
A Document Preparation System

USER'S GUIDE & REFERENCE MANUAL

Leslie Lamport

Digitized by the Internet Archive

in 2012

http://www.archive.org/details/latexOOIesl

3

3

3

A Document Preparation System

Leslie Lamport

Digital Equipment Corporation

Illustrations by Duane Bibby

=3

Addison-Wesley Publishing Company

Reading, Massachusetts - Menlo Park, California

Don Mills. Ontario • Wokingham, England • Amsterdam

Sydney • Singapore • Tokyo • Mexico City • Bogota • Santiago • San Juan

This documentation was prepared with I^TgX and reproduced by Addison-Wesley from

camera-ready copy supplied by the author.

Tj^X is a trademark of the American Mathematical Society

This book describes IATjrX Version 2.09, released 19 April 1986. Any discrepancy

between this description and the behavior of this or any later release of Version

2.09 is an error. There are only minor differences between this release and earlier

releases of Version 2.09.

Library of Congress Cataloging-in-Publication Data

Lamport, Leslie.

LATj)X: A Document Preparation System.

Includes index.

1. iATgX (Computer system) 2. Computerized typesetting. I. Title.

Z253.4.L38L35 1985 686.2'2544 85-19994

ISBN 0-201-15790-X

Copyright © 11386 by Addison-Wesley Publishing Company, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system, or transmitted, in any form or by any means, electronic, mechanical, photo-

copying, recording or otherwise, without the prior written permission of the publisher.

Printed in the United States of America. Published simultaneously in Canada.

Addison-Wesley Publishing Company. Inc.. makes no representations, express or im-

plied, with respect to this documentation or the software it describes, including without

limitations, any implied warranties of merchantability or fitness for a particular pur-

pose, all of which are expressly disclaimed. Addison-Wesley. its distributors and dealers

shall in no event be liable for any indirect, incidental or consequential damages. The
exclusion of implied warranties is not permitted by some statutes. The above exclusion

may therefore not apply to you. This warranty provides you with specific legal rights.

There may be other rights that you have which may vary from state to state.

ISBN 0-201-15790-X

23 24 25 26 27 28 29 30 AL 95949392

Contents

Preface xiii

1 Getting Acquainted 1

1.1 How to Avoid Reading This Book 2

1.2 How to Road This Book 2

1.3 The Game of the Name 4

1.4 Turning Typing into Typography 5

1.5 Turning Ideas into Input 8

1.6 Trying It Out 8

2 Getting Started 11

2.1 Preparing an Input File 12

2.2 The Input 13

2 2.1 Sentences and Paragraphs 13

Quotation Marks 13

Dashes 14

Space After a Period 14

Special Symbols 15

Simple Text-Generating Commands 15

Emphasizing Text 16

Preventing Line Breaks 18

Footnotes 19

Formulas 19

[gnorable Input 20

1.1.1 The Document 21

The Document Style 21

The Title "Page" 22

2.2.3 Sectioning 22

2.2.4 Displayed Material 24

Quotations 26

Lists 26

Poetry 27

in

IV

Displayed Formulas 28

2.3 Running WTEX 28

2.4 Helpful Hints 32

2.5 Summary 33

Carrying On 37
3.1 Changing the Type Style . 38

3.2 Symbols from Other Languages 39

3.2.1 Accents 40

3.2.2 Symbols 40

3.3 Mathematical Formulas 41

3.3.1 Some Common Structures 41

Subscripts and Superscripts 41

Fractions 41

Roots 42

Ellipsis 42

3.3.2 Mathematical Symbols 42

Greek Letters 43

Calligraphic Letters 43

A Menagerie of Mathematical Symbols 44

Log-like Functions 46

3.3.3 Arrays 47

The array Environment 47

Vertical Alignment 47

More Complex Arrays 48

3.3.4 Delimiters 48

3.3.5 Multiline Formulas 49

3.3.6 Putting One Thing Above Another 50

Over- and Underlining 51

Accents 51

Stacking Symbols 52

3.3.7 Spacing in Math Mode 52

3.3.8 Changing Style in Math Mode 53

Type Style 53

Math Style 54

3.3.9 When All Else Fails 54

3.4 Defining Commands and Environments 54

3.4.1 Defining Commands 55

3.4.2 Defining Environments 57

3.4.3 Theorems and Such 58

3.5 Figures and Other Floating Bodies 59

3.5.1 Figures and Tables 59

3.5.2 Marginal Notes 61

3.6 Lining It Up in Columns 62

3.6.1 The tabbing Environment 62

3.6.2 The tabular Environment 63

3.7 Simulating Typed Text 65

3.8 Letters 66

Moving Information Around 69
4.1 The Table of Contents 70

4.2 Cross-References 71

4.3 Bibliography and Citation 72

4.3.1 Doing It Yourself 73

4.3.2 Using BlBTEX 74

4.4 Splitting Your Input 75

4.5 Making an Index or Glossary 77

4.5.1 Producing an Index or Glossary 77

4.5.2 Compiling the Entries 78

4.6 Keyboard Input and Screen Output 79

Designing It Yourself 81

5.1 Document and Page Styles 82

5.1.1 Document Styles 82

5.1.2 Page Styles 83

5.1.3 The Title Page and Abstract 84

5.1.4 Customizing the Document Style 85

5.2 Line and Page Breaking 87

5.2.1 Line Breaking 87

5.2.2 Page Breaking 90

5.3 Numbering 91

5.4 Length. Spaces, and Boxes 93

5.4.1 Length 93

5.4.2 Spaces 95

5.4.3 Boxes 96

LR Boxes 97

Parboxes 98

Rule Boxes 100

Raising and Lowering Boxes 100

Saving Boxes 101

5.5 Pictures 101

5.5.1 The picture Environment 102

5.5.2 Picture Objects 103

Text 104

Boxes 104

Straight Lines 105

Arrows 106

VI

Stacks 107

Circles 107

Ovals and Rounded Corners 108

Framing 108

5.5.3 Reusing Objects 109

5.5.4 Repeated Patterns 109

5.5.5 Some Hints on Drawing Pictures 110

5.6 Centering and "Flushing" Ill

5.7 List-Making Environments 112

5.7.1 The list Environment 112

5.7.2 The trivlist Environment 115

5.8 Fonts 115

5.8.1 Changing Type Size 115

5.8.2 Loading Fonts 116

6 Errors 117

6.1 Finding the Error 118

6.2 I£TEX's Error Messages 120

6.3 TeX's Error Messages 123

6.4 WTEX Warnings 128

6.5 TeX Warnings 129

A SLITEX 131

A.l How SLITEX Makes Colors 132

A.2 The Root File 133

A.3 The Slide File 134

A. 3.1 Slides 134

A. 3.2 Overlays 136

A.3.3 Notes 137

A.3.4 Page Styles for Slides 137

A. 4 Making Only Some Slides 138

B The Bibliography Database 139

B.l The Format of the bib File 140

B.l.l The Entry Format 140

B.1.2 The Text of a Field 141

Names 141

Titles 142

B.1.3 Abbreviations 143

B.2 The Entries 144

B.2.1 Entry Types 144

B.2.2 Fields 146

Vll

C Reference Manual 149

CM Commands and Environments 150

0.1.1 Command Names and Arguments 150

C.1.2 Environments 151

C.1.3 Fragile Commands 151

C.1.4 Declarations 152

C.1.5 Invisible Commands and Environments 152

C.1.6 The \\ command 153

C.2 Sentences and Paragraphs 154

C.2.1 Making Sentences 154

C.2.2 Making Paragraphs 154

C.2. 3 Footnotes 156

C.2. 4 Accents and Special Symbols 157

C.3 Sectioning and Table of Contents 157

C.3.1 Sectioning Commands 157

C.3.2 The Appendix 158

C.3.3 Table of Contents 158

C.3.4 Style Parameters 159

C.4 Document and Page Styles 160

(.1.1 Document Styles 160

C.4. 2 Page Styles 161

C.4.3 The Title Page and Abstract 163

C.5 Displayed Paragraphs 165

C.5.1 Quotations and Verse 165

C.5. 2 List-Making Environments 165

C.5. 3 The list and trivlist Environments 166

C.5.4 Verbatim 168

C.6 Mathematical Formulas 169

C.6.1 Math Mode Environments 169

C.6. 2 Common Structures 170

C.6. 3 Mathematical Symbols 171

C.6. 4 Arrays 171

C.6. 5 Delimiters 171

C.6. 6 Putting One Thing Above Another 171

C.6. 7 Spacing 172

C.6.8 Changing Style 172

C.7 Definitions 173

0.7.1 Defining Commands 173

C 7.2 Defining Environments 173

C.7.3 Theorem-like Environments 174

< 7.1 Numbering 174

C.8 Figures and Other Floating Bodies 176

- 1 Figures and Tables 176

Vlll

C.8.2 Marginal Notes 178

C.9 Lining It Up in Columns 179

C.9.1 The tabbing Environment 179

C.9. 2 The array and tabular Environments 182

C.10 Moving Information Around 185

C.10.1 Files v . . . 185

C.10.2 Cross-References 186

C.10.3 Bibliography and Citation 187

C.10.4 Splitting the Input 188

C.10.5 Index and Glossary 189

Producing an Index 189

Compiling the Entries 189

C.10.6 Terminal Input and Output 189

C.ll Line and Page Breaking 190

C.ll.l Line Breaking 190

C.ll. 2 Page Breaking 191

C.12 Lengths, Spaces, and Boxes 192

C.12.1 Length 192

C.12.2 Space 193

C.12.3 Boxes 194

C.13 The picture Environment 196

C.13.1 Picture-Mode Commands 196

C.13.2 Picture Objects 197

C.13.3 Picture Declarations 199

C.14 Font Selection 199

C.14.1 Changing the Type Style 199

C.14.2 Changing the Type Size 200

C.14.3 Loading Fonts 200

C.14.4 Fonts in Math Mode 200

D Using Plain T^X Commands 203

Bibliography 207

Index 209

List ofTables

3.1 Accents 40

3.2 Foreign Symbols 40

3.3 Greek Letters 43

3.4 Binary Operation Symbols 44

3.5 Relation Symbols 44

3.6 Arrow Symbols 45

3.7 Miscellaneous Symbols 45

3.8 Variable-sized Symbols 45

3.9 Log-iike Functions 46

3.10 Delimiters 48

3.11 Math Mode Accents 51

IX

List of Figures

5.1 Points ami their coordinates 102

5.2 \put (1.4,2 .6) {Mine (3,-1) {4. 8}} 106

5.3 The format of a list 113

CM Making footnotes without the \footnote command 156

C.2 Sectioning and table of contents commands 158

C.3 An example title 164

C.4 A tabbing environment example 180

C.5 An example of the tabular environment 182

('.6 A sample picture environment 197

XI

Preface

The h\Tj?X document preparation system is a special version of Donald Knuth's

TgX program. TpX is a sophisticated program designed to produce high-quality

typesetting, especially for mathematical text. I^Tj?X adds to TgX a collection

of commands that simplify typesetting by letting the user concentrate on the

structure of the text rather than on formatting commands. In turning TgX
into LMj?X. I have tried to convert a highly-tuned racing car into a comfortable

family sedan. The family sedan isn't meant to go as fast as a racing car or be

as exciting to drive, but it's comfortable and gets you to the grocery store with

no fuss. However, the L^TjrX sedan has all the power of TgX hidden under its

hood, and the more adventurous driver can do everything with it that he can

with TeX.

LMjtX represents a balance between functionality and ease of use. Since I

implemented most of it myself, there was also a continual compromise between

what I wanted to do and what I could do in a reasonable amount of time. The
first version of I^TjjjX was written about three years ago. A gradual evolution

has worn away many rough edges, but there have been no radical changes.

IATjrX's small group of initial users were pleased with it and suggested many
improvement

I wish to thank the many people whose comments and complaints about

LMjrX and about the preliminary versions of this book have been so helpful, in-

cluding: Todd Allen. Robert Amsler. David Bacon, Stephen Barnard, Barbara

Beeton. Per Bothner, David Braunegg. Daniel Brotsky, Chuck Buckley, Pavel

Curtis. Michael Fischer. Russell Creiner. Andrew Hanson, Michael Harrison, B.

J. Herbison. Calvin W. Jackson. Mark Kent. Kenneth Laws, David Kosower,

Tim Morgan. Mark Moriconi. Stuart Reges, Flavio Rose, A. Wayne Slawson,

David Smith. Michael Spivak. Mark Stickel. Gary Swanson, Mary-Claire van Le-

unen. Mike Urban, Mark Wadsworth. Gio Wiederhold, and Rusty Wright.

The following also gave aid and comfort: SRI International's Artificial Intel-

ligence Laboratory provided the computer facilities on which L^TgX was devel-

oped. Richard Furuta helped me make the transition to a new computer system.

Chris Torek helped with the SLlTjrX font files. Arthur M. Keller helped create

LVT£X - special fonts. Howard Trickey helped with the fonts and the picture-

xm

XIV

drawing commands, and designed the BffiTjrX bibliography styles. Marshall

Henrichs, Lynn Ruggles, and Richard Southall taught me what little I know
about typography; they are responsible for whatever is right with the document

styles. Oren Patashnik implemented BibTjtX. David Fuchs helped in many ways,

providing me with the latest versions of Tp^X and answering many of my ques-

tions. Peter Gordon guided the production of this book and helped make IATj?X

accessible to a wider audience.

Finally, I want to express my special thanks to Donald Knuth. In addition

to making IATjtX possible by creating T^X, he answered all my questions, even

the stupid ones, and was always willing to explain 1^'s mysteries.

L. L.

Palo Alto, California

July, 1985

CHAPTER 1

Getting
Acquainted

Getting Acquainted

With modern computers, typesetting is not just for books and documents aimed

at a wide audience. Reports, proposals, memos, and tonight's dinner menu
can all be made more attractive and easier to read with professional-quality

typesetting. IATjtX is a computer program that makes it easy for an author or

typist to typeset his document.

I£Tj?X is available for a wide variety of computer systems. The versions that

run on these different systems are essentially the same: an input file created

according to the directions in this book should produce the same output with

any of them. However, how you actually run IATjrX depends upon the computer

system, and certain options may be available on some systems and not on others.

For each computer system, there is a short companion to this book entitled

something like Local Guide to I^TjtX for the Kludge-499 Computer containing

information specific to that system. This companion will be called the Local

Guide. It is distributed with the I^TjrX software.

1.1 How to Avoid Reading This Book

Many people would rather learn about a program at their computer termi-

nal than by reading a book. There is a small sample IATjrX input file named
small . tex that shows how to prepare your own input files for typesetting simple

documents. It also contains the name of another file that tells how to run L£Tj?X

on your input file and print the result. Before reading any further, you might

want to examine small.tex with a text editor and modify it to make an input

file for a document of your own. then run IATjtX on this file and see what it pro-

duces. The Local Guide will tell you how to find small .tex on your computer

and may contain information about text editors. Be careful not to destroy the

original version of small.tex: you'll probably want to look at it again.

The file small .tex is quite short, having just one or two screens full of text,

and it shows how to produce only very simple documents. There is a longer file

named sample.tex that contains more information. If small.tex doesn't tell

you how to do something, you can try looking at sample.tex.

If you prefer to learn more about a program before you use it. read on.

Everything in the sample input files is explained in the first two chapters of this

book.

1.2 How to Read This Book

While sample.tex describes many of LVTjrX's features, it is still only about 175

lines long, and there is a lot that it doesn't explain. Eventually, you will want to

typeset a document that requires more sophisticated formatting than you can

obtain by imitating the two sample input files. You will then have to look in

1.2 How to Read This Book

this book for the necessary information. You can read the section containing

the information you need without having to read everything that precedes it.

However, all the later chapters assume that you have read Chapters 1 and 2.

For example, suppose you want to set one paragraph of a document in small

type. Looking up 'type size" in the index or browsing through the table of

contents will lead you to Section 5.8.1. which talks about "declarations" and

their "scope" simple concepts that are explained in Chapter 2. It will take

just a minute or two to learn what to do if you've already read Chapter 2; it

could be quite frustrating if you haven't. So, it's best to read the first two

chapters now. before you need them.

IATjrX's input is a tile containing the document's text together with com-

mands that describe the document's structure; its output is a file of typesetting

instructions. Another program must be run to convert these instructions into

printed output. With a high-resolution printer. IATjrX can generate book-quality

typesetting.

This book tells you how to prepare a IATj?X input file. The current chapter

discusses the philosophy underlying IATjrX: here is a brief sketch of what's in the

remaining chapters and appendices:

Chapter 2 explains what you should know to handle most simple documents

and to read the rest of the book. Section 2.5 contains a summary of

everything in the chapter: it serves as a short reference manual.

Chapter 3 describes logical structures for handling a variety of formatting

problems. Section 3.4 explains how to define your own commands, which

can save typing when you write the document and retyping when you

change it. It's a good idea to read the introduction—up to the beginning

of Section 3. 1 before reading any other part of the chapter.

Chapter 4 contains features especially useful for large documents, including

automatic < ro>>-rcferencing and commands for splitting a large file into

smaller piece-.

Chapter 5 describes the visual formatting of the text. It has information about

document styles, explains how to correct bad line and page breaks, and

tells how to do your own formatting of structures not explicitly handled

by IATFX

Chapter 6 explains how to deal with errors. This is where you should look

when I-^Tj/X prints an error message that you don't understand.

Appendix A describes SLiTgX. a version of IATjtX for making slides.

Appendix B describes how to make a bibliographic database for use with

BlBTyX. a separate program that provides an automatic bibliography fea-

ture foi Lyij.-x.

Getting Acquainted

Appendix C is a reference manual that compactly describes all IATjrX's fea-

tures, including many advanced ones not described in the main text. If a

command introduced in the earlier chapters seems to lack some necessary

capabilities, check its description here to see if it has them. This appendix

is a convenient place to refresh your memory of how something works.

Appendix D is for the reader who wants to use TgX commands from the

T^Xbook that are not described in this book.

When faced with a formatting problem, the best place to look for a solution is

in the table of contents. Browsing through it will give you a good idea of what

IATgX has to offer. If the table of contents doesn't work, look in the index; I

have tried to make it friendly and informative.

Each section of Chapters 3-5 is reasonably self-contained, assuming only

that you have read Chapter 2. Where additional knowledge is required, explicit

cross-references are given. Appendix C is also self-contained, but a command's

description may be hard to understand without first reading the corresponding

description in the earlier chapters.

The descriptions of most IATjrX commands include examples of their use. In

this book, examples are formatted in two columns, as follows:

The left column shows the printed output; the right The left column shows the printed output;

column contains the input that produced it. the right column contains the input that

produced it.

Note the special typewriter type style in the right column. It indicates what

you type—either text that you put in the input file or something like a file name
that you type as part of a command to the computer.

Since the sample output is printed in a narrower column, and with smaller

type, than IATgX normally uses, it won't look exactly like the output you'd

get from that input. The convention of the output appearing to the left of the

corresponding input is also used when commands and their output are listed in

tables.

1.3 The Game of the Name
The TeX in IATEX refers to Donald Knuth's T^X typesetting system. The WTEX
program is a special version of TjrX that understands IATjrX commands. Think

of IATf?X as a house built with the lumber and nails provided by T^X. You don't

need lumber and nails to live in a house, but they are handy for adding an extra

room. Most IATjtX users never need to know any more about IgX than they can

learn from this book. However, you can add new capabilities to WFpX. by using

the lower-level TjrX commands described in The T^Xbook [3].

1.4 Turning Typing into Typography

I will use the term 1V>\ when describing standard TjrX features and "I^TgX"

when describing features unique to IAT^X. but the distinction will be of interest

mainly to readers already familiar with T^X. You may ignore it and use the two

names interchangeably.

One of the hardest things about using IATgX is deciding how to pronounce

it. This is also one of t he few things I'm not going to tell you about IATgX, since

pronunciation is best determined by usage, not fiat. TgX is usually pronounced

teck, making lah-tak. \&h-tcck. and lay-teck the logical choices; but language is

not always logical, so fay-tecks is also possible.

The written word carries more legal complications than the spoken, and the

need to distinguish T|.>\ and IATjrX from similarly spelled products restricts how
you may write them. The best way to refer to these programs is by their logos,

which can be generated with simple L^TjrX commands. If this is inconvenient,

you should write them as TeX'and "LaTeX" , where the unusual capitalization

denotes these computer programs.

1.4 Turning Typing into Typography

Traditionally, an author provides a publisher with a typed manuscript. The
publisher's typographic designer decides how the manuscript is to be formatted,

specifying the length of the printed line, what style of type to use, how much
space to leave above and below section headings, and many other things that

determine the printed document's appearance. The designer writes a series

of instructions to the typesetter, who uses them to decide where on the page

to put each of the author's words and symbols. In the old days, the typesetter

produced a matrix of metal type for each page; today he is more likely to produce

a computer file. In either case, his output is used to control the machine that

does the actual typesetting.

LVB?X is your typographic designer, and TgX is its typesetter. The IATjrX

commands that you type are translated into lower-level TgX typesetting com-

mands. Being a modern typesetter. TgX produces a computer file, called the

device-independent or dvi hie. The Local Guide explains how to use this file to

generate a printed document with your computer.

A human typographic designer knows what the manuscript is generally about

and uses this knowledge in deciding how to format it. Consider the following

typewritten manuscript:

The German mathematician Kronecker, sitting

quietly at his desk, wrote:

God created the whole numbers; all

the rest is man's work.

Seated in front of the terminal, with Basic

hanging on my every keystroke, I typed:

for i = 1 to infinity

let number [i] = i

Getting Acquainted

A human designer knows that the first indented paragraph (God created . . .)

is a quotation and the second is a computer program, so the two should be

formatted differently. He would probably set the quotation in ordinary roman
type and the computer program in a typewriter type style. IATgX is only a

computer program and can't understand English, so it can't figure all this out

by itself. It needs more help from you than a human designer would. The
following brief discussion of typography will help you to help it.

The function of typographic design is to help the reader understand the au-

thor's ideas. For a document to be easy to read, its visual structure must reflect

its logical structure. Quotations and computer programs, being logically distinct

structural elements, should be distinguished visually from one another. The de-

signer should therefore understand the document's logical structure. Since L^TpX

can't understand your prose, you must explicitly indicate the logical structure

by typing special commands. The primary function of almost all the I^TgX

commands that you type should be to describe the logical structure of your doc-

ument. As you are writing your document, you should be concerned with its

logical structure, not its visual appearance. The IATjrX approach to typesetting

can therefore be characterized as logical design.

There is a radically different approach to document production that might be

called visual design. As the user of a visual-design system types his document,

he sees on his terminal screen exactly what will appear on the printed page.

Such systems are often described as "what you see is what you get"

.

Why type the commands IATjrjX needs to format the document when a visual

design system would allow you to format it yourself as you write it? There are

several reasons. First of all, logical design encourages sound typography, while

visual design discourages it. Most authors mistakenly believe that typographic

design is primarily a question of aesthetics—if the document looks good from

an artistic viewpoint, then it is well designed. However, documents are meant

to be read, not hung in museums, so the primary function of design is to make

the document easier to read, not prettier. With a visual design system, authors

usually produce aesthetically pleasing, but poorly designed documents.

Typographic design is a craft that takes years to master. Authors with no

training in design often make elementary formatting errors. A WTpX user once

presented me with the following typesetting problem.

The user wanted to produce a numbered equation, formatted essentially

like the following one.

For all x: f(x) = g{x + 1) (7)

However, he could not figure out how to do it with the ordinary WTj?X

commands, so he asked me.

He could have done it quite easily with a visual system, producing an aesthet-

ically pleasing typographic mistake. It is a mistake because it is ambiguous;

1.4 Turning Typing into Typography

the typography dors not toll us whether or not the "For all x" is part of equa-

tion (7). When we later read: "Assume that (7) holds." we can*t tell from (7)

whether we should assume f{x) = g(x+ l) for some particular x or for all x. We
would probably figure out quickly from the text which was meant—so quickly

that we might not even be aware of the ambiguity. However, the cumulative

effect of a lot of little typographic mistakes is to make reading the document

more strenuous than it should be.

L^TjrX discourages yon from making this mistake by requiring you to describe

the logical structure of your text. Its standard method of specifying an equation

forces you to choose 1 between the two logical possibilities.

You can make the "For all" part of the equation, as in

For all x: f{x) = g{x + 1) (8)

or not part of it. by writing that, for all x:

f{x) = g(x + l) (9)

Although you can format an equation almost any way you want with I^TjtX. you

have to work harder to do it wrong.

Another reason why logical design is better than visual design is that it

encourages better writing. Having to tell L^TgX the logical structure of your text

encourages you to give the text a logical structure. A visual system makes it easy

to create visual effects instead of logical structure. The coherent visual structure

of equation (7). for example, hides the absence of a logical structure. Logical

design encourages you to concentrate on your writing and makes it harder to

use formatting as a substitute for good writing.

A third advantage of logical design is its flexibility. Visual design systems

have been characterized as "what you see is all you've got".
1 Once you have

typed the document, changing the format is a laborious process. If you decide

that equations should be numbered with roman instead of arabic numerals, you

must change each equation number individually: a visual design system regards

an equation number as just a number that happens to appear at the right margin,

not as a logical structure.

Fundamental to IATjrX is the idea of a document style that determines how

the document is to be formatted—an idea stolen
2 from Brian Reid's Scribe

text formatting system [6]. I£T]?X generates equation numbers for you. with the

document style specifying what kind of numbers to use. One simple change to the

document style can change the way every equation is numbered. LvTj?X provides

standard document styles that describe how standard logical structures, such

as equations and enumerated lists, are formatted. You may have to supplement

these styles by specifying the formatting of logical structures peculiar to your

1 Brian Roid attributes this phrase to himself and/or Brian Kernighan.
2 ""Le- - borrow, great artists steal." Igor Stravinsky

Getting Acquainted

document, such as special mathematical formulas. You can also modify the

standard document styles or even create an entirely new one, though you should

know the basic principles of typographic design before creating a radically new
style. You will appreciate the flexibility of logical design if you ever have to

reformat a document, perhaps to include it as part of a larger document.

The purpose of writing is to present ideas to the reader. This should always

be your primary concern. It is easy to become so engrossed with form that

you neglect content. Formatting skills are no substitute for writing skills. Good
ideas couched in good prose will be read and understood, regardless of how badly

the document is formatted. I^TgX was designed to free you from formatting

concerns, allowing you to concentrate on writing. If, while writing, you spend a

lot of time worrying about form, you are probably misusing L^TgX.

1.5 Turning Ideas into Input

To most readers, the printed page conveys a greater sense of authority than

the typewritten manuscript. It must be important to be worth printing. With

IATjrX, typesetting is almost as easy as typing. There is no publisher or jour-

nal editor standing between the author and the reader. WTj?X will not reject

ill-formed ideas or correct bad grammar. With the power to print your own
document comes the responsibility to make it worth printing.

Even if your ideas are good, you can probably learn to express them better.

The classic introduction to writing English prose is Strunk and White's brief

Elements of Style [5]. A more complete guide to using language properly is

Theodore Bernstein's The Careful Writer [1]. These two books discuss general

writing style. Writers of scholarly or technical prose need additional information,

van Leunen's Handbook for Scholars [7] is a delightful guide to academic and

scholarly writing. The booklet entitled How to Write Mathematics [4] can help

scientists and engineers as well as mathematicians. It's also useful to have a

weightier reference book at hand: Words into Type [8] and the Chicago Manual

of Style [2] are two good ones.

1.6 Trying It Out

You may already have run IATgX with input based on the sample files. If not, this

is a good time to learn how. The section in the Local Guide entitled Running a

Sample File explains how to obtain a copy of the file sample . tex and run IATjrX

with it as input. Follow the directions and see what I^TgX can do.

After printing the document generated in this way. try changing the docu-

ment style. Using a text editor, examine the file sample.tex. A few lines down

from the beginning of the file is a line that reads:

\documentstyle{article}

1.6 Trying It Out

Change that line to:

\documentstyle [twocolumn] {article}

Save the changed file under the name chgsam.tex, and use this file to print a

new version of the document. To generate the new version, do exactly what

you did the last time, except type chgsam wherever you had typed sample.

Comparing the two printed versions shows how radically the appearance of the

document can be altered by a simple change to the document style. To try still

another document style, change chgsam.tex so the above line reads

\documentstyle[llpt] {article}

and use the changed tile to print a third version of the document.

From now on. I will usually ignore the process of going from the IATgX input

file to the printed output and will write something like: 'Typing produces

a long dash." What this really means is that putting the three characters

in your input file will, when that file is processed by I^TgX and the device-

independent file printed, produce a long dash in the printed output.

CHAPTER 2

Getting
Started

12 Getting Started

2.1 Preparing an Input File

The input to IATj?X is a text file. I assume that you know how to use a text

editor to create such a file, so I will tell you only what should go into your input

file, not how to get it there. Some text editors can be customized to make it

easier to prepare IMjtX input files. Consult the Local Guide to find out if such

an editor is available on your computer.

On most computers, file names have two parts separated by a period, like

sample.tex. I will call the first part its first name and the second part its

extension, so sample is the first name of sample.tex, and tex is its extension.

Your input file's first name can be any name allowed by your computer system,

but its extension should be tex.

Let's examine the characters that can appear in your input file. First, there

are the upper- and lowercase letters and the ten digits ... 9. Don't confuse the

uppercase letter (oh) with the digit (zero), or the letter 1 (the lowercase el)

with the digit 1 (one). Next, there are the following 16 punctuation characters:

Note that there are two different quote symbols: ' and '
. You may think of '

as an ordinary "single quote" and ' as a funny symbol, perhaps displayed like

on your screen. The Local Guide should tell where to find ' and ' on your

keyboard. The characters (and) are ordinary parentheses, while [and] are

called square brackets, or simply brackets.

The ten special characters

$ •/. & ~ _ " \ { }

are used only in I£T]?X commands. Check the Local Guide for help in finding

them on your keyboard. The underscore character _ may appear on your screen

as <—
. The character \ is called backslash, and should not be confused with the

more familiar /. as in 1/2. Most lATgX commands begin with a \ character, so

you will soon become very familiar with it. The { and } characters are called

curly braces or simply braces.

The five characters

+ =
| < >

are used mainly in mathematical formulas, although + and = can be used in

ordinary text. The character " (double quote) is hardly every used.

Unless your Local Guide tells you otherwise, these are the only characters

that you should see when you look at a I^Tj?X input file. However, there are other

"invisible*" characters in your file: space characters, such as the one you usually

enter by pressing the space bar. and special characters that indicate the end of

a line, usually entered by pressing the return key. These invisible characters

are all considered the same by T£X. and I will treat them as if they were a

2.2 The Input 13

single character called space, which I will sometimes denote by u. Any sequence

of space characters is handled the same as a single one, so it doesn't matter

if the space between two words is formed by one space character or several of

them. However, a blank line one containing nothing but space characters—is

interpreted by Tj;\ i- the end of a paragraph. Some text editors organize a file

into pages. TgX acta as if there were a blank line between the pages of such a

file.

2.2 The Input

Most IATjrX commands describe the logical structure of the document. To un-

derstand these commands, you must know how IATj?X perceives that logical

structure. A document contains logical structures of different sizes, from chap-

ters down through individual letters. We start by considering the very familiar

intermediate-sized structures: sentences and paragraphs.

2.2.1 Sentences and Paragraphs

Describing simple sentences and paragraphs to 1AT|?X poses no problem; you

pretty much type what comes naturally.

The ends of words and sentences are marked The ends of words and sentences are marked

by spaces. It doesn't matter how many spaces you by spaces. It doesn't matter how many

type; one is as good u 100. spaces you type; one is as good as 100.

One or more blank lines denote the end of a

paragraph. One or more blank lines denote the end

of a paragraph

.

TgX ignores the way the input is formatted, paying attention only to the logical

concepts end-of-word. end-of-sentence, and end-of-paragraph.

That's all you have to know for typing most of your text. The remainder of

this book is about how to type the rest, starting with some other things that

occur fairly frequently in ordinary sentences and paragraphs.

Quotation Marks

Typewritten text uses only two quotation-mark symbols: a double quote " and

single quote '. the latter serving also as an apostrophe. Printed text, however,

uses a left and a right version of each, making four different symbols. TgX
interprets the character ' as a single left quote, and the character ' as a single

right quote. To get a double quote, just type two single quotes.

"Convention" dictates that punctuation go inside 'Convention' dictates that punctuation go

quotes, like "this."" but I think it's better to do inside quotes, like "this," but I think

"this". it's better to do ''this''.

14 Getting Started

Remember that the right-quote character ' is the one you're used to thinking

of as a single quote, and the left-quote character ' is the one you're probably

unfamiliar with. An apostrophe is produced with the usual ' character.

Typing a double quote followed by a single quote, or vice-versa, poses a

problem because something like ' ' ' would be ambiguous. The solution is to

type the command \ , (a \ character followed by a comma) between the two

quotation marks.

"Fi' or 'mm?'" he asked.
* 'V'Fi' or 'fumT'X," he asked.

The \ , is a typesetting command that causes Tp^X to insert a small amount of

space. Don't leave any space in the input file before or after the \ , command.

Dashes

You can produce three different sizes of dash by typing one, two, or three "-"

characters:

An intra-word dash or hyphen, as in X-ray. An intra-word dash or hyphen, as in X-ray.

A medium dash for number ranges, like 1-2. A medium dash for number ranges, like 1--2.

A punctuation dash—like this. A punctuation dash— like this.

There is usually no space before or after a dash. Minus signs are not dashes;

they should appear only in mathematical formulas, which are discussed below.

Space After a Period

Typesetters usually put a little extra space after a sentence-ending period. This

is easy for a human typesetter, but not for a program like TgX that has trouble

deciding which periods end sentences. Instead of trying to be clever, TgX simply

assumes that a period ends a sentence unless it follows an upper-case letter. This

works most of the time, but not always—abbreviations like "etc." being the most

common exception. You tell TpjX that a period doesn't end a sentence by typing

a \u command (a \ character followed by a space or the end of a line) right after

the period.

Tinker et al. made the double play. Tinker et al.\ made the double play.

It doesn't matter how many spaces you leave after the \ character, but don't

leave any space between the period and the backslash. The \u command pro-

duces an ordinary interword space, which can also be useful in other situations.

On the rare occasions that a sentence-ending period follows an upper-case

letter, you will have to tell TjtX that the period ends the sentence. You do this

by preceding the period with a \@ command.

The Romans wrote I + I = II. Really! The Romans wrote I + I = II\8. Really!

2.2 The Input ' 15

If a sentence-ending period is followed by a right parenthesis or a right quote

(single or double), then typesetters usually put extra space after the parenthesis

or quote. In this i ,»-. too, Ti;\ u ill Deed a hand if its assumption that a period

ends a sentence unless it Follows an upper-case letter is wrong.

"Beans (lima, etc.) have vitamin B."
''Beans (lima, etc.)\ have vitamin B\<8.''

Extra space is also added after a question mark (?). exclamation point (!). or

colon (:) just as for a period that is. unless it follows an upper-case letter. The

\u and \@ commands arc used the same way with each of these punctuation

characters.

Special Symbols

Remember those ten special characters, mentioned on page 12. that you type

only as part of L^TjrX commands? Some of them, like $. represent symbols that

you might very well want in your document. Seven of those symbols can be

produced by typing a \ in front of the corresponding character.

$& ct#_{}are easy to produce. \$ \& V/, \# _ \{ \} are easy to produce

.

The other three special characters (~. ~. and \) usually appear only in simulated

keyboard input, which is produced with the commands described in Section 3.7.

You can get TgX to produce any symbol that you're likely to want, and many
more besides-, such as: § I v * & % tx] <= ? 4. Sections 3.2 and 3.3.2 tell how.

Simple Text-Generating Commands

Part of a sentence may be produced by a text-generating command. For exam-

ple, the T£X and l-M"j.;X logos are produced by the commands \TeX and \LaTeX.

respectively.

Some people use plain T^X. but I prefer L^TjrX. Some people use plain \TeX, but I

prefer \LaTeX.

A useful text-generating command is \today. which produces the current date.

This page was produced on July 22. 1985. This page was produced on \today.

Another useful text-generating command is \ldots. which produces an ellipsis—
the sequenct oi three dots used to denote omitted material. (Simply typing three

period^ doesn't produce the right spacing between the doH.)

If nominated .1 will not serve. If nominated \ldots, I will not serve.

16 Getting Started

Most of the command names you've seen so far have consisted of a \ (backslash)

followed by a single nonletter. From now on, most commands you will encounter

have names consisting of a \ followed by one or more letters. In reading the input

file, T£X knows it has come to the end of such a command name when it finds a

nonletter: a digit like "7"
, a punctuation character like " ;

" , a special character

like "\"
, a space, or the end of a line. The most common way to end this kind of

command name is with a space or end of line, so TgX ignores all spaces following

it. If you want a space after the logo produced by the \LaTeX command, you

can't just leave a space after the command name; all such spaces are ignored.

You must tell TgX to put in the space by typing a \u command.

This page of the I^TgX manual was produced on This page of the \LaTeX\ manual was

July 22, 1985. produced on \today

Note how T^X ignored the space after the \today command in the input and

did not produce any space after the date in the output.

The case of letters counts in a command name; typing \Today produces an

error, because the correct command name is \today. Most command names

have only lowercase letters.

Emphasizing Text

Emphasized text is usually underlined in a typewritten manuscript and itali-

cized in a printed document. Underlining and italics are visual concepts; when

typing your document, you should be concerned only with the logical concept

of emphasis. The \em command tells IATj?X that text is to be emphasized.

Here is some silly emphasized text. Here is some silly {\em emphasized text}.

The format is {\em followed by a space (to end the \em command), followed

by the emphasized text, followed by a } character—with no space before the }.

Space before the { or after the } produces space in the output.

You can have emphasized text within emphasized You can have {\em emphasized text

text too. {\em within} emphasized text} too.

If emphasized text appears inside italicized text, then it is set in ordinary roman

type.

Emphasis should be used sparingly. Like raising your voice, it is an effective

way to get attention, but an annoying distraction if done too often.

A fine point about italic type is illustrated by the following example.

I told you that he didn't*. I told you that he <\em did}n't!

2.2 The Input 17

Notice how the last </ of did humps into the next letter. When switching from

italic to roman type. I typesetter should add a little extra space to cushion this

bump. You instruct TJjjX to add this space by typing a \/ command, so 1 should

have typed {\em did\/}n't. No extra space needs to he added before a comma
or period, so the first example illustrating the \em command is all right, but the

next example should he typed as:

You can have emphasized text within emphasized You can have {\em emphasized

text too. text\/ {\em within} emphasized text\/> too,

There are two \/ commands because the text switches from italic to roman

twice. Note that space following a \/ command produces space in the output.

To use the \/ command in this way, you must know where TgX changes from

italic to roman type. This is usually not a problem, since the main body of the

document is normally printed in roman type. However, there are some contexts

where the type style depends upon the document style—for example, theorems

may be printed in italic in some styles and roman in others. In this case, you

should put a \/ command wherever TgX might change from italic to roman; a

\/ does nothing if it follows a roman letter.

Unlike other commands you've encountered so far, the \em command pro-

duces neither text nor space: instead, it affects the way TgX prints the following

text. Such a command is called a declaration. Most aspects of the way TgX
formats a document the type style, how wide the margins are. etc. are deter-

mined by declarations. The \em declaration instructs TgX to change the type

style from roman to italic, or vice versa. The braces delimit the scope of the

declaration; when Tj;X encounters the }, it reverts to the type style in effect just

before the {. When you type

{\em }

the { means begin a new scope, the \em declaration means start emphasizing,

and the } means i n<i current scope.

It is the declaration, not the left brace, that changes It {is the \em declaration}, not the left

the type style. brace, that changes the type style.

The braces in your input file must come in matching pairs.
1

In the follow-

ing example, representing text from which everything but the braces has been

removed, matching braces have the same numbers.

{i (2 h {3 {4 }a }z }i

x The brae re '.n the commands \{ and \} are not scope-delimiting braces: they

are ignored in determining brace matching.

18 Getting Started

When a { begins a new scope, all declarations currently in effect remain in effect

until countermanded by new declarations. The matching } that ends the scope

ends the effect of all declarations made between the braces.

It can be difficult keeping track of matching braces that enclose a large

amount of text. Typing

\begin{em} . . . \end{em}

is equivalent to typing {\em ... > and can make your input file easier to

read.

Remember: T^X requires that all braces come in \begin{em> Remember:

matched pairs, and it is hard to keep track of braces \TeX\ requires ... a\/ {\em lot} of text.

that enclose a lot of text. \end{em>

To avoid typing errors and simplify making changes, it's a good idea to keep

your input file as easy to read as possible. The use of spacing and indentation

can help. T^X doesn't care how the input file is formatted, but you should.

Preventing Line Breaks

In putting text onto paper, a paragraph must be broken into lines of print.

Text becomes hard to read if a single logical unit is split across lines in an

arbitrary fashion, so typesetters break lines between words when possible and

split words only between syllables (inserting a hyphen at the break). Sometimes

a line should not be broken between or within certain words. Human typesetters

recognize these situations, but TgX must be told about them.

Line breaking should be prevented at certain interword spaces. For example,

the expression "Chapter 3" looks strange if the "Chapter" ends one line and

the "3" begins the next. Typing ~ (a tilde character) produces an ordinary

interword space at which T^X will never break a line. Below are some examples

indicating when a " should be used.

Mr. "Jones Figure~7 (1) "gnats

U."S. "Grant from 1 to~10

A word should not be broken across lines if it is really a symbol, such as an

identifier in a computer program. The \mbox command tells T£X not to break

such a word. In the following example. TgX will never split "itemnum" across

lines.

Let itemnum be the current item number. Let \mbox{\em itemnum\/> be the . . .

Word-like symbols are usually emphasized.

Most line breaks separate logically related units, and it would be nice if they

could be avoided. However, unless you print your document on a mile-long strip

2.2 The Input 19

of paper tape, line breaking is a neeessary evil. Using too many " and \mbox

commands leaves too few places to break lines. Inhibit line breaking only where

necessary.

In the \mbox{\em itemnunA/} command, \mbox is the command name and

\em itemnum\/ is its argument. An argument is enclosed in braces, which de-

limit the scope of a declaration like \em appearing inside it.
2 Most commands

have either no arguments, like \today, or a single argument, like \mbox. How-

ever, there are a few with multiple arguments, each of which is enclosed in braces.

Spaces between the command name and its argument(s) are ignored, but there

should be no space between separate arguments.

Footnotes

Footnotes are produced with a \footnote command having the text of the

footnote as its argument.

Gnus 1 can be quite a gnusance. Gnus\footnote{A gnu is a big animal.} can

be quite a gnusance.

A gnu is a big animal.

There is no space between the Gnus and the \footnote in this example; adding

space would have put an unwanted space between the text and the footnote

marker (the
1
).

A \f ootnote command cannot be used in the argument of most commands;

for example, it cant appear in the argument of an \mbox command. Sec-

tion C.2.3 explains how to footnote text that appears in a command argument.

Formulas

If you're writing a technical document, it's likely to contain mathematical for-

mulas. A formula appearing in the middle of a sentence is enclosed by \ (and

\) commands.

The formula x - 3y — 7 is easy to type. The formula \(x-3y = 7 \) is easy to type.

Any spaces that you type in the formula are ignored.

Does i + y always equal y + 1? Does \(x + y \) always equal \(y+x\)?

TeX regards a formula as a word, which may be broken across lines at certain

points, and space before the \ (or after the \) is treated as an ordinary interword

separation.

2 As explained in Section 3.4, argument braces do not act as scope delimiters for commands
you define yourself.

20 Getting Started

Subscripts are produced by the _ command and superscripts by the * com-
mand.

a, >x2n
/y

2n
\(a_{l> > X-{2n> / y"{2n} \)

These two commands can be used only inside a mathematical formula.

When used in a formula, the right-quote character ' produces a prime ('),

two in a row produce a double prime, and so on.

This proves that x' < x" - y'
z < 10x'"z. ... \(x' < x" - y'_<3> < 10 x" ' z \)

.

Mathematical formulas can get very complex; Section 3.3 describes many
additional commands for formatting them. Here, I will consider the use of

formulas in the text. A formula is a grammatical unit; it should be treated as

such in the sentence structure.

The formula a < 7 is a noun in this sentence. It The formula \(a<7 \) is a noun in this

becomes a clause, complete with verb, when I write sentence. It becomes a clause, ...

that a < 7.

Beginning a sentence with a formula makes it hard to find the start of the

sentence; don't do it. Similarly, a formula should never appear as a complete

sentence in the running text.

A variable like a; is a formula. To save typing, WFpX treats $... $ the same

as\(...\).

Let x be a prime such that y > 2x. Let x be a prime such that $y>2x$.

Use $... $ only for a short formula, such as a single variable. It's easy to forget

one of the $ characters that surrounds a long formula. You can also type

\begin{math} . . . \end{math}

instead of \ (. . . \) . You might want to use this form for very long formulas.

Ignorable Input

When TfrjX encounters a % character in the input, it ignores it and all other

characters on that line—including the space character that ends the line.

Gnus and armadillos are generally tolerant of one Gnus and armadi'/. More ©_#!$"{& gnus?

another and seldom quarrel. llos are generally . . .

The 7, has two uses: ending a line without producing any space in the output3

and putting a comment (a note to yourself) in the input file.

3However, you can't split a command name across two lines.

2.2 The Input 21

2.2.2 The Document

We now jump from the document's intermediate-sized logical units to its largest

one: the entire document itself. The text of every document starts with a

\begin{document> command and ends with an \end{document} command.

IATjrX ignores anything that follows the \end{document}. The part of the input

file preceding the \begin{document} command is called the preamble.

The Document Style

Since all text must follow the \begin{document}, the preamble can contain only

declarations. These declarations are used to specify the document style. The

preamble begins with a \documentstyle command whose argument chooses one

of the predefined styles. The file sample.tex begins with

\documentstyle{article}

which selects the article style. The other standard WTpK styles for ordinary

documents are the report and book styles. The article style is generally

used for shorter documents than the report style, and the book style is meant

for actual books. Consult the Local Guide to find out if there are any other

document styles available on your computer.

In addition to choosing the main style, you can also select from among certain

document-style options. The options for the article and report styles include

the following:

llpt Specifies a si/e of type know as eleven point, which is ten percent larger

than the ten-point type normally used.

12pt Specifies a twelve-point type size, which is twenty percent larger than ten

point.

twoside Formats the output for printing on both sides of the page.

twocolumn Produces two-column output.

Other options are described elsewhere in this book; all the standard ones are

listed in Section 5.1.1. Your Local Guide tells if there are any others available

on your computer.

You specify a document-style option by enclosing it in square brackets im-

mediately after the Adocumentstyle". as in

\documentstyle [twoside] {report}

Multiple options are separated by commas.

\documentstyle [twocolumn , 12pt] {article}

Don't lea pace inside the square brackets.

22 Getting Started

The \documentstyle command specifies the standard part of the document
style. You may also want to make special style declarations for the particular

document, either to modify some aspect of the standard style or to handle special

logical structures. For example, if you're writing a cookbook you will probably

define your own commands for formatting recipes, as explained in Section 3.4.

These declarations go in the preamble, after the \documentstyle command.
See also Section 5.1.4 for information on defining your own document style.

The \documentstyle command can be used either with or without the

option-choosing part. The options, enclosed in square brackets, are an op-

tional argument of the command. It is a IATjrX convention that optional ar-

guments are enclosed in square brackets, while mandatory arguments are en-

closed in curly braces. Although T£JX ignores spaces after a command name like

\documentstyle, you should leave no space between arguments.

The Title "Page"

A document usually has a title "page" listing its title, one or more authors, and

a date. I write "page" in quotes because, for a short document, this information

may be listed on the first page of text rather than on its own page. The title

information consists of the title itself, the author(s), and the date; it is specified

by the three declarations \title, \author, and \date. The actual title "page"

is generated by a \maketitle command.

Gnus of the World \titie{Gnus of the world)

\author-CR. Dather \and B. Falters

R. Dather B. Falters W. Conkright \and w. Conkright}

4 July 1997
Ndate{4 July 1997>

\maketitle

Note how multiple authors are separated by \and commands.

The \maketitle command comes after the \begin{document}, usually be-

fore any other text. The \title, \author, and \date commands can come

anywhere before the \maketitle. The \date is optional; IATjrX supplies the

current date if the declaration is omitted, but the \title and \author must

appear if a \maketitle command is used. Commands for adding other infor-

mation, such as the author's address and an acknowledgement of support, are

described in Section C.4.3.

2.2.3 Sectioning

Sentences are organized into paragraphs, and paragraphs are in turn organized

into a hierarchical section structure. You are currently reading Subsection 2.2.3.

entitled Sectioning, which is part of Section 2.2, entitled The Input, which in

2.2 The Input 23

turn is part of Chapter 2, entitled Getting Started. I will use the term sectional

units for things like chapters, sections, and subsections.

A sectional unit is begun by a sectioning command with the unit's title as

its argument.

4.7 Sectioning Commands \subsection{Sectioning Commands)

IATgX automatically generates the section number.

Blank lines before Of after a sectioning command XLaTeXN automatically generates the section

have no effect
number. Blank lines before or after a ...

The document style determines what sectioning commands are provided, the

standard styles have the following ones: 4

\part \subsection \paragraph

\chapter \subsubsection \subparagraph

\section

The article document style does not contain the \chapter command, which

makes it easy to include an "article" as a chapter of a "report" or "book". The
above example, like all others in this book, assumes the article document style,

the 4.7 indicating that this is the seventh subsection of Section 4. In the report

or book styles, this subsection might be numbered 5.4.7, with "5" being the

chapter number.

The sectional unit denoted by each of these commands must appear as a

subunit of the one denoted by the preceding command, except that the use of

\part is optional. A subsection must be part of a section which, in report and

book styles, must be part of a chapter.

The \part command is used for major divisions of long documents; it does

not affect the numbering of smaller units—in the article style, if the last section

of Part 1 is Section 5. then the first section of Part 2 is Section 6.

If there is an appendix, it is begun with an \appendix command and uses the

same sectioning commands as the main part of the document. The \appendix

command does not produce any text: it simply causes sectional units to be

numbered properly for an appendix.

The document style determines the appearance of the section title, including

whether or not it is numbered. Declarations to control section numbering are

described in Section C.3. which also tells you how to make a table of contents.

The argument of a sectioning command may be used for more than just pro-

ducing the section title: it can generate a table of contents entry and a running

head at the top of the page. (Running heads are discussed in Section 5.1.2.)

When carried from where it appears in the input file to the other places it is

used, the argument of a sectioning command is shaken up quite a bit. Some

4The nanii - \paragraph and \subparagraph are unfortunate, since they denote units that

are usually composed of several paragraphs: they have been retained for historical reasons.

24 Getting Started

I^Tj?X commands are fragile and can break when they appear in an argument

that is shaken in this way. Fragile commands are rarely used in the argument

of a sectioning command. Of the commands introduced so far, the only fragile

ones are \(, \), \begin, \end, and \footnote—none of which you're likely to

need in a section title.
5 On the rare occasions when you have to put a fragile

command in a section title, you simply protect it with a \protect command.
The \protect command goes right before every fragile command's name, as in:

\subsection {Is \protect\(x+y \protect\) Prime?}

This is actually a silly example because $ is not a fragile command, so you can

instead type

\subsection {Is $x + y$ Prime?}

but, because the problem is so rare, it's hard to find a good example using the

commands described in this chapter.

An argument in which fragile commands need \protect will be called a

moving argument. Commands that are not fragile will be called robust. For

any command that one might reasonably expect to use in a moving argument,

I will indicate whether it is robust or fragile. Except in special cases mentioned

in Chapter 5 and Appendix C, a \protect command can't hurt, so it is almost

always safe to use one when you're not sure if it's necessary.

2.2.4 Displayed Material

We return now to the level of the individual sentence. A sentence like

He turned and said to me: "My answer is no!", and then he left.

contains a complete sentence quoted within it. An entire paragraph can even

appear inside a sentence, as in:

He turned and said to me: "I've done all I'm going to. I refuse to

have any further part in it. My answer is no!", and then he left.

It's hard to understand this sentence the way it is written. However, there's no

problem if you read it aloud using a different tone of voice for the quotation.

The typographic analogue of changing your tone of voice is setting text off by

indentation, also called displaying. The above sentence is much easier to read

when typeset as follows:

He turned and said to me:

I've done all I'm going to. I refuse to have any further part

in it. My answer is no!

and then he left.

:

°Section C.2.3 tells you how to footnote a section title.

2.2 The Input 25

Displayed material functions logically as a lower-level unit than a sentence,

though grammatically it may consist of part of a sentence, a whole sentence,

or even several paragraphs. To decide whether a portion of text should be a dis-

play or a separate sectional unit, you must determine if it is logically subordinate

to the surrounding text or functions as an equal unit.

Quotations arc often displayed.

The following is an example of a short displayed

quotation.

... it's a good idea to make your input

file as easy to read as possible.

It is indented at both margins.

. . . example of a short displayed quotation.

\begin{quote}

\ldots\ it's a good idea to make your

input file as easy to read as possible.

\end<quote>

It is indented at both margins.

This illustrates a type of IATjrX construction called an environment, which is

typed

\begin{mmif} . . . \end{nome}

where name denotes the name of the environment. The quote environment pro-

duces a display suitable for a short quotation. You've already encountered three

other examples of environments: the em environment, the math environment,

and the document environment. Just as the em environment corresponds to the

\em command, any declaration has a corresponding environment whose name is

obtained by dropping the \ from the command name.

The \begin and \end commands delimit the scope of a declaration just as

{ and } do.

Even though

this quote is emphasized,

the following text is not emphasized.

Even though

\begin{quote>

\em this quote is emphasized,

\end{quote}

the following text is not emphasized.

Some environments have arguments: they are typed like additional arguments

to the \begin command.

The standard IATjtX document styles provide environments for producing

several different kinds of displays. Blank lines before or after the environment

mark a new paragraph. Thus, a blank line after the \end command means

that the following text starts a new paragraph. Blank lines before and after the

environment mean that it is a complete paragraph. It's a bad idea to start a

paragraph with displayed material, so you should not have a blank line before

a display environment without a blank line after it. Blank lines immediately

following a display environment's \begin command and immediately preceding

its \end command are ignored.

26 Getting Started

Quotations

IATj?X provides two different environments for displaying quotations. The quote

environment is used for either a short quotation or a sequence of short quotations

separated by blank lines.

Our presidents have been known for their pithy

remarks.

The buck stops here. Harry Truman

I am not a crook. Richard Nixon

Our presidents ... pithy remarks.

\begin{quote}

The buck stops here. {\em Harry Truman)

I am not a crook.

\end<quote>

{\em Richard Nixon}

The quotation environment is used for quotations of more than one paragraph:

as usual, the paragraphs are separated by blank lines.

Here is some advice to remember when you are

using IATjrX:

Environments for making quota-

tions can be used for other things as

well.

Many problems can be solved by

novel applications of existing environ-

ments.

Here is some advice to remember when you

are using \LaTeX

:

\begin{quotation}

Environments for making quotations

... other things as well.

Many . . . existing environments

.

\end{quotation>

Lists

IATjrX provides three list-making environments: itemize, enumerate, and

description. In all three, each new list item is begun with an \item com-

mand. Itemized lists are made with the itemize environment and enumerated

lists with the enumerate environment.

• Each list item is marked with a label. The labels

in this itemized list are bullets.

• Lists can be nested within one another.

1. The item labels in an enumerated list are

numerals or letters.

2. A list should have at least two items.

IATgX permits at least four levels of nested lists,

which is more than enough.

• Blank lines before an item have no effect.

\begin{itemize>

\item Each list item is . . . bullets.

\item Lists can be . . . one another.

\begin{enumerate>

\item The item labels ... letters.

\item A list should ... two items

\end{enumerate}

\LaTeX\ permits ... more than enough.

\item Blank lines

\end{itemize>

have no effect

In the description environment, you specify the item labels with an optional

argument to the \item command, enclosed in brackets. (Although the argument

is optional, the item will look funny if you omit it.)

2.2 The Input 27

Three animals you should know about are: Three animals you should know about are

gnat A small animal, found in the North Woods,
\begin{description}

...
i r . 1, \item[enat] A small animal . . .

that causes no end of trouble. LB

\item [gnu] A large animal
gnu A large animal, found in crossword puzzles,

\item [armadillo] A medium-sized . . .

that causes no end of trouble. \end{description}

armadillo A medium-sized animal, named after a

medium-sized Texas city.

The characters [and] are used both to delimit an optional argument and

to produce square brackets in the output. This can cause some confusion if the

text of an item begins with a [or if an \item command's optional argument

contains a square bracket. Section C.l.l explains what to do in these uncommon
situations. All commands that have an optional argument are fragile.

Poetry

Poetry is displayed with the verse environment. A new stanza is begun with

one or more blank lines; lines within a stanza are separated by a \\ command.

There is an environment for verse \begin{verse>

Whose features some poets will curse. There is an environment fcr verse \\

For instead of making Whose features some poets will curse.

Them do all line breaking,

It allows them to put too many words For instead of makingW

on a line when they'd rather be Them do *C\em all\/} line breaking, \\

forced to be terse. I* allows them ... to be terse

.

\end{verse}

The * command is the same as \\ except that it prevents IATjrX from

starting a new page at that point. It can be used to prevent a poem from being

broken across pages in a distracting way. The commands \\ and * are used

in all environments in which you tell IATjrX where to break lines; several such

environments are described in the next chapter. The * command is called

the *-form of the \\ command. Several other commands also have *-forms

—

versions of the command that are slightly different from the ordinary one—that

are obtained by typing * after the command name.

The \\ and * commands have a little-used optional argument described

in Section CM. 6, so putting a [after them presents the same problem as for

the \item command. Moreover, the * in the * command is somewhat like an

optional argument for the \\ command, so following a \\ with a * in the text

poses a similar problem. See Section C.l.l for the solutions to these unlikely

problems Any command that has a *-form is fragile, and its *-form is also

fragile.

28 Getting Started

Displayed Formulas

A mathematical formula is displayed when either it is too long to fit comfortably

in the running text, it is so important that you want it to stand out, or it is to be

numbered for future reference. IATjrX provides the displaymath and equation

environments for displaying formulas; they are the same except that equation

numbers the formula and displaymath doesn't. Because displayed equations are

used so frequently in mathematics, IATjtX allows you to type \ [. . . \] instead of

\begin{displaymath} . . . \end{displaymath}

Here is an example of an unnumbered displayed Here is an example of an unnumbered

equation: displayed equation:

x' + y
2 = z

2
\[x' + y~<2> = z_{i}"{2} \]

and here is the same equation numbered: and here is the same equation numbered:

\begin{equation}

x' + y
2 = z

2
(8) x' + y~{2} = z_{i}~{2}

\end{equation}

The document style determines how equations are numbered. Section 4.2 de-

scribes how I^TgX can automatically handle references to equation numbers so

you don't have to keep track of the numbers.

A displayed formula, like any displayed text, should not begin a paragraph.

Moreover, it should not form a complete paragraph by itself. These two obser-

vations are summed up in a simple rule: in the input, never leave a blank line

before a displayed formula.

TgX will not break the formula in a displaymath or equation environment

across lines. See Section 3.3.5 for commands to create a single multiple-line

formula or a sequence of displayed formulas.

2.3 Running I£TEX
If you followed the directions in Section 1.6, you now know how to run IATgX on

an input file. If not, you should consult the Local Guide to find out. When you

use your own input file for the first time, things are unlikely to go as smoothly

as they did for sample.tex. There will probably be a number of errors in your

file—most of them simple typing mistakes. Chapter 6 gives detailed help in

diagnosing errors. Here I will tell you how to apply first aid from your terminal

while JATjjjX is still running.

With your text editor, produce a new file named errsam . tex by making the

following two changes to sample.tex.

• About three-quarters of the way through the file is a line with a

\begin{itemize} command. Delete the z from this command, producing

\begin{itemie}. This simulates a typical typing error.

2.3 Running 1ATFX 29

• A few lines from the end of the file is a line beginning with the word

one-line. Insert the word gnomonly. followed by a space, at the beginning

of that line. TJjjX does not know how to hyphenate gnomonly; this will

prevent it from finding a good place for a line break.

Now run LVTjrX with errsam.tex as input and see what error messages it pro-

duces. You needn't write down the messages because everything T^X writes

on your terminal is also written in a file called the log file.
6 For the input file

errsam.tex. the log tile is named errsam.log on most computers, but it may
have a different extension on yours; check your Local Guide.

LVTj?X begins by typing pretty much what it did when you ran it on the

sample.tex file, but then writes the following message on your terminal and

stops:

LaTeX error. See LaTeX manual for explanation.

Type H <return> for immediate help.

! Environment itenie undefined.

\<Blatexerr ...for immediate help. }\errmessage {#1}

\endgroup

1.140 \begin{itemie}

L^TfrX translates a command like \begin{itemize}, which describes the doc-

ument's logical structure, into TgX's typesetting commands. Some errors are

caught by L^TjrX: others cause it to generate typesetting commands containing

errors that T^jX finds. The first two lines of this message tell us that the error

was found by I^TjrX rather than TgX.

The third line of the message—the one beginning with an exclamation point

—

is the error indicator. It tells what the problem is. Chapter 6 explains the

meaning of the error indicators for all I^TgX-detected errors and for the most

common errors that TgX finds. Here. I^TjrX is complaining that it has never

heard of an environment named itemie.

The next two lines are generated by TgX to describe what's happening in

terms of its low-level typesetting commands; they are irrelevant and can be

ignored. Following them comes the error locator, telling you where in your

input file the error was discovered. In this case, it was on line 140, after T^X
read the \begin{itemie} command.

The ? that ends the message indicates that IATjrX has stopped and is wait-

ing for you to type something. The description of this error message in Chap-

ter 6 explain- how you could fix the error right now by typing in the correct

\begin{itemize} command. However, we'll just pass over it by pressing the

return key. which instructs IATjrX to continue processing the input. I£Tj?X im-

mediately writes the following error message:

6The log file also has some things that don"t appear on your terminal, including blank lines

inserted in strange places.

30 Getting Started

! Undefined control sequence.

\fflitem . . .fi \setbox \0tempboxa \hbox {\makelabel

•C#l»\global \setbox \Qlab. .

.

<to be read again>

T

1.141 \item T

his is the first item of an itemized list. Each item
?

The absence of the "LaTeX Error" at the beginning of the message tells us that

this error was detected by TfrX rather than I^TjtX. TfrjX knows nothing about

IATjtX commands, so you can't expect much help from the error indicator. The
error locator indicates that the error was detected on line 141 of the input file,

right after TgX had read "\item T", by breaking the input line at that point;

the part that TgX hasn't read yet appears on the lower line.

This error is caused by the \item command. This command should oc-

cur only inside a list environment, but it doesn't because we replaced the

\begin{itemize} with a meaningless \begin{itemie} command. T^X can pass

the point where the real error is—here, the \item command—before discovering

that something is wrong, but it usually doesn't go very far.

To continue past this error, you press return. TgX immediately writes an

error message almost identical to the preceding one, with the same error locator.

It has discovered a second error in the typesetting commands that the \item

command generated. Keep typing return and you will find two more errors

produced by this \item command, after which you will find a similar error

generated by the next \item command—the one on line 145. You must type

four returns to skip over the four errors it generates, plus four more to skip

over the errors generated by the third \item command. I^TgX then writes the

following message:

LaTeX error. See LaTeX manual for explanation.

Type H <return> for immediate help.

! \begin{document> ended by \end{itemize}

.

\fllatexerr ...for immediate help.}\errmessage {#1}

\endgroup

\<8checkend . . .empa \Qcurrenvir \else \Qbadend {#1}

\fi \def \Qcurrenvir {docu. .

.

\end . . . end#l\endcsname \endgroup \®checkend {#1}

\ifflignore \global \Qignor. .

.

1.158 \end{itemize}

It is caused by the \end{itemize} on line 158, which is incorrect because there

was no matching \begin{itemize} command. Typing return gets IATjrX past

the incorrect list, and it will run to the end without stopping again.

One missing z generated fourteen separate errors. However, there was no

harm done. Although you might have gotten tired of typing return. WFpX

2.3 Running 1ATEX 31

provided plenty ol information to help you find the error. If this had been a

real mistake, you might have been tempted to stop the program, correct it,

and start over again. Resist that temptation. If you've made one error, you've

probably made more. It's much more efficient to find them all at once than to

keep running I^TgX over and over on the same input file, finding one mistake at

a time. Keep typing return and try to get as far as you can.

Sometimes you will reach an impasse. A single mistake can cause T^jX to

produce hundreds of error messages, or to keep generating the same message

over and over again forever. If you must stop I^Tj?X before it's finished, the best

way is to type I\stop (that's the letter I before a \stop command) followed

by a return in response to its question mark. Try that a few times. If TgX
just keeps producing more error messages, then type X followed by return; this

always works. However, if you stop TgX by typing X, it won't generate the last

page of output the one it was working on when it encountered the error. Since

this output page could help you figure out what went wrong, you should first

try stopping T£X with lAstop.

TgX may write a * and stop without any error message. This is probably

due to a missing \end{document} command, but other errors can also cause

it. If it happens, type \stop (with no I before it) followed by return. If that

doesn't work, you'll have to use your computer's standard method for halting

recalcitrant programs, which is described in the Local Guide.

Instead of sitting at your terminal waiting for errors, you can let L^TgX

run unattended and find out what happened later by reading the log file. A
\batchmode command at the very beginning of the input file causes TgX to

process the file without stopping—much as if you were to type return in response

to every error message, except the messages are not actually printed on your

terminal. This is a convenient way to run IATj?X while you go out to lunch, but

you could return to find that a small error resulted in a very long list of error

messages on the log file.

Meanwhile, remember that besides deleting the z, we added the "'gnomonly"

to mess up the line breaking. After the last error message. I^Tj?X writes:

Overfull \hbox (10 58649pt too wide) in paragraph at lines 172--175

[] \tenrm Mathematical for-mu-las may also be dis-played. A dis-played for-mula

is gnomonly

This is a warning message: L^TjrX does not stop (it did not print a "?"), but

continues to the end of the input file without further incident. This warning

was generated because T£X could not find a good place to break the indicated

line. If you print the output, you'll find the word "gnomonly" extending beyond
v

the right margin. This is not a serious problem: Section 5.2.1 describes how to

correct it.

When you process your input file for the first time. I^Tj?X is likely to pro-

duce lots ol error messages and warnings that you may not understand right

32 Getting Started

away. The most important thing to remember is not to panic. Instead, turn to

Chapter 6 to find out what to do.

2.4 Helpful Hints

The descriptions of individual IATgX features include suggestions about their

use. Here are a few general recommendations that can make using IATjtX easier.

If your documents contain mathematical formulas, as soon as you have ac-

quired some experience using IATjrX you should read Section 3.4 to learn how
to define your own commands and environments. When I write a paper, I find

myself changing the notation much more than the concepts. Defining commands
to express the concepts allows me to change notation by simply modifying the

command definitions, without having to change every occurrence in the text.

This saves a lot of work.

Unless your document is very short, you will want to see printed versions

while you're writing it. If you print ten versions before completing it, then

the first page will have been run through IATjtX and printed ten times before

the last page is written. If page one isn't changed, you'll have printed nine

unnecessary copies of it. Moreover, new input is seldom free of errors, especially

if it contains complicated mathematical formulas. If you have to correct errors

and rerun IATjrX each time, page one will have been processed twenty times

rather than ten.

The easiest way to avoid all this extra processing is to write new input in a

separate file and run IATgX on that file. After correcting all the errors, you can

move the new text to your main input file. The output generated by processing

each new bit of text by itself won't have the right page or section numbers, but

it will serve as a first draft while you are writing the rest of the document. You

can run I^TgX on the main text file once in a while to get a good copy of the

partially written document. With this procedure, you might wind up printing

page one only three times instead of twenty. For a long document, in which you

will frequently be changing parts that have already been written, you should use

the commands of Section 4.4 to distribute your input over several files.

Perhaps the most annoying aspect of a computer program is the way it reacts

to your errors. As with most programs. IATj?X's train of thought is derailed by

simple errors that any person would easily correct. The best way to avoid this

problem is to avoid those simple errors. Here are some common ones that are

easy to eliminate by being careful.

• A misspelled command or environment name.

• Improperly matching braces.

=

• Trying to use one of the ten special characters #$°/ &_{}~~\as
an ordinary printing symbol.

2.5 Summary 33

• Improperly matching formula delimiters—for example, a \(command
without the in,itching \).

• The use in ordinary text of a command like " that can appear only in a

mathematical Formula.

• A missing \end command.

• A missing command argument.

A good text editor can detect or help prevent some of these errors. Consult your

Local Guide to see if such an editor is available on your computer.

2.5 Summary

This chapter has explained everything you have to know to prepare a simple

document, which is quite a bit to remember. Here is a summary to refresh your

memory.

Input Characters

The input file may contain the following characters: upper- and lowercase letters,

the ten digits, the 16 punctuation characters

.:;,?!'• ()[]-/*€
the ten special characters

$ X &_{>-- \

(the first seven are printed by the commands \#, \$, etc.), and the five charac-

ters + =
| < > used mainly in mathematical formulas. There are also invisible

characters, which are all denoted by u , that produce spaces in the input file.

Commands and Environments

Command names consist of either a single special character like ", a \ followed

by a single nonletter (as in \@). or a \ followed by a string of letters. Spaces

and a single end-of-line following the latter kind of command name are ignored;

use a Vj command to put an interword space after such a command. The case

of letters in command names counts; most I^TjrX command names contain only

lowercase letters. A few commands have a *-form, a variant obtained by typing

* after the command name.

Command arguments are enclosed in curly braces { and }, except optional

arguments are enclosed in square brackets [and]. See Section C.l.l if an op-

tional argument has a square bracket or if a [in the text could be confused with

34 Getting Started

the start of an optional argument. Do not leave any space between arguments,

or any extra space within an argument; use a 7, to end a line without introducing

space.

Some commands have moving arguments. The name of a fragile command
must be preceded by a \protect command when it appears in a moving argu-

ment. Fragile commands include \(, \), \[, \] , \begin, \end, \\, \item, and

\f ootnote. A \protect command seldom hurts; when in doubt use one.

A declaration is a command that directs BTjrX to change the way it is for-

matting the document. The scope of a declation is delimited by enclosing it

within curly braces or within an environment.

An environment has the form:

\begin{name} ... \end{narae}

To every declaration corresponds an environment whose name is the same as

the declaration's name without the \.

Sentences and Paragraphs

Sentences and paragraphs are typed pretty much as expected. TgX ignores the

formatting of the input file. A blank line indicates a new paragraph.

Quotes are typed with the ' and ' characters, used in pairs for double quotes.

The \ , command separates multiple quotation marks, as in ' ' \ ,
' Fum ' \ ,

' '

.

Dashes of various sizes are produced with one, two or three "-" characters.

A period, question mark, or exclamation point is considered to end a sentence

unless it follows an uppercase letter. A \@ command before the punctuation

character forces TfrjX to treat it as the end of a sentence, while a \u command
placed after it produces an interword space.

The TgX and I^T^X logos are produced by the \TeX and \LaTeX commands.

The \today command produces the current date, and \ldots produces an el-

lipsis (...).

Text is emphasized with the \em declaration. Emphasized text is usually set

in italic type. A \/ command should appear immediately after an italic letter

that is followed by roman text, unless the roman text begins with a period or

comma.

The ~ command produces an interword space at which TjgX will not start a

new line. The \mbox command prevents IgX from breaking its argument across

lines.

Footnotes are typed with the \f ootnote command, whose argument is the

text of the footnote.

In-line mathematical formulas are enclosed by \(... \) or $. . . $. Sub-

scripts and superscripts are made with the _ and * commands. The ' character

produces a prime symbol (').

2.5 Summary 35

Larger Structures

The document begins with a \documentstyle command. This is followed by the

preamble containing any special style declarations for the particular document.

The actual text is contained in a document environment.

A title is produced by using the \title, \author. and \date commands to

declare the necessary information, and the \maketitle command to generate

the title. Multiple authors are separated by \and commands in the argument of

\author.

A sectional unit is begun with one of the following sectioning commands

\part \subsection \paragraph

\chapter \subsubsection \subparagraph

\section

whose argument produces the unit's heading and is a moving argument.

Displayed Material

Short quotations are displayed with the quote environment and long quotations

with the quotation environment.

IATjrX provides three list-making environments: itemize for itemized lists,

enumerate for enumerated lists, and description for lists with user-specified

labels. Each item is begun with an \item command whose optional argument

provides the item labels in the description environment.

The verse environment is used for poetry. A blank line begins a new stanza,

and a line that does not end a stanza is followed by a \\ command—use *

instead of \\ to prevent a page break after the line. (See Section C.l.l if a *

follows an ordinary \\ command.)

Displayed mathematical formulas are produced with the displaymath envi-

ronment or the equivalent \[. . . \] construction. The equation environment

produces numbered displayed formulas.

CHAPTER 3

CarryingOn

38 Carrying On

Chapter 2 described commands for simple documents. Sooner or later, you'll

write something that requires more sophisticated formatting. The commands
and environments described in this chapter will handle most of those situations.

Before getting to them, you should know a little more about how TgX operates.

As TgjX processes your input text, it is always in one of three modes: para-

graph mode, math mode, or left-to-right mode (called LR mode for short).
1

Paragraph mode is TgX's normal mode—the one it's in when processing ordi-

nary text. In paragraph mode, Tjt^X regards your input as a sequence of words

and sentences to be broken into lines, paragraphs, and pages.

T^X is in math mode when it's generating a mathematical formula. More
precisely, it enters math mode upon encountering a command like $ or \ (or \ [

or \begin{equation} that begins a mathematical formula, and it leaves math
mode after finding the corresponding command like \) that ends the formula.

When TgX is in math mode, it regards letters in the input file to be mathematical

symbols, treating "is" as the product of i and s, and ignores any space characters

between them.

In LR mode, as in paragraph mode, TgX considers your input to be a string

of words with spaces between them. However, unlike paragraph mode, TgX
produces output that keeps going from left to right; it never starts a new line

in LR mode. The \mbox command (Section 2.2.1) causes T$£ to process its

argument in LR mode, which is what prevents the argument from being broken

across lines.

Different modes can be nested within one another. If you put an \mbox

command inside a mathematical formula, TjrjX is in LR mode when processing

that command's argument, not in math mode. In processing

y > z if x
2

real. \(y > z \mbox{ if $x~{2}$ real} \) .

TgX is in math mode when processing uyi_j>uZu, in LR mode when processing

uifu and ureal, and in math mode when processing x~{2}. The space between
"2" and "if" is produced by the first u in the \mbox command's argument, since

space characters in the input produce space in the output when T^X is in LR
mode. The u in real}u\) is processed in math mode, so it produces no space

between "real" and "." in the output.

3.1 Changing the Type Style

Most of this book, including this sentence, is printed in a type style called

"roman" . It is the style that L^TgX uses unless you instruct it to select a different

one. The \em declaration described in Section 2.2.1 tells IAT^X to start using

i

1 Paragraph mode corresponds to the vertical and ordinary horizontal modes in The TppCbook,

and LR mode is called restricted horizontal mode there. I^TgX also has a restricted form of

LR mode called picture mode that is described in Section 5.5.

3.2 Symbols from Other Languages 39

an italic type stylo unless it already is using italics, in which case it chooses

roman style. IATpX also provides rive other type styles, shown below with the

declarations that select them.

This is a bold type style.

This is a sans serif type style

This is a slanted type style.

This is a Small Caps type style.

This is a typewriter type style.

{\bf This is a bold type style.

>

{\sf This is a sans serif type style.}

{\sl This is a slanted type style.}

{\sc This is a Small Caps type style.}

{\tt This is a typewriter type style.}

The \rm declaration chooses roman type and \it chooses italic. Since roman is

the default and italic is mainly for emphasis, produced by the \em command,

these two declarations are seldom needed. All these type style declarations are

robust

.

Slanted and italic arc both •'leaning" type styles.

Compare closely sianfed and slanted. {\sl slanted\/} and {\it slanted}

The \/ command described in Section 2.2.1 should be used to keep any leaning

character from bumping against one that doesn't lean, not just between italic

and roman characters. For example, it is used when switching from slanted to

sans serif type.

The type style is a visual property of the printed output; it is not part of

the document's logical structure. Therefore, these type style declarations should

appear not in the text but in the definitions of the commands that describe the

logical structure. (See Section 3.4.) However, some disciplines have special type

style conventions in computer science, for example, a programming language's

reserved words are usually printed in bold type. In such a case, you might as

well put the type style declaration in the text.

3.2 Symbols from Other Languages

Foreign languages have a variety of accents and special symbols; T^X can gener-

ate the ones used in most Western languages. The accents and symbols described

in this section are not available in the typewriter (\tt) type style.

The commands in this section allow you to handle small pieces of foreign

text in an English document. They are not adequate for typesetting a complete

foreign-language document. Among other problems, foreign languages have dif-

ferent hyphenation rules than English, so an English-language version of I^TgX

may incorrectly hyphenate foreign words. Consult your Local Guide to find out

if versions of I-ATjrX designed specifically for other languages are available.

All the <onunands described in this section are robust.

40 Carrying On

6 \'{o} 6 \~{o} 6 \v{o} q \c{o}

6 \'{o} 6 \={o} 6 \H{o} o \d{o}

6 \~{o} 6 \.{o} do \t{oo} o \b{o}

6 \"{o} 6 \u{o}

Table 3.1: Accents.

3.2.1 Accents

Table 3.1 shows how to make a wide variety of accents. In this and all similar

tables, the TfrjX output is followed by the input that produces it, the first entry

in Table 3.1 showing that you produce 6 by typing \'{o}. The letter o appears

in this table, but the commands can accent any letter.

El sefior esta bien, gargon. El se\~{n}or est\'{a} bien, gar\c{c}on.

The letters i and j need special treatment because they should lose their dots

when accented. The commands \i and \j produce a dotless i andy, respectively.

El esta aquf. \'{E}1 est\'{a} aqu\'{\i}.

The commands in Table 3.1 can be used only in paragraph and LR modes.

Accents in math mode, which produce accented symbols in mathematical for-

mulas, are made with commands described in Section 3.3.6.

3.2.2 Symbols

Table 3.2 shows how to make some foreign-language symbols. Note that the

symbols I and j are produced by typing a pair of punctuation characters, in much
the same way that a medium-length dash is produced by typing two - characters.

The commands in Table 3.2 can appear only in paragraph and LR modes; use

an \mbox command to put one inside a mathematical formula.

The following six special punctuation symbols can be used in any mode:

t \dag § \S © \copyright

t \ddag If \P £ \pounds

ce \oe a \aa 1 \1

(E \0E A \AA L \L

a? \ae \o 8 \ss

JE \AE \0

Table 3.2: Foreign Symbols

3.3 Mathematical Formulas 41

Remember also that the seven symbols #$%&_{} are produced by the seven

commands \# \$ V/. \k _ \{ \}.

In addition to the symbol-making commands described here, there are many
others that can be used only in math mode. They are described in Section 3.3.2.

3.3 Mathematical Formulas

A formula that appears in the running text, called an in-text formula, is pro-

duced by the math environment. This environment can be invoked with either

of the two short forms \(. . . \) or $. . . $, as well as by the usual \begin . .

.

\end construction. The displaymath environment, which has the short form

\[..\]. produces an unnumbered displayed formula. The short forms $...$,

\(. . . \). and \[. . . \] act as full-fledged environments, delimiting the scope of

declarations contained within them. A numbered displayed formula is produced

by the equation environment. Section 4.2 describes commands for assigning

names to equation numbers and referring to the numbers by name, so you don't

have to keep track of the actual numbers.

The math, displaymath. and equation environments put TgX in math
mode. TgX ignores spaces in the input when it's in math mode (but space

characters may still be needed to mark the end of a command name). Sec-

tion 3.3.7 describes how to add and remove space in formulas. Remember that

TgX is in LR mode, where spaces in the input generate space in the output,

when it begins processing the argument of an \mbox command—even one that

appears inside a formula.

All the commands introduced in this section can be used only in math mode,

unless it is explicitly stated that they can be used elsewhere. Except as noted,

they are all robust. However, remember that \begin, \end, \(, \), \[, and \]

are fragile command-

3.3.1 Some Common Structures

Subscripts and Superscripts

Subscripts and superscripts are made with the _ and * commands. These com-

mands can be combined to make complicated subscript and superscript expres-

sions.

x2* x'{2y} Xy
2

x~{y~{2}} x\ x~{y}_{l}

x2y x_{2y} z»' x~{y_{l}} x\ x_{l>"{y}

Fractions

Fractions denoted by the / symbol are made in the obvious way.

42 Carrying On

Multiplying by n/2 gives (m + n)/n. Multiplying by $n/2$ gives \((m+n)/n \) .

Most fractions in the running text are written this way. The \frac command
is used for large fractions in displayed formulas: it has two arguments: the

numerator and denominator.

y + z/2

</
2 + i

x = ,7. / \[x= \frac<y+z/2}{y-{2} + l> \]

X +
l \[\frac{x+yHl \frac{yMz+l}}\]

1 + 2+1

The \frac command can be used in an in-text formula to produce a fraction

like \ (by typing $\frac{l}{2}$). but this is seldom done.

Roots

The \sqrt command produces the square root of its argument; it has an optional

first argument for other roots.

A square root y/x + y and an nth root >/2. ... \(\sqrt{x+y} \) ... \(\sqrt[n]{2> \) .

Ellipsis

The commands \ldots and \cdots produce two different kinds of ellipsis (...)

A low ellipsis: X\,...,xn . A low ellipsis: $x_{l>, \ldots ,x_{n>$.

A centered ellipsis: a + • • • + z. A centered ellipsis: $a + \cdots + z$

.

Use \ldots between commas and between juxtaposed symbols like a ... z; use

\cdots between symbols like +. —
. and =. TgX can also produce vertical and

diagonal ellipses, which are used mainly in arrays.

: \vdots \ddots

The \ldots command works in any mode, but \cdots. \vdots. and \ddots can

be used only in math mode.

3.3.2 Mathematical Symbols

There are T£X commands to make almost any mathematical symbol you're likely

to need. Remember that they can be used only in math mode.

3.3 Mathematical Formulas 43

Lowercase

a \alpha \theta T \tau

\beta d \vartheta IT \pi V \upsilon

"j \gamma l \iota XZ> \varpi
<t>

\phi

6 \delta K \kappa P \rho V \varphi

e \epsilon A \lambda Q \varrho X \chi

e \varepsilon M \mu a \sigma t/> \psi

s \zeta V \nu <T \varsigma U! \omega

r] \eta i \xi

Uppercase

T \Gamma A \Lambda £ \Sigma V \Psi

A \Delta
"^

\Xi T \Upsilon n \0mega

\Theta n \Pi $ \Phi

Table 3.3: Greek Letters

Greek Letters

The command to produce a lowercase Greek letter is obtained by adding a \ to

the name of the letter. For an uppercase Greek letter, just capitalize the first

letter of the command name.

Making Greek letters is as easy as 7r (or II). is as easy as π (or Π)

(The $'s are needed because these commands can be used only in math mode.)

If the uppercase Greek letter is the same as its roman equivalent, as in uppercase

alpha, then there is no command to generate it. A complete list of the commands
for making Greek letters appears in Table 3.3. Note that some of the lowercase

letters have variant forms, made by commands beginning with \var. Also,

observe that theres no special command for an omicron; you just use an o.

Calligraphic Letters

T^X provides twenty-six uppercase calligraphic letters A, B, . . . , Z, also called

script letters. They are produced by a special type style invoked with the \cal

declaration.

Choose a function J with 7{x) > 0. $\cal F$ with \(<\cal F> (x) > \)

In this example, no brackets are needed in the first use of \cal because the $'s

delimit the scope of the declaration. Only the twenty-six uppercase letters are

available in the calligraphic type style.

44 Carrying On

± \pm n \cap o \diamond © \oplus

=F \mp U \cup A \bigtriangleup © \ominus

x \times l±l \uplus V \bigtriangledown \otimes

-r \div n \sqcap < \triangleleft \oslash
* \ast U \sqcup > \triangleright \odot

* \star V \vee < \lhd O \bigcirc
o \circ A \wedge > \rhd t \dagger

• \bullet \ \setminus < \unlhd t \ddagger

\cdot i \wr > \unrhd 11 \amalg

Table 3.4: Binary Operation Symbols.

A Menagerie of Mathematical Symbols

TgX can make dozens of special mathematical symbols. A few of them, such as

+ and >. are produced by typing the corresponding keyboard character. Others

are obtained with the commands in Tables 3.4 through 3.7. Additional symbols

can be made by stacking one symbol on top of another with the \stackrel

command of Section 3.3.6 or the array environment of Section 3.3.3. You can

also put a slash through a symbol by typing \not before it.

If x it y then x % y — 1. If $x \not< y$ then \(x \not\leq y-1 \)

.

If the slash doesn't come out in exactly the right spot, put one of the math-mode

spacing commands described in Section 3.3.7 between the \not command and

the symbol.

There are some mathematical symbols whose size depends upon what kind

of math environment they appear in: they are bigger in the displaymath and

equation environments than in the ordinary math environment. These symbols

are listed in Table 3.8. where both the large and small versions are shown.

< Meq
< \prec

< \preceq

< Ml
C \subset

C \subseteq

C \sqsubset

C \sqsubseteq

E \in

h \vdash

> \geq

> \succ
> \succeq

> \gg
D \supset

~D \supseteq

3 \sqsupset

3 \sqsupseteq

3 \ni

H \dashv

= \equiv

~ \sim
~ \simeq

>c \asymp

% \approx

= \cong

\neq
= \doteq

oc \propto

\= \models

± \perp

|

\mid

\parallel

ex \bowtie

m \Join
— \smile
-^ \frown

Table 3.5: Relation Svmbols

3.3 Mathematical Formulas 45

\leftarrow

\Leftarrow

\rightarrow

\Rightarrow

\leftrightarrow

\Leftrightarrow

\mapsto

\hookleftarrow

\leftharpoonup

\leftharpoondown

\rightleftharpoons

\longleftarrow

\Longleftarrow

\longrightarrow

\Longrightarrow

\longleftrightarrow

\Longleftrightarrow

\longmapsto

\hookrightarrow

\rightharpoonup

\rightharpoondown

\leadsto

| \uparrow

ft \Uparrow

| \downarrow

J| \Downarrow

| \updownarrow

§ \Updownarrow

/ \nearrow

\ \searrow

y \swarrow

\ \nwarrow

Table 3.6: Arrow Symbols

K \aleph / \prime V \forall co \infty

h. \hbar \emptyset 3 \exists \Box

i \imath V \nabla -> \neg O \Diamond

j \jmath yj \surd b \flat A \triangle

£ \ell T \top t] \natural 4 \clubsuit

P \wp _L \bot
JJ \sharp <C> \diamondsuit

ft \Re
II

\l \ \backslash 9? \heartsuit

9 Mm Z \angle d \partial 6 \spadesuit

U \mho

Table 3.7: Miscellaneous Symbols

£ £ \sum

n n \prod

LI u \coprod

/ /
\int

/ / \omt

nn \bigcap

uU \bigcup

uU \bigsqcup

vV \bigvee

A A \bigwedge

©O \bigodot

® <g) \bigotimes

©e \bigoplus

w w \biguplus

Table 3.8: Variable-sized Symbols.

46 Carrying On

\arccos \cos \csc \exp \ker \limsup \min \sinh

\arcsin \cosh \deg \gcd Mg \ln \Pr \sup

\arctan \cot \det \hom \lim Mog \sec \tan

\arg \coth \dim \inf \liminf \max \sin \tanh

Table 3.9: Log-like Functions.

Subscript-sized expressions that appear above and below them are typed as

ordinary subscripts and superscripts.

Here's how they look when displayed: Here's how they look when displayed:

\[\sum_{i=l}-{n} x_{i} = \int_{0}-{l} f \]

, and in the text

:

1 \(\sum_{i=l}"{n} x_{i} = \int_{0}-{l> f \)

.

and in the text: X)"=i Xi = Jo f-

Section 3.3.8 tells how how to coerce TgX into producing Ya=i m a displayed
n

formula and Y^ in an in-text formula.

Log-like Functions

In a formula like
a
log(a;-|-y)", the "log", which represents the logarithm function,

is a single word that is usually set in roman type. However, typing log in a

formula denotes the product of the three quantities /, o, and g, which is printed

as 'Hog". The logarithm function is denoted by the Mog command.

Logarithms obey the law: log xy = log x + log y. ... \(\log xy = Mog x + Mog y \) .

Other commands like Mog for generating function names are listed in Table 3.9.

Two additional commands produce the "mod" (modulo) function: \bmod for a

binary relation and \pmod for a parenthesized expression. (Remember b as in

binary and p as in parenthesized.)

gcd(m,n) = a mod b \(\gcd(m,n) = a \bmod b \)

x = y (mod a + b) \(x \equiv y \pmod<a+b} \)

Note that \pmod has an argument and produces parentheses, while \bmod pro-

duces only the "mod"

.

Some log-like functions act the same as the variable-sized symbols of Table 3.8

with respect to subscripts.

3.3 Mathematical Formulas 47

As a displayed formula:

lim x =

but in text: lim*-»oe * = 0.

As a displayed formula:

\[\lim_{n \rightarrow \infty} x = \]

but in text

:

\(\lim_{ ... > x = \).

3.3.3 Arrays

The array Environment

Arrays are produced with the array environment. It has a single argument that

specifies the number of columns and the alignment of items within the columns.

For each column in the array, there is a single letter in the argument that specifies

how items in the column should be positioned: c for centered. 1 for flush left,

or r for flush right. Within the body of the environment, adjacent rows are

separated by a \\ command and adjacent items within a row are separated by

an ft character.

\begin{array}{clcr}

a+b+c 4 uv ft x-y ft 27 \\

a+b ft u+v ft z ft 134 \\

a ft 3u+vw ft xyz ft 2,978

\end{array}

There must be no ft after the last item in a row and no \\ after the last row.

TgX is in math mode when processing each array element, so it ignores spaces.

Don't put any extra space in the argument.

In mathematical formulas, array columns are usually centered. However, a

column of numbers often looks best flush right. Section 3.3.4 describes how
to put large parentheses or vertical lines around an array to make a matrix or

determinant.

A declaration that appears in an array item is local to that item; its scope

is ended by the ft. \\. or \end{array} that ends the item. The \\ command is

fragile.

a + b + c uv J" - y 27

a^-b u + v z 134

a 3u + ow xyz 2.978

Vertical Alignment

TgX draws an imaginary horizontal center line through every formula, at the

height where a minus sign at the beginning of the formula would go. An indi-

vidual array item is itself a formula with a center line. The items in a row of an

array are positioned vertically so their center lines are all at the same height.

Normally, the center line of an array lies where you would expect it, half way

between the top and bottom. You can change the position of an array's center

line by giving an optional one-letter argument to the array environment: the

argument t makes it line up with the top row*s center line, while b makes it line

up with the bottom row's center line.

48 Carrying On

((

[
[

{ \i

[
\lfloor

[
\lceil

(
Mangle

/ /

I
I

))

]
]

} \>

\rfloor

\rceil

) \rangle

\ \backslash

II
M

Table 3.10: Delimiters.

f \uparrow

| \downarrow

I \updovmarrow

ft \Uparrow

JJ- \Downarrow

$ \Updownarrow

The box around each array in the following formula

is for clarity: it is not produced by the input:

\[x - \begin{array}{c}

a_{l> \\ \vdots \\ a_<n>

\end{array>
- \begin{array}[t] {cl}

u-v & 13 \\

u+v & \begin{array> [b] {r>

12 \\ -345

\end{array>

\end{array> \]

More Complex Arrays

Visual formatting is sometimes necessary to get an array to look right. Sec-

tion C.1.6 explains how to change the vertical space between two rows: Sections

3.3.7 and 5.4.1 describe commands for adding horizontal space within an item:

and Section C.9.2 tells how to add horizontal space between columns. The array

environment has a number of additional features for making more complex ar-

rays: they are described in Section C.9.2.

The array environment can be used only in math mode and is meant for

arrays of formulas: Section 3.6.2 describes an analogous tabular environment

for making arrays of ordinary text items. The array environment is almost

always used in a displayed formula, but it can appear in an in-text formula as

well.

3.3.4 Delimiters

A delimiter is a symbol that acts logically like a parenthesis, with a pair of de-

limiters enclosing an expression. Table 3.10 lists every symbol that T£X regards

as a delimiter, together with the command or input character that produces it.

These commands and characters produce delimiters of the indicated size. How-

ever, delimiters in formulas should be big enough to "fit around" the expressions

that they delimit. To make a delimiter the right size, type a \left or \right

command before it.

3.3 Mathematical Formulas 49

Big delimiters are most often used with arrays.

/

V

-Til J" 1 2

y

\

J

\[\left(\begin{array>{c>

\left| \begin{array}{cc}

. . . \end{array}

\rightl \\

y \\ z

\end{array} \right) \]

The \left and \right commands must come in matching pairs, but the match-

ing delimiters need not he the same.

x + y + z =
\[... = \left(\begin{arrayMc}

a \\ b

\end{array} \right [\]

Some formulas require a big left delimiter with no matching right one, or vice

versa. The \left and \right commands must match, but you can make an

invisible delimiter by typing a
".**

after the \left or \right command.

y if y >
z + y otherwise

\[x = \left\{ \begin{array}{ll}

y & \mbox{if $y>0$> \\

z+y & \mbox{otherwise}

\end{array}

\right. \]

3.3.5 Multiline Formulas

The displaymath and equation environments make one-line formulas. A for-

mula is displayed across multiple lines if it is a sequence of separate formulas

or is too long to fit on a single line. A sequence of equations or inequalities is

displayed with the eqnarray environment. It is very much like a three-column

array environment, with consecutive rows separated by \\ and consecutive items

within a row separated by k (Section 3.3.3). However, an equation number is

put on every line unless that line has a \nonumber command.

The middle column ran be anything, not just a '= '.

x = YJy (2)

y > a+b+r+d+e+f+g+h+i+j+
k + l + m + n + o + p (3)

. .
.
\begin{eqnarray>

x & = k 17y \\

y&>&a+ ... +j + \nonumber \\

& &k+l + m + n + o + p
\end{eqnarray}

Section 4.2 describes how to let IATj?X handle references to equations so you

don't have to remember equation numbers.

The eqnarray* environment is the same as eqnarray except it does not

generate equation numbers.

50 Carrying On

x < i/i + • + j/n \begin{eqnarray*}

< z x ft Ml ft y_{l> + \cdots + y_{n} \\

k \leq ft z

\end{eqnarray*}

A + or - that begins a formula is assumed to be a unary operator, so typing

$+x$ produces +x, with no space between the "+" and the "a:". If the formula

is part of a larger one that is being split across lines, T^X must be told that

the + or — is a binary operator. This is done by starting the formula with an

invisible first term, produced by an \mbox command with a null argument.

y = a + b + c + d + e + f + g + h + i + j \begin{eqnarray*}

+ k + l + m + n + o + p y& = fta + b + c+... + a + i + j \\

k k \mboxO + k + ...

\end{eqnarray*}

A formula can often be split across lines using a \lefteqn command in an

eqnarray or eqnarray* environment, as indicated by the following example:

w + x + y-\-z= \begin{eqnarray*}

a + b + c + d + e + f + g + h + i + j+ \lefteqn{w+x+y+z = > \\

k k a + . . . + i + \\
k + 1 + m + n + o + p . . . a&&k+...+o+p

\end{eqnarray*}

The \lefteqn command works by making TgX think that the formula it pro-

duces has zero width, so the left-most column of the eqnarray or eqnarray*

environment is made suitably narrow. The indentation of the following lines can

be increased by adding space (with the commands of Section 5.4.2) between the

\lefteqn command and the \\.

Breaking a single formula across lines in this way is visual formatting, and I

wish IATgX could do it for you. However, doing it well requires more intelligence

than IATgX has, and doing it poorly can make the formula hard to understand, so

you must do it yourself. This means that the formula may have to be reformatted

if you change notation (changing the formula's length) or if you change document

style (changing the line length).

3.3.6 Putting One Thing Above Another

Symbols in a formula are sometimes placed one above another. The array

environment is good for vertically stacking subformulas, but not smaller pieces

—

you wouldn't use it to put a bar over an x to form x. TgX provides special

commands for doing this and some other common kinds of symbol stacking.

3.3 Mathematical Formulas 51

a \hat{a} a \acute{a} a \bar{a} a \dot{a}

a \check{a} u \grave{a} a \vec{a} a \ddot{a}

a \breve{a} a \tilde{a}

Table 3.11: Math Mode Accents.

Over- and Underlining

The \overline command puts a horizontal line above its argument.

You can have nested overiining: x + 1. . . . \(\overline{\overline{x}"{2} + 1} \) .

There's an analogous \underline command for underlining that works in para-

graph and LR mode as well as math mode, but it's seldom used in formulas.

The value is 3x. \underline{The} value is $\underline{3x}$

.

The \underline command is fragile.

Horizontal braces are put above or below an expression with the \overbrace

and \underbrace commands.

a +

b

+ c +d \overbrace{a+ \underbrace{b + c> + d>

In a displayed formula, a subscript or superscript puts a label on the brace.

J4

, i 7
. . . _l"T) i_ 2

\[\underbrace{a + \overbrace{b

+ \cdots + y>"<24> + z }_<26> \]

Accents

The accent commands described in Section 3.2.1 are for ordinary text and cannot

be used in math mode. Accents in formulas are produced with the commands
shown in Table 3.11. The letter a is used as an illustration; the accents work

with any letter.

Wide versions of the \hat and \tilde accent are produced by the \widehat

and \widetilde commands. These commands try to choose the appropriate-

sized accent to tit over their argument, but they can't produce very wide accents.

Here are two sizes of wide hat: 1 — x = — y. ... \(\widehat{l-x> = \widehat{-y} \) .

The letters i and j should lose their dots when accented. The commands \imath

and \jmath produce a dotless i and j. respectively.

There ar- • ;in + }. ... \(\vec<\imath> + \tilde{\jmath} \)

52 Carrying On

Stacking Symbols

The \stackrel command stacks one symbol above another.

A -^ B — C \(A XstackreKa'MXrightarrow} B ... \)

x
d= (xi xn)

\ (\vec<x> \stackreH\rm defK=> ... \)

See Section 3.3.8 for an explanation of the \rm command. The \stackrel

command's first argument is printed in small type, like a superscript: use the

\textstyle declaration of Section 3.3.8 to print it in regular-size type.

3.3.7 Spacing in Math Mode
In math mode, TgX ignores the spaces you type and formats the formula the way
it thinks is best. Some authors feel that TgX cramps formulas, and they want

to add more space. TjrjX knows more about typesetting formulas than many
authors do. Adding extra space usually makes a formula prettier but harder

to read, because it visually "fractures" the formula into separate units. Study

how formulas look in ordinary mathematics texts before trying to improve Tj^X's

formatting.

Although fiddling with the spacing is dangerous, you sometimes have to do it

to make a formula look just right. One reason is that TgX may not understand

the formula's logical structure. For example, it interprets y dx as the product

of three quantities rather than as y times the differential dx. so it doesn't add

the little extra space after the y that appears in y dx. Section 3.4 explains how
to define your own commands for expressing this kind of logical structure, so

you need worry about the proper spacing only when defining the commands,

not when writing the formulas.

Like any computer program that makes aesthetic decisions. TgX sometimes

needs human assistance. You'll have to examine the output to see if the spacing

needs adjustment. Pay special attention to square root signs, integral signs, and

quotient symbols (/).

The following four commands add the amount of horizontal space shown

between the vertical lines:

II \, thin space II \: medium space

II \! negative thin space II \; thick space

The \ ! acts like a backspace, removing the same amount of space that \ , adds.

The \ , command can be used in any mode, the others can appear only in math

mode. Here are some examples of their use. where the result of omitting the

spacing commands is also shown.

\[2x \sqrt{2} \, x instead of \flx

n/logn n / \! \log n instead of n/logn

ffzdxdy \int\!\!\int z\,dx\,dy instead of J f zdxdy

3.3 Mathemat ical Formulas 53

As with all such fine tuning, you should not correct the spacing in formulas until

you've finished writing the document and are preparing the tinal output.

3.3.8 Changing Style in Math Mode

Type Style

TjjjX's default type style for letters in math mode is math italic, which is some-

what different from ordinary italic.

Is different any different from dif
2
e
2
rnt? Is $different$ any {\em diff erentA/} . . .

As is evident from this example, you should not use $...$ as a shorthand for

{\em...}.

The command- described in Section 3.1 for changing the type style work in

math mode too. but they change the style only of letters and numbers, not of

other symbols.

Note the nonbold v and -f in: 2 v/x-=-y = z. . . . \({\bf 2\sqrt{x> \div y> = z \) .

There are also two style-changing declarations that can be used only in math
mode: \cal for producing calligraphic letters, described in Section 3.3.2, and

\mit for math italic. Since math italic is the default in math mode, you'll seldom

use the \mit command.

TgX regards uppercase Greek letters as letters, but lowercase Greek ones as

symbols.

Note the nonbold tt in II ~ n x x. ... in $\bf \Pi \sim \pi \times x$.

The \boldmath declaration causes TgX to make boldface the default for both

letters and symbols in formulas. However, this declaration cannot be used in

math mode, so you must use an \mbox command if you don't want all the

symbols in a formula to be bold.

Only the s and -x are bold here: a + xir — p. . . A (a + \mbox{\boldmath $x \pi$} - \rho\)

The \boldmath and type style declarations do not change the style of everything

one would expect them to. For example, subscripts and superscripts are not

made bold l>\ \boldmath. See Section C.14.4 for a list of all such anomalies.

54 Carrying On

Math Style

T^X uses the following four math styles when typesetting formulas:

display For normal symbols in a displayed formula.

text For normal symbols in an in-text formula.

script For subscripts and superscripts.

scriptscript For further levels of sub- and superscripting, such as sub-

scripts of superscripts.

Display and text math styles are the same except for the size of the variable-

sized symbols in Table 3.8 on page 45 and the placement of subscripts and

superscripts on these symbols, on some of the log-like functions in Table 3.9 on

page 46, and on horizontal braces. TgX uses small type in script style and even

smaller type in scriptscript style. The declarations \displaystyle, \textstyle,

\scriptstyle, and \scriptscriptstyle force T^X to use the indicated style.

Compare the small superscript in e
1 ^' with the . . . small superscript in \(e~{x(i)} \)

large one in ey^

.

large one in \(e~{\textstyle y(i)> \) .

3.3.9 When All Else Fails

If you write a lot of complicated formulas, sooner or later you'll encounter one

that can't be handled with the commands described so far. When this happens,

the first thing to do is look at the advanced IATjtX features described in Sections

C.6 and C.9.2. Commutative diagrams are easy to make with IATjrX's picture

environment, described in Section 5.5, which allows you to draw lines and arrows

and to specify exactly where to put each part of the formula. Some formatting

problems can be solved by using the commands in Section 5.4.3 to change how
big T^X thinks a subformula is.

There are some formulas that can't be handled easily with IATgX commands.

If you run into one, you have two choices: reading The TfiXbook [3] to learn T^X s

advanced commands for mathematics, or visually formatting the formula with

the picture environment. Since this environment allows complete control over

where each symbol is placed, it can be used to format any formula exactly the

way you want it. However, this is a tedious way to make a formula and should

be used only for solving rare problems. If you often encounter formulas that

IATjrX can't handle easily, then you're probably writing very heavy mathematics;

learning more about TgX may ultimately save you time.

3.4 Defining Commands and Environments

The input file should display as clearly as possible the document's logical struc-

ture. Any structure, such as a mathematical notation, that is repeated should

3.4 Defining Commands and Environments 55

be expressed in a form that makes the structure apparent. This usually requires

defining your own special command or environment. The following two sections

explain how to do this Section 3.4.3 describes how to handle theorems and

similar structures

3.4.1 Defining Commands

The simplest type of repeated structure occurs when the same text appears

in different places. The \newcommand declaration defines a new command to

generate such text: its tirst argument is the command name and its second

argument is the text

Let T, be the number of gnats per cubic meter, \newcommand{\gnMΓ_{i}}

where T, is normalized with respect to u(s).

Let \gn\ be the . . . where \gn\ is

The V commands are needed because TgX ignores space characters following

the command name \gn.

This example illust rates a common problem in defining commands to produce

mathematical formulas. The \Gamma command can be used only in math mode,

which is why the $V are needed in the \newcommand argument. However, the

command \gn cannot be used in math mode because the first $ would cause

T[]X to leave math mode. The command

\newcommand{\gnat}{\mbox{Γ_{i}}}

defines \gnat to have the same effect as \gn when used in paragraph or LR mode,

but \gnat can also be used in math mode. This is a trick worth remembering.

In addition to making the input more readable, defining your own commands
can save typing. [fijrjX's command and environment names have generally been

chosen to be descriptive rather than brief. You can use \newcommand to define

abbreviations for frequently-used commands. For example, the declarations

\newcommand{\be}{\begin{enumerate}}

\newcommand{\ee}{\end{enumerate}}

define \be . . \ee to be equivalent to

\begin{enumerate} . . . \end{enumerate}

For repetitive structures having components that vary, you can define com-

mands with arguments by giving \newcommand an optional argument.

Since gnu '<
i -l:y+l) represent ad- \newcommand{\gnaw}[2] {{\em gnu\/}$(#l ; #2)$>

jacent populations, they are approximately equal.

Since \gnaw{5xMy} and \gnaw{5x-l}{y+l} . . .

56 Carrying On

The optional argument 2 (in square brackets) specifies that \gnaw has two argu-

ments. The #1 and #2 in the last argument of \newcommand are called parame-

ters: they are replaced by the first and second arguments, respectively, of \gnaw

when that command is used. A command may have up to nine arguments.

When you define a command like \gnaw. the definition is saved exactly as it

appears in the \newcommand declaration. When TgX encounters a use of \gnaw.

it replaces \gnaw and its arguments by the definition, with the arguments substi-

tuted for the corresponding parameters—the #1 replaced by the first argument

and the #2 replaced by the second. T£X then processes this text pretty much
as if you had typed it instead of typing the \gnaw command. However, defining

a command to have space at the end is usually a bad idea, since it can lead to

extra space in the output when the command is used.

One command can be defined in terms of another.

The above definition of gnu(0: 1) gives gnu{bx:y) \newcommand{\usegnaw}{\gnaw{5xHy}}

the expected value. ... of \gnaw{0Ml} gives \usegnaw\ the . . .

It doesn't matter whether the \newcommand declaration defining \usegnaw comes

before or after the one defining \gnaw. so long as they both come before any

use of \usegnaw. However, a command cannot be defined in terms of itself.

since TgX would chase its tail forever trying to figure out what such a definition

meant. 2

When T£JX encounters a command, it looks for that command's arguments

before interpreting it or any subsequent commands. Thus, you can't type

\newcommand{\gnawargs}{{5x}{y}} \gnaw\gnawargs is wrong

because TgX expects the \gnaw command to be followed by two arguments

enclosed in braces, not by another command.

The braces surrounding the last argument of the \newcommand declaration

do not become part of the command's definition, and the braces surrounding

an argument are thrown away before substituting the argument for the corre-

sponding parameter. This means that the braces delimiting an argument do

not delimit the scope of declarations in the argument. To limit the scope of

declarations contained within an argument, you must add explicit braces in the

command definition.

gnus(x:r>4) is fine, but in gnus(x;&4) the scope of \newcommand{\good} [3] {{#1}$({#2> ; <#3>)$>

the emphasis declaration extends into the following \newcommand{\bad> [3] \#l$(#2 ;#3)$}

text.

\good{\em gnus\/MxM54} is fine, but in

\bad{\em gnus\/}<x><54> , the scope ...

2 This kind of recursive definition is possible using more advanced T£X commands, but it

cannot be done with the I^Tj?X commands described in this book.

3.4 Defining COminands and Environments 57

Using \newcommand to define a command that already exists produces an

error. The \renewcommand declaration redefines an already-defined command;

it has the same arguments as \newcommand. Don't redefine an existing command
unless you know what you're doing. Even if you don't explictly use a command,

redefining it can produce strange and unpleasant results. Also, never define or

redefine any command whose name begins with "\end".

The \newcommand and \renewcommand commands are declarations, their

scopes determined by the rules given in Section 2.2.1. It's a good idea to put

all command definitions together in the preamble; that way you won't have to

search through the input file to find them.

3.4.2 Defining Environments

The \newenvironment command is used to define a new environment. A com-

mand of the form

\newenvironment{cozyM6e<7m text}{end text}

defines a cozy environment for which TgX replaces a \begin{cozy} command by

the begin text and an \end{cozy} command by the end text. A new environment

is usually defined in terms of an existing" environment such as itemize, with the

begin text beginning the itemize environment and the end text ending it.

Here is an example of a user-defined environment: \newenvironment{emphit}{\begin{itemize}

• This environment produces emphasized items.
\emj-i.\en "U emizej-j-

... example of a user-defined environment:
• It is defined in terms of L^T^X's itemize en- \beein{emphit}

vironment and \em command. Utem This environment produces . . .

\end{emphit>

An optional argument of the \newenvironment command allows you to define

an environment that has arguments: it works the same as described above for

\newcommand.

Observe how a new logical structure -in this ex- \newenvironment{descit}[l] {\begin{quote>

ample, a labeled description of a single item—can {\em #1\/} :}{\end{quote}}

be defined in terms of existing environments.

Armadillos. This witty description of
defined in terms of existing environments,

the armadillo was produced by the
\begin<descit>{Armadillos>

descit environment.
This witt ? descriPtion of the armadillo ..

\end{descit>

The parameter- (the #1. #2. etc.) can appear only in the begin text. The com-

ments made above about the scope of declarations that appear inside arguments

of a command defined with \newcommand apply to the arguments of environ-

ments defined with \newenvironment.

58 Carrying On

The \newenvironment command produces an error if the environment is

already defined. Use \renewenvironment to redefine an existing environment. If

\newenvironment complains that an environment you've never heard of already

exists, choose a different environment name. Use \renewenvironment only when
you know what you're doing; don't try redefining an environment that you don't

know about.

3.4.3 Theorems and Such

Mathematical text usually includes theorems and/or theorem-like structures

such as lemmas, propositions, axioms, conjectures, and so on. Nonmathemat-

ical text may contain similar structures: rules, laws, assumptions, principles,

etc. Having a built-in environment for each possibility is out of the question,

so I^TjtX provides a \newtheorem declaration to define environments for the

particular theorem-like structures in your document.

The \newtheorera command has two arguments: the first is the name of the

environment, the second is the text used to label it.

Conjectures are numbered consecutively from the \newtheorem{guess}{Conjecture}

beginning of the document; this is the fourth one:

document; this is the fourth one:
Conjecture 4 All conjectures are interesting, but \beein{euess}
some conjectures are more interesting than others. ^-q conjectures than others

\end{guess}

The \newtheorem declaration is best put in the preamble, but it can go anywhere

in the document.

A final optional argument to \newtheorem causes the theorem-like environ-

ment to be numbered within the specified sectional unit.

This is the first Axiom of Chapter 3: \newtheorem{axiom}{Axiom} [chapter]

Axiom 3.1 All axioms are very dull. \beein{axiom}

All axioms are very dull.

\end{axiom>

Theorem-like environments can be numbered within any sectional unit; using

section instead of chapter in the above example causes axioms to be numbered

within sections.

Sometimes one wants different theorem-like structures to share the same

numbering sequence—so, for example, the hunch immediately following Conjec-

ture 5 should be Hunch 6.

3.5 Figures and Other Floating Bodies 59

Conjecture 5 s \ooA conjectures are num- \newtheorem{guess}{Conjecture}

bered. \newtheorem{hunch} [guess] {Hunch}

Hunch 6 Then fire hunches. \begin{guess> Some good . . . \end{guess}

\begin{hunch} There are . . . \end{hunch}

The optional argument guess in the second \newtheorem command specifies

that the hunch environment should be numbered in the same sequence as the

guess environment.

A theorem-like environment defined with \newtheorem has an optional argu-

ment that is often used for the inventor or common name of a theorem, definition,

or axiom.

Conjecture 7 (Fermat) There do not exist inte- \begin{guess}[Fermat]

gers n > 2. x. y. and : such that x" + y
n = z"

.

There do not exist integers $n>2$, x,

y , and z such that . .

.

\end{guess>

See Section C.l.l if the body of a theorem-like environment begins with a [.

3.5 Figures and Other Floating Bodies

3.5.1 Figures and Tables

Though document > would be easier to read if no sentence were ever split across

two pages, typeset ters must break sentences to avoid partially filled pages. Some
things, like pictures and tables, cannot be split; they must be "floated" to conve-

nient places, such as the top of the following page, to prevent half-empty pages.

The standard ffljgX document styles provide two environments that cause their

contents to float in this way: figure and table. The figure environment is

generally used for pictures and the table environment for tabular information.

Special document styles might also have environments for floating other kinds

of objects - computer programs. However. IATjrX doesn't care what you

use these em ronmenta for: so far as it's concerned, the only difference between

them is how they are captioned.

The caption on a figure or table is made with a \caption command hav-

ing the (text as its argument. This is a moving argument, so fragile

command be Xprotect'ed (see Section 2.2.3). The figure or table en-

vironing ed in with the text, usually just past the point where it is first

mentiom

60 Carrying On

The body of the figure goes here. This figure hap- This is place in the running text that

pened to float to the top of the current page. mentions Figure~7 for the first time.

\begin{f igure}
Figure 7: The caption goes here. The body of the figure gQes here

This figure ... the current page.

\caption{The caption goes here.}

\end{f igure}
This is place in the running text that mentions The figure will not be put on an ...

Figure 7 for the first time. The figure will not be

put on an earlier page than the text preceding the

figure environment.

TjtX processes the body of a figure or table in paragraph mode. Figures are

usually made with the picture environment of Section 5.5 and tables with the

tabular environment of Section 3.6.2. Section 5.6 tells how to center the figure

or table.

The \vspace command instructs IATjrX to leave room for material to be

pasted in later, its argument specifying how much vertical space to allow. To
leave room for a picture that's 3.5 inches high, you type:

\begin{f igure}

\vspace{3.5in}

\caption{Isn't this a pretty picture?}

\end{f igure}

If you prefer to think in centimeters, you can type 8 . 89cm instead of 3 . 5in.

Section 5.4.1 gives other units for describing vertical space.

The article document style numbers figures and tables consecutively

throughout the paper: the report and book document styles number them

within chapters. Tables are numbered separately from figures, using the same

numbering scheme. Section 4.2 explains how to number cross-references auto-

matically, so you never have to type the actual figure numbers.

The body of a figure or table is typeset as a paragraph the same width as

in the ordinary running text. Section 5.4.3 explains how to make paragraphs of

different widths, position two half-width figures side by side, and do other so-

phisticated formatting within a figure or table environment. More than one

\caption command can appear in the same figure or table environment, pro-

ducing a single floating object with multiple numbered captions. The \caption

command can be used only in a figure or table environment.

The standard document styles may place figures and tables above the text

at the top of a page, below the text at the bottom of a page, or on a separate

page containing nothing but figures and tables. Section C.8.1 describes the rules

by which IATj?X decides where a floating object should float and how you can

influence its decision: read that section if you don't understand why IATj?X put

a figure or table where it did.

3.5 Figures and Other Floating Bodies 61

3.5.2 Marginal Notes

A marginal note is made with the \marginpar command, having the text as its

argument. The note is placed in the margin, its first line even with the line of This is a mar-

text containing the command. T[>\ is in paragraph mode when processing the ginal note.

marginal note. The Following example shows how I typed this paragraph.

and. having the text u its

line even with the line of

mode when processing the

yped this paragraph

This is a mar-

ginal note.

. . . placed in the margin,

\marginpar{\em This is a marginal note.}

its first line even with the line of

. . . how I typed this paragraph.

The standard document styles put notes in the right margin for one-sided

printing (the default). in the outside margin for two-sided printing (the twoside

style option), and in the nearest margin for two-column formatting (the

twocolumn style option). Section C.8.2 describes commands for getting I^TjrX

to put them in the opposite margin.

You may want a marginal note to vary depending upon which margin it's in.

For example, to make an arrow pointing to the text, you need a left-pointing

arrow in the right margin and a right-pointing one in the left margin. If the

\marginpar command is given an optional first argument, it uses that argument

if the note goes in the left margin and uses the second (mandatory) argument

if it goes in the right margin. The command

\marginpar [\Rightarrow] {\Leftarrow}

makes an arrow that points towards the text, whichever margin the note appears

in.
3

A marginal note is never broken across pages: a note that's too long will

extend below the page's bottom margin. BTjrX moves a marginal note down on

the page to keep it from bumping into a previous one, warning you when it does

so. When using notes more than two or three lines long, you may have to adjust

their placement according to where they happen to fall on the page. The vertical

position of a note is changed by beginning it with a vertical spacing command
(Section 5.4.2 i You may also have to use the commands of Section 5.2.2 to

control where L^Tj-X starts a new page. This is visual design, which means

reformatting if you make changes to the document. Save this job until the very

end. after you've finished all the writing.

Marginal notes are not handled efficiently by L£Tj?X: it may run out of space if

you use too many of them. How many you can use before this happens depends

upon what computer you're running I^TjrX on and how many figures and tables

you have, but more than five marginal notes on any one page is dangerous.

3The arrow-; won't be symmetrically placed, since both will be at the left of the space

reserved for marginal notes. The \hf ill command of Section 5.4.2 can be used to adjust their

horizontal p<»ition.

62 Carrying On

3.6 Lining It Up in Columns

The tabbing and tabular environments both can align text in columns. The
tabbing environment allows you to set tab stops similar to the ones on a type-

writer, while the tabular environment is similar to the array environment de-

scribed in Section 3.3.3. except that it is for ordinary text rather than formulas.

The tabbing and tabular environments differ in the following ways:

• The tabbing environment can be used only in paragraph mode and makes

a separate paragraph: the tabular environment can be used in any mode
and can put a table in the middle of a formula or line of text.

•

•

TgX can start a new page in the middle of a tabbing environment, but

not in the middle of a tabular environment. Thus, a long tabbing envi-

ronment can appear in the running text, but a long tabular environment

should go in a figure or table (Section 3.5.1).

TeX automatically determines the widths of columns in the tabular en-

vironment: you have to do that yourself in the tabbing environment by

setting tab stops.

• A change of format in the middle of the environment is easier in the

tabbing than in the tabular environment. This makes the tabbing en-

vironment better at formatting computer programs.

3.6.1 The tabbing Environment

In the tabbing environment, you align text in columns by setting tab stops and

tabbing to them, somewhat as you would with an ordinary typewriter. Tab

stops are set with the \= command, and \> moves to the next tab stop. Lines

are separated by the \\ command.

The tabbing environment starts a new line. . . . environment starts a new line.

\begin{tabbing>
If it's raining If \= it .

s raining \\
then put on boots. \> then \= put on D00tSi \\

takehat: \> \> take hat; \\
else smile. x> else x> smile \\

Leave house. Leave house

The text that follows starts on a new line, begin- °

, . r , i_i i i- r The text that follows starts on a new . . .

ning a new paragraph it you leave a blank line alter

the \end<tabbing> command.

Unlike a typewriter's tabbing key. the \> command tabs to the logically next

tab stop, even if that means tabbing to the left.

3.6 Lining It Up in Columns 63

\begin{tabbing}

A short column A short \= column. \\

This is Xffltya/gl / / This is too long. \> ///////
\end{tabbing}

\mbox{}

Remember that t he input tile's format doesn't matter; one space is the same as

a hundred.

The \= command resets the logically next tab stop.

\begin{tabbing>

Old Column 1 OW Col 2 Old Col 3 Old Column 1 \= Old Col 2 \= Old Col 3 \\

Col 1 Col 2 Col 1 \> Col 2 \\

New Col 1 New 2 Same Col 3 New Col 1 \= New 2 \> Same Col 3 \\

Col 1 Col 2 Col 3 Col 1 \> Col 2 \> Col 3

\end{tabbing}

Spaces are ignored after a \= or \> command, but not before it.

A line that ends with a \kill command instead of a \\ produces no output,

but can be used for setting tabs.

\begin{tabbing}

Armadillo \= Armament \= \kill

Gnat Gnu Gnome Gnat \> Gnu \> Gnome \\

Armadillo Armament Armorer Armadillo \> Armament \> Armorer

\end{tabbing}

A declaration made in a tabbing environment is local to the current item; its

scope is ended by the next \=, \>, \\, \kill, or \end{tabbing} command.

A lively gnat A dull gnu A lively \em gnat \> A dull gnu \\

The tabbing environment has a number of additional features that are described

in Section C.9.1.

3.6.2 The tabular Environment

The tabular environment is similar to the array environment, so you should

read Section 3.3.3 before reading any further here. It differs from the array

environment in two ways: it may be used in any mode, not just in math mode,

and its item- are processed in LR mode instead of in math mode. This makes

tabular better for tabular lists and array better for mathematical formulas.

This section describes some features used mainly with the tabular environment,

although they apply to array as well.

A I
in the tabular environment's argument puts a vertical line extending the

full heighl of the environment in the specified place. An \hline command after

64 Carrying On

a \\ or at the beginning of the environment draws a horizontal line across the

full width of the environment. The \cline{z-y> command draws a horizontal

line across columns i through j, inclusive.

gnats gram $13.65

each .01

gnu stuffed 92.50

emur 33.33

armadillo frozen 8.99

\begin{tabular}{ I 1 1 1 lr I I

}

gnats

\hline

& gram &\$13.65 \\ \cline{2-3>

& each & .01 \\ \hline

gnu & stuffed & 92.50

\\ \cline{l-l} \cline{3-3>

emur & & 33.33 \\ \hline

armadillo & frozen

\end{tabular}

& 8.99 \\ \hline

This is the only situation in which a \\ goes after the last row of the environment.

A single item that spans multiple columns is made with a \multicolumn

command, having the form

\multicolumn{n}{pos}{^era}

where n is the number of colum.is to be spanned, pos specifies the horizontal

positioning of the item—just as in the environment's argument—and item is

the item's text. The pos argument replaces the portion of the environment's

argument corresponding to the n spanned columns; it must contain a single 1,

r, or c character and may contain I characters.

Note the placement of "Item" and "Price"

:

Item Price

gnat (dozen) 3.24

gnu (each) 24,985.47

. . . \begin{tabular}{llr}

\multicolumn{2}{c}{Item> &

\multicolumn{l}{c}{Price} \\

gnat & (dozen) & 3.24 \\

gnu & (each) & 24,985.47

\end{tabular>

A \multi column command spanning a single column serves to override the item

positioning specified by the environment argument.

When the environment argument has
I
characters, it's not obvious which of

them get replaced by a Nmulticolumn's positioning argument. The rule is: the

part of the environment argument corresponding to a single column begins with

an 1. r, or c character.

type style

smart

rather silly

red

puce

short

tall

\begin{tabularM 1 1 1 1 1 r I } \hline\hline

{\em type} &

\multicolumn{2Xc I
}{\em style} \\ \hline

smart & red & short \\

rather silly & puce & tall \\ \hline\hline

\end{tabular>

3.7 Simulating Typed Text 65

The tabular environment produces an object that TgX treats exactly like

a single, big lettci You could put it in the middle of a paragraph—or in the

middle of a word but that would look rather strange. A tabular environment

is usually put in a figure or table (Section 3.5.1), or else displayed on a line by

itself, using the center environment of Section 5.6.

3.7 Simulating Typed Text

A printed document may contain simulated typed text—for example, the in-

struction manual for a computer program usually shows what the user types.

The \tt declaration produces a typewriter type style (Section 3.1), but it doesn't

stop TgX from breaking the text into lines as it sees fit. The verbatim environ-

ment allows you to type the text exactly the way you want it to appear in the

document.

The verbatim environment is the one place where ... to how the input file is formatted.

I^TgX pays attention to how the input file is for- \begin{verbatim}

matted. What the #'/.|4:$_\" is ''going'' {on}

here \today \\\\????
What the #% l&$_\-~ is "going" {on} \end{verbatim}

here \today WW????

Each space you type produces a space in the output, and new lines are begun just

where you type them. Special characters such as \ and { are treated like ordinary

characters in a verbatim environment. In fact, you can type anything in the

body of a verbatim environment except for the fourteen-character sequence

"\end{verbatim}"

.

The verbatim environment begins on a new line of output, as does the text

following it. A blank line after the \end{verbatim} starts a new paragraph as

usual.

The \verb command simulates a short piece of typed text inside an ordinary

paragraph. Its argument is not enclosed in braces, but by a pair of identical

characters.

The '/.\ }{Ct gnat and --#$ gnus are silly. The \verb+'/.\ }{©&+ gnat and \verb2--#$2

The argument of the first \verb command is contained between the two + char-

acters, the argument of the second between two 2 characters. Instead of + or 2,

you can use any character that does not appear in the argument except a space,

a letter, or a *. The argument of \verb may contain spaces, but it should all

be on a single line of the input file.

There are also a verbatim* environment and a \verb* command. They

are exactly like verbatim and \verb except that a space produces a u symbol

instead of a blank space.

66 Carrying On

You can type $Xu=uy$ or u$x=y$u - \verb*|$x = y$ I or \verb*/ $x=y$ /

The verbatim environment and \verb command are inherently anomalous, since

characters like $ and } don't have their usual meanings. This results in the

following restrictions on their use:

• A verbatim environment or \verb command may not appear within an ar-

gument of any other command. (However, they may appear inside another

environment.)

• There may be no space between a \verb or \verb* command and its

argument.

• There may be no space between "Vend" and "{' ,

in \end{verbatim}.

The verbatim environment is for simulating typed text; it is not intended to

turn IATjr;X into a typewriter. If you're tempted to use it for visual formatting,

don't: use the tabbing environment of Section 3.6.1 instead.

3.8 Letters

The letter document style is for making letters—the kind that are put in an

envelope and mailed. You can make any number of letters with a single input

file. Your name and address, which are likely to be the same for all letters.

are specified by declarations. The return address is declared by an \address

command, with multiple output lines separated by \\ commands.

\address{1234 Ave . \ of the ArmadillosW
Gnu York, G.Y. 56789}

The \signature command declares your name, as it appears at the end of the

letter, with the usual \\ commands separating multiple lines.

\signature{R. (Ma) Dillo \\ Director of Cuisine}

These declarations are usually put in the preamble, but they are ordinary dec-

larations with the customary scoping rules and can appear anywhere in the

document.

Each letter is produced by a separate letter environment, having the name

and address of the recipient as its argument. The argument of the letter

environment is a moving argument. The letter itself begins with an \opening

command that generates the salutation.

3.8 Letters 67

1234 Ave. of the Armadillos \begin{letter}{Dr.\ G. Nathaniel Picking \\

Gnu York. G.Y. 56789 Acme ExterminatorsW 33 Swat Street \\

, i ,™„ Hometown, Illinois 62301}
July 4. 1996

Dr. G. Nathaniel Picking \opening{Dear Nat,}

Acme Exterminator

33 Swat Street ^ m sifraid that the armadillo problem

Hometown, Illinois 62301 is sti11 with us I did everything

Dear Nat.

I'm afraid that the armadillo problem is still with

us. I did everything . .

.

The return address is determined by the \address declaration; I^TgX supplies

the date. An \address and/or \signature command that applies just to this

letter can be put between the \begin{letter} and the \opening command.
The main body of the letter is ordinary BTjtX input, but commands like

\section that make no sense in a letter should not be used. The letter closes

with a \closing command.

. . . and I hope you can get rid of the nasty beasts . . . and I hope you can get rid of the nasty

this time. beasts this time.

Best regards. \closing{Best regards,}

R. (Ma) Dillo

Director of Cuisine

The name comes from the \signature declaration.

The \cc command can be used after the closing to list the names of people

to whom you are sending copies.

cc: Jimmy Carter \cc {Jimmy Carter \\ Richard M. Nixon}

Richard M. Nixon

There's a similar \encl command for a list of enclosures.

Additional text after the closing must be preceded by a \ps command. This

command generates no text you'll have to type the "P.S." yourself —but is

needed to format the additional text correctly.

A \makelabels command in the preamble will cause IATj?X to print a list of

mailing labels, one for each letter environment, in a format suitable for xero-

graphic copying onto "peel-off" labels. A mailing label without a corresponding

letter is produced by an empty letter environment—one with nothing between

the argument and the \end{letter} command.

The letter document style may have other special features especially if

you are using UTfrX at a company or university. For example, leaving out the

68 Carrying On

\address declaration may cause the letter to be formatted for copying onto the

company letterhead. Consult the Local Guide for more information.

CHAPTER 4

Moving
Information
Around

70 Moving Information Around

The commands described in this chapter all enable you to move information

from one place to another. For example, when you make a table of contents,

the information it contains comes from the sectioning commands that are scat-

tered throughout the input file. Similarly, the IATjrX command that generates a

cross reference to an equation must get the equation number from the equation

environment, which may occur several chapters later.

Moving information in this way requires two passes over the input: one

pass to find the information and a second pass to put it into the text. To

compile a table of contents, one pass determines the titles and starting pages

of all the sections and a second pass puts this information into the table of

contents. Instead of making two passes every time it is run. I£Tj?X reads your

input file only once and saves the cross-referencing information in special files

for use the next time. For example, if sample . tex had a command to produce a

table of contents, then WFpX. would write the necessary information into the file

sample .toe. It would use the information in the current version of sample, toe

to produce the table of contents, and would write a new version of that file to

produce the table of contents the next time IATjrX is run with sample.tex as

input.

BTjjX's cross-referencing information is therefore always "okT . since it was

gathered on a previous execution. This will be noticeable mainly when you are

first writing the document—for example, a newly added section won't be listed

in the table of contents. However, the last changes you make to your document

will normally be minor ones that polish the prose rather than add new sections

or equations. The cross-referencing information is unlikely to change the last few

times you run I^TjtX on your file, so all the cross-references will almost always

be correct in the final version. In any case, if the cross-referencing is incorrect,

IATgX will type a warning message when it has finished. Running it again on

the same input will correct any errors.
1

4.1 The Table of Contents

A \tableof contents command produces a table of contents. More precisely, it

does two things:

•

•

It causes L&TjrX to write a new toe file—that is. a file with the same first

name as the input file and the extension toe—with the information needed

to generate a table of contents.

It reads the information from the previous version of the toe file to produce

a table of contents, complete with heading.

*If you're a computer wizard or are very good at mathematical puzzles, you may be able

to create a file in which a reference to a page number always remains incorrect. The chance

of that happening by accident is infinitesimal.

4.2 Cross-References 71

The commands \listoffigures ami \listoftables produce a list of figures

and a list of tables, respectively. They work just like the \tableof contents

command, except that 1\T| X writes a file with extension lof when making a

list of figures and a file with extension lot when making a list of tables.

You can edit the toe. lof. and lot files yourself if you don't like what IATjrX

does. This allows you to perform such fine tuning as changing the page breaks

in a long table of contents. Do this only when preparing the final version of

your document, ami use .1 \nof iles command (described in Section C.10.1) to

suppress the writing of new versions of the files.

4.2 Cross-References

One reason for numbering things like figures and equations is to refer the reader

to them, as in: "See Figure 3 for more details." You don't want the "3" to

appear in the input file because adding another a figure might make this one

become Figure 4. Instead, you can assign a key of your choice to this figure

and refer to it by that key. letting IATgX translate the reference into the figure

number. The key is assigned by the Mabel command, and is referred to by the

\ref command. A \label command appearing in ordinary text assigns to the

key the number of the current sectional unit; one appearing inside a numbered

environment assigns that number to the key. In the following example, the

\label{eq: euler} command assigns the key eq: euler to the equation number,

and the command \ref{eq: euler} generates that equation number.

Equation 12 in Section 2.3 below is Euler's famous Equation~\ref {eq: euler} in

result. Section~\ref {sec-early} below

\subsection{Early Results}
2.3 Early Results \label{sec-early}

Euler "s equation Euler's equation

\begin{equation}

e
,,r + l = (12) e"{i\pi} +1=0 \label{eq: euler}

\end{equation}
combines the five most important numbers in combines the five most important . . .

mathematics in a tingle equation.

A key can consist of any sequence of letters, digits, or punctuation characters

(Section 2.1). Upper- and lowercase letters are different, so gnu and Gnu are

distinct keys.

To assign the number of a sectional unit to a key. you can put the \label

command anywhere within the unit except within an environment in which it

would assign some other number, or you can put it in the argument of the

sectioning command. The following environments generate numbers that can

be assigned to keys with a Mabel comand: equation, eqnarray. enumerate

72 Moving Information Around

(assigns the current item's number), figure, table, and any theorem-like envi-

ronment defined with the \newtheorem command of Section 3.4.3. Since there

can be several captions in a figure or table environment, \caption works like

a sectioning command within the environment, with the Mabel command going

either after the \caption command or in its argument.

The \pageref command is similar to the \ref command except it produces

the page number of the place in the text where the corresponding Mabel com-

mand appears.

See page 42 for more details. See page~\pageref {'meaning'} for more

The \label{' meaning'} meaning of life, ...

Text on page J^2:

The meaning of life, the universe, and . .

.

See Section 2.2.1 for an explanation of why the ~ command is needed. A \ref or

\pageref command generates only the number, so you have to type the "page"

to produce "page 42".

The numbers generated by \ref and \pageref were assigned to the keys the

previous time you ran I^TjrX on your document. While section and equation

numbers are changed only by adding or removing a section or equation, adding

or deleting any text may change the page number assigned to a key.

The \ref and \pageref commands are fragile. A Mabel can appear in

the argument of a sectioning or \caption command, but in no other moving

argument. If you use a lot of keys (more than about forty), try to keep them

reasonably short or you may cause IAT^X to run out of space.

Using keys for cross-referencing saves you from keeping track of the actual

numbers, but it requires you to remember the keys. You can produce a list of

the keys by running IATjrX on the input file lablst. (Your Local Guide tells

exactly how to do this.) I^TgX will then ask you to type in the name of the

input file whose keys you want listed, as well as the name of the document style

specified by that file's \documentstyle command.

4.3 Bibliography and Citation

A citation is a cross-reference to another publication, such as a journal article,

called the source. The modern method of citing a source is with a cross-reference

to an entry in a list of sources at the end of the document. With IATj?X. you can

either produce the list of sources yourself or else use a separate program called

BlBTgX to generate it from information contained in a bibliographic database.

4.3 Bibliography and Citation 73

4.3.1 Doing It Yourself

The source list is created with a thebibliography environment, which is like

the enumerate environment described in Section 2.2.4 except that:

• List items arc begun with the \bibitem command. Its argument is a key

by which the source can be cited with a \cite command. (The \bibitem

and \cite commands work much like the Mabel and \ref commands of

Section 4.2.)

• The thebibliography environment has an argument that should be a

piece of text the same width as or slightly wider than the widest item

label in the source list

.

See [67] for the hairy details. See \cite{kn:gnus} for the hairy details.

\begin{thebibliography}{99}

References

[67] D. E. Knudson. 1966 World Gnus Almanac.

Permafrost Press Novosibirsk.

\bibitem{kn:gnus} D. E. Knudson.

{\em 1966 World Gnus Almanac.}

\end{thebibliography}

Note that "99" is exactly as wide as all other two-digit numbers.

A key can be any sequence of letters, digits and punctuation characters,

except that it may not contain a comma (,). As usual in IATjnX, upper- and

lowercase letters are eonsidered to be different.

You can cite multiple sources with a single \cite, separating the keys by

commas. The \cite command has an optional argument that adds a note to

the citation.

See [4.15.36] or [67. pages 222 333] for information See \cite{tom-gnat , dick: gnu, harry-arm} or

on the care and feeding of gnus. \cite [pages 222 -- 333] {kn: gnus} for ...

Instead of using numbers, you can choose your own labels for the sources by

giving an optional argument to the \bibitem command.

See [Knud 66] for the hairy details. See \cite{kn:gnus} for the hairy details.

\begin{thebibliography}{Dillo 83}

References

[Knud 66] D. E. Knudson. 1966 World Gnus Al-

manac. Permafrost Press. Novosibirsk.

\bibitem[Knud 66] {kn :gnus} D. E. Knudson.

{\em 1966 World Gnus Almanac.}

\end<thebibliography}

74 Moving Information Around

In this example. "[Dillo 83]" should be the longest label. The optional argument

of \bibitem is a moving argument.

As in any kind of cross-reference, citations are based upon the information

gathered the previous time L£Tj?X was run on the file, so when you change the

source list, the citations won't change until the second time you run I^TjrX.

4.3.2 Using BlBTEX

BebTjtX is a separate program that produces the source list for a document,

obtaining the information from a bibliographic database. With BlBTgX. the

\cite command is used as above for citations, but instead of typing the source

list yourself, you type a \bibliography command whose argument specifies one

or more files containing the bibliographic database. The names of the database

files must have the extension bib. For example, the command

\bibliography{insect , animal}

specifies that the source list is to be obtained from entries in the files insect . bib

and animal . bib. See Appendix B to find out how to make bibliographic data-

base files.

The \nocite command causes one or more entries to appear in the source list,

but produces no output. For example, \nocite{g:nu,g:nat} causes BibTjtX to

put bibliography database entries having keys g : nu and g : nat in the source list.

A \nocite command can go anywhere after the \begin{document} command,

but it is fragile.

The \bibliographystyle command specifies the bibliography style, which

determines the format of the source list—just as the document style determines

the document "s format. For example, the command

\bibliographystyle{plain}

specifies that entries should be formatted as specified by the plain bibliography

style. The \bibliographystyle command must go after the \begin{document}

command.

The standard bibliography styles include the following.

plain Formatted more or less as suggested by van Leunen in A Handbook for

Scholars [7]. Entries are sorted alphabetically and are labeled with num-

bers.

unsrt The same as plain except that entries appear in the order of their first

citation.

alpha The same as plain except that entry labels like "Knu66". formed from

the author's name and the year of publication, are used.

4.4 Splitting Your Input 75

abbrv The same as plain except thai entries are more compacl because first

names, month names, and journal names are abbreviated.

BlBTpy\"s bibliography Styles can be customized to handle most bibliography

formatting problems, but this requires sophisticated programming. The Local

Guide tells if any other bibliography styles are available and where to look for

information on creating your own styles.

To produce a source 1
list with BlBTgX, you have to understand how IATgX and

BlBTjrX interact. When you ran LVTjrX with the input file sample.tex, you may
have noticed that 1AT|.\ created a file named sample. aux. This file, called an

auxiliary file, contains cross-referencing information. Since sample . tex contains

no cross-referencing commands, the auxiliary file it produces has no information.

However, suppose th.it [AT^X is run with an input file named myfile.tex that

has citations and bibliography-making commands. The auxiliary file myf ile . aux

that it produces will contain all the citation keys and the arguments of the

\bibliography and \bibliographystyle commands. When BlBTgX is run,

it reads this information from the auxiliary file and produces a file named
myfile.bbl containing IATj.\X commands to produce the source list. (Your

Local Guide explains how to run BlBTjrX on your computer.) The next time

IATj?X is run on myfile.tex. the \bibliography command reads the bbl file

(myfile.bbl). which generates the source list.

This procedure ha- the disadvantage that adding or removing a citation

may require running BlBTgX again to produce a new source list. (Moreover,

remember that changes to the source list are not immediately reflected in the

citations.) It has the advantage that you can edit the bbl file yourself if you

don*t like the source list BlBTjrX produced. While BibTjtX gets most source-list

entries right, it is only a computer program, so you may occasionally encounter

a source that it doc- not handle properly. When this happens, you can correct

the entry on the bbl file.

4.4 Splitting Your Input

A large document requires a lot of input. Rather than putting the whole input

in a single lai it's more efficient to split it into several smaller ones.

Regardless of how many separate files you use. there is one that is the roof file:

it is the one whose name you type when you run IATj?X.

The \input command provides the simplest way to split your input into sev-

eral files. The command \input{gnu} in the root file causes IATjrX to insert the

contents of the file gnu. tex right at the current spot in your manuscript just

as if the \input{gnu} command were removed from the root file and replaced

by the contents of the file gnu. tex. (However, the input files are not changed.)

The file gnu tex may also contain an \input command, calling another file that

may have its own \input command-, and -o on.

76 Moving Information Around

Besides splitting your input into convenient-sized chunks, the \input com-

mand also makes it easy to use the same input in different documents. While

text is seldom recycled in this way, you might want to reuse declarations. You
can keep a file containing declarations that are used in all your documents, such

as the definitions of commands and environments for your own logical structures

(Section 3.4). You can even begin your root file with an \input command and

put the \documentstyle command in your declarations file.

Another reason for splitting the input into separate files is to run IATgX on

only part of the document so, when you make changes, only the parts that have

changed need to be processed. For this, you must use the \include command
instead of \input. The two commands are similar in that \include{gnu} also

specifies that the contents of the file gnu.tex should be inserted in its place.

However, with the \include command, you can tell WFgX either to insert the

file or to omit it and process all succeeding text as if the file had been inserted,

numbering pages, sections, equations, etc. as if the omitted file's text had been

included.

To run IATgX on only part of the document, the preamble must contain an

\includeonly command whose argument is a list of files (first names only).

The file specified by an \include command is processed only if it appears in

the argument of the \includeonly command. Thus, if the preamble contains

the command

\includeonly{gnu
,
gnat

,
gnash}

then an \include{gnat} command causes the file gnat.tex to be included,

while the command \include{rmadlo} causes IATjrX not to include the file

rmadlo.tex, but to process the text following it as if the file had been included.

More precisely, it causes BTjjX to process the succeeding text under the as-

sumption that the omitted file is exactly the same as it was the last time it was

included. IATgX does not read an omitted file and is unaware of any changes

made to the file since it was last included.

The entire root file is always processed. If the preamble does not contain an

\includeonly command, then every \include command inserts its file. The

command \includeonlyO (with a null argument) instructs IATjrX to omit all

\include'd files. An \include can appear only after the \begin{document}

command.

The \include command has one feature that limits its usefulness: the in-

cluded text always starts a new page, as does the text immediately following the

\include command. It therefore works right only if the \include'd text and

that following it should begin on a new page—for example, if it consists of one or

more complete chapters. For a long document, the ability to process individual

parts saves so much time that, while writing it. you may want to split the input

into pieces smaller than a complete chapter with \include commands. The

4.5 Making an Index or Glossary 77

small files can be combined into chapter-sized ones when generating the final

version.

Another difficulty with the \include mechanism is that changing the docu-

ment may require up some unchanged \include'd files in order to get

the correct numbering of pages, sections, etc. When skipping an \include'd

file, the numbering in the succeeding text is based upon the numbering in the

file's text the last time it was processed. Suppose that the root file contains the

commands

\include{gnu>

\chapter{Armadillo}

and an \includeonly in the preamble causes the \include command to omit

file gnu. t ex. If the text in gnu. t ex ended in Chapter 5 on page 57 the last

time it was processed, even if you've added seven more chapters and sixty pages

of text before the \include command since then, the \chapter command will

produce Chapter (i starting on page 58. In general, to make sure everything is

numbered correctly, you must reprocess an \include'd file if a change to the

preceding text changes the numbering in the text produced by that file.

When working on a large document, you should make each appropriately-

sized sectional unit a separate \include'd file. (You may find it convenient to

enter the \includeonly command from the terminal, using the \typein com-

mand described in Section 1.6.) Process each file separately as you write or

revise it. and don't worry about numbers not matching properly. If the num-

bering gets too confusing, generate a coherent version by letting L&Tj?X process

all the files at once. (Jontinue processing each file only when you change it, until

you're ready to produce the final output. You can then replace each \include

by an \input. so IATjA will process the whole document. However, if each file

is a separate chapter that should begin a new page, you can leave the \include

commands and either process the whole document at once by removing the

\includeonly command, or else process it one or two files at a time, starting

from the beginning and working towards the end.

4.5 Making an Index or Glossary

There are two steps in making an index or glossary: gathering the information

and writing the WTgX input to produce it. These steps are discussed below in

reverse order.

4.5.1 Producing an Index or Glossary

The theindex environment produces an index in two-column format. Each

main index entry is begun by an \item command. A subentry is begun with

\subitem. and a subsubentry is begun with \subsubitem. Blank lines between

78 Moving Information Around

entries are ignored. An extra vertical space is produced by the \indexspace

command, which is usually put before the first entry that starts with a new
letter.

gnats 13.97 \item gnats 13, 97

gnus 24, 37. 233 \item gnus 24, 37, 233

bad, 39, 236 \subitem bad, 39, 236

very, 235 \subsubitem very, 235

good, 38, 234 \subitem good, 38, 234

\indexspace

harmadillo 99. 144 \item harmadillo 99, 144

There is no environment expressly for glossaries. However, the description

environment of Section 2.2.4 may be useful.

4.5.2 Compiling the Entries

Compiling an index or a glossary is not easy, but BTjrX can help by writing the

necessary information onto a special file. If the root file is named myfile.tex.

index information is written on the file myf ile . idx. the "idx" file. I^TjrX makes

an idx file if the preamble contains a \makeindex command. The information on

the file is written by \index commands, the command \index{gnu> appearing

with the text for page 42 causing IATj?X to write

\indexentry{gnu}{42}

on the idx file. If there is no \makeindex command, the \index command does

nothing. You can list the contents of an idx file by running]£TjrX on the file

idx.tex: the Local Guide explains how.

The \index command produces no text, so you type

A gnat\index{gnat} with gnarled wings gnashed . .

.

to index this instance of "gnat". It's best to put the \index command next to

the word it references, with no space between them: this keeps the page number

from being off by one if the word ends or begins a page.

As you write your document, you should type an \index command for every

page reference you want in the index. When the document is complete except for

the index, add the \makeindex command and rmi L^TjrX on the entire document

to produce the idx file. You must then process the information in the idx file

yourself to create a theindex environment that will generate the index: the

Local Guide tells if there are any programs available on your computer to help.

The theindex environment can either be inserted into your input file or made

a separate file that is read by an \input or \include command (Section 4.4).

4.6 Keyboard Input and Screen Output 79

The procedure far making a glossary is completely analogous. In place of

\index there is a \glossary command. The \makeglossary command pro-

duces a file with the extension glo that is similar to the idx file except with

\glossaryentry entries instead of \indexentry entries.

The argument of \ index or \glossary can contain any characters, including

special characters like \ and $. However, curly braces must be properly balanced,

each { having a matching }. The \index and \glossary commands are fragile.

Moreover, an \index or \glossary command should not appear in the argument

of any other command if its own argument contains any of IATgX's ten special

characters (Section 2.1).

4.6 Keyboard Input and Screen Output

When creating a large document, it's often helpful to leave a reminder to yourself

in the input file—for example, to note a paragraph that needs rewriting. The use

of the */, character for putting comments into the text is described in Section 2.2.1.

However, a passive comment is easy to overlook, so IATjtX provides the \typeout

command for displaying messages on your screen. In the examples in this section,

the left column shows what is produced on the screen by the input in the right

column: the oval represents the screen.

Don't forget to revise this \typeout{Don't forget to revise this!}

Remember that everything I£Tj?X writes on your screen is also put in the log

file.

It is sometime- useful to type input to IATjrX directly from your keyboard

—

for example, to enter an \includeonly command. This is done with a \typein

command, such as the following:

V.

Enter ' includeonly ' , boss!

\@typein=

\typein {Enter 'includeonly', boss!}

When this appears on your screen, IATjrX is waiting for you to enter a line of

input, ended by pressing the return key. IATjrX then processes what you typed

just as if it had appeared in the input file in place of the \typein command.

The \typem command has an optional first argument, which must he a

command name. When this optional argument is given, instead of processing

your typed input at that point. I^Tr/X defines the specified command to be

equivalent to the text that you have typed.

80 Moving Information Around

Enter wife's name.

\wif e=

\typein [\wife] {Enter wife's name.}

I love \wife\ very much.

Typing Joan and pressing the return key causes the \typein command to de-

fine the command \wif e to be equivalent to Joan—just like the \newcommand

or \renewcommand commands of Section 3.4. Thus, the input following this

\typein command would produce

I love Joan very much.

The argument of the \typeout or \typein command is a moving argument.

Both of these commands are fragile.

CHAPTER 5

Designing
It Yourself

82 Designing It Yourself

The preceding chapters describe I^T^X commands and environments for specify-

ing a document's logical structure. This chapter explains how to specify its visual

appearance. Before reading it, you should review the discussion in Section 1.4 of

the dangers of visual design. Commands specifying the visual appearance of the

document are usually confined to the preamble, either as style declarations or in

the definitions of commands and environments for specifying logical structures.

The notable exceptions are the line- and page-breaking commands of Section 5.2

and the picture-drawing commands of Section 5.5.

5.1 Document and Page Styles

5.1.1 Document Styles

The use of the \documentstyle command to specify the document style and

the style options is explained in Section 2.2.2. Three standard IATjrX document

styles and several style options are described there, and the letter document

style for making letters is described in Section 3.8. The following are additional

document-style options for these styles.

titlepage For use with the article style only. It causes the \maketitle

command to generate a separate title page and the abstract environment

to make a separate page for the abstract, just the way the report style

does.

leqno Causes the formula numbers produced by the equation and eqnarray

environments to appear on the left instead of the right.

f leqn Causes displayed formulas to be aligned on the left, a fixed distance from

the left margin, instead of being centered.

Check the Local Guide to see what other style options are available on your

computer.

Section 2.2.2 describes the twocolumn style option for making double-column

pages. There is also a \twocolumn declaration that starts a new page and

begins producing two-column output, and the inverse \onecolumn declaration

that starts a new page and produces single-column output. The twocolumn

style option makes appropriate changes to various style parameters, such as the

amount of paragraph indentation, while the \twocolumn declaration does not.

Therefore, the style option rather than the declaration should be used when all

or most of the document is in two-column format.

In books, it is conventional for the height of the text to be the same on

all full pages. The \f lushbottom declaration makes all text pages the same

height, adding extra vertical space when necessary to fill out the page. The

\raggedbottom declaration has the opposite effect, letting the height of the text

5.1 Document and Page Styles 83

vary a bit from page to page. The default is \f lushbottom for the book style and

for the twoside option in the article and report styles, and \raggedbottom

otherwise. You can change the default by putting the appropriate declaration

in the preamble.

5.1.2 Page Styles

A page of output consists o\' three units: the head, the body, and the foot. In

most pages of this book, the head contains a page number, a chapter or section

title, and a horizontal line, while the foot is empty; but in the table of contents

and the preface, the page head is empty and the foot contains the page number.

The body consists of everything between the head and foot: the main text,

footnotes, figures, and tables.

The information in the head and foot, which usually includes a page number,

helps the reader find his way around the document. You can specify Arabic

page numbers with a \pagenumbering{arabic} command and Roman numerals

with a \pagenumbenng{roman} command, the default being Arabic numbers.

The \pagenumbering declaration resets the page number to one, starting with

the current page. To begin a document with pages i. ii, etc. and have the

first chapter start with page 1. put \pagenumbering{roman} anywhere before

the beginning of the text and \pagenumbering{arabic} right after the first

\chapter command.

Page headings may contain additional information to help the reader. They

are most useful in two-sided printing, since headings on the two facing pages

convey more information than the single heading visible with one-sided printing.

Page headings are generally not used in a short document, where they tend to

be distracting rather than helpful.

The page styh determines what goes into the head and foot; it is specified

with a \pagestyle declaration having the page style's name as its argument.

There are four standard page styles:

plain The page number is in the foot and the head is empty. It is the default

page style for the article and report document styles.

empty The head and foot are both empty. IATjgX still assigns each page a num-
ber, but the number is not printed.

headings The page number and other information, determined by the document

style, ia put in the head: the foot is empty.

myheadings Similar to the headings page style, except you specify the "other

information" that goes in the head, using the \markboth and \markright

cominand> described below.

The \pagestyle declaration obeys the normal scoping rules. What goes into

a pages head and foot is determined by the page style in effect at the end

84 Designing It Yourself

of the page, so the \pagestyle command usually comes after a command like

\chapter that begins a new page.

The contents of the page headings in the headings and myheadings styles

are set by the following commands:

^arkboth-UefLheadyirighLhead}

\markright{r^L/iearf}

The left-head and right-head arguments specify the information to go in the page

heads of left-hand and right-hand pages, respectively. In two-sided printing,

specified with the twoside document-style option, the even-numbered pages are

the left-hand ones and the odd-numbered pages are the right-hand ones. In

one-sided printing, all pages are considered to be right-hand ones.

In the headings page style, the sectioning commands choose the headings for

you; Section C.4.2 explains how to use \markboth and \raarkright to override

their choices. In the myheadings style, you must use these commands to set the

headings yourself. The arguments of \markboth and \markright are processed

in LR mode; they are moving arguments.

5.1.3 The Title Page and Abstract

The \maketitle command, which produces a title page in some document styles,

is described in Sections 2.2.2 and C.4.3. You can also create your own title page

with the titlepage environment. This environment creates a page with the

empty page style, so it has no printed page number or heading, and causes the

following page to be numbered one.

You are completely responsible for what appears on a title page made with

the titlepage environment. The following commands and environments are

useful in formatting a title page: the size-changing commands of Section 5.8.1,

the style-changing commands of Section 3.1, and the center environment of

Section 5.6. Recall also that the \today command, described in Section 2.2.1,

generates the date. You will probably produce several versions of your document,

so it's important to include a date on the title page.

An abstract is made with the abstract environment.

Abstract \begin{abstract}

The mating habits of insects are The mating habits of insects are quite

quite different from those of large different from those of large mammals.

mammals. \end<abstract>

The abstract is placed on a separate page in the report document style and

when the titlepage style option is used with the article style; it acts like an

ordinary displayed-paragraph environment with the plain article style. There

is no abstract environment in the book document style, since books normally

do not have abstracts.

5.1 Document and Page Styles 85

5.1.4 Customizing the Document Style

If you don't like thr standard I> Tj X document stylos, you can create your own.

Changing the document style means changing the way the standard structures

such as paragraphs and itemized lists are formatted, not creating new structures.

Section 3.4 describes how to define new logical structures.

Before customizing the document style, remember that many authors make
elementary errors when they try to design their own documents. The only way

to avoid these error- - by consulting a trained typographic designer or reading

about typographic design. All I can do here is warn you against the very common
mistake of making lines that are too wide to read easily—a mistake you won't

make if you follow this suggestion: use lines that contain no more than 15

characti rs, including punctuation and spaces.

The style of a particular document can be customized by adding declarations

to its preamble. If the same style modifications are used in several documents,

it is more convenient to make a new style option. A document-style option is

created by writing the appropriate declarations on a sty file—a file whose first

name is the option name and whose extension is sty. so the declarations defining

the bauhaus style option are on the file named bauhaus.sty. Typing bauhaus

as the optional argument of the \documentstyle command causes L^Tj?X to

read the file bauhaus . sty after processing the declarations made by the main

document style. If multiple style options are specified, their sty files are read

in the indicated order.

When reading the sty file that defines a document-style option. TgX re-

gards an @ character as a letter, so it can be part of a command name like

\@listi. Such a command name cannot be used in your document, since TgX
would interpret it as the command \@ followed by the text characters listi.

Many of LYTrrX'- eternal commands have an @ in their name to prevent their

accidental use within the document: these include some parameters described in

Appendix C that are set by the document style.

The simplest way to modify the document style is by changing parameters

such as the ones that control the height and width of the text on the page. L^TjrX

document-style parameters are described in this chapter and in Appendix C.

Other modifications require redefining I^TjtX commands. As an example of

such a modification, let's suppose that you want chapters to be numbered like

'•('apftulo 3" instead of "Chapter 3". This requires changing the definition of

the \chapter command. Defining a whole new \chapter command is a job for

an expert in both TgX and the inner workings of BTjrX. Fortunately, all you

have to do here is make a small modification to the existing \chapter command.
The first step is finding that definition.

The \chapter command is defined by the document style. The declarations

made by a main document style, like those of a style option, are contained in

a sty file: a \documentstyle{report} command causes TgX to read the file

report . sty. A sty file is designed for efficiency rather than human readability.

86 Designing It Yourself

Each standard IATjrX sty file has a corresponding doc file that contains infor-

mative comments and is formatted for easier reading—report . doc being the

readable version of report . sty. The Local Guide describes where to find the

doc files.

For efficiency, most IATgX commands are defined with TgX's \def command,
described in The T^Xbook, rather than with the I^TgX commands of Section 3.4.

(Do not use \def yourself except when creating a whole new document style;

the IATjtX commands are safer, and the extra time required to process them is

negligible for a small number of definitions.) Therefore, to find the definition

of \chapter, you should start by examining the file report.doc with a text

editor and searching for "\def\chapter". However, you will quickly discover

that it's not there. As the comments at the beginning of the file explain, the

report document style reads additional declarations from the file replO.sty,

repll.sty, or repl2.sty, depending upon whether the default ten-point size

or the llpt or 12pt style option is chosen. The \chapter command is defined

in these files.

Let's suppose that you want to change the ten-point version. Search the

file repl0.doc for "\def\chapter" to find the definition of \chapter. Unfor-

tunately, there is nothing in that definition to indicate where the "Chapter" is

generated. You could now look up the definitions of the commands contained in

\chapter's definition, the definitions of the commands in those definitions, and

so on until you find what you are looking for. However, since the "Chapter"

must be generated by the input text Chapter, it is easier to search for all in-

stances of these seven characters. This quickly leads you to comments indicating

that the command \@chapapp is initially defined to be Chapter, and is redefined

to Appendix by the \appendix command. So, you just have to create a style

option with the command

\renewcommand{\@chapapp}{Cap\ ' {\i}tulo}

(Remember that commands with an @ in their names can be defined only in a

sty file.) You might also want to redefine the \appendix command, replacing

Appendix by Ap\'{e}ndice.

This example gives some idea of what you must do to modify a command.

The procedure for modifying an environment is similar. Most environments are

defined with the T^X \def command—for example, the quote environment is

defined by defining \quote, which is executed by the \begin{quote} command,

and \endquote, which is executed by \end{quote}.

If you can't find a BTjtX command's definition in the doc files, it is probably

a built-in command that is defined in the file latex.tex. If the command is not

there either, it is most likely a T£X command whose definition can be found in

The TEJXbook.

Not all modifications are as easy as the sample change to \chapter. Some

require understanding advanced TgX commands and knowing more about how

5.2 Line and Page Breaking 87

IATfrX works. You can learn all about T^X by reading The TfiXbook; most of

what you need to know about kM"j,]X is described in the comments in latex.tex,

except that the font-selecting commands are explained in the file lfonts.tex.

Consult the Local Guide to find out where these files are on your computer and

to see if there is any other available information about document-style design.

5.2 Line and Page Breaking

TfrX usually doe- a good job of breaking text into lines and pages, but it some-

times needs help. Don't worry about line and page breaking until you're ready

to prepare the final version. Most of the bad breaks that appear in early drafts

will disappear as you change the text.

5.2.1 Line Breaking

Let's return to the line-breaking problem that we inserted into the sample input

file in Section 2.3. Recall that it produced the following warning message:

Overfull \hbox (10 58649pt too wide) in paragraph at lines 172--175

[]\tenrm Mathematical for-mu-las may also be dis-played. A dis-played for-mula

is gnomonly

T^X could not find a good place to break the line and left the word "gnomonly"

extending about 1/8 inch past the right margin.

The first line of this warning message states that the output line actually

extends 10.58649 points past the right margin—a point being about l/72nd of

an inch and is in the paragraph generated by lines 172 through 175 of the input

file. The next part of the message shows the input that produced the offending

line, except TgX has inserted a "-" character every place that it's willing to

hyphenate a word.

TgX is quite good at hyphenating words: it never 1 incorrectly hyphenates an

English word and usually finds all correct possibilities. However, it does miss

some. For example, it does not know how to hyphenate the word gnomonly

(which isn't a very gnomonly used word), nor can it hyphenate gnomon.

A \- command tells T£X that it is allowed to hyphenate at that point.

We could correct our sample hyphenation problem by changing gnomonly to

gno\-monly. so T^X could break the line after gno. However, it's better to

change it to gno\-mon\-ly. which also allows TfrX to break right before the ly.

While TjrX will still break this particular sample line after gno, further changes

to the text might make gnomon-ly better.

TeX will not hyphenate a word with a nonletter in the middle, where it

treats any Bequence of nonspace characters as a single word. While it hyphenates

ra-di-a-tion properly, it does not hyphenate x-radiation—though it will break

'Well, har '.

88 Designing It Yourself

a line after the x-. You must type x-ra\-di\-a\-tion for T£X to consider all

possible hyphenation points. However, it is generally considered a bad idea to

hyphenate a hyphenated compound; you should do so only when there is no

better alternative.

When writing a paper about sundials, in which the word gnomon appears fre-

quently, it would be a nuisance to type it as gno\-mon everywhere it is used. You
can teach T^X how to hyphenate words by putting one or more \hyphenation

commands in the preamble. The command

\hyphenation{gno-mon gno-mons gno-mon-ly}

tells TgX how to hyphenate gnomon, gnomons and gnomonly—but it still won't

know how to hyphenate gnomonic.

While it's very good at hyphenating English, an English-language version of

IATj?X will not hyphenate foreign words properly. Without a version explicitly

made for a foreign language, you'll have to correct hyphenation errors as they

occur by using \hyphenation or \- commands to tell T£X where it can hyphen-

ate a word. See the Local Guide to find out if any foreign-language versions of

IATj?X are available for your computer.

Not all line-breaking problems can be solved by hyphenation. Sometimes

there is just no good way to break a paragraph into lines. TfrX is normally very

fussy about line breaking: it lets you solve the problem rather than producing

a paragraph that doesn't meet its high standards. There are three things you

can do when this happens. The first is to rewrite the paragraph. However,

having carefully polished your prose, you probably don't want to change it just

to produce perfect line breaks.

The second way to handle a line breaking problem is to use a sloppypar

environment or \sloppy declaration, which direct T£X not to be so fussy about

where it breaks lines. Most of the time, you just enclose the entire paragraph that

contains the bad line break between \begin{sloppypar} and \end{sloppypar}

commands. However, sometimes its easier to use a \sloppy declaration. To ex-

plain how to use this declaration, it helps to introduce the concept of a paragraph

unit. A paragraph unit is a portion of text that is treated as a single string of

words to be broken into lines at any convenient point. For example, a paragraph

containing a displayed equation would consist of two paragraph units—the parts

of the paragraph that come before and after the equation. (Since the equation

itself can't be broken across lines, it is not a paragraph unit.) Similarly, each

item in a list-making environment begins a new paragraph unit.

TgX does its line breaking for a paragraph unit when it encounters the com-

mand or blank line that ends the unit, based upon the declarations in effect at

that time. So. the scope of the \sloppy declaration should include the command
or blank line that ends the paragraph unit with the bad line break. You can

either delimit the scope of the \sloppy declaration with braces, or else use a

countermanding \fussy declaration that restores T^X to its ordinary compulsive

5.2 Line and Page Breaking 89

self. The \begin{sloppypar} command is equivalent to a blank line followed

by {\sloppy. ami \end{sloppypar} is equivalent to a blank line followed by

a"}.

The third way bo fix a bad line break is with a \linebreak command,

which forces TgX to break the line at that spot. The \linebreak is usually

inserted right before the word that doesn't fit. An optional argument converts

the \linebreak command from a demand to a request. The argument must be

a digit from through 4. a higher number denoting a stronger request. The

command \linebreak[0] allows TgX to break the line there, but neither en-

courages nor discourages its doing so. while \linebreak[4] forces the line break

just like an ordinary \linebreak command. The arguments 1, 2 and 3 provide

intermediate degrees of insistence, and may succeed in coaxing T^X to overcome

a bad line break. They can also be used to help TgX find the most aesthetically

pleasing line breaks. The \linebreak[0] command allows a line break where

it would normally be forbidden, such as within a word.

Both of these methods handle line-breaking problems by sweeping them un-

der the rug. The "lump in the carpet" that they may leave is one or more lines

with too much blank space between the words. Such a line will produce an

"Underfull \hbox" warning message.

Although unwanted line breaks are usually prevented with the ~ and \mbox

commands described in Section 2.2.1. IATj?X also provides a \nolinebreak

command that forbids Tj^jX from breaking the line at that point. Like the

\linebreak command, \nolinebreak takes a digit from through 4 as an

optional argument to convert the prohibition into a suggestion that this isn't

a good place for a line break the higher the number, the stronger the sug-

gestion. A \nolinebreak[0] command is equivalent to \linebreak[0] , and

\nolinebreak[4] is equivalent to \nolinebreak.

A \linebreak command causes TgX to justify the line, stretching the space

between words so the line extends to the right margin. The \newline command
ends a line without justifying it.

I can think of no good reason why you would want I can think of no good reason why you would

to make a short line like this want to make a short line like this

in the middle of a paragraph, but perhaps you can \newline in the middle of a paragraph,

think of one. but perhaps you can think of one.

You can type \\. which is the usual IATj?X command for ending a line, in place

of \newline. In fact. I^Tr^X provides the \newline command only to maintain

a complete correspondence between the line-breaking commands and the page-

breaking commands described below.

The \linebreak. \nolinebreak. and \newline commands can be used only

in paragraph mode. They are fragile commands. See Section C.l.l if a [follows

a \linebreak or \nolinebreak command that has no optional argument.

90 Designing It Yourself

5.2.2 Page Breaking

T£rjX is as fussy about page breaks as it is about line breaks. As with line

breaking, sometimes T^X can find no good place to start a new page. A bad

page break usually causes Tfr|X to put too little rather than too much text onto

the page. When the \f lushbottom declaration (Section 5.1.1) is in effect, this

produces a page with too much extra vertical space; with the \raggedbottom

declaration, it produces a page that is too short. In the first case, T^X warns

you about the extra space by generating an "Underfull \vbox" message. With

\raggedbottom in effect, T^X does not warn you about bad page breaks, so you

you should check your final output for pages that are too short.

The IATjrpt page-breaking commands are analogous to the line-breaking com-

mands described in Section 5.2.1 above. As with line breaking, L&TjrX provides

commands to demand or prohibit a page break, with an optional argument trans-

forming the commands to suggestions. The \pagebreak and \nopagebreak com-

mands are the analogs of \linebreak and \nolinebreak. When used between

paragraphs, they apply to that point; when used in the middle of a paragraph,

they apply immediately after the current line. Thus, a \pagebreak command
within a paragraph insists that TgX start a new page after the line in which the

command appears, and \nopagebreak[3] suggests rather strongly that TgX not

start a new page there.

Sometimes TgX is adamant about breaking a page at a certain point, and

will not be deterred by a \nopagebreak command. When this happens, use

a \samepage declaration to inhibit all page breaks and explicit \pagebreak

commands where you wish to allow page breaking. A precise description of the

\samepage command is given in Appendix C, but you can use it as follows to

correct bad page breaks without understanding exactly how it works:

• Enclose a portion of text containing the bad page break in the scope of a

\samepage declaration. The scope should include the blank line or com-

mand ending the paragraph unit that contains the bad break.

• Put a \nopagebreak command immediately after any blank line in the

scope of the samepage declaration where you don't want a page break to

occur.

• Put a \pagebreak command (with or without an optional argument) ev-

erywhere you wish to allow a page break.

The \samepage declaration also inhibits page breaking in the footnote generated

by a \footnote command within its scope.

You can't put more text on a page than will fit. To squeeze extra text on a

page, you must usually make room for it by removing some vertical space. This

can be done with the commands of Section 5.4.2.

5.3 Numbering 91

The \newpage command is the analog of \newline. creating a page that

ends prematurely right at that point. Even when a \f lushbottom declaration

is in effect, a shortened page is produced. The \clearpage command is sim-

ilar to \newpage. except that any left-over figures or tables are put on one or

mote separate pages with no text. The \chapter and \include commands
(Section 4.4) use \clearpage to begin a new page. Adding an extra \newpage

or \clearpage command will not produce a blank page; two such commands in

a row are equivalent to a single one. To generate a blank page, you must put

some invisible text on it. such as an empty \mbox.

When using the twoside style option for two-sided printing, you may want to

start a sectional unit on a right-hand page. The \cleardoublepage command
is the same as \clearpage except that it produces a blank page if necessary so

that the next page will be a right-hand (odd-numbered) one.

When used in two-column format, the \newpage and \pagebreak commands
start a new column rather than a new page. However, the \clearpage and

\cleardoublepage commands start a new page.

The page-breaking commands can be used only where it is possible to start

a new page—that is. in paragraph mode and not inside a box (Section 5.4.3).

They are all fragile.

5.3 Numbering

Every number that IATgX generates has a counter associated with it. The name
of the counter is the same as the name of the environment or command that

produces the number, except with no \. Below is a list of the counters used by

L^TjrX's standard document styles to control numbering.

part paragraph figure enumi

chapter subparagraph table enumii

section page footnote enumi ii

subsection equation mpfootnote enumiv

subsubsection

The counters enumi . . . enumiv control different levels of enumerate environ-

ments, enumi for the outermost level, enumii for the next level, and so on. The
mpfootnote counter numbers footnotes inside a minipage environment (Sec-

tion 5.4.3). In addition to these, an environment created with the \newtheorem
command (Section 3.4.3) has a counter of the same name unless an optional

argument specifies that it is to be numbered the same as another environment.

There are also some other counters used for document-style parameters; they

are described in Appendix C.

The value of a counter is a single integer—usually nonnegative. Multiple

numbers are generated with separate counters, the "2" and "4" of "Subsec-

92 Designing It Yourself

tion 2.4" coming from the section and subsection counters, respectively. The
value of a counter is initialized to zero and is incremented by the appropriate

command or environment. For example, the subsection counter is incremented

by the \subsection command before the subsection number is generated, and it

is reset to zero when the section counter is incremented, so subsection numbers

start from one in a new section.

The \setcounter command sets the value of a counter, and \addtocounter

increments it by a specified amount.

Because 18
counters

17
are stepped before being \setcounter{footnote}{17>

used, you set them to one less than the number Because\f ootnote{. . .}

you want. \addtocounter{f ootnote}{-2}*/,

counters\f ootnote{. . .} are stepped ...

When used in the middle of a paragraph, these commands should be attached

to a word to avoid adding extra space.

The \setcounter and \addtocounter commands affect only the specified

counter; for example, changing the section counter with these commands does

not affect the subsection counter. The commands to change counter values are

global declarations (Section C.1.4); their effects are not limited by the normal

scope rules for declarations.

The page counter is used to generate the page number. It differs from

other counters in that it is incremented after the page number is generated,

so its value is the number of the current page rather than the next one. A
\setcounter{page}{27} command in the middle of the document therefore

causes the current page to be numbered 27. For this reason, the page counter

is initialized to one instead of zero.

IATjtX provides the following commands for printing counter values; the list

shows what they produce when the page counter has the value four.

4 \arabic{page} iv \roman{page} d \alph{page}

IV \Roman{page} D \Alph{page}

To generate a printed number, IATjrX executes a command whose name is formed

by adding \the to the beginning of the appropriate counter's name; redefining

this command changes the way the number is printed. For example, a subsection

number is made by the \thesubsection command. To change the numbering

of sections and subsections so the fourth subsection of the second section is

numbered "II-D", you type the following (see Section 3.4 for an explanation of

\renewcommand):

\renewcommand{\thesection}{\Roman{section}}

\renewcommand{\thesubsection}{\thesection-\Alph{subsection)-}

Since sections are usually numbered the same throughout the document (at least

until the appendix), the obvious place for this command is in the preamble.

5.4 Length, Spaces, and Boxes 93

A new counter is created with a \newcounter command having the name

of the counter as its argument. The new counter's initial value is zero, and its

initial \the. . . command prints the value as an arabic numeral. See Section 5.7

for an example of how a new counter is used in defining an environment. The

\newcounter declaration should be used only in the preamble.

5.4 Length, Spaces, and Boxes

In visual design, one specifies how much vertical space to leave above a chapter

heading, how wide a line of text should be, and so on. This section describes

the basic tools for making these specifications.

5.4.1 Length

A length is a measure of distance. An amount of space or a line width is specified

by giving a length as an argument to the appropriate formatting command. A
length of one inch is specified by typing lin; it can also be given in metric units

as 2.54cm or 25.4mm. or as 72.27pt, where pt denotes point—a unit of length

common with printers. A length can also be negative (for example, -2.54cm).

Note that is not a length. A length of zero is written Oin or Ocm or Opt,

not 0. Writing as a length is a common mistake.

While inches, centimeters, and points are convenient units, they should be

avoided because they specify fixed lengths. A .25-inch horizontal space that

looks good in one-column output may be too wide in a two-column format. It's

better to use units of length that depend upon the appropriate document-style

parameters. The simplest such units are the em and the ex, which depend upon
the font (the size and style of type). A lem length is about equal to the width of

an "M" . and lex is about the height of an "x" . The em is best used for horizontal

lengths and the ex for vertical lengths. An em ruler for the current font is given

below, and an ex ruler is in the margin.

r 30

-20

10 20 30

J I I L J I I I I I I L J I I L J I I L_

In addition to writing explicit lengths such as lin or 3.5em, you can also

express lengths with length commands. A length command has a value that is

a length. For example, \parindent is a length command whose value specifies

the width of the indentation at the beginning of a normal paragraph. Typing
\parindent as the argument of a command is equivalent to typing the current

value of \parindent. You can also type 2.5\parindent for a length that is

2.5 times as large as \parindent. or -2.5\parindent for the negative of that

length: -\parindent is the same as -1 .0\parindent.

-10

94 Designing It Yourself

A length such as 1 . 5em or \parindent is a rigid length. Specifying a space

of width 1cm always produces a one-centimeter-wide space. (It may not be

exactly one centimeter wide because your output device might uniformly change

all dimensions—for example, enlarging them by 5%.) However, there are also

rubber lengths that can vary. 2 Space specified with a rubber length can stretch

or shrink as required. For example, T£X justifies lines (produces an even right

margin) by stretching or shrinking the space between words to make each line

the same length.

A rubber length has a natural length and a degree of elasticity. Of particular

interest is the special length command \f ill that has a natural length of zero

but is infinitely stretchable, so a space of width \f ill tends to expand as far

as it can. The use of such stretchable space is described in Section 5.4.2 below.

Multiplying a length command by a number destroys its elasticity, producing a

rigid length. Thus, l\fill and .7\fill are rigid lengths of value zero inches.

Most lengths used in I^TjjX are rigid. Unless a length is explicitly said to be

rubber, you can assume it is rigid. All length commands are robust; a \protect

command should never precede a length command.

Below are some of IATjtX's length parameters—length commands that define

document-style parameters; others are given in Appendix C. By expressing

lengths in terms of these parameters, you can define formatting commands that

work properly with different document styles.

\parindent The amount of indentation at the beginning of a normal paragraph.

\textwidth The width of the text on the page.

\textheight The height of the body of the page—that is, the normal height of

everything on a page excluding the head and foot (Section 5.1.1).

\parskip The extra vertical space inserted between paragraphs. It is custom-

ary not to leave any extra space between paragraphs, so \parskip has a

natural length of zero (except in the letter style). However, it is a rubber

length, so it can stretch to add vertical space between paragraphs when
the \f lushbottom declaration (Section 5.1.1) is in effect.

\baselineskip The normal vertical distance from the bottom of one line to

the bottom of the next line in the same paragraph. Thus, \textheight -f

\baselineskip equals the number of lines of text that would appear on a

page if it were all one paragraph.

IATjrX provides the following declarations for changing the values of length

commands and for creating new ones. These declarations obey the usual scoping

rules.

A rigid length is called a (dimen) and a rubber length is called a (skip) in The TfiXbook.

5.4 Length, Spaces, and Boxes 95

\newlength Defines a new length command. You type \newlength{\gnat}

to make \gnat a length command with value Oin. An error occurs if a

\gnat command is already defined.

\setlength Sets the value of a length command. The value of \gnat is set to

1.01 inches by the command \setlength{\gnat}{l .Olin}.

\addtolength Increments the value of a length command by a specified amount.

If the current value of \gnat is .01 inches, then executing the command
\addtolength{\gnat}{- . l\gnat} changes its value to .009 inches—the

original value plus —.1 times its original value.

\settowidth Sets the value of a length command equal to the width of a spec-

ified piece of text. The command \settowidth{\gnat}{\em small} sets

the value \gnat to the width of small the text produced by typesetting

{\em small} in LR mode.

The value of a length command created with \newlength can be changed

at any time. This is also true for some of IATjtX's length parameters, while

others should be changed only in the preamble and still others should never be

changed. Consult Appendix C to find out when you can safely change the value

of a IATj?X parameter.

5.4.2 Spaces

A horizontal space is produced with the \hspace command. Think of \hspace

as making a blank "word" . with spaces before or after it producing an interword

space.

h- .5 in -H
Here is a .5 inch space.

Here is a .5 inch space.

Here is a .5 inch space.

Negative space is a backspace /yfye/^his.

h- .5 in -H

Here\hspace{ . 5in}is a .5 inch space.

Here \hspace{ .5in}is a .5 inch space.

Here \hspace{ .5in} is a .5 inch space

. .

. like this
.
\hspace{- .5in}/////

T^X removes space from the beginning or end of each line of output text, except

at the beginning and end of a paragraph including space added with \hspace.

The \hspace* command is the same as \hspace except that the space it pro-

duces is never removed, even when it comes at the beginning or end of a line.

The \hspace and \hspace* commands are robust.

The \vspace command produces vertical space. It is most commonly used

between paragraphs; when used within a paragraph, the vertical space is added

after the line in which the \vspace appears.

96 Designing It Yourself

You seldom add space like tins between lines in You\vspace{ 25in> seldom add space like

25 iD this between lines in a paragraph, but you
-*- ... by adding some negative space,

a paragraph, but you sometimes remove space be-

tween them by adding some negative space. \vspace{7 mm}

7 nun

You more' often add space between paragraphs

especially before or after displayed material.

You more often add space between

Just as it removes horizontal space from the beginning and end of a line. T£X
removes vertical space that comes at the beginning or end of a page. The
\vspace* command creates vertical space that is never removed.

If the argument of an \hspace or \vspace command (or its *-form) is a

rubber length, the space produced will be able to stretch and shrink. This is

normally relevant only for the fine tuning of a document style. However, a space

made with an infinitely stretchable length such as \f ill is useful for positioning

text because it stretches as much as it can. pushing everything else aside. The

command \hf ill is an abbreviation for \hspace{\f ill}.

Here is a stretched space. Here is a \hfill stretched space.

Here are two equal ones. Here are \hfill two \hfill equal ones.

Note that when two equally stretchable spaces push against each other, they

stretch the same amount. You can use stretchable spaces to center objects or to

move them flush against the right-hand margin. However. I^T]?X provides more

convenient methods of doing that, described in Section 5.6.

Infinitely stretchable space can be used in the analogous way for moving

text vertically. The \vf ill command is equivalent to a blank line followed by

\vspace{\f ill}. Remember that spaces produced by \hf ill or \vf ill at the

beginning and end of a line or page disappear. You must use \hspace*{\f ill}

or \vspace*{\f ill} for space that does not disappear.

The \dotf ill command acts just like \hf ill except it produces dots instead

of spaces. The command \hrulef ill works the same way. but it produces a

horizontal line.

Gnats and gnus see pests. Gnats and gnus \dotf ill\ see pests

.

This is really it. This is \hrulefill\ really \hrulefill\ it.

5.4.3 Boxes

A box is a chunk of text that T^X treats as a unit, just as if it were a single

letter. No matter how big it is. TjrX will never split a box to fit onto a line or

a page. The array and tabular environments (Section 3.6.2) both produce a

single box that can be quite big. as does the picture environment described in

Section 5.5.

5.4 Length, Spaces, and Boxes 97

IATgX provides additional commands and environments for making three

kinds of boxes: LR boxes, in which the contents of the box are processed in LR
mode: parboxes. in which the contents of the box are processed in paragraph

mode: and rule boxes, consisting of a rectangular blob of ink.

A box-making command or environment can be used in any mode. Tf[)X

uses the declarations in effect at that point when typesetting the box's contents,

so the contents of a box appearing in the scope of an \em declaration will be

emphasized usually by being set in italic type. An exceptional case occurs if a

box-making command appears in a mathematical formula, since the math-italic

style in which formulas are normally typeset (Section 3.3.8) can be used only in

math mode. Therefore, when a box-making command appears in math mode,

its contents are set in the most recently declared type style other than math

italic: this is usually the one in effect outside the math environment. Since the

input that produces the box's contents is either the argument of a box-making

command or the text of a box-making environment, any declarations made inside

it are local to the box.

A box is often displayed on a line by itself. This can be done by treating

the box as a formula and using the displaymath environment (\ [. . . \]). The
center environment described in Section 5.6 can also be used.

LR Boxes

The \mbox command introduced in Section 2.2.1 makes an LR box—a box whose

contents are obtained by processing the command's argument in LR mode. It

is an abbreviated version of the \makebox command; \makebox has optional

arguments that \mbox doesn't. The box created by an \mbox command is just

wide enough to hold its contents. You can specify the width of the box with

a \makebox command that has an optional first argument. The default is to

center the contents in the box. but this can be overridden by a second optional

argument that consists of a single letter: 1 to move the contents to the left side

of the box and r to move it to the right.

Good
Good gnus

Good

1 in

gnus are here at last.

are here at last.

gnus are here at last.

Good \makebox[lin] <\em gnus} are here

Good \makebox[lin] [1] {\em gnus} are . .

,

Good \makebox[lin] [r] {\em gnus} are . .

.

A box is treated just like a word: space characters on either side produce an

interword space.

The \framebox command is exactly the same as \makebox except it puts

a frame around the outside of the box. There is also an \fbox command, the

abbreviation for a \framebox command with no optional arguments.

H 1 in H
There was not a

in sight.

armadillo There was not a \framebox [1 in] [1] {gnu}

or \fbox{armadillo} in sight.

98 Designing It Yourself

When you specify a box of a fixed width. T^X acts as if the box has exactly

that width. If the contents are too wide for the box. they will overflow into the

surrounding text.

X Xvitie armadiKoX X X X X\framebox[.5in] {wide armadillos}X X X

This can be used to control where TgX normally puts text. To understand how.

first consider in what direction text overflows from a very narrow box.

\framebox [2mm] {gorilla gorilla}

\framebox [2mm] [1] {gorilla gorilla}

\framebox [2mm] [r] {gorilla gorilla}

gorilla gorilla

gorilla gorilla

gorilla gorilla

Now imagine that instead of a 2 mm-wide \framebox we used a \makebox of

width zero. Having no width, the box is a mathematically perfect vertical line.

With no positioning argument, the contents of the box are centered with respect

to that line. An 1 argument positions the contents so the left edge is on the

line, and an r argument positions it so the right edge is on the line. Thus, if

a \makebox [Oin] [r] is placed at the beginning of an output line, its contents

appear in the left margin, with the right edge flush against the main text.

Zero-width boxes can be used in the tabular environment to align an item

on some point other than its edge. For example, you can make TgX align

"23.4" as if its right edge were between the "3" and the "." by typing it as

23\makebox [Opt] [1] { . 4}. (Remember that the width argument must be some-

thing like Oin or Omm. not simply 0.)

Parboxes

A parbox is a box whose contents are typeset in paragraph mode, with TgX
producing a series of lines just as in ordinary text. The figure and table

environments (Section 3.5.1) create parboxes. There are two ways to make
a parbox at a given point in the text: with the \parbox command and the

minipage environment. They can be used to put one or more paragraphs of

text inside a picture or in a table item.

For TgX to break text into lines, it must know how wide the lines should be.

Therefore, \parbox and the minipage environment have the width of the parbox

as an argument. The second mandatory argument of the \parbox command is

the text to be put in the parbox.

1 in

Breaking lines in

a narrow parbox YOU CAN
is hard.

expect to get a lot

of bad line breaks

if you try this sort

of thing.

\parbox{lin}{Breaking lines in a narrow

parbox is hard.} \ YOU CAN \

\parbox{lin}{expect to get a lot of bad

line breaks if you try . . .}

5.4 Length, Spaces, and Boxes 99

There is no indentation at the beginning of a paragraph in these parboxes;

LVTgX sets the \parindent parameter, which specifies the amount of indenta-

tion, to zero in a parbox. You can set it to any other value with \setlength

(Section 5.4.1).

In the above example, the parboxes are positioned vertically so the center of

the box is aligned with the center of the text line. An optional first argument

of t (for top) or b (for bottom) aligns the top or bottom line of the parbox with

the text line.

This is a parbox

aligned on its bot-

tom line. AND THIS one is aligned on

its top line.

\parbox[b] {linHThis is a parbox aligned

on its bottom line.}

\ AND THIS \

\parbox[t] {linHone is aligned on its top

line.}

Finer control of the vertical positioning is obtained with the \raisebox com-

mand described below.

The \parbox command is generally used for a parbox containing a small

amount of text. For a larger parbox or one containing a tabbing environment,

a list-making environment, or any of the paragraph-making environments de-

scribed in Section 5.6, you should use a minipage environment. The minipage

environment has the same optional positioning argument and mandatory width

argument as the \parbox command.

When used in a minipage environment, the \footnote command puts a foot-

note at the bottom of the parbox produced by the environment. This is partic-

ularly useful for footnotes inside figures or tables. Moreover, unlike in ordinary

text, the \footnote command can be used anywhere within the environment

—

even inside another box or in an item of a tabular environment. To footnote

something in a minipage environment with an ordinary footnote at the bottom

of the page, use the \footnotemark and \footnotetext commands described

in Section C.2.3.

gnat: a tiny bug AND gnu: a beast" that \begin{minipage}[t]{lin}

that is very hard is hard to miss. {\em gnat\/} : a tiny bug that is very

to find.
~

,„, hard to find.
"See armadillo.

\end{minipage} \ AND \

\begin{minipage} [t] {lin}

{\em gnu\/}: a beast\footnote{See

armadillo.} that is hard to miss.

\end•(minipage}

If you have one minipage environment nested inside another, footnotes may
appear at the bottom of the wrong one.

You may find yourself wishing that TgX would determine the width of a

parbox by itself, making it just wide enough to hold the text inside. This

100 Designing It Yourself

1 mm

Rule 1:
5 mm

is normally impossible because T^X must know the line width to do its line

breaking. However, it doesn't have to know a line width when typesetting a

tabbing environment because the input specifies where every line ends. There-

fore, if a minipage environment consists of nothing but a tabbing environment,

then TjrjX will set the width of the parbox to be either the width specified by

the minipage environment's argument or the actual width of the longest line,

choosing whichever is smaller.

Rule Boxes

A rule box is a rectangular blob of ink. It is made with the \rule command,

whose arguments specify the width and height of the blob. There is also an

optional first argument that specifies how high to raise the rule (a negative

value lowers it).

Rule 2:

i
T

1 in

Rule 1 : \rule{lmm}{5mm}

Rule 2: \rule[. lin] < .25in}< .02in}

A thin enough rule is just a line, so the \rule command can draw horizontal or

vertical lines of arbitrary length and thickness.

A rule box of width zero is called a strut. Having no width, a strut is invisible;

but it does have height, and TgX will adjust the vertical spacing to leave room
for it.

Compare this box with this box Compare \fbox{this box} with

\fbox{\rule [-
. 5cm] {Ocm}{lcm}this box}

Struts provide a convenient method of adding vertical space in places where

\vspace can't be used, such as within a mathematical formula.

Raising and Lowering Boxes

The \raisebox command raises text by a specified length (a negative length

lowers the text). It makes an LR box, just like the \mbox command.

You can raise or
iower text. You can \raisebox{ . 6ex}{\em raise} or

\raisebox{- .6ex}{\em lower} text.

It is sometimes useful to change how big TjrjX thinks a piece of text is without

changing the text. The \makebox command tells TgX how wide the text is, while

a strut can increase the text's apparent height but cannot decrease it. Optional

arguments of \raisebox tell TgX how tall it should pretend that the text is.

The command

\raisebox{.4ex}[l . 5ex] [.75ex]{\em text}

5.5 Pictures 101

not only raises text by . 4ex. but also makes T^X think that it extends 1.5ex

above the bottom of the line and . 75ex below the bottom of the line. (The

bottom of the line is when 1 most characters sit: a letter like y extends below it.)

If you omit the second optional argument, TgX will think the text extends as far

below the line as it actually does. By changing the apparent height of text, you

change how much space T^X leaves for it. This is sometimes used to eliminate

space above or below a formula or part of a formula.

Saving Boxes

If a single piece of text appears in several places, you can define a command with

\newcommand (Section 3.4) to generate it. While this saves typing, TgX doesn't

save any time because it must do the work of typesetting the text whenever it

encounters the command. If the text is complicated especially if it contains a

picture environment (Section 5.5) T£JX will waste a lot of time typesetting it

over and over again.

T[rX can typeset something once as a box and then save it in a named storage

bin. from which it can be used repeatedly. The name of a storage bin is an

ordinary command name: a new bin is created and named by the \newsavebox

declaration. The \savebox command makes a box and saves it in a specified

bin: it has the bin name as its first argument and the rest of its arguments are

the same as for the \makebox command. The \usebox command prints the

contents of a bin.

\newsavebox{\toy>

\savebox{\toy> [. 65in] {gnats}

*— .65 in —

H

It's gnats and gnats and gnats , It's \usebox{\toy} and \usebox{\toy> and

wherever we go. \usebox{\toy> , wherever we go.

The \sbox command is the short form of \savebox. with no optional arguments.

The \savebox and \sbox commands are declarations that have the usual scope.

However, the \newsavebox declaration is global (Section C.l.l) and does not

obey the customary scoping rules.

5.5 Pictures

The picture environment is used to draw pictures composed of text, straight

lines, arrows, and circles. You position objects in the picture by specifying their

j and y coordinates. So. before getting to the picture-making commands, let us

first review a little bit of coordinate geometry.

A coordinatt is a number such as 5. —7. 2.3. or —3.1416. Given an origin and

a unit length, a pair of coordinates specifies a position. As shown in Figure 5.1,

102 Designing It Yourself

1.8,r
1.4

r

/origin

[2,1-4)

-1. unit

length

Figure 5.1: Points and their coordinates.

the coordinate pair (—1.8,1) specifies the position reached by starting at the

origin and moving left 1.8 units and up 1 unit.

The unit length used in determining positions in a picture environment

is the value of the length command \unit length. Not just positions but

all lengths in a picture environment are specified in terms of \unitlength.

Its default value is 1 point (about l/72nd of an inch), but it can be changed

with the \setlength command described in Section 5.4.1. Changing the value

of \unit length magnifies or reduces a picture—halving the value halves the

lengths of all lines and the diameters of all circles. This makes it easy to ad-

just the size of a picture. However, changing \unitlength does not change

the widths of lines or the size of text characters, so it does not provide true

magnification and reduction.

IATjrX provides two standard thicknesses for the lines in a picture—thin as in

I land thick as in I I. They are specified by the declarations \thinlines

and \thicklines, with \thinlines as the default. These commands are ordi-

nary declarations and can be used at any time.

Many picture-drawing commands have a coordinate pair as an argument.

Such an argument is not enclosed in braces, but is just typed with parentheses

and a comma, as in (-2,3.7) or (0,-17.2).

5.5.1 The picture Environment

The picture environment has a coordinate-pair argument that specifies the pic-

ture's size (in terms of \unit length). The environment produces a box (Sec-

tion 5.4.3) whose width and height are given by the two coordinates. The origin's

default position is the lower-left corner of this box. However, the picture en-

vironment has an optional second coordinate-pair argument that specifies the

5.5 Pictures 103

coordinates of the box's lower-left corner, thereby determining the position of

the origin. For example, the command

\begin{picture} (100 , 200) (10 , 20)

produces a picture of width 100 units and height 200 units, whose lower-left cor-

ner has coordinates (
10. 20), so the upper-right corner has coordinates (110, 220).

Unlike ordinary optional arguments, the picture environment's optional argu-

ment is not enclosed in square brackets.

When first drawing a picture, you will usually omit the optional argument,

leaving the origin at the lower-left corner. Later, if you want to modify the

picture by shifting everything, you just add the appropriate optional argument.

The environment's first argument specifies the nominal size of the picture,

which is used by T^X to determine how much room to leave for it. This need

bear no relation to how large the picture really is; L^TjrX allows you to draw

things outside the picture, or even off the page.

The \begin{picture} command puts IATj^X in picture mode, a special mode
that occurs nowhere else.

3 The only things that can appear in picture mode
are \put and \multiput commands (described below) and declarations such as

\em. \thicklines. and \setlength. You should not change \unitlength in

picture mode.

The examples in this section all illustrate commands in picture mode, but the

\begin{picture} and \end{picture} commands are not shown. To help you

think in terms of arbitrary unit lengths, the examples assume different values of

\unitlength. They are all drawn with the \thicklines declaration in effect.

The pictures in the examples also contain lines and arrows, not produced by

the commands being illustrated, that indicate positions and dimensions; these

are drawn with \thinlines in effect, allowing you to compare the two line

thicknesses.

Remember that the picture environment produces a box, which TgX treats

just like a single (usually) large letter. See Section 5.6 for commands and en-

vironments to position the entire picture on the page. All the picture-drawing

commands described in this section are fragile.

5.5.2 Picture Objects

Everything in a picture is drawn by the \put command. The command

\put (1 1 . 3 ,
-

. 3) {picture object}

puts the picture object in the picture with its reference point having coordinates

(11.3.— .3). The various kinds of picture objects and their reference points are

described below.

5 I£TjrX's picture mode is really a restricted form of LR mode.

104 Designing It Yourself

Text

The simplest kind of picture object is ordinary text, which is typeset in LR mode
with the lower-left corner of the text as its reference point.

(2.3,5)
/

an armadillo \put(2. 3 ,5) {an armadillo}

Boxes

A box picture object is made with the \makebox or \framebox command. These

commands, and the related \savebox command, have a special form for use with

pictures. The first argument is a coordinate pair that specifies the width and

height of the box.

(1.3,4)
/

gnu

3 units

1.1 units

\put (1.3,4) {\framebox (3 , 1 . lHgnu}}

The reference point is the lower-left corner of the box. The default is to center the

text both horizontally and vertically within the box, but an optional argument

specifies other positioning. This argument consists of one or two of the following

letters: 1 (left), r (right), t (top), and b (bottom). The letters in a two-letter

argument can appear in either order.

Mis.-;

gnat

\put (8 , -5) <\framebox (8,3.5) [t] {gnu}}

\put(18,-5){\framebox(10,3) [br] {gnat}}

Unlike the ordinary \framebox command described in Section 5.4.3, the picture-

making version adds no space between the frame and the text. There is a

corresponding version of \makebox that works the same as \framebox except

it does not draw the frame. These picture-making versions are used mainly

as picture objects, although they can be used anywhere that an ordinary box-

making command can.

The discussion of zero-width boxes in Section 5.4.3 should explain why a

\makebox(0,0) command with no positioning argument puts the center of the

text on the reference point, and with a positioning argument puts the indicated

edge or corner of the text on the reference point.

5.5 Pictures 105

(0,1)

gnat 'tang

(-1..5)

/
armadillo

rou

(1.0)

\put (0,1) {\makebox (0 , 0) {gnat tang}}

\put (1,0) {\makebox(0 , 0) [b] {gnu}}

\put(-l, .5){\makebox(0,0) [tr] {armadillo}}

A \makebox(0,0) command is very useful for positioning text in a picture.

The \dashbox command is similar to \framebox but draws the frame with

clashed lines. It ha* an additional first argument that specifies the width of each

dash.

glial

(4,2.2 /
\put (4,2.2) {\dashbox{ . 5} (5 , 2) [t] {gnat}}

A dashed box looks best when the width and the height are both multiples of

the dash length- in this example, the width is ten times and the height four

times the length of a dash.

Straight Lines

Straight lines can be drawn with only a fixed, though fairly large, choice of

slopes. A line is not specified by giving its endpoints. since that might produce

a slope not in I^TjrX's repertoire. Instead, the slope and length of the line are

specified. IATjtX's method of describing slope and length was chosen to make
designing pictures easier, but it requires a bit of explanation.

The Mine command produces a picture object that is a straight line, with

one end of the line as its reference point. The command has the form

\line(x,y){/en}

where the coordinate pair (x. y) specifies the slope and len specifies the length, in

a manner I will now describe. (Figure 5.2 illustrates the following explanation

with a particular example.) Let po be the reference point, and suppose its

coordinates are [xq, ijq). Starting at po, move x units to the right and y units up
to find the point p x . so pi has coordinates (xo + x.yo + y). (Negative distances

have the expected meaning: moving right a distance of —2 units means moving

2 units to the left, and moving up —2 units means moving down 2 units.) The
line drawn by this command lies along the straight line through po and p\. It

starts at po and goes in the direction of pi a distance determined as follows by

len. If the line is not vertical (x ^ 0). it extends len units horizontally to the

right or left of p (depending upon whether x is positive or negative). If the

line is vertical (x = 0). it extends len units above or below po (depending upon

whether y is positive or negative).

106 Designing It Yourselfe> iilAio

_

1.4

-+ x

Figure 5.2: \put (1.4.2.6){\line(3,-l){4.8}}

The len argument therefore specifies the line's horizontal extent except for

a vertical line, which has no horizontal extent, where it specifies the vertical

distance. It equals the actual length of the line only for horizontal and vertical

lines. The value of len must be nonnegative.

Since only a fixed number of slopes are available, there are only a limited

number of values that x and y can assume. They must both be integers (numbers

without decimal points i between —6 and +6, inclusive. Moreover, they can have

no common divisor bigger than one. In other words, x/y must be a fraction in

- simplest form, so you can't let x = 2 and y — —4: you must use x = 1 and

y = —2 instead. The following are all illegal arguments of a Mine command:

(1.4,3). (3,6). (0,2). and (1,7).

LVTfrX draws slanted i neither horizontal nor vertical) lines using a special

font whose characters consist of small line segments. This means that there is

a smallest slanted line that L^TjrX can draw—its length is about 10 points, or

1/7-inch. If you try to draw a smaller slanted line. L^TjrX will print nothing.

It also means that IATjrX must print lots of line segments to make up a long

slanted line, which can take a long time. However. L^TjrX draws a horizontal or

vertical line of any length reasonably quickly.

Arrows

An arrow—a straight line ending in an arrowhead—is made by the \vector

command. It works exactlv like the Mine command.

..

'

\put (7 , 4) {\vector (1 . 2) {5}}

\put (22 , 4) {\vector (- 1 , 0) {10}}

\put (22 , 14) -CXvector (3 . -2) {15}}

5.5 Pictures 107

The tip of the arrowhead lies on the endpoint of the line opposite the reference

point. This makes any normal-length arrow point away from the reference point.

However, for an arrow of length zero, both endpoints lie on the reference point,

so the tip of the arrow is at the reference point.

Ls^Tj?X can't draw arrows with as many different slopes as it can draw lines.

The pair of integers specifying the slope in a \vector command must lie between

—4 and +4. inclusive: as with the Mine command, they must have no common
divisor.

Stacks

The \shortstack command produces a box containing a single column of text

with reference point at its lower-left corner. Its argument contains the text, rows

being separated by a \\ command. The \shortstack command is much like a

one-column tabular environment (Section 3.6.2), but the space between rows is

designed for a vertical column of text in a picture. The default alignment is to

center each row in the column, but an optional positioning argument of 1 (left)

or r (right) aligns the text on the indicated edge.

c Mav Sh \put(l,7){\shortstack{Gnats\\ and \\ gnus}}

anV break e
\put(3,7)<\shortstack[r]{May\\ break \\my}}

gnus my s \put (5,7){\shortstack[l] {Sh\\o\\e\\s}}

(1.7)/ (3.7)/ (5.7)/

Unlike an ordinary tabular environment, rows are not evenly spaced. You
can change the inter-row spacing by using either the \\ command's optional

argument (Section C.1.6) or a strut (Section 5.4.3). The \shortstack command
is an ordinary box-making command that can be used anywhere, but it seldom

appears outside a picture environment.

Circles

The \circle command draws a circle of the indicated diameter, with the center

of the circle as reference point, and the \circle* command draws a disk (a

circle with the center filled in). L^TjrX has only a fixed collection of circles and

disks: the \circle and \circle* commands choose the one whose diameter is

closest to the specified diameter.

/^T^\ \put(20,0){\circle{20}}

\put (20 , 0) {\vector (0 , 1) {10}}

\put (50 , 0) {\circle*{5}}

On my computer, the largest circle that IATgX can draw has a diameter of 40

points (a little more than 1/2 inch) and the largest disk has a diameter of 15

points (about .2 inch). Consult the Local Guide to find out what size circles and

disks are available on your computer.

108 Designing It Yourself

3.1 units

Ovals and Rounded Corners

An oval is a rectangle with rounded corners—that is, a rectangle whose corners

are replaced by quarter circles. It is generated with the \oval command, whose

argument specifies the width and height, the reference point being the center of

the oval. IATjrX draws the oval with corners as round as possible, using quarter

circles with the largest possible radius.

units

\put (1.1,-4) {\oval (8 , 3 . 1)

>

Giving an optional argument to the \oval command causes I^TgX to draw only

half or a quarter of the complete oval. The argument is one or two of the letters

1 (left), r (right), t (top), and b (bottom), a one-letter argument specifying

a half oval and a two-letter argument specifying a quarter oval. The size and

reference point are determined as if the complete oval were being drawn; the

optional argument serves only to suppress the unwanted part.

units '

1 (5,0)

X (11,0)

\put(5,0X\oval(6,2) [t]>

\put (11,0) {\oval (2.2.3) [bl]

}

Joining a quarter oval to straight lines produces a rounded corner. It takes a bit

of calculating to figure out where to \put the quarter oval.

(5,4)

.(6,2)

\put (5, 4){\line (0,-1X2}}
\put (6 , 2) {\oval (2 , 2) [bl]

}

\put (6 , 1) {\vector (1,0) {6}}

Framing

The \framebox command puts a frame of a specified size around an object. It

is often convenient to let the size of the object determine the size of the frame.

The \fbox command described in Section 5.4.3 does this, but it puts extra space

around the object that you may not want in a picture. The \frame command
works very much like \fbox except it doesn't add any extra space.

(2.3)
r

N
\put (2 , 3) <\frame{\shortstack{G\\N\\U}}}

5.5 Pictures 109

5.5.3 Reusing Objects

The \savebox command described in Section 5.4.3 is similar to \makebox except

that, instead of being drawn, the box is saved in the indicated storage bin. Like

\makebox. the \savebox command has a form in which the size of the box

is indicated by a coordinate pair, with positioning determined by an optional

argument.

1.3 units

3 units

TTTTTl -™
\savebox{\toy} (3 ,1.3) [tr] {gnu}

\put(-2,4){\frame-C\usebox{\toy}}>

\put (2.4) <\frame{\usebox{\toy}}}

The storage bin \toy in this example must be defined with \newsavebox. A
\savebox command can be used inside a picture environment to save an object

that appears several times in that picture, or outside to save an object that

appears in more than one picture. Remember that \savebox is a declaration

with the normal scoping rules.

It takes IATjrX a long time to draw a picture, especially if it contains slanted

lines, so it's a good idea to use \savebox whenever an object appears in different

pictures or in different places within the same picture. However, a saved box also

uses TgX's valuable memory space, so a picture should be saved no longer than

necessary. The space used by a saved box is reclaimed upon leaving the scope

of the \savebox declaration. You can also use a command like \sbox{\toy}{},

which destroys the contents of storage bin \toy and reclaims its space.

5.5.4 Repeated Patterns

Pictures often contain repeated patterns formed by regularly spaced copies of

the same object. Instead of using a sequence of \put commands, such a pattern

can be drawn with a \multiput command. For any coordinate pairs (x,y) and

(Ax. Ay), the command

\multiput (x
, jO (Ax . Ay) {17} {object}

puts 17 copies of object in the picture, starting at position (x, y) and stepping

the position by i Ax. Ay) units each time. It is equivalent to the 17 commands

\put (x , y) {object}

\put (x + Ax
, y + Ay) {object}

\put (x + 2Ax

.

y + 2Ay){object}

\put(x+ 10Ax,y + \HAy) {object}

as illustrated by the following example:

110 Designing It Yourself

(3.2.4) •
5 ' 2 units—^ \multiput(3,2.4) (5.2 ,

-1
. 3){4}{\circle*< .3}>

Tl.3 units

You can make a two-dimensional pattern by using a picture environment con-

taining another \multiput in the argument of a \multiput command. However,

\multiput typesets the object anew for each copy it makes, so it is much more

efficient to make a two-dimensional pattern by saving a one-dimensional pat-

tern made with \multiput in a storage bin. then repeating it with another

\multiput. Saving the object in a bin can also save processing time for a

one-dimensional pattern. However, any pattern with more than about 100 rep-

etitions in all may cause I^X to run out of room.

5.5.5 Some Hints on Drawing Pictures

A small mistake in a picture-drawing command can produce strange results.

It's usually simple to track down such an error, so don't panic when a picture

turns out all wrong. If you find that some part of the picture is incorrectly

positioned by a small amount, and you're sure that you haven't made a mistake

in calculating its coordinates, check for stray spaces in the argument of the \put

command. Remember that this argument is typeset in LR mode, so spaces

before or after an object in that argument produce space in the output.

As you gain experience with the picture environment, you'll develop your

own techniques for designing pictures. Here. I will describe some methods that I

find useful. I like to use a small unit length, such as the default value of 1 point,

so I seldom need decimals. I lay out the complete picture on graph paper before

writing any LMjrX commands, using special graph paper made with IATgX's

picture environment. Designing your own graph paper is a nice exercise in

using \multiput: print only one copy with IATjpX and then make xerographic

copies of it. A copy made on a transparency provides a useful tool.

If a picture contains no slanted lines, I can just draw it on the graph paper

and determine the coordinates directly from the drawing. However, this doesn't

work well when using slanted lines because of I^T]?X's limited choice of slopes.

In that case. I first pick the slopes of all lines, then I calculate the position of

each object before drawing it on the graph paper.

It's a good idea to break a complicated picture into "subpictures". The

subpicture is drawn in a separate picture environment inside a \put argument,

as in

\put(13,14.2){\begin{picture}(10,7) ... \end{picture»

This permits easy repositioning of the subpicture and allows you to work in terms

of "local" coordinates relative to the subpictures origin instead of calculating

5.6 Centering and "Flushing" 111

the position of every picture component with respect to a single origin. You can

also magnify or reduce just the subpicture by changing the value of \unitlength

with a \setlength command in the \put command's argument—but don't leave

any space after the \setlength command.

5.6 Centering and "Flushing"

The center environment is used to produce one or more lines of centered text,

a \\ command starting a new line.

This is the last line of text in the preceding para- ... of text in the preceding paragraph.

graph. \begin{center>

Here are threeW centered \\
Here are three lines of text

centered \end-Ccenter}
lines of text. This is the text immediately ...

This is the text immediately following the environ-

ment . It begins a new paragraph only if you leave

a blank line after the \end{center}.

IATjrX is in paragraph mode inside the center environment, so it breaks lines

where necessary to keep them from extending past the margins.

The flushleft and flushright environments are similar, except instead

of each line of text being centered, it is moved to the left or right margin,

respectively.

These are the last lines of text from the preceding ... of text from the preceding paragraph,

paragraph. \begin{f lushright}

These are two \\ flushed right lines.
These are two \end{f lushright}

flushed right lines.

The center and flushright environments are most commonly used with the

\\ command indicating line breaking. There is little purpose to using the

flushleft environment in this way, since the \\ command in ordinary text

produces a flushed-left line. By letting TjrX do the line breaking, flushleft

produces ragged-right text.

Notice how T£X leaves these lines uneven, \begin{f lushleft}

without stretching them out to reach the right Notice how \TeX\ leaves these lines

margin. This is known as "ragged-right" text. uneven, withtout stretching them out .

\end{flushleft}

The centering and flushing environments work by using certain declarations

that change how TgX makes paragraphs. These declarations are available as

112 Designing It Yourself

IATj?X commands, the declaration that corresponds to each environment is shown
below:

environment: center flushleft flushright

declaration: \c entering \raggedright \raggedleft

These declarations can be used inside an environment such as quote or in a

parbox (Section 5.4.3).

This is text that comes at the end of the preceding ... at the end of the preceding paragraph,

paragraph. \begin{quote}

Here is a quote environment
\raggedlef t Here is a quote environment

whose lines are
whose lines are \\ flushed right

.

flushed right.
\end<quote>

The text of a figure or table can be centered on the page by putting a \c entering

declaration at the beginning of the figure or table environment.

Unlike the environments, the centering and flushing declarations do not start

a new paragraph; they simply change how T£X formats paragraph units (Sec-

tion 5.2.1). To affect a paragraph unit's format, the scope of the declaration

must contain the blank line or \end command (of an environment like quote)

that ends the paragraph unit.

5.7 List-Making Environments

A list is a sequence of items typeset in paragraph mode with indented left and

right margins, each item begun with a label. A label can be empty and an

indentation can be of length zero, so an environment not normally thought of

as a list can be regarded as one. In fact, almost every one of I^TjrjX's envi-

ronments that begins on a new line is defined as a list. The list-making envi-

ronments are: quote, quotation, verse, itemize, enumerate, description,

thebibliography. center, flushleft. and flushright. as well as the theorem-

like environments declared by \newtheorem.

IAT]?X provides two primitive list-making environments: list and trivlist.

the latter being a restricted version of list. They are flexible enough to produce

most lists and are used to define the environments listed above.

5.7.1 The list Environment

The list environment has two arguments. The first specifies how items should

be labeled when no argument is given to the \item command; the second con-

tains declarations to set the formatting parameters. The general form of a list

and the meaning of most of its formatting parameters are shown in Figure 5.3.

The vertical-space parameters are rubber lengths: the horizontal-space parame-

5.7 List-Making Environments 113

Preceding Text

\labelsep

i

\topsep + \parskip [+ \partopsep]

Label

Item 1

Paragraph 1

\rightmar

Mabelwidth

\leftmargin

\li stpari.ndent \parsep

Item 1

Paragraph 2

i

\itemsep + \parsep

Label

Item 2

Figure 5.3: The format of a list.

114 Designing It Yourself

ters are rigid ones. The extra \partopsep space is added at the top of the list

only if the input file has a blank line before the environment. The vertical space

following the environment is the same as the one preceding it.

Inside the list, the values of \parskip and \parindent are set to the values

of \parsep and \listparindent, respectively. When one list is nested inside

another, the \leftmargin and \rightmargin distances of the inner list are

measured from the margins of the outer list.

There is one spacing parameter not shown in Figure 5.3: an extra space of

length \itemindent is added before the label of each item, causing the label and

first line of the item to be indented by that amount. The value of \itemindent

is usually zero.

The default values of these parameters are determined by the document

style, as described in Section C.5.3, and will depend upon the level of nesting

of the list. These default values can be changed by declarations in the list

environment's second argument. It is best to maintain the same spacing in all

lists, so the default values of the vertical spacing and margin parameters should

be used. However, the width and placement of the label may differ in different

kinds of lists.

The label is typeset in LR mode. If it fits within a box of width \labelwidth,

it is placed flush with the right-hand edge of a box of that width, which is

positioned as shown in Figure 5.3. (It can be moved to a different position with

the \hf ill command of Section 5.4.2.) If the label is wider than \labelwidth,

it is put into a box of its own width that extends to the right of the position

shown in Figure 5.3. There is still a \labsep space to the right of the label's

box, so the first line of the item will be indented to accomodate the extra-wide

label.

The first argument of the environment is the text to be used as the label

for any \item command with no optional argument. To number the items

automatically, the second argument of the list environment should contain a

\usecounter{c£r} command whose argument is the name of a counter—usually

one defined with \newcounter (Section 5.6). This counter is reset to zero at the

beginning of the environment and is incremented by one before the execution

of any \item command that has no optional argument, so it can be used to

generate a label number.

This sentence represents the end of the text that \newcounter{bean>

precedes the list. . . . the text that precedes the list.

B-I This is the first item of the list. Ob- \begin{list}%

serve how the left and right margins
{B-\Roman{bean}M\usecounter{bean}

are indented by the same amount.
\setlengtM\rightmarginH\leftmargin}}

\item This is the first item of the list.
B-II This is the second item. Observe how the left and . . .

As usual, the following text starts a new paragraph \item This is the second item.

only if the list environment is followed by a blank \end{list}

line. As usual, the following text starts a ...

5.8 Fonts 115

A list environment like this would be used to produce a one-of-a-kind list.

The list environment is more commonly used with the \newenvironment com-

mand (Section 3.4) to define a new environment. Having many different list

formats tends to confuse the reader. Instead of formatting each list individually,

you should define a small number of list-making environments.

5.7.2 The trivlist Environment

The trivlist environment is a restricted form of the list environment in

which margins are not indented and each \item command must have an op-

tional argument. The environment has no arguments and is very much like a

list environment whose second argument sets \leftmargin. \rightmargin,

\labelwidth. and \itemindent to a length of zero.

The trivlist environment is used to define other environments that create a

one-item list, usually with an empty label. For example, the center environment

(Section 5.6) is equivalent to

\begin{trivlist} \centering \item[] . . . \end{trivlist}

which is how it is defined.

5.8 Fonts

A font is a particular size and style of type from a font family. All the fonts used

in this book are from the Computer Modern font family designed by Donald

Knuth. The font used for most of this book is ten-point roman—its size is

ten-point and its style is roman. L&TjrX's fonts are now all chosen from the

Computer Modern family, but versions of I^TgX that use other font families

should be available in the future: see your Local Guide to find out if there are

such versions on your computer. (Other popular font families are Times Roman
and Helvetica.)

5.8.1 Changing Type Size

L^TjrX's default type style is roman and its default type size is ten-point, but

the llpt style option makes the default size eleven-point and the 12pt option

makes it twelve-point. Section 3.1 describes declarations to change the type

style. IATjrX also has declarations for changing the type size; they are illustrated

below:

GnU \LARGE

(orilU \huge

Vjllll \Huge

Gnu \tiny Gnu \normalsize

Gnu \scriptsize Gnu Marge
Gnu \f ootnotesize Gnu \Large
Gnu \small

116 Designing It Yourself

The point size of type produced by these declarations depends upon the default

type size; the examples above are for a ten-point default size. The \normalsize

declaration specifies the default size, \footnotesize specifies the size used for

footnotes, and \scriptsize specifies the size used for subscripts and super-

scripts in \normalsize formulas. These size-changing declarations specify the

roman style, regardless of the style currently in effect. For \large bold letters,

you must type \large\bf . not \bf Marge.

When you typeset an entire paragraph unit (Section 5.2.1) in a certain size,

the scope of the size-changing declaration should include the blank line or \end

command that ends the paragraph unit. A size-changing command may not be

used in math mode. To set part of a formula in a different size of type, you

can put it in an \mbox containing the size-changing command. All size-changing

commands are fragile.

5.8.2 Loading Fonts

Not every type style is available in every size. If you try to use a font that is

not available, IATgX will type a warning and substitute a font of the same size

that is as close as possible in style to the one you wanted.

There may be fonts available on your computer that IATjrX does not know

about. Your Local Guide will tell you how to find out what fonts are available and

what their names are. Suppose there is a twelve-point Plus Roman boldface font

named "prbflO scaled\magstepl". You choose a command name by which to

call that font—let's call it \inhead—and type the declaration

\newfont{\inhead}{prbf 10 scaled\magstepl}

which defines \inhead to be a declaration that causes Tp^X to use this font.

The \inhead declaration does nothing else: in particular, it does not change the

value of \baselineskip (Section 5.4.1), so it should be used within the scope

of an appropriate size-changing declaration if you're setting an entire paragraph

in this font. The \inhead command cannot be used in math mode. To use

characters from that font in a formula, put them in an \mbox. The \inhead

command is robust.

Some fonts contain special symbols in addition to or instead of ordinary

letters. To produce a symbol from a font, you must know the character-code

number of that symbol, which is a number from to 255. The Local Guide

tells you where to find tables of character codes for different fonts. To produce

the symbol in the currently chosen font that has character code 26. you type

\symbol{26}. Tables often list character codes in octal (base 8) or hexadecimal

(base 16). An octal character code is prefaced by ' and a hexadecimal one by ".

so \symbol{'32} and \symbol{"lA} produce the same symbol as \symbol{26}.

since 32 is the octal and 1A the hexadecimal representation of 26.

CHAPTER 6

Errors

118 Errors

Section 2.3 describes first aid for handling errors; it explains how to deal with

simple errors. This chapter is for use when you encounter an error or warning

message that you don't understand. The following section tells how to locate the

error; the remaining sections explain the meaning of specific error and warning

messages.

As you saw in Section 2.3, an error can confuse lATpX and cause it to produce

spurious error messages when processing subsequent text that is perfectly all

right. Such spurious errors are not discussed here. When TgX writes a page

of output, it has usually recovered from the effects of any previous errors, so

the next error message probably indicates a real error. The following section

explains how to tell when TgX has written an output page.

6.1 Finding the Error

As described in Section 2.3, an error message includes an error indicator stating

what TjrX thinks the problem is, and an error locator that shows how much of

your input file T^X had read when it found the error. Most of the time, the line

printed in the error locator displays an obvious error in the input. If not, you

should look up the error message in the following sections to find its probable

cause. If you still don't see what's wrong, the first thing to do is locate exactly

where the error occurred.

The error locator starts with a line number such as 1 . 14, meaning that

the error was found while I^TgX was processing the fourteenth line from the

beginning of the file. If your text editor allows you to break a file into pages,

then the line number might be something like p. 3 ,1.4, which indicates the

fourteenth line of the third page of the input file.

If your input is all on a single file, then the error locator unambiguously iden-

tifies where TgX thinks the problem is. However, if you're using the commands
of Section 4.4 to split your input into several files, then you also must know

what file the error is in. Whenever TgX starts processing a file, it prints on your

terminal (and on the log file) a "(" followed by the file name, and it prints a

")" when it finishes processing the file. For example, the terminal output

... (rayfile.tex [1] [2] [3] (partl.tex [4] [5]) (part2.tex [6] [7]

! Undefined control sequence.

1.249 \todzy

tells you that the error (a misspelled \today command) is on line 249 of the file

part2.tex. which was included by an \input or \include command contained

in the file myf ile .tex. TjtX had completely processed the file parti . tex. which

was also read by a command in myfile.tex.

The error locator tells you how much of the input file TfrX had processed be-

fore it discovered the error: the last command that TgX processed is usually the

6.1 Finding the Error 119

source of the problem. There is one important exception; but before discussing

it. a digression is in order.

Logically, typesetting can be viewed as a two-step process: first the document

is typeset on one continuous scroll that unrolls vertically, then the scroll is cut

into individual pages to which headings and page numbers are added. (Since a

50-yard scroll of metal type is somewhat unwieldy, printers partition the logical

scroll into convenient lengths called galleys.) Instead of first producing the entire

scroll and then cutting it into pages. T£X does both steps together, alternately

putting output on the scroll with one hand and cutting off a page with the other.

It usually puts text on the scroll one paragraph unit (Section 5.2.1) at a time.

After each paragraph unit, it checks whether there's enough for a page. If so.

it cuts off the page, adds the heading and page number, and writes it out on a

file. This way. T£X doesn't have to keep much more than one page of text in

the computer's memory at a time.

Whenever Tjr\ writes a page on its output file, it prints the page number

on the terminal, enclosed in square brackets. Thus, any message that appears

on the terminal after TgX prints [27] and before it prints [28] is generated

between the time Tj;X wrote output pages 27 and 28. Whatever generated the

message probably appeared in the text printed on page 28. However, it might

also be in the text that was left on the scroll when TgX cut off page 28. putting

it in the first paragraph of page 29. IATjrX's warning messages are generated

by TprX's scroll-making hand. It reports that a problem is on page 28 if it's

detected between the time TjrX writes pages 27 and 28. so the problem could

actually appear at the top of page 29.

Xow. let's get back to locating an error. Most errors are discovered while TgX
is producing the scroll, but some errors, which (with apologies for abusing the

English language) I will call outputting errors, are detected while it is cutting off

a page. T^X identifies an outputting error by printing <output> on the terminal

at the beginning of a line somewhere above the error locator. For an outputting

error, the error locator shows how far T^X got when it was producing the scroll:

the actual error occurred at or before that point. An outputting error is usually

caused by a fragile command in a moving argument.

There is one other time when an error can occur: when IATjrX has reached

the end of your input file and is processing the \end{document} command. One
of the things it does then is read auxiliary files that it has written. An error

in the document can cause I^TjrX to write bad information on an auxiliary file.

producing an error when the file is read at the end. You can tell that this

has happened because the error locator will indicate that the problem is in the

\end{document} command, and the messages on your terminal will show that

T£X is now reading a file with the extension aux.

When the terminal output doesn't quickly lead you to the source of the error,

look at the output. If I^TjrX reaches the end of your input or is stopped with

a \stop command, the printed output will contain everything it has put on the

120 Errors

scroll, and the location of the error will probably be obvious. If you stopped

IATjtX by typing an X, then it will not print what was left on the scroll after the

last full page was written out. Since the error probably occurred in this leftover

text, the output will just narrow the possible location of the error.

If you still can't find the error, your next step is to find the smallest piece of

your input file that produces the error. Start by eliminating everything between

the \begin{document} and the last page or so of output. Then keep cutting

the input in half, throwing away the part that does not cause the error. This

should quickly lead to the source of the problem.

When all else fails, consult your Local Guide to find a IATjrX expert near you.

6.2 I^TeX's Error Messages

Here is a complete alphabetical list of I^TgX's error indicators, together with

their causes.

! Bad Mine or \vector argument.

The first argument of a \line or \vector command, which specifies the slope,

is illegal. Look up the constraints on this argument in Section 5.5.

! Bad math environment delimiter.

T^jX has found either a math-mode-starting command such as \ [or \ (when it

is already in math mode, or else a math-mode-ending command such as \) or

\] while in LR or paragraph mode. The problem is caused by either unmatched

math mode delimiters or unbalanced braces.

! Bad use of \\.

A \\ command appears between paragraphs, where it makes no sense. This

error message occurs when the \\ is used in a centering or flushing environment

or else in the scope of a centering or flushing declaration (Section 5.6).

! \begin{. . .} ended by \end{. . .}.

L^TjrX has found an \end command that doesn't match the corresponding \begin

command. You probably misspelled the environment name in the \end com-

mand, have an extra \begin. or else forgot an \end.

! Can be used only in preamble.

IATgX has encountered, after the \begin{document}. one of the following com-

mands that should appear only in the preamble: \documentstyle. \nof iles.

\includeonly. \makeindex. or \makeglossary. The error is also caused by an

extra \begin{document} command.

6.2 IATEX's Error Messages 121

! Command name . . . already used.

You are using \newcommand. \newenvironment. \newlength, \newsavebox, or

\newtheorem to define a command or environment name that is already defined,

or \newcounter to define a counter that already exists. (Defining an environ-

ment named gnu automatically defines the command \gnu.) You'll have to

choose a new name or. in the case of \newcommand or \newenvironment, switch

to the \renew. . . command.

! Counter too large.

Some object that is numbered with letters, probably an item in an enumerated

list, has received a Dumber greater than 26. Either you're making a very long

list or yoifve been resetting counter values.

! Environment . . . undefined.

IATj?X has encountered a \begin command for a nonexistent environment. You

probably misspelled the environment name. This error can be corrected on the

spot by typing an I followed by the correct command, ending with a return.

(This does not change the input file.)

! Float (s) lost.

You put a figure or table environment or a \marginpar command inside a

parbox—either one made with a minipage environment or \parbox command,

or one constructed by IATjrX in making a footnote, figure, etc. This is an out-

putting error, and the offending environment or command may be quite a way
back from the point where IATjtX discovered the problem. One or more figures,

tables, and/or marginal notes have been lost, but not necessarily the one that

caused the error.

! Illegal character in array arg.

There is an illegal character in the argument of an array or tabular environ-

ment, or in the second argument of a \multicolumn command.

! Missing \begin{document}.

L^TjrX produced printed output before encountering a \begin{document} com-

mand. Either you forgot the \begin{document} command or there is something

wrong in the preamble. The problem may be a stray character or an error in a

declaration for example, omitting the braces around an argument or forgetting

the \ in a command name.

! Missing p-arg in array arg.

There is a p that is not followed by an expression in braces in the argument of an

array or tabular environment, or in the second argument of a \multicolumn

command.

122 Errors

! Missing @-exp in array arg.

There is an @ character not followed by an @-expression in the argument of an

array or tabular environment, or in the second argument of a \multicolumn

command.

! No such counter.

You have specified a nonexistent counter in a \setcounter or \addtocounter

command. This is probably caused by a simple typing error. However, if the er-

ror occurred while a file with the extension aux is being read, then you probably

used a \newcounter command outside the preamble.

! Not in outer par mode.

You had a figure or table environment or a \marginpar command in math
mode or inside a parbox.

! \pushtabs and \poptabs don't match.

L^Tj?X found a \poptabs with no matching \pushtabs. or has come to the

\end{tabbing} command with one or more unmatched \pushtabs commands.

! Something's wrong--perhaps a missing \item.

The most probable cause is an omitted \item command in a list-making envi-

ronment. It is also caused by forgetting the argument of a thebibliography

environment.

! Tab overflow.

A \= command has exceeded the maximum number of tab stops that WTpX.

permits.

! There's no line here to end.

A \newline or \\ command appears between paragraphs, where it makes no

sense. If you're trying to "leave a blank line", use a \vspace command (Sec-

tion 5.4.2).

! This may be a LaTeX bug.

LVTjtX has become thoroughly confused. This is probably due to a previously

detected error, but it is possible that you have found an error in WTpX. itself.

If this is the first error message produced by the input file and you can't find

anything wrong, save the file and contact the person listed in your Local Guide.

! Too deeply nested.

There are too many list-making environments nested within one another. How
many levels of nesting are permitted may depend upon what computer you are

using, but at least four levels are provided, which should be enough.

6.3 TfcX's Error Messages 123

! Too many unprocessed floats.

While this error can result from having too many \marginpar commands on a

page, a more likely cause is forcing L&Tj?X to save more figures and tables than

it has room for. When typesetting its continuous scroll, I^TgX saves figures and

tables separately and inserts them as it cuts off pages. This error occurs when

IATgX finds too many figure and/or table environments before it is time to cut

off a page, a problem that is solved by moving some of the environments farther

towards the end of the input hie. The error can also be caused by a "logjam"—

a

figure or table that cannot be printed causing others to pile up behind it, since

IATjrX will not print figures or tables out of order. The jam can be started by

a figure or table that either is too large to fit on a page or won't fit where its

optional placement argument (Section C.8.1) says it must go. This is likely to

happen if the argument does not contain a p option.

! Undefined tab position.

A \>. \+. \-. or \< command is trying to go to a nonexistent tab position—one

not defined by a \= command.

! \< in mid line

.

A \< command appears in the middle of a line in a tabbing environment. This

command should come only at the beginning of a line.

6.3 TeJX's Error Messages

Here is an alphabetical list of some of TgX's error messages and what may have

caused them.

! Counter too large.

Footnotes are being "numbered" with letters or footnote symbols (*, t, etc.) and

UTjrX has run out of letters or symbols. This is probably caused by too many
\thanks commands.

! Double subscript.

There are two subscripts in a row in a mathematical formula—something like

x_{2}_{3>. which makes no sense. To produce X2
:i

- type x_{2_{3}}.

! Double superscript.

There are two superscripts in a row in a mathematical formula—something like

x~{2}~{3}. which makes no sense. To produce x2
. type x~{2~{3}}.

! Extra alignment tab has been changed to \cr.

There are too many separate items (column entries) in a single row of an array

or tabular environment. In other words, there were too many &'s before the

end of the row . You probably forgot the \\ at the end of the preceding row.

124 Errors

! Extra }, or forgotten $.

The braces or math mode delimiters don't match properly. You probably forgot

a{. \[. \(.or$.

! Font . . . not loaded: Not enough room left.

The document uses more fonts than TgX has room for. If different parts of the

document use different fonts, then you can get around the problem by processing

it in parts (Section 4.4).

! I can't find file '...'.

TgX can't find a file that it needs. If the name of the missing file has the

extension tex. then it is looking for an input file that you specified—either your

main file or another file inserted with an \input or \include command. If

the missing file has the extension sty. then you have specified a nonexistent

document style or style option. After printing this error message, TgX prints:

Please type another input file name:

and waits for you to type the correct file name, followed by return.

! Illegal parameter number in definition of

This is probably caused by a \newcommand. \renewcommand. \newenvironment.

or \renewenvironment command in which a # is used incorrectly. A # charac-

ter, except as part of the command name \#. can be used only to indicate an

argument parameter, as in #2. which denotes the second argument. This error

is also caused by nesting one of the above four commands inside another, or

by putting a parameter like #2 in the last argument of a \newenvironment or

\renewenvironment command.

! Illegal unit of measure (pt inserted)

.

If you just got a

! Missing number, treated as zero.

error, then this is part of the same problem. If not. it means that IAT|?X was

expecting a length as an argument and found a number instead. The most

common cause of this error is writing instead of something like Oin for a length

of zero, in which case typing return should result in correct output. However.

the error can also be caused by omitting a command argument.

! Misplaced alignment tab character &.

The special character &. which should be used only to separate items in an array

or tabular environment, appeared in ordinary text. You probably meant to type

\&. in which case typing I\& followed by return in response to the error message

should produce the correct output.

6.3 TfcX's Error Messages 125

! Missing control sequence inserted.

This is probably caused by a \newcommand. \renewcommand. \newlength, or

\newsavebox command whose first argument is not a command name.

! Missing number, treated as zero.

This is usually caused by a LMjjjX command expecting but not finding either a

number or a length as an argument. You may have omitted an argument, or

a square bracket in the text may have been mistaken for the beginning of an

optional argument. This error is also caused by putting \protect in front of

either a length command or a command such as \value that produces a number.

! Missing { inserted.

! Missing } inserted.

TgX has become confused. The position indicated by the error locator is prob-

ably beyond the point where the incorrect input is.

! Missing $ inserted.

T^X probably found a command that can be used only in math mode when it

wasn't in math mode. Remember that unless stated otherwise, all the commands
of Section 3.3 can be used only in math mode. TgX is not in math mode
when it begins processing the argument of a box-making command, even if that

command is inside a math environment. This error also occurs if TgX encounters

a blank line when it is in math mode.

! Not a letter.

Something appears in the argument of a \hyphenation command that doesn't

belong there.

! Paragraph ended before ... was complete.

A blank line occurred in a command argument that shouldn't contain one. You
probably forgot the right brace at the end of an argument.

\scriptfont ... is undefined (character . . .)

.

\scriptscriptfont ... is undefined (character . . .)

.

\textfont ... is undefined (character . . .)

.

These errors occur when an uncommon font is used in math mode- Tor example,

if you use a \sc command in a formula inside a footnote, calling for a footnote-

sized small caps font. This problem is solved by using a \load command, as

explained in Section C.14.4.

! TeX capacity exceeded, sorry [...].

TgX has just run out of space and aborted its execution. Before you panic,

remember that the least likely cause of this error is TgX not having the capacity

126 Errors

to process your document. It was probably an error in your input file that

caused T^X to run out of room. The following discussion explains how to decide

whether you've really exceeded TjtX's capacity and, if so, what to do. If the

problem is an error in the input, you may have to use the divide and conquer

method described previously to locate it. IATgX seldom runs out of space on a

short input file, so if running it on the last few pages before the error indicator's

position still produces the error, then there's almost certainly something wrong

in the input file.

The end of the error indicator tells what kind of space TgX ran out of.

The more common ones are listed below, with an explanation of their probable

causes.

buffer size Can be caused by too long a piece of text as the argument of a

sectioning, \caption, \addcontentsline, or \addtocontents command.
This error will probably occur when the \end{document} is being pro-

cessed, but it could happen when a \tableof contents, \listoffigures,

or \listoftables command is executed. To solve this problem, use a

shorter optional argument. Even if you're producing a table of contents

or a list of figures or tables, such a long entry won't help the reader.

exception dictionary You have used \hyphenation commands to give T^X
more hyphenation information than it has room for. Remove some of the

less frequently used words from the \hyphenation commands and insert

\- commands instead.

hash size Your input file defines too many command names and/or uses too

many cross-referencing labels.

input stack size This is probably caused by an error in a command definition.

For example, the following command makes a circular definition, defining

\gnu in terms of itself:

\newcommand{\gnu}{a \gnu} °/ This is wrong!

When T£X encounters this \gnu command, it will keep chasing its tail

trying to figure out what \gnu should produce, and eventually run out of

"input stack".

main memory size This is one kind of space that TgX can run out of when

processing a short file. There are three ways you can run TgX out of main

memory space: (1) defining a lot of very long, complicated commands.

(2) making an index or glossary and having too many \index or \glossary

commands on a single page, and (3) creating so complicated a page of

output that TgX can't hold all the information needed to generate it.

6.3 TeX's Error Messages 127

The solution to the Hist two problems is obvious: define fewer commands
or use fewer \index and \glossary commands. The third problem is

nastier. It can be caused by large tabbing, tabular, array, and picture

environments. T|.\\'s space may also be filled up with figures and tables

waiting for a place to go.

To find out if you've really exceeded T^X's capacity in this way, put a

\clearpage command in your input file right before the place where TgX
ran out of room and try running it again. If it doesn't run out of room

with the \clearpage command there, then you did exceed TgX's capacity.

If it still runs out of room, then there's probably an error in your file.

If TgX is really out of room, you must give it some help. Remember that

TgX processes a complete paragraph before deciding whether to cut the

page. Inserting a \newpage command in the middle of the paragraph,

where TgX should break the page, may save the day by letting TgX write

out the current page before processing the rest of the paragraph. (A

\pagebreak command won't help.) If the problem is caused by accumu-

lated figures and tables, you can try to prevent them from accumulating

—

either by moving them further towards the end of the document or by

trying to get them to come out sooner. (See Section C.8.1 for more de-

tails.) If you are still writing the document, simply add a \clearpage

command and forget about the problem until you're ready to produce the

final version. Changes to the input file are likely to make the problem go

away.

pool size You probably used too many cross-referencing labels and/or defined

too many new command names. More precisely, the labels and command
names that you define have too many characters, so this problem can be

solved by using shorter names. However, the error can also be caused

by omitting the right brace that ends the argument of either a counter

command such as \setcounter, or a \newenvironment or \newtheorem

command.

save size This occurs when commands, environments, and the scopes of dec-

larations arc nested too deeply— for example, by having the argument of

a \multiput command contain a picture environment that in turn has a

\footnotesize declaration whose scope contains a \multiput command
containing a . . .

.

! Text line contains an invalid character.

The input contains some strange character that it shouldn't. A mistake when
creating the file probably caused your text editor to insert this character. Ex-

actly what could have happened depends upon what text editor you used. If

128 Errors

examining the input file doesn't reveal the offending character, consult the Local

Guide for suggestions.

! Undefined control sequence.

TgX encountered an unknown command name. You probably misspelled the

name, in which case typing I followed by the desired command and a return will

produce correct output. However, you still must change the input file later. If

this message occurs when a L£Tj?X command is being processed, the command
is probably in the wrong place—for example, the error can be produced by an

\item command that's not inside a list-making environment. The error can also

be caused by a missing \documentstyle command.

! Use of . . . doesn't match its definition.

If the *"..." is a IATjX command, then it's probably one of the picture-drawing

commands described in Section 5.5. and you have used the wrong syntax for

specifying an argument. If it's \@array that doesn't match its definition, then

there is something wrong in an ©-expression in the argument of an array or

tabular environment—perhaps a fragile command that is not Nprotect'ed.

! You can't use 'macro parameter character #' in ... mode.

The special character # has appeared in ordinary text. You probably meant

to type \#. in which case you can respond to the error message by typing I\#

followed by return to produce the correct output.

6.4 I£TEX Warnings

IATjrX's warning messages all begin with "LaTeX Warning:". The meanings of

these messages are described below.

Citation '
. . .

' on page . . . undefined.

The citation key in a \cite command was not defined by a \bibitem command.

See Section 4.3.

Label '
. . .

' multiply defined.

Two Mabel or \bibitem commands have the same arguments. More precisely.

they had the same arguments the preceding time that LVTjX processed the input.

Label (s) may have changed. Rerun to get cross-references right.

The numbers printed by \ref . \pageref . and \cite commands may be wrong

because the correct values have changed since the last time L^TjrX processed the

input.

6.5 TeX Warnings 129

Marginpar on page . . . moved.

A marginal note was moved down on the page to avoid printing on top of a

previous marginal note. It will therefore not be aligned with the line of text

where the \marginpar command appeared.

No . . . typeface in this size, using ...

A type style declaration specified a type style and size combination that is not

available, so LVTjrX is substituting another one.

Oval too small

.

An \oval command specified an oval so small that WRpX. couldn't draw small

enough quarter-circles to put in its corners. What IAT^X did draw does not look

very good.

Reference '
. . .

' on page . . . undefined.

The argument of a \ref or \pageref command was not defined by a \label

command. See Section 4.2.

... in math mode

.

The indicated command is not permitted in math mode but was used there.

Remember that \boldmath. \unboldmath, and size-changing commands may
not be used in math mode.

6.5 T^X Warnings

You can identify a TgX warning message because it is not an error message, so

no ? is printed, and it does not begin with "LaTeX Warning:". Below is a list

of some of TgX's warnings.

Overfull \hbox . .

.

See Section 5.2.1.

Overfull \vbox . .

.

Because it couldn't find a good place for a page break, T^X put more on the page

than it should. See Section 5.2.2 for how to deal with page-breaking problems.

Underfull \hbox . . .

Check your output for extra vertical space. If you find some, it was probably

caused by a problem with a \\ or \newline command—for example, two \\ com-

mands in succession. This warning can also be caused by using the sloppypar

environment or \sloppy declaration, or by inserting a \linebreak command.

130 Errors

Underf ull \vbox . .

.

T[7JX could not find a good place to break the page, so it produced a page without

enough text on it. See Section 5.2.2 for how to handle page-breaking problems.

APPENDIXA

SLITEX

132 SLITEX

SLlTjrX is a version of IATjtX for making black-and-white or color slides. Consult

your Local Guide for instructions on how to run SliTjtX, and for any differences

between the version described here and the one on your computer. The fonts

used by SLlTgX are different from the IATgX fonts with which this book is printed,

so slides shown here are not accurate representations of SLlT^X's output.

A.l How SLITEX Makes Colors

No special printer is needed for color slides; they are made by copying ordinary

black-and-white output onto colored transparencies. To make the slide

+

RED

BLACK

BLUE

+

+ 9

where "RED" is colored red, "BLACK" is colored black, and "BLUE" is colored

blue, SLITEX would generate the following three separate pages of output:

+

RED

+

+ 9

+

BLACK

+

+ 9

+

BLUE

+

+ 9

A. 2 The Root File 133

Those pages are called color layers. Copying each of them onto a special sheet

that produces a transparency of the appropriate color (such sheets are commer-

cially available in an assortment of colors) and laying the three transparencies

atop one another produces the desired three-color slide.

Text that is meant to he colored red on the slide, and is therefore printed

by SliTjA on the red color layer, is called "red text". The color of a piece of

text therefore refers only to the color layer on which it appears; SLlTjrX does

not print anything in red ink.

Its hard to tell what a slide will look like from the separate color layers,

so SLlTjrX can produce a black-and-white version of the slide that contains all

the color layers properly superimposed. When creating a set of slides, you

should first generate only the black-and-white versions, making the color layers

after you've fixed all the problems that are visible in black and white. If you

don*t want color slides, you can just copy the black-and-white versions onto

transparencies.

A.2 The Root File

The input to SLlT^X consists of a root file and a separate slide file. The root

file is the one whose name you type when running SLlTjrX. It begins with the

usual \documentstyle command. The slides document style is the standard

one for producing slides: there are no standard options. Consult your Local

Guide to see if any other styles or options are available on your computer. The
\documentstyle command is followed by the preamble, which may contain only

declarations, followed in turn by the \begin{document} command.

Any text that comes after the \begin{document} is treated as "front matter"

and not as slide material. You can use it for notes to identify the slides.

This is an example of

front matter. Note

the different type style,

and how the text is ver-

tically centered on the

page

\begin{document}

This is an example of front matter.

Note the different type style, and how

the text is vertically centered on the

page.

134 SLITEX

To produce color slides, there must be a \colors command to tell SLlTjrX

what colors will be used. The command

\colors{red , black , blue}

states that there will be three colors named red. black, and blue. SLlTjrX

knows nothing about real colors, so the three colors could just as weli be named
puce, mauve, and fred. No \colors command is needed if only black-and-white

slides are being made.

The text of the slides is contained in a separate slide file whose contents are

discussed in the next section. The slide file may have any first name, but must

have the extension tex. Suppose that it is called myslid.tex. Black-and-white

slides are generated by placing the command \blackandwhite{myslid} in the

root file. Color slides are generated by the command \colorslides{myslid}.

The latter command generates a set of color-layer pages for each color specified

by the \colors command. For example, the command

\colors{red , black , blue}

causes a subsequent \colorslides command to generate first all the red color-

layer pages, then the black ones, and then the blue ones.

As usual, the root file ends with an \end{document} command.

A.3 The Slide File

The main purpose of the root file is to tell SliTjtX what colors to use and where

to find the slide file, so the root file is usually short. The slide file makes the indi-

vidual slides; it may be split into parts with the \input command of Section 4.4,

but this is seldom necessary because SLlTjrX provides commands, described be-

low, for selecting which slides to process. The \includeonly command may not

be used with SliTeX.

A.3.1 Slides

Each slide is produced by a slide environment with a single argument that is a

list of all the colors contained on the slide. A slide that has the colors red and

blue is created by an environment

\begin{slide}{red , blue}

\end{slide}

The colors in the argument must be declared by a \colors command in the root

file. They tell SLlTjrX which color layers to produce for this particular slide. If

there is green text in the slide, that text will appear in the black-and-white

A.3 The Slide File 135

version, but no green color layer will be generated unless green is included in

the slide environment's argument. If only black-and-white slides are to be

made, then you can just type:

\begin{slide}{}

\end{slide>

The text appearing on a slide is produced with ordinary IATgX commands.

Any commands that make sense for slides can be used. Commands that don't

make sense include sectioning commands, figure and table environments, in-

dexing commands, commands for generating a bibliography, and page-breaking

commands. The latter make no sense in a slide because each slide must fit on a

single page.

Output generated by SLrTgX differs from ordinary IiT^X output in two ways:

text is automatically centered vertically on a slide and SLlTjrX uses type fonts es-

pecially chosen for slides. The characters in these fonts are much larger than the

ones in the corresponding IATjrX fonts; SLlTgX's \normalsize produces roughly

the same size characters as I^TgX's \LARGE (Section 5.8.1). Moreover, SLfTjrX's

ordinary roman type style is similar to IATjrX's sans serif style. The only type

styles generally available are roman (\rm), italic (\it), bold (\bf), and type-

writer (\tt). The \em command works as usual.

The only special SLlT^X commands needed inside a slide are ones to specify

color. The \colors command in the root file defines the color declarations; if the

root file contains the command \colors{red, black, blue}, then \red, \black,

and \blue are declarations that specify the color. They have the same scope

rules as other declarations, as illustrated by the following example in which only

the red color layer is shown:

+ +

This IS red text with

two here.

This is more red text.

+ 6

\red

\begin{slide}{red , blue}

This is red text with two

{\blue blue words} here.

This is more red text.

\end{slide}

136 SLITEX

A color declaration does not affect the type style. For example, the following in-

put produces a slide whose red color layer contains only the words RED ITALIC
in italic.

\begin{slide}{red

,

blue}

\begin{blue} This is blue roman text.

{\it This is blue italic and this is

{\red RED ITALIC}

text .}

\end{blue}

\end{slide}

A color declaration cannot be used in math mode. A multicolored formula is

made with \mbox commands that contain the color declarations.

The command \invisible is a special color declaration for invisible text.

Invisible text is not only colorless, appearing in no color layer, but does not ap-

pear in the black-and-white version either. The use of invisible text is explained

below. Like other color declarations, \invisible cannot be used in math mode.

A. 3.2 Overlays

The overlay environment is for making an overlay—a slide meant to be placed

on top of another one. It is exactly the same as the slide environment except

for how the page is numbered. The first overlay following slide number 9 is

numbered "9-a", the second one is numbered "9-b'\ and so forth. To make
an overlay that perfectly overlays a slide, the slide and the overlay should be

identical except that text visible in one is invisible in the other.

+ +

An goes here.

+ 9

\begin{slide}{red}

\red

An {\invisible overlay}

goes here.

\end{slide>

A.3 The Slide File 137

+

overlay

+

+ 9-a

\begin{overlay}{red}

\invisible

An {\red overlay}

goes here.

\end{overlay}

When the slide and the overlay are placed on top of one another, they read:

An overlay goes here.

A. 3.3 Notes

It is sometimes convenient to put notes to yourself in with the slides. The note

environment produces a one-page note that appears only in the black-and-white

version of the slides.

This is a note to my-

self, perhaps reminding

me of what I wanted to

say here.

9-1

\begin{note}

This is a note to myself, perhaps

reminding me of what I wanted to say

here.

\end{note}

Notes that follow slide number 9 are numbered "9-1", "9-2", etc.

A.3.4 Page Styles for Slides

Slides and overlays normally have -I- symbols in the corners to help align the

separate color layers. The presence or absence of these symbols and of the slide

138 SLITEX

or overlay number is controlled by the page style (Section 5.1.2). The slides

document style provides the following page styles.

headings Alignment marks and numbers are as shown in the examples. This

is the default. The \markboth and \markright commands have no effect.

plain There are no alignment marks, but slides, overlays, and notes are num-
bered as shown.

empty No alignment marks or numbers are printed.

The page style can be changed with the \pagestyle declaration described in

Section 5.1.2. It should not be used in a slide, overlay, or note environment.

The \thispagestyle command should not be used in SLlTgX.

A.4 Making Only Some Slides

For making corrections, it's convenient to generate only some of the slides from

your input file. The command

\onlyslides{4 ,7-13, 23}

in the root file will cause the following \blackandwhite and \colorslides

commands to generate only slides numbered 4, 7 13 (inclusive) and 23, plus

all of their overlays. The slide numbers in the argument must be in ascending

order, and can include nonexistent slides—for example, you can type

\onlyslides{10-9999}

to produce all but the first nine slides. The argument of the \onlyslides

command must be nonempty.

There is also an analogous \onlynotes command to generate a subset of

the notes. Notes numbered 11-1, 11-2, etc. will all be generated by specifying

page 11 in the argument of the \onlynotes command. If the root file has an

\onlyslides command but no \onlynotes command, then notes are produced

for the specified slides. If there is an \onlynotes but no \onlyslides. then

no slides are generated. Including both an \onlyslides and an \onlynotes

command has the expected effect of producing only the specified slides and

notes.

APPENDIX B

The Bibliography
Database

140 The Bibliography Database

Section 4.3.2 explains how the \bibliography command specifies one or more

bib files—bibliographic database files whose names have the extension bib.

BibTjtX uses the bib file(s) to generate a bbl file that is read by \bibliography

to make the bibliography. This appendix explains how to create bib files.

The bibliography database files for use with BibTjX are reasonably compat-

ible with the ones used by the Scribe text formatting system [6]. While a bib

file prepared according to the directions in this appendix will work with Scribe,

it is better to prepare separate files for BibTjtX and Scribe. The compatibility

makes it easy to convert from one to the other, or to maintain two copies of the

database.

For any single document, it's easier to make the bibliography yourself than

to create the bib file needed by BlBTgX. However, when you've made a bib file

entry for a reference, it can be used for other documents as well. Once you start

using BlBTgX, you will soon compile a bibliographic database that eliminates

almost all the work of making a bibliography. Moreover, other people may have

bib files that you can copy, or there may be a common database that you can

use. Ask your friends or check the Local Guide to find out what facilities are

available to ease the task of making bib files.

B.l The Format of the bib File

B.l.l The Entry Format

A bib file contains a series of reference entries like the following:

@B00K{kn
:
gnus

,

AUTHOR = "Donald E. Knudson"

,

TITLE = "1966 World Gnus Almanac",

PUBLISHER = {Permafrost Press},

ADDRESS = {Novosibirsk} }

The @B00K states that this is an entry of type book. Various entry types are

described below. The kn:gnus is the key, as it appears in the argument of a

\cite command referring to the entry.

This entry has four fields, named AUTHOR, TITLE, PUBLISHER, and ADDRESS.

The meanings of these and other fields are described below. A field consists of

the name, an = character with optional space around it, followed by its text. The

text of a field is a string of characters, with no unmatched braces, surrounded

by either a pair of braces or a pair of " characters. (Unlike in TgX input, \{ and

\} are considered to be braces with respect to brace matching.) Entry fields are

separated from one another, and from the key, by commas. A comma may have

optional space around it.

The outermost braces that surround the entire entry may be replaced by

parentheses. As in T^X input files, an end-of-line character counts as a space

B.l The Format of the bib File 141

and one space is equivalent to one hundred. Unlike T^X, BlBTgX ignores the

case of letters in the entry type. key. and field names, so the above entry could

have been typed as follows:

@Book(KN :Gnus , author={Donald E. Knudson}
,

TiTlE = "1966 World

Gnus Almanac" , ...)

However, the case of letters does matter to L^TjrX, so the key should appear

exactly the same in all \cite commands in the IMj?X input file.

The quotes or braces can be omitted around text consisting entirely of nu-

merals. The following two fields are equivalent:

Volume = "27" Volume = 27

B.1.2 The Text of a Field

The text of the field is enclosed in braces or double quote characters ("). A part

of the text is said to be enclosed in braces if it lies inside a matching pair of

braces other than the ones enclosing the entire entry.

Names

The text of an author or editor field represents a list of names. The bibliogra-

phy style determines the format in which the name is printed: whether the first

name or last name appears first, if the full first name or just the first initial is

used. etc. The bib file entry simply tells BlBTjrX what the name is. You should

type an author's complete name and let the bibliography style decide what to

abbreviate, van Leunen [7] recommends typing an author's name exactly as it

appears in the cited work, but this could produce a confusing reference list if his

name appears in a slightly different form in two different works—for example,

with and without a middle initial. In this case, I recommend typing the name
the way the author would like it. as indicated by how it appears in the majority

of his publications.

Most names can be entered in the obvious way. either with or without a

comma, as in the following examples.

"John Paul Jones" "Jones, John Paul"

"Ludwig von Beethoven" "von Beethoven, Ludwig"

Only the second form, with a comma, should be used for people who have

multiple la^t names that are capitalized. For example. Per Brinch Hansen's last

name is Brinch Hansen. 80 his name should be typed with a comma:

"Brinch Hansen, Per"

142 The Bibliography Database

If you type "Per Brinch Hansen". BlBTj?X will think that "Brinch" is his middle

name, "von Beethoven" or "de la Madrid" pose no problem because "von" and

"de la" are not capitalized.

BlBTj?X regards the text enclosed in braces as a single name, so braces should

be used in cases where BlBTjrX would otherwise get confused. For example,

braces should surround a comma that is part of a name. The braces in

"{Barnes and Noble, Inc.}"

prevent "Inc."' from being interpreted as a first name, this particular author

having no first name. Note that the two names

"von Beethoven, Ludwig" "{von Beethoven}, Ludwig"

are considered by BlBTj?X to be different names. In the first, "Beethoven" is

the last name, with "von" an auxiliary word: in the second, which in this case

happens to be incorrect, the last name is "von Beethoven". The bibliography

style will probably print both the same, but it may alphabetize them differently.

"Juniors" pose a special problem. Most people with "Jr." in their name
precede it with a comma. Such a name should be entered as follows:

"Ford, Jr. , Henry"

However, some people do not use a comma: they are handled by considering the

"Jr." to be part of the last name:

"{Steele Jr.}, Guy L." "Guy L. {Steele Jr.}"

If there are multiple authors or editors, their names are separated by the

word "and". A paper written by Alpher, Bethe. and Gamow has the following

entry:

AUTHOR = "Ralph Alpher and Bethe, Hans and George Gamow"

An "and" separates author's names only if it is not enclosed in braces. Therefore,

if the word "and" appears as part of a name, it is enclosed in braces, as in the

example of "Barnes and Noble. Inc." given above. If an author or editor

field has more names than you want to type, just end the list of names with

and others; the standard styles convert this to the conventional et al.

Titles

The bibliography style determines whether or not a title is capitalized: the titles

of books usually are. the titles of articles usually are not. You type a title the

way it should appear if it is capitalized.

TITLE = "The Agony and the Ecstasy"

B.l The Format of the bib File 143

You should capitalise the first word of the title, the first word after a colon, and

all other words except articles and unstressed conjunctions and prepositions.

BibTjtX will change uppercase letters to lowercase if appropriate. Uppercase

letters that should not he changed are enclosed in braces. The following two

titles are equivalent; the A of Africa will not be made lowercase.

"The Gnats and Gnus of {Africa}"

"The Gnats and Gnus of {A}frica"

B.1.3 Abbreviations

Instead of an ordinary text string, the text of a field can be replaced by an

abbreviation for it. An abbreviation is a string of characters that starts with a

letter and does not contain a space or any of the following ten characters:

"#•/.'().={}
The abbreviation is typed in place of the text field, with no braces or quotation

marks. If jggl is an abbreviation for

Journal of Gnats and Gnus, Series
-
1

then the following are equivalent:

Journal = jggl

Journal = "Journal of Gnats and Gnus, Series" 1"

Some abbreviations are predefined by the bibliography style. These always in-

clude the usual three-letter abbreviations for the month: jan, feb, mar, etc.

Bibliography styles usually contain abbreviations for the names of commonly
referenced journals. ('onsult your Local Guide for a list of the predefined abbre-

viations for the bibliography styles available on your computer.

You can define your own abbreviations by putting a ©string command in

the bib file. The command

@string{jggl = "Journal of Gnats and Gnus, Series~l"}

defines jggl to be the abbreviation assumed in the previous example. Paren-

theses can be used in place of the outermost braces in the ©string command,

and braces can be used instead of the quotation marks. The text must have

matching bra

The case of letters is ignored in an abbreviation as well as in the command
name ©string, so the above command is equivalent to

@STRING{JgGl = "Journal of Gnats and Gnus, Series"!"}

144 The Bibliography Database

A Ostring command can appear anywhere before or between entries in a

bib file. However, it must come before any use of the abbreviation, so a sensible

place for ©string commands is at the beginning of the file. A Ostring command
in the bib file takes precedence over a definition made by the bibliography style,

so it can be used to change the definition of an abbreviation such as Feb.

B.2 The Entries

B.2.1 Entry Types

When entering a reference in the database, the first thing to decide is what

type of entry it is. No fixed classification scheme can be complete, but BibTj?X

provides enough entry types to handle almost any reference reasonably well.

References to different types of publications contain different information:

a reference to a journal article might include the volume and number of the

journal, which is usually not meaningful for a book. Therefore, database entries

of different types have different fields. For each entry type, the fields are divided

into three classes:

required Omitting the field will produce an error message and may result in

a badly formatted bibliography entry. If the required information is not

meaningful, you are using the wrong entry type.

optional The field's information will be used if present, but can be omitted

without causing any formatting problems. A reference should contain any

available information that might help the reader, so you should include

the optional field if it is applicable.

ignored The field is ignored. BlBTj?X ignores any field that is not required or

optional, so you can include any fields you want in a bib file entry. It's a

good idea to put all relevant information about a reference in its bib file

entry—even information that may never appear in the bibliography. For

example, if you want to keep an abstract of a paper in a computer file, put

it in an abstract field in the paper's bib file entry. The bib file is likely

to be as good a place as any for the abstract, and it is possible to design

a bibliography style for printing selected abstracts.

The following are all the entry types, along with their required and optional

fields, that are used by the standard bibliography styles. They are similar to

those adapted by Brian Reid from the classification scheme of van Leunen [7]

for use in the Scribe system. The meanings of the individual fields are explained

in the next section. A particular bibliography style may ignore some optional

fields in creating the reference. Remember that, when used in the bib file, the

entry-type name is preceded by an @ character.

B.2 The Entries 145

article An article from a journal or magazine. Required fields: author, title,

journal, year. Optional fields: volume, number, pages, month, note.

book A book with an explicit publisher. Required fields: author or editor,

title, publisher, year. Optional fields: volume, series, address,

edition, month, note.

booklet A work that is printed and bound, but without a named publisher or

sponsoring institution. Required field: title. Optional fields: author,

howpublished. address, month, year. note.

conference The same as inproceedings. included for Scribe compatibility.

inbook A part of a book, which may be a chapter and/or a range of pages.

Required fields: author or editor, title, chapter and/or pages,

publisher, year. Optional fields: volume, series, address, edition,

month, note.

incollection A part of a book with its own title. Required fields: author,

title, booktitle. publisher, year. Optional fields: editor, chapter,

pages, address, month, note.

inproceedings An article in a conference proceedings. Required fields: author,

title, booktitle. year. Optional fields: editor, pages, organization,

publisher, address, month, note.

manual Technical documentation. Required field: title. Optional fields:

author, organization, address, edition, month, year, note.

mastersthesis A Master's thesis. Required fields: author, title, school,

year. Optional fields: address, month, note.

misc Use this type when nothing else fits. Required fields: none. Optional

fields: author, title, howpublished. month, year, note.

phdthesis A Ph.D. thesis. Required fields: author, title, school, year.

Optional fields: address, month, note.

proceedings The proceedings of a conference. Required fields: title, year.

Optional fields: editor, publisher, organization, address, month,

note.

techreport A report published by a school or other institution, usually num-
bered within a series. Required fields: author, title, institution, year.

Optional fields: type, number, address, month, note.

unpublished A document with an author and title, but not formally published.

Required fields: author, title, note. Optional fields: month, year.

146 The Bibliography Database

In addition to the fields listed above, each entry type also has an optional key

field, used in some styles for alphabetizing and forming a \bibitem label. You
should include a key field for any entry whose author and editor fields are

both missing. Do not confuse the key field with the key that appears in the

\cite command and at the beginning of the whole entry, after the entry type;

this field is named "key" only for compatibility with Scribe.

B.2.2 Fields

Below is a description of all the fields recognized by the standard bibliography

styles. An entry can also contain other fields that are ignored by those styles.

address Publisher's address. For major publishing houses, just the city is given.

For small publishers, you can help the reader by giving the complete ad-

dress.

annote An annotation. It is not used by the standard bibliography styles, but

may be used by others that produce an annotated bibliography.

author The name(s) of the author(s), in the format described above.

booktitle Title of a book, part of which is being cited. See above for how to

type titles.

chapter A chapter number.

edition The edition of a book—for example, "second".

editor Name(s) of editor (s), typed as indicated above. If there is also an author

field, then the editor field gives the editor of the book or collection in

which the reference appears.

howpublished How something strange has been published.

institution The institution that published the work.

journal A journal name. Abbreviations are provided for many journals; see the

Local Guide.

key Used for alphabetizing and creating a label when the author and editor

fields are missing. This field should not be confused with the key that

appears in the \cite command and at the beginning of the entry.

month The month in which the work was published or, for an unpublished

work, in which it was written. See above for abbreviations.

note Any additional information that can help the reader.

B.2 The Entries 147

number The number of a journal, magazine, or technical report. An issue of

a journal or magazine is usually identified by its volume and number; the

organization that issues a technical report usually gives it a number.

organization The organization sponsoring a conference.

pages One or more page numbers or ranges of numbers, such as 42- -111 or

7.41.73--97. To make it easier to maintain Scn&e-compatible databases,

the standard styles convert a single dash (as in 7-33) to the double dash

used in TttjX to denote number ranges (as in 7--33).

publisher The publisher's name.

school The name of the school where a thesis was written.

series The name of a series or set of books. When citing an entire book, the

title field gives its title and the optional series field gives the name of

a series in which the book was published.

title The work's title, typed as explained above.

type The type of a technical report

—

for example, "Research Note".

volume The volume of a journal or multivolume book.

year The year of publication or. for an unpublished work, the year it was writ-

ten. It should consist only of numerals, such as 1984.

APPENDIX C

A Reference
Manual

150 Reference Manual

This appendix describes all IAT^X commands and environments, including some

features, anomalies and special cases not mentioned earlier. You should look

here when a command or environment does something surprising, or when you

encounter a formatting problem not discussed in earlier chapters.

Command and environment descriptions are concise; material explained in

an earlier chapter is sketched very briefly. The syntax of commands and envi-

ronments is indicated by a command form such as:

\newcommand{cmd} [args~\ {def}

Everything in a typewriter font, such as the "\newcommand{", represents mate-

rial that appears in the input file exactly as shown. The italicized parts cmd,

args, and def represent items that vary; the command's description explains

their function. Arguments enclosed in square brackets [] are optional; they

(and the brackets) may be omitted, so \newcomand can also have the form

\newcommand{cradMde/}

The case in which an optional argument is missing is called the default. If

a command form has two optional arguments, when only one is present it is

assumed to be the first one.

A number of style parameters are listed in this appendix. Except where

stated otherwise, these parameters are length commands. A length is rigid

unless it is explicitly said to be a rubber length (Section 5.4.1).

C.l Commands and Environments

C.l.l Command Names and Arguments

The six commands #$&"_" are the only ones with single-character names.

The character °/
, while not a command, causes T^X to ignore all characters

following it on the input line—including the space character that ends the line.

A % can be used to begin a comment and to start a new line without producing

space in the output. However, a command name cannot be split across lines.

About two dozen commands have two-character names composed of \ fol-

lowed by a single nonletter. All other command names consist of \ followed by

one or more letters. Command names containing an @ character can be used

only in document-style (sty) files (Section 5.1.4). Upper- and lowercase letters

are considered to be different, so \gamma and \Gamma are different commands.

Spaces are ignored after a command name of this form, except that a blank line

following the command still denotes the end of a paragraph.

Commands may have mandatory and/or optional arguments. A manda-

tory argument is enclosed by curly braces { and } and an optional argument

is enclosed by square brackets [and] . There should be no space between the

arguments.

C.l Commands and Environments 151

The following commands take an optional last argument:

\\ \linebreak \nolinebreak \newcounter \twocolumn

\item \pagebreak \nopagebreak \newtheorem

If that argument is missing and the next nonspaee character in the text is a

[. then IATjrX will mistake this [for the beginning of an optional argument.

Enclosing the [in braces prevents this mistake.

Enclosing text in braces can seldom cause trouble. . . . \begin{itemize}

. [This is an aside.] This is the rest of the item.
Utem <[This is an aside.]} This is

A] within the optional argument of an \item command must be enclosed in

braces to prevent its being mistaken for the] that marks the end of the argu-

ment .

[gnu] A large animal, found mainly in dictionar- \begin{description}

tes. \item [{ [gnu] >] A large animal...

[gnat] A small animal, found mainly in tents.
Xitem C< Cgnat J >] A small animal.

.
.

\end{description}

Some commands, including \\. have a *-form that is obtained by typing a *

right after the command name. If a * is the first nonspaee character following a

\\ command, then it should be enclosed in braces; otherwise. IATj?X will mistake

the \\ and * for a * command.

C.1.2 Environments

An environment is begun with a \begin command having the environment's

name as the first argument. Any arguments of the environment are typed as

additional arguments to the \begin. The environment is ended with an \end

command having the environment's name as its only argument. If an environ-

ment has a *-form, the * is part of the environment's name, appearing in the

argument of the \begin and Vend commands.

C.1.3 Fragile Commands

Commands are classified as either robust or fragile. Type-style-changing dec-

larations such as \em are robust, as are most of the math-mode commands of

Section 3.3. Any command with an optional argument is fragile.

Certain command arguments are called moving arguments. A fragile com-

mand that appears in a moving argument must be preceded by a \protect

command. A \protect applies only to the command it precedes; fragile com-

mands appearing in its argument(s) require their own \protect commands. The
following are all the commands and environments with moving arguments:

152 Reference Manual

• Commands with an argument that may be put into a table of contents,

list of figures, or list of tables: \addcontentsline, \addtocontents.

\ caption, and the sectioning commands. If an optional argument is used

with a sectioning or \caption command, then it is this argument that is

the moving one.

• Commands to print on the terminal: \typeout and \typein. The optional

argument of \typein is not a moving argument.

• Commands to generate page headings: \markboth (both arguments) and

\markright. (The sectioning commands, already listed, fall under this

category too.)

• The letter environment.

• The \thanks command.

• The optional argument of \bibitem.

• An @ in an array or tabular environment. (Although @ is not a command,
fragile commands in an O-expression must be \protect'ed as if they were

in a moving argument.)

All length commands are robust and must not be preceded by \protect. A
\protect command should not be used in an argument of a \setcounter or

\addtocounter command.

C.1.4 Declarations

A declaration is a command that changes the value or meaning of some com-

mand or parameter. The scope of a declaration begins with the declaration itself

and ends with the first } or \end whose matching { or \begin occurs before the

declaration. The commands \] , \), and $ that end a math-mode environment

and the } or] that end the argument of a I^TjtX command also delimit the

scope of a declaration; but the } ending the argument of a command defined

with \newcommand or \renewcommand does not delimit its scope. A declara-

tion is in effect throughout its scope, except within the scope of a subsequent

countermanding declaration.

The following declarations are global; their scope is not delimited by braces

or environments.

\newcounter \pagenumbering \newlength

\setcounter \thispagestyle \newsavebox

\addtocounter \hyphenation \newtheorem

C.1.5 Invisible Commands and Environments

A number of commands and environments are "invisible", meaning that they do

not produce any text at the point where they appear. TgX regards an invisible

C.l Commands and Environments 153

command or environment in the middle of a paragraph as an invisible "word".

Putting spaces or an end-of-line character both before and after an invisible word

can generate two separate interword spaces, one on either side of this "word",

producing extra space in the output. This is seldom a problem for a command
with no argument, since spaces are ignored when they follow a command name
that ends in a letter. Also, the following invisible commands and environments

usually eliminate this extra space: 1

\pagebreak \nolinebreak \vspace figure

\nopagebreak Mabel \glossary table

\linebreak \index \marginpar

Any other invisible command with an argument that appears inside a paragraph

should be attached to an adjacent word, as should the above commands and

environments in certain unusual situations where they can produce extra space

in the output.

C.1.6 The \\ command

\\ Uen]

*Ueri]

These commands start a new line and add an extra vertical space of length len

above it. The default is to add no extra space. The *-form inhibits a page

break before the new line. They may be used in paragraph mode and within

the following commands and environments:

array eqnarray \shortstack

tabular tabbing \author

Tj£JX is in paragraph mode, so a \\ can be used, in the following environments

(among others):

verse center flushleft flushright

and when processing the argument of a \title. \date. or sectioning command.

Do not use two \\ commands in a row in paragraph mode: instead, use an

optional argument to add extra vertical space.

In the array and tabular environments, the spacing between rows is ob-

tained by putting a strut (Section 5.4.3) on each line; a positive value of len

increases the depth of this strut. This can fail to add the expected amount

of extra space if an object in the row extends further below the line than the

default strut.

The \\ and * commands are fragile.

'More prei iaely, spaces that follow these commands and environments are ignored if there

is space in the output before the invisible "word" that they generate.

154 Reference Manual

C.2 Sentences and Paragraphs

C.2.1 Making Sentences

Except where otherwise indicated, the following commands and characters are

for use in paragraph and LR mode only and are robust.
r

quotes
' Apostrophe. ' text ' Single quotes. '

' text '
' Double quotes.

dashes

Intra-word. -- Number-range. — Punctuation.

spacing

\ , Produces a small space used between a double and a single quote.

\u Produces an interword space.

Produces an interword space where no line break can occur.

\@ Causes an "end-of-sentence" space after punctuation when typed before

the punctuation character. Needed only if the character preceding the

punctuation character is not a lowercase letter or a number.

\frenchspacing Suppresses extra space after punctuation, even when \@

is used. Fragile.

\nonfrenchspacing Reverses the effect of \frenchspacing. Fragile.

special characters

$ \$ % \7, { \{ _ _

& \& # \# } \>

See Sections 3.2 and 3.3.2 for other symbols.

logos The following commands may be used in math mode as well as paragraph

and LR modes:

\TeX Produces TfiX logo. \LaTeX Produces IM^X logo.

\today Generates the current date, in the following format: July 29, 1985.

\em A declaration that emphasizes text, usually by printing it in italic type.

\mbox{text} Typesets text in LR mode inside a box, which prevents it from

being broken across lines. (See Section 5.4.3.)

C.2.2 Making Paragraphs

A paragraph is ended by one or more completely blank lines—lines not contain-

ing even a % A blank line should not appear where a new paragraph cannot be

started, such as in math mode or in the argument of a sectioning command.

C.2 Sentences and Paragraphs 155

\noindent When used at the beginning of the paragraph it suppresses the para-

graph indent.it ion. It has no effect when used in the middle of a paragraph.

Robust.

\indent Produces a horizontal space whose width equals the width of the para-

graph indentation. It is used to add a paragraph indentation where it

would otherwise be suppressed. Robust.

\par Equivalent to a blank line: often used to make command and environment

definitions easier to read. Robust.

Style Parameters

\textwidth Normal width of text on the page. Should be changed only in the

preamble.

\linewidth Width of lines in the current environment; equals \textwidth ex-

cept when inside a displayed-paragraph environment such as quote or

itemize. Its value should not be changed with the length-setting com-

mands.

\parindent Width of the indentation at the beginning of a paragraph. Its value

is set to zero in a parbox. Its value may be changed anywhere.

\baselineskip The minimum space from the bottom of one line to the bottom

of the next line in a paragraph. (The space between individual lines may be

greater if they contain tall objects.) Its value is set by a type-size-changing

command (Section 5.8.1). The value used for the entire paragraph unit

(Section 5.2.1) is the one in effect at the blank line or command that ends

the paragraph unit. Its value may be changed anywhere.

\baselinestretch A decimal number (such as 2 or 1.5). Its default value is 1

and is changed with \renewcommand. The value of \baselineskip is set

by \begin{document} and by each type-size-changing command2
to its de-

fault value times \baselinestretch. You can produce a ''double-spaced"

version of the document for copy editing by setting \baselinestretch

to 2. but it will be ugly and hard to read. Any other changes to the in-

terline spacing should be part of a complete document-style design, best

done by a competent typographic designer.

\parskip The extra vertical space inserted before a paragraph. It is a rubber

length that usually has a natural length of zero. Its value may be changed

anywhere, but should be a stretchable length when a \f lushbottom dec-

laration (Section 5.1.2) is in effect.

2Howfvf r. a \normalsize command does not change \baselineskip when a \normalsize

declaration is in effect.

156 Reference Manual

It was Gnats 12 and Gnus 13
as we trekked It was \fbox{Gnats\footnotemark\ and

through Africa in the blazing noontime heat. Gnus\f ootnotemark}*/,

\addtocounter{footnote}{-l}\footnotetext

{Small insects . }\addtocounter{f ootnoteHl}'/,

\footnotetext{Large mammals.} as we ...
12 Small insects.
13 Large mammals.

Figure C.l: Making footnotes without the \footnote command.

C.2.3 Footnotes

\footnote [num] {text}

Produces a footnote with text as its text and num as its number. The num
argument is a positive integer, even when footnotes are "numbered" with letters

or other symbols; if it is missing, then the footnote counter is stepped and

its value used as the footnote number. This command may be used only in

paragraph mode to produce ordinary footnotes. It should not be used inside

a box except within a minipage environment, in which case it may be used in

LR or math mode as well as paragraph mode and the footnote appears at the

bottom of the box ended by the next \end{minipage}, which may be the wrong

place for it if there are nested minipage environments. Fragile.

\f ootnotemark [num]

Used in conjunction with \footnotetext to footnote text where a \footnote

command cannot be used. It produces a footnote mark (the footnote number

that appears in the running text) just like \f ootnote, but it does not produce a

footnote. See Figure C.l for an example of its use. It steps the footnote counter

if the optional argument is missing. It may be used in any mode. Fragile.

\footnotetext [num] {text}

Used in conjunction with \footnotemark to footnote text where the \f ootnote

command cannot be used. See Figure C.l for an example. It produces a footnote,

just like the corresponding \footnote command, except that no footnote mark

is generated and the footnote counter is not stepped. Fragile.

Style Parameters

\footnotesep The height of a strut placed at the beginning of every foot-

note to produce the vertical space between footnotes. It may be changed

anywhere; the value used is the one in effect when the \footnote or

\footnotetext command is processed.

\footnoterule A command that draws the line separating the footnotes from

the main text. It is used by IATjrX in paragraph mode, between paragraphs

C.3 Sectioning and Table of Contents 157

(in TgX's inner vertical mode). The output it generates must take zero

vortical space. Bo negat ive space should bo used to compensate for the space

occupied by the rule. It can be redefined anywhere with \renewcommand:

the definition used is the one in effect when T[.]X produces the page of

output.

C.2.4 Accents and Special Symbols

Commands for making accents in normal text are listed in Table 3.1 on page 40;

commands for making accents in math formulas are listed in Table 3.11 on

page 51. See Section C.9.1 for commands used in a tabbing environment to

produce the accents normally made with \=. \\ and V.
Foreign-language symbols are made with commands listed in Table 3.2 on

page 40. The following commands for making additional special symbols can

also be used in any mode:

t \dag § \s © \copyright
t \ddag 1 \P £ \pounds

Section 3.3.2 gives many commands for generating symbols in mathematical

formulas.

C.3 Sectioning and Table of Contents

The use of the following commands for producing section headings and table of

contents entries is illustrated in Figure C.2.

C.3.1 Sectioning Commands

sec-crnd [tor-.entry] {funding}

ser-rmd*{headinii}

Commands to begin a sectional unit. The *-form suppresses the section number,

does not increment the counter, does not affect the running head, and produces

no table of contents entry. The secnumdepth counter, described below, deter-

mines which sectional units are numbered.

sec.cmd One of the following:

\part \section \subsubsection \subparagraph

\chapter \subsection \paragraph

Each sectional unit should be contained in the next higher-level unit, ex-

cept that \part is optional. The article document style does not have a

\chapter command.

158 Reference Manual

Gnats and Gnus Forever \subsection*{Gnats and Gnus Forever}

_, . , , , , • , , r -i r i
From insects embedded in amber and . . .

l-roni insects embedded m amber and lossils tound

in Africa, we find that . .

.

In table of contents: \addcontentsline{toc}{subsection}{Gnats}

Gnats 37 \addtocontents{toc}{\protect\vspace

I 2 ex {2ex}>
t

2.2x Gnus 37 \addcontentsline{toc>{subsectionM\protect

2.3 Gnats and Gnus on Gneiss 37 \numberline{2 . 2x}{Gnus}}

r ,, . / o--. \subsection [Gnats and Gnus on
In the text (on page 37): .

Gneiss] -{Insects and Ungulates on
2.3 Insects and Ungulates on Metamor- Metamorphic Rock}

phic Rock

Figure C.2: Sectioning and table of contents commands.

toe-entry Produces the table of contents entry and may be used for the running

head (Section 5.1.2). It is a moving argument. If it is missing, the heading

argument is used for these purposes.

heading Produces the section heading. If the toc^entry argument is missing,

then it is a moving argument that provides the table of contents entry and

may be used for the running head (Section 5.1.2).

C.3.2 The Appendix

\appendix

A declaration that changes the way sectional units are numbered. In the article

document style, appendix sections are numbered "A". "B", etc. In the report

and book styles, appendix chapters are numbered "A" .

UB" . etc.. and the chapter

number is printed in the heading as "Appendix A". "Appendix B", etc. The

\appendix command generates no text and does not affect the numbering of

parts.

C.3.3 Table of Contents

\tableof contents

\listoff igures

\listoftables

Generate a table of contents, list of figures, and list of tables, respectively. These

commands cause IATj?X to write the necessary information on a file having the

same first name as the root file and the following extension:

command: \tableof contents \listoffigures \listoftables

extension: toe lof lot

C.3 Sectioning and Table of Contents 159

A table of contents or a list of figures or tables compiled from the information

on the current version of this file is printed at the point where the command
appears.

Table of contents entries are produced by the sectioning commands, and list

of figures or tables entries are produced by a \caption command in a figure

or table environment (Section 3.5.1). The two commands described below also

produce entries.

\addcontentsline{//7c}{sec_um7}{en£n/}

Adds an entry to the specified list or table.

file The extension of the file on which information is to be written: toe (table

of contents), lof (list of figures), or lot (list of tables).

sec.unit Controls the formatting of the entry. It should be one of the following,

depending upon the value of the file argument:

toe

lof

lot

the name of the sectional unit, such as part or subsection.

figure

table

There is no \ in the argument.

entry The text of the entry. It is a moving argument. To produce a line with a

sectional unit or figure or table number, entry should be of the form

\protect\numberline{sec_nMm}{/ieadm^}

where sec.num is the number and heading is the heading.

\addtocontents{/i/e}{£e:rO

Adds text (or formatting commands) directly to the file that generates the table

of contents or list of figures or tables.

file The extension of the file on which information is to be written: toe (table

of contents), lof (list of figures), or lot (list of tables).

text The information to be written. It is a moving argument.

C.3.4 Style Parameters

Document-style parameters control which sectional units are numbered and

which are listed in the table of contents. Each sectional unit has a level num-
ber. In all document styles, sections have level number 1, subsections have level

number 2. etc. In the article document style, parts have level number 0; in

the report and book styles, chapters have level number and parts have level

number —1.

160 Reference Manual

The following two counters (Section 5.3) are provided; they can be set in the

preamble.

secnumdepth The level number of the least significant sectional unit with num-
bered headings. A value of 2 means that subsections are numbered but

subsubsections are not.

tocdepth The level number of the least significant sectional unit listed in the

table of contents.

C.4 Document and Page Styles

C.4.1 Document Styles

\documentstyle [options] {style}

Specifies the document style and options. It is usually the first command in the

input file.

style The main document style; the standard ones are: article, report, book,

and letter (for letters only). There is also a slides style for use only

with SliTjtX. The \docuraent style command reads the file style, sty.

options A list of one or more style options, separated by commas with no

spaces. The standard IATjtX options are:

llpt Makes eleven-point type the normal (default) type size instead of

ten-point type.

12pt Makes twelve-point type the normal (default) type size instead of

ten-point type.

twoside Formats the output for printing on both sides of a page. (This

is the default in the book style.)

twocolumn Produces two-column pages.

titlepage For article style only; causes the \maketitle command and

the abstract environment each to make a separate page.

openbib Causes the bibliography (Section 4.3) to be formatted in open

style. (See van Leunen [7].)

leqno Puts formula numbers on left side in equations and eqnarray

environments.

f leqn Left-aligns displayed formulas.

Only leqno and fleqn can be used in SliTj?X. WTpX implements style

options by doing the following for each specified option op: if the command
\dsQop is defined (usually by the main style), then it is executed, otherwise

the file op. sty is read.

C.4 Document and Page Styles 161

Style Parameters

\bibindent Width of the extra indentation of succeeding lines in a bibliography

block with the openbib style option.

\columnsep The width of the space between columns of text in twocolumn style.

\columnseprule The width of a vertical line placed between columns of text in

twocolumn style. Its default value is zero, producing an invisible line.

\mathindent The amount that formulas are indented from the left margin in

the f leqn document-style option.

C.4. 2 Page Styles

An output page consists of a head, a body, and afoot. Document-style parameters

determine their dimensions: the page style specifies the contents of the head and

foot. Left-hand and right-hand pages have different parameters. In two-sided

style, even-numbered pages are left-hand and odd-numbered pages are right-

hand: in one-sided style, all pages are right-hand. All commands described in

this section are fragile.

\pagestyle{sty/e}

A declaration, with normal scoping rules, that specifies the current page style.

The style used for a page is the one in effect when TgX "cuts the scroll''

(page 119). Standard style options are:

plain The head is empty, the foot has only a page number. It is the default

page style.

empty The head and foot are both empty.

headings The head contains information determined by the document style

(usually a sectional-unit heading) and the page number: the foot is empty.

myheadings Same as headings, except head information specified by \markboth

and \markright commands, described below.

\thispagestyle

Same as \pagestyle except it applies only to the current page (the next one to

be "cut from the scroll"). This is a global declaration (Section C.1.4).

\markright { right-head}

\markboth{/f/'_/jf <id}{riyhLheady

These commands specify the following heading information for the headings

and myheadings page styles:

162 Reference Manual

left-hand page Specified by left-head argument of the last \markboth before

the end of the page.

right-hand page Specified by right-head argument of the first \markright

or \markboth on the page, or if there is none, by the last one before the

beginning of the page.

Both right-head and left-head are moving arguments. In the heading page style,

sectioning commands set page headings with the \markboth and \markright

commands as follows:

Printing Style Command
Document Style

book, report article

two-sided \markbotha \chapter \section

\markright \section \subsection

one-sided \markright \chapter \section

"Specifies an empty right head.

These commands are overridden as follows:

\markboth Put a \markboth command right after the sectioning command.

\markright Put a \markright command immediately before and after the

sectioning command, but omit the first one if the sectional unit starts a

new page.

The right head information is always null for the first page of a document. If

this is a problem, generate a blank first page with the titlepage environment.

\pagenumbering{nMm_s£y/e}

Specifies the style of page numbers. It is a global declaration (Section C.1.4).

Possible values of numstyle are:

arabic Arabic numerals.

roman Lowercase Roman numerals.

Roman Uppercase Roman numerals.

alph Lowercase letters.

Alph Uppercase letters.

The \pagenumbering command redefines \thepage to be \numstyle{pa.ge}.

\twocolumn [text]

Starts a new page by executing \clearpage (Section 5.2.2) and begins typeset-

ting in two-column format. If the text argument is present, it is typeset in a

double-column-wide parbox at the top of the new page. Fragile.

C.4 Document and Page Styles 163

\onecolumn

Starts a now page by executing \clearpage (Section 5.2.2) and begins typeset-

ting in single-column format. Fragile.

Style Parameters

The following parameters are normally changed only in the preamble. Anomalies

may occur if they are changed in the middle of the document.

\oddsidemargin One inch less than the distance from the left edge of the paper

to the left margin of the text on right-hand pages.

\evensidemargin The same as \oddsidemargin except for left-hand pages.

\marginparwidth The width of marginal notes.

\marginparsep The amount of horizontal space between the outer margin and

a marginal note.

\topmargin One inch less than the distance from the top edge of the paper to

the top of the page's head.

\headheight The height of (a box containing) the head.

\headsep The amount of vertical space between the head and the body of a

page.

\textheight The normal height of the body of a page. With \f lushbottom

(Section 5.1.1) in effect, rubber vertical space will be stretched to make
the body exactly this high.

\textwidth The normal width of the text on the page (when not inside an

environment that changes the margins).

\topskip The minimum distance from the top of the body to the bottom of

the first line of text. It acts like \baselineskip for first line of a page.

\footheight The height of (a box containing) the page's foot.

\f ootskip The distance from the bottom of the last line of text in the body of

a page to the bottom of the foot.

C.4.3 The Title Page and Abstract

\maketitle

Generates a title on a separate title page except in the article document

style, where the title normally goes at the top of the first text page. (See also

the titlepage document-style option in Section 5.1.1.) Information used to

produce the title i> obtained from the following declarations: an example of

their use i- given in Figure C.3.

164 Reference Manual

Gnu Veldt Cuisine \title{Gnu Veldt Cuisine}

G. Picking*

Acme Kitchen Products
\author{G

.

PickingUhanks-CSupported

R. Dillo

Cordon Puce School 1

'

by a grant from the GSF.} \\

Acme Kitchen Products

\and
24 July 1984 R Dillo \ N Cordon Puce

Revised 5 January 1985 School\thanks<On leave during 1985.

»

: \date{24 July 1984 \\

Revised 5 January 1985}

* Supported by a grant from the GSF.
t()n leave during 1985.

\maketitle

Figure C.3: An example title.

\t±tle{text} Declares text to be the title. You may want to use \\ to tell

IATprX where to start a new line in a long title.

\author{naraes} Declares the author(s), where names is a list of authors sepa-

rated by \and commands. Use \\ to separate lines within a single author's

entry—for example, to give the author's institution or address.

\date{£e:ri} Declares text to be the document's date. With no \date command,

the current date is used.

The arguments of these three commands may include the following command.

\tha.nks{texty Produces a footnote to the title. The text is a moving argument.

Can be used for an acknowledgement of support, an author's address, etc.

The footnote marker is regarded as having zero width, which is appropriate

when it comes at the end of a line; if the marker comes in the middle of a

line, add extra space with \u after the \thanks command.

\begin{abstract} text \end{abstract}

Generates an abstract, with text as its contents. The abstract is placed on a page

by itself in the report document style or titlepage style option (Section 5.1.1).

It is not available in the book document style.

\begin{titlepage} text \end{titlepage}

Produces a title page with the empty page style and resets the number of the

following page to one. You are completely responsible for formatting the contents

of this page.

C.5 Displayed Paragraphs 165

C.5 Displayed Paragraphs

The output produced by a displayed-paragraph environment starts on a new
line, as does the output produced by the text following it. In addition to the

environments described in this section, the tabbing, center, flushleft, and

flushright environments and the environments defined by \newtheorem (Sec-

tion 3.4.3) are also displayed-paragraph environments.

The text following a displayed-paragraph environment begins a new para-

graph if there is a blank line after the \end command. However, even with

no blank line, the following text may have a paragraph indentation if a right

brace or \end command comes between it and the environment's \end com-

mand. This anomalous indentation is eliminated with a \noindent command
(Section C.2.2).

Anomalous extra vertical space may be added after a displayed-paragraph en-

vironment that ends with a displayed equation (one made with the displaymath,

equation, or eqnarray environment). This space can be removed by adding a

negative vertical space with a \vspace command (Section 5.4.2).

All displayed-paragraph environments are implemented with the list or

trivlist environment. These environments and the relevant formatting pa-

rameters are described in Section C.5.3 below.

C.5.1 Quotations and Verse

\begin{quote} text \end{quote>

Left and right margins are indented equally, there is no paragraph indentation,

and extra vertical space is added between paragraphs.

\begin{quotation} text \end{quotation}

Left and right margins are indented equally; normal paragraph indentation and

interparagraph vertical space is used.

\begin{verse} text \end{verse}

Left and right margins are indented equally. Lines within a stanza are separated

by \\ commands and stanzas are separated by one or more blank lines.

C.5.2 List-Making Environments

\begin{itemize} itemJist \end{itemize}

\begin{enumerate} itemJist \end{enumerate}

\begin{description} itemJist \end{description}

The itemJist consists of a sequence of items, each one begun with an \item

command (see below). Numbering in an enumerate environment is controlled

by the counter enumi. enumii. enumiii. or enumiv. depending upon its nesting

166 Reference Manual

level within other enumerate environments. The printed value of this counter

is declared to be the current \ref value (Section C.10.2).

The default labels of an itemize environment are produced by the com-

mand \labelitemi, \labelitemii, \labelitemiii, or \labelitemiv, depend-

ing upon its nesting level within other itemize environments. The "tick marks"

produced by the itemize environment may be changed by redefining these com-

mands with \renewcommand.

If an item of a description environment begins with a displayed-paragraph

environment, the item label may overprint the first line of that environment. If

this happens, the item should begin with an \mboxO command to cause the

environment to start on a new line.

\item[/o6e/]

Starts a new item and produces its label. The item label is generated by the

label argument if present, otherwise the default label is used. In itemize and

enumerate, the label is typeset flush right a fixed distance from the item's left

margin. In enumerate, the optional argument suppresses the incrementing of the

enumeration counter. The default label is null in the description environment.

The \item command is fragile.

C.5.3 The list and trivlist Environments

\begin{listy{.defaultJabel}{decls} itemJist \end{list}

Produces a list of labeled items.

itemJist The text of the items. Each item is begun with an \item command
(Section C.5.2).

defaultJabel The label generated by an \item command with no optional argu-

ment.

decls A sequence of declarations for changing the default formatting parameters.

Before executing the commands in decls, one of the commands \@listi,

\@listii ...
,
\@listvi is executed, depending upon how many list

environments the current one is nested within—the \@listi command
being executed for the outermost list environment. These commands set

the default values of some parameters.

The following are the parameters that control the formatting in a list

environment

.

\topsep The amount of extra vertical space (in addition to \parskip)

inserted between the preceding text and the first list item, and be-

tween the last item and the following text. Its default value is set by

\@list. . . . It is a rubber length.

C.5 Displayed Paragraphs 167

\partopsep The extra vertical space (in addition to \topsep+ \parskip)

inserted, it" the environment is preceded by a blank line, between the

preceding text and the first list item and between the last item and

the following text. Its default value is set by \@list. . . . It is a

rubber length.

\itemsep The amount of extra vertical space (in addition to \parsep)

inserted between successive list items. Its default value is set by

\@list. ... It is a rubber length.

\parsep The amount of vertical space between paragraphs within an item.

It is the value to which \parskip is set within the list. Its default is

set by \@list. . . . It is a rubber length.

\leftmargin The horizontal distance between the left margin of the en-

closing environment and the left margin of the list. It must be non-

negative. In the standard document styles, it is set to \leftmargini

by \@listi. to \leftmarginii by \@listii. etc.

\rightmargin The horizontal distance between the right margin of the

enclosing environment and the right margin of the list. It must be

nonnegative. Its default value is zero unless set by \@list. . . .

\listparindent The amount of extra indentation added to the first line

of every paragraph except the first one of an item. Its default value

is zero unless set by \@list. ... It may have a negative value.

\itemindent The amount of extra indentation added to each item before

the label. Its default value is zero unless set by \@list. ... It may
have a negative value.

\labelsep The space between the end of the box containing the label and

the text of the item. In the standard document styles, it is not set

by \@list. . . . maintaining the same value for all nesting levels. It

may be set to a negative length.

\labelwidth The normal width of the box that contains the label. It

must be nonnegative. In the standard document styles. \@list. .

.

sets it to \leftmargin. . .
- \labelsep. so the left edge of the label

box i- flush with the left margin of the enclosing environment. If

the natural width of the label is greater than \labelwidth. then the

label is typeset in a box with its natural width, so the label extends

further to the right than "•normal".

\makelabel{/«6e/} A command that generates the label printed by the

\item command from the label argument. Unless it is redefined by

\@list. . . .its default definition positions the label flush right against

the right edge of its box. It may be redefined with \renewcommand.

168 Reference Manual

In addition to declarations that set the above parameters, the following

declaration may appear in decls:

\usecounter{ ctr} Enables the counter ctr (Section 5.3) to be used for

numbering list items. It causes ctr to be initialized to zero and in-

cremented by \ref stepcounter when executing an \item command
that has no optional argument, causing its value to become* the cur-

rent \ref value (Section C.10.2). It is a fragile command.

\begin{trivlist} itemJist \end{trivlist}

Acts like a list environment using the current values of the list-making pa-

rameters, except with \parsep set to the current value of \parskip and the

following set to zero: \leftmargin, \labelwidth, \itemindent. It does not

execute \@list. . . , so the values of the list-formatting parameters outside any

list should be made the same as the ones set by \@listi.

Every \item command in itemJist must have an optional argument. The
trivlist environment is normally used to define an environment consisting of

a single list item, with an \item[] command appearing as part of the environ-

ment's definition.

C.5.4 Verbatim

\begin{verbatira} literal-text \end{verbatira}

\begin{verbatim*} UteraLtext \end{verbatim*}

Typesets UteraLtext exactly as typed, including special characters, spaces and

line breaks, using a typewriter (\tt) type style. The only text following the

\begin command that is not treated literally is the \end command. The *-form

differs only in that spaces are printed as u symbols.

If there is no nonspace character on the line following the \begin command,

then UteraLtext effectively begins on the next line. There can be no space

between the \end and the {verbatim} or {verbatim*}.

A verbatim or verbatim* environment may not appear in the argument of

any command.

\verbchar UteraLtext char

\verb* char UteraLtext char

Typesets UteraLtext exactly as typed, including special characters and spaces,

using a typewriter (\tt) type style. There may be no space between \verb

or \verb* and char. The *-form differs only in that spaces are printed as u

symbols.

char Any nonspace character, except it may not be a * for \verb.

UteraLtext Any sequence of characters not containing an end-of-line character

or char.

C.6 Mathematical Formulas 169

A \verb or \verb* command may not appear in the argument of any other

command.

C.6 Mathematical Formulas

Unless otherwise noted, all commands described in this section can be used only

in math mode. See Section 3.3.8 for an explanation of the display and text math
styles.

C.6.1 Math Mode Environments

$ formula $

\(formula \)

\begin{math} formula \end{math}

These equivalent forms produce an in-text formula by typesetting formula in

math mode using text style. They may be used in paragraph or LR mode. The

\(and \) commands are fragile: $ is robust.

\[formula \]

\begin{displaymath> formula \end{displaymath}

These equivalent forms produce a displayed formula by typesetting formula in

math mode using display style. They may be used only in paragraph mode.

The displayed formula is centered unless the f leqn document-style option is

used (Section 5.1.1). The commands \[and \] are fragile.

\begin{equation} formula \end{equation}

The same as displaymath except that an equation number is generated using

the equation counter. The equation number is positioned flush with the right

margin, unless the leqno document-style option is used (Section 5.1.1).

\begin{eqnarray} eqns \end{eqnarray}

\begin{eqnarray*> eqns \end{eqnarray*}

Produces a sequence of displayed formulas aligned in three columns. The eqns

text is like the body of an array environment (Section 3.3.3) with argument rcl;

it consists of a sequence of rows separated by \\ commands, each row consisting

of three columns separated by & characters. (However, a \multicolumn com-

mand may not be used.) The first and third columns are typesel in display style.

the second in texl Style. These environments may be used only in paragraph

mode.

The eqnarray environment produces an equation number for each row. gen-

erated from the equation counter and positioned as in the equation environ-

170 Reference Manual

ment. A \nonumber command suppresses the equation number for the row in

which it appears. The eqnarray* environment produces no equation numbers.

The command \lefteqn{formula} prints formula in display math style (Sec-

tion 3.3.8). but pretends that it has zero width. It is used within an eqnarray

or eqnarray* environment for splitting long formulas across lines.

An overfull \hbox warning occurs if a formula extends beyond the prevailing

margins, but not if it only overprints the equation number.

Style Parameters

\jot The amount of extra vertical space added between rows in an eqnarray

or eqnarray* environment.

\mathindent The indentation from the left margin of displayed formulas in the

f leqn document-style option.

\abovedisplayskip The amount of extra space left above a long displayed

formula—except in the f leqn document-style option, where \topsep is

used. A long formula is one that lies closer to the left margin than does

the end of the preceding line. It is a rubber length.

\belowdisplayskip The amount of extra space left below a long displayed

formula—except in the fleqn document-style option, where \topsep is

used. It is a rubber length.

\abovedisplayshortskip The amount of extra space left above a short dis-

played formula— except in the fleqn document-style option, which uses

\topsep. A short formula is one that starts to the right of where the

preceding line ends. It is a rubber length.

\belowdisplayshortskip The amount of extra space left below a short dis-

played formula except in the fleqn document-style option, which uses

\topsep. It is a rubber length.

C.6.2 Common Structures

_{sub} Typesets sub as a subscript. Robust.

~{*up} Typesets sup as a superscript. Robust.

' Produces a prime symbol ('). Robust.

\fra.c{nunu r}{denom} Generates a fraction with numerator numer and de-

nominator denom. Robust.

\sqrt[n] {arg} Generates the notation for the rc
th root of arg. With no argu-

ment, it produces the square root (no indicated root). Fragile.

ellipsis The following commands produce an ellipsis (three dots) arranged as

indicated. Thev are all robust.

C.6 Mathematical Formulas 171

\ldots Horizontally at the bottom of the line (...). It may be used in

paragraph ami LR mode as well as math mode.

\cdots Horizontally at the center of the line (• • •).

\vdots Vertically (:
).

\ddots Diagonally (
'.).

C.6.3 Mathematical Symbols

See Tables 3.3 through 3.8 on pages 43-45. The ones in Table 3.8 are printed

differently in display and text styles; in display style, subscripts and superscripts

may be positioned directly above and below the symbol. All the commands listed

in those tables are robust.

Log-like functions, which are set in roman type, are listed in Table 3.9 on

page 46. Subscripts appear directly below the symbol in display style for \det,

\gcd. \inf . \lim. \liminf . \limsup. \max, \min, \Pr, and \sup. All log-like

commands are robust. The following commands also create symbols.

\bmod Produces a binary mod symbol. Robust.

\pmod{arg} Produces "(mod arg)" . Robust.

\cal A type-style declaration to produce calligraphic letters. Only uppercase

letters should appear in its scope. Robust.

C.6.4 Arrays

See Section C.9.2.

C.6.5 Delimiters

\leftdelim formula \rightdelim

Typesets formula and puts large delimiters around it, where delim is one of

the delimiters in Table 3.10 on page 48 or a "

.

' character to signify an invisible

delimiter. The \left and \right commands are robust.

C.6.6 Putting One Thing Above Another

\oveTline{forrnulu}

Typesets formula with a horizontal line above it. Robust.

\underline{/ormu/a}

Typesets formula' with a horizontal line below it. May be used in paragraph or

LR mode as well as math mode. Fragile.

172 Reference Manual

accents

Table 3.11 on page 51 lists math-mode accent-making commands. They are

robust, as are the following additional accenting commands:

\widehat Wide version of \hat.

\widetilde Wide version of \tilde. r

\imath Dotless i for use with accents.

\jmath Dotless j for use with accents.

\stac~k.rel{top}{boty

Typesets top immediately above bot, using the same math style for top as if it

were a superscript.

C.6.7 Spacing

The following commands produce horizontal space in math mode. They are all

robust. The \ , command may also be used in paragraph and LR mode.

\ , thin space \ : medium space

\ ! negative thin space \ ; thick space

C.6.8 Changing Style

Type Style

The type-style declarations of Section 3.1 may be used in math mode. They

affect only letters, not symbols, where uppercase Greek letters are treated as

letters and lowercase ones as symbols. There are two additional type-style dec-

larations that can be used only in math mode: \mit for math italic style and

\cal for calligraphic style (uppercase letters only). Like all type-style declara-

tions, they are robust.

See Section C.14 for an explanation of anomalous behavior by type-style-

changing commands when used in math mode, and for a description of the

\boldmath declaration that produces bold symbols.

Math Style

The following declarations can appear only in math mode. They choose the

type size and certain formatting parameters, including ones that control the

placement of subscripts and superscripts. All are robust commands.

\displaystyle Default style for displayed formulas.

\textstyle Default style for in-text formulas and for the items in an array

environment.

C.7 Definitions 173

\scriptstyle Default style for first-level subscripts and superscripts.

\scriptscriptstyle Default stylo for higher-level subscripts and superscripts.

C.7 Definitions

C.7.1 Defining Commands
\newcommand {cmd} [args] {defy

\renewcommand{r/m/} [args] {tiff}

Those commands define (or redefine) a command. They are both fragile.

cmd A command name beginning with \. For \newcommand it must not be

already defined and must not begin with "\end"; for \renewcommand it

must already be defined.

args An integer from 1 to 9 denoting the number of arguments of the command
being defined. The default is for the command to have no arguments.

def The text to be substituted for every occurrence of cmd; a parameter of the

form #n in cmd is replaced by the text of the nth argument when this

substitution takes place. It should contain no command- or environment-

defining command.

The argument-enclosing braces of a command defined with \newcommand or re-

defined with \renewcommand do not delimit the scope of a declaration in that

argument. (However, the scope may be delimited by braces that appear within

def.) The defined command is fragile if def includes a fragile command, other-

wise it is robust.

C.7. 2 Defining Environments

\newenvironment {nam} [args] {begdef}{enddef}

XrenewenvironmentOmw} [args] {be.gdef}{enddef}

These commands define or redefine an environment. They are both fragile.

nam The name of the environment. For \newenvironment there must be no

currently defined environment by that name, and the command \narn must

be undefined; for \renewenvironment the environment must already be

defined.

ary.* An integer from 1 to 9 denoting the number of arguments of the newly-

defined environment. The default is no arguments.

begdef The text substituted for every occurrence of \begin{rmra}: a parameter

of the form #n in cmd is replaced by the text of the n argument when

this substitution takes place.

174 Reference Manual

enddef The text substituted for every occurrence of \end{nam}. It may not

contain any argument parameters.

The begdef and enddef arguments should contain no command- or environment-

defining command. The argument-enclosing braces of an environment defined

with \newenvironment or \renewenvironment do not delimit the scope of a

declaration contained in the argument.

C.7.3 Theorem-like Environments

\newtheorem {env-name}{caption} [within]

\newtheorem {env-name} [numberedJike] {caption}

This command defines a theorem-like environment. It is a global declaration

(Section C.1.4) and is fragile.

envjname The name of the environment—a string of letters. Must not be the

name of an existing environment or counter.

caption The text printed at the beginning of the environment, right before the

number.

within The name of an already-defined counter, usually of a sectional unit. If

this argument is present, the command \the env.name is defined to be

\thewithin . \arabic{eni>_narae}

and the envjname counter will be reset by a \stepcounter{u>^/uYi} or

\ref st epcounter-tj/vYhiji} command (Section C.7.4). If the within argu-

ment is missing, \theenv.name is defined to be \arabic{eniLnarae}.

numberedJike The name of an already defined theorem-like environment. If this

argument is present, the env-name environment will be numbered in the

same sequence (using the same counter) as the numberedJike environment

and will declare the current \ref value (Section C.10.2) to be the text

generated by \thenumberedJikc.

Unless the numberedJike argument is present, this command creates a counter

named env.name. and the environment declares the current \ref value (Sec-

tion C.10.2) to be the text generated by \theenv.name.

The \newtheorem command may have at most one optional argument. See

Section 0.1.1 if a \newcommand without a final optional argument is followed by

a [character.

C.7.4 Numbering

\newcounter{nc wet r} [within]

Defines a new counter named newctr that is initialized to zero, with \theneuctr

defined to be \arabic-Of wctr}. It is a global declaration. The \newcounter

C.7 Definitions 175

command may not be used in an \include\l file (Section 4.4). Fragile.

newctr A string of letters that is not the name of an existing counter.

within The name of an already-defined counter. If this argument is present, the

newctr counter is reset to zero whenever the within counter is stepped by

\stepcounter or \ref stepcounter (see below).

\setcounter{r/r}{N//m}

Sets the value of counter ctr to num. It is a global declaration (Section C.1.4).

Fragile.

\addtocounter{r/r}-0 inn}

Increments the value of counter ctr by num. It is a global declaration (Sec-

tion C.1.4). Fragile.

\value{c/r}

Produces the value of counter ctr. It is nsed mainly in the num argument

of a \setcounter or \addtocounter command for example, the command
\setcounter{bean}{\value{page}} sets counter bean equal to the current

value of the page counter. However, it can be used anywhere that LMjrX expects

a number. The \value command is robust, and must never be preceded by a

\protect command.

numbering commands

The following commands print the value of counter ctr in the indicated format.

They are all robust

.

\arabic{r//-} Arabic numerals.

\roman{c/r} Lowercase Roman numerals.

\Roman{c/r} Uppercase Roman numerals.

\alph{c/r} Lowercase letters. Value of ctr must be less than 27.

\Alph{r/r} Uppercase letters. Value of ctr must be less than 27.

\fnsymbol{r/r} Produces one of the nine "footnote symbols" from the following

sequence: - t |§^f|| ** ft If. It may be used only in math mode.

The value of ctr must be less than 10.

\thec/r

A command used to print the value associated with counter ctr. Robust.

176 Reference Manual

\stepcounter {ctr}

\refstepcounter{c/r}

Increment the value of counter ctr by one and reset the value of any counter

numbered "within" it. For example, the subsection counter is numbered within

the section counter, which, in the report or book document style, is numbered

within the chapter counter. The \ref stepcounter command also declares the

current \ref value (Section C.10.2) to be the text generated by \thectr.

C.8 Figures and Other Floating Bodies

C.8.1 Figures and Tables

\begin{f igure} [loc] body \end{figure}

\begin{f igure*} [loc] body \end{f igure*}

\begin{table} [loc] body \end{table}

\begin{table*} [/oc] body \end{table*}

These environments produce floating figures and tables. In two-column format,

the ordinary forms produce single-column figures and tables and the *-forms

produce double-column ones. The two forms are equivalent in single-column

format

.

The body is typeset in a parbox of width \textwidth. It may contain one or

more \caption commands (see below). The loc argument is a sequence of zero

to four letters, each one specifying a location where the figure or table may be

placed, as follows:

h Here: at the position in the text where the environment appears. (Not

possible for double-column figures and tables in two-column format.)

t Top: at the top of a text page.

b Bottom: at the bottom of a text page. (Not possible for double-column

figures or tables in two-column format.)

p Page of floats: on a separate page containing no text, only figures and

tables.

If the loc argument is missing, the default specifier is tbp. so the figure- or

table may be placed at the top or bottom of a text page or on a separate page

consisting only of figures and/or tables. The placement of the figure or table is

determined by the following rules.

• It is printed at the earliest place that does not violate subsequent rules.

except that an h (here) position takes precedence over a t (top) position.

• It will not be printed on an earlier page than the place in the text where

the figure or table environment appears.

C.8 Figures and Other Floating Bodies 177

• A figure will not be printed before an earlier figure, and a table will not

be printed before an earlier table.

• It may appear only at a position allowed by the pos argument, or, if that

argument is missing, by the default tbp specifier.

• Placement of the figure cannot produce an overfull page.

• The page constraints determined by the formatting parameters described

below are not violated.

The last three rules are suspended when a \clearpage. \cleardoublepage,

or \end{document} command occurs, all unprocessed figures and tables being

allowed a p option and printed at that point.

When giving an optional loc argument, include enough options so the above

rules allow the figure or table to go somewhere, otherwise it and all subsequent

figures or tables will be saved until the end of the chapter or document, probably

causing TgX to run out of space.

\caption [IsLentry] {heading}

Produces a numbered caption.

IsLentry Generates the entry in the list of figures or tables. Such an entry should

not contain more than about three hundred characters. If this argument

is missing, the heading argument is used. It is a moving argument.

heading The text of the caption. It produces the list of figures or tables entry if

the IsLentry argument is missing, in which case it is a moving argument.

If this argument contains more than about three hundred characters, a

shorter IsLentry argument should be used—even if no list of figures or

tables is being produced.

A Mabel command that refers to the caption's number must go in heading

or after the \caption command in the body of the figure or table environ-

ment. The \caption command can be used only in paragraph mode, but can

be placed in a parbox made with a \parbox command or minipage environment

(Section 5.4.3). It is fragile.

Style Parameters

Changes made to the following parameters in the preamble apply from the first

page on. Changes made afterwards take effect on the next page, not the current

one. A float denotes either a figure or a table, and a float page is a page

containing only floats and no text. Parameters that apply to all floats in a

one-column page style apply to single-column floats in a two-column style.

topnumber A counter whose value is the maximum number of floats allowed at

the top of a page.

178 Reference Manual

\topfraction The maximum fraction of the page that can be occupied by floats

at the top of the page. Thus, the value .25 specifies that as much as the

top quarter of the page may be devoted to floats. It is changed with

\renewcommand.

bottomnumber Same as topnumber except for the bottom of the page.

\bottomfraction Same as \topfraction except for the bottom of the page.

totalnumber A counter whose value is the maximum number of floats that can

appear on a single page, irrespective of their positions.

\textfraction The minimum fraction of a text page that must be devoted to

text. The other 1 — \textfraction fraction may be occupied by floats. It

is changed with \renewcommand.

\f loatpagefraction The minimum fraction of a float page that must be occu-

pied by floats, limiting the amount of blank space allowed on a float page.

It is changed with \renewcommand.

dbltopnumber The analog of topnumber for double-column floats in two-column

style.

\dbltopfraction The analog of \topfraction for double-column floats on a

two-column page.

\dblf loatpagefraction The analog of \f loatpagefraction for a float page

of double-column floats.

\f loatsep The vertical space added between floats that appear at the top or

bottom of a text page. It is a rubber length.

\textf loatsep The vertical space added between the floats appearing at the

top or bottom of a page and the text on that page. It is a rubber length.

\intextsep The vertical space placed above and below a float that is put in

the middle of the text with the h location option. It is a rubber length.

\dblf loatsep The analog of \f loatsep for double-width floats on a two-col-

umn page. It is a rubber length.

\dbltextf loatsep The analog of \textf loatsep for double-width floats on a

two-column page. It is a rubber length.

C.8.2 Marginal Notes

\marginpar [left-text] {rightJext}

Produces a marginal note using right-text if it goes in the right margin or there is

no optional argument, otherwise using le/Ltext. The text is typeset in a parbox.

C.9 Lining It Up in Columns 179

For two-sided, single-column printing, the default placement of marginal

notes is on the outside margin left for even-numbered pages, right for odd-

numbered ones. For one-sided, single-column printing, the default placement is

in the right margin. These defaults may be changed by the following declara-

tions:

\reversemarginpar Causes marginal notes to be placed in the opposite mar-

gin from the default one.

\normalmarginpar Causes marginal notes to be placed in the default margin.

When a marginal note appears within a paragraph, its placement is determined

by the declaration in effect at the blank line ending the paragraph. For two-

column format, marginal notes always appear in the margin next to the column

containing the note, irrespective of these declarations.

A marginal note is normally positioned so its top line is level with the line

of text containing the \marginpar command; if the command comes between

paragraphs, the note is usually level with the last line of the preceding para-

graph. However, the note is moved down and a warning message printed on

the terminal if this would make it overlap a previous note. Switching back and

forth between reverse and normal positioning with \reversemarginpar and

\normalmarginpar may inhibit this movement of marginal notes, resulting in

one being overprinted on top of another.

Style Parameters

\marginparwidth The width of the parbox containing a marginal note.

\marginparsep The horizontal space between the outer margin and a marginal

note.

\marginparpush The minimum vertical space allowed between two successive

marginal notes.

C.9 Lining It Up in Columns

C.9.1 The tabbing Environment

\begin{tabbing} rows \end{tabbing}

This environment may be used only in paragraph mode. It produces a sequence

of lines, each processed in LR mode, with alignment in columns based upon a

sequence of tab stops. Tab stops are numbered 0. 1.2, etc. Tab stop number i

is said to be set if it is assigned a horizontal position on the page. Tab stop is

always set to the prevailing left margin (the left margin in effect at the beginning

of the environment). If tab stop i is set, then all tab stops numbered through

180 Reference Manual

Gnat: swatted by: men
cows

and gnus

not very filling

Armadillo: not edible

(note also the: aardvark

albatross

Gnu: eaten by gnats

\begin{tabbing>

Armadillo: \= \kill

Gnat: \> swatted by: \= men \+\+ \\

cows \\

and \' gnus \- \\

not very filling \- \\

eton) Armadillo: \> not edible \\

\pushtabs

(note also the: \= aardvark \\

\> albatross \' eton) \\

\poptabs

Gnu: \> eaten by \> gnats

\end{tabbing>

Figure C.4: A tabbing environment example.

i — 1 are also set. Tab stop number i — 1 is normally positioned to the left of

tab stop number i.

The behavior of the tabbing commands is described in terms of the values

of two quantities called nexLtabstop and left-margin-tab. Initially, the value of

next-tabstop is 1, the value of left-margin-tab is 0, and only tab number is

set. The value of next-tabstop is incremented by the \> and \= commands, and

it is reset to the value of left-margin-tab by the \\ and \kill commands. The

following commands, all of which are fragile, may appear in rows; their use is

illustrated in Figure C.4.

\= If the value of next-tabstop is i, then this command sets tab stop number

Vs position to be the current position on the line and changes the value of

next-tabstop to i'+ 1.

\> If the value of nexLtabstop is i, then this command starts the following text

at tab stop i's position and changes the value of next-tabstop to i + 1.

\\ Starts a new line and sets the value of nexLtabstop equal to the value of

left-margin-tab. See Section C.1.6 for more details.

\kill Throws away the current line, keeping the effects of any tab-stop-setting

commands, starts a new line, and sets the value of next-tabstop to the

value of left-margin-tab.

\+ Increases the value of left-margin-tab by one. This causes the left margin of

subsequent lines to be indented one tab stop to the right, just as if a \>

command were added to the beginning of subsequent lines. Multiple \+

commands have the expected cumulative effect.

\- Decreases the value of lefLmarginAab. which must be positive, by one. This

has the effect of canceling one preceding \+ command, starting with the

following line.

C.9 Lining It Up in Columns 181

\< Decreases the value of next-tabstop by one. This command can be used only

at the beginning of a line, where it acts to cancel the effect, on that line,

of one previous \+ command.

\ ' Used to put text Hush right against the right edge of a column or against the

left margin. If the value of nextJabstop is i, then it causes everything in

the current column all text from the most recent \>. \=. \\ \\ or \kill

command to be positioned flush right a distance of \tabbingsep (a style

parameter) from the position of tab stop number i — 1. Text following the

\
' command is placed starting at the position of tab stop number i — 1.

V Moves all following text on the line flush against the prevailing right margin.

There must be no \>. \=. or \ command after the V and before the

command that ends the output line.

\pushtabs Saves the current positions of all tab stops, to be restored by a

subsequent \poptabs command. You can nest \pushtabs commands, but

\pushtabs and \poptabs commands must come in matching pairs within

a tabbing environment.

\poptabs See \pushtabs.

\a . . . The commands \=. \
' . and \

' usually produce accents, but are redefined

to tabbing commands inside the tabbing environment. The commands
\a=. \a'. and \a' produce those accents in a tabbing environment.

The tabbing environment exhibits the following anomalies:

• The scope of a declaration appearing in rows is ended by any of the fol-

lowing commands:

\= \> \+ V \pushtabs \kill

w \< \- V \poptabs \end{tabbing}

No environment contained within the tabbing environment can contain

any of these tabbing commands.

• The commands \=. \\ V. and \- are redefined to have special meanings

inside a tabbing environment. The ordinary \- command would be use-

less in this environment: the effects of the other three are obtained with

the \a. . . command described above. These commands revert to their

ordinary meanings inside a parbox contained within the tabbing environ-

ment .

• One tabbing environment cannot be nested within another, even if the

inner one is inside a parbox.

Style Parameters

\tabbingsep See the description of the V command above.

182 Reference Manual

GG&A Hoofed Stock

Year

Price

Commentslow high

1971 97 245 Bad year for farmers

in the west.

72 245-245 Light trading due to a

heavy winter.

73 245-2001 No gnus was very good

gnus this year.

\begin{tabular}{ I r I I rfl{--}l
I

p{l . 25in}
I

>

\hline

\multicolumn{4MlclHGG\&A Hoofed Stock}

\\ \hline\hline

&\multicolumn{2Hc|}{Price}& \\ \cline{2-3}

\multicolumn{l}{
I
c

I I HYear}
k \multicolumn{l}{r@{\ , \vline\ , }}{low}

& high & \multicolumn{lMc
I >{Comments}

\\ \hline

1971 & 97 & 245 & Bad year for

farmers in the west . \\ \hline

72 & 245 & 245 & Light trading due to a

heavy winter. \\ \hline

73 & 245 & 2001 & No gnus was very

good gnus this year. \\ \hline

\end<tabular}

Figure C.5: An example of the tabular environment.

C.9.2 The array and tabular Environments

\begin{array} [pos~\ {cols} rows \end{array}

\begin{tabular}[pos] {cols} rows \end{tabular}

\begin{tabular*}{u;d£/j} [pos~\{cols} rows \end{tabular*}

These environments produce a box (Section 5.4.3) consisting of a sequence of

rows of items, aligned vertically in columns. The array environment can be used

only in math mode, while tabular and tabular* can be used in any mode. A
large example, illustrating most of the features of these environments, appears

in Figure C.5.

wdth Specifies the width of the tabular* environment. There must be rubber

space between columns that can stretch to fill out the specified width; see

the \extracolsep command below.

pos Specifies the vertical positioning; the default is alignment on the center of

the environment.

t align on top row.

b align on bottom row.

cols Specifies the column formatting. It consists of a sequence of the follow-

ing specifiers, corresponding to the sequence of columns and intercolumn

material.

1 A column of left-aligned items.

r A column of right-aligned items.

C.9 Lining It Up in Columns 183

c A column of centered items.

I A vertical line the full height and depth of the environment.

Qitext} This specifier is called an ^-expression. It inserts text in every

row, where text is processed in math mode in the array environment

and in LR mode in the tabular and tabular* environments. The

text is considered a moving argument, so any fragile command within

it must be Xprotect'ed.

An Q-expression suppresses the intercolumn space normally inserted

between columns; any desired space between the inserted text and the

adjacent items must be included in text. To change the space between

two columns from the default to wd, put an @{\hspace{icd}} com-

mand (Section 5.4.1) between the corresponding column specifiers.

An \extracolsep{iwO command in an O-expression causes an extra

space of width wd to appear to the left of all subsequent columns,

until countermanded by another \extracolsep command. Unlike

ordinary intercolumn space, this extra space is not suppressed by an

@-expression. An \extracolsep command can be used only in an @-

expression in the cols argument. It is most commonly used to insert

a \f ill space (Section 5.4.1) in a tabular* environment.

p{wd} Produces a column with each item typeset in a parbox of width

wd, as if it were the argument of a XparboxftHwd} command (Sec-

tion 5.4.3). However, a \\ may not appear in the item, except in the

following situations: (i) inside an environment like minipage, array

or tabular, (ii) inside an explicit \parbox, or (iii) in the scope of a

\centering. \raggedright. or \raggedleft declaration. The latter

declarations must appear inside braces or an environment when used

in a p-column element.

*{num.y{cols} Equivalent to num copies of cols, where num is any positive

integer and cols is any list of column-specifiers, which may contain

another *-expression.

An extra space, equal to half the default intercolumn space, is put before

the first column unless cols begins with a I or O-expression, and after

the last column unless cols ends with a I or ©-expression. This space

usually causes no problem, but is easily eliminated by putting an @{} at

the beginning and end of cols.

rows A sequence of rows separated by \\ commands (Section C.1.6). Each row

is a sequence of items separated by & characters; it should contain the same
number of items as specified by the cols argument. The text comprising

each item is processed as if it were enclosed in braces, so the scope of any

declaration in an item lies within that item. The following commands may
appear in an item:

184 Reference Manual

\multicolumn{num}{co/}{^em} Makes item the text of a single item

spanning num columns, positioned as specified by col. If num — 1.

then the command serves simply to override the item positioning

specified by the environment argument. The col argument must con-

tain exactly one 1, r, or c and may contain one or more ©-expressions

and
I
characters. It replaces that part of the environment's cols ar-

gument corresponding to the num spanned columns, where the part

corresponding to any column except the first begins with 1, r, c, or

p, so the cols argument |c|l@{:}lr has the four parts |c|, 1@{:},

1, and r. A \raulticolumn command must either begin the row or

else immediately follow an k. It is fragile.

\vline When used within an 1, r, or c item, it produces a vertical line

extending the full height and depth of its row. An \hf ill command
(Section 5.4.2) can be used to move the line to the edge of the column.

A \vline command can also be used in an ©-expression. It is robust.

The following commands can go between rows to produce horizontal lines.

They must appear either before the first row or immediately after a \\

command. A horizontal line after the last row is produced by ending the

row with a \\ followed by one of these commands. (This is the only case

in which a \\ command appears after the last row of an environment.)

These commands are fragile.

\hline Draws a horizontal line extending the full width of the environ-

ment. Two \hline commands in succession leave a space between the

lines; vertical rules produced by I
characters in the cols argument do

not appear in this space.

\cline{co/i-co/2} Draws a horizontal line across columns col\ through

coli. Two or more successive \cline commands draw their lines in

the same vertical position. See the \multicolumn command above

for how to determine what constitutes a column.

The following properties of these environments, although mentioned above,

are often forgotten:

• These environments make a box; see Section 5.6 for environments and

commands that can be used to position this box.

• The box made by these commands may have blank space before the first

column and after the last column; this space can be removed with an

©-expression.

• Any declaration in rows is within an item: its scope is contained within

the item.

• An ©-expression in cols suppresses the default intercolumn space.

CIO Moving Information Around 185

Style Parameters

The following style parameters can be changed anywhere outside an array or

tabular environment. They can also be changed locally within an item, but the

scope of the change should be explicitly delimited by braces or an environment.

\arraycolsep Half the width of the default horizontal space between columns

in an array environment.

\tabcolsep Half the width of the default horizontal space between columns in

a tabular or tabular* environment.

\arrayrulewidth The width of the line created by a I
in the cols argument or

by an \hline. \cline. or \vline command.

\doublerulesep The width of the space between lines created by two successive

I
characters in the cols argument, or by two successive \hline commands.

\arraystretch Controls the spacing between rows. The normal interrow space

is multiplied by \arraystretch. so changing it from its default value of 1

to 1.5 makes the rows 1.5 times farther apart. Its value is changed with

\renewcommand (Section 3.4).

C.10 Moving Information Around

C.10.1 Files

A number of different files may be created when IATjtX is run. They all have the

same first name as the root file (Section 4.4). These files are referred to. and

listed below, by their extension. A \nof iles command in the preamble prevents

LVTjrX from writing some of them. Knowing when and under what circumstances

they are read and written can help in locating and recovering from errors.

aux Used for cross-referencing and in compiling the table of contents, list of

figures and list of tables. In addition to the main aux file, a separate aux

file is also written for each \include'd file (Section 4.4). having the same

first name as that file. All aux files are read by the \begin{docuraent}

command. The \begin{document} command also starts writing the main

aux file: writing of an \include'd file's aux file is begun by the \include

command and is ended when the \include*d file has been completely

processed. A \nofiles command suppresses the writing of all aux files.

The table of contents and cross-reference information in the aux files can

be printed by running LNTgX on the file lablst.tex.

bbl This file is written by BlBTjrX. not by I^TjtX. using information on the aux

file. It is read by the \bibliography command.

186 Reference Manual

dvi This file contains IATjrXs output, in a form that is independent of any

particular printer. Another program must be run to print the information

on the dvi file. The file is always written unless I^TgX has generated no

printed output.

glo Contains the \glossaryentry commands generated by \glossary com-

mands. The file is written only if there is a \makeglossary command and

no \nofiles command.

idx Contains the \indexentry commands generated by \index commands.

The file is written only if there is a \makeindex command and no \nof iles

command.

lof Read by the \listoffigures command to generate a list of figures; it

contains the entries generated by all \caption commands in figure envi-

ronments. The lof file is generated by the \end{document} command. It

is written only if there is a \listoffigures command and no \nof iles

command.

log Contains everything printed on the terminal when I^Tj?X is executed, plus

additional information and some extra blank lines. It is always written.

In some systems, this file has an extension other than log.

lot Read by the \listoftables command to generate a list of tables; it con-

tains the entries generated by all \caption commands in table environ-

ments. The lot file is generated by the \end{document} command. It

is written only if there is a \listoftables command and no \nof iles

command.

toe Read by the \tableof contents command to generate a table of contents;

it contains the entries generated by all sectioning commands (except the

*-forms). The toe file is generated by the \end{document} command. It

is written only if there is a \tableofcontents command and no \nof iles

command.

C.10.2 Cross-References

Mabel {key}

\ref {key}

\pageref {key}

The key argument is any sequence of letters, digits, and punctuation symbols;

upper- and lowercase letters are regarded as different. IATjtX maintains a current

\ref value, which is set with the \ref stepcounter declaration (Section C.7.4).

(This declaration is issued by the sectioning commands, by numbered environ-

ments like equation, and by an \item command in an enumerate environment.)

The Mabel command writes an entry on the aux file (Section C.10.1) containing

key. the current \ref value, and the number of the current page. When this aux

C.10 Moving Information Around 187

file entry is read by the \begin{document} command (the next time lATj^X is

run on t ho same input file), the \ref value and page number are associated with

key, causing a \ref {key} or \pageref {At//} command to produce the associated

\ref value or page number, respectively.

These three commands are fragile. However, \label can be used in the

argument of a sectioning or \caption command.

C.10.3 Bibliography and Citation

\bibliography {/>//>-///< s}

Tscd in conjunction with the BlBTj?X program (Section 4.3.2) to produce a

bibliography. The bib-files argument is a list of first names of bibliographic

database (bib) files, separated by commas; these files must have the extension

bib. The \bibliography command does two things: (i) it creates an entry on

the aux file (Section C.10.1) containing bib-files that is read by BibTjtX. and

(ii) it reads the bbl file (Section C.10.1) generated by BibTjtX to produce the

bibliography. (The bbl file will contain a thebibliography environment.) The

database files are used by BibTj?X to create the bbl file.

\begin{thebibliography}{u>zde.sL/a&e/} entries \end{thebibliography}

Produces a bibliography or reference list. In the article document style, this

reference list is labeled "References"; in the report and book style, it is labeled

"Bibliography". Sec Section 5.1.4 for information on how to create a document-

style option to change the reference list's label.

widest-label Text that, when printed, is approximately as wide as the widest

item label produced by the \bibitem commands in entries. It controls the

formatting.

entries A list of entries, each begun by the command

\bibitem [label] {cite.key}

which generates an entry labeled by label. If the label argument is missing.

a number is generated as the label, using the enumi counter. The citeJkey is

any sequence of letters, numbers, and punctuation symbols not containing

a comma. This command writes an entry on the aux file (Section (M0.1)

containing citt -key and the item's label. When this aux file entry is read by

the \begin{document} command (the next time L^TjtX is run on the same

input file), the item's label is associated with cite.key. causing reference

to citeJzey by a \cite command to produce the associated label.

188 Reference Manual

\cite [text} ikeyJist}

The key. list argument is a list of citation keys (see \bibitem above). This

command generates an in-text citation to the references associated with the keys

in keyJist by entries on the aux file read by the \begin{document} command.
It also writes key-list on the aux file, causing BibTj?X to add the associated

references to the bibliography(Section 4.3.2). If present, text is added as a

remark to the citation. Fragile.

\nocite-{fcey_/»sO

Produces no text, but writes keyJist. which is a list of one or more citation

keys, on the aux file. This causes BlBTj?X to add the associated references to

the bibliography (Section 4.3.2). The \nocite command must appear after the

\begin{document}. It is fragile.

C.10.4 Splitting the Input

\input {)/'/(_mm?(}

Causes the indicated file to be read and processed, exactly as if its contents had

been inserted in the current file at that point. The file-name may be a complete

file name with extension or just a first name, in which case the file filename . tex

is used. If the file cannot be found, an error occurs and T£X requests another

file name. 3

\include{/7/e}

\includeonly{///fJist}

Used for the selective inclusion of files. The file argument is the first name of a

file, denoting the file file. tex. and fileJist is a possibly empty list of first names

of files separated by commas. If file is one of the file names in fileJist or if there

is no \includeonly command, then the \include command is equivalent to

\clearpage \input {/*/?} \clearpage

except that if file file . tex does not exist, then a warning message rather than an

error is produced. If file is not in fileJist. the \include command is equivalent

to \clearpage.

The \includeonly command may appear only in the preamble: the \include

command may not appear in the preamble or in a file read by another \include

command. Both commands arc fragile.

3To maintain compatibility with plain T£X. I^TjrX allows yon to leave out the braces around

the file name in an \input command.

CIO Moving Information Around 189

C.10.5 Index and Glossary

Producing an Index

\begin{theindex} hit \end{theindex}

Produces a double-column index. Each entry is begun with either an \item

command, a \subitem command, or a \subsubitem command.

Compiling the Entries

\makeindex Causes the \indexentry entries produced by \index commands
to be written on the idx file, unless a \nofiles declaration occurs. The

\makeindex command may appear only in the preamble.

\makeglossary Causes the \glossaryentry entries produced by \glossary

commands to be written on the glo file, unless a \nofiles declaration

occurs. The \makeglossary command may appear only in the preamble.

\index{.s£r} If an idx file is being written, then this command writes an

\indexentry{.s/r}{/^} entry on it, where pg is the page number. The
str argument may contain any characters, including special characters,

but it must have no unmatched braces, where the braces in \{ and \} are

included in the brace matching. The \index command may not appear

inside another command's argument unless str contains only letters, digits,

and punctuation characters. The command is fragile.

\glossary{s£r} If a glo file is being written, then this command writes a

\glossaryentry{,s<r}{p<?} entry on it, where str and pg are the same

as in the \index command, described above. The \glossary command
may not appear inside another command's argument unless str contains

only letters, digits, and punctuation characters. The command is fragile.

C.10.6 Terminal Input and Output

\typeout{m.*(/}

Prints msg on the terminal and in the log file. Commands in msg that are

defined with \newcommand or \renewcommand are replaced by their definitions

before being printed. IATj?X commands in msg may produce strange results.

Preceding a command name by \protect causes that command name to be

printed.

TeX's usual rules for treating multiple spaces as a single space and ignoring

spaces after a command name apply to msg. A \space command in msg causes a

single spate to be printed. The \typeout command is fragile; moreover, putting

it in the argument of another IATjrX command may do strange things. The msg

argument is a moving argument.

190 Reference Manual

\typein[cmrf] {msg}

Prints msg on the terminal, just like \typeout{msg}, and causes T^X to stop

and wait for you to type a line of input, ending with return. If the cmd argument

is missing, the typed input is processed as if it had been included in the input

file in place of the \typein command. If the cmd argument is present, it must

be a command name. This command name is then defined or redefined to be

the typed input. Thus, if cmd is not already defined, then the command acts

like

\typeout{ras<7}

\newcommand{crad}0?/ped input}

The \typein command is fragile; moreover, it may produce an error if it appears

in the argument of a L^TgX command. The msg argument is a moving argument.

C.ll Line and Page Breaking

C.ll.l Line Breaking

\linebreak [num]

\nolinebreak [num]

The \linebreak command encourages and \nolinebreak discourages a line

break, by an amount depending upon num, which is a digit from through 4.

A larger value of num more strongly encourages or discourages the line break; the

default is equivalent to a num argument of 4, which either forces or completely

prevents a line break. An underbill \hbox message is produced if a \linebreak

command results in too much space between words on the line. Both commands
are fragile.

WUen]
\newline

These commands start a new line without justifying the current one, producing

a "ragged right" effect. The optional argument adds an extra vertical space of

length len above the new line. The \newline command may be used only in

paragraph mode, and should appear within a paragraph; it produces an underfull

\hbox warning and extra vertical space if used at the end of a paragraph, and

an error when used between paragraphs. The \\ command behaves the same

way when used in paragraph mode. Both commands are fragile.

\-

Permits the line to be hyphenated (the line broken and a hyphen inserted) at

that point. It inhibits hyphenation at any other point in the current word except

where allowed by another \- command. Robust.

C.ll Line and Page Breaking 191

\hyphenat i on{ (/•<) r</,^

}

Declares allowed hyphenation points, where words is a list of words, separated

by spaces, in which each hyphenation point is indicated by a - character. It is

a global declaration Section 0.1.4) and is robust.

\sloppy

\fussy

Declarations that control line breaking. The \fussy declaration, which is the

default, prevents too much space between words, but leaves words extending past

the right-hand margin if no good line break is found. The \sloppy declaration

almost always breaks lines at the right-hand margin, but may leave too much
space between words, in which case TgX produces an underbill \hbox warning.

Line breaking is controlled by the declaration in effect at the blank line ending

the paragraph.

\begin{sloppypar} pars \end{sloppypar}

Typesets pars, which must consist of one or more complete paragraphs, with the

\sloppy declaration in effect.

C.11.2 Page Breaking

\pagebreak [nuw]

\nopagebreak [

n

u m]

The \pagebreak command encourages and \nopagebreak discourages column

breaking by an amount depending upon num. where the entire page is a single

column in a one-column page style. The num argument is a digit from through

4. a larger value more strongly encouraging or discouraging a break: the default

is equivalent to num having the value 4. which forces or entirely prevents a

break. When used within a paragraph, these commands apply to the point

immediately following the line in which they appear. When \f lushbottom is

in effect (Section 5.1.1), an underbill \vbox message is produced if \pagebreak

results in too little text on the page. A \nopagebreak command will have no

effect if another I-ATjrX command has explicitly allowed a page break to occur at

that point. Roth commands are fragile.

\samepage

A declaration thai prevents page breaks in the following places: between lines of

a paragraph unit that ends within its scope, before or after a displayed equation,

displayed- paragraph environment or section heading lying within its scope, or

before an item in a list environment, other than the first, whose \item com-

mand lies within its scope—except where explicily allowed by \pagebreak or

\nopagebreak (with optional argument). A paragraph unit is any portion of

192 Reference Manual

text that T^X treats as a single text stream for purposes of line-breaking, so a

displayed equation within a paragraph separates the paragraph into two para-

graph units. The \samepage command is fragile.

\newpage

\clearpage r

\cleardoublepage

When one-column pages are being produced, these commands all end the cur-

rent paragraph and the current page. Any unfilled space in the body of the page

(Section 5.1.2) appears at the bottom, even with \f lushbottom in effect (Sec-

tion 5.1.1). The \clearpage and \cleardoublepage commands also cause all

figures and tables that have so far appeared in the input to be printed, using one

or more pages of only figures and/or tables if necessary. In a two-sided printing

style, \cleardoublepage also makes the next page a right-hand (odd-numbered)

page, producing a blank page if necessary.

When two-column text is being produced, \newpage ends the current col-

umn rather than the current page: \clearpage and \cleardoublepage end

the page, producing a blank right-hand column if necessary. These commands
should be used only in paragraph mode: they should not be used inside a par-

box (Section 5.4.3). The \newpage and \clearpage commands are robust:

\cleardoublepage is fragile.

C.12 Lengths, Spaces, and Boxes

C.12.1 Length

explicit lengths An explicit length is written as an optional sign (+ or -)

followed by a decimal number (a string of digits with an optional decimal

point) followed by a dimensional unit. The following dimensional units

are recognized by Tj]X.

cm Centimeters.

em One em is about the width of the letter M in the current font.

ex One ex is about the height of the letter x in the current font.

in Inches.

pc Picas (lpc = 12pt).

pt Points (lin = 72.27pt).

mm Millimeters.

\f ill A rubber length (Section 5.4.1) having a natural length of zero and the

ability to stretch to any arbitrary (positive) length. Robust.

C.12 Lengths, Spaces, and Boxes 193

\stTetch{dec-nuru} A rubber length having zero natural length and dec_num

times the stret (liability of \f ill. where dec.num is a signed decimal num-

ber (an optional sign followed by a string of digits with an optional decimal

point). Robust.

\newlength{rm</} Declares cmd to be a length command, where cmd is the

name of a command not already defined. The value of cmd is initialized

to zero inches. Fragile.

\setlength{cm</}{/rN} Sets the value of the length command cmd equal to

len. Robust.

\addtolength{cm(/M/f7)} Sets the value of the length command cmd equal to

its current value plus len. Robust.

\settowidth{cm<OOcrt} Sets the value of the length command cmd equal to

the natural width of the output generated when text is typeset in LR mode.

Robust.

C.12. 2 Space

\hspace {len}

\hspace*{ len}

Produce a horizontal space of width len. The space produced by \hspace is

removed if it falls at a line break: that produced by \hspace* is not. These

commands are robust.

\vspace {len}

\vspace*{/en}

Add a vertical space of height len. If the command appears in the middle of

a paragraph, then the space is added after the line containing it. The space

produced by \vspace is removed if it falls at a page break: that produced by

\vspace* is not. These commands may be used only in paragraph mode: they

are fragile.

\bigskip

\medskip

\smallskip

These commands are equivalent to the three commands

\vspace{\bigskipamount} \vspace-C\smallskipamount}

\vspace{\medskipamount}

where the three length parameters \bigskipamount. \medskipamount. and

\ small skipamount are determined by the document style. These space-pro-

ducing commands can be used in the definitions of environments to provide

standard amounts of vertical space. They are fragile.

194 Reference Manual

\addvspace{/en}

This command normally adds a vertical space of height len. However, if vertical

space has already been added to the same point in the output by a previous

\addvspace command, then this command will not add more space than needed

to make the natural length of the total vertical space equal to len. It is used to

add the extra vertical space above and below most IATjtX environmentsvthat start

a new paragraph. It may be used only in paragraph mode between paragraphs

—

that is, after a blank line or \par command (in TgX's vertical mode). Fragile.

C.12.3 Boxes

A box is an object that is treated by TgX as a single character, so it will not be

broken across lines or pages.

\mbox {text}

\makebox [wdth] [pos] {text}

Typesets text in LR mode in a box. The box has the width of the typeset text

except for a \makebox command with a wdth argument, in which it has width

wdth. In the latter case, the position of the text within the box is determined

by the one-letter pos argument as follows:

1 Flush against left edge of box.

r Flush against right edge of box.

The default positioning is centered in the box. The \mbox command is robust;

\makebox is fragile.

\fbox {text}

\framebox [wdth] [pos] {text}

Similar to \mbox and \makebox. except that a rectangular frame is drawn around

the resulting box. The \fbox command is robust; \framebox is fragile.

\newsavebox{ cmd}

Declares cmd, which must be a command name that is not already defined, to

be a bin for saving boxes. Fragile.

\sbox {cmd}{text}

\savebox {cmd} [wdth] [pos] {text}

These commands typeset text in a box just as for \mbox or \makebox. respec-

tively. However, instead of printing the resulting box, they save it in bin cmd,

which must have been declared with \newsavebox. The \sbox command is

robust; \savebox is fragile.

C.12 Lengths, Spaces, and Boxes 195

\usebox {cmd}

Prints the box most recently saved in bin cmd by a \savebox command. Robust.

\parbox [pos]{wdth}{text}

\begin{minipage} [pot] {wdth} text \end{minipage}

They produce a parbox a box of width wdth formed by typesetting text in

paragraph mode. The vertical positioning of the box is specified by the one-

letter pos argument as follows:

b The bottom line of the box is aligned with the current line of text.

t The top line of the box is aligned with the current line of text.

The default vertical positioning is to align the center of the box with the center

of the current line of text.

The list-making environments listed in Section 5.7 and the tabular envi-

ronment may appear in text with the minipage environment, but not with the

\parbox command. A \footnote or \f ootnotetext command appearing in

text in a minipage environment produces a footnote at the bottom of the parbox

ended by the next \end{minipage} command, which may be the wrong place

for it when there are nested minipage environments. These footnote-making

commands may not be used in the text argument of \parbox.

A minipage environment that begins with a displayed equation or with an

eqnarray or eqnarray* environment will have extra vertical space at the top

(except with the f leqn document-style option). This extra space can be removed

by starting text with a \vspace{-\abovedisplayskip} command.

The \parbox command is fragile.

\rule [raiseJen] {udth}{hght}

Generates a solid rectangle of width wdth and height hght, raised a distance of

raiseJen above the bottom of the line. (A negative value of raise.len lowers it.)

The default value of raiseJen is zero inches. Fragile.

\raisebox {rai*< Jen}[hght] [dpth] {text}

Creates a box by typesetting text in LR mode, raising it by raiseJen, and

pretending that the resulting box extends a distance of hght above the bottom

of the current line and a distance of dpth below it. If the dpth argument or both

optional arguments are omitted. TgX uses the actual extent of the box. Fragile.

Style Parameters

\fboxrule The width of the lines comprising the box produced by \fbox and

\f ramebox. However, the version of \framebox used in the picture en-

196 Reference Manual

vironment (Section 5.5) employs the same width lines as other picture

commands.

\fboxsep The amount of space left between the edge of the box and its contents

by \fbox and \framebox. It does not apply to the version of \framebox

used in the picture environment (Section 5.5).

C.13 The picture Environment

A coordinate is a decimal number—an optional sign followed by a string of

digits with an optional decimal point. It represents a length in multiples of

\unit length. All argument names in this section that begin with x or y are

coordinates.

\begin{picture}(.r_afm?en , y.dimen) (x. offset , y^offset)

picLcmds

\end{picture}

Creates a box of width X-dimen and height y-dimen. both of which must be non-

negative. The (x-offset , y.offset) argument is optional. If present, it specifies

the coordinates of the lower-left corner of the picture: if absent, the lower-left

corner has coordinates (0.0). (Like all dimensions in the picture environment,

the lengths specified by the arguments of the picture environment are given

in multiples of \unitlength.) The picture environment can be used anywhere

that ordinary text can. including within another picture environment.

The pict-cmds are processed in picture mode—a special form of LR mode

—

and may contain only \put commands, \multiput connnands. and declarations.

Figure C.6 illustrates many of the picture-drawing commands described below.

C.13.1 Picture-Mode Commands
The following are the only commands, other than declarations, that can be used

in picture mode.

\put (x-coord , y. coord) {picture-object}

Places picture^object in the picture with its reference point at the position speci-

fied by coordinates (x.coord. y.coord). The picture-object can be arbitrary text,

which is typeset in LR mode with its lower-left corner as the reference point,

or else one of the special picture-object commands described below. The \put

command is fragile.

\multiput (x_coorc/, y.coord) (x.incr
,
yJncr) {num}{picture.object}

Places num copies of picture-object, the I
th one positioned with its reference

point having coordinates [x.coord + [i — l]z_mcr. y.coord + [i — \]yJncr). The

C.13 The picture Environment 197

\newcounter{cms}

® ®
cm 12 3 5

lllllllllllllllllllllllllllllllllllll

\setlength{\unitlength}{lmm}

\begin{picture} (50 , 39)

\put (0 , 7) {\makebox(0 , 0) [bl] {cm}}

\multiput (10 , 7) (10 , 0) {5}{\addtocounter

{cms}{l}\makebox(0,0) [b] {\arabic{cms}}}

\put (15 , 20) {\circle{6}}

\put (30 , 20) {\circle{6}}

\put (15 , 20) {\circle*{2}}

\put (30 , 20) {\circle*{2}}

\put (10 , 24) {\framebox(25 , 8) {car}}

\put (10 , 32) {\vector (-2 , 1) {10}}

\multiput(1.0)(l,0){49}{\line(0,l){2.5}}

\multiput (5 . 0) (10 , 0) {5}{\line (0 , 1) {3 . 5}}

\thicklines

\put (0 , 0) {\line (1 , 0) {50}}

\multiput (0 , 0) (10 , 0) {6}{\line (0 . 1) {5}}

\end{picture}

Figure C.6: A sample picture environment.

picture^object is the same as for the \put command above. It is typeset num
times, so the copies need not be identical if it includes declarations. (See Fig-

ure C.6.) Fragile.

C.13.2 Picture Objects

\makebox (x-dimen
,
y.dirnen) [pos] {text}

\fTamebox(x-dimen , y.dimen) [pos] {text}

\dashbox {dash.dim en} (x-dimen , y_dimen) [pos] {text}

Produce a box having width X-dimen and height y.dimen (in multiples of

\unit length) with reference point at its lower-left corner. The text is type-

set in LR mode, positioned in the box as specified by the one- or two-letter pos

argument as follows:

1 Horizontally positioned flush against the left edge of the box.

r Horizontally positioned flush against the right edge of the box.

t Vertically positioned flush against the top edge of the box.

b Vertically positioned flush against the bottom edge of the box.

The default horizontal and vertical positioning is to center text in the box.

The \framebox command also draws a rectangle showing the edges of the box,

and \dashbox draws the rectangle with dashed lines, composed of dashes and

198 Reference Manual

spaces of length dash^dimen (in multiples of \unitlength), where dash.dimen

is a positive decimal number. For best results, xAimen and y.dimen should be

integral multiples of dash.dimen. The thickness of the lines drawn by \framebox

and \dashbox equals the width of the lines produced by other picture commands;

it is not determined by \fboxrule. All three commands are fragile.

r

Mine {hslope , vslope) {dimen}

\vector (hslope , vslope) {dimen}

Draw a line having its reference point at the beginning and its slope determined

by (hslope, vslope), where hslope and vslope are positive or negative integers

of magnitude"^ most 6 for Mine and at most 4 for \vector, with no common
divisors except ±1. In addition, \vector draws an arrowhead at the opposite

end of the line from the reference point. The horizontal extent of the line is

dimen (in multiples of \unit length) unless hslope is zero, in which case dimen

is the (vertical) length of the line. However, a line that is neither horizontal

nor vertical may not be drawn unless dimen times \unitlength is at least

10 points (1/7 inch). The \vector command always draws the arrowhead.

Both commands are fragile.

\shortstack _pos]{col}

The pos argument must be either 1, r, or c, the default being equivalent to c.

This command produces the same result as

\begin{tabular}[b]{pos} col \end{tabular}

(Section 3.6.2) except that no space is left on either side of the resulting box and

there is usually less interrow space. The reference point is the lower-left corner

of the box. Fragile.

\circle {diam}

\circle*{diam}

Draw a (hollow) circle and a disk (filled circle), respectively, with diameter as

close as possible to diam times \unitlength and reference point in the center of

the circle. The largest circle I^TgX can draw has a diameter of 40 points (about

1/2 inch) and the largest disk has a diameter of 15 points (about .2 inch). Both

commands are fragile.

\oval (x-dimen , yAimen) [part]

Draws an oval inscribed in a rectangle of width X-dimen and height y.dimen, its

corners made with quarter circles of the largest possible diameter. The reference

point is the center of the (complete) oval. The part argument consists of one or

two of the following letters to specify a half or quarter oval: 1 (left), r (right),

t (top), b (bottom). The default is to draw the entire oval. Fragile.

C.14 Font Selection 199

\frame{ pictu re.object}

Puts a rectangular frame around picture-object. The reference point is the bot-

tom left corner of the frame. No extra space is put between the frame and

picture-object. Fragile.

C.13.3 Picture Declarations

The following declarations can appear anywhere in the document, including in

picture mode. They obey the normal scope rules.

\savebox{cm(/} (x-dimen ,
y.dimen) [posl {text}

Same as the corresponding \makebox command, except the resulting box is

saved in the bin cmd, which must be defined with \newsavebox (Section 5.4.3).

Fragile.

\thinlines

\thicklines

They select one of the two standard thicknesses of lines and circles in the picture

environment. The default is \thinlines. Robust.

\linethickness{/c/)>

Declares the thickness of horizontal and vertical lines in a picture environment

to be len. which must be a positive length. It does not affect the thickness of

slanted lines and circles, or of the quarter circles drawn by \oval to form the

corners of an oval.

C.14 Font Selection

C.14.1 Changing the Type Style

The following declarations select the indicated type style.

\rm Roman \it Italic \sc Small Caps
\em Emphatic \sl Slanted \tt Typewriter

\bf Bold \sf Sans Serif

If a type style is not available in the current size, the declaration chooses a

substitute style and prints a warning message on the terminal. See Section C.14.4

below for restrictions on the use of these commands in math mode. These

command- are all robust. Words typeset in \tt style or in two different styles

are not hyphenated except where permitted by \- commands.

200 Reference Manual

C.14.2 Changing the Type Size

The following declarations select a type size and also select the roman style of

that size. They are listed in nondecreasing size; two of the declarations may
have the same effect in some document styles.

\tiny \small Marge r \huge

\scriptsize \normalsize \Large \Huge

\footnotesize \LARGE

These commands may not be used in math mode; they are all fragile.

C.14.3 Loading Fonts

\newf ont{cmd}{.fonLname}

Defines the command name cmd, which must not be currently defined, to be a

declaration that selects the font named font-name to be the current font. The
newly-defined cmd command is robust, but it cannot be used in math mode.

The \newf ont command is fragile.

\symbol{n«ra}

Chooses the symbol with number num from the current font. Octal (base 8) and

hexadecimal (base 16) numbers are preceded by ' and ", respectively. Robust.

C.14.4 Fonts in Math Mode

IATjrpt allows ten different sizes and eight different styles of type, including math
italic (Section 3.3.8). To each of these eighty size/style combinations corresponds

a separate font. These fonts are divided into three classes: preloaded, loaded on

demand, and unavailable. The Local Guide tells you to which category each

font belongs. When an unavailable font is requested, another one, which may
be preloaded or loaded on demand, is substituted for it and a warning message

printed on the terminal. Preloaded and loaded-on-demand fonts act the same

when used in paragraph and LR mode, but differ in math mode.

A size/style combination that corresponds to a loaded-on-demand font may
not work right when used in math mode, either printing the wrong size characters

or not printing any characters and generating one of the following error messages:

\textfont ... is undefined (character ...).

\scriptfont ... is undefined (character ...).

\scriptscriptf ont ... is undefined (character ...).

The rules describing exactly when this problem will occur are complicated, but

the solution is simple: use a command of the form

\lodid{sizey {style}

C.14 Font Selection 201

where size is a size-changing command and style is the type-style command
that together specify the desired font. The \load command should come before

the first use of the font in math mode, and should not be inside braces or an

environment.

This proves that xt > 7 in all cases.

Remember that xyt 2
is odd.

This proves that ${\sf xt}>7$ in all

\load{\footnotesizeM\sf }

cases \footnote{Remember that

${\sf xyt}~{2}$ is odd.}

In math mode, there are four math styles: display, text, script, and script-

script. Display and text styles differ mainly in the size of the symbols in Table 3.8

(page 45) and in the placement of subscripts on some symbols and on the log-like

functions in Table 3.9 (page 46). The script style is used for sub- and superscripts

and the scriptscript style for further levels of sub- and superscripting.

Each type style/size combination requires three fonts in math mode: one for

display and text style, one for script style, and one for scriptscript style. Ideally,

these fonts should be of different size, except when this would result in a font

too small to read. However, the choice of fonts is restricted in I^TgX by two

rules: (i) only preloaded fonts can be used in script and scriptscript style, and

(ii) a style/size combination corresponding to a loaded-on-demand font uses the

same font for all math styles. This means that subscripts and superscripts may
be typeset in too large a font for some style/size combinations.

\displaystyle

\textstyle

\scriptstyle

\ script scriptstyle

These declarations choose the indicated math style. They are robust.

\boldmath

\unboldmath

The \boldmath declaration selects a bold math italic font and bold math symbol

fonts. This causes letters, numbers and most symbols used in math mode to be

set in bold type, including Greek letters, calligraphic letters (selected by \cal),

and the symbols in Tables 3.4 3.7 (pages 44-45). However, symbols made by

combining two other symbols, such as => (\Longrightarrow). which is made
from = and =>. may produce incorrect results. The following are not emboldened

by \boldmath.

• Text (usually subscripts and superscripts) typeset in script or scriptscript

style.

• Text produced by the following input characters:

202 Reference Manual

+ :;!?()[]
• The variable-sized symbols of Table 3.8 (page 45).

• Large delimiters produced with \left and \right. However, normal-sized

delimiters other than parentheses and square brackets produced by \left

and \right are made bold. v

The \unboldmath declaration undoes the effect of \boldmath. Neither command
may be used in math mode. They are both fragile.

APPENDIXD

Using Plain
TrX Commands

204 Using Plain T£X Commands

IATj?X is implemented as a T£JX "macro package"—a series of predefined TjrX

commands. Plain T]?X is the standard version of T^X, consisting of "raw" T]tX

plus the plain macro package. Most Plain TjrX commands can be used in IATpjX,

but only with care. IATjrX is designed so its commands fit together as a single

system. Many compromises have been made to ensure that a command will

work properly when used in any reasonable way with other IATj?X commands. A
IATjtX command may not work properly when used with Plain Tf?X "commands

not described in this book.

There is no easy way to tell whether a Plain TgX command will cause trouble,

other than by trying it. A general rule is not to combine a lAT^X command
or environment with Plain TgX commands that might modify parameters it

uses. For example, don't use a Plain TgX command such as \hangindent that

modifies TgX's paragraph-making parameters inside one of I^TgX's list-making

environments.

You should not modify any parameters that are used by IMgX's \output

routine, except as specified in this book. In particular, you should forget about

most of Chapter 15 of The TfiXbook. However, IATjrX does obey all of TfrX's

conventions for the allocation of registers, so you can define your own counts,

boxes, etc., with ordinary TjrX commands.

Below are listed all the Plain TgX commands whose definitions have been

eliminated or changed in IATjrX. Not listed are IATjrX commands that approx-

imate the corresponding Plain TjrX versions, and some "internal" commands
whose names contain @ characters.

Tabbing Commands

The following commands are made obsolete by I^TgX's tabbing environment.

\tabs \tabsdone \settabs \+

\tabset \cleartabs \tabalign

Output, Footnotes, and Figures

The following commands that require Plain TjtX's output routine are obsolete.

They are replaced by BTgX's footnote-making commands and its figure and

table environments.

\pageno \nopagenumbers \makeheadline \footstrut

\headline \advancepageno \makefootline \topins

\footline \nopagenumbers \dosupereject \topinsert

\normalbottom \plainoutput \pagecontents \midinsert

\folio \pagebody \vfootnote \pageinsert

\endinsert

205

Font-Selecting Commands

The following Plain T[]X commands are not defined in I^TjrX. See the file

lfonts.tex to find the corresponding I-ATjrX commands.

\f ivei \fivebf \sevensy

\f iverm \seveni \teni

\f ivesy \sevenbf \oldstyle

Consult the Plain T£\ definition of \oldstyle to understand how to obtain its

effects in IATEX.

Aligned Equations

The following Plain TgX commands are made obsolete by I£Tj?X's eqnarray and

eqnarray* environments.

\eqalign \eqalignno \leqalignno

Miscellaneous

Plain TeXs \beginsection command is replaced by IMj?X's sectioning com-

mands: its \end and \bye commands are replaced by \end{document}. The
Plain TgX commands \centering and Mine have had their names usurped by

IATgX commands. Most functions performed by Plain TgX's Mine command
can be achieved by the center, f lushleft. and f lushright environments. The
\magnif ication command of Plain TgX has no counterpart in IATjrX. Magni-

fication of the output can often be done by the program that prints the dvi

file.

Bibliography

[1] Theodore M. Bernstein. The Careful Writer: A Modern Guide to English

Usage. Atheneum. New York. 1965.

[2] The Chicago Manual of Style. University of Chicago Press, thirteenth edition

1982.

[3] Donald E. Knuth. The TfiXbook. Addison-Wesley, Reading, Massachusetts,

1984.

[4] N. E. Steenrod. P. R. Halmos, M. M. Schiffer, and J. A. Dieudonne. How to

Write Mathematics. American Mathematical Society, 1983.

[5] William Strunk. Jr. and E. B. White. The Elements of Style. The Macmillan

Company. New York. 1979.

[6] Unilogic. Ltd. Scribe Document Production System User Manual. April

1984.

[7] Mary-Claire van Leunen. A Handbook for Scholars. Alfred A. Knopf, New
York. 1979.

[8] Words Into Type. Prentice-Hall. Inc., Englewood Cliffs, New Jersey, third

edition 1974.

207

Index

ignored in math mode. 38. 52

in LR mode. 38

\u (interword space). 14, 16. 33. 34. 154

used with \thanks. 164

! (exclamation point). 12. 32, 34

in error message, 29

not made bold by \boldmath, 202

\! (negative thin space). 52. 172

! (i).40

(double quote), 12

\" (" accent). 40

(hash mark), 12. 15. 31. 32. 33. 57.

150.

in command or environment

definition, 56. 173

misplaced. 124, 128

\# (#). 15.41. 154

$ (dollar sign). 12. 15. 20. 33. 41. 150.

169

entering math mode with. 38

missing, 125

not fragile. 24

scope ended by. 152

unmatched. 124

\$ ($). 15. 41. 154

'/. (percent sign). 12. 15. 20. 33. 150

for ending line without adding space.

34

comments made with. 79

in verbatim or \verb. 65

\% {%). 15. 41. 154

k (ampersand). 12. 15, 33. 47. 150. 183

too many in row. 123

misplaced. 124

\t (&). 15. 41. 154

' (left quote). 12. 13. 33. 34

V (" accent), 40

in tabbing environment, 181

* (right quote), 12, 13, 33, 34, 154

in formula, 20, 170

V (' accent), 40

in tabbing environment, 181

((left parenthesis), 12, 33, 48

in terminal output, 118

not bold in \boldmath, 202

\((begin formula), 19, 34, 41, 169

entering math mode with, 38

is fragile, 24, 34

in math mode error, 120

) (right parenthesis), 12, 48

in terminal output, 118

not bold in \boldmath, 202

\) (end formula), 19, 34, 41, 169

is fragile, 24, 34

not in math mode error, 120

leaving math mode with, 38

scope ended by, 152

* (asterisk), 12, 33, 151

after command name, 27

following \\. 151

in array or tabular argument, 183

written on terminal, 31

^-expression, 183

*-form

of command, 27, 33, 151

of environment, 151

of sectioning command, 157

+ (plus sign), 12, 33

not bold in \boldmath, 202

on slides, 137

unary, 50

\+ (tabbing command), 180

in Plain TeX, 204

209

210 INDEX

error in. 123

- (dash or minus sign). 12. 14. 33. 34.

154

in overfull \hbox message. 87

unary. 50

\- (hyphenation or tabbing command).

87. 88. 180. 190, 199

in tabbing environment. 181

instead of \hyphenation. 126

error in. 123

-- (number-range dash). 14. 34. 154

(punctuation dash). 14. 34. 154

. (period). 12. 33. 34

invisible delimiter. 49

\. (' accent). 40

/ (slash). 12. 33, 41. 48. 52

\/ (space after italics). 17, 34. 39

: (colon). 12, 33

not bold in \boldmath. 202

\: (medium space), 52. 172

; (semicolon). 12. 33

not bold in \boldmath. 202

\; (thick space). 52. 172

, (comma). 12. 33

not allowed in citation key. 73

\. (thin space). 14. 34. 52. 154. 172

{ (left brace). 12. 15. 17. 33. 65. 150

delimiting argument. 152

in \ index argument. 79

missing. 125

\< ({). 15. 41. 48. 154

in \index or \glossary argument. 189

in bib file. 140

not counted in brace matching. 17

> (right brace). 12. 15. 17. 33. 150

delimiting argument. 152

in \index argument. 79

missing. 125

scope delimited by. 17. 34. 152

unmatched. 124

\} (}). 15. 41. 48. 154

in \index or \glossary. 189

in bib file. 140

not counted in brace matching. 17

< (less than sign). 12. 33

\< (tabbing command). 181

error in. 123

= (equals sign). 12. 33

\= (" accent). 40. 62

too many. 122

in tabbing environment. 180

> (greater than sign). 12. 33

\> (tabbing command). 62. 180

error in, 123 *

? (question mark). 12, 33. 34

in error message. 29

not bold in \boldmath. 202

V U).40
@ (at sign). 12. 33

in command name. 85, 150

\<3. 14. 34. 154

^-expression. 183

fragile commands in, 152

missing, 122

\@array. 128

\@chapapp. 86

\@listi ... \<31istvi. 166

Sstring. 143

[(left bracket). 12. 33. 48. 150

ambiguous. 27

following \linebreak. 89

following \nolinebreak. 89

not bold in \boldmath. 202

printed on screen. 119

\[(begin displayed formula). 28. 35. 41.

169

entering math mode with. 38

is fragile. 34

in math mode error. 120

] (right bracket). 12. 33. 48. 150

ambiguous. 27

delimiting optional argument. 152

in \item argument. 151

not bold in \boldmath. 202

printed on screen. 119

\] (end displayed formula). 28. 35. 41.

169

is fragile. 34

not in math mode error. 120

scope ended by. 152

\ (backslash). 12. 16. 33

\\ (new line). 27. 35. 153. 180. 190

* following. 151

INDEX 211

after last row of array or tabular. 64.

184

bad use of. 120. 129

between paragraphs. 120. 122

in \address. 66

in \author. 164

in \signature, 66

in \title. 164

in array. 47. 183

in center. Ill

in eqnarray. 49

in p-column. 183

in paragraph mode. 89. 190

in tabbing. 62. 179

in tabular. 64. 183

in verse. 27. 165

is fragile. 34

line breaking with. 27

missing. 123

optional argument of 151

underfull \hbox warning produced by.

190

* (new line), see \\
" (caret). 12. 20. 33. 34. 41. 150. 170

\" (
" accent). 40

_ (underscore). 12. 15. 20. 33. 34. 41.

150. 170

_ (.). 15. 41. 154

<- (left arrow). 12

I
(vertical line). 12. 33. 48

in array or tabular argument. 63. 183

\l (||). 45. 48

I I in array or tabular argument. 64.

185
" (tilde). 12. 18. 33. 34. 150. 154

used with \ref and \pageref . 72

\~ (~ accent). 40

(zero). 12

used as length. 124

1 (one). 12

llpt document-style option. 21. 115, 160

sty file for. B6

12pt document-<Tyle option. 21. 115. 160

\a' (' accent in tabbing environment).

181

\a= (accent in tabbing environment),

181

\a' (" accent in tabbing environment),

181

\aa (a), 40

\AA (A), 40

abbreviation in bib file. 143

\abovedisplayshortskip. 170

\abovedisplayskip. 170

abstract 84. 164

abstract environment, 84, 164

accents, 40

dotless i and j for, 40

in tabbing environment, 181

math mode. 51, 171

not in typewriter type face, 39

wide math. 51

acknowledgement of support, 164

\acute ('math accent), 51

\addcontentsline, 159

argument too long, 126

moving argument of, 152

adding line to table of contents, etc., 159

adding space

ending line without. 34

horizontal, see horizontal space

in mathematical formula, 52, 100

in message. 189

vertical, see vertical space

address of author, in title, 164

address bibliography field, 146

\address. 66

\addtocontents. 159

argument too long. 126

moving argument of, 152

\addtocounter. 92. 175

error in. 122

no \protect in argument. 152

scope of. 92. 152

\addtolength. 95. 192

\addvspace. 194

\advancepageno (T^X command), 204

\ae (ae). 40

\AE (E). 45

\aleph («), 45

aligning

formulas on left. 82. 160

212 INDEX

in columns, 62. 179

alignment tab error, 123, 124

alph number style. 162

\alph. 92. 175

Alph number style. 162

\Alph. 92, 175

alpha bibliography style, 74

\alpha (a), 43

\amalg (II), 44

ambiguous [or] , 27

ambiguous * 27

ampersand, see &

and. separating names with. 142

\and. 22. 35, 164

\angle (Z), 45

annote bibliography field, 146

anomalous paragraph indentation. 165

apostrophe, 14, 154

apparent height and depth, 100, 101

appendix, 23, 158

\appendix, 23, 158

\@chapapp redefined by, 86

\approx («). 44

arabic number style, 83, 162

Arabic page numbers. 83. 162

\arabic, 92. 175

\arccos (arccos), 46

\arcsin (arcsin), 46

\arctan (arctan), 46

\arg (arg), 46

argument (of command), 19. 33. 150

braces enclosing. 33, 56

coordinate pair as, 102

mandatory. 150

missing. 125

moving, see moving argument

optional, see optional argument

positioning, see positioning argument

scope of declaration in. 19, 173-174

too long, 126

array environment. 47ff. 182ff

^-expression in. 183

\\ in. 153

box made by, 96

error in. 121. 122. 123. 128

extra space around. 183

illegal character in argument, 121

intercolumn space in. 183

interrow space in, 153, 185

item, vertical position of, 47

large. 127

making symbols with, 44

math style of items, 172

scope of declaration in, 47 *

similar to eqnarray, 49

strut in, 153

versus tabbing, 62

versus tabular, 48, 63

vertical positioning of. 47

\arraycolsep, 185

\arrayrulewidth. 185

\arraystretch, 185

arrow

accent, see \vec

in formulas, 54

in margin, 61

in picture, 106, 198

symbols, 45

zero-length, 107

arrowhead. 107

article document style, 21. 82. 160

appendix in. 158

\chapter not defined in. 157

default page style for, 83

figure and table numbers in, 60

\raggedbottom default in, 83

sectional units in, 23

thebibliography in, 187

title in. 163

used in examples. 23

article bibliography entry type, 145

assumptions, 58

\ast (*). 44

Vasymp (:=:), 44

at sign, see @

author. 22

author bibliography field. 146

author's address in title. 164

\author. 22. 35. 164

\\ in. 153

aux file. 75. 185

entry generated by \label. 186

entry written by \cite and \nocite.

188

INDEX 213

error when reading. L22

printing information from. 185

read by \begin{document}. 185

reading. 119

auxiliary files 75. 1 19

axioms. 58

b (bottom)

positioning argument. 17. 99. 104.

195, 197

placement specifier. 176

oval part argument. 108. 198

\b
(_ accent), 40

backslash. 12. 16

\backslash (\), 45. 48

backspace. 52

bar over a symbol. 50

\bar ('math accent). 51

\baselineskip. 94, 155

unchanged by font declaration, 116

\baselinestretch. 155

\batchmode, 31

bbl (bibilography) file. 74. 140. 185, 187

\begin. 25. 151

delimits scope of declaration. 25

is fragile. 24. 34

of nonexistent environment. 121

unmatched, 120

\begin{document}. 21

aux file read by. 185

extra. 120

missing. 121

\beginsection (T^X command). 205

\belowdisplayshortskip. 170

\belowdisplayskip. 170

\beta (3). 43

\bf (bold). 39. 199

bib file, see bibliographic database

\bibindent. 161

\bibitem. 73. 187

moving argument of. 153

bibliographic database. 72. 74. 140ff

specified by \bibliography. 187

bibliography

made with BlBTEX. 74. 187

open format .](>()

style, 74. 7">

\bibliography, 74, 187

bbl file read by, 185, 187

bib files specified by, 140

\bibliographystyle, 74

BffiTEX, 72, 74, 140ff, 185, 187

big delimiters, 48

\bigcap (f|), 45

\bigcirc (<3)< 44

\bigcup ((J), 45

\bigodot (O), 45

\bigoplus (0), 45

\bigotimes ((g)), 45

\bigskip, 193

\bigskipamount, 193

\bigsqcup (|J), 45

\bigtriangledown (y), 44

\bigtriangleup (A), 44

\biguplus ((+J), 45

\bigvee (V), 45

\bigwedge (/\), 45

bin, storage 101, 109

black and white slides, 132

\blackandwhite, 134

blank line, 13, 34, 154

above or below environment, 25

before displayed formula, 28

line in formula, 125

in input, 150

in math mode, 154

in sectioning command, 154

\par equivalent to, 155

paragraph-ending, 88

blank page, 91

made by \cleardoublepage, 192

made with titlepage, 162

blob of ink, rectangular, 100

\bmod. 46. 171

body, page, 83, 161

height of, 94

bold type style. 39, 199

in math mode, 53. 201

\boldmath. 53. 201 202

book document style, 21

appendix in, 158

figure and table numbers in. 60

\f lushbottom default in, 83

no abstract in. 84. 164

214 INDEX

sectional units in, 23

thebibliography in, 187

title page in, 84

book bibliography entry type, 145

booklet bibliography entry type, 145

booktitle bibliography field, 146

\bot (J_), 45

bottom of line, 101

\bottomfraction, 178

bottomnumber counter, 178

\bowtie (tx), 44

box, 96ff, 194ff

dashed, 105, 197

framed, 97, 194

in picture environment, 197

LR, 97

positioning of text in, 104, 194

rule, 97, 100

saving a, 101, 109, 194

zero-width, 98, 104

\Box (), 45

box-making command, 97, 107

brace, curly, 12, 150

horizontal, in a formula, 51

missing, 125

braces, curly, 12, 150

delimiting scope with, 17

enclosing command argument, 33, 56

error caused by unbalanced, 120

in \index argument, 79

matching, 17

unmatching, 32

brackets, square, 12, 150

enclosing optional argument, 22

in screen output, 119

mistaken for optional argument, 125

break, line, 87ff, 190

interword space without, 18

preventing, 18, 89, 154

with \\, 27

break, page, 87, 90. 191

bad, 90, 129

in tabbing environment, 62

\breve ("math accent), 51

Brinch Hansen, Per, 141

buffer size. 126

bug. E£TEX. 122

built-in WFgX command, 86

\bullet (•), 44

\bye (TfeX command), 205

c positioning argument, 47, 183

\c (, accent), 40

\cal, 43, 53, 171, 172

calligraphic letters, 43, 53, 171, 172

in \boldmath, 201

calligraphic type style, see \cal

\cap (fl), 44

capacity exceeded, 125

caps, small 39, 199

captions, 59

cross reference to, 72

multiple, 60

\caption, 59, 72, 177

argument too long, 126

Mabel in argument, 187

list of figures or tables entry, 159, 186

moving argument of, 59, 152

caret, see
"

case of letters, 73

in command name, 16, 33

in key, 71

catching errors with text editor, 33

\cc in letter environment, 67

\cdot (•), 44

\cdots (•••), 42, 171

center environment, 111

\\ in, 153

as displayed paragraph, 165

as list, 112

displaying a box with, 97

in title page, 84

tabular environment in. 65

center line of formula, 47

centered

array column, 47

ellipsis, 42

centering a figure or table. 112

\centering. 112

(T£X command). 205

in p-column, 183

centimeter (cm). 93. 192

chapter counter, 91

chapter bibliography field. 146

INDEX 215

\chapter. 23. 157

\clearpage used by, 91

not in article document style. 157

\pagestyle after. 84

character

code. 116

end of line. 12

illegal, in array arg. 121

invalid. 127

input. 33

invisible. 12. 33

punctuation. 12, 33

in key. 71. 73

space, see space character

special, see special character

\check ('math accent). 51

chgsam.tex. 9

\chi (\). 43

\circ (o). 44

circle. 107. 198

\circle. 107. 198

\circle*. 107. 198

circular reference. 233

citation. 72ff. 187

key. 73. 75. 140

remark in. 188

undefined. 128

\cite. 73. 188

key in argument. 140

label produced by. 187

wrong number printed by. 128

\cleardoublepage. 91. 192

figures and tables output by, 177

\clearpage. 91. 192

checking capacity exceeded error with,

127

figures and tables output by. 177

used by \onecolumn. 163

used by \twocolumn. 162

\cleartabs (T£X command). 204

\cline, 64. 184

\closing. 67

\clubsuit (4). 45

cm (centimeter). 93, 192

code, character, 116

colon, see :

color

declaration in SLrTjrX, 135

layer, 133

slides, 132

\colors, 134, 135

\colorslides, 134

column

aligning text in, 62, 179

array, 47

double, 21, 162

of text in picture, 107

\columnsep, 161

\columnseprule, 161

comma (,
), 12, 33

not allowed in citation key, 73

command
*-form of, 27, 33, 151, 157

argument, see argument

built-in IATEX, 86

defining from keyboard, 79, 190

definition, 55ff, 173

in, 56, 124

error in, 126

use of \mbox in, 55

form, 150

fragile, see fragile

invisible, 152

length, 93

name, 16, 33, 150

* after, 27

Q in, 85, 150

already used error, 121

case in, 16, 33

correcting misspelled, 128

one-character, 150

names, too many, 126, 127

nested, too deeply, 127

parameter, 56

Plain TfcX, 203ff

printing on screen, 189

redefining. 57, 173

robust, 24, 151

sectioning, see sectioning command
text-generating, 15

visual design, 82

with two optional arguments, 150

commas, ellipsis between, 42

216 INDEX

comment, 20, 79, 150

common errors, 32

comumtative diagrams. 54

computer programs, formatting, 62

Computer Modern font family, 115

concepts versus notation, 32

\cong (=). 44

conjectures. 58

contents, table of. 70. 157ff. 186

entry made by sectioning command,
23. 158

control sequence error. 125. 128

conventions, type style. 39

coordinate, 101. 196

local, 110

pair, 102

\coprod (U). 45

\copyright (©). 40. 157

corner, rounded, 108

correcting

font undefined error, 125

hyphenation error, 88

misspelled command, 128

\cos (cos), 46

\cosh (cosh), 46

\cot (cot), 46

\coth (coth). 46

counter, 9 Iff. 174

command, error in. 127

creating a new. 93

reset by \ref stepcounter and

\stepcounter. 174. 175

too large. 121. 123

undefined. 122

value of. 92. 175

cross-reference. 7 Iff. 186

aux file used for, 185

information, printing, 185

labels, too many. 126, 127

\csc (esc), 46

\cup (U). 44

curly brace, see brace

current \ref value. 186

in enumerate environment. 166

in list environment, 168

in theorem-like environment. 174

set by \item. 186

set by \ref stepcounter. 176. 186

custom document style. 85

\d (accent), 40

\dag (f). 40. 157

\dagger (f), 44

dash. 14. 34, 154 t

\dashbox. 105. 197

dashed box, 105, 197

\dashv (H), 44

database, bibliographic, see

bibliographic

date, 22, 154

generating with \today. 15

in title page, 84

in title, 22

\date. 22. 35. 164

\\ in. 153

\dblf loatpagefraction. 178

\dblf loatsep. 178

\dbltextfloatsep, 178

\dbltopfraction. 178

dbltopnumber counter, 178

\ddag (t), 40. 157

\ddagger (J). 44

\ddot ("math accent), 51

\ddots ('••). 42. 171

declaration, 17. 152

color. 135

environment made from. 25. 34

global. 152

local to a box. 97

picture, 199

scope of, see scope

style-specifying. 22

type-size changing. 115

declarations, file of. 76

default. 150

labels of itemize. 166

page style. 83. 161

type size. 115

defined, multiply, 128

defining

command. 55. 173

from keyboard. 79. 190

environment. 57. 173

length command. 95

INDEX 217

list counter. 11 4

list environment . L15

definition

in. 124

use doesn't match. 128

recursive. 5G

\def (T£X command), 86

\deg (deg). 46

delimiter. 48. 171

had. 120

not hold in \boldmath. 202

unmatched math mode. 124

delimiting

an argument. 152

scope of declaration. 17. 25

\delta (c). 43

\Delta (A). 43

depth

nesting. 122

changing apparent. 101

table of contents. 159

description environment. 26. 35. 165

as list. 112

label overprinting text in. 166

using for glossary. 78

design

logical. 6

typographic. 85

visual. 6. 61. 82

designer, typographic. 5

\det (det). 46

subscript of. 171

details of WTE\
determinant. 47

device-independent . si t dvi file

diagonal ellipsis. 12

diagram, commutative. 54

\diamond (o). 44

\Diamond (O). 15

\diamondsuit
I)). 15

dictionary, exception. 126

differential. 52

digit. 12. 33

\dim (dim). 16

dimensional unit. 192

disk. 107. 198

display math style, 54, 169. 201

displayed formula, 28. 35. 41

blank line before, 28

math style for. 54. 172

multiline, 49

numbered. 41

space above and below, 165, 170

displayed paragraph, 165

displayed quotation. 25

displaying a box. 97. 169

displaying structure in input file. 54

displaymath environment. 28, 35. 41,

44. 169

anomalous vertical space after, 165

displaying a box with. 97

\displaystyle. 54. 172. 201

distance, see length

\div (+). 44

doc (documentation) file, 86

document environment. 35

document style. 7. 21. 82. 160

article, see article

book, see book

custom. 85ff

file. 150

foreign language. 39

letter, see letter

nonexistent. 124

option, see document-style option

report, see report

slides, see slides

type-size commands in. 200

document-style option. 21. 82. 160

llpt. 21. 86. 115. 160

12pt. 21. 115. 160

creating. 85

f leqn. 82. 160. 169

leqno. 82. 160. 169

nonexistent, 124

openbib. 160

titlepage. 82. 160

twocolumn. 21. 160

twoside. see twoside

\document style. 21. 35. 82, 160

in \input file. 70

misplaced. 120

missing, 128

sty file read by, 85

218 INDEX

style option in. 85

dollar sign, see $

\dosupereject (T^jX command). 204

\dot (math accent). 51

\doteq (=). 44

\dotf ill. 96

dot less i and j. 40. 51

dots, space-filling. 96

double spacing. 155

double sub- or superscript error. 123

double-column format. 21, 82. 162

double-quote character ("). 12. 13. 154

\doublerulesep. 185

\downarrow (J.). 45. 48

drawing pictures, 101

\ds@. ... 160

dvi (device-independent) file. 5. 186

editing toe file. 71

edition bibliography field. 146

editor, text. 12. 33

editor bibliography field. 146

el (1). 12

eleven-point type. 21. 160

llpt document-style option. 21. 115. 160

sty file for. 86

\ell (£). 45

ellipsis. 15. 42. 170

em (dimensional unit). 93. 192

\em (emphasis). 16. 34. 154. 199

in SLITEX. 135

changing type style with. 38

emphasis. 16. 34. 154

empty \mbox. 91

empty page style. 83. 84. 161

\emptyset (0). 45

\encl. 67

end of line

character. 12

space character at. 20

end of page, vertical space at. 96

end of paragraph. 13. 150

end of sentence. 13

end of word. 13

\end. 25. 151

delimits scope of declaration. 25

is fragile. 24. 34

(T^X command). 205

unmatched. 120

\end{document}. 21

error when processing. 126

figures and tables output by. 177

files written by. 186

missing. 31 r

\end{verbatim}. no space in. 66

\endinsert (T^X command). 204

entering math mode. 38

entering text from keyboard. 79. 189

entry field, bibliography. 140

entry type, bibliography. 140. 144ff

enumerate environment. 26. 35. 165

as list. 112

counters. 91. 165

suppressing advance of. 166

current \ref value in. 166

item, cross-reference to. 71 72

enumerated list. long. 121

enumi . . . enumiv counters. 91. 165

environment. 25. 34. 150. 151

in definition. 124

*-form. 151

\begin of nonexistent. 121

blank lines around. 25

defining. 57. 72. 173

invisible. 152

list-making. 26. 99. 112. 115. 122. 166.

195

made from declaration. 25. 34

paragraph-making. 99. 165

redefining. 58

theorem-like. 58. 112. 174

undefined. 121

user-defined. 57

\epsilon (e). 43

\eqalignno (T^X command). 205

\eqalign fT^X command). 205

eqnarray environment. 49. 169

\\ in. 153

anomalous vertical space after. 165

formula numbers in. 82

in leqno style option. 160

\multicolumn not allowed in. 169

space between rows in. 170

eqnarray* environment. 49. 169

INDEX 219

equation counter, 91, L69

equation environment, 28. 35, 41, 169

anomolous vertical space below. 165

cross-reference to, 71

formula numbers in, 82

in leqno style option. 160

extra vertical space above in minipage

environment . 195

\equiv (=), 44

error. 117ff

catching with text editor. 33

common. 32

indicator. 29. 118

locator. 29. 118. 119

message.

! in. 29

? in. 29

I£TEX, 120

TfeX. 123

outputting, 119

IATEX versus IfeX. 29

reading aux file. 122

TgX versus WTEX. 29

typographic. 85

errsam.tex. 28

\eta (77). 43

\evensidemargin. 163

ex (dimensional unit). 93. 192

exception dictionary. 126

exclamation point (!). 34

in error message. 29

\exists (5). 45

\exp (exp). 46

extension, file. 12

\extracolsep. 183

face. type, see type style

family, font. 115

\fbox. 97. 194

versus \frame. 108

width of lines. 195

\fboxrule. 195

not used in pictures. 198

\fboxsep. 196

field, bibliography dataoase entry. 140ff

figure counter. 91

figure environment, 59, 176

in parbox, 121, 122

Mabel in, 72

misplaced, 121, 122

parbox made by, 98

space around, 153

figure environments, too many, 123

figure* environment, 176

figures, 59, 176

centering, 112

in two-column format, 176

list of, 71, 158

numbering, 60

output by \clearpage and

\cleardoublepage, 91, 177

output by and \end{document}, 177

placement, 176

vertical space in, 60

file

aux, see aux

auxiliary, 75, 119

bbl, see bbl

bib, see bibliographic database

device-independent (dvi), 5, 185

doc, 86

document-style, 150

dvi, 5, 185

extension, 12

first name of, 12

glo, 79, 186

idx, 78, 186

Unclude'd, 76

missing, 124

input, 12. 18

\input, 75, 188

in slide file, 134

missing, 124

inserting, 75

lof. 71. 158. 186

log. 29. 79. 186

lot. 71. 158, 186

missing, 124

name. 12

of declarations, 76

pages of input, 13, 118

root, 75, 133

sample input, 2

220 INDEX

sectional unit as separate. 77

slide. 133ff

SLITEX root. 133

sty. 85. 150. 160

suppressed by \nof iles. 189

text. 12

toe. 70. 71. 158. 186

files, multiple input. 75

finding error in. 118

\fill. 94. 192

in tabular* environment. 183

finding an error, 118ff

first name of file, 12

first page, right head for, 162

\f ivebf (T^X command). 205

\fivei (T^X command), 205

\f iverm (T^X command), 205

\f ivesy (T^X command). 205

\f lat (b). 45

f leqn document-style option. 82. 160.

169

indentation in. 161. 170

\topsep in. 170

float. 59. 177

lost error. 121

page, 177

made by \clearpage. 91

placement option, 123, 176

placement specifier. 176

floating objects. 59

placement of. 60

\floatpagefraction. 178

floats, too many. 121

\f loatsep, 178

flush left

array column. 47

flush right

array column. 47

text in tabbing. 181

text in quote. 112

\f lushbottom. 82

bad page break with. 90

default in book style. 83

default in twoside option. 83

ignored by \newpage. 91

interparagraph space in. 94

\parskip value with, 155

f lushleft environment, 111

f lushright environment, 111

\\ in. 153

as displayed paragraph. 165

as list. 112

\fnsymbol. 175

\folio (T^X command). 204 «

font. 115

length dependent on, 93

loaded on demand. 200

loading, 116. 200

not loaded error. 124

preloaded, 200

selecting. 87

in formula. 116

in Plain IfeX, 205

selecting symbol from. 200

unavailable. 116, 200

undefined error, 125

fonts

family of, 115

SLITEX, 135

too many, 124

foot, page, 83, 161

\footheight. 163

\footline (T^X command), 204

footnote. 19. 156

example of difficult, 156

in minipage environment, 156. 195

in parbox, 99

in tabular environment. 99

line above. 156

mark. 156

symbols. 175

type size of. 116

footnote counter. 91

\footnote. 19. 34. 156

in minipage. 99. 195

is fragile. 24. 34

\f ootnotemark. 156

for footnote in parbox. 99

\f ootnoterule. 156

\f ootnotesep. 156

\footnotesize. 115. 200

\footnotetext. 156

for footnote in parbox. 99

in minipage environment. 195

INDEX 221

\footskip. 163

\f ootstrut (T^X command), 204

Vforall (V), 45

foreign language

document. 39

symbols. 39

words, hyphenating. 39, 88

form, command. 150

format

double-column. 82. 91, 162

figures and tables in. 176

marginal notes in. 61

open bibliography. 160

single-column. 163

formatting the input file. 18

formatting, visual. 50. 54. 66

formula, math. 19. 34. 41fF, 169ff

adding vertical space in. 100

aligning on left. 82. 160

blank line in. 125

box in. 97

center line of. 47

delimiters in, 171

displayed. 28. 35. 41

blank line before. 28

math style for. 54. 172

space above and below. 170

dotless i and j in. 51

formatting with picture. 54

in-text. 41

math style for. 172

logical structure of. 52

\mbox in. 40. 41

for font selection. 116

for size changing. 116

multicolored. 136

multiline. 49

numbered. 41

numbers. 82

on left side. 82. 160

space character in. 19

space above or below. 101

space in. 52

visual formatting of. 50, 54

\frac. 42. 170

fraction. 41. 170

fragile command, 24, 27, 34, 151

in a moving argument, 119

protecting, 24

\frame. 108. 199

\framebox, 97. 194, 197

in picture environment, 104

width of lines produced by, 195

framed box, 97, 194

in picture environment, 197

\frenchspacing, 154

front matter, 133

\frown (
—), 44 .

functions, log-like, 46

\fussy. 88, 191

galleys, 119

\gamma (7), 43

\Gamma (V), 43

\gcd (gcd), 46

subscript of, 171

geometry, coordinate, 101

\geq (>), 44

\gg (»), 44

Gilkerson, Ellen, 221

glo (glossary) file. 79, 186

written by \makeglossary, 186, 189

\nof iles suppresses, 189

global declaration, 152

glossary, 77 79, 189

using description for, 78

\glossary. 79, 189

commands on page, too many, 126

glo file entry written by, 186

space around, 153

\glossaryentry. 79, 186, 189

gnomonly. 87

gorilla. 98

graph paper, making, 110

\grave (" math accent), 51

Greek letters, 43. 53

in Yboldmath. 201

changing style of. 172

variant. 43

Guide. Local, see Local Guide

h placement specifier, 176

\H (" accent). 40

222 INDEX

half oval. 108

hash size. 126

\hat ("math accent), 51

\hbar (ft). 45

\hbox. overfull. 87. 129

\hbox. underfull, 87, 89, 129, 190, 191

head. page. 83. 161

for first page. 162

\headheight. 163

heading, page. 83. 84

information in. 161

set by sectioning commands. 23, 84,

158

headings page style. 83. 161

\headline (TfeX command). 204

\headsep. 163

\heartsuit (<?). 45

height

of page body, 94

changing apparent. 100

Helvetica font family. 115

hexadecimal character code. 116

\hf ill. 96. 184

in marginal note. 61

positioning label with. 114

\hline. 63. 184

\hom (horn). 46

\hookleftarrow (<-^). 45

\hookrightarrow («—i). 45

horizontal braces. 51

horizontal line

drawn with \rule. 100

in array or tabular. 64. 184

space-filling. 96

horizontal mode. 38

horizontal positioning in box. 104

horizontal space. 95

in math mode. 172

produced by invisible command. 153

howpublished bibliography field. 146

\hrulef ill. 96

\hspace. 95. 193

rubber length in. 96

\hspace*. 95. 193

\huge. 115. 200

\Huge. 115. 200

hyphen. 14. 18

hyphenating foreign words. 39. 88

hyphenation. 87. 190

correcting error in, 88

suppressed, 199

\hyphenation. 88. 191

\- instead of, 126

error in. 125

exceeding capacity with, 126

i. dotless

for accents. 40

in formula. 51

\i (i). 40

idx (index) file. 78. 186

\nof iles suppresses. 189

listing. 78

made by \makeindex. 186. 189

idx.tex. 78

ignored bibliography field. 144

ignoring input. 20

illegal character in array arg. 121

illegal parameter number. 124

illegal unit of measure. 124

\Im (3), 45

\imath (i), 45. 51. 172

in (inch). 60. 93. 192

\in (G). 44

in-text formula. 41

math style for. 172

inbook bibliography entry type, 145

inch (in). 60. 93. 192

Unclude. 76. 78. 188

uses \clearpage. 91

missing file in. 124

numbering with. 77

Xinclude'd file. 76

Uncludeonly. 76. 188

entering from keyboard. 77. 79

misplaced. 120

not in SLITEX. 134

incollection bibliography entry type.

145

\indent. 155

indentation in f leqn option. 161. 170

indentation, paragraph, see paragraph

indentation

index. 77ff. 189

INDEX 223

\index. 78, 189

\{ and \} in argument, 79. 189

idx tile entry written by, 186

space around, 153

special characters in. 79

too many on page, 126

\indexentry. 78. 186, I

\indexspace. 78

indicator, error. 29. 118

\inf (inl"). 46

subscript of. 171

infinitely stretchable length, 9-1. 90. 192.

193

information in heading. 161

information, moving. 69ff

\infty (oc). 45

ink. rectangular blob of. 100

inproceedings bibliography entry type.

145

input

character. 33

file. 12

blank line in. 150

formatting. 18. 54

missing. 124

pages of. 118

preparing. 12

files, multiple. 75

finding error in. 1 18

ignoring. 20

keyboard. 79. 189

sample. 8

stack size. 126

\input. 75. 78. 188

in slide file. 13 1

missing file in. 12 1

inserting files. 75

institution bibliography field. 146

\int (J).
45. 52

integral sign, space around. 52

interaction. 7!)

intercolumn space, 161

in array and tabular. 183

interrow space

in array and tabular. 153. 185

in eqnarray environment. 170

in \shortstack. 107

interword space. 11. 154

before or after \hspace. 95

without line break, 18

produced by invisible command, 153

\intextsep. 178

intraword dash, 14, 154

invalid character error. 127

invisible

character, 12, 33

command, 152, 153

delimiter, 49

environment. 152

term made with \mbox. 50

text. 91

\invisible. 136

\iota (t). 43

\it (italic). 39. 199

italic type style, 16, 39, 199

switching to roman from, 17

used for emphasis, 154

math, 53. 200

item

of array or tabular environment

footnoting, 99

multiple column, 64, 184

paragraph in, 98

positioning, 64

processed in LR mode, 63

vertical positioning. 47

label. 26, 166

cross-reference to. 71

overprinting text in description.

166

math style of array. 172. 174

\item. 26. 35. 166

] in argument, 151

current \ref value set by. 186

in theindex. 77. 189

in trivlist. 115

is fragile. 31

missing. 122

optional argument of. 26. 151

outside list environment, 128

\itemindent. 114. 167

in trivlist environment, 110

itemize environment. 26. 35, 165

as list. 112

224 INDEX

labels of, 166

\itemsep, 113, 167

j, dotless

for accents, 40

in formula, 51

\j (]). 40

\jmath (j), 45, 51, 172

\Join (m), 44

\jot, 170

journal bibliography field, 146

justifying lines, 89, 94

\kappa (k), 43

\ker (ker), 46

Kernighan, Brian, 7

key, citation, 72-74, 140

key, cross-reference, 71-72

key, return, 12

key bibliography field, 146

keyboard

defining command from, 79

entering input from, 79, 189

keys, listing, 72

\kill, 63, 180

Knuth, Donald Ervin, xi, xii, 4, 115

1 (left)

in \oval, 108, 198

positioning argument, 47, 97. 104,

107, 182, 194, 197

1 (letter el), 12

\1 (1), 40

label

produced by \cite, 187

multiply-defined, 128

item, 26, 166

positioning with \hf ill. 114

Mabel. 71. 186

in figure environment. 72

in table environment. 72

missing. 129

similar to \bibitem. 73

space around, 153

Mabelitemi. . . . \labelitemiv. 166

labels

error, too many cross-referencing. 126.

127

may have changed warning, 128

mailing, 67

Uabelsep, 113, 167

Uabelwidth, 113, 167

in trivlist environment, 115

lablst.tex, 72, 185

\lambda (A), 43

\Lambda (A), 43

Mangle ((), 48

language, foreign, 88

document, 39

symbols, 39

large, counter too, 121, 123

Marge, 115, 200

\Large, 115, 200

\LARGE, 115, 200

IATEX
bug, 122

built-in command, 86

distinguished from T^X, 5

error messages, 120

error versus IgX error, 29

inner details of, 87

logo, 5, 15, 34, 154

pronunciation of, 5

running unattended, 31

stopping, 31

typing X to stop, 31, 120

warning messages, 128

page number in, 119

\LaTeX (I*TEX), 15, 34, 154

latex.tex, 86

laws, 58

layer, color, 133

Mceil ([), 48

Mdots (...), 15, 34, 42, 171

Meadsto (^), 45

leaving math mode, 38

left-aligned array column. 47

left, flush, see flush left

left-hand page. 161

left margin, prevailing. 179

left quote. 13

left side, formula numbers on. 82. 160

Meft. 48. 171

in \boldmath. 202

left-to-right mode, see LR mode

INDEX 225

\leftarrow (*—), 45

\lefteqn. 50. 170

Meftharpoondown (•—). 15

\leftharpoonup (—). 45

\leftmargin. 113. 107

in trivlist environment, 115

\leftmargini . . . \leftmarginvi. 167

\leftrightarrow [*-*), 45

lemmas. 58

length. 93. 192

used as. 124

command. 93

defining. 95

never \protect'ed. 94. 152

value of. 93

font-dependent. 93

infinitely stretchable. 94. 90. 192. 193

natural. 94

of line in picture. 105

parameters. 94

rubber. 94

rigid. 94

unit. 101. 192

zero. 93

\Ieq(<). 44

Meqalignno (T^X command). 205

leqno document-style option. 82. 160.

169

letter. 12. 33

@ regarded as in sty file. 85

bold, in math mode. 201

case of. 71. 73

calligraphic. 43. 53, 201

for mailing. 66

Greek. 43. 53. 172. 201

not a. 125

script. 43

letter document style, 66

\parskip in. 94

letter environment, 66

moving argument of. 152

Leunen. Mary-Claire van. 8. 47. 144. 207

level number of sectional unit. 159

Ufloor
|

lfonts.tex. 87, 205

Ug(lg),

\lhd (<]). 41

\lim (lim). 46

subscript of. 171

\liminf (liminf), 46

subscript of. 171

\limsup (lim sup), 46

subscript of, 171

line

above footnotes, 156

blank, see blank line

bottom of. 101

break, see break, line

center, of formula. 47

end of, 12

horizontal, see horizontal line

in picture. 105

thickness of. 102. 199

justifying, 89. 94

output, space at beginning or end of,

95

slanted, minimum size of, 106

vertical, see vertical line

width. 85. 155

Mine. 105. 198

(TgX command). 205

error in, 120

Uinebreak, 89, 190

[following. 89

space around. 153

warning caused by, 129. 190

\linethickness. 199

\linewidth. 155

list. 26. 35

of figures or tables, 71. 158

long enumerated. 121

source, 72-74

list counter, defining, 114

list environment, 112. 166

\parindent in. 1 14

\parskip in. 114. 167

current \ref value in, 168

style parameters for, 166

list-making environment. 26. 112. 166

defining. 114

in parbox. 99. 195

\item not in. 128

margins of nested. 114

missing \item in. 122

226 INDEX

nested too deeply, 122

primitive, 112

listing idx file, 78

listing keys, 72

\listoffigures, 71, 158

error when processing, 126

lof file read by, 186

Uistoftables, 71, 158

error when processing, 126

lot file read by, 186

\listparindent, 113, 167

\11 (<), 44

\ln (In), 46

\load, 200

correcting font undefined error with,

125

loaded-on-demand font, 200

loading a font, 116, 200

local coordinates, 110

Local Guide, 2, 5, 8, 12, 21, 29, 31, 33,

39, 68, 72, 75, 78, 82, 86, 87, 88,

107, 115, 116, 120, 122, 128, 132,

133, 140, 143, 146, 200

locator, error, 29, 118, 119

lof (list of figures) file, 71, 158, 186

log file, 29, 79, 118, 186

\log (log), 46, 52

log-like function, 46

logical design, 6

logical structure, 82

displaying in input file, 54

of formula, 52

repeated. 54

type style not a, 39

logo, IATEX, 5, 15, 34. 154

logo, TgX, 5, 15, 34, 154

\longleftarrow (<—), 45

\longleftrightarrow (<), 45

\longmapsto (>
—

>), 45

\longrightarrow (—>)• 45

lost float, 121

lot (list of tables) file. 71. 158, 186

low ellipsis, 42

lowercase letters, 12

lowering text, 100

LR box. 97

made by \raisebox, 100

LR mode, 38, 41

\markboth and \markright arguments

processed in, 84

box made in, 97

in tabbing environment, 179

space characters in, 38

tabular item processed in, 68

magnification of output, 205

\magnif ication (TeX command), 205

magnifying a picture, 102

mailing labels, 67

main memory size, 126

\makebox, 97, 194, 197

and \savebox, 109

in picture environment, 104

\makefootline (T^X command), 204

\makeglossary, 79, 189

glo file produced by, 186

misplaced, 120

\makeheadline (T^X command), 204

\makeindex, 78, 189

idx file written by, 186

misplaced, 120

\makelabel, 167

\makelabels, 67

\maketitle, 22, 35, 163

separate title page made with, 82, 160

mandatory argument, 150

manual bibliography entry type, 145

\mapsto (•—»), 45

margin

arrow in, 61

changing in tabbing, 180

prevailing, 179, 181

marginal note, 61, 178

\hf ill in. 61

moved, 129

set in parbox, 178

marginpar moved warning, 61. 129

\marginpar. 61, 178

too many on page, 123

misplaced, 121, 122

space around. 153

\marginparpush. 179

\marginparsep. 163. 179

\marginparwidth. 163. 179

INDEX 227

margins of nested lists. 114

mark, footnote. 156

mark, question (?). 34

mark, quotation. 13. 34

\markboth. 84. 161

not used in slides document style.

138

moving arguments of. 152

\markright. 84. 161

in myheadings page style. 83, 161

not used in slides style, 138

moving argument of. 152

masters-thesis bibliography entry type,

145

matching, brace, 17

math
accents. 51

environment. 20. 41. 169

formula, see formula

italic. 53. 172. 200

mode. 38. 41

in. 170

accents in. 51. 172

bold letters in. 201

changing type style in. 53

environments. 169

entering. 38

leaving. 38

loaded-on-demand font in. 200

spaces ignored in. 38. 52

unmatched delimiter. 124

notation. 54

style. 54. 172. 201

display. 54. 169. 201

for displayed formula. 54. 172

for in-text formula. 172

for sub- and superscripts. 54, 172

of array items, 172

scriptscript. 54. 201

script. 54. 201

text. 54. 169. 201

symbols. 42ff

bold. 53. 201

variable-sized. 14

mathematical, see math

\mathindent. 161. 170

matrix. 47

matter, front. 133

\max (max), 46

subscript of, 171

\mbox. 18. 34, 53. 97. 154. 194

empty, 91

for font selection and size changing in

formula, 116

for multicolored formula. 136

how it works, 38

in formula. 40. 41

use in defining commands, 55

medium space, 52

\medskip, 193

\medskipamount, 193

memory size, 126

message

generating. 79. 189

IATEX error. 120

IATEX warning. 128

IkX error. 123

TgX warning. 129

warning, 31

\mho (U), 45

\mid (I). 44

\midinsert (TeX command). 204

millimeter (mm). 93, 192

\min (min), 46

subscript of. 171

minimum size of slanted line, 106

minipage environment. 98. 99, 195

footnote counter for, 91

footnote in. 156, 195

\footnote in. 99. 195

\footnotetext in. 195

in p-column. 183

nested. 99

tabbing environment in, 100

minus sign. 14

misc bibliography entry type. 145

misplaced

#. 128

k. 124

alignment tab error. 124

\documentstyle. 120

figure environment, 121, 122

\includeonly. 120

\makeglossary. 120

228 INDEX

\makeindex. 120

\marginpar, 121, 122

\nofiles, 120

table environment, 121, 122

missing

$ error, 125

\\, 123

{ error, 125

> error, 125

@-exp error, 125

argument. 125

in thebibliography, 122

\begin{document} error, 121

brace, 125

control sequence error, 125

\documentstyle, 128

\end{document}, 31

file, 124

\item, 122

Mabel, 129

number error, 125

p float-placement option, 123

p-arg error, 121

sty file, 124

misspelled command name, 32

correcting, 128

mistake, typographic. 6

\mit (math italic), 53, 172

mm (millimeter), 93, 192

mod. 46. 171

mode, 38

horizontal, 38

left-to-right, see LR mode
LR, see LR mode
math, see math mode
paragraph, see paragraph mode
picture, 103, 196

vertical, 38

\models ((=), 44

modulo, 46

month bibliography field, 146

moved marginal note. 61, 129

moving argument. 24. 34. 66, 74. 80. 151

fragile command in. 119

of ©-expression, 183

of \caption. 59, 152

of \markboth. 84, 152

of \markright. 84. 152

of \typein and \typeout, 152, 189,

190

moving information around, 69ff

\mp (=F). 44

mpfootnote counter, 91

\mu (//), 33

multicolored formula, 136

\multicolumn, 64, 184

not allowed in eqnarray, 169

error in, 121, 122

multiline formula, 49

multiple

authors, 22

captions, 60

column item, 64, 184

input files, 75

finding error in, 118

names in bib file field, 142

multiply defined label warning, 128

\multiput, 109, 196

exercise using, 110

myheadings page style, 83, 161

\nabla (V), 45

name, command, see command name
name in bib file field, 141

name, file, 12

named theorem, 59

natural length, 94

\natural (t|), 45

\nearrow (/*), 45

\neg (-i), 45

negative thin space, 52

\neq (/), 44

nested

lists, margins of. 114

minipage environments. 99

too deeply. 122. 127

nesting depth error. 122

\newcommand. 55 57, 152. 173

error in. 121. 124. 125

\newcounter. 93. 174

defining list counter with. 114

error in, 121

optional argument of. 151

scope of. 152

INDEX 229

\newenvironment. 57. 173

defining list environment with. 115

error in. 121. 124. 127

\newfont. 116. 200

\newlength. 95. 193

error in. 121. 125

scope of. 152

\newline. 89. 91. 190

bad use of. 129

error in. 122

\newpage. 91, 192

\newsavebox. 101. 191

error in. 121. 125

scope of. 152

\newtheorem. 58. 174

counter created by. 91

cross-reference to environment defined

by. 72

error in. 121. 127

optional argument of. 151

next_tab^stop. 180

\ni (9). 44

Nixon, Richard. 26

\nocite 74. 188

\nofiles. 185

misplaced. 120

suppresses glo file. 189

suppresses idx file. 189

used when editing toe file. 71

\noindent. 155

removes paragraph indentation, 165

\nolinebreak. 89. 190

space around. 153

nonexistent

document style. 121

document-style option. 124

environment. 121

\nonfrenchspacing. 154

nonmath symbols, 10

\nonumber. 49. 170

\nopagebreak. 90. 191

.-pace around. 153

\nopagenumbers (T^jX command). 204

\normalbottom ("IfeX command). 204

\normalmarginpar. 179

\normalsize. 115.200

\baselineskip not changed by. 155

\not, 44

notation, concepts versus. 32

notation, mathematical, 54

note, marginal, 61, 129, 178

note environment, 137

note bibliography field, 146

\nu (i/), 43

number

assigning key to a, 71

cross-reference to, 71

figure or table, 60

formula, 41, 82, 160

illegal parameter, 124

missing, 125

page, see page number
sectional-unit level, 159

wrong, 128

number bibliography field, 147

number-range dash, 14, 154

numbered displayed formula, 41

numbering, 91, 174

commands, \the. .
.

, 92

page, 92

section, 159

style, changing. 92

with \include. 76

within sectional unit, 58

\numberline, 159

\nwarrow (\), 45

o (omicron), 43

\o (o). . 40

(letter oh). 12

\0 (0). . 40

object, floating. 59, 60

object, picture, 103. 197

octal character code, 116

\oddsidemargin, 163

\odot (0). 44

\oe (oc). 40

\0E ((E). 40

\oint
(f). 45

\oldstyle (TfeX command), 205

\omega (u;), 43

\0mega (Q). 43

omicron, 43

\ominus (0), 44

230 INDEX

omitted argument, error caused by, 124

one (1), 12

one-character command names, 150

one-column format, 163

one-sided printing, marginal notes in, 61

\onecolumn, 82, 163

only in preamble error, 120

\onlynotes, 138

\onlyslides, 138

open bibliography format, 160

openbib document style option, 160

\opening, 66

\oplus (0), 44

option, document-style, see

document-style option

optional argument, 22, 150

* acts like, 27

[] delimiting, 22, 152

of array environment, 47

of \item, 26, 151

of \marginpar, 61

of sectioning command, 158

square bracket mistaken for, 125

square brackets enclosing, 22, 152

optional arguments, command with two,

150

optional bibliography field, 144

organization bibliography field, 147

origin, 101

\oslash (0), 44

\otimes (<g>), 44

outer par mode, not in, 122

output

line, space at beginning or end of, 95

on screen, 79, 118, 186, 189

routine, Plain T^X, 204

<output> printed on terminal, 119

\output routine, 204

outputting error, 119

oval, 108, 198

too small warning, 129

\oval, 108, 198

\overbrace, 51

overfull \hbox message, 87. 129

overfull \vbox message, 87. 129

overlay environment, 136

\overline, 51, 171

overlining, 51, 171

overprinting

of marginal notes, 179

in description environment, 166

overriding item positioning in tabular,

64

float-placement specifier, 176

missing, 123

in array or tabular argument, 183

\P (If), 40, 157

p-arg missing error, 121

p-column of array or tabular, 183

p-expression, 183

page

abstract on separate, 82

blank, 91

made by \cleardoublepage, 192

made with titlepage, 162

body, 83, 161

height of, 94

break, see break, page

counter, 91, 92

double-column, 82

first, right head for, 162

float, 177

made by \clearpage, 91

foot, 83, 161

head, 83, 161

heading in two-sided printing, 83, 84

last, output by \stop, 119

left-hand, 161

new, 192

number

Arabic, 83

cross-reference to, 72

printed on terminal, 119

Roman, 83

numbering, 92

of input file. 13, 118

right-hand, 161

starting on, 91

style, 82. 83. 161

default. 83. 161

empty. 83. 161

headings. 83. 161

INDEX 231

in slides stylo. 137

myheadings. 83. 161

plain. 83. 161

title, see title page

too many \glossary or \index

commands on. 126

too many \marginpar commands on.

123

vertical space at top or bottom of. 96

width of text on. 94. 155

\pagebody (T£X command). 204

\pagebreak. 90. 191

in two-column format. 91

space around, 153

\pagecontents (T^X command), 204

\pageinsert (T£X command). 204

\pageno (l^X command). 204

\pagenumbering. 83. 162

\thepage redefined by. 162

\pageref . 72. 186

used with. 72

undefined. 129

wrong number printed by. 128

pages, how \TeX makes. 119

pages bibliography field. 147

\pagestyle. 83. 161

after \chapter. 84

scope of. 83

in SLITEX. 137

pair, coordinate. 102

paper, graph, 110

\par. 155

paragraph. 13. 154

bad end of. 125

blank line ends, 88. 154

counter. 91

displayed. 165

end of. 13. 150

in a picture or table. 98

indentation. 155

anomalous. 165

width of. 93

mode. 38. 89

in center environment. Ill

\\ in. 89. 190

box typeset in. 97. 98

marginal note processed in, 61

new, 34

unit, 88. 191

paragraph counter, 91

\paragraph, 23, 157

paragraph-making environment, 99, 165

paragraphs

\\ between, 120, 122

space between, 94, 155

\parallel (||). 44

parameter, 57, 173

in command definition, 56

length, 94

number error. 124

style, 150

for list environment, 166

parbox. 98, 195

V, \-, \=, and V in, 181

\caption in, 177

figure or table in, 121, 122

footnote in, 99

in array or tabular column, 183

in tabbing environment. 181

list environment in, 99, 195

made by figure or table, 98

marginal note typeset in, 178

\parindent set to zero in. 99, 155

positioning with \raisebox, 99

tabbing and tabular in, 99, 195

\parbox. 98, 99, 195

parenthesis, 12, 15

\parindent, 93, 94. 155

equals zero in parbox. 99, 155

in list environment, 114

\parsep. 113, 167

\parskip, 94, 155

in letter style. 94

in list environment. 114. 167

value with \f lushbottom, 155

part argument, oval, 198

part counter. 91

\part. 23. 157

\partial (3), 45

\partopsep. 113. 167

when space is added, 114

pasting. 60

pattern, repeated. 109, 110

pc (pica), 192

232 INDEX

percent sign, see '/,

period (.)• 15, 34

space after. 14

\perp (_L), 44

phdthesis bibliography entry type, 145

\phi (0). 43

\Phi ($), 43

\pi (tt), 43

\Pi (n), 43

pica (pc), 192

picture

arrow in, 106, 198

column of text in, 107

declarations, 199

line thickness in, 102, 199

lines in, 105

magnifying a. 102

mode, 103, 196

object. 103, 197

paragraph in a, 98

positioning text in, 105

reducing a, 102

repeated pattern in, 109, 110

picture environment. lOlff. 196ff

box made by, 96

example. 197

\fboxrule not used in. 198

formatting formulas with. 54

large, 127

making figures with, 60

placement

of \protect, incorrect. 125

of figures and tables, 60. 176

of marginal notes, 61

of tabular environment. 65

specifier. 176

plain

bibliography style. 74

page style. 83. 161

\plainoutput (T^jX command), 204

Plain T^X, 204ff

\pm (±), 44

\pmod. 46. 171

poetry. 27. 35

point

exclamation. 34

in error message. 29

(unit of length), 87. 93, 192

reference, 103, 196

pool size, 127

\poptabs. 181

unmatched, 122

position, specifying by coordinates, 102

positioning

argument, 47, 97, 99, 104, 194, 195,

197

horizontal, 104

item in array and tabular, 64

label with \hf ill, 114

text in picture, 105

vertical, see vertical positioning

\pounds {£), 40, 157

\Pr (Pr), 46

subscript of, 171

preamble, 21, 35, 88

command definitions in, 57

error in, 121

\includeonly in. 76

\makeindex in, 78

\newtheorem in, 58

only in, error, 121

visual design commands in, 82

\prec (-<), 44

\preceq (<). 44

preloaded font. 200

preparing input file. 12

prevailing margin. 179, 181

prime symbol, 20. 170

\prime (/), 45

primitive list-making environment, 112

principles. 58

printing

aux file information, 185

counter values. 92

cross-reference keys, 185

double-column. 21

idx file entries. 78

on screen. 79, 189

one-sided, marginal notes in. 61

two-sided. 21. 160

page headings in, 83

proceedings bibliography entry type.

145

\prod (!"])• 45

INDEX 233

programs, formatting computer, 62

pronunciation of I^TjrX and T^X, 5

propositions, 58

\propto (oc), 44

\protect. 24. 34. 151

in ®-expression. 183

in \caption argument. 59

in \typeout argument, 189

not before length command, 94

not before \value. 175

not in \addtocounter or \setcounter

argument. 152

incorrect placement of. 125

protecting a fragile command, 24

\ps in letter environment. 67

\psi (^»), 43

\Psi (*). 43

pt (point). 93. 192

publisher bibliography field, 147

punctuation character. 12. 33

in key. 71. 73

punctuation dash, 14. 154

punctuation, space after. 14, 154

suppressing, 154

\pushtabs. 181

unmatched. 122

\put. 103. 196

space in argument. 110

subpicture in, 110

quarter oval. 108

question mark (?). 34

quotation marks. 13. 34

quotation, displayed. 25, 35

quotation environment. 26. 35. 165

as list. 112

quote

double ("). 12. 13. 154

left (*). 12. 13. 34. 154

right ('). 12. 13. 15. 20. 34. 154

quote environment. 25, 26. 35, 165

as list. 112

flushing in. 112

quotient symbol. 52

r (right)

in \oval argument. 108. 198

positioning argument, 47, 97, 104,

107. 194, 197

ragged right. 111

\raggedbottom. 82

bad page break with, 90

\raggedleft, 112

in p-column, 183

\raggedright. 112

in p-column, 183

\raisebox. 100, 195

positioning parbox with, 99

raising text, 100

\rangle ()), 48

Yrceil (J), 48

\Re (3fc), 45

reading auxiliary files, 119

error when, 122

reclaiming saved box's space, 109

rectangular blob of ink, 100

recursive definition, 56

redefining a command, 57, 79 80, 152,

173, 190

redefining an environment, 58, 173

redefinition of commands in tabbing,

181

reducing a picture, 102

\ref , 71, 186
~ used with, 72

similar to \cite, 73

undefined. 129

value, see current \ref value

wrong number printed by, 128

reference, circular, 215

reference point, 103. 196

reference undefined warning. 129

\ref stepcounter. 174 176, 186

Reid, Brian. 7. 144

remark in citation. 188

removing

anomalous vertical space, 165

paragraph indentation, 165

space above or below formula. 101

\renewcommand, 57, 152, 173

error in. 124. 125

\renewenvironment, 58, 173

error in, 124

replO.sty. 86

234 INDEX

repll.sty. 86

repl2.sty. 86

repeated logical structure. 54

repeated pattern in picture. 109. 110

report document style. 21

abstract in. 164

appendix in. 158

default page style for, 83

figure and table numbers in. 60

\raggedbottom default in. 83

sectional units in. 23

thebibliography in. 187

title page in. 82

required bibliography field. 144

return key. 12

reusing a picture environment. 101

\reversemarginpar. 179

\rfloor (J). 48

\rhd (>). 44

\rho (p). 43

right-aligned array column. 47

right-hand page. 161

starting on. 91

right, flush, see flush right

right head for first page. 162

right margin, prevailing. 181

right quote ('). 12. 13. 15. 20. 34. 154

right, ragged. Ill

\right. 171

in \boldmath. 202

\rightarrow (—). 45

\rightharpoondown (—). 45

\rightharpoonup (—*), 45

\rightleftharpoons (^). 45

\rightmargin. 113. 167

in trivlist environment. 115

rigid length. 94

\rm (roman). 39. 199

in \stackrel. 52

robust command. 24. 151

roman number style. 83. 162

Roman number style. 83. 162

Roman page numbers. 83

Roman type style. 38. 199

in SLlTEX. 135

specified by size-changing declaration.

116

switching from italic to. 17

\roman. 92. 175

\Roman. 92. 175

root file. 75

SLITEX. 133

root, square, see square root

rounded corner. 108 *

row. \\ after last. 64

rows, space between, see interrow space

rubber length. 94

in \hspace or \vspace. 96

infinitely stretchable. 96. 192. 193

\rule. 100. 195

rule box. 97. 100

rules. 58

running IATjrX unattended. 31

running head made by sectioning

command. 23. 157. 158

\S (§). 40. 157

\samepage. 90. 191

sample input. 2. 8

sample.tex. 2. 8. 21. 28. 87

sans serif type face. 39. 199

save size. 127

\savebox. 101. 109. 194. 199

for picture environment. 104

\makebox and. 109

saved box. reclaiming its space. 109

saving a box. 101. 109. 194

saving typing. 55

\sbox. 101. 194

reclaiming space with. 109

\sc small caps). 39. 199

school bibliography field. 147

scope of a declaration. 17. 25. 152

in argument of user-defined command.

56

in argument of user-defined

environment. 57

in array. 47

in command argument, 19, 173. 174

in tabbing. 63. 181

screen output. 79. 189

(and) in. 118

[and] in. 119

* in. 31

INDEX 235

commands in. 189

<output> printed on. 119

page number in. 119

written on log file. 180

Scribe, 7

bib tiles. 140

script letters. 43

script math style. 54. 201

\scriptfont undefined error, 125. 200

scriptscript math style. 54. 201

\scriptscriptfont undefined error.

125. 200

\scriptscriptstyle. 54, 173. 201

\scriptsize. 115. 200

\scriptstyle. 54. 173. 20

1

\searrow (\). 45

\sec (sec). 46

secnumdepth counter. 157. 160

section numbering. 159

section structure. 22

section counter. 91

\section. 23. 157

sectional unit. 23

as separate file, 77

cross-reference to. 71

level number of. 159

numbering. 159

numbering within

in document styles. 23

sectioning command. 22. 157

*-form of. 157

argument

\\ in. 153

no blank line in. 154

Mabel in. 187

moving. 152

too long. 126

examples. 158

running head made by. 23. 84. 158

table of content- entry made by. 23.

158. 186

semicolon 12. 33, 202

sentence. 13. 34, 154

series bibliography field. 147

serif, sans. 39. 199

\setcounter. 92, 175

error in. 122

no \protect in argument of, 152

scope of, 92, 152

\setlength, 95, 193

\setminus (\), 44

\settabs (T^X command), 204

setting tab stops, 62

\settowidth, 95, 193

\sevenbf (T^rjX command), 205

\seveni (T^X command), 205

\sevensy (T^X command), 205

\sf (sans serif), 39, 199

\sharp ((J), 45

\shortstack, 107, 198

\\ in, 153

\sigma (tr), 43

\Sigma (£), 43

sign, minus, 14

sign, integral, space around, 52

\signature, 66

\sim (~), 44

\simeq (~), 44

simulating typed text, 65

\sin (sin), 46

single quote, 12, 13, 15, 20, 34, 154

single-column format, 163

\sinh (sinh), 46

size

buffer, 126

default type, 115

hash, 126

input stack, 126

main memory, 126

minimum, of slanted line, 106

of variable-sized symbols, 54

pool, 127

save, 127

type, see type size

\sl (slanted). 39. 199

slanted line, minimum size of. 106

slanted type style. 39. 199

slash through symbol. 44

slide file. 133ff

slide environment. 134

slides

+ on. 137

black and white. 132

color. 132

236 INDEX

slides document style, 160

\markboth and \markright not in,

138

page style in, 137

SLITEX, 131ff

fonts, 135

\em in, 135

\includeonly not in, 134

page styles, 137

\pagestyle in, 138

roman type style in, 135

root file, 133

\thispagestyle not in, 138

slope of line in picture, 105

\sloppy, 88, 191

underfull \hbox warning produced by,

129

sloppypar environment, 88, 191

underfull \hbox warning produced by,

129

small caps type style, 39, 199

\small, 115, 200

small .tex, 2

\smallskip, 193

\smallskipamount, 193

\smile (
—

-), 44

source, 72

source list, 72-74

space

added by \partopsep, 114

above displayed formula, 101, 170

in minipage environment, 195

after punctuation, 14, 154

after slanted font, see \/

around + and — , 50

around array and tabular, 183

around symbols, 52

at beginning or end of output line, 95

at top and bottom of page, 96

below displayed formula, 101, 165

between paragraphs, 94, 155

between rows, see interrow space

character. 13

at end of line. 20

after tabbing command. 63

ends command name. 16

ignored after command name, 16

ignored in math mode, 38

ignored in \typeout or \typein

argument, 189

in command definition, 56

in formula, 19

in LR mode, 38

in math mode, 38

in \put argument, 110

ending line without adding, 34

horizontal, see horizontal

in array, 47

in figure, 60

in formula, 52

intercolumn, see intercolumn space

interrow, see interrow space

interword, see interword space

medium, 52

negative thin, 52

reclaiming, 109

thick, 52

thin, 52

vertical, see vertical space

\space, 189

space-filling dots, 96

space-filling horizontal line, 96

spacing, 95

commands, 154

double, 155

\spadesuit (), 45

special character, 12, 33

printing, 154

in \index argument, 79

in verbatim environment, 65

used incorrectly, 32

special symbol, 40, 116

specifier, placement, 176

\sqcap (n), 44

\sqcup (u), 44

\sqrt (vH, 42, 52, 170

\sqsubset (E), 44

\sqsubseteq (C), 44

\sqsupset (Z)), 44

\sqsupseteq Q). 44

square bracket, 12, 150

mistaken for optional argument, 125

enclosing optional argument. 22

in screen output, 119

INDEX 237

square root. 42. 170

space around. 52

\ss (6). 40

stack size. 126

stacking symbols, 52

\stackrel. 52. 172

making symbols with. 44

\star (*). 44

Steele Jr.. Guy. 142

\stepcounter. 174 176

stop. tab. 62. 179

too many. 122

\stop. 31

last page produced by. 119

stopping IATEX. 31. 120

storage bin. 101. 109

Stravinsky. Igor. 7

\stretch. 193

stretchable length. 94. 96. 192. 193

structure

logical. 52. 54. 82

section. 22

theorem-like. 58

strut. 100. 153

sty (style) file. 85. 150. 160

missing. 124

style

bibliography. 74. 7 j

calligraphic. 172

declarations. 22

document, see document style

math, see math style

numbering. 92. 162

option, see document-style option

page, see page style

parameter. 150

type, see type style

subentry. index. 77

\subitem. 77. 189

subparagraph counter. 91

\subparagraph. 23, 1">7

subpicture. 1 10. 1 1

1

subscript. 20. 34. 11. 170

double, error. 123

of log-like function. 46. 171

math style for. 54, 173

not bold in \boldmath. 53. 201

type size for, 54, 116

subsection counter. 91

\subsection. 23, 157

\subset (C). 44

\subseteq (C). 44

subsubentry. index. 77. 189

\subsubitem. 77. 189

subsubsection counter. 91

\subsubsection. 23. 157

\succ (>), 44

\succeq (>:). 44

\sum (]£), 45

sun dial, 88

\sup (sup). 46

subscript of. 171

superscript. 20. 34. 41. 170

double, error. 123

math style for. 54. 173

not emboldened by \boldmath. 53. 201

type size for. 54. 116

support, acknowledgement of. 164

\supset (D), 44

\supseteq (D), 44

\surd (vO- 45

\swarrow (»/). 45

symbol

bar over a. 50

bold. 53. 201

footnote. 175

foreign language. 39. 40

making with array. 44

making with \stackrel. 44

math. 42ff

nonmath. 40

slash through. 44

special, 40. 116

stacking. 52

variable-sized. 44

not bold in \boldmath. 202

changing size of. 54

symbols, ellipsis between. 42

\symbol. 200

t (top)

in \oval argument. 108. 198

placement specifier, 176

238 INDEX

positioning argument, 47. 99. 104.

195. 197

\t (
" accent). 40

tab

alignment, extra, 123

alignment, misplaced, 124

overflow error. 122

position, undefined. 123

stop, 62. 179

stops, too many, 122

\tabalign (T^X command), 204

tabbing command
spaces after, 63

Plain T£X, 204

tabbing environment, 62ff. 179ff

\\ in. 153

as displayed paragraph. 165

example, 180

in minipage. 100

in parbox, 99

large, 127

versus tabular. 62

\tabbingsep. 181

\tabcolsep, 185

table

caption, 59

centering a. 112

item, paragraph in a, 98

numbers, 60

of contents. 70. 158ff

depth. 159

entry made by sectioning

command. 23. 158

placement specifier. 176

used in parbox. 121

table counter. 91

table environment. 59. 176

in parbox, 122

in two-column format. 176

Mabel in. 72

misplaced. 121. 122

parbox made by. 98

space around. 153

table environments, too many. 123

table* environment. 176

\tableof contents. 70. 158

error when processing. 126

toe file read by. 186

tables, 59

list of. 71. 158

made with tabular. 60

output by \cleardoublepage. 177

output by \clearpage, 91, 177

output by \end{document>.vl77

placement of, 176

\tabsdone (T^X command). 204

\tabset (T^X command). 204

\tabs (T£X command), 204

tabular environment. 63ff. 182ff

\\ in. 64. 153, 183

box made by, 96

error in. 121. 122. 123. 128

footnoting item of. 99

in parbox, 195

interrow space in, 153

large, 127

making tables with. 60

strut in. 153

versus tabular. 62

zero-width box in. 98

tabular* environment. 182

\fill in. 183

Ytan (tan). 46

\tanh (tanh). 46

\tau (r). 43

techreport bibliography entry type. 145

ten-point type. 21

\teni (T^X command). 205

term, invisible 50

terminal input, see keyboard input

T£X, 4. 5. 15. 203ff

distinguished from IATjrX. 5

error messages. 123ff

error versus I^TjrX error. 29

font-selecting commands. 204

how it makes pages. 119

logo. 5. 15. 34, 154

Plain. 204

pronunciation of. 5

warning messages. 129

\TeX. 15. 34. 154

text

editor. 12. 33

file. 12

INDEX 239

invisible. 91

math style, 54, 169. 201

text-generating commands, 15

\textf loatsep, 178

\textf ont undefined error, 125, 200

\textfraction. 178

\textheight. 94, 163

\textstyle. 54. 172. 201

used with \stackrel. 52

\textwidth. 94. 155. 163

\thanks. 164

moving argument of, 152

too many. 123

\the. . . numbering commands, 92, 175

thebibliography environment. 73. 187

as list. 112

missing argument in. 122

theindex environment. 77, 189

theorem-like environment. 58. 174

as list. 112

counter for. 91

current \ref value in. 174

cross-reference to. 72

named. 59

theorem-like structures. 58

theorems. 58

named. 59

\thepage redefined by \pagenumbering.

162

\theta (0). 43

\Theta (6). 43

thick space. 52. 172

\thicklines. 102. 199

thickness of lines in picture. 102. 199

thin space. 14. 34. 52. 154. 172

negative. 52. 172

\thinlines. 102. 199

\thispagestyle. 161

not used in SLfTjrX. 138

scope of. 152

tilde. 18

\tilde (~math accent). 51

\times (x), 44

Times Roman font family. 115

\tiny. 115. 200

title. 22

acknowledgement of support in. 164

author's address in, 164

date in, 22

example, 164

in article style, 163

in bib file, 142

page, 22, 82, 84ff, 160, 163

with \maketitle, 82, 160

title bibliography field, 147

\title, 22, 35, 164

\\ in argument of, 153, 164

titlepage

document-style option, 82, 160

environment, 84, 164

making blank page with, 162

toe (table of contents) file, 70, 71, 158,

186

tocdepth counter, 160

\today, 15, 34, 154

in title page, 84

Ytop (T), 45

\topfraction, 178

\topinsert (TgX command), 204

\topins (TgX command), 204

\topmargin, 163

topnumber counter, 177

\topsep, 113, 166

in f leqn style option, 170

\topskip, 163

totalnumber counter, 178

\triangle (A), 44

\triangleleft (<). 44

\triangleright (>), 44

trivlist environment, 112, 115, 168

Truman, Harry, 26

\tt (typewriter), 39, 199

no accents in, 39

twelve-point type, 21. 160

12pt document-style option, 21, 115, 160

two-column format, 82. 162

\cleardoublepage in. 91

\clearpage in. 91

figures and tables in, 176

marginal notes in, 61

\newpage in, 91

\pagebreak in, 91

two-sided printing. 21. 160

page heading in. 83

240 INDEX

twocolumn document-style option. 21,

160

\twocolumn. 82, 162

optional argument of, 151

twoside document-style option, 21, 160

\f lushbottom default in. 83

marginal notes in, 61

page headings in, 84

type

eleven-point, 21, 160

face, see type style

font, 115

size, 200

changing, 84, 115, 116, 200

commands in document style, 200

declarations, 115

default, 115

for sub- and superscripts, 54, 116

in footnote, 116

style, 38, 39, 199

style, calligraphic, 172

changing in title page, 84

changing with \em, 38

conventions, 39

in math mode, 53, 172

of Greek letters, 172

math italic, 172

roman, in SLlTgX, 135

ten-point, 21

twelve-point, 21. 160

type bibliography field. 147

typed text, simulating. 65

\typein, 79. 190

for entering \includeonly. 77

like \newcommand. 80

like \renewcommand. 80

moving argument of. 152. 190

\typeout. 79. 189

moving argument of. 152

spaces ignored. 189

typesetter. 5

typewriter type style. 39. 199

hyphenation suppressed in. 199

no accents in. 39

typing, saving. 55

typographic

design. 85

designer. 5

errors, 5, 85

~^u (" accent), 40

unary + and —
. 50

unattended, running IATj?X. 31

unavailable font, 116, 200

unbalanced braces, error caused by, 120

\unboldmath, 201

undefined

citation, 128

control sequence error, 128

environment error, 121

\pageref. 129

\ref. 129

reference, 129

\scriptf ont error, 125, 200

\scriptscriptf ont error. 125. 200

tab position error, 123

\textfont error, 125, 200

\underbrace, 51

underbill \hbox message, 89. 129

caused by \\ and \newline. 190

caused by \linebreak. 190

caused by \sloppy, 191

underbill \vbox message. 129

caused by \pagebreak. 191

\underline, 51. 171

underlining, 51, 171

underscore character. 12

unit

dimensional, 192

illegal, of measure. 124

paragraph. 88. 191

sectional, see sectional unit

unit length. 101

\unitlength. 102. 196

for subpicture, 111

\unlhd (<). 44

unmatched

$. 124

>. 124

\begin. 120

\end. 120

\poptabs. 122

\pushtabs. 122

math mode delimiter. 124

unmatchins braces. 32

INDEX 241

unpublished bibliography entry type,

145

\unrhd (>). 44

unsrt bibliography style. 74

\uparrow (f). 45. 48

\updownarrow (J). 45, 48

\uplus (l±J). 44

uppercase letters, 12

\upsilon (r). 43

\Upsilon (T). 43

\usebox. 101. 195

\usecounter. 114. 168

user-defined

command, scope in argument of, 56

environment, scope in argument of, 57

\v (" accent). 40

value

current \ref . see current \ref value

of counter. 175

printing, 92

of length command. 93

\value. 175

van Leunen. Mary-Claire. 8. 144. 207

\varepsilon (e). 43

variable-sized math symbols. 44

changing size of, 54

not bold in \boldmath. 202

variant Greek letters. 43

\varphi ((p), 43

\varpi {w), 43

\varrho {q). 43

\varsigma (<;). 43

\vartheta (#). 43

\vbox. overfull. 129

\vbox. underbill. 129. 191

\vdash (h), 44

\vdots (:)• 42. 171

\vec ("math accent). 51

\vector. 106. 198

error in. 120

\vee (V). 44

\verb. 65, 168

\verb*. 65. 168

verbatim environment, 65. 168

verbatim* environment. 65, 168

verse environment, 27, 35, 165

as list. 112

\\ in, 153, 165

vertical

ellipsis, 42

line

in tabular environment, 63, 183

drawn with \rule, 100

mode, 38

positioning

of array environment, 47

of array item, 47

of parbox, 99

of text in box, 104

space, 95, 100, 193

anomalous, after displayed formula,

165

at top or bottom of page, 96

in figure, 60

in math formula, 100

\vf ill, 96

\vf ootnote (T^X command), 204

visual design, 6, 61, 82

visual formatting, 50, 54, 66

\vline, 184

volume bibliography field, 147

\vspace. 95, 193

in figure, 60

rubber length in, 96

space around, 153

using strut instead of. 100

\vspace*, 96. 193

warning message, 31

citation undefined. 128

labels may have changed, 128

IATEX, 128

page number in. 119

marginpar moved. 61. 129

multiply defined label. 128

oval too small, 129

reference undefined, 129

TfeX. 129

\wedge (A), 44

wide math accents. 51

\widehat pmath accent). 51, 172

\widetilde (~math accent), 51. 172

242 INDEX

width

box with specified, 97

of text on page, 94, 155

line, 85, 155

in array or tabular, 185

produced by \framebox, 195

word, 13

hyphenating foreign, 39, 88

\wp (jp), 45

\wr (I), 44

writing, 8

wrong number printed by \cite,

\pageref , and \ref , 128

X, stopping IATEX with, 31, 120

\xi (0, 43

\Xi (5), 43

year bibliography field, 147

zero, 12

length, 93

zero-length arrow, 107

zero-width box, 98, 104

\zeta (f), 43

Sentences and Paragraphs

quotes single '
. . .

' double ' '
. . .

'
'

dashes intra-word - number range: --

punctuation: —
spacing small \ , inter-word V, unbreak-

able " sentence-ending period \fi.

special characters $ \$ &: \& % \'/,

\# { \< } \> - _

emphasis {\em . . . }

unbreakable text \mbox{. . . }

footnotes \footnote{. . . }

date \today

\rm Rom
\em Emph
\bf Bold

Type Style

Nit Hal

\sl Slaii

\sf SSrf

\sc Caps
\tt Type

\boldmath use bold math symbols

Type Size

\tiny \small

\scriptsize \normalsize

\f ootnotesize

\large \huge

\Large \Huge

\LARGE

Accents and Symbols

6 \'<o> 6 \-{o> 6 \v{o} o \c<o}
6 V{o> 6 Wo> 6 \H{o> o \d{o}
6 \-{o} 6 \.{o> do \t{oo} o \b{o>
6 \"{o> 6 \u{o}

t \dag § \s © \copyright

X \ddag 1 \P £ \pounds

Sectioning and Table of Contents

\part \section \paragraph
\chapter \subsection \subparagraph

\subsubsection

\appendix start appendix

\tableof contents make table of contents

Mathematical Formulas

$. . . $ or \(. . . \) in-text formula

\ [. . . \] displayed formula

\begin{equation> . . . \end{equation}

numbered equation

\begin{eqnarray> . . . \end{eqnarray}

numbered equations, like 3-column array

environment; \nonumber omits one equa-

tion number, eqnarray* omits all

_{. . . } subscript

"{...} superscript

' prime (')

\frac{n>{d> print fraction ^

\sqrt [n] {arg} print tyarg

ellipsis \ldots . . . \cdots • • • \vdots :

symbols See Tables 3.4-3.8 (pp. 44-45)

Greek letters a \alpha . . . Q \0mega

delimiters \left or \right followed by delim-

iter from Table 3.10 (p. 48)

\overline{e:rp} print exp

space thin \ , medium \ : thick \ ; neg-

ative thin \

!

Displayed Paragraphs

\begin{quote> . . . \end{quote>

short displayed quotation

\begin{quotation> . . . \end{quotation>

long displayed quotation

\begin{center} . . . \end{center}

centered lines, separated by \\

\begin<verse} . . . \end<verse>

\\ between lines, blank line between stanzas

\begin{verbatim> . . . \end{verbatim>

in typewriter font exactly as formatted

Lists

Begin each item with \item or \item[/a6e/]

\begin{itemize} . . . \end<itemize>

"ticked" items

\begin{enumerate> . . . \end{enumerate}

numbered items

\begin{description> . . . \end{description>

labeled items

Common I^TjrX Commands

Document and Page Styles

\documentstyle [options'] {style}

style article letter (for letters)

report slides (SLlTjrX only)

book

options llpt twoside openbib

12pt twocolumn leqno

titlepage fleqn

\pagestyle{s£y/e} style of head and foot:

plain empty headings myheadings

\pagenumbering{s<t//e> style of page numbers:

arabic roman alph Roman Alph

Title Page and Abstract

\maketitle make title with information declared

by \title, \author, and [optional] \date.

\begin{titlepage} . . . \end{titlepage}

do-it-yourself titlepage

\begin{abstract> . . . \end{abstract}

make abstract

Cross-Reference

\label{A;ey> assign current counter value to key

\rei{key} print value assigned to key

Bibliography and Citation

\bibliography{. . . } make bibliography and tell

BibTeX names of bib files

\begin{thebibliography}{/6/} . • \end{. . . >

make bibliography; Ibl is widest entry label

\bibitem[/6/] {key} begin bibliography entry for

citation key [with Ibl as label]

\cite [note] {keys} cite reference(s) keys [with

added note]

Splitting the Input

\input{/j/e> read specified file

\include{/i/e} read specified file unless excluded

by \includeonly

\includeonly{/i/es} exclude any file not in files

Figures and Tables

\begin-Cf igure} . . . \end{f igure}

make floating figure

\begin{table} . . . \end{table>

make floating table

\caption{. . . } make figure or table caption

r

tabbing Environment

Rows separated by \\ ; columns determined by:

\= set tab stop

\> go to next tab stop

\kill throw away line

array and tabular Environments

\begin{array} [pos] {cols} . . . \end{array>

\begin{tabular> [pos] {cols} . . . \end{tabular>

use array for formulas, tabular for text;

items separated by k and rows by \\; pos

aligns with top (t), bottom (b), or center

(default); cols entries format columns:

1 left-justified column

r right-justified column

c centered column

I vertical rule

fl{. . . > text or space between columns

*{n}{. . . } equivalent to n copies of . .

.

\multicolumn{nKco/M. . .} span next n col-

umns with col format

\hline draw horizontal line between rows

\cline<i-,?} horizontal line across columns i-j

Definitions

\newcommand<cmd>[n]{. . . } define new com-

mand cmd [with n arguments]

\newenvironment{nam> [n] {beg}{end}

define new environment nam [with n argu-

ments]

\newtheorem<nam>{cap> define a theorem-like

environment nam captioned by cap

Numbering

\setcounter{c£rMn} set counter ctr to n

\addtocounter{c£r}{n} add n to counter ctr

A Document Preparation System

Leslie Lamport
Do you write technical documents— articles, books, manuals, reports, theses? Do you use a
computer for writing? Is the professional appearance of your work important?

If you answered yes to any of these questions, then LAT^X may well be of interest to you.

LAT[rX is a special version of Donald Knuth's T^X program for computer typesetting, a program
particularly suited for producing high-quality documents with mathematical text. LAT^X is actu-

ally a collection of high-level commands, called "macros," which simplify the use of T^X and
make typesetting relatively easy. With LAT^X, users can concentrate more on their writing than

on formatting detail, and still benefit from the sophisticated functionality of Knuth's system.

Leslie Lamport's development of the LAT^X system began three years ago. It has since gone
through several revisions and is currently installed at a large number of T^X sites around the

world. There are LAT^X implementations for a wide variety of mainframe and minicomputers,

and versions are even available for microcomputers.

l^T^X: A Document Preparation System describes the final version of LAT^X. The book is, at

once, a definitive user's guide and a reference manual for LAT^X. It introduces readers to LAT^X,

shows them how to get started with it, then gradually leads them through more advanced tech-

niques. The book contains numerous examples that help explain system particulars. It also in-

cludes appendices on how to prepare slides (SLIT^X) and a bibliography database (BIBT^X), and
how to use Knuth's own Plain T^X commands. Like Knuth's guide and manual, The T^Xbook,

also published by Addison-Wesley, this one is delightfully illustrated by Duane Bibby.

I^T^X: A Document Preparation System was typeset by the author with LAT^X.

Leslie Lamport is a computer scientist specializing in the area of parallel processing. C ,.

he works at Digital Equipment Corporation in Palo Alto, California. Prior to this, he wr j

International. He holds a Ph.D. in mathematics from

Brandeis University.

ADDISON-WESLEY PUBLISHING COMPANY

$32.95

. YST'
•

ISBN D-EDl-lSVIU-X

780201M57901

