \quid:

\def\quid{\it\$}

is an inadequate definition. The enclosing braces are not part

of the command at all. They are part of the definition of the

command - the syntax. Their role here is not that of grouping

operators, but as the delimiters for the replacement or substi¬

tute text. On replacement TgX ‘sees’ only the \it\$. This has

the distressing result that all that follows it is also turned into

italics.

In other words, when we write

At a mere \quidl.99, it was indeed a gift.

expands the \quid to \it\$, with the result that we obtain

At a mere £1.99, it was indeed a gift.
Hardly what we wanted. The solution of course is to define \quid

as

\def\quid{{\it\$}}

Now it is {\it\$} which is the substitute text. All is well.

104 A plain primer

This is an important lesson in the creation of your own com¬

mands. The outer ‘shell’ of braces is stripped away and does not

contribute to any grouping.

Practically anything may be part of the substitute text, includ¬

ing, as the previous example shows, other commands.

=> Exercise 7.4: In a previous chapter, we noted that it was possible to

use the \circ command to create a ‘degree’ symbol: °. It is very tedious

to have to type this out as $~\circ$ every time ‘degree’ is needed. More

important, it is not very intuitive. We could define a command \degree

which would take care of all the details so that in future what we type is

60\degree.

Write your own \degree command. Be sure to test it. Does it work in

normal text or in mathematics? <=

=>■ Exercise 7.5: In physics, we may require to talk about various par¬

ticles like negative and positive pions, denoted by 7r—, 7r+, tau-neutrinos,

denoted by z>r, muon-neutrinos, and positive kaons, K+, among oth¬

ers. Rather than having to keep bobbing in and out of mathematical

mode, create some meaningful commands to simplify writing about these

particles. Try to make them charming rather than strange. <*=

More power

To extend the power of commands, it is convenient to introduce

two other attributes of TgX which begin to give it the appearance

of a ‘normal’ programming language. These are arithmetic and

conditionals. If you do not like the idea of T^X having aspects of

a programming language, it is unlikely that you will ever try to

use these commands, although you could just treat these as ways

which can be used to manipulate text and to control page make¬

up. Some people are distracted by the idea of ‘programming’ text;

others revel in it. To some extent, it just depends on the way you

look at things.

The different branches of arithmetic

Tf^X can do a fair amount of arithmetic. There is one notable

drawback though. TgX only does integer arithmetic. One of the

reasons for this stems from Tj^X’s ambition to be portable. Knuth

actually included all the necessary routines in TgX to do arith¬

metic. He took nothing for granted, and one consequence was that

TgX keeps delivering the same results, no matter what machine

it is run on. If he had tried to employ real arithmetic, the task

would have been greater (but not insurmountable).

Commands 105

There are two main ‘quantities’ which can be used arithmeti¬

cally: ‘dimensions’ and ‘counters’. (Later we will see that there are

two other quantities which may also be used in similar ways.) TgX

has a number of \dimen registers and \count registers. Counters

are obviously integer, but ‘dimensions’ need a bit more explana¬

tion, since they apparently come in ‘real’ amounts. Well, they do

and they don’t. Tf^X does not really work in points, or inches, or

any other ‘accessible’ unit. It works in ‘scaled points’, of which

there are 216 to the point. That’s pretty small (way down in

the wavelength of x-rays: 100 sp is about the wavelength of yel¬

low light). All dimensions are automatically translated to scaled

points (or sp). The effect of this is that we can get close to real

arithmetic. Another practical effect is that accumulated errors

usually don’t accumulate to very much: nothing visible anyway.

We have already met two dimension registers, \hsize and

\vsize. They are an integral part of T)gX, as the earlier experiment

with \show\hsize demonstrated. There are also 256 dimension

and counter registers which may be used, numbered from 0 to 255,

in true computing style. Ultimately, TgX knows these as \countO

through to \count255, and \dimenO to \dimen255, but there is

a way to give a counter or a dimension a more meaningful name,

through the \newcount and \newdimen commands:

\newcount\exnum

\newdimen\wordlength

would let TgX assign a new counter, giving it the name \exnum

and a new dimension, named \wordlength. In passing, it will

assign the value 0 to the counter, and a dimension of 0 pt to the

dimension. There is no way of ‘un-assigning’ a register, except

by having the original \newcount or \newdimen appear within a

group. Outside the group such assignments will be undefined.

Assigning a value to a register is very straightforward:

\count0=10

\countll 2

\exnuml0

\exnum=\countlO

\dimenl=\hsize

\wordlength=10.76pt

will all assign a value. Note that the = sign is optional, although

it does make a good deal of sense as a separator. In general the =

sign is unnecessary in T^X commands. When it can help to make

the intention a little clearer, in a potentially ambiguous or obscure

situation, include it.

106 A plain T^K. primer

The use of \newcount and \newdimen are useful for other rea¬

sons. T^X itself uses various registers. For example, the page

number is held in \countO. By using \newcount (or the other

\new commands) T^X handles the choice of the appropriate regi¬

ster and ensures that an already chosen register is not used, since

it assigns the first available one.

Similarly, the registers which hold dimensions are \dimenO

through to \dimen255. T^X assigns them through the use of

\newdimen. Note that when a dimension register is given a value,

it is either the value of an existing dimension register, or it is a

value which has its units inluded.

Exercise 7.6: Try assigning a dimension register to a value which

does not have its units expressed: for example, \dimen0=10. What does

TgX do? <=
=>•Exercise 7.7: Now consider the case' where an assignment like

\dimen0=10 was followed immediately by text such as spoil. Ptarmigan,

or insensitive. What does TgX do now? Why? <=

When registers are assigned through the use of \newcount or

\newdimen, a record will normally appear in the log file.

The simplest operator is one to accumulate, or \advance:

\advance\countl by 1

\advance\count2 by-\countl

\advance\dimenl \by\hsize

We may even add \hsize to \countl. Note that there is no

explicit subtraction.

In order to obtain some feeling for what TgX is doing here, we

can use the \showthe command to obtain the current value of

any of these registers. This is seldom needed in a normal TgX run,

but when you are developing a command, it sometimes provides

useful feedback. Use of \showthe is rather similar to the \show

command, since it interrupts TfrjX’s normal flow of control and

appears to invoke the error handling part of TgX. Each \showthe

will print out something on the screen and require that you press

return at the * prompt in order to tell T^X to continue.

=>-Exercise 7.8: Using \showthe, find out what happens to the value

of \countl when you set it equal to \hsize. <=

It is also possible to multiply and divide:

\divide\countl by 2

\multiply\dimenl by\countl

\divide\dimen2 by\dimenO

The values held in the \count registers should be in the range

-2147483 647 to +2147483 647 (or, -229 - 1 to 229 - 1). The

Commands 107

dimensions should not exceed 230 sp. This is just over 51/2 metres.

It does imply that TgX was not designed to do bill boards.

To take a specific example, we can have Tj^X calculate the num¬

ber of hours since midnight. First we must know that there is

a basic command \time which ‘contains’ the number of minutes

which have elapsed since midnight. (This is actually ‘frozen’ once

TgX starts to execute, so any plans to use it to calculate how long

it takes to set a particular document are dashed.) Let’s do the job

properly, by letting TgX assign the register:

\newcount\hours

\hours=\time

\divide\hours by 60

The counter register \hours now contains the number of full hours

which have elapsed since midnight. The question that we should

raise is ‘what do we do with it now?’ Simply saying \hours will not

result in the value of the register being printed out. We probably

only see
! Missing number, treated as zero.

<to be read again>

What is T^X trying to say? It expects a reference to \hours, or any

other register to be followed by some assignment into that register.

If nothing suitable follows (and it is possible to envisage situ¬

ations where something suitable might follow, unintentionally),

TgX complains. Had we typed \hours 0 TgX would have been

happy, assuming that the value 0 was to be assigned to \hours.

In order to turn the register value into something which will be

typeset, it is quoted as a \number. Therefore \number\hours will

appear in the output as 15 (or whatever is the appropriate time

picked up from the computer’s clock).

Before we can incorporate something like this in a command,

there is one further peculiarity that must be addressed. It is not

possible to have a \newcount statement within the body of a

command or definition. In other words,

\def\clock{\newcount\hours

\hours=\time \divide\hours by 60\number\hours>

will generate an error. This time, it is fairly understandable:

Runaway definition?

->

! Forbidden control sequence found while scanning

definition of \time.

although the reference to a runaway definition is difficult to fol¬

low. Nevertheless, what follows the notification about a forbidden

108 A plain Tf^X primer

‘control sequence’ is meaningful, once we realize that some things

may not appear in a definition. The allocation of registers is one

of those things. This is rather sad. The strategy therefore has to

be either to allocate the register before the command, or to use a

‘scratch’ register:

\def\clock{\count255=\time

\divide\count255 by 60\number\count255}

Here we use \count255 as a convenient register and use it in the

calculations. This rather loses some of the advantages of being

able to assign names to registers, but at least permits the com¬

mand to be written. It still does not work properly. Since it is

tedious to have to go through the T]EX->dvi->-preview->-edit and

back to T^X cycle again and again, we can circumvent this a little

by having T^X show the value of \count255.

\showthe\count255

gives the value calculated. Sadly, the value calculated is unlikely

to be anything other than zero.

=>Exercise 7.9: Create this particular command, run it, and verify

that the value it generates is indeed zero. •<=

Why? The problem revolves around the

\divide\count255 by 60\number\count255

statement. TgX dutifully divides \count255 not by 60 as we

wished, but by 60\number\count255, which is what we asked.

This turns out to be a number somewhere between 601 and 601440,

according to \showthe\count255. The 60 is easy to understand,

but where does the 1-1440 part come from? It is simply the value

in the \count255 register, expressed as a number. In this context

T^X sees it as part of a number, and not as part of the output to

be created. There are a number of ‘solutions’. The best one is to

insert a new command between the 60 and \number. A suitable

command is \relax. This is a do-nothing command, but it serves

the function of ensuring that TgX knows where the number used

in the division should end:

\divide\count255 by 60\relax\number\count255

Another alternative is to leave a space instead:

\divide\count255 by 60 \number\count255

In general, the use of \relax is preferred, since it is sometimes

possible to ‘lose’ a space. Here it is unlikely, but in more complex

commands, such things are always possible.

That last example merely calculated the hour since midnight.

It is not much more work to separate out the minutes past the

hour as well:

Commands 109

\newcount\minleft

\newcount\milhour

\milhour=\time

\divide\milhour by60

\minleft=\milhour

\multiply\minleft by-60

\advance\minleft by\time

(the prefix mil is just to indicate ‘military’ time, since this is a

24 hour clock). We now have two registers, \milhour containing

the hours, and \minleft, the minutes past the hour. When we

come to display these, say as

\number\milhour:\number\minleft

they may look like 8:20 or 16:6 or 20:20. We would probably pre¬

fer the middle example to look like 16:06, and perhaps even the

first one to be 08:20, but we have no mechanism, as yet, to take

these exceptions into account, nor to have TgX vary the way that

\number works. In order to do this we introduce a new range of

TjgX manipulations.

Conditionals

Conditionals allow us to adopt one route rather than another: they

are ‘branching’ commands. The commands which allow control of

the branches all start with an \if prefix. This command describes

some condition, like a statement, which can be either true or false.

TjgX supports a number of these \if primitives, but it also allows

you to create your own, through the \newif. Although \newif

has the appearance of \newcount it works in a very different way,

which will be examined later.

Any of the \if conditionals must be terminated by a \f i. There

are several \if s, from a simple \if to \ifnum, \ifodd, \ifdim,

and a few more. But all end just with the \f i. There is one other

important related command, the \else. This permits structures

like

\ifhtesti do this when the test is

true

\else do this when the test is false

\f i
There need be no text associated with ‘true’, in which case it

could as easily be written

\else false text \fi

and if the ‘false’ text can be omitted, the \else can be omitted

110 A plain primer

too:

\if . . . true text \fi

Therefore the sequence \else\fi need never be seen. The ellipsis

must be understood to expand to contain the appropriate form of

the \if (for example, \ifnum), together with the appropriate test.

One of the simplest forms is \ifnum, which allows the value of a

number (for example, a \count register, to be tested). A concrete

example might be

\ifnum\time<720 before noon\else after noon\fi

It is important to appreciate that

\if\time<720 before noon\else after noon\fi

will not work correctly, although it will not generate an error. The

‘simple’ \if simply examines the character codes of the next two

tokens. If they agree, then the true text is followed, otherwise the

false. In this case, T^X is testing \time'against <; their character

codes are different, and therefore it is always ‘after noon’.

In this simple example the ‘before noon’ is used when the value

of \time is less than 720 (12 o’clock). Otherwise the text following

the \else is used.

More formally we can describe this test as

\ifnum number_one relation number_two

where number_one and number_two are integers. The \ifnmn com¬

pares two integer values. The relation may only be <, >, or =.

The use of the = as part of the syntax of the conditional is one

of the very few places in T^X where an equals sign is essential

and may not be omitted with impunity. The other case is with

\if dimifdim*/ifdim, which has the same sort of structure, but

tests two dimensions. These are not constrained to be integer, but

of course must have their (abbreviated) units present:

\ifdim dimension_one relation dimension_two

Again the relation may only be <, >, or =.

There is a simple condition to test whether an integer is odd:

\ifodd number

The condition is true when the integer is odd, false when even.

(Note that there is no \ifeven command.) This turns out to be

very useful when building pages, since it provides a way of ensuring

that the page number of a book always appears on the outermost

margin - that is, not next to the spine, where it is difficult to find.

There are many more, but they refer to concepts and commands

we have yet to meet. To put some more flesh on this, return to

the last example: instead of printing out

\number\milhour:\number\minleft

Commands 111

we can test the value of the \minleft register: if it is below 10,

we output an extra 0:

\number\milhour:\ifnum\minleft<10 0\fi

\relax\number\minleft

The \relax is probably not required, but it is always nice to have

one in: perhaps an example of ‘safe T^XX

=> Exercise 7.10: This code would be a lot happier encapsulated in

a command, where it really belongs. Handling a leading zero when the

\milhour is less than 10 has not been considered. Do so. <t=

Exercise 7.11: As a peaceful sort, I would much rather see 3:54 p.m.

than 15:54. How would I do that? <=

Another well-known example of the use of an \if is the \today

command in The T^Kbook. To be able to use this we need first to

be introduced to another conditional, the \if case, and an asso¬

ciated command, \or: the \ifcase is followed by a number; this

number is tested to find out whether it is 0, 1, 2..., If it is 0, the

text following the test is used; if it is 1, the text following the first

\or is used; if it is 2, the text following the second \or is used,

and so on until we run out of \ors. If the test just terminates with

a \f i, any value outside the range will cause no text between the

\ifcase and the \fi to be used, but if there is an \else, that

piece of text will be used. This is a useful way of ensuring that

any extreme or unexpected values are accounted for.

The \today command may be written as

\def\today{\ifcase\month\or

JanuaryXor February\or MarchXor April\or

MayXor JuneXor JulyXor AugustXor

SeptemberXor 0ctober\or NovemberXor DecemberXfi

\space\number\day, \number\year}

Note that T^X has built-in commands which allow us to determine

the year, the month, and the day within the month, as well as the

one we have already met to help indicate the time. The only truly

new command here is Xspace. It is just a way of ensuring that

a ‘normal’ space occurs after the month, but before the day. The

first part may look strange: \if case\month\or until we realize

that the Xmonth is never zero, and therefore there need be no text

to account for zero.
=>Exercise 7.12: This form of the date is language dependent, since

we chose the English names for the months. A more general form of the

date might be to present it as numbers, like 1/1/90. Ignore the fact that

this can be ambiguous (which is first, the month or the day?; in North

America it is the month, while in Britain it is usually the day) and create

another version of the command to generate dates of this form. 4=

112 A plain TpiK primer

This opens up all sorts of convenient manipulations. Knuth

is still writing The Art of Computer Programming. One of the

volumes is dedicated to non-numerical algorithms. One of the non-

numerical algorithms is the calculation of the date on which Easter

Sunday falls. This is of some significance, since it is possible that

arithmetic survived in Europe through the Middle Ages because

of the need to calculate this date. It is not difficult to program

this algorithm to have it calculate the correct dates, like this:

In 1992, Easter Sunday fell on April 19. In the year 2000, it

will fall on April 23.

With these capabilities, it is a small step to find out the day

of the week (Thursday), or even the phase of the moon (waxing

gibbous), for today, June 11, 1992.

=>Exercise 7.13: Modify the \today command so that it gives 1st,

2nd, 3rd, 4th, etc., or write something which gives the correct astrological

house for a given date. You may even be able to automate horoscopes! 4=

Less and less

Although every command is preceded by a \, it is possible to

make a single character behave as if it were a command. These

are termed ‘active’ characters, and have category code 13. The

most likely active character that you will find is the ~ for a ‘tie’

space. Somewhere in the bowels of plain you will uncover a

statement like

\def~{\penaltyl0000\ >

which basically says ‘a space but don’t you dare break it’. And

somewhere else, the ~ has been made active. The command

\active is available in case you forget that the catcode of an

active character is 13:

\catcode‘\~=\active

There are some circumstances in TgX where the space and even

the end of line are made active. TgX, as has been hinted already

has a scheme of penalties and demerits which it employs when it

builds and breaks lines. Penalties will be examined a little more

closely in Chapter 21. Associating a large penalty immediately

before the space ensures that the line does not break at that space

(or rather, that it is exceptionally unlikely that it will - a penalty

of 10,000 is regarded as being infinite for all practical purposes).

=> Exercise 7.14: In French books (and in many older English books)

a colon was preceded by some white space too. It was not placed imme¬

diately after the word. It is possible to define the colon to be active and

Commands 113

have it insert some unbreakable space between it and the word - after all,
you wouldn’t want the colon starting a line, would you? 4=

Although these simple substitution commands may seem pretty
trivial, that does not stop them being very useful. True, a decent
text editor could do all this work for you, but who wants to see
things like \penaltyl0000\ lurking about in their text?

More maths 8

This chapter draws together some more of T^K’s wide range of

facilities for mathematics, filling in some of the features which pro¬

vide the flexibility needed to support a very diverse area of techni¬

cal typesetting. Some of these features help to lay the groundwork

for an understanding of the way that TgX really does work. Such

an understanding may not be necessary for the vast majority of

tasks to which we put TgX, but may give us the confidence to

believe that we can handle the exceptional or novel situations too.

Lots of delimiters

One of TgX’s pleasing attributes is its selection of brackets and

delimiters: as you will already have guessed, the left and right

braces used for grouping require the special commands if they are

to be included in the text, rather than used as ‘ghost’ grouping

characters. This provides the clue for other delimiters. We can use

angle braces, ceilings, floors, square brackets (and even slashes);

they are all given in Figure 8.1.

(())

[\lbrack or [] \rbrack or]

{ \lbrace or \{ } \rbrace or \>

< Mangle) Wangle

r \lceil 1 \rceil

L \lfloor J \rfloor

/ / \ \backslash

\vert or | || \Vert or \1

t \uparrow \downarrow

fr \Uparrow \Downarrow Figure 8.1

t \updownarrow $ \Updownarrow Delimiters

These all give delimiters/brackets which are suitable for ‘normal’

simple equations.

116 A plain TpjX primer

There are two ways to use big delimiters. You can let T^K do

all the work, or you can stay in control.

Do it yourself

A series of big delimitersis defined by the prefixes -

\bigr \Bigr \biggr \Biggr

\bigl \Bigl \biggl \Biggl

\bigm \Bigm \biggm \Biggm

This is a set of four increasingly large parentheses. These prefixes

are made up of two parts: a ‘size’ component, big, Big, bigg, and

Bigg, in that order from smallest to largest, and a ‘positional’

indicator, 1, r, and m, which distinguishes left, right, and middle.

The ‘middle’ category is not really a parenthesis or delimiter at

all, but it has a similar structure, and is therefore included here.

It is in fact treated as a relation by T^X, and extra space will be

placed around it when it occurs in an equation.

To use these delimiters we specify the prefix and the delimiter:

\bigl(or \Biggr\rbrace or even \biggl\rbrack

It is necessary to be able to declare that an apparent ‘right’ or

closing delimiter is used as an opening delimiter because some

people have to be able to write things like

]m, n[

TgX does not even require that these delimiters are balanced.

They are just another sort of symbol. They allow us to write:

$$ \Biggl\langle \biggl\lceil \Bigl\lbrace \bigl((x)

\bigr) \Bigr\rbrace \biggr\rfloor \Biggr\rangle $$

for

In this case we specify the sizes. All \bigg delimiters are essen¬

tially the same size, so that we know in advance that any big

delimiter fits inside a Big one, and so on. Note too that the ‘nor¬

mal’ delimiter, without the prefix, is a smaller size again.

Let TyjK do it for you

Just by saying

$$\left\lbrace . . . lots of formula . . . \right\rbrace$$

More maths 117

Tf^X will place the brace delimiters where you specify. It calcu¬

lates the size required with reference to the size of the enclosed

expression. This therefore appears to be quite a good strategy.

You can use any of the delimiters outlined above, so that
\left\lceil ... \right\rceil

\left/ ... \right\backslash

\left| ... \right\|

are all acceptable. You should note that TgX expects that for

every \left delimiter there should be a \right delimiter. Note

again that the delimiters need not be identical, so that \left(can

be paired with \right\rangle. However, this does leave a minor

problem. From time to time you do not actually want the other

half of the pair. This does seem unusual, since it is vanishingly rare

to see an equation which contains a ‘lone’ unbalanced delimiter.

This becomes most critical if we have to spread an equation over

more than one line, a topic which is covered in the next chapter.

When the problem does arise it is necessary to force the pairing

by using, \right., or \left. as appropriate. The itself does

not appear in the typeset equation. It is simply a polite fiction,

since the command \left or \right expects to be followed either

by a delimiter itself, or the dot.

A plausible example might be

$${a+b\over2} \left/ {c-d\over3} \right.$$

to obtain

a + b / c — d

/ 3

In fact, I should be more honest here. Although you just might do

this if you were not sure how big the extent to which the terms

might grow, you would be much more likely to use one of the \big,

\Big, \bigg, and \Bigg family we have met already. Without the

1, r, or m suffix, these can also be used as simple symbols:

$${a+b\over2} \bigg/ {c-d\over3}$$

The question that might arise could be ‘should it not be \biggm

that is being used here?’ Careful examination of the results will

indicate that the version given here is ‘tighter’ with greater overlap

on the ‘delimiter’, in this case used as an operator. In fact, there

is really something quite interesting going on here. The ‘opening’

delimiters are defined with the help of a command \mathopen;

the ‘closing’ delimiters use \mathclose, and the ‘middle’ is given

the description \mathrel (for relation). It is in this way that the

relative spacing within the equation is determined. If, however,

118 A plain TpjX primer

we were to look at the way \bigg itself works, we would find no

reference to any of these, so it is used just as a simple symbol.

Caveat: there are some points to be made about these features.

The ‘automatic’ sizing only works with some of the delimiters.

Some delimiters are constructed from ‘primitives’ which can be

assembled to give as a large a construct as desired. Parentheses,

braces, floors, ceilings, square brackets, and the vertical bars and

arrows, all fall into this category. On the other hand some delimi¬

ters are merely available in a range of sizes, and cannot exist

outside that range. These are the delimiters which have a major

‘diagonal’ component, like the slashes and the angle brackets.

Exercise 8,1: Experiment to see how large \backslash or \langle

and \rangle may become. •£=

A pleasing feature of \right delimiter and \left delimiter is

that they are grouping operators too: this helps to explain why

you have to balance all your \left and \right delimiters. You

will have noted from the example above that it is not actually

necessary to balance \left\lceil with \right\rceil. All that

is needed is a balance of \left and \right - 'of course you would

not write something like

$$\left\lbrace x {a+b\over c \right\rbrace >$$

would you? You can also write \right\lbrace; l^X is very broad¬

minded.

Sometimes automatic sizing is not what you want, although the

example below is rather forced:

IN + \y\\

and was obtained from

$$ \left\vert \left\vert x \right\vert

+ \left\vert y \right\vert \right\vert $$

=> Exercise 8.2: How would we have obtained what we really wanted?

[M + M\
For once, the answer is not ‘group.’ <=

And sometimes the parentheses might be a little too large: this

happens mainly in the case of enclosed summations. By way of

illustration, look at
n

l>2Ak
k=1

More maths 119

The obvious way to set it is

$$\left(\sum_{k=l}~n A_k \right)$$

Then look at

(i>)
and note that the parentheses are a little smaller, and that the

equation looks a little neater.

=>Exercise 8.3: Try to emulate that last ‘refined’ equation. <s=

Although not directly relevant here, you may be pleasantly sur¬

prised to note that TgX allows its square root symbol to grow as

the expression inside ‘grows’. Therefore the expression

$$\sqrt{a+\sqrt{b+\sqrt{c+\sqrt{d+\sqrt{e\sqrt f}}}}}$$

should really look quite good:

Other operators

Some operations do not have a ‘special’ symbol, but instead are

represented in mathematics by special phrases - sin, cos, log, In,

and so on. It is conventional to distinguish these from symbols

by leaving them in roman style. If sin a was simply written as

sin\alpha, then the result would not be pleasant: sina. In order

to avoid problems like this, Tf^X has a large number of these opera¬

tors (or functions?) defined in plain and listed in Figure 8.2. Most

of them are self-explanatory.

These commands are used in a quite straightforward manner.

They also behave in a quite straightforward manner. For example,

$$a~{\sin\alpha}-+b“{\cos\beta}$$

will provide superscripts which are properly ‘diminished’. Do note

that although the commands appear to put the alphabetic part

into roman/upright form, these are genuine, ordinary, T^X com¬

mands. Using \limsup or \liminf would have dispelled this idea,

since they give limsup and liminf, where the ‘lim’ is separated

from the rest of the operator by a small amount of space. Simply

saying \sgn and expecting T^X to divine that you wish a new

maths command ‘sgn’ is expecting too much. There are ways to

define new mathematical operators, should you need to extend

TgX’s repertoire.

120 A plain Tp)X primer

Looking into plain l^X’s definitions, we can find

\def\cos{\mathop{\rm cos}\nolimits}

This gives us the clues we might need to create our own ‘extra’

commands, like ‘sgn’, or ‘Log’, or any other which might be

required for particular esoteric branches of physics, maths, engi¬

neering. ... There is one new command, \mathop, in the definition,

and one old one, \nolimits, although this is used in a rather dif¬

ferent circumstance. Taking the familiar one first, \nolimits is

indicating that this particular mathematical operator is one which

does not take limits. A moment’s reflection suggests that some¬

thing like max is an operator which could take limits, just like \sum

and \int. The second part of the table, from \max onwards, is

made up of these pseudo-‘large operators’. You would also specify

the limits in a similar way to \int and \sum.

$$\lim_{n\to\infty}$$

gives

lim
n—too

Of course, on the other hand,

$\lim_{n\to\infty}$

gives lim^oo.

The other part of the definition uses \mathop. This indicates

that the command (or operator) will be treated as a mathematical

operator, just like the \sum and \int: the spacing associated with

all these operators will be the same. Essentially this is needed to

distinguish a ‘large’ operator from a binary operator, or a relation,

or any other of the classes of mathematical character. There are

in fact commands \mathbin, \mathrel, and so on which can be

used in order to force T^gX to handle things in particular ways.

Perhaps the \bmod and \pmod need further explanation. They

generate the text ‘mod’. The prefix refers to whether they are

to be used in a ‘binary’ or in a ‘parenthesized’ way. The binary

form, m\bmod n will have the same characteristics of any other

binary operator: m mod n. The parenthesized form, m\pmod n,

looks similar, but it also provides the parentheses: m (mod n).
=>■Exercise 8.4: Transform the following equations into TEX form:

Wo = lim nR2qo
Ft—►()

V

h_

Lo

h 27rh
— tanh ——
Li Li

= — tanh k{h + y) cot kx
u

121 More maths

\sin \arcsin \csc \sinh \ker

\cos \arccos \sec \cosh \arg

\tan \arctan \cot \tanh \coth

Mog Ug \ln \exp \dim

\deg \hom \pmod \bmod

\max \min \inf \liminf \Pr Figure 8.2

\det \lim \sup \limsup \gcd Operators

(r+l) V• . '
n

min
h=1

maxc(i, j\ /i, fc)p
. fc=i

(r)

hk

minimize{/* [C]* [C]/}

lim ln(l + x) = x
x—>0

M = logl° Aq

Exercise 8.5: How do we write

lilTLj-j—^oo

and what would \lim_{n\to\infty> have given? 4=

There are two other commands, \overbrace and \underbrace,

which are rather similar to operators which take sub- or super¬

scripts, except that the ordering is rather more crucial:

$$\underbrace{\overbrace-[a+b+c}~l+

\overbrace{a~2+b~2+c~2}~2}_{a\ne b\ne c}$$

This composite example may illustrate what is going on:

1 2

The main points to note are that when using \overbrace, the

‘superscripted’ expression which follows is the one associated with

the brace, even if a subscripted expression should intervene:

$$\overbrace{a+b}_n~1$$

yields

l

a + b
n

and a similar situation applies to \underbrace. The other point

is that while an expression which is (say) underbraced may have

other components which are overbraced, the different bracing can-

122 A plain Tp]X primer

not overlap. Of course, the braces may be nested:

Qy b -\-C

=>Exercise 8.6: Tackle the following equation:

b=Gb)®Gb)®-®Gb) = Gb)
®fc

k times

More boxes

You will have noticed that text like sin and cos is treated differ¬

ently from variables like x and y. They appear in roman rather

than italic font. Very often we require part of a formula to contain

text which would look best in roman font - thus removing all

potential ambiguities. For example, we might want something like

log(amplitude) = —(2 H + l)log(order)

There are a couple of ways this can be achieved. We can use \hbox

(examined in detail in Chapter 9), or we can use \rm. Thus

$$\log(\hbox{amplitude}) = -(2H+l)\log(\hbox{order})$$

and

$$\log(\rm amplitude) = -(2H+1)\log(\rm order)$$

are equivalent, in this instance. But \hbox uses the current font.

This has two important side effects. Firstly, it restricts its size

to the current size (probably 10 point), making it unsuitable for

sub- or superscripts, and secondly, the current font might not be

roman. Some mathematicians put their lemmas in slant or italic.

Thus within a block which used \sl, the display maths use of

\hbox would turn out to be in slant too:

log(a mplitude) = —(2 H + 1) log (order)

On the other hand, \rm will turn out suitably sub- or super¬

scripted. Note that you do not have to switch off the effect of

\rm within a set of $ or $$ signs. It is switched off automatically

when these delimiters are encountered. On the other hand, you

probably don’t want the scope of the \rm to be in operation for

the whole equation - or everything will be in ‘normal’ text.

More maths 123

=>Exercise 8.7: Suggest how the following were obtained:

ared + agreen + ablue = awhite

Colour (X ^intensity) ^spectra) ^hue

Note the irregularity in the baselines. -4=

Sometimes you are happy to accept subscripted words in italics.

You will already have noticed that an easy way to get italics in

ordinary text is just to slip the odd character between $ sym¬

bols, for example Figure l(a). Purists will shudder - mainly at

the thought of using this easy italicization, realizing that there is

a command \mathsurround which allows us to put extra space

around equations in text, \mathsurround normally has a value of

Opt. If we change it to \mathsurround=2pt, Figure l(a) will

find itself with more space between the parentheses and the a.

=> Exercise 8.8: Change the value of \mathsurround to see what effect

it has. How noticeable is it? 4=

What would happen to the following phrase in an equation?

$$u_{ex} = u_{maximum Airy wave}(l-F)$$

Do try it, just to convince yourself that the answer is ‘nothing

nice’.

Uex = ^maximum Airywave(l -^)

The subscripted ‘ex’ looks acceptable, but the ‘maximum Airy

wave’ is dreadful. T^X (rightly) assumes that this is merely a

string of symbols, ignores spaces, and regurgitates the phrase

without regard to meaning. Assuming that we really do want the

phrase in italics, what we might have meant (?) was

$$u_{\it maximum Airy wave}$$

which gives a series of error messages, along the lines ‘\script-

font 4 is undefined’. On the other hand, although

$$u_{\hbox{\it maximum Airy wave}}$$

works, it still does not give us quite what we wanted:

umaximum Airy wave

Let us assume that the problem lies mainly with the choice of

font, and that a Roman font would do quite nicely. This time,

$$u_{\rm maximum Airy wave}$$

gives

^maximum Airy wave

But. again, there is a’ problem of spacing: there are important

aspects of inserting text into formulae. Single words are usually

fine, but when we want several words, L^X in maths mode has

124 A plain TffK. primer

no means of knowing that they are separate words. Remember

that T^X is deciding all the spacing within these equations, and

the spaces we leave will be ignored (disregarding those which

are necessary for syntax - to separate out commands). Therefore

u_{maximum Airy wave} is just a string of letters to appear in

italic typeface. The spaces will be ignored. Whenever we require

spaces to be left, we must indicate so, with the use of the control

space \u. We may be prepared to accept

$$u_{maximum\ Airy\ wave}$$

which gives

nmaximum Airy wave

The second point to make is that the ‘extra’ typefaces available

here (\it, \sl, and \tt) are only available at 10 point. They will

not work as ‘diminished’ sub- and superscripts. We must either

put up with this restriction, or use \rm, which is still available at

10, 7, and 5 point.

Besides having the capability of dropping into italics through

\it, whilst in maths, we have ‘maths italic’, \mit. Why bother

having both? Actually they are different fonts. This is most easily

demonstrated by comparing different and dif f erent. The first of

these is \it, the second is \mit. The maths italic is slightly larger,

and does not support ligatures. This enables us to be able to write

fl — f x l rather than fl = f x l. This of course illustrates one of

the weaknesses of an approach like u_{maximum\ Airy\ wave},

since in the event that one of those subscripted words contained

a ligature, no ligature will actually appear. But why should we

want a maths italic font at all, since we default to it every time

we enter maths mode? It is really there to enable us to italicize

the upper-case Greek symbols.

=> Exercise 8.9: Experiment to find the difference between \mit\0mega

and \0mega. -£=

A minor restriction is the inability to use mathematical accents

in this font: for example, \mit\hat\Delta will not produce the

desired results, but gives ^instead of A. The desired result was

obtained by \hat{\mit\Delta}. Although fairly obvious here, the

correct ordering could be less easy to discern in a more involved

equation.

=>Exercise 8.10: In what way(s) would u_{\mit maximum\ Airy\

wave} or u_{maximum\ Airy\ wave} have produced a different result

from u_{\it maximum\ Airy\ wave}? <=

More maths 125

Other voices

From time to time it is necessary to embolden symbols. This can

be done through the use of \bf. Do note that emboldening (like

\rm) affects only A to Z, a to z, 0 to 9, and \Gamma to \0mega.

The mathematical accents may also be emboldened or romanized.

What this means is that delimiters, lower-case Greek, operators,

and so on are not affected. Emboldening is sometimes used to

indicate vectors.

There is one more variation: you may employ ‘calligraphic’ let¬

ters through the command \cal. These apply only to upper-case

A to Z, and give you access to A through to Z. Applying this

sequence to other letters, like lower case or Greek, will give inter¬

esting results, but probably not the ones you wanted.

=> Exercise 8.11: Do you suppose \bf and \cal can be subscripts?

Either work it out from first principles, or experiment. -<=

From time to time, other fonts are used in mathematics and

physics, notably Fraktur and Blackboard Bold. Knuth mentions

both of these in The T^Xbook, but they are not part of plain T^X-

If you really cannot live without them, you could obtain Aj^S-

T^K, where they are available. Actually, if you do have Wvj£-TeX,

your friendly TgXpert will be able to make them available for you.

=>Exercise 8.12: The following equations use some of the font changes

outlined above. Turn them into TEX:

B = B' ^ B = B'

f (N + 1) = pi (N) + v(iV + 1)

Q[f] = 1 if 'S^jaiVi[f] > t
1

Since setting display equations gives us a distorted view of the universe,

also set this text:

Let O be an operation that takes pictures into pictures. We say that

the property V is invariant under O if F[G[/]] = V[f] for all /.

Numbers

We now have vast power and lots of tools to exploit that power.

There is much more fine detail to TE^ S mathematical control,

but it is probably overwhelming to be exposed to it all at present.

There is one important area still outstanding: numbered equa¬

tions. To obtain numbers associated with equations, the com¬

mands \eqno or \leqno may be used. They must be placed at the

126 A plain TpX primer

end of the equation:

$$\eta = x~2 + y~2 - r~2 \eqno(4)$$

to yield:

rj = x2 + y2 — r2 (4)

while \leqno places the equation number on the left.

$$\eta = x~2 -+ y~2 - r~2 \leqno(4)$$

to give:

(4) p = x2 + y2 — r2

It must be emphasised that although the equation number appears

on the left when it is typeset, it is actually written as the last part

of the equation. Left-numbered equations are relatively rare.

Since T^X is able to advance counters-, it would be relatively sim¬

ple to arrange that each time an equation was numbered, it had its

number incremented. This sounds plausibly attractive, but recall

that the probable reason for numbering an equation is to be able

to refer to it elsewhere (why else would you bother?). If this is the

case, then if you deleted an existing equation, or inserted another

one, you would also have to seek out the point at which you refer

to the equation, and attend to that. Since you would not know

the number of the equation until it had been through T^jX at least

once, the problems start to mount up. We need some way of cross-

referencing. It is possible to devise such a scheme, but it is complex

to do from scratch. iATgX has a cross-referencing scheme like this.

Spivak has some interesting comments to make. He considers that

equation numbering is not really necessary, since authors tend to

locate the equation and its textual reference very close together.

=>Exercise 8.13: Since the equation number occurs at the far left or

right, what will happen if we have a rather long equation which extends

almost to the margin? Where will the number be placed? <=

=>Exercise 8.14: What happens to text placed within \eqno? <=

Spaces and dots

Ellipses are handled quite well in maths mode, but we iden¬

tify several different varieties, depending in part on whether we

employ ‘centre dots’ or ‘low dots’. The fundamental commands

are: \ldots and \cdots where the prefix 1 or c differentiates ‘low’

or ‘centre’.

At this point it is useful to return to the notion of space, which

we touched on briefly before. TgX allows you a fair amount of

More maths 127

Command Description Equivalent Size (and glue)

\, a thin space \thinmuskip 3 mu

\> medium space \medmuskip 4 mu plus 2 mu

minus 4 mu

\; thick space \thickmuskip 5 mu plus 5 mu

\! negative thin space —\thinmuskip —3 mu

\enspace an en space 0.5 em Figure 8.3

\quad a quad space 1 em Mathematical

\qquad two quad spaces 2em spaces

control of the space you introduce into formulae. Notice that this

discussion is aimed at maths mode. The control space we used

is available in both modes, but most of the others are not. T^K

frequently uses the \quad. This turns out to have been defined

already: a quad is about the width of a capital M (an em-dash

is usually one quad wide); one quad in 10 point type is usually

about 10 points wide. You will also find a \qquad which is just

two quads. The mu is a ‘mathematical unit’, and Knuth assigned

18 mu to 1 em. The em is a font-related measure, and the \quad is

defined in terms of an em. The em is related to the upright Roman

font which T^X uses when it starts a maths expression. Therefore

a \quad is the same size in text, display, script and scriptscript

styles. T)gX has a number of shorthand forms for introducing

spaces into formulae. These are given in Figure 8.3.

This implies that the mathematical spaces will adjust, accord¬

ing to where and how we use them — for example, in sub- and

superscripts. The figure also gives the ‘ideal’ width, with its glue

- the stretch and shrink components. Note that \quad, \qquad,

and \enspace have no stretch and shrink associated with them.

They may be used in any mode. Using the others in text will lead

to an error where T[^X thinks it is in maths mode, and tries to

correct by inserting its own $.

Since there are so many of these spaces, some notion of their

applicability might be useful. Starting with the simplest case, of

a fixed space, both \quad (and \qquad) may be useful in the

following situation:

$$F_n = F_{n-1> + F_{n-2>, \qquad n\ge2$$

The space after the comma would normally be a \qquad. We shall

see some other situations later, in laying out tables, where \quads

can be very useful.

128 A plain Tp/K. primer

The thin space (\,) has three main areas of use: the first is before

the dx, dy, or dwhatever in formulae with calculus. For example,

dxdy = r dr dd

is obtained from $$dx\,dy = r\, dr\,d\theta$$. Without the

refinement it would have appeared as

dxdy = rdrdO

Note that some texts have a tendency to put the ‘d’ of dx into

roman type:

dx dy — r dr d6

Secondly, it may be used after square roots which come ‘too close’

to the symbol which follows:

0(1/y/n) and y/x2

look better as

0(1/y/n) and y/x 2

The adjustment was achieved by including some thin space:

$$0(l/\sqrt n\,)\sqrt x\,2$$

And lastly the thin space can be applied after a factorial symbol,

when the ! is followed by a letter, number, or left delimiter -

(ftp!
rz! (n + 1)!

Without the negative thin space after the first factorial, this would

look like

(2n)!
n\(n -f 1)!

You might reasonably ask why Tf^X does not do this itself, so that

an exclamation mark maps to ! \, in all cases. Basically the answer

lies with the counter-example (a!+b!)/n where a ! followed by a

right parenthesis (or a relation) does not require extra space.

Negative thin space (\ !) is needed in two main situations: firstly,

when dealing with multiple integral signs:

More maths 129

which look a little spaced out, and we might require

$$\int\!\!\int dx\,dy$$

to give

or even more negative thin space to bring the integrals even closer

together. This is one of the times that display and text styles are

not truly equivalent. Try multiple integrals in both modes to find

out what you feel is required. In a second case, you might con¬

sider using negative thin space in a situation like r2A2, which is

written \Gamma_{\! 2}\Delta~{\ ! 2>. Without the negative thin

space this is T2A2.
Often space seems needed with the solidus as well: mn/nm could

usefully be closed up a little to become mn/nm. Most times T^K

gets its spacing correct, but there are situations where a helping

hand is appreciated.

The other two mathematical spaces, \; and \>, seem hardly

ever to be used. The first of these, the thick space, is used once

in plain, in the definition of \iff:

\def\iff{\;\Longleftrightarrow\;>

Back to dots

In general, \cdots is used between signs inside a formula - x_l

= \cdots = x_n = 0 which would give us X\ = • • • = xn = 0.

But we might need extra help for $y_l + y_2 + \cdots\,$.

where the dots immediately precede a full stop in a sentence: ‘The

equation: yi + y2 + • • • •’

The low dots, \ldots, leave no space before or after. Knuth

suggests that three low dots followed by a thin space should be

used before a comma:

The vector $(x_l, \ldots\, , x_n)$

for ‘The vector (aq,... ,xn)'\ on the other hand, does ‘The vector

(aq,..., xny really look so bad?

Thin space before and after \ldots would be employed when

there is no surrounding operator sign,

$x_l x_2 \,\ldots\, x_n$

‘X1X2 ■ ■ ■ x^ but on the other hand x1x2 ... xn does not require a

thin space after the 2 (because there is some space there already

after the second x):

$x~l x~2 \ldots\, x~n$

130 A plain Tp]X primer

=> Exercise 8.15: Tackle the following:

The predicates of xs are Boolean functions of the Boolean variables

Pi,..., Pyv- For example, the predicate “|5j = 1” (“there is only one

1 in xs”) corresponds to the function
N

\J (Pi A • • • A Pi-1 A Pi A Pi+1 A ■ • • A Pjsr)

i=1

where the overbars denote logical negation,

and

In this chapter, E denotes a picture; subsets of E are denoted by

S,T,...,' and points by P, Q,_

<=

Confused, or just perplexed? These features may all be useful,

but often you see the need for them only when you realize that a

formula does not look quite right. The key problem is that math¬

ematics has so many exceptions that any set of rules will break

down somewhere. Tf^X's rules are simple, and we have ways of

overriding them.

Punctuation

This has brought us back to the general area of punctuation. Punc¬

tuation in maths has some peculiarities. Comma and semi-colon

are treated as genuine punctuation, and extra space is inserted

after them. If a colon is intended as punctuation, it should be

written \colon. This allows a construct like x := 0 to be written

as $x: =0$ - a case where the colon is not punctuation at all. What

would $x\colon=$ have given us? Since a comma attracts extra

space, and since T^X decides on all its own spacing in maths mode,

irrespective of where you placed spaces (or omitted them), writing

$123,456$ would give us 123,456 rather than 123,456. How do

we get the latter effect? By bracing the comma: $123{,}456$.

=> Exercise 8.16: Reproduce the following three extracts:

The condition B% C Xc is always fulfilled, and the eroded set Y is

the locus of the points x, such that Bx is included in X:

Y = {x: Bx C X}
and

Finally, let Sn(Ko; Ki,... , Kn) denote the probability that X misses

the compact set Kq, but hits the other compact sets K\,... , Kn.
and finally,

A(x) = Sup{A : x e ip\{x)}

Boxing

To explain how Tf^X handles boxes we can first return briefly to

some of the ideas introduced very briefly in Chapter 3. There the

boxes considered were those which were associated with individual

letters which were themselves assembled into a larger box - the

line. The horizontal lines are then stacked together into a vertical

list of boxes.

Let’s go back to the simplest cases. There are two fundamental

sorts of boxes: horizontal and vertical. When TgX is creating a line

of text, it is creating a horizontal box. When it assembles several

paragraphs into a page, it is creating a vertical box. Explicity, we

can create our own horizontal and vertical boxes. For example,

\hbox{0h brother, not hamsters again.}

will place the component letters and words into a horizontal box.

The interword gaps will be the constant value referred to in Chap¬

ter 3, without any stretch or shrink. This is the ‘natural’ width.

The width of such a box can be determined and made visible.

Obviously T^X knows the width, but it can be made to divulge

its secrets. A straightforward approach is to make use of the box

registers (very similar to the other registers already met):

\$etboxO\hbox{Oh brother, not hamsters again.}

‘sets’ the contents of the horizontal box into a box register. T^X

has 256 such box registers, which may each be accessed explicitly

by referring to their numbers: \boxO to \box255. In very general

terms it is recommended that you refer only to the first 10 boxes

by number. Many of the others have already. assigned functions.

The last box, \box255, is an interesting one: it is where IfeX puts

the built-up page. Do not interfere with it (yet). While the first

10 boxes are regarded as ‘scratch’ boxes, available for general use,

you can also access others indirectly if you need, since TgX permits

you to assign them dynamically, just like the other registers:

\newbox\hamster

makes T^X choose a box register (the first free one), which may

then be used. Thus the example may be made slightly more

132 A plain TpjK primer

general:

\newbox\hamster

\setbox\hamster\hbox{Oh brother, not hamsters again.}

We shall see later that it is not always possible to assign boxes in

this dynamic way.

Once a box has been allocated, information about its contents

is accessible. A variation of the \show command, \showbox, may

be used:

\showbox\hamster

will produce

> \boxl6=

\hbox(6.94444+1.94444)xl25.13916

.\tenrm 0

.\tenrm h

.\glue 3.33333 plus 1.66666 minus 1.11111

.\tenrm n

.\tenrm o

. etc.

What does this mean? Since we asked T^X to assign the box, we

discover that it has allocated boxl6 to the task. The contents of

this boxl6 are a horizontal box whose height is 6.94444 pt, depth

is 1.94444 pt, and whose width is 125.13916 pt. All the succeeding

lines are preceded by a . which indicates that they are inside a

box. If we had a box within a box, there would be two dots, and so

on. The extract finishes with an etc., saying that there is more to

come, but it has been suppressed. T^X has two ‘tracing’ param¬

eters which control the depth and breadth of the boxes on which

it reports: these are \showboxbreadth and \showboxdepth. The

‘breadth’ referred to is the maximum number of items shown per

level; by default it is 5: the ‘depth’ is the deepest level to go to;

by default this is 3. If we wanted more information we could reset

these parameters. There is always a danger of being overwhelmed

by this information.

There are other ways of finding out the height, depth, and width

of a box. The primitive commands \ht, \dp, and \wd will allow

manipulation of the height, depth, and width respectively of a

particular box. In order to have them printed out at the terminal,

the command \showthe may be used:

\showthe\wd\hamster

\showthe\dp\hamster

\showthe\ht\hamster

In this particular case, the result would have been

Boxing 133

> 125.13916pt.

1.4 \showthe\wd\hamster
?

> 1.94444pt.

1.5 \showthe\dp\hamster
?

> 6.94444pt.

1.6 \showthe\ht\hamster

where for some deeply fathomable reason, the dimension precedes

the echo of the command. As usual with the \show commands,

we are invoking the error recovery part of T^jX, and must respond

correctly to the ? prompt. In this case, answering correctly is

straightforward: just return.

If we can find out the values, we can start to do things with

them. We can test them against other values; we can even reset

them, and fool TgX into believing they have totally different char¬

acteristics. But we’ll look at that later.

In Chapter 3, we noted the presence of kerns between many let¬

ter pairs, and made the comment that it is not obvious what values

the kerns have. We are now in a position to investigate this a little

further. First, let’s store ‘Type’ in a box: \setboxO\hbox{Type>.

Instead of allocating a new box, I’ve just borrowed boxO. Since

there are only four elements (tokens) in the word, \showboxO will

provide the information we want - the width of the box. If we

now look at the width of \setboxO\hbox{T-Qy{}p{}e} through

\showbox we’ll see the cumulative effect of any kerns.

\hbox(6.83331+1.94444)x22.50005

.\tenrm T

.\kern-0.27779

.\tenrm y

.\tenrm p

AkernO. 27779

.\tenrm e

Perhaps the first thing to notice is that there are two kerns, one

negative, one positive: the font designer decided to close up the

letter combination ‘Ty’ by a small amount, but also to separate

‘pe’ by a little bit extra too. The ‘normal’ expectation of a kern

is to bring letters closer together, but obviously there is no real

reason why other refinements need not be practised. Since these

two kerns are equal in magnitude but opposite in sign, the second

example, where null boxes (the O) are introduced between each

letter pair in order to force each letter to be treated independently,

134 A plain TpjK primer

turns out to have exactly the same length. However, it is still worth

comparing the look of the two words:

and trying to decide to what extent you perceive these little sub¬

tleties. Since the individual kerns amount to little more than 1%

of the total width of the word, they may be tricky to discern. On

a 300 dpi laser printer, the amount by which the letters are kerned

is approximately equivalent to one dot.

One of T^X’s deficiencies is the way in which it handles accented

characters. If an explicit accent is placed on a character which

would have been kerned, the kern is thrown away. This does lead

to some slight irregularities in words with accents. Although it is

well known that Tf^X abandons hyphenation on finding the first

explicitly accented character, it is not so widely appreciated that

the interletter spacing is also affected. If you have access to the

256 character set, together with the Extended Computer Modern

typeface, you may find it possible to enter e as a single character,

rather than Ve. In this case, the kerning should be ‘correct’. In

order to distinguish between e and Ve, they are termed implicit

and explicit here.

=>Exercise 9.1: Demonstrate the difference made by typesetting ‘ver¬

itable’ rather than ‘veritable’. Can you type ‘veritable’ without having to

use V? How does your handle it: and your driver? <=

The strategy used so far simply uses horizontal boxes at their

‘natural’ width. The width may be manipulated fairly directly

with the aid of two ‘alternative’ keywords: to and spread. Exam¬

ples are

\hbox spread 10pt{Make my day}

and

\hbox to \hsize{Bring me my Arrows of desire:}

=>Exercise 9.2: Find out what it means to spread the box: what actu¬
ally spreads? <=

We have only looked at horizontal boxes in order to find out a bit

more about the way that TgX sees them. There are many other

things we can do with boxes. Once something has been placed

inside a box its contents can still be used. There are a number of

ways of obtaining the contents of a box. Taking the \hamster box,

we can \copy it, or merely quote it as a \box. In the first case it

is indeed a copy which is obtained, and the contents of \hamster

remain intact; in the second case the box becomes empty (or void)

once it is used. There are further possibilities: we may \unhbox

or \unhcopy the horizontal box. These last possibilities make the

Boxing 135

contents available and allow us to reset the interword glue, for

example (which none of the others would).

Let’s examine some of these:

\newbox\callaghan

\newbox\blake

\setbox\callaghan\hbox spread 10pt{Make my day}

\setbox\blake\hbox to 0.5\hsize{Bring me my Arrows of

desire:}

Taking \box\blake gives ‘Bring me my Arrows of desire:’ -

suitably taking up half the \hsize, but trying to \box\blake

for a subsequent time yields an empty box, and we see nothing.

On the other hand, \copy\callaghan gives ‘Make my day’,

and copying \callaghan again will still give ‘Make my day’.

Had we used the other forms, \unhcopy\callaghan would have

resulted in ‘Make my day’ while \unhbox\blake gives ‘Bring me

my Arrows of desire:’. Again, \callaghan could have been reused,

but \blake would be empty.

When the contents of the box are to remain as they were boxed,

the \copy or \box are preferred; the \unh- forms are not encoun¬

tered frequently, but it is useful to know that we can re-examine

the contents of boxes. If the contents are not required again, then

it is best to surrender the box register by using \box rather than

\copy. After all, there are only 256 registers. Right now it may

seem unlikely that they would all be used, but any finite limit is

likely to be exceeded eventually. One of the lessons of computing is

that whatever space is available will be inadequate. Although we

have not yet covered grouping explicitly, it turns out that boxes

may have local application too. This means that

\setboxO\hbox{Cath}

{\setboxO\hbox{Pandora}}

\boxO

will yield Cath. You may use the \newbox within a group too,

with the anticipated results that the new box will have no mean¬

ing outside the group. One place you may not use \newbox is

within the definition of a command.

Moving boxes

We may also move boxes around. In particular, they may eas¬

ily be \raised or \lowered. Perhaps one of the first things you

learn about T^K, after the session on pronunciation, where your

keyboard becomes slightly moist, is how to create the logo. It is

136 A plain TpjK primer

worth looking at this here

\def\TeX{T\kern-0.1667em

\lowerO.7ex\hbox{E}\kern-0.125emX>

since it helps remind us how to raise or lower boxes. Before any¬

thing can be raised or lowered it must be boxed. Since lowering

is just negative raising, I’ve always wondered why we have two

commands: in other words, this definition is equivalent to

\def\TeX{T\kern-0.1667em

\raise-0.7ex\hbox{E}\kern-0.125emX}

There are two other things to look at here. One is the use of \kern

to move the boxes in a horizontal sense. There are other ways to

achieve this, but this is economical.

The other thing to note is the use of the em and the ex as the

units of measurement. This makes a lot of sense here, since these

are measures related to the current font. In fact, they are one

of the many \fontdimen values that were mentioned earlier in

Chapter 3. Since T^X may be set in a variety of fonts (or sizes), it

would be unwise to fix the values irrevocably. Note, though, that

the iATgX logo is rather less general - but is not part of plain

TgX anyway. A common (but not the only) definition for IATgX is

\def\LaTeX{{\rm L\kern-.36em

\raise.3ex\hbox{\sc a}\kern-.15em

T\kern-.1667em\lower.7ex\hbox{E}\kern-.125emX}}

This locks the logo into the current \rm, but more important, uses

\sc for the raised ‘small capital1 A. This is a reference to the Com¬

puter Modern Caps and Small Caps font, a rather restricted font

which is only available in one form: cmcsclO. We are assuming

that somewhere the font has been set up, since it is not available

by default:

\font\sc cmcsclO

There is no slanted or italic version of this font. Thus it is fairly

easy to say TgX, but considerably more difficult to say lATpX.

Although it is not apparent, the use of the explicit \kern

removes any implicit kerns. This is sometimes a source of some

confusion, since from time to time it is obvious that some letter

pairs need adjustment. Unless you look very carefully and first

establish what kerns are already present, simply inserting a \kern

may not be sufficient. Recall the ‘Type’ example. In the particular

font used, there was a negative kern of — 0.27779 pt between the

T and the y. Had we written T\kern-0.2pt y it would not have

brought the two letters as close together as writing nothing at

all.

Boxing 137

=>Exercise 9.3: Estimate and then confirm the difference in length
between Type and T\kern-0.2pt ype? <=
=>Exercise 9.4: Just for amusement, create the following: DpK. 4=

Most of what has already been said about horizontal boxes is

more or less true about vertical ones. In general terms, horizontal

boxes are placed in vertical boxes, but those vertical boxes may

themselves be placed in other boxes. A working rule is to place

horizontal boxes within vertical boxes within horizontal boxes...,

but there are many situations where this rule need not apply.

In particular, we can easily place lots of horizontal boxes within

other horizontal boxes.

The vertical box analogues of \raise and Mower are the ‘move’

commands, \moveright and \moveleft. There is no analogue of

\kern, because a kern responds to the mode that TgX is in.

It may be helpful to glance at TgK’s notion of ‘modes’ here.

There are six ‘modes’, two of which concern maths, and which we

shall ignore here. Of the remaining four modes, two are relevant

to horizontal manoeuvres, and two to vertical.

The two horizontal modes are ‘horizontal’ and ‘restricted hori¬

zontal’. Horizontal is the mode in which T^X creates paragraphs,

where it is building a horizontal list: restricted horizontal is sim¬

ilar, but there is no line breaking: for example, when material is

put in an \hbox.

The vertical modes are ‘vertical’ and ‘internal vertical’. Verti¬

cal is the mode in which T^X starts out, and is the one where

it creates pages (from the so-called ‘main vertical list’); internal

vertical mode is the one where we are inside a vertical box.

Ti^X automatically switches from vertical to horizontal mode

when it encounters the first token of a new paragraph. Such a

token would normally be a character. The commands \ indent

or \noindent will also automatically switch to horizontal mode.

If the first token were merely an \hbox T^X would not realize

that it should switch to horizontal mode (after all, we can stack

\hboxes within \vboxes). How can we force TgX to do what we

want? In the slightly unusual situation that the first token in a

paragraph was a horizontal box, T^X would be in vertical mode

when it encountered the box, would put it on a line by itself, and

then tackle the rest of the paragraph as if it started anew after the

box. Probably not what was intended. This rather forced example

\copy\hamster\ is the caption of one of my

favourite Far Side cartoons,

gives

138 A plain Tp]X primer

Oh brother, not hamsters again.
is the caption of one of my favourite Far Side cartoons.

=>Exercise 9.5: There are lots of ways to get out of the last problem.
Ideas? Comments? ^

Although the obvious solution is to start with \ indent or
\noindent, TgX has a command \leavevmode which does just
that, and works nicely in such a situation. Of course, who would
ever start a paragraph with a box? But what if that box was
hidden in a command? This is where the well-written command
would have a \leavevmode to ensure that the catastrophe outlined

here would never occur.
=> Exercise 9.6: Demonstrate that a text which began
\hbox{A title}

\hbox{A subtitle}

would respond differently to one which started
\leavevmode or \noindent

\hbox{A title}

\hbox{A subtitle}

Vertical hold

There are two main ways of creating vertical boxes: through the
\vbox and the \vtop. The difference lies in where each of these
considers its ‘reference’ point to be. Every box has height and
depth. In the simple case of the \hbox the baseline is the ref¬
erence point from which the height and depth are measured. A
\vbox generally has lots of height and only a little depth. The
depth is determined by the nature of the last box (the last line).
If, for example, it contains a character which has a descender, its
depth will be positive. It may sometimes be zero. In the case of a
\vtop the box probably has a small height but great depth. Here,
the reference point is still the baseline, but of the first box (nor¬
mally the first line). The point is that when these boxes are placed
on the page, they are located according to their reference points.

To take a more concrete example: \vbox{one} sets ‘one’ in a
vertical box. What are its dimensions? In order to find this out
it is easiest to place it into a box and then check its height and
depth through \showthe:
\setboxO\vbox{one}
\showthe\htO
\showthe\dpO
Here this will yield 4.30554 pt for \ht0 and 0.0 pt for \dpO. Since

Boxing 139

there are no descenders, which would extend below the baseline,

there is ‘no’ depth. On the other hand

\setboxO\vbox{eight>

\showthe\htO

\showthe\dpO

with the letter ‘g’ should have some depth. And this time \dpO

is 1.94444 pt while the height is different too, at 6.94444 pt. The

difference in heights is explained by ‘one’ having no ascenders

either, so that the height should be close to the x-height of the

characters in the font. The ascenders in ‘eight’ ensure that it must

have greater height.

=>Exercise 9.7: If the box containing ‘one’ is stacked on top of the

box containing ‘eight’, what will the height and depth of the resulting

box be? Place the two vertical boxes containing ‘one’ and ‘eight’ into

another vertical box. Examine its height and depth for confirmation. <=

Examining the height and depths of boxes which have been

created with \vtop will reveal exactly the same characteristics.

This is hardly surprising, since the first and last boxes are the

same here. If we widen the situation to something more general,

where there is more than one (horizontal) box making up the

vertical box, then the position of the reference point will change.

For example,

\setboxO\vbox{Of all the strange things that Alice saw

in her journey Through The Looking-Glass, this was the

one that she always remembered most clearly.}

\setboxl\vtop{Of all the strange things that Alice saw

in her journey Through The Looking-Glass, this was the

one that she always remembered most clearly.}

\showthe\htO\showthe\ht1

\showthe\dpO\showthe\dpl

will provide a way of looking at the different positions of the ref¬

erence point for two vertical boxes which contain the same text.

The value of \hsize was reduced to guarantee a few lines, so that

there is normal line breaking, and the first and last boxes are

definitely different.

=k Exercise 9.8: What do you expect the values of the height and

depth of those two vertical boxes to be (roughly). Confirm your expecta¬

tion. ■*=

With an \hsize of 267pt and \parindent of 9pt, the text is

set like

140 A plain TppC primer

Of all the strange things that Alice saw in her journey

Through The Looking-Glass, this was the one that she always

remembered most clearly.

There is little very exceptional to note: the text is indented; the

lines in the paragraph break normally. This serves to emphasize

that text in a \vbox is set in the normal way for paragraphs.

Although not apparent here, the text will not break across pages.

This chunk of text is treated as a single indivisible unit. This

is sometimes a useful attribute when it is necessary to force a

material-to be treated as a single unit.

Again it is possible to see the influence of TgX’s different modes

(for this example the \hsize has been deliberately reduced - you

will soon see why):

\hsize251pt

hello

\vbox{0f all the strange things that Alice saw in her

journey Through The Looking-Glass, this was the one

that she always remembered most clearly.}

goodbye

appears to do something a little odd.

Of all the strange things that Alice saw in her journey

Through The Looking-Glass, this was the one that she

hello always remembered most clearly,

goodbye

When T^X encounters the \vbox it is in horizontal mode. It

sets the sentence quite normally, but places it to the right of the

‘hello’. It also aligns the bottom of the box containing the \vboxed

material with the bottom of the box containing ‘hello’. The ‘good¬

bye’ is still part of the paragraph beginning ‘hello’, so it is not

indented. At first it seems very odd that the \vboxed material

appears to start before the ‘hello’, but this is all to do with how

the \vbox works. Of course, this really serves to illustrate that

you would not normally put a \vbox in the middle of text.

The size of material in a \vbox can be controlled in several

ways. The vertical extent is normally the box’s ‘natural’ extent.

To alter this we may say

\vbox to 100pt{....}

or

\vbox spread 10pt{....}

in a similar way to an \hbox. To see how Tj^X interprets such

manipulations, \showbox can help:

Boxing 141

\setbox\alice\vbox{Of all the strange things that

Alice saw in her journey Through The Looking-Glass...}

\showbox\alice

\setbox\longalice\vbox to 400pt{0f all the strange

things that Alice saw in her journey

Through The Looking-Glass...}

\showbox\longalice

\setbox\spreadalice\vbox spread 10pt{0f all the strange

things that Alice saw in her journey

Through The Looking-Glass...}

\showbox\spreadalice

The key lines are these:

\vbox(90.94444+1.94444)x469.75499 for \alice

\vbox(400.0+1.94444)x469.75499 for \longalice

\vbox(100.94444+1.94444)x469.75499 for \spreadalice

which demonstrates that TjrjX has done exactly what was asked,

extending the height of the box to 400 pt, or increasing it by an

extra 10 pt. Note that the box still has some depth in addition to

the height, so that when we say \vbox to 400pt we are saying

that the height is 400 pt. We make no comment about the depth.

Where does the additional space go? In the case of \hbox to

200pt or \hbox spread lOpt, puts glue between the words,

in fact allowing the box to be ‘underbill’ if necessary. Does the

same sort of thing happen here? The short answer is no, but let’s

look at the reasons for this.

In a simple approach, we might assume that if we ask a vertical

box to be spread beyond its natural vertical extent that white

space would be added between lines. This is only partly true. The

glue between lines is controlled by the \baselineskip (because

it is a \skip it can have glue associated with it). By default, the

\baselineskip has no glue associated with it. Therefore all that

happens is that the extra white space is added at the end, after

the last of the text. The easiest way to demonstrate this is by

taking the boxes created above and

\hrule

\box\longalice

\hrule

\box\spreadalice

\hrule

The \hrules are horizontal lines (rules) which extend across the

whole page and separate each box. In this way we can easily see

where one box ends and another begins.

142 A plain TjgX primer

If we make things more flexible and change the baseline glue,

for example to

\baselineskipl2pt plus lpt

being careful to insert this command before the boxes are ‘set’,

that is before the \setbox command, and look at the output

again, we will see that this time the text is spread out vertically,

in the sense that there is much more white space between lines.

Because this example adds 1 pt of glue to the skip, you might have

supposed that what would do is just allow the baseline skip

to increase up as far as 13 pt. But it is clear that the increase is

much more than this. How can this be so? Most of the reason lies

in the fact that we are forcing TgX to do something a little odd.

In setting ‘normal’ text, we would rarely specify the actual dimen¬

sions to be ‘filled’. And again, normally we add glue at the end of

the text, which has the effect of overcoming the glue between the

lines. One other unusual aspect of this example has been that it is

only one paragraph long. Paragraphs are separated by \parskip

- yet another sort of glue, and this could modify the distribution

of the white space.
=>■Exercise 9.9: Using some suitable chunk of text, place it in a verti¬
cal box; then alter the size of the box; modify the baseline characteristics;
lastly, divide the text into more than one paragraph. <=

It should come as no real surprise that the baseline skip cannot

be altered through a paragraph. It is not possible to set a single

paragraph with varying distances between the baselines of suc¬

cessive lines. It is certainly possible to set successive paragraphs

with different values of \baselineskip, but the value remains

constant within the paragraph unit. Similarly, the value used is

the one in operation at the end of the paragraph. As a result,

it is perfectly feasible to place the \baselineskip at the end of

a paragraph (although this does look a little odd in the marked

up text). And if there are multiple values, the last one is the one

used. This also helps to emphasize the ‘non-wysiwyg’ nature of

TjgX. Until it reaches the end of the paragraph, it can do nothing.

The width of the vertical box is controlled by the current

\hsize. It is not immediately obvious that to create ‘narrower’

boxes, we change the \hsize. This sounds odd. After all, we do

not want the ‘real’ \hsize to change. This is another case for

grouping. If we write

\setbox\alice\vbox{\hsize3in

Of all the strange things that Alice saw in her...}

the horizontal extent of the text will be set up for the duration of

Boxing 143

Of all the strange things that Alice saw

in her journey Through The Looking-

Glass, this was the one that she always

remembered most clearly. Years after¬

wards she could bring the whole scene

back again, as if it had been only yes¬

terday - the mild blue eyes and kindly

smile of the Knight - the setting sun

gleaming through his hair, and shining

on his armour in a blaze of light that

quite dazzled her - the horse quietly

moving about, with the reins hanging

loose on his neck, cropping the grass at

her feet - and the black shadows of the

forest behind - all this she took in like a

picture, as, with one hand shading her

eyes, she leant against a tree, watch¬

ing the strange pair, and listening, in a

half-dream, to the melancholy music of

the song.

“But the tune isn’t

his own invention,”

she said to herself:

“it’s T give thee all,

I can no more.’ ”

Figure 9.1

Two boxes side

by side

the box, and will not change anything outside its group. We may

even become more subtle and say

\setbox\alice\vbox{\hsizeO.3\hsize

Of all the strange things that Alice saw in her...}

where we let the horizontal extent be controlled as some propor¬

tion of the ‘external’ horizontal width.

Let’s demonstrate lining up two \vboxes. Two vertical boxes

have been set up already, \alice and \song:

\newbox\alice

\setbox\alice\vbox{\tolerance2000\hsize0.6\hsize

\noindent Of all the strange things that Alice saw in

her journey ...}

\newbox\song
\setbox\song\vbox{\pretolerancelOOOO\hsizeO.3\hsize

\noindent‘‘But the tune {\sl isn’t\/> his own

...}
These two may be set side by side by enclosing them in an \hbox

\hbox{\copy\alice\qquad\copy\song}

The \qquad is only there to keep them apart (Figure 9.1).

=>•Exercise 9.10: What might happen if the two boxes were not

enclosed in a horizontal box? <=

144 A plain TpjK primer

Since we have two made up-boxes, it is worth having a look at

their height and depth through the mechanism of \showbox:

*\showbox\alice

> \boxl6=

\vbox(138.94444+1.94444)x281.85585 followed by more

*\showbox\song

> \boxl7=

\vbox(42.94444+0.0)xl40.92792 followed by more

Examining the dimensions of these boxes, we may be relieved

to note that one is twice the width of the other, but that one has

no depth. It also presents a problem, as the example shows. The

\song box has no descenders in its last line. Because the reference

point is the baseline in both cases, the two boxes nevertheless have

their respective lines aligned (because they were both set with the

same distance between baselines).

=>-Exercise 9.11: Repeat the last example, but instead of using a

\vbox, use a \vtop. <=
=> Exercise 9.12: It is also a reinforcing exercise once you have placed

these bits of text into boxes to start to use some of the other pieces of

information you have lying about. Let’s assume you want a piece of text

to occupy exactly n lines. Outline how you might do that. Assume that

the text is all in a single paragraph. <=

There is another point to be drawn from the last example.

In addition to the control of the \hsize, the \tolerance and

\pretolerance have been adjusted temporarily. When ‘narrow

measure’ is being used, there is less scope for the interword glue.

Increasing the \tolerance helps here. The \pretolerance is set

to the high value to switch off hyphenation. When T^jX processes a

paragraph it will generally make at least two passes. On the first

pass it assesses the badness of the paragraph without allowing

for any hyphenation. It will accept this paragraph if the bad¬

ness calculated is less than or equal to the \pretolerance value.

Otherwise it goes on to a second pass, where it hyphenates and

now uses \tolerance in its assessment of the suitability of various

breakpoints. In general, within T^X, a value of 10,000 is taken as

equivalent to ‘infinity’. Or equally, in the calculation of ‘badness’,

any value over 10,000 is reset to 10,000.

When these vertical boxes are constructed, it is straightforward

to employ glue too. This really only makes sense when you \vbox

to or \vtop spread. But glue deserves some further discussion.

The glue which has been discussed most up to now is the sort that

is fairly implicit, and over which we have little control. Explicit

Boxing 145

glue comes in several packages, but the most common are with

skips and with fills. The skip primitives are \hskip and \vskip.

These can be employed to provide particular vertical and horizon¬

tal movements:

\hskip 1 in

\vskip 300 sp

but in most cases this is primitive in the extreme.

But note that we have already met a mechanism for moving

text around - the \kern. It is perhaps worth noting why \kern

does exist when it appears to do the same job as \hskip. A \kern

might be slightly more economical. How do we demonstrate this?

If we return to the definition of T^X, and replace the \kerns by

\hskips, we could look at the difference in the amount of Tj^X’s

memory which is consumed. If we set the \tracingstats param¬

eter to 3, TgX will report on the amount of memory that is used

(among other things). The key line is one which looks like

5773 words of memory out of 65536

It turns out that both

\def\TeX{T\kern-0.1667em

\lower0.7ex\hbox{E}\kern-0.125emX}

and

\def\TeX{T\hskip-0.1667em

\lower0.7ex\hbox{E}\hskip-0.125emX}

occupy the same amount of memory. Of course, one form might

be more ‘efficient’ than the other: a skip may have glue associated

with it. Therefore whenever TgX sees \hskip3pt it anticipates

that the dimension may be followed by a plus or a minus. It

therefore has to check what the next letter (or perhaps group of

letters) really is. A kern on the other hand is just a kern, so no

further scanning is needed. There is one important difference. An

explicit kern will not be a breakpoint. On the other hand, a line

break is permitted at an \hskip.

This might suggest that we could therefore

\def\TeX{\hbox{T\hskip-0.1667em

\lower0.7ex\hbox{E}\hskip-0.125emX}}

in order to ensure that 1)eX was never broken at the end of a line.

What then happens when a paragraph begins with TgX? Do we

really have to go on to say
\def\TeX{\leavevmode\hbox{T\hskip-0.1667em

\lower0.7ex\hbox{E}\hskip-0.125emX}}

in order to avoid the use of the \hskip? This also turns out to

use four more words of memory!

146 A plain T^X primer

There are two more points we can make about the difference in

the use of \kerns and some sort of skip: firstly, the various skips

are more flexible, since they may have glue associated with them;

secondly, \kerns work in both horizontal and vertical mode - if we

are already in vertical mode, a \kern will provide vertical motion.

A last point might be that in some circumstances it feels more

natural to employ a kern, or a skip: in other words, we use the

form which most nearly equates to how we perceive the operation.

It always depresses me when I see an explicit \vskip. I much

prefer them hidden away somewhere where they do not detract

from the form and structure of the document. This ‘hiding’ is

exactly what commands are for. No-one should ever have to type

an \hskip or \vskip in plain text except in the most peculiar

circumstances.

=>•Exercise 9.13: What does \hskiplinch do? <=

The ‘better’, or more acceptable, forms of vertical skips are

tucked away in \smallskip, \medskip, and \bigskip. The exact

amount of vertical movement is not critical here, although it is

explored in Chapter 12. Their construction is worth looking at

more closely, since they have some glue associated with them.

They are all very similar, so it is enough to look at one. The

definition in plain is:

\def\smallskip{\vskip\smallskipamount}

which merely obliges us to look further to:

\newskip\smallskipamount

\smallskipamount=3pt pluslpt minuslpt

There are several useful points to be made here. Firstly, just as

boxes may be allocated dynamically, so too may skips be allo¬

cated. And there are ‘equivalent’ commands like \skipO. The

amount of a skip has glue associated with it in the form of a plus

and a minus amount. It is valuable to appreciate the syntax being

employed here. There are only a few words in Tj^X’s vocabulary

which are not case dependent. Dimensions (like pt, in, dd) may

be expressed in upper, lower, or mixed case, as might file names,

font names (sometimes), and so too plus and minus. The plus

must precede the minus. Of course, the keywords are only ‘valid’

in context. Elsewhere they will indeed print out as ‘plus 3pt’, or

whatever. In the unlikely event that I was to say

\vskip lin

Plus-fours are seldom seen, except on the golf course.

Tj^X would be rather upset.

=>Exercise 9.14: What message would that example generate? And

Boxing 147

how should we solve the problem best? If the skip had been hidden in

another command somewhere it could have been more difficult to spot.

But we’ll discuss ‘safe TEX’ and its relation to commands elsewhere. 4=

Skips which have glue associated with them are useful when

building pages. Remember what TgK is trying to do. It has a

fixed size \vsize into which it is attempting to place n lines, each

with a \baselineskip of some figure. If

n x \baselineskip / \vsize

we will have a problem. The problem isn’t too difficult to solve,

since T^X’s page-building facilities have some other parameters

to play with. But that is a simplistic account. One way to help

TgX is to let the inter paragraph skip, \parskip, have sufficient

glue that it can cope without distress. By default, \parskip is all

positive glue - Opt pluslpt. You might ask why it does not have

a more generous figure, or alternatively why the \baselineskip

figure does not have glue associated with it.

=>-Exercise 9.15: Why do you think the glue is so stingy in the case of

\parskip, or non-existent in the case of \baselineskip? One way to test

your conclusion is to try modifying these skips empirically on a couple of

paragraphs. <=

The asymmetry of glue is always interesting, and does make

the spring analogy much more appealing that that of glue, since

springs may behave differently on compression and expansion from

their ‘natural’ size. But we seem to be stuck to glue.

We do not always know how much glue is applicable. There are

situations where all we know is that we need to add glue. T^X has

a couple of fills which can be used in such situations. A fill is an

amount of glue (it may be positive or negative) which will expand

or contract as required. A fill is a sort of a unit. There are in

fact three different levels of fill. They are referred to as fil, fill,

and filll. The last of these is seldom seen. In general we are

most familiar with \hfil, \hfill, \vfil, and \vfill. Although

they are actually fundamental T^X commands, their equivalences

are given here:
\vskip Opt plus lfil

\vskip Opt plus lfill

\hskip Opt plus lfil

\hskip Opt plus lfill

Note that they are all positive amounts of glue fill. There are two

other commands, \hss and \vss, which are equivalent to

\vss approximates \vskip Opt plus lfil minus lfil

\hss approximates \hskip Opt plus lfil minus lfil

\vfil approximates

\vfill approximates

\hfil approximates

\hfill approximates

148 A plain TpjK primer

These last two have negative and positive glue. This provides the

opportunity for two boxes to overlap, if, say, \hss were placed

between them.

Given this possibility of negative glue, there are a further two

commands:

\vfilneg approximates \vskip Opt minus lfil

\hfilneg approximates \hskip Opt minus lfil

Besides placing the curious negative glue between boxes, these

last two will also cancel out a \vfil or an \hfil, as appropriate.

Since both fil and fill may be given quantities, we have to

establish their interrelationship. Basically, any amount of fill

exceeds any amount of fil. You simply cannot accumulate suffi¬

cient fil to have any effect whatsoever on the smallest possible

amount of fill. For example,

0.000001 fill > 100000fil

Let’s look at this more closely. A possible strategy to centre a

piece of text across the page runs like this:

\hbox to\hsize{\hss A piece of text \hss}

This is the essence of the \centerline command, to be introduced

in the next chapter. Knowing how it works, we can subvert it:

\centerline{\hfill Title}

will mean that the material is not centred at all, but instead is

pushed to the right of the page.

One of the interesting features of the fils is that it is possible

to ‘float’ material proportionally. For example, we might want

twice as much white space on the right as the left:

\hbox to\hsize{\hfil Two Thirds\hfil\hfil}

Similarly, I often find that if I am preparing something which

takes up less than one side of a page, I don’t really want to centre

it vertically, but positioning it so that there is some glue at the

top but more at the bottom, gives a pleasing appearance.

=>Exercise 9.16: Arrange some text to be floated within a page so

that there are two units of glue at the top and three at the bottom.

Now imagine you have two ‘blocks’ of information on a page. Arrange the

material so that the glue at the top and between the blocks is the same,
and that below is twice as much. <=

=>Exercise 9.17: This is a shade more difficult. Outline how you might

arrange two blocks of text so that they fit side by side on the page. The

width of the blocks will not be equal, but their vertical extent will be the

same. There is a trivial solution to this too. <t=

Boxing 149

Lapping

One of the more interesting box manipulations is involved in

manipulating a box so that TgX assumes it has no width. This

allows a sort of ‘back spacing’ to be created. There are two such

commands, called \llap and \rlap. The first, \llap, is properly

back spaced, while the second, \rlap, is a sort of mirror image.

The result of writing Y\llap{=} is to give us a crude approxi¬

mation to the symbol for ‘yen’. The reason that it is not a very

good approximation is because the widths of both Y and = are

not exactly equal. An almost equivalent rendition of Y\llap{=>

is \rlap{Y>=. These actually look slightly different, as you might

expect from lapping the = over a Y, as opposed to a Y over an =.

How do these two commands work? There are a number of ways in

which they could be created, but the actual definition of \llap is

\def\llap#l{\hbox toOpt{\hss#l}}

In other words, create a box of no width, preceding the argument

by glue which has both stretch and shrink. That places the text

of the argument to the left, and so gives a back-spacing effect.

Transposing to

\def\rlap#l{\hbox toOpt{#l\hss}>

pushes the text to the right, but it takes ‘no space’, so that what¬

ever follows starts at the same place as the text. As an example,

it could be possible to place a symbol to the left of the text in a

paragraph:

\leavevmode\llap{\Rightarrow\indent>

When placed at the beginning of a paragraph, this will position

the =>• in the margin.
=> Exercise 9.18: Modify this set of commands to place an arrow in

the right margin. <=

When the \everypar command is uncovered, a route will appear

where every paragraph can begin with such a symbol (or perhaps

more usefully, with a paragraph number).

.

Commands#! 10

Commands (definition or macro) start to get much more interest¬

ing when they have parameters. The basic form of the definition

of a command with parameters is something like

\def\one#l{#l}

where the first #1 says that there is to be one single parameter.

The repetition of #1 within the braces merely tells T^X how you

want the parameter (or argument) to be treated. Having defined

\one, we can use it by saying \ one {argument}. All this does is

to place argument into the text at this point. In this instance the

command is dull and rather pointless, so let’s have a look at a more

interesting single-parameter command. T^X has a small clutch of

commands for placing text on lines: \centerline, \leftline,

and \rightline. They all have the same fundamental structure

which is shown approximately by

\centerline#l{\hbox to\hsize{\hss#l\hss}}

The argument is placed in a horizontal box the width of the page

and the globs of glue on either side ‘push’ it to the middle of that

box.

Using a command like this we have to understand what TjjjX

thinks the #1 means. If we say

\centerline Me

T£X will pick up the next ‘token’, which in this instance is the

‘M’ It will not centre ‘Me’. It will centre ‘M’ and then come back

for the ‘e’ as part of the normal typesetting. To ensure that it

takes the whole group we have to enclose the argument in braces:

\centerline{Me>. This should all be so obvious as to be second

nature, but it is worth clarifying just in case you are becoming

overintuitive.
=4>Exercise 10.1: The other two commands, \leftline, and \right-

line are fairly self-descriptive. What do you think they do? Now compare

your ideas with what \show tells you about them. ^

Although this last group of examples have one parameter, and

have used it once, we could ignore the parameter completely:

152 A plain Tp]K primer

\def\ignore#l{}

or repeat the argument again and again:

\def\again#l{{\it #1}, {\bf #1}, {\sl #1}, {\tt #1}}

=>Exercise 10.2: I could have named the last command \repeat, but

I thought better of it. Why? <=

When there is more than one parameter, the pattern is a simple

extension:

\def\lots#l#2#3#4{....}

so that each parameter is numbered sequentially, up to the total

number. Since the pattern is so straightforward, you might won¬

der why you don’t just have some way to say ‘four parameters’

or something similar. There is a reason. Note that there may be

no more than nine parameters. Oddly, although all the boxes and

skips and so on (and even the \ifcase) all start at zero, com¬

mand parameters start at one. This restriction to nine is seldom

irksome, and if it is, there are always ways to get round it.

=> Exercise 10.3: Why do you think there is a restriction to nine

parameters in a command? -4=

In the expansion, the parameters may appear in any order you

like, and, as we have already seen, they may appear as frequently

as you want, or not at all. There are some restrictions on the

replacement text. For example, it must not have any unbalanced

braces. Apart from that, almost anything goes.

I looked through lots of my files to find examples of commands

with parameters and found that I seldom seem to use commands

with more than one or two arguments. Since I usually feel that

real examples have a shade more validity than artificially con¬

structed ones this does hamper a demonstration of how involved

commands work. Nevertheless, let’s make a simple example:

\def\rightleft#l#2{\hbox to\hsize{#l\hfill#2}}

which is just a way of taking the first argument and left justifying

it, and the second argument and right justifying it. There is noth¬

ing really exciting about this, but it still deserves some further

examination. Spaces are often a problem in commands: consider

the following

\rightleft{ word }{ another word }

Just what does it produce? The streetwise will realize that all the

argument goes in, spaces and all. This is one instance where T^X

does not ignore spaces. But equally, if one of the arguments was

{ word >, TgX would only ‘see’ a single space on either

side. One space means something, but multiple spaces are elided

into one. To show what happens:

Commands#! 153

\rightleft{ word }{ another word >

\rightleft{word}{another word}

word

word

another word

another word

There are times where this can be very trying. For example,

\def\title#l{\centerline{\inch#l}\vskiplOex\noindent}

This apparently harmless command to provide a title has a fatal

flaw. The flaw is that when it is used, the implicit ‘carriage control’

at the end of the line is treated as a space and is pre-pended to

the no-indented line. If there was normal indentation the problem

would still be there, but it would be a bit less visible. The ‘crude’

solution of

\def\title#l{\centerline{\inch#l}\vskiplOex\noindent}

\title{A Beginning}

\noindent

is hardly satisfactory. The ‘real’ answer is

\def\title#l{\centerline{\inch#l}\vskiplOex

\noindent\ignorespaces}

which effectively ‘removes’ the spaces. But this does help to

emphasize how difficult it can be to see spaces. Often when we

create commands which go over several lines it is a safety mea¬

sure to end each line with a 7, symbol to ensure that no spurious

spaces/end of lines are incorporated in the expanded text. Of

course this is unnecessary where the line ends in a command with

no argument, since the spaces are effectively gobbled up.

=>Exercise 10.4: Provide another example. When else are spaces gob¬

bled up in this way? -t=

Besides being careful with spaces in the body of the command,

we have to be careful too in the parameter part, since

\def\title#l {...

means something rather different to the previous definition. Here,

the space really is important. The commands described up to now

are]‘undelimited’. Or rather, there is another class of commands

which is described as being ‘delimited’. Instead of placing the

arguments in braces when we use them,

\title{A longer title this time}

we say in the actual definition how we expect the arguments of

the command to be broken up. Returning to the ‘new’ definition

of\title

\def\title#l {...

the space which follows the #1 is a delimiter. It tells that the

argument will be everything up to the first space. Thus

154 A plain T^X primer

\title Sesquipedalian

will turn the whole of ‘Sesquipedalian’ into a title, while

\title Aardvarks are seldom harmful

only turns ‘Aardvarks’ into the title. The remainder of the text is

new material, presumably to be handled as normal text here. Of

course there are endless variations on this. And there are endless

discussions on the wisdom of delimited commands. The major

problem revolves around the need for the delimiters to match

exactly. For example
\def\title#l\par{\centerline{\inch#l}\vskiplOex

\noindent\ignorespaces}

is a reasonable definition, where the title text is delimited by either

a blank line or a \par statement. This is a rather interesting case,

since if we forget to put the blank line in (so easy to do), the

whole of the following paragraph becomes the title.

A simplified version of this could be

\def\simple#l\par{{\bf #1}>

The emboldening is just to enable us to identify the extent of the

action. Consider the following case:

\simple The first line

A second paragraph

The blank line (identical here to a \par) delimits the argument.

In fact we could demonstrate the equivalence by writing this defi¬

nition as

\def\simple#l

{{\bf #l}\par>

with a blank line explicitly in the definition. What actually hap¬

pens when we use either of these commands? We find the following

behaviour (again, this has been deliberately narrowed):

The first line A second paragraph

Why is there no paragraph break? Simply because the blank line

is a delimiter, not a real command. To ensure that a new para¬

graph begins, we must include such a command as part of the

definition of the command:

\def\simple#l\par{{\bf #l}\par}

One delimited command has already been introduced:

$\root n-1 \of m$

uses the \of as a separator. It has no other function.

There are a couple of similar \par delimited commands in plain

TgX, namely \beginsection and \proclaim. The full commands

Commands#! 155

are given on page 355 of The T^Kbook. Although the body of

the command contains some ‘new’ features, it is the delimiting

template which is really of interest:

\def\beginsection#l\par{...

\def\proclaim #1. #2\par{...

The first is used to begin sections, where the title of the section is

the argument, and as discussed earlier, it is delimited by a blank

line or a \par command. The second of these is worth consider¬

ing in more detail. The definition has two arguments which are

delimited by . u and \par. An example of its use might be

\proclaim Theorem 1. The stirrup pump will not

extinguish the fires of hell\par

=>Exercise 10.5: In order to gain some experience in the use of delim¬

ited commands, state what you expect, and then verify what happens,

when you: leave two spaces between \proclaim and the first argument;

leave no space between \proclaim and the first argument; leave two or

more spaces between the first delimiter (the dot) and the second argu¬

ment; leave no spaces between the first delimiter (the dot) and the second

argument; omit the dot or the \par. <=

It is also important to realize that the . which is used as part

of the delimiter has nothing to do with the bold full point which

appears in the typeset version. The \proclaim definition itself

contains a full point. In this case there is the world of difference

between l.u and l.lu- While they both look like numbers to be

used in the \proclaim, only the first one is syntactically correct

and will yield the sort of results we probably want.

Of course, even when the parameters are delimited, you can still

put braces around them. Indeed you may need to. Imagine in the

last example that you wanted to say

\proclaim (after T. S. Eliot). The stirrup pump

will not extinguish the fires of hell\par

The T. u will delimit the first argument of \proclaim with the

rather odd result that (after T. will appear in bold. In order to

have the correct part taken as the first argument, write

\proclaim {(after T. S. Eliot)}. The stirrup pump

will not extinguish the fires of hell\par

or even
\proclaim (after {T. S.} Eliot). The stirrup pump

will not extinguish the fires of hell\par

The delimiters must still appear at the ‘outer’ level.

Again note that the \par is merely a delimiter. No paragraph

will actually be begun. Normally the command expansion text

156 A plain T^X primer

would take care of this. This does mean we can have the appar¬

ently odd situation of an undefined command which does not

cripple T^X:

\def\title#l\closetitle{..

where \closetitle is merely a delimiter and not a command.

Partly because of the potential problems of ‘runaway argu¬

ments’, where T^X never finds the closing delimiters, there are

some built-in safety measures. Normally TgX will complain when

it thinks the argument includes a paragraph break, and will give

the ‘runaway argument’ message. There is a way around this.

There is a class of \long definitions which may indeed contain

paragraph breaks:

\long\def\theorem{...

would allow the parameters passed through to this command to

contain more than one paragraph. Of course there is a reason for

this constraint. T^X has to read all of the argument into memory

before it does something with it.

Another convenient example might be

\long\def\Boxit#l#2{\vbox{\hrule\hbox{\vrule\kern3pt

\vbox{\kern3pt\vbox{\hsize#l\noindent\strut#2}%

\kern3pt}\kern3pt\vrule}\hrule}}

(mainly borrowed from Knuth, page 331), where the first argu¬

ment is the width of the text in the box; the frame is 3 pt ‘outside’

the text, hence the reference to \kerns of 3pt, and the \strut is

a new command which will be examined later in Chapter 15, but

is used here to ensure that the vertical spacing is ‘correct’. This

would enable us to have something like Figure 10.1.

Many commands contain other commands. Normally this is not

a real problem, but a few have been deliberately locked so that

they cannot appear within other commands. There are two notable

examples of these restricted use, or \outer, commands: the first

is \bye, and the other is the command which allows \newdimen,

\newbox, and other similar facilities to be set up.

=>Exercise 10.6: Try placing \bye within the body of a definition and

see what happens. <=

I have difficulty in seeing the strategy for limiting \newdimen

and \newbox by creating them with \outer, since it seems a little

overconservative. There are many situations where it would be

particularly useful to be able to use \newbox or \newdimen or

\newcount in the definition of a command.

It is wise to remind ourselves of the purpose of commands, by

quoting from Knuth:

Commands#! 157

“The name of the song is called ‘Haddocks’ Eyes.”'

“Oh, that’s the name of the song, is it?” Alice said, trying to

feel interested.

“No, you don’t understand,” the Knight said, looking a little

vexed. “That’s what the song is called. The name really is ‘The

Aged Aged Man.”'

“Then I ought to have said ‘That’s what the song is called’?”

Alice corrected herself.

“No, you oughtn’t: that’s quite another thing! The song is

called ‘Ways and Means': but that’s only what it’s called, you

know!

“Well, what is the song, then?” said Alice, who was by this

time completely bewildered.

“I was coming to that,” the Knight said. “The song really is

‘A-sitting On A Gate': and the tune’s my own invention.”

“But the tune isn’t his own invention,” she said to herself:

“it’s T give thee all, I can no more.”'
Figure 10.1

Meta-names

TgX is intended to support higher level languages for compo¬

sition in which all of the control sequences that a user actually

types are commands rather than TgX primitives. The ideal

is to be able to describe important classes of documents in

terms of their components, without mentioning actual fonts

or point sizes or details of spacing: a single style-independent

document can then be set in many different styles.

=>Exercise 10.7: What will this do? \def\eatme#l*-D <=

=>Exercise 10.8: Write a command where \<word> will result in

(word). ■<=

Exercise 10.9: Perhaps one of the commonest sources of misunder¬

standing with new T^K users is the distinction to be made between {\it

italicize me} and \it{italicize me}. Because it is so fundamen¬

tally obvious, old T^X hands find the question mind-baffiingly difficult to

answer. Devise a convincing explanation. Please. <=

Exercise 10.10: Devise a command which emphasizes, so that it

gives a different font depending on the context. In an upright font it will

use a sloping font (or perhaps a bolder font). In a sloping or bold font

it will choose something else to be appropriate. Are you going to worry

about the italic correction? <*=

Most of the useful commands which are encountered either

,do something awfully easy but convenient, or do things which

are individually quite involved, but taken together encapsulate

a single idea. Usually such commands combine several different

158 A plain TfeX primer

components of T^X. The following demonstrates the conjunction

of some things we have already encountered, and some we have

not. Non-trivial examples which merely build on what we have

covered so far are so difficult to find. At least the next examples

have the merit of apparently having serious intent.

The effect that is to be achieved at the beginning of a new sec¬

tion is a section number, followed by the section ‘title’ crammed

into a rather narrow width, and then the first paragraph of the

section; the following paragraph should not be indented at the left

margin. An example is shown in Figure 10.2.

As usual, there are many possible solutions. This is only one:

\def\sectionhead#l#2#3\par{{%

\setboxO=\hbox{{\bf#l}\hskipO.5em>

\advance \hsize by -\wdO

\setboxl=\vtop{\raggedright\hsize 3pc\noindent #2}

\advance \hsize by -\wdl

\setbox2=\vtop{\noindent #3}

\hbox{\box0 \boxl \box2}

\bigskip\noindent}}

What are the main points? Firstly that it is a delimited command.

Delimiting with the \par seems reasonable for a case like this. The

paragraph break is an integral part of the problem. The calculation

of the widths of the individual components is fairly straightfor¬

ward, and helps to account for the double braces which open the

command. Without the second brace, the value of \hsize would

decrease each time we use this command. Embarrassing. The rea¬

son for stuffing everything into boxes is that we do not necessarily

know the width of the first box. Provided we have no more than

nine sections, we could set the width of that box to be static.

How do we use it? Like this:

\sectionhead{I. HFirst section}

Twas brillig and the slithy toves did gyre and gimble

in the wabe: all mimsy were the borogoves, and the mome

raths outgrabe.

Beware the Jabberwock, my son!

The jaws that bite, the claws that catch!

Beware the Jubjub bird, and shun the

frumious Bandersnatch!

=> Exercise 10.11: Solve the problem a different way. 4=

Commands#1 159

I. First ’Twas brillig and the slithy toves Did gyre and gimble

section in the wabe: All mimsy were the borogoves, And the

mome raths outgrab.

“Beware the Jabberwock, my son! The jaws that bite, the claws

that catch! Beware the Jubjub bird, and shun the frumious Ban-

dersnatch!”

More command subtleties

There are a variety of ways to create commands. The one descrip¬

tion given so far is to use \def. There are variations to \def,

and there are also slightly different ways to create commands.

As usual, examples help to illustrate what is implied here. If the

command \let is used to ‘equivalence’ two other commands, a

new command may be created very cheaply:

\let\command\centerline

gives a new command, \command, which not only has all the

attributes of an existing command, \centerline, but really is the

same as the existing command. Inside TjrpC it ‘points’ to the same

token list. However, should we redefine the original command

\centerline, while the redefinition will affect \centerline, it

will not affect \command. Why would we want to do something

quite so bizarre? The following example might help answer that

question:

\let\endpara\par

\def\par-C\endpara\vskip2pt\hrule\vskip2pt}

would ensure that every paragraph ended with a horizontal rule.

Actually there is a better way to do this with \everypar. Never¬

theless it does demonstrate that we can redefine primitive com¬

mands, without incurring the expense of recursion. Imagine

\def\par{\par\vskip2pt\hrule\vskip2pt>

=>Exercise 10.12: From time to time it is possible inadvertently to

create a recursive definition like the last one. When it is used it just loops

around and around, usually until T^X runs out of one of its varieties of

stack space. If you don’t know what that means, it does not really matter.

This can be frustrating. It is wise to find out whether there is some way of

breaking into T^X when such an event occurs, or whether you just have

to be patient. Do so.

The Met command is even more powerful, since new commands

can apparently be introduced. Almost any token can be used:

\let\\=\cr

\let\hash #

Figure 10.2

A section head

160 A plain TpjX primer

But it would be naive to assume that \hash could take the place

of # when that symbol was used to indicate the parameters in

a \def, but on the other hand (jumping ahead slightly) it could

be used in an alignment. The commonest use of \let is in the

temporary reassignment of a command.

An ‘ordinary’ definition can be given certain additional powers

through suffixes: the suffixes \global, \outer, and \long can be

placed before \def. We have looked at the last two of these briefly

already.

The \long prefix is used to say that a command argument may

be more than one paragraph long. Remember that an argument

which contains more than one paragraph will likely be a very long

one. This could fill up lots of TgX’s memory. The structure of a

\long\def does not allow us to distinguish between first argu¬

ment, which might be allowed to be more than one paragraph

long, and another, which should not be more than one paragraph.

It’s all or nothing.

The \outer prefix prevents a command from becoming part of

another one. As we commented earlier, it does seem overused.

Exercise 10.13: Look through the plain T^X commands to see

which are defined as \outer. You may have to work around things to

see what they really do (or don’t). Are you foolhardy enough to redefine

some of these without the restrictions? <=

There are still a few ‘special’ forms of \def to consider. These

are \edef and \xdef. Since the latter turns out to be merely

\global\edef, we can more or less ignore it now. What is an

\edef? It is an ‘expanded definition’. When TgX reads the com¬

mands of the definition part of a command, it stores them in

memory. It does not interpret them. It does not even bother to

find out whether any commands inside your definition actually

exist. It thinks you know what you are doing. Once the command

is used, it is expanded, and all the parts are interpreted. They are

given their current meaning.

The \edef variant allows you to fix the meaning of a command

at definition time. All the commands and commands used in the

defining text are expanded immediately. Therefore there may be

no undefined command in the text:

\def\test{\information}

\def\inf ormation-fOld}

will work when you come to use \test, but

\edef\test{\information}

\def\information{01d}

Commands#! 161

will not, because \inf ormation has not been defined by the time

it is required to be expanded in \test.

If the command definition contains a command which should

not be expanded, but should be interpreted later, it is possible to

inhibit the expansion with \noexpand:

\def \inf ormation-fOld}

\edef\test{\information\ — \noexpand\information}

\def\information{New}

gives the rather interesting result that \ inf ormation yields New,

while \test generates Old - New.

There are one or two other special conditions where something

like a command is defined. The \every. . . commands allow you to

set up a series of one or more commands which are executed when¬

ever a particular situation occurs. The commands are \every-

par, \everycr, \everymath, \everydisplay, \everyhbox, and

\everyvbox. There is also an \everyjob, but since this may only

be used in INITEX, it will not be considered further. INITEX is not

a production version of T^X, but one used to set up, for example

plain.

Each one of these \every commands has the same sort of

meaning. In the case of \everypar, whenever a new paragraph is

encountered, the text specified is processed:

\everypar={\bigskip}

There are far better ways to do this, through \parskip, but this

illustrates the way that \everypar could be used to insert extra

space every time a blank line or \par was encountered.

More usefully, we could force the first word of every paragraph

to be set in a different style:

\def\start#l {{\sc #1}}

\everypar{\start}

Provided that \sc had been set up to do something (for example,

to turn on the ‘caps and small caps’ font, every paragraph would

find its first word in that style.
=>Exercise 10.14: Repeat the last example so that the first letter of

a paragraph is given in a different font. <=

Local and global

The most obvious and common use of grouping is to localize some

change, for example a font change. Putting \it in braces makes

' the command effect only the text up to the next closing brace:

{\it. . .This is because the assignments made by the expansion

162 A plain TpjK primer

of \it are local to the group formed by this pair of braces. This

is the default case: assignments apply only within the group in

which they are made, and at the end of the group everything is

restored to the ‘original’ state.

Here everything means the values of all the parameters and vari¬

ables, the meanings of all the commands, plus many of the other

things which control T^X’s current activities. Naturally every¬

thing has exceptions. There are few things which are intrinsically

not local, and changes to these, even inside a group, will have a

global effect. Some of the common commands and assignments

with a global effect are

\magnificationlOOO

\hyphenation{command, para-meter}

\batchmode

There is some plausible reason why it does not make much sense

to see these as temporary changes.

All command definitions, \let assignments, and register assign¬

ments are local to their group unless they are prefixed by \global.

As it suggests, this has the effect of a global assignment, and over¬

rides any grouping. A shorthand for \global\def is \gdef:

\global\countO=l

\global\baselineskip 12pt plus lpt

\gdef\title{Global}

\global\let\next\relax

\global\long\def\section#l/#2{\leftline{\sl#l}\par

\noindent#2\medskip}

Some flavour of the potential use of \global can be found from:

\countO=l

{\advance \countO by 2\relax \number\countO}

\number\countO

{\global\advance \countO by 3}

\number\countO

The first grouped \advance increments \countO by 2, but this

increment is ‘lost’ when we revert back out of the group. The

second time that \countO is typeset, it has the value that it had

originally. In the next case, where it is incremented globally, the

change survives the group.

=^Exercise 10.15: Consider the following assignments:
\countl=2

{\countO=l \advance\countO by\countl}

{\global\advance\countO by\countl}

What value will \countO have now? 4=

Commands#! 163

In a sense, font assignments are global. Although
{\font\fib=cmfiblO}
will result in \fib being undefined (since the setting up of the
font is grouped), the font metric information will have been loaded
and will be more readily available in future.

Groups

Although the most obvious way to create a new group is with
braces, this is by no means the only way. There are ‘implicit’
groups. These are confined to some aspects of maths, boxes, and
alignments. Alignments crop up in the next chapter, but will be
included here for the sake of completeness. As soon as you enter
text or display maths you are in an intrinsic or implicit group. In
a sense then, $ and $$ are grouping symbols. Any extra defini¬
tions will be local. Within maths, groups are also formed between
\left and \right items. Not only do these create parentheses,
they enclose TeX groups. The material inside a box (\hbox, \vbox,
or \vtop) is in a group: there is perhaps an unexpected repercus¬
sion here that, in displayed maths, there is a hidden \hbox in
an \eqno or \leqno so that any text between these commands
and the $$ is typeset in a horizontal box. Thus anything in there
is grouped. Each entry of an alignment (as we’ll soon see, this
means within the &s) is a group (and so too is the alignment
itself). Material in a \noalign is also in an implicit group.

Of these, perhaps the boxed material is the one which can cause
some confusion. Until you realize what \centerline really means,
\centerline{\sl This text}
does not seem all that different in use from
\def\quid{\it\$}
\quid32.00
The \centerline has an implicit group (an \hbox) which ensures
that the \sl is ‘confined’. The definition of \quid should of course
have an extra pair of ‘insulating’ braces.

Groups can be nested as deep as you like, although presum¬
ably TeX will run out of space eventually, since each new layer of
grouping requires that some information is stored.

Alternatives - almost

There are two commands which may be used to open and close
a group: \begingroup and \endgroup. They can be used in any

164 A plain T^K primer

case where braces will do, provided the braces are being used to

group. They will not work for

\def\quid\begingroup\it\$\endgroup

or to enclose a box. In those contexts the braces are used as

delimiters and have a definite syntactic requirement. A \begin-

group may only be terminated by a \endgroup. It should not be

necessary to say that you cannot write something like
\begingroup

\endgroup

...}
Groups cannot overlap. They may be like Russian dolls and sit

inside one another, but they cannot overlap.

Although braces may be thought of chiefly in their role of cre¬

ating groups where ‘local’ or confined actions take place which

have no longer lasting effect, braces do have other uses, some of

which have been addressed already. For example, braces will be

found as part of a command definition, marking the beginning and

end. Similarly, there will always be braces after box-creating com¬

mands like \hbox and \vbox. Again the braces are marking the

beginning and end of something which forms an implicit group.

They indicate a group, but they are not the ‘cause’ of the group.

In these cases the braces are not used merely to indicate a group.

They therefore must not be replaced by \begingroup \endgroup
pairs.

On the other hand, there are two commands \bgroup and

\egroup which may be used in place of { and > in most, but

not all, contexts. Their definitions are
\let\bgroup {

\let\egroup }

They may be used wherever braces form a group, including an

implicit group. They may not be used to replace the braces which

begin and end the arguments of a command. It is instructive to
see what T^X would make of this:

\def\one\bgroup x\egroup

Seeing it written down like this, and remembering about delim¬

ited commands, it comes as no real surprise that T^X generates a
message like
Runaway definition?

\bgroup x\egroup

since it assumes that the \bgroup x\egroup is just part of the
template of the command.

Commands#! 165

=> Exercise 10.16: If the last example was more realistic and had a
few definitions:
\def\one\bgroup x\egroup

\def\two{y}

would the error message be the same? <=

A case where \bgroup and \egroup are not exactly equivalent

to { and } is when they surround the argument of a command.

It is possible to write

\centerline\bgroup Centred information\egroup

but rather unexpected things happen. The command \center-

line absorbs \bgroup as its argument, so that what T^X sees,

after expanding \centerline, is
\hbox to\hsize{\hss \bgroup

\hss }Centred information\egroup

which is ‘equivalent’ to
\hbox to\hsize{\hss {\hss }Centred information}

Outside the restrictions of delimiters of replacement text in a

command and delimiters of a command’s arguments, the only

other context where { and } must be used is with a token string

(discussed briefly at the end of this chapter). The grouping of

\bgroup with } is normally quite satisfactory, as is { and \egroup.

Although they may be paired with { and } they may not be

paired with \begingroup and \endgroup. The following is there¬

fore legal
\setboxO\hbox

\bgroup
\begingroup \bf This {%

\it is \egroup

\endgroup legal, but difficult to read

}
and somewhat obscure to follow; while
\setboxO\hbox

\begingroup

\bgroup\bf This {%
\it is \egroup

\endgroup illegal, and difficult to read

\egroup
is not only difficult to follow, but also syntactically incorrect.

These commands do have some quite far-reaching advantages.

It becomes possible to have a command with an ‘unbalanced’

group. Of course, if the balancing part does not follow later,

may well complain. If the \it and similar commands present a

166 A plain TpjX primer

problem, they could be augmented by a \beginit \endit pair,

where the definitions would look something like
\def\beginit{\begingroup\it>

\def\endit{\endgroup>

In a similar way
\def\beginminipage#l{\hbox to\hsize

\bgroup\hss\vbox\bgroup\hsize#l\relax}

\def\endminipage{\egroup\hss\egroup}

would create a ‘centred mini-page’ command pair which takes a

single argument which defines the width of the mini-page. Note

that the text of the material to be typeset is not passed as an

argument, just the width. In this way all the contents of the mini¬

page need not be held as an argument. This also means that we

do not have to worry about making the command \long.
=>Exercise 10.17: The \beginminipage ‘environment’ might be mod¬
ified by boxing the material (see page 156). Combine the two commands
to create a ‘boxed mini-page’. Retaining the centring reduces your future
flexibility. How would you place two boxed mini-pages together across a
page? <=

Other ways

There are a few other ways in which commands may be created.

Token strings are used a little, and have properties which make

them look rather like commands. Token strings occupy registers

just like counters, dimensions, and skips. There are therefore up

to 256 of them. The ‘fundamental’ command is \toks; thus

\toksO={Walrus}

has the effect of storing the text Walrus in the token string. In

fact, the string may be any string and can include other com¬

mands if needed. As usual, the = is not obligatory. To use the

token string, we do not say \toksO, since if we did, Tj^X would

be expecting some suitable string: instead, we precede \toksO by

\the. To make it disgorge its contents:

\the\toksO

Rather than use the form where each string is numbered, we can

use
\newtoks\oyster

\oyster{Carpenter}

\the\oyster

in a manner equivalent to the other registers. A token string

therefore looks rather like a command without parameters. The

Commands#! 167

question is bound to arise, why? If the two are similar, and if in

fact it is necessary always to precede a token string by \the in

order to use it, making it less ‘friendly’, why bother? This is not an

easy question to answer. Primarily, token strings are already with

us. When we used \everypar, for example, what was happening

was that a token string was being set up. The syntax is identical:

\everypar={\hrule}

The explicit use of \toksO or \newtoks merely makes accessible

what is already there. On the other hand, it is possible to do some

rather powerful things with token strings - much too powerful for

a primer.

One of the commonest uses of token strings is in setting up

headlines and footlines. These are the extra information which

typically lies outside the normal text boundaries, which may, for

example, contain the chapter title (or current section title), page

number, and a variety of other information. Two token strings are

available for this use, \headline and \footline. These will be

examined a little more closely in a later chapter.

Token strings are sufficiently similar to commands that they

require the use of braces around the ‘replacement text’. Trying to

use \bgroup and \egroup will generate errors.

Commands which violate the rules

The last way of setting up a command which will be presented

here is through \csname. This is just a little odd, especially since

it allows us to violate one of the rules about command names

which was set up earlier. Taking a simple case first:

\def\join#l#2{\csname#l#2\endcsname}

will take two arguments, and join them together as a single, named

command. For example, \join{centre}{line} would be equiva¬

lent to \centerline, and \join{}{line> would be equivalent to

Mine. To use this command we can say
\join{left>{line}{the frumious bandersnatch}

This seems a little long winded, and in this instance, perhaps
\def\join#l{\csname#lline\endcsname}

would have the advantage of being briefer, and also demonstrat¬

ing that almost anything may appear between the \csname and

\endcsname.
The \csname \endcsname pair are not exactly equivalent to the

backslash form of a command: for example, it would be possible

to have the following

168 A plain TpjK primer

\def\bizarre#l{\def\csname*&!\endcsname{#l}>

\bizarre{It’s full of stars}

\csname*&!\endcsname
in order to make this odd sequence of characters equivalent to the

piece of text. But look at it more closely. It merely appears to

work. The ‘enclosed’ definition

\def\csname*&!\endcsname{#l}
actually redefines \csname and treats *&! \endcsname as the

delimiters of the command. Should we come to use \csname again

it will not work as we expect.
The problem is that the commands are expanded in the wrong

order. We need some way of having TgX ignore the \def until

the \csname and \endcsname have been dealt with (expanded).

The relevant command is \expandafter. It allows the expansion

(or use) of a command to be delayed until the following one has

been processed. To take a simple example, for the purposes of

illustration,

\def\word{{AlphaMOmega}}
\def\choose#l#2{#l}
If we simply say \choose\word, the command may complain that

it cannot find a second argument (or maybe the next token will

mysteriously disappear). On the other hand

\expandafter\choose\word

forces \word to be expanded, leaving two arguments, {Alpha} and

{Omega}. Tf]X therefore prints out the first of these.

One area where these new commands can come in useful is in set¬

ting up keys for labels used in cross-referencing. Broadly, the the¬

ory is this: we may choose a label, for example \label{aardvark}.

The label will contain the page number, or a section number, or

perhaps an equation number

\defMabel#l{\def\csname#l\endcsname{\the\secno}}

and when we come to use the label aardvark, there will be the

section number. From what was said earlier, this last definition

is wrong, since what it is doing is redefining \csname. We have

to find some way of delaying the use of \def until \csname and

\endcsname are expanded. This time, one \expandafter will not

do, and we need three in order to force the delay to be quite long

enough (as a rule, \expandafters occur in odd numbers):
\def\label#l{\expandafter\expandafter\expandafter

\def\csname#l\endcsname{\the\secno}}

The other half of this problem is how we use the label in a rea¬

sonably ‘friendly’ way. No-one wants to type in

Commands#! 169

\csname aardvark\endcsname

in order to expand the label to find the section number. Writing

\aardvark is acceptable, but is not quite what we want. The likely

solution is to define another command

\def\ref#l{\csname#l\endcsname}

where the new command \ref{aardvark} simply expands to give

the section number where aardvark (or whatever) was last used.

These are likely to be features which are found embedded within

other commands. They will seldom see the light of day. There are

many other commands and structures like this. Some will be seen

briefly later.

Tidying up

In previous chapters, extra accents in both text and mathemat¬

ics have been introduced. How can we supplement the basic set of

accents? Consider the use of accents in text. The example of Chap¬

ter 6 was u. To write a command to place the circle accent is fairly

sraightforward, once it is known that \accent23 provides the

appropriate accent. The \accent is a command which assists T^X

in placing the symbol correctly. A suitable definition might be:

\def\u#l{{\accent23 #1}}

where \u u will provide a suitable accent. The main problem

is in deciding an appropriate name for the new command, and

remembering to leave a space between 23 and #1 in the definition.

The mathematical example of Chapter 4 is slighly different,

since it does not require a definition with a parameter. The \math-

accent command itself is enough. This helps to re-emphasize the

difference between accents in text and maths. The main mys¬

tery is how to select the accent itself. To do this easily we need

information provided in Chapters 18 and 19:

\def\open{\mathaccent"7017}

Firstly, accept that the " indicates a hexadecimal value. The

number is most easily read as 7, 0, 17. The 7 indicates that the

symbol is from the ‘variable family’ class, a category whose sub¬

tlety is great; the 0 indicates the symbol is in font family 0 (usually

\rm); and the 17 (actually "17) gives its position in the font table.

Eventually this allows us to write $\open u$ for u.

~

.

Matrix manipulations H

So far we have merely looked at fairly simple equations which can

conveniently be written either in the text, or in a one-line display.

We have not considered more ‘two-dimensional’ structures, like

matrices. It is probably fair to say that large equations, which

go over more than one line, as well as matrices (or tables) are

unlikely to be found in text rather than display. Almost all of

the following discussion therefore assumes implicitly that we are

talking about displayed equations and formulae.

There are two special ‘elements’ to setting aligned expressions

(which is the way treats matrices), which can be introduced

at once - the special symbol &, which can be treated as a sort of

tab character, and the command \cr, which can be thought of

as ‘carriage return’, that is, end of this particular line. Perhaps

‘complete row’ would be a better expansion of the acronym, since

it really has nothing to do with carriages or returns. Do note that

\cr only works in this way within an alignment. Placing it within

your text will seldom achieve anything positive, and may generate

a dubious error message.

Setting a matrix is rather straightforward:
$$T=\left\lbrack \matrix{

1 & 0 & 0 \cr

0 & 1 & 0 \cr

\delta x & \delta y & 0 \cr}

\right\rbrack

$$

This helps to illustrate the use of the & and \cr. The basic opera¬

tor at this point is the \matrix. The extra commands merely

place large square brackets around the matrix. You may use any

of the convenient delimiters given earlier. Knuth has a tendency

to concentrate on the use of ‘round’ brackets, but I tend to find

172 A plain TffK primer

square brackets more natural. That expression would yield:

T =

1 0 0
0 1 0

5x Sy 0

which also illustrates that the T= part is ‘balanced’ or centred

vertically with respect to the matrix.
Really, what more can be said about matrices? You might need

to put dots into the matrix, to obtain something like:

an Oi2 • • Oin

«21 022 02 n

Onl On 2 ■ • Onn

This presents few problems, once the new control sequences \ddots

for diagonal dots and \vdots for vertical dots are introduced:
$$B=\left\vert \matrix{

a_{ll} & a_{12> & \ldots & a_{ln> \cr

a_{21} & a_{22> & \ldots & a_{2n> \cr

\vdots & \vdots & \ddots & \vdots \cr

a_{nl} & a_{n2} & \ldots & a_{nn} \cr>

\right\vert
$$

=> Exercise 11.1: Turn this small example into TgX form:

A = -C 20 ~ f y o
b

XQ

a
y o
b

(20)

If you always use matrices with the same sort of delimiter, and

that delimiter is a parenthesis, things can be yet simpler. The

command \pmatrix allows you to omit the \left(and \right)

which may otherwise be required. But it is straightforward to

devise other control sequences which automatically use square

brackets, braces, or whatever delimiter is required.

The definition of \pmatrix is simply

\def\pmatrix#l{\left(\matrix{#l} right)}

so that it is trivially easy to incorporate your own definitions.

One of the features of the way T^K handles matrices is that it

‘centres’ the components around some imaginary horizontal axis.

Therefore

fa b c \

\d e f)
x

j
l

n

Matrix manipulations 173

is obtained from:
$$\pmatrix{

a & b & c \cr

d & e & f \cr}

\times

\pmatrix{

i & j \cr

k & 1 \cr

m & n \cr}

$$

It is possible to modify this ‘centering’ action, but it is not a

convenient thing to do. If we were to look into the definition of

\matrix, we would note a command \vcenter. This command is

similar to \vbox and \vtop, but may only be used in maths mode.

It is the command which is used for the vertical centering. This

vertical centering will also apply to an equation number included

in the expression, whether through \eqno or \leqno.

It is perhaps worth pointing out that when I lay out matrices, I

tend to be rather longwinded. The last example could have been

written:
$$\pmatrix{a&b&c\cr d&e&f\cr}

\times
\pmatrix{i&j\cr k&l\cr m&n\cr}$$

which is a little terse, and rather difficult to comprehend. It is easy

to omit the odd & or \cr inadvertently, and a certain amount of

confusion ensues. No real penalty is incurred by laying things out

fairly clearly. The benefits are largely social. Very often expres¬

sions need to be edited, either to be corrected, or simply because

they are reusable as a sort of ‘template’. It is during editing that

the benefits of clear laying out become evident.
Naturally, one-dimensional matrices (vectors) are just as simple.

For example:

a

b

c

is expressed as
$$\left\lceil \matrix{a\cr b\cr c\cr> \right\rfloor $$

A row vector can be written in the same way:

$${\cal C> = [\matrix{{t&G&B\cr>] $$

but since a very plausible alternative could be obtained from

$${\cal C} = [R\quad G\quad B]$$

174 A plain T^X primer

it is worth discussing why one might be preferred to the other.

The form which uses \matrix emphasizes that what is being dealt

with is some sort of matrix. The formal relationship of the other

representation is not clear. There may be no advantage here from

the point of view of someone reading the typeset version, where

the subtleties embedded in the markup are not available, but

if we are prepared to adopt the idea that there exist ‘views’ of

documents, where the typeset version represents but one aspect

among several, then the encoded version has some value, and may

possibly be required as reference to clarify the author’s intention.

In finding examples to be incorporated in this book I have often

been unsure of the original author’s intention (as modified by the

typesetter), and would have been grateful for the clarification that

access to commands could have granted me. On the other

hand, some authors, on the basis of ‘minimizing keystrokes’, would

prefer the second form of the expression (perhaps to the extent

somewhere of abbreviating the \quad to a shorter form if it were

to be used frequently). I do not favour terseness at the expense

of comprehension. But many do. A last point is that the \matrix

form will adopt the same spacing as other examples of \matrix,

while placing \quad between each element is just a guess. To see

how good a guess it is, here are the two expressions, typeset:

C = [R G B]

C = [R G B}

=>•Exercise 11.2: Which of these expressions is the vector? <=

It may not be obvious, but the entries within a matrix are cen¬

tred in their columns. If we wish to manipulate this, we can insert

horizontal fill, \hf ill, in any entry to right or left justify it within

a given column. Thus we can have
$$\left\lbrace \matrix{

c_0\hfill & \ldots & c_n \hfill \cr

c_l\hfill & \ldots & c_{n+l}\hfill \cr

\vdots\hfill & \ddots & \vdots\hfill \cr

c_n\hfill & \ldots & c_{2n}\hfill \cr>

\right\rbrace

$$

to give us

Matrix manipulations 175

Note that a simple \hfil is insufficient here. Its use would have

no effect whatsoever. Without the \hf ill, the matrix would have

looked like

=>Exercise 11.3: Which of these two solutions is more ‘attractive’?

With the \hfill, the \vdots in the first and last columns seem too far

to the left. Suggest a ‘better’ way of setting this matrix. Add an equation

number to the expression. <=

=>Exercise 11.4: If it seems a little far-fetched that it might be an

advantage to manipulate the way the elements of a matrix are handled,

consider the following:

r/e(0)
fe(1)

L/e(M-l)J
where arranging that the M — 1 term does not dominate the expression,

but just concludes ‘naturally’, requires a certain amount of forethought.

Can you reproduce the form here? Compare it with a simple, or naive

approach. Is it worth the effort? <=

There is another alternative when dealing with a bordered

matrix of the form

4 5

(l 1
1 1

0 1
0 0

\0 0

6 7 8

0 0 0\

10 0

1 1 0
1 1 0
0 0 1/

This is obtained from

$$S’ = \bordermatrix{

&4&5&6&7&8 \cr

4&1&1&0&0&0 \cr

5&1&1&1&0&0 \cr

6&0&1&1&1&0 \cr

7&0&0&1&1&0 \cr

8&0&0&0&0&1 \cr>

$$

176 A plain T^X primer

The contents of the matrix are not too important. The critical

parts are the ‘surrounding bits’:

4 5 6 7 8

4 /
5

S'= 6

7

8 V /

The top border is given by the sequence &4&5&6&7&

8 \cr. We start with the &. This merely has the effect of using

a blank as the first entry in the row; or, looking at it another

way, omitting the very first entry. Similarly, we could omit any

entry from any matrix, simply by putting nothing between the &

markers. And should we wish to write something like

we do it with an expression like
$$\left\langle

\matrix{a \cr & b\cr & & c\cr} \right\rangle$$

The \cr terminates the row, and therefore all of the entries in a

given line need not be complete.

A matrix may of course appear within a matrix:

1
-2 1

1 -2 1
1 -2

1

[C\

1

-2 1
1 -2 1

1 -2
1

was obtained from

Matrix manipulations 177

$$\def \one{\matr ix{°/0

\hfill l\cr

\hfill-2&\hfill 1 \cr

\hfill l&\hfill-2&\hfill l\cr

&\hfill l&\hfill-2\cr

& &\hfill l\cr}>

[C]=\left[\matrix{\one&&\cr

&\ddots\cr

$$
&&\one\cr}\right]

This opens up all sorts of possibilities.

=>Exercise 11.5: It is difficult to see how there may be any real prob¬

lems with matrices. To demonstrate your prowess, you might like to set

something like this:

[R G

2/a/6
0

l/\/3

-1/V6 —1/V6'
l/y/2 -l/y/2
1/V3 l/>/3

[Mi M2 M3]

Really the major question is how to make sure the columns are centred (in

the case of the first one) and right justified, (in the case of the others). The

rest is simple manipulation. Do be careful with the square brackets round

the vectors though. Note that they do not seem centred with respect to

the capital letters.

Aligning the column vectors so that they are either centred, left

justified, or right justified is not always sufficient control. Consider

the following example:

sx cos 9 sx sin 9 0

-sy sin 9 sy cos 9 0

-xoSsCOsfl + t/i^sinfl + zi -x0sx sin <9 - yisy cos 9 + yx 1

While it is fine to centre the columns, we really do want the

first two entries in the first column to appear right justified with

respect to one another. How did we achieve this? T£jX allows us to

\phantom a character, or string of characters. All the spacing asso¬

ciated with these phantom characters is computed and employed,

but the characters themselves never appear. In the case above, a

phantom minus was included before the first entry:

s_x\cos\theta & s_x\sin\theta & 0 \cr

We might have argued for a similar inclusion of phantoms for the

first two entries in the second column too, so that their relation¬

ship with the bottom entry was the same in both columns.

178 A plain I'pK primer

=> Exercise 11.6: Another example:

ds(u)

[Sb] =

du

ds(u)

du
u=b 2

ds(u)

du

=> Exercise 11.7: How would you get text into a matrix entry? For
example

small smaller smallest
sum summer summit

Having introduced the issue of text in alignments, there is a spe¬

cial control sequence \cases which incorporates text in a fairly

simple way. To obtain an expression like

G(lu) =
T, M < 2nfc

0, otherwise

we simply type
$$G(\omega)=\cases{

T,&$\vert\omega\vert<2\pi f_c$\cr

0,&otherwise\cr}$$

The part between the & and the \cr is assumed to be handled

as text, so that it is necessary to take special action to turn any

entry there back into mathematical style. Should this need to have

an equation number assigned to it, just add an \eqno before the

terminating $$.
=> Exercise 11.8: How would we therefore obtain the following? /l/2n

n2dx = {^ for|y|<l/2n 214
otherwise

The interesting features of \cases are the inclusion of the { sym¬

bol automatically and the fact that the second ‘argument’ in the

list is automatically placed into text. By experimenting to find out

whether this was done by \hbox or \rm in the command which

powers this construct, you could create your own version.
=>-Exercise 11.9: Suggest how this is created:

x, if x > 0;
-x, otherwise.

Matrix manipulations 179

=> Exercise 11.10: Similarly, how is

{ (z — a) + z\ for a < z < b

for z < a
for z > b

to be obtained?

Spaced out

From time to time it appears that TgX does not get its vertical

spacing quite right in constructs like \matrix and \cases. There

are a number of strategies that can be employed to ‘improve’

spacing. In aligned entries like \matrix and \cases, it is possible

to open out entries just a little, by putting some extra white space

between the lines: one way to do this is by the use of \noalign.

A \noalign may occur after any \cr and will open up the rows

by an amount which may be specified, for example:

\noalign{\vskip2pt}

The \vskip should be for a legitimate amount - for example, 2pt

(in this case, the maths unit mu is not a legal amount, although

we seem to be in maths). Applying this to one of the previous

examples,

ZK ~ Zl

b — a
Z\

{

(z — a) + z\ for a < z < b

for z < a

for z > b

is obtained by including a \noalign{\vskip3pt>:

$$z’=\cases{\displaystyle

{z_K-z_l\over b-a}(z-a)+z_l&for $a\le z\le b$\cr

z_l&for $z<a$\cr

\noalign-[\vskip3pt}

z_K&for $z>b$\cr>

$$

This spaces out the second and third lines of the \cases construct.

The value was found just by guesswork. By no great coincidence,

TjgX has a useful ‘general’ value which is also appropriate. This

is the \jot. I^X quantifies this ‘small amount’ as 3 points. We

could therefore have written

\noalign{\vskipl\jot}

In the case where a \vskip is used, we need to know approxi¬

mately how much extra space we require. Again this is something

which is best done after you have seen the first draft, or after

180 A plain TpX primer

you have looked at the equation on the screen (or even on the

page). This perhaps helps to emphasize the convenience of com¬

pleting equations in small batches, so that they are correct before

you assemble them into the complete work. There are few things

more frustrating than ‘errors’ on the last page of your manuscript,

which often means running the whole thing through T£X again.

On the other hand, errors on page 1 can be worse. After they are

corrected the whole structure of the document may change. Best

not to make mistakes.... This is hardly a paean to ‘structured’

documentation: if you have to look at the equation before you

can decide whether it is typeset correctly, you might almost as

well use a direct manipulation system. Fortunately TgX provides

enough examples where everything works just fine.

Another strategy is through the use of phantoms. We have

already met the ‘ordinary’ \phantom, which has all the character¬

istics of the contained material, but just does not appear on the

page. Its height, width, and depth are just the same as the orig¬

inal construct. It should also have the same properties, so that,

for example, binary operators work correctly. There are two other

varieties of phantoms, the \vphantom and the \hphantom. The

\vphantom is vertical phantom, which implants the height and

depth of some construct, without its width. In other words, an

invisible, vanishingly thin character (or group of characters). The

\hphantom is a horizontal phantom with zero height and depth

but its ‘true’ width. These are sufficiently general that they are

not restricted to maths. You can use them in ordinary text too

(should you need them).

To try to illustrate the use of the \vphantom take the following

example:

If we just adopt the straightforward approach of

$$P=\left[\matrix{

l&0\cr

\displaystyle{l\over d}&l\cr}\right]

$$

the two rows will appear rather too close together. The solution

adopted here was to say

Matrix manipulations 181

$$\def\pover{\vphantom{\displaystyle{l\over d}}}

P=\left[\matrix{

\poverl&0\cr

\displaystyle{l\over d}&l\cr}\right]

$$

The definition of a local command here is not essential: it merely

makes the contents of the matrix look a little tidier. It might have

seemed simpler to write

\everycr{\vphantom{\displaystyle-Cl\over d>}>

instead. This elegant solution does not work. Why not? If we were

to unravel the definition of \matrix, we would eventually find

that \everycr is used, and therefore replaces the one we thought

that we were using.

There is a useful command, \mathstrut, which is defined in

terms of a \vphantom left parenthesis. In general terms, a paren¬

thesis (left or right) is the highest and deepest ‘normal’ character

in T^X. So this sometimes is useful as a way of ensuring that lines

are a guaranteed distance apart.

An additional command which is sometimes used in this context

is \smash. This may be used with a formula, but unlike a phan¬

tom command, the formula appears, and TgK treats its height

and depth as zero.

These ‘adjustments’ may be required from time to time. Knuth

notes (The T^Xbook, page 327) in a similar context that ‘such

refinements usually can’t be anticipated until you see the first

proofs’.
=>Exercise 11.11: As an example, typeset the following:

Back to equations

There is still one class of equations we need to handle: those

which are too long to go over a single line, or which for structural

reasons, we wish to present in parts. For example,

Qtot = ai + a2 + a3 + ''' + an

n

= Y an

i= 1

182 A plain T^X primer

is best written over two lines, although we could squeeze it into

one. These ‘aligned’ equations have many uses, and in fact they

merely require us to employ the skills which have already been

acquired. First, though, we need to know that there is a new

command \eqalign. Do note that it is spelled \eqalign and not

\equalign. It means equation alignment, not equal alignment, if

that helps. This is perhaps a good case for

\let\equalign=\eqalign

just for practical spelling reasons. Most of the rest of it you should

be able to work out for yourself. Both & and \cr are used again.

The & is the pivot, which indicates the position at which ‘elements’

are aligned. The \cr merely signals the end of an entry, as you

would anticipate. Here is a complete example:

$$\eqalign{

m(n)&=2m(n-l)+2~{n-l}\cr

a(n)&=2a(n-l)+2~{n}\cr>

$$

which gives us

m(n) = 2 m(n — 1) + 2n~1

a(n) = 2 a(n — 1) + 2"

The &= ensures that the equations are aligned about the equals

sign. This is probably correct for many examples, but you need

not use this convention if you do not wish.

=>Exercise 11.12: The following two examples can be handled with

\eqalign and a little imagination:

H{j,k) = 0, j = 1,2,... ,8

H(257 - j, 257 - k) = 0, k = 17,18,..., 256

and

ft = (/n, /12, • • •, flrn),

h = (/21 > /22 j • • • > /2m)i

(9.84)

fM = if Ml 1 /M2i • ■ •) fMm)-
<=■

A long equation might have to be broken so that it continues

over more than one line:

a2(x,y)
(2X + 1)(2F+ 1)

X Y

£ £{&< x + m,y + n)
m=—X m-

(x + m, y + n)p(x + m,y + n)]

-11 2
g{x,y) - w{x,y)p{x,y)J j

Matrix manipulations 183

There is a lot here, but most of it is padding: the nub is the

$$\eqalign{\sigma~2

&={l\over(\cr

&\quad-w(

&\qquad-\Bigl[\cr}$$

which introduces little that is new. The main question is what to

put on the second and third lines, after the &. Basically we must

push the equations over to the right somehow. We do not want it

to start immediately under the equals sign. In the example above,

I chose to indent it by a \quad and a then a \qquad. For the

record, the complete form was

$$\eqalign{\sigma~2(x,y)

&={l\over(2X+l)(2Y+1)}\sum_{m=-X}~X\sum_{m=-Y}~Y

\Bigl\{\bigl[\bar g(x+m,y+n)\cr

&\quad-w(x+m,y+n)p(x+m,y+n)\bigr] \cr

&\qquad-\Bigl[\bar g(x,y)-

\overline{w(x,y)p(x,y)>\Bigr]\Bigr\}~2\cr}$$

Looking carefully, note the way in which the various delimiters

are handled. Focusing only on the delimiters which are not just

the simple symbols, the delimiters are

$$\eqalign{

&= \Bigl\{\bigl[\cr

& \bigr]

& \Bigl[\Bigr]\Bigr\> \cr>

$$
Why cannot we simply use \left and \right and let TgX do the

work? This is one situation where these commands will not work

correctly. Within an aligned line, the parentheses created with

\left and \right must balance. If we adopt the simple solution

and balance each \left parenthesis with a \right. we may still

not get the result we desire. Since these variable size delimiters

take their size from what is contained, they have no ‘memory’,

and there is therefore no guarantee that the subsequent line, where

the parenthesis terminates, will adopt the same size as its opening

partner. That is

$$\eqalign{

&= \left\{\left [\right.\right.\cr

&\left. \right]

&\left.\left[Vright]\right\> \cr}

$$
may easily result in uneven delimiters.

=>Exercise 11.13: Try this example using \left and \right. <=

184 A plain IfeX primer

There is another form which would have been useful in this last

case. The basic structure is given in

$$\displaylines{\sigma''2 (x,y)

={l\over(2X+1)(2Y+1)}

\sum_{m=-X}~X\sum_{m=-Y}~Y

\Bigl\{\bigl[\bar g(x+m,y+n)\hfill\cr

\hfill-w(x+m,y+n)p(x+m,y+n)\bigr]\hfill\cr

\hfill-\Bigl[\bar g(x,y)-\overline{w(x,y)p(x,y)}

—w(x + m,y + n)p(x + m, y + n)]

This form is not quite correct, on three counts. The first two are

related. This equation has its first line hard left, and its last hard

right - up against their respective margins. This is perhaps a lit¬

tle excessive, and it would be better to start and end with some

space. So let us start and finish with a \quad. The third point is a

bit more subtle, and goes back to the discussion of operators. The

second and third lines begin with a minus sign. Anything before is

just space. They will not be treated as a binary operators, but just

as unary operators (and therefore will not have enough space asso¬

ciated with them). To force them to be binary operators, we could

merely include a null box {} (or \null. So the equation could read

$$\displaylines{\sigma~2(x,y)

={l\over(2X+1)(2Y+1)}

\sum_{m=-X}~X\sum_{m=-Y}~Y

\Bigl\{\bigl[\bar g(x+m,y+n)\hfill\cr

\hfill\null-w(x+m,y+n)p(x+m,y+n)\bigr]\hfill\cr

\hfill\null-\Bigl[\bar g(x,y)-\overline{w(x,y)p(x,y)>

\Bigr]\Bigr\}~2\cr}$$

to give

— w(x + m, y + n)p(x + m,y + n)]

Matrix manipulations 185

The differences are not great, but are nonetheless important, if

we are concerned with ‘quality’ typesetting. Once you become

attuned to these sorts of distinctions, many textbooks become

distressingly sloppy in appearance.

=>Exercise 11.14: That last example uses \hfill. What happens if

we merely use \hf il? Also, examine what happens when we have a mea¬

sure of only 4 inches. The way we handle such an equation is partly a

function of the physical attributes of the output medium. <=
=>• Exercise 11.15: This example raises some of the issues explored

above (and one or two others):

J 9 ' LO ' d
+ v —

' U) ' Rx d Ry
\ dx Id \ dy [d\ J dy [pd\ dx [pD J

non-linear term frictional term

+ -I- dy \pD
9 <? 4. Ac

8x xx + dybxv
+

d 1

dx 1 pD
— S +—S
dx xy+ dy yy

forcing term

Reproduce it using two different approaches. <=
=>Exercise 11.16: The \displaylines may also be useful when the

equation is on a single line, but the information of its range would give a

line which is far too long: /oo ro>

-oo J —c

m(a - x, (3 - y)Rgg(x, y)dx dy = Rfg(a, (3),

—oo < a < oo, —oo < (3 < oo (33)

An alternative to using \displaylines is to enclose the range of a and (3
and the equation number as an \eqno. Try this too, noting the differences

in the setting. 4=

Back to the real stuff: there are only a couple of other things we

should know about. We need to get equation numbers attached to

our formulae. There is a refinement \eqalignno which takes care

of this:

x = y + z 2 a

x2 = y2 + z2 (26)

This is obtained from

$$\eqalignno{x&=y+z & 2a\cr x~2&=y~2+z~2 & (2b)\cr}$$

A further refinement is \leqaligimo, which places the numbers

at the left. Like \leqno, the T£X still has the equation number at

end of the equation, but positions it on the left.

Equation numbers may be included with \displaylines, but

only by a little manipulation, forcing the number to the right (or

186 A plain TpjK primer

left) with \hf ill. Consider the following example:

a — b (1)

cl -f" b -t~ c — 0

a2 + 62+c2 = 1 (2)

This makes at least two points: firstly, you do not have to number

every line, and secondly, that left to its own devices, \display¬

lines centres the entry:

$$\displaylines{\hfill a=b \hfill (l)\cr

a+b+c = 0 \cr

\hfill a~2+b~2+c"2 = 1 \hfill (2) \cr}$$

Why did we not use \eqno here? If you do, you get one of the

most amazing error messages obtainable from T^X:

! You can’t use c\eqno’ in math mode.

This is obviously not really what TgX means. You would hardly

expect to use \eqno outside maths mode. Just don’t use \eqno

in this situation, but give the equation number as above. This

seems a bit unsatisfactory, but revolves around the definition of

(at least) \displaylines.

Another point which might be overlooked from that last example

is that the second two lines are an example of serendipity. They

appear to be aligned on the equals sign. This is mere chance,

brought about by the equation number. There are at least two

ways that this might be tackled. Using a phantom on the line

which does not have an equation number seems satisfactory, at

first glance:

a = b (1)

a + b + c = 0

a2 + b2 + c2 = 1 (2)

where the second line is

a+b+c = 0 \cr

but if we think about this a bit more carefully, we realize that the

equations are centred over the remaining space, rather than over

the whole line. We may prefer to centre the equation ‘absolutely’,

rather than in this relative way. One way to handle this is to use

an \llap:

$$\displaylines{

a=b\cr

\hfill a=b \hfill \llap{(l)}\cr

a+b+c = 0 \cr

\hfill a~2+b~2+c~2 = 1 \hfill \llap{(2)> \cr}$$

Matrix manipulations 187

This command effectively ‘overlaps’ the equation numbers. In

essence, the material is set in a box of width zero. There is obvi¬

ously a question here: where is the material actually typeset?

With \llap, the material is set to the left, while with another

command, \rlap, it would be set to the right.

Spaced out again

Earlier, we looked at ways of spacing out material vertically in

the commands \matrix and \cases. In commands like \dis-

playlines, \eqalign, and \eqalignno, the same approaches

can apply: \noalign and the \mathstrut (or other phantoms)

can provide extra space at any particular place. But with these

particular commands, there is another choice. Should you ever

require more space between lines, you can \openup by some spec¬

ified amount. The \openup command applies to all the lines within

a single alignment. The commands \displaylines, \eqalign,

\eqalignno, and \leqalignno all have \openupl\jot in their

preamble, to give an extra ‘jot’ of space between lines. As men¬

tioned earlier, a \jot is defined to be 3 points. You could as easily

have written \openup3pt, but somehow there is a rather nice feel¬

ing to giving it a ‘jot’. Of course you could equally \openup-2pt

for one of these commands to obtain an overall 1 point extra

between each of the lines. In other words, when we use \openup,

the effects are cumulative. Why does this not work with \matrix

and \cases? If we look closely at the definitions of both of these

commands, we will see that they contain a \normalbaselines

command. Looking also at the way that \openup is defined, we can

begin to make sense of this. With \openup, the ‘normal’ line spac¬

ing commands \baselineskip, \lineskip, and \lineskiplimit

are all incremented (\advanced) by the amount specified in the

\openup. Whenever \normalbaselines is invoked, we return to

the ‘default’default interline skip.

Having said this, it is quite possible to make a temporary redefi¬

nition of \normalbaselines so that it will not come into play in

\matrix. Taking an earlier exercise, we could have written

$$\let\normalbaselines\relax

\openup2\jot

P=\left[\matrix{

l&0\cr

\displaystyle{l\over d}&l\cr}\right]

$$

188 A plain TpjK primer

This spaces out the matrix in a similar way. But there is an

important consequence, since any other matrices would be simi¬

larly ‘stretched’. On the other hand, it is easy to group or localize

the action. The value of 2\jot was just an educated guess.

In general \openup might be preferred when applicable, but

\noalign can have its uses, since it permits us to separate some

equations with text and write something like:
$$\displaylines{\hfill a=b \hfill \llap{(1)}\cr

\noalign{\hbox{but remember}}

a+b+c = 0 \cr
\hfill a~2+b~2+c~2 = 1 \hfill \llap{(2)}\cr}$$

which would give us

(1) a = b

but remember

a + b + c = 0

(2)

In truth, this facility is probably needed only very rarely. But

sometimes it is necessary to ‘force’ part of a mathematical argu¬

ment to be treated as a unit: that is, to prevent any page breaks.

This might be a situation where it would be necessary to struc¬

ture the equations so that they were in a single block of displayed

mathematics. For the sake of an example, consider the following:

... Similarly,

K\ C K2 © Biyp\ + p2)

Thus p3 < pi + /?2-

where it would be distressing to have to turn the page to read

‘Thus p3 < pi + p2.'
=>Exercise 11.17: The following two examples help to synthesize
many of the points made so far:

K(y) = (2n)1/2e y2/2,

K{y) = [tt(1 + y2)]-1,

(6.11a)

(6.116)

and

Matrix manipulations 189

K(y) = { 1 - |y|> o, \y\ < i>
\y\ > i-

(6.11c)

Adjusting delimiters

If we look back at some of the examples where delimiters are used,

we may notice that the vertical extent of the delimiters is not quite

as great as that of the material they surround. For example, Exer¬

cises 11.5, and 11.11, and the ‘phantom’ example on page 180, do

appear to have a slight shortfall. Part of the reason for this short¬

fall is that it is considered ‘best not to cover the formula com¬

pletely’ (Knuth, p.152). In the examples considered here, length¬

ening the delimiters around the notional axis of the formula would

lead to symmetric lengthening above and below the axis, and per¬

haps the criticism that we are surrounding some empty space.

Still, if you really want to ensure that the formula is completely

surrounded, and nothing protrudes above or below, there is a way

to do it. There are two commands available: this in itself presents a

slight problem, since their interaction is not immediately apparent.

Assume that the maximum of the height or depth of the formula,

M, is 2 max(height, depth). The size of the delimiter chosen is then

Mx\delimiterfactor/1000, or M-\delimitershortf all. The

default value for \delimiterf actor is 901, and for \delimiter-

shortfall is 5pt. In general terms therefore, the delimiters are

likely to be up to 10% or 5 pt shorter, whichever is the greater.

=> Exercise 11.18: Taking one of those three examples, and with some

experimentation of the values controlling the delimiter size, can you adjust

the size of the delimiters in a satisfactory way? Are there any knock-on

effects? Check the way that this appears to be handled by publishers

who set their maths in a different style (for example, Pergamon). Do

they adopt the same sort of approach?

.

12 Pages

Although a great deal of TeX has been presented already, only

a very small amount has been directed towards the handling of

fairly ordinary text. Even the most esoteric mathematics usually

requires the ‘glue’ of words to hold it together. In this chapter,

some of the tools and techniques available will be discussed. Text

looks deceptively simple. It is probably considerably more difficult

to format text than mathematics. The range of possibilities for

text is so much greater. Examination of a couple of non-technical

books will probably yield more variation in typesetting than com¬

parable technical (especially mathematical) books.

Some basics

Some of the very basic ideas have already been introduced. The

basic unit is the paragraph. In general, each paragraph is begun

with an indent. In l^X, this indent is controlled by the \parindent

dimension. A great many books use no indentation at the begin¬

ning of a chapter or section. In order to turn off the indent, the

command \noindent may be used. Equally, to force an indent of

the value of \parindent, the command Undent may be used. In

Chapter 10, a command was introduced which could be used to

handle a title and to provide for the situation where no indentation

was required on the first paragraph.

Paragraphs may be separated by a different amount of space

than that which separates lines. Lines are separated by \baseli-

neskip, while paragraphs may be separated by \parskip. Both of

these may have glue amounts associated with them. Under normal

conditions, TgX attempts to make each page of text exactly the

same length. As has been pointed out in Chaptei 9, unless there

is some glue available, this may not always be possible, with the

complaint that there may be an overfull vbox. There are sev¬

eral routeways out of this dilemma. We may permit some glue to

be associated with the \parskip: this is not guaranteed to work,

192 A plain TpX primer

since there may be very few paragraphs on the individual pages,

and therefore only a few places in which the extra space needed

may be distributed. The option of allowing glue to be associated

with the \baselineskip is rather unsatisfactory for documents

which are supposed to be set to a high standard, since the change

in ‘density’ is remarkably easy to discern. There is a \vfuzz com¬

mand, just like \hfuzz, which could give some flexibility in the

page ‘depth’. A further option is to allow T^X some flexibility

in the page size by using \raggedbottom, a sort of philanthropic

approach. This is broadly analogous to \raggedright. In both

these last cases, the restriction to make each page exactly the

same depth has been compromised. In the case of \vfuzz, the

text on the page may be slightly greater, while in the case of

\raggedbottom, it may be slightly less..In both cases, the first

line of text on the page is in exactly the same place. The bottom

line on the page is the one that exhibits the variability.

There is one other important place where some flexibility may be

permitted, and where it will be hardly noticeable. When we have

displayed equations, the distance between the text and the fol¬

lowing display is controlled by one of two commands: \abovedis-

playskip and \abovedisplayshortskip. Basically, the ‘short’

skip is used when the preceding line is itself ‘short’, and the equa¬

tion is ‘short’: in other words, when the distribution of ‘horizontal’

white space would make the vertical white space between the text

and the equation appear too great. The mechanics of this is not

too crucial here; the important fact is that there is a skip, with

its associated glue, which may give some added flexibility. Since

there is a skip between the text and the display material, there is

naturally a corresponding skip between the display and the suc¬

ceeding text. This skip is termed \belowdisplayskip. There is

also a \belowdisplayshortskip, although it is far more difficult

in practice to see the sorts of circumstances where it is likely to

be used.

There are other skips which are explicit alternatives to the

inter-paragraph gaps driven by \parskip. They are ‘equivalent’

to the following:
\smallskip = \vskip 3pt plus lpt minus lpt

\medskip = \vskip 6pt plus 2pt minus 2pt

\bigskip = \vskip 12pt plus 4pt minus 4pt

This may rekindle the question ‘why the plus and minus parts?’

These simply give T^jX a little extra scope when it is building its

pages, in areas where the glue (remember glue?) need not be rigid.

Pages 193

The definition of these skips is not the simple and direct one

that you might expect:

\def\smallskip{\vskip 3pt plus lpt minus lpt>

Instead, the small skip is set indirectly through reference to

another skip quantity, \smallskipamount:
\newskip\smallskipamount

\smallskipamount 3pt plus lpt minus lpt
\def\smallskip{\vskip\smallskipamount}

and similarly for the medium and big skips. Why did Knuth

bother to do this? He suggests in The T^Kbook that this will

permit greater flexibility when using fonts other than the ‘default’

10 pt sizes.

Text indentation

Since we are still discussing text here, it is worth noting one further

common requirement: hanging indentation. (Sometimes indenta¬

tion is written indention, mainly on the argument that indentation

is something that happens to your car, while indention happens to

text: dictionaries are reluctant to support this distinction.) TgX

supports hanging indentation in a number of ways. The very sim¬

plest way is to \hang. This leads to the entire paragraph being

indented by the amount of \parindent. The very first line will

have the same amount of indentation as the remainder of the

paragraph, so that by default the left margin of the entire hang¬

ing paragraph will line up: the \parindent does not accumulate

in this case. If you really do want the paragraph to start with

an indentation, then it must be explicit. This introduces a rather

unexpected effect: \hang\indent does not lead to the first line

being indented. In fact, if we simplify further and look at the effect

of Undent at the beginning of any paragraph, it will be found to

have no apparent effect at all. Normally this passes unnoticed. In

the case of a paragraph which starts with a \hang, it would be nec¬

essary to repeat the \indent to achieve the indentation we expect.
=>Exercise 12.1: What effect would \hang\no indent have? <=

Note that these commands work on the following paragraph. To

be a little more accurate, they work on the paragraph of which

they are part. It would be possible to terminate a paragraph with

\hang, and the command would still apply to the paragraph.

From the point of view of understanding what is going on, such

an approach is not helpful. Of course, the next paragraph follows

the ‘normal’ setting for \parindent.

194 A plain TfeX primer

The amount of hanging indentation is controlled by a command

\hangindent. This defaults to Opt, but could be reset:

\hangindent=20pt

would have the effect of indenting the left margin by 20 pt until

the end of the current paragraph. To indent the right margin,

\hangindent=-20pt

Any existing \parindent will be included: that is to say,

\parindent=10pt \hangindent=20pt

will lead to the first line being indented by 30 points, and the

rest of the paragraph by 20 points. Similarly, the \parindent

still works when the hanging indentation is negative, and the

right margin is indented. If you did not wish the normal first-line

indentation, you should switch it off with \noindent. There is yet

more subtlety to \hangindent. Hanging indentation is switched

on for, or after, a given number of lines have been output, using

the \hangafter command. Thus

\hangindent=20pt\hangafter=3

means this hanging indentation of 20 points only applies after

the first three lines of the paragraph have been output - from

line 4 onwards. If \hangafter-3 had been used, the hanging

indentation would be used on the first three lines. Even within

a hanging indent, normal paragraph indentation as controlled by

\par indent will apply.

=>Exercise 12.2: These ideas begin to take on some meaning once

they are used. Take some of the text that was used earlier and experi¬

ment with these new commands. If you wanted to repeat the same sort of

structure on each paragraph in turn, it would be possible to use \every-

par. <=

=>Exercise 12.3: These ‘hanging’ commands may be useful for bibli¬

ographies or glossaries, where the first line of each ‘paragraph’ is to be

the full line width, with no indentation, but the rest of the block is to be

indented, so that each entry stands out clearly. For example:

Zahir: beings or things possessing the property of being unforgettable;

in Arabic, ‘notorious’ or ‘visible’. See Borges, The Zahir.

Demonstrate how this might be done. <=

Note too that \hangafter may also take a negative argument:

\hangindent=2em\hangafter=-4

would have the effect of indenting only the first four lines by 2 ems;

the remainder of the paragraph would have no indentation.

=>Exercise 12.4: A practical application of this last feature might be

found in a ‘dropped capital’, where the first character in a paragraph

is presented in a larger size. If, for example, the chosen font for the

dropped capital took up the same depth as two normal lines, we could

Pages 195

\hangafter-2, provided we had some way of extracting the first charac¬

ter and placing it at the beginning of the line, where the gap had been

left for it. This is not too difficult, although it requires some thought,

and a bit of experimentation. Like most things in T^X, it’s all done with

boxes. Sketch a likely solution. •£=

Only the last \hangindent encountered is used: therefore

\hangindent=2em\hangindent=-2em

as a technique for indenting left and right margins at the same

time will not work. How then do we indent both margins simulta¬

neously? Provided we wish to indent both margins by the amount

of the current paragraph indentation, this is simple:

{\narrower . text . . .

\smallskip}

There are a few things to watch out for here. Firstly, if you do

not wish to use the currently operating indentation set up by

\parindent, you can use the bracing or grouping to set up a new

temporary indentation:

{\parindent=40pt\narrower . text ...

\smallskip}

Secondly, the paragraph must end before ending the group; the

inserted \smallskip is one of several ways other than \par or

leaving a blank line to end a paragraph. Alternatively, \medskip,

\bigskip, or an explicit \vskip amount would be suitable.

Thirdly, you must finish the last paragraph before using \nar-

rower. What this means is that you cannot

lots and lots of text.

{\narrower lots more text

\smallskip}

and expect that the lots more text will be in a paragraph all on

its own. The text ‘before’ will be included as part of the same nar¬

rowed paragraph, and the whole new (longer) paragraph will be

narrowed/indented. One way of viewing this is that the definition

of \narrower does not begin with a \par or other indication that

a new paragraph is beginning.

In this discussion \narrower is used within a group. This is not

obligatory, but if \narrower is not grouped, it will be difficult to

switch the indentations off, and return to ‘normal’. Moreover, the

effects of \narrower are cumulative: a section of narrowed text

could contain paragraphs which were themselves \narrower. A

\hangindent may occur within a section of narrowed text. The

apparent complexity of \narrower comes as a result of Knuth

ensuring that the various methods of indentation may be mixed.

196 A plain T^C primer

How does \narrower work? Its definition looks very simple:

\def\narrower{\advance\leftskip by\parindent

\advance\rightskip by\parindent>

It is probably possible to guess what \leftskip and \rightskip

are. They are clearly glue amounts, since they are skips: they are

the amounts of glue placed at the left and right ends of lines in

a paragraph. Normally they default to Opt, but when \narrower

is used, they place an amount of glue equivalent to the current

\parindent value at the ends of every line, making them that

much narrower.

Having seen the definition, it is fairly easy to see how to modify

it so that different effects may be obtained. One of my minor criti¬

cisms of plain T^X is the extent to which the value of \parindent

is involved in the definition of so many other features; features

which themselves seem to have little to do with paragraph inden¬

tation.

Equally, having seen the definition, it becomes obvious why it

has the side effects noted above, and also to infer that we could

keep nesting \narrower sufficiently that the line length for a

paragraph could become zero or less.

=>Exercise 12.5: Since \narrower has some distressing side effects,

devise a command pair, \beginnarrow, \endnarrow, which would be a

little more ‘user friendly’. <=

Item by item

There is another feature in T^X which uses indentation. Often

when lists are prepared, it is useful to have them itemized. Tf^X

provides a \item command which allows the ‘key’ to the item

to be printed and then all the information w'hich goes with it

to form an indented paragraph. The itemized information is in

the form of an indented paragraph, and the whole paragraph has

an indentation equivalent to that of \parindent. If you have set

\parindent=Opt then \item will give unsatisfactory results. The

use of \item is perhaps easier to demonstrate than to explain.

Several of the itemized lists used so far have used \item. The

following example gives some flesh to the basic ideas:

\item{l}'What can go wrong will go wrong.

\item{2}What has gone wrong will get worse.

\item{3}For every complex problem there is a simple,

easy to understand solution which does not work.

Pages 197

This yields:

1 What can go wrong will go wrong.

2 What has gone wrong will get worse.

3 For every complex problem there is a simple, easy to understand

solution which does not work.

Note that the continuation of the paragraph is indented, as would

have been anticipated from a glance at the definition of \item,

which is considered in a moment. When a new paragraph begins

after the last item, it will be indented. This can often appear

a little confusing, since the item and the paragraph share the

same amount of indentation. This is the main reason for the usual

recommendation that some extra vertical space is added, like a

\smallskip or \medskip. One conclusion is that a list is not

considered by I^X to be part of a paragraph, but constitutes a

paragraph in its own right.

Additionally, there is an \itemitem feature which allows sub¬

lists, or just twice as much indentation. For example

\item{\bullet}Publishing

\itemitem{\triangleright}publishers and

the \TeX-using author

\itemitem{\triangleright}the production cycle

\item{\bullet}Document preparation

\itemitem{\triangleright}document structure

\itemitem{\triangleright}portability and

interchange

In this particular example, rather than use a numbered list, sym¬

bols have been used. The ‘best’ symbols are those available from

mathematics, which makes their use rather longwinded. This is a

case where it might be more appropriate, and easier, to define

\def\bitem{\item{\bullet}} “/.bulleted item

\def\subitem{\itemitem{\triangleright»

“/.sub-item, different symbol

and use these instead as \bitem and \subitem:

\bitem Publishing

\subitem publishers and the \TeX-using author

\subitem the production cycle

\bitem Document preparation

\subitem document structure

\subitem portability and interchange

Individual \items do not require to have blank lines or \par

between them, since their definition starts with \par. Accepting

plain T£X’s defaults gives the same separation between items as

198 A plain primer

between paragraphs. It is quite reasonable to expect these to be

different values. In order to do so it would be necessary to group

so that the value of \parskip was local to the itemized list.

Since plain Tf^X only supports \item and \itemitem, what

happens when we have a third level of itemization? Here we would

have to invent our own. To do this, first examine how \item works.

\def\item{\par\hang\textindent}

\def \textindent#l{\indent\llap{#l\enspace}y.

\ignorespaces}

This is quite interesting, since although \item itself does not have

a parameter as part of its definition, it nevertheless does take an

argument. An exactly equivalent definition could have been:

\def\item#l{\par\hang\indent\llap{#l\enspace}'/,

\ignorespaces}

but, as we will see next, \textindenf is used elsewhere, and

there is some value in defining it separately, rather than echoing

the same set of commands.

Each \item starts a new hanging paragraph. Why is the \indent

included? The first line of hanging paragraph will be indented by

the same amount as the rest. Why do we need to specify it explic¬

itly? And why is it not therefore indented even more? In fact, the

\indent is here because of the nature of \llap. This command

‘hides’ an \hbox. Without the \indent, or to make it more obvi¬

ous, a \leavevmode, we could get the sort of weird behaviour that

follows from starting a paragraph with an \hbox, and which was

discussed in Chapter 9. So all the \indent is doing is ensuring that

we are in horizontal mode. An \llap is a way of ‘back spacing’.

The contents of the argument are placed to the left of the start

of the paragraph. An \enspace is also included, so that there is a

bit of white space between the argument and the beginning of the

paragraph. This obviously carries the implication that if we wrote

\item{Antidisestablishmentarianism:} a long word,

it could project well beyond the left page limit. will not warn

us of such a situation. And naturally, had we specified \par indent

to be a small value (or even zero points), \item would not work

very well at all. This is perhaps another case for distinguishing

between the \parindent and the amount by which an itemized

list should be indented.

The second-level item, \itemitem, is an elaboration:

\def\itemitem{\par\indent \hangindent2\parindent

\textindent}

In order to understand what is going on here, it is useful to realize

Pages 199

that the definition of \hang is:

\def\hang{\hangindent\parindent}

so that when we used \hang in the definition of \item, we were

setting up a hanging indent of a given amount, \parindent. At

the second level, we double that value.

=>Exercise 12.6: The \item structure in plain T^K always seems a

bit limited to me. It should be possible to define a \beginitem \enditem

structure which allows you to have ‘nested’ items. While you are at it you

may as well let it number the items consecutively at each level. <=

=$>Exercise 12.7: Since it can be rather tedious to number lists, and

since TgX is well able to add, and to keep track of counters, it is also

possible to create \nitem which automatically numbers the items. The

TpX command \romannumeral will convert a number into its Roman form

- for example, \romannumerallO or \romannumeral\num where \num was

a \count register. It would therefore also be possible to make \nitemitem

increment as Roman numerals. There is one remaining problem. There

has to be some way of turning the list on and off, otherwise every time

\nitem is used the number will increment. Suggestions? 4=

One of the drawbacks of \item is that it is really only suited to

‘short’ items, which do not run over more than one paragraph. As

soon as a second or subsequent paragraph begins, the ‘hanging’

nature of the item is lost. Perhaps this is suggesting that items

should not be long, but it is possible to find counter-examples

where it would be useful to have such features.

=> Exercise 12.8: Despite the implied prohibition to \ items which

contain more than one paragraph, devise a scheme where this would be

possible. <=

Floating

Many technical books require a mechanism where material can be

placed at some ‘convenient’ point: for example, a diagram may be

placed at the top of a page, or between paragraphs. Obviously, a

diagram (or perhaps a table) does not obey the normal rules of

text. We cannot simply break it into two at the page boundary

and put part at the bottom of one page and the remainder at the

top of the next. Some way must be found to accommodate these

blocks of ‘rigid’ material, without distorting the text too much.

One way would be to leave white space to fill up the page, and

then start the diagram on the next page. This is rather ugly, and

when a large amount of white space is encountered towards the

bottom of page, it usually signals the end of that chapter.

TgX supports three mechanisms where arbitrary material may

200 A plain TgK primer

be ‘floated’ to some convenient place. These are \pageinsert,

\topinsert, and \midinsert. These are quite similar, in that

they provide floating insertions. As you will guess, a page insert

is where a whole page is given over to an insert. It will be the

next one after the \pageinsert command is encountered. A top

insert is inserted at the top of the page where the \topinsert is

encountered (or at the top of the next one if that is not possible),

and a \midinsert is placed immediately where it is encountered,

or at the top of the next available page. They are unlikely to be

inserted exactly where the command occurs, although this might

happen from time to time. I have found these constructs to be of

great use either in including tables at a convenient point within

the text, or for leaving room for diagrams. Their use is slightly

different from anything we have yet seen:

\topinsert

lots of text,

or a table,

or even something like \vskip250pt

\endinsert

=> Exercise 12.9: The \endinsert is very important. Can you see

why? What happens if it is omitted? <=

Having raised the question of including material like tables and

diagrams in some sort of ‘floating’ way, it is also worth consider¬

ing whether T^X can also handle such material through the use of

hanging indentation. If, for example, we had a small diagram (or

perhaps a photograph), which was 144pt square, could we take a

corner out of the paragraph by

\hangafter-13\hangindent-150pt

and manipulate the photograph into the correct position? Yes, this

is possible, but it could be tricky if that page was to be broken

in the middle of the paragraph. The hanging would be there, but

spread over two pages. Basically this is a rather difficult problem

to solve with Tf^X. It is difficult (I hesitate to say impossible, since

someone, somewhere, will find a way) to have TgX divulge how

many lines of a paragraph it has processed before it breaks the

page. I^X simply does not work that way. It is possible to find

out how many lines there are in a paragraph through a built-in

counter \prevgraf, but that does not help if the paragraph is

broken over a page.

The paragraph building and the page building are handled some¬

what separately: not entirely separately, since there are controls

available to prevent ‘widow’, and ‘orphan’ or ‘club’ lines. An

Pages 201

orphan or club line is one which appears on its own at the foot

of a page: a widow line is a single line appearing at the top of

page. seeks to control these undesirable elements by associ¬

ating penalties with them. We shall examine the penalty structure

later. At the moment it is sufficient to know that they exist and

that has some way of dealing with them. Similarly, it is usu¬

ally considered undesirable to break a page on a hyphen: T^X can

also associate penalties with such eventualities. In fact, when a

hyphen occurs on a left hand page, it is usually tolerated. It is only

when it ends a right hand page, where the page has to be turned

before the full word is revealed, that there is a real problem. T^gX

has no convenient way to distinguish these two cases.

But to return to the page and paragraph building: TgX simply

does not have a mechanism to report back that when the page

break was chosen, the paragraph that was spread over the pages

had so many lines on one page, and so many on the next. This is

rather unfortunate, and does effectively inhibit some uses of TgX.

But do note that extremely sophisticated users of T^gX can find

ways round this problem. These are elaborate, involved, and by

no means plain.

There is no ‘bottom insert’: perhaps part of the reason for this

omission lies in the presence of the next structure:

\footnote{*}{A simple footnote}

creates a footnote containing the text ‘A simple footnote’, and

using the asterisk as the marker. T^X is actually very good at

footnotes, and can keep track of many, placing them correctly,

and breaking pages sensibly to include them. This book use foot¬

notes only to illustrate the ease and facility with which footnotes

may be used.* Note how the footnote is handled by default. There

are many variations which might be preferred. The line might be

longer, or even absent. The line associated with the footnote is

defined as
\def\footnoterule{\kern-3pt\hrule width 2truein

\kern2.6pt}

(This is a nice example of the use of the \kern in vertical mode.)

The default thickness of an \hrule is 0.4 pt, which helps account

for the difference in the negative and positive \kern amounts. So,

if we wanted no rule, we simply write

* Except for a few gratuitous ones: I find footnotes self-indulgent

and believe that they destroy the flow of text; but apparently they

are essential to some disciplines.

202 A plain T^K primer

\def\footnoterule{>

The footnote itself uses whatever font is current. This means that

if a footnote occurs within a block of italicized text, then the

footnote itself will also be italicized. It might therefore be wise to

begin each footnote with \rm, or whatever font was to be used:

footnotes may be used.\footnote*{\rm Except for...

If we decide to have each footnote in a smaller font, then we must

take account of a great many other factors (if we wish it to have

general application). For example, simply using

footnotes may be used.\footnote*{\eightrm Except for...

where \eightrm has been set up to reference 8 point Computer

Modern Roman, will not take account of the smaller \baseli-

neskip that should occur between lines, nor will it help if the

footnote itself contains a font change. An apparently simple change

like this starts to take on the appearance of major surgery. One of

the simpler ways to tackle it is to define a new command \foot

which uses \footnote. Let us assume that there is already a

command \eightpoint, which will handle the changes in fonts,

baseline skip, and paragraph skip (if needed). Then

\long\def\foot#l#2{{\eightpoint\footnote{#l}{#2}>}

will provide a solution. Once we have described what it is we

really want, an answer becomes more apparent.

If a footnote is long, and contains several paragraphs, the para¬

graphing is maintained. An ‘intuitive’ style of footnotes might be

to have the footnote symbol project to the left of the footnote text

(like \item), with the first paragraph having no indentation, but

any other paragraphs in the same footnote taking some suitable

indentation amount. The simple solutions of

\long\def\foot#l#2{\hang\footnote{#l}{\eightpoint#2}>

or

\long\def\foot#l#2{\footnote{#l>{\eightpoint\hang#2}>

just do not work.

=> Exercise 12.10: Try these last two definitions to ascertain what it

is they do, assuming you did not work it out from first principles, or

intuitively. <=

A glance at the \footnote command in the The TgXbook is

unlikely to throw much light on the problem, but a clue is pre¬

sented by something which almost works:

\long\def \foot#l#2{\everypar{\hang}\f ootnote{#l>’/,

{\eightpoint#2}}

The second and later paragraphs are not indented, just as we

might have expected from the action we associate with \hang. A

Pages 203

fairly simple, though rather inelegant solution is:

\long\def\foot#l#2{{\everypar{\hang}\def\par

{\hfil\break\indent>% see page 212

\footnote{#l}{\eightpoint#2}}>

An even more inelegant solution would be to begin each of the

paragraphs in the footnote with appropriate indentation.

=>Exercise 12.11: Try out these alternative footnote styles, and con¬

firm the way in which the hanging indentation does work. A more elegant

scheme would be welcome too. 4=

In the examples above, the font change was moved to affect only

the second parameter, the text of the footnote. This does not mean

that the symbol used to mark the footnote would be in the ‘prevail¬

ing’ font. Although it is not immediately apparent, the first param¬

eter is reused, and any font changes affecting the second parameter

will also affect the first when it is used in the footnote as a marker.

In general there are two sorts of marker used in footnotes -

symbols and numbers. The asterisk is commonly used, and even

the double asterisk. TgX does have a set of useful symbols which

may be used and include f and J. Numbers are also often used,

either incrementing throughout the chapter, or being reset to zero

with each page. This latter case is very difficult for T^X to handle,

although Mike Spivak implemented it with L^N-TeX. Again we

return to the fact that T^X does not really provide the informa¬

tion on where exactly it breaks a page, and consequently the point

at which any footnote counter should be modified.

Exercise 12.12: Write a version of \footnote which automatically

increments a counter and which uses that, rather than a symbol, at each

footnote. The footnote will only require text, since T^X will be keeping

track of the details. <=

Footnotes normally do not contain footnotes (although for a

counter-example, see Pratchett, 1989), which is just as well for

TgX. However, tables sometimes do, and here T^jX has a little

difficulty. The difficulty is even more general. Any material which

appears in an insert (or in a box) may not contain the \f ootnote

command. If we simply use the normal \f ootnote approach, the

marker symbol appears, but the footnote itself disappears. There is

a rather inelegant way out of this, with the \vf ootnote command.

Essentially this breaks the footnote down into two components.

The first component is the marker, which appears in the text,

and which may be written like the first argument - for example,

an example$“2$ - while the second component looks just like

a conventional footnote, but must appear outside the insert or

204 A plain T^X primer

boxed material — in other words, among the text. This means we

may have to guess that the insert and the footnote will appear

on the same page. This is taking optimism a long way. We shall

encounter a fairly practical example of this situation later when

we examine tables.

Fine tuning the layout

By default prints a page number at the bottom of each page,

centred within the ‘footer’ line. The number will be an ordinary

Arabic number, starting at 1. To switch off this facility, say

\nopagenumbers

before the start of your text. If you do not want page numbering

to start at 1, you can change the page number by saying

\pageno=3

or some other suitable value. This is the starting value. Therefore,

by default, T^X has a starting page number of 1. Sometimes you

will need to use Roman numerals for page numbering - usually

for the ‘front matter’ of a book or thesis. Specifying

\pageno=-l

will produce a series of page numbers which are in lower-case

Roman numerals. Don’t worry, they won’t be negative numbers.

It is rather unusual to see negative page numbers, on any docu¬

ment. It is even possible to obtain upper-case Roman numerals,

but that’s a bit more tricky. A daunting incantation is squirreled

away in one of the appendices of the The TpjXbook. For example,

\uppercase\expandafter{\romannumeral\year>

could give us MCMXCII. This introduces two commands which

will be tackled a little later, and is merely included here for com¬

pleteness.

It is useful to know just a little about TgX’s page-building tech¬

nique here. is organized on an individual paragraph basis

(not the basis of a ‘galley’ or continuous steam of paragraphs).

Until a paragraph has been completed, TgX does not consider

page breaking. This means that you can break TgX fairly easily

by writing a ‘stream of consciousness’ novel with only one para¬

graph in it. In general though, T^X will have gathered together

more than a pagefull of paragraphs when it comes to create the

page. It is uncommon to break pages at the end of paragraphs,

especially if the pages are each supposed to be the same length.

Therefore it is common for TgX to be part way through the next

page when it starts to look for a ‘good’ break point. Just as in

Pages 205

building a paragraph T^X ‘optimizes’ the line breaks to ensure

that the inter-word spacing is even, and within some specified

tolerance, when building a page 1]eX seeks to optimize, ensur¬

ing that there are no club lines or widow lines. And, of course,

the paragraph spread around two pages is being optimized too.

Once l^X has decided where to break the page it ‘ejects’ the first

page and starts work on the next. The page numbers, header, and

footer lines are added as each page is being ejected, using a special

set of commands collectively known as ‘output routines’. Output

routines are the subject of a TUG 2 or 3 day course (for people

who know their way round TgX). The output routine in plain is

quite powerful, and sufficient for our immediate purposes.

The footer line - material printed at the bottom of every page

- is specified in a \footline. Where is it actually placed? It is

placed outside the body of the text, outside the zone delimited

by the \vsize. There is a similar \headline command to permit

material to be placed at the top of the page (also beyond the

vertical text boundary). By changing the default definitions of

\headline and \footline we can alter the characteristics of the

material printed out with each page.

The definition for \footline in plain is

\footline={\hss\tenrm\folio\hss>

where \f olio is itself a command which prints \pageno in either

Arabic or Roman numerals, depending on how you have set things

up (if \pageno is negative, we get Roman numerals, else Arabic).

We have already met \hss. Here it ensures that the page number

is centred. The \tenrm simply ensures that the page number is

printed in 10 point CM Roman.

The footer line I usually use is set up by redefining \f ootline as

\footline={\sl\today\hss\folio}

We met the \today command earlier. Placing the \hss between

the elements has the effect of placing them as far apart as the

\hsize will allow.

The \headline and \f ootline are token strings. This is one of

the few examples in plain of the use of token strings. Recall that

to use the contents of a token string it is necessary to place the

command \the before it:

\the\headline or \the\footline

A little thought will reveal that these two token strings must be

part of a horizontal box which is set to the width of the page.

As they stand, they are of indeterminate width. Somewhere that

width must be specified.

206 A plain T^X primer

A further consideration comes from the rather simplistic way I

have specified the font. Consider the following situation, assume

that we have a block of text in a different point size — a quotation,

or perhaps an example or an exercise. The size change could be

achieved by a command like \eightpoint, which would ensure

that \rm is (say) an 8 point roman, \it is an 8 point italic, \sl

is an 8 point slanted font, and so on (note that this command is

hypothetical; it does not exist in plain, although a strategy is

introduced in Chapter 18). If it happens that the page-building

commands are invoked while TgX thinks that \sl means 8 point

slanted, then the slanted text in the footline will also be 8 point.

It is at this point that we have to know that what we really

wanted was \tensl. The plain commands set up the default

commands \rm, \it, \bf, \sl, and \tt.indirectly by, for example,

first nominating

\font\tenrm cmrlO

and subsequently defining \rm to be \tenrm. When \rm is used,

it really does mean ‘roman’ and not necessarily TO point roman’.

Often it is desirable to have different headlines or footlines on

even and odd pages. Books in European languages tend to have

the odd-numbered page on the right and the even-numbered on

the left. The page number itself tends to be on the outer edge

of the page, away from the bound edge. Remember conditionals?

They can be used here to good effect:

\footline={\tensl\ifodd\pageno

\hss\folio

\else\folio\hss

\f if

would assist here. The \ifodd command, followed by a number,

or a counter, determines whether the value is odd or even. If the

condition is true, the first path is chosen, else the second one.

Note that there is no \ifeven command. Note too that we test

\pageno, but centre \folio. Testing \folio would avail us little,

since it is not a counter. The nub of the \folio command is

\number\pageno

There is a little more to it, since if the page number is negative,

it should appear as a Roman numeral.

=> Exercise 12.13: Can you construct a footline which would allow for

positive page numbers appearing as Arabic numbers, and negative as

Roman? 4=

The plain output routine allows about 1 inch of white space

around each printed page. Some of this space is used for printing

Pages 207

\dag t dagger mark

\ddag t double dagger mark

\s § section mark

\P If paragraph mark or pilcrow

\# # hash - known as pounds sign

\$ $ dollar symbol

{\it\$> £ sterling symbol (pounds sign)

\& & ampersand

\7. % per cent symbol

Figure 12.1

More symbols

the \headline or \footline (and sometimes for marginal notes).

It is a simple matter to reposition the whole of your output,

including headers and footers with respect to these page edges.

The overall page layout (and dimensions like \hsize and \vsize)

will not be affected. It is the position of the whole printed page

which is moved. Use \hoffset to adjust pages horizontally, and

\voffset to move them vertically. The commands

\hoffset=l.5cm \voffset=-0.5in

would cause each page of output to be shifted 1.5 centimetres to

the right and 0.5 inches up in relation to the paper edges.

Use true dimensions if you are using \magnif i cat ion but do

not want these offsets to be magnified.

Naturally this prompts a question ‘Where is the page origin by

default?’ The origin is defined to be 1 inch in and 1 inch down

from the top left-hand corner of the page. Imperial measures die

hard. It is not immediately clear whether this position refers to

the baseline or not, but these details are considered in Chapter 20.

Anyone who changes from one output device to another will know

that this definition is not always honoured. Many printer drivers

allow you to change the position of the text on the page, without

having to alter the input.

Some strange characters

There are a few characters which you may need to use in everyday

typing (especially if you use footnotes). Figure 12.1 gives the ones

that might be most useful.

The odd way the sterling symbol is handled raises a few prac¬

tical points. In some ways, we should be grateful to have the #,

$, and £ together, but the question does arise, what happens if

the ‘body’ text is in the typewriter font, or in slant. Will the \$

sequence give a dollar or a sterling symbol? The short answer, as

208 A plain TppC primer

you may guess, is that the dollar triumphs.

There is one further relevant issue reintroduced by the com¬

mands \& and \%. Recall that a command in T^X may be made

up either entirely of one or more alphabetic characters, or a sin¬

gle non-alphabetic character. Thus \1, or \; are legitimate, and

potentially meaningful commands, just like \hsize, \1, or \nopa-

genumbers. A command made up of alphabetic characters may be

conveniently terminated in a number of ways, including by a space.

This space will disappear on output. The other class of commands

need not be terminated by a space. If it is formed of non-alphabetic

characters, the command may contain only one such character.

Therefore any space which follows will be treated as a ‘real’ space,

and will appear on output. If we wished to typeset the sentence

‘Processor speed has been increased by 140%.’, we type

Processor speed has been increased by 140\7,.

Had we terminated the sentence by Y/,u •, there would be a space

between the ‘%’ and the ‘Processor speed has been increased

by 140%

There is of course at least one exception. If the command in

question is a diacritical, the spaces just get swallowed up. T^X

knows that an accent has an accompanying letter, and goes and

finds it. Therefore \ ’ uuelan still produces elan. But this is because

V is defined as a command with a single parameter. This is not

necessarily obvious to the uninitiated.

Let’s be punctual out there

There are one or two niceties of text control which can be added

here. Firstly, revision: the so-called ‘italic correction’ accounts

for the fact that italic and slanted fonts slope to the right. This

means that a word in an italic or slanted font, followed by one in

an upright font such as roman or bold, may look rather squashed

together - for example, small letters: to avoid this Knuth sug¬

gests the use of a correction - \/. The amount of the correction

is different for different letters in different fonts. This is all a bit

messy, since there turn out to be extra rules which are rather con¬

text sensitive. In general we adopt the correction before switching

back to an upright font, except where the next character is either a

comma or a full stop. Although this is described as an italic correc¬

tion, setting ‘{\bf half}’ will look clumsy unless you say ‘{\bf

half\/>J! To try to see what this means, work out whether ‘half’

or ‘half has the italic correction. Rather than trying to remember

Pages 209

these special cases, look at your output and see if it looks right,

and then incorporate corrections if you think you need them. This

is again an anathema to the idea of declarative markup. But then,

the notion of allowing the author to select a bold font is already

chipping away at any such pretensions. The author ought merely

to be saying ‘this type of emphasis’ (in some more ‘meaningful’

way).

One other aspect of the italic and slanted fonts is that a block

of text set in such a style may appear to be moved slightly to

the right when compared with text set in an ‘upright’ font. If

this worries you, there is no very easy solution, but it would be

possible to use \leftskip and \rightskip to move that block of

text slightly rightwards. Remember though that these commands

affect the whole paragraph, so that performing this sort of action

on part of a paragraph will be much more difficult.

You may notice that some books use the em-dash where this

book uses a ‘spaced’ en-dash. If the em-dash is used, no white

space is left at the ends. There is an aspect of using the em-dash

in this way which must be addressed. If you use the em-dash in

this conventional way, for example do-they, and T^K breaks

this sequence at a line end, it will be broken between do and-

they, never between do-and they. In order to signal this latter

case as a possible breakpoint, you must write something like

do-\allowbreak they

The easiest way to do this is with a global edit after the manuscript

is complete. Similarly, T]eX feels that phrases like ‘right/left’ and

‘input/output’ are all one word. We can use a similar strategy to

place potential breakpoints:

right Aallowbreak left

inputAallowbreak output

You could always define commands \rl and \io if you were using

these frequently.

\def\rl{rightAallowbreak left}

\def\io{ input Aallowbreak output}

You would find a global change of / to Aallowbreak rather dan¬

gerous. There is a special control sequence \slash which provides

the oblique symbol, but also allows a breakpoint. The ‘best’ way

to express these compound ‘words’ would therefore be

right\slash left

input\slash output

210 A plain TpjK primer

... period

I^X treats the period in a special way. It permits the glue after a

period to stretch at a faster rate than that after a word, provided

of course the period is followed by a space. The same applies to

the exclamation mark. Space after commas also stretches slightly

faster too, but not as much. The implication of all this is that

periods in the middle of sentences, which signify abbreviations

rather than sentence ends, have too much glue associated with

them. Unless they are preceded by capital letters, TjgX assumes

that these are initials. Thus Prof. R. A. Bailey would have ‘nor¬

mal’ glue after her initials, but extra glue after her title. How do

we regularize this? One way is to use a control space - \u after

Prof.. But in this case, a further subtlety intrudes. We would

prefer that the name was not broken at- the end of lines: that is,

there should be no line end break in the midst of Prof. R. A. Bai¬

ley, and as we have written it, there could be. T^X supports a tie

character, which prevents separation, but provides white space.

The tie character is ~. Thus what we probably wanted was

Prof.~R.~A."Bailey

This is a bit long and difficult to hyphenate, so it could lead to

overfull box problems. Be warned.

=>Exercise 12.14: There are several other ways to solve this last prob¬

lem. How else can you ensure that the name is not broken, and that the

full stops are treated as abbreviation symbols rather than full stops? 4=

Ties are also useful in situations like ‘Fig. 6’, where we would

not like the two parts ‘Fig.’ and ‘6’ to appear on different lines.

Some manuals of style claim that abbreviations like e.g. or cf.

should be followed by a comma (how absurd), so the problem

does not arise if you wish to be bound by antique prescriptions.

=!>Exercise 12.15: Does the sentence termination space stretching

apply to the question mark? 4=

If this seems all a bit overwhelming, help is at hand. For once,

the French have provided us with something useful! (European

joke, not to be taken chauvinistically.) If you use \frenchspac-

ing, you get something which is not at all daring, but sensible.

All spaces have the same stretch, whatever the punctuation. This

primer uses \frenchspacing, as a gesture to European unity.

There is a matching \nonfrenchspacing which turns it back on

again. Do note that negating \frenchspacing uses non rather

than no. In passing, if you are wondering what Knuth has to say

about interword glue, it is that ‘the details are slightly tricky, but

not incomprehensible’. No comment.

Pages 211

One more feature of periods: three dots in a row are termed

ellipsis. If you simply type three dots, they appear on output to

be too close together. In order to get ... rather than ... , TgX uses

\dots. Why was it not called \ellipsis I wonder?

He went on, and on, and on\dots\ about ellipsis.

Now I don’t have to say anything more about ellipsis. Hmmm...

=>-Exercise 12.16: Unfortunately that is not true. Use \dots to cre¬

ate ellipsis when you change font or change the font size. Compare the

dots you obtain with the dots normally created in that font and size.

Comments? •£=

Lines

There are often situations where you may wish to control the

structure of your document, down at the line level. If you are

setting verse or poems, you would be rather unhappy to have TgX

use its usual paragraphing - although this might just do for some

blank verse, or prosy passages. We need some way of forcing each

line to be treated by TjrjX as a separate entity. We already have a

suitable mechanism. If each line was a paragraph in its own right,

we could emulate the desired effect:

As easily I should miss the spring,\par

certain, no need to mark or paceApar

This has certain consequences: since each line is a paragraph,

the values of \parskip and \parindent are brought into play,

and should any line exceed the \hsize, it will be broken as nor¬

mal and the residue will start at the left margin. In general poems

right justify continuation lines. has a special control sequence

\obeylines which saves having to put the \par at the end of each

line. The existing ‘carriage return’ is made to substitute for the

explicit command (you could of course leave a blank line between

each line instead of writing \par). Thus

{\obeylines

what’s fixed, is, though the world turns

and turning, returns

where you and I are, no matter

the angles, orbits set.

>
This is exactly equivalent to the earlier solution, illustrating both

the effect and the limitations of the command. This is a use¬

ful example of one of the drawbacks of plain TfcjX. Often the

paragraph is exploited for other purposes, purposes for which it

212 A plain T)gX primer

may not be truly appropriate. \ obey lines implicitly accepts the

current paragraph settings of skip and indent. It might be more

appropriate in many situations to redefine these. The \parskip

might be better as the same value as \baselineskip, and the

indentation might be some entirely different value:
{\obeylines\parskip=\baselineskip\parindent=Opt

We merely wheel in this our own

made heaven, nor can we quit it,

}
Since this is grouped, the values of \paxskip and \parindent are

local, and are in effect only for that group. You will have to group

\obeylines anyway, or every time you type a carriage return TgX

will start a new paragraph.

There is an alternative strategy: we could \break every line:

(nor would I, should or could)\break

still it goes, though never still\break

but by itself, \break is insufficient. Applying it in the way shown

above would give:

poise gained from movement

constant encircling, an escapement,

which is really not very attractive. What we wanted was to \hf il

it before breaking:

but no escape save seconds.\hfil\break

1511 await the spring.\hfil\break

which would give:

but no escape save seconds.

I’ll await the spring.

If we were doing something like this at all seriously, we would

probably redefine \hfil\break to \\, or something similar.

=>Exercise 12.17: Rather than redefine \hfil\break in the way sug¬

gested above, dabble in active characters again. Select some underused

character and turn it into a suitable command. 4=

Give me a break

Time for an aside: you rarely need to \break a line in this way,

far less break a page and start a new one. But for some reason,

people expect to have an explicit mechanism for breaking a line

or a page. This is largely a hangover from the days of the type¬

writer. Besides anything else, it suggests a lack of faith in T^X.

Apart from the explicit use of \break above, there is no use of

Pages 213

such \break commands in this entire book. There are, however, a

few page breaks: after all, you do need some means of terminating

Chapters or Appendices. How do we obtain them? The command

\eject forces a page break (ejects a page), just as \end or \bye

forces the end of processing. Again, \eject by itself is probably

insufficient, just as \break by itself is inadequate. We need to fill

the page with white space:

\vfill\eject

is a suitable strategy. If we omit the \vfill any glue between

paragraphs will come into operation. Similarly, any glue asso¬

ciated with the \baselineskip may allow lines to be further

apart than they really ought to be. Outside of this very deliber¬

ate chapter or appendix end (or perhaps some other sectioning

requirement), \eject is rarely required. Many books require that

a new chapter starts on a right-hand (or odd) page. Thus if every

chapter starts with
\ifodd\pageno\else\null\eject\fi

we can ensure that TgX takes care of this detail. Of course, no-

one would really write that. They would have written a command

which includes those instructions, together with instructions on

how the chapter title was to be handled, and if there were any

special instructions for the headline and footline on a title page.

In relatively informal documents, like for example memos or

reports, it sometimes seems desirable to encourage page break¬

ing at the end of paragraphs. This seems especially true if the

paragraphs tend to be short. T^X has a trio of commands, \small-

break, Vnedbreak, and \bigbreak, which provide a little extra

flexibility in building a page, but they also add a skip (small,

med, or big) if the page is not broken there. More drastic is the

\goodbreak which is even more encouragement to break. There

is one more variation, which most closely approaches the problem

introduced at the end of this paragraph. The command \fil-

break is particularly interesting: if a paragraph terminates with

\f ilbreak, the next block of material which is itself terminated

with a \f ilbreak will either be placed on the same page, if there

is enough room, or start a new page.
=>Exercise 12.18: Really these commands only start to make sense
when you come to use them in a variety of situations. If you can also
arrange to have a deadline loom over you, you will soon find the trying
cases when they don’t quite do what you expect, and where practice and
experience would have been a great boon. <=

214 A plain TgK primer

command

\u

amount

normal space

normal space

0.5 em ± Oem

0.5 em

1 em

2em

0.1667 em

defined by
\fontdimen

\fontdimen

Figure 12.2

Spaces

\enskip
\enspace

\quad

\qquad
\thinspace

\hskip

\kern

\hskip

\hskip

\kern

Spaces

In text we may have to control the spacing between words or char¬

acters. There are a number of ways of doing this (Figure 12.2).

Most have been introduced in a slightly different context already.

Not one is an absolute measure, but is related in some way to the

current font. In Computer Modern Roman at 10 pt, the normal

space is 3.33333 pt plus 1.66666 pt minus 1.11111 pt, and an em

is 10 pt. These values are to be found in the \f ontdimen parame¬

ters associated with every font (Chapter 18). For example, those

first three values, associated with the way a normal space is han¬

dled, are stored in \fondimen2, 3, and 4. The value of 1 em (a

quad width) is stored in \fontdimen6. Although we may not nor¬

mally wish to change these, they can be manipulated. In general,

the \fontdimens themselves are not manipulated directly, but,

for example, \spaceskip may be reset to change the interword

spacing:
\spaceskip 4pt pluslpt minuslpt
and the ‘extra’ space, associated with sentence endings, can be

reset through \xspaceskip. You would have to have a really good

excuse to want to change things like this.
=£-Exercise 12.19: What differences are observed between starting a
paragraph with \enskip and \enspace? <=

Tables by tabs 13

One reason for tackling matrices before tables was to demonstrate

how straightforward it is to obtain aligned entries. There is very

little difference between a matrix and a table - at least, not from

the way it is laid out. From a mathematical point of view they

may have rather different properties, if they do indeed contain

numerical information. Of course, many tables will contain no

numerical information at all. Two elements will be preserved in

any discussion of TgX’s tabular facilities, the & and the \cr.

Before looking at T^K’s handling of tabular material, consider

this quotation from Richard Beach (1986):

Designing table typography is a hard problem. There are

many formatting details to get right and there is only a small

amount of space with which to work. The two-dimensional

nature of tables requires alignment of information in both

directions at the same time. It is very important to maintain

control over placement because the organization of informa¬

tion in tables is part of the message. Juxtaposition and other

spatial relationships within tables have an important impact

on the way in which tables convey information.

At least one of the things this suggests is that you should have

some idea of what you are trying to achieve when you commit

yourself to using a table. A small amount of forethought may cut

through many layers of layout, and you could end up with some¬

thing which is easier to understand. This should be a thread which

runs throughout this primer. There is no point having the world’s

most sophisticated text layout software at your fingertips, if the

message you are conveying is woolly, garbled, or unclear. Tfr^C will

allow the clearest message to shine through unfettered: it will not

burnish a pig’s ear. Software is no substitute for brainware.

As usual we will start with some of the simpler cases. TgX

has a very simple and crude method of aligning text through the

command \settabs

216 A plain primer

\settabs 3\columns

\+ column one & column 2 Sc column 3 \cr

\+ next one & and the next & and more \cr

Interpretation is not too difficult, since we already know what &

and \cr do. In this very special instance, they have non-deleterious

effects on ordinary text. The new expression is \+ which starts

every line in the alignment. The command \settabs itself needs

some extra information - the number of columns that the aligned

text occupies, followed by the command \columns. The sequence

above would give us

column one column 2 column 3

next one and the next and more

The line is merely divided into three equal parts. Notice that each

of the columns is ‘left justified’. Do not be misled by the name

\settabs to assume that this command works in exactly the same

way as typewriter ‘tabs’. In particular, we should be careful that

the content of any column does not overwrite that of another

column. Selecting the next tab on a typewriter just jumps to the

next available, relative to the current position - \settabs goes

to the next, even if that means backtracking. Equally, note that

the command does not ‘wrap’ a longer entry into several shorter

‘lines’, in the way that T^X normally handles paragraphs. For

example, some of the line

\+ an extremely long entry which is really not

a good idea&short&also short\cr

will probably end up being printed in the same space as the sec¬

ond and third columns. ‘Probably’ because this will depend on

the current \hsize.

^Exercise 13.1: Set up a simple \settabs and by changing the

\hsize show how wider entries can lead to overwriting. <=
Exercise 13.2: There is a way to make the entries behave as ‘nor¬

mal’ paragraphs by boxing them. See if you can make it work. •<=

An interesting feature of \settabs is that it remains in opera¬

tion until a new \settabs is set up. The \settabs could be set

up at the beginning of the file, to be utilized whenever needed:

\+ yet another & penultimate & the end \cr

simply produces

yet another penultimate the end

You might also cheat a little and park something in a mythical

fourth (or even fifth, sixth...) column. What happens then?

\+ Stop! & Don’t do it!! & I warned you Sc Aargh!\cr

See for yourself.

Tables by tabs 217

Stop! Don’t do it!! I warned you Aargh!

A block of tabbed alignments will split over a page boundary.

They are not seen as an integral unit, but of course, if the whole

block is \vboxed, the \settabs may be local to that box, and they

cannot be split over pages. But note that it is also possible to write

\settabs3\columns

\vbox{

\+ column one & column two & column three \cr

\+ next one & and the next & and more \cr

}

The feature of equal width columns may be unsatisfactory. You

can get round it by nominating a sort of ‘template’ line - a line

which exhibits the ‘worst’ (longest) features of the individual

entries, or adopts some other appropriate set of guidelines. To

illustrate this, the example of a table of contents will be used:

\settabs\+LXXXVIII\quad&The Pequod Meets the Samuel

Enderby\quad&999\cr

\+ I & Loomings & 1 \cr

\+ II & The Carpet Bag & 9 \cr

\+ III & The Spouter Inn & 16 \cr

\+ . & . & . \cr

\+ CXXXV & The Chase — Third Day & 806 \cr

\+ & Epilogue & 825 \cr

The line
\settabs\+LXXXVIII\quad&The Pequod Meets the Samuel

Enderby\quad&999\cr

will never appear anywhere. In fact, there will be no page 999.

The entries simply represent the maximum size to be allotted to

their columns. TgiX’s digits have the quality that they are all of

the same width (half a quad, or an \enspace). This produces

I Loomings 1

II The Carpet Bag 9

III The Spouter Inn 16

CXXXV The Chase - Third Day 806

Epilogue 825

How might we have placed the entries in another font, for example

italics? It is worth remembering that simply saying \it Loomings

does not then bring \it into play for the whole of the rest of the

alignment, either horizontally or vertically. Each of the individual

entries between \+, &, and \cr is grouped. In passing, this implies

that an arrangement like

218 A plain TppC primer

\+{\it..\cr

is doomed to failure. To make all the entries italic, you could do

something like:

{\it

\+.\cr

\+. . . \cr

\+.

}

or even

\+. Acr

{\it\+. .\cr}

\+.
to turn a single line into italics. If the \settabs occurs within the

braces, it will be local. The \global command has no effect on

\settabs, although it does not generate an error message.

What happens to spaces within the aligned material? ‘Ordinary'

spaces which occur between words are handled in the normal T^X

way - as space. The leading or trailing spaces are simply ignored.

It does not matter whether you write

\+I& Loomings&l\cr

or

\+ I & Loomings & 1 \cr

The fact that \+I and \+ I work in exactly the same way may

seem a little anomalous. After all, \+ is a command made up of \

and a single non-alphabetic character, where one might expect the

space to be therefore significant. Not so. If, though, space occurs

in a template, leading spaces are ignored, but trailing spaces count

as ‘space’. That is, the lines

\settabs\+LXXXVIII &The Pequod Meets the Samuel

Enderby &999 \cr

and

\settabs\+LXXXVIII&The Pequod Meets the Samuel

Enderby&999\cr

result in slightly different spacing of the following alignments.

In order to do something a little more useful, let’s take a real

example, published in Lesk (1979). This table is too large to

present in detail, especially since once a couple of lines have been

done, the remainder fall out naturally. The first few lines are given

in Figure 13.1.

This actually starts to look like a table (at last). How do we do

it? Looking first at the body of the table, it is obvious that taking

three equal width columns:

Tables by tabs 219

New Jersey Representatives

(Democrats)

Name Office Address Phone

James J. Florio

William J. Hughes

Edward J. Patten

Frank Thompson Jr.

Peter W. Rodino, Jr.

23 S. White Horse Pike, Somerdale 08083 609-627-8222

2920 Atlantic Ave., Atlantic City 08401 609-345-4844

Natl. Bank Bldg., Perth Amboy 08861 201-826-4610

10 Rutgers PL, Trenton 08618 609-599-1619

Suite 1435A, 970 Broad St., Newark 07102 201-645-6363

Figure 13.1

Table begin¬

ning

\settabs3\columns

is rather absurd. What is needed here are different length align¬

ment entities:

\settabs\+Frank Thompson Jr.\enspace&

Suite 1435A, 970 Broad St., Newark 07102\enspace&

-999-9999&\cr

This will set up the template that is to be repeated. We are choos¬

ing the widest entries which occur in column one, column two, and

column three. Column three is the easiest to deal with, since all

digits are known to have a constant width. Otherwise we have to

scan down the entries and make an educated guess. This may not

be easy for real-life data. After all, the actual width of an entry

depends on the typeface and font being used. The original is set in

a sort of Times typeface, but there is no guarantee that Computer

Modern will have the same width characteristics. If the original

had been typed, or had been handwritten, it would have been

even more problematic to estimate the significant entry. Note the

inclusion of an \enspace in the first two entries, to ensure that

there is some space between the columns.

A rather odd feature is the ‘extra’ & which immediately pre¬

cedes the \cr. What is going on here? In broad terms, the way

that \settabs works is to create a number of \hboxes, which each

contain the argument (the material in the alignment), left justi¬

fied by an \hss. The command \hss is an interesting one, since

it is the mechanism which allows material to spill over the fixed

width of the \hbox. There is one exception to this pattern. The

last \hbox in the alignment contains no glue at all. It is simply

an \hbox to its natural width. Thus in order to be able to modify

the entry to do anything other than left justify it, the only real

220 A plain Tp]X primer

option is to add an extra alignment which becomes the one with

the \hbox to its natural width. This ‘extra’ column has to be

added to any line where the rightmost ‘real’ entry is to be centred

or right justified — a rather ugly way to handle the problem. For

the bulk of the table, these strategems are irrelevant, since the

entries are intended to be left justified. However, the line

Name Office Address Phone

has entries which are centred over their columns. Since the \set-

tabs uses an \hss command, it can most easily be overridden by

\hf il or \hf ill. If centering is required, it is sufficient to write

\+\hfil Name &\hfil Office Address &\hfil Phone&\cr

since this will counterbalance the \hss. Obviously, although suf¬

ficient, this does not appear intuitive when we come across it in

a chunk of text. It would be far clearer to write
\+\hfil Name\hfil&\hfil Office Address\hfil

&\hfil Phone\hfil&\cr

where the centering is made explicit. If we wished to right jus¬

tify within an entry, the command to use is \hfill. A pair of

balancing \hf ills could also have been used to centre.

This accounts for the bulk of the table, but not for the first two

heading lines. It turns out that these cannot easily be handled as

part of the \settabs already set up. The problems are similar to

those encountered with the other centred material. One way to

tackle these is
\settabs\+Frank Thompson JrAenspace

Suite 1435A, 970 Broad St., Newark 07102\enspace

999-999-9999&\cr

\+\hfill New Jersey Representatives\hfill &\cr

\+\hfill\it(Democrats)\hfill&\cr

There are tidier ways to do this, since we know that an \enspace

is half a \quad. On the other hand, by far the easiest way is to

take the template for the \settabs already discussed, and just

edit it, by dropping out the &s between the entries, remembering

that the template line should end with a &\cr. If we happened to

have some idea of the width of the table that was to follow, we

could of course just write

Vsettabs\+\hskip334pt&\cr

To me this illustrates one of the weaknesses of \settabs, since

it emphasizes how important it is to know the characteristics of

the material to be formatted. This is not “declarative markup’

if we have to take into account the current \hsize or individual

entries. We can plead for clemency on the grounds of the particular

Tables by tabs 221

\settabs\+Frank Thompson JrAenspace

Suite 1435A, 970 Broad St., Newark 07102\enspace

999-999-9999&\cr

\+\hfil New Jersey Representatives\hfil &\cr

\+\hfil\it(Democrats)\hfil&\cr

\smallskip

\settabs\+Frank Thompson Jr.\enspace&

Suite 1435A, 970 Broad St., Newark 07102\enspace&

-999-9999&\cr

\+\hfil Name\hfil & \hfil Office Address\hfil & \hfil

Phone\hfil&\cr

\+ James J. Florio & 23 S. White Horse Pike, Somerdale

& 609-627-8222\cr

\+ William J. Hughes & 2920 Atlantic Ave., Atlantic

City 08401 & 609-345-4844\cr

\+ Edward J. Patten & Natl.\ Bank Bldg., Perth Amboy

08861 & 201-826-4610\cr

\+Frank Thompson Jr.\enspace&10 Rutgers PI., Trenton

08618 & 609-599-1619\cr

\+Peter W. Rodino, Jr.&Suite 1435A, 970 Broad St.,

Newark 07102\enspace&201-645-6363\cr

Figure 13.2

A portion of

the input of

Lesk’s table

nature of tabular material, but it does raise some uncomfortable

questions.
What does this give us? Figure 13.2 provides a summary of all

the components which have been introduced. It accounts for the

headings and the first few entries. The results of this have already

been given. There are a couple of small items to be accounted for:

a \smallskip appears in the table, just to spread out some of the

headings. Perhaps of more interest are the ways that periods are

handled. Recall that under TeX’s default settings additional space

is added after a period. Periods are used in (at least) two different

senses, as the terminator to a sentence and as an indication that

abbreviation has taken place - for example, after an initial in

a name, or in common abbreviations like ‘etc.’ TgX attempts to

handle these differently. If a period follows a capital letter, a space

that follows is a ‘normal’ interword space. If it follows a lower-case

letter, it is assumed to be a sentence terminator, and some extra

space is added. This accounts for the different handling of periods

in the table. Whenever a period is used as in an abbreviation,

but follows a lower-case letter, a ‘control space’ can be entered:

for example, Natl.\u. In the case of the abbreviation Bldg., the

222 A plain TppC primer

period is followed by a comma rather than a space, and no special

action has to be taken.

Indirectly this raises a couple of other points. If a sentence ends

with a capital letter the following period will be followed by a

normal interword space, rather than an intersentence space. The

actual amounts of space are not large. In the standard cmrlO an

interword space is 3.33 pt, while 4.44 pt is placed after a full stop

which ends a sentence. These quantities are skips, and therefore

have associated glue too. Many acronyms are presented in upper¬

case letters: names like CAD-CAM, CGM, TgX, and so on spring

readily to mind. If we really care about this finesse, what should

we do? One way to handle the problem is to insert a null group,

{}, between the last upper-case letter and the period, so that we

‘normally’ write CAD-CAMO, or \TeX{>. Again, this looks ugly,

but it does ‘solve’ the potential problem. The solution adopted in

this primer is to adopt \frenchspacing throughout. This makes

spaces after a period (or any other punctuation) be treated as

normal interword spaces. To return to the default TgX spacing,

issue the command \nonfrenchspacing. Opinion appears to be

divided about the appropriate gap to be left at a period which

indicates a sentence end. Alison Black (1990) notes ‘In typeset

documents, all punctuation should be followed by a single space’,

while all typists appear to have been taught to leave two spaces

(and therefore most word processors do this by default).

=>Exercise 13.3: In the original of the ‘New Jersey Representatives’

table, the first column, ‘Name’, was set in a bold typeface. Modify the

table template(s) and entries to do this. <t=

=>Exercise 13.4: Returning to the earlier example (the table of con¬

tents), the first column, the chapter numbers, would be better set right

justified: similarly, the page numbers would be much better right justi¬

fied. Modify the components of this table of contents to take these details

into account. <;=

More control

Very often we wish to centre the displayed material across the

page. There is a simple way to do this. At first it seems a little

perverse and perhaps a little contradictory, but it merely exploits

Tables by tabs 223

some aspects of T^X’s nature:

I Loomings 1

II The Carpet Bag 9

III The Spouter Inn 16

CXXXV The Chase - Third Day 806

Epilogue 825

may be set through

$$\vbox{\settabs\+LXXXVIII \quad&The Pequod Meets the

Samuel Enderby \quad&999\cr

\+ I & Loomings & l\cr

\+ II & The Carpet Bag & 9\cr

\+ III & The Spouter Inn & l\cr

\+ . & . & Acr

\+ CXXXV & The Chase — Third Day & 806\cr

\+ & Epilogue & 825\cr

>$$
Essentially all the maths mode contributes is the centering. But

since we have textual material it has to be \vboxed to be handled

properly. The use of maths mode also inserts extra skip above and

below the table. T^X uses its normal mechanism for vertical space

between text and displayed maths, as discussed earlier.

There are some further implications. Since the material is boxed,

it will not be split over pages: it will be treated as a single integral

block. Thus its applicability to a table of contents of indetermi¬

nate length is suspect. In this example the \settabs is inside

the \vbox and would be local (the inclusion within the $$ signs

also makes a local group). The \settabs could have preceded the

$$\vbox if desired.
=>Exercise 13.5: Take this last example, and compare what you would

have obtained by removing the maths setting, and then the \vbox. Also

place the \settabs outside the $$\vbox. <=

Would this strategy also work with the use of \settabs when

it is used with a fixed number of \columns ? Recall that the final

aligned entry is an \hbox to its natural width. Thus a line is not

really to the full \hsize, but can be a bit shorter. The ‘short¬

ness’ will depend on the particular number of columns and the

entries. But if an extra & has been added to allow the final column

to be centred or right justified, then no apparent centering will

take place. A way to handle this would be to nominate an extra

column: that is to say,

224 A plain Tp]K primer

\settabs4\columns

when only three were going to be used.

Although placing material in maths mode will, by default, cen¬

tre it across the width, so too does \centerline. This also gives

us rather better control over vertical spacing. Why not simply

place the tabular material into \centerline? This raises some

interesting points.

Taking the straightforward approach of experimentation,

\centerline{\settabs3\columns

\vbox{

\+ column one & column two & column three \cr

\+ next one & and the next & and more \cr

»

we find the rather forbidding error message

Runaway argument?

{\vbox {\settabs 3\columns

! Forbidden control sequence found while scanning

use of \centerline.

Asking for more information through typing help at the ? prompt

yields little to help us:

I suspect you have forgotten a *}’, causing me

to read past where you wanted me to stop.

I’ll try to recover; but if the error is serious,

you’d better type ‘E’ or ‘X’ now and fix your file.

In fact this is misleading. The problem lies with the \+ command,

since it turns out that this is defined with the aid of \outer. It

cannot therefore appear as an argument in a command. There are

two ways out of this dilemma. The command \centerline takes

one argument, but the command Mine takes none. How can this

be? Looking at the two commands in detail:

\def\centerline#l{\line{\hss#l\hss}}

\def\line{\hbox to \hsize}

the definition of Mine is quite elegant. It could have been written

as

\def\line#l{\hbox to\hsize{#l}}

but why bother, when the material to be used by Mine ought to

be grouped anyway? In other words, when

\line{Some text}

is used, it expands to

\hbox to \hsize{Some text}

a simple substitution macro. If therefore we write

Tables by tabs 225

\line{\hfill\vbox{\settabs3\columns

\+ column one & column two & column three \cr

\+ next one & and the next & and more \cr

>\hfill>

which ‘feels’ like \centerline, the desired effect will result.

The other approach is to use a version of \+ which is not \outer.

Knuth provides another command, \tabalign, which may be used

in these circumstances:

\centerline{\settabs3\columns

\vbox{

\tabalign column one & column two & column three \cr

\tabalign next one & and the next & and more \cr

>}
=>Exercise 13.6: Centre either the table of contents or New Jersey

Representatives table.

A specialized extension

There is one more feature to be taken into account before leav¬

ing the commands in the \settabs suite. Perversely, it does not

involve the direct use of \settabs at all, since it is possible to use

\+ without first referencing \settabs. This feature is really most

appropriate for the formatting of computer programs, or some

similar sort of exercise where the alignment positions change from

line to line. The following example from Stig Hanson (1990) may

help to give some flavour of this:

column=Id

table =Transpose o

(all i: Insert [place=first

element=word(Arabic(i))]) o

(all i: Layout[dimension=horizontal...]) o

Layout [dimension=vertical...]

may be obtained from

\+column&=\bf Id\cr

\+table &=&\bf Transpose \circ\cr

\+ & &(\bf all i: Insert{\rm [}&place=first\cr

\+ ft ft &element=word(°/„

{\bf Arabic}(i))]) \circ\cr

\+ & &(\bf all i:

Layout{\rm[dimension=horizontal\dots])}
\circ\cr

\+ & &\bf Layout{\rm[dimension=vertical\dots]}\cr

226 A plain primer

There is quite a lot of work here, but it is possible to see that more

&s are added as the ‘program’ is developed. Since it is often incon¬

venient to be stuck with the alignment markers which are selected

for a couple of lines, a command \cleartabs allows resetting of

the alignments. Prom the same source,

bottom-num[i,r]=Singleton o

Insert [place=last

element=word(Arabic(i))] o

Layout [orientation=vertical

alignments with r

glue: between=foot-sep-glue

reference: ref=ref(first)

is given from the following commands:

\cleartabs

\+bottom-num[i,r]=&\bf Singleton \circ\cr

\+ &\bf Insert\rm[&place=last\cr

\+ & &element=word({\bf Arabic}(i))]

\circ\cr

\+ &\bf Layout[\cleartabs&orientation=vertical\cr

\+ & &alignment=r {\bf with}

r\cr

\+ & feglue: between=’/,

{\sl foot-sep-glue}&\cr

\+ & fereference: ref=ref(first)

&] \cr

The \cleartabs command is used here only in order to remove

the alignments. Without this command, the previously set up

alignment would have been used.

=> Exercise 13.7: The last examples might have been better handled

if the entries which included mathematical symbols like = and o were

handled completely in maths mode in order to ensure that the spacing

was ‘correct’. Rework them in order to accommodate this refinement. <=

Tables again

There is quite another way entirely to tackle tables. has two

commands, \halign and \valign, which provide an enormously

flexible way of handling tabular material. With the exception of

the two ‘programming’ examples from the last chapter, all the

tabular material presented so far would (in my opinion) be more

easily handled through this alternative technique. I confess that

I very rarely use \settabs. The \halign command in particular

seems to lend itself to a variety of problems. To begin with, its

use gives the illusion of awkwardness. This is more a function of

unfamiliarity, rather than intrinsic difficulty.

A very simple template for a numeric table is

\halign{#&#&#\cr

1 & 270 & 9 \cr

2 & 39 & 16 \cr

3 & 4 & 126 \cr

>
This is rather rudimentary, but it serves to illustrate the notions.

The command \halign merely means a horizontal alignment is

being set up. The next set of commands are an alignment ‘pream¬

ble’ or ‘template’ which serve to describe the form the table will

have. Essentially all it is saying is ‘three entries per row’, and

making no pronouncement about placement within a column.

This table comes out as:

1 270 9

2 39 16

3 4 126
It would have been rather nicer either to centre or right justify

the entries. If we change the preamble to

\halign{\hfil#&\hfil#&\hfil#\cr

the individual entries would have been right justified:

1 270 9

2 39 16

3 4 126

228 A plain primer

The \hf il is propagated down the column, but it does not filter

‘sideways’ through to the other columns. This feature is very pow¬

erful. Positioning, font changing, boxing, and many other sorts of

commands may be incorporated into an alignment preamble.

There are some other interesting features associated with the

\halign command. The occurrence of an \halign within text will

begin a new line, not a new paragraph. But when the alignment

is finished, any following text continues as if a new paragraph

had been begun. The # indicates the replacement text. Any blank

spaces after the & in the preamble (or the individual entries) are

ignored, but any spaces after the # are regarded as the inclusion of

‘space’. In the example, the spaces between the columns are gene¬

rated by virtue of the spaces which follow the numbers (not those

preceding them). That is, taking u to mean ‘significant space’ in

this context, what T^X sees is

\halign{#&#&#\cr

lu& 270u& 9u\cr

2U& 39u& 16u\cr

3U& 4U& 126u\cr

The space between the columns was generated by the table

entries, but space may also be inserted into the preamble. The

preambles

\halign{#&#&#\cr and \halign{ #& #& #\cr

are equivalent, but

\halign{# &# &# \cr

is different, since in this case an extra space will be added after

the replacement text.

If other material occurs in the preamble, it is not necessary to

include separators between any commands and the #, nor is it

necessary to shield the replacement text in braces. Thus when

\halign{\hfil#&\hfil#&\hfil#\cr

one&two&three\cr}

is typeset, although it might appear that one is merely inserted

immediately after the \hfil to give \hfilone, Tf^X is friendlier

and recognizes that the \hf il is a command separate from what¬

ever follows. But equally, it would have done no harm to express

the preamble as

\halign{\hfil #&\hfil #&\hfil #\cr

since the space after the \hfil disappears, in common with any

other TgX command.

Should we decide to group some of the replacement text, it does

become possible to insert extra space in entries. As you might

Tables again 229

one& two&

fourfe fivefe

sevenfe eight&

ten&elevenfe

expect { one} manages to insert a little extra space too, since it

is contained in the group.

There is some conflict going on here. On the one hand, it seems

a good idea to lay out tabular material clearly, mimicking the

eventual layout. In this way it is far easier to keep track of what

goes where. On the other hand, if the contents of the table are

presented in a way which eliminates the leading and trailing space,

then the table may become less readable and more prone to error.

There are straightforward strategies which can help. In a trivial

example,

three\cr

six\cr

nine\cr

twelve\cr

ensures that no inadvertent spaces are introduced. In general, any

such space would hardly matter if the entries were to end up left

justified: if the preamble was

\halign{\hfil#&\hfil#&\hfil#\cr

then an extra space between the replacement text and an & could

lead to a small amount of extra space being introduced, and as

a result, the entries not being spaced as expected. For example,

with this ‘right-justified’ preamble the entries

one &two fethree \cr

four fefive &six \cr

seven&eight fenine \cr

ten &eleven&twelve\cr

could give a rather irregular spacing between the columns.

=>■ Exercise 14.1: Experiment with the preambles in the examples

already given in this chapter. Modify them to centre entries in a column.

Show the effect of omitting all spaces in the entries and the preamble.

To illustrate the font-changing capability, we could have the

first column in italics, the second bold, and the last in the default

font through the alignment

\halign{\it#&\bf#&#\cr

This is much more flexible than anything \settabs has to offer.

Exercise 14.2: Take the ‘table of contents’ from the previous chap¬

ter and create a suitable preamble. <=

Headings

But we surely expect much more out of a table than just a simple

set of entries. If the entries were numerical, we could as easily

230 A plain T^X primer

have obtained that from one of the \matrix forms - we could

have written

$$\matrix{l& 27& 93\cr

2k 39& 106\cr

3& 47& 126\cr}$$

As with some \settabs examples, we require headings. Approach¬

ing the problem simply,

\halign{\hfil#&\hfil#&\hfil#\cr

orderfe heightfe length\cr

1& 27& 93\cr

2& 39& 106\cr

3& 47& 126\cr

gives some headings, but they will each be right justified in the

column:

orderheightlength

1 27 93

2 39 106

3 47 126

It might be better to centre those individual entries, and they

certainly need spacing out more. Tackling the centering first, we

can do this by giving each individual alignment in the preamble

its own \hfil:

\halign{\hfil#&\hfil#&\hfil#\cr

order\hfil&height\hfil&length\hfil\cr

1& 27k 93\cr

2k 39& 106\cr

3& 47& 126\cr

}

There are several ways to tackle the introduction of space between

the columns. It is worth emphasizing the need for consistency yet

again. Had we written

order feheight felength \cr

1& 27& 93\cr

the headings would have had a bit of space associated with them,

and they would not have (right) aligned with the numbers which

followed. But provided we treat the heading row in the same

way’ as each of the following rows, by consistently introducing

space or not, the table should contain no unexpected anoma¬

lies.

One of the easiest ways to include space is to introduce a \quad

or an \enspace in the template. Gradually, we are building up to

something useful:

Tables again 231

order height length

1 27 93

2 39 106

3 47 126

Since the alignment preamble is a sort of template, we could

use it to convey other information, which would be repeated in

each entry. For example, if we wished the first column to be in a

different typeface, we could

\halign{\it\hfil#\quad&\hfil#\quad&\hfil#\cr

order & height & length \cr

1& 27& 93\cr

2& 39& 106\cr

3& 47& 126\cr

}
This chapter began by saying that there was a similar path,

through the use of \valign. In truth, this is rarely used. Knuth

notes that ‘people usually work with T^X at least one year before

they find their first application for \valign’. This may even be

a conservative estimate. The only examples I have ever seen were

rather forced (and could probably have been done another way).

Approaching the problem

The easiest way to approach tables is by gradually building up

the elements until we achieve all the bits and pieces we want. In

doing so we will encounter many other features which are of a

more generally applicable nature. It seems almost impossible to

teach (or learn) T^X in a ‘linear’ fashion. There always seem to be

little diversions and loops which, in the end (if it is ever reached),

make the path look like macrame or lace.

There are many ways to illustrate the creation of tables. The

approach that will be adopted from now on is to tackle some ‘real’

tables, and later to examine some more specific problems. One of

the alternatives, creating only a very few, fairly complex tables,

as exemplified by Knuth, will not be adopted. The first few tables

will be drawn from Lesk’s paper on tbl (which is also where

Knuth borrowed the AT&T example in The T^Xbook, and from

which the \settabs example in the previous chapter is derived).

There is a slight drawback in this approach. While the tables are

reasonably comprehensive, the originals were ‘solved’ with tbl,

and it is by no means clear whether they were chosen to clar¬

ify the power of tbl, or even whether other, more tricky tables

232 A plain TftK primer

were omitted as being outside its power. We don’t really have any

idea what compromises were made. Therefore one or two extra

examples are included, which illustrate some particular point.

No rules

Firstly, a table without any rules at all (Figure 14.1). It is a fairly

simple two-column table with a left-justified textual column fol¬

lowed by a right-justified numeric column - almost. There are

subdivisions which are offset to the left by about a quad (the

amount hardly matters); and there are some numbers which are

handled in a rather different manner.

In constructing the table, note that the alignment character is

a category 4 character. That is to say, somewhere there exists in

plain the statement

\catcode *\&=4

This may be useful to us later. The \cr is a primitive command.

As Knuth notes ‘it may be dangerous to redefine (it)’.

The nub of most tables is a specification line like:

\halign{#&#\cr

Looking first at the information and ignoring headings and sub¬

divisions, we can tackle the table as:

\halign{#&#\cr

Tube & 244 \cr

Sub-surface & 66 \cr

Surface & 156 \cr

>

What this chiefly omits is the information describing the position

of the elements with cells. The way that tables ‘work’ is to process

all the entries in all the rows, calculating the very widest cell in

all rows. This information is then used in the spacing. This indi¬

cates one feature of tables: they can lead to T£X running out of

memory. All the information is effectively held in memory. Large

tables can indeed be a problem. There are ways of circumventing

this, but they really do start to make T^X complicated. In the

case of this table, the left column is left justified, and the right is

right justified:

\halign{#\hfil&\hfil#\cr

Tube & 244\cr

Sub-surface & 66\cr

Surface & 156\cr

>

Tables again 233

Some London Transport Statistics

(Year 1964)

Railway route miles

Tube 244

Sub-surface 66

Surface 156

Passenger Traffic - railway

Journeys 674 million

Average length 4.55 miles

Passenger miles 3,066 million

Passenger Traffic - road

Journeys 2,252 million

Average length 2.26 miles

Passenger miles 5,094 million

Vehicles 12,521

Railway motor cars 2,905

Railway trailer cars 1,269

Total railway 4,174

Omnibuses 8,347

Staff 73,739

Administrative, etc. 5,582

Civil engineering 5,134

Electrical eng. 1,714

Mech. eng. - railway 4,310 Figure 14.1

Mech. eng. - road 9,152 A simple table

Railway operations 8,930 without rules

Road operations 35,946 (from Lesk,

Other 2,971 1979)

By now this is pretty close to what we want. But this says nothing

about the spacing between the columns. On the face of it, it is

conceivable that a row could consist of two columns which abut

straight into one another (if we had the worst case event of both

widest cells occurring on the one row). In fact, T^X puts ‘tabskip

glue’ between columns. By default the tabskip glue is zero. Unfor¬

tunately, merely stating \tabskip=lem does not automatically

separate the columns by extra white space. But the ‘simplest’

way to achieve this is

234 A plain primer

\halign{#\hfil&\quad\hfil#\cr

Tube & 244\cr

Sub-surface & 66\cr

Surface & 156\cr

>

In other words, manually insert the space.

What width is the table? The table will be its ‘natural’ width,

just in the same way that a box takes its natural width (and

depth and height). Where will it be on the page? It is just a box,

and will be placed wherever it is you leave it. But even if it is a

paragraph in its own right, it will not be indented by the current

\parindent value.

Time to see what it looks like so far:

Tube 244

Sub-surface 66

Surface 156

Now we can start to solve some of the problems associated with

this table: in particular, the cases which do not quite match the

template. The numeric values which have an associated dimension

‘hang’ out into the right margin. There are a great number of ways

that this can be handled. To some extent the one selected depends

on just how you perceive the relationship between the ways these

cells and the others are handled. Is the longest example cell centred

with respect to the longest of the other cells in the column? Do

the dimensions merely project ‘beyond’ the present right limit? Or

put another way, is the way we have handled this column actually

in error, and these ‘long’ entries are right justified, but the others,

though right justified, are followed by a quad of space? This latter

suggestion seems the simplest. How does it affect the template?

\halign{#\hfil&\quad\hfil#\quad\cr

Provided we can find some way of overriding the template for

these particular cells, this may be a solution. Of course, there is a

way of overriding: \omit. This command (which must be the first

to appear in the contents of a cell entry) says ‘omit the template

information in this cell of the alignment’. You cannot easily be

selective here. You omit it all, or obey it all. Having once omit¬

ted the information on how to treat the cell, you must provide

cell-specific information for that particular entry.

\halign{#\hfil&\quad\hfil#\quad\cr

Journeys &\omit\hfil 674 million\cr

Average length &\omit\hfil 4.55 miles\cr

Passenger miles &\omit\hfil 3,066 million\cr

Tables again 235

Since we are repeating the \omit\hfil it could be made into a

simple substitution command:

\def\rt{\omit\hfil}

Before we put this together, there is the matter of the sub¬

divisions. Again, there are several ways these can be handled.

If we treat them as ‘genuine’ row entries we could again redefine

the template:

\halign{\quad#\hfil&\quad\hfil#\quad\cr

and this time \omit before these headings:

\halign{\quad#\hfil&\quad\hfil#\quad\cr

\omit Railway route miles \hfil&\cr

An alternative to the \omit approach is to use \noalign. After

a \cr, that is once a row is terminated, non-aligned material may

be included. This is particularly useful for adding white space,

and one solution here could have been

\halign{\quad#\hfil&\quad\hfil#\quad\cr

\noalign{\smallskip}

\noalign{Railway route miles}

Again, the solution chosen depends on how you perceive the rela¬

tionship between the elements. In the example, there seem to be

three main groups (Railway route miles; Passenger Traffic; Vehi¬

cles and Staff), with one group, Passenger Traffic, divided into

two subgroups - railway and road. Putting all these bits together,

we obtain:

\def\rt{\omit\hfil}

\halign{#\hfil&\quad\hfil#\quad\cr

\noalign{\smallskip}

\noalign{Railway route miles}

Tube & 244\cr

Sub-surface & 66\cr

Surface & 156\cr

\noalign{\smallskip}

\noalign{Passenger Traffic — railway}

Journeys &\rt 674 million\cr

Average length &\rt 4.55 miles\cr

Passenger miles &\rt 3,066 million\cr

}
Lastly, the overall title to the table may be specified as a row or

rows, or may just be external to the alignment. My own preference

is often to include the title as a part of the table: this allows the

introduction of another variation. The title spans two columns.

In order to do this we may \multispan. This command takes a

236 A plain T&K primer

numeric argument which says just how many columns to span.

In fact, \multispanl and \omit are functionally equivalent. A

\multispan is an \omit\span. At any point, \span may be used

in place of an &, and the two adjacent cells will be merged, obey¬

ing whatever template rules happen to be in force. (But in the

template or preamble, \span means something slightly different:

it means ‘expand’ the next token.)

\halign{#\hfil&\quad\hfil#\quad\cr

\multispan2\hfil Some London Transport Statistics

\hfil\cr

\multispan2\hfil \it (Year 1964) \hfil\cr

Note again that the \it operates only within its group, where the

group is defined in a table as being bounded by & and/or \cr.

So there we have it.

=4*Exercise 14.3: Put all these pieces together to create the table. <=
=>Exercise 14.4: Tackle this table through \settabs. 4=

The basic template for this table,

\halign{\quad#\hfil&\quad\hfil#\quad\cr

is rather inflexible. We have automatically fixed the width of the

rows. Recall the \tabskip glue which may be placed between the

columns. Actually it is also placed before the first column and

after the last one. Since it is usually zero, it won’t be noticed.

When a positive value of \tabskip is present, and when the

\halign is adjusted in some way, so that the row widths are

made greater than their ‘natural’ widths, then we can adjust the

distance between columns in a more dynamic way.

\tabskip 0.5em plus 0.25em minus 0.25em

\halign to \hsize{\quad#\hfil&\quad\hfil#\quad\cr

The rows will now be made longer by inserting the specified glue

before and after each row, and also between each cell. If the ‘new’

size fails to reach the \hsize, underfull boxes will be generated,

while if it exceeds the \hsize we get overfull boxes; but you won’t

get an overfull rule message in the log file and a blob in the margin.

Perhaps a nicer solution would be something like

\halign to 0.9\hsize{%

\tabskip 0.5em plus 0.25em minus 0.25em

#\hfil&\quad\hfil#\quad\cr

which could then be centred easily, or

\tabskip 0.5em plus 0.25em minus 0.25em

\halign spread lem{\quad#\hfil&\quad\hfil#\quad\cr

which is ‘spread’ 1 em more than its ‘natural width’. The glue is

flexible enough to do this here.

Tables again 237

The tabskip glue can be changed between entries in the tem¬

plate. The tabskip glue which is in force when the { after the

\halign is encountered is used before the first cell; then the tab-

skip glue which is in force before the next & is used to separate

the columns, and so on, until the \cr is reached.

\tabskip Oem 7, default

\halign spreadlem{\tabskiplem plus 0.25em minus 0.25em

\quad #\hfil&\tabskipOem\quad\hfil#\quad\cr

This has the effect of placing the tabskip glue between the two

columns, but making the glue zero at the beginning and end of

each row.

=>Exercise 14.5: Change your table to use tabskip glue. And centre

it horizontally on the page. <=
We should be watching the use of space carefully. Provided the

entries in the table are handled consistently, few problems arise.

Recall that

Tube & 244 \cr and Tube&244\cr

yield rather different results. The spaces preceding the entry are

ignored, but any after are indeed treated as ‘space’. Therefore the

width of the 244 as passed into the table is different (by the width

of a space in that font). Similarly the width of Tube is different in

this example. My own preference is to include spaces in order to

line up the cells making them easier to read on input, but more

important, to try to be consistent. But the space is also taken

into consideration when the width of the fields is calculated. This

may lead to ill-balanced output, or it may be unnoticeable to

all but the most fanatic. One possible, though rather dangerous,

alternative is to redefine the space for the duration of the table:

\catcode‘\ =9

This redefines the space character to category code 9: in other

words, the particular character is ignored.

=> Exercise 14.6: Why is this dangerous? <=

There is a side issue of where to place the table. Recall that

T^K supports two main insertion mechanisms, \topinsert and

\midinsert. These are invoked by

\topinsert

lots of stuff

\endinsert

and they will try to place the material at the top of the page on

which the insert ‘occurs’ (or a following page if there is no room).

The \midinsert works in a similar way, but places material some¬

where on its ‘reference’ page, between paragraphs. One of the

238 A plain TpjK primer

features of these inserts is that any definitions (or modifications to

tabskip glue) will be local to the insert. There is no bottom insert.
=>Exercise 14.7: Why is there no apparent bottom insert? <=

Maths

Since TgX is well known for its mathematical abilities, we should

demonstrate fairly quickly that we can easily incorporate mathe¬

matics into a table (Figure 14.2).
There is not a great deal new here, except to note that the

notion of the template is extended slightly. The preamble runs

\halign{#\hfil&$\displaystyle{#}$\hfil\cr

so that the equations are all set in maths mode display style.

It is therefore unnecessary to repeat these instructions in each

entry. This can often simplify matters, but the column title ‘Defi¬

nition’ should not be set in maths display style. An \omit will solve

that problem. There is one other thing to consider. The spacing

between rows is too small by default. T^X puts the normal interline

glue between the entries. There are a number of ways to increase

the space between rows. We have already seen the use of \noalign.

This is perhaps the easiest way. To remove the need to put

\noalign{\smallskip}

between each line, it is easier to do something like

\def\crex{\cr\noalign{\smallskip}}

and to terminate each row with this control sequence instead

of \cr. There is a better solution in this circumstance, though,
through the use of \everycr:

\everycr{\noalign{\smallskip}}

Whenever \cr is used, the token string \noalign{\smallskip}

will be appended. This is probably the most elegant solution here.
=>Exercise 14.8: Despite the suggestion of using \everycr, another
alternative is to use \openup. Implement this. You will have to ‘guess’ a
suitable value. Recall that you do not have to use \jot. 4=

The original of this table was enclosed in a ruled box. It would

not have been difficult to introduce horizontal and vertical rules

at this point. Rules are the subject of the next chapter. There is

an easier way to put things in a ruled box. Knuth gives a little

command, \boxit, to do just this (note that we have already

defined a command very similar to this, with a similar name):

\def\boxit#l{\vbox{\hrule\hbox{\vrule\kern3pt

\vbox{\kern3pt#l\kern3pt}\kern3pt\vrule}\hrule}}
In fact, the original was enclosed in two ruled boxes, so we may just

Tables again 239

Name Definition
/•OO

Gamma T(z) = / iz~1e~ldt
Jo

Sine sm(x) = l(e“-e-“)

Error
2 fz -2

erf(z) = —j= e 1 dt
Jo

Bessel
i r

Jo(z) = — / cos(zsind)dO
7r Jo

OO

Zeta £(s) = ^ k~^ (Re s > 1)

k=i

\boxit{\boxit{%

\halign{rest of table}

}}
=>Exercise 14.9: Centre and box this last example.

Diagrammatically

Although we shall consider diagrams later, it is worth pointing out

that \halign may provide the possibility of creating some sorts

of diagrammatic layouts. The structure of Figure 14.3 is quite

straightforward, although the manipulation of the arrows and text

is not immediately obvious. The left-hand entry, WEAVE/', was

\llap{$\vcenter{\hbox{\tt WEAVE»$}$\swarrow$

demonstrating, among other things, the first serious use of \vcen-

ter. The \llap ensures that the text is considered to have no

width, so that when it comes to placing that entry, it is only the

width of the arrow which is taken into account. In this way the

entries balance.

WEB document

WEAVE*/ \T ANGLE
Pascal source Tf^X document

Figure 14.2

Mathematics

displayed in

tables (from

Lesk, 1979)

Figure 14.3

Tables or

diagrams?

=>Exercise 14.10: Recreate this diagram.

*

Rules 15

But there is something fairly important missing. What about the

rules? We normally expect tables to be boxed in. This we can do,

but the alignments tend to get even more hidden in the welter of

extra detail.

The use of the horizontal rule to divide some rows is still quite

common, but vertical rules are now infrequently found. A curious

inversion of reality has occurred. The latest edition of the Chicago

Manual of Style says

One style that has changed since the last edition of this man¬

ual was published is the use of vertical rules in tabular matter.

In line with a nearly universal trend among scholarly and com¬

mercial publishers, the University of Chicago Press has given

up vertical rules as a standard feature of tables in the books

and journals that it publishes. The handwork necessitated by

including vertical rules is costly no matter what mode of com¬

position is used, and in the Press’s view the expense of it can

no longer be justified by the additional refinement it brings.

From this quotation it is clear that the loss of the vertical rule

is on economic rather than aesthetic grounds. But T^X allows us

vertical rules at no great additional cost. Now we will start to

include them.

As usual, there are many ways to tackle a problem like this.

Choosing the optimum really depends on many factors. Although

we present tables here as ‘one-off’ operations, in many cases they

are really repetitive, so that the templates or preambles devel¬

oped are used in a number of situations, where the headings and

various other ‘stubs’ remain fairly constant (or consistent), and

only the cell entries change from table to table, report to report,

year to year. In such cases, the effort put into developing the

preamble starts to show dividends. There can be no doubt that

getting everything right is not trivial, and very few manage to get

everything approximately right first time.

242 A plain TpjK primer

A simple ruled example

One of the first differences to be noted in the input for this first

ruled table (Figure 15.1) is that the vertical rules are treated as

if they belonged to their own cells - a cell which contains only a

vertical rule. Perhaps the other point to be made is that we build

the vertical rules one row at a time. A single vertical rule may be

made up of many row-high components. It is indeed possible to

put the rules in as single longer lines, but it then becomes neces¬

sary to know exactly where to put them, and if there is glue in

the table, it all starts to get very difficult. So we’ll tackle things

an ‘easier’ way. An advantage of treating the vertical rules on a

row by row basis is that it becomes possible to include or omit

them as required. In general, the horizontal rules span the whole

table, separating some rows. They are- usually handled as single

horizontal rules.

To begin with, the tabskip glue will be omitted from the pream¬

ble, since it initially obscures the simplicity of the design:

\halign to\hsize{7.

\strut\vrule#&#\hfil&

\vrule#&\hfil#&

\vrule#&\hfil#&

\vrule#&\hfil$#$&

\vrule#\cr

It is perhaps worth noting why the preamble is laid out the way

it is. Firstly, the % at the end of the \halign line is placed

there to ensure that no extra space is absorbed. The ‘phrase’

U\strut\vrule is one space wider than the phrase \strut\vrule.

In very general terms it is worth terminating every line in a pream¬

ble with a % Often they are not necessary, but few things are more

frustrating than to have extra space in the middle of a table.

Eliminating it afterwards can take a great deal of time and effort.

Taking prophylactic action as you go along (‘safe T^X’) can avoid

tears. On the other hand, the & characters are like commands,

which tend to gobble up space after themselves, and we do not

actually need to put a 7. at the end of their lines. Equally, there

is nothing to stop you doing so; it won’t hurt. The only real dan¬

ger of littering your preambles (and commands) with 7. symbols

are editors which wrap automatically. From time to time a little

editing leads them to rewrap your preamble text, with the result

that the 7.-ending lines are combined into the rest of the text, with

rather frustrating results.

Rules 243

1970 Federal Budget Transfers

(in billions of dollars)

State Taxes

collected

Money

spent

Net

New York 22.91 21.35 -1.56

New Jersey 8.33 6.96 -1.37

Connecticut 4.12 3.10 -1.02

Maine 0.74 0.67 -0.07

California 22.29 22.42 +0.13

New Mexico 0.70 1.49 +0.79

Georgia 3.30 4.28 +0.98

Mississippi 1.15 2.32 +1.17

Texas 9.33 11.13 +1.80

Figure 15.1

A ruled table

(from Lesk,

1979)

What does this preamble mean? For example, what is the

\strut? A \strut is defined as a type of vertical rule. In plain

T^X the definition is a little sly, but what it boils down to is

\vrule height8.5pt depth3.5pt widthOpt

In other words, an invisible vertical line 12 points in length. What

use can that be? Before the preamble started the interline skip

was switched off with the command

\offinterlineskip

As it suggests, this turns off the normal interline skip. This is

done to ensure that the distance between each line in the table

is constant - or to be more precise, is zero; the glue is still there,

it is just zero. It is worth pointing out that to switch the normal

interline skip back on, the command is

\normalbaselines

There is a further way of switching off the line skip - the command

\nointerlineskip

This is really intended as a one-off command to suppress the

normal interline glue between two boxes in vertical mode.

This still does not quite explain all the fuss. We have to go back

to TeX’s model of box building. Recall that the vertical extent of

a box is made up of a height and a depth. The depth effectively

takes into account the descenders. A box made up of words with

no descenders may have no depth. Similarly, the ‘height’ of a box

is affected by the ascenders. The boxes surrounding sea, seal, and

squeal are each of different vertical extent. In a table, with the

interline skip switched off, we merely butt the boxes immediately

against one another, so that the boxes containing sea and swan

244 A plain primer

will appear much closer together than squall and squeal. The

ascenders and descenders in the last two have the effect of keeping

the ‘words’ further apart, although in reality the boxes are just

the same distance apart. Therefore we insert an artificial ‘strut’

or divider to ensure that the baselines are actually kept the same

distance apart. This is where it becomes important to bear in mind

the definition of \strut. If you change font (or typeface), it may

be best to alter the definition of \strut, or to introduce another

sort of strut with different characteristics. If it helps, you will find

that the ((the parenthesis symbol) in Computer Modern Roman

just happens to have a height of 8.5 pt and a depth of 3.5 pt. This

was a deliberate artefact by Knuth. It is consistent for all other

CM fonts. It means that if you change to cmr7 you can reconstruct

an appropriate strut by boxing the (and finding its height and

depth. This relationship is not guaranteed for non-CM typefaces.

The strut is therefore only there to ensure even spacing. If we

ignore it in the template for the meantime, the design looks even

simpler:

\halign to\hsize{°/0

\vrule#&#\hfil&

\vrule#&\hfil#&

\vrule#&\hfil#&

\vrule#&\hfil$#$&

\vrule#\cr

If the first ‘real’ column had been right justified too, it would have

looked even more repetitive. One of the columns which holds num¬

bers has been given a maths mode template, just to ensure that the

minus signs come out looking good. Two of the lines in the tem¬

plate are identical. Is there no shorthand way of saying ‘two iden¬

tical blocks of template’, or better still, ‘n identical blocks’? Yes

there is, but it does not help us here, since the shorthand is rather

more restrictive. If an extra & is inserted before any template,

that block of template between the following & and the \cr will

be repeated indefinitely until the actual information in the table

is exhausted. If therefore we truly do have a repeated segment, it

becomes easy to simplify the template. However, in this case we do

not wish the template to be repeated indefinitely. There are some

repeated elements, but they are followed by some slightly different

material. With some manipulation, we could use repetition:

Rules 245

\halign to\hsize{%

\vrule#&#\hfil&

\vrule#&\hfil#&

\vrule#&\hfil#&

\vrule#&\hfil$#$&

\vrule#\cr

\cr

could easily be reorganized to

\halign to\hsize{\vrule#%

&#\hf il&\vrule#°/0

&\hf il#&\vrule#0/.

&\hf il#&\vrule#°/0

&\hfil$#$&\vrule#%

\cr

which could be expressed

\halign to\hsize{\vrule#%

&#\hfil&\vrule#%

&&\hfil$#$&\vrule#%

\cr

After all, it does not matter whether the two other numeric

columns are handled in maths mode or not. In this case we can

indeed exploit the repeated structure. Often, though, the last col¬

umn is treated in a different way, and this technique is inadequate.

To begin with it is often easier and clearer to specify each element

of the template explicitly.

Once we have accepted that the vertical rules can exist in their

own columns, and we also accept that the interline skip is switched

off, relying on the \strut to separate lines, the rest of the table

starts to fall out.

The body of the table will be of the form:

&New York&&22.91&&21.35&&-1.56&\cr

&New Jersey&&8.33&&6.96&&-1.37&\cr

&Connecticut&&4.12&&3.10&&-1.02&\cr

Although the separators && look rather untidy, a way of simplify¬

ing this and making it look ‘nicer’ will be introduced later. This

merely leaves a couple of items to be considered. Firstly, the \mul-

tispans, which we have met already anyway. This time we have

to recall that we are spanning extra columns (the ones with the

vertical bars in too). People often make mistakes in just adding

up the number of columns. If you span too few you will usually

still get a table, which looks oddly incomplete, but if you span

too many, the error message looks like:

246 A plain TgK primer

! Extra alignment tab has been changed to \cr.

and often you can just continue and something will appear. Of

course, if you have used the && feature in the template, it is dif¬

ficult to span too many, since I]eX dutifully provides them. But

sometimes the error just compounds and you have to exit and

edit the table. Since tables can be a little tricky until you master

them, it is often worth while tackling them individually and using

the \input command to include them in your text later. Tables

are often rather slow in execution, since TgX has to do quite a lot

of work. There is therefore some point in isolating tables and text

and only combining them when you are reasonably confident that

you are close to a final draft.

Headings

The second point, which now constitutes ‘new’ information, is the

way some of the headings are handled. The width of the individual

numeric columns should really be determined by the information

in the columns, and not by the headings to the columns. We need

some way of telling Tj^X to ignore the width of those particular

pieces of information. This can be done with \hidewidth. This

command has some peculiarities. As Knuth notes, it is equivalent

to

\hskip-1000pt plus lfill

If you precede an entry by \hidewidth, the entry will be left jus¬

tified within its box, and if you follow an entry with \hidewidth

it will be right justified. In ordinary text \hidewidth gives rather

odd, but perhaps not unexpected, results. Putting \hidewidth

both before and after has the effect of making TgX ignore the

width of that entry in calculating the column width. (To be a lit¬

tle more accurate, the entry has a very negative width, and thus

never enters into the calculation). The expression used here for

the two lines involved was

&\omit\hfil State\hfil&

&\omit\hidewidth Taxes\hidewidth&

&\omit\hidewidth Money\hidewidth&

&\omit\hidewidth Net\hidewidth&\cr

&&&\omit\hidewidth collected\hidewidth&

&\omit\hidewidth spent\hidewidth&

&&\cr

The alert will perhaps notice a potential problem. What hap¬

pens if the width of the numeric fields is less than that of these

Rules 247

particular stubs? The answer should be intuitive. Murphy’s Law

continues to hold.

It might also be worth while defining a command \hide

\def\hide#l{\hidewidth#l\hidewidth}

which would make this last extract look a little tidier and perhaps

easier to understand.

Between the columns

This starts to approach the last major element of this table, the

\tabskip. Although we have tackled \tabskip already, when we

start to use it with vertical rules and with \hidewidth it requires

a more precise understanding. The relevant pages in The TfiXbook

are 243 and 245. The key is the way in which the tabskip is dis¬

tributed.

It may be simpler to take this in two parts: the tabskip is a

skip quantity, comprising a ‘fixed’ amount and the glue which

is permitted. Provided the alignment is allowed to be set at its

‘natural’ width, it will be the fixed amount which is used. Only

when we align to a particular amount, or spread by an extra

amount, is the glue called into play. This provides us with two

slightly different problems.

Tackling the easier one first, where the alignment is set to its

natural width, it is fairly obvious to see that

\tabskip lem plus 2em

at least ensures a minimum of 1 em between entries, while

\tabskip Oem plus 3em

will not separate the columns at all. So it seems obvious always to

use a tabskip amount which was positive, ensuring column sepa¬

ration. Unfortunately, that is not quite the case. There is a little

bit more to tabskip: it needs to be switched off and on. Remember

the rule: the tabskip in effect when the { after the \halign is read

is placed before the first column; the tabskip glue in effect when

the & after the first template is read is used between the columns;

and the tabskip glue in effect when the \cr is read is used after

the last column: and, equally important, although the individual

alignments act as groups, tabskips are exempt from this rule

there is no tabskip glue grouping within template elements. The

main point is that some glue goes before, some goes between, and

some goes after, depending on where we are. We end up having

to switch it on and off. In a practical example this translates to

something like

248 A plain TpjX primer

\tabskipOem \halign{%

\strut\vrule#\tabskiplem \relax&#\hfil&\vrule

#&\hfil#&\vrule

#&\hfil#&\vrule

#&\hfil$#$&\vrule

#\tabskipOem\cr

The initial \tabskipOem is redundant, since it is the default, but

it is here for clarity. After the first entry is dealt with, the one

which creates the leftmost vertical rule, the tabskip is set to the

value of 1 em, and retains that value until the last entry is read,

where it is reset to 0 em; then the alignment is ended. In this way,

no skip precedes the first rule, nor follows the last one, although

skips are placed between the remaining entries. If there were no

vertical rules the problem would not be so glaringly apparent.

This also helps to demonstrate why it is often difficult to use the

template repetition feature effectively, when the final entry in the

template has to be treated differently.

So far this seems straightforward, but a complication can arise

when we have a situation where there are spanned columns, and

the width of those spanned columns may exceed the ‘natural’

width of the other rows. In this case the tabskip glue may be

accumulated in the last entry of those spanned, leading to a rather

uneven separation between columns, although we appear to have

taken great pains to ensure that there will be adequate sepa¬

ration - instead of being distributed evenly between all spanned

columns, the excess may be placed in the last of those columns. In

the example that is currently being used, turning the first heading

into ‘1970 Federal Budget Transfers (in billions of dollars)’ would

make this entry considerably in excess of the width of the bulk of

the table, and could lead to this:

1970 Federal Budget Transfers (in billions of dollars)

State Taxes

collected

Money

spent

Net

New York 22.91 21.35 -1.56

The critical line in this is

&\multispan7\hfil 1970 Federal Budget Transfers

(in billions of dollars)\hfil&\cr

The long entry is spanned over seven columns. When cal¬

culates the width of the eighth column (that is, the last of the

spanned columns), what it does first is to take the width of the

spanned entry, together with the skip which precedes and follows

Rules 249

that entry - 1 em either side in this case; then each of the other

six columns are set to their own width, with their appropriate

skips; the difference between these two values is the width of the

remaining column in this part of the table - if the width calcu¬

lated here would be less than the width obtained by the entry and

its skips, this would have been used. It seems a little convoluted,

but basically all that is happening is that, given the constraints

that have been placed implicitly, has to put the space some¬

where, and the somewhere is the last available place. Perhaps the

intuitive response is to expect that the glue portions would be

employed, but unfortunately this is not the case.

The ‘easy’ way out of this is to hide the width of the spanning

entries, but this may lead to the spanning entries being larger than

the rest of the table. An alternative is to ensure that the tabskip

is big enough. Both of these solutions demand that you have a

very clear notion of what is going on in the particular table.

The alignment preamble actually used was

\tabskip Oin\hsizeO.75\hsize

\offinterlineskip \halign to\hsize{°/«

\strut\vrule#\tabskiplin pluslin minuslin&#\hfil&\vrule

#&\hfil#&\vrule

#&\hfil#&\vrule

#&\hfil$#$&\vrule

#\tabskipOin\cr

The initial \tabskip Oin is not strictly required, since it is a

default, but it makes things a little clearer here. Before the first

column, and after the last one, the tabskip glue is zero. For the

remainder of the table it is set to have some flexibility (probably

a little too much). This also helps to illustrate why I did not

want to use the && repetition form. It would have prevented me

from resetting the tabskip glue after the last column. Why am

I so bothered about this? Let’s use just one value for the glue

throughout the table - the flexible one - and see what happens:

\tabskiplin pluslin minuslin\hsizeO.75\hsize

\offinterlineskip \halign to\hsize{°/0

\strut\vrule#&#\hfil&\vrule

#&\hfil#&\vrule

#&\hfil#&\vrule

#&\hfil$#$&\vrule

#\cr
This would have given us the table in Figure 15.2. The problem

revolves around the way in which the horizontal rule is specified.

250 A plain Tpfi. primer

It is given as a

\noalign{\hrule}

which has the effect of placing the rule across the entire \hsize

permitted. This width includes the tabskip glue placed before and

after the first and last entries. At some point we will have to look

at ways of spanning only some of the horizontal cells.

There is one other thing we should have done. In the original,

the stubs containing ‘State’ and ‘Net’ are in fact centred verti¬

cally. Tackling this turns out to be sufficiently clumsy as to be

worth treating later too.

Exercise 15.1: Quite a lot has been covered here. Show your under¬

standing of what you have learned by creating a version of this table. If

you are satisfied with your attempt, modify the way that you handle the

\tabskip glue, and create a table which is spread by an extra 50 pt. <=

Sometimes it seems far easier to work without tabskip glue,

and to specify each element more or less exactly. Let us see how

that might be done with the last example. Again, the nub is the

preamble, which can be expressed as

\halign{\vrule\strut\quad#\quad\hfil\vrule&&

\quad\hfil$#$\quad\vrule\cr

This time it is straightforward to reap the benefit of the repetition.

It is worth asking what the relative advantages and disadvan¬

tages of these two approaches are - with and without tabskip

glue. It has always seemed to me that the tabskip glue is rather

fiddly and gets stuck to the most unlikely objects. But the second

approach is very rigid. If we do have the situation where tables

should be a particular width, then setting up an

\halign to0.9\hsize

really does demand that some flexibility is built into the table to

satisfy this demand. Of course, eliminating the tabskip glue does

make the template so much easier.

One way of tackling the &&s in this table and making them

look a little less awkward is to arrange for TgX to use a different

character which is then expanded to the pair of alignment tabs.

A rather obvious candidate is the vertical bar. If this is made an

active character (just like the ~), it can then be defined as the

double alignment tab:

\catcode‘\|=13

\def|{&&}

and then the table can be constructed with vertical bars in place

of the && characters.

=>Exercise 15.2: In true pedagogic style, adding all the extra items

Rules 251

1970 Federal Budget Transfers

(in billions of dollars)

State Taxes Money Net

collected spent

New York 22.91 21.35 -1.56

New Jersey 8.33 6.96 -1.37

Connecticut 4.12 3.10 -1.02

Maine 0.74 0.67 -0.07

California 22.29 22.42 +0.13

New Mexico 0.70 1.49 +0.79

Georgia 3.30 4.28 +0.98

Mississippi 1.15 2.32 + 1.17

Texas 9.33 11.13 +1.80

Figure 15.2

Not what was

wanted

which turn the last preamble into a ‘real’ example is left as an exercise.

If this sounds too trivial, change the ‘table’ part of the input so that it

could accept either tabs or vertical bars as the column dividers. 4=

Vertical spans: Composition of Foods

We have already fudged the major issue of this table by ignoring

it in a previous table - namely material which spans several rows

vertically. Often we can ‘get away’ with ignoring the problem, but

clearly that is unethical. In Figure 15.3 the interest lies in the

stubs rather than the body of the table. How do we make Food,

Protein, and Fat straddle several rows vertically? This is only one

solution, and its lack of generality makes me hesitate to show it.

Still, it demonstrates lots of other things too. The preamble is still

unspectacular
\halign{\vrule\strut\quad#\hfil\quad\vrule

&&\quad\hfil#\quad\vrule\cr

The table is to be handled ‘as normal’. The ‘tricky bits’ look like:

\omit\vrule\hfil\vspan3{Food}\hfil\vrule&

\multispan3\hfil Percent by Weight\hfil\vrule\cr

\omit\vrule\hfil\vrule&\multispan3\hrulefill\cr

&\omit\hfil\vspan2{Protein}\hfil\vrule&

\omit\hfil\vspan2{Fat}\hfil\vrule&

\omit\hfil Carbo-\hfil\vrule\cr

&&&\omit\hfil hydrate\hfil\vrule\cr

The new features are the \vspan commands. These are somewhat

analogous to the \multispans. Now these are not plain com¬

mands, but have been defined for this example. The idea here is

252 A plain TppC primer

that the contents of the vertical span are spread over n rows. The

way it was chosen to do this was as follows:

\def\vspan#l#2{\parindentOpt\setboxO

\vbox to#l\normalbaselineskip

{\null\vf ill#2\vf ill\null}°/«

\htO\ht\strutbox

\dpO\dp\strutbox

\setboxl\hbox{#2}\wd0\wdl\box0}

There is quite a bit of footwork going on in here, so let’s take

it fairly slowly. The principal feature is that the material to do

the vertical spanning is placed in a box at the beginning of the

command; its dimensions are manipulated; and then it is out¬

put. What could be simpler? The vertical box in which the text

occurs spans n rows: this is specified through the #l\normalbase-

lineskip. The material is ‘floated’ to the middle of that box by

the \vfill commands. However, if we left things as they are,

the box would have very unfriendly dimensions. Its width would

be the width of \hsize, for example. In order to find its ‘real’

width, the text is \hboxed, and the width of the enclosing \hbox

is assigned to the width of the vertical box. Tj^X doesn’t mind us

cheating shamelessly like this. If we left the vertical box with the

vertical extent based on the to#l\normalbaselineskip, when it

came to be placed in a cell in the table it would really be that

height and depth. So we have to reset its height and depth to

something a little more reasonable. The values chosen here are

the height and depth of \strutbox. Where did \strutbox come

from? Recall the \strut; part of its definition involves a \strut-

box, which is created as a vertical rule with a height of 8.5 pt

and a depth of 3.5 pt. Why don’t we just use those values? Well,

that loses a bit of generality. So far, the command has no specific

‘hard-wired’ dimensions. Should we want to change the typefaces

in the table (say, replace the cmrlO with cmrl2) then we should

really have to change any hard-wired values. If we do the type

size change properly, it should involve resetting the baselines and

the \strutbox, among other things. We would be insulated from

such changes. Another example of ‘safe TeX’.

The use of \hrulefill to obtain a partial horizontal line is

examined more fully in the next chapter.

=^Exercise 15.3: The rest of the table is dull. Put the pieces together

and reproduce the table. Then return to Figure 15.1 and make the stubs

for ‘State’ and ‘Net’ be centred vertically as they ought to have been. •<=

Rules 253

Composition of Foods

Percent by Weight

Food
Protein Fat

Carbo¬

hydrate

Apples .4 .5 13.0

Halibut 18.4 5.2

Lima beans 7.5 .8 22.0

Milk 3.3 4.0 5.0

Mushrooms 3.5 .4 6.0

Rye bread 9.0 .6 52.7

Figure 15.3

Vertical spans

(from Lesk,

1979)

Thick rules

The last example given here (Figure 15.4) uses \vrule in a new

way. Whenever a \vrule appears in a preamble, it can be used to

modify the thickness of the vertical line. Just as

\noalign{\hrule height0.5pt depth0.5pt}

would give us a thicker horizontal line than the default, the con¬

tents of the cell passed through to the preamble can also contain

width information. Consider the following preamble:

\halign{\vrule#\vrule\cr

When the information passed through is

width lpt

we would obtain a vertical rule of that width for the left-hand rule.

The right-hand rule would be unmodified. This starts to illustrate

just why the \vrules are often assigned their own columns. It

becomes much easier to control them. This example merely men¬

tions the possibility of widening the rules. We could also change

their height and/or depth. There is no \strut in the previous

alignment preamble. The \vrule therefore ‘stretches’ to the height

and depth of any other information present. We can influence that

by providing height and depth information:

height lOpt depth 5pt

will ensure that we have a vertical rule of those dimensions.

One of the commonest uses of this strategy is where there are

horizontal rules which vary in thickness across the table. The first

line which spans the entire table was created by

\multispan2\hfil\vrule&

\multispan6\thickrulefill&

\omit\vrulethick\cr

The vertical rules all have their own cells in the preamble. The

\thickrulefill is simply an \hrulefill (stolen from Chap-

254 A plain TjjX primer

Figure 15.4

Enthalpy of

evaporation for

chlorine (from

Angus et a 1.,

1985)

Estreicher

and Schnerr

Giauque and

Powell

Equation of

State

Atf/Jmor1 18292 20406 ±17 20427

T/K 237.3 239.10 ±0.05 239.166

ter 16) made thicker by increasing its height:

\def \thickrulef ill{°/0

\leaders\hrule heightO.8ptdepth0.Opt\relax\hfill}

The \relax is there just in case by accident the next word hap¬

pens to be ‘width’. Tj^X would then get rather confused and expect

a number followed by a dimension.

The preamble needs to be considered' before these details make

much sense. The degree of apparent repetition is high. It can be

exploited quite neatly if we repeat two elements:

\halign{&\vrule#&\bigstrut\ctr{#}\cr

The reason the rule is not included is mainly because we want

to exploit the ability to vary the thickness of the rule by passing

through an argument like width0.8pt when it is required.

Some effort was expended in this example to ensure that the

thicker elements ‘bounded’ the table. This helps to explain the

way the second line is expressed:

\multispan2\hfil\vrule&& Estreicher&fe Giauque and&&

Equation of&widthO.8pt\cr

and although that first rule appears thick, it actually makes up two

adjacent default vertical rules: one is explicit, the other is obtained

from the alignment preamble. Since the thickness of the thick rules

is 0.8 pt, two default rules of 0.4 pt gives the same thickness.

The horizontal line is by far the most complex of all, since it

varies in thickness:

\multispan2\thickrulefill

&\multispan2\vrule\hrulefill

&\multispan2\vrule\hrulefill

&\multispan2\vrule\hrulefill

fewidthO.8pt\cr

The ‘extra’ \vrules are there because of the thick horizontal rule.

If we omit them, little notches appear again.

=>Exercise 15.4: Create this table and omit the ‘extra’ \vrules. Can

you discern the notches? 4=

=AExercise 15.5: There are probably too many horizontal and vertical

lines in the body of the table. While retaining the thick surrounding lines,

Rules 255

and the thinner ones separating the ‘stubs’, try to eliminate those in the

body of the table. ^
=>Exercise 15.6: A slightly more logical way to portray this table may

be to have the names of the sources (Estreicher etc.) down the left-hand

side, while the quantities are across the top. In this way, the values could

be aligned around their decimal points, or the rightmost significant digit.

Make this modification.

’

Further rules 16

Partial horizontal rules

The next example (Figure 16.1) is deceptively simple. What it

introduces are two quite important topics. The ‘lesser’ is that it

is relatively straightforward to align on a decimal point, simply

by treating the integer part as one column and the fractional

part (including the decimal) as another column. There are possi¬

ble refinements on this so that the decimal point itself is always

included, but this is inappropriate in this example.

Stack

Figure 16.1

Partial

horizontal rules

The major feature this example introduces is how to manipu¬

late horizontal rules so that they span only part of the table. The

preamble is unspectacular
\halign{\small#\quad&\vrule\strut\enspace\hfil#&

#\hfil\enspace\vrule\cr

There are three elements to a row, to account for the \small num¬

ber on the left and the two parts of the decimal number. The two

columns containing the decimal number are ‘surrounded’ by verti¬

cal rules. If we were to use the ‘old’ technique of placing an \hrule

between the rows, the rule would extend under the first column

too. Perhaps the ‘obvious’ solution is to place an \hrule in a row:

&\hrule&\hrule\cr

Curiously, although this is not going to work, it can help to point

out what will. The error message which is generated is

! You can’t use ‘\hrule’ here except with leaders.

46

23

15

6.5

2.1

258 A plain TpX primer

and if that does not make sense, and you wish to pursue it, the

extra information which T^X will provide is
To put a horizontal rule in an hbox or am alignment,

you should use \leaders or \hrulefill

(see The TeXbook).

This is arguably the most accurate and helpful message which

manages to provide.

Since the pattern is a repeated one in this example, it is possible

to take a shortcut by defining

\def\partline{\omit&\multispan2\hrulefill\cr>

The important part is the \hrulefill which merely extends a

horizontal rule over the required horizontal ‘gap’. Just in case

the definition of \hrulef ill is not at your fingertips, it is worth

having a brief look at leaders and fill. .

There are a couple of ‘fills’ already available in plain T^X. They

are \hrulefill and \dotfill. Of these, the \hrulefill is the

most interesting here:

\def\hrulefill{\leaders\hrule\hfill}

When used in a box (such as within a cell in a table), it works

in the same way as an \hfill, except that the box is ‘filled’ with

an \hrule, rather than blank space. Recall too that all the rules

have default ‘characteristics’. The default for an \hrule is a height

of 0.4 pt and a depth of zero: its width is context sensitive. The

\vrule has a width of 0.4 pt: both its height and depth are context

sensitive. So far we have always accepted the default dimensions

for rules.

=>-Exercise 16.1: Solve the last example yourself, but with the addi¬

tional finesse of making the lines ‘within’ the table thinner than those

which surround the ‘Stack’ values. -s=

Ruling and filling

Horizontal and vertical rules which extend over an arbitrary, or

implicitly specified, interval have been treated in a rather cur¬

sory manner. They have mostly been presented in circumstances

where a simple \hrule or \vrule works without difficulty. The

one major circumstance where this is not sufficient, in the last

example, was rather sidestepped by reference to the help facility

which TgX has, and its suggestion of \leaders. It is time to look

at this aspect in more detail.

The manipulation of rules is usually straightforward: to specify

a horizontal or vertical rule completely, the height, width, and

Further rules 259

depth can be given. It will have been apparent that it is seldom

necessary to specify the full form of a \vrule or \hrule. For

example, in vertical mode, an \hrule would extend across the

full page width (that is, the current \hsize). How is the width

and depth determined? By default, the height will be 0.4 pt and

the depth will be Opt. Similarly a \vrule, like the one used in

producing the rules in an alignment, will also be 0.4 pt wide. Its

height and depth are derived from the context. In creating ruled

tables, the \vrule normally extends through the vertical extent

of the row (especially if you have remembered to set \struts in

the alignment preamble). The default of 0.4pt is not accessible.

If you want to change it, it must be done manually at the time.

In a general context, it may seem that the following ways of

creating a rule 20 pt long (or wide) are equivalent:

\hbox to 20pt{\hrule>

\hrule width 20pt

but they are not. The first does not work at all. In order to place a

rule in an explicit box, we have to use \hrulef ill, not \hrule. In

a sense, we are trying to put a form of glue in the box, one which

expands to fill the space available. This is not glue, but ‘leaders’.

The definition of \hrulef ill exploits the command \leaders:

\def\hrulefill{\leaders\hrule\hfill}

At the very least this gives us the opportunity to develop other

definitions where the thickness of the embedded \hrule can be

changed. For example,
\def\thickrulefill{\leaders\hrule heightlpt

depthO.5pt\hfill}

In broader terms, leaders can be used in other ways. There are

already a few commands in plain which do this. For example,

\dotf ill, which creates ‘fill’ of dots; and a few used in maths,

\rightarrowf ill, \leftarrowf ill, which create right and left

arrows in a similar way to an \hrulef ill, and \upbracef ill and

\downbracef ill, which form and There is a special

restriction with these last two: they must be used either in vertical

mode in an \hbox by themselves, or in an alignment.

Of these, the \dotf ill requires some further comment. Its full

definition is
\def\dotfill{\cleaders

\hbox{$\m@th\mkernl.5mu.\mkernl.5mu$}\hfill}

This illustrates a new form of a leader, \cleaders, and a limita¬

tion. There are three different sorts of leader: \leaders, \clead-

ers, and \xleaders. The \cleaders is a centred leader, the

260 A plain Tj^X primer

\xleaders are ‘expanded’, and the \leaders are aligned. A rela¬

tively easy way to grasp the differences between these different

leaders is to use them in three versions of \dotf ill, but substi¬

tuting the different forms of \leaders:

Leading ...

Before....

.Lights]

... Your Eyes J
|> \cleaders

Leading... . Lights]
j> \leaders

Before Your EyesJ

Leading.. .

Before....

.Lights)

... Your Eyes J
i \xleaders

Perhaps the key feature to note is that the \leaders version aligns

the dots between lines. In general, this is the form we require if we

want to produce a table of contents. The basic notion is that each

dot (in this case) is contained in a box, and the boxes placed, or

packed, in line. The space that the boxes will occupy will seldom

coincide exactly with some multiple of the box width. In other

words, there is likely to be ‘some’ extra space. How that extra

space is distributed is then determined by the choice of \xlead-

ers or \cleaders. With \xleaders any extra space is distributed

between the boxes; with \cleaders the extra space is distributed

before the first and after the last. Thus \cleaders are the same

distance apart, while \xleaders are unlikely to be. How then does

\leaders distribute the ‘extra’ space? Unevenly. With \leaders,

we see only a ‘window’. The boxes are distributed across the

‘whole’ box, but only those which appear in the window between

its left and right extent appear. In this way, the boxes (or their

contents) line up.

=> Exercise 16.2: In Chapter 13, one of the examples used was the cre¬

ation of a table of contents (based on Moby Dick). How would you create

a line of dots between the individual chapter titles and their starting page
numbers? «/=

Most of the applications of leaders are likely to be enclosed in

other commands (like \hrulef ill and \dotf ill), and most times

it will be a rule or dots which are used to spread across the space.

It was suggested that the standard definition of \dotf ill con¬

tains an inherent limitation. What limitation? The dots of \dot-

f ill are those found in the cmsy font. If we were preparing a table

of contents in which the chapter or section titles were in (say) the

bold font, we might reasonably argue that the dots ought also

Further rules 261

New York Area Rocks

Era Formation Age (years)

Precambrian Reading Prong > 1 billion

Paleozoic Manhattan Prong million

Mesozoic Newark Basin,

inch Stockton,

Lockatong, and

Brunswick for¬

mations: also

Watchungs and

Palisades.

million

Cenozoic Coastal Plain On Long Island

30,000 years: Creta¬

ceous sediments

redeposited by
Recent glaciation.

Figure 16.2

Included
paragraphs

(from Lesk,

1979)

to be in this font. What can we do to make the definition font

sensitive? A first estimate might be
\def\dotfill{\cleaders

\hbox-C\kern. 833333pt. \kern. 833333pt}\hf ill}

but while this is more font sensitive, it is not completely so. The

figure for the \kern value is derived by knowing that 18 mu are

10 pt. Equally of course, 10 pt is 1 em, in the standard 10 pt text

font. The most general definition would be
\def\dotfill{\cleaders

\hbox{\kern.0833333em.\kern.0833333em}\hfill}
=>Exercise 16.3: Create a \dotfill command which responds to

maths mode and the current font. <=

Paragraphs: New York Area Rocks

One frequent requirement of tables is to incorporate some text,

but to permit that text to obey the ‘normal’ paragraphing rules

(Figure 16.2). The naive approach is to divide each line by hand,

but obviously this is not very attractive, since it depends on having

some feeling for where the lines should break. And after all,

has a nice sophisticated line-breaking algorithm. Why not use it?

The only really new element in this example is the introduc¬

tion of the \vtops. The \vtop is just a vertical box which will

(in loose terms) be aligned at its top, rather than its bottom.

262 A plain TppC primer

The introduction of the \normalbaselines into the paragraphed

material is obvious once seen (it is salutary to omit it sometimes).

This gives us an alignment preamble of the form
\halign{\strut\vrule\enspace

\vtop{\hsizeO. 75in#}°/0

\enspace\vrule

&\enspace
\vtop{\normalbaselines\hsizel. 25in#\strut}°/0

\enspace\vrule

&\enspace
\vtop{\normalbaselines\hsizel. 25in#\strut}'/.

\enspace\vrule\cr

The use of tabskip glue has been avoided since it is necessary to

specify a width for the boxes anyway - through the \hsize com¬

mand. The \normalbaselines command has been included since

in the full example the interline skip has already been switched

off. If we were to proceed with creating a paragraph with the line

skip switched off, we could end up with some odd spacing. Simi¬

larly, the inclusion of the \strut at the end of the ‘argument’ -

the paragraph - is there just in case the last line has no characters

with descenders. It might be wise to have one at the beginning as

well, but since each entry has either a number or a capital letter,

it probably is not strictly needed here. The truly cautious will

probably want to insert one, though. There really is not a great

deal more to say, except to note that the paragraphs are squeezed

into a rather narrow measure. In these cases it is wise to help

TgX a little by the application of \tolerance. You might also be

prepared to permit some raggedness.
=>Exercise 16.4: There are at least two things which bear further
investigation here. The first is the importance of restoring the normal
baselines, and the other is the inclusion of the struts. Demonstrate what
happens when they are omitted. <=

Some syntheses: Major New York Bridges

The following example, ‘Major New York Bridges’ (Figure 16.3),

merely builds on things we already have uncovered. There is,

though, one very minor catch, which can be troublesome if we are

not careful. The separation of the ‘title’ from the rest of the table

with what looks like a double line is a fairly common feature in

tables created with tbl. It is not clear to me whether this reflects

a US usage in table construction, or whether the target output

Further rules 263

Major New York Bridges

Bridge Designer Length

Brooklyn J. A. Roeblineg 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600

Queensborough Palmer & 1182
Hornbostel

Triborough 0. H. Ammann
1380
383

Bronx Whitestone 0. H. Ammann 2300

Throgs Neck 0. H. Ammann 1800

George Washington 0. H. Ammann 3500

Figure 16.3

Major New
York Bridges,
(from Lesk,
1979)

device had problems in creating a thicker line, and that this ‘fea¬
ture’ became ossified when the development of the underlying troff
software was frozen at Ossana’s death. The double lines are also
a common feature in IAT^X tables.

The naive preamble could be
\halign{\vrule\enspace#\hfil\enspace

&\vrule\enspace#\hfil\enspace

&\strut\vrule\enspace\hfil#\enspace\vrule\cr

which allows a fairly straightforward table construction of
Williamsburg& L. L. Buck&1600\cr

\noalign{\hrule>

Queensboroughfe Palmer \&&1182\cr

& \enspace Hornbostelfe \cr

\noalign{\hrule>

\vspan2{Triborough}&\vspan2{0. H. Ammann}&1380\cr

& &\omit\hrulefill\cr

& & 383\cr

\noalign{\hrule}

Bronx Whitestonefe 0. H. Ammann&2300\cr

(just showing the most ‘complex’ part). The \vspan crops up
again, but there is also the use of \hrulefill. Note that it is
preceded by an Vomit. If this were not present the current align¬
ment entry would be used, with rather disastrous results. Because
there are no \tabskips in operation, the \hrulef ill works quite
nicely. Of course, having omitted the alignment, we also omit the
\vrules which fitted at either side of the last entry. If we did not
reinsert them, we might see a rather tiny notch in the table where
they ought to be. Given that the vertical rule will only be 0.4 pt

264 A plain Tp^K primer

in height, it might be practically invisible - it corresponds to less

than two dots on a 300 dpi laser printer, and on a preview screen

it is probably below the resolution of a ‘readable’ size. But it is

there, or rather, it should be there, especially if we plan to output

on a higher-resolution device.

Since the preamble given looks temptingly repetitious, we could

replace it with something similar, but more compact:

\halign{\vrule\strut#&&\enspace#\hfil\enspace\vrule\cr

If we do this, we again have to add an extra & at the beginning of

each row of entries. We also have a problem with the rightmost col¬

umn, since it is right-justified, while the preamble left justifies it.

The direct way out of this is to precede each of the numeric entries

with an \hf ill. The following specimen lines show this at work:

&\vspan2{Triborough}&\vspan2{0. H. Ammann}&\hfill

1380\cr

\omit\vrule& & &\omit

\hrulefill\cr

& & &\hfill

383\cr

Again note that where a cell is omitted, the \vrule has been

carefully reinserted. If we do not omit the entry in the second of

those lines, the \strut will remain in operation, and give rather

unsatisfactory vertical spacing.

=> Exercise 16.5: A great deal has been made of the need to reinsert

the \vrules if they have been \omitted. Create one of these tables with¬

out the inclusion of these particular rules. Can you see the difference in

preview or in whatever final output form you have available. If you can’t

see it, is it important? One way to highlight the problem is to change the

definition of \hrulef ill so that it is much thicker than the default. For
example:
\def \hrulef ill{°/»

\leaders\hrule heightlpt depthlpt\hfill}

quickly reveals those frustrating gaps. <=

AT&T at last!

One of the classic tables which appeared first in Lesk (1979), and

which was then adopted by Knuth as the means of explaining

the mysteries of \halign and \tabskip in The TpjKbook, is the

AT&T Common Stock table (Figure 16.4). Clearly Knuth provides

a solution for this, but it will also be looked at here, with the

intention of illustrating some points which have been omitted so

far.

Further rules 265

AT&T Common Stock

Year Price Dividend

1971 41-54 $2.60

2 41-54 2.70

3 46-55 2.87

4 40-53 2.24

5 45-52 3.40

6 51-59 .95*

7 101-102 10.00

* (first quarter only)

Sometimes we wish the columns of a table to have a fixed width.

Normally, we allow TgX to work out the widths, find the maxi¬

mum, and then create the table based on that width. This is not

always what we need. When the same ‘shape’ of table occurs fre¬

quently, it may be necessary to fix the widths. One fairly obvious

example might be where a table spans more than one page. Nor¬

mally, T^X is not amenable to this situation. Although an \halign

is not set as a single block, and will break at page breaks, it is

usually placed within a \vbox where there is no way to insert

page breaks part way through. On the other hand, if we derive

the tabular data from a database, or from some other ‘automatic

source, it is not difficult to have the report generator generate

the TgX commands for alignment, and to keep track of the num¬

ber of lines processed so that when it is clear that the page will

have been filled, that table is terminated, a page eject is gene¬

rated, and the continuation of the table on the next page is begun.

The ‘flaw’ is that the information about ‘widest entry’ is calcu¬

lated anew on each page. It is possible to develop some complex

scheme where the widest entry is calculated and stored, with the

entries being processed a second time to be typeset in the table.

Such multi-pass systems are feasible, if a little awkward. A sim¬

pler approach is to fix the widths of the columns in advance,

this is likely to work best in a situation where we have some

idea of the likely range of entries in the table. This is not so

unlikely.
In the context of this table, it is not necessary to worry about

the appearance of continuation pages, but it is possible to indi¬

cate how the problem can be tackled. The simplest way is to put

each column in an \hbox of some predetermined width. How to

determine the width though? Provided we have some notion of

Figure 16.4

A classic table

266 A plain TfiX primer

the likely maximum number of numerals, we can estimate the

maximum width. At least, we can for Computer Modern fonts,

since the numerals are half a quad wide (that is, an enspace). It

is not uncommon for numerals to have a fixed width, but this

is by no means a rule in different typefaces. But even in the

worst case, it should be possible to determine what width the

widest numeral is (through some box work and \showbox) and

use that information. No-one ever said that tables were going to

be easy. Each alignment in the preamble could therefore be some¬

thing like

\hbox to50pt{\hfil#\hfil}

In this case each column will be 50 pt wide, and be centred. That

is not completely satisfactory here - certainly not for the first col¬

umn or the third column. It could do for the middle one, though.

The first and third columns need to be right-justified, but they

do need some space to their left and right. If we assume that the

columns are first placed in right-justified \hboxes, and that those

boxes are then centred, we could end up with something suitable.

That is,

\hbox to 50pt{\hfil\hbox to 20pt{\hss#}\hfil}

Again the columns are 50 pt wide, but the numerals are placed

in a box which is up to 20 pt wide. This ensures 15 pt of space

on either side. Obviously another strategy is to place \hskips on

either side of the inner box:

\hskipl5pt\hbox to 20pt{\hss#}\hskipl5pt

Note the use of \hss rather than \hf il. The reason for this choice

was to insure against an odd large entry (or my failing to guess

the maximum width correctly). An \hf il could lead to an overfull

box, while the \hss will remain commendably silent and invisible.

The only other remark to make is about the asterisk on the very

last entry. This appears to be a footnote, but of course footnotes

do not work in boxed alignments (or inserts). The \vfootnote

would place the ‘footnote’ at the bottom of the page, not the

bottom of the table. The way to handle this is the hard way, by

inserting the relevant information physically in the table. There

is more than one way of handling this. Obviously \noalign is

one way, since it is material outside the alignment rules; per¬

haps slightly less obvious, the material could be handled as a

\multispan. Equally, since it ocurrs right at the end of the table

it could be placed after it entirely. The three alternatives may

look identical when typeset, but there are some implications lurk¬

ing around: with a \noalign, the material is set as a paragraph,

Further rules 267

with any paragraph indentation. Since it is set without regard

to the alignment, it takes the \hsize which is current, and may

bear no relation to the table width. Note there is a real difference

here between the way a \noalign{\hrule} works and a \noalign

with text or other material in it. The \hrule merely expands to

the table width. Since the textual material is set with the cur¬

rent \hsize, centering a table with a \noalign which contains

text and not an \hrule may be tricky. If the \of f interlineskip

has been used, it will apply to the \noalign too. In some cir¬

cumstances it will be advisable to insert a \normalbaselines.

If the \multispan strategy is used, a long entry may widen the

table inadvertently. If the material is placed at the end, after the

table has been completed, it could, under some circumstances, be

separated across a page boundary (this is not a serious problem,

since there are several ways to inhibit the breaking). Again, if the

table is to be centred the textual material may pose a problem,

since it uses the current \hsize, bearing no relation to the table

width.

We could therefore expect to see

\noalign{\smallskip

\noindent{$~\ast$>(first quarter only)}

or
\multispan3{$~\ast$}(first quarter only)\cr

or even
\smallskip\noindent{$'\ast$>(first quarter only)

This avoids the problem of how to make the asterisk have no

influence on the right justification of that last column. One alter¬

native, but crude, technique could be to introduce a further col¬

umn just for such markers, but a simpler alternative is to give

the asterisk no width at all. Before we go assigning it to boxes of

zero width, recall that \rlap and \llap were designed for such

situations. A simple

\rlap{$~\ast$}

is all that is needed.

We now have most of the elements. The preamble may be:

\halign{\strut\vrule

\hbox to 50pt{°/«
\hfil\hbox to 20pt{\hss#}\hfil}\vrule

&\hbox to 5Opt{°/0

\hfil#\hfil}\vrule

&\hbox to 50pt{%
\hfil\hbox to 20pt{\hss#}\hfil}\vrule\cr

268 A plain TgX primer

and the headings:

\noalign{\hrule}

\multispan3

\strut\vrule\hfil AT\&T Common Stock\hfil\vrule\cr

\noalign{\hrule}

\hidewidth Year \hidewidth

&\omit\hidewidth Price\hidewidth\vrule

&\omit\hidewidth Dividend\hidewidth\vrule\cr

\noalign{\hrule}

and the ‘variable’ matter which is the key material (together with

the ‘footnote’) is:

Ml—54&\llap{\$}2.60\cr

2M1—54&2.70\cr

3M6—55&2.87\cr

4M0—53&2.24\cr

5M5—52&3.40\cr

6&51—59& .95\rlap{$~\ast$>\cr

\noalign{\hrule}

\noalign{\smallskip\noindent

{$~\ast$}(first quarter only)}}

The only point not really covered earlier was the \llap for the

dollar sign. Had each element in the third column been preceded

by a dollar sign, I would have been inclined to include it as part

of the number to be centred.

=>Exercise 16.6: Try out the various forms of the table ‘footnote’.

Some neat work with a box could allow the \hsize to be set for a note

which follows a table. Do this. Any suggestions on how a suitable \hsize

might be selected for similar \noaligned material? <t=

=> Exercise 16.7: Some effort was expended to ensure that, when the

price of the stock rose above 99, and that if the dividend rose, the table

would still look sensible. Can you discern what these things were? Is it

worth taking such precautions? <=

End table

Why then do tables look difficult? Often the basic problem is

difficult, and difficult things are seldom easy. The major problem

stems from the two-dimensional layout of tables. This poses cer¬

tain intrinsic constraints. Once we start wanting to have horizontal

and vertical rules which join nicely, the problems are compounded.

Nevertheless, the problems are certainly not insurmountable, and

really occur mainly with the headings. The body of the table (the

Further rules 269

part which holds the useful information) is usually very straight¬

forward. In a great many cases, the headings remain constant, but

the contents change. Once having mastered the headings, the con¬

tents are easily generated or provided with the minimum of effort.

Ideally, they are the parts which are generated by a database or

some other program.

Creating tables in TgK requires some attention to detail, and

does tend to focus on the very small details: it is far removed from

the notion of declarative markup. There are many macro packages

available which help simplify the input of tables. In the end they

have to be agreed to have a little less generality. In this instance,

it is not easy to generalize into agreed templates. There seems to

be too much going on, and each pattern of table is sufficiently

distinct as to seem to want individual treatment.

=> Exercise 16.8: By now you have probably qualified as a TpX Master
- ‘i.e. a person who can create complicated tables’ (The T^Xbook, page
253). Congratulations. As a ‘passing out’ test, reproduce these. You don’t
have to put them side by side.

January February
April May
June July
August September
October November

March

Month

December

%BP

\j Lr-i DAR Lr-p

70 4.60 6.80 5.10

80 10.70 12.10 11.20

Conclusion

Tables constructed in TgX have quite erroneously gained the repu¬

tation of obscurity and perversity. The ‘problems’ of tables stem

from a number of roots. The first is their intrinsic difficulty. Cre¬

ating tables is, put simply, not straightforward. While Knuth was

able to create a reasonably straightforward linear language for

mathematics, no-one, so far, has been able to do anything similar

with tables. Tables are usually two-dimensional structures, and in

some cases may take on the appearance of another half dimen¬

sion or so. Part of our problem stems from trying simultaneously

to align horizontal and vertical elements, where each element

may have a different ‘structure’. There may be some relationship

between all elements in one column (let’s say ‘all mathemati¬

cal expressions’) and those in another (right-justified text), but

looked at in the sense of the rows, the relationship is not struc¬

tural, but perhaps functional. Merging these disparate elements

270 A plain TpjX primer

is usually non-trivial. But a table consists of more than just ele¬

ments on some sort of grid. There are often components which

should ‘span’ several columns, or several rows (usually titling

information). Another problem is that we often include ‘position¬

ing’ information in order to emphasize some of the relationships

between elements (usually) in columns. This sort of ‘typographic’

or ‘procedural’ markup is rather against the more general notions

of declarative markup. One further complication is the role of

horizontal and vertical rules within the table.

Graphics

To a very large extent, T^X was designed for the placement of

characters on a page. It was implicitly assumed that the characters

were probably alphabetic or mathematical. Nevertheless, Knuth

notes

If you enjoy fooling around making pictures, instead of type¬

setting ordinary text, TeX will be a source of endless frus¬

tration/amusement for you, because almost anything is pos¬

sible. ..

While it is well able to draw horizontal and vertical lines, or even

to plot dots more or less at random (see, for example, Knuth, 1986,

p.389, and Figure 17.1), most people expect a little more from

their graphics. There is also an architectural limitation: although

TgX could easily simulate an arbitrary continuous curve by plac¬

ing a very large number of small dots (or rules) on the page (or

screen), TgX was only granted a finite memory. You quickly run

out of memory. This is all the more distressing since there now

exist versions of TjrjX with small and large amounts of memory

(basically related to the addressing ability: 64-bit T^X on a Cray

has potentially much more memory than 16-bit TgX on a pc: TgX-

in-UNlx is generally somewhere in between). Sadly, this has had

the effect of making TgX documents less portable, and seriously

undermines TeXs claim to universality. TeX is universal, but the

documents may be restricted to certain versions - and you won’t

necessarily know until you try to process them (and run out of

memory, or not).

All sorts of diagrams have been created using TeX. References

to some of these are given in the bibliography.

There are three major ways in which graphics may be made

part of TfeX documents. For simplicity and brevity, ‘graphics’ is

restricted principally to line graphics, but most of what is covered

can be generalized. As with most things, the more limited the

capabilities, the closer they may be to universality. High degrees

272 A plain T^X primer

• (0,8) x (10,8)

• (4,7)

x (3,5)

• (1,1.5)
• (4,2)

• (0,0) x (14,0)

Figure 17.1

Simple graphics

within TgX
• (-1-2.5)

of sophistication usually mean greater restrictions are present.

Attention is directed here to techniques which have some claim

to generality: the ‘running on my Sun workstation using propri¬

etary software’ solution is ignored as far as possible. The vain

hope is that someone working on their Macintosh will be able to

exchange T^X documents with someone working on an IBM pc,

an Amiga, an Atari, a NeXT, a Vax under VMS, and so on up the

scale until we reach the supercomputer league. We do not wish to

present solutions which only work on specific boxes. UNIX may be

the de facto operating system, just as PostScript is the de facto

page description language. But there are more non-UNIX boxes out

in the world than there are UNIX boxes. Similarly, there are more

non-PosTScRiPT output devices than there are PostScript out¬

puts. If everybody were to standardize on the same computing box

many problems of interchange would go away, but this is unlikely
to happen.

Special fonts

This first approach is limited, but very general - it will work with

1£}X and any of its drivers. It is possible to use special fonts to

build pictures. Again there are three main ways to do this: the first

is through simple font elements (that is, straight line segments, or

curves) which can be assembled to give (fairly simple) pictures.

The second is through METflFONT. Here, we use METRFONT to

create a single character which is our graph (or whatever). This

seems intimidating, but need not be. And lastly, we can create

special fonts without METflFONT.

Graphics 273

Simple font elements

So, start with the simple font elements. Knuth gives an exam¬

ple in The TpKbook, pages 389-391, but the font he uses is not

generally available. Alternatively, L^lgX already does this, in its

picture environment (cf. Lamport, 1986, pp.101-111). Unfortu¬

nately Lamport did not develop this to the same extent as the rest

of IAT^X) and it has a distinctly ‘squared graph paper’ feel. But

it is certainly possible to create quite attractive graphs. Any ver¬

tical and horizontal elements are just standard T^X rules, while

rounded corners and circles can be made from the LAT^X circle

fonts -~A X. JT (Figure 17.2). A small range of diagonals is

possible through other special line fonts ///III.
The IATeX picture environment is amazingly modular. In

other words you can rip it out of IATeX and run it in plain T^X,

using the same basic commands which are documented in the

IATeX book. Although creating pictures this way is time consum¬

ing, it can give quite pleasing quality (at least on the laser printer).

Quite acceptable bar charts may be created, as Nagy (1989) shows

(Figure 17.3). It is possible to tackle chemistry through the use

of these fonts, as Figure 17.4 demonstrates. In this case some of

the tedium is removed by creating the ring structure only once,

storing it in a box, and then copying that box when it is needed.

Besides making the procedure less long winded, it cuts down on

the effort needed by TgX itself, since copying a box requires no

new manipulations.

The creation of diagrams like this can be amazingly tedious,

but the approach still achieves a generality and portability which

cannot be ignored. Because of this generality, there are some pre¬

processor programs which will allow you to create something inter¬

actively which is then transformed into iATgX commands. If you

have access to a UNIX system, gnutex can assist. On an MS-DOS

system, part of the emT^X package does just this (although it

adds a few extra features of its own). The key drawbacks of the

IATgX special font approach are centred around the limited fonts

which are available, both in the slope of lines and their thicknesses,

and the limited range of curves. These very limited resources can

be encouraged to generate quite an amazing range of possibilities.

But an enormous amount of time and effort is also required. Hav¬

ing said this, traditionally a tremendous amount of effort had to

be expended to create diagrams like these anyway. In this way we

have a single document, and the opportunity to revise.

274 A plain T^X primer

Figure 17.2

Using the

iATgX fonts,

from Norris and

Oakley (1990)

An advantage of course is that everything is in (IA)TeX, so that

we can ensure that the relative weights of lines, the font sizes, the

symbols, blend in well with the rest of the document. This is a

feature which we should not ignore.

A further advantage is the ability to preview the diagram on the

screen. Since the METAFONT descriptions of the fonts are avail¬

able, the screen fonts may also be generated.

The use of the rules might indicate that you could build the

most complex curves out of small rectangular boxes: make them

small enough and it will not be possible to see the join. In fact,

an extension to LXTf^X picture environment is the bezier style,

Graphics 275

Computing Costs
n in 20 30 40 50 60 70 80 90 100
i-1-1-1-1-1-1-1-1 i i

Jan

Feb

Mar

Apr

May

Jun

Key:
compute other

—i i

disc-space

geoid

Super ’88

Chapman Conf

Figure 17.3

Bar chart, from

Nagy (1989)

Figure 17.4

Simple

chemistry with

IATeX fonts,

from de Bruin

et a1. (1988)

which allows a bezier curve to be plotted (see Figure 17.5). Make

too many of them and T£X runs out of memory.

Resolution becomes an issue if we try to create continuous curves

from small elements. If TgX memory fills up quickly at 300 dpi, it

will fill up even more quickly at 1270 dpi. It is difficult to claim

device independence when we must take resolution into account.

We can of course ignore the resolution problem, but on those

times when we want to produce high-quality graphs, we may be

disappointed by the faithful rendition of those 300 dpi blobs, and

the angular ‘staircasing’ which is all too obvious at the higher

resolution.
The creation of bezier curves is a remarkable achievement, given

T^X’s limited arithmetic capability. Adding two numbers together

is awkward enough, and when we realize that T^X will only use

276 A plain TpjX primer

Figure 17.5

Bezier curves

and control

points, from

Beebe (1989)

integers in a rather limited range, the results are all the more

surprising.

Since the picture environment is rather crude, one or two peo¬

ple have put higher-level commands around them. The two best

known are PjCTf^X and epic. PjCTgX (Wichura, 1987) can be run

with both T)gX and IAT^X (Figure 17.6).

The commands for P^CT^X are distributed freely, but the 85

page manual is essential in order to use it sensibly. This chapter

has already loaded quite a few picture-drawing commands and

many of the allocation registers are becoming filled up. While it is

no real problem to stick to (say) the picture environment, once

we start mixing in extra commands the limitation to 256 counters,

boxes, dimensions, and token strings starts to hurt.

The syntax of the commands required by PfCT^X seems quite

reasonable, if quirky at times. It is no worse than many com¬

mercial plotting packages like SAS or SPSS. But even if we have

enough room for allocation of the registers, running with PfCTgX

and IATgX, on a 32-bit T^X, it is still possible (but not easy) to

exhaust the available memory. And given the amount of arithmetic

going on in the background, these diagrams tend to be slow.

Olivier (1989) describes an amalgam between S, the UNIX sta¬

tistical package, and PfCT^X. Clearly this is restricted to UNIX in

the first instance, although the PjCT^X would be portable.

Although epic (Podar, 1986) was targeted for IATgX it can

also be used in T)eX. It lacks the generality of PjCI^X, but is

Graphics 277

The parabola y = re2/4

before rotation

After rotation about the

focus F by 15°

Figure 17.6

PlCIfeX
graphics, from

Wichura (1987)

a useful extension. Podar added some higher-level commands in

order to provide a ‘friendlier and more powerful users interface’.

In particular he managed to reduce the amount of manual calcula¬

tion required. For example, he introduced a \drawline command

which allows specified points to be connected. In order to avoid

the problem of slope segments outside iATgX’s ability, he uses the

closest slope available. This can lead to rather jagged lines. If the

lines are dashed, this problem appears less acute.

There are several collections of commands which draw all sorts

of rather nice graphs. My favourites are those of Michael Ramek

(Ramek, 1990). Figure 17.7 is taken from his paper and helps

illustrate the scope that is possible. Besides the ‘normal’ graph

requirements, he provided some other commands to draw chemical

structures as shown in Figure 17.8.

Other fonts

So far we have been discussing the use of special fonts. Of course,

we can also generate our own. There are two different directions

here. On the one hand we can use some suite of other fonts; on the

other we could generate METRFONT descriptions somehow and use

those descriptions. In both cases there is appreciable generality.

In the final analysis, METRFONT is as portable as TjnjX, and once

the descriptions are made available we are as free to use those as

we would be to use (IA)TfeX commands.

Knuth (1987) introduced some halftone fonts which allow grey¬

scale ‘pictures’ to be typeset in a completely device independent

way. Adrian Clark (1987) also made some contribution to this,

and Hoenig (1989) shows some interesting examples. Since the

descriptions are available, anyone may ‘borrow’ them quite easily.

Adrian used a Fortran program as a pre-processor. This is fair,

.since for all sorts of reasons we would normally expect the data to

be provided in a digital form from some other source. There are

problems of TgX memory here again. Even with a ‘big’ version,

278 A plain TppC primer

Figure 17.7

Reciprocal

magnetic

susceptibility,

from Ramek

(1990)

1/Xm

Figure 17.8

Caffeine

CH,

N O
N-C

C C N
CH3

CH3 O

T^X may only handle one 512 x 512 picture (or four 256 x 256

pictures). Knuth’s paper discusses some manipulation techniques

which would allow greater clarity from lower-resolution pictures.

This is a fairly general and well-understood aspect of image pro¬

cessing which need not concern us here. The point is that it is quite

possible and represents no new addition of hardware or software.

An alternative use of METRFONT is to view it as a means of

describing an arbitrary picture, not a typeface. All the tools are

there to do it, and in fact it is really a lot simpler than creating

fonts. Of course, you do not really do it in METRFONT; you do

it in something else, which is then translated to METRFONT. The

something else at the moment is one of several programs by Rick

Simpson (Simpson, 1990), which works on the IBM RT (running

AIX, a UNIX lookalike), or Metaplot (Pat Wilcox, 1989). This lat¬

ter was written in C, and is available in a number of forms. There is

at least a pc version, an Amiga version, and lots of UNIX versions.

In both cases, what comes out at the far end is a single (very

large) character (or even a set of characters which are ‘tiled’

Graphics 279

together), which you plot wherever you want. The disadvantage

is that scaling the picture is tedious (just like scaling a ‘normal’

character), and editing it requires a re-run of METRFONT. But it

is device independent. The only proviso is that the device driver

be able to handle these very large characters. This is not a trivial

expectation, since many drivers were written expecting that they

would be dealing with letters, and that there was some reasonable

maximum'size to a letter.

Wilcox did not really expect the user to write in her ‘Meta-

plot’. The notion was that a variety of other, arbitrary, plotting

languages could be mapped onto the Metaplot commands, which

were then shipped to METRFONT.

CGM, or Computer Graphics Metafile, is worth considering too.

It has a couple of features which we ought to bear in mind. It is an

international standard. Nominally, every graphics package ought

to have the facility to generate CGM, and also to read it in. The

metafile should also be able to be transmitted over electronic net¬

works with the minimum of fuss. The other feature is that CALS

(Computer-aided Acquisition and Logistics System) has adopted

CGM as one of its components: while we may worry about the mil¬

itaristic background of CALS, it has done much to revitalize and

make acceptable SGML, and we can expect it to help in the adop¬

tion of CGM. One other component of CALS is that it has adopted

another ‘graphics’ standard, IGES. IGES is usually described as a

de facto standard; it was developed principally for use with CAD-

CAM software. Nevertheless, it does offer another routeway. In

essence there is no real reason why Metaplot could not read an

IGES file and transform it to METRFONT form. Since we are in the

real world of ‘standards’, Heinz (1990) notes that CKS (Graphics

Kernel Standard) may also be transformed into TeX.

Another route to create a character

If we look a little more closely at what a driver actually requires

to set a character, we note that there are two items: the pixel

file, and the TeX font metric file. Conventionally, the route to

produce these is METRFONT, but there is no particular reason

why we should have to adopt this route. Provided the tfm and

pk contain appropriate information, the driver should be able to

typeset. The underlying idea here is that we can have another

program take (say) a grey-scale picture and process it to produce

both the required files. The tfm file should be simple enough to

280 A plain TpjK primer

produce, even by hand, since we might make this ‘font’ have only

one character at a time. The property list would be fairly simple.

A traditional pixel (or pxl) file only contains binary information,

so we are back in the realms of image processing or half toning

if we wish to do something rather fancy. Most drivers now accept

‘packed pixel’ rather than ‘pixel’ information. This is simply a far

more compact form of the same information.

Simpson (1990) also describes an application of this approach.

The example he chooses takes a raster image and turns it into a

font. The program imtopk converts an impart image processing

file into a pk/tfm pair, impart handles the image scaling, allowing

for device pixel density, does any filtering necessary, and converts

an n-level grey scale to two levels. T^X positions the image on

the page, typesets any annotation, and handles any other typeset¬

ting. At Texas A&M University, a similar approach is used where

output from a number of graphics programs, but especially the

graphics software package ‘Disspla’, is processed to produce the

pk/tfm pair. This has some appeal since Disspla runs on a very

wide variety of machines, and may even be called from program¬

ming languages. A drawback of this approach is that it is difficult

to annotate the diagrams with fonts similar to the ones used in

the TgX document.

Special

Now to the less general: any sort of material may be incorpo¬

rated in a \special. Whatever appears there is passed directly

to the dvi file, where it will be handled by the dvi driver. For

example, we could have PostScript commands in there (or even

a reference to a file containing a PoSTScRlPT-created graphic).

The problem is that you also need a driver which knows what to

do with the information, and a device (printer/screen) which can

display the information. While PostScript is described as a de

facto standard, not everyone has access to a PostScript device,

and in fact more Hewlett Packard (and compatible) machines are

out there in the real world than anything else.

This actually opens up another route. While we could eas¬

ily include a complete graphic produced by another approach

(one of the vast array of graphics packages which will produce

PostScript), and probably scale or otherwise modify it, we can

also pass simpler information to the dvi file for processing by

the driver. Maus and Baker (1986) extended the IAT^X picture

Graphics 281

environment by adding a whole host of commands, which, when

examined closely, are little ‘specials’ which do things like draw a

line of arbitrary slope through PostScript commands. Now TgK

does not process anything; therefore T^X’s memory does not fill

up. When printed (on a PostScript device), the line is there.

Unfortunately, only a few screens are PostScript devices, and

so we don’t usually expect to see these elements previewed.

One other disadvantage of using specials is that the form of

specials is by no means standardized. Although there is a working

party (TUG, 1992) attempting to standardize and issue recom¬

mendations, they are facing the usual problems of standardization

committees. One of the recommendations is that a level 0 driver

should be able to place at least 1000 rules and 20,000 characters

on a single page, unless the output device is constrained in some

way. On-board device memory may be limited and limit these

ideal minima.

Recall that well over half of the drivers written for use with

T£X reside in the public domain. No commercial forces come into

play with them, nor can the T^X Users Group impose rules (it is

there to serve its members, not police them: in general this sort

of anarchy works, since there is enough goodwill around). What

we are coming to is the fact that specials have to be written with

a specific driver in mind. To give an example: imagine we want

to ship out a couple of PostScript commands, represented by

<command>. Using Textures on the Macintosh, which has its own

built-in driver, you could say

\special{postscript <command>>

Using ArborText’s (1987) PostScript driver, Dvilaser/PS,

the command is

\special{ps:: <command>}

Using the public domain DVI2PS, the structure is

\special{pstext=<command>}

or using another public domain driver dvips (Tom Rokicki), the

equivalent is
\special{ps: <command>} or \special{ps:: <command>>

while Nelson Beebe’s driver (Beebe, 1987) appears to have no way

of including a single command (you could obviously use the facility

to read in a Hie, which itself contained only one command); simi¬

larly, Personal TeX’s PostScript driver (Personal TgX, 1987)

- appears to lack the ‘in-line command’ feature.

Trevor Darrell (1987) wrote a useful set of commands, psfig,

which greatly ease the problems of incorporating PostScript

282 A plain TpX primer

into a document. The PostScript is really ‘encapsulated’, since

the ‘bounding box’ information is required. ‘Encapsulated’ also

implies that the PostScript should not change the state of com¬

mands - in other words, that any changes should be local (in T^X

terminology). The portion of psfig which deals with the \spe-

cials is well separated, and it is possible to modify that part of

the command suite for particular drivers.

You could reasonably ask why we do not include CGM files

in \specials. In fact, this has been done (Andrews, 1989). Pro¬

vided the driver can handle the commands and change them into

the correct form for the output device, any sort of file can be

processed. As noted earlier, the dvi is itself a sort of metafile.

Andrews’ extensions work for UNIX and VMS environments.

PostScript is not yet ubiquitous. Fortunately, there is also an

approach which allows us to use a Hewlett Packard LaserJet -

capture (Pickrell, 1990). Any program which produces output

for a LaserJet can have that output processed with capture to

produce a file which may be input to T^X, through some suitable

commands (which will, somewhere, employ \specials). Again,

this sounds longwinded, but there are a great many programs

which will do this. Even more remarkable, there are programs

which can take PostScript and turn it into LaserJet form (Free¬

dom of the Press, GoScript, Ghostscript, etc.). This means that

we are now relatively independent of PostScript.

In betweens

A few years ago the notion of ‘little languages’ became current.

This is a scheme which is found most generally in UNIX. Instead

of adding features to troff, ‘little languages’ were created: pre¬

processors which massaged some reasonable form of input into

troff. These include chem (for chemistry), tbl (for tables), eqn

(for equations), grap (for general graphs), and pic (for pictures).

The one we are interested in is pic and perhaps grap: pic has a

language which allows creation of line diagrams with embedded

text. Sounds simple. Of course, with the way that UNIX works, it is

‘easy’ to write a command line which hides all the ‘little language’

bits and pieces from the end user.

How is this relevant? Recall that TgX passes \special informa¬

tion straight to the dvi file. That information could easily be

special commands which the driver could interpret. If we pass

PostScript commands, then the driver can handle PostScript

Graphics 283

(maybe). What if we pass higher-level commands which the driver

then processes to produce a new dvi file? In other words, a dvi

to dvi processor. The new dvi file would, among other things, be

able to be previewed, or be sent to any suitable printer (provided

you had the correct dvi-to-printer driver). So what we end up

with is a device independent method.

There are a couple of attempts to do this. There is a program

around called dvidvi (Rokicki, 1989) which processes a dvi file,

but only so that you can rearrange the pages - say to shrink them

to thumbnails and arrange them all on a single sheet (actually

very useful for book make-up). Mike Spivak (1989) has provided

dvipaste which allows you to ‘paste’ a dvi file into another dvi

file, so that you can put a table (which gobbles up space in TgX)

where you want (equally it could paste in a large picture — and

that is why it has been mentioned here). And lastly, the one that

really does pictures, Rolf Olejniczak’s texpic (1989). This is a

TgK implementation of pic which does all the things that pic does

and more, and works in just the way outlined.

What is the snag? The driver has to be implemented on all

sorts of different machines. We are gnawing away at the porta¬

bility. Including PostScript or Hewlett Packard’s laser printer

language seems also eminently non-portable. At least this local¬

izes the problem and in the longer term gives a far more general

solution. Olejniczak’s program is available only for MS-DOS, and

is currently proprietary, although it is not especially expensive. It

is the restricted platform which is the real problem.

Closing comments

Beebe (1989), Rahtz (1989), and Heinz (1990) have all contributed

to the discussion of incorporating graphics into TeX documents.

The adoption of the METRFONT and pk/tfm solution goes some

way to ensuring the transportability of documents. None of the

other approaches yet comes close enough to being capable of being

transmitted over fairly arbitrary networks. Another advantage of

this approach should be the capability of viewing the diagrams

on the screen, as well as on paper. The tools which enable these

transformations ought to be part of the standard TgX distribu¬

tions. Within a closed environment, any solution which works is

, to be applauded. But one of the major features of TgX is its

‘open’-ness, and the portability of documents created with T^X.

It will have become apparent that we are always in the hands

284 A plain TpjX primer

of the drivers available. This is perhaps the weakest link in the

whole chain. Whether you regard the drivers as part of TfeX or

not depends on your viewpoint.

It is perhaps wise to remind ourselves that even in the days of

Johann Gensfleisch zum Gutenberg the integration of text and

illustration (through woodblocks) took some time, and could only

be achieved after agreement with the professional woodblock cut¬

ters.

Fonts 18

In this chapter we will look at some of the aspects of dealing with

fonts. To some extent the basics have already been covered. As

already related, a simple

\font\tenss=cmsslO

loads the Computer Modern Sans Serif font at 10 pt. There are

potential problems since plain is only guaranteed to set up the

basic 16 fonts. These are the eight Computer Modern fonts in

Figure 18.1. All are at 10 pt, but four of them are also loaded at

some other sizes:

Font Sizes (pt)

Roman 5, 7, 10

Bold Extended 5, 7, 10

Slanted Roman 10

Text Italic 10

Typewriter Type 10 Figure 18.1

Math Italic 5, 7, 10 The default

Math Symbols 5, 7, 10 fonts in plain

Math Extension 10 dfeX

A number of others are \preloaded in plain. All that \preloaded

means is that the font information is read in so that should we

need those fonts sometime there is no overhead. But why? What

is the problem? Knuth says:

it is desirable to keep the total number of fonts in plain TeX

relatively small, because plain TgX is a sort of standard for¬

mat; it shouldn’t cost much for someone to acquire all the

fonts of plain T£X in addition to those he really wants. Sec¬

ond, it is desirable on many computer systems to preload the

information for most of the fonts that people will actually be

using, since this saves a lot of machine time.

Neither of these reasons seems current. Practically every dis¬

tributed version of T^X comes with all of the fonts in the Computer

286 A plain Tp]X primer

Figure 18.2

The default

‘preloaded’

fonts in plain

tex

Typeface

Bold Extended

Maths Italic

Math Symbols

Roman

Sans Serif

Sans Serif Bold Extended

Sans Serif Italic

Sans Serif Quotation

Sans Serif Quotation Italic

Slanted Roman

Text Italic

Typewriter Text

Sizes (pt)

9, 8, 6

9, 8, 6

9, 8, 6

9, 8, 6, (scaled ~ 14.5)

10

(scaled = 14.4)

10
8
8

9, 8

9, 8

9, 8, (scaled = 14.4)

Modern family, and processors are quite fast enough that we are

unlikely to notice a few nanoseconds here or there as the font

information is read in.

The \preloaded fonts are listed in Figure 18.2. They fall into

two main categories: extra sizes of loaded fonts - filling in the

other sizes to give 1 point increments between 5pt and 10 pt; and

other ‘useful’ fonts. An exception to this are the three fonts loaded

at particular \magsteps. These are used by Knuth for some titles.

It is odd to see them here. Do note though that he says:

different machines can be expected to differ widely with

respect to preloaded fonts, since the choice of how many

fonts to preload and the selection of the most important fonts

depend on local conditions.

It is only in this area of preloaded fonts where Knuth permits

changes to be made to plain without his authorization.

The Computer Modern family of typefaces is quite large. In fact,

it must be one of the most comprehensive range of practical, work¬

ing fonts. There are very few typeface families which have serif

and sans serif faces, varieties of bold, italic, ‘typewriter’, slanted,

as well as the oddities like Fibonacci, Dunhill, and Funny. It is

far more common to have to use a serif typeface with some suit¬

able sans serif typeface, and perhaps a monospaced ‘typewriter’

typeface. It should not be assumed that any arbitrary melange

will be satisfactory. Fortunately, the Computer Modern family fits

together, by and large.

Each distribution of T^X should have the fonts in Figure 18.3.

The prefix to which the ‘suffix’ is prepended is ‘cm’. The name will

Computer Modern name

Bold

Bold Symbol

Bold Extended

Bold Extended Text Italic

Bold Extended Slanted

Caps and Small Caps

Dunhill

Extension

Funny Font

Funny Italic

Fibonacci

Italic Typewriter Text

Inch

Math Extension

Math Italic

Math Italic Bold

Math Symbols

Roman

Slanted

Slanted Typewriter Text

Sans Serif

Sans Serif Italic

Sans Serif Bold Extended

Sans Serif DemiBold Condensed

Sans Serif Quotation

Sans Serif Quotation Italic

Symbol

Text Italic

Typewriter Caps and Small Cap

T^X Extended

Typewriter Text

Unslanted

Variable width Typewriter Text

Fonts 287

Point sizes available Suffix

10 b

10 bsy

5, 6, 7, 8, 9, 10, 12 bx

10 bxti

10 bxsl

10 CSC

10 dunh

10 ex

10 ff

10 fi

8 fib

10 itt

72.27 inch

10 ex

5, 6, 7, 8, 9, 10, 12 mi

10 mib

5, 6, 7, 8, 9, 10 sy

5, 6, 7, 8, 9, 10, 12, 17 r

8, 9 10, 12 si

10 sltt

8, 9, 10, 12, 17 ss

8, 9, 10, 12, 17 ssi

10 ssbx

10 ssdc

8 ssq

8 ssqi

5, 6, 7, 8, 9, 10 sy

7, 8, 9, 10, 12 ti

5 10 tcsc Figure 18.3

8, 9, 10 tex The full

8, 9, 10, 12 tt range of the

10 u Computer

10 vtt Modern family

be followed by a point size in the range shown, for example cmrlO

or cmssl7. The one exception to this, cminch, may not be found

in all distributions. It is a rather large font, and takes up lots

of disk space. Since its use is rather specialized, it can probably

be omitted with relative immunity. There is no guarantee that

each font will be available at all \magsteps. Your user manual

or local details should be able to fill in this essential information.

288 A plain TjgX primer

Recall that T^X is only interested in picking up the basic tfm

information. It does not care whether the fonts are scaled or not.

Only the output driver cares about that and usually only when it

tries to use them.
=>• Exercise 18.1: It may be noticeable that the longest font name will
be eight characters long. Which fonts are these? Why should this charac¬

teristic be present?
=>■Exercise 18.2: Using the information in Figure 18.3, generate some
samples for all the Computer Modern fonts available to you. 4=

It is also possible that other Computer Modern sizes will be

available. It is quite possible to ‘interpolate’ extra sizes from the

METRFONT descriptions and use these to generate both the tfm

and pk (or gf) hies needed. The pk hie is a ‘packed pixel’ hie which

contains the font itself: it is used by the output driver. In fact,

METRFONT will have generated a ‘generic font’ hie (the gf), but

this is usually transformed into the more compact pk hie. There

is no fundamental reason why a cmrl3 could not be generated,

if required. Interpolating between two existing sizes is relatively

straightforward, but extrapolating to a larger (or smaller) size may

be a problem. It may turn out that cmr25 or cmssqlO is not at all

satisfactory, unless you truly understand what you are doing. But

this is well outside the scope of this primer.

Inspection of the table of the standard (or canonical) fonts shows

that 10 point is well supported, and, really, all else revolves around

this size. But we do not have to be tied too closely to this fact. It is

not difficult to arrange that T^X becomes a little more flexible, and

provide some commands which allow easy changes in the base size.

When plain sets up fonts, it does not use names like \rm, \it,

and all the others with which we are familiar. Instead, they are

set up in a much more specific way. For example,
\font\tenrm=cmrlO \font\sevenrm=cmr7\font\fiverm=cmr5

\font\teni =cmmil0\font\seveni=cmmi7\font\fivei=cmmi5

\font\tenbf=cmbxlO\font\sevenbf=cmbx7

\font\fivebf=cmbx5

and at some later point a definition associates the command \rm

with \tenrm (and similarly for the other fonts). These assignments

are examined more closely later in this chapter.

A careful scrutiny of The T^Xbook will reveal some rather

interesting font manipulation commands, notably \tenpoint and

\ninepoint. These are not part of plain, but are part of exam¬

ple formats discussed in Appendix E of The TJgXbook. From them

we will be able to generalize to other convenient base sizes. The

Fonts 289

notion is, for example, that we should be able to say \ninepoint

and from then on our text would be in a 9 point size, with suit¬

able adjustment of the symbol fonts for maths, and of all the

other fonts, like slanted, italic, and so on. This would then make

it simple to switch back into \tenpoint (or some other size), in a

more or less arbitrary way. In order to understand what is going

on, it is useful first to go back into plain. There are a set of

commands in plain which set up many details concerning fonts.

The fundamentals are:

\textfontO=\tenrm \scriptfontO=\sevenrm

\scriptscriptfontO=\fiverm

\def\rm{\famO\tenrm}

\textfontl=\teni \scriptfontl=\seveni

\scriptscriptfontl=\fivei

\def\mit{\fami}

\def\oldstyle{\faml\teni}

\textfont2=\tensy \scriptfont2=\sevensy

\scriptscriptfont2=\fivesy

\def\cal{\fam2}

\textfont3=\tenex \scriptfont3=\tenex

\scriptscriptfont3=\tenex

We see some things which look vaguely familiar, although not

totally so. The \textfontO has a familiar ring, and clearly ties

into \textstyle in maths mode. The new concept is that of fam¬

ily, abbreviated by TgX to \f am. This has nothing to do with the

conventional typographic notion of ‘family’, but is a term intro¬

duced by Knuth to account for a particular usage of within

maths. It has no specific meaning outside maths.

There may be up to 16 families of fonts, numbered from 0 to

15. Each family has three fonts, the \textfont, the \scriptfont,

and the \scriptscriptfont. As the extract above hints, family

1 is maths italic letters, family 2 is ordinary maths symbols, and

family 3 is for large symbols (the extension font). Maths fonts

usually have a little more information in them than normal text

fonts. This is one reason why it is difficult to make fonts other

than Computer Modern work properly in maths: the other reason

is the paucity of symbols in most other typefaces. Note, however,

that Knuth recently used the Concrete typeface, together with

Euler for maths, and that Lucida may also be available. Lucida

has a range of maths symbols equivalent to that of Computer

Modern. Spivak has also created a set of symbol and extension

fonts (MathTime) suitable for use with the Times typeface.

290 A plain TpjK primer

Although that goes some way to accounting for the commands,

it does not quite describe the definitions of \rm, \mit, \oldstyle,

and \cal. It does, however, highlight plain’s preoccupation with

mathematics, since none of this would be really necessary outside

maths. Only \rm is met outside mathematics. Associating \rm with

\tenrm, the 10 point Computer Modern Roman, is to be expected,

but why the \famO? When T^X enters maths mode, \f am is set to

— 1. In other words, each beginning $ or $$ has an implied \fam-

1. Font changes are controlled through the \fam value in maths

mode. In order to obtain cmr style letters it is necessary to set

\fam to zero - which is what \rm is doing. In horizontal mode,

\famO has no effect, and the ‘current font’ (whatever is currently

being used outside maths) has no meaning within maths, except

in a couple of fairly obvious cases: material in an \hbox will refer

back to the current font, and so too would a direct reference to a

dimension through ex or em.

If the value of \f am is —1 when maths is entered, how does T^X

know to pick up the appropriate style? Each mathematical char¬

acter has an ‘associated’ code which, among other things, contains

information on the family which is to be used. There is an implicit

font which can (usually) be overwritten by the \fam value.

This begins to provide an explanation for the definition of the

\mit and \cal commands too, although the \oldstyle requires a

little more discussion. This command refers only to the numerals:

in a sense it is similar to some of the commands like \cal and \bf

in maths. It is fairly restricted in its range of operation. It applies

only to the 10 numerals. It does, however, work inside and outside

maths - the \teni sees to operation in normal text. So-called

\oldstyle numerals look like this: 0123456789.

=> Exercise 18.3: Given the information presented above, in what way

will $\oldstyle A9$ differ from $\oldstyle\cal A9$? ■<=

=>Exercise 18.4: How would you obtain calligraphic characters in

ordinary text without explicitly going into maths? «=

There are some additional commands. Recall that \bf works in

maths too. From our description above, it is obvious that \bf has

to have some similarity with the way in which \rm is set up:

\newfam\bffam \def\bf{\fam\bffam\tenbf}

\textfont\bffam=\tenbf \scriptfont\bffam=\sevenbf

\scriptscriptfont\bffam=\fivebf

The only new command here is \newfam. Instead of deliberately

choosing a family number for bold, T^X has the ability to choose

the first available one, rather in the same manner as \newbox,

Fonts 291

\newtoks, and the rest, allowing for the fact that \newfam is

restricted to the range 0-15. The remaining fonts in general use

by plain are set up with reference to \newfam too:

\newfam\itfam \def\it{\fam\itfam\tenit}

\textfont\itfam=\tenit

\newfam\slfam \def\sl{\fam\slfam\tensl}

\textfontAslfam=\tensl

\newfam\ttfam \def\tt{\fam\ttfam\tentt}

\textfont\ttfam=\tentt

=> Exercise 18.5: We now have the capability of changing the way in
which TgX handles sub- and superscripts. Assume that we wish the pro¬
gression to be 10 pt for the equivalent of text style, 8pt for script style,
and 6pt for script script style. Alternatively, let there be only one level
of script styles, at say 7pt. Is there any way to extend the progression of
sub- and superscripts to three or more levels? <=

We now have the sort of information which makes the \ten-

point and \ninepoint commands easier to understand. The

\tenpoint is slightly easier to recognize since it refers to the

10 point fonts with which we are more familiar:

\def\tenpoint{\def\rm{\famO\tenrm}%

\textfont0=\tenrm \scriptfontO=\sevenrm

\scriptscriptfontO=\fiverm

\textfontl=\teni \scriptfontl=\seveni

\scriptscriptfontl=\fivei

\textfont2=\tensy \scriptfont2=\sevensy

\scriptscriptfont2=\fivesy

\textfont3=\tenex \scriptfont3=\tenex

\scriptscriptfont3=\tenex

\def\it{\fam\itfam\tenit}%

\textfont\itfam=\tenit

\def\sl{\fam\slfam\tensl}%

\textfont\slfam=\tensl

\def\bf{\fam\bf f am\tenbf}%

\textfont\bffam=\tenbf \scriptfontYbffam=\sevenbf

\scriptscriptfont\bffam=\fivebf

\def \tt{\f am\ttf am\tentt>7,

\textfontAttfam=\tentt

\normalbaselineskip=12pt

\let\big=\tenbig

\setbox\strutbox=\hbox{7o

\vrule height8.5pt depth3.5pt widthOpt}0/.

\normalbaselines\rm}

292 A plain TpjK primer

Only the last few lines introduce anything noteworthy. (In pass¬

ing, this \tenpoint command is almost identical to the commands

which Knuth developed for Appendix E of The TpjXbook.) The

\normalbaselines is there to ensure that should we be changing

from another size, the baselines will be appropriate for 10 point

sizes. In executing the command \normalbaselines, \baseli-

neskip is reset to \normalbaselineskip. The command \tenbig

is derived from plain’s \big and deserves a little extra explana¬

tion: looking back into plain, we will see that \big is defined

as:

\def \big# 1 {{\hbox{7o

$\left#l\vbox to 8.5pt{}\right.\n@space$}}>

Most of this seems quite sensible, and makes the use of \big in

maths quite logical. It is interesting that the apparent dichotomy

between the use of the delimiters generated by \left and \right

and those which use \big (and its variants) is more apparent than

real. In the same set of commands that Knuth includes \tenpoint

he defines \tenbig exactly as the \big above. The \n@space

requires a little further explanation:

\def\n@space{\nulldelimiterspace=Opt \m@th}

Obviously it is a ‘guarded’ command which is not to be used by

the normal user without some effort. The width of a null delimiter

(a \right. or \left.) is ‘normally’ 1.2pt. This particular null

delimiter is zero. The other command here, \m@th, is shorthand

for \mathsurround=Opt. Again we are ensuring that no space is

inserted in this context. If we were really obsessive, we might wish

to ensure that \Big, \bigg, and \Bigg are also reset here. The

\strutbox is just the standard one used for setting up \strut. If

we look through plain, we will find a definition of the versatile

\strut:

\def\strut{\relax

\ifmmode\copy\strutbox\else\unhcopy\strutbox\fi>

This is remarkably robust, and demonstrates a use for \unhcopy.

It also demonstrates that if we change the definition of \strutbox,

the size of \strut will change quite conveniently.

Exercise 18.6: Be obsessive and add \Big and the other ‘large’
delimiters. 4=

=>•Exerci'se 18.7: Add the CM Caps and Small Caps font to this \ten-

point command, and enable it to be used in maths. <£=

=>Exercise 18.8: Now that the structure of the delimiters given by

\big through to \Bigg has been revealed, it is possible to add more, for

example, \BIG and \BIGG. Do so. <*=

Fonts 293

From eight fifty

A very similar \ninepoint command can be defined as:

\def \ninepoint{\def \rm{\f amO\ninerm>'/o

\textfontO=\ninerm \scriptfontO=\sixrm

\scriptscriptfontO=\fiverm

\textfontl=\ninei \scriptfontl=\sixi

\scriptscriptfontl=\fivei

\textfont2=\ninesy \scriptfont2=\sixsy

\scriptscriptfont2=\fivesy

\textfont3=\tenex \scriptfont3=\tenex

\scriptscriptfont3=\tenex

\def\it{\fam\itfam\nineit}%

\textfont\itfam=\nineit

\def\sl{\f am\slf am\ninesl}°/0

\textfont\slfam=\ninesl

\def \bf {\f am\bf f am\ninebf }“/„

\textfont\bffam=\ninebf \scriptfont\bffam=\sixbf

\scriptscriptfont\bffam=\fivebf

\def\tt{\fam\ttfam\ninett}%

\textfont\ttfam=\ninett

\normalbaselineskip=llpt

\setbox\strutbox=\hbox{%

\vrule height8pt depth3pt widthOpt}0/,

\let\big\ninebig

\normalbaselines\rm}

This is very similar to the definition of \tenpoint. Clearly there

have to be substitutes for the 10 and 7 point fonts used in maths.

Note the different values in \strutbox. Equally, \big has been

set equivalent to \ninebig. The definition of \ninebig is:

\def \ninebig#l{{\hbox{"/0

$\textfontO=\tenrm\textfont2=\tensy

\left#l\vbox to7.25pt{}\right.\n@space$}}}

The maths italic font, \textfontl, is not mentioned, since it does

not contain any parentheses.

Of course, all these references to \ninebf and so on imply the

presence of commands like

\fontAninebf=cmbx9

There must be a reference where that particular font is set up. It

may be necessary to manipulate the way the fonts are set up a

little in order to get things to come out approximately right. Not

every font is available at a variety of sizes. How do we try to solve

294 A plain TpjX primer

that problem? There are ways. We might decide to load the fonts

at different scale factors:

\font\twelvesc=cmcsclO scaled\magstepl

but this runs into difficulties wdren we need smaller sizes, since few

implementations will keep, for example, a cmcsclO at 9pt. They

might, but it is unlikely. T^X will not complain, but the output (if

you do get any) won’t look too good. Is there a solution? META¬

FONT! There is no real reason why you should not generate your

own fonts at the sizes you want. After all, the METAFONT descrip¬

tions are public. Of course, generating your own means that the

portability of your document is compromised. Another possibility

exists. In some cases, fonts may be scalable. This implies that if we

ask for cmcsclO at 9pt, the driver will create such a font for you.

This does not have to involve META FONT, if the fonts themselves

are stored in an ‘outline’ form. The most common scheme which

employs this form of encoding is PostScript. PostScript fonts

are stored as outlines, not as raster images. Traditionally, Com¬

puter Modern was a raster image (or bit-map), but recently it has

been rendered as an outline, in conventional PostScript form.

If you have a PostScript output device, this gives great flexibil¬

ity.

=>-Exercise 18.9: You should have about enough information to gene¬

rate a \twelvepoint or an \eightpoint equivalent. <=

If we are going to use this sort of \ninepoint command, then

we really ought to look at \magnif ication. TgX comes with a

command which sees to it that a basic document can be magnified

by a series of factors. The defaults are all to the ratio of 1.2, in

steps of half, one, two, three, four, and five. Thus simply saying

\magnification\magstephalf

right at the beginning of a document magnifies every dimension

(including the fonts) by 1.205 or \/L2 - approximately 1.1. This

is what I almost always do, except I use \magstepl, giving me a

basic 12 point look. I would really rather use \twelvepoint, but

I would loose a few fonts and have to do a bit more work. When

I am typesetting a book I usually use 10 point, but course notes

and drafts are easier to read on standard paper sizes at about

12 point. As I get older I shall start to use \magstep2.

It is worth glancing at the command for \magstep. It runs

\def\magstep#l{\ifcase#l 1000\or

1200\or 1440\or 1728\or 2074\or 2488\fi\relax>

and there is another ‘special’ one for \magstephalf:

\def\magstephalf{1095 }

Fonts 295

Really then, \magsteps are only a convenient shorthand, and there

is nothing (well, not much) to stop us saying \magnif ication500

or even \magnif icationl095.

Exercise 18.10: You might like to make \magstep a little more

friendly: what happens if I inadvertently say \magstep7? <S=

Why go to all the trouble of using \twelvepoint and so on when

we could just use \magnif ication? The main reason revolves

around the concept of the design size. Going back to the tfm

files, you may recall that a font has a ‘design’ size. This is the

size at which it was meant to be read. In the old days, every

letter in every size was ‘different’. It was not just scaled up or

down geometrically, but there were subtle non-linear changes as

we went up the scale from a 6 pt to a 24 pt character. Photoset¬

ting rather killed this idea, since in photosetting there is often just

one master shape, from which all sizes are generated optically. In

some cases there may be three or four ‘masters’, each applicable

to a particular range. The Adobe fonts are examples of scalable

fonts. Their Times Roman was based on a 14 point master, which

partly accounts for its ugliness at 10 pt. In their Type 1 fonts

Adobe include ‘hints’ which alleviate some of the scaling prob¬

lems, although they were mainly intended to tackle the problems

of low resolution.

Recall that if I had put

\font\five=cmr5 at \magstep5

T^X would have taken the existing magnification and added it

to any existing one, perhaps giving a magnification of 6. Many

implementations have a \magstep6. Mine does not. This addi¬

tivity illustrates a problem with magnification. If we used \mag-

stephalf, combining it with something at another magnification

would give us the rather odd magnification of ‘something and a

half’. Beware.

Another dimension

Every font has associated with it a number of \f ontdimen param¬

eters. We have touched briefly on these already. All fonts have at

least a basic seven dimensions associated with them. The maths

fonts have rather more: the extension fonts have at least 13, while

the symbol fonts have at least 22. The details of these \f ontdi¬

men s are not essential unless we want to do something rather

sophisticated, but it is still worth providing some account of

the seven dimensions associated with the fonts most likely to

296 A plain TppC primer

Figure 18.4

The first seven

font dimensions

and their

descriptions

\fontdimen Description

1 slant factor; for positioning accents - relevant

for slanted and italic typefaces. This is actually

a slant per point figure, and is therefore unaf¬

fected by changes to the magnification, unlike

the other \f ontdimens.

2 normal interword space; this may be altered by

reference to \spaceskip.

3 interword stretch; the interword space nor¬

mally has a stretch and shrink component. Since

\spaceskip is a true \skip quantity, it has a

plus and minus part associated with it. This is

the plus part.

4 interword shrink; this corresponds to the minus

part of a \spaceskip.

5 the x-height; the height of lower-case characters

without ascenders. Whenever you use a distance

ex, this will be the value used - it is therefore

font specific. Even between fonts of the same

notional ‘size’ the x-height may vary. The most

obvious example is between bold and normal

weight characters. The bold characters tend to

have a larger x-height.

6 quad width; this is the width given to a \quad;

the em is also set through this dimension; they

are therefore font specific.

7 extra space; this is the additional space which

is added at the end of sentences. There are two

ways to alter this value; indirectly through the

use of \frenchspacing, and directly through

\xspaceskip.

occur in ordinary text. Since we will refer to these a few times,

the descriptions of the ‘essential’ \f ontdimens are given in Fig¬

ure 18.4.

Any of the \fontdimen values may be changed: for example,

\fontdimen2\tenrm=3.5pt

\fontdimen3\tenrm=l.25pt

\fontdimen4\tenrm=l.15pt

have the effect of changing the interword spaces for 10 point Com¬

puter Modern Roman. An equivalent would be

Fonts 297

cmrlO cmtilO cmsllO cmbxlO cmttlO cmmilO

1 0.00 0.25 0.17 0.00 0.00 0.25

2 3.33 3.58 3.33 3.83 5.25 0.00

3 1.67 1.53 1.67 1.92 0.00 0.00

4 1.11 1.02 1.11 1.28 0.00 0.00 Figure 18.5

5 4.31 4.31 4.31 4.44 4.31 4.31 The font

6 10.00 10.22 10.00 11.50 10.50 10.00 dimensions of

7 1.11 1.02 1.11 1.28 5.25 0.00 the ‘basic’ fonts

\spaceskip=3.5pt plusl.25pt minusl.l5pt

Of the two, changing the \f ontdimens is global in its scope, while

the \spaceskip refers only to the current font, is local, and can

of course be grouped.

What does Figure 18.5, the table of font dimensions, tell us?

Among other things, it highlights the fundamental differences

embodied in both the Typewriter Text font (cmttlO) and the

Math Italic font (cmmilO). Taking the Typewriter Text font first,

the key value is the \quad width (\fontdimen6). The normal

interword space (\f ontdimen2) and ‘extra space’ are each half

this value. The x-height is of little consequence. All the other

dimensions are zero: the slant value, like that in all the other non-

slanted fonts, is obviously zero, but there is no stretch and shrink

associated with the interword skip. Since we generally wish the

typewriter style to be a monospaced style, it is logical to restrict

the spaces to units which correspond to the width of the char¬

acters in the font. Note though that if we were setting a whole

paragraph of typewriter text, it would be surprising if the limited

flexibility that we have permitted here was sufficient. It is prob¬

ably appropriate to set typewriter (or any other monospaced)

fonts with ragged-right. The default \raggedright is not entirely

sympathetic, and plain provides \ttraggedright. This differ¬

ence is not directly related to fonts, but still worth pursuing here.

The ragged-right commands are

\def\raggedrightArightskip=0pt plus2em

\spaceskip=0.3333em \xspaceskip=0.5em>

\def\ttraggedright{\tt\rightskip=Opt plus2em>

The \spaceskip and \xspaceskip dimensions are quite clear, but

the \rightskip requires more explanation. There are two com¬

mands, \rightskip and \leftskip, which we have met through

\narrower. There, they were both \advanced by the extent of

the \parindent. No glue was involved. In this context, these skips

are all glue. In building lines, T^X normally places an amount of

298 A plain Tj^K primer

glue equivalent to the \leftskip and \rightskip amounts on

the left and right respectively. Permitting the \rightskip to be

glue is a way of making the right margin ragged. In ‘normal’ text

the raggedness should not be too great. Hyphenation is normally

permitted. But in a monospaced font we might be inclined to

allow much more flexibility at the margin, especially if we want to

suppress hyphenation too. In the typewriter version it is not neces¬

sary to include the space skips, since they have already been given

appropriate values in cmtt and have no glue associated with them.

An even more attractive proposition is to attempt to detect

whether a typewriter font is in use, and set the \rightskip appro¬

priately. How might this be done? The ‘number’ of the typewriter

family is normally 7. There is no reason we should know this, and

going back into the various font-related commands, we will recall

a \ttf am. This is a more flexible approach. Provided that there is

a \newf am\ttf am, and that the definition of \tt is something like

\def\tt{\fam\ttfam\tentt}

so that both a text and mathematical context have been set up,

we can test the value of the family:

\ifnum\fam=\ttf am

Note that we are interested in the ‘family’, not the expression of

the typewriter font. Employing this strategy can give far greater

flexibility. It is possible to pick up the actual font through a com¬

mand \fontname, but that would yield something like cmtt 10, or

cmtt9. We would therefore have to devise a test structure which

looked at only the cmtt part, somehow ignoring the numeric value

which might follow. Testing the \fam is far easier. This allows us

to create a new \raggedright command:

\def\raggedright{\rightskipOpt plus2em

\ifnum\fam=\ttf am

\else\spaceskipO.3333em \xspaceskipO.5em\fi}

=AExercise 18.11: There are a couple of refinements we might make

to this new definition. It would be useful to be able to turn off the

hyphenation in typewriter. Setting \hyphenchar\fontname-1 has this

effect. Unfortunately, this requires that we insert \ninett, or \tentt,

or whatever for \fontname. This seems to put us back a step in gene¬

rality. Fortunately, \font gives the name of the current font, so that

\hyphenchar\f ont-1 would be satisfactory. Another useful feature would

be to give much more flexibility on the right margin, or to permit the

interword space to have some flexibility in the glue: suitable values might

be 0.5em plus. 25em minus. 15em. Incorporate some of these changes. <=

=>•Exercise 18.12: The information you have about \rightskip and

\leftskip may enable you to create an environment where text is ‘cen-

Fonts 299

\fontdimen Description

13 vertical movement of superscripts in display

style (relative to the horizontal maths axis).

14 vertical movement of superscripts in text style.

15 vertical movement of superscripts in display

mode when in ‘cramped style’, for example

16

below a root or a vinculum. Figure 18.6
minimum distance between subscripts and the A few extra
baseline when there is no superscript. font dimensions

17 minimum distance between subscripts and the and their

baseline when there is a superscript. descriptions

tred’ in each line. The only real problem you may encounter is with the

very last line in any paragraph. The last line is normally left justified. In

order to accomplish this TgX has a command, \parf illskip, which is

normally set to Opt plus If il. That is to say, all glue. This glue ensures

that the text on the last line is pushed to the left. In the case of centering

text, this glue will have to balance exactly the glue of the \leftskip. ■<=

Let’s return briefly to the \f ontdimens, but only to a few which

are especially relevant, and touch on a subject which was raised

much earlier. In Chapter 4 we noted that the position of subscripts

depended on whether superscripts were present or not. This posi¬

tioning is also controlled through \fontdimen values. In this case,

the two relevant values are 16 and 17 (see Figure 18.6).

In order to control these minimum distances, it should be suffi¬

cient to reset the values of \fontdimen. For example,

\fontdimenl6\tensy=\fontdimenl7\tensy

For this particular font, the value of \fontdimenl7 is 2.47pt.

=>Exercise 18.13: An alternative way of controlling the positioning

of the subscripts could be to choose another value altogether, perhaps

between the value of \f ontdimenl6 and \f ontdimenl7. It should be pos¬

sible to devise a way of establishing this missing dimension. You may also

alter the height of the superscripts. <=

*

More detailed fonts 19

There is an area which we have hardly touched, that of the posi¬

tion of characters in a font. The characters in a font may be

accessed in a number of ways. We are accustomed to the ‘normal’

way, by actually specifying the character - a, b, c, ...: similarly,

some characters are accessed through commands - \ae, \o, \1,

\clubsuit,....

At the very simplest level, the command \char permits you to

access any of the 256 characters in a font. For example, \char97

references character 97 in a font: this is ‘a’ in many fonts. Check¬

ing back into the font table, Figure 19.1, note that the numbering

starts at 0.

'0 '1 '2 '3 '4 '5 '6 '7

'00a: r A 0 A n X T

'oix $ 4/ n ff fi a ffi ffl

'02x 1 J
\ / v — o

'03a: ■>
fi ae oe 0 M (E 0

'04a: - ! ??
$ % &

)

'05x ()
* + ? - /

'06a; 0 1 2 3 4 5 6 7

'07a; 8 9 > i = l ?

'10a; @ A B C D E F G

'11a: H I J K L M N O

'12a: P Q R S T U V W

'13a; X Y Z
U

A

'14a:
C a b c d e f g

'15a; h i j k 1 m n o

'16a; P q r s t u V w

'17a; X y z - — "

Figure 19.1

Font table

for Computer

Modern Roman

Why are only 128 characters shown in Figure 19.1 when we can

use 256 characters in a font? Although T£X3 allows us to input

256 characters from the keyboard, this is an ‘input’ character set,

302 A plain Tp]X primer

not an output one. The Computer Modern typeface has only 128

output characters. However, 256 character output fonts have been

developed as extensions to Computer Modern.

Since there are 128 characters in Computer Modern, it is con¬

venient to divide the table into groups of eight or 16. There is a

convenient way to refer to octal (base 8) or hexadecimal (base 16)

numbers, rather than decimal numbers. For example, the follow¬

ing are equivalent: \char’152 and \char"6A. An octal number is

preceded by a ’, while a hexadecimal number is preceded by a ",

Note that the hexadecimal numbers use the upper-case alphabetic

characters. Using lower-case will lead to trouble.

=>•Exercise 19.1: The font table is indexed in octal. Try to create a

similar table indexed in hexadecimal. <=

If you were truly determined, you could write text by referring

to the character positions in the fonts. In fact, as far as text is

concerned, you need only have access to the individual characters

\, c, h, a, r, and either 0 7 and ’ or A-F, 0 9, and ". But it is

not possible to use commands through this mechanism. Writing

\tt\char’134\char’101\char’101

yields \AA, rather than A. Note that most fonts do not contain

the backslash character. This is why we changed to \tt here,

since it does contain this character. The standard text fonts have

characters which are given in Figure 19.1. Naturally the maths

symbol fonts and the extension fonts are very different. So too are

the maths italic. The typewriter text font contains a number of

variations too. The bulk is identical, but as noted earlier in Chap¬

ter 6, there are some key differences. These fonts are illustrated

in Appendix A.

How then might we define \ae? The obvious way, based on the

commands we have met so far, is:

\def\ae{\char’032} or \def\ae{\char"1A}

but in fact plain has a more terse way, through a command which

simultaneously defines and references a character:

\chardef\ae=,032 or \chardef\ae="1A

This has the useful feature, from a command writer’s point of

view, that it uses slightly less of T^X’s memory. How would you

know that it used more or less memory? Tracing commands will

report how much memory has been used.

^Exercise 19.2: Find out how many words of memory you save by

using \chardef rather than a ‘conventional’ \def. 4=

There is yet another way to define characters, although its use is

restricted to individual characters or to commands whose ‘name’

More detailed fonts 303

is a single character. For example, in order to define \& as a way

of accessing &, we may write

\def\&{\char38} or\def\&{\char’46} or \chardef\&=‘&

as already discussed. But in addition, both

\def\&{\charand \def\&{\char‘\&}

will do exactly the same job. The left quote character followed by

either a character or a command given by a single character is

understood by T^X to represent the internal code of that charac¬

ter. To some extent it is not necessary that you know the corre¬

spondences given in the font table. When is the ‘extra’ \ needed,

and when may it be omitted? Its inclusion never does any harm,

but the rule is that it is mandatory when the category code is 0, 5,

9, 14, or 15 (see Figure 7.1). In short, that’s the escape character,

the end of line character, an ignored character, the comment char¬

acter, and an invalid character. These cases are intuitively obvious.

T^X font metrics

In order to discuss font metrics effectively, it is useful to introduce

another piece of TgXware, which you may or may not have avail¬

able. It is not essential to have access to this, but some background

information is enlightening. Traditionally, there is a utility named

TFtoPL. With the introduction of ‘virtual fonts’, coincidental with

TgX3, though not directly related to it, a new utility, VFtoPL,

replaced it. For the purposes of this description, either of these

utilities is valid. Both convert T^X font metric (tfm) files into

equivalent property list (pi) files. The property list file output by

this utility has the advantage that it can be edited with a normal

text editor, and the result can be converted back to tfm format

by using the companion utilities PLtoTF or PLtoVF.

The idea behind tfm files is that TeX and the host computer

need a compact way to store the relevant information about fonts.

The tfm files are compact and most of the information they con¬

tain is highly relevant, so they provide a solution to the problem.

Exercise 19.3: If you do have VFtoPL or TFtoPL available, generate

a property list for one of the tfm files. <=

Rather than go through all the elements of a property list, only

the major parts will be covered here. Essentially they comprise a

header, with some general information (some of which T^X will

not actually use, but a device driver might), and various blocks

of information: one contains the font dimensions; another the

ligaturing information; another the character information which

304 A plain TpjK primer

includes details of the dimensions of individual characters; and

lastly, a block which indicates how large ‘extensible’ characters

are to be built.

Header

The property list begins with a block of header information. It

includes

1 a check sum; the check sum is simply an identification num¬

ber. Incompatible fonts almost always have distinct check sums.

Some drivers will pick up check sum information and will report

if it is untoward.

2 the design size of the font, in units of TgX points (72.27 points

to the inch). This number is fairly arbitrary, but usually the

design size is 10.0 for a TO point’ font, that is, a font that was

designed to look ‘best’ at a 10 point size. It is the amount by

which all quantities will be scaled if the font is not loaded with

an ‘at’ specification. For example, \font rm=cmrlO would lead

to the design size being used, but if you use \font rm=cmrl0

at 15pt the design size is ignored and replaced by 15 points.

The quantity is always points.

3 the design units. Normally this would be 1: that is, how many

units equal the design size (the eventual ‘at’ size if the font is

being scaled).

4 identification of the character coding scheme; for example, are

ascii for standard ASCII, tex text for fonts like cmr and cmti,

tex math extension for cmex, graphic for special-purpose

non-alphabetic fonts unspecified for the default case when

there is no information? Actually T^X ignores this information;

it is included in case other software might find it useful.

5 the name of the font family (for example, cmr or concrete).

Again, TgX ignores this.

6 an identification of the font within its family (family is used

here in the wider typographic sense). Ignored by T|^X.

Font dimensions

The font dimensions which were explored earlier in this chapter

are part of the tfm files. The first seven of the FONTDIMEN proper¬

ties correspond exactly to the first seven \fontdimens which we

have already met. There are up to 22 font dimensions, but those

numbered from eight to 22 are not used in text. To reiterate, the

More detailed fonts 305

first seven in the tfm nomenclature are:

SLANT: the amount of italic slant, which is also used to help posi¬

tion accents.

SPACE: the normal spacing between words in text.

STRETCH: the amount of glue stretching between words.

SHRINK: the amount of glue shrinking between words.

XHEIGHT: the z-height is the height of lower-case characters with¬

out descenders, or, put another way, the height of letters for

which accents do not have to be raised or lowered.

QUAD: the size of one em in the font (or one quad).

EXTRASPACE: the amount added to SPACE after a full stop at the

end of a sentence.
When the character coding scheme is tex mathsy the font has

fifteen additional parameters. When the character coding scheme

is tex mathex the font is supposed to have six additional param¬

eters. Curiously, there is no reason why you should not store

numerical information in these ‘unused’ locations and retrieve

them for some very specialized application, (for example, see

Hoenig, 1991).

Ligature information

The LIGTABLE contains instructions in a simple programming lan¬

guage which explains what to do for special letter pairs. The two

key instructions are LIG and KRN. It should not be difficult to guess

that LIG is a command to indicate how to ligature pairs of charac¬

ters. For example, in many fonts, an T followed by an T would be

replaced by ‘ff’. If this new character was itself followed by an ‘i’ it

could be replaced by ‘ffi’. This is controlled through this part of the

property list. The KRN allows us to kern pairs of characters. This

implies that kerning in T^X will only ever be on the basis of pairs

of characters. The LIGTABLE is terminated by a STOP statement.

Character

The value is an integer followed by a list of properties. The inte¬

ger represents the number of a character present in the font. The

elements of the property list may be:

CHARWD: the character’s width in design-size units.

CHARHT: the character’s height in design-size units.

VCHARDP: the character’s depth in design-size units.

CHARIC: the character’s italic correction in design-size units.

306 A plain TpjK primer

NEXTLARGER: specifies the character that follows the present one

in a list of characters.
VARCHAR: specifies an extensible character: the elements of this

property list are top, bot, mid, or rep, indicating whether the

character code is used to make up the top, bottom, middle, or

replicated piece of an extensible character.

Extension

Extensible characters are assembled through a recipe which uses

the character codes of individual pieces to build up a large symbol.

Numbers

Values in a property list can be expressed in several ways:

R is used to express a real number;

D is used for a decimal integer;

0 is an octal integer;

H is a hexadecimal integer;

C is used for an ASCII character, provided it is a standard ‘visible’
character, except a parenthesis.

There is another code, ‘a Xerox face code’, which probably has

only historical interest.

As examples, a check sum might be expressed as an octal value:

(CHECKSUM 0 11374260171)

while many other values might be real numbers:

(DESIGNSIZE R 10.0)

This last example could be expressed as D 10 or 0 12 or even

H A. The character notation is often used in the ligature tables.

For example,
(LABEL C v)

(KRN C a R -0.055555)

specifies that firstly we are dealing with the character V, and

that when this letter is followed by an ‘a’, it will be kerned by

—0.55555pt (the fundamental unit revealed above). When it is

not possible to use C, it is possible to specify characters in one of

the other ways. For example,

(LIG C i 0 14)

indicates that when this character ‘i’ is ligatured with another (in

this case, an ‘f’), it is replaced by a new character with the octal

value of 14. An inspection of the font table for Computer Modern

shows that this is the ‘fi’ ligature (as you would expect).

More detailed fonts 307

Property list description of font metrics

A property list file is a list of entries of the form

(propertyname value)

where the ‘property name’ is one of a limited set of names, and

the value may itself be a property list. It is easier to look at an

example. Figure 19.2 contains a fragment of the property list from

Computer Modern Roman at 10 point. This example says that the

font whose metric information is being described belongs to the

CMR family; and codingscheme states that the characters appear

in the TEX text code positions. The designsize is 10 points (the

R states that this is expressed as a real number); all other sizes in

this property list are given in units such that the units are multi¬

ples of this design size. The font is not slanted (a slant would have

some effect on the position of accents). The normal space between

words is 3.33334 pt (in this case one-third of the 10 pt design size),

with glue that shrinks by one-third of this or stretches by one-

half. In other words, if we take the shrink (and extra space) as

2 units, all the other horizontal dimensions are integral values -

for example, the ratios of shrink:stretch:space:quad are 2:3:6:18.

This last value, 18, is a clue. The original Monotype system had

its fonts built on a 9 unit grid (and later, an 18 unit grid). The

letters for which accents do not need to be raised or lowered are

4.3 pt high, and one em is a fraction of a whisker over 10 pt.

The example ligature table specifies that the letter T followed

by ‘i’ is changed to code octal 14, while ‘f ’ followed by ‘f’ is changed

to octal 13, and so on. Further, when ‘f’ is followed by the code 41

(an exclamation mark), or 51 (a right parenthesis), an additional

0.77779 pt of space should be inserted after the T. Note that this

is where the notion of an 18 unit matrix for Computer Modern falls

down, but kerning values are generally quite small, and a restric¬

tion to a minimum of one-eighteenth of 10 pt would be unrealistic.

Character T itself is 3.05557pt wide and 6.94445 pt tall. Its

italic correction is 0.77779 pt. Again, the widths are not con¬

strained to match the traditional Monotype structure.

Beyond Computer Modern

It is not particularly difficult to use fonts other than Computer

Modern with Tf^X. As we have commented earlier, all that T)eX

requires are the tfm files to be available. To illustrate this, let’s

take the relatively easy case of ‘ordinary’ text fonts. Let us assume

308 A plain TpK primer

that we have a font family ‘Aldine’. How do we set it up for use

with TgX?
\font\tenrm=Aldine at lOpt la ‘roman’

\font\tenit=AldineI at lOpt 7,an ‘italic’

\font\tenbf=AldineB at lOpt la ‘bold’

In fact we could simply ensure that this was read in before the text

was typeset (remembering to issue the command \rm, or T^X will

start off in CM Roman). We would then have available the basic

\rm, \it, and \bf fonts. For most text that will probably be quite

satisfactory. If we wanted to become more sophisticated, we could

also substitute various other fonts for others of Computer Mod¬

ern. It is unlikely that this Aldine will have a Sans Serif (the first

Sans Serifs appeared about 1816, while the Aldine might go back

to 1499). But essentially there is no real problem here. If we want

to try to incorporate mathematics, there are problems. Assuming

that all the characters are available, we also need to ensure that

all the \f ontdimen values that we need are available. In maths we

need an extra 12 \fontdimen values. The \fontdimens needed

for text are not too difficult to determine, and will generally be

available in some form. Knowing what we do about property lists,

we can always create tfms by hand, if necessary. Finding, or even

estimating, the additional dimensions which are required in maths

is by no means straightforward. Often the information is propri¬

etary, but over the last few years font suppliers have become rather

more relaxed in releasing the details.

Extending Computer Modern

There are already some extensions to Computer Modern with

which you may already be familiar. The IAT^X fonts have already

been introduced. In order to use them in plain, you have to load

them yourself. Their use is rather specialized, but for reference

sake, they are listed in Figure 19.3. Similarly, there are extra sym¬

bols available for use with MatS-T^X. These extra symbols seem

quite esoteric to me, but may be needed, and can also be used

within plain. Both these sets of fonts are designed to be used

alongside Computer Modern. There are two main categories of

AMS fonts: there are the ‘normal’ extra symbols in the msam and

msbm fonts, and the extra alphabets, which are termed the ‘Euler’

fonts, and which include a Fraktur. Fraktur is a Gothic typeface,

similar in style to TgX’s 5R and S. In addition the Euler family has

a script and a cursive font. They are all available in a bold and a

More detailed fonts 309

(FAMILY CMR)

(CODINGSCHEME TEX TEXT)

(DESIGNSIZE R 10.0)

(COMMENT DESIGNSIZE IS IN POINTS)

(COMMENT OTHER SIZES ARE MULTIPLES OF DESIGNSIZE)

(CHECKSUM 0 11374260171)

(FONTDIMEN

(SLANT R 0.0)

(SPACE R 0.333334)

(STRETCH R 0.166667)

(SHRINK R 0.111112)

(XHEIGHT R 0.430555)

(QUAD R 1.000003)

(EXTRASPACE R 0.111112)

)
(LIGTABLE

(LABEL C f)

(LIG C i 0 14)

(LIG C f 0 13)

(KRN 0 41 R 0.077779)

(KRN 0 51 R 0.077779)

(STOP)

(CHARACTER C f

(CHARWD R 0.305557)

(CHARHT R 0.694445)

(CHARIC R 0.077779)

)

Figure 19.2

Fragments of

a specimen

property list

medium weight. There are also the ‘blackboard bold’ fonts in msbm.

Blackboard bold has always seemed a strange font to me. Approx¬

imately, its history is this: in order to indicate a bold font when

writing an expression on a blackboard, certain conventions arose,

basically writing certain strokes as double strokes. This is only an

expedient since a true bold font is difficult to write. In a printed

formula, we would expect a true bold font to be used. But true

to the unwritten code of mathematicians, there are never enough

symbols available, and they began to demand a typographic ver¬

sion so that they can use both true bold and this other mani¬

festation. The analogy in conventional typewriting is underlining,

which is used to indicate stress, and usually translates into italics.

There are some pitfalls. The first pitfall may be in the names

of the IAT^X fonts. They ought all to begin with the letter T.

310 A plain T^X primer

Font name Sizes

lasy 5, 6,

lasyb 10

line 10

Figure 19.3 linew 10

The IATeX lcircle 10

fonts lcirclew 10

When they were first released, they were named more naturally.

For example, IcirclelO was originally circlelO. It is possible

that these conventions are still adopted by the implementation

you use. Should T^X come back to you with the message
! Font \rm=Aldine at 10.Opt not loadable:

Metric (TFM) file not found,

it will mean either that T^X is unable- to locate the appropriate

font, which may be because you mistyped the name of the font, or

that it is one of those which has undergone this change in name.

The addition of the T threw up at least one rather distressing

problem. The font circlew (wide circle) is available at 10 points,

and the logical name is therefore IcirclewlO. This leads to a

name of nine characters. In order to reduce it back to the ‘normal’

maximum of eight characters the trailing zero may be dropped,

giving lcirclewl, which is rather inconsistent with any other font

name.
There may also be a pitfall with the names of the AMS fonts.

There are essentially two versions of MAd<S-TECX; the more recent
version has had new fonts designed for it, with correspondingly

different names. The old style names were msxm and msym to which

the fonts sizes 5-10 were appended. Why the difference? The old

fonts were designed with the previous version of METRFONT,

and had been released for only a limited range of resolutions

(and for a particular type of laser printer). The second round of

fonts, designed with the current METRFONT, was released with

its METRFONT description files, making it possible for anyone

with access to METRFONT to generate their own fonts, suitable

for whatever output devices they might have. This makes the new

descriptions immeasurably more useful. But equally, your imple¬

mentation may have the old versions. In general this will not worry

you if you wish to use the symbols. If you have access to the fonts,

you will have access to a file mssymb.tex (the ‘old’ MA/fiS-T^X),

which references the fonts and sets up the names which will be

used too.

More detailed fonts 311

The remaining pitfall is that you might just run out of font

memory. T[^X sets aside a certain amount of its memory for load¬

ing fonts. The \preloaded fonts take up some of this memory,

and loading lots of others may mean that that area of memory is

exhausted. What can we do then? Well, the problem is not quite

as serious as it may at first sound. All that is required is to create

a new format, or fmt file. First locate plain.tex and edit out the

fonts which you think you are never likely to use. Many of the

\preloaded fonts are likely to fall into this category. It is most

unlikely that you will want all 75 fonts in a single document. Next

you have to find a special version of T^jX called INITEX. This

is a version of Tj^X which has some interesting properties, the

major one being its ability to create format files through the use

of a new command, \dump. This particular command may only be

used in INITEX. The edited version of plain ought to be renamed

if you do more than merely eliminate preloaded fonts. Knuth says

‘files like plain.tex should not be changed in any way, except

with respect to preloaded fonts, unless the changes are authorized

by (their) author’. Run your new version of plain.tex through

INITEX. It will respond with a few messages, and you may note

that it also reads hyphen.tex, a file which contains information on

hyphenation. Should you wish to create a version of Tj^X for use

with another language, you could use a hyphenation file appro¬

priate for that language, and create a corresponding format file.

But whatever you do, remember to type \dump at the end of the

file. INITEX will then create a file with the file name extension

fmt.

The usual way to make I^jX use this new format file (let’s call

it fancy.tex) is to write

tex fefancy

although most operating systems will have a way of creating

a more elegant way of incorporating the alternate format file.

Information on this should be available with your implementation.
=>Exercise 19.4: It is straightforward to create new format files.
Locate your plain.tex, eliminate the \preloaded fonts, and create a
new format. Using \tracingstats=l, find out how much font memory is

saved by this. <=
One last group of fonts is normally available, the logo fonts.

These are the fonts which provide the characters necessary to

write METAFONT. They are rather basic since they contain only

seven characters. They are available in three basic styles - upright,

slanted and bold, respectively logo, logosl, and logobf. All three

312 A plain TppC primer

are available at 10 point, but only logo is available also at 8 and

9 point.
=>■ Exercise 19.5: How would you create a command for the METR-

FONT logo? <=

20 Making pages

Although we have looked at some aspects of building pages, we
have not tackled this in a systematic way. In this chapter we will
look at the default arrangements that T^X has for page building,
and the ways this may be modified for more specialist require¬
ments. In particular, we shall examine some of the techniques
which may be employed in order to achieve double-column output.
This seems a perennial problem, not least since the most common
size of paper available, generally of the order of just over 8 inches,
or about 750 points, requires some alternative to the default strat¬
egy when faced with 10 point fonts.

How does plain tackle output? In some ways, this is not the
best place to start. As we have noted before, the plain commands
represent a working model which includes many embellishments
which take it beyond a pedagogic level. But in any case, output
requires attention to sufficient details that a ‘simple’ version is
illusory anyway - at least a simple version which does anything
at all interesting. It is still worthwhile trying to build up to a
version of the plain output routine, but some of its details will
be deferred, omitted, or simplified.

There is an underlying conceptual consideration. How do you
use the output routine? The answer is that you do not. Although
there is a command called \output, you will never invoke it in
any of the commands you write, nor will you wish to include that
command in any of your own. If you do not get to use it, how
does it get used? As TgX processes your text and handles para¬
graphs it is contributing to a structure known as the ‘main vertical
list’. At some point IjgX will hand over that list to the output rou¬
tine and let it arrange the output. Arranging the output can mean
things like adding headlines and footlines, including the footnotes,
and perhaps adding any ‘inserts’ (like \topinsert and \midin-
sert, Chapter 12); what it almost certainly means is having T^X
write out (or ship out) the page to the dvi file. This simply re¬
emphasizes the fact that T£X does not process the text (in the

314 A plain TpjK primer

sense of sending it out to ‘output’) paragraph by paragraph, or

line by line, or even character by character, but page by page.

Given our short descriptions of how paragraphs are handled, it

should also be obvious that the page boundary is influenced by

the paragraph handling. Until the structure of the paragraph is

‘decided’, the structure of the page cannot be determined fully.

There is therefore some interaction between the two processes. We

may therefore be well into the succeeding page when the \out-

put routine is exercised. This feature is sometimes referred to as

‘asynchronous’ output.

The very simplest possible output routine is

\output={}

which appears to do very little, and is actually equivalent to

\output={\shipout\box255}

This should illustrate a number of points. Firstly, the \output

routine is actually a token list, that \shipout may be inferred to

be the ‘active’ component, the command which actually ensures

that the page is sent off to the dvi file, and that \box255 is where

the page of text resides. Since the page is stored in a box, we

can treat it just like any other box (it is a vertical box, as you

will probably have realized). If we wish to add extra things, like

headlines and footlines, or footnotes, keep incrementing the page

number, and so on, we have to add these features to the \output

routine.

A page is just a box

If the ‘page’ is held in a box, it can be manipulated just like

any other box. For example, it is fairly straightforward to employ

the ‘boxing’ command which we have already introduced (see

page 156):

\output={\shipout\Boxit{\hsize}{\box255»

and each page will be surrounded by rules.

=>■Exercise 20.1: Create an output routine which places the text

within a pair of boxes. This is just a simple extension, but begins to

build up some confidence in the ease with which output can be handled.

In attempting these exercises, it is quite useful to decrease the \hsize

and \vsize to something manageable, especially so that we ensure that
we create a few pages. 4=

In passing, note that I tend to call it an output ‘routine’, rather

than an output command. This is, I suspect, partly out of respect

for the complexity that output routines appear to contain. And

Making pages 315

also perhaps the fact that they are not used as most other com¬

mands in Tf^X. Nevertheless, there are other complex commands

which could be constructed which also might qualify for a term like

‘routine’ rather than command. But the nomenclature is largely

irrelevant. The structure and components of \output differ in no

essential ways from any other T^X command.

Breaking boxes

If it is straightforward to take the box and add something to it, is

it also possible to take the box apart? We already have a command

\unvbox, which will allow us to take a box apart. There is another

command which can be useful in this context: \vsplit. This is

actually a sort of boxing command. It allows us to ‘split’ a box into

two elements. It provides a strategy for building double-column

pages. We could take \box255, split it into two \vboxes, and then

place the reassembled \vboxes side by side. To split we have to

say something like

\setbox254\vsplit255 to 0.5\vsize

The \box254 would now contain the ‘top’ 0.5\vsize of \box255.

The splitting must be a whole number of lines: \box254 may there¬

fore not contain quite half of \box255. We now have two vertical

boxes whose height is equivalent to half the original \vsize (or,

in the case of \box254, perhaps slightly less). The total vertical

extent might be a bit different, when we consider the depth as

well.
=>Exercise 20.2: Using the \showthe mechanism, check the vertical

extent of \box255 before and after it has been \vsplit into \box254. 4=

We may have to ensure that half the \vsize is a sensible value:

as noted above, T^X has to split on a whole number of lines. Ideally

we want each box to contain the same number of lines, and even

more ideally, we wish that the lines in the left-hand box line up

with those in the right-hand box. I remain unconvinced that this

last requirement is fully valid: we normally have a tiny amount of

glue between paragraphs, and as a result it is quite feasible that

the horizontal alignment will not be perfect. In order to ensure

that the alignments are ‘correct’ we really ought to ensure that

the \parskip is zero and has no glue.

The more acute problem is that the split may lead to a different

number of lines in each column. This is a necessary consequence

of trying to do something unreasonable. Given that we are trying

to decant a fixed number of lines - determined by the \vsize

316 A plain TpjX primer

- which may be an odd number, into two boxes, it should come

as no surprise that naive use of \vsplit will not always work

as anticipated. We can take precautions by choosing a value of

\vsize which is likely to encourage an even number of lines. In

other words, a value like \baselineskipx2n, when we expect to

end up with n lines in each column. Of course, even this precaution

will not ensure success. If we have display maths, there are likely

to be ‘blocks’ which are essentially indivisible; if we have removed

the flexibility of the \parskip, there may still be problems; and if

there are section headings or subsections, which do not adhere to

the same sort of dimensions as \baselineskip, it may be awkward

to balance columns properly.

=$>Exercise 20.3: Try to do something with \box255 so that you split

it into two and present a double-columned page. In order to do this, you

need to place the boxes side by side: for example,
\output={\setbox254\vsplit255 toO.5\vsize

\shipout\hbox{\box254\box255}}

is a rudimentary though rather crude attempt. The \shipout ships out a

box. We therefore have to ensure that the two boxes are placed in a box.

Why an \hbox? 4=

Since the \box255 (and here, \box254) are \vboxes, it is the

baselines of the bottom line which are used as the reference point.

That may very well mean that the top lines do not align. This

tends to be far more noticeable than any other mis-alignment. If

we were to unbox these vertical boxes and then reassemble them

into \vtops, we could guarantee that the top baselines were where

we want them:

\output={\setbox254\vsplit255 toO.5\vsize

\shipout\hbox{\vtop{\unvbox254}\quad

\vtop{\unvbox255}}}

This looks rather cumbersome, but it is a fairly straightforward

extension. And after all, it will be hidden away in the output

routine. You will probably be the only person to be embarrassed

by it. Note the addition of a \quad to separate the two boxes -

this ‘gutter’ ought to have its own value.

=>■Exercise 20.4: It is useful to separate columns by a vertical rule

rather than an ‘empty’ gutter. How would this be done? <t=

=>Exercise 20.5: If we were doing this seriously, we would want to

specify the eventual horizontal and vertical extent of the text, rather

than making the \vsize twice the value we really want. Similarly, we

would wish to specify the gutter. Write the commands you would need in

order to make the specification more intuitive to someone else. <t=

Making pages 317

Extras

So far, we have ignored the extras - the page ‘furniture’ that we

normally expect to see. We need headlines and footlines: at the

very least we expect to see page numbers. You may have noted

when T^X was grinding away with these last few \output routines

that the page number reported by T^X remained at 1 (or [1]).

What T^X is reporting is the value of \pageno, and therefore

\countO. Unless we increase this value, it will remain 1.

In order to add the information, we do not have to take \box255

apart. The extra items need not be added to \box255 itself. Just

as easily (more easily) we could simply \shipout the page ‘furni¬

ture’ and the \box255: very roughly

\shipout{head2ine\box255 footline}

gives the sort of structure that can be adopted. In plain, the

main structure is fundamentally

\shipout{\vbox{y,

\makeheadline\box255\makefootline}\advancepageno}

where \makeheadline and \makef ootline are further commands

which create vertical boxes which contain (among other things),

the \headline and \footline token strings which were briefly

discussed on page 205. The command \advancepageno increments

the page number. Although

\advance\pageno by 1

is a suitable ploy, \advancepageno is more convenient, since it can

account for the case for both Arabic and Roman page numbers (see

page 204). There is another flaw with the simple \advance shown

here. It is not immediately apparent, but \output inserts an extra

pair of braces around the token string. Thus ‘really’ it is closer to

\output={{\box255}}

There are quite sound reasons for this localization, since it helps

to ensure that any purely local changes in the manipulation of the

output remain so, and are not propagated into the text. Imagine

that there was a font change in the footline. We would not wish

it to affect the main bulk of the text. The \output routine is

invoked at some point in the ‘next’ page: if the \headline and

\f ootline commands are not localised, any font or other changes

could easily end up influencing the ‘next’ page. It is also important

to realize that local changes within that ‘next’ page can influence

the \output routine. Imagine that the \footline reads

\footline{\hss\sl\folio\hss>

In the event that we had a command which altered the meaning

318 A plain TpjX primer

of \sl (for example, \let\sl\sevenit, where \sevenit has been

defined to be a 7 point italic font), the footline could end up with

a 7 point italic page number instead of the 10 point slanted we

think we asked for. If you want 10 point slanted (as the next chap¬

ter will show, the appropriate command is \tensl, not \sl), ask

for it. Whatever else you do, ensure that you select a font for the

headline or footline. Assuming that \rm is current at \shipout is

asking for trouble. A consequence of the grouping, or localization,

is that simple advancing of the page number will also be local. We

should therefore be wary of any manipulations within the \output

routine which are intended to be global. They must be preceded

by the command \global:

\global\advance\pageno by 1

Again the default \advancepageno has taken care of this.

Note that this is described as the fundamental structure: in truth

there are some other commands in the \output routine as well,

but largely these are commands which are relevant only when we

have insertions (like \footnote, \topinsert, and \midinsert).

These will be tackled later in this chapter.

For the moment, let us construct our own headline and footline:

for example,

\output={\shipout\vbox{°/0

\rightline{Making pages}\medskip

\box255\medskip

\centerline{\folio}}\advancepageno}

Although this is not the way that plain handles the headline and

footline, it is a possible strategy.

=>Exercise 20.6: Modify this last output routine so that it employs

the normal \headline and \f ootline token strings. Make sure you select
an appropriate font. 4=

The way that plain handles the footline is not completely intui¬

tive, but some of the elements are rather inevitable:

\def \makef ootline{°/0

\baselineskip24pt\line{\the\footline}}

The \baselineskip may be unexpected, but it merely ensures

that the baseline of the footline is suitably distanced from the

‘bottom’ of the text on the page. It also reinforces the need to

have the implicit braces around the output routine, else that new

\baselineskip figure would be used in the text. Naturally, it

would have been possible also to use \vskip (or a \kern) to

position the footline. The headline is more involved:

Making pages 319

\def\makeheadline{\vbox to Opt

{\vskip -22.5pt\line{\vbox to 8.5pt{}\the\headline}

\vss>\nointerlineskip}

Once seen, it does make sense. The \vbox to Opt makes the

headline a box of no depth. It therefore does not affect the posi¬

tion of the bulk of the text on the page. The footline did not

have quite the same problem. Where do these values of —22.5pt

and 8.5 pt come from? Like the \baselineskip of 24 pt, they are

related to the default font size of 10 pt. In general terms, the sizes

of text fonts we normally use imply that these values are rea¬

sonably acceptable over the expected range. Recall first that the

height and depth of a strut are 8.5 pt and 3.5 pt. If we subtract

8.5 pt from 22.5 pt, we find a value of 14 pt. A distance we have

not introduced is the \topskip. This is the distance between the

top of the text area and the baseline of the first line. By default,

\topskip is 10 pt. Adding the \topskip value to 14 pt gives us

the same value as that used in the \baselineskip of the \foot-

line. So at last we begin to see a symmetry between the foot- and

headlines. The distance between the baseline of the headline and

the first line of text is the same as the \baselineskip set for the

footline. Lastly, the \vbox to 8.5pt{> ensures that even if the

\headline is null, the positioning is maintained consistently. The

inclusion of the \no interline skip ensures that no extra space is

inserted between the headline and the text area.

=> Exercise 20.7: With this knowledge it should be possible to con¬

struct appropriate \makeheadline and \makefootline commands for

pages which are set in 5 pt fonts on 6 pt baselines. Alternatively, a large-

print, book, for those with poor vision, might have 14 pt fonts on 16.5 or

17 pt baselines. How would the commands change, while maintaining the

same sorts of proportions as the default styles? <=

=>Exercise 20.8: Sometimes the headline or footline is made more

complex by including two lines of information. The most common exam¬

ple of this is when the furniture is separated from the body of the text

by a line, or the whole information may be placed in rules: for example

Making Pages 319

or

Making Pages_M9

Emulate these two alternatives, and modify them to allow for larger (and

probably bolder) fonts in this information. <=

320 A plain TpjK primer

Many boxes

This introduction of the furniture and some more details of the

way in which \shipout works lays the groundwork to extending

the techniques by which we can handle multiple columns. There

is no real problem in placing ‘virtual’ pages (as understood by

\box255) side by side on the same physical page. For example,

each odd-numbered page could be decanted into another box but

not physically output, and then when the even-numbered page

came to be created, both boxes could be output. In this case,

something like

\countl=l

\output{\ifodd\countl\global\setbox254\box255

\else\shipout\hbox{\box254\quad\box255}

\advancepageno\fi

\global\advance\countl by 1}

could be employed. Taking this apart, rather than employ the page

counter as a way of determining whether we are on the even or

odd ‘page’, a column counter has been used instead. This makes

discussion a little more straightforward. Using \countl has an

interesting side effect, as you will find when you come to try this

out. T^X will report not only the value of the page number (stored

in \countO), but also the value of \countl. This therefore provides

a handy confirmation that things are going as planned, since the

reported values of \countl should all be even. The log file should

be reporting a sequence like

[1.2] [2.4] [3.6]

The first digit of each pair is \countO. The second is \countl. If

any other of the counters up to \countlO are being used, they will

also be reported in this way.

The essence is the

\global\setbox254\box255

which stores the odd columns in another box. The \if odd struc¬

ture restricts the \shipout to occur when we have the even

columns. Note that the page number advance is included in the

same group as the \shipout, but that the column counter is incre¬

mented with each invocation of the \output routine. It should be

apparent that this is necessary. Lastly, the use of \global is a nec¬

essary consequence of the implicit grouping of an output routine.

Exercise 20.9: Take either of the two approaches to double-columning

and add the page furniture. This will likely require some rewriting of the

way the headlines and footlines are controlled. 4=

Making pages 321

Both of these approaches may be generalized to multiple columns,

where multiple implies a value greater than or equal to two. In

the \vsplit case, the total \box255 would be split n — 1 times to

form \vboxes, each of height \vsize/n, and then manipulated.

In the second approach, the virtual pages are simply stored until

required. For example, for three columns

\countl=l

\output{\ifcase\countl

\or\global\setbox253\box255

\or\global\setbox254\box255

\or\shipout\hbox{\box253\quad\box254\quad\box255}

\global\countl=0 \advancepageno\fi

\global\advance\countl by 1 }

Modifying that to four or more columns is trivial.

These are not general solutions, in the sense that they are not

easily modified to a situation where it would be possible to issue

a command like \setcolumns=5 and the column structure would

change. That is outside the scope of a primer, although there are

sufficient clues around that you might be able to do it. But it

seems more of an intellectual exercise than something with prac¬

tical value. A report or book set in multiple columns rarely needs

to change that structure. If it does, it is often sufficient to pro¬

vide a subsequent \output routine which replaces the ‘normal’

one. Undoubtedly there are legitimate examples which can be put

forward - the one which springs to mind is an index, where the

space saving and ease of use of double or triple-columning can be

very significant. Normally an index appears at the end of the text,

where introducing a new \output routine would have no knock-on

effects.

Since \topskip has been introduced, its relationship to \vsplit

should be discussed. A variant of \topskip is \splittopskip.

Just as \topskip standardizes the position of the baseline of the

first line of text on a page, \splittopskip performs the same task

for the box left when some material has been \vsplit from it. By

default, both of these skips have the same value, 10 pt.

Balance

One of the things which has been deliberately omitted in this

discussion of multiple columning is balancing the columns. Should

the last page have its columns balanced so that they are all the

same length? If the ‘virtual’ page approach is used, this is probably

322 A plain primer

impossible (or, at least, very difficult), but if the \vsplit approach

is used it can be done fairly readily. Instead of splitting to some

proportion of the \vsize, it is possible to split to a proportion

of the total accumulated height of the box which goes to making

up the page, recalling that any page can be treated as a box, and

therefore its dimensions may be determined. Personally I do not

share the desire to balance columns like this. However, it does

open the way to finish off one section of multiple columning and

start another one or to mix single and double-columning.

=>Exercise 20.10: Manipulate the ‘last’ page to make the columns

balance. If there are unequal numbers of lines, the right-hand column is

normally the shorter. <=

If we return to the plain output routine, we will note that it

contains several levels: it is rather like a Russian doll. A simplified

version is:

\output={\plainoutput}

\def \plainoutput{\shipout\vbox{°/0

\makeheadline\pagebody\makefootline}

\advancepageno}

\def \pagebody-f\vbox to \vsize{\boxmaxdepth=\maxdepth

\pagecontents}}

\def\pagecontents{\unvbox255}

Most of this seems reasonable, although the depth of the ‘hiding’

may be surprising. Part of the reason lies in the material which

has been omitted. The setting of \boxmaxdepth to \maxdepth is to

ensure that the \vbox in \pagebody is constructed under the same

conditions as the \box255 which we are just about to \unvbox. If

this seems rather arbitrary, it is because we have not tackled the

building of \box255 in all the detail that we might have. The last

element here, \pagecontents, is amplified by taking into consid¬

eration the inserts which may have been accumulated.

T^X wraps up so many of the parts of the output routine in

definitions to make it easier to change component parts, without

having to tackle the whole output routine at once. This modulari¬

zation is quite useful in the case of involved commands. As we

have seen, it is not necessary to understand fully the routine in

order to change well-defined components.

Inserting more extras

It is appropriate to tackle inserts. By default, plain recognizes

four categories of inserts, the \topinsert, \midinsert, \page-

Making pages 323

insert, and \footnote. These have to be accounted for in any

well-tempered output routine.

The top insert material is stored in a vertical box named \top-

ins. To include the \topinserts, the structure of \pagecontents

has to include something like

\unvbox\topins\unvbox255

While is processing the text, it is dealing with a quantity

known as \pagegoal. This is the desired height of the page. It

normally starts out as equal to \vsize. An insert will reduce the

\pagegoal by its own vertical extent. Therefore the body of the

text will not take up the full page height. While \pagegoal is

modified by inserts, \pagetotal is the vertical height of the ‘main

vertical list’, where T^X is storing the lines of text. It is increased

every time a box or some glue is appended to the main vertical list.

Once \pagetotal exceeds \pagegoal, will know that output

is imminent. Output will not be invoked, however, until the end

of a paragraph is encountered (and one or two other cases, like

encountering an \halign or at the end of a display equation). In

the default output routine, the situation is a little more involved:

\ifvoid\topins\else\unvbox\topins\fi

We have not previously introduced \ifvoid, but in this context

it is easy to see that it is a way of testing to see whether a box

contains anything or not. It will come as no surprise that the

footnote insertion, held in a box \footins, is also tested to see if

it is void:

\ifvoid\footins\else

\vskip\skip\footins

\footnoterule

\unvbox\footins\fi

but this time some extra work is also done. The footnote rule is

added, after skipping down the page by \footins. Although not

explicitly expressed, in creating an insert (which is a box), a skip, a

counter, and a dimension are also created, all with the same name.

To use these implicit quantities, precede them with \skip, \count,

or \dimen. For example, in this context, the \skip\footins is a

skip quantity. By default it is a \bigskipamount or 12 pt. The T^X

output routine inserts this skip in any page which has at least one

insert of this class, as showfi above. A word of warning about

these quantities: they must be handled carefully. The dimension

is the maximum amount of either footnotes or other insertions on

a page: it turns out that I^X treats \topinsert, \midinsert,

and \pageinsert as if they were all varieties of \topinsert. By

324 A plain Tfj]X primer

default, plain allows the \topinsert to take up any amount of

the page, while the footnotes may only take up to 8 inches: when

you change \vsize, you really ought to change \dimen\footins

to be some other value. Recall that, by default, \vsize is set to

be 8.9 inches.
=»Exercise 20.11: A more flexible way to determine \dimen\f ootins

would be to make it some function of the vertical extent of the page.

Attempt to do so. <=

Similarly, the \count quantity has a very special meaning. It is

described as a ‘magnification’ factor. That should be distinguished

from \magnif ication, since what this magnification is doing is

indicating the contribution the vertical extent of the insert makes

to the overall page. In essence this is a way of letting (say) a

footnote be handled in two or three (or even more) columns. If

the \footnote command is altered to permit double-columning,

the appropriate value of \count\footins is 500. By default the

value of both \count\f ootins and \count\topinsert is 1000.

Since the default output uses \unvbox to decant the contents

of the various boxes, any glue which is ‘contained’ can be used in

rebuilding this page as a complete unit. We are not constrained

by the various elements. Clearly this has some advantage. But if

it was not your wish, you should be able to see how to control it

more precisely.

There is one more thing added to the page. This accounts for

the situation where \raggedbottom has been set. In other words,

where we do not insist that the bottom lines of each page occur

at the same position (this is one way to avoid the message about

underfull \vbox). In some ways this is about the most complex

part of this section:

\ifr@ggedbottom \kern-\dimen0 \vfil \fi

The \dimenO has not been introduced before. Immediately before

unboxing \box255, T^X records the depth of the box (prob¬

ably a rather small value). All plain is really doing then is

‘removing’ this depth and filling up the bottom of the page with

glue, eliminating any glue associated with \topskip. The \top-

skip is the glue inserted to keep the tops of pages even. The

\ifr@aggedbottom should not be intimidating. It is possible to

create your own \if commands in T^]X, a topic which will be

examined later. The @ merely reveals that this is one of the com¬

mands defined in plain for ‘private’ use.

You may be wondering where the \midinsert belongs in all

of this. In fact, the inserts, with the exception of the footline,

Making pages 325

share a very similar structure. The key manipulations are in the

way that the top and mid inserts handle the \pagegoal and the

\pagetotal. If the \midinsert cannot be included on the page,

it becomes a \topinsert on the following one - or rather, joins

any other top inserts. The question of inserts is perhaps one of

TgX’s weakest areas. It can be frustratingly difficult to antici¬

pate just where an insertion will be located. If there are a few

insertions, well dispersed through the text, then there are gen¬

erally few problems. Naturally when you need three or four in

a short space, it is difficult for any automated system to come

up with an aesthetic solution - especially when the aesthetics are

poorly understood. We can all recognize when things are in the

wrong place; working out the rules which ensure that they may

be well placed is considerably more difficult. iATgX recognizes

the inadequacy of the default plain insertions and replaces them

entirely to provide its own; but even then, it can provide layout

which is just as quirky and unstable. There are many apocryphal

tales of satisfactory page layout which suddenly goes awry when

a typographic error is corrected: the tiny change in line breaking

may modify the page breaking, which in turn affects the loca¬

tion of the inserts. But it must be stressed that the commands

controlling the inserts are part of plain. There is nothing to

stop you from writing your own commands (except skill). Good

luck.

It is possible that the last inserts are not flushed out properly

if you end the text with a simple \end or \vfill\end. Since it

is more ‘normal’ to terminate with \bye, this is probably not a

frequently observed problem. Perhaps more acutely, it would be

possible, if a chapter ended with a \vf ill\eject, that inserts

which have not yet been used may end up at the beginning of the

next chapter. The key to the problem is to see how \bye manages

successfully. The definition of \bye is

\outer\def\bye{\par\vfill\superej ect\bye>

The new command here is \supereject. This is a command which

rather cleverly sets up a penalty value which is then tested in

plain’s own \output routine and goes on to determine whether

any insertions are being retained. It has the advantage of flushing

out all of T^X’s classes of inserts - \topinsert, \midinsert, and

\footline. Penalties will be considered in some more detail in

the next chapter.

326 A plain TpjK primer

Insert it yourself

TgX allows you to create new classes of inserts through the

\newinsert command. A class of insert which is often used is

one which collects indexed entries and writes them out in the

margin during the draft stages of a manuscript, switching then off

for the final version. A rudimentary version of such an insertion

could be

\newinsert\margins

\dimen\margins=\maxdimen

\count\marginsO

\skip\marginsOpt

\def \margin#l{\insert\margins-(7„

\vbox{\margindetail\strut#l\strut}}}

Note that we have to take account of the \dimen, \count, and

\skip quantities associated with \margins. The effect here is to

place no limits on the number or extent of marginal notes, and

adding no \skip when this insertion is placed on the page. The

\margindetail is a command which sets up a few of the other

details necessary to typeset the marginal insertions. For example:

\def\margindetail{\raggedright\emergencystretch5pt

\tolerancelOOO\hsizeO.2\hsize\noindent}

The \output routine will have to be enlarged in order to take care

of this new insertion. This time we will take the default plain

definition and modify it. First we can reveal what plain’s \page-

contents really looks like:

\def\pagecontents{\ifvoid\topins\else\unvbox\topins\fi
\dimen0=\dp255

\unvbox255

\ifvoid\footins\else

\vskip\skip\footins\footnoterule\unvbox\footins\fi

\ifr@ggedbottom\kern-\dimenO\vfill\fi>

One possible strategy for the location of the marginal insertion is

to place

\rlap{\kernl.05\hsize\vbox toOpt{\box\margins \vss»

before the \unvbox255. This will position the insertion at the

top right of the page. Alternatively, some vertical space could

be included before the \box\margins. A \kern could be appro¬

priate here. Note that \ifvoid is used to check whether there

really are any insertions. The insertions are placed in a box which

has no height. If we do not do this the placement will be very

unsatisfactory.

Making pages 327

=>Exercise 20.12: Since placement appears rather tricky it is perhaps

worth while to make some simple changes by setting the marginal inserts

(a) in a slightly different style, and (b) in a completely different posi¬

tion. Placing the insertion in a ‘balanced’ position with respect to the

body of the text provides an attractive alternative. How may these two

alternatives be implemented? . 4=

=> Exercise 20.13: The whole insertion strategy is more complicated

when we try to provide insertions with multiple column output. Do not

solve the problem, but see how the insertions work with the two types of

double-column output which we have already tried. 4=

Adjustment

One of the possible weaknesses of the marginal insertion shown

here is that the insertions are swept up into a single block which

will appear at a specific place on the page. Should we wish to

guarantee that the marginal note occurs close to the position in

the text where the note was placed, a different strategy has to be

employed. TjgX supports a command, \vadjust, which goes some

way to meeting this need. The material in a \vadjust is placed in

the internal vertical list. It is passed to the vertical list enclosing

the paragraph in which it occurs, so that it occurs immediately

after the line containing the position of the \vadjust. This can

mean that ensuring that the marginal material aligns precisely

with the baseline requires some further adjustment. A failing of

this sort of marginal note is that it is feasible to have several which

overlap. As usual, the underlying notion seems to be that you use

no feature to excess.

The use of \vadjust to append marginal notes is fraught with

problems: the following solution owes much to an example pro¬

vided by Knuth:

\def\strutdepth{\dp\strutbox}

\def\marginalnote#l{\strut\vadjust{\kern-\strutdepth

\vtop to\strutdepth{\baselineskip\strutdepth \vss

\hskipl .02\hsize{#l }\null}»

The major point of this is the very careful attention paid to the

depth of the box so that the nothing is added to the height of

the paragraph. The manipulation is very canny, and any slight

deviation can lead to disaster.
=>Exercise 20.14: This command \marginalnote puts a note in the

, right margin. Can you suggest how to put one in the left margin? <=

The \vadjust has some other uses. To guarantee that a page

break will occur at a given point you may \vadjust{\eject}.

328 A plain T^X primer

The page break will follow the line on which this command occurs

(even if it is in an absurd position).
=>■ Exercise 20.15: Can you mix marginal insertions created with

insertions with those created with \vadjust? <=

Breaking up

Some topics, although essential, have been treated in a rather dif¬

fuse manner. In particular the problem of line, paragraph, and

page breaking requires closer examination. It reveals some fasci¬

nating aspects of Tj^X.

In order to be able to tackle this, we need to have some knowl¬

edge about three kinds of costs associated with this activity. In

a nutshell, T^X seeks to minimize some function of the costs

incurred in dividing a paragraph into lines. The three costs are

termed badness, penalties, and merits (or demerits). Penalties

have at least been introduced in a rather loose and informal way.

The function of a penalty is to modify Tj^X’s ‘normal’ or default

behaviour. All of these behaviour characteristics can be modified

either globally or locally by either modifying global penalty val¬

ues, or by locally introducing specific penalties. Only penalties

may be specified or altered. The other costs are determined by

TgX itself. ‘Badness’ is associated with individual lines (or poten¬

tial lines) within a paragraph, while ‘merit’ is calculated over the

whole paragraph. TgX can report their values, but you have no

mechanism for altering them directly. The merit figure may be

altered indirectly through manipulation of \penalty.

Where exactly may Tf^X break lines? In normal test, there are

four places where TgX will break:

1 at the left edge of glue; in many cases this means after a word

or punctuation which is itself followed by a space (there are two

exceptions which need not concern us here);

2 at a kern followed by glue, but not simply after a kern, since a

kern is unbreakable;

3 at a penalty (penalties are examined in more detail later);

commands like \allowbreak are actually a way of inserting

a penalty;

4 at a discretionary break; in the majority of cases this means at

a discretionary hyphen, at a \- or a hyphenation point which

TgX determines.

330 A plain Tp]K primer

In very general terms these boil down to ‘between words and after

hyphens’.

The break has a penalty associated with it. In the first three

cases, between words, the penalty is zero. In the fourth case, at a

hyphen, there is a penalty invoked. If T^X inserts a hyphen itself,

the value of \hyphenpenalty is inserted; by default this is 50. If

the word is broken at an existing hyphen, \exhyphenpenalty is

invoked (‘explicit’ or ‘existing’ \hyphenpenalty). Again this has a

default value of 50. There could be a case made for altering these

values: for example, it can be distracting or ambiguous to allow

a line break at an explicit hyphen since there is no typographic

distinction between the expression of an explicit hyphen and one

inserted by T^X.

Hyphenation of words is fairly well understood at an intuitive

level, but maths may appear within a.paragraph, as text maths.

And it may be necessary to break an expression. There are two

relevant penalties and a command which may be useful. In general,

T^X prefers not to break up text maths. This is quite sensible,

since breaking maths at the right place is likely to be prone to

error. By default, breaking after a relation has a penalty value

of 500; it is controlled by \relpenalty: breaking after a binary

operator carries a slightly higher penalty of 700. It is influenced by

\binoppenalty. The command which may be used is analogous

to \-, the discretionary hyphenation command. The command *

is a discretionary multiplication symbol. It is therefore the binary

operator x. If this is included in a text maths expression, the x

will only appear if the expression is broken. The symbol appears

at the end of the line. Curiously, * may be used in text without

complaint. In display maths it has no meaning, since there is no

line breaking in display maths.

Although the last paragraph starts with the implication that

hyphenation may be ‘fairly well understood’, there is an important

peculiarity which very occasionally presents a problem: hyphena¬

tion of a word only takes place if the word is preceded by glue.

Why is there this restriction? Normally, such a word is the first on

a line: the probability of having to hyphenate the first word on a

line is usually very low. This is not infallible. Narrow columns in

technical texts may lead to a problem in this area. The command

to insert marginal notes in the previous chapter may also exhibit

this sort of problem, since very narrow ‘columns’ are being set.

Tables including paragraphs of information may also suffer. Solv¬

ing the ‘problem’ is not very elegant; all that is really practical is

Breaking up 331

to insert some glue, for example \hskipOpt. But since it is likely

that the problem is bound up in a command, these unpleasant

facts can usually be well hidden from the user of the command.

Equally, a word immediately followed by a rule will not be hyphen¬

ated. Again, the solution is to insert glue after the word.

=> Exercise 21.1: Return to the marginal insertion command in the

previous chapter and modify it to allow for hyphenation of the first and

last words of the material to be inserted. Any command which includes

a \strut should be modified to take this feature into account. <=

Should you ever have a need to switch off hyphenation, this

can be achieved, as shown in Chapter 17, by \hyphenchar. This

has to be specified for each font. On the other hand, suppressing

hyphenation on words beginning with an upper-case letter is not

font related: it is accomplished by \uchyph-l. By default this has

a positive value, and all words are hyphenated.

You may easily adjust the values of penalties, or even intro¬

duce some new penalties of your own. If, in the text, you include

\penalty50 you are charging a penalty of 50 ‘demerits’ to break

here; similarly \penalty-50 encourages TgX to break, since this

cost will be deducted from the overall figure (making it more

attractive).

This diversion into hyphens is slightly distracting: in establish¬

ing the line breaking, T^X performs a number of passes; on the first

pass, no attempt is made to hyphenate. Knuth reports that in the

vast majority of paragraphs hyphenation is not required; in this

case, T^jX does not proceed to the second pass, where hyphena¬

tion would be considered. This removes the need to identify the

hyphenation points, and helps reduce the overall time taken to

process the document. This is partly a function of line measure. If

the lines were narrow, it is almost certain that hyphenation would

be required, and it would be better, from the point of view of the

overall processing time, to omit this pass. This is possible.

Let us recap the calculation of badness introduced in Chapter 3.

There is glue between word boxes. The line has a fixed length - it

is a sort of ‘line box’. The words have fixed lengths; the lines have

fixed lengths; the only thing that can change is the space between

words. This is where the glue comes in. As Knuth points out, a

better metaphor would be a spring, but the notion of glue seems

to have stuck. The available stretch or shrink will depend on the

number of words in the line (which is why \tolerance should

be related to the measure). 1^)X will not allow the gaps between

words to be shrunk below the minimum value.

332 A plain TpX primer

If there are n words on a line, the badness value will depend on

whether Tl^X has to stretch or shrink the interword gaps. Firstly,

assume that TgX has to shrink, using some proportion of the glue

determined by \fontdimen4 or \spaceskip. Using the notation

x~ to indicate the total amount of shrink on the line, and f4

as the shrink component of the interword gap, the badness, b, is

calculated as:

On the other hand, when the glue on a line is to be stretched by

a total of x+, and the stretch component of the interword gap is

/5, then

If the badness is 12 or less, then the line is described as ‘decent’. If

it is greater than 12, then it is loose or tight, depending on whether

it has been stretched or shrunk. If it has been very stretched, where

the badness is over 100, it is described as very loose. There are

therefore four categories: tight, decent, loose, and very loose.

The \tolerance figure is a badness. If, for example, \tolerance

is 1000, then lines may have a badness up to this figure, but if this

is not possible, an overfull box will be set. On the first pass, TgX

will assess not the \tolerance figure, but a \pretolerance. The

default value of \pretolerance is 100. TgX therefore accepts a

paragraph if none of the lines have a badness up to this figure.

On the second pass, the \tolerance is used. This has a default

value of 200. In order to omit the first pass, set \pretolerance

to a negative value.

=> Exercise 21.2: Take a paragraph and change the defaults so that

hyphenation is inhibited. Make the measure narrow and reintroduce

hyphens. Try to eliminate overfull boxes. <=

=>Exercise 21.3: If there was no penalty at all for hyphenation, just

how many would TpX tend to introduce? 4=

These individual line badnesses are an intermediary step in

deciding which potential paragraph to accept. An acceptable para¬

graph combines the individual line badnesses together with any

appropriate penalties into an overall demerit figure. In broad

terms, the demerit is the sum of the badness squared and the

penalties squared. There will be a minimum demerit through the

\linepenalty, which has a default value of 10. In a sense this

penalty has the effect of making T^X work harder to achieve the

Breaking up 333

desired results. There is also a precondition: if the penalty asso¬

ciated with a breakpoint at the end of a line exceeds 10,000, or

if the badness is greater than the current \tolerance (or \pre-

tolerance), T^X would not have considered the line in the first

place. The formula that Tj^X uses in calculating the (de)merit is

almost

demerit = (linepenalty + line badness)2 + penalty2 x sgn(penalty)

where sgn(a:) is the ‘signum’ function, —1 when x is negative and

+ 1 when it is positive (just a ruse to make the equation a little

more straightforward - it allows negative and positive penalties

to be distinguished after being squared). The ‘real’ formula is

very slightly different, but this form does not obscure the essential

nature.

The nature of adjacent lines can influence the total demerit at

this point. l^jX attempts to ensure that any two adjacent lines are

of adjacent classes. For example, successive tight and decent lines

are acceptable, but if a tight line is next to a loose or very loose

line (or a decent line next to a very loose one), then T^X brings

in an extra demerit, \adjdemerits. T^X is attempting to make

lines look visually similar by means of this parameter. A loose line

next to a tight line is really noticeable.

One unfortunate consequence of l^jX’s line-breaking algorithm

was that it can concentrate all the badness on one single line. In

other words, rather than have several lines with (say) very loose

lines, it may have one with truly awful looseness. This defect has

been taken care of with 1)^X3, by using a new command termed

\emergencystretch. This is used on a third pass through the

paragraph. The \emergencystretch is invoked ‘pretending’ that

extra stretch equal to \emergencystretch is present on each line.

This scales down some of the badnesses and allows Tj^X to find an

‘optimum’ solution. This extra stretching is not actually there at

all. In essence it allows the badness to be distributed over more

lines, and makes it less noticeable. But always remember that

T^jX’s notion of badness is a numeric one: in general it will provide

a reasonably aesthetic solution. It is extremely doubtful that the

correlation between T^X’s badness and aesthetic quality is exact.

The default plain has no value set to \emergencystretch. A

likely value seems to be about 5pt.

As noted earlier, I£X accumulates demerits for hyphens: since

two (or more) consecutive hyphenated lines are thought to look

334 A plain TpjK primer

rather ugly, more demerits for adjacent hyphens are accumu¬

lated through \doublehyphendemerits, normally set to 10,000.

Nevertheless, with narrow measure you may still see two or more

hyphens together at the end of lines. Similarly, ending the second

last line with a hyphen does not look pretty, and would attract a

default penalty of 5000 through \f inalhyphendemerits.

There is yet another command which interacts with all of these.

Although seeks to minimize the number of lines in a para¬

graph, it is sometimes necessary to interfere and tighten or loosen

paragraphs just a little. The command is \looseness. This com¬

mand instructs TgX to try to make a paragraph longer, when it

is followed by a positive number, or shorter, if it is followed by a

negative one. Therefore \looseness-l instructs T^X to attempt

to shorten by one line. Whether or not T^X will succeed depends

on the structure of the paragraph - in .particular, its length. The

longer a paragraph, the more scope there is to lengthen or shorten

without the interword spacing beginning to become noticeably dif¬

ferent. It is often tempting to use \looseness-l as part of the

token string of an \everypar in order to shorten a document.

From time to time it is necessary to try to lengthen or shorten

a paragraph. Perhaps a paragraph has been rewritten but it is

essential that succeeding pages retain the same page breaks. There

are inelegant ways of doing this with forced page breaks (dis¬

cussed later), but the alternative is to use \looseness. Alter¬

natively, changing the \linepenalty from its default of 10 will

instruct T^X to try harder to create a paragraph with the mini¬

mum number of lines. It is more difficult to gauge the effect of

\linepenalty.

=> Exercise 21.4: Try comparing the effect of these two techniques for

shortening paragraphs. As suggested, a long (or a thin) paragraph will

tend to respond more obviously. <=

=$>Exercise 21.5: Examine the effect of altering the value of \loose-

ness on a paragraph of moderate length. Can you determine a difference

in the interword gap? 4=

If this all seems very involved, in truth it is all rather transpar¬

ent. You need never know what is going on in the background.

On the other hand, it can occasionally be useful to have some

inklings of what is going on, especially when you have to deal

with an apparently aberrant situation. Perhaps the more impor¬

tant features are that there are a number of hard-wired values,

ones that you cannot modify: the cubic power in the evaluation of

badness; the badness breakpoints at 12 and 100; the power of 2 in

Breaking up 335

the evaluation of demerits. This at least indicates that any addi¬

tional demerit values will generally have large values if they are to

have an effect, while penalties may generally be of a lower mag¬

nitude, since they are likely to be squared when they are used in

the value of the demerit.

The interaction between all these demerits, penalties, and tol¬

erances is not easy to fathom. We seem to be operating in a

multidimensional (hyper-)space, where the axes are anything but

orthogonal. If you really want to know the gory details, use

\tracingparagraphs=l. But be prepared for an awful lot of out¬

put, and a fair amount of thinking. It is possible to follow TgK’s

logic in line breaking through the output from this tracing com¬

mand. Examples may be found in Knuth and Plass (1981) and

Briiggeman-Klein (1989).

=> Exercise 21.6: It is worth while running a paragraph or two through

with alterations made to the default tolerance, penalty, and demerit val¬

ues. If you make the measure tolerably narrow things do start to happen.

Very wide page sizes tend to show very little, since a great deal of flexi¬

bility is available for TpX to perform its paragraphing miracles. You will

probably find lots of overfull \hboxes. If they upset you, this is a good

time to revise ways of eliminating them. 4=

Breaking pages

Breaking paragraphs between pages follows a very similar strategy

to breaking lines. There is one very significant difference. While

T^K looks at all feasible breakpoints in determining the para¬

graph, it does not look at page breaks in the same detail. Pages

are created one at a time and there is no attempt to see how the

next page break will influence the current one. Knuth notes that

there is insufficient high-speed memory capacity to handle several

pages. This is probably no longer a completely valid consideration.

If T^K were to be recreated today, it is likely that some attention

would have been given to optimizing page breaks in a more global

way. Asher (1990) describes a system based on T^X which does

this.

Firstly, where may page breaks occur? The rules applicable to

line breaking are echoed here, in a muted form. Within a vertical

list, breakpoints may occur:

1 at glue preceded by a box, a mark, or an insertion; since there is

normally glue between the boxes of a vertical box, a paragraph

can be broken between the lines;

336 A plain TpjX primer

2 at a kern followed by glue;

3 at a penalty.

Although page breaking has been introduced in terms of finding

a suitable place within a paragraph to divide between pages, one

very suitable place will also be between paragraphs.

Instead of manipulating the space between words, will

attempt to manipulate the vertical space between boxes. If there

are vertical skips between paragraphs, with associated glue, this

can give the scope for satisfactory page breaking. The \parskip

by default is zero, but it has a positive glue amount of 1 pt. Nor¬

mally there is no glue associated with \baselineskip.

Page breaks have some similar penalties. When the first line

of a paragraph becomes adrift and is left at the end of a page,

it is termed an orphan, or in T^X terminology, a club line. The

\clubpenalty, with a default value of 150, tends to dissuade this

from happening. Similarly, the last line of a paragraph held over

to the beginning of a new page is termed a widow, and is con¬

trolled by \widowpenalty, with the same default value. The astute

will appreciate that if we demand that Tf^X creates pages of fixed

length, but equally insists that there shall be no club or widow

lines, we have the beginnings of a potential conflict. There is some¬

times the suspicion that T^X’s paragraphing algorithm is a phys¬

ical expression of Knuth’s writing style - a tendency to ‘medium’

length paragraphs. If you insist on writing short paragraphs you

may not be giving TgX sufficient flexibility.

=>Exercise 21.7: It is said that by removing a word in a paragraph,

it is possible to increase the overall length of the text. Suggest how this

apparent paradox may be resolved. <=

Breaking a page at a hyphen is also regarded as unsatisfactory.

To influence this, T^X employs \brokenpenalty, which is set by

default to 100. T^X also has some controls over the relationship

between display maths and page breaking. Assuming we have such

a display, breaking a page after the display is influenced by \post-

displaypenalty with a default value of zero; on the other hand,

breaking the page immediately before a display is influenced by

\predisplaypenalty, with a default value of 10,000. One last

penalty comes into this class: \displaywidowpenalty. This is a

special case of a widow line. A display may occur within a para¬

graph: if breaking leads to a single line being placed on the next

page, followed by a display, this looks rather like a conventional

‘widow’ line. The default value is 150. Quite logically, there is no

corresponding ‘club’ version.

Breaking up 337

=>Exercise 21.8: Some grasp of the page breaking may be gained by

creating a sequence of small pages. This will also allow you to experiment

with the various penalties which influence page breaking. 4=

A page break can be forced explicitly by \eject. This command

is a penalty of —10,000, or, more accurately, contains a penalty

of this value. Similarly, the \break command which is sometimes

used to force a line break is a shorthand for \penalty-10000.

There is in fact an interesting exploitation of T^X’s modes here.

Typing \break (or \penalty-10000) while in horizontal mode (for

example, while building a paragraph) forces a line break, while

typing the same command in vertical mode (for example, after a

\par or a blank line) forces a page break.

=kExercise 21.9: What does \vadjust{\break} do? 4=

As you will anticipate, \eject works by first forcing the change

into vertical mode by issuing a \par, and then specifying the

penalty.

The values of 10,000 may require some explanation. In many

TgX contexts, 10,000 is broadly equivalent to infinity. A value of

over 10,000 is often replaced by 10,000 in calculations. A penalty

of 10,000 inhibits breaking, while a penalty of —10,000 forces

it. Using numerical values greater than these do not make the

behaviour ‘more certain’, although smaller values might have some

perceptible effect. If a box is overfull, it has a real penalty of infin¬

ity associated with it.

The default commands which come with plain also have a few

other ways of influencing page breaks. The command \goodbreak

is a shorthand for \par\penalty-500, that is, a ‘good’ place

to break a page: of course, this is a place between paragraphs.

More subtle is \f ilbreak. This command is equivalent to writing

\vf il\penalty-200\vf ilneg. The penalty is nothing new, nor is

the \vfil. The \vf ilneg was introduced briefly in Chapter 9; in

a sense it is equivalent but opposite to \vfil. If the page break

occurs at the \f ilbreak, the \vf ilneg is carried over to the top

of the next page, where it disappears. Glue at the top of a page

(with the sole exception of \topglue) disappears. If there is no

page break the \vfil and \vf ilneg cancel one another out. So

what is the overall effect? Essentially, if we terminate each para¬

graph with a \f ilbreak, all pages will tend to be broken between

paragraphs.
=>Exercise 21.10: Why is this ‘tend to’ and not a guaranteed way of

ensuring that paragraphs are not broken across pages? 4=

=>Exercise 21.11: Beckett’s ‘Molloy’ starts with a single paragraph of

338 A plain TfeX primer

about 90 pages. If T^X breaks paragraphs, and has a finite memory, how
would we go about setting it? <=

Since \break encourages breaking, it will seem logical that

\nobreak inhibits it. This command is a shorthand way of writ¬

ing XpenaltylOOOO. If the break occurs at that point, a massive

penalty would be incurred. Again the mode is relevant. Within

this spectrum, a variety of penalty values may be set, in order

to favour or discourage breaking of lines or pages. The trio of

\smallbreak, \medbreak, and \bigbreak contain penalties of

-50, -100 and -200 respectively. They are vertical mode com¬

mands (deliberately, they also contain a \par), and do some neat

footwork to remove the last skip which T^X performed (provided

it is bigger than a \small, \med, or \big skip), insert the penalty,

and then reinsert a \smallskip, \medskip, or \bigskip.
=>Exercise 21.12: When starting a new section or subsection, it is
appropriate to manipulate any command you introduce so that the ver¬
tical space immediately preceding the (sub-)section title is ‘breakable’.
And equally that the vertical space after is not breakable. Otherwise the
title may come adrift and be left at the bottom of a page. Create such a
command. <=

A bigger penalty

In looking at output routines, \supereject was introduced, but

not explained. This command is especially interesting since it indi¬

cates a use for very high penalties, as a way of passing information

to an output routine. An \eject is defined as

\def\eject{\par\penalty-10000 }

but the \supereject uses a higher penalty:

\def\supereject{\par\penalty-20000 }

As soon as T^X finds a penalty of —10,000 or higher, it will invoke

the output routine. The higher value explicitly included in the

\supereject has precisely the same effect, but now the value is

retained (although in any calculations it would be treated as being

— 10,000). In the \output routine the value of \outputpenalty,

which is the value of the penalty at the current breakpoint, is

tested. If it is less than —20,000 (that is, if \supereject has been

used), then the default T^X output routine will invoke a further

command \dosupereject. This is the nub: this is what really does

the work. TgX now checks to see whether there are any inserts left

over: or rather it checks both for whole and part inserts which may
be left over. A footnote might easily be split.

Breaking up 339

If you design your own output routine, and use inserts, you will

have to include some scheme like this so that any ‘dangling’ inserts

are flushed out. If no special measures are taken, it is quite possible

that some inserts appear to be forgotten.

There are two ways to finish off T^X, to tell it to terminate,

itself will suggest that Vend can be typed (if you have not

already included a termination in the file). This is rather brutal.

A better technique is to use \bye. The full form of this command

is revealed through

\outer\def\bye{\par\vfill\supereject\end}

Since \bye is \outer it cannot be incorporated within other com¬

mands you might like to create. But the main point of this is that

it contains a \supereject before the \end. Clearly this ensures

that insertions are cleared up.

In a similar way, if you are writing a book and dividing it into

chapters, it would be very wise to ensure that a \supereject

terminates every chapter. Thus no insertions will be held over to

interfere with the beginning of the next chapter.

Delays and deferments 22

The action of page creation has some interesting consequences.

There are certain matters which deliberately delays until a

page has been created. Clearly, the \output routine makes explicit

certain actions, but there are a few implicit actions too. To be

specific, the \mark command has several compatriots, namely the

triad \topmark, \firstmark, and \botmark whose meaning is

determined through page breaking. The contents of these three

will change automatically, without any ‘human’ (or even explicit

command) intervention. The basic strategy is this: somewhere in

the text, there will be some \marked text. The first time that

\mark is used, all of the \mark triad take the same value. Taking

an example,

\item{\mark{aardvark}Aardvark>: has the first word

Should we refer to \topmark or \firstmark or \botmark, the

text which will be inserted will be ‘aardvark’. When there is a

second reference to \mark, the triad will change. Quite how the

triad changes depends on where the page boundaries fall. These

‘definitions’ are in force as the current page is boxed. That is, in

essence, when the \output routine is invoked:

\topmark contains the text of the last \mark before the current

page was boxed;

\firstmark contains the text of the first \mark encountered on

the current page;

\botmark will contain the text of the very last \mark on the page;

it is the \topmark of the next page.

This may all seem a little esoteric, although the example above

may give a clue to a potential use. The most ‘obvious’ use of these

marks is in a headline or footline. Dictionaries often bracket the

range of words which are included on each page. These ‘guide’

words are intended to make the dictionary easier to use. Similarly

it is common to see the section (or chapter) title in the headline.

, The use of \mark is not necessarily the sole way to solve this last

problem. There are subtleties involved in this use of the \mark

342 A plain TpjK primer

Page

1

2
Figure 22.1 3

Marks: see 4

the text for an 5

explanation 6

\topmark \firstmark \botmark

empty empty empty

empty i i

i ii ii

ii Hi V

V V V

V vi vi

and the triad. Should \topmark or \firstmark go into the head¬

line? Or to be even more complex, should left- and right-facing

pages have different structures? Examples do help a little. Note

that using the triad of marks before \mark has actually been used

does not generate an error: TgjX will simply insert nothing.

Looking at a theoretical instance, imagine the following arrange¬

ment, where the text contains six instances of \mark, where

\mark{i} occurs on page 2, \mark{ii} on page 3, \mark{iii>,

\mark{iv}, and \mark{v> on page 4, and \mark{vf> on page 6.

Note that this deliberately avoids placing a \mark on the first

and fifth page, and has three on page 4. What will the values of

the triad or marks be? Figure 22.1 attempts to summarize the
position.
=> Exercise 22.1: Attempt to confirm the arrangement which is sum¬
marised in Figure 22.1. 4=

If \mark is used within a box, it may be difficult to retrieve.

Knuth notes that ‘a mark that is locked too deeply inside a box

will not migrate’, and that a mark in internal vertical mode will

not be accessible. But how deep is too deep? A \mark within an

\halign will be heeded, but not if that is itself embedded within

a \vbox. As you would expect, a \mark within an insert (remem¬

ber that includes footnotes) will be ignored too. For the purposes

of creating section headings which are echoed in a \mark which

will be used in a \headline, it is convenient that embedded in

a simple \leftline or \centerline, the \mark is heeded. But if

there had been any deeper boxing, it would not work. In general

terms, though, it would be as convenient to write a rudimentary
command like:

\def\section#l{\leftline{\bf #l}\mark{#l}}

where no boxing of the mark takes place. A problem may arise

with more complex commands that the marked text might become

separated from the text it is supposed to represent, if a page break
intervenes.

Delays and deferments 343

Reading and writing

The other major area where page building has a major effect is

when we attempt to write to a file. Besides being able to read

the current text file, and input other files through \input, or

write to the log and dvi files, l^X can read and write to other

files. This can be useful when we wish to create a table of con¬

tents, or an index, among many possibilities. Before indicating

the interaction with pages, we can look at the commands avail¬

able for this sort of file manipulation. Reading in from a file can

be accomplished by \read. The command must be followed by a

number indicating the input file (or stream) number. This num¬

ber is normally between 0 and 15. If it lies outside this range, TgX

will assume you wish to input from the keyboard. But first you

should ‘open’ the file with the \openin command. This has the

structure

\openinl=extra

where some file extra (or extra.tex if a file extra does not exist:

it is difficult to guarantee the way different implementations, or

different operating systems, will accommodate this) is linked to

the stream number 1. It may not be a surprise that there is a

\newread command which allows Ij^X to choose the input stream

number. What happens if the chosen file does not exist? You may

by now be aware of what happens when you try to \input a file

which is not available. But this is different: Tj^X just assumes that

the input stream is not open. A wise decision could be to test to

see if the end of the file had been encountered. T^X supplies an

\ifeof for this purpose.

If you start to think about this seriously, you will realize that

the behaviour of \read has to differ in substance from \input.

What a \read enables us to do is to define a command with the

contents of a line from the nominated input file: in other words

\newread\aux

\openin\aux=stream

\read\aux to\information

The new command \inf ormation has no parameters (and no defi¬

nition). Although this has been stated as if a single line is read in,

if there are enclosing braces, Tf^X keeps reading successive lines

until it balances the braces. Perhaps the most obvious use of this

sort of reading is to request input from the keyboard. This gives

, a pleasing illusion of interactivity. For example,

344 A plain TftK primer

\def\draftfdraft }

\read-l to\version

\ifx\version\draft

\input draftmac.tex \else \input finalmac.tex \fi

would allow selection of the appropriate set of commands (already

stored in an appropriately named file) depending on whether we

were preparing a draft or final version of some text. The \read-l

is to read in from the keyboard. In fact, this is rather imperfect,

since there is no indication in the log file that T^X is waiting

patiently for ‘draft’ or something else to be typed in. A ‘better’

idea is to issue a prompt:

\message{draft or final version? >

\read-l to\version

The command \message writes out text immediately to the

screen. In the example here, the extra space after the ? is quite

deliberate. It too will appear at the screen.

=>Exercise 22.2: Examine what will happen if \readl6 is used in

place of \read-l. <=

A further command, \closein, when given the appropriate file

number (or ‘name’), closes down the file or stream. In general

terms, when T^X encounters a \bye or \end it will close down

any files which have been opened, but it is always more satisfying

to do this yourself. Apart from anything else, there is bound to be

some aberrant operating system somewhere which does not do this

sort of automatic housekeeping. It would be distressing to find T^)X

producing different behaviour simply because you were not tidy.

Writing out information is a far more common requirement than

trying to use \read. The examples already noted are a table of

contents and an index. The strategy is very similar, though: we

have \newwrite, \openout, \closeout, and \write. Let’s look

at a real example where we try to create a table of contents:

\newwrite\toc

\openout\toc=\jobname.toe

\def\section#l{\leftline{\bf#l}%

\write\toc{#l:\the\pageno}}

This introduces the command \jobname. It expands to the same

name that TgX is currently using for the dvi and log files. This

is not necessarily the same name as the currently \input file. It

does njean that later we can use

\input \jobname.toe

to read in the contents of this automatically created file, without

having to nominate a name within the commands.

Delays and deferments 345

But there is a flaw: the three commands \openout, \closeout,

and \write are deferred until the page is built. After all, until

T£]X decides the page break the appropriate page number will not

be determined. However, this will work:

\newwrite\toc

\immediate\openout\toc=\j obname.toe

\def\section#l{\leftline{\bf#1}%

\write\toc\expandafter{#l:\folio}}

The \expandafter, which is discussed briefly in Chapter 23, is

needed to change the expansion order so that the correct page

number is inserted. The use of \immediate forces the \openout

to take place before the page building - in fact, to take place

immediately. But note that if there is an \immediate before

the \closeout the file may be closed before some last remain¬

ing \writes have taken place. It is usually sufficient to put the

\closeout after an \eject, so that page construction has taken

place before the file is closed.

=>Exercise 22.3: Confirm the need for \expandaf ter in the definition

of \section. Check what happens if you use \immediate\closeout. <=

=$■Exercise 22.4: A similar arrangement can be made for the produc¬

tion of a simple index. Do so. •<=

If an index is created, it will be necessary to sort the entries.

This is not a task to which T^X is well suited. In general terms,

the strategy is to employ a sorting program, and then typeset the

index later. Since an index is generally the very last thing which is

done in the production of a book, this should be no real hardship.

Some features of using \write pose problems for both an index

and (sometimes) for tables of contents. TgK will expand any com¬

mands as it writes out text. This can lead to some quite intriguing

results, especially when there are font changes. Expanding font

changes locks them into the precise expression of the current font.

For example, \bf will probably become \tenbf and there will be

a reference to the \fam (an attribute explained Chapter 18); for

example,

\fam \bffam \tenbf

would appear in the file which is written out. If you do want to use

the information again (which is usually why you bother writing it

out), it can be quite distressing to find these commands.

=>Exercise 22.5: Experiment with the use of \write when there are

commands written to file. <=

Since the file is usually being read in again, perhaps through an

\input of the entire file, it can be useful to include commands in

346 A plain TpjX primer

what is written. But we do not wish the commands to be expanded

at this point. How can we delay them? T^X supports a command

\string which will write out the next token into the file. Recall

that a token is (among other things) a command, or a character.

In other words if we

\writeO{\string\bf\space Janis Joplin}

the \string\bf will write out \bf into the file. The \space is

needed, since the space after \string\space is needed to delimit

the \bf. If \space is omitted, what will be written into the file

is \bf Janis, and of course, when we come to use it, an error

will appear. This \string mechanism is also useful for including

braces.

Since commands embedded in a \write are deferred until the

page is constructed, any redefinition of a command may result in

something different being written into a file. Be warned.

More messages

This chapter has been aimed principally at writing out informa¬

tion to files which may be read in subsequently, but has already

addressed a way of obtaining a message on the screen, through

\message, which is almost the same as \immediate\writel6.

Both will display some text at the screen. There is a slight dif¬

ference, in that ‘messages’ are not printed out on separate lines.

Each \write will be on a separate line. In both cases, the text

is displayed on the screen and written into the log file. If you do

not wish the text to be written on the screen, but just to appear

in the log file, you must use an \immediate\write, with a file

number which is negative. There is no way to suppress the text

of a \message in the log file. Tf^X has a default command, \wlog,

which writes to the log file, should you want to use it.

To provide a concrete example, the following was written in

order to ensure that any use of a command \title might be used
only once:

\newif\iftitle \titlefalse

\def\title#l{\iftitle

\message{incorrect, title may only be used once}
\else

\goodbreak\centerline{\bf#l}\global\titletrue
\fi}

Besides this and the use suggested earlier, as a prompt, it can

be very helpful to use \write and \message to inform you of

Delays and deferments 347

what is going on. Sometimes a particularly recalcitrant command

can be examined more closely through the use of \message. If you

read in files containing lots of commands it is often very useful to

include a \message. Although the name of any \input file will be

recorded in the log file, a more meaningful explanation will always

be appreciated - especially when something goes wrong!

Errors

There is another class of messages which can be used when errors

occur. The \errmessage is similar to \message, but when it is

encountered, it stops and invokes the standard error process¬

ing machinery. If you should ask for help in response to T^K’s

offer, you will be entertained by
This error message was generated by an \errmessage

command, so I can’t give any explicit help.

Pretend that you’re Hercule Poirot: Examine all clues,

and deduce the truth by order and method.

But you can add your own help too. When \errmessage is used,

any text stored in \errhelp can be used to provide the help mes¬

sage obtained by typing help at the ? prompt. Such features tend

to find most use when more complex commands are created.

*

Collections 23

The purpose of this chapter is to draw together some of the com¬

mands which have been uncovered in the evolution of the primer.

Prom time to time it has been necessary to introduce members

of various classes of commands in a somewhat unstructured way.

They were needed to solve particular problems, but elaborating

upon them and introducing similar commands would confuse the

flow of the text.

Conditionals

The account of T)^X’s primitive conditionals has been rather scat¬

tered throughout the preceding chapters. It is useful to draw all the

variations into a more ordered exposition, augmenting them with

examples where appropriate. Some of the conditionals are used

infrequently, although it may be comforting to know that they are

available. Naturally these tests would not occur in ‘normal’ text:

they would be located within more elaborate commands.

Comparing numeric values

\ifnum(numberi)(relation)(number2) compares two numeric val¬

ues (including integers and counters). The (relation) may only be

<, >, or =. An example was used in the calculation of the time of

day in Chapter 7. For example,
\ifnum\time<720 before noon\else after noon\fi

Recall that it is wise to leave a blank after the numeric value.

Otherwise T^X has to go on reading to make sure that whatever

follows is not a command which might expand to a numeric value

which is really part of the number.

\ifdim(dimeni)(relation)(dimen2) compares two dimensions.

Again the (relation) may only be <, >, or =. A practical applica¬

tion of this might be

350 A plain TpjX primer

\def\caption#l{\smallskip\setboxO\hbox{\bf #l}°/0

\ifdim\wd0<0.9\hsize

\line{\hfil\boxO\hfil}\else

\line{\hfil\vbox{\hsizeO.9\hsize\noindent#l}\hfil}\fi

\bigskip}

where a caption is written out as a single centred line when it is

‘short enough’, but set as a centred paragraph if it is wider than

some particular proportion of the horizontal width.

\if odd(number) tests for an odd integer. The condition is true

when the integer is odd, false when even. Note there is no \if even

command. This command is most often used in creating left and

right headlines and footlines. Normally we expect the left-hand

page (verso) to be even numbered and the right-hand page (recto)

to have different characteristics. For example, part of the \output
routine might contain
\ifoddXpageno

\f ootline-fXrectof oot}\headline{\rectohead}\else

\footline{\versohead}\headline{\versohead}\fi
where \rectofoot, \rectohead, \versofoot, and \versohead

are previously set up token strings appropriate for the headlines
and footlines of the right and left pages.

\if case (number) is T^X’s implementation of the ‘case’ state¬

ment often found in programming languages. It will be found with

\or, and perhaps with \else. It allows a many-way branching

by testing the value of (number), and then takes the action cor¬

responding to the (number). The values of the number must be

non-negative, but the first branch corresponds to zero. A practical
example already encountered is \today:
\def\today{\ifcase\month\or

JanuaryXor FebruaryXor MarchXor April\or

MayXor JuneXor JulyXor AugustXor

September\or OctoberXor NovemberXor DecemberXfi
\space\number\day, \number\year}

The value of \month must lie between 1 and 12. Therefore the

first branch, corresponding to zero, is ‘ignored’ by having no text

appropriate to it. The truly cautious might have followed Decem¬

ber by an \else and an error message. In this context this caution

is perhaps excessive, but the plain command Xmagnification

would be much more robust with such a trap. Exercises 6.12
and 17.10 examined this in more detail.

Collections 351

Testing modes

\ifvmode tests for vertical mode. If T£X is in vertical or inter¬

nal vertical mode, the condition is true. Since a command which

starts with an \hbox may be interpreted anomalously when it is

the first token in a paragraph, it may seem appropriate to begin

with a test for mode. For example, a reasonable definition of u
(for space) might be

\def\]{\hbox{\tt\char‘\ }}

Should a paragraph begin with \], T^X would be in vertical mode,

and would continue to be so until the text token occurred. This

would make \] a paragraph in its own right. It might seem that

some \if vmode structure was needed to force T^X into horizontal
mode. A far simpler solution is

\def\]{\leavevmode\hbox{\tt\char‘\ >}

The \leavevmode is legitimate in both horizontal and vertical
mode.

A slightly more plausible example might be connected with the

use of \centerline. If you use this command within a paragraph,

the contents will not be set on a separate line and centred, but

will be incorporated into the text, with rather unfortunate conse¬

quences. A possible alteration of the command to make it robust

under these circumstances could be:

\def\centerline#l{\ifvmode\par\fi\line{\hss#l\hss}}

\ifhmode tests for horizontal mode. If l^X is in horizontal or

restricted horizontal mode the condition is true. Obviously the

\centerline example could have been rewritten as
\def\centerline#l{\ifhmode\par\line{\hss#l\hss}7o

\else\line{\hss#l\hss}\fi}

It looks more clumsy. It also takes up more space within Tj^X’s

memory.

\ifmmode tests for text maths or display maths mode. This has

been used in several examples which help to extend the ease of

use of T^X. For example,
\def\,{\ifmmode\mskip\thinmuskip\else\thinspace\fi}

\def\dots{\relax

\ifmmode\ldots

\else.\thinspace.\thinspace.\thinspace\fi}

give us two useful definitions which work well in both maths and

ordinary text.
=>Exercise 23.1: The underscore character is not usually available,
since it has already been taken by the maths ‘subscript’ character. Know¬
ing that a substitute for _ is \sb, and that a _ may be obtained from

352 A plain TgK primer

\tt\char ’ 137, create a way of making _ provide an underscore charac¬

ter, yet still work in maths. <=

\if inner tests for internal or restricted mode. If T^X is in inter¬

nal vertical, restricted horizontal, or text maths mode, the con¬

dition is true. Since \marks are sensitive to ‘inner’ conditions, it

could be wise to include such a test, if only to warn the unwary

that the mark may not appear. It will certainly not appear if used

in internal vertical mode, but may appear if used in restricted

horizontal mode.

Comparing tokens

\if (tokeni)(token2) tests if two character codes agree. In order
to do so, T^X will expand any commands following the \if until

two unexpandable tokens are found. The use of \if has already

occurred in the answer to Exercise 7.5. For example, take this

abbreviated version:

\def\pion#l{$\if#l+\pi~+\else\pi~-\fi$}

The key feature of \if is that it expands the tokens: therefore
\let\a+ or \def\a{+}

\pion\a

would give the same result as \pion+.

\ifx(tokeni)(token2) tests if two tokens agree, but does not
expand commands. The condition is true if the two tokens are

not commands and they represent the same character code and

category code pair, or the same TgX primitive, or the same \f ont

or \chardef or \countdef, etc.; or the two tokens are commands

and have the same status with respect to \long and \outer, both

have the same parameters, and the same top-level expansion. A

practical example of the use of \ifx is to test whether a set of

commands in a file has already been read in:
\ifx\commandsfile\undefined\else\endinput\fi

\let\commandsfile\null

If these two statements are at the beginning of a file of commands

(a macro file), or indeed, any other file, whenever it is read for

the first time, \commandsf ile will be a token which agrees with

\undef ined - in other words, two tokens which have not yet been

defined. The command \undefined must not have been defined

for this to work. Next, \commandsf ile is assigned some contents:

it hardly matters what, but \null is a good compact value.

Should this sequence be re-read, \commandsf ile will have been

made equivalent to \null, and will no longer be \undefined.

Collections 353

Therefore the \else condition will be obeyed. Once \endinput is

encountered, the file is left and T^K returns to reading from the
file in which the \input statement occurred.

Note that expansion of the tokens does not take place, unlike
\if. If \pion had been defined as

\def\pion#l{$\ifx#l+\pi~+\else\pi~-\fi$}
then
\def\a{+}

\pion\a

would give n~. Using \if rather than \ifx in the definition would
have given 7r+.

\if cat(tokeni)(token2) tests if the category codes agree. This
works in a similar way to \if.

Testing boxes

\if void(number) tests whether the box with that number is void.

In this context (number) includes the name of a box, as well as its

number. It is possible to collect material in a box by \unvboxing

it and then adding new material at the end: the first time round,

there is nothing in the box - it is void - and therefore no unboxing

is required:
\newbox\collect

\def\beginnote{\setbox\collect\vbox\bgroup

\ifvoid\collect\else\unvbox\collect\fi

\strut}

\def\endnote{\strut\egroup}

This simple structure needs more attention to make it really use¬

ful, but still illustrates the basic point, and the use of \if void. At

some point the material will have to be written out. The simplest

way is to \unvbox\collect.
\ifhbox(number) tests whether the box with that number is an

\hbox.
\if vbox(number) tests whether the box with that number is a

\vbox or \vtop.
These last two seem rather esoteric. After all, under what cir¬

cumstances is it at all likely that you do not know whether a box

is horizontal or vertical? I^X has a command \lastbox which,

as its name suggests, will contain the contents of the last box.

More precisely, if the last item on the last horizontal or vertical

list is a box, it is removed and becomes \lastbox. Under these

circumstances, we might not know in advance whether the box

354 A plain TpjK primer

was a \vbox or an \hbox, and the test could be quite meaningful.

Note that there is no way to distinguish between a \vbox and a

\vtop (the astute will appreciate that there are indirect ways to

infer whether the vertical box is likely to be a \vbox, with lots of

height, or a \vtop, with lots of depth).

File test

\ifeof (number) tests for end of file. The number must be between

0 and 15. The condition is false when the input stream is open

and not fully read. Again, (number) could also be the name of the

file. Reading and writing to files is addressed later in this chapter.

Fixed tests

\iftrue and \iffalse are always true or false. The self-defined

conditions covered next account for these apparently superfluous

features.

Self-defined conditionals

The condition that has been omitted is the condition you may

create for yourself. Setting up
\newif\ifprev

first defines a conditional \ifprev, which is set to have the value

\iffalse, but also creates two related commands, \prevtrue

and \prevfalse. This is the ‘real’ explanation for the presence of

\iftrue and \iff alse. They are necessary for the construction of

this more flexible command. As an example, consider the follow¬

ing situation. The beginning of a section or subsection is a good

place to break a page. T^X has a command \goodbreak which will

encourage a page break, and another one, \nobreak, which tends

to inhibit page breaking. These are essentially ways of inserting

particular \penalty values. A section or subsection would then

normally be bracketed by a \goodbreak and a \nobreak, since we

do not wish the title of the (sub-)section to be separated from the

text which follows. But if a section title is immediately followed

by a subsection, we would not wish the \goodbreak to be oper¬

ative. How might we achieve this? A sketchy outline of a possible
solution is:

Collections 355

\newif\ifprev

\def\section{\goodbreak

\leftline{\sl Section}'/,

\prevfalse\nobreak\smallskip\nobreak
\everypar{\prevtrue}}

\def\subsection{\ifprev\smallskip\goodbreak\fi
\leftline{\sl Sub-section}'/,

\nobreak}

The notion is that immediately after a \section, \ifprev is set to

false; if the subsection command is found before a paragraph, then

\ifprev will still be false. If a paragraph had been encountered

before \subsection is used, the \goodbreak will be used.

Besides creating your own conditions, it is possible to associate

your own help text which can be used when an error occurs. This

starts to be of major advantage when you attempt to exploit the

structure of the document. For example, in general terms, a book

will generally have only one bibliography. Should we try to include

a second bibliography, there is likely to be an error.

Looping

It is possible to create a looping structure based on conditionals.

The syntax looks something like
\loop text (optional)

\if some condition, text and commands\repeat

Clearly there has to be some way to get out of the loop, otherwise

it will just cycle round for ever. But there is no \f i command here.

The \repeat is constructed of a number of commands, including

a \fi. A minor problem of this construction is that in passing

it defines \body. Should you define a command \body, looping

will not work properly. It is inexplicable why \body was not writ¬

ten \b@dy by Knuth, in order to make it a private command,

inaccessible to the rest of the world.
The looping mechanism is used by \multispan. Recall from

Chapter 14 that \multispan takes a numeric argument and is said

to be equivalent to repeating \omit\span. Effectively, plain uses

\loop to repeat the two commands. It therefore looks similar to:
\def\multispan#l{\omit\mscount=#l \loop\ifnum\mscount>l

\span\omit \advance\mscount by-1 \repeat}

.Note that this means that a \multispan ‘really’ expands to

\omit\span\omit\span\omit...

356 A plain TpX primer

since the actual entry in the table has to begin with an \omit,

and the ‘spare’ one at the end does no harm. Of course, \mscount

has been defined somewhere to be a counter.
=> Exercise 23.2: Once every schoolchild could rattle off her or his

multiplication tables by rote. Since this is now regarded as a misuse of

the educational process, these tables come to have a certain period charm.

It is not difficult to have TgX perform the mechanical functions necessary

for the creation of multiplication tables. Do so. 4=

A mathematical condition

In maths, there is a command which has some similarity to the

\ifcase. There are four possible states in maths: text, display,

script, and scriptscript. While it is not possible to identify which

of these states T^X is in at any particular time, T^X is obviously

aware of this. Much earlier, we noted that plain, using the Com¬

puter Modern fonts, has no convenient way of creating a ‘triple

dot’ mathematical accent. Using \dot and \ddot is straightfor¬

ward, but there is no \dddot. While MAd<S-l^X does have such

an accent, and obviously METRFONT could be used to create one,

an alternative is to take three dots and place them physically

above the character involved. To do this satisfactorily, we must

have a version of \dddot which works for superscripts and super¬

superscripts (in other words, in script and scriptscript as well as

text and display). In order to do this, we have to identify how

the dots should be placed in all possible states. The command

\mathchoice contains four different paths; these cover the four
possible states. The command looks like

\mathchoice{display}{textMscript}{scriptscript}

There are four arguments, one for each state, in the order given

here. This is a very expensive procedure, since TgX generates

every single one. At the very least it will take about four times

as long as evaluating one branch, and of course, it will also take

about four times as much space. One of the features of accents in

maths is that any superscripts are relative to the symbol, not to

the position of the accent. If we place some dots over a symbol, we

must ensure that it does not add to the apparent height. A simple

approach is to \halign three suitable dots over a symbol (supplied

as an argument to the command). Done simply, any subsequent

superscript would be placed relative to the accent. One way to

handle this is to pretend that the accent has no vertical extent

(unlike a \vphantom which has height and depth, but no physical

Collections 357

expression, we want the physical expression but no height and
depth). First define the three dots:

\def\ddd{.\mkern-l.8mu.\mkernl.8mu.>

An advantage of using mu is that it alters according to the mathe¬

matical state, saving us the trouble of having to do it. The actual

values used here were found by trial and error. A way to ‘crush’
the vertical extent is

\setboxO\hbox{\ddd}\dpO=Opt ht0=0pt \boxO

The box is there, but has had its vertical extent modified. This is

just standard box manipulation.

We now have most of the information that we need. A suitable

command may be written as:
\def \dddot#l{{°/,

\def\ddd{.\mkern-l.8mu.\mkern-l.8mu.}%

\def\crush##l{\setboxO\hbox{##l}%

\htO=Opt \dpO=Opt \boxO }%

\offinterlineskip\mathchoice

y.
{\vbox{\halign{\hfil##\hfil\cr

\crush{$\displaystyle\ddd$}\cr

\noalign{\vskipO.4ex}%

$\displaystyled#l}$\cr}}}

l
{\vbox{\halign{\hfil##\hfil\cr

\crush{$\textstyle\ddd$}\cr

\noalign{\vskipO. 4ex>°/0

$\textstyle{#l}$\cr}}}

y.
{\vbox{\halign{\hfil##\hfil\cr

\crush{$\scriptstyle\ddd$}\cr

\noalign{\vskipO.28ex}%

$\scriptstyled#l}$\cr}}>

l
{\vbox{\halign{\hfil##\hfil\cr

\crush{$\scriptscriptstyle\ddd$}\cr

\noalign{\vskipO.2ex>%
$\scriptscriptstyle{#l}$\cr}}>}

>
Most of this should be fairly apparent. The doubling of the #

in the definition of \crush and the expression of the template

for the \halign is needed so that when the ‘outer’ command is

expanded these are treated properly. If the argument is to be used,

358 A plain TftX primer

it will have the form #1: in order to distinguish the uses of #, the

stratagem is to double the symbol. Should we get into a situation

where a command was defined within a command which was itself

quoted, its arguments would have to be expressed in the form

####1, and so on, deeper and deeper. At each level, a pair of these

symbols is interpreted as a single symbol.

The \noalign values were obtained by trial and error. They are

in proportion with one another, assuming that the relation for 10,

7, and 5 point fonts are proportional. To some extent this can be

verified by comparing the result with the behaviour of \dot and

\ddot.
=>Exercise 23.3: Sometimes a vector is indicated by placing a tilde
under a symbol. Can you create such an ‘under-tilde’ which will work
appropriately with super- and subscripts? 4=

Looking into the future

There are a group of commands which have some rather

interesting properties, and which can allow you to tie yourself up

in the most awkward knots. One of these is \futurelet. As its

name suggests, it has something to do with \let. It allows you

to inspect commands in input to see what future input to expect.
The syntax looks like

\futurelet\next\test\future

where \next is just a convenience command which will receive the

value of \future by the equivalent of \let\next=\future; but

\future still remains in the input stream (we have our cake and

have it eaten!). Then \test can check the contents of \next.

Consider the following piece of code, where the notion is that

when \testing is followed by the letter ‘T’ it will turn what comes

next into bold, but anything else will result in \sl being selected.
\def\testing{\futurelet\next\fred>
\def\fred{\ifx\next T

\bf

\else \sl

\f i>

Note that the \testing command only defines part of the syn¬

tax we expect. The third element is the one which we will test, and

is therefore the part which varies. When the argument supplied is

examined by \ifx it is either equal to ‘T’, when the test selects
\bf, or it is not, when it will select \sl:

Collections 359

\testing T Eiffel Tower?

\testing Q Tower of Pisa!

Now this is a painfully trivial example, since it removes all

but the most essential parts. It also has the distressing feature

of echoing the first character it finds. Most working examples of

\futurelet are involved. Let’s try to make it just a bit more

realistic. A more common sort of construction is:
\def\change{\futurelet\next\switch}

\def\switch{\if\next *

\def\action##l{\bf}

\else

\def\action{\sl}

\fi

\action}

Now we are starting to get closer to something which might be

useful. The command \action takes one argument if \change is

followed by *, but no argument if it is not.
=>Exercise 23.4: Modify the \testing command to eliminate the
echo of the first character it finds.

This time, just elaborating on the existing structure, we peek

ahead to see if what follows is a [. If it is, we assume that it must

be an optional argument, and therefore \macopt must be used.

Otherwise it is ordinary, and \macone is used:
\def\macopt[#1]#2{#1; #2}

\def\macone#l{#l}

\def\change{\futurelet\next\switch}

\def\switch{\if\next[

\let\action=\macopt

\else

\let\action=\macone

\fi

\action}

This is the basis by which IATgX does lots of its work with optional

parameters. And partly why it is such a brain-damaging experi¬

ence to meddle with IATf^X style files.
=4>Exercise 23.5: Awkward or not, let us borrow another idea from
IAT^X. There are a number of commands which have a *-form. There
must be at least two ways you could make \fred and \fred* work dif¬
ferently. Implement and compare them. <=

Besides reordering the arguments, we can reorder the expansion

of the commands. If we say
\def\nextbf#l{{\bf #1}}

\def\text{Some arbitrary text}

360 A plain Tp]X primer

then

\expandafter\nextbf\text

will give ‘Some arbitrary text’, while

\nextbf\text

gives ‘Some arbitrary text’. What has happened? The com¬

mand \text has been expanded first: thus its braces are removed.

The \nextbf command then takes the first token of the string, the

‘S’, and uses that as its argument. Note that the ordering of the

tokens is not changed. Really all we have done here is to expand

\text by one level of expansion, before expanding \nextbf at all.

Let’s look at another example:
\def\two{{Alpha}{0mega}}

\def\choose#l#2{#l}

As it stands, saying \choose\two and hoping to obtain the first

of the two arguments of \two is doomed to failure. The command

is unable to find a second argument. It has to be expanded first,

to become {Alpha} and {Omega}. To do that, we could say
\expandafter\choose\two

where \two would be expanded first, revealing two nicely packaged
arguments which \choose will then process.

A further example of \expandafter, which has already been

introduced, is to modify the effect of \romannumeral so that it

expands a number to be upper-case characters, not the default
lower case. In other words, the normal action of
\romannumeral\year

is mcmxcii. The command \uppercase will turn its argument into

upper case, and its companion Wowercase will turn an argument

into lower case. These apply only to alphabetic characters: any¬

thing else is ignored. If we wanted MCMXCII we would have to
ensure that the expansion was modified. A simple

\uppercase\romannumeral\year
will not do, but

\uppercase\expandaf t er {\r omann uiner al\year}

should do nicely, since it ensures that the \year has been turned

into Roman numerals before we apply the command \uppercase.

24 Last words

What will the future of TgX be? Will there be a TgK4 to follow

the TeX3 °f 1989? It is clear from the statements made by Knuth

that he is unwilling to consider this possibility. It may not be

impossible, since the change to TgX3 seemed impossible immedi¬

ately before the Stanford conference at which Knuth announced

his intention to make one last major change (the ability for T^X

to handle 8-bit characters rather than 7-bit,), and a number of less

significant (though sometimes extremely useful) changes. Never¬

theless, Knuth has said that d^X3 is ‘frozen’, or at least, the only

changes which will be made are corrections to the code. A quirky

side effect has been that the version numbers of the Tj^X ‘correc¬

tions’ will be 3, 3.1, 3.14, 3.141, ..., and that when Knuth dies, no

further changes will be made and T^X, bugs and all, will become

TgX 7r. In a similar way, METRFONT, currently version 2.71...

will become METRFONT e. (Both 7r and e are irrational numbers,

which gives one insight into the fate of TgX and METRFONT!)

If there is to be no development of TgX, does this mean that

TgX is doomed? On the contrary, the stability of Tj^X is one of its

strongest and most attractive features. Tj^jX is complete. No new

features are about to be added. Everything which is there, works.

It is almost bug free. It is remarkably well tested: it has been

exposed to the T^X-hacker (hacker is not a perjorative term in the

Tj^X world) as well as the T£X user. It emerges unscathed from

their ravages. It is solid. A quotation from Knuth is appropriate:

I wanted to design something so that, if book specifications

are saved now, our descendants should be able to produce

an equivalent book in the year 2086 ... I designed d^X and

METRFONT themselves so that they will not have to change

at all: They should be able to serve as useful fixed points in

the middle, solid enough to build on and to rely on.

, It is therefore clear that it was not Knuth’s intention that T^X

(or METRFONT) would gradually evolve, slowly acquiring new

362 A plain TpjK primer

features (Knuth terms this ‘creeping featurism’). This is in stark

contrast with ‘commercial’ documentation systems, who must

keep producing ‘new’ versions, simply in order to keep themselves

in the public eye.

But Knuth does not dismiss the possibility that T^X may form

the basis of some new piece of software: there may indeed be an

evolved TgX (see, for example, Mittelbach, Poppelier, Spivak, and

Vulis, among others), but it will not be called Tf^X. The code

is available and anyone may tinker with it: what is clear is that

the name of this hybrid may not be Tj^X. It remains to be seen

whether this injunction can be enforced, but the high regard in

which Knuth is held, plus the assignment of the term ‘Tj^X’ to the

American Mathematical Society (and ‘METflFONT’ to Addison

Wesley) will likely ensure that these wishes are observed.

One other ‘attribute’ contributes to .the stability of T^X. An

implementation may only call itself ‘T^X’ once it passes the trip

test. This has a rather interesting history. A complex set of TgX

input was developed to guarantee that every part of the TgX pro¬

gram was exercised, that every single line of code was used at least

once. The ability to do this at an early stage in the T^X project

was dependent on some particular software available on the TOPS

system on which TgX was originally developed. As features have

been added to or corrected in TgX, the trip suite has been aug¬

mented. Unfortunately, the trip test requires a special version of

TjrX, with some extra features switched on when the program is

compiled. It is not possible for the ordinary TgX user to validate

the program they have. It is slightly ironic that after passing trip,

the implementation must then be recompiled, perhaps with the

reintroduction of some non-conforming effects or features. METfl-

FONT has a similar philosophy, with a trap test. The output from

both trip and trap - in particular, that contained in the log file
- are to be compared with Knuth’s standard.

This reference to an acknowledged standard provides one use¬

ful base level: once you have learned T^X, you will never have

to relearn it. From my own point of view I have to confess I am

still learning TgX, but I have only been using it since 1984. Your
investment is unlikely to be devalued.

Various components of TgX have been adopted by other docu¬

mentation systems: in general, it is often rather difficult to identify

the systems which have ‘borrowed’ TjgX: they seldom note this

fact in their advertising or technical material. But sometimes

it is possible to identify the presence of Tj^X by the excellence

Last words 363

of the typesetting (especially of mathematics). Since the inter¬
nal T^X algorithms are published, and are generally available, it
is understandable and appropriate that they should be used in
other applications. This simply reflects their excellence and in a
way helps to ensure a future for IjgX.

There are two notable extensions to Tj^X which use the core.
Knuth and MacKay produced an extension which could han¬
dle texts which are read both right-to-left (for example, Arabic,
Hebrew, and also da Vinci’s mirror writing) as well as the ‘nor¬
mal’ for ‘western’ languages, left-to-right. The other major TgX
extension is the one used in Japan, where it was necessary to
implement a way of handling a character set of 6877 characters,
and where text is read top-to-bottom. These two are clearly related
to T|yX.

Tj^jX plus

There are developments based on TgX which remain TgX: the
general increased availability of raw computing power, together
with good-quality bit-mapped screens and a windowing environ¬
ment, has tended to make highly integrated TgX ‘environments’
more available: in other words, the more traditional division into
T^X, TjgX screen drivers, Tj^X hard copy drivers, editors, and so
on is becoming blurred. In some implementations it is possible to
accomplish all Tf^X functions from within one application. As TgX
is run, a ‘typeset’ page may appear in a window of its own as soon
as it is available. The user can be viewing the screen version of the
typeset text as TjrjX is working away completing the remainder
of the text file. This is not an interactive TgX, in the sense that
many ‘desktop publishing’ programs appear interactive. It will
still not be possible to ‘edit’ the typeset version and have those
changes reflected back into the original text file.

It is often the experience of those using TjgX that the beginning
of a document is typeset many more times than the end, as ‘errors’
(in a very broad sense) are slowly flushed from the document. If
the first few pages do not change, why keep typesetting it? Could
TjgX not jump in at the ‘corrected’ position and continue from
there? Clearly the paragraph and page make-up preclude a strict
interpretation of this model, but a ‘visually oriented T^]X’ (Chen et
al., 1986) has been developed which tries to do just this. This is not
a commercial implementation, but it indicates what might be done
as increasing computing power and disk space becomes available.

364 A plain Tp]X primer

It is also reasonable to expect to see developments in the tools

which are available with I^X. Already there are I^X-sensitive

spelling checkers, editors, word counters, and so on. In general,

these have tended to be system specific. One of the major strengths

of Tj^X, its availability in a high-level generalized programming

language which can be translated into machine-specific dialects,

is seldom reflected in these tools. As a result, it is often difficult

to translate the tools to other platforms. Therefore, although the

core remains constant, the surrounding components may be

quite different. Nevertheless, it has been the experience of many

TgX teachers that there is a great degree of commonality between

different systems, and that transferring from one to another is not

too difficult, even when faced with a class of TgX (and computer)

novices. If we must point to an area of great concern, it is in the

multiplicity of drivers: while I can guess that, to run Tj^X, I will

likely type tex at the system prompt (assuming there is a sys¬

tem prompt!), working out how to obtain a hard copy is usually

considerably more difficult. Added to this, the different drivers

for different devices may provide a huge range of options - some

more flexible than others. There appears to be limited success in
‘standardizing’ the range of options.

In the area of editors, it may be worth noting two examples

which can provide models: the first of these is based on emacs.

This particular editor has been around for many years, and can

be obtained on (at least) UNIX and DOS versions. This is a very

powerful editor, and it can be programmed (cf. van Bechtolsheim,

1988) so that it will, for example, insist that braces are balanced

- apparently a very trivial need, and yet many T^X errors will be

traced to this simple omission. It is straightforward to see other

‘balancing’ extensions, like $ or $$ for mathematics. Since some

key combinations can be made to generate particular commands,

it may also be possible to insist that, for example, typing the com¬

bination <esc> a generates \alpha in the text. A similar approach

has been adopted with the VAX editor Lsedit, although the best-

known example of this (McPherson, 1985) supports IATgX rather

than TjrX. Nevertheless, the principles remain the same.

If we assume that mathematics is inherently difficult to input,

we may wish support from editors which allow the typist (math¬

ematician or not) the opportunity to place the symbols on the

screen, and then have some transformation take place which turns

this into lraw’ TjgX. There are a number of such pre-processors:

in 1989, Siebenmann noted more than 12, which he divided into

Last words 365

‘text-oriented preprocessors’ and ‘equation editors’. In general

these are targeted for the pc or Macintosh. I remain unconvinced

by them. I still find it easier to write the T^X (but I have been

writing the T^X for a long time and may be biased).

Approaching the problem from a slightly different direction,

some other applications may generate T^jX: the most obvious

example of this is Wolfram Research’s ‘Mathematica’, a widely

available system which handles both symbolic and ‘numeric’ math¬

ematics. Equations output from Mathematica may be turned into

T^X form: similarly, two other major algebraic systems, Maple and

Macsyma, can produce lATjgX (Lavaud, 1991, and Chancelier and

Sulem, 1989). Note that we should not expect machine-generated

TgX (or IATgX) to be as concise, elegant, and understandable as

a human-generated T^X (or lATgX) can sometimes be.

Extending the language

There are ways to ‘extend’ T^X without modifying the program.

To some extent we have already been doing this. At its very rawest

level, T^X is hardly usable: what we have been using is plain:

that is, l^X with a fair number of commands (or macros) already

loaded. While plain is just about house-trained, Tf^X without its

plain commands (virT^X, or ‘virgin’ T^X) needs a great deal

of careful attention. The point here is that plain is only one

possible manifestation of I^X. It would not be very difficult to

load quite different commands from those provided in plain.tex,

but this does not seem to be a route chosen by many. Even the

iATgX extension to T^X is currently built on top of plain (this

is not quite true: JAT^X is built on top of lplain, which is a

slightly reduced version of plain omitting some commands or

features which overlap some IAT^X features or extensions). Most

of the plain commands are still available. Similarly, ylAdiS-TgX

‘sits on top of’ plain. These two are extensive and comprehen¬

sive ‘macro packages’ which are quite widely available. There are

literally hundreds of small add-ons to plain: extensions to meet

particular requirements. These may vary from simple definitions

similar to those in this primer, through to more developed and

consistent additions, like Ray Cowan’s tables.tex (which offers

a straightforward interface for table creation), PlCT^X (Michael

Wichura’s commands for the creation of pictures), edmac (John

Lavagnino and Dominik Wujastyk’s additions for ‘critical edi¬

tions), or texinfo, developed for use with the Free Software

366 A plain TpjK primer

Foundation’s documentation (which, among other things, defines

the ‘escape character’ to be @ instead of \, and bears a passing

similarity to Scribe).

How can you hope to find out about these facilities? Most of the

packages were written at particular institutions, and only slowly

percolate to the outside world. It is only through the good nature

and cooperation of their originators that they escape at all. Prac¬

tically all of these packages are available for free. This has two

very important consequences: information will tend to pass by

word of mouth - there will certainly be no organized advertising

to try to contact a potential audience. The documentation may

also be rather sparse, and corrections intermittent, although there

are notable exceptions to this rule. One way around the prob¬

lem has been to allow the packages to be available freely, but to

market the documentation: for example, Knuth’s The TpjKbook,

Lamport’s IATgX manual, Spivak’s and L^S-TeX

books, Wichura’s PjCl^X documentation, and so on. This has

the additional advantage that copyright of documentation is well

understood, and usually observed, while copyright of the com¬

mands themselves (like most other computer software) tends to
be treated with much less respect.

But there are ways to find out what is available: in broad terms

there are likely to be four major sources: through publications,

through user groups, electronically, and on disk. The publications

of the Tj^X Users Group (TUG), which includes the quarterly

magazine TUGboat, the Resource Directory, the TgXniques

series (approximately monographs), and the recent TTN (T£X

and TUG News), are the most widely available, and provide an

invaluable set of resources for the dissemination of information of

all matters T^Xnical, including the availability of macro packages.

In addition, the publications of the various national and language
groups provide similar services.

The various user groups (listed in Appendix C) generally pro¬

vide some sorts of information flow, perhaps directly by telephone,

but also by having meetings where there is the opportunity to find

out what others know (or know about), and at which information

may be disseminated about the availability of T£X facilities.

But even when a listing of the commands and their definitions
are included in TUGboat, no-one wishes to type them in again,
with the attendant problems of mis-types. The increasing ten¬
dency has been to circulate the information, or the commands
themselves, across electronic networks. This is further elaborated

Last words 367

in Appendix C. The evolving nature of electronic communica¬

tion tends to make anything printed rather out of date. But it

is probably true to say that anyone in North America or Europe

probably has the capability of connecting with an electronic net¬

work, either directly through a connection to an academic host

computer linked to a network, or through a modem to a com¬

mercial system like ClX, Bix, or CompuServe. This can permit

downloading of much T^}K-related material. The various ‘confer¬

ences’, ‘bulletin boards’, and electronic digests help keep people

informed. Fortunately, TUG and the other user groups also tend
to supply synopses of this information.

The last category, through the distribution of floppy disks, is

generally organized through the various user groups, although

some vendors will also help here. Information on this medium will

be found through the previous three routes.

Keeping up to date with corrections to software is a problem,

but again the electronic networks and the user groups do assist

here. Version control of many of the packages is not exemplary. For

example, version 2.09 of LAI^X includes many corrections: the ver¬

sion number has remained constant, but the cognoscenti know that

they should also look for the date (not earlier than <7 Dec 1989>).

Acquiring skills

As you use T^X, you will discover that there are things you wish to

do which exceed your knowledge. If suitable commands, or similar

commands, exist and are accessible to you, then you may be able

to use or modify them to your requirements. Using TgX is one

well-trodden path by which more T}gX skills may be accumulated.

Equally, there are courses which can often help. TUG runs courses

at various levels, from introductory through to the truly arcane

and obscure. Most of these include some amount of ‘hands on’

practice, although the more advanced courses tend to have a lower

component of machine-oriented practice. TUG’s courses tend to be

the most structured and are run most regularly, but all the other

user groups have some sort of educational programme, sometimes

in the form of workshops, and sometimes as more formal courses.

There are other skills to acquire. Most computer users seem to

be lamentably naive when it comes to typography. Those with

a background in typewriting are often heavily influenced by the

constraints and expectations of the typewriter, failing to appre¬

ciate that this is a very different medium, while the computer

368 A plain TppC primer

science end of the spectrum seems to have little aesthetic appre¬

ciation (there are notable exceptions). The typographic skills

needed to create masterpieces are beyond the average author,

and the availability of suitable tools does not guarantee their

successful and aesthetic use. The development of a critical eye

comes only slowly when it is untutored. There are some ways of

short-circuiting this: there is a large literature in typography -

some is directed towards type design, rather than the problems of

legibility, but a reasonable literature exists, and it is well worth

examining. A rather selective list is given in Appendix B. Courses

are few and far between, and (anathema to the average T^X user)

tend to be rather expensive.

In order to approach Knuth’s exhortation, to ‘create master¬

pieces of the publishing art’, you need to know more than just T^X.

There appears to be no substitute for practice, practice, a critical

eye, and some sympathy for the end product. But these skills con¬

tain the seed of a problem. Many books become unreadable; their

typographic infelicities obscure and conceal the content. Even the

hyphenation becomes an issue. Form and content become so inti¬

mately intertwined that the reader becomes distracted. Be warned!

Although the desire to create masterpieces underpins Knuth’s

underlying objective in the creation of Tj^X, we must not lose

sight of the fact that it has proved to be an effective workhorse

for a wide variety of functions, many of which have little to do

with traditional publishing. T^X is not just for books and jour¬

nals, although many such have been produced with its aid. One
of them might even be a masterpiece.

Appendix A

Font tables

The Computer Modern typeface has over 70 individual fonts. As

discussed earlier, in Chapter 18, some of these fonts are different

design sizes of the same fundamental font. For example, Computer

Modern Roman comes in design sizes of 5, 6, 7, 8, 9, 10, 12, and 17

points. There are really only about 31 basic designs. There are two

main issues to be addressed in providing examples of the fonts. The

first is ‘what characters are available in each font?’ The second is

the ‘shape’: for example, what does Computer Modern Sans Serif

look like? The first question is fairly straightforward to answer: the

majority of the fonts have the same set of characters (with perhaps

one variation). The font table for Computer Modern Fibonacci,

given here, contains the same basic characters, in the same loca¬

tions, that are used for the majority of the family. The Computer

Modern fonts with the prefixes cmr, cmsl, cmvtt, cmbx, cmss,

cmssi, cmssdc, cmssbx, cmssq, cmssqi, cmdunh, cmbxsl, cmb, cmff,

and cmfib all share the same font table, shown in Figure Al.

There are two slight variations: firstly, the fonts with prefixes

cmti, cmbxti, cmitt, emu, and cmfi share this same table (Fig¬

ure Al) except that they replace $ (dollar sign) with £ (the

pounds sterling sign). Secondly, a very slight modification occurs

with the ‘Capital and Small Capital’ fonts, emese and emtese,

which do not have the usual lower-case characters, but, instead,

smaller versions of the full-sized capitals. These ‘smaller’ char¬

acters are not merely reduced in a geometric progression: the

weights of the strokes correspond appropriately to the upper-case

characters. But the basic character positions remain the same.

There are other fonts with rather radical departures from the

‘standard’ pattern. The ‘inch-high’ font, cminch, has a denuded set

of characters - only the capitals and the numerals, but these are

found in the same positions as the previous fonts. In a similar way,

370 A plain TpjK primer

Figure A1

Character

positions of the

‘standard’ CM

fonts

Figure A2

Character

positions of the

‘typewriter’ CM

fonts

'0 '1 '2 '3 '4 '5 '6 '7

H
o

o

 r A © A n E T

'01s 4> vh ft ff fi a ffi ffl

H

CM
O

 i j *

'03a: 6 as ce 0 /E CE 0

'04a: - ! >>
$ % & >

'05a: () * + 9 - /

'06a: 0 1 2 3 4 5 6 7

'07a: 8 9 J i = i ?

'10a: @ A B C D E F G

'11a: H I J K L M N O

'12a: P Q R S T U V W

'13a: X Y Z [
u

]
*

'14a: i a b c d e f g
'15a: h i j k 1 m n o

'16a: P q r s t u V w

'17a: X y z - — " •*

'0 '1 '2 '3 '4 '5 '6 '7
'00a: r A b A — n E T
'01a: § 4 fi t 1 i

i L
'02a: i J

' ~ — •

'03a: 13 ae oe 0 K. (E 0
'04a: U

! II # $ 7. &)

'05a: () * + 9 - . /
'06s 0 1 2 3 4 5 6 7
'07s 8 9 : 9 < = > ?

'10s 0 A B C D E F G
'11s H I J K L M N 0
'12s P Q R S T U V W
'13s X Y Z [\]
'14s C a b c d e f g
'15s h i j k 1 m n 0
'16s P q r s t u V w
'17s X y z { 1 >

Appendix A 371

the logo fonts have only a few characters; these are not included

here since they are not ‘Computer Modern’ fonts.

The bulk of the tables are the same for the ‘typewriter’ fonts,

cmtt, cmtti, and cmsltt, but there are sufficient differences to

require the generation of Figure A2. Conveniently, cmtti has a £

in place of the $. The major differences are the absence of the

ligatures, and the substitution of certain other characters in their

place. Note, however, that cmvtt is a typewriter type with liga¬

tures and has its characters in the positions shown in Figure Al.

The maths italic fonts, cmmi and cmmib, have a recognizably

similar layout but with notable changes, as shown in Figure A3.

The maths symbol fonts, cmsy and cmbsy, have less similarity

to what has gone before, and the only major correspondence is

in the position of certain upper-case characters - see Figure A4.

As would be anticipated, the maths extension font, cmex, has no

characters which correspond to any of the other fonts. It is shown

in Figure A5.

There is only one other font to consider, cmtex, the ‘TjgX

extended’ font. This is an expression of an extended ASCII code

used at some US universities, including Stanford. It is shown in

Figure A6.

Text type specimens

The majority of the Computer Modern family is not intended for

text: it is intended for special uses, like headings, or perhaps for

emphasis. For example, the bold fonts are unlikely ever to be used

for setting blocks of text: they will prove far too difficult to read.

The typewriter text fonts are also specialist fonts, with rather

limited uses. The following specimens are therefore intended to

provide some clues of what typographers and designers term the

texture, colour, brilliance, and legibility of the ‘reading’ fonts.

But it is important to realize that other factors will be significant,

like the leading (or, in T^X terminology, the \baselineskip), the

texture of the paper, and even the process to be used in the final

printing - all of which helps to explain why professional advice

can make the difference between excellence and mere competence.

Most of the fonts are given in the 10 point design size, on 12 point

baselines. Since the two ‘Quotation’ fonts have an 8 point design

' size, they have been set on 10 point baselines.

372 A plain T^X primer

Figure A3

Character

positions of the

CM Math Italic

fonts

'0 '1 '2 '3 '4 '5 '6 '7

'00® r A 6 A 7*7 n X r

'Olx $ & n a 0 7 e

'02x C V e L K A P V

'03x £ TV p a T V <\> X

'04x U £ d W Q P

'05x v- 7 C > <

'06x 0 1 2 3 4 5 6 7

'07x 8 9 ? < / > ★

'10x d A B C D E F G

'll® H I J K L M N 0

'12® P Q R S T U V w
'13® X Y Z b \\ tt
'14® i a b c d e / 9
'15® h i 3 k l m n o

'16® p 9 r s t u V w

'17® X y z i 3 P

Figure A4

Character

positions of

the CM Math

Symbol fonts

'0 '1 '2 '3 '4 '5 '6 '7

o

o

— X * -G o ± T
'01® © © © 0 © o O •

'02® x = c D < > A A
'03® r^j c D < » >-
'04® «- -> t i \

r^i

'05® <s= => It \ v/ oc

'06® / oo G A V / 1

'07® V 3 —1 0 37 9 T J
'10® K A B c £> £ T Q
'11® n 1 J JC £ M Af O
'12® V Q 77 s r U V w
'13® X y 0 u n © A V
'14® h H L J r 1 { I
'15® (> | || t $ \ i
'16® V II V / u n C □
'17® § t t If * 0 7? 4

Appendix A 373

CM Roman 10 pt on 12 pt

‘In the leafy shade she lay all huddled and forlorn, the red-gold

hair, the ivory of her in the cool and leafy shade by the river,

her garments all disordered offering to the eye her shapeliness,

her long and rounded limbs; splendid and sculptural she was, like

a broken winged victory. The honeyed air droned and sang; the

ivory of her, the pathetic and savage splendour of her beauty sang

in my eyes as I knelt beside her. Gone she was and lost to me for

ever, Eurydice! Eurydice!’

CM Text Italic 10 pt on 12 pt

‘Yes. Weeping, weeping in the golden afternoon her voice came to

me in the mottled sunlight by the river and I went to where she

lay all huddled and forlorn, the red-gold hair, the ivory of her in

the cool and leafy shade by the river, her garments all disordered

offering to the eye her shapeliness, her long and rounded limbs;

splendid and sculptural she was, like a broken winged victory.

CM Slanted 10 pt on 12 pt

The honeyed air droned and sang, the ivory of her, the pathetic

and savage splendour of her beauty sang in my eyes as I knelt

beside her. She looked at me not as one looks at a stranger but as

if she expected me to comfort her. Full of desire and uncertainty

I took her in my arms. She smelled of honey, it was like a dream,

there was no strangeness in it; there already seemed to be a long

history between us.’

CM Sans Serif 10 pt on 12 pt

It is difficult to describe someone who is surrounded by a special

nimbus, perceived at once. But as this girl had the same effect, in

one way or another, on many others, I must try. She had soft yellow

hair, greeny-blue eyes, lovely eyebrows below a broad, quiet forehead

and the most perfect mouth I have ever seen; underneath her skin

there were golden lights.

CM Sans Serif Italic 10 pt on 12 pt

I am not a good physiognomist, I find it distorts a face to see it in

detail, and I imagine the peculiar, extraordinary charm of her face lay

in its proportions and in its expression. When I first saw the friezes in

374

Figure A5

Character

positions of

the CM Math

Extension font

A plain T^X primer

'0 '1 '2 '3 '4 '5 '6 '7

'00* () [
‘

J 1 1

'Olx { } < > 1 II / \

'02* () (
f

)
'03a: { 1

<

/ \
) / \

'04a;
1

(

'05a; 1 ' ’ () / \ / \

'06* 1 1

'07* r 1 J
{

- '

'10a: i)
1 1

() u U

'11* § /
o O © © © 0

'12* E n I U n lil A V

'13a: £ n f u n w A V

'14a; u n
- — — ~ — —-

'15* r

'16* A
\

A
\ i r ii

'17* t i /*■ *\ Ay

Appendix A 375

'0 '1 '2 '3 '4 '5 '6 '7
'00a: • 4 a P A “I 6 n

'Ola; A 7 <5 t ± ® 00 d
'02a: C D n u V 3 ® *5

o

co

ss
 -> o < > = V

'04a: ! M # $ 7. &)

'05a; () * + 9 - . /
'06a; 0 1 2 3 4 5 6 7

'07a: 8 9 • 9 < = > ?

'10a; <3 A B C D E F G

'11a: H I J K L M N 0

'12a; P Q R S T U V W

'13a; X Y Z [\] *■* _

'14a; (a b c d e f g
'15a; h i j k 1 m n 0

'16a: P q r s t u V w

'17* X y z { 1 > /

Figure A6

Character

positions of

the CM TfeX

Extended font

the museum on the Acropolis I couldn't believe it, most of the girls

are portraits of her. Her face, and above all her expression, belonged

to the same ideal, golden time.

CM Sans Serif Quotation 8pt on 10 pt

But beautiful girls are, in a sense, two a penny. There was something

even more arresting, something unique in her face. She had the simplic¬

ity of a young girl who found life good; but it was a simplicity that had

somehow been earned, was, as it were, on the second time round. This

second simplicity has the directness and potency of a natural force.

CM Sans Serif Quotation Italic 8pt on 10 pt

She had the kind of beauty that can change but not diminish - it

depended for so much of its power on the kind of person she was

that it could only end when she did. One trembled for her (it was

too good to survive) and was humbled at the same time, by a face

that was more strongly alive than anyone else's which contained an

indestructible, fearless happiness. She shone.

.

Appendix B

Annotated bibliography and references

Rather than present a bibliography in a strict order, some logic

has been imposed by dividing it into four sections. Some addi¬

tional annotation attempts to provide the reader with a weighting

which often indicates the value that the author feels they have.

Some references are there merely since they appear in the text.

Others have influenced the text directly, for better or for worse. It

is inevitable that some essential material has been inadvertently

omitted.

Knuth

Since Knuth holds the pivotal position in TgX, this first section is

his, and his alone.

Donald E. Knuth, 1968-, The Art of Computer Programming,

Addison Wesley Publishing Company, Reading, M. Volume 1,

Fundamental Algorithms (1st Edition, 1968), 2nd Edition, 1973,

634pp.: Volume 2, Sorting and Searching (1st Edition, 1969);

2nd Edition, 1981, 688 pp.: Volume 3, Seminumerical Algo¬

rithms (1st Edition, 1973), 723 pp. (Neither as quirky or amus¬

ing as the T)gX books. However, since Knuth wrote TfjX and

METRFONT in order to aid the production of these volumes,

they can be illuminating on several different levels. One exam¬

ple in volume 3 is that of calculating the date of Easter.)

Donald E. Knuth, 1979, T^X and METAFONT, New Directions in

Typesetting, American Mathematical Society and Digital Press.

Part 1, Mathematical Typography, 45 pp.: Part 2, T^X, a system

for technical text, 201 pp.: Part 3, METAFONT, 105 pp. (Part 1

is the printed text of the Gibbs Memorial lecture. Even if T^X

378 A plain TpjK primer

and METRFONT had never been written, it would be an essay

worth reading.)

Donald E. Knuth, 1979, Tau Epsilon Chi, a system for technical

text, American Mathematical Society, Providence, RI, 200 pp.

(A version of Part 2 of the above.)

Donald E. Knuth and Michael F. Plass, 1981, Paragraphs into

lines, Software - Practice and Experience, 11(11), pp.1119-

1184. (A detailed description of how T^X breaks lines in the con¬

struction of paragraphs. Some of the terminology has changed

very slightly.)

Donald E. Knuth, 1983, The TFtoPL Processor and The PLtoTF
Processor, in TgXware, Stanford University Computer Science

Report. (A detailed account of the structure of Tf^X font metric

files.)

Donald E. Knuth, 1984, The TgXbook, Addison Wesley Publish¬

ing Company, Reading, Mass., 483pp. (The source reference for

T^X-as-we-know-him/her. It delights many, and frustrates oth¬

ers. Another class of reader is both delighted and frustrated.

The earlier editions do not reflect the changes made at TgX3;

use any edition from the 17th printing in softback or from the

11th in hardback.)

Donald E. Knuth, 1984, The METRFONT Book, Addison Wesley

Publishing Company, Reading, M, 500 pp. (Still the only widely

available text on METRFONT.)

Donald E. Knuth, 1984, Computer Modern Typefaces, Addison

Wesley Publishing Company, Reading, M, 500 pp. (The illus¬

trations of the Computer Modern typeface are an unexpected
delight.)

Donald E. Knuth, 1984, Literate Programming, The Computer

Journal, 27(2). (Explains some of the philosophy underlying the

WEB system of structured documentation. DgK regards this as

one of the major developments from the Ij^X project.)

Donald E. Knuth, 1986, Computer Science Considerations, Byte,

(2), pp. 169-172. (Text of an interview with DgK. Helps fill in

some of the gaps in the development of the T£X project, in an
anecdotal fashion.)

Donald E. Knuth and Pierre MacKay, 1987, Mixing right-to-

left texts with left-to-right texts, TUGboat, 8(1), pp.14-25.

Appendix B 379

(Describes an extension to T^X which allows ‘bi-directional’
texts to be set.)

Donald E. Knuth, 1987, Fonts for digital halftones, TUGboat,
8(2), pp.135-160.

Donald E. Knuth, 1989, The errors of T^X, Software Practice &

Experience, 19, pp.607-785. (A complete account of the errors

noted down by Knuth while developing and maintaining TgX.

An incredible inventory of bugs, enhancements, and errors; the

detail is probably unparalleled in the history of software devel¬

opment.)

Donald E. Knuth, 1989, The new versions of T^X and METRFONT,

TUGboat, 10(3), pp.325-328. (In which Knuth introduces the

changes introduced at version 3. These features should be incor¬

porated in all current implementations of T^)X and METRFONT.)

Donald E. Knuth, 1990, Virtual fonts: more fun for Grand Wiz¬

ards, TUGboat, 11(1), pp.13-23. (Information about virtual,

or composite, fonts.)

Donald E. Knuth, 1990, The future of T^X and METRFONT,

TUGboat, 11(3), p.489. (The dehnitive statement: ‘I will make

no further changes except to correct extremely serious bugs.’)

The others

This section includes other Tf^X books, many of the references

within the text, and some material which may be worth pursuing

if more information is required on the technical aspects of various

support software and macro packages.

Paul W. Abrahams, Karl Berry, and Kathryn A. Hargreaves, 1990,

T^X for the Impatient, Addison Wesley Publishing Company,

362 pp. (A good reference manual for those who already have a

few inklings. Use the second or later edition.)

Phil Andrews, 1989, Integration of TgX and graphics at the Pitts¬

burgh Supercomputing Center, TUGboat, 10(2), pp.177-178.

ArborText, 1988, Dvilaser/PS User Manual, 56 pp. (Provides

some useful examples of the capabilities of this driver, as well

as the details of how \specials are used.)

Graham Asher, 1990, Type & Set: TgX as the engine of a friendly

380 A plain primer

publishing system, in: Tf^X applications, uses, methods, Mal¬

colm Clark (ed.), Ellis Horwood Publishers, Chichester, Eng¬

land, pp.91-100. (This includes a post-processor for dvi files

which optimizes page breaks over an entire document, following

a simplified line-breaking model.)

Richard J. Beach, 1985, Setting Tables and Illustrations with

Style, Xerox PARC Technical Report CSL-85-3. (A discussion

of the problems of setting tables and inserted illustrations.)

Richard J. Beach, 1986, Tabular typography, in: Text Processing

and Document Manipulation, J. C. can Vliet (ed.), pp. 18-33.

(A more readable, shorter, and convincing version of the above.)

Stephan van Bechtolsheim, 1988, Using the Emacs editor to safely

edit TjjX sources, TpXniques 7, pp. 195-202.

Nelson Beebe, 1987, A l^X dvi driver family (electronic docu¬

ment), University of Utah, 94 pp. (This ‘family’ is written in

‘portable’ C and can provide a fairly standard interface to a

wide variety of output devices.)

Nelson Beebe, 1989, T^X and graphics: the state of the problem,

Cahiers GuTenberg, no.2, pp. 13-53.

Karl Berry, 1990, Filenames for fonts, TUGboat 11(4), pp.517-

520.

Rob de Bruin, Cornelis G. van der Laan, Jan R. Luyten, and

Herman F. Vogt, 1988, Publiceren met IAT^X, CWI Syllabus

19. (Contains good graphics examples - some of which appear
in Chapter 17. In Dutch.)

J. Ph. Chancelier and A. Sulem, 1989, MacroTeX: Un generateur

de code JATgX implements en Macsyma, Cahiers GuTenberg,

no.3, pp.32-39. (A link between the algebraic system Macsyma
and IATeX.)

Pehong Chen, J. Coker, and Michael A. Harrison, 1986, An

improved user environment for TjgX, in: TgX for Scientific Doc¬

umentation, Jacques Desarmenien (ed.), Springer Verlag Lec¬

ture Notes in Computer Science, No. 236, pp.32-44. (With the

next reference, useful sources of information about the VoRT^X

project. VoRI^X takes a T£X input file, but reformats incre¬
mentally, as changes are made.)

Pehong Chen, J. Coker and Michael A. Harrison, Jeffrey W.

McCarrell, and Steven J. Procter, 1986, The VoRI^X document

Appendix B 381

preparation environment, in: T^X for Scientific Documentation,

Jacques Desarmenien (ed.), Springer Verlag Lecture Notes in

Computer Science, No. 236, pp.35-54.

Pehong Chen and Michael A. Harrison, 1987, Multiple representa¬

tion document development, IEEE Computer, 21(1), pp.15-21.

(Stresses the advantage of multiple ‘views’ of the underlying

document.)

Adrian Clark, 1987, Halftone output from T^X, TUGboat,

8(3), pp.270-274. (An example of the use of halftone fonts,

as described in Knuth, 1987.)

Adrian Clark, 1991, Practical halftoning with T]eX, TUGboat,

12(1) pp.157-165. (An overview, with an extension to colour.)

Ray Cowan, undated, tables.tex (electronic document). (Straight¬

forward but powerful set of commands for table creation.)

Trevor Darrell, 1987, Incorporating PostScript and Macintosh

figures in T^X (electronic document available with psf ig com¬

mands). (Useful set of commands to ease the incorporation of

PostScript material into TeX.)

Hans Ehrbar, 1986, Statistical graphics with TgX, TUGboat,

7(3), pp.171-175.

Michael Ferguson, 1990, Report on multilingual activities, TUG¬

BOAT, 11(4), pp.514-516.

P. Ferris and Geeti Granger, 1985, Apollo, pp.16-21, in: J. J. H.

Miller (ed.), PROTEXT II, Boole Press, Dublin.

Donnalyn Prey and Rick Adams, 1990, !%@:: A directory of elec¬

tronic mail addressing and networks, O’Reilly & Associates,

Sebastopol, 420 pp. (Useful for information on how to get

through to various electronic networks.)

N. Gehani, 1986, Tutorial: Unix document formatting and type¬

setting, IEEE Software, September, pp. 15-24. (Gives some

overview of nroff, pic, grap, and the rest.)

H. Gruber, E. Krautz, H. P. Fritzer, K. Gatterer, G. Sperka,

W. Sitte, and A. Popitsch, 1988, Electrical resistivity, mag¬

netic susceptibility, and infrared spectra of superconducting

RBa2Cu307 with R = Y, Sc, Tm, Ho, Eu, Nd, Gd, pp.83-88,

in: H. W. Weber (ed.), High-Tc Superconductors, Plenum Press,

New York. (‘Source’ of Figure 17.7.)

382 A plain Tp]K primer

Michael A Harrison, 1989, News from the VoRT^X project, TUG¬

BOAT, 10(1), pp.11-14.

Alois Heinz, 1990, Including pictures in T^X, in: TgX applications,

uses, methods, Malcolm Clark (ed.), Ellis Horwood Publishers,

Chichester, England, pp.141-151.

Alan Hoenig, 1989, Fractal images with Tj^X, TUGboat, 10(4),

pp.491-498.

Alan Hoenig, 1991, Labelling figures in T^X documents, TUG¬

BOAT, 12(1), pp.125-128. (A rather clever way of using the

‘other’ font dimensions to store and use extra information.)

Don Hosek, 1990, T^X output devices, TUGBOAT, 11(4), pp.545-

569. (Underlines the utility of TUGboat in providing material

which is nowhere else available.)

ISO, 1985, Information Processing - Text and office systems -

Standard Generalized Markup Language (SGML), ISO/DIS

8879. (Another approach to systematic, programmable text

markup, but not very exciting.)

Brian W. Kernighan and Lorinda L. Cherry, 1975, A system for

Typesetting Mathematics, Communications of the ACM, 18(3),

pp.151-157. (Parallels to, and differences from, T^X.)

Brian W. Kernighan, 1979, A TROFF Tutorial, in: UNIX Pro¬

grammers Manual 7th edition, vol. 2a, pp.237-250, Bell Labo¬
ratories.

Brian W. Kernighan, 1982, PIC - A Language for Typesetting

Graphics, Software - Practice and Experience, 12(1), pp. 1-21.

Brian W. Kernighan, 1984, The UNIX document preparation tools

- A retrospective, pp.12-25, in: J. J. H. Miller (ed.), PROTEXT
I, Boole Press, Dublin.

Leslie Lamport, 1985, The IATgX Document Preparation System,

Addison Wesley Publishing, 175 pp. (For many years the source

textbook for IAT^X. Its relative brevity is a blessing, but equally

it could be regarded as terse in many essential areas.)

Leslie Lamport, 1987, I^X output for the future, TUGboat, 8(1),
p.12.

John Lavagnino and Dominik Wujastyk, 1990, An overview of

edmac: a plain TgX format for critical editions. TUGboat,

11(4), pp.623-643.

Appendix B 383

Michel Lavaud, 1991, AsTgjX: an integrated and customizable mul¬

tiwindow environment for scientific research, Cahiers GuTen-

berg no.10-11, pp.93-116. (Includes transformation from the

algebraic system Maple to T^jX.)

M. E. Lesk, 1979, Tbl - A Program to Format Tables, in: UNIX

Programmers Manual 7th edition, vol. 2a, pp. 163-180, Bell Lab¬

oratories. (Many of the examples in Chapters 14-16 are drawn

from this report.)

Kent McPherson, 1985, VAX Language-Sensitive Editor (Lsedit)

Quick reference guide for use with the IATfrpC environment and

lAT^X style templates, T^jXniques 1. (Applicable to T^X too.)

Doug Maus and Bruce Baker, 1987, Dvilaser/PS extensions to

lAT^X, TUGboat, 7(1), pp.41-47. (These extensions to Dvi-

laser/PS can be employed for use with almost any other Post¬

Script driver.)

Frank Mittelbach, 1990, E-TgX: Guidelines for future T^X, TUG¬

BOAT, 11(3), pp.337-345.

Peter and Linda Murray, 1963, The Art of the Renaissance,

Thames & Hudson, London, 286 pp. (A helpful note on the inte¬

gration of text and graphics before computing.)

Olivier Nicole, 1989, Un pilote graphique entre le logiciel statis-

tique S et PjCT^X, Cahiers GuTenberg, 3, pp.21-31.

Olivier Nicole, 1990, A graphic driver to interface statistical soft¬

ware S and PiCT^X, TUGboat, 12(1), pp.70-73.

A. C. Norris and A. L. Oakley, 1990, Electronic publishing and

chemical text processing, in: T^X applications, uses, meth¬

ods, Malcolm Clark (ed.), Ellis Horwood Publishers, Chichester,

England, pp.207-225.

Rolf Olejniczak-Burkert, 1990, texpic User Manual 1.0, interplan

TB Software GmbH. (A dvi-to-dvi processor.)

Rolf Olejniczak-Burkert, 1989a, texpic - design and implementa¬

tion of a picture graphics in d^X a la pic, Cahiers GuTenberg,

3, pp.9-20.

Rolf Olejniczak-Burkert, 1989b, texpic - design and implementa¬

tion of a picture graphics in T^X a la pic, TUGboat, 10(4),

pp.627-637.

Personal TjgX Inc., 1987, PTI Laser/PS Manual, 28 pp. (Manual

384 A plain TpjX primer

written by Mike Spivak. Another PostScript driver.)

Lee S. Pickrell, 1990, Combining graphics with TjgX on IBM pc-

compatible systems and LaserJet printers, TUGboat, 11(1),

pp.26-31.

Sunil Podar, 1986, Enhancements to the picture environment of

IAT^X, Technical Report 86-17, Department of Computer Sci¬

ence, SUNY, 22 pp.

Nico A. F. M. Poppelier, 1991, Two sides of the fence, TUGboat,

12(3), pp.353-358.

Sebastian Rahtz, 1989, A survey of T^)X and graphics, CSTR 89-7,

Department of Electronics & Computer Science, University of

Southampton, 51 pp.

Michael Ramek, 1990, Chemical structure formulas and x/y dia¬

grams with T^X, in: T^X applications, uses, methods, Mal¬

colm Clark (ed.), Ellis Horwood Publishers, Chichester, Eng¬

land, pp.227-258. (An elegant set of commands for graphics

and for chemical formulae.)

Brian Reid, 1980, Scribe: A Document Specification Language

and its Compiler, CMU-CS-81-1000, Carnegie-Mellon Univer¬

sity. (On which IAT^X was based.)

Tom Rokicki, 1989, dvidvi: read.me (electronic documentation),

Radical Eye Software. (A dvi-to-dvi processor: its allows the

rearrangement of pages, enabling ‘signature’ printing, for exam¬

ple, for booklets.)

Tom Rokicki, undated, DVIPS: a T^X driver, 41 pp. (A highly-rated

PostScript driver, electronic documentation, dvips.tex, is

available in the Aston T)eX Archive, among others.)

Yasuki Saito, 1987, Report on JT£X: a Japanese I^gX, TUG¬

BOAT, 8(2), pp.103-116. (Another T^X extension. It will handle

Japanese characters — katakana, hiranga, and kanji — and the

‘traditional’ western alphabets.)

David Salomon, 1989, DDA methods in T^X, TUGboat, 10(2),

pp.207-216. (Implementation of Jack Bressenham’s digital line

drawing algorithms in TgX.)

David Salomon, 1990, Output routines: Examples and Techniques.

Part I: Introduction and examples, TUGboat, 11(1), pp.69-

86. (This and the next two articles provide the most extensive

Appendix B 385

discussion on output routines currently available:)

David Salomon, 1990, Output routines: Examples and Techniques.

Part II: OTR techniques, TUGboat, 11(2), pp.212-236.

David Salomon, 1990, Output routines: Examples and Techniques.

Part III: Insertions, TUGboat, 11(4), pp.588-605.

Rainer Schopf, 1989, Drawing histogram bars inside the I^Tj^X

picture-environment, TUGboat, 10(1), pp.105-107. (Trans¬

portable to T^X.)

Norbert Schwarz, 1988, Einfiihrung in T^X, Addison-Wesley Ver-

lag (Deutschland) GmbH, 272 pp. (A good, concise introduc¬

tion. In German.)

Norbert Schwarz, 1989, Introduction to TgX, Addison-Wesley

Europe, 278 pp. (Translation of the above.)

Raymond Seroul, 1989, Le petit Livre de T^X, InterEditions,

317 pp. (Excellent introduction to Tj^jX. In French.)

Raymond Seroul and Silvio Levy, 1991, A Beginner’s Book of TgX,

Springer Verlag, 283 pp. (Translation of the above.)

Laurent Siebenmann, 1989, The evolution of the user inter¬

face, TgXline 8, pp. 11-13. (Describes a number of pre-processors

which transform mathematics into TgX form.)

Richard Simpson, 1990, Nontraditional uses of METRFONT, in:

T^X applications, uses, methods, Malcolm Clark (ed.), Ellis

Horwood Publishers, Chichester, England, pp.259-271. (Makes

use of METRFONT to create new characters - graphs, parts of

graphs, special symbols. Also creates pk/tfm pairs.)

Michael D. Spivak, Michael Ballantyne, and Yoke Lee, 1989,

HI-TeX cutting and pasting, TUGboat, 10(2), pp.164-165.

(Another dvi-to-dvi processor: intended to allow T^X to han¬

dle large or complex tables, but it could equally be used to

allow diagrams to be merged.)

Michael D. Spivak, 1990, The joy of T&i, 2nd edition, Ameri¬

can Mathematical Society, 309 pp. (The source manual for the

MyVliS-T^jX macro package, an extension to plain for hardened

mathematicians.)

Michael D. Spivak, 1989, LR^S-TeX the synthesis, The TeXplora-

tors Corporation, Houston, 289 pp. (A specialized macro pack¬

age merging of the functionality of both MmS-TeX and IAT^X,

386 A plain TpXi primer

and with some extras.)

Michael D. Spivak, 1991, A contrarian view on T^X extensions,

TpXline 13, pp.1-3. (A suggestion that many of the examples

quoted of T^X’s inadequacies are fallacious.)

TUG, 1991, Resource Directory, T^X Users Group, Providence,

RI, 194pp. (Compilation of many of the resources available to

the Ij^X user. One of the many benefits of TUG membership.)

TUG dvi Driver Standards Committee, 1992, The dvi driver stan¬

dard, level 0, TUGboat, 13(1), pp.54-57.

A. J. Van Haagen, 1988, Box plots and scatter plots with Tj^X

macros, TUGboat, 9(2), pp.189-192.

Michael Vulis, VTgX enhancements to. the TjgX language, 1990,

TUGboat, 11(3), pp.429-434.

Michael Vulis, 1991, Should TgX be extended? 1991, TUGboat,

12(3), pp.442-447. (Provactively suggests that TgX could be ‘a

historical curiosity’ by 1995.)

Michael Wichura, 1987, The PjCT^X manual, T^Xniques 6, T^X

Users Group, 83 pp. (The source manual: I find the syntax a bit

quirky, but the commands certainly work well enough.)

Michael Wichura, 1988, PjCT^X: macros for drawing Pictures,

TUGboat, 9(2), pp.193-197.

Michael Wichura, undated, TABLE - The TABLE macro package,

Personal TgX Inc. (A powerful alternative to building your own

tables.)

Patricia Wilcox, 1989, Metaplot: machine-independent line graph¬
ics for T^X, TUGboat, 10(2), pp.179-187.

Dominik Wujastyk, 1987a, Chemical ring macros in IATeX,

TgXline 4, p.ll.

Dominik Wujastyk, 1987b, Chemical symbols from IATgX, TgXline
5, p.10.

Typography and style

This section is not TgX specific, but addresses some of the wider

issues of typography. It is by no means comprehensive. Wider

reading is essential if we are ever to be able to achieve success in

Knuth’s final exhortation in The TpKbook: Go forth now and

Appendix B 387

create masterpieces of the publishing art!

Alison Black, 1990, Typefaces for desktop publishing, a user guide,

Architecture Design and Technology Press, 106 pp. (Nicely

designed and presented, this is nowhere as narrow as its title

suggests. Substitute ‘electronic’ for ‘desktop’.)

Horace Hart, 1986, Hart’s rules for compositors and readers at the

University Press Oxford, 39th edition, 182 pp. (First printed in

1893, this encompasses the house style still used at OUP. Still

a mine of useful information, with lots of solutions to problems

that the amateur does not know exist. Regarded as a standard

by the English-speaking world.)

Linotype, 1988, The Pleasures of Design, Linotype Ltd, 33 pp. (A

useful set of guidelines for layout and typography in general.)

Ruari McLean, 1980, The Thames and Hudson Manual of Typog¬

raphy, Thames and Hudson, 216 pp. (Explains some of the typo¬

graphic detail that we ignore at our peril. Lots of good advice.

Broadens your appreciation of type and typography enormously,

and entertainingly.)

John Miles, 1987, Design for Desktop Publishing, Gordon Fraser,

103 pp. (T^X is hardly desktop publishing in the traditional

sense, but there are many nuggets in here which will prevent

you from making too many layout gaffes.)

Richard Rubinstein, 1988, Digital Typography, Addison Wesley

Publishing Company, 340 pp. (Interesting, thought provoking,

and by someone who knows something of T^X and METRFONT.

Covers a wide field.)

Richard Southall, 1984, First principles of typographic design for

document production, TUGboat, 5(2), pp.79-90. (Based on

a course presented with Leslie Lamport. Richard occupies an

important place in the hagiocracy.)

University of Chicago Press, 1982, The Chicago Manual of Style,

13th edition, University of Chicago Press, 738 pp. (A compre¬

hensive manual which describes the rules of style used by the

Press. Not necessarily the rules used by other presses, but its

all-encompassing nature does give it a claim to providing a rela¬

tively unambiguous standard.)

388 A plain TpK primer

Sources for many equations and examples

Since real examples are more convincing and less tractable than
invented ones, most of the equations in the text have been bor¬
rowed, stolen, or adapted from other published sources. In general
these are from publishers other than Addison Wesley, since this
introduces some variation in the way that the maths is handled.
Simply reproducing an Addison-Wesley-style equation in TjgX is
just too easy. One or two portions of text have also been borrowed,
directly or indirectly. Some were referenced earlier. Naturally it is
left as an exercise to the reader to locate the equations and exam¬
ples in the sources.

S. Angus, B. Armstrong, and M. K. de Reuck, 1985, Chlorine:
tentative tables, Pergamon Press, 162 pp.

Samuel Beckett, 1959, Molloy: Malone Dies: The Unnameable,
Calder & Boyars, London.

William Blake, 1804, Milton, in: The Complete Poems, ed. Alicia
Ostriker, 1977, Penguin Books.

Jorge Luis Borges, 1970, Labyrinths, Penguin Books, 287 pp.

Joe Bob Briggs, 1987, Joe Bob Briggs goes to the Drive-In, Pen¬
guin Books, 325 pp.

Lewis Carroll, 1965, The Annotated Alice (edited by Martin Gard¬
ner), Penguin Books, 352 pp.

Ruel V. Churchill, 1960, Complex variables and applications,
McGraw-Hill Book Company, Inc., 297pp.

W. E. H. Culling, 1989, The characterization of regular/irregular
surfaces in the soil-covered landscape by Gaussian random
fields, Computers & Geosciences, 15(2), pp.219-226.

R. W. Ditchburn, 1963, Light, Blackie and Son Ltd, 518 pp.

Rafael C. Gonzalez and Paul Wintz, 1977, Digital Image Process¬
ing, Addison Wesley Publishing Company, 450 pp.

Carol A. Gotway, 1991, Fitting semivariogram models by weighted
least squares, Computers & Geosciences, 17(1), pp.171-172.

Bo Stig Hanson, 1990, A function-based formatting model, Elec¬
tronic Publishing, 3(1), pp.3-28.

Yannis Haralambous, 1989, TgX and latin alphabet languages,
TUGboat, 10(3), pp.342-5.

Appendix B 389

Russell Hoban, 1987, The Medusa Frequency, Jonathon Cape,
London, 143 pp.

Kiyoshi Horikawa, 1978, Coastal Engineering, University of Tokyo
Press, 402 pp.

P. J. Kavanagh, 1966, The Perfect Stranger, Chatto & Windus,
London, 182 pp.

Peter A. Lachenbruch, 1975, Discriminant Analysis, Hafner Press,

128 pp.

Gary Larson, 1984, The Far Side Gallery, Andrews and McMeel,

unnumbered.

William S. Meisel, 1972, Computer-Oriented Approaches to Pat¬

tern Recognition, Academic Press, 250 pp.

Herman Melville, 1851, Moby Dick or the whale. (The examples

in Chapter 3 are an amalgam of Chapter 2 ‘The Carpet Bag’

from the 1982 Modern Library Edition and the 1967 Every¬

man’s Library Edition. ‘She was Rachel, weeping for her chil¬

dren, because they were not.’)

Flann O’Brien, 1967, At Swim-Two-Birds, Penguin Books, 218 pp.

W. S. B. Paterson, 1969, The Physics of Glaciers, 1st edition,

Pergamon Press, 250 pp.

Theo Pavlidis, 1982, Algorithms for graphics and image process¬

ing, Computer Science Press, 416 pp.

Terry Pratchett, 1989, Pyramids, Victor Gollancz Ltd, London,

272 pp. (But read ‘The Colour of Magic’ by the same author

first.)

Henry Reed, 1946, Chard Whitlow, Jonathon Cape, London.

Azriel Rosenfeld and Avinash C. Kak, 1982, Digital Picture Pro¬

cessing, Volume 1, 2nd edition, Academic Press, 435 pp.

Azriel Rosenfeld and Avinash C. Kak, 1982, Digital Picture Pro¬

cessing, Volume 2, 2nd edition, Academic Press, 349 pp.

J. Serra, 1982, Image Analysis and Mathematical Morphology,

Academic Press, 610 pp.

Appendix c

Resources

Tj^X is widely available. There are versions of T^X which run

on practically any machine which is currently being produced.

Provided there is a Pascal or C compiler available, you could

probably compile your very own version from the sources which

are publicly available. In the mid-80s, this was indeed what you

were most likely to do. Fortunately it is now possible to find a

‘plug’n’play’ version of TgX for the majority of computing plat¬

forms. The popular platforms usually have both commercial and

public domain implementations available.

If there is a free (i.e. public domain, or better, publicly avail¬

able) implementation, how do the commercial vendors survive?

And why? Purchasing a commercial version gives some assurance

that when something goes wrong, you have a friendly shoulder to

cry on (or a friendly telephone to cry over). Despite Tf^X's nature

as an unchanging de facto standard, there are upgrades from time

to time: the most notable of these was the significant change from

version 2.999... to version 3. The new features introduced circu¬

lated fairly quickly through many parts of the T^X world, but in

the spirit of ‘if it ain’t broke, don’t fix it’, there are still bound to

be many ‘old’ versions around. But at least it was in the vendors’

interests to communicate with as many of their customers as they

could find, in the hope that they would want to upgrade. In the

public domain, the resources do not exist to do this sort of follow

up. But those who have good access to the T^X ‘community’ can

usually rely on their colleagues to find out what is going on. If you

are on your own, then this information nexus may not be present.

The vendors have other uses: larger companies may not be per¬

mitted to obtain software which is not ‘supported’ in some way. If

your business depends upon some software (to whatever degree),

the relatively small amount spent in purchase and support is an

392 A plain TjgX primer

insurance policy. There is, though, a minor problem lurking in the

background. The ‘versions’ of T^X are not so very different - to be

l^X the implementation must pass a fairly rigorous range of tests.

The basic interface is fixed. What criteria are therefore used to

choose between this range of very similar products? The vendors

attempt to provide some added value - sometimes by hotline sup¬

port (especially in the USA), sometimes by providing drivers for

a wide range of output devices (although many purchasers mix

and match their T^X implementations and drivers), sometimes by

enhancing the T^X program by making it as fast as possible, or

exploiting particular aspects of the platform’s architecture, or by

making the installation as easy as possible.

There can be no doubt that at one time the commercial imple¬

mentations were likely to be better than the public domain ones

(with perhaps the exception of the ‘parent’ installation on the

TOPS-20 system at Stanford University). When the first com¬

mercial implementations on the IBM personal computer arrived,

there were no public domain versions; the same was true of the

Macintosh, and later the Atari and the Amiga. At a larger scale,

the Sun workstation has had a fine commercial implementation

since 1984 (it was this implementation by ArborText, together

with its previewer, which convinced me of the utility of TgX). By

and large, there are few commercial implementations for the very

large mainframes. The market simply is not there to support a

vendor. But once we migrate to Digital’s VAX range, and then

to UNIX workstations, and at last to the wide range of ‘personal’
machines, the vendors proliferate.

The following account of available versions of TgX is not com¬

prehensive, nor does inclusion imply recommendation in any way.

It just reflects an implementation that has been brought to my

attention in some way. It concentrates on the ‘popular’ ranges of
machines.

Personal machines

‘Personal machines’ tend to imply the IBM pc and its clones.

This is shortsighted, since there are equally ‘personal’ machines

around, like the Apple Macintosh, the Atari ST, and the Amiga

(and some others too). All of these run T^X very well, and the

superior graphics capability of these non-IBM machines does make
them very attractive for preview.

1

Appendix C 393

The clones

There are more implementations on the ‘clone’ than any other

platform. There are at least four commercial implementations,

and probably an equal number of public domain versions. The

commercial implementations pcTgX from Personal TgX Inc. and

/rT^X from Arbor Text (originally called microT^X and originally

marketed by Addison Wesley) were the first practical implemen¬

tations on ‘small’ machines. They have continued to develop.

Since then, TurboTf^X from Kinch Computer Company, Vector

Tj^jX from MicroPress Inc., CTgX from Micro Publishing Systems,

and ‘Complete System T from ScripTek have joined them. In the

public domain field, the strongest versions seem to be Eberhard

Mattes’ emTgX and Wayne Sullivan’s SBTj^X. But there are oth¬

ers: Klaus Thull’s PubliCT^X, Garry Biehl’s DOSTgX, and Pat

Monardo’s Common-T^X. This last implementation was hand-

translated into C, and forms the basis of some implementations

on other platforms. All these are genuine full implementations of

T^X, and all work in the ‘normal’ MS-DOS operating system with

at most 640 Kbyte of memory (and a reasonable amount of hard

disk). What else do you need? You need a screen previewer and

other output drivers. In general these are extra items which have

to be bought from the vendors, although the public domain ver¬

sions do tend to include a good range of drivers. The multiplicity

of alternative output devices in the pc world does make it difficult

to be comprehensive, but almost all popular (and many rather

unpopular) devices seem to be catered for.

Macintosh

Currently there are at least two public domain versions and one

commercial. The most impressive of the public domain versions is

Andrew Trevarrow’s Ozd^X. This begins to exploit the Macintosh

interface and to provide a degree of integration. The Macintosh

has the relative advantage of not having a wide variety of screens

and output devices. This makes the implementor’s job so much

easier: he or she knows what devices to target. The commercial

implementation, Textures, from Blue Sky Research, is even more

highly integrated, and really feels like a Macintosh application.

394 A plain TfiX primer

Atari

The Atari has tended to be regarded as a games machine, but in

some ways it provides an excellent engine for T^X. There are com¬

mercial implementations from T^Xsys and from Tools, and public

domain implementations from Christopher Strunk and from Ste¬

fan Lindner and Lutz Birkhahn. All these implementors are from

Germany (a country which takes its Ataris very seriously).

Amiga

I only know of one commercial implementation for the Amiga,

written by Tom Rokicki (otherwise known as Radical Eye Soft¬

ware, or \/i). There is at least one public domain implementation.

Like the Atari, this is an excellent platform for TgX, and its sup¬

port for true multi-tasking offers all sorts of really attractive

possibilities.

Workstations

This almost always means UNIX. But even UNIX devotees will

acknowledge that there is more than one UNIX. There is a ‘vanilla’

public domain UNIX distribution which comes through Pierre

MacKay of the University of Washington. ArborText have a num¬

ber of commercial implementations for various UNIX boxes. The

NeXT machine comes complete with an implementation of Tf^X by

Tom Rokicki. Since workstations do not always mean UNIX, let us

include Graham Toal’s implementation on the Acorn Archimedes,

and also Edgar FuB’ commercial implementation on the same

machine.

VAX and bigger

For many years, David Kellerman of North Lake Software has pro¬

vided both a commercial and a public domain implementation of

T^jX for VAX/VMS systems. There are others around too, through

Adrian Clark, Don Hosek, and others. There is an implementation

on one of the DECUS distribution tapes. For many years Maria

Code Data Processing Services have been stalwart providers of

public domain TgX. This includes a version for Vaxen.

Beyond this point, all implementations appear to be in the pub¬

lic domain. This includes Prime, Data General, Cray, the various

l

Appendix C 395

IBM mainframe systems (vm/cms, VMS, and even tso), and the

ageing DEC TOPS systems. Naturally there are some others out

there. Provided you can find a Pascal or C compiler, the imple¬

mentation is possible - not necessarily easy. Practically every one

of the public domain implementations, and a few of the commer¬

cial ones, include the ‘source’ code. One interpretation of ‘public

domain’ suggests that what it really means is ‘publicly available’

or ‘freely available - but not necessarily free’.

TgX is not enough

Although various device drivers are almost inevitably included in

most implementations, this is something which needs to be consid¬

ered. There are some good commercial drivers, especially for the

MS-DOS and UNIX implementations (and notably by ArborText

for both and Personal T^X for ms-dos). Outside this there are

a few commercial drivers, but chiefly for very particular devices.

The range of public domain alternatives is wide and bewildering.

Nelson Beebe is responsible for a ‘family’ of drivers which have

shown themselves to be modular and fairly readily enhanced to

new devices which appear. Written in C they are often included

in the various implementations.

From time to time tables of driver availability are published in
TUGboat: see for example Hosek (1990). These tables cover both
commercial and public domain drivers, but remain incomplete.

TgX and drivers are not enough

Even with a fully fledged T^X and a plethora of drivers, it is likely

that you will need a few other things: these might include spelling

checkers, although there are arguments against their use; syntax

checkers - a way of balancing braces can often prevent much grief,

and editors like EMACS (in the public domain and frequently found

on UNIX machines) or the proprietary VAX Lsedit can provide

many useful features which make it much more difficult to make

syntactic errors.

Information is also available: there are a number of ways of con¬

tacting other T^X users, either with problems of implementation,

or with TgX problems. Of course, if you bought your implemen¬

tation, you should reap the benefit of your investment and try

out the vendor. Some are better than others, but if you don’t ask,

they won’t provide. Unfortunately, there are two worlds: there are

396 A plain TpX primer

those with electronic access to the worlds, and those without. The

widespread use of electronic mail is rather taken for granted in the

academic and parts of the research world, but sadly is nowhere

as widespread as those in electronically connected ivory towers

believe. Marshal McLuhan’s global village is still a fair way off.

The expansion of TgX into the world of personal machines has

taken it out of the hands of academics and placed it into the hands

of the man on the Clapham omnibus, without his modem and

portable telephone. But there are ways of accessing electronic mail

services even if you are outside this academic world. Why would

you want to? There are a number of distribution lists which accept

TgX enquiries (in a very wide sense) and which are read by many

other TgX users. In general, some response will be elicited (not

always helpful, but you are dependent on the goodwill of interested

volunteers who only benefit rather indirectly). A very generalized

list, texhax, was started at Stanford University many years ago

under the moderation of Malcolm Brown, was later under the aus¬

pices of Pierre MacKay at the University of Washington, and is

now administered from Aston University. The electronic mail sys¬

tems are extensive enough that many people throughout the world

receive this digest, and it is common to see problems and solu¬

tions from all over the electronic world - Australia, New Zealand,

Japan, Israel, Europe (now including Poland, Hungary, Czecho¬

slovakia, and Russia), as well as the obvious Canada and USA.

As yet, Africa, South America, Antarctica, India, and chunks of

Asia do not appear to have reliable electronic links.

A rather similar system is run from the UK through a dedicated

machine at Aston University - uktex. This has the remarkable

feature that it is despatched with clockwork efficiency and timing

every Friday evening. In Europe a number of language-specific

lists exist.

UNIX users, with access to uucp. will also be familiar with this

sort of world, and will also have access to the many ‘lists’, which

include a number which have some relevance to TgX.

If you do not have immediate access to these sources, how can

you use them? In general terms it is possible to access ‘bulletin

boards’ or ‘conferences’ like Bix, CompuServe, and Cix (there

must be more) through modems which provide the communi¬

cation link between your desktop and the bulletin board. There

should be a way of ‘breaking out’ of these to the wider email world.

Since you have to pay for your use of space on these systems (as

well as your connect time), there is an obvious overhead.

Appendix C 397

For a lower overhead, you could join a User Group. The largest

and oldest User Group is the T^X Users Group. This started

in 1980 as an implementors group, and now is an international

group with over 4,000 members, many of whom would not know

what a compiler is, let alone want to use one. They are indeed

users. The group publishes TUGboat ‘The Communications of

the T^jX Users Group’, a journal of about 700-800 pages per year,

containing articles on all sorts of levels on all sorts of T^X-related

topics. It also contains advertisements from various vendors, and

therefore provides a wide range of useful material. TUG orga¬

nizes an annual conference (usually in North America), but it also

provides other services to its membership. Its l^Xniques series

are monographs (usually) covering a wide range of TEX-specific

topics; various other Tj^X-related publications are available to

members; public domain T^)X, notably for MS-DOS machines, and

so on. It has also started to produce a Newletter, a more informal

production than TUGboat.

This is not the only group.

German speaking

Dante is the largest and fastest growing of the other TgX groups.

Since they make the public domain versions of T^X for the pc avail¬

able to group members, they have been able to ensure sustained

growth, and recently have expanded their activities throughout

‘greater’ Germany.

Japanese

The next largest group is probably the Japanese group. The prob¬

lems of the Japanese character set were addressed some years ago,

and the Japanese progressed to a 2 byte input, adequately solving

most of their character set problems. At least the twin features

of diacriticals and hyphenation do not plague Japanese. Other

interesting features of Japanese T^X and TUG life include two

different implementations to handle Japanese - JTgX and pT^X

- and a translation of The TgKbook into Japanese.

French speaking

GuTenberg, like Dante, sees itself as a language group. Perhaps

the most visible product of GuTenberg are the Cahiers. This

398 A plain TgX primer

journal has been produced for a number of years now, and con¬

tinues a high standard of production and content. GuTenberg

distributes disks for the pc.

Nordic

Now we come to the rather smaller groups. Firstly the Nordic

group: a careful choice of title, since this now includes Finland,

Sweden, Denmark, Norway, and Iceland. The observant will notice

that this is neither a national nor a language group.

The TjgX support provided by the group is decentralized to local

systems groups at different sites. A central register is kept of TgX

experts and contacts at different sites. Local courses, handouts,

and instructions are offered by the various sites and made widely

available. A mailing list has recently taken over the function of

communicating news, problems, and questions from different sites.

Since the majority of the group’s members are in academic insti¬

tutions, electronic mail is a good medium for communication.

Dutch speaking

The Dutch group, the NTG, is a ‘Dutch-speaking group’. It pro¬

duces a nice set of information - MAPs, or Minutes and Appen¬

dices - for its members, documenting the progress of various

groups, reports from their own and other T^X meetings: a sort

of annual, or semi-annual, report which provides a good record

of what has been going on. Various bits crop up in other forms

in other journals, but it serves well the function of keeping the

membership informed and aware.

United Kingdom

This group has frequent and varied meetings, in a variety of loca¬

tions. It also publishes ‘Baskerville’, the ‘annals’ of the group.

Before reaching for your Sherlock Holmes and starting to worry

about meetings next to the Grimpen Mire, note firstly that the

book by Conan Doyle was ‘The Hound of the Baskervilles’, and

secondly, that John Baskerville holds a position of great esteem

among European type designers. His brief biography is interest¬

ing enough to be reiterated here: he was a japanner (‘japan’ is a

sort of varnish), letter cutter, and writing master in Birmingham

and went on to design a typeface which has been described as

Appendix C 399

holding ‘a central position in the transitional group of typefaces’.

He also made innovations in printing inks, papermaking, and in

printing itself. His book designs are also highly regarded. It is

this remarkable conjunction of art and technology embodied in

Baskerville which is echoed in Knuth’s own achievements with

Tj^X, and therefore makes the adoption of Baskerville’s name so

appropriate. The astute will also note that Birmingham is the

home of Aston University, the site of the most comprehensive

TgX electronic archive - further reinforcing this choice of name.

Czechoslovakia

Czechoslovakia must be counted as one of the notable successes

of the newer groups. ‘Ceskoslovenske sdruzeni uzivatelu T^XT

was founded on May 9th, 1990. It grew out of two groups, one

composed principally of mathematicians, and the other physicists.

CSTUG is now able to provide its members with emT^X. It now

produces a ‘l^X Bulletin’ for its membership.

Hungary

There are about six or so journals now produced in Hungary

with the aid of T£X. This has helped to stimulate Hungarian

T£X with typographically designed Hungarian letters and Hun¬

garian hyphenation. At present the use of TgX is concentrated in

academic institutions, perhaps much as one might expect.

Commonwealth of Independent States

A Russian-speaking TgX users group, probably to be called Cyr-

TUG, now exists. T^X is in use by a number of publishers,

although mainly in the production of texts in English. There

are also groups in the Ukraine and probably elsewhere by now.

Since Russia is big, there is also a Siberian group, a counterweight

to those in the west of the country.

Ireland

Partly stimulated by the success of the 1990 TUG meeting in

Cork, there are the stirrings of an Irish group, perhaps under the

name of ‘Italic’. Those with an eye for an acronym will manage

to achieve ‘Irish TgX And iATgX Interest Community’.

400 A plain TppC primer

Others...

There are also stirrings in Turkey, Poland, Slovenia, Estonia, Mex¬

ico, Nigeria, and South Africa. There are probably others whose

existence is as yet unknown. The point of this litany is that local

groups do exist, and that they may be a useful source of informa¬

tion, provided there is one in your own area. The most likely

source of information is the current edition of TUGboat, the

TUG Resource Directory, or TUG itself.

Some user group addresses

International German speaking

Users Group Dante

PO Box 9506 Postfach 10 18 40

Providence D6900 Heidelberg 1

RI 02940 Germany

USA fax: 06221 56 55 81

tel: 401 751 7760

fax: 401 751 1071

email: dante@dhdurzl

email: tugOmath. ams. com

French speaking Dutch speaking
GUTenberg NTG

BP 21 Postbus 394

F78354 Jouy-en-Josas 1740 AJ Schagen

France The Netherlands

email: gut@irisa.fr email: ntg@hearn

Nordic Japan
Nordic TUG Japanese TUG

c/o Roswitha Graham Yoshio Ohno

KTH Dept. Computer Science

DAB Keio University

S100 44 Stockholm 3-14-1 Hiyoshi

Sweden Kohoku-ku

email: roswitha@admin. kth.se Yokohama 223

Japan

Appendix C 401

United Kingdom

ukT^Kug

c/o Information Systems

Aston University

Aston Triangle

Birmingham B4 7ET

Czechoslovakia

CS TUG

c/o MU UK

Sokolovska 83

CS186 00 Praha 8

Czechoslovakia

UK

email: uktexug@tex .ac.uk

Ireland

Peter Flynn

Computer Bureau

University College of Cork

Cork

Ireland

email: cbts8001@iruccvax .ucc. ie

Appendix D

Solutions to the exercises

3.1: Only 9. It’s sad to begin on an ambiguity like this, but if it

reinforces the notion that one way to find out is to experiment,

perhaps not a complete disaster.

3.2: You can leave as many blank lines as you like. T^X only

‘sees’ the fact that you have left vertical ‘space’, and treats this

‘space’ as a paragraph separator. The same applies to multiple

\pars. T^X actually looks for an end of line: somewhere T^X has

made ‘end of line’ and \par equivalent. Extra blank lines or \pars

do not give you extra vertical space, but if \parskip is zero, you

would not expect extra space, would you?

3.3: The fact that TgX requires \end or \bye can alert you to the

fact that you may not be tied to a single input file. If the ‘end of

file’ marker indicated that T£X was to complete its typesetting, it

could be more difficult to chain several files together. Since T^X

will come up with a message like

(Please type a command or say ‘\end’)

when it comes to the end of the input file, you could \input

another one. Of course, the \input command can ocurr within

a file, and you may assemble several files in a single job without

having to type anything in.

3.4: Try some of the following:

- -o-o- {-}-{-}
Provided the - characters are ‘separated’, TgX will not jump in

and impose its ligatures. Note that in the first, there will be some

space between the hyphens. Thus the others more closely answer

the question posed.

3.5: The easiest way is to use braces in order to disable the auto¬

matic ligatures:

404 A plain T^K. primer

dif{f}icult {f}lying

will do the trick. But the characters placed within the braces will

not be kerned - the tfm files will not have kerning information for

T and ‘i’, since it will have expected to turn them into a ligature

anyway. The question was biased towards the ‘standard’ Com¬

puter Modern Roman font: therefore the solution which suggests

recreating the tfm files, where there was no ligaturing, is illegal

(but it is possible: don’t call it Computer Modern Roman).

3.6: This is apparently straightforward, but it is much more dif¬

ficult to get the spacing right:

‘ ‘‘Starboard’’ ’ and ‘‘ ‘Starboard’ ’’

will result in ‘ “Starboard” ’ and “ ‘Starboard’ ”, where at

least there are single and double quotes which match. The space

between the two sets of quotes is too. large. The recommended

amount of space is given by the command \thinspace. The ‘cor¬

rect’ answer is therefore

‘‘\thinspace‘Starboard’, he cried’’

An advantage of this rather clumsy approach is that there will not

be a line break between “ and ‘.

3.7: To ‘restore’ justification once \raggedright has been invoked,

ensure that the whole section of text to be set ragged right (unjus¬

tified/ranged left) is enclosed in braces:

{\raggedright.>

The braces can encompass whole paragraphs. Note that you will

not be able to switch raggedright off and on within a paragraph

(well, you can switch it off and on, but T^X will only pay attention

to whatever is ‘active’ at the end of the paragraph).

3.8: To obtain the backslash character, be intuitive: \\. Under

some circumstances, \backslash will also work. The circumstance

is maths, a condition you do not yet know how to invoke.

3.9: There is no convenient way to change these characteristics

part way through a paragraph. sets a paragraph, and uses

the relevant parameters which are still active at the end of the

paragraph. Thus a paragraph starting with \baselineskiplOpt

and ending with \baselineskipl4pt will be set with the last

value - unless that last \baselineskip was enclosed in braces.

This does not mean that baselines are a fixed distance apart: recall

glue, Uineskip and some other parameters. But the paragraph

is a fundamental unit. It is tricky to meddle with. On the other

hand, there is a tendency to make some things paragraphs when

Appendix D 405

they are not really. In a sense, a title or section heading can be

treated as a special sort of paragraph. But is it really?

4.1: These examples may be typeset by typing:

Show that the volume V is given by

$V=1(a-2b)(a+2b)$.\par

Common factors: $ab+ac=a(b+c)$.\par

$s=kP$, where k is a constant.\par

If $y=kx$, and $y=15$ when $x=6$,

find the constant k.\par

Separate the lines either by blank lines, or by \par. This makes

each ‘line’ a separate paragraph. Otherwise the sentences would

run on into a single paragraph. Although the expressions within

the $ signs have no spaces within them, Tj^X would not have cared,

since it decides on spacing within mathematical expressions.

4.2: The requires a simple edit of two of the examples in the

previous exercise.

Show that the volume V is given by

$$V=l(a-2b)(a+2b)$$\par

Common factors: $$ab+ac=a(b+c)$$

If a full stop follows the $$ at the end of the first line, T^X will

place it at the beginning of the next typeset line. If you really

want the period to be part of the mathematical expression, you

will have to write something like

$$V=l(a-2b)(a+2b).$$

This is generally thought of as rather poor style. It is however a

style used in many journals. Should you leave out the \par (or

fail to leave a blank line) between the two sets of expressions,

there will be a slight change in the formatting: it will all be a

single paragraph. After the first display equation, the next section

of text will start right at the beginning of the next line, with no

indentation - that is, all part of the same paragraph.

4.3: The phrase $\mit\sigma$ gives a: no change. Rather simi¬

larly, $\rm\sigma$ is no different to σ.

4.4: In traditional typesetting, with bits of metal type, the indi¬

vidual characters were kept in two cases. The ‘lower’ case con¬

tained the ‘miniscules’, or what we loosely call the small letters,

while the ‘upper’ case held the majascules or capital letters. Quite

why upper and lower case Greek do not seem to share the same

slope is a subject lost in the mists of time. In De Epidemia, pub¬

lished in Venice in 1497 by Aldus Manutius’ press, ‘upright’ roman

406 A plain TpjX primer

text is mixed with ‘slanted’ greek text. Since the upper case greek

letters are often identical to their roman ‘equivalents’, perhaps it

did not seem worth cutting the extra characters, but acceptable

to mix the two styles. Italic was a separate typeface, not merely

some version of roman, and remained so for a couple of centuries.

On the other hand, by 1501, Francesco Griffo had cut the Aldine

italic, but the tradition, if it was, has continued. An apocryphal

tale suggests that the custom arose in Oxford (inevitably) when

a typesetter had lower case greek but no upper case greek charac¬

ters. This sounds a bit implausible. Modern Greek has all sorts of

typefaces and this custom is inappropriate.

4.5: If you tried this you will have obtained a comment from

TjgX that it inserted a missing $. It sensed that something was

going on which had to do with maths,, and therefore inserted the

‘switch’ immediately before the suspected maths expression. T^X

had no way of knowing where the expression ended. Had you just

allowed T^X to continue, everything up to the next $ (if there is

one), will be turned into ‘maths’. A way to tackle the problem is

to delete the ‘offending’ tokens, and then insert what should have

been there: for example

! Missing $ inserted.

<inserted text>

$

<to be read again>

\alpha

1.1 When \alpha

=0, the dispersive stress is greatest.

? 4

1.1 When \alpha=0

, the dispersive stress is greatest.

? i$\alpha=0$

Note that four tokens were deleted. The $ inserted by TgX had to

be deleted too. The T^X command \alpha is considered a single

token. After deleting the tokens, T^X allows you to do something

else. The something else was to insert text.

In the other part of the question, because the text is acceptable

outside maths, T^jX does not consider there to be any obvious

problem. But it does not look very good. It should have been:

In the case of $x+y-4x=0$, the longest arc is given by:

Remember the function, and the form generally falls out automat¬

ically. Form follows function.

Appendix D 407

4.6: The spacing does not look very good. Transliterated into

the roman alphabet, it reads ‘tekhne’. The tau-epsilon-chi should

give things away. In general, a short greek tag in this alphabet

is tolerable Why else why would Knuth have included <j, which is

never (hardly ever) used in maths, but is needed when a sigma

occurs at the end of a word?

4.7: We are comparing

The surface is y — hs(x), the bed is y = hb(x); the slopes, if

small, are a = —dhs/dx, /3 = —dhb/dx. If a, /3 are small,

with

The surface is y = hs(x), the bed is y = hb{x); the slopes, if

small, are a = —dhs/dx, (5 = —dhb/dx. If a, (3 are small,

As hinted earlier, it is considered bad practice to include the

punctuation within the maths. In fact, since TgX considers the

punctuation in maths to be a special category (math punctuation),

it sets up different amounts of spacing than would be used for ‘text

punctuation’. By default, TgX will allow space after punctuation

to stretch more than other space: a full stop ‘within’ maths will

not be interpreted as a full stop. Thus the space here, dx.$ If,

‘expands’ as a normal interword space, while the space in dx$.

If will be much stetchier (by default).

4.8: At first this seems a bit intimdating. When T^X encounters

the blank line, it assumes that a paragraph is ending (it is equiva¬

lent to a \par). It is illegal to start a new paragraph within a text

or display equation - in fact, the concept should be meaningless.

Sensing that something is wrong, it inserts a $. Unfortunately, it

only inserts one (it’s not that smart). In order to recover, you

can insert another $ - in other words, type i$ in response to the

? prompt. But that may not help the next line. What we have

done so far is to correctly terminate the first part. This leaves

the second part dangling. Somehow we have to insert $$. We may

anticipate and use i$$, but if the line starts with (say) a \beta,

I)gX, now in text mode, will insert a single $ and come up with

the ? prompt. Now is your chance to insert another $ and restore

the balance. This should emphasise your desire not to leave blank

lines in the middle of equations.

4 3 2 1
4.9: Braces: {({({(a~4)>~3)}~2)}~l gives (((a))) , and

({({({a~4})~3»~2»'T yields (((a4)3)2)1.

4.10: A possible set of solutions are

408 A plain Tp]K primer

$$h_0+\epsilon=h+p=h_0+h_l+p$$

$$(m+l)h_l/h_0+m\alpha_l/\alpha_0=0$$

$$h~{m+l}\alpha~m=h~{m+l}_0\alpha~m_0$$

$$\tau~2=\tau~2_{xy}+\tau~2_{zx}$$

$$\lambda=A\tau“{n-l}m=\rho $$

$$e M_\omega/PM_a=0.623\rho e/P$$

Of course there are many other solutions.

4.11: My solution was
The number of atoms of a radioactive element

at time t years can be found from the original

number present at time zero by the relationship

$$P_t=P_Oe~{-\lambda t}$$ where P_t is the number

of atoms at time t, P_0 is the original number

of atoms of the parent nucleide, and e is 2.7183.

Note that I used t rather than {\it t}. That was not just

because it was quicker to type, since if we look very closely at t

and t, we might detect some subtle differences.

4.12: The point here is that the \sqrt command merely takes

the next ‘token’ or group. Therefore we obtain y/4ac and y/l6c4.

What we might have wanted is a/4 ac and Vl 6c4. It’s all in the

braces (as usual).

4.13: The plain and obvious way is

$\overline{\sqrt{\underline{x»}$

It is also the minimum way. Leaving out any of the pairs of braces

leads to trouble. And sometimes interesting error messages.

4.14: An intelligible almost error message!

! Paragraph ended before \root was complete.

What it should have been was (probably) $\root {n-l}\of

{b~2}$, unless you meant n_\/f>2. In this case, the n-1 need not

be braced. The command is actually \root... \of... Anything

which occurs between \root and \of will be the ‘root’. The \of

is not really a command at all. If you try to use it on its own it

will not be recognised. What follows must be braced (unless it is

a single token).

4.15: The following table shows the way in which these accents

grow:

Appendix D 409

\tilde x X \hat x X

\widetilde x X \widehat x X

\widetilde{xy} xy \widehat{xy} xy

\widetilde{xyz} xyz \widehat{xyz} xyz

\widetilde{wxyx} vuxyz \widehat{wxyz} wxyz

In general, the maximum size is suitable for three ‘normal’ sym¬

bols, but do note the difference between the wide form and the

‘regular’ form.

4.16: My solutions:

$$DT/Dt-k\partial~2T=H/\rho c$$

$$u=A’\tau_b~m$$

$$\vec{0A}’=k\vec{0A}’$$

$$\angle C0Q=\theta$$

But look closely at the example which combines the \vec accent

with a prime: the position of the prime will vary according to

the combination of \vec and the braces, as the following example

shows: 0A’, 'wec-fOA’} and \vec{0A}’ give OA', OA' and OA .

4.17: These are no more difficult, but sometimes it takes a while

to master the vocabulary.

$${\partial\zeta\over\partial t}=

-{\partial M\over\partial x}-{\partial

N\over\partial y}$$

$$\psi_M={a\over r_l>e~{-i\kappa r_l}$$

$$\3qrt{\kappa\over2z_l}(x-x_0)=

\sqrt{\lambda\over2z_l}(x-x_0)$$

$${\partial\Im\over\partial s}=\pi s$$

$$C_d=a_lRe~{-l}+a_2Re~{-{l\over2»+a_3$$

Probably the only ‘catch’ is to remember to brace the \over com¬

mands. Of course, this is an excellent opportunity to deliberately

foul up the grouping, or omit it entirely (in the interests of prac¬

tise).

5.1: For example, it may (or may not) be noticeable that in the

case of text equations using large operators, TgK inserts a little

extra space between lines, ensuring that there is no overlap.

5.2: After some experimentation, you should find that every one

of the \textstyle large operators have their limits to the right. In

the case of \displaystyle large operators, the limits are placed

above and below, except for \int and \oint. To place the lim¬

its for \int and \oint above and below, you must use Xlimits,

whether in text or display. All the others follow the same rule,

410 A plain TfiK primer

‘extending’ the vertical extent for display style.

5.3: This will do:

$$\overline{\eta~2}=

{l\over2}\sum_{k=0}~\infty

\sum_{\theta=0}~{2\pi}a_n~2$$

noting that \bar{\eta~2} is too short in this case.

5.4: The point of this exercise is the extra effort required to intro¬

duce negative thin space between the integrals and positive thin

space between the dy and ds:

$$E_i(y’)=
\int\!\!\int A(s)e“{isy}\sigma(y-y’)dy\,ds$$

Some would use more negative space.

5.5: For example

$$\overline{\nu~2}=

\int\limits_0''\infty\int\limits_0“{2\pi}

E(k,\theta)dk\,d\theta$$

$$\overline{\nu~2}=

\int_(T\infty\!\!\int_0~{2\pi>

E(k,\theta)dk\,d\theta$$

In the \limits example, introducing the negative thin space

brings the limits on the integrals far too close together.

5.6: You should be able to observe that the spaces after the

minus sight is smaller in the case of the monadic operator than

the dyadic:

—4 — 2m

Usually this is what we want.

5.7: A suitable rendering is

$$X\ominus\check B=X\cap X_{-h}$$

$$X\ominus B=\bigcup_i X_i\ominus B$$

$$\int_{-B/2}~{B/2}R’‘(y,y’)\varphi’’(y’)dy’=

\gamma’’\varphi’’(y)$$
$$\vec f~{(1)}=

\vec f~{(0)}-{(\vec w_l\cdot\vec f~{(0)>

-p_l)\over\vec w_l\cdot\vec w_l>\vec w_l$$

$$((A\lor \lnot B\lor C\lnot D)

\land(\lnot E\lor\lnot F))$$

The degree sign may be obtained by $~\circ$ and the ‘times’

operator as \times, hence: $6~\circ$ Centigrade and $9.46

\times 10~{12}$.

Appendix D 411

5.8: Use \mid, since it is the operator:

$${l\over \pi>U(X)={l\over2\pi>

\int_0~{2\pi}L(X\mid\Delta_\alpha)\,d\alpha$$

Had we used \vert, the spacing would have been different.

5.9: The recommended form is \notin, in the sense that Knuth

bothered to create it rather than use $\not\in$. It is the second

one.

5.10: There should be nothing particularly remarkable in this:

$$\tau_l/\tau_0\approx0.5p/h_0$$

$$h/L\gg\partial h/\partial x$$

$${\mit\Delta\over t}\ge\sqrt{2gh}$$

$$\nabla~2f(i,j)\equiv

\delta_x{}~2f (i,j) +\delta_y{}~2f (i,j)$$ 7.RK242

$$Q\in N(P)\iff P\in N(Q)$$

It does take some skill to distinguish \iff and \Longleft-

rightarrow, but again, provided you start with the meaning of

the equation, the form usually follows. In this context, it is more

tricky, when you may not know the meaning.

5.11: Again, there is nothing special, except perhaps an unfamil¬

iar vocabulary:
$$(W\ominus \check B)\cap(W\ominus \check B)_{-h}\ne

\emptyset\Leftrightarrow B\cup B_h\subset W$$

$$Y\subset X\Rightarrow\psi_\lambda(Y)

\subset\varphi_\lambda(X)$$

$$X\rightarrow x_l\rightleftharpoons x_2$$

$$2HC0_3{}"-\longrightarrow

{H_20+C0_2\uparrow}+C0_3{}~{2-}$$

If you want to handle the chemistry in a better way, all you really

have to do in this instance is ensure that the whole expression is

preceded by \rm. Fortunately this does not influence the symbols:

$$\rm 2HC0_3{}~-\longrightarrow

{H_20+CO_2\uparrow}+CO_30~{2-}$$

2HC03~ —> H20 + C02 t + C032-

If setting chemistry was a regular pursuit, you might be tempted

to approach things in other ways, many of which may become

possible in a few chapters.

5.12: Taking a manufactured example:

$$a\buildrel\rm def \over \not= b$$

412 A plain TpjX primer

gives
def

a /— b

As might be anticipated, braces are the answer:

$$a\buildrel\rm def \over {\not=}b$$

to give
def

a b

But in this case, \ne is an acceptable substitute for \not=:

\def\negrel{\rm def\over{\ne}}

$$a\negrel b$$

Once we discover how to create commands (in Chapter 7), it will

be possible to abbreviate these lengthy descriptions.

5.13: Either of the following will give a reasonably satisfactory

solution:

$${\textstyle A\over\textstyle B} \over

{A-{\textstyle B\over\textstyle C}}$$

$$-[\displaystyle A\over\displaystyle B} \over

{A-{\displaystyle B\over\displaystyle C}>$$

Distinguishing between the two is possible, in theory.

5.14: For example:

The expected cost, $c(i|\vec z)$ is given by

$\sum_j p(j|\vec z)\lambda(i|j)$; if both

$\lambda(i|i)=0$ and the $\lambda(i|j)$’s are

equal when $j\ne i$, minimizing the expected cost is

equivalent to minimizing $\sum_{j\ne i}p(j|\vec z)$.

The Laplacian $\partial~2fApartial x~2 +

\partial~2f Apartial y~2$ is an orientation-invariant

derivative operator.

The responses of $\sqrt{\Delta_+{}~2 +\Delta_-{}~2}$

are $h\sqrt2$, $h\sqrt2$, h and h.

Perhaps the most notable aspect is the use of \Delta_+{}~2 in

order to stagger the subscript and superscript.

5.15: These are some potential solutions:

$$G_\rho = \dot F_\rho

= \bigcup_{\epsilon>0}F_{\rho+\epsilon>

= \bigcup_{\epsilon>0}G_{\rho+\epsilon}$$
$$d(X_i,X)\rightarrow 0\Rightarrow W~{(n)>_k (X_i)

\to W~{(n)}_k(Y),\,\forall n,k$$

Appendix D 413

$$\gamma_z(h) =

{(\gamma*K)_h-(\gamma*K)_0\over A~2(Z)}$$
$$C~\ast(k) =

{\sum_{\lambda=l}~g A(Z_\lambda)

\cdot C"\ast_\lambda(k)

\over \sum_{\lambda=l}~g A(Z_\lambda)}$$
$${\partial\over\partial t}

\overline{\int_{-h>"\zeta\rho U_\alpha\,dz>

= {-\partial\over\partial x_\beta}
\overline{\int_{-h}''\zeta(\rho u_\alpha

u_\beta+p\delta_{\alpha\beta})\,dz}

+ \overline{(p)_{z=-h}

{\partial h\over\partial x_\alpha}}$$
$$r"2={\int_{-\infty>~\infty w(x)c~2(x)\,dx

\over\int_{-\infty>“\infty c~2(x)\,dx}$$
$$\int\!\!\!\int fg \le

\sqrt{\int\!\!\!\int f~2 \int\!\!\!\int g~2}$$

$$p(l)p(z\vertl)+p(2)p(z\vert2)$$

$$p(h|r)=\sum_z q(z|r)q(z+h|r)$$
$${e*{-m’/2}\over {\sqrt{2\pi}\ Asigma.lKfm’IIXcdot

’/2>\over {\sqrt{2\pi>\,\sigma_l>~{m’’»

={e~{-m/2}\over {\sqrt{2\pi>\,>~m

\sigma_l“{m’}\sigma_2"{In, ’}}$$
$$f_\delta(x,y)\equiv

f(x,y)-f(x+\delta x,y+\delta y)$$
$$\exists j:k<j\le N:X_k>0\land X_j>0\land

\lnot(\exists i:k<i<j:X_i>0)$$
These solutions often look more difficult than the equations on

which they are based. It is often very straightforward to read these

out directly. Apart from ensuring that the braces are balanced

properly, and deciding which of the commands should be used

to obtain | or they tend to fall out. Note the equivalence of

\vert and I, and of * and \ast. The choice of nomenclature is

usually determined by the ‘meaning’ or your preference. In this

instance, three \! s were used to draw the integral signs together.

This always looks rather crude to me. You may also observe that

sometimes the use of \over lends itself to chaos.

6.1: Taking them one at a time:
{\0E }dipus: the space after the \0E ‘delimits’ the command. It

therefore is ignored. Multiple spaces would be similarly ignored.

\0E-Qdipus: the {} terminates the \0E command.
\0E {dipus}: again the space delimits the command. And even if

414 A plain Tp]K primer

it did not, the {dipus} is braced.

\0{E}dipus: not what we wanted: 0Edipus. Who is he/she?

{\0E} dipus: placing the \0E within braces has the effect of ter¬

minating the command: therefore the space is seen.

6.2: The implicit kerning (hidden in the tfm files) is present in

\0E dipus but in none of the others. But what is the difference?

The kern between OE and d (in Computer Modern Roman 10

point) is zero anyway! While it is ‘philosophically’ correct to write

\0E dipus, in this instance it makes no difference.

6.3: A parsimonious solution is

Zde se v\v semo\v zn\v e sna\v z\’\i\ m\v e p\v

reluvit, abych z\accent23ustal je\v st\v e n\v ekolik

m\v esV\i c\accent23u a napsal je\v st\v e jednu

operu. Hay\i r! \.I\c s V'oyle de\u gil. B\"uy\"u\u

g\"u k\"u\c c\"u\u g\"une takilmay\i\ pek severdi.

Ce f\~ut d’ores et dVejVa une idX’ee

dX’egX’enX’erX’ee et ambig\"ue.

${\mit\Gamma}\varepsilon\iota\acute o\ \sigma
o\upsilon$\it!

One thing to watch is the need to write \accent23u for u (later

we shall find out that there are ways to abbreviate this by giving

it its own definition). The words in ‘greek’ are typeset in maths

mode. It is possible to access the characters directly by quoting

their position in the font table. This is really only worthwhile

if you have to write a lot of greek. Note that there will be no

kerning (it looks rather loose here, emphasising that these really
are mathematical symbols).

6.4: This one is much more difficult. The simplest solution

assumes that only a few ‘foreign’ words are present. In which case,

using \— is probably sufficient. This assumes you know where to

put the hyphens. TeX3 has introduced a new capability to switch

between languages through a Xlanguage command. However, this

assumes that the version of T^X you are using will have been

built ‘knowing’ about the languages you wish to use. At the time

of writing this book, this is not yet true. In fact, there is not yet

agreement on what languages are to be supported. Since Xlan¬

guage is set equal to an integer value between zero and 255, there

is a restriction (!) on the number of languages which can be sup¬

ported simultaneously. Hyphenation patterns are available for less

than a dozen languages (one of the notable missing languages is

Appendix D 415

english, which turns out to have rather different hyphenation rules

from american-english).

6.5: The recommendation to reset the area of the text will save

you from output which goes outside the area of the usually obtain¬

able paper sizes. If you use a screen previewer it may permit you

to view outside the ‘normal’ area.

T^K by default sets up a text area of 6.5 inches wide by 8.9 inches

deep. When the \magstep is processed, the ‘inch’ is also expanded.

However, things are not this simple. If we do not have an \hsize

and \vsize following the \magstep, Tf^X will not modify the sizes.

Loosely, the idea is that they have been set up already, before

the \magstep came into play. On the other hand, the \base-

lineskip, \parindent, \parskip and a host of other distances

will be changed by the \magstep. Since the default size is totally

unsuited to the A4 paper size used outside the United States (how

ironic that the United States should retain Imperial measures),

you would normally change the \hsize and \vsize to

\hsize6.25truein

\vsize9.5truein
The true is there to make life much easier. It is then possible to

change the \magstep without having to change the text size. While

this is better suited to the A4 page size, it is still not satisfactory.

If we use the default 10 point cmr with T^X’s default, or this

suggested A4 alternative, the ‘measure’ is far to great. I would

contend that \magstepl with the suggested size is about right,

although it represents over 70 characters to the line and therefore

over 15 words: this is rather greater than that recommended by

the ‘average’ typographer. It merely represents a balance between

the tyranny of the A4 page (designed with typewriters in mind)

and the available typographic resources. Increasing the \magstep

to 2 seems to give a rather childish appearance.

6.6: The error generated is
! Incompatible magnification (1440);

the previous value will be retained (1200).
once the subsequent \magnif ication is encountered. It says it all,

except that you should recall that the figures 1440 and 1200 are

the ‘scales’ given in Figure 6.3.

6.7: The first decision is what to call the sans serif fonts. This is

a possible solution:

416 A plain TpjK primer

\font\ssu cmsslO

\font\ssi cmssilO

\font\ssb cmssbxlO

\ssu

In very general terms, type should seek to be

unobtrusive. It should never {\ssb dominate} the

text. At some {\ssi subtleX/} levels it may manage

to influence the reader.

In iATgX, sans serif upright is denoted by \sf and is available by

default. The sans serif fonts in T^X are said to have been mainly

the work of Richard Southall. They appear not to have ligatures,

in the sense that ffl and ffi are not joined. Nevertheless, they are

supported by TgX as ligatures. There are noticeable differences in

the second f. The ‘ligatured’ fi and fl do look rather similar to fi

and fl, but there is the equivalent of a kern of about —0.08 points

between the ligatured characters (in cmsslO).

6.8: This is for you.

6.9: There can be no cut and dried answers here. But it is difficult

to argue that Tj^X and far less Knuth, are responsible. T^X merely

looks for the relevant TjgX font metrics. If those metrics are not

available, it suggests that you are using a font without a tfm. For
example

! Font \rm=timeslO not loadable:

Metric (TFM) file not found,

implies that there is no suitable information. This could be just

because T}]jX could not find the information, perhaps the tfm file

is present but in the wrong directory or folder. In general, there is

a well defined set of places where T^X will look for the tfm files,

but you should consult whatever local documentation you have.

Because computer operating systems vary so widely, I^X delib¬

erately eschews any statements about how the implementation
should be organised.

This merely touches on the running of T£X itself: it does not

address what happens when ‘visible’ output is generated. For
example, we may happily write

Xmagnification\magstephalf

\fontXquaint cmfflO scaled\magstepl

dfeX is quite content with this. It can find the tfm files for cmfflO

and merely scales up the distances embodied there by the equiva¬

lent of one and a half magsteps (a ‘scale’ of 1314). When the

resulting dvi file is passed to some driver that driver will be unable

Appendix D 417

to find a suitable output font. What it does now is the interesting

bit. And to find the answer you will either have to experiment,

or read the documentation. Some drivers will substitute an exist¬

ing ‘default’ font (usually with rather unpleasing results), while

others will simply give up (with even less satisfactory results), or

leave a space (that is, substitute an ‘empty’ character for each

of the unavailable characters). Joachim Schrod (1990) comments

‘we strongly recommend not to scale bitimage characters to the

desired size within the driver’, and continues ‘either the document

is important, when the desired font should be created by META-

FONT, or it is a document for which this small work is too still

too much, and another font can be chosen’.

6.10: In general, you will obtain the error message:
! Missing number, treated as zero.

<to be read again>

This is not very explicit. But at this point we cannot give a very

good account of the problem that Tf^X has encountered, nor its

solution. Once you have read the next chapter, come back and

look at the following explanation.

The command \magstep is defined in plain as
\def\magstep#l{\ifcase#l 1000\or 1200\or 1440\or 1728

\or 2074\or 2488\fi\relax>

In other words, when \magnif ication is used, it would be per¬

fectly happy with some number. The use of \magstep merely

restricts the possible values to the ones which are provided in the

normal Computer Modern family. There is nothing truly sacro¬

sanct in these values. But this does reveal why using a value for

\magstep of over 5 leads to some problems. A more robust version

could be
\def\magstep#l{\ifcase#l 1000\or 1200\or 1440\or 1728

\or 2074\or 2488\else 2488

\message{You are asking too much!}\fi\relaxj

Without the \message there would be no evidence that TgX had

over-ridden your request for \magstep6. It turns out that there are

commands which may be inserted before \magnification despite

what has been said. But don’t do it often.
There are implementations of TfeX which will allow higher \mag-

steps. If you have META FONT you may easily generate the equiva¬

lent of higher \magsteps, or even ‘partial’ \magsteps, like the

generally available \magstephalf. This is actually a separate defi¬

nition in its own right:

418 A plain TpjX primer

\def\magstephalf{1095 }
If you wanted \magsteponeandahalf you would need a similar

definition.

6.11: According to my calculations it is not a linear relationship.

‘Smaller’ sizes tend to be ‘broader’ than a simple linear relation¬

ship would suggest. In terms of readibility that makes sense. The

short measure makes this exercise tricky. The best way to tackle

it is by placing the text in a box and finding out the length of that

box (see Chapter 9).

6.12: It is strictly linear in practice as well as theory. The readi¬

bility is your decision though.

6.13: Can you really see any differences?

7.1: Naturally, the expansion is rather terse, but in the examples

given below, it is even more terse, since they are expressed in a

single line.

\show\" macro: #l->{\accent "7F #1}.

the command \" is a macro or command, which uses the under¬

lying \accent command. The #1 indicates that the command has

a single argument (to be discussed in Chapter 10).

\show\alpha \mathchar"10B.

a mathematical character of type \mathchar. The "10B used here

is a way of specifying a position in a font.

\show\it macro: ->\fam \itfam \tenit .

another command, but this time without an argument (like the

commands which will be discussed in this chapter). The expanded

commands may be tested with \show to find out if they too
expand.

\show\par \par.

this is a fundamental command which may not be further expanded.
\show\what \what=undefined.

this is not a command at all. T[j)X usefully tells us.
\show\bye \outer macro:

->\par \vfill \supereject \end .
another command, this time of type \outer.

another fundamental command.

7.2: On the face of it, it could suggest that the structure of the

universe is a little less complex than the structure of text. Or

perhaps that we have not yet discerned the underlying simplicity.

Appendix D 419

7.3: The characters are ‘expanded’ by \show to reflect their

‘meanings’ as determined by their \catcode.

\show#

\show&

\show{

\show a

macro parameter character #.

alignment tab character &.

begin-group character {.

the letter a.

If you modify the category code of a character, its meaning,

according to \show will also change.

7.4: As usual, there are lots of ways to do this.

\def\degree{$~\circ$}

will only work in ‘text’. It is tempting to try to use the ‘small

circle’ accent, but it does not look quite as nice, and it is in any

case much more tricky to manipulate.
By the end of this chapter you will be able to test the ‘mode’,

and have something which works in both maths and text:
\def\degree{\ifmmode~\circ\else$~\circ$\fi}

Making commands robust is almost always a worth while task,

but testing is often more demanding than writing.

7.5: The most awkward part of this is to find convenient names

for these particles: perhaps this would do
\def\taun{$\bar\nu_\tau$} “/.tau-neutrino

\def\muon{$\bar\nu_\mu$> “/.muon-neutrino

\def\kaon{$K~+$> “/.positive kaon

\def\ppion{$\pi~+$} “/.positive pion

\def\npion{$\pi"-$} “/.negative pion
These would not work in a ‘maths’ mode. Should you need to

write expressions where maths mode would be the intuitive way

to do it, it will again be necessary to adopt the \ifmmode test. In

looking at these expressions I again feel that a superscripted plus

sign looks far too large.
It would be nice to be able to call the negative and positive pions

as \pion+ and \pion-. This is indeed possible, but not until the

end of Chapter 10, when we would be able to say
\def\pion#l{$\if#l+\pi~+\else\if#l-\pi~-\else

\errmessage{mistake}\fi\fi$}

The \errmessage is not covered until Chapter 22, but its use is

probably intuitive. The argument is tested to see whether it is a -

or a +, and the appropriate action is taken. If it is not one of these

two options, then an error message is generated. A much simpler

solution is
\def\pion#l{$\pi\if#l+~+\else'-\fi$}

420 A plain TeK primer

but writing \pion= would give n~. Perhaps not what we wanted.

The error message here does not assist greatly, but it is possible

to specify particular messages to help:
\newhelp\helppion{pion must be followed by + or -!}

\def\pion#l{$\if#l+\pi"+\else\if#l-\pi~-\else

\errhelp\helppion\errmessage-fpion mistake}\fi\fi$}

Now if you use \pion= there will be the message pion mistake,

but in addition, requesting help at the ? prompt will yield

\pion must be followed by + or -!

The \ is always inserted in the help message.

7.6: T^X continues to read until it finds the first non-blank

‘token’. Unless that is the first character of a one of the accept¬

able ‘dimensions’, T^X will complain that it has encountered an

! Illegal unit of measure (pt inserted).

This may raise two questions: first, has TgX really inserted pt?

and, have we lost the character that T)gX read in, but found unsat¬

isfactory. It is easy to verify what happend: a suitable dimension

is inserted (although it is much better to correct its absence, or

when you come to run this again, you will again be interupted

by the error message); and the character is still output. We lose

nothing. There are variations to be considered too. What happens

if the first character is legal, but the second is not?
One other thing to note. If we

\def\pt{pt}

then it is acceptable to say \dimen0=10\sp. The command \sp is
read and expands to an acceptable sequence.

7.7: TgX interprets the sp, the Pt or the in as quite acceptable

abbreviations for (in this case) scaled points, points and inches.

Note that these abbreviations need not be delimited by spaces,

nor need they be in lower case. Of course this also means that the

‘abbreviation’ is absorbed by d^X and is not passed to output.

This feature of T^X can lend itself to errors that appear spo¬

radic. If somehow \dimen0=10 is followed by a word like special,

"IfeiX will be content. The sp is thought of as the abbreviation for

‘scaled point’. True, on output we will only find ‘ecial’, but this

may not be noticed immediately. On the other hand, following the

\dimen=10 by an unacceptable pair of characters will generate an
immediate error.

7.8: When you show the value of \hsize, or any other dimension,

it will be shown in terms of points. When we assign the value to a

Appendix D 421

counter, it is transferred as the number of scaled points, since that

is what TgX is really working in. However, when the dimension is

displayed, it is displayed as a number followed by a decimal point.
But it is still an integer value. For example
\countl\hsize

\divide\countl by 65536

\showthe\count1

\showthe\hsize

would apparently yield two values which should have the same

numeric value. But \hsize will be in points and have some num¬

bers after the decimal point, while \countl will be an integer

followed by a decimal point.

7.9: It’s up to you, but once you have read the explanation below,

fix it.

7.10: For example
\newcount\minleft

\newcount\milhour

\def\miltime{\milhour=\time

\divide\milhour by 60

\minleft=\milhour

\multiply\minleft by -60

\advance\minleft by\time

\ifnum\milhour<10 0\fi
\number\milhour: \ifnum\minleft<10 7.

0\fi\relax\number\minleft}

Unfortunately it is not possible to include the \newcounts within

the definition.

7.11: This is one solution:
\newcount\minleft

\newcount\timehour

\def\thetime{\timehour=\time
\divide\timehour by60 '/.gives 24 hour part of clock

\minleft=\timehour

\multiply\minleft by-60 7.
\advance\minleft by\time 7,minutes after hour

\ifnum\time>720\advance\timehour by-12\fi\relax

\number\timehour: \ifnum\minleft<10 7.
0\fi\relax\number\minleft

\ifnum\time>720~p.m.\else~a.m.\fi}

but many variations are possible.

422 A plain Tp]K primer

7.12: This is fairly direct:
\def\today{%

\countlO=\year

\advance\countlO by-1900

\number\day/\number\month/\number\countlO>

We might quibble that if we were running T^X between 1900 and

1909, the dates would come out with only one digit in the year

part. To do this more generally, we really want to implement a

modulus function. Then year mod 100 would give the year part.

Then allow for the first decade of any century. The arithmetically

inclined might enjoy this. The rest of us will remember to change

the command on January 1st, 2000.

7.13: This is a very longwinded way, but it does work:
\def\today{\ifcase\month\or

JanuaryXor FebruaryXor MarchXor AprilXor

May\or JuneXor JulyXor AugustXor

SeptemberXor 0ctober\or NovemberXor DecemberXfi

\space\number\day

\ifcase\day\or st\or nd\or rd\or th\or th\or

th\or th\or th\or th\or st\or nd\or rd\or th\or

th\or th\or th\or th\or th\or st\or nd\or rd\or

th\or th\or th\or th\or

th\or th\or st\or nd\fi, \number\year}

The real purists might like to raise the ‘st’, ‘nd’, ‘rd’ and ‘th’, and
perhaps even turn them into italics.

We Librans don’t believe too much in astrology, but the basic

structure of this could be to calculate the day within the year:

\def\dayofyear{\countlO=\ifcase\month\or0\or30\or59\or

90\orl20\orl51\orl81\or212\or243\or273\or304\or334\fi
\advance\countlO by\day

\countll\year

\divide\countll by 4

\multiply\countll by 4

\advance\countll by-\year

\multiply\countll by-1

\advancp\countlO by\ifcaseXcountll l\else0\fiXrelax

\the\countlO}

and use this against a table of the beginning of each star sign.

Lots of \ifnums, nested quite a few times. The computing aware

will recall that rather than 12 or so comparisons, you only need
at most 3.

Appendix D 423

7.14: If we only ever use colons in text, this would do:
\catcode‘\:\active

\def:{\kernO.25em\char’72{}}
The \kern is unbreakable (unlike an \hskip of the same amount).

The colon has to be addressed indirectly through its position in

the coding scheme, rather than as a :, otherwise we would have a

rather recursive definition. Another way round this is
\def\Colon{:}

\catcode‘\:\active

\def:{\kernO.25em\Colon{}}

but at the loss of some of TgX’s registers. The null brace {} ensures

that we do not have to follow each colon with \u-

If colons may still be used in maths, then
\catcode‘\:\active

\def:{\ifmmode\char’72\else\kern0.25em\char’72{}\fi}

would be a more robust definition. Fortunately, although T^jX

already uses the maths colon in a particular non-punctuation form,

by referencing it as \char’72, TgX still sees it in the same way.

8.1: To do this you have to find a way of making the delimited

maths big. Perhaps the easiest way is by judicious use of \over to

create an expression with some vertical extent.

8.2: Unfortunately you have to assign the larger sizes yourself:
$$ \bigl\vert \left\vert x \right\vert

+ \left\vert y \right\vert \bigr\vert $$

The \left and \right before the \verts are superfluous, although

they do help to explain what is going on. They could have been

simple \verts or even just I.

8.3: In order to make the parentheses smaller, it is necessary to

do it manually, through \big, Ybigg etc.:

$$\biggl(\sum_{k=l}~n A_k \biggr)$$

This is rather inflexible and hardly in the spirit of ‘declarative’

markup

8.4: This set of equations can be made easier by defining a new

operator, which TgjX does not have by default:
\def\minimize{\mathop{\rm minimize}\nolimits}

$$W_0=\lim_{R\to0}\pi R~2q_0$$

$${h\over L_0}={h\over L}\tanh{2\pi h\over L}$$

$${v\over u}=-\tanh k(h+ y)\cot k x$$

$$p_{ij}~{(r+l)}=\min_{h=l}~n\left[\max_{k=l}~m

c(i, j ;h,k)p_{hk}"'{(r)}\right]$$

424 A plain TpjK primer

$$\minimize\{\hat{\vec f~t}[C]“t[C]\hat{\vec f}\}$$

$$\lim_{x\to 0}\ln(l+x)=x$$

$$M=\log\nolimits_{10}{A\over A_0}$$

The \hat accent is centred over its ‘group’. Ensuring that the t
—*

superscript is not taken into account in /* requires some extra

attention. One solution could be

\hat{\vec f}{}~t

but that is neither intuitive nor attractive.

8.5: This should be fairly straightforward, especially in view of

the ‘rules’ worked out in Exercise 5.2, and the way that \limits

and \nolimits work.

8.6: There is a small cheat in this exercise, since you probably

don’t yet know how to set the text of ‘A; times’ quite properly. But
don’t let that detract:
$$B=\underbrace{

\left({l\over k}B\right)\oplus

\left({l\over k}B\right)\oplus\ldots

\left({l\over k}B\right)}_{\hbox{k times}}

=\left({l\over k}B\right)~{\oplus k}$$

There are other ways to handle the ‘k times’, but the \hbox is

probably preferred. Here, the operator ® means ‘dilation’. In

which case it might have been a good idea to rename it.

8.7: The way it was done here was:
$$ a_{\hbox{red}} + a_{\hbox{green}}

+ a_{\hbox{blue}} = a_{\hbox{white}} $$

$$ {\rm colour} \propto

b_{\rm intensity},b_{\rm spectra},b_{\rm hue}$$

If we want to control the level of the baselines, we have to do an

extra bit of work. There are ways to do this with struts, but a
quick and dirty way is to use \mathstrut:

$$ a_{\hbox{red\mathstrut}} + a_{\hbox{green\mathstrut}}

+ a_{\hbox{blue\mathstrut}} = a_{\hbox{white}} $$
$$ {\rm colour}

\propto b_{\rm intensity\mathstrut},

b_{\rm spectra\mathstrut},

b_{\rm hue\mathstrut}$$

to give

ared agreen ablue — awhite

Colour OC 5intens;ty, 6Spectra, 5^ue

Appendix D 425

What is the \mathstrut? We will meet \struts later, but in

this context a maths strut is equivalent to inserting a character

which is of maximum height and maximum depth, but of no width.

This ensures that the baselines are kept consistent. By amazing

coincidence, the parentheses (in the Computer Modern typeface)

have this maximum height and depth. The use of a maths strut

ensures that the correct size is chosen for sub- and superscripts.

8.8: The default value of \mathsurround is 0 point. In other

words, the maths is treated as just another word, with no ‘extra’

space inserted. It is interesting that the value of \mathsurround

may be changed within a paragraph, and only influences the para¬

graph from where it occurs.

8.9: This works much as you would expect. The other font

changes to the greek symbols usually end up with an omega of

some kind. The only major exception is if you try to use \cal.

The ‘bold’ version of omega is unslanted. Rather oddly, \it works

with \Omega just as well as \mit. The necessity of \mit becomes

apparent in sub and super scripts.

8.10: Whether we are in text or display, the subscripted \it will

generate messages like

! \scriptfont 4 is undefined

while the \mit form will be swallowed without complaint. But the

inter-letter spacing will be a mite unsatisfactory. Even I can see

that wave is unpleasant. At least the \mit form is reduced in size

- that in fact is what is going wrong with the \it form: TgK is

trying to find a smaller \it, which it just does not have - in truth,

it does have it (somewhere), it just does not have it defined in this

context. If we really want to use \it, pop it in an \hbox. But then

the phrase will be rendered in whatever the text part thinks \it

is: probably as 10 point. The other difference you might note is

that \it and \mit are two slightly different fonts.

8.11: They may be used in script and scriptscript styles. So too

can \bf. The experiments are worth while.

8.12: The ‘only’ real problem is ensuring that the font changes

are grouped:
$$B\equiv B’Uff B\buildrel{\cal I}\over=B’$$

$${\bf f}(N+l)=\rho{\bf f}(N)+{\bf v}(N+l)$$

$${\cal QHf]
=l\;{\rm if}\;\sum_{\cal I}a_i{\cal P}_i[f]\ge t$$

426 A plain TpjX primer

but note the manual control over spacing in that very last example.

Since the ‘if’ is text, and not an operator or relation, it needs

‘textual’ spacing around it. We can achieve this with the maths

spacing given in Figure 8.3. Another possibility is to say

\hbox{ if }

which takes care of the spacing, and the change into the upright

font.

The ‘text’ part was
Let ${\cal 0}$ be an operation that takes pictures

into pictures. We say that the property ${\cal P}$

is {\it invariant\/} under ${\cal 0}$ if

${\cal P}[{\cal 0}[f]]={\cal P}[f]$ for all f.

An alternative to that last expression is to set it all in \cal, escap¬

ing into \mit when required:

$\cal P[0[{\mit f}]]=P[{\mit f}]$

Although this is shorter, it is less ‘obvious’ to read.

8.13: Experiment reveals the defaults very swiftly. Adjusting the

value of \hsize saves you having to create some elaborate long

equation. You may be relieved that the equation number is placed

so that it does not ‘interfere’ with the equation itself. In the case of

\eqno the number is placed after the equation, but \leqno places
it before.

8.14: The ‘text’ is treated as if it were a maths equation (in fact

this is one way to cheat and place some extra information there

instead of a number (see Exercise 11.16). The point here though is

that the text looks unsatisfactory: in order to make it ‘real’ text,

place it in an \hbox, or write \rm Eq.6. If you really wanted to

mark the equation as Eq. 6, you could have to write something
like

\eqno\hbox{Eq. 6}

Although all the examples will have used a form like \eqno(l),

the parentheses are not needed at all: \eqnol is satisfactory: but

there will be no parentheses around the number when the equation

is typeset. We could as easily have written \eqno [3] if we wanted

square brackets instead. This perhaps helps to reveal that what

does is take everything between the \eqno and the closing $$
and treat that as the ‘number’.

8.15: This is a strategy:

The predicates of χ_S are Boolean functions of

the Boolean variables P_1,\ldots,P_N. For example,

Appendix D 427

the predicate ‘‘$\vert S\vert=l$’’ (‘‘there is only

one 1 inχ_S’’) corresponds to the fmiction
$$\bigvee_{i=l}~N(\bar{P}_l \wedge \cdots

\wedge \bar{P}_{i-l} \wedge P_i

\wedge \bar{P}_{i+l} \wedge\cdots

\wedge \bar{P}_{N}) $$

where the overbars denote logical negation,

and
In this chapter, Σ denotes a picture; subsets

of Σ are denoted by S, T,\ldots\thinspace,

and points by P,Q,\dots\thinspace.

An alternative is to place a maths ‘thinspace’, \, between the

dots and the closing $. I might even be inclined to leave out the

last \thinspace. and let the third dot of the ellipsis do the job.

8.16: This is the solution used here:
The condition $B_x~2\subset X~c$ is always fulfilled,

and the eroded set Y is the locus of the points x,

such that B_x is included inX:

$$Y=\lbrace x\colon B_x\subset X\rbrace$$

and
Finally, let $S_n(K_0;K_l,\ldots\,,K_n)$ denote the

probability that X misses the compact set K_0,

but hits the other compact sets $K_1,\ldots\,,K_n$.

\def \Sup{\mathop{\rm Sup}\nolimits}°/0

$$\Lambda(x)=

\Sup\{\lambda\mathbin\colon x\in \psi_\lambda(x)\}$$

Both \colon and : would give the same end product when used

with \mathbin.

9.1: The presence of the command \ ’ disables the ‘natural’ kern¬

ing between the v and the e. As a consequence, the two letters are

about 0.3pt more widely spaced (in cmrlO).

If you really have TeX3, you may be able to type veritable,

and T^X will accept it. It is possible however that the e will be

translated into \ ’ e behind your back and the natural kerning will

again be lost. Part of this exercise is to encourage you to read

the documentation which should have been supplied with your

implementation of Tj^X.

9.2: The spacing between letters is fixed through the tfm files.

The only thing that can spread is the space between words. If

there is punctuation in the box, the space after full stops and com¬

mas will stretch differently, by default. If the glue between words

428 A plain TgX primer

stretches at the rate of 1, after a comma, glue stretches at the rate

of 1.25, and after a full stop, 3. Investigate the characteristics of

colons, semi-colons, exclamation and question marks.

9.3: Counter-intuitively, the explicitly kerned word is ‘longer’

than the one where we do nothing. The \kern is not cumulative.

9.4: Copying the Ij^X logo:
\def\DeK{D\kern-0.1667em

\lowerO.5ex\hbox{E}\kern-0.125emK}

perhaps some further adjustment is appropriate.

9.5: In order to force ffj^X into horizontal mode at this point you

can precede the \copy by \leavevmode, or less explicity, \indent

or \noindent. Much less elegantly, an \hskipOpt would also have

the desired effect, although \kernOpt would not.

9.6: Again, it all depends in which mode T^X starts out. A further

alternative might be
hello

\hbox{A title}

\hbox{A subtitle}

where the ‘hello’ would have switched T£jX into horizontal mode.

9.7: Intuitively we might expect the height of the larger box to

be equivalent to the height and depth of ‘one’ plus the height of

‘eight’. This is not correct. The two vertical boxes are still placed

on ‘normal’ baselines, thus the height is the amount of the baseline

plus the height of ‘one’. If we manually switch off the interlineskip

using the command \nointerlineskip then the boxes will be

placed as close together as they will go. The descender on the ‘g’

of ‘eight’ maintains the same depth for the boxes.

9.8: The first box (the \vbox) will have a large height, the extent

of which will depend on the number of lines set, the second box

(the \vtop) will have a height which is determined by the tallest

letter on the first line (a capital letter in this case). The depth of

the first box will be small, but not zero, since the last letter in

the paragraph has a descender. The depth of the other box will

be large, again depending on the number of lines set.

9.9: The alterations to the size of the box are most easily accom¬

plished by placing \hsize within the \vbox. If you write \vbox

to 72pc where 72 picas is likely to be greater than the vertical

extent of the text, will generate some underfull box messages.

Appendix D 429

If there is more than one paragraph, it will likely insert more space

than you would anticipate between the paragraphs.

9.10: It all depends on whether TgX is in vertical or horizon¬

tal mode. Forcing them into an \hbox ensures that we are in

‘restricted’ horizontal mode, and they come out side by side (even

if they are too large for the line length).

9.11: This is just to get you used to extracting the relevant

information from the masses that T^X divulges.

9.12: Let’s make some assumptions: first that we know the

\baselineskip. If we can ensure that there is a full height ascen¬

der in the first line and a full depth descender in the last line

(and we can always engineer this), then we can calculate the full

extent of the paragraph. Dividing this by the \baselineskip will

give the number of lines (within the limitations of integer arith¬

metic). We are also assuming that there is no display maths in

this paragraph.
By modifying the \hsize of the vertical box containing the para¬

graph, we may eventually hit upon a combination that does what

we want. Here, the use of \unhcopy may be useful.
A way of finding out what might be a good starting point would

be to fit all the text into a single \hbox with the \hsize set to

\maxdimen. This is the maximum dimension which may occur in

TgX, and should accomodate all but the most extreme paragraphs.

Dividing the typeset width of this box by n will give a good start¬

ing value for our real \hsize. Of course, this does not take into

account the flexibility of inter word spaces, and Ij^X’s ability to

hyphenate, which may be expected to make the estimate different

from the ‘true’ value.
The command \prevgraf records the number of lines in the

most recent paragraph. This could be used to confirm that you

have indeed managed to make the desired number of fines, n.
There are ways to make Tj^X loop, so in theory we could set up a

command which would keep setting this paragraph with different

values of \hsize until we get the desired configuration. But given

all the possible things that TeX can do, it might never come out

with the ‘right’ answer, given our initial constraints, and may loop

endlessly, forever unsatisfied...

9.13: It probably does what you want, but it also does a bit extra,

leaving the characters ‘ch’ somewhere in your text (as you asked).

430 A plain TgX primer

9.14: T^X reads this as

\vskip lin Plus-fours

which is quite legal, up to the ‘P of four. The syntax of a \vskip

allows for a plus followed by a minus dimension. The ‘Plus’ of

‘Plus-fours’ implies to I^X that there will soon be a dimension

which it will recognise. The hyphen does nothing to dispel this,

since TgX thinks it is a minus sign. The ‘f’ is totally unexpected,

and leads to disaster. What is the solution? The immediate solu¬

tion is to write something like
\vskip lin\relax Plus-fours

but the better solution is never to write \vskip expressions explic¬

itly. They should be hidden away in macros (together with their

\relax). Another solution, which emphasises that a plus must

occur before a minus, is

\vskip lin minusOpt Plus-fours

but that’s obscure.

9.15: Even the small amounts of extra white space become quite

noticeable and change the ‘texture’ of the page. With paragraphs

this is perhaps excusable, although if you become used to a small

(or no) gap between paragraphs when you read a book, encounter¬

ing a paragraph which is separated from its predecessor by more

space can be off-putting and raises questions of ‘Why?’ In the case

of books, printers will generally attempt to make the position of

lines on either side of a page identical so that the ‘shadow’ of the

ink on the other face affects the printed parts of the face you are

reading, and not the white parts. Small changes in the distance

between the lines on successive pages would make this impossible.

9.16: The idea here is that we manipulate the vertical fills: it
seems straightforward that
\null

\vfill\vfill

lots of text
\vfill\vfill\vfill
\end

will do the job. This is not quite the case. Firstly, \end appears to

have its own \vfill associated with it. But note that replacing

\end by \bye gives the same result. Closer examination of the

definition of \bye reveals a \supereject. Placing this \super-

eject before the \end has the effect of eliminating this unwanted

vertical fill. An \eject has just the same effect (except that an
extra page is created).

Appendix D 431

There is another way to tackle this, which avoids these machi¬

nations. Although there is no \vf illl by default, it is not difficult

to define one:

\def\vfilll{\vskipOpt plus lfilll \relax}

This massive vertical fill overrides everything else, and gives us

just what we want. Equally,
\null

\vskipOpt plus 2filll\relax

lots of text
\vskipOpt plus 3filll

\end

would do it (except that I don’t like to see explicit \vskips).

To eliminate the \null before the vertical skip, we could use a

feature of TgX3, \topglue:
\topglueOpt plus 2filll\relax

lots of text
\vskipOpt plus 3filll

Again, these explicit commands should be hidden.

9.17: This is a variation on an earlier exercise. It may not be

possible. The notion is that you experiment with the \hsize val¬

ues associated with the \vboxes until they both have the same

vertical extent. The trivial solution is to fix the horizontal extent

of one of the blocks, and then set the other vertical box to this

vertical extent. If the commands like \baselineskip, \lineskip,

or \parskip are given some extra skip, they will expand to make

the text the required length. In this context it might be what you

want. Good luck.

9.18: The simplistic approach of
\leavevmode\rlap{\hskip\hsize\Leftarrow}

does something suitable, but the \hskip starts after the indenta¬

tion of the paragraph (remember, this is to be used at the begin¬

ning of a paragraph), and therefore there will be horizontal white

space of width \parindent between the text and the arrow. A

clumsy way of removing this is by

\hskip-\parindent
These commands really ought to be encapsulated in a command;

no-one wants to see things like this in their text (or to type it in).

10.1: The use of \show indicates that \leftline is

Mine {#l\hss >
and pursuing this further, Mine is \shown to be

432 A plain TpX primer

\hbox to\hsize
The use of \hss rather than \hfil ensures that when the \hbox

is set it may exceed the dimensions of \hsize. It is therefore much

more flexible than if we had merely included \hfil or \hf ill.

10.2: The use of \show\repeat should tell you. It is already

defined. It is a command needed for the \loop structure. It is

perhaps less obvious that \iterate and \body have already been

defined and that it would be dangerous to redefine them.

10.3: This restriction simplifies the syntax of the definition. The

definition merely has a # followed by a single digit. If it was more

complex, it would have been harder to program. Since it is possible

to include ‘template’ items, once we get to #10 it could appear as

#1 delimited by a 0. My major surprise is that the limit is not 8,

numbered from 0 to 7.

10.4: One noticeable way is with diacriticals. While \& does not

require to be followed by a command space, since it is a self-

contained command which does not have to be delimited, writing

something which looks very similar, \ ’ reads on to the next char¬

acter, ignoring spaces. If we were to look at the definitions driving

most diacriticals, they would be seen to be commands which have

one argument. Thus, until the argument is found, all intervening
spaces are consumed and ignored.

10.5: The important part of this is the way the \proclaim is
delimited:

\def\proclaim #1. #2\par

We expect the first argument to be terminated by a full stop, and

the second to go as far as a \par or (more likely) a blank line.

1 The number of spaces will make no difference in this context.

2 Something may go wrong. If the first argument starts with an

alphabetic character you will have an undefined command. If it

is non-alphabetic, or braced, there will be no error. The space

in the definition between the name and the # symbol is not a
delimiter.

3 No problem there. Provided there is at least one space, the
results will be satisfactory.

4 The template is not satisfied, and probably TgX will complain

that it has encountered a ‘runaway argument’, and that the

paragraph ended before the \proclaim was complete. Later,

when you encounter \long, you will see a way around this, but

at present, the argument to a command may not include a \par

Appendix D 433

or a blank line. T^K was busy reading away until it encountered

the sequence .u: of course, if the argument has two sentences,

the end of the first sentence will have just that sequence, and

will be understood as the template.

5 Similar results to the previous case. In these last two cases, the

template is not satisfied, and the argument likely will appear to

have ‘run away’. You may obtain something, but not what was

intended.

10.6: Again IjrpC will complain about a runaway argument, but

this time it will indicate that a ‘forbidden control sequence’ has

been encountered. It turns out that \bye is defined as \outer. This

is explained later, but basically it means that these commands may

not appear within the definitions of other commands. You could

take it apart and encapsulate its contents, though. Or redefine

without the prefix \outer.

10.7: The notion here is that everything between the command

\eatme and the next asterisk will be the argument to the com¬

mand, and will be thrown away, [delimiter!command]

10.8: This will do:
\def\<#l>{\leavevmode\hbox{\langle#l\/\rangle»

Another alternative is to use the < and > symbols from the type¬

writer font:
\def\<#l>{\leavevmode\hbox{{\tt<}#l\/{\tt>}}}

The italic correction is a prophylactic measure. The notion of

‘italic correction’ is rather odd. The way that TgX handles charac¬

ters is not really to place a box around a character: there is a box,

but a slanted (or italic) character may very well ‘lean’ out of the

box. When such letters are assembled into a word they will appear

to overlap one another (from the point of view of a rectangular

grid). When a slanted or italic word ends and is followed by an

‘upright’ font, it may appear that the tops of the last letter of the

italic word and the first letter of the upright word are too close

together. In order to ‘correct’ this, TgX has an italic correction

which adds a little space. In very general terms, the italic correc¬

tion of a letter is zero (even upright fonts have italic corrections).

In general though, you really need the correction only when you

are dealing with letters which have ascenders. But rather than

choose, it is easier to put it in every time, even though it may not

be needed.

10.9: This one is too difficult for me.

434 A plain TpiX primer

10.10: I’m not going to worry about the italic correction. If

we look first at the definition of \rm, \bf, and so on, it can be

extended:
\def\rm{\famO \tenrm\let\em\it}
\def\it{\fam\itfam\tenit\let\em\rm}

\def\sl{\fam\slfam\tensl\let\em\rm}

\def\bf{\fam\bffam\tenbf\let\em\it}

The reference to \fam is something required by maths, so we

can just ‘ignore’ it here. It is necessary to add something which

ensures that \em changes in context: the \let will do this.

This is not a particularly elaborate definition, but it may be

sufficient.

10.11: There are lots of solutions. For example:
\def\sectionhead#l#2#3\par{\dimen0\hsize

\advance\dimenO by-5.5pc

\halign to\hsize{°/0

\hbox to 1.5pc{\bf##\hfil}\hskipO.5pc

&\vtop{\raggedright\hsize 3pc\noindent##}°/»

\hskipO.5pc

&\vtop{\hsize\dimenO\noindent ##}\cr

#l\cr>

\bigskip\noindent}

This is a little more rigid than the one shown in the text, but

works nonetheless.

10.12: Only you can do this. I know how to do it on most of the

machines I use.

10.13: The most critical ones are those which effectively prevent

you from allocating new counts, dimensions, skips, boxes, ifs, and

token strings from within another command. Apart from those,

\+, \proclaim, \beginsection, and \bye are also outer. The first

of these is usually used with the tabbing commands, which will

be covered in Chapter 13. Some people are foolhardy enough to

redefine the way allocation is done (for example, Hoenig, 1988,

redefines the way that \newbox is used, so that he has greater
flexibility in some aspects of page make-up).

10.14: The delimiting space is removed from the definition.
\def\start#l{{\bf #1}}

\everypar{\start}

Tf^X now looks for the first token.

Appendix D 435

10.15: 3.

10.16: There will be no error message at all. It is quite a legal
definition, although not the one you want:

\def\one\bgroup x\egroup\def\two{y}

In other words, there is a template of \bgroup x\egroup\def \two.

T^X is defining \one as y, although actually referring to \one will

probably generate an error.

10.17: First, the boxed mini page, divided into a beginning and

end:
\long\def\beginBoxit#l#2{\vbox\bgroup\hrule

\hbox\bgroup\vrule\kern3pt

\vbox\bgroup\kern3pt\vbox\bgroup\hsize

#l\noindent\strut#2}

\def\endBoxit{\egroup\kern3pt\egroup\kern3pt

\vrule\egroup\hrule\egroup}

This is just an unravelling where lots of { } pairs are trans¬

lated into \bgroup \egroup pairs. To centre this, put it into a

\centerline. Perhaps a better structure would be to introduce

\begincentre \endcentre. Since this boxed mini page is a suit¬

able box, it is relatively easy to place two (or more) within an

\hbox to\hsize (just like a \centerline), provided of course

that the boxes are not bigger than \hsize. If the boxed mini

pages are separated by \hss rather than \hfil, there will be no

complaints at all. I prefer to use fractional \hsize values:

\line{°/0

\beginBoxit{0.45\hsize}{\raggedright\tolerancel000

Years afterwards she could bring the whole scene

the melancholy music of the song.}\endBoxit

\hss

\beginBoxit{0.5\hsize}

{But the tune {\it isn’t\/> his own invention.

but no tears came into her eyes.}\endBoxit>

11.1: For example
$$A=-C

\left\vert\matrix{z_0-f&y_0\cr c&b\cr}\right\vert

\Big/ \left\vert\matrix{x_0&y_0\cr a&b\cr}\right\vert

\eqno(20)$$

The only awkward part may be finding the size of the / symbol.

436 A plain TppC primer

11.2: The second expression is the one using \matrix. In the first

case, the terms are separated by a \quad:

$${\cal C}=[R\quad G\quad B]$$

$${\cal C}=[\matrix{R&G&B\cr}]$$

Even though they hardly look different, it is easier for someone

else to read the ‘raw’ input and understand the meaning. The

typography does not contain all the information.

11.3: I think I prefer the second one, but the addition of some

‘thick space’ to the first one does give something acceptable:
$$\left\lbrace\matrix{c_0 & \ldots& c_n\hfill \cr

c_l & \ldots& c_{n+l} \cr

\;\vdots\hfill & \ddots& \;\vdots\hfill\cr

c_n & \ldots& c_{2n}\hfill \cr}

\right\rbrace\eqno(ll.3)$$

Not only is this a fair amount of extra effort, but the attention to

typography could obscure the relative simplicity of the expression.

11.4: The straightforward approach of
$${\bf f}=\left[\matrix{

f_e(0)\cr

f_e(l)\cr

\vdots\cr

f_e(M-l)\cr}\right]$$

would give

r fe (o) 1
f= /e(D

-fe(M-l).

To reproduce the example it is necessary to try to align the fe
terms by using \hfill to left justify them. This tends to put

the \vdots too far to the left. There are a number of ways to

rectify this: for example, the \vdots could be preceded by \phan-

tom{f_e(}; but in order to make the dots align with the 0 and

1 a little extra adjustment is required; for example, \hbox to

5pt{\hf ill\vdots\hf ill}. You might think that since you are

in maths mode and that the mu is a mathematical unit you could

have used, say, \hbox to 9mu; not so: \hskip, \kern, and \hbox,

although legal in maths, may use any dimension except mu!

This is becoming too complicated. A reasonable alternative

might be to abandon the desire to align through the ‘digits’ and
just use, say, \;\vdots.

Appendix D 437

11.5: In this case, \phantom{-> was inserted in order to align

the terms. The ‘problem’ with the brackets in the first vector is

induced from two factors: the lack of descenders or subscripts; and

the elements being capital letters: the brackets are positioned in

the general assumption that they will be suitable for a general

group of letters, with some ascenders and descenders. A selection

which contains only capitals, and therefore no descenders, will look
‘high’ in contrast to the brackets.

11.6: Since the same term is repeated, rather than keep typing it
in, it can be defined:

\def\part#l{\displaystyle{\partial s(u)\over\partial u>

\bigg\vert_{u=b_{#l»>

The equation then simplifies to:
$$ [S_b]=\left[\matrix{

\partl&&&0\cr

&\part2\cr

&&\ddots\cr

0&&&\part{N~2}\cr}\right]$$

The definition could be inserted after the first $$, but it would be

local to that display equation.

11.7: Taking a simplistic approach:
$$\left\Vert \matrix{

\rm small\hfill&\rm smaller\hfill&\rm smallest\hfill\cr

\rm sum\hfill &\rm suimner\hfill &\rm summit\hfill\cr}

\right\Vert$$

but it might be much ‘better’ to place each piece of text in its own

\hbox:
$$\left\Vert \matrix{

\hbox{small}\hfill&\hbox{smaller}\hfill
&\hbox{smallest}\hfill\cr

\hbox{sum}\hfill &\hbox{summer}\hfill
&\hbox{summit}\hfill \cr}

\right\Vert$$

And perhaps even better to make a local definition of:

\def\h#l{\hbox{#l}\hfill}

to make the expression a little tidier.

11.8: This should be straightforward:
$$h_l(y)=\int_{-l/2n>''{l/2n>n~2dx=

\cases{n&for $\vert y\vert\lel/2n$\cr

0&otherwise\cr}\eqno{214}$$

438 A plain Tp^X primer

The only interest is in the ability to attach an equation number,

and its location.

11.9: There is (as usual) more than one answer. The one chosen
was to move into the slanted font before the display equation:
{\sl$$, remembering of course to close the braces after the closing
$$. Alternatively, insert \sl before the if and the otherwise.:

you might like to quibble about the presence of the full stop there,
or argue whether it ought to be in \sl or the default \rm font.

11.10: If we take this naively, we will write something like:
$$z,=\cases{

{z_K-z_l\over b-a}(z-a)+z_l&for $a\le z\le b$\cr

z_l&for $z<a$\cr

z_K&for $z>b$\cr}$$

In that case, the Zlf~Zl term is out of scale with the others. To
7 b—a

rectify this, write
$$z,=\cases{\displaystyle

{z_K-z_l\over b-a}(z-a)+z_l&for $a\le z\le b$\cr

This does tend to emphasize the advantage of knowing what goes
on under the surface.

11.11: Apart from the use of \displaystyle, the main issue here

is to insert a phantom copy of — — on the bottom line of the 2x2

matrix to add depth (perhaps too much depth!). But if \phantom

is used, the width of the expression is included in the positioning
of the entry. In this case, the correct phantom is a \vphantom:

$$\pmatrix{Q_{02}\cr \eta_{02}}=

\pmatrix{-l&\displaystyle-{l\over Z~*_3}\cr

O&l\vphantom{\displaystyle-{l\over Z~*_3}}\cr}

\pmatrix{Q_{01}\cr \eta_{01}\cr}$$

The last \cr in a \pmatrix or \matrix may be omitted with
impunity. Delving into their definitions reveals a \crcr which
allows this behaviour.

11.12: The only imagination required in the first of these two is
to introduce a little extra space, perhaps with a \quad:

$$\eqalign{

H(j,k)=0, &\quad j=l,2,\ldots,8\cr

H(257-j,257-k)=0, &\quad k=17,18,\ldots,256\cr}

\eqno(221)$$

The second example contains a little ‘trick’ in order to encourage

Appendix D 439

the \vdots to align with the =:

$$\eqalign{{\bf f}_l &

=(f_{ll>,f_{12>,\ldots,f_{lm>),\cr

{\bf f}_2 &=(f_{21},f_{22},\ldots,f_{2m}),\cr

&\llap{\vdots}\cr

{\bf f}_M &=(f_{Ml},f_{M2},\ldots,f_{Mm>).\cr}

\eqno(9.84)$$

The punctuation appears in the original.

11.13: Using \left and \right works surprisingly well, but not

perfectly:

Y

a2(x,y)
{2X + 1){2Y + 1)

E E {[g(x + m,y + n)
m=—X m=—Y

— w(x + m, y + n)p(x + m,y + n)]

- g{x,y) ~ w(x,y)p(x,y)]i }

Although each alignment ‘cell’ is balanced correctly with use of

\lef t. and \right. when appropriate, this simplistic use leads to

uneven delimiters. Both the large braces and the square brackets

contain expressions which extends over more than one ‘row’. T^C

is unable to keep track of this. Here, we should have used the

family of big delimiters.

Note also that the \lef t. at the beginning of the second and

third equation lines is before the \null-. If we write -\left.w,

there will be space between the minus and the non-existent paren¬

thesis, and also between the parenthesis and the w. Not what we

meant.

11.14: The point of this exercise is to demonstrate that the defi¬

nition of \displaylines includes \hf ils. Over-riding these with

\hf ill may sometimes be required in order to place equation cor¬

rectly. The \quads would not really be needed if we used \hfil:

$$\displaylines{\sigma~2(x,y)

={l\over(2X+1)(2Y+1)}

\sum_{m=-X}~X\sum_{m=-Y}~Y\Bigl\{

\bigl[\bar g(x+m,y+n)\hfil\cr

\hfil\null-w(x+m,y+n)p(x+m,y+n)\bigr]\hfil\cr

\hfil\null-\Bigl[\bar g(x,y)

-\overline{w(x,y)p(x,y)> \Bigr]\Bigr\}"2\cr}$$

440 A plain T^X primer

which results in

a2(x,y) =
1

X Y

E E{ltf x + ra, y + n)
(2X + 1)(2Y+1) ^ y Y x 7 m——X m— — Y

— w(x + m,y + n)p(x + m,y + n)]

g(x,y) -w(x,y)p(x,y) j

The first line of this equation is almost 4 inches (about 284 pt)

wide. In other words, we may have to take some of the physi¬

cal constraints into account when we decide how to divide up an

equation over more than one line.

11.15: This is rather lengthy, but one of the two approaches could

be to use \displayline:

$$\displaylines{\quad\underbrace{

-D\left\{u{\partial\over\partial x>

\left[\omega\over D\right]+v{\partial\over\partial y}

\left[\omega\over D\right]\right\>>

_{\hbox{non-linear term}}

= \underbrace{

{\partial\over\partial y}\left[R_x\over\rho D\right]

-{\partial\over\partial x}

\left [R_y\over\rho D\right]}

_{\hbox{frictional term}} \hfill\cr

\hfill{}+\underbrace{

-{\partial\over\partial y}\left\{{l\over\rho D}

\left[{\partial\over\partial x}S_{xx}

+{\partial\over\partial y}S_{xy}\right]\right\}

+{\partial\over\partial x}\left\{{l\over\rho D}

\left [{\partial\over\partial x}S_{xy}

+{\partial\over\partial y}S_{yy}\right]\right\}}

_{\hbox{forcing term}}\quad\cr}$$

Although \eqalign is possible, it does not seem very natural.

11.16: The differences in setting are not noticeable, unless the

text width is large enough that the second line is not really

required. The command \eqno has the pleasing feature that it

staggers the ‘equation number’ if it would overlap the equation.

Appendix D 441

$$\displaylines{

\int_{-\infty}“\infty\int_{-\infty}'~\infty

m(\alpha-x,\beta-y)R_{gg}(x,y)dx\,dy

=R_{fgK\alpha,\beta) ,\Cr

\hfill -\infty<\alpha<\infty,\

-\infty<\beta<\infty\ (33) \cr>
$$

and

$$\int_{-\infty>~\infty\int_{-\infty>~\infty

m(\alpha-x,\beta-y)R_{gg>(x,y)dx\,dy

=R_{fg}(\alpha,\beta),

\eqno{-\infty<\alpha<\infty,\

-\infty<\beta<\infty\ (33)}

$$

This seems an abuse of the concept ‘equation number’. One way

to rationalise is to rename \eqno to something plausible.

11.17: One tempting solution is to exploit the use of \hf il in the

definition of \displaylines:

$$\displaylines{\quad{\textstyle{l\over2}}[g(x-l,y+l)

+g(x+l,y+l)+g(x-l,y)\hfill\cr

\hfil{}+g(x+l,y)+g(x-l,y-l)+g(x+l,y-l)]\hfil\cr

\hfill{}-[g(x,y+l)+g(x,y)+g(x,y-l)]\quad\cr

\noalign{\hbox{at (x,y).}}>

$$

noting that the last piece of ‘text’ is included as part of the equa¬

tion in order to ensure that there would be no intervening page

break. If you attempt something like this, you may very well end

up with some odd vertical spacing on the page. TgX may have to

exploit any glue which occurs between paragraphs (and displays).

The other example could use an \eqalignno:

$$\eqalignno{

K(y) &=(2\pi)~{l/2}e~{-y~2/2},&(6.lla)\cr

K(y) &=[\pi(l+y~2)]~{-l},&(6.lib) \cr

\noalign{\hbox{and}}

K(y) &=\cases{l-\vert y\vert,&$\vert y\vert\lel$,\cr

0, &$\vert y\vert>l$.\cr}&(6.11c) \cr}$$

Further ‘alternatives’ might be to \vbox the section which is to

be held together.

11.18: Adjusting the delimiter commands, for example to a ‘null’

value:

442 A plain Tp^K primer

\delimiterfactor1000

\delimitershortfallOpt

would yield

[R G B]
2/s/6 -1/V6 — 1/ s/6

0 1/^2 — 1/ s/2

1A/3 1/V3 l/\/3_

t-i -L\
Q02 \ Zi (
V02) 1° 1 J \

= [M! M2]

1

1

-d

0

1

This does seem to illustrate that the delimiter commands are

essential to the way in which T^X has been written. With the

null values we have very unsatisfactory setting.

Many other publishers seem to set matrices in a similar way to

Addison Wesley.

12.1: The \hang sets up hanging indentation for the next para¬

graph. The \noindent ensures that the first line of the paragraph

is not indented at all. By default, \hang implies \hangafterl,

that is to say, the hanging starts after the first line in the para¬

graph. Therefore the first line is set ‘normally’, using the currently

set paragraph indentation. Note of course that if \parindent is

set to zero (points, inches, etc.) these things will not have any

effect at all.

12.2: It should be straightforward to experiment here. The use

of \everypar is needed to make the modifications apply to each

paragraph, since the way they normally work is to apply only to

the current paragraph:

\everypar={\hangindent=20pt\hangafter=3}

Note that it is necessary to ‘group’ the commands which you

wish to associate with the \everypar. To switch this off again

you have two main choices. Either group the whole block in some

way, so that the action of the \everypar is ‘local’ rather than

permanent from the point at which it is set up, or set it back to

the default by,

\everypar={}

Appendix D 443

There is an interesting, if potentially frustrating, consequence

of the way that \everypar works. It attaches the commands to

the first token which changes the mode from vertical to horizon¬

tal. Besides implying that the commands (like \kern) which do

not have that effect will not, by themselves, have the \every-

par commands attached to them, it also implies that a paragraph

beginning

{\bf This} paragraph...

will not be formatted in the manner expected. The extra com¬

mands are attached to This. They are therefore inside a group,

and they are not in operation when the paragraph ends and the

formatting takes place.

12.3: In this instance, it was accomplished by:

{\hangindent30pt\noindent

{\bf Zahir:} beings or things possessing the property

of being unforgettable; in Arabic, ‘notorious’ or

‘visible’. See Borges, {\sl The Zahir}.\par}

This is dreadfully explicit and cumbersome. No-one would want

to have to type that all the time. An alternative might be:

\def \entry#l: #2\par{°/0

\hangindent30pt\noindent{\bf#1:} #2\par}

where each of the entries in the bibliography would look like:

\entry Rachel: one of the vessels in the universal

novel, Moby Dick; ‘‘{\sl She was Rachel, weeping

for her lost children, because they were not.}’’

\entry Holkham: windswept and expansive: a fascinating

landscape of algal flats, small islands of windblown

sand, pine trees, and a slowly disintegrating whale.

With more effort and subtlety (and a deeper appreciation of

how Tf^X puts paragraphs together), it would also be possible to

use \everypar, thus eliminating the need for \entry.

12.4: A broad description is to place two boxes side by side:

the first box contains the large letter, while the second contains

the paragraph, with a suitable notch cut out of the corner. By

boxing the initial letter suitably, its width can be calculated. One

of the weaknesses of the \magstep structure of Computer Modern

is that it is difficult to arrange fonts which are two or three times

the base size. In order to have something approximately suitable,

cmrl7 has been scaled to about the right size. Perhaps \magstep3

4

444 A plain TpjK primer

would have been better still:

\font\bf cmrl7 scaled\magstep2

\def\drop#l#2\par{\setbox0\hbox{\bf#1}7

\setboxl\vtop{\hangafter-2\hangindent\wd0\noindent

#2\strut}

\hbox to\hs ize{\vt op{\no indent Mower 12pt\boxO}“/0

\kern-\hsize\copyl>\par>

\drop Zahir: beings or things possessing the property

of being unforgettable; in Arabic, ‘notorious’ or

‘visible’. See Borges, {\sl The Zahir.}

The extent of the \hangafter was determined manually, with

reference to the chosen font. Similarly, the \lowering of the box

containing the initial letter was also determined with reference to

the size of the initial, and the knowledge that the current \base-

lineskip is 12 points. The \strut is there just in case the last

line does not have a descender. There are countless improvements

which could be made to this definition.

12.5: As usual, the answer is in the grouping:

\def\beginnarrow{\bgroup\smallskip\narrower}

\def\endnarrow{\smallskip\egroup}

Since the extent of the narrowing is equivalent to the paragraph

indent, I would be inclined to add a \parindent 1.5\parindent

(or similar). The following paragraph, which starts indented, does

not then seem at first like a continuation of the narrowed section.

Not usually a problem, unless you write really short paragraphs!

The \smallskips could be \pars, or something else. At least if

they are at least \smallskips there is a chance that the sliver of

white space will alert the reader to the fact that this ‘exceptional’

bit of text has ended.

12.6: One strategy is:

\newcount\numi \newcount\numii

\def\nitem{\par\hang\nindent}

\def\nindent{\indent\llap{7,

\global\advance\numi by l\relax

\number\numi\enspace}\ignorespaces}
\def \niindent{\indent\llap{7,

\global\advance\numii by l\relax

\romannumeral\numii\enspace}\ignorespaces}
\def\nitemitem{\par\indent

\hangindent2\parindent\niindent}

Appendix D 445

where two counters are defined, \numi and \numii, to account

for the two levels. This approach requires that we also have two

different analogues of \textindent, here named \nindent and

\niindent. In order to switch the counters off at the end of a

list, it will be necessary to reset them by \numi=0 and \numii=0,

noting that since their \advance was \global, simply grouping

them is not sufficient. Of course it matters little whether you

\def\endnitem{\numi=0\relax\nuinii=0\relax}

or

\def\beginitem{\numi=0\relax\numii=0\relax}

provided that the counters are indeed reset before the next list

using \numi or \numii starts.

12.7: One way to do this is to keep track of the ‘depth’ of the

itemization, as well as numbering the items. Using \leftskip

seemed easier than modifying the existing structure of \item and

\itemitem. It does have its own problems (as you will note if you

omit the \bgroup \egroup pair or a strategic \par).

\newcount\itemlevel \newcount\numb

\def\beginitem{\bgroup\par\numbO

\advance\leftskip by \parindent

\global\advance\itemlevel by 1

\def\item{\advance\numb by 1

\par\noindent\llap{\number\numb

\enspace}\ignorespaces}}

\def\enditem{\global\advance\itemlevel by-1

\par\egroup}

The more subtle (or adventurous) would wish to use a different

symbol for first-level itemization, second level, and so on, or to

number the items as 1, 1.1, 1.2, 2, 2.1, and so on.

12.8: In essence this was covered in two of the previous exercises.

The main point is to abandon the existing \item structure and

replace it with one controlled like \narrower.

12.9: If it is omitted, T^X keeps adding more and more material

into this insert. Since this has to be accumulated somewhere, the

most likely thing that will happen is that you will find the message

that T^X has run out of capacity and that you should seek the

help of a guru. Ignore this. As usual, the path to enlightenment

comes from within. On the other hand, you might encounter \bye

or \end, where T^X will chastise you for being in internal vertical

mode - in other words, an insert.

446 A plain Tp>Y primer

12.10: The first one
\long\def\foot#l#2{\hang\footnote{#l}{\eightpoint#2»

is not braced correctly, and the \hang is used by the paragraph

in which the footnote is included, with disquieting results. Adding

an extra pair of braces helps, but still does not do what we want.

The second attempt,

\long\def\foot#l#2{\footnote{#l}{\eightpoint\hang#2»

results in all the text of the first paragraph being ‘hung’, but

subsequent paragraphs are set in the normal style.

12.11: Go ahead and try it.

12.12: This may be done fairly simply by creating a new counter

and remembering to increment it each time the footnote is used:

\newcount\footcount

\long\def\foot#l{\global\advance\footcount byl

\footnote{$~{\number\f oot count

If you were writing a book, you might have to reset the counter

at the beginning of each chapter.

12.13: You don’t have to. The default action of \footline is to

do just that. As noted, \f ootline is a token string:

\footline={\hss\tenrm\folio\hss>

Examining \folio will provide something like

\def\folio{\ifnum\pageno<0 \romannumeral-\pageno

\else\number\pageno \fi}

The \pageno has to be negated since \romannumeral will only

provide a Roman numeral when it is given a positive value. With

a negative value, nothing appears. And of course, T^X keeps track

of these page numbers by maintaining them as negative values. Of

course, \advance simply increments a value: it is not an addition

operation.

12.14: There are two components here. One straightforward way

to ensure that some text is not broken is to have it in restricted

horizontal mode - in other words, in an \hbox. To have the full

stops treated as abbreviation symbols, use \frenchspacing. In

the case of Prof. R. A. Bailey, it is only the full stop of Prof,

which would be thought to be a full stop. The attraction of the

\hbox and \f renchspacing approach is that it would be possible

to write something like

\def\name#l-[\hbox{\f renchspacing# 1}}

The other alternatives to \frenchspacing, writing Prof.{} R.

A. Bailey or Prof. \ R. A. Bailey, are slightly less attractive,

Appendix D 447

since they demand that you (or whoever else is typing in) have to

think more. To have to tell people that ‘if a full point is used as an

abbreviation do one thing, otherwise, do something else’ requires

extra thinking. What’s the point in thinking about trivia when

some convenient, explicit command can take care of the decision¬

making process - and correctly every time?

12.15: Just how might we tackle this? We might just try to mea¬

sure it, but that is a rather hit and miss approach. Recall that it

is possible to examine the contents of a box, including the glue, by

\ showbox. If we then examine the contents of an \hbox which con¬

tains a question mark followed by space, we can see what sort of

glue is inserted. If we also have a normal space, we have something

with which to compare it. It would probably be wise to increase

the value of \showboxbreadth.

\showboxbreadthlO

\setboxO\hbox{Hello? I said.}

\showboxO

\setboxO\hbox{Hello. I said.}

\showboxO

\setboxO\hbox{Hello! I said.}

\showboxO

The default value of\showboxbreadth is 5. The information which

TftjK provides would have come to an end before we find the inter¬

esting stuff.

12.16: This is perhaps most noticeable with a bold font, or with

one larger than 10 point. Close examination of \dots reveals that

it is defined with reference to mathematical notions. Even the font

is specified as a maths font. This seems curious. If we can work

out how \dots is defined, it should be possible to change that

definition so that it is appropriate to the current font.

In order to unravel \dots, we can use \show. This will reveal

that it is currently defined as

\def\dots{\relax \ifmmode \ldots \else

$\m@th \ldots \,$\fi}

This leads us to ask what \m@th is, and then what \ldots really is.

You may be able to pursue \m@th, but first you will have to find out

how to make @ be treated by as a letter (it is all in the category

codes), otherwise \show will not help you here. It turns out that all

this command is doing is ensuring that \mathsurround is zero. A

moment’s reflection will show why that is needed in this definition.

Working out what happens with \ldots is more involved. But let’s

448 A plain TpjK primer

not be too literal, and think intuitively. The \, helps give it away.

Effectively, \ldots is a string of dots separated by \,. In maths, \,

is 3 mu. There are 18 mu to the em. This is an interesting example

of the longevity of the dead hand of ‘real’ type. Traditionally, all

Monotype typefaces (in which tradition Computer Modern has

been wrought) were created on a grid of 9 (or later, 18) units to

the em. The finest ‘gradation’ was 1 unit. This enforced grid did

lead to some infelicities in Monotype designs, and it is curious that

Knuth enshrined this odd scale in typeface design when he was in

no way restricted to such crude units. The gap in a thin space is

therefore 3/isem, or 0.16667 em. Since the em is font related, we

can be reasonably happy that it will introduce a suitable gap in

(say) cmrl7, or any other font for which the em is not 10 points.

The mu is of course related to the fonts used in maths.

After all this, a suitable definition could be

\def\dots{\relax

\ifmmode \ldots

\else.\kernO.16667em.\kernO.16667em.\kernO.16667em

\fi>

If we know the definition \thinspace we may be pleased to note

that it is a kern of 0.16667em. Coincidence? Why \kerns? (For

an answer, if you need one, see Exercise 7.14.)

12.17: There never are enough underused characters. But since "

should never really be used, except as \", it will do, without too

much ambiguity:

\catcode‘\"\active

\def"{\hfil\break>

A more natural candidate might be <, but that could create prob¬

lems in maths. Of course, since we can test for maths mode, there

are ways around this, which you can no doubt work out by now.

An example of an exercise within an exercise...

12.18: It will happen soon enough.

12.19: The \enskip is a variety of \hskip. It may therefore only

occur sensibly within horizontal mode. If it is at the beginning of a

paragraph, where T^X would be in vertical mode, T£X will switch

to horizontal mode. An \enspace, on the other hand, is defined

through a \kern. In horizontal mode, a \kern will generate a

horizontal movement; in vertical mode, a vertical movement. And

as indicated, right at the beginning of a paragraph, we are in

vertical mode.

Appendix D 449

13.1: The fixed width of the columns may lead to something like

Jan van Eyck Albrecht Dfirer Pieter Bruegel Jeroen Bosch

Filippo Lippi Piero della FrandSecainicio Ghirlatatthiea Mantegna

Note that no error message is issued.

13.2: Most of the clues are there. Perhaps the only real issues are

recalling the need for \struts and \vtop rather than \vbox. But

other issues include adjusting \tolerance so that the tighter mea¬

sure which will be employed does not lead to too many demands

being placed on T^jX. Perhaps the standard \parindent is also

inappropriate in this context.

13.3: The entries behave as if they were each grouped. But unfor¬

tunately there is no way to have the desired effect percolate down

the ‘column’. Each entry has to be edited manually:

\+\hfil\bf Name\hfil & \hfil Office Address\hfil &

\hfil Phone\hfil&\cr

\+\bf James J. Florio & 23 S. White Horse Pike,

Somerdale 08083 & 609-627-8222\cr

\+\bf William J. Hughes & 2920 Atlantic Ave.,

Atlantic City 08401 & 609-345-4844\cr

and so on all the way down.

13.4: We have to adjust each of the relevant entries, but there are

some other things to be considered. To have a reasonable interval

between the chapter numbers and the titles, we could manually

insert (say) a \quad, but a less cumbersome alternative could be

to introduce another column in the \settabs which was a quad

wide. This means that there has to be an additional & in the table

too. To justify the page numbers correctly, simply preceding them

with an \hf ill is not sufficient, and we should introduce an extra

& in both the \settabs line and all the entries.

\settabs\+LXXXVIII&\quad&The Pequod Meets the Samuel

Enderby of LondonXquad & 999\cr

\+\hfill I && Loomings &\hfill l&\cr

\+\hfill II && The Carpet Bag &\hfill 9&\cr

\+\hfill III && The Spouter Inn &\hfill 16&\cr

\+\hfill && . & • \cr

\+\hfill CXXXV && The Chase — Third Day &\hfill 806&

\cr

\+ && Epilogue &\hfill 825&\cr

It is wise to remove any spaces after the numerals (you should be

able to work out why, but the key thing is to be consistent).

450 A plain primer

13.5: It really does not matter whether the \settabs is inside or

outside the $$ or even the \vbox. But without the $$ it will be

left justified.

13.6: This is achieved in several ways, including the use of display

maths and the use of \centerline, replacing \+ by \tabalign.

13.7: On the face of it, what we want to do is to cast various bits

into maths so that the spacing is handled correctly. An alternative,

which requires a bit less work, is to modify the definitions of = and

\circ:

\catcode‘\=\active

\def={$\null\mathrel\char’075\null$}

\def\circle{$\null\circ\null$}

To redefine the = it was first made active, but it cannot then be

used in its own definition without recursion. But we can address it

by its position in the font table. It just happens to be position 75

(octal). Note too that just to make the point we describe it as a

maths relation. If the \nulls are omitted, these two relations will

not be spaced ‘correctly’ (or rather, like mathematical relations).

We also remove the spaces in the expression of the example:

\+column&=\bf Id\cr

\+table &=&\bf Transpose\circle\cr

\+ & &(\bf all i: Insert{\rm [}&place=first\cr

\+ & & &element=word({\bf

Arabic}(i))])\circle\cr

\+ & &(\bf all i:

Layout{\rm[dimension=horizontal\dots])}\circle\cr

\+ & &\bf Layout{\rm[dimension=vertical\dots]}\cr

This requires quite a lot of attention to detail, and if it was

required regularly, it would be a good case for a specially writ¬

ten program which would input the algorithm and output suitable

TJh^X commands.

14.1: In general terms this means surrounding each # with \hf il

or \hf ill. For example:

\halign{\hfil#\hfil&\hfil#\hfil&\hfil#\hfil\cr

14.2: One way could be:

\halign{\hfil#\quad&#\hfil\quad&\hfil#\cr

To some extent this simplifies the entries:

I & Loomings & l\cr

II & The Carpet Bag & 9\cr

Appendix D 451

CXXXV & The Case — Third Day Sc 806\cr

& Epilogue & 825\cr

But the use of ‘trailing’ space should be consistent, especially for

right-justified entries, otherwise these generally unwanted spaces

may be included, and the alignments will be incorrect.

14.3: Here is some of it:

\centerline{\vbox{\def\rt{\omit\hfil}

\halign {\quad#\hfil&\quad\hfil#\quad\cr

\multispan2

\hfil Some London Transport Statistics\hfil\cr

\multispan2\hfil \it(Year 1964)\hfil\cr

\noalign{\smallskip}

\omit Railway route miles\hfil\cr

Tube & 244\cr

Sub-surface & 66\cr

Surface & 156\cr

\noalign{\medskip}

\omit Passenger Traffic — railway\hfil\cr

Journeys &\rt 674 million\cr

Average length &\rt 4.55 miles\cr

Passenger miles &\rt 3,066 million\cr

\noalign{\smallskip>

\omit Passenger Traffic — road\hfil\cr

Journeys &\rt 2,252 million\cr

Average length &\rt 2.26 miles\cr

Passenger miles &\rt 5.094 million\cr

\noalign{\medskip>

\omit Vehicles\hfil & 12,521\cr

Railway motor cars & 2,905\cr

Again, consistency is crucial.

14.4: While this is possible, it seems a lot more work. It starts

like this:

$$\vbox{“/0

\settabs\+Passenger Traffic — RailwayXquad 9.999

million&\cr

\+\hfill Some London Transport Statistics\hfill&\cr

\+\hfill\it(Year 1964)\hfill&\cr

\settabs\+Passenger Traffic — Railway\quad&9.999

million&\cr

452 A plain Tfj]X primer

t

&\hfill 244\quad&\cr

&\hfill 66\quad&\cr

&\hfill 156\quad&\cr

\smallskip

\+Railway route miles\cr

\+\quad Tube

\+\quad Sub-surface

\+\quad Surface

\medskip

\+Passenger Traffic — railway\cr

\+\quad Journeys &\hfill 674 million&\cr

\+\quad Average length &\hfill 4.55 miles&\cr

\+\quad Passenger miles &\hfill 3,066 million&\cr

\smallskip

\+Passenger Traffic — road\cr

\+\quad Journeys

\+\quad Average length

\+\quad Passenger miles

\medskip

\+Vehicles

&\hfill 2,252 million&\cr

&\hfill 2.26 miles&\cr

&\hfiil 5.094 million&\cr

&\hfill 12,521\quad&\cr

\+\quad Railway motor cars &\hfill 2,905\quad&\cr

\+\quad Railway trailer cars &\hfill 1,269\quad&\cr

\+\quad Total railway &\hfill 4,174\quad&\cr

\+\quad Omnibuses &\hfill 8,347\quad&\cr

\medskip

\+Staff &\hfill 73,739\quad&\cr

As usual with \settabs the difficulties arise when you need to

centre an entry over several columns. Apart from that, all the

extra \hf ill and \quad entries make the individual lines look very

unwieldy. They could of course be simplified into a local definition.
In fact,

\def\rt#l{&\hfill#l\quad&\cr}

could be quite helpful.

14.5: The following preamble does a fair job:

\centerline{\vbox{\def\rt{\omit\hfil}\tabskipOpt
\halign spread lem

{\quad#\hfil\tabskiplem&\hfil#\quad\tabskipOpt\cr

The choice of 1 em is rather arbitrary.

14.6: All spaces between words disappear. In an emergency they

could be reinserted with u; fortunately spaces used to delimit com¬

mands still delimit commands. But really this is something which
should be kept firmly under control.

14.7: What is a footnote then, except a type of bottom insert?

Appendix D 453

The problem then arises on how to manage both footnotes and
some sort of bottom insert.

14.8: Using \openupl\jot gives the same effect.

14.9: Once \boxit has been defined, the table could be centred
and boxed by

\centerline{\boxit{\vbox{\halign

but equally, it could be centred through a maths display.

14.10: The original was given by
\centerline{\vbox{°/0

\def\sw{\llap{$\vcenter{\hbox{\tt WEAVE}}$}$\swarrow$}

\def\se{\searrow\rlap{$\vcenter{\hbox{\tt TANGLE}}$}>

\halign{&#\cr

\multispan3\hfil{\tt WEB} document\hfil\cr

\hfil\sw&\qquad&\se\hfil\cr

\hfil Pascal source&&\TeX\ document\hfil\cr

}}}
There is a lot of rather exceptional stuff in here, not least the

use of \vcenter, which has the knock-on effect of having to be in

maths mode, and therefore the text must be placed in an \hbox.

And then they are \rlapped or \llapped. Undoubtedly there are

other ways too.

15.1: The basic table is given by
\centerline{\vbox{{\tabskip Oin\hsizeO.5\hsize

\offinterlineskip

\halign to\hsize{°/0

\strut\vrule#\tabskiplin pluslin minuslin&#\hfil&\vrule

#&\hfil#&\vrule#&\hfil#&\vrule#&\hfil$#$&\vrule

#\tabskipOin\cr

\noalign{\hrule}

&\multispan7\hfil 1970 Federal Budget

Transfers\hfil&\cr

&\multispan7\hfil (in billions of dollars)\hfil&\cr

\noalign{\hrule}

&\omit\hfil State\hfil&

&\omit\hidewidth Taxes\hidewidth&

&\omit\hidewidth Money\hidewidth&

&\omit\hidewidth Net\hidewidth&\cr

&&&\omit\hidewidth collected\hidewidth&

&\omit\hidewidth spent\hidewidth&&&\cr

454 A plain primer

\noalign{\hrule}
&New York&&22.91&&21.35&&-1.56&\cr

&New Jersey&&8.33&&6.96&&-1.37&\cr

&Connecticut&&4.12&&3.10&&-1.02&\cr

&Maine&&0.74&&0.67&&-0.07&\cr

feCalifornia&&22.29&&22.42&&+0.13&\cr

&New Mexicofe&O.70&&1.49&&+0.79&\cr

&Georgia&&3.30&&4.28&&+0.98&\cr

&Mississippi&&l.15&&2.32&&+1.17&\cr

&Texas&&9.33&&11.13&&+1.80&\cr

\noalign{\hrule}}}}}

The rest is up to you.

15.2: The first part of this one should be left to you. The second

part is much more interesting. The & has a special meaning to

T^X; it is the alignment tab. If we look at its category code, it has

the value 4. It is possible to convert any other symbol to take a

category code. For example,

\catcode’\174=4
turns the vertical bar into another alignment tab. An equally

attractive alternative is to turn the keyboard’s own tab charac¬

ter into an alignment tab. This is a shade more difficult, but it

has some appeal. Firstly we have to know how to represent the tab

character. In the ‘standard’ ascii character set, the usual notation

is to call tab HT. This is located in what T]gX knows as position

~~09. The four characters ~~ab are read as if ab are any of the

‘lower-case hexadecimal digits’ 0-9, and a-f. An example will help

to describe how to employ this knowledge. The way that \cat-

code allocations works is to indicate that a particular character

has a particular code. The simplest method is to say

\catcode‘\~~09=4

This new notation was introduced with TgX3 in order to handle

the increase in character set from 128 to 256. Before that time it
would have been sufficient to say

\catcode‘\~~I=4

since this corresponded to the original way of referencing this posi¬

tion. Fortunately, both notations work (except in a rather arcane

and abstruse way that should never have to worry you). All exist¬

ing commands should work, and any new ones should use the new
notation.

15.3: Reproducing the table is a matter of following the rules

developed so far. In order to tackle the second part, building on

Appendix D 455

Figure 15.1, you need again to use the definition of \vspan. All

that need be done is to surround the text ‘State’ and ‘Net’ by

\vspans:
&\omit\hfil\vspan2{State}\hfil&

&\omit\hidewidth Taxes\hidewidth&

&\omit\hidewidth Money\hidewidth&

&\omit\hidewidth\vspan2{Net}\hidewidth&\cr

The \omit\hidewidth. . . \hidewidth could be better encapsu¬

lated in a command.

15.4: They are indeed small. In many printing systems, the spread

of ink would mean they were even less discernible.

15.5: This can be redesigned either from scratch, or, much more

simply, by omitting and \omitting. It is slightly irritating that

some of the preamble includes vertical rules, but that almost all of

these are to be \omitted. But it makes the preamble so simple...

15.6: This turns out to be quite simple:
\offinterlineskip

\halign{\vrule\strut\quad#\hfill\quad\vrule

&\quad$#$\hfil&\quad$#$\hfil\vrule\cr

\omit\hfil\vrule&\multispan2\hrulefill\cr

\omit\hfil\vrule

&\omit\hfil\bigstrut$\Delta H/\hbox{Jmol}“{-l}$\hfil

&\omit\hfil$T/{\rm K}$\hfil\vrule\cr

\noalign{\hrule}

Eistreicher and Schnerr & 18992 & 237.3\cr

Giauque and Powell & 20406\pml7 & 239.10\pm0.05\cr

Equation of State & 20427 & 239.166\cr

\noalign{\hrule>

>
Note the assumption that \bigstrut has been defined somewhere.

The table works reasonably without the standard definition of

\strut. This is one nice example where the omission of a \vrule

leads to a small bite out of the rules. Replacing the first line of

the table with
\omit\hfil&\multispan2\hrulefill\cr

leaves a small irregularity.
Since all the column's contain numbers with the same magni¬

tude, the effort to align around some imagined decimal point is

equivalent to left justifying them.

16.1: In addition to defining \partline, define a \thinline

456 A plain TpjK primer

which is very similar, but uses a modified definition of \hrulef ill:

\font\small=cmr7

\centerline{\vbox{“/,

\offinterlineskip
\def\partline{\omit&\multispan2\hrulefill\cr}

\def\thinline{\omit&\multispan2\leaders

\hrule height0.2pt depthOpt\hfill\cr>

\halign{\small#\quad&\vrule\strut\enspace\hfil

#&#\hfil\enspace\vrule\cr

\omit&\multispan2\strut\hfil Stack\hfil\cr

\partline

l&46&\cr \thinline

2&23&\cr \thinline

3&15&\cr \thinline

4&6&.5\cr \thinline

5&2&.l\cr \partline}}}

Perhaps a tidier table would have thicker bounding rules and

default thickness ‘internal’ rules.

16.2: This may be done with one of the leader commands, but try¬

ing to make these work well within the \tabalign will be stressful.

If, however, we are using a command based on Mine, it will be

sufficient to write:
\line{Loomings\dotfilll}

\line{The Carpet Bag\dotfill9}

This could be encapsulated into a more structured command, like

\entry{Loomings>{l}, which offers advantages should we decide

to handle the table of contents in a different format.

16.3: The following command corresponds to the ‘standard’ form:
\def \dotf ill{\cleaders\hbox{‘/0

\kern.833333pt.\kern.833333pt}\hfill}

but without the restriction to the maths style. It has the limitation

that if the font being used does not have the same size of full stop

as cmrlO or cmsylO, it will give a wider version. Since we probably

want the dots to appear to be based on the same grid, no matter

what the font, the following could be used:
\def\dotfill{\cleaders\hbox to4.444456pt{%

\hfil.\hfil}\hfill}
In some circumstances, and especially if the fonts were very large,

such as cmrl7, or in a different style, this should be rethought and
a more suitable form created.

Appendix D 457

16.4: Although it is possible to infer that the answer is ‘nothing

good’, it is even more instructive to see just how bad it really is.

If you have already typed in this example, rather than edit it, just
switch off \normalbaselines and \strut:
\let\normalbaselines\relax

\let\strut\relax

It can often be useful to turn off commands in this way.

16.5: This requires that you go ahead and experiment.

16.6: The alternatives are: the \multispan:

\multispan6{$~\ast$(first quarter only)\hfil}\cr

which is shown. A hidden problem here would be that if the text

of the ‘note’ is greater than the width of the table, it will control

the table width. With the use of \tabskip the table may go sadly

awry. Secondly, we might use \noalign:

\noalign{\noindent\strut$“\ast$ (first quarter only)}

where the \strut is just added so that the spacing is adequate.

Equally a \smallskip might be inserted as part of the \noalign.

If the text is long, it might be better to include it in a \vtop,

controlling the width by an ‘internal’ \hsize, but remember to

insert \normalbaselines too. Lastly, the \vfootnote:

\vfootnote{$~\ast$M(first quarter only)}

which, unlike the other two constructs, should follow the table,

and not be part of it. This may generate a problem: inserts may

not be placed within inserts. A \vf ootnote is still an insert - it

comes out at the bottom of the page, like a ‘normal’ footnote, and

if you try to include it within a \topinsert, or a \midinsert,

I£X will complain. It is possible then to have an ‘inserted’ table

on one page, and the footnote on another.

16.7: The stock is always given as a range, and the en-dash, which

is used to indicate a numeric range, could have been manipulated

in the preamble, first having made the category code of - that of

an alignment tab. Similarly, the decimal point could also become

an alignment tab. Although the preamble looks awkward, once the

‘stubs’ are handled, the body of the table itself is more ‘natural’.

The elements would be:
\catcode‘\.4 \catcode‘\-4 % - and . as tabs
\centerline{\vbox{\offinterlineskip

\halign{\strut\vrule\quad\hfil#\quad

&\vrule\quad\hfil#\char’173-#-#\hfil\quad

&\vrule\quad\hfil#\char’56.#\quad\vrule\cr

458 A plain TpjK primer

Where do these \char’173 and \char’56 come from? They are

a way of referring to particular characters when they are in some

way inaccessible. Having recategorized the - and ., they will not

translate into their ‘normal’ meaning. The particular syntax of the

\char command requires that it is followed by a number, which

may be in decimal, octal, or hexadecimal format. The \char’173

is an octal format. The alternatives here are \charl24 (decimal)

and \char"7C (hexadecimal), for the en-dash symbol. The decimal

point is given by \char’56. You can work out the decimal and

hexadecimal equivalents yourself.

16.8: Taking these separately, the left-hand table may be tackled

by using \vspan yet again, but actually boxing its entry on three

sides. Having said that, it mostly falls out:

\def \boxed#l{\vbox{'/0

\hrule\hbox{\vrule height 14pt depth 9pt#l}\hrule}}

'/, 14pt=\ht\strutbox+5.5pt

°/, 9pt=\dp\strutbox+5.5pt
\offinterlineskip

\halign{“/0

\vrule\strut\enspace#\hfil

&\enspace#\hfil

&\enspace#\hfil\vrule \cr

\noalign{\hrule}

Januaryfe Februaryfe March\cr

Aprilfe May&\vspan3{\boxed{\quad Month\quad}}\cr

Junefe Julyfe \cr

Augustfe Septembers \cr

Octobers Novembers December\cr

\noalign{\hrule}}

The definition of \boxed contains a \vrule to a particular height

and depth. Provided the height and depth do not exceed the total

vertical space available here (the equivalent of three baselines),

not too much will go wrong. The asymmetry of the height and

depth ensures that the text is apparently correctly placed.

The right-hand example is really a re-run of Figure 15.4. It
should not pose too many problems.

Placing the two tables side by side is just a matter of placing

them both in vertical boxes and, for example, enclosing them in

Mine, separating them by some suitable space (or glue).

18.1: The length of the standard font names, as used by TjrjX,

reflects the maximum length of file names on some varieties of

Appendix D 459

computer equipment. It is a simple technological constraint. While

it has simplified portability, it is sometimes irritating. Some com¬

ments on font file names can be found in Berry (1990).

18.2: Over to you.

18.3: Since \oldstyle places us in family 1, it should be obvious

that it will take its characters from the Math Italic fonts. Thus we

obtain an A and a 9 from that font: Ag. On the other hand, the

\cal has the effect of turning on family 2, and therefore we take

the characters from the symbol fonts. That is fine for the A, but

the corresponding character for the 9 is not a numeral: A3.

18.4: The \cal command can be extended just like \rm:

\def\cal{\fam2\tensy}

But be careful: don’t try to write \cal Beware the Ides of

March!.

18.5: Firstly, to change the progression, assume that the appro¬

priate 8 and 6 point fonts have been set up, with names consistent

with the ones we currently use:
\textfontO=\tenrm \scriptfontO=\eightrm

\scriptscriptfontl=\sixrm

\textfontl=\teni \scriptfontl=\eightsy

\scriptscriptfontl=\sixsy

Family 2 can stay the way it is.

To restrain the diminution in size to only one jump, make the

\scriptscriptfont the same as the \scriptfont. There is no

way to extend the progression of script styles to more levels, short

of rewriting parts of Tj^X. (But don’t call it dj^X!)

18.6: For \tenpoint we could add
\tenBig#l{{\hbox{$\left#l\vbox toll.5pt{>\right.

\n@space$}}}

\tenbigg#l{{\hbox{$\left#l\vbox tol4.5pt-Q\right•

\n@space$}}}

\tenBigg#l{{\hbox{$\left#l\vbox tol7.5pt{}\right.

\n@space$>}>

with the notion that we also say:
\let\Big\tenBig

\let\bigg\tenbigg

\let\Bigg\tenBigg

and that we may also wish to set up some \nineBig, \ninebigg,

and similar commands.

460 A plain T^X primer

18.7: The essence of this is
\font\tensc=cmcsclO

\newfam\scfam

\def\sc{\fam\scfam\tensc}

\textfont\scfam=\tensc

Problems start to arise when we want \sc to work as part of a

\ninepoint command. It is possible to fudge a 9 point version

through cmr9 for the capitals, and something smaller, say cmr6 or

cmr5 for the small capitals, but it is not quite right, conceptually,

aesthetically, or typographically.

18.8: Assuming that the progression in size is just to increase by

3 pt each time:
\def\BIG#l{{\hbox{$\left#l\vbox to20.5pt{}\right.

\n@space$}}}

\def\BIGG#l{{\hbox{$\left#l\vbox to23.5pt{}\right.

\n@space$}}}

after setting the \catcode of @ appropriately. If you adopt the

\tenpoint command, you would be using a strategy more similar

to that used in Exercise 18.6.

18.9: This is just routine substitution, for the most part.

18.10: Disaster! The \ifcase falls off the end. Go back to Exer¬

cise 6.10.

18.11: This is a possible solution:
\def\raggedright{\ifnum\fam=\ttfam

\rightskipOpt plus Ifil\hyphenchar\font-1

\else

\rightskipOpt plus2em \spaceskipO.3333em

\xspaceskipO.5em

\f i>

I do not really see why the interword spaces should be standard¬

ized for ‘ordinary’ fonts. Failing to do so usually permits the right

margin to be fairly smooth. An alternative, to ensure that the

margin is ragged, is to discourage hyphenation, say with \hyphen-

penaltylOO.

18.12: A possible solution is
\def\centre{\rightskip Opt plus lfill

\leftskip Opt plus lfill

\parfillskip Opt \relax}

Although it is difficult to see why you might want to do this, it

Appendix D 461

does illustrate that you may also manipulate the very last line in a

paragraph. It is not unusual to require the last line to be centred,

while the remainder of the paragraph is set flush right as normal.
Set the following:
\rightskip Opt plus -lfil

\leftskip Opt plus lfil

\parfillskip Opt plus 2fil \relax

This is perhaps rather subtle and needs some thought.

18.13: It is easy enough to interrogate T^X to find the value of

these dimensions, and to interpolate some plausible value. Again,

the important fact is that this is possible. An alternative is to alter

the tfm files, but that enters a different dimension altogther.

19.1: There are three main reasons for attempting this exercise.

Firstly, it helps to bring out the relationship between upper- and

lower-case characters a little better; the ‘offset’ is a little clearer.

Secondly, as 256 character and ‘virtual fonts’ become more gen¬

erally available, it will be slightly easier to organize and display a

16 x 16 table than an 8 x 32 table (cf. Ferguson, 1990). And lastly,

once a table like this is created, it is very useful when you need to

create a font table for any arbitrary font.

19.2: I make it about six or seven words.

19.3: The property list tends to be quite long. It does emphasize

the fact that it is possible to edit it with a normal text editor: this

gives you the power to modify the font characteristics in order to

create a new tfm, and perhaps to contemplate creating a whole

new property list. Virtual fonts have additional features, including

the capability to include something like a \special - this is very

powerful, and only slightly explored, as yet.

19.4: This is not quite as easy as it sounds. Firstly, you cannot

just use TgX itself. You have to use INITEX. Once you have elim¬

inated the preloaded fonts and created the new format file, you

may find that the font memory statistics do not appear. Produc¬

tion versions of T^jX are not compelled to register all (or any) of

the \tracingstats details.

19.5: If all we need is to be able to say METRFONT, then

\font\mf=logol0

\def\MF{{\rm{\mf META}\-{\mf FONT}}}

will do. Omitting the explicit hyphenation,

\def\MF{{\mf METAFONT}}

462 A plain TpjK primer

is fine until l^X tries to hyphenate the word. Since there is no

hyphen character in the font, you will have a message to the effect

that there is a missing character. On the other hand, you could

argue that the logo should not be hyphenated at all. There are

several ways to guarantee that it is not hyphenated. However,

what if we need to say METRFONT or METRFONTl Although it

is possible to create a general command, \MF, which would respond

to the style of the surrounding text, is it worth the effort?

20.1: In the very simplest case this is just a matter of putting

another \boxit around \box255:
\output={\shipout\boxit{\boxit{\box255}}}

The other definition, \Boxit, is rather more difficult to handle in

this case. A dip into the definition may indicate why. Specifying

the box width correctly is more difficult. A slight shortcoming is

that the box sits outside the text, as defined through the \hsize

and \vsize. A more rigorous approach would reduce the \hsize

by the amount of the \kerns and the width of the rules.

20.2: Since the most convenient place to obtain \box255 is in the

middle of an output routine, you need to embed the \vsplit and

the \showthe within the \output:
\output={\setbox254\vsplit255 toO.5\vsize

\showthe\dp254\showthe\ht254

\showthe\dp255\showthe\ht255}

Note that this cheats, since we are not actually attempting any

output at all. It is worth repeating this experiment by changing

the value of \hsize to ensure that the total number of lines is odd

and even. It might also be worth reminding yourself of the options

like \scrollmode, \nonstopmode, and \batchmode, introduced in

Chapter 3.

20.3: There are other strategies to achieve this, but this is simple

and effective. You may detect deficiencies (depending on just what

sizes and text characteristics you employ), which we will attempt

to rectify later.

20.4: This requirement embroiders slightly, by simply placing a

vertical rule between the boxes:
\output={\setbox254\vsplit255 toO.5\vsize

\shipout\hbox{\vtop{\unvbox254}\quad

\vrule\quad\vtop{\unvbox255}}}

Do ensure that you check how ‘incomplete’ pages are handled by

this sort of approach.

Appendix D 463

20.5: This evolves the structure used so far:
\newdimen\pageheight \pageheight3in

°/o\pageheight is to be the total height of the text

\newdimen\pagewidth \pagewidth6in

y,\pagewidth is to be the full width of the text

\newdimen\gutter \gutterlOpt

“/Agutter: gap between the column and the rule

\hsize\pagewidth

\advance\hsize by-0.4pt

%\vrule is 0.4pt wide

\advance\hsize by-2\gutter

\divide\hsize by2 \vsize2\pageheight

“/.manipulating the imderlying \hsize & \vsize

l
\output={\setbox254\vsplit255 toO.5\vsize

\shipout\hbox{\vtop{\unvbox254>\hskip\gutter\vrule

\hskip\gutter\vtop{\unvbox255}}}

This even has some internal documentation! Normally the ‘gutter’

is the total distance between columns, rather than the definition

used here (effectively half the normal distance).

20.6: The ‘normal’ \footline and \headline were introduced

in Chapter 12. The following is crude, but starts to outline the

steps:
\output{\shipout\vbox{\line{\the\headline>%

\smallskip\box255\smallskip

\line{\the\footline}}\advancepageno}

This yields no headline, since by default the headline is null.

However the footline will have the page number. To change the

furniture:
\headline{\tensl experiment\hss>

\footline{\tensl\hss\folio}

would be sufficient.

20.7: The first is fairly straightforward, since 5 on 6 is just half

of the default. You could work it out from the clues given, or you

could be intuitive and guess that the dimensions could be reduced

proportionately:
\hsize2in \vsize2in

\baselineskip6pt

\font\smallrm cmr5 \smallrm

y.
\footline{\smallrm\folio}

464 A plain T/^X primer

\def\makeheadline{\vbox to Opt {\vskip -11.25pt

\line{\vbox to 4.25pt{}\the\headline

}\vss}\nointerlineskip}

\def\makefootline{\baselineskipl2pt

\line{\the\footline}}

7.
\output{\shipout7,

\vbox{\makeheadline\box255\makef ootline}7,

\advancepageno}

Let us assume we select 14.4 on 17: the use of 14.4 is so that we

can pick up a font like cmrl2 scaled to \magstepl. This is not a

simple factoring this time, so we have to tackle it quite logically.

Firstly, the footline, since it is easiest:

\footline{\largerm\folio}

\def\makefootline{\baselineskip34pt

\line{\the\footline}}

If we unravel the relationships embedded in the description, the

first vertical skip, v is given by:

v = 2x b — t + h

where b is the \baselineskip, t is the \topskip, and h is the

height of a strut in the font used for the document. The \base-

lineskip is 17pt, the \topskip should be increased to a value

like 14.4 pt, and the height of a strut in the 14.4 pt font will be

about 10.8 pt. In case this last value seems like a rabbit conjured

out of a hat, it is the height of a parenthesis in the 14.4 pt font,

and was found by interrogating a box containing that character.

This gives us

\topskipl4.4pt

\def\makeheadline{\vbox to Opt {\vskip -30.4pt

\line{\vbox to 10.8pt{}\the\headline}\vss}7.

\nointerlineskip}

I would be inclined to round measurements to full point values.

20.8: Solutions include

\headline{\vbox{\offinterlineskip

\hrule\line{\sl\hbox toO. 9\hsize{7,

\vrule\hfill\strut Making Pages\hfill\vrule}

\hfill\folio\hfill\vrule} \hrule}}

and

\headline{\vbox{\offinterlineskip

\line{\sl Making Pages \strut\hfill \folio}\hrule}}

Appendix D 465

If the vertical extent of these headlines was much larger, it would

be necessary to modify the accompanying \makeheadline.

20.9: Adopting the double columning given above, it would be

almost enough to write:

\def\makeheadline{\vbox to Opt{\vskip -22.5pt

\hbox to\pagewidth{7.

\vbox to8.5pt{}\the\headline}\vss}\nointerlineskip}

\def\makefootline{\baselineskip24pt

\hbox to\pagewidth{\the\footline}}

The change is to replace the ‘normal’ reference to Mine by an

\hbox to \pagewidth. Make sure that this has been assigned an

appropriate value.

However, the position of the footline may be unsatisfactory. The

total page depth is simply the depth of its box. If the page has

only a single column, which might not be of the full depth, this

becomes very obvious. Some way must be found of ensuring that

the depth is correct. Possible strategies include reboxing to the

‘correct’ size:

\vtop toO.5\vsize{\unvbox255\vfil}

or including a vertical rule of the appropriate depth.

20.10: One way to find the depth of the page is to

\setbox\page\vbox{\unvbox255\bigskip}

where \page is a box in which the built up page is accumulated.

The \bigskip is to build in an extra ‘line’ to ensure that the left

hand box is a shade larger than the right (when we come to split).

The whole structure looks like:

\newbox\page

\newdimen\pagewidth \pagewidth2\hsize

\advance\pagewidth bylOpt

\output{\setbox\page\vbox{\unvbox255\bigskip>7c

\setbox254\vsplit\page toO.5\ht\page

\shipout

\vbox{\hbox to\pagewidth{\the\headline>\smallskip

\hbox to\pagewidth{\vtop{\unvbox254}\hfil

\vtop{\unvbox\page}7,

\vrule depth0.5\vsize width0pt}7.

\smallskip\hbox to\pagewidth{\the\footline}}7.

\advancepageno}

This brings in many of the points which have been mentioned in

other exercises, but not necessarily fleshed out in full. There are

lots of other solutions.

466 A plain TpjK primer

20.11: The default page size is 8.9 in, and the default maximum

extent of a page which can have footnotes is 8 in. If we assume

that no more than half the page height should be taken up by

footnotes,
\dimen\footins=0.5\vsize

would give a more flexible approach.

20.12: Setting in a different style is trivial, since all that needs to

happen is a modification to the definition of \margindetail. A

change in font characteristics might also require that the \strut

in \margin also changes, but if a command like \ninepoint, intro¬

duced in Chapter 18, is used, that should have been tackled cor¬

rectly. Changing the position is not difficult either:
\newdimen\marginht %

\marginht\vsize 7.
\def \pagecontents-f\if void\topins\else\unvbox\topins\f i

\dimen0=\dp255

\ifvoid\margins \else 7.

\marginht\ht255 7«

\advance\marginht by-\ht\margins 7«

\divide\marginht by2 7.

\rlap{\kernl. 01\hsize\vbox toOpt 7.

{\kern\marginht\box\margins\vss}}7.
\f i

\unvbox255

\ifvoid\footins\else

\vskip\skip\footins\footnoterule\unvbox\footins\fi>

The main changes are indicated by the 7., but the key part is in

the \rlap, where the \kern positions the marginal text.

20.13: With multiple columns, the inserted material should pre¬

sumably be inserted around the ‘edges’ of the whole text. That

tends to make two columns a practical maximum. On the other

hand, the usual function of marginal information is to assist in

the draft stages of manuscript development. Bits of overwriting

may be acceptable at that stage. If marginal information is being

used at the final stages, it will possibly be part of the page furni¬

ture. Some books place page numbers, or even a chapter key on

the outside margin - such information might be better handled in

ways other than the approach to marginal inserts suggested here.

An explicit box on the right or left would be a suitable strategy

in such cases. Once you analyse what the function is, a solution
usually pops up (or can be dragged up).

Appendix D 467

20.14: The marginal note is rather crude. Notes on the left have

the disadvantage that they tend to look rather far away, unless

they have been organized in a ragged left form, and because they

tend to be quite narrow, overfull boxes tend to abound. But it is
not difficult to modify the definition:
\def\leftnote#l{#l\vadjust{\vbox to Opt{°/0

\vss\hbox to\hsize{\hskip-l. lin °/„

\vbox{\hsizeltruein\overfullruleOpt\noindent

\ninepoint#l>\hss>\vskip\strutdepth}}>

where the principal difference is the \hskip.

If we wished to use marginal inserts on the left or right, allowing

an \if odd\pageno to control the position, the suggested solution

to Exercise 20.12 could be modified by changing the \rlap to:
\ifodd\pageno

\rlap{\kernl.01\hsize\vbox toOpt

{\kern\marginht\box\margins \vss}}'/,

\else

\llap{\vbox toOpt

■[\kern\marginht\box\margins \vss}}’/,

\f i

but this will suffer from being related only to the page, and not

to the position of the individual insert reference.

20.15: Yes, it can be done, but it is possible that the two overlap.

Ensuring that they do not would be very tricky.

21.1: This is straightforward. Perhaps it is the definition of strut

that should be changed.

21.2: The simplest way to inhibit hyphenation is by setting \pre-

tolerancelOOOO, although an alternative is to disallow hyphens in

a font through \hyphenchar\tenrm-l. Making the penalty associ¬

ated with a hyphen very large (say, 10,000), should have a similar

effect, but I do not have as much confidence in it. If the page is

narrow, it will be necessary to adjust the \tolerance figure.

21.3: The cynical answer is ‘too many’, but it all depends. I really

do not find it makes all that much difference. Counter-intuitively,

fewer hyphens are sometimes required when the line measure is

reduced.

21.4: Although they will both work, \looseness has the nicer

feature that you ask for the effect you want (which may or may

not be achieved), while \linepenalty is rather less specific, and is

468 A plain TppC primer

not local. The default value for \linepenalty has to be changed

quite markedly before it seems to have an effect.

21.5: Obviously, when \looseness succeeds the interword spac¬

ing must have been reduced or increased. If the paragraph length

is changed by just one line, I just cannot see the change. This

is hardly surprising, since the interword spacing should still be

within the required range. If the paragraph is lengthened by one

line, TgX does seem to tend to place the last part of a hyphenated

word in the last line. This does not look good, but perhaps it is the

best that can be done. To eliminate this, you could try adjusting

\f inalhyphendemerits, but placing the last word in an \hbox is

infallible (if ugly).

21.6: As hinted from time to time, the multiplicity of parameters,

tolerances, penalties, and demerits make's it very difficult to guage

the interactions. If all words were exactly the same length and

hyphenated in exactly the same way, it might be possible to see

what is going on, but fortunately, no language is like that.

21.7: One way in which this might occur is if, by removing a

word, a paragraph of four lines is shortened to three lines: if it

had been divided over two pages, as two lines and two lines, it

will now have to be presented as a block of three lines, and will

have to be placed at the top of the next page. So the document

will end up apparently one line longer (at least - but who knows

what other effects may be lurking later?). See Mittelbach, 1991,

for some other ways this might happen. Naturally, the setting of

parameters such as the \clubpenalty and \widowpenalty are

paramount in determining whether a single line may exist at the
top or bottom of a page.

21.8: This is another time where experimentation is essential.

21.9: It forces a page break after the line containing the \vad-

just. The \vadjust is handled in vertical mode and therefore
does not interfere with line breaking.

21.10: In the very trivial case, a paragraph may be longer than
an individual page.

21.11: A very large memory version of T£X might handle it. A

non-trivial answer has nothing to do with any of the \break com¬

mands: in order to ensure that a paragraph ends flush right, the

\parfillskip can be set to zero. If the next paragraph is begun

Appendix D 469

with a \noindent, there will be no obvious break. We must also
ensure that the \parskip is zero; for example:

\def\subtle{{\parfillskipOpt\par\parskipOpt\noindent»
The only worry might be the ‘extra’ braces around the definition.

But reflect a moment. We only want these values and commands
to have local action. Therefore...

21.12: The following may do as an example:

\def\section#l{\goodbreak\vskip2ex plus lex°/0
\centerline{\bf #1}%

\nobreak\vskiplex\nobreak

\par\noindent\ignorespaces}

This should ensure that the section title stays with the first few

lines of the text that follow.

22.1: Some experimentation needed.

22.2: If we use \readl6 to\version, TgX will respond with

\version=

which may save having to write out a message, although if this is

encountered in a production environment, I would prefer to have

a message than such a terse prompt.

22.3: Again, some experimentation will be needed. Ensure that

you use \section several times, in positions which are close to

page breaks. Similary, the effect of an \immediate close of the file

is best noticed when a section occurs close to the end of the text.

22.4: The following commands will accomplish the initial task of

creating a file with index entries and the relevant page number.

As a check, the \write-l will echo the index entries to the screen.
\newwrite\idx
\immediate\openout\inx=\jobname.idx

\def \ index# 1{#1#/,

\write-l \expandaf ter{#l: \f olio}0/,

\write\idx\expandafter{#l:\folio}}

Much more work needs to be done to turn the file into an index.

22.5: Taking this at face value, commands are expanded, just

as indicated in the text. After some experimentation trying to

supress the expansion, you might end up with:
\newwrite\inx
\immediate\openout\inx=\jobname.idx
\def\index#l{{#l}\def\save{\noexpand#l}%

\write\inx\expandafter{\save:\folio}}

470 A plain T^X primer

which manages to give something a little more attractive, but,

while this manages to suppress the expansion if the command is

the first item in an entry (like \index{\TeX}), it fails when there

is another token before the command.

An alternative is to use token strings:
\newtoks\intox
\newwrite\inx\immediate\openout\inx=\jobname.idx

\def\index#l{{#l}\intox={#l}'/.
\immediate\write\inx{\the\intox:\folio}}

but that does not illustrate \expandafter, although it conve¬

niently suppresses the expansion.

23.1: The question more or less spells out what to do:

\catcode‘_\active
\def_{\ifmmode\sb\else{\tt\char’137}\fi}

The major disadvantage is that the underscore is only available in

the typewriter font. If this was very unsatisfactory, a horizontal

rule tuned to the particular font might be a reasonable alternative.

23.2: This solution goes a little further than merely calculating

the values in the table: it attempts to format them acceptably:
\newcount\lhs '/.the left hand sides, 1 to \uptomax

\newcount\by ’/,as in ‘multiplied by’

\newcount\answer ‘/.to store \lhs times \by

\newdimen\lhswd \newdimen\bywd \newdimen\answerwd

'/.their maximum widths

\newcount\upto '/.a local counter

\newcount\uptomax '/.max value to be multiplied by \by
\def\multiplication #1 times #2.{\by#l \uptomax#2

\setboxO\hbox{$\number\uptomax$} \lhswd\wdO

'/.greatest width of left hand side

\setboxO\hbox{$\number\by$} \bywd\wdO

'/.greatest width of multiplier

\answer\by \multiply\answer byYuptomax

\setboxO\hbox{$\number\answer$} \answerwd\wdO

'/.greatest width of highest value
\advance\uptomax byl

\loop \advance\upto byl \advance\lhs byl
\ifnum\upt o <\uptomax

\answer\lhs \multiply\answer by\by\centerline{$

\hbox to\lhswd{\hfil\number\lhs} \times

\hbox to\bywd{\hfil\number\by} =

\hbox to\answerwd{\hfil\number\answer}$}\repeat}

Appendix D 471

This may then be invoked by \multiplication 11 times 17.

or similar. It would be convenient to be able to prepare more

complex tables than this (perhaps emulating Babbage’s difference

engine), but I^K’s restriction to integer arithmetic makes this a

real chore. A solution is to create the tables through some con¬

ventional programming language, embedding the T^X commands

required. This file could then be \input to Tj^X.

23.3: Although the following has many of the characteristics of a

steam-roller, it is serviceable and robust:
\def\ut#l{\mathchoice

"/.displaystyle

{\vtop{\offinterlineskip\halign{##\crcr

$\hfil\displaystyle{#l}\hfil$\cr

\noalign{\vskiplpt>

$\hfil\displaystyle\char’176\hfil$\cr}}}

"/.textstyle

{\smash

{\vtop{\offinterlineskip\halign{##\crcr

$\hfil\textstyled#l}\hfil$\cr

\noalign{\vskiplpt}

$\hfil\textstyle\char’176\hfil$\cr}}}

{\textstyle\vphantom{#l>>>

"/.scriptstyle
{\vtop{\offinterlineskip\halign{##\crcr

$\hfil\scriptstyle{#l}\hfil$\cr

\noalign{\vskipO.7pt}

$\scriptstyle\hfil\char’176\hfil$\cr}}}

"/.script script style
{\vtop{\offinterlineskip\halign{##\crcr

$\hfil\scriptscriptstyle{#l}\hfil$\cr

\noalign{\vskipO.5pt>
$\scriptscriptstyle\hfil\char’176\hfil$\cr}}}}

The hard-wired \vskip values could be improved upon (at the

very least). The \crcr commands are sheer overkill. This com¬

mand is the same as \cr, except that it is ignored after either

\noalign or \cr. It is therefore most useful in creating commands

where \cr might be inserted by mistake when they are employed.

A genuine and valid use can be found if you unravel the complex¬

ities of \matrix. It is a feature which could be used to advantage

in the creation of table commands, where the body of the table is

effectively an argument to a command containing the alignment

472 A plain TpjX primer

preamble. Since in normal circumstances \cr\cr is equivalent to

two ‘rows’, it could lead to the insertion of unwanted vertical space

in the table.

23.4: The major change is to find a way of discarding the first

character. This will do the job:
\def\testing{\futurelet\next\switch}

\def\switch{\ifx\next T

\def\action##l{\bf}

\else

\def\action##l{\sl>

\fi
\action}

It requires the introduction of a new local command which is then

invoked at the end. This is rather more flexible than the simple

form introduced originally.

23.5: One preferred way is to extend the previous structures

slightly:
\def\test{\futurelet\next\switch}

\def\switch{\ifx\next *

\def\action##l##2{\bf##2»

\else

\def\action##l{\sl##l}}

\fi
\action}

which allows us to write:
\test*{asterisk form}

\test{no asterisk}

A rather sly alternative is to change the category code of * so that

\fred and \fred* may both be defined. Why is this not a good
idea?

Index

£, 103, 207
$, 53, 76
$$, 54, 76
* (prompt), 36
** (prompt), 35

— (hyphen), 23
— (minus), 23-24, 53
— (en-dash), 23
— (em-dash), 23
=, 105, 110, 166
i, 85
l, 85
%, 96, 153
#, 228, 358
&, 163, 171, 182, 207, 215,

228, 232, 236, 449, 454
&&, 246, 250
\&, 86
\u, 84, 124
\$, 207
\!, 71
*, 57, 330
\+, 216, 218, 225, 434
\„ 427
\-, 42, 414

\AA, 83, 85
\aa, 83, 85
\above, 67, 80
\abovedisplayshortskip, 192
\abovedisplayskip, 192
accent, 43, 83, 85, 134, 296,

305, 432
maths, 62-64, 124, 169, 356,

424
\accent, 86, 169
\active, 112, 448, 470
active character, 103, 112, 250
acute, 87
\acute, 62
addition, 106
\adjdemerits, 333
\advance, 106, 162, 317
\advancepageno, 317

\AE, 83, 85
\ae, 85
aigu, 87
\aleph, 64
aligned equations, 182
alignment, 163, 171, 178, 187,

215, 225, 227, 257, 259,
436, 439, 454, 457

character, 232
horizontal, 227
preamble, 227-28, 241, 262
tab, 103
template, 241
vertical, 250

\allowbreak, 209
\alpha, 54
\amalg, 73
ampersand, 86, 207
4m<S-TEX, 14, 101, 125, 310
\angle, 64
angle brace, 115
apostrophe, 22
\approx, 74
Arabic numeral, 204
\arccos, 121
\arcsin, 121
\arctan, 121
\arg , 121
argument, 151, 165
arithmetic, 104
arrows, 77
ascender, 30, 139, 243, 296,

429, 437
\ast, 73
asterisk, 35
\asymp, 74
\atop, 67
\atopwithdelims, 67

back spacing, 198
backslash, 24, 302, 404
\backslash, 64, 115
badness, 144, 329, 331

calculation, 332

balance, 172, 239, 248, 321
\bar, 62
bar under, 87
baseline, 38, 292
\baselineskip, 29, 191, 336,

404
\batchmode, 48, 462
\bigbreak, 213
\begingroup, 163
\beginsection, 154
\belowdisplayshortskip, 192
\belowdisplayskip, 192
\beta, 54
bezier curve, 275-76
\bf , 32, 125, 290
\bgroup, 164, 435
bi-directional text, 363, 379
\Big, 116
\big, 102, 116, 292, 423
\bigbreak, 213, 338
\bigcap, 71
\bigcirc, 73
\bigcup, 71
\Bigg, 116
\bigg, 116-17
\bigodot, 71
\bigoplus, 71
\bigotimes, 71
\bigskip, 146, 192
\bigsqcup, 71
\bigtriangledown, 73
\bigtriangleup, 73
\biguplus, 71
\bigvee, 71
\bigwedge, 71
\binoppenalty, 330
blank line, 31, 154
\bmod, 120-21
\body, 102, 355, 432
bold symbols, 125
\bordermatrix, 176
\bot, 64
\botmark, 341
\bowtie, 74

474 A plain TpjK primer

box, 38, 131, 216, 243, 273,
314, 342, 357, 447

depth, 132
height, 132
horizontal, 131
null, 184
reference point, 138-39
register, 131
vertical, 131, 261, 335
void, 134
width, 132

\box, 134
\box255, 131, 314, 462
\boxmaxdepth, 322
brace, 33, 56, 101-103, 151,

158, 163-64, 195, 317, 364,
469

\brace, 67
\brack, 67
\break, 203, 212, 337, 468
breakpoint, 144-45, 209, 335
breve, 87
\breve, 62
\brokenpenalty, 336
\buildrel, 75, 411, 425
\bullet, 73
\bye, 156, 325, 339, 430, 433

\cal, 125, 290, 425, 459
\cap, 73
capital letters, 210
carat, 56
carriage control, 153
carriage return, 103, 171, 211
case statement, 350
\cases, 178, 187
\catcode, 101-102, 232, 237,

250, 454, 460
category code, 101, 103, 232,

237, 303, 352-53, 447, 454,
472

\cdot, 73
\cdots, 126, 129
cedilla, 85-87
ceiling, 115
\centerline, 151, 224
\char, 301
character code, 110, 352
characters, 301
\chardef, 302
\check, 62
chemistry, 64, 75, 273, 275,

277, 383-84, 386, 411
\chi, 54
\choose, 67
cicero, 27

\circ, 73
circumflex, 56, 87
\cleaders, 259
\cleartabs, 226
close brace, 102
\closein, 344
\closeout, 344
club line, 50, 201, 205
\clubpenalty, 336, 468
\clubsuit, 64
colon, 112, 130, 413, 423, 428
\colon, 74, 427
column, 216, 236
\columns, 216
comma, 130
command, 61, 99, 135, 151,

208, 349, 418
delimited, 153
expansion, 161, 168, 345-46,

349, 352, 355, 359, 419,
469

global, 162
substitution, 101
template, 155, 164
undelimited, 153

commands, tracing, 50
comment, 96, 303
comment character, 103
conditionals, 109, 206, 349
\cong, 74
control sequence, 99, 108
control space, 84, 124, 127,

210, 221
\coprod, 71
\copy, 134, 292
\cos, 121
\cosh, 121
\cot, 121
\coth, 121
\count, 105, 106
\countO, 317
counters, 105, 320, 349
\cr, 171, 215, 232, 235, 438
cramped, 77-79, 299
\crcr, 438, 471
cross-referencing, 126, 168
\csc, 121
\csname, 167
\cup, 73

\dag, 207
dagger, 207
\dagger, 73
dash, 22, 23
\dashv, 74
\ddag, 207

\ddagger, 73
\ddot, 62
\ddots, 172
\def, 100, 151, 159
default, 17

file name extension, 25
style for limits, 69

deferred write, 345
definition, 99, 151

expanded, 160
runaway, 107

\deg, 121
degree, 73, 104, 410, 419
DEL, 103
delimiter, 67, 115-119

balanced, 117
command, 103, 153-58, 432,

434, 471
large, 439
maths, 67, 115-17, 172, 183,

189, 292, 439
sizing, 118

\delimiterfactor, 189
\delimitershortfall, 189
\Delta, 55
\delta, 54
demerit, 112, 329, 331-32
depth, 253
descender, 29, 38, 243, 262,

428-29, 437, 444
design size, 32, 95, 295,

304-305, 307, 369
\det, 121
diacritical, 43, 83, 87, 134,

432
diagonal dots, 172
\diamond, 73
\diamondsuit, 64
didot, 26
dieresis, 85, 87
digit width, 217, 219, 266
\dim, 121
\dimen, 105-106
dimensions, 105, 146

true, 90
\discretionary, 42
discretionary

break, 329
multiplication, 57

display, 53-54, 57, 76
maths, 122, 290, 330, 336
style, 53, 69, 76, 129, 238,

299, 351, 356
displayed equations, 192
\displaylines, 184
\displaystyle, 76, 80, 238,

Index 475

409, 412
Ndisplaywidowpenalty, 336
\div, 73
\divide, 106
division, 106
document

structure, 180
view, 174, 381

dollar, 53-54, 76, 103, 207,
369

\dosupereject, 338
dot, 87
\dot, 62
\doteq, 74
\dotfill, 258-59, 456
dotless i, j, 86-87
dots, 126, 129, 172, 259, 260
\dots, 211, 447
double dagger, 73, 207
double-column, 313, 315, 324
Ndoublehyphendemerits, 334
\Downarrow, 77, 115
Ndownarrow, 77, 115
\downbracefill, 259
\dp, 132
driver, 94, 207, 279-81, 288,

303, 380, 382-83, 393, 395,
416

\dump, 311
dvi, 10, 25, 36, 280, 282-83,

313, 343

Easter, 112, 377
\edef, 160
\egroup, 164
\eject, 213, 325, 327, 337,

430
electronic networks, 283, 367,

396
Nell, 64
ellipsis, 126, 211, 427
\else, 109, 350
em, 23, 27, 127, 136, 214,

296, 305, 307
em-dash, 22, 127, 209
Nemergencystretch, 44, 333
Nemptyset, 64
en, 127, 209, 214
en-dash, 22, 209
Nend, 24, 339, 430
end of file, 354, 403
end of line, 84, 103, 153, 303,

403
Nendcsname, 167
\endgroup, 163
Nendinsert, 200, 237

Nenskip, 214, 448
Nenspace, 127, 198, 214, 217,

448
Nepsilon, 54
Neqalign, 182
Neqalignno, 185
Neqno, 125, 163, 173, 426, 441
equals sign, 110
equation

alignment, 182
breaking, 57, 181, 184
number, 125, 185, 426, 438,

440
\equiv, 74
equivalence, 159
Nerrhelp, 347, 420
Nerrmessage, 347, 419
error, 347

in maths, 58
messages, 107, 123, 156,

164, 171, 186, 224, 245,
257, 310, 346-47, 406,
408, 415-17, 420, 425,
435

prompt, 133
recovery, 46, 133

error message, 350
escape character, 103, 303
\eta, 54
Neverycr, 161, 181, 238
Neverydisplay, 161
\everyhbox, 161
Neveryjob, 161
Neverymath, 161
Neverpar, 159
Neverypar, 149, 161, 167,

194, 442
Neveryvbox, 161
ex, 27, 136, 296
exclamation mark, 85, 210,

428
Nexhypenpenalty, 330
\exists, 64
\exp, 121
expand token, 236
Nexpandafter, 168, 204, 345,

360
extension, file name, 24

factorial, 128
false (logical value), 109
\fam, 169, 289-90, 298, 345,

434
family, 298
\fi, 109
fil, 147

\filbreak, 213, 337
file

manipulation, 343
name, 24, 146, 343

fill, 147, 246
filll, 147, 431
fills, 145, 148, 253, 259, 456
\finalhyphendemerits, 334,

468
Nfirstmark, 341
\flat, 64
floats, 199
floor, 115
Nfolio, 205-206, 446
font, 32, 91, 285, 301, 369,

380
AMS, 308
assignment, 163
Blackboard Bold, 125, 309
bold, 91-92
calligraphic, 125
Computer Modern, 6, 11,

31, 97, 134, 244, 285,
287, 302, 369, 378

Concrete, 289
design size, 32, 95, 295,

304-305, 307, 369
Euler, 289, 308
Fraktur, 125, 308
generic (gf), 288
halftone, 277, 379, 381
italic, 91, 406
IATeX, 273, 308, 310
logo, 311, 461
Math Extension, 371, 374
Math Italic, 372
Math Symbol, 372
maths italic, 124
Modern 8A, 31
monospace, 89
PostScript, 97
sans serif, 91, 373, 416
slanted, 91, 373
small caps, 91, 369
symbol, 295, 372
T^jX extended, 371, 375
Times Roman, 20, 289, 295
typewriter, 89, 91, 370-371
virtual, 303, 379, 461

\font, 91, 285, 288, 298
font dimensions, 296-99, 304
font family, 95, 286, 289, 307
font metrics, 303
font names, 459
font table, 301
Nfontdimen, 40, 136, 214,

476 A plain T^K. primer

295-96, 304, 332
\fontname, 298
\footins, 323-24
footline, 167, 317, 350, 463
\footline, 167, 205, 317-18
footnote, 201, 203, 266, 338,

342
\footnote, 201
\footnoterule, 201
\forall, 64
forbidden control sequence,

433
fraction, 65, 67, 78
\frenchspacing, 210, 222,

296, 446
\frown, 74
full stop, 155, 210, 221-22,

305, 405, 428
functions, 119
\futurelet, 358, 472
fuzz, 45, 192

\Gamma, 55
\gaimna, 54
\gcd, 121
\gdef, 162
\ge, 74
\geq, 74
\gets, 77
\gg, 74
global, 161, 318
\global, 160, 218, 445
glue, 38-39, 127, 144, 146,

151, 191-92, 196, 210,
213, 222, 259, 305, 323-24,
329-30, 335, 428, 441

asymmetry, 147
horizontal, 147
interword, 135
tabskip, 233, 237, 242, 247,

262
vertical, 147-48

\goodbreak, 213, 337
grave, 22, 87
\grave, 62
Greek, 55
Greek symbols, 124
group, 33, 56, 61, 63, 84, 86,

115, 118, 130, 135, 151,
158, 161-64, 195, 212, 217,
223-24, 228, 236, 247, 318,
320, 442

character, 103
implicit, 122, 163
intrinsic, 163
null, 222

symbols, 163
unbalanced, 165

gurus, 27
Gutenberg, 14
gutter, 316, 463

hacek, 87
\halign, 227, 237, 265, 357
\hang, 193, 442
\hangafter, 194, 442
\hangindent, 194, 443
hanging indentation, 193
hash, 207
hat, 63, 87
\hat, 62, 409
\hbar, 64
\hbox, 122, 134, 137, 151,

163, 178, 198, 219, 223-24,
259, 266, 290, 425-26, 429,
436-37

headline, 167, 317, 350, 463
\headline, 167, 205, 317-18
\heartsuit, 64
height, 253
hexadecimal, 169, 302, 306,

454, 458
\hfil, 147, 175
\hf ill, 147, 175
\hfilneg, 148
\hfuzz, 45
\hidewidth, 246, 455
\hoffset, 207
\hom, 121
hook, 88
\hookleftarrow, 77
\hookrightarrow, 77
horizontal

axis, 172-73, 189
box, 131
mode, 137, 351, 428
offset, 207
phantom, 180
size, 28
skip, 145, 214, 246, 331,

423, 431, 436
\hphantom, 180
\hrule, 141, 257, 259
\hrulef ill, 253, 259, 456
\hsize, 28, 415, 428
\hskip, 145, 214, 246, 331,

423, 431, 436
\hss, 147, 266, 432
\ht, 132
hyphen, 23, 44, 201, 329, 333

discretionary, 42
potential, 41

hyphenation, 23, 40, 42, 88,
134, 144, 298, 311, 331,
414, 460, 462, 467

\hyphenchar, 298, 331, 467
\hyphenpenalty, 330, 460
hyphens, adjacent, 334

\i, 86
\if, 109, 352
\ifcase, 111, 294, 350, 417
\ifcat, 353
\ifdim, 109-110, 349
\ifeof, 343, 354
Niff, 75, 77, 411
\iffalse, 354
Nifhmode, 351
\ifinner, 352
Nifmmode, 351, 419
Nifnum, 109, 349
Nifodd, 109-110, 206, 213,

320, 350
\ifprev, 354
\iftrue, 354
Nifvmode, 351
\ifvoid, 323, 353
\ifx, 352, 472
ignored character, 103
Nignorespaces, 153, 198
\Im, 64
\imath, 64
Nimmediate, 345, 469
\in, 74
indent, 30, 191-93, 442

hanging, 193-94, 196
\indent, 137, 191
Ninf, 121
infinity, 144, 337
\infty, 64
INITEX, 161, 311, 461
Ninput, 49, 246, 343, 345,

403, 471
insert, 237, 266, 313, 322-23,

326, 338, 342, 445, 457
bottom, 201
floating, 199-200, 318, 322,

325
mid, 200, 237
page, 200
top, 200, 237

Nint, 69, 71
integral, 69, 128

multiple, 71, 129
internal

mode, 352
vertical mode, 137, 351, 445

invalid character, 103

Index 477

\iota, 54
\it, 32

italic correction, 93, 208, 305,
307, 433

item, 196, 445
\item, 196
\itemitem, 197-98
\iterate, 432

\j, 86
\jmath, 64
\jobname, 344
\jot, 179, 187
justify, 264, 404

\kappa, 54
\ker, 121

kern, 20, 39, 133, 136-37, 214,
305-306, 329, 336, 414, 427

implicit, 71
\kern, 145, 201, 326, 423,

428, 436

\L, 83, 85
\1, 83, 85
\Lambda, 55
\lambda, 54
UmS-TeX, 101, 203
\land, 73
Mangle, 115
Manguage, 414
large operators, 69-71
laser printer, 4, 12-13, 45
\lastbox, 353
IATeX, 10, 14, 16, 45, 101,

126, 136, 273, 359, 365, 382
\lbrace, 115
\lbrack, 115
\lceil, 115
\ldots, 126, 129, 172
\le, 74
leaders, 257-60
\leaders, 258-59
leading, 30
Meavevmode, 138, 149, 198,

351, 428, 431, 433
Meft, 116-17, 163, 172, 183,

292
left justify, 174, 216, 232, 246
left margin, 193
\Leftarrow, 77

Meftarrow, 77
Meftarrowf ill, 259
Meftharpoondown, 77
Meftharpoonup, 77
Mefthyphenmin, 43

Meftline, 151, 431
\Leftrightarrow, 77

Meftrightarrow, 77
Meftskip, 196, 209, 445, 460
Meq, 74
Meqalignno, 185
Meqno, 125, 163, 173, 426
Met, 159, 358
letter category, 103
Mfloor, 115

Mg, 121

ligature, 18, 83, 89, 305-306,
371, 403, 416

Mim, 121
\liminf, 119, 121
Mimits, 70, 409, 424
Mimsup, 119, 121
line, 211

blank, 31, 154
break, 40, 139, 209, 212,

329, 331, 335, 378
club, 201, 336, 468
horizontal, 141
length, 26
measure, 331
orphan, 201, 336
widow, 201, 336, 468
width, 27, 131
wrap, 216, 242

Mine, 224, 465
Minepenalty, 332, 334, 467
lines, adjacent, 333
\lineskip, 87
link hyphen, 23, 330
lists, 196-97

\11, 74
\llap, 149, 186, 198, 239, 267
\ln, 121
\lnot, 64
local, 161, 164, 218, 317, 437
Mog, 121
log file, 25, 320, 343, 346
Mong, 156, 160, 202, 352, 432
long vowel, 87
\Longleftarrow, 77

Mongleftarrow, 77
\Longleftrightarrow, 75, 77,

411
Mongleftrightarrow, 77
Mongmapsto, 77
\Longrightarrow, 77

Mongrightarrow, 77
\loop, 355, 432
Mooseness, 334, 467
Mor, 73
low dots, 129

Mower, 135, 428, 444
Mowercase, 360

macro, 99, 151
macron, 87
magnification, 91
Magnification, 89, 207, 294,

415
Magstep, 89, 286, 294, 415
Magstephalf, 89, 295
main vertical list, 137, 313,

323
Makefootline, 317

Wakeheadline, 317
Mapsto, 77
Mark, 341, 352
marks, 342
markup, 1, 9, 174, 423

declarative, 10, 14, 209, 220,
269-70, 423

procedural, 10, 101, 270
MOth, 292, 447
math shift, 103
Mathaccent, 169
Mathbin, 120, 427
Mathchoice, 356, 471
Mathclose, 117
mathematical unit, 127
\mathop, 120
\mathopen, 117

Mathrel, 117, 120
maths, 53, 69, 115, 171

accent, 62-64, 124, 408
axis, 299
cramped, 77-79, 299
display style, 53, 76-79, 289,

410, 412
mode, 55, 223
script style, 76-79, 289
scriptscript style, 76-79, 289
styles, 76-79
text style, 53, 76-79, 289,

412
uncramped, 77-79

Mathstrut, 181, 424-25
Mathsurround, 123, 292, 425
matrix, 171, 215

bordered, 175
Matrix, 171, 187, 230
Max, 121
Maxdepth, 322
Maxdimen, 429
measure

line, 26, 144, 415, 440, 449
narrow, 262, 330, 334

Medbreak, 213, 338

478 A plain TpjK primer

\medmuskip, 127
\medskip, 146, 192
memory, 145, 232, 271, 275,

302, 311, 335, 351, 461
merit, 41, 112, 329, 331-32
\message, 344, 346, 417
METflFONT, 6, 94, 272,

277-78, 288, 294, 310, 361,
378, 385, 461

\mid, 64, 74, 411, 413
\midinsert, 200, 237, 313,

457
\min, 121
minus, 145-46, 430
minus sign, 22, 53, 244
\mit, 124, 290, 405, 425
mode

horizontal, 137, 337, 351,
428

vertical, 137, 259, 337, 351
\models, 74
modulus, 120
Monotype, 307, 448
\month, 350
moon, 112
\moveleft, 137
\moveright, 137
\mp, 73
mu, 127, 179, 436
\mu, 54
multiple columns, 320-21
multiplication, 106

discretionary, 330
\multiply, 106
\multispan, 235, 245, 248,

266, 355, 457

\nabla, 64
narrow measure, 262, 330, 334
\narrower, 195, 297
\natural, 64
natural width, 40, 131, 219,

223, 234, 236, 247
\ne, 74, 412
\nearrow, 77
\neg, 64
negation, 74
negative thin space, 71
\neq, 74
\newbox, 132, 135, 156, 434
\newcount, 105, 156, 421
\newdimen, 105, 156
\newfam, 290
\newif, 109
\newinsert, 326
\newread, 343

\newtoks, 167
\newwrite, 344
\ni, 74
\ninepoint, 291, 293
\noalign, 163, 179, 235, 238,

266, 358, 457
\nobreak, 338
\noexpand, 161
\noindent, 137, 191, 194
\nointerlineskip, 243, 428
\nolimits, 70
\nonfrenchspacing, 305
\nonstopmode, 48, 462
\nopagenumbers, 204
\normalbaselines, 187, 243,

262, 267, 292, 457
\n@space, 292
\not, 74
notch, 254, 263-64, 455
\notin, 74, 411
\nu, 54
NUL, 103
\null, 352, 431, 450
null

box, 133
brace, 423
superscript, 59

\nulldelimiterspace, 292
\number, 107, 206
\nwarrow, 77

\0, 83, 85
\o, 83, 85
\obeylines, 211
octal, 302, 306, 458
\odot, 73
\0E, 83, 85
\ae, 83
\oe, 83, 85
\of, 62, 154, 408
\offinterlineskip, 243, 267
offset, 207
\oint, 71
\oldstyle, 290, 459
\0mega, 55
\omega, 54
\ominus, 73
\omit, 234-38, 263
open brace, 102
\openin, 343
\openout, 344
\openup, 187, 238, 453
operator, 119, 121

binary, 72-73, 120, 184, 330,
410, 427

large, 69-71, 80, 409

unary, 72, 184, 410
\oplus, 73
optional argument, 359
\or, 111, 350
orphan line, 50, 201
\oslash, 73
other character, 103
\otimes, 73
\outer, 156, 160, 224, 339,

352, 433, 434
output, asynchronous, 314
\output, 314, 316, 350
output routine, 205, 313, 338,

385
\outputpenalty, 338
\over, 65, 76, 79, 409, 423
\overbrace, 121
overfull box, 41, 90, 191, 332,

337
\overfullrule, 45
\overleftarrow, 75
\overline, 61, 63
\overrightarrow, 75
\owns, 74

\P, 207
page

break, 188, 201, 212-13,
265, 328, 335, 337, 341,
380, 468

building, 147, 200, 204, 206,
313, 343

number, 205, 317
origin, 206, 207

\pagebody, 322
\pagecontents, 322, 326
\pagegoal, 323
\pageinsert, 200
\pageno, 204-205, 317
\pagetotal, 323
paper size, 466

A4, 24, 35, 90, 97, 294, 313,
415

US Letter, 24
\par, 31, 154, 211, 337, 403,

405

paragraph, 18, 30-31, 40, 137,
156, 160, 191, 196-97, 202,
204, 211, 228, 261, 329,
378, 404, 429

building, 200
length, 200
mark, 207

\parallel, 64, 74
parameter, 103, 151
parenthesis, 172, 244

Index 479

\parf illskip, 299, 460, 468
\parindent, 29, 191, 196, 444
\parskip, 29, 147, 191, 336,

403
\partial, 64
partial rules, 257
penalty, 112, 325, 329,

331-32, 336
\penalty, 112-13, 329,

337-38
percent, 207
period, 155, 210, 221-22, 305,

405, 428
\perp, 74
phantom, 177, 180, 186, 438
\phantom, 177, 186, 436
\Phi, 55
\phi, 54
\Pi, 55
\pi, 54
pica, 26
PjCTfeX, 276, 386
pilcrow, 207
pixel, 279

packed, 280, 288
pk, 279, 288
pi, 303
plain, 14, 99
\plainoutput, 322
Planck’s constant, 64
PLtoTF, 303, 378
plus, 145-46, 430
\pm, 73
\pmatrix, 172
\pmod, 120-21
point, 26-28, 30

big, 26-27
printer’s, 26-27
scaled, 27, 105

\postdisplaypenalty, 336
PostScript, 272, 280, 282,

294
pounds (sterling), 103, 207

\Pr, 121
preamble, 227, 228
\prec, 74
\preceq, 74
\predisplaypenalty, 336
\preloaded, 285, 311
\pretolerance, 40, 44, 144,

332
\prevgraf, 200, 429
prime, 65, 409
\prime, 64
printing dimensions, 26-27
\proclaim, 154, 432

\prod, 71
projection onto, 74

prompt, 35-36, 100, 106, 133,
224, 344, 346, 364, 407, 420

property list, 280, 303, 307,
309, 461

\propto, 74
\Psi, 55
\psi, 54
punctuation, 57, 74, 112,

129-30, 210, 221-22, 329,
405, 407, 423, 428, 438, 446

in maths, 407

\qquad, 127, 214
quad, 23, 127, 214, 296, 305
\quad, 127, 296
question mark, 85, 428
quotation mark, 22, 404
quote symbols, 22

\radical, 102
ragged-right, 44, 297
\raggedbottom, 46, 192, 324
\raggedright, 44, 262, 297,

460
\raise, 135
\rangle, 115
\rbrace, 115
\rbrack, 115
\rceil, 115
\Re, 64
\read, 343, 469
reading files, 343
register, 105-108, 131, 166,

276
relation, 74, 120, 330

conditional, 110
maths, 117, 450

\relax, 36, 108, 187, 254,
430, 457

\relpenalty, 330
\repeat, 152, 355
replacement text, 228
restricted horizontal mode,

137, 351, 429, 446
restricted mode, 352
return, carriage, 103, 171, 211
\rfloor, 115
\rho, 54
Yright, 116-17, 163, 172,

183, 292
right justify, 174, 227, 232,

246, 266
right margin, 194
\Rightarrow, 77

\rightarrow, 77
\rightarrowfill, 259
Nrightharpoondown, 77
\rightharpoonup, 77
\righthyphenmin, 43
\rightleftharpoons, 77
\rightline, 151
\rightskip, 196, 209, 297,

460
rigid material, 199
\rlap, 149, 187, 239, 267,

326, 431
\rm, 32, 178, 290
Roman numeral, 199, 204,

206, 446
\romannumeral, 199, 204, 360
\root, 62, 408
rule, 141, 232, 241

horizontal, 241, 253
partial, 257
vertical, 241

runaway argument, 156, 224,
432-33

runaway definition, 164

\S, 207
sans serif, 286, 308
\sb, 56, 351, 470
scaled, 93, 416
scaling

geometric, 95
linear, 94

Scribe, 4, 366, 384
script style, 356, 425
scriptfont, 123
\scriptfont, 289, 425, 459
scriptscript style, 78, 124,

356, 425
\scriptscriptfont, 289
\scriptscriptstyle, 78
\scriptstyle, 78
\scrollmode, 48, 462
\searrow, 77
\sec, 121
section mark, 207
semi-colon, 130, 428
serif, 91, 285-86, 308, 369
\setbox, 131
\setminus, 73
\settabs, 215, 225
SGML, 9, 279, 382
\sharp, 64
\shipout, 314, 316, 462
shortfall, 189
\show, 100, 132, 418
\showbox, 132

480 A plain TppC primer

\showboxbreadth, 132, 447
\showboxdepth, 132
\showhyphens, 43
\showthe, 106, 132
shrink, 41, 90, 296, 331-32
\Sigma, 55
\sigma, 54
\sim, 74
\simeq, 74
\sin, 121
\sinh, 121
\skew, 63
skip, 145, 192, 195, 213
\skip, 141, 146
\sl, 32
slash, 115
\slash, 209
\smallbreak, 213, 338
\smallskip, 146, 192
\smallskipamount, 146, 193
\smash, 181
\smile, 74
solidus, 129
\sp, 56
space, 103, 112, 153, 177, 307,

329, 434, 452
after command, 84, 86
around maths, 123
backwards, 149
control, 84
default, 187
definition, 351
display, 192
extra, 221, 260, 296, 425
horizontal, 145, 214, 218-19,

237
in maths, 123, 126, 179,

186-89, 436, 438
interletter, 95, 134, 425
interline, 187
interword, 221-22, 296, 305,

307, 331
leading, 218, 229
maths, 117, 127
medium, 127
negative thin, 71
significant, 152, 208, 228
tab, 233, 249
thick, 127, 129, 436
thin, 71, 127-28, 404, 410,

427
trailing, 218, 229, 451
unbreakable, 113
unwanted, 242, 319
vertical, 87, 145-46, 156,

179, 181, 187, 191-92,

199, 213, 223, 235, 238,
264, 444, 472

white, 206
\space, 111, 346
\spaceskip, 214, 296-97, 332
\spadesuit, 64
\span, 236
spanned columns, 235, 248,

251
\special, 280-81, 461
\splittopskip, 321
spread, 134, 140, 237, 247
\sqcap, 73
\sqcup, 73
\sqrt, 61, 408
\sqsubseteq, 74
\sqsupseteq, 74
square brackets, 115
square root, 61, 119, 128, 299
\ss, 83, 85
\star, 73
sterling, 103, 207, 369
stream, 354
stream number, 343
stretch, 40, 90, 296, 331-32
\string, 346
structure

logical, 10, 17
strut, 244, 319
\strut, 156, 181, 242-43,

262, 291-92, 424, 444, 449,
455, 457

\strutbox, 252, 292
styles in maths, 77-79

cramped, 299
display, 53, 69, 129, 238,

299, 351, 356
script, 356, 425
scriptscript, 124, 356, 425
text, 53, 69, 129, 351-52,

356
subscript, 56, 58, 69, 76, 103,

121-22, 299, 425, 437
\subset, 74
\subseteq, 74
subtraction, 106
\succ, 74
\succeq, 74
\sum, 69, 71
summation, 69, 118
\sup, 121
\supereject, 325, 338, 430
superscript, 56, 58, 69, 76,

103, 122, 299, 425
\supset, 74
\supseteq, 74

\surd, 64
\swaxrow, 77
symbols

for text, 207
Greek, 54-55

tab, 171, 216, 250, 454, 457
\tabalign, 225, 450
table, 215, 227, 365

heading, 220, 229, 246, 248,
270

\tabskip, 233, 236, 247, 452
tabskip glue, 233
\tan, 121
TANGLE, 7
\tanh, 121
\tau, 54
Tau Epsilon Chi, 3
tbl, 231, 262
template, 155, 173, 217, 220,

227, 234, 236, 357
repetition, 244

\tenpoint, 291
\tenrm, 288, 290
TfeX, 5

safe, 111, 147, 242, 252, 254
1^X3, 6, 43, 301, 361, 378,

414, 427, 431
T]eX78, 6
texput, 38
text, 191

in maths, 122-23, 178, 426,
437

in tables, 261
narrowed, 195
samples, 96, 373, 375

text maths, 290, 330
text style, 53, 69, 129,

351-52, 356
\textfont, 289
\textindent, 198, 445
\textstyle, 76, 78, 409, 412
tfm, 20, 38-39, 88, 94, 163,

279, 288, 303-304, 307, 378,
404, 414, 416, 461

TFtoPL, 303, 378
\the, 166, 205
\Theta, 55
\theta, 54
\thickmuskip, 127
thin space, 71
\thinmuskip, 127
\thinspace, 214, 404, 448
tie, 87, 112, 210
tilde, 63, 87, 358
\tilde, 62, 409

Index 481

\time, 107
\times, 73
to, 134, 140, 247
Yto, 77
\today, 111, 350
token, 133, 137, 151, 159, 236,

346, 352, 406, 420, 434
string, 165-66, 167, 205,

238, 470
\toks, 166
\tolerance, 40, 43, 144, 262,

332, 467
\top, 64
\topglue, 337, 431
\topins, 323
\topinsert, 200, 237, 313,

457
\topmark, 341
\topskip, 319, 464
tracing, 145, 335, 461

boxes, 132
commands, 302

\tracingparagraphs, 335
\tracingstats, 145, 461
\triangle, 64
\triangleleft, 73
\triangleright, 73
trip, 362
troff, 282
true (dimension), 94, 207
true (logical value), 109
\tt, 32
\ttraggedright, 297, 460
TUG, 5, 205, 281, 397, 400
typography, 14, 27, 367,

386-87, 436

u, 87, 414
\uchyph, 331
umlaut, 85, 87
uncramped style, 77-79
\undefined, 352
\underbrace, 121
underfull box, 41, 46, 141,

429
underline, 56
\underline, 61, 63

underlining, 33
underscore, 56, 470
\unhbox, 134, 353
\unhcopy, 134, 292, 429
UNIX, 4, 382
\unvbox, 315, 323, 353
\Uparrow, 77, 115
\uparrow, 77, 115
\upbracefill, 259
\Updownarrow, 77, 115
\updownarrow, 77, 115
\uplus, 73
\uppercase, 204, 360
\Upsilon, 55
\upsilon, 54

\vadjust, 327
\valign, 227, 231
\varepsilon, 54
\varphi, 54
\varpi, 54
\varrho, 54
\varsigma, 54, 407
Wartheta, 54
\vbox, 138, 163, 217, 265,

428, 441
\vcenter, 173, 239, 453
\vdash, 74
\vdots, 172
\vec, 62, 409
vector, 125, 173
\vee, 73
Wert, 64, 115
\vert, 64, 115, 411
vertical

box, 131, 261, 335
dots, 172
fill, 430
mode, 137, 259, 337, 351
offset, 207
phantom, 180
skip, 145-46, 192, 218
space, 180
spanning, 251

\vfil, 147
\vf ill, 147, 213, 430
\vfilll, 431

\vf ilneg, 148, 337
\vfootnote, 203, 266, 457
\vfuzz, 192
vinculum, 61, 299
virTeX, 365
\voffset, 207
void, 323, 353
VoRTeX, 381-82
\vphantom, 180
\vrule, 259
\vsize, 28, 415
\vskip, 145
\vspan, 251, 263
\vsplit, 315, 321, 462
\vss, 147

\vtop, 138, 163, 261, 316, 428

\wd, 132
WEAVE, 7
WEB, 7, 378
\wedge, 73
Weierstrass, 64
\widehat, 63, 409
\widetilde, 63, 409
widow line, 50, 201, 205
\widowpenalty, 336, 468
width, 253
width, natural, 40, 131, 134,

219, 223, 234, 236, 247
\wlog, 346
\wp, 64
\wr, 73
wreath product, 72
\write, 344
write-black, 12-13
write-white, 12-13
writing files, 343

\xdef, 160
x-height, 296, 305
\Xi, 55
\xi, 54
\xleaders, 259
\xspaceskip, 214, 296-97

\zeta, 54

V7

TgX is an advanced typesetting and page make-up system in use on

over fifty different types of personal, mini-, and mainframe computers

worldwide.

This primer introduces TgX, providing the reader with sufficient

information to get started with the majority of tasks which she or he

wishes to tackle. It explains why TgX approaches its subject in the way

it does, and provides the ‘context’ into which it fits. Another thread is

the emphasis placed on document structure. Stress is also laid on

practical work.

Not only is the book a ‘primer’, it is a ‘plain’ T^X primer. Wherever

TgX is running, it comes with at least one basic style definition, called

‘plain’. This is a common starting point for many TgX users. It is a

bkeful basic style, and lends itself to extension and modification to suit

a wide range of individual needs.

With the aid of this book, scientists and researchers preparing their

own books and papers, or technical typists, used to the conventions and

jargon of their field, will find little difficulty in adopting TgX’s

approach. . -

