

This documentation was prepared with IATEX and reproduced by Addison-Wesley from
camera-ready copy supplied by the author.

TEX is a trademark of the American Mathematical Society

This book describes INTEX Version 2.09. released 19 April 1986. Any discrepancy
between this description and the behavior of this or any later release of Version
2.09 is an error. There are only minor differences between this release and earlier
releases of Version 2.09.

Library of Congress Cataloging-in-Publication Data

Lamport, Leslie.
IMTEX: A Document Preparation System.

Includes index.

1. I#TEX (Computer system) 2. Computerized typesetting. 1. Title.
7253.4.L38L35 1985 686.2°2544 85-19994
ISBN 0-201-15790-X

Copyright © 1986 by Addison-Wesley Publishing Company. Inc.

All rights reserved. No part of this publication may be reproduced. stored in a retrieval
system. or transmitted. in any form or by any means, electronic. mechanical. photo-
copying. recording or otherwise. without the prior written permission of the publisher.
Printed in the United States of America. Published simultaneously in Canada.

Addison-Wesley Publishing Company. Inc.. makes no representations. express or im-
plied, with respect to this documentation or the software it describes. including without
limitations. any nuplied warranties of merchantability or fitness for a particular pur-
pose, all of which are expressly disclaimed. Addison-Wesley. its distributors and dealers
shall in no event be liable for any indirect. incidental or consequential damages. The
exclusion of implied warranties is not permitted by some statutes. The above exclusion
may therefore not apply to you. This warranty provides you with specific legal rights.
There may be other rights that you have which may vary from state to state.

ISBN 0-201-15790-X
23 24 25 26 27 28 29 30 AL 95949392

Displayed Formulas 28

2 3 R T g T . 28
24 Helpful Hints o 32
2.5 SUWIMALY . . .« v o e e e e e e e e e e e e e e e e 33
Carrying On T
3.1 Changing the Type Style. mge
3.2 Symbols from Other Languages 39
3.2.1 Accents e 40
3.22 Symbolso 40

3.3 Mathematical Formulas 41
3.3.1 Some Common Structures 41
Subscripts and Superseripts Lo L. 41

Fractions 41

Roots! NESSE O EE e T 42

Ellipsis 42

3.3.2 Mathematical Symbols 42
Greek Letters oL 43

Calligraphic Letters 0. 43

A Menagerie of Mathematical Symbols 44

Log-like Functions 46

3.3.3 Arrays e 47

The array Environment 47

Vertical Alignment 47

More Complex Arrays 48

3.3.4 Delimiters o 48
3.3.5 Multiline Formulas, 49
3.3.6 Putting One Thing Above Another 50
Over- and Underlining 51

Accents Lo 51

Stacking Symbolso L0000 52

3.3.7 Spacingin Math Mode 52
3.3.8 Changing Style in Math Mode 53
Type Style o 53

Math Styleo 94

3.3.9 When All Else Fails 54

3.4 Defining Commands and Environments 54
3.4.1 Defining Commands 95
3.4.2 Defining Environments 57
3.43 Theoremsand Such 58

3.5 Iigures and Other Floating Bodies 59
3.5.1 Figuresand Tables 59

3.5.2 Marginal Notes i e e 61

3.6 Lming It Upin Columms 62
3.6.1 The tabbing Environment 62
3.6.2 The tabular Environment 63

3.7 Simulating Typed Text. 65

3.8 Letterso e 66

Moving Information Around 69

4.1 The Table of Contents 70

4.2 Cross-Referemces L o L. 71

4.3 Bibliography and Citation 72
4.3.1 Doing It Yourself o000, 73
3 b e BBl XS R e s 74

4.4 Splitting Your Input o oL 75

4.5 Making an Index or Glossary 77
4.5.1 Producing an Index or Glossary 77
4.5.2 Compiling the Entries 78

4.6 Keyboard Input and Screen OQutput 79

Designing It Yourself 81

5.1 Document and Page Styles 82
5.1.1 Document Styles 82
5.1.2 PageStyles 83
5.1.3 The Title Page and Abstract 84
5.1.4 Customizing the Document Style 85

5.2 Line and Page Breaking 87
5.21 LmmeBreaking. 87
5.2.2 Page Breaking 90

5.3 Numbering 91

5.4 Length, Spaces,and Boxes 93
941 Length., 93
3.4.2 SPAaces e e e 95
543 Boxes 96

LRBoxes 97
Parboxes 98
RuleBoxes 100
Raising and Lowering Boxes 100
Saving Boxes L L. 101

oto Rictuges e e 101
5.5.1 The picture Environment 102
5.9.2 Picture Objects 103

ISR d o o o SR 104
[BoxESI T | e e R 104
Straight Lines 105

ATTOWS ot e e e e e e e e 106

vi

Stacks Lo
Circles
Ovals and Rounded Corners
Framing o
5.5.3 Reusing Objects,
5.5.4 Repeated Patterns Sao o
5.5.0 Some Hints on Drawing Pictures
5.6 Centering and “Flushing”
5.7 List-Making Environments
5.7.1 The list Environment
5.7.2 The trivlist Environment
4 JADFE . o 0 o ¢ 0 Ao MEREE S8 68 80 0o oo oo o ob g o
5.8.1 Changing Type Size
5.8.2 LoadingFonts
Errors
6.1 FindingtheError. Lo 0oL,
6.2 IATEX’s Error Messages
6.3 TEX’s Error Messages
6.4 IANTRX Warnings.
6.5 TEX Warnings it
SLITRX
A.1 How SLITRX Makes Colors
A2 TheRoot File.
A3 TheSlideFile
A3.1 Shides
A3.2 Overlays. e
A33 Notes . . . o v v i i e e e
A.3.4 Page Stylesfor Slides
A.4 Making Only Some Slides
The Bibliography Database
B.1 The Format of the bib File
B.1.1 The Entry Format
B.1.2 The Textof a Field
Names
Titleso .
B.1.3 Abbreviations
B.2 The Entries
B.2.1 Entry Types
B.22 Fields,

131
132
133
134
134
136
137
137
138

142
143
144

vii

C Reference Manual 149
C.1 Commands and Environments L. 150
C.1.1 Command Names and Arguments 150
C.1.2 Enviromments v vt v u e 151
C.1.3 FBFragile Gommands . « L0000 151

G L4y Beclavgtiong L L e e e e e 152
C.1.5 Invisible Commiands and Environments 152
C.1.6 TheN\command 0L 153

C.2 Sentences and Paragraphs L o000, 154
C.2.1 Making Sentences Lo, 154
C.2.2 Making Paragraphs, 154
C23NHEoOMOLER. . - v . . L e e e 156
C.2.4 Accents and Special Symbols 157

C.3 Sectioning and Table of Contents 157
C.3.1 Sectioning Commands 157
C.3.2 The Appendix, 158
C.3.3 Tableof Contents 158
C.3.4 Style Parameters oo, 159

C.4 Document and Page Styles 160
C.4.1 Document Styles oL oo 160
C4.2 PageStyles e 161
C.4.3 The Title Page and Abstract 163

C.5 Displayed Paragraphs L 0. 165
C.5.1 Quotations and Verse 165

2.5.2 List-Making Environments 165

>.5.3 The list and trivlist Environments 166

C.54 Verbatim 168

C.6 Mathematical Formulas 169
C.6.1 Math Mode Environments 169
C.6.2 Common Structures 170
C.6.3 Mathematical Symbols L. 171
C6.4 AITAYS . .« v o ot e e e e e e e 171
C.6.5 Delimiters 171
C.6.6 Putting One Thing Above Another 171
(CLUREA o Ui R S . S 172
C.6.8 Changing Style, 172

C.7 Definitions e ¥
C.7.1 Defining Commands 173
(C.7.2 Defining Environments, 173
(.7.3 Theorem-like Environments 174
C.74 Numbering 174

(.8 Figures and Other Floating Bodies 176
C.8.1 Figures and Tables 176

viii

C.8.2 Marginal Notes 178

C9Y9 Lining It UpinColumns 179
C.9.1 The tabbing Environment 179
C.9.2 The array and tabular Environments 182
C.10 Moving Information Around 185
@ 108 Tiles IS S e . . . L E . e SN - .. 185
C.10:2 Cross-Referencesus ra.imwm. oo oo o ook e a3 B 186
C.10.3 Bibliography and Citation 187
C.10.4 Splitting the Input 000 188
C.10.5 Index and Glossary 189
Producing an Index 0. .. 189

Compiling the Entries0 ... 189

C.10.6 Terminal Input and Qutput 189

C.11 Line and Page Breaking 190
C.11.1 Line Breaking 190
C.11.2 Page Breaking 191
C.12 Lengths, Spaces, and Boxes 192
(G120 ILEnEliln . o ol sla e 6 a0 068G 0 6o da Boooadddood 192
C.12.2 8Space o i e e e e 193
C.12.3 BOXES . . . o o e e e e 194
C.13 The picture Environment 196
C.13.1 Picture-Mode Commands 196
C.13.2 Picture Objects 197
C.13.3 Picture Declarations 199
C.14 Font Selection L 199
C.14.1 Changing the Type Style 199
C.14.2 Changing the Type Size 200
C.14.3 Loading Fonts 200
C.14.4 Fonts in Math Mode 200

D Using Plain TgX Commands 203
Bibliography 207

Index 209

Preface

The IATEN document preparation system is a special version of Donald Knuth’s
TEX program. TiX is a sophisticated program designed to produce high-quality
typesetting. especially for mathematical text. IATEX adds to TEX a collection
of commands that simphfy typesetting by letting the user concentrate on the
structure of the text rather than on formatting comnands. In turning TEX
into IATEX. T have tried to convert a highly-tuned racing car into a comfortable
family sedan. The family sedan isn't meant to go as fast as a racing car or be
as exciting to drive. but it's comfortable and gets you to the grocery store with
1o fuss. However. the IATEX sedan has all the power of TEX hidden under its
hood. and the niore adventurous driver can do everything with it that he can
with TEX.

[ATEX represents a balance between functionality and ease of use. Since I
implemented most of it myself, there was also a continual compromise between
what I wanted to do and what I could do in a reasonable amount of time. The
first version of INTX was written about three years ago. A gradual evolution
has worn away many rough edges. but there have been no radical changes.
[ATEX s small grovp of initial users were pleased with it and suggested many
lmprovements.

[wish to thank the many people whose comments and complaints about
[ATRX and about the preliminary versions of this book have been so helpful, in-
cluding: Todd Allen. Robert Amsler, David Bacon, Stephen Barnard, Barbara
Beeton. Per Bothner. David Braunegg. Daniel Brotsky, Chuck Buckley, Pavel
Curtis. Michael Fischer. Russell Greiner. Andrew Hanson, Michael Harrison, B.
J. Herbison. Calvin W. Jackson. Mark Kent. Kenneth Laws, David Kosower,
Tim Morgan. Mark Moriconi, Stuart Reges. Flavio Rose, A. Wayne Slawson,
David Smith. Michael Spivak, Mark Stickel, Gary Swanson, Mary-Claire van Le-
unen. Mike Urban. Mark Wadsworth. Gio Wiederhold, and Rusty Wright.

The following also gave aid and comfort: SRI International’s Artificial Intel-

ligence Laboratory provided the computer facilities on which IATEX was devel-
oped. Richard Furuta helped me make the transition to a new computer system.
Chris Torek helped with the SLITEX font files. Arthur M. Keller helped create
IATEX s special fonts. Howard Trickey helped with the fonts and the picture-

xiii

CHAPTER 1

Getting
Acqualnted

o\
O '(' 6
v Vs @)
\\\\\\\\\mmm'—_,.—

e]

II v o/

=My
[-
é“" ——_’ A

Getting Acquainted

With modern computers, typesetting is not just for books and documents aimed
at a wide audience. Reports, proposals, memos, and tonight’s dinner menu
can all be made more attractive and easier to read with professional-quality
typesetting. IATEX is a computer program that makes it easy for an author or
typist to typeset his document.

IATEX is available for a wide variety of computer systems. The versions that
run on these different systems are essentially the same; an input file created
according to the directions in this book should produce the same output with
any of them. However, how you actually run IATEX depends upon the computer
system, and certain options may be available on some systems and not on others.
For each computer system, there is a short companion to this book entitled
something like Local Guide to IXTRX for the Kludge-499 Computer containing
information specific to that system. This companion will be called the Local
Guide. 1t is distributed with the IATEX software.

1.1 How to Avoid Reading This Book

Many people would rather learn about a program at their computer termi-
nal than by reading a book. There is a small sample IATEX input file named
small.tex that shows how to prepare your own input files for typesetting simple
documents. It also contains the name of another file that tells how to run IATERX
on your input file and print the result. Before reading any further, you might
want to examine small.tex with a text editor and modify it to make an mput
file for a document of your own. then run IATEX on this file and see what it pro-
duces. The Local Guide will tell you how to find small.tex on your computer
and may contain information about text editors. Be careful not to destroy the
original version of small.tex: you'll probably want to look at it again.

The file small.tex is quite short. having just one or two screens full of text.
and it shows how to produce only very simple documents. There is a longer file
named sample.tex that contains more information. If small.tex doesn’t tell
vou how to do something. you can try looking at sample.tex.

If you prefer to learn more about a program before you use it, read on.
Everything in the sample input files is explained in the first two chapters of this
book.

1.2 How to Read This Book

While sample.tex describes many of IATjX''s features, it is still only about 175
lines long. and there is a lot that it doesn’t explain. Eventually. you will want to
typeset a document that requires more sophisticated formatting than you can
obtain by imitating the two sample input files. You will then have to look in

1.2 How to Read This Book

this book for the necessary information. You can read the section containing
the information you need without having to read everything that precedes it.
However, all the later chapters assume that you have read Chapters 1 and 2.
For example. suppose yvou want to set one paragraph of a document in small
type. Looking up “tvpe size” in the index or browsing through the table of
contents will lead vou to Section 5.8.1. which talks about “declarations” and
their “scope™ —simple concepts that are explained in Chapter 2. It will take
just a minute or two to learn what to do if you've already read Chapter 2; it
could be quite frustrating if you haven't. So, it’s best to read the first two
chapters now. before you need them.

IXTEXs input is a file containing the document’s text together with com-
mands that describe the document’s structure; its output is a file of typesetting
instructions. Another program must be run to convert these instructions into
printed output. With a high-resolution printer, INTEX can generate book-quality
typesetting.

This book tells you how to prepare a IATEX input file. The current chapter
discusses the philosophy underlying IATEX: here is a brief sketch of what's in the
remaining chapters and appendices:

Chapter 2 explaius what you should know to handle most simple documents
and to read the rest of the book. Section 2.5 contains a summary of
everything in the chapter: it serves as a short reference manual.

Chapter 3 describes logical structures for handling a variety of formatting
problems. Section 3.4 explains how to define your own commands, which
can save typing when you write the document and retyping when you
change it. It's a good idea to read the introduction—up to the beginning
of Section 3.1 before reading any other part of the chapter.

Chapter 4 contains features especially useful for large documents, including
automatic cross-referencing and commands for splitting a large file into
smaller pieces.

Chapter 5 describes the visual formatting of the text. It has information about
document styles, explains how to correct bad line and page breaks. and
tells how to do vour own formatting of structures not explicitly handled
by IATEX.

Chapter 6 explains how to deal with errors. This is where you should look
when IATEX prints an error message that you don't understand.

Appendix A describes SLITEX. a version of INTEX for making slides.

Appendix B describes how to make a bibliographic database for use with
BIBTEX. a separate program that provides an automatic bibliography fea-

ture for IATEX.

4 Getting Acquainted

Appendix C is a reference manual that compactly describes all IATEX's fea-
tures. including many advanced ones not described in the main text. If a
command introduced in the earlier chapters seems to lack some necessary
capabilities, chieck its description here to see if it has them. This appendix
is a convenient place to refresh your memory of how something works.

Appendix D is for the reader who wants to use TEX commands “from the
TrXbook that are not described in this book.

When faced with a formatting problem, the best place to look for a solution is
in the table of contents. Browsing through it will give you a good idea of what
IATEX has to offer. If the table of contents doesn’t work, look in the index; I
have tried to make it friendly and informative.

Each section of Chapters 3 5 is reasonably self-contained, assuming only
that you have read Chapter 2. Where additional knowledge is required, explicit
cross-references are given. Appendix C is also self-contained, but a command’s
description may be hard to understand without first reading the corresponding
description in the earlier chapters.

The descriptions of most INTEX commands include examples of their use. In
this book, examples are formatted in two columns, as follows:

The left column shows the printed output; the right The left column shows the printed output;
column contains the input that produced it. the right column contains the input that
produced it.

Note the special typewriter type style in the right column. It indicates what
you type—either text that you put in the input file or something like a file name
that you type as part of a command to the computer.

Since the sample output is printed in a narrower column, and with smaller
type, than I#TEX normally uses, it won’t look exactly like the output you’'d
get from that input. The convention of the output appearing to the left of the
corresponding input is also used when commands and their output are listed in
tables.

1.3 The Game of the Name

The TX in IATEX refers to Donald Knuth’s TEX typesetting system. The IATEX
prograin is a special version of TEX that understands IATEX commands. Think
of IATIX as a house built with the lumber and nails provided by TEX. You don’t
need lumber and nails to live in a house, but they are handy for adding an extra
room. Most IATEX users never need to know any more about TEX than they can
learn from this book. However. you can add new capabilities to INTEX by using
the lower-level TEX commands described in The TgXbook [3].

1.4 Turning Typing into Typography

[will use the termn “TiX" when describing standard TEX features and “IATRX"
when describing features unique to INTRX, but the distinction will be of interest
mainly to readers already familiar with TEX. You may ignore it and use the two
names interchangeably.

One of the hardest things about using IATRX is deciding how to pronounce
it. This is also one of the few things I'm not going to tell you about IATEX, since
pronunciation is best determined by usage, not fiat. TEX is usually pronounced
teck. making lah-teck. lah-teck, and lay-teck the logical choices; but language is
not always logical, so lay-tecks is also possible.

The written word carries more legal complications than the spoken, and the
need to distinguish TEX and IATRX from similarly spelled products restricts how
vou may write them. The best way to refer to these programs is by their logos,
whichi can be generated with simple IATRX commands. If this is inconvenient,
you should write them as “TeX"and "LaTeX”, where the unusual capitalization
denotes these computer programs.

1.4 Turning Typing into Typography

Traditionally, an author provides a publisher with a typed manuscript. The
publisher’s typographic designer decides how the manuscript is to be formatted,
specifying the length of the printed line, what style of type to use, how much
space to leave above and below section headings, and many other things that
determine the printed document’s appearance. The designer writes a series
of mstructions to the typesetter. who uses them to decide where on the page
to put each of the author’s words and symbols. In the old days, the typesetter
produced a matrix of metal type for each page; today he is more likely to produce
a computer file. In either case, his output is used to control the machine that
does the actual typesetting.

IATEX is your typographic designer, and TEX is its typesetter. The IATRX
commands that you type are translated into lower-level TEX typesetting com-
mands. Being a modern typesetter, TEX produces a computer file, called the
device-independent or dvi file. The Local Guide explains how to use this file to
generate a printed document with your computer.

A human typographic designer knows what the manuscript is generally about
and uses this knowledge in deciding how to format it. Consider the following
typewritten inanuscript:

The German mathematician Kronecker, sitting
quietly at his desk, wrote:

God created the whole numbers; all

the rest is man’s work.
Seated in front of the terminal, with Basic
hanging on my every keystroke, I typed:

for is = 1 tolinfinity

let number([i] = i

Getting Acquainted

A human designer knows that the first indented paragraph (God created ...)
is a quotation and the second is a computer program, so the two should be
formatted differently. He would probably set the quotation in ordinary roman
type and the computer program in a typewriter type style. IATEX is only a
computer program and can’t understand English, so it can’t figure all this out
by itself. It needs more help from you than a human designer would. The
following brief discussion of typography will help you to help it.

The function of typographic design is to help the reader understand the au-
thor’s ideas. For a document to be easy to read, its visual structure must reflect
its logical structure. Quotations and computer programs, being logically distinct
structural elements, should be distinguished visually from one another. The de-
signer should therefore understand the document’s logical structure. Since IATRX
can’t understand your prose, you must explicitly indicate the logical structure
by typing special commands. The primary function of almost all the IATEX
commands that you type should be to describe the logical structure of your doc-
ument. As you are writing your document, you should be concerned with its
logical structure, not its visual appearance. The IATRX approach to typesetting
can therefore be characterized as logical design.

There is a radically different approach to document production that might be
called visual design. As the user of a visual-design system types his document,
he sees on his terminal screen exactly what will appear on the printed page.
Such systems are often described as “what you see is what you get”.

Why type the commands IATRX needs to format the document when a visual
design system would allow you to format it yourself as you write it? There are
several reasons. First of all, logical design encourages sound typography, while
visual design discourages it. Most authors mistakenly believe that typographic
design is primarily a question of aesthetics—if the document looks good from
an artistic viewpoint, then it is well designed. However, documents are meant
to be read, not hung in museums, so the primary function of design is to make
the document easier to read, not prettier. With a visual design system, authors
usually produce aesthetically pleasing, but poorly designed documents.

Typographic design is a craft that takes years to master. Authors with no
training in design often make elementary formatting errors. A IATX user once
presented me with the following typesetting problem.

The user wanted to produce a numbered equation, formatted essentially
like the following one.

For all z: f(z) =g(z+1) (7)

However, he could not figure out how to do it with the ordinary IATpX
commands, so he asked me.

He could have done it quite easily with a visual system. producing an aesthet-
ically pleasing typographic mistake. It is a mistake because it is ambiguous;

1.4 Turning Typing into Typography

the typography does not tell us whether or not the “For all 2" is part of equa-
tion (7). When we later read: “Assume that (7) holds.” we can't tell from (7)
whether we should assume f(z) = g(z+ 1) for some particular z or for all z. We
would probably figure out quickly from the text which was meant—so quickly
that we might not even be aware of the ambiguity. However, the cumulative
effect of a lot of little typographic nistakes is to make reading the document
more strenuous than it should be.

IATEX discourages you froin making this mistake by requiring you to describe
the logical structure of your text. Its standard method of specifying an equation
forces you to choose between the two logical possibilities.

You can make the “For all” part of the equation, as in
For all z: f(z)=g(z+1) (8)
or not part of it. by writing that, for all z:

f(z) = g(xz +1) (9)

Although you can format an equation almost any way you want with [ATEX. you
have to work harder to do it wrong.

Another reason why logical design is better than visual design is that it
encourages better writing. Having to tell IATX the logical structure of your text
encourages you to give the text a logical structure. A visual system makes it easy
to create visual effects instead of logical structure. The coherent visual structure
of equation (7)., for example, hides the absence of a logical structure. Logical
design encourages vou to concentrate on your writing and makes it harder to
use formatting as a substitute for good writing.

A third advantage of logical design is its flexibility. Visual design systems
have been characterized as “what you see is all you've got".! Once you have
typed the document, changing the format is a laborious process. If you decide
that equations should be numbered with roman instead of arabic numerals, you
must change each equation number individually; a visual design system regards
an equation number as just a number that happens to appear at the right margin.
not as a logical structure.

Fundamental to IATEX is the idea of a document style that determines how
the document is to be formatted an idea stolen? from Brian Reid's Scribe
text formatting system {6]. IATEX generates equation numbers for you. with the
document style specifying what kind of numbers to use. One simple change to the
document style can change the way every equation is numbered. IATEX provides
standard document styles that describe how standard logical structures. such
as equations and enumerated lists. are formatted. You may have to supplement
these styles by specifying the formatting of logical structures peculiar to your

!Brian Reid attributes this phrase to himself and/or Brian Kernighan.
2“Lesser artists borrow. great artists steal.” Igor Stravinsky

Getting Acquainted

document, such as special mathematical formulas. You can also modify the
standard document styles or even create an entirely new one, though you should
know the basic principles of typographic design before creating a radically new
style. You will appreciate the flexibility of logical design if you ever have to
reformat a document, perhaps to include it as part of a larger document.

The purpose of writing is to present ideas to the reader. This should always
be your primary concern. It is easy to become so engrossed with form that
you neglect content. Formatting skills are no substitute for writing skills. Good
ideas couched in good prose will be read and understood, regardless of how badly
the document is formatted. IATEX was designed to free you from formatting
concerns, allowing you to concentrate on writing. If, while writing, you spend a
lot of time worrying about form, you are probably misusing IATEX.

1.5 Turning Ideas into Input

To most readers, the printed page conveys a greater sense of authority than
the typewritten manuscript. It must be important to be worth printing. With
IATEX, typesetting is almost as easy as typing. There is no publisher or jour-
nal editor standing between the author and the reader. IATEX will not reject
ill-formed ideas or correct bad grammar. With the power to print your own
document comes the responsibility to make it worth printing.

Even if your ideas are good, you can probably learn to express them better.
The classic introduction to writing English prose is Strunk and White’s brief
Elements of Style [5]. A more complete guide to using language properly is
Theodore Bernstein’s The Careful Writer [1]. These two books discuss general
writing style. Writers of scholarly or technical prose need additional information.
van Leunen’s Handbook for Scholars [7] is a delightful guide to academic and
scholarly writing. The booklet entitled How to Write Mathematics [4] can help
scientists and engineers as well as mathematicians. It’s also useful to have a
weightier reference book at hand: Words into Type [8] and the Chicago Manual
of Style [2] are two good ones.

1.6 Trying It Out

You may already have run IATEX with input based on the sample files. If not, this
is a good time to learn how. The section in the Local Guide entitled Running a
Sample File explains how to obtain a copy of the file sample. tex and run IATEX
with it as input. Follow the directions and see what IATEX can do.

After printing the document generated in this way. try changing the docu-
ment style. Using a text editor, examine the file sample.tex. A few lines down
from the beginning of the file is a line that reads:

\documentstyle{article}

A 4T TN TR TR TR R TER O GEWm O EER R O TER O T R SR S R B T o

CHAPTER 2

Getting
Started

Wi,

12

Getting Started

2.1 Preparing an Input File

The input to IATREX is a text file. I assume that you know how to use a text
editor to create such a file, so I will tell you only what should go into your input
file. not how to get it there. Some text editors can be customized to make it
casier to prepare IATEX input files. Consult the Local Guide to find out if such
an editor is available on your computer. i

On most computers, file names have two parts separated by a period, like
sample.tex. I will call the first part its first name and the second part its
extension, so sample is the first name of sample.tex, and tex is its extension.
Your input file's first name can be any name allowed by your computer system,
but its extension should be tex.

Let’s examine the characters that can appear in your input file. First, there
are the upper- and lowercase letters and the ten digits 0 ... 9. Don’t confuse the
uppercase letter 0 (oh) with the digit O (zero), or the letter 1 (the lowercase el)
with the digit 1 (one). Next, there are the following 16 punctuation characters:

A T D I B A)

Note that there are two different quote symbols: ¢ and ’. You may think of °
as an ordinary “single quote” and ¢ as a funny symbol, perhaps displayed like
* on your screen. The Local Guide should tell where to find ¢ and ’ on your
keyboard. The characters (and) are ordinary parentheses, while [and] are
called square brackets, or simply brackets.

The ten special characters

#$%&”_ " \N{2

are used only in IATEX commands. Check the Local Guide for help in finding
them on your keyboard. The underscore character _ may appear on your screen
as —. The character \ is called backslash, and should not be confused with the
more familiar /. as in 1/2. Most [ATEX commands begin with a \ character, so
you will soon become very familiar with it. The { and } characters are called
curly braces or simply braces.

The five characters

are used mainly in mathematical formulas. although + and = can be used in
ordinary text. The character " (double quote) is hardly every used.

Unless your Local Guide tells you otherwise. these are the only characters
that you should see when you look at a IATREX input file. However, there are other
“invisible™ characters in your file: space characters. such as the one you usually
enter by pressing the space bar, and special characters that indicate the end of
a line, usually entered by pressing the return key. These invisible characters
are all considered the same by TEX. and I will treat them as if they were a

2.2 The Input

13

single character called space. which I will sometimes denote by (. Auy sequence
of space characters is handled the same as a single one, so it doesn’t matter
if the space between two words is formed by one space character or several of
them. However, a blank line one containing nothig but space characters -is
interpreted by TN as the end of a paragraph. Some text editors organize a file
into pages. TEX acts as if there were a blank line between the pages of such a

file.

2.2 The Input

Most IATEX commands describe the logical structure of the document. To un-
derstand these commands, you must know how IATRX perceives that logical
structure. A document contains logical structures of different sizes, from chap-
ters down through individual letters. We start by considering the very familiar
intermediate-sized structures: sentences and paragraphs.

2.2.1 Sentences and Paragraphs

Describing simiple sentences and paragraphs to IATzX poses no problem; you
pretty much type what comes naturally.

The ends of words and sentences are marked The ends of words and sentences are marked
by spaces. It doesn’t matter how many spaces you by spaces. It doesn’t matter how many
type: one is as good as 100. spaces you type; one is as good as 100.

One or more blank lines denote the end of a

paragraph. One or more Dblank lines denote the

of a paragraph.

TEX ignores the way the input is formatted, paying attention only to the logical
concepts end-of-word. end-of-sentence, and end-of-paragraph.

That’s all you have to know for typing most of your text. The remainder of
this book is about how to type the rest, starting with some other things that
occur fairly frequently in ordinary sentences and paragraphs.

Quotation Marks

Typewritten text uses only two quotation-mark symbols: a double quote " and
single quote ’. the latter serving also as an apostrophe. Printed text, however,
uses a left and a right version of each, making four different symbols. TgX
interprets the character ¢ as a single left quote, and the character ’ as a single
right quote. To get a double quote, just type two single quotes.

end

‘Convention dictates that punctuation go inside ‘Convention’ dictates that punctuation go
quotes, like “this.” but I think it’s better to do inside quotes, like ‘‘this,’’ but I think

“this”. it’s better to do ‘‘this’’.

14 Getting Started

Remember that the right-quote character ’ is the one you’re used to thinking
of as a single quote, and the left-quote character ¢ is the one you're probably
unfamiliar with. An apostrophe is produced with the usual ’ character.

Typing a double quote followed by a single quote, or vice-versa, poses a
problem because something like ‘‘‘ would be ambiguous. The solution is to
type the command \, (a \ character followed by a comma) between the two
quotation marks.

“‘Fi’ or ‘fum?’” he asked. ““\,‘Fi’ or ‘fum?’\,’’ he asked.

The \, is a typesetting command that causes TEX to insert a small amount of
space. Don’t leave any space in the input file before or after the \, command.

Dashes

You can produce three different sizes of dash by typing one, two, or three “-”

characters:
An intra-word dash or hyphen, as in X-ray. An intra-word dash or hyphen, as in X-ray.
A medium dash for number ranges, like 1-2. A medium dash for number ranges, like 1--2.
A punctuation dash—like this. A punctuation dash---like this.

There is usually no space before or after a dash. Minus signs are not dashes;
they should appear only in mathematical formulas, which are discussed below.

Space After a Period

Typesetters usually put a little extra space after a sentence-ending period. This
is easy for a human typesetter, but not for a program like TEX that has trouble
deciding which periods end sentences. Instead of trying to be clever, TEX simply
assumes that a period ends a sentence unless it follows an upper-case letter. This
works most of the time, but not always—abbreviations like “etc.” being the most
common exception. You tell TEX that a period doesn’t end a sentence by typing
a \u command (a \ character followed by a space or the end of a line) right after
the period.

Tinker et al. made the double play. Tinker et al.\ made the double play.

It doesn’t matter how many spaces you leave after the \ character, but don’t
leave any space between the period and the backslash. The _ command pro-
duces an ordinary interword space, which can also be useful in other situations.

On the rare occasions that a sentence-ending period follows an upper-case
letter, you will have to tell TiX that the period ends the sentence. You do this
by preceding the period with a \@ command.

The Romans wrote I 4+ I = II. Really! The Romans wrote I + I = II\@. Really!

2.2 The Input 15

If a sentence-ending period is followed by a right parenthesis or a right quote
(single or double). then typesetters usually put extra space after the parenthesis
or quote. In this case. too, TEX will need a hand if its assumption that a period
ends a sentence unless it follows an upper-case letter is wrong.

“Beans (lima, etc.) have vitamin B.” ») . .
Bears (lima, etc.)\ have vitamin B\@.'’’

Extra space is also added after a question mark (?). exclamation point (!). or

colon (:) just as for a period that is, unless it follows an upper-case letter. The

\u and \@ commands are used the same way with each of these punctuation

characters.

Special Symbols

Remember those ten special characters. mentioned on page 12. that you type
only as part of IATEX commands? Some of them, like $. represent symbols that
vou might very well want in your document. Seven of those symbols can be
produced by typing a \ in front of the corresponding character. :

$ & % # - { } are easy to produce. \$ \& \% \# _ \{ \} are easy to produce.

The other three special characters (7, =, and \) usually appear only in simulated

kevboard input. which is produced with the commands described in Section 3.7.
You can get TEX to produce any symbol that you're likely to want, and many

more besides, such as: § £ v x ® ~ X <) &. Sections 3.2 and 3.3.2 tell how.

Simple Text-Generating Commands

Part of a sentence may be produced by a text-generating command. For exam-
ple. the TEX and IATEX logos are produced by the commands \TeX and \LaTeX.
respectively.

Some people use plain TEX. but I prefer IATRX. Some people use plain \TeX, but I
prefer \LaTeX.

A useful text-generating command is \today. which produces the current date.

This page was produced on July 22, 1985. This page was produced on \today.
Another useful text-generating command is \1dots. which produces an ellipsis

the sequence of three dots used to denote omitted material. (Simply typing three

veriods doesn't produce the right spacing between the dots.)
I I O (o]

If nominated I will not serve. If nominated \ldots, I will not serve.

16 Getting Started

Most of the command names you've seen so far have consisted of a \ (backslash)
followed by a single nonletter. From now on, most commands you will encounter
have names consisting of a \ followed by one or more letters. In reading the input
file, TEX knows it has come to the end of such a command name when it finds a
nonletter: a digit like “7”, a punctuation character like “;”, a special character
like “\”, a space, or the end of a line. The most common way to end this kind of
command name is with a space or end of line, so TgX ignores all spacés following
it. If you want a space after the logo produced by the \LaTeX command, you
can’t just leave a space after the command name: all such spaces are ignored.

You must tell TEX to put in the space by typing a \., command.

This page of the IATEX manual was produced on This page of the \LaTeX\ manual was
July 22, 1985. produced on \today

Note how TEX ignored the space after the \today command in the input and
did not produce any space after the date in the output.

The case of letters counts in a command name; typing \Today produces an
error, because the correct command name is \today. Most command names
have only lowercase letters.

Emphasizing Text

Emphasized text is usually underlined in a typewritten manuscript and dtali-
cized in a printed document. Underlining and italics are visual concepts; when
typing your document, you should be concerned only with the logical concept
of emphasis. The \em command tells IATEX that text is to be emphasized.

Here is some silly emphasized text. Here is some silly {\em emphasized text}.

The format is {\em followed by a space (to end the \em command), followed
by the emphasized text. followed by a } character—with no space before the }.
Space before the { or after the } produces space in the output.

You can have emphasized text within emphasized You can have <{\em emphasized text
tezt t0o. {\em within} emphasized text} too.

If emphasized text appears inside italicized text, then it is set in ordinary roman
type.

Emphasis should be used sparingly. Like raising your voice, it is an effective
way to get attention, but an annoying distraction if done too often.

A fine point about italic type is illustrated by the following example.

I told you that he didn’t! I told you that he {\em did}n’t!

2.2 The Input

17

Notice how the last d of did bumps into the next letter. When switching from
italic to roman type, a typesetter should add a little extra space to cuslion this
bump. You iustruct 12X to add this space by typing a \/ command. so I should
have typed {\em did\/}n’t. No extra space needs to be added before a comma
or period, so the first example illustrating the \em command is all right, but the
next example should be typed as:

You can have emphasized tert within emphasized You can have {\em emphasized

text too. text\/ {\em within} emphasized text\/} too.

There are two \/ commands because the text switches from italic to roman
twice. Note that space following a \/ command produces space in the output.

To use the \/ conunand in this way, you must know where TiiX changes from
italic to roman type. This is usually not a problem, since the main body of the
document is normally printed in roman type. However, there are some contexts
where the type style depends upon the document style—for example, theorems
may be printed in italic in some styles and roman in others. In this case, you
should put a \/ commaud wherever TisX might change from italic to roman: a
\/ does nothing if it follows a roman letter.

Unlike other commniands you've encountered so far, the \em command pro-
duces neither text nor space: instead. it affects the way TEX prints the following
text. Such a command is called a declaration. Most aspects of the way TEX
formats a document the type style. how wide the margins are, etc.—are deter-
mined by declarations. The \em declaration mstructs TiX to change the type
style from roman to italic. or vice versa. The braces delimit the scope of the
declaration; when TEX encounters the }, it reverts to the type style in effect just
before the {. When you type

{\em b

the { means begin a new scope, the \em declaration means start emphasizing,
and the } means end current scope.

It is the declaration. not the left brace, that changes It {is the \em declaration}, not the left

the type style. brace, that changes the type style.

The braces in vour input file must come in matching pairs.! In the follow-

ing examptle, representing text from which everything but the braces has been
removed. matching braces have the same numbers.

f . { } .
{1 2 o {2 {4 14 {3 It
IThe brace characters in the commands \{ and \} are not scope-delimiting braces: they
are ignored in determining brace matching.

18

Getting Started

Remember:

When a { begins a new scope, all declarations currently in effect remain in effect
until countermanded by new declarations. The matching } that ends the scope
ends the effect of all declarations made between the braces.

It can be difficult keeping track of matching braces that enclose a large
amount of text. Typing

\begin{em} ... \end{em}

is equivalent to typing {\em ... 3} and can make your input file easier to
read.

TEX requires that all braces come in \begin{em} Remember:

matched pairs, and 1t is hard to keep track of braces \TeX\ requires ... a\/ {\em lot} of text.
that enclose a lot of text. \end{em}

To avoid typing errors and simplify making changes. it’s a good idea to keep
your input file as easy to read as possible. The use of spacing and indentation
can help. TEX doesn’t care how the input file is formatted, but you should.

Preventing Line Breaks

In putting text onto paper. a paragraph must be broken into lines of print.
Text becomes hard to read if a single logical unit is split across lines in an
arbitrary fashion, so typesetters break lines between words when possible and
split words only between syllables (inserting a hyphen at the break). Sometimes
a line should not be broken between or within certain words. Human typesetters
recognize these situations, but TEX must be told about them.

Line breaking should be prevented at certain interword spaces. For example,
the expression “Chapter 3" looks strange if the “Chapter” ends one line and
the “3" begins the next. Typing ~ (a tilde character) produces an ordinary
interword space at which TEX will never break a line. Below are some examples
indicating when a ~ should be used.

Mr. Jones Figure™7 (1) "gnats
U.7S. Grant from 1 to710

A word should not be broken across lines if it is really a symbol. such as an
identifier in a computer program. The \mbox command tells TEX not to break
such a word. In the following example, TEX will never split “itemnum” across
lines.

Let itemnum be the current item number. Let \mbox{\em itemnum\/} be the ...

Word-like symbols are usually emphasized.
Most line breaks separate logically related units. and it would be nice if they
could be avoided. However. unless you print your document on a mile-long strip

Y R O OWR Y PEA O PTR PER B O EBEER O EEA O BEER O MW O saEm s

2.2 The Input

19

of paper tape. line breaking is a necessary evil. Using too many ~ and \mbox
commands leaves too few places to break lines. Inhibit line breaking only where
necessary.

In the \mbox{\em itemnum\/} command, \mbox is the command name and
\em itemnum\/ is its argument. An argument is enclosed in braces, which de-
limit the scope of a declaration like \em appearing inside it.2 Most commands
have either no arguments. like \today. or a single argument, like \mbox. How-
ever, there are a few with mnultiple arguments, each of which is enclosed in braces.
Spaces between the command name and its argument(s) are ignored, but there
should be no space between separate arguments.

Footnotes

Footnotes are produced with a \footnote command having the text of the
footnote as its argument.

Gnus' can be quite a gnusance. Gnus\footnote{A gnu is a big animal.} can
gn g

be quite a gnusance.

! A gnu is a big animal.

There is no space between the Gnus and the \footnote in this example; adding
space would have put an unwanted space between the text and the footnote
marker (the !).

A \footnote command cannot be used in the argument of most commands;
for example, it can't appear in the argument of an \mbox command. Sec-
tion C.2.3 explains how to footnote text that appears in a command argument.

Formulas

If you're writing a technical document, it’s likely to contain mathematical for-
mulas. A formula appearing in the middle of a sentence is enclosed by \ (and
\) commands.

The formula z - 3y = 7 is easy to type. The formula \(x-3y = 7 \) is easy to type.

Any spaces that vou type in the formula are ignored.

Does z + y always equal y + z? Does \(x + y \) always equal \(y+x\)?

X regards a formula as a word, which may be broken across lines at certain
(=] 0
points, and space before the \ Cor after the \) is treated as an ordinary interword
separation

?As explained in Section 3.4, argument braces do not act as scope delimiters for commands
you define yourself

20 Getting Started

Subscripts are produced by the _ command and superscripts by the ~ com-
mand.

a; > 22"y \(a_{1} > x"{2n} / y~{2n} \)

These two commands can be used only inside a mathematical formula.
When used in a formula, the right-quote character ’ produces a prime ('),
two in a row produce a double prime, and so on.

This proves that ' < '/ — y3 < 102" 2. oo NOx? < x?? -y {3y <10 x* z\).

Mathematical formulas can get very complex; Section 3.3 describes many
additional commands for formatting them. Here, I will consider the use of
formulas in the text. A formula is a grammatical unit; it should be treated as
such in the sentence structure.

The formula a < 7 is a noun in this sentence. It The formula \(a<7 \) is a noun in this
becomes a clause, complete with verb, when I write sentence. It becomes a clause, ...
that a < 7.

Beginning a sentence with a formula makes it hard to find the start of the
sentence; don’t do it. Similarly, a formula should never appear as a complete
sentence in the running text.

A variable like z is a formula. To save typing, INTEX treats $...$ the same
as \(...\).

Let z be a prime such that y > 2z. Let x be a prime such that $y>2x$.

Use $. . .$ only for a short formula, such as a single variable. It’s easy to forget
one of the $ characters that surrounds a long formula. You can also type

\begin{math} ... \end{math}

instead of \ (. ..\). You might want to use this form for very long formulas.

Ignorable Input

When TEX encounters a % character in the input, it ignores it and all other
characters on that line—including the space character that ends the line.

Gnus and armadillos are generally tolerant of one Gnus and armadi) More @_#!$°{& gnus?
another and seldom quarrel. llos are generally ...

The % has two uses: ending a line without producing any space in the output®
and putting a comment (a note to yourself) in the input file.

>However, you can’t split a command name across two lines.

2.2 The Input

21

2.2.2 The Document

We now jump from the document’s intermediate-sized logical units to its largest
one: the entire document itself. The text of every document starts with a
\begin{document} command and ends with an \end{document} command.
IATRX ignores anything that follows the \end{document}. The part of the input
file preceding the \begin{document} command is called the preamble.

The Document Style

Since all text nmust follow the \begin{document}, the preamble can contain only
declarations. These declarations are used to specify the document style. The
preamble begins with a \documentstyle command whose argument chooses one
of the predefined styles. The file sample.tex begins with

\documentstyle{article}

which selects the article style. The other standard IATX styles for ordinary
documents are the report and book styles. The article style is generally
used for shorter documents than the report style, and the book style is meant
for actual books. Consult the Local Guide to find out if there are any other
document styles available on your computer.

In addition to clioosing the main style, you can also select from among certain
document-style options. Tlie options for the article and report styles include
the following:

11pt Specifies a size of type know as eleven point, which is ten percent larger
than the ten-point type normally used.

12pt Specifies a twelve-point type size. which is twenty percent larger thamn ten
point.

twoside Formats tlie output for printing on both sides of the page.
twocolumn Produees two-column output.

Other options are described elsewhere in this book; all the standard ones are
listed in Section 5.1.1. Your Local Guide tells if there are any others available
on your computer.

You specifv a document-style option by enclosing it in square brackets im-
mediately after the “\documentstyle”, as in

\documentstyle [twoside]{report}
Multiple options are separated by commas.
\documentstyle [twocolumn,12pt}{article}

Don't leave any space inside the square brackets.

22

Getting Started

The \documentstyle command specifies the standard part of the document
style. You may also want to make special style declarations for the particular
document, either to modify some aspect of the standard style or to handle special
logical structures. For example, if you’re writing a cookbook you will probably
define your own commands for formatting recipes, as explained in Section 3.4.
These declarations go in the preamble, after the \documentstyle command.
See also Section 5.1.4 for information on defining your own document style.

The \documentstyle command can be used either with or without the
option-choosing part. The options, enclosed in square brackets, are an op-
tional argument of the command. It is a IATEX convention that optional ar-
guments are enclosed in square brackets, while mandatory arguments are en-
closed in curly braces. Although TEX ignores spaces after a command name like
\documentstyle, you should leave no space between arguments.

The Title “Page”

A document usually has a title “page” listing its title, one or more authors, and
a date. I write “page” in quotes because, for a short document, this information
may be listed on the first page of text rather than on its own page. The title
information consists of the title itself, the author(s), and the date; it is specified
by the three declarations \title, \author, and \date. The actual title “page”
is generated by a \maketitle command.

\title{Gnus of the World}
GIIU.S Of the WOI'ld \author{R. Dather \and B. Falters
R. Dather B. Falters W. Conkright \and W. Conkright}
\maketitle

Note how multiple authors are separated by \and commands.

The \maketitle command comes after the \begin{document}, usually be-
fore any other text. The \title, \author, and \date commands can come
anywhere before the \maketitle. The \date is optional; IATEX supplies the
current date if the declaration is omitted, but the \title and \author must
appear if a \maketitle command is used. Commands for adding other infor-
mation, such as the author’s address and an acknowledgement of support, are
described in Section C.4.3.

2.2.3 Sectioning

Sentences are organized into paragraphs, and paragraphs are in turn organized
into a hierarchical section structure. You are currently reading Subsection 2.2.3,
entitled Sectioning, which is part of Section 2.2, entitled The Input, which in

2.2 The Input 23

turn is part of Chapter 2, entitled Getting Started. 1 will use the term sectional
units for things like chapters, sections. and subsections.

A sectional unit is begun by a sectioning command with the unit’s title as
its argument.

4.7 Sectioning Commands \subsection{Sectioning Commands}

[ATEX automatically generates the section number.
Blank lines before or after a sectioning command
have no effect.

\LaTeX\ automatically generates the section
number. Blank lines before or after a ...

The document style deterniines what sectioning commands are provided, the

standard styles have the following ones:*
\part \subsection \paragraph
\chapter \subsubsection \subparagraph
\section

The article document style does not contain the \chapter command, which
makes it easy to include an “article” as a chapter of a “report” or “book”. The
above example, like all others in this book, assumes the article document style,
the 4.7 indicating that this is the seventh subsection of Section 4. In the report
or book styles. this subsection might be numbered 5.4.7, with “5” being the
chapter number.

The sectional unit denoted by each of these commands must appear as a
subunit of the one denoted by the preceding command, except that the use of
\part is optional. A subsection must be part of a section which, in report and
book styles. must be part of a chapter.

The \part conunand is used for major divisions of long documents; it does
not affect the numbering of simaller units—in the article style, if the last section
of Part 1 is Section 5. then the first section of Part 2 is Section 6.

If there is an appendix. it is begun with an \appendix command and uses the
same sectioning commands as the main part of the document. The \appendix
command does not produce any text: it simply causes sectional units to be
numbered properly for an appendix.

The document style determines the appearance of the section title, including
whether or not it is numbered. Declarations to control section numbering are
described in Section C.3, which also tells you how to make a table of contents.

The argument of a sectioning command may be used for more than just pro-
ducing the section title; it can generate a table of contents entry and a running
head at the top of the page. (Running heads are discussed in Section 5.1.2.)
When carried from where it appears in the input file to the other places it is
used. the argument of a sectioning command is shaken up quite a bit. Some

*The names \paragraph and \subparagraph are unfortunate, since they denote units that
are usually posed of several paragraphs: they have been retained for historical reasons.

24

Getting Started

IATEX commands are fragile and can break when they appear in an argument
that is shaken in this way. Fragile commands are rarely used in the argument
of a sectioning command. Of the commands introduced so far, the only fragile
ones are \ (, \), \begin, \end, and \footnote —none of which you're likely to
need in a section title.> On the rare occasions when you have to put a fragile
command in a section title, you simply protect it with a \protect command.
The \protect command goes right before every fragile command’s name, as in:

\subsection {Is \protect\(x+y \protect\) Prime?}

This is actually a silly example because $ is not a fragile command, so you can
instead type

\subsection {Is $x + y$ Prime?}

but, because the problem is so rare, it’s hard to find a good example using the
commands described in this chapter.

An argument in which fragile commands need \protect will be called a
mouving argument. Commands that are not fragile will be called robust. For
any command that one might reasonably expect to use in a moving argument,
I will indicate whether it is robust or fragile. Except in special cases mentioned
in Chapter 5 and Appendix C, a \protect command can’t hurt, so it is almost
always safe to use one when you’re not sure if it’s necessary.

2.2.4 Displayed Material

We return now to the level of the individual sentence. A sentence like
He turned and said to me: “My answer is no!”, and then he left.

contains a complete sentence quoted within it. An entire paragraph can even
appear inside a sentence, as in:

He turned and said to me: “I've done all I'm going to. I refuse to
have any further part in it. My answer is no!”, and then he left.

It’s hard to understand this sentence the way it is written. However, there’s no
problem if you read it aloud using a different tone of voice for the quotation.
The typographic analogue of changing your tone of voice is setting text off by
indentation, also called displaying. The above sentence is much easier to read
when typeset as follows:

He turned and said to me:
['ve done all I'm going to. I refuse to have any further part
in it. My answer is no!

and then he left.

Section C.2.3 tells you how to footnote a section title.

2.2 The Input

25

Displayed material functions logically as a lower-level unit than a sentence,
though grammatically it may consist of part of a sentence, a whole sentence,
or even several paragraphs. To decide whether a portion of text should be a dis-
play or a separate sectional unit, you must determine if it is logically subordinate
to the surrounding text or functions as an equal unit.

Quotations are often displayed.

The following is an example of a short displayed ... example of a short displayed quotation.

quotation. \begin{quote}

. it's a good idea to inake your input

file as easy to read as possible.
. \end{quote}
It is indented at both margins.

This illustrates a type of IATEX construction called an environment, which is
typed

\begin{name} ... \end{name}

where name denotes the nante of the environment. The quote environment pro-
duces a display suitable for a short quotation. You've already encountered three
other examples of environments: the em environment, the math environment,
and the document environment. Just as the em environment corresponds to the
\em command, any declaration has a corresponding environment whose name is
obtained by dropping the \ from the command name.

The \begin and \end commands delimit the scope of a declaration just as
{ and } do.

Even though Even though

this quote is emphasized, \begin{quote}

\em this quote is emphasized,

the following text is not emphasized. \end{quote}

the following text is not emphasized.

Some environments have arguments; they are typed like additional arguments
to the \begin command.

The standard IATEX document styles provide environments for producing
several different kinds of displays. Blank lines before or after the environment,
mark a new paragraph. Thus, a blauk line after the \end command means
that the following text starts a new paragraph. Blank lines before and after the
environment mean that it is a complete paragraph. It's a bad idea to start a
paragraph with displayed material. so you should not have a blank line before
a display environment without a blank line after it. Rlank lines immediately
following a display environment’s \begin command and immediately preceding
its \end comnnand are ignored.

\ldots\ it’s a good idea to make your
input file as easy to read as possible.

It is indented at both margins.

26 Getting Started

Quotations

IATEX provides two different environments for displaying quotations. The quote
environment is used for either a short quotation or a sequence of short quotations
separated by blank lines.

Our presidents have been known for their pithy Our presidents ... pithy remarks. °
remarks. \begin{quote}

The buck stops here. Harry Truman The buck stops here. {\em Harry Truman}

I am not a crook. Richard Nizon I am not a crook. {\em Richard Nixon}

\end{quote}

The quotation environment is used for quotations of more than one paragraph;
as usual, the paragraphs are separated by blank lines.

Here is some advice to remember when you are Here is some advice to remember when you
using ATEX: are using \LaTeX:
\begin{quotation}
Environments for making quotations
other things as well.

Environments for making quota-
tions can be used for other things as
well.

Many problems can be solved by
novel applications of existing environ-
ments.

Many ... existing environments.
\end{quotation}

Lists

IATEX provides three list-making environments: itemize. enumerate, and
description. In all three, each new list item is begun with an \item com-
mand. Itemized lists are made with the itemize environment and enumerated
lists with the enumerate environment.

o Each list item is marked with a label. The labels \begin{itemize}

in this itemized list are bullets. \item Each list item is ... bullets.
e Lists can be nested within one another. \item Lists can be ... one another.
\begin{enumerate}
1. The item labels in an enumerated list are \item The item labels ... letters.
numerals or letters. \item A list should ... two items.
2. A list should have at least two items. \end{enumerate}
) \LaTeX\ permits ... more than enough.
IATEX permits at least four levels of nested lists,
which is more than enough. \item Blank lines ... have no effect.
e Blank lines before an item have no effect. \end{itemize}

In the description environment, vou specify the item labels with an optional
argument to the \item command. enclosed in brackets. (Although the argument
is optional, the item will look funny if you omit it.)

pa———, — peuy - o) e o e o] E al . B . s u | A [. al PR b . .1 s al [a al [a &l [a al ™ laa @ [o al ™m Y v Xy

2.2 The Input

27

Three animals you should know about are:

gnat A small animal, found in the North Woods,
that causes no end of trouble.

gnu A large animal, found in crossword puzzles,

Three animals you should know about are:
\begin{description}

\item[gnat] A small animal ...

\item [gnu] A large animal

\item [armadillo] A medium-sized ...

that causes no end of trouble. \end{description}

armadillo A mediuin-sized animal, named after a
medium-sized Texas city.

The characters [and] are used both to delimit an optional argument and
to produce square brackets in the output. This can cause some confusion if the
text of an item begins with a [or if an \item command’s optional argument
contains a square bracket. Section C.1.1 explains what to do in these uncommon
situations. All coimmands that have an optional argument are fragile.

Poetry

Poetry is displayed with the verse environment. A new stanza is begun with
one or more blank lines; lines within a stanza are separated by a \\ command.

There is an environment for verse \begin{verse}
Whose features some poets will curse. There is an environment fcr verse \\
For instead of making Whose features some poets will curse.
Them do all line breaking,
It allows them to put too many words For instead of making\\
on a line when they'd rather be Them do {\em all\/} line breaking, \\
forced to be terse. It allows them ... to be terse.
\end{verse}

The * command is the same as \\ except that it prevents IATEX from
starting a new page at that point. It can be used to prevent a poem from being
broken across pages in a distracting way. The commands \\ and * are used
in all environments in which you tell INTgX where to break lines; several such
environments are described in the next chapter. The * command is called
the x-form of the \\ command. Several other commands also have *-forms—
versions of the command that are slightly different from the ordinary one—that
are obtained by typing * after the command name.

The \\ and * commands have a little-used optional argument described
in Section C.1.6, so putting a [after them presents the same problem as for
the \item command. Moreover, the * in the * command is somewhat like an
optional argument for the \\ command, so following a \\ with a * in the text
poses a similar problem. See Section C.1.1 for the solutions to these unlikely
problems. Any command that has a *-form is fragile, and its *-form is also
fragile.

28 Getting Started
Displayed Formulas
A mathemnatical formula is displayed when either it is too long to fit comfortably
in the running text, it is so important that you want it to stand out, or it is to be
numbered for future reference. IATEX provides the displaymath and equation
environments for displaying formulas; they are the same except that equation
numbers the formula and displaymath doesn’t. Because displayed equations are
used so frequently in mathematics, IATX allows you to type \[...\] instead of
\begin{displaymath} ... \end{displaymath}
Here is an example of an unnumbered displayed Here is an example of an unnumbered
equation: displayed equation:
g +y’ =2} \[x* + y {2} = z.{i}" {2} \]
and here is the same equation numbered: and here is the same equation numbered:
\begin{equation}
g +y’ =2 (8) X+ y {2} = z_{i}™{2}
\end{equation}

The document style determines how equations are numbered. Section 4.2 de-
scribes how IATEX can automatically handle references to equation numbers so
you don’t have to keep track of the numbers.

A displayed formula, like any displayed text, should not begin a paragraph.
Moreover, it should not form a complete paragraph by itself. These two obser-
vations are summed up in a simple rule: in the input, never leave a blank line
before a displayed formula.

TEX will not break the formula in a displaymath or equation environment
across lines. See Section 3.3.5 for commands to create a single multiple-line
formula or a sequence of displayed formulas.

2.3 Running IWTpX

If you followed the directions in Section 1.6, you now know how to run IATEX on
an input file. If not, you should consult the Local Guide to find out. When you
use your own input file for the first time, things are unlikely to go as smoothly
as they did for sample.tex. There will probably be a number of errors in your
file —most of them simple typing mistakes. Chapter 6 gives detailed help in
diagnosing errors. Here I will tell you how to apply first aid from your terminal
while IATEX is still running.

With your text editor, produce a new file named errsam.tex by making the
following two changes to sample. tex.

e About three-quarters of the way through the file is a line with a
\begin{itemize} command. Delete the z from this command, producing
\begin{itemie}. This simulates a typical typing error.

re s

aw

r—— P

PR

2.3 Running INTpX

29

e A few lines from the end of the file is a line beginning with the word
one-line. Insert the word gnomonly, followed by a space, at the beginning
of that line. TEX does not know how to hyphenate gnomonly; this will
prevent it from finding a good place for a line break.

Now run IATEX with errsam.tex as input and see what error messages it pro-
duces. You needn't write down the messages because everything TEX writes
on your terminal is also written in a file called the log file.® For the input file
errsam.tex, the log file is named errsam.log on most computers, but it may
have a different extension on yours: check your Local Guide.

IATEX begins by typing pretty much what it did when you ran it on the
sample.tex file, but theu writes the following message on your terminal and
stops:

LaTeX error. See LaTeX manual for explanation.
Type H <return> for immediate help.
! Environment itemie undefined.
\Qlatexerr ...for immediate help.}\errmessage {#1}
\endgroup
1.140 \begin{itemie}

?

IATEX translates a command like \begin{itemize}, which describes the doc-
ument’s logical structure. into TEX's typesetting commands. Some errors are
caught by IATEX: others cause it to generate typesetting commands containing
errors that TEX finds. The first two lines of this message tell us that the error
was found by IATEX rather than TEX.

The third line of the message-—the one beginning with an exclamation point—
is the error indicator. It tells what the problem is. Chapter 6 explains the
meaning of the error indicators for all IATEX-detected errors and for the most
common errors that TEX finds. Here, IATEX is complaining that it has never
heard of an environment named itemie.

The next two lines are generated by TEX to describe what’s happening in
terms of its low-level typesetting commands; they are irrelevant and can be
ignored. Following them comes the error locator, telling you where in your
input file the error was discovered. In this case, it was on line 140, after TEX
read the \begin{itemie} command.

The ? that ends the message indicates that IATEX has stopped and is wait-
ing for you to type something. The description of this error message in Chap-
ter 6 explains how you could fix the error right now by typing in the correct
\begin{itemize} command. However, we'll just pass over it by pressing the
return key. which instructs IATEX to continue processing the input. IATEX im-
mediately writes the following error message:

6The log file also has some things that don’t appear on your terminal, including blank lines
inserted in strange places.

30

Getting Started

! Undefined control sequence.
\Q@item ...fi \setbox \Qtempboxa \hbox {\makelabel
{#1}}\global \setbox \@lab...
<to be read again>
T
1.141 \item T

his is the first item of an itemized list. Each item
7

The absence of the “LaTeX Error” at the beginning of the message tells us that
this error was detected by TEX rather than IATpX. TEX knows nothing about
JATEX commands, so you can’t expect much help from the error indicator. The
error locator indicates that the error was detected on line 141 of the input file,
right after TEX had read “\item T”, by breaking the input line at that point;
the part that TEX hasn’t read yet appears on the lower line.

This error is caused by the \item command. This command should oc-
cur only inside a list environment, but it doesn’t because we replaced the
\begin{itemize} with a meaningless \begin{itemie} command. TEX can pass
the point where the real error is—here, the \item command—before discovering
that something is wrong, but it usually doesn’t go very far.

To continue past this error, you press return. TEX immediately writes an
error message almost identical to the preceding one, with the same error locator.
It has discovered a second error in the typesetting commands that the \item
command generated. Keep typing return and you will find two more errors
produced by this \item command, after which you will find a similar error
generated by the next \item command—the one on line 145. You must type
four returns to skip over the four errors it generates, plus four more to skip
over the errors generated by the third \item command. IATEX then writes the
following message:

LaTeX error. See LaTeX manual for explanation.
Type H <return> for immediate help.
! \begin{document} ended by \end{itemize}.
\Q@latexerr ...for immediate help.l}\errmessage {#1}
\endgroup
\@checkend ...empa \Qcurrenvir \else \Q@badend {#1}
\fi \def \Qcurrenvir {docu...

\end ... end#1\endcsname \endgroup \Q@checkend {#1}
\if@ignore \global \Q@ignor...
1.158 \end{itemize}

2

It is caused by the \end{itemize} on line 158, which is incorrect because there
was no matching \begin{itemize} command. Typing return gets IATX past
the incorrect list. and it will run to the end without stopping again.

One missing z generated fourteen separate errors. However, there was no
harm done. Although you might have gotten tired of typing return, IATEX

2% Y

f=m=t T P -} P [— — e e P, P . .y P L1 P a] " ' an | o al e B 1 2 B

2.3 Running AN

31

provided plenty of information to help you find the error. If this had been a
real mistake, you might have been tempted to stop the program, correct it,
and start over again. Resist that temptation. If you've made one error, you've
probably made more. It's much more efficient to find them all at once than to
keep running IATEX over and over on the same input file, finding one mistake at
a time. Keep typing refurn and try to get as far as you can.

Sometimes you will reach an impasse. A single mistake can cause TEX to
produce hundreds of error messages. or to keep generating the same message
over and over again forever. 1f you must stop IATEX before it’s finished, the best
way is to type I\stop (that's the letter I before a \stop command) followed
by a return in response to its question mark. Try that a few times. If TEX
just keeps producing more error messages. then type X followed by return; this
always works. However, if vou stop TEX by typing X, it won't generate the last
page of output—the one it was working on when it encountered the error. Since
this output page could help you figure out what went wrong, you should first
try stopping TEX with I\stop.

TEX may write a * and stop without any error message. This is probably
due to a missing \end{document} command, but other errors can also cause
it. If it happens, type \stop (with no I before it) followed by return. If that
doesn’t work, you'll have to use your computer’s standard method for halting
recalcitrant programs. which is described in the Local Guide.

Instead of sitting at your terminal waiting for errors, you can let IATpX
run unattended and find out what happened later by reading the log file. A
\batchmode comunand at the very beginning of the input file causes TEX to
process the file without stopping — much as if you were to type return in response
to every error message. except the messages are not actually printed on your
terminal. This is a convenient way to run IATgX while you go out to lunch, but
vou could return to find that a small error resulted in a very long list of error
messages on the log file.

Meanwhile. rememnber that besides deleting the z, we added the “gnomonly™
to mess up the line breaking. After the last error message, IATX writes:

Overfull \hbox (10.58649pt too wide) in paragraph at lines 172--175
[J\tenrm Mathematical for-mu-las may also be dis-played. A dis-played for-mula
is gnomonly

This is a warning message: IXTX does not stop (it did not print a “?"), but
continues to the end of the input file without further incident. This warning
was generated because TEX could not find a good place to break the indicated
line. If you print the output. you'll find the word “gnomonly™ extending beyond
the right margin. This is not a serious problem: Section 5.2.1 describes how to
correct it

When you process your input file for the first time. IATEX is likely to pro-
duce lots of error messages and warnings that you may not understand right

32

Getting Started

away. The most important thing to remember is not to panic. Instead, turn to
Chapter 6 to find out what to do.

2.4 Helpful Hints

The descriptions of individual INTEX features include suggestions about their
use. Here are a few general recommendations that can make using IATEX easier.

If your documents contain mathematical formulas, as soon as you have ac-
quired some experience using IATEX you should read Section 3.4 to learn how
to define your own commands and environments. When I write a paper, I find
myself changing the notation much more than the concepts. Defining commands
to express the concepts allows me to change notation by simply modifying the
command definitions, without having to change every occurrence in the text.
This saves a lot of work.

Unless your document is very short, you will want to see printed versions
while you're writing it. If you print ten versions before completing it, then
the first page will have been run through IATEX and printed ten times before
the last page is written. If page one isn’t changed, you'll have printed nine
unnecessary copies of it. Moreover, new input is seldom free of errors, especially
if it contains complicated mathematical formulas. If you have to correct errors
and rerun IATEX each time, page one will have been processed twenty times
rather than ten.

The easiest way to avoid all this extra processing is to write new input in a
separate file and run IATiX on that file. After correcting all the errors, you can
move the new text to your main input file. The output generated by processing
each new bit of text by itself won’t have the right page or section numbers, but
it will serve as a first draft while you are writing the rest of the document. You
can run IATEX on the main text file once in a while to get a good copy of the
partially written document. With this procedure, you might wind up printing
page one only three times instead of twenty. For a long document, in which you
will frequently be changing parts that have already been written, you should use
the commands of Section 4.4 to distribute your input over several files.

Perhaps the most annoying aspect of a computer program is the way it reacts
to your errors. As with most programs, IATEX's train of thought is derailed by
simple errors that any person would easily correct. The best way to avoid this
problem is to avoid those simple errors. Here are some common ones that are
easy to eliminate by being careful.

o A misspelled command or environment name.
e Improperly matching braces.

e Trying to use one of the ten special characters # $ % & _ { } = = \ as
an ordinary printing symbol.

T iy v ¥

Y Wt AR O FY MR MW M OmS NS O TR T MY OO O™ Moo moiv

2.5 Summary

33

e Improperly matching formula delimiters—for example, a \(command
without the matching \).

e The use in ordinary text of a command like ~ that can appear only in a
mathematical formula.

¢ A missing \end command.
e A missing command argument.

A good text editor can detect or help prevent some of these errors. Consult your
Local Guide to see if such an editor is available on your computer.

2.5 Summary

This chapter has explained everything you have to know to prepare a simple
document, which is quite a bit to remember. Here is a summary to refresh your
mernory.

Input Characters

The input file may contain the following characters: upper- and lowercase letters,
the ten digits, the 16 punctuation characters

L2t () [-/ xe
the ten special characters
#$%&_ {3} -\

(the first seven are printed by the commands \#, \$, etc.), and the five charac-
ters + = | < > used mainly in mathematical formulas. There are also invisible
characters, which are all denoted by ., that produce spaces in the input file.

Commands and Environments

Command names consist of either a single special character like ~. a \ followed
by a single nonletter (as in \@). or a \ followed by a string of letters. Spaces
and a single end-of-line following the latter kind of command name are ignored;
use a _ command to put an interword space after such a command. The case
of letters in command names counts; most IATpX command names contain only
lowercase letters. A few commands have a *-form, a variant obtained by typing
* after the command name.

Command arguments are enclosed in curly braces { and }. except optional
arguments are enclosed in square brackets [and 1. See Section C.1.1 if an op-
tional argument has a square bracket or if a [in the text could be confused with

34

Getting Started

the start of an optional argument. Do not leave any space between arguments,
or any extra space within an argument; use a % to end a line without introducing
space.

Some commands have moving arguments. The name of a fragile command
must be preceded by a \protect command when it appears in a moving argu-
ment. Fragile commands include \ (, \), \ [, \], \begin, \end, \\, \item, and
\footnote. A \protect command seldom hurts; when in doubt use one.

A declaration is a command that directs IATRX to change the way it is for-
matting the document. The scope of a declation is delimited by enclosing it
within curly braces or within an environment.

An environment has the form:

\begin{name} ... \end{name}

To every declaration corresponds an environment whose name is the same as
the declaration’s name without the \.

Sentences and Paragraphs

Sentences and paragraphs are typed pretty much as expected. TEX ignores the
formatting of the input file. A blank line indicates a new paragraph.

Quotes are typed with the ¢ and ’ characters, used in pairs for double quotes.
The \, command separates multiple quotation marks, as in ‘ ¢\, ‘Fum’\,’’.

Dashes of various sizes are produced with one, two or three “-” characters.

A period, question mark, or exclamation point is considered to end a sentence
unless it follows an uppercase letter. A \@ command before the punctuation
character forces TEX to treat it as the end of a sentence, while a \, command
placed after it produces an interword space.

The TEX and IATEX logos are produced by the \TeX and \LaTeX commands.
The \today command produces the current date, and \1dots produces an el-
lipsis (...).

Text is emphasized with the \em declaration. Emphasized text is usually set
in italic type. A \/ command should appear immediately after an italic letter
that is followed by roman text, unless the roman text begins with a period or
comma.

The ~ command produces an interword space at which TEX will not start a
new line. The \mbox command prevents TEX from breaking its argument across
lines.

Footnotes are typed with the \footnote command, whose argument is the
text of the footnote.

In-line mathematical formulas are enclosed by \(... \) or $... $. Sub-
scripts and superseripts are made with the _ and ~ commands. The ’ character
produces a prime symbol ().

am SR SR O SwER WS O EmER WS WS O SWN W™ O FE™ O FRY OrWIOOFTYOTEOOITIOOM IM MY XY

2.5 Summary

35

Larger Structures

The document begins witl a \documentstyle command. This is followed by the
preamble containing any special style declarations for the particular document.
The actual text is contained in a document environment.

A title is produced by using the \title, \author, and \date commands to
declare the necessary information, and the \maketitle command to generate
the title. Multiple authors are separated by \and commands in the argument of
\author.

A sectional unit is begun with one of the following sectioning commands

\part \subsection \paragraph
\chapter \subsubsection \subparagraph
\section

whose argument produces the unit's heading and is a moving argument.

Displayed Material

Short quotations are displayed with the quote environment and long quotations
with the quotation environment.

IATEX provides three list-making environments: itemize for itemized lists,
enumerate for enuimnerated lists, and description for lists with user-specified
labels. Each item is begun with an \item command whose optional argument
provides the item labels in the description environment.

The verse environment is used for poetry. A blank line begins a new stanza,
and a line that does not end a stanza is followed by a \\ command—use *
instead of \\ to prevent a page break after the line. (See Section C.1.1 if a *
follows an ordinary \\ comnmand.)

Displayed mathematical formulas are produced with the displaymath envi-
ronment or the equivalent \ [...\] construction. The equation environment
produces numbered displayed formulas.

CHAPTER 3

ing On

Carry

38

Carrying On

y > z if 2 real.

Chapter 2 described commands for simple documents. Sooner or later, you'll
write something that requires more sophisticated formatting. The commands
and environments described in this chapter will handle most of those situations.
Before getting to them, you should know a little more about how TEX operates.

As TgX processes your input text, it is always in one of three modes: para-
graph mode, math mode, or left-to-right mode (called LR mode: for. short).!
Paragraph mode is TEX’s normal mode—the one it’s in when processing ordi-
nary text. In paragraph mode, TEX regards your input as a sequence of words
and sentences to be broken into lines, paragraphs, and pages.

TEX is in math mode when it’s generating a mathematical formula. More
precisely, it enters math mode upon encountering a command like $ or \(or \ [
or \begin{equation} that begins a mathematical formula, and it leaves math
mode after finding the corresponding command like \) that ends the formula.
When TEX is in math mode, it regards letters in the input file to be mathematical
symbols, treating “is” as the product of 7 and s, and ignores any space characters
between them.

In LR mode, as in paragraph mode, TEX considers your input to be a string
of words with spaces between them. However, unlike paragraph mode, TEX
produces output that keeps going from left to right; it never starts a new line
in LR mode. The \mbox command (Section 2.2.1) causes TEX to process its
argument in LR mode, which is what prevents the argument from being broken
across lines.

Different modes can be nested within one another. If you put an \mbox
command inside a mathematical formula, TEX is in LR mode when processing
that command’s argument, not in math mode. In processing

\(y > z \mbox{ if $x"{2}$ reall} \).

TgEX is in math mode when processing _y_>_z_, in LR mode when processing
wif and _real, and in math mode when processing x~{2}. The space between
“2” and “if” is produced by the first _, in the \mbox command’s argument, since
space characters in the input produce space in the output when TEX is in LR
mode. The , in real} \) is processed in math mode, so it produces no space
between “real” and “.” in the output.

3.1 Changing the Type Style

Most of this book, including this sentence, is printed in a type style called
“roman”. It is the style that IATEX uses unless you instruct it to select a different
one. The \em declaration described in Section 2.2.1 tells IATRX to start using

!Paragraph mode corresponds to the vertical and ordinary horizontal modes in The TEXbook,
and LR mode is called restricted horizontal mode there. IATEX also has a restricted form of
LR mode called picture mode that is described in Section 5.5.

P e R O Sw PR WA WY RN WY O OW R Y e W O\ O™ Moo MmO T Iy O OMmMmOYy O fIY T

3.2 Symbols from Other Languages

an italic type style unless it already is using italics, in which case it chooses
roman style. INTRX also provides five other type styles, shown below with the
declarations that select them.

This is a bold type style. {\bf This is a bold type style.}

This is a sans serif type style. {\sf This is a sans serif type style.}
This is a slanted type style. {\sl This is a slanted type style.}
THIS IS A SMALL CAPS TYPE STYLE. {\sc This is a Small Caps type style.}
This is a typewriter type style. {\tt This is a typewriter type style.}

The \rm declaration chooses roman type and \it chooses italic. Since roman is
the default and italic is mainly for emphasis, produced by the \em command,
these two declarations are seldom needed. All these type style declarations are
robust.

Slanted and italic are both “leaning” type styles.

Compare closely slanted and slanted. ... {\sl slanted\/} and {\it slanted}.

The \/ command described in Section 2.2.1 should be used to keep any leaning
character from bumping against one that doesn’t lean, not just between italic
and roman characters. For example, it is used when switching from slanted to
sans serif type.

The type style is a visual property of the printed output; it is not part of
the document’s logical structure. Therefore, these type style declarations should
appear not in the text but in the definitions of the commands that describe the
logical structure. (See Section 3.4.) However, some disciplines have special type
style conventions-—in computer science, for example, a programming language’s
reserved words are usually printed in bold type. In such a case, you might as
well put the type style declaration in the text.

3.2 Symbols from Other Languages

Foreign languages have a variety of accents and special symbols: TEX can gener-
ate the ones used in most Western languages. The accents and symbols described
in this section are not available in the typewriter (\tt) type style.

The conunands in this section allow you to handle small pieces of foreign
text in an English document. They are not adequate for typesetting a complete
foreign-language document. Among other problems, foreign languages have dif-
ferent hyphenation rules than English. so an English-language version of IATEX
may incorrectly hiyphenate foreign words. Consult your Local Guide to find out
if versions of IATEX designed specifically for other languages are available.

All the commands described in this section are robust.

40 Carrying On
o \‘{o} o \"{o} o \v{o} 9 \c{o}
6 \’{o} o \={o} 6 \H{o} o \d{o}
6 \"{o} 0 \.{o} 060 \t{oo} o \b{o}
6 \"{o} 6 \u{o}

El senor esta bien, garcon.

El esta aqui.

o

€

1Dy
1y

\oe
\CE
\ae
\AE

Table 3.1: Accents.

3.2.1 Accents

Table 3.1 shows how to make a wide variety of accents. In this and all similar
tables, the TEX output is followed by the input that produces it, the first entry
in Table 3.1 showing that you produce 6 by typing \’{o}. The letter o appears
in this table, but the commands can accent any letter.

El se\"{n}or est\’{a} bien, gar\c{c}on.

The letters ¢ and j need special treatment because they should lose their dots
when accented. The commands \1 and \j produce a dotless 7 and j, respectively.

\’{E}1 est\’{a} aqu\’{\i}.

The commands in Table 3.1 can be used only in paragraph and LR modes.
Accents in math mode, which produce accented symbols in mathematical for-
mulas. are made with commands desecribed in Section 3.3.6.

3.2.2 Symbols

Table 3.2 shows how to make some foreign-language symbols. Note that the
symbols j and j are produced by typing a pair of punctuation characters, in much
the same way that a medium-length dash is produced by typing two - characters.
The commands in Table 3.2 can appear only in paragraph and LR modes; use
an \mbox command to put one inside a mathematical formula.

The following six special punctuation symbols can be used in any mode:

T \dag § \S © \copyright

I \ddag ¥ \P £ \pounds
& \aa Al i 7
A \AA L \L Tk
o \o B \ss
0 \0

Table 3.2: Foreign Symbols

(2ol s s aEEe s, s . s I . . . : s . . . I B . . T

™) e

T)

3.3 Mathematical Formulas

41

Remember also that the seven symbols # $ % & - { } are produced by the seven
commands \# \$ \% \& _ \{ \}.

Inn addition to the syibol-making commands described here, there are niany
others that can be used only i math mode. They are described in Section 3.3.2.

3.3 Mathematical Formulas

A formula that appears in the running text, called an in-text formula, is pro-
duced by the math environment. This environment can be invoked with either
of the two short forms \(...\) or $...$. as well as by the usual \begin ...
\end construction. The displaymath environment, which has the short form
\[...\]. produces an unnumbered displayed formula. The short forms $...$,
\N(C...\).and \[...\] act as full-fledged environments, delimiting the scope of
declarations contained within them. A numbered displayed formula is produced
by the equation environment. Section 4.2 describes commands for assigning
names to equation nuinbers and referring to the numbers by name, so you don’t
have to keep track of the actual numbers.

The math. displaymath, and equation environments put TEX in math
mode. TEX ignores spaces in the input when it’s in math mode (but space
characters may still be needed to mark the end of a command name). Sec-
tion 3.3.7 describes how to add and remove space in formulas. Remember that
TEX is in LR mode. where spaces in the input generate space in the output,
when it begins processing the argument of an \mbox command—even one that
appears inside a forinula.

All the commands introduced in this section can be used only in math mode,
unless it is explicitly stated that they can be used elsewhere. Except as noted,
they are all robust. However, remember that \begin, \end, \ (, \), \[, and \]
are fragile commands.

3.3.1 Some Common Structures
Subscripts and Superscripts

Subscripts and superscripts are imnade with the _ and ~ commands. These com-
mands can be combined to make complicated subsecript and superscript expres-
sions.

2 x{2y) & x{ym (2 A1)
Loy, X_{Qy} ¥ X-{y__{l}} ‘rl]l x—{l}k{y}
Fractions

Fractions denoted by the / symbol are made in the obvious way.

42

Carrying On

Multiplying by n/2 gives (m + n)/n.

Multiplying by $n/2$ gives \((m+n)/n \).

Most fractions in the running text are written this way. The \frac command
is used for large fractions in displayed formulas; it has two arguments: the
numerator and denominator.

2
z= yyj j/l \[x = \frac{y+z/2}{y~{2}+1} \]
11_*__35_ \[\frac{x+y}{1 + \frac{y}{z+1}}\]
z2+1

The \frac command can be used in an in-text formula to produce a fraction
like 1 (by typing $\frac{1}{2}$), but this is seldom done.
Roots

The \sqrt command produces the square root of its argument; it has an optional
first argument for other roots.

A square root \/Z + y and an nth root V2. ... \C \sagrt{x+y} \) ... \(\sqrt[n]l{2} \).
Ellipsis

A low ellipsis: z, .
A centered ellipsis:

The commands \1dots and \cdots produce two different kinds of ellipsis (...).

25 o e A low ellipsis: x_{1}, \ldots ,x_{n}.

@ F 000k Z A centered ellipsis: $a + \cdots + z$.

Use \ldots between commas and between juxtaposed symbols like a...2; use
\cdots between symbols like +, —, and =. TEX can also produce vertical and
diagonal ellipses, which are used mainly in arrays.

\vdots "+ . \ddots

The \1dots command works in any mode, but \cdots. \vdots, and \ddots can
be used only in math mode.

3.3.2 Mathematical Symbols

There are TEX commands to make almost any mathematical symbol you're likely
to need. Remember that they can be used only in math mode.

(Y €Y1 A%\ (YY

A B}

TR

[2. a0 I 2 D - c D . s s . . . D s . . . a - a2 o e s s s s s a Y B 2]

3.3 Mathematical Formulas 43
Lowercase
a \alpha 6 \theta 0o o 7 \tau
B \beta v \vartheta m \pi v \upsilon
~ \gamma t \iota w \varpi ¢ \phi
6 \delta x \kappa p \rho © \varphi
€ \epsilon A \lambda o \varrho X \chi
¢ \varepsilon ¢ \mu o \sigma 1 \psi
¢ \zeta v \nu ¢ \varsigma w \omega
n \eta & \xi
Uppercase
I' \Gamma A \Lambda > \Sigma ¥ \Psi
A \Delta = \Xi T \Upsilon 1 \Omega
© \Theta TIENE! ¢ \Phi
Table 3.3: Greek Letters
Greek Letters
The command to produce a lowercase Greek letter is obtained by adding a \ to
the name of the letter. For an uppercase Greek letter, just capitalize the first
letter of the command name.
Making Greek letters is as easy as « (or II). ... is as easy as π (or Π).
(The $’s are needed because these commands can be used only in math mode.)
If the uppercase Greek letter is the same as its roman equivalent, as in uppercase
alpha, then there is no command to generate it. A complete list of the commands
for making Greek letters appears in Table 3.3. Note that some of the lowercase
letters have variant forms, made by commands beginning with \var. Also,
observe that there's no special command for an omicron; you just use an o.
Calligraphic Letters
TEX provides twenty-six uppercase calligraphic letters A, B, ... , Z, also called
script letters. They are produced by a special type style invoked with the \cal
declaration.
Choose a function ¥ with #(z) > 0. ... $\cal F$ with \({\cal F} (x) > 0 \).

In this example, no brackets are needed in the first use of \cal because the $’s
delimit the scope of the declaration. Only the twenty-six uppercase letters are
available in the calligraphic type style.

44 Carrying On
+ \pm N \cap ¢ \diamond & \oplus
F \mp U \cup A \bvigtriangleup S \ominus
x \times ¢ \uplus v \bigtriangledown ® \otimes
+ \div M \sqcap <4 \triangleleft @ \oslash
x \ast U \sgcup > \triangleright ® \odot
= \star V \vee < \lhd O \bigcirc
o \circ A \wedge > \rhd T \dagger
e \bullet \ \setminus < \unlhd i \ddagger
\cdot ! \wr > \unrhd II \amalg

Ifz £ythenz Ly — 1.

TMINMINN AIAAIA

\leq

\prec
\preceq

\11

\subset
\subseteq
\sgsubset
\sgsubseteq
\in

\vdash

Table 3.4: Binary Operation Symbols.

A Menagerie of Mathematical Symbols

TEX can make dozens of special mathematical symbols. A few of them, such as
+ and >. are produced by typing the corresponding keyboard character. Others
are obtained with the commands in Tables 3.4 through 3.7. Additional symbols
can be made by stacking one symbol on top of another with the \stackrel
command of Section 3.3.6 or the array environment of Section 3.3.3. You can
also put a slash through a symbol by typing \not before it.

If $x \not< y$ then \(x \not\leq y-1 \).

If the slash doesn’t come out in exactly the right spot. put one of the math-mode
spacing commands described in Section 3.3.7 between the \not command and
the symbol.

There are some mathematical symbols whose size depends upon what kind
of math environment they appear in: they are bigger in the displaymath and
equation environments than in the ordinary math environment. These symbols
are listed in Table 3.8. where both the large and small versions are shown.

> \geq = \equiv E \models
> \succ ~ \sim L1 \perp

> \succeq ~ \simeq | \mid

> \gg = \asymp || \parallel
D \supset _~ \approx > \bowtie
D \supseteq = \cong > \Join

3 \sgsupset # \neq — \smile

J \sgsupseteq = \doteq —~ \frown

3 \ni x \propto

- \dashv

Table 3.5: Relation Symbols

- T

s g

P T TR Y O TEN TN TR O PE O PWe W oW Y W W O Ses Swh O twy O aws W

3.3 Mathematical Formulas 45
— \leftarrow — \longleftarrow 1 \uparrow
< \Leftarrow <= \Longleftarrow ft \Uparrow
— \rightarrow — \longrightarrow | \downarrow
= \Rightarrow = \Longrightarrow {J \Downarrow
— \leftrightarrow —— \longleftrightarrow] \updownarrow
< \Leftrightarrow <= \Longleftrightarrow { \Updownarrow
— \mapsto —— \longmapsto /" \nearrow
— \hookleftarrow < \hookrightarrow \. \searrow
— \leftharpoonup — \rightharpoonup /. \swarrow
— \leftharpoondown — \rightharpoondown . \nwarrow
= \rightleftharpoons ~» \leadsto
Table 3.6: Arrow Symbols

R \aleph / \prime vV \forall oo \infty
h \hbar 0 \emptyset 3 \exists O \Box
¢ \imath V \nabla = \neg < \Diamond
7 \jmath v/ \surd b \flat A \triangle
£ \ell T \top § \natural & \clubsuit
o \wp 1 \bot f \sharp ¢ \diamondsuit
R \Re I\ \ \backslash O \heartsuit
S \Im / \angle 0 \partial & \spadesuit
U \mho

Table 3.7: Miscellaneous Symbols
> Z \sum n n \bigcap ©) @ \bigodot
1 H \prod U U \bigcup ® ® \bigotimes
11 H \coprod L]LI \bigsqcup D @ \bigoplus
i / \int V \/ \bigvee) L-_I-J \biguplus
§][\oint A /\ \bigwedge

Table 3.8: Variable-sized Symbols.

46 Carrying On
\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \1lg \1n \Pr \sup
\arctan \cot \det \hom \1lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

Here’s how they look when displayed:

Table 3.9: Log-like Functions.

Subscript-sized expressions that appear above and below them are typed as
ordinary subscripts and superscripts.

n 1
Sw= s
= 0

and in the text:) " z; = fol f.

Logarithms obey the law: log zy = log z + log y.

Here’s how they look when displayed:
\(\sum_{i=1}"{n} x_{i} = \int_{0}~{1} £ \]
and in the text:

\(\sum_{i=1}"{n} x_{i} = \int_{0}~{1} £ \).

Section 3.3.8 tells how how to coerce TEX into producing Y ;- ; in a displayed

n

formula and Z In an in-text formula.

i=1

Log-like Functions

In a formula like “log(z+y)”, the “log”, which represents the logarithm function,
is a single word that is usually set in roman type. However, typing log in a
formula denotes the product of the three quantities /, o, and g, which is printed
as “log”. The logarithm function is denoted by the \log command.

. \(\log xy = \log x + \log y \).

Other commands like \log for generating function names are listed in Table 3.9.
Two additional commands produce the “mod” (modulo) function: \bmod for a
binary relation and \pmod for a parenthesized expression. (Remember b as in
binary and p as in parenthesized.)

ged(m,n) = a mod b
z=y (moda+bd)

\(\ged(m,n) = a \bmod b \)
\(x \equiv y \pmod{a+b} \)

Note that \pmod has an argument and produces parentheses, while \bmod pro-
duces only the “mod”.
Some log-like functions act the same as the variable-sized symbols of Table 3.8

with respect to subscripts.

'S &%

19

17 e Al

220G AR B 2 o s s N 2 a0 AT s . o D & . e e s . o s s s c O s s a s O e s s e e & |

3.3 Mathematical Formulas

47

As a displayed formula: As a displayed formula:

\[\lim_{n \rightarrow \infty} x

lim =0 but in text:

n—oxo

\(\lim_{ ... } x=0\).

but in text: limp—~o r = 0.

3.3.3 Arrays
The array Environment

Arrays are produced with the array environment. It has a single argument that
specifies the number of columns and the alignment of items within the columns.
For each column in the array, there is a single letter in the argument that specifies
how items in the column should be positioned: ¢ for centered, 1 for flush left,
or r for flush right. Within the body of the environment, adjacent rows are
separated by a \\ command and adjacent items within a row are separated by
an & character.

a+b+c wv r—y 27 \begin{array}{clecr}
a+b u+v z 134 a+b+c & uv & x-y & 27
a Jut+ovwe zyz 2,978 a+b & u+v &z & 134
a & 3utvw & xyz & 2,978
\end{array}

There must be no & after the last item in a row and no \\ after the last row.
TgX is in math mode when processing each array element, so it ignores spaces.
Don’t put any extra space in the argument.

In mathematical formulas, array columns are usually centered. However, a
column of numbers often looks best flush right. Section 3.3.4 describes how
to put large parentheses or vertical lines around an array to make a matrix or
determinant.

A declaration that appears in an array item is local to that item; its scope
is ended by the & \\. or \end{array} that ends the item. The \\ command is
fragile.

Vertical Alignment

TEX draws an imaginary horizontal center line through every formula, at the
height where a minus sign at the beginning of the formula would go. An indi-
vidual array item is itself a formula with a center line. The items in a row of an
array are positioned vertically so their center lines are all at the same height.

Normally. the center line of an array lies where you would expect it, half way
between the top and bottom. You can change the position of an array’s center
line by giving an optional one-letter argument to the array environment: the
argument t makes it line up with the top row’s center line, while b makes it line
up with the bottom row’s center line.

0\]

48 Carrying On
()) I \uparrow
[C] 1 | \downarrow
{ \{ }\} 1 \updownarrow
| \lfloor | \rfloor ft \Uparrow
[\lceil 1 \rceil { \Downarrow
(\langle) \rangle { \Updownarrow
[/ \ \backslash
|1 I\
Table 3.10: Delimiters.
The box around each array in the following formula ...\[x - \begin{array}{c}
is for clarity: it is not produced by the input: a_{1} \\ \vdots \\ a_{n}
\end{array}
a - \begin{array}[t]{cl}
e—| <l u—v 13 u-v & 13 \\
: u+v & \begin{array}[bl{r}
an 12 12 \\ -345
utv =345 \end{array}
\end{array} \]

More Complex Arrays

Visual formatting is sometines necessary to get an array to look right. Sec-
tion C.1.6 explains how to change the vertical space between two rows: Sections
3.3.7 and 5.4.1 describe commands for adding horizontal space within an item:
and Section C.9.2 tells how to add horizontal space between columns. The array
environment has a number of additional features for making more complex ar-
rays: they are described in Section C.9.2.

The array environment can be used only in math mode and is meant for
arrays of formulas: Section 3.6.2 describes an analogous tabular environment
for making arrays of ordinary text items. The array environment is almost
always used in a displayed formula. but it can appear in an in-text formula as
well.

3.3.4 Delimiters

A delimiter is a symbol that acts logically like a parenthesis. with a pair of de-
limiters enclosing an expression. Table 3.10 lists every symbol that TEX regards
as a delimiter. together with the commmand or input character that produces it.
These commands and characters produce delimiters of the indicated size. How-
ever. delimiters in formulas should be big enough to “fit around™ the expressions
that they delimit. To make a delimiter the right size. type a \left or \right
commiand before it.

IR R } an 'E B 'R B an iIe

' & al

e A I 2 AR s o R 2 o ¢ A : s e c I o R s e o . O s R = R & e s R R . e

3.3 Mathematical Formulas 49

Big delimiters are most often used with arrays. ...\[\left(\begin{array}{c}
\left| \begin{array}{cc}
T T2 ... \end{array}
T91 T2 \right| \\
y y \\ z

z \end{array} \right) \]

The \left and \right coumands must come in matching pairs, but the match-
ing delimiters need not be the same.

\[... =\left(\begin{array}{c}
y+I= (b [a\\ b
\end{array} \right[\]
Some formulas require a big left delimiter with no matching right one, or vice
versa. The \left and \right commands must match, but you can make an
lvisible delimiter by typing a “.” after the \left or \right command.

¥ ify>0 \[x = \left\{ \begin{array}{11}
zT= { SN akhavwise y & \mbox{if $y>0$} \\
z+y & \mbox{otherwise}
\end{array}
\right. \]

3.3.5 Multiline Formulas

The displaymath and equation environments make one-line formulas. A for-
mula is displayed across multiple lines if it is a sequence of separate formulas
or is too long to fit on a single line. A sequence of equations or inequalities is
displayed with the egnarray environment. It is very much like a three-column
array environment, with consecutive rows separated by \\ and consecutive items
within a row separated by & (Section 3.3.3). However, an equation number is
put on every line unless that line has a \nonumber command.

The middle column can be anything, not just a *=". .. .\begin{egnarray}
x & =& 17y \\
z = 17y (2) y&>&a+ ...+ j+ \nonumber \\
y > a+b+rec+d+e+f+g+h+i+g+ & &k+1+m+n+o+p
k+l+m+n+o+p (3) \end{egnarray}

Section 4.2 describes how to let JATEX handle references to equations so you
don’t have to renember equation numbers.

The egnarray#* environment is the same as eqnarray except it does not
generate equation numbers.

50 Carrying On
z K yi1+--+yn \begin{egnarray*}
B x &\11 & y_{1} + \cdots + y_{n} \\
i & \leq & z
\end{eqnarray*}

A + or - that begins a formula is assumed to be a unary operator, so typing
$+x$ produces 4z, with no space between the “+” and the “z”. If the formula
is part of a larger one that is being split across lines, TEX must be told that
the 4+ or — is a binary operator. This is done by starting the formula with an
invisible first term, produced by an \mbox command with a null argument.

y = a+b+c+d+e+f+g+h+i1+7 \begin{eqnarrayx}
+k+l+m+n+o+p y&=&a+b+c+ ... +h+i+j\\
& & \mbox{} + k + ...
\end{eqnarrayx*}
A formula can often be split across lines using a \lefteqn command in an
eqnarray or eqnarray#* environment, as indicated by the following example:
wtz+ty+z= \begin{eqnarray*}
atbtctd+et+f+g+h+it+i+ \lefteqn{wsx+y+z = 3 \\
AT s & a+ ...+ j+ \\
mTnToTp && k+ ...+0+p
\end{egnarrayx}

The \lefteqgn command works by making TEX think that the formula it pro-
duces has zero width, so the left-most column of the egnarray or egnarray*
environment is made suitably narrow. The indentation of the following lines can
be increased by adding space (with the commands of Section 5.4.2) between the
\lefteqn command and the \\.

Breaking a single formula across lines in this way is visual formatting, and I
wish IATX could do it for you. However, doing it well requires more intelligence
than IATEX has, and doing it poorly can make the formula hard to understand, so
you must do it yourself. This means that the formula may have to be reformatted
if you change notation (changing the formula’s length) or if you change document
style (changing the line length).

3.3.6 Putting One Thing Above Another

Symbols in a formula are sometimes placed one above another. The array
environment is good for vertically stacking subformulas, but not smaller pieces—
you wouldn't use it to put a bar over an z to form Z. TEX provides special
commands for doing this and some other common kinds of symbol stacking.

- w - -

3.3 Mathematical Formulas 51

a \hat{a} a \acute{a} a \bar{a} a \dot{a}
@ \check{a} a \grave{a} d \vec{a} a \ddot{a}
a \breve{a} a \tilde{a}

Table 3.11: Math Mode Accents.

Over- and Underlining

The \overline conunaud puts a horizontal line above its argument.

-

You can have nested overlining: T° + 1. ... \(\overline{\overline{x}"{2} + 1} \).

There's an analogous \underline command for underlining that works in para-
graph and LR mode as well as math mode, but it’s seldom used in formulas.

The value is 3z. \underline{The} value is $\underline{3x}$.

The \underline command is fragile.
Horizontal braces are put above or below an expression with the \overbrace
and \underbrace commands.

—
a+b+c+d \overbrace{a+ \underbrace{b + c} + d}

In a displayed formula. a subscript or superscript puts a label on the brace.

24
\[\underbrace{a + \overbrace{b

e e,
a+b+--+y+z
A I A + \cdots + y} {24} + z }_{26} \]

26

Accents

The accent commands described in Section 3.2.1 are for ordinary text and cannot
be used in math mode. Accents in formulas are produced with the commands
shown in Table 3.11. The letter a is used as an illustration; the accents work
with any letter.

Wide versions of the \hat and \tilde accent are produced by the \widehat
and \widetilde commands. These commands try to choose the appropriate-
sized accent to fit over their argument. but they can’t produce very wide accents.

Here are two sizes of wide hat: 1 —r = :7/. ... \(\widehat{i-x} = \widehat{-y} \).

The letters 1 and j should lose their dots when accented. The commands \imath
and \jmath produce a dotless 7 and j. respectively.

There are no dots in 7+ J. ... \(\vec{\imath} + \tilde{\jmath} \).

52 Carrying On
Stacking Symbols
The \stackrel command stacks one symbol above another.
A%plc \(A \stackrel{a’}{\rightarrow} B ... \)
e (T1....,2n) \(\vec{x} \stackrel{\rm def}{=} ... \)

See Section 3.3.8 for an explanation of the \rm command. The \stackrel
command’s first argument is printed in small type, like a superscript: use the
\textstyle declaration of Section 3.3.8 to print it in regular-size type.

3.3.7 Spacing in Math Mode

In math mode, TEX ignores the spaces you type and formats the formula the way
it thinks is best. Some authors feel that TEX cramps formulas, and they want
to add more space. TEX knows more about typesetting formulas than many
authors do. Adding extra space usually makes a formula prettier but harder
to read, because it visually “fractures” the formula into separate units. Study
how formulas look in ordinary mathematics texts before trying to improve TX's
formatting.

Although fiddling with the spacing is dangerous. you sometimes have to do it
to make a formula look just right. One reason is that TEX may not understand
the formula’s logical structure. For example, it interprets y dx as the product
of three quantities rather than as y times the differential dz. so it doesn’t add
the little extra space after the y that appears in y dz. Section 3.4 explains how
to define your own commands for expressing this kind of logical structure. so
you need worry about the proper spacing only when defining the commands.
not when writing the formulas.

Like any computer program that makes aesthetic decisions, TEX sometimes
needs human assistance. You'll have to examine the output to see if the spacing
needs adjustment. Pay special attention to square root signs, integral signs. and
quotient symbols (/).

The following four commands add the amount of horizontal space shown
between the vertical lines:

I\, thin space [l \: medium space
I \! negative thin space [l \; thick space

The \! acts like a backspace. removing the same amount of space that \, adds.
The \, conunand can be used in any mode. the others can appear only in math
mode. Here are some examples of their use. where the result of omitting the
spacing commands is also shown.

V2r \sqrt{2} \, x instead of 2z
n/logn n/ \! \log n instead of n/logn
[[zdzdy \int\'\!\int 2\,dx\,dy instead of [[zdzdy

3.3 Mathematical Formulas

53

As with all such fine tuning. you should not correct the spacing in formulas until
you've finished writing the document and are preparing the final output.

3.3.8 Changing Style in Math Mode
Type Style

TEX's default type style for letters in math mode is math italic, which is some-
what different from ordinary italic.

Is dif ferent any different from dif?e*rnt? Is $different$ any {\em different\/} ..

As is evident from this example, you should not use $...$ as a shorthand for
{\em...}.

The commands deseribed in Section 3.1 for changing the type style work in
math mode too. but they change the style only of letters and numbers, not of
other symbols.

Note the nonbold /" and + in: 2/x+y = z. ... \C {\bf 2\sqrt{x} \div y} = z \).

There are also two style-changing declarations that can be used only in math
mode: \cal for producing calligraphic letters, described in Section 3.3.2, and
\mit for math italic. Since math italic is the default in math mode, you’ll seldom
use the \mit command.

TEX regards uppercase Greek letters as letters, but lowercase Greek ones as
symbols.

Note the nonbold 7 in IT ~ 7 x x. ... in $\bf \Pi \sim \pi \times x$.

The \boldmath declaration causes TEX to make boldface the default for both
letters and symbols in formulas. However. this declaration cannot be used in
math mode. so vou must use an \mbox command if you don't want all the
symbols in a formula to be bold.

Only the r and 7 are bold here: a + zm — p. ...\(a + \mbox{\boldmath $x \pi$} - \rho\).

The \boldmath and type style declarations do not cliange the style of everything
one would expect them to. For example, subscripts and superscripts are not
made bold by \boldmath. See Section (.14.4 for a list of all such anomalies.

54

Carrying On

Math Style
TEX uses the following four math styles when typesetting formulas:

display For normal symbols in a displayed formula.
text For normal symbols in an in-text formula.
script For subscripts and superscripts.

scriptscript For further levels of sub- and superscripting, such as sub-
scripts of superscripts.

Display and text math styles are the same except for the size of the variable-
sized symbols in Table 3.8 on page 45 and the placement of subscripts and
superscripts on these symbols, on some of the log-like functions in Table 3.9 on
page 46, and on horizontal braces. TEX uses small type in script style and even
smaller type in scriptscript style. The declarations \displaystyle, \textstyle,
\scriptstyle, and \scriptscriptstyle force TEX to use the indicated style.

Compare the small superscript in e**) with the ... small superscript in \(e~ {x(i)} \)

large one in ey(i).

. large one in \(e~{\textstyle y(i)} \).

3.3.9 When All Else Fails

If you write a lot of complicated formulas, sooner or later you’ll encounter one
that can’t be handled with the commands described so far. When this happens,
the first thing to do is look at the advanced IATX features described in Sections
C.6 and C.9.2. Commutative diagrams are easy to make with IATX’s picture
environment, described in Section 5.5, which allows you to draw lines and arrows
and to specify exactly where to put each part of the formula. Some formatting
problems can be solved by using the commands in Section 5.4.3 to change how
big TEX thinks a subformula is.

There are some formulas that can’t be handled easily with IATEX commands.
If you run into one, you have two choices: reading The TpXbook [3] to learn TEX's
advanced commands for mathematics, or visually formatting the formula with
the picture environment. Since this environment allows complete control over
where each symbol is placed, it can be used to format any formula exactly the
way you want it. However, this is a tedious way to make a formula and should
be used only for solving rare problems. If you often encounter formulas that
IATX can’t handle easily, then you're probably writing very heavy mathematics;
learning more about TEX may ultimately save you time.

3.4 Defining Commands and Environments

The input file should display as clearly as possible the document’s logical struc-
ture. Any structure, such as a mathematical notation, that is repeated should

3.4 Defining Commands and Environments

55

be expressed in a form that makes the structure apparent. This usually requires
defining your own special commaud or environment. The following two sections
explain how to do this. Section 3.4.3 deseribes how to handle theorems and
siiilar structures.

3.4.1 Defining Commands

The simplest type of repeated structure occurs when the same text appears
in different places. The \newcommand declaration defines a new command to
generate such text: its first argument is the command name and its second
argument 1s the text.

Let T'; be the number of gnats per cubic meter, \newcommand{\gn}{Γ_{i}}

where T'; is normalized with respect to v(s).

The _ commands are needed because TEX ignores space characters following
the command name \gn.

This example illustrates a common problem in defining commands to produce
mathematical formulas. The \Gamma command can be used only in math mode,
which is why the $'s are needed in the \newcommand argument. However, the
command \gn cannot be used in math mode because the first $ would cause
TEX to leave math mode. The command

\newcommand{\gnat}{\mbox{Γ_{i}}}

defines \gnat to have the same effect as \gn when used in paragraph or LR mode,
but \gnat can also be used in math mode. This is a trick worth remembering.
In addition to making the input more readable, defining your own commands
can save typing. IATX's command and environment names have generally been
chosen to be descriptive rather than brief. You can use \newcommand to define
abbreviations for frequently-used commands. For example, the declarations

\newcommand{\be}{\begin{enumerate}}
\newcommand{\ee}{\end{enumeratel}}

define \be .. \ee to be equivalent to
\begin{enumerate} ... \end{enumerate}

For repetitive structures having components that vary, you can define com-
mands with arguments by giving \newcommand an optional arguinent.

Let \gn\ be the ... where \gn\ is

Since gnu(5z:y) and gnu(5r—1:y+1) represent ad- \newcommand{\gnaw} [2] {{\em gnu\/}${#1;#2)$}

jacent populations. they are approximately equal.

Since \gnaw{5x}{y} and \gnaw{5x-1}{y+1i} ...

56

Carrying On

The optional argument 2 (in square brackets) specifies that \gnaw has two argu-
ments. The #1 and #2 in the last argument of \newcommand are called parame-
ters: they are replaced by the first and second arguments, respectively. of \gnaw
when that command 1s used. A command may have up to nine arguments.

When you define a command like \gnaw. the definition is saved exactly as it
appears in the \newcommand declaration. When TEX encounters a use of \gnaw.
it replaces \gnaw and its arguments by the definition. with the arguments substi-
tuted for the corresponding parameters—the #1 replaced by the first argument
and the #2 replaced by the second. TEX then processes this text pretty much
as if you had typed it instead of typing the \gnaw command. However. defining
a command to have space at the end is usually a bad idea. since it can lead to
extra space in the output when the command is used.

One command can be defined in terms of another.

The above definition of gnu(0:1) gives gnu(5z:y) \newcommand{\usegnaw}{\gnaw{5x}{y}}

the expected value.

of \gnaw{0}{1} gives \usegnaw\ the

It doesn’'t matter whether the \newcommand declaration defining \usegnaw comes
before or after the one defining \gnaw. so long as they both come before any
use of \usegnaw. However. a command cannot be defined in terms of itself.
since TEX would chase its tail forever trying to figure out what such a definition
meant.?

When TEX encounters a command. it looks for that command’s arguments
before interpreting it or any subsequent commands. Thus. you can’t type

\newcommand{\gnawargs}{{5x}{y}} \gnaw\gnawargs is wrong

because TEX expects the \gnaw command to be followed by two arguments
enclosed in braces, not by another command.

The braces surrounding the last argument of the \newcommand declaration
do not become part of the command’s definition. and the braces surrounding
an argument are thrown away before substituting the argument for the corre-
sponding parameter. This means that the braces delimiting an argument do
not delimit the scope of declarations in the argument. To limit the scope of
declarations contained within an argument. you must add explicit braces in the
command definition.

gnus(r:54) is fine. but in gnus(x:54) the scope of \newcommand{\good} [3]{{#1}$ ({#2}; {#3}) $}
the emphasis declaration extends into the following \newcommand{\bad} [3] {#1$ (#2;#3)$}

text.

\good{\em gnus\/}{x}{54} is fine, but in
\bad{\em gnus\/}{x}{54}, the scope

=This kind of recursive definition is possible using more advanced TEX commands. but it
cannot be done with the MWTEX commands described in this book.

.

3.4 Defining Commmands and Environments 57

Using \newcommand to define a comumand that already exists produces an
error. The \renewcommand declaration redefines an already-defined command;
it has the same arguments as \newcommand. Don't redefine an existing command
untess you know what yvou're doing. Even if you don’t explictly use a command,
redefining it can produce strange and unpleasant results. Also, never define or
redefine anny command whose nane begins with “\end”.

The \newcommand and \renewcommand commands are declarations, their
scopes determined by the rules given in Section 2.2.1. It’s a good idea to put
all command definitions together in the preamble; that way you won’t have to
search through the input file to find them.

3.4.2 Defining Environments

The \newenvironment coimmmand is used to define a new environment. A com-
mand of the form

\newenvironment{cozy}{begin text}{end text}

defines a cozy enviromuent for which TEX replaces a \begin{cozy} command by
the begin text and an \end{cozy} command by the end text. A new environment
is usually defined in terms of an existing environment such as itemize, with the
begin text beginning the itemize environment and the end text ending it.

Here is an example of a user-defined environment: \newenvironment{emphit}{\begin{itemize}
o This environment produces emphasized items. \em}{\end{itemize}}
; . example of a user-defined environment:
o It is defined m terms of IATEX 's itemize en- \begin{emphit}
vironment and \em command. \item This environment produces
\end<{emphit}

An optional arguinent of the \newenvironment command allows you to define
an environment that has arguments; it works the same as described above for
\newcommand.

Observe how a new logical structure-—in this ex- \newenvironment{descit}[1]{\begin{quote}
ample, a labeled description of a single item—can {\em #1\/}:}{\end{quote}}

be defined in terins of existing environments. A
defined in terms of existing environments.
\begin{descit}{Armadillos}

This witty description of the armadillo
\end{descit}

Armadilos: This witty description of
the armadillo was produced by the
descit environment.

The paramneters (the #1. #2. etc.) can appear only in the begin text. The com-

ments made above about the scope of declarations that appear inside arguments
of a command defined with \newcommand apply to the arguments of environ-

ments defined with \newenvironment.

58 Carrying On

The \newenvironment command produces an error if the environment is
already defined. Use \renewenvironment to redefine an existing environment. If
\newenvironment complains that an environment you've never heard of already
exists, choose a different environment name. Use \renewenvironment only when
you know what you're doing; don’t try redefining an environment that you don’t
know about. e

3.4.3 Theorems and Such

Mathematical text usually includes theorems and/or theorem-like structures
such as lemmas, propositions, axioms, conjectures, and so on. Nonmathemat-
ical text may contain similar structures: rules, laws, assumptions, principles,
etec. Having a built-in environment for each possibility is out of the question,
so IATX provides a \newtheorem declaration to define environments for the
particular theorem-like structures in your document.

The \newtheorem command has two arguments: the first is the name of the
environment, the second is the text used to label it.

Conjectures are numbered consecutively from the \newtheorem{guess}{Conjecture}
beginning of the document; this is the fourth one: ..
document; this is the fourth one:
\begin{guess}

All conjectures ... than others.
\end{guess}

Conjecture 4 All conjectures are interesting, but
some conjectures are more interesting than others.

The \newtheorem declaration is best put in the preamble, but it can go anywhere
in the document.

A final optional argument to \newtheorem causes the theorem-like environ-
ment to be numbered within the specified sectional unit.

This is the first Axiom of Chapter 3: \newtheorem{axiom}{Axiom} [chapter]
Axiom 3.1 All azioms are very dull. it.u'egin{axiom}
All axioms are very dull.
\end{axiom}

Theorem-like environments can be numbered within any sectional unit; using
section instead of chapter in the above example causes axioms to be numbered
within sections.

Sometimes one wants different theorem-like structures to share the same
numbering sequence- so. for example. the hunch immediately following Conjec-
ture 5 should be Hunch 6.

59

3.5 Figures and Other Floating Bodies

Conjecture 5 Some good conjectures are num- \newtheorem{guess}{Conjecture}

bered. \newtheorem{hunch} [guess] {Hunch}

Hunch 6 There are no sure-fire hunches. \begin{guess} Some good ... \end{guess}
\begin{hunch} There are ... \end{hunch}

The optional argument guess in the second \newtheorem command specifies
that the hunch enviromment should be numbered in the same sequence as the
guess environient.

A theorem-like environmment defined with \newtheorem has an optional argu-
ment that is often used for the inventor or common name of a theorem, definition,
or axiom.

Conjecture 7 (Fermat) There do not exist inte- \begin{guess} [Fermat]

gersn > 2, r,y. and z such that 2" + y" = 2". There do not exist integers $n>2$, x,
y, and z such that

\end{guess}

See Section C.1.1 if the body of a theorem-like environment begins with a [.

3.5 Figures and Other Floating Bodies

3.5.1 Figures and Tables

Though documents would be easier to read if no sentence were ever split across
two pages. typesetters must break sentences to avoid partially filled pages. Some
things. like pictures and tables. cannot be split; they must be “floated” to conve-
nient places. sucl as the top of the following page. to prevent half-empty pages.
The standard IATX document styles provide two environments that cause their
contents to float n this way: figure and table. The figure environment is
generally used for pictures and the table environment for tabular information.
Special document styles might also have environments for floating other kinds
of objects. such as computer programs. However, INTEX doesn’t care what you
use these environnients for: so far as it’s concerned, the only difference between
themn is how they are captioned.

The caption on a figure or table is made with a \caption command hLav-

ing the caption’s text as its argument. This is a moving argument, so fragile
commands st be \protect'ed (see Section 2.2.3). The figure or table en-
vironment i placed in with the text, usually just past the point where it is first

melrtione

60 Carrying On

The body of the figure goes here. This figure hap- This is place in the running text that
pened to float to the top of the current page. mentions Figure™7 for the first time.
: : \begin{figure}
Figure 7: The caption goes here. The body of the figure goes here.
This figure ... the current page.
\caption{The caption goes here_ }
\end{figure}
This is place in the running text that mentions The figure will not be put on an ...

Figure 7 for the first time. The figure will not be
put on an earlier page than the text preceding the
figure environment.

TEX processes the body of a figure or table in paragraph mode. Figures are
usually made with the picture environment of Section 5.5 and tables with the
tabular environment of Section 3.6.2. Section 5.6 tells how to center the figure
or table.

The \vspace command instructs IATEX to leave room for material to be
pasted in later, its argument specifying how much vertical space to allow. To
leave room for a picture that’s 3.5 inches high, you type:

\begin{figure}

\vspace{3.5in}

\caption{Isn’t this a pretty picture?}
\end{figure}

If you prefer to think in centimeters, you can type 8.89cm instead of 3.5in.
Section 5.4.1 gives other units for describing vertical space.

The article document style numbers figures and tables consecutively
throughout the paper: the report and book document styles number them
within chapters. Tables are numbered separately from figures, using the same
numbering scheme. Section 4.2 explains how to number cross-references auto-
matically, so you never have to type the actual figure numbers.

The body of a figure or table is typeset as a paragraph the same width as
in the ordinary running text. Section 5.4.3 explains how to make paragraphs of
different widths, position two half-width figures side by side. and do other so-
phisticated formatting within a figure or table environment. More than one
\caption command can appear in the same figure or table environment. pro-
ducing a single floating object with multiple numbered captions. The \caption
command can be used only in a figure or table environment.

The standard document styles may place figures and tables above the text
at the top of a page. below the text at the bottom of a page. or on a separate
page containing nothing but figures and tables. Section C.8.1 describes the rules
by which INTRX decides where a floating object should float and how you can
influence its decision: read that section if you don’t understand why IATRX put
a figure or table where 1t did.

3.5 Figures and Other Floating Bodies 61

3.5.2 Marginal Notes

A marginal note is made with the \marginpar command, having the text as its

argument. The note is placed in the margin, its first line even with the line of This is a mar-
text containing the couunand. TEX is in paragraph mode when processing the ginal note.
marginal note. The following example shows how I typed this paragraph.

and, having the text as its ... placed in the margin,

line even with the line of This 1s a mar- \marginpar{\em This is a marginal note.}
mode when processing the ginal note. its first line even with the line of
yped this paragraph. ... how I typed this paragraph.

The standard docuinent styles put notes in the right margin for one-sided
printing (the default). in the outside margin for two-sided printing (the twoside
style option), and in the nearest margin for two-column formatting (the
twocolumn style option). Section C.8.2 describes commands for getting IATRX
to put them in the opposite margin.

You may want a marginal note to vary depending upon which margin it’s in.
For example. to make an arrow pointing to the text, you need a left-pointing
arrow in the right margin and a right-pointing one in the left margin. If the
\marginpar conuuand is given an optional first argument, it uses that argument
if the note goes i the left margin and uses the second (mandatory) argument
if it goes in the right margin. The command

\marginpar [\Rightarrow]{\Leftarrow}

makes an arrow that points towards the text, whichever margin the note appears
in.3

A marginal note is never broken across pages; a note that’s too long will
extend below the page’s bottom margin. IATEX moves a marginal note down on
the page to keep it from bumping into a previous one, warning you when it does
so. When using notes more than two or three lines long, you may have to adjust
their placement according to where they happen to fall on the page. The vertical
position of a note is changed by beginning it with a vertical spacing command
(Section 5.4.2). You may also have to use the commands of Section 5.2.2 to
control where [ATEX starts a new page. This is visual design., which means
reformatting if you make changes to the document. Save this job until the very
end. after you've finished all the writing.

Marginal notes are not handled efficiently by IATEX: it may run out of space if
you use too many of them. How many you can use before this happens depends
upon what computer you're running IATpX on and how many figures and tables
you have. but more than five marginal notes on any one page is dangerous.

3The arrows won’t be symmetrically placed, since both will be at the left of the space

reserved fi rginal notes. The \hfill command of Section 5.4.2 can be used to adjust their

horizonta sition

62

Carrying On

3.6 Lining It Up in Columns

The tabbing and tabular environments both can align text in columns. The
tabbing environment allows you to set tab stops similar to the ones on a type-
writer, while the tabular environment is similar to the array environment de-
scribed in Section 3.3.3. except that it is for ordinary text rather thanformulas.

The tabbing and tabular environments differ in the following ways:

e The tabbing environment can be used only in paragraph mode and makes

a separate paragraph: the tabular environment can be used in any mode
and can put a table in the middle of a formula or line of text.

TEX can start a new page in the middle of a tabbing environment, but
not in the middle of a tabular environment. Thus. a long tabbing envi-
ronment can appear in the running text. but a long tabular environment
should go in a figure or table (Section 3.5.1).

TEX automatically determines the widths of columns in the tabular en-
vironment: you have to do that yourself in the tabbing environment by
setting tab stops.

A change of format in the middle of the environment is easier in the
tabbing than in the tabular environment. This makes the tabbing en-
vironment better at formatting computer programs.

3.6.1 The tabbing Environment

In the tabbing environment. you align text in columns by setting tab stops and
tabbing to them. somewhat as you would with an ordinary typewriter. Tab
stops are set with the \= command. and \> moves to the next tab stop. Lines

are separated by the \\ command.

The tabbing environment starts a new line.

If it’s raining
then put on boots.
take hat;
else smile.
Leave house.

The text that follows starts on a new line. begin-
ning a new paragraph if you leave a blank line after
the \end{tabbing} command.

Unlike a typewriter's tabbing key. the \> command tabs to the logically next

. environment starts a new line.

\begin{tabbing}

If \= it’s raining A\
\> then \= put on boots,\\
\> \> take hat; \\
\> else \> smile. \\

Leave house.

\end{tabbing}

The text that follows starts on a new ...

tab stop. even if that means tabbing to the left.

3.6 Lining It Up in Columns 63

\begin{tabbing}
A short column A short \= column. A\
This is té¢d/Igng/ / / This is too long. \> / / / / / / /
\end{tabbing}
\mbox{}

Remember that the input file's format doesn’t matter; one space is the same as
a hundred.
The \= command resets the logically next tab stop.

\begin{tabbing}
Ol1d Column 1 Old Col 2 Old Col 3 01d Column 1 \= 014 Col 2 \= 01d Col 3 \\
Col 1 Col 2 Col 1 \> Col 2 \\
New Col 1 New 2 Same Col 3 New Col 1 \= New 2 \> Same Col 3 \\
Col 1 Col 2 Col 3 ColtT \> Col 2 \> Col 3
\end{tabbing}

Spaces are ignored after a \= or \> command, but not before it.
A line that ends with a \kill command instead of a \\ produces no output,
but can be used for setting tabs.

\begin{tabbing}

Armadillo \= Armament \= \kill
Gnat Gnu Gnome Gnat \> Gnu \> Gnome \\
Armadillo Armament Armorer Armadillo \> Armament \> Armorer

\end{tabbing}

A declaration made in a tabbing environment is local to the current item; its
scope is ended by the next \=, \>, \\, \kill, or \end{tabbing} command.

A lively gnat A dull gnu A lively \em gnat \> A dull gnu \\

The tabbing environment has a number of additional features that are described
in Section C.9.1.

3.6.2 The tabular Environment

The tabular environment is similar to the array environment, so you should
read Section 3.3.3 before reading any further here. It differs from the array
environment in two ways: it may be used in any mode. not just in math mode,
and its items are processed in LR mode instead of in math mode. This makes
tabular better for tabular lists and array better for mathematical formulas.
This section describes some features used mainly with the tabular envirommnent,
although they apply to array as well.

A | in the tabular environment’s argument puts a vertical line extending the
full height of the environment in the specified place. An \hline command after

64

Carrying On

a \\ or at the beginning of the environment draws a horizontal line across the
full width of the environment. The \cline{:-j} command draws a horizontal
line across columns 2 through j, inclusive.

\begin{tabular}{|[1|1r| |} \hline

Note the placement of “Item” and “Price”:

gnats EHaIIL $13.65 gnats & gram &\$13.65 \\ \cline{2-3}
each 01 & each & .01 \\ \hline
gnu stuffed _ 92.50 gnu & stuffed & 92.50
emur 33.33 \\ \cline{1-1} \cline{3-3}
armadillo | frozen 8.99 emur & & 33.33 \\ \hline
armadillo & frozen & 8.99 \\ \hline
\end{tabular}

This is the only situation in which a \\ goes after the last row of the environment.
A single item that spans multiple columns is made with a \multicolumn
command, having the form

\multicolumn{n}{pos}{item}

where n is the number of columas to be spanned, pos specifies the horizontal
positioning of the item—just as in the environment’s argument—and item is
the item’s text. The pos arguinent replaces the portion of the environment’s
argument corresponding to the n spanned columns; it must contain a single 1,
r, or ¢ character and may contain | characters.

...\begin{tabular}{11lr}
\multicolumn{2}{c}{Item} &

Item Price \multicolumn{1}{c}{Price} \\
gnat (dozen) 3.24 gnat & (dozen) & 3.24 \\
gnu (each) 24.98547 gnu & (each) & 24,98547

\end{tabular}

A \multicolumn command spanning a single column serves to override the item
positioning specified by the environment argument.

When the environment arguiment has | characters, it's not obvious which of
them get replaced by a \multicolumn's positioning argument. The rule is: the
part of the environment argument corresponding to a single column begins with
an 1, r. or ¢ character.

\begin{tabular}{|1|1ir|} \hline\hline
type style {\em type} &
smart red short \multicolumn{2}{c[}{\em style} \\ \hline
rather silly | puce tall smart & red & short \\

rather silly & puce & tall \\ \hline\hline
\end{tabular}

3.7 Simulating Typed Text

The tabular enviromment produces an object that TEX treats exactly like
a single, big letter. You could put it in the middle of a paragraph—or in the
middle of a word — but that would look rather strange. A tabular environment
is usually put in a figure or table (Section 3.5.1), or else displayed on a line by
itself. using the center enviromuent of Section 5.6.

3.7 Simulating Typed Text

A printed document may contain simulated typed text—for example, the in-
struction manual for a computer program usually shows what the user types.
The \tt declaration produces a typewriter type style (Section 3.1), but it doesn’t
stop TEX from breaking the text into lines as it sees fit. The verbatim environ-
ment allows you to type the text exactly the way you want it to appear in the
document.

The verbatim environment is the one place where ... to how the input file is formatted.

IATEX pays attention to how the input file is for- \begin{verbatim}

matted. What the #%|&$_\"" is ‘‘going’’ {on}
here \today \\\\7?7?

What the #/1&$_\"" is ‘‘going’’ {on} \end{verbatim}

here \today \\\\???7?

Each space you type produces a space in the output, and new lines are begun just
where you type them. Special characters such as \ and { are treated like ordinary
characters in a verbatim enviromment. In fact, you can type anything in the
body of a verbatim environment except for the fourteen-character sequence
“\end{verbatim}".

The verbatim environment begins on a new line of output, as does the text
following it. A blauk line after the \end{verbatim} starts a new paragraph as
usual.

The \verb command siinulates a short piece of typed text inside an ordinary
paragraph. Its argument is not enclosed in braces, but by a pair of identical
characters.

The %\ }{@% gnat and --#$ gnus are silly. The \verb+%\ }{@&+ gnat and \verb2--#$2 ...

The argument of the first \verb commmand is contained between the two + char-
acters, the arguiment of the second between two 2 characters. Instead of + or 2,
you can use any character that does not appear in the argument except a space,
a letter. or a *. The argument of \verb may contain spaces, but it should all
be on a single line of the input file.

There are also a verbatim* environment and a \verb* command. They
are exactly like verbatim and \verb cxcept that a space produces a , symbol
instead of a blank space.

66 Carrying On

You can type $x_=_y$ or _$x=y$_. ... \verb*|$x = y$| or \verb*/ $x=y$ /.

The verbatim environment and \verb command are inherently anomalous. since
characters like $ and } don't have their usual meanings. This results in the
following restrictions on their use: .
e A verbatimenvironment or \verb command may not appear within an ar-
gument of any other command. (However, they may appear inside another
environment.)

e There may be no space between a \verb or \verb* command and its
argument.

e There may be no space between “\end” and “{” in \end{verbatim}.

The verbatim environment is for simulating typed text; it is not intended to
turn IATEX into a typewriter. If you're tempted to use it for visual formatting,
don’t: use the tabbing environment of Section 3.6.1 instead.

3.8 Letters

The letter document style is for making letters—the kind that are put in an
envelope and mailed. You can make any number of letters with a single input
file. Your name and address, which are likely to be the same for all letters,
are specified by declarations. The return address is declared by an \address
command. with multiple output lines separated by \\ commands.

\address{1234 Ave.\ of the Armadillos\\
Gnu York, G.Y. 56789}

The \signature command declares your name. as it appears at the end of the
letter, with the usual \\ commands separating multiple lines.

\signature{R. (Ma) Dillo \\ Director of Cuisine}

These declarations are usually put in the preamble. but they are ordinary dec-
larations with the customary scoping rules and can appear anywhere in the
document.

Each letter is produced by a separate letter environment. having the name
and address of the recipient as its argument. The argument of the letter
environment is a moving argument. The letter itself begins with an \opening
command that generates the salutation.

3.8 Letters

67

1234 Ave. of the Anmnadillos
Gnu York, G.Y. 56789

\begin{letter}{Dr.\ G. Nathaniel Picking \\
Acme Exterminators\\ 33 Swat Street \\

July 4. 1996 Hometown, Illinois 62301}

Dr. G. Nathaniel Picking \opening{Dear Nat,}
Acme Exterminators
33 Swat Street

Hometown. Illinois 62301
Dear Nat,

I'm afraid that the armadillo problem is still with
us. I did everything ...

The return address is determined by the \address declaration; IATX supplies
the date. An \address and/or \signature command that applies just to this
letter can be put between thie \begin{letter} and the \opening command.

The main body of the letter is ordinary IATEX input. but commands like
\section that make no sense in a letter should not be used. The letter closes
with a \closing command.

. and I hope you can get rid of the nasty beasts
this time. beasts this time.

Best regards. \closing{Best regards,}

R. (Ma) Dillo
Director of Cuisine

The name comes from the \signature declaration.
The \cc command can be used after the closing to list the names of people
to whom you are sending copies.

cc: Jimmy Carter
Richard M. Nixon

There's a similar \encl command for a list of enclosures.

Additional text after the closing must be preceded by a \ps command. This
command generates no text——you’ll have to type the “P.S.” yourself—but is
needed to format the additional text correctly.

A \makelabels command in the preamble will cause IATEX to print a list of
mailing labels. one for each letter environment, in a format suitable for xero-
graphic copyving onto “peel-off" labels. A mailing label without a corresponding
letter is produced by an empty letter environment—one with nothing between
the argument and the \end{letter} command.

The letter document style may have other special featires- especially if
you are using IATEX at a company or university. For example, leaving out the

I'm afraid that the armadillo problem
is still with us. I did everything

\cc {Jimmy Carter \\ Richard M. Nixon}

. and I hope you can get rid of the nasty

CHAPTER 4

Moving
Information
Around

70

Moving Information Around

The commands described in this chapter all enable you to move information
from one place to another. For example, when you make a table of contents,
the information it contains comes from the sectioning commands that are scat-
tered throughout the input file. Similarly, the IATzX command that generates a
cross reference to an equation must get the equation number from the equation
environment, which may occur several chapters later. f

Moving information in this way requires two passes over the input: one
pass to find the information and a second pass to put it into the text. To
compile a table of contents, one pass determines the titles and starting pages
of all the sections and a second pass puts this information into the table of
contents. Instead of making two passes every time it is run, JATEX reads your
input file only once and saves the cross-referencing information in special files
for use the next time. For example, if sample.tex had a command to produce a
table of contents, then IATEX would write the necessary information into the file
sample.toc. It would use the information in the current version of sample.toc
to produce the table of contents, and would write a new version of that file to
produce the table of contents the next time IATEX is run with sample.tex as
input.

IATEX's cross-referencing information is therefore always “old”, since it was
gathered on a previous execution. This will be noticeable mainly when you are
first writing the document—for example, a newly added section won’t be listed
in the table of contents. However, the last changes you make to your document
will normally be minor ones that polish the prose rather than add new sections
or equations. The cross-referencing information is unlikely to change the last few
times you run IATEX on your file, so all the cross-references will almost always
be correct in the final version. In any case, if the cross-referencing is incorrect,
IATEX will type a warning message when it has finished. Running it again on
the same input will correct any errors.!

4.1 The Table of Contents

A \tableofcontents command produces a table of contents. More precisely, it
does two things:

o It causes IATEX to write a new toc file—that is. a file with the same first
name as the input file and the extension toc—with the information needed
to generate a table of contents.

e It reads the information from the previous version of the toc file to produce
a table of contents. complete with heading.

LIf you're a computer wizard or are very good at mathematical puzzles, you may be able
to create a file in which a reference to a page number always remains incorrect. The chance
f that happening by accident is infinitesimal.

4.2 Cross-References

The commands \listoffigures and \listoftables produce a list of figures
and a list of tables. respectively. They work just like the \tableofcontents
command, except that IATEX writes a file with extension 1of when making a
list of figures and a file with extension lot when making a list of tables.

You can edit the toc, 1lof, and lot files yourself if you don’t like what IATEX
does. This allows you to perform such fine tuning as changing the page breaks
in a long table of contents. Do this only when preparing the final version of
your document, and use a \nofiles command (described in Section C.10.1) to
suppress the writing of new versions of the files.

4.2 Cross-References

One reason for numbering things like figures and equations is to refer the reader
to them, as in: “See Figure 3 for more details.” You don’t want the “3” to
appear in the input file because adding another a figure might make this one
become Figure 4. Instead. you can assign a key of your choice to this figure
and refer to it by that key, letting IATIX translate the reference into the figure
number. The key is assigned by the \label command, and is referred to by the
\ref command. A \label command appearing in ordinary text assigns to the
key the number of the current sectional unit; one appearing inside a numbered
environment assigns that number to the key. In the following example, the
\label{eq:euler} conumand assigns the key eq:euler to the equation number,
and the command \ref{eq:euler} generates that equation number.

Equation 12 in Section 2.3 below is Euler’s famous Equation™\ref{eq:euler} in
result. Section™\ref{sec-early} below

\subsection{Early Results}

2.3 Early Results \label{sec~-early}
Euler’s equation Euler’s equation
\begin{equation}
" +1=0 (12) e~{i\pi} + 1 =0 \label{eq:euler}
\end{equation}

combines the five most important numbers in

" ; ! combines the five most important
mathematics in a single equation.

A key can consist of any sequence of letters, digits. or punctuation characters
(Section 2.1). Upper- and lowercase letters are different. so gnu and Gnu are
distinet keys.

To assign the number of a sectional unit to a key. you can put the \label
command anywhere within the unit except within an environment in which it

would assign some other number, or you can put it in the argument of the
sectioning command. The following environments generate numbers that can

be assigned to keys with a \label comand: equation. eqnarray, enumerate

72

Moving Information Around

(assigns the current item’s number), figure, table, and any theorem-like envi-
ronment defined with the \newtheorem command of Section 3.4.3. Since there
can be several captions in a figure or table environment, \caption works like
a sectioning command within the environment, with the \label command going
either after the \caption command or in its argument.

The \pageref command is similar to the \ref command except it produces
the page number of the place in the text where the corresponding \label com-
mand appears.

See page 42 for more details. See page~\pageref{‘meaning’} for more

Text on page 42:

The \label{‘meaning’} meaning of life,

The meaning of life, the universe, and ...

See Section 2.2.1 for an explanation of why the ~ command is needed. A \ref or
\pageref command generates only the number, so you have to type the “page”
to produce “page 427.

The numbers generated by \ref and \pageref were assigned to the keys the
previous time you ran IATRX on your document. While section and equation
numbers are changed only by adding or removing a section or equation, adding
or deleting any text may change the page number assigned to a key.

The \ref and \pageref commands are fragile. A \label can appear in
the argument of a sectioning or \caption command, but in no other moving
argument. If you use a lot of keys (more than about forty), try to keep them
reasonably short or you may cause IATyX to run out of space.

Using keys for cross-referencing saves you from keeping track of the actual
numbers. but it requires you to remember the keys. You can produce a list of
the keys by running IATX on the input file 1lablst. (Your Local Guide tells
exactly how to do this.) IATRX will then ask you to type in the name of the
input file whose keys you want listed, as well as the name of the document style
specified by that file’s \documentstyle command.

4.3 Bibliography and Citation

A citation is a cross-reference to another publication. such as a journal article.
called the source. The modern method of citing a source is with a cross-reference
to an entry in a list of sources at the end of the document. With IATEX, you can
either produce the list of sources yourself or else use a separate program called
BIBTEX to generate it from information contained in a bibliographic database.

4.3 Bibliography and Citation 78

4.3.1 Doing It Yourself

The source list is created with a thebibliography environment, which is hke
the enumerate envirommnent described in Section 2.2.4 except that:

e List items are begun with the \bibitem command. Its argument is a key
by which the source can be cited with a \cite command. (The \bibitem
and \cite connuands work much like the \label and \ref commands of
Section 4.2.)

e The thebibliography environment has an argument that should be a
piece of text the same width as or slightly wider than the widest item
label in the source list.

See [67] for the hairy details. See \cite{kn:gnus} for the hairy details.

\begin{thebibliography}{99}
References ..
. \bibitem{kn:gnus} D. E. Knudson.

: 1966 World Gnus Al !
[67] D. E. Knudson. 1966 World Gnus Almanac. e or REca =

Permafrost Press. Novosibirsk. N thebib IS Cgraphys

Note that 99" is exactly as wide as all other two-digit numbers.

A key can be any sequence of letters, digits and punctuation characters,
except that it may not contain a comma (,). As usual in IATEX, upper- and
lowercase letters are considered to be different.

You can cite multiple sources with a single \cite, separating the keys by
commas. The \cite command has an optional argument that adds a note to
the citation.

See [4,15.36] or [67. pages 222-333] for information See \cite{tom-gnat,dick:gnu,harry-arm} or
on the care and feeding of gnus. \cite[pages 222--333]{kn:gnus} for ...

Instead of using mumnbers. you can choose your own labels for the sources by
giving an optional argument to the \bibitem command.

See [Knud 66! for the hairy details. See \cite{kn:gnus} for the hairy details.

\begin{thebibliography}{Dillo 83}
References B
. \bibitem[Knud 66]{kn:gnus} D. E. Knudson.

. . - I {\em 1966 World Gnus Almanac.}
(Knud 66] D. E. Knudson. 1966 World Gnus Al-

X = = e
Permafrost Press., Novosibirsk. \end{thebibliography}

74

Moving Information Around

In this example. “[Dillo 83]" should be the longest label. The optional argument
of \bibitem is a moving argument.

As in any kind of cross-reference. citations are based upon the information
gathered the previous time IATEX was run on the file, so when you change the
source list. the citations won’t change until the second time you run IATEX.

¥

4.3.2 Using BIBTEX

BIBTEX is a separate program that produces the source list for a document.
obtaining the information from a bibliographic database. With BIBTEX, the
\cite command is used as above for citations, but instead of typing the source
list yourself, you type a \bibliography command whose argument specifies one
or more files containing the bibliographic database. The names of the database
files must have the extension bib. For example. the command

\bibliography{insect,animal}

specifies that the source list is to be obtained from entries in the files insect.bib
and animal .bib. See Appendix B to find out how to make bibliographic data-
base files.

The \nocite command causes one or more entries to appear in the source list.
but produces no output. For example. \nocite{g:nu,g:nat} causes BIBTEX to
put bibliography database entries having keys g:nu and g:nat in the source list.
A \nocite command can go anywhere after the \begin{document} command.
but it is fragile.

The \bibliographystyle command specifies the bibliography style. which
determines the format of the source list —just as the document style determines
the document’s format. For example. the command

\bibliographystyle{plain}

specifies that entries should be formatted as specified by the plain bibliography
style. The \bibliographystyle command must go after the \begin{document}
command.

The standard bibliography styles include the following.

plain Formatted more or less as suggested by van Leunen in A Handbook for
Scholars [7]. Entries are sorted alphabetically and are labeled with num-
bers.

unsrt The same as plain except that entries appear in the order of their first
citation.

alpha The same as plain except that entry labels like “*Knu66”. formed from
the author’s name and the vear of publication. are used.

4.4 Splitting Your Input

75

abbrv The samne as plain except that entries are more compact because first
nantes, month names, and journal names are abbreviated.

BIBTEX's bibliography styles can be customized to haudle most bibliography
formatting problems. but this requires sophisticated programming. The Local
Guide tells if any other bibliography styles are available and where to look for
mformation on creating your own styles.

To produce a source list with BIBT)2X. you have to understand how IATRX and
BIBTX interact. When you ran INTjoX with the input file sample . tex. you may
have noticed that IXT).X created a file named sample.aux. This file, called an
auriliary file. contains cross-referencing information. Since sample. tex contains
no cross-referencing commands. the auxiliary file it produces has no information.
However. suppose that IATEX is run with an input file named myfile.tex that
has citations and bibliography-making commuands. The auxiliary file myfile. aux
that it produces will contam all the citation keys and the arguments of the
\bibliography and \bibliographystyle commands. When BIBTEX is run,
it reads this information from the auxiliary file and produces a file named
myfile.bbl containing IATEN commands to produce the source list. (Your
Local Guide explains how to run BIBTEX on your computer.) The next time
[ATEN is run on myfile. tex. the \bibliography commaud reads the bbl file
(myfile.bbl). which generates the source list.

This procedure has the disadvantage that adding or removing a citation
may require running BIBTEX again to produce a new source list. (Moreover,
remember that chianges to the source hst are not nmmediately reflected in the
citatious.) It has the advantage that you can edit the bbl file yourself if you
don’t like the source list BIBTiX produced. While BIBTX gets most source-list
entries right. it is ouly a computer program. so you may occasionally encounter
a source that it does not handle properly. When this happens, you can correct
the eutry on the bbl file.

4.4 Splitting Your Input

A large document requires a lot of input. Rather than putting the whole miput
in a single large file. it’'s more efficient to split it into several smaller ones.
Regardless of how many separate files vou use. there is one that is the root file:
it is the one whose name you type when you run INTRX.

The \input command provides the shuplest way to split your input into sev-
ceral files. The command \input{gnu} in the root file canses IATi2X to insert the
contents of the file gnu. tex right at the current spot in your manuscript — just
as if the \input{gnu} command were removed from the root file and replaced
by the contents of the file gnu.tex. (However. the input files are not changed.)
The file gnu tex may also contain an \input command. calling another file that
may have its own \input commands, and so on.

76

Moving Information Around

Besides splitting your input into convenient-sized chunks, the \input com-
mand also makes it easy to use the same input in different documents. While
text is seldom recycled in this way, you might want to reuse declarations. You
can keep a file containing declarations that are used in all your documents, such
as the definitions of commands and environments for your own logical structures
(Section 3.4). You can even begin your root file with an \input command and
put the \documentstyle command in your declarations file.

Another reason for splitting the input into separate files is to run IATEX on
only part of the document so, when you make changes, only the parts that have
changed need to be processed. For this, you must use the \include command
instead of \input. The two commands are similar in that \include{gnu} also
specifies that the contents of the file gnu.tex should be inserted in its place.
However, with the \include command, you can tell IATEX either to insert the
file or to omit it and process all succeeding text as if the file had been inserted,
numbering pages, sections, equations, etc. as if the omitted file’s text had been
included.

To run IATEX on only part of the document, the preamble must contain an
\includeonly command whose argument is a list of files (first names only).
The file specified by an \include command is processed only if it appears in
the argument of the \includeonly command. Thus, if the preamble contains
the command

\includeonly{gnu, gnat,gnash}

then an \include{gnat} command causes the file gnat.tex to be included,
while the command \include{rmadlo} causes IATEX not to include the file
rmadlo.tex, but to process the text following it as if the file had been included.
More precisely, it causes IATEX to process the succeeding text under the as-
sumption that the omitted file is exactly the same as it was the last time it was
included. IATEX does not read an omitted file and is unaware of any changes
made to the file since it was last included.

The entire root file is always processed. If the preamble does not contain an
\includeonly command, then every \include command inserts its file. The
command \includeonly{} (with a null argument) instructs IATEX to omit all
\include'd files. An \include can appear only after the \begin{document}
command.

The \include command has one feature that limits its usefulness: the in-
cluded text always starts a new page. as does the text immediately following the
\include command. It therefore works right only if the \include’'d text and
that following it should begin on a new pagefor example. if it consists of one or
more complete chapters. For a long document. the ability to process individual
parts saves so much time that. while writing it, you may want to split the input
into pieces smaller than a complete chapter with \include commands. The

4.5 Making an Index or Glossary

77

small files can be combined into chapter-sized ones when generating the final
version.

Another difficulty with the \include mechanism is that changing the docu-
ment may require reprocessing some unchanged \include'd files in order to get
the correct numbering of pages, sections, etc. When skipping an \include'd
file. the numbering in the succeeding text is based upon the numbering in the
file’s text the last time it was processed. Suppose that the root file contains the
comnands

\include{gnu}
\chapter{Armadillo}

and an \includeonly in the preamble causes the \include command to omit
file gnu.tex. If the text in gnu.tex ended in Chapter 5 on page 57 the last
time it was processed. even if you've added seven more chapters and sixty pages
of text before the \include commanud since then. the \chapter command will
produce Chapter 6 starting on page 58. In general, to make sure everything is
numbered correctly, you must reprocess an \include’d file if a change to the
preceding text changes the numbering in the text produced by that file.

When working oun a large document. you should make each appropriately-
sized sectional unit a separate \include'd file. (You may find it convenient to
enter the \includeonly command from the terminal, using the \typein com-
mand described in Section 1.6.) Process each file separately as you write or
revise it. and don’t worry about numbers not matching properly. If the num-
bering gets too confusing. generate a coherent version by letting IATRX process
all the files at once. Coutinue processing cach file only when you change it. until
vou're ready to produce the final output. You can then replace each \include
by an \input. so I&T}:X will process the whole document. However. if each file
is a separate chapter that should begin a new page. you can leave the \include
commands and either process the whole document at once by removing the
\includeonly conunand, or else process it one or two files at a time. starting
from the beginning and working towards the end.

4.5 Making an Index or Glossary

There are two steps in making an index or glossary: gathering the information
and writing the IATEX input to produce it. These steps are discussed below in
reverse order.

4.5.1 Producing an Index or Glossary

The theindex environment produces an index in two-eolumn format. Each
main index eutry is begun by an \item command. A subentry is begun with
\subitem. and a subsubentry is begun with \subsubitem. Blank lines between

78 Moving Information Around

entries are ignored. An extra vertical space is produced by the \indexspace
command, which is usually put before the first entry that starts with a new

letter.

gnats 13, 97 \item gnats 13, 97
gnus 24, 37, 233 \item gnus 24, 37, 233 T

bad, 39. 236 \subitem bad, 39, 236

very, 235 \subsubitem very, 235
good, 38, 234 \subitem good, 38, 234
\indexspace

harmadillo 99. 144 \item harmadillo 99, 144

There is no environment expressly for glossaries. However, the description
environment of Section 2.2.4 may be useful.

4.5.2 Compiling the Entries

Compiling an index or a glossary is not easy. but IATEX can help by writing the
necessary information onto a special file. If the root file is named myfile.tex,
index information is written on the file myfile.idx, the “idx" file. IATEX makes
an idx file if the preamble contains a \makeindex command. The information on
the file is written by \index commands, the command \index{gnu} appearing
with the text for page 42 causing IATEX to write

\indexentry{gnu}{42}

on the idx file. If there is no \makeindex command, the \index command does
nothing. You can list the contents of an idx file by running IATEX on the file
idx.tex; the Local Guide explains how.

The \index command produces no text, so you type

A gnat\index{gnat} with gnarled wings gnashed ...

to index this instance of “gnat™. It’s best to put the \index command next to
the word it references. with no space between them: this keeps the page number
from being off by one if the word ends or begins a page.

As you write your document. you should type an \index command for every
page reference you want in the index. When the document is complete except for
the index. add the \makeindex command and run IATEX on the entire document
to produce the idx file. You must then process the information in the idx file
yourself to create a theindex environment that will generate the index: the
Local Guide tells if there are any programs available on your computer to help.
The theindex environment can either be inserted into your input file or made
a separate file that is read by an \input or \include command (Section 4.4).

4.6 Keyboard Input and Screen Output

7

The procedure for making a glossary is completely analogous. In place of
\index there is a \glossary command. The \makeglossary command pro-
duces a file with the extension glo that is similar to the idx file except with
\glossaryentry entrics instead of \indexentry entries.

The argument of \index or \glossary can contain any characters, including
special characters like \ and $. However, curly braces must be properly balanced,
each { having a matching }. The \index and \glossary commands are fragile.
Moreover, an \index or \glossary command should not appear in the argument
of any other command if its own argument contains any of IATEX's ten special
characters (Section 2.1).

4.6 Keyboard Input and Screen Output

When creating a large document. it's often helpful to leave a reminder to yourself
in the input file—for example, to note a paragraph that needs rewriting. The use
of the % character for putting comments into the text is described in Section 2.2.1.
However. a passive comment is easy to overlook. so IAT;X provides the \typeout
command for displayiug messages on your screen. In the examples in this section,
the left column shows what is produced on the sereen by the input in the right
column: the oval represents the screen.

Don’t forget to revise this! \typeout{Don’t forget to

Remember that everything IATEX writes on your screen is also put in the log
file.

It is sometimes useful to type input to INTEX directly from your keyboard
for example, to enter an \includeonly command. This is done with a \typein
conunand. such as the following:

revise this!}

Enter ‘includeonly’, boss! \typein {Enter ‘includeonly’, boss!}

\@typein=

When this appears on your screen. BVIEX is waiting for you to enter a line of
input. ended by pressing the return key. IATEX then processes what you typed
just as if it had appeared in the input file in place of the \typein command.

The \typein command has an optiounal first argument, which must be a
command name. When this optional argument is given. instead of processing
vour typed input at that point. IATEX defines the specified command to be
equivalent to the text that you have typed.

CHAPTER 5

g

in
Yourself

Design
It

82

Designing It Yourself

The preceding chapters describe IATX commands and environments for specify-
ing a document’s logical structure. This chapter explains how to specify its visual
appearance. Before reading it, you should review the discussion in Section 1.4 of
the dangers of visual design. Commands specifying the visual appearance of the
document are usually confined to the preamble, either as style declarations or in
the definitions of commands and environments for specifying logical structures.
The notable exceptions are the line- and page-breaking commands of Section 5.2
and the picture-drawing commands of Section 5.5.

5.1 Document and Page Styles

5.1.1 Document Styles

The use of the \documentstyle command to specify the document style and
the style options is explained in Section 2.2.2. Three standard IATEX document
styles and several style options are described there, and the letter document
style for making letters is described in Section 3.8. The following are additional
document-style options for these styles.

titlepage For use with the article style only. It causes the \maketitle
command to generate a separate title page and the abstract environment
to make a separate page for the abstract, just the way the report style
does.

legno Causes the formula numbers produced by the equation and egnarray
environments to appear on the left instead of the right.

flegn Causes displayed formulas to be aligned on the left, a fixed distance from
the left margin, instead of being centered.

Check the Local Guide to see what other style options are available on your
computer.

Section 2.2.2 describes the twocolumn style option for making double-column
pages. There is also a \twocolumn declaration that starts a new page and
begins producing two-column output. and the inverse \onecolumn declaration
that starts a new page and produces single-column output. The twocolumn
style option makes appropriate changes to various style parameters, such as the
amount of paragraph indentation. while the \twocolumn declaration does not.
Therefore, the style option rather than the declaration should be used when all
or most of the document is in two-column format.

In books, it is conventional for the height of the text to be the same on
all full pages. The \flushbottom declaration makes all text pages the same
height. adding extra vertical space when necessary to fill out the page. The
\raggedbottom declaration has the opposite effect. letting the height of the text

Tw I

1A A AU A AT s AR 2 O 2 o o AR & A & o s i s s s ol s 2 e s s s R s ¢ T o o D e

my

(™}

5.1 Document and Page Styles

83

vary a bit from page to page. The default is \flushbottom for thie book style and
for the twoside option in the article and report styles, and \raggedbottom
otherwise. You can change the default by putting the appropriate declaration
in the preamble.

5.1.2 Page Styles

A page of output consists of three units: the head. the body, and the foot. In
most pages of this book. the head contains a page number, a chapter or section
title. and a horizontal line. while the foot is emipty: but in the table of contents
and the preface, the page head is empty and the foot contains the page number.
The body consists of everything between the head and foot: the main text,
footnotes. figures. and tables.

The information in the head and foot. which usually includes a page number,
helps the reader find his way around the document. You can specify Arabic
page numbers with a \pagenumbering{arabic} command and Roman numerals
with a \pagenumbering{roman} conunand, the default being Arabic numbers.
The \pagenumbering declaration resets the page number to one. starting with
the current page. To begin a document with pages i. i, etc. and have the
first chapter start with page 1. put \pagenumbering{roman} anywhere before
the beginning of the text and \pagenumbering{arabic} right after the first
\chapter command.

Page headings may contain additional information to help the reader. They
are most useful in two-sided printing. since headings on the two facing pages
convey more information than the sigle heading visible with one-sided printing.
Page headings are generally not used in a short document, where they tend to
be distracting rather than helpful.

The page style determines what goes into the head and foot; it is specified
with a \pagestyle declaration having the page style’s name as its argument.
There are four standard page styles:

plain The page nmmnber is in the foot and the head is empty. It is the default
page style for the article and report document styles.

empty The head and foot are both empty. IATRX still assigns each page a num-
ber. but the number is not printed.

headings The page nunber and otlier information, determined by the document
style, is put in the head; the foot is empty.

myheadings Similar to the headings page style. except you specify the “other
information™ that goes in the head. using the \markboth and \markright
comnands described below.

The \pagestyle declaration obeys the normal scoping rules. What goes into
a page's head and foot is determined by the page style in effect at the end

84

Designing It Yourself

The mating habits of insects are
quite different from those of large

maminals.

of the page, so the \pagestyle command usually comes after a command like
\chapter that begins a new page.

The contents of the page headings in the headings and myheadings styles
are set by the following commands:

\markboth{left_head}{right_head?
\markright{right_head}

The left_head and right_head arguments specify the information to go in the page
heads of left-hand and right-hand pages, respectively. In two-sided printing,
specified with the twoside document-style option, the even-numbered pages are
the left-hand ones and the odd-numbered pages are the right-hand ones. In
one-sided printing, all pages are considered to be right-hand ones.

In the headings page style, the sectioning commands choose the headings for
you; Section C.4.2 explains how to use \markboth and \markright to override
their choices. In the myheadings style, you must use these commands to set the
headings yourself. The arguments of \markboth and \markright are processed
in LR mode; they are moving arguments.

5.1.3 The Title Page and Abstract

The \maketitle command, which produces a title page in some document styles,
is described in Sections 2.2.2 and C.4.3. You can also create your own title page
with the titlepage environment. This environment creates a page with the
empty page style, so it has no printed page number or heading, and causes the
following page to be numbered one.

You are completely responsible for what appears on a title page made with
the titlepage environment. The following commands and environments are
useful in formatting a title page: the size-changing commands of Section 5.8.1,
the style-changing commands of Section 3.1, and the center environment of
Section 5.6. Recall also that the \today command, described in Section 2.2.1,
generates the date. You will probably produce several versions of your document,
so it’s important to include a date on the title page.

An abstract is made with the abstract environment.

Abstract \begin{abstract}

The mating habits of insects are quite
different from those of large mammals.
\end{abstract}

The abstract is placed on a separate page in the report document style and
when the titlepage style option is used with the article style: it acts like an
ordinary displayed-paragraph environment with the plain article style. There
is no abstract environment in the book document style, since books normally
do not have abstracts.

iY) BY.

e

e ew @ Fm fE®Y YT O OWEF W I T Y O Im ImMm MmO ™m mr mn

5.1 Document and Page Styles

85

5.1.4 Customizing the Document Style

If you don’t like the standard IATX document styles, you can create your own.
Changing the document style means changing the way the standard structures
sucl as paragraphs and itemized lists are formatted, not creating new structures.
Section 3.4 describes how to define new logical structures.

Before customizing the document style, remember that many authors make
elementary errors when they try to design their own documents. The ouly way
to avoid these errors is by consulting a trained typographic designer or reading
about typographie design. All I can do here is warn you against the very common
niistake of making lines that are too wide to read easily —a mistake you won't
make if vou follow this suggestion: use lines that contain no more than 75
characters. including punctuation and spaces.

The style of a particular document can be customized by adding declarations
to its preamble. If the same style modifications are used in several documents,
it is more convenient to make a new style option. A document-style option is
created by writing the appropriate declarations on a sty file —a file whose first
name is the option name and whose extension is sty, so the declarations defining
the bauhaus style option are on the file named bauhaus.sty. Typing bauhaus
as the optional argument of the \documentstyle commnand causes IATEX to
read the file bauhaus.sty after processing the declarations made by the main
document style. If multiple style options are specified. their sty files are read
in the indicated order.

When reading the sty file that defines a document-style option. TEX re-
gards an @ character as a letter. so it can be part of-a command name like
\@listi. Such a command name cannot be used in your document. since TEX
would interpret it as the command \@ followed by the text characters listi.
Many of IATRX's internal commands have an @ in their name to prevent their
accidental use within the document: these include some parameters described in
Appendix C that are set by the document style.

The simplest way to modify the document style is by changing parameters
such as the ones that control the height and width of the text on the page. IATEX
document-style parameters are described in this chapter and in Appendix C.
Other modifications require redefining IATEX commands. As an example of
such a modification. let’s suppose that you waut chapters to be numbered like
~Capitulo 3" instead of “Chapter 3. This requires changing the definition of
the \chapter command. Defining a whole new \chapter command is a job for
an expert in both TEX and the inner workings of IATEX. Fortunately. all you
have to do here is make a small modification to the existing \chapter command.
The first step is finding that definition.

The \chapter commnaud is defined by the document style. The declarations
made by a main document style. like those of a style option, are contained in
a sty file: a \documentstyle{report} command causes TEX to read the file
report.sty. A sty file is designed for efficiency rather than huinan readability.

86

Designing It Yourself

Each standard IXTX sty file has a corresponding doc file that contains infor-
mative comments and is formatted for easier reading—report.doc being the
readable version of report.sty. The Local Guide describes where to find the
doc files.

For efficiency, most IATj;X commands are defined with TgX’s \def command,
described in The TpXbook, rather than with the IATEX commands of Section 3.4.
(Do not use \def yourself except when creating a whole new document style;
the IATRX commands are safer, and the extra time required to process them is
negligible for a small number of definitions.) Therefore, to find the definition
of \chapter, you should start by examining the file report.doc with a text
editor and searching for “\def\chapter”. However, you will quickly discover
that it’s not there. As the comments at the beginning of the file explain, the
report document style reads additional declarations from the file rep10.sty,
repll.sty, or repl2.sty, depending upon whether the default ten-point size
or the 11pt or 12pt style option is chosen. The \chapter command is defined
in these files.

Let’s suppose that you want to change the ten-point version. Search the
file Tep10.doc for “\def\chapter” to find the definition of \chapter. Unfor-
tunately, there is nothing in that definition to indicate where the “Chapter” is
generated. You could now look up the definitions of the commands contained in
\chapter’s definition, the definitions of the commands in those definitions, and
so on until you find what you are looking for. However, since the “Chapter”
must be generated by the input text Chapter, it is easier to search for all in-
stances of these seven characters. This quickly leads you to comments indicating
that the command \@chapapp is initially defined to be Chapter, and is redefined
to Appendix by the \appendix command. So, you just have to create a style
option with the command

\renewcommand{\@chapapp}{Cap\’{\i}tulo}

(Remember that commands with an @ in their names can be defined only in a
sty file.) You might also want to redefine the \appendix command, replacing
Appendix by Ap\’{e}ndice.

This example gives some idea of what you must do to modify a command.
The procedure for modifying an environment is similar. Most environments are
defined with the TEX \def command —for example, the quote environment is
defined by defining \quote, which is executed by the \begin{quote} command,
and \endquote, which is executed by \end{quote}.

If you can’t find a INTRX command’s definition in the doc files, it is probably
a built-in command that is defined in the file latex.tex. If the command is not
there either, it is most likely a TEX command whose definition can be found in
The TEXbook.

Not all modifications are as easy as the sample change to \chapter. Some
require understanding advanced TEX commands and knowing more about how

SR | .Y 151 'R B [R 21Y

B8

e R $ $TWY ww R $ ew R $ 9w ®%v ¥ MM MmO T

5.2 Line and Page Breaking

87

IATRX works. You can learn all about TEX by reading The TpXbook; most of
what you ueed to know about INTRX is deseribed in the comments in 1latex. tex,
except that the font-selecting commands are explained in the file 1fonts.tex.
Consult the Local Guide to tind out where these files are on your computer and
to see if there is any other available information about document-style design.

5.2 Line and Page Breaking

TEX usually does a good job of breaking text into lines and pages, but it some-
tintes needs help. Don’t worry about line and page breaking until you're ready
to prepare the final version. Most of the bad breaks that appear in early drafts
will disappear as you change the text.

5.2.1 Line Breaking

Let's return to the lie-breaking problem that we inserted into the sample input
file in Section 2.3. Recall that it produced the following warning message:

Overfull \hbox (10.58649pt too wide) in paragraph at lines 172--175
[J\tenrm Mathematical for-mu-las may also be dis-played. A dis-played for-mula
is gnomonly

TEX could not find a good place to break the line and left the word “gnomonly”
extending about 1/8 inch past the right margin.

The first line of this warning message states that the output line actually
extends 10.58649 points past the right margin—a point being about 1/72%¢ of
an inch—and is in the paragraph generated by lines 172 through 175 of the input
file. The next part of the message shows the input that produced the offending
line. except TEN has inserted a “-" character every place that it’s willing to
hyphenate a word.

TEX is quite good at hyphenating words; it never® incorrectly hyphenates an
English word and usually finds all correct possibilities. However, it does miss
some. For example, it does not know how to hyphenate the word gnomonly
(which isn't a very gnomonly used word). nor can it hyphenate gnomon.

A \- command tells TEX that it is allowed to hyphenate at that point.
We could correct our sample hyphenation problem by changing gnomonly to
gno\-monly. so TEX could break the line after gno. However. it’s better to
change it to gno\-mon\-1y. which also allows TEX to break right before the ly.
While TEX will still break this particular sample line after gno, further changes
to the text might make gnomon-ly better.

TEX will not hyphenate a word with a nonletter in the middle, where it
treats any sequence of nonspace characters as a single word. While it hyphenates
ra-di-a-tion properly, it does not hyphenate z-radiation—though it will break

1

well. ha y ever,

88

Designing It Yourself

a line after the z-. You must type x-ra\-di\-a\-tion for TEX to consider all
possible hyphenation points. However, it is generally considered a bad idea to
hyphenate a hyphenated compound: you should do so only when there is no
better alternative.

When writing a paper about sundials, in which the word gnomon appears fre-
quently. it would be a nuisance to type it as gno\-mon everywhere it is used. You
can teach TEX how to hyphenate words by putting one or more \hyphenation
commands in the preamble. The command

\hyphenation{gno-mon gno-mons gno-mon-1y}

tells TEX how to hyphenate gnomon. gnomons and gnomonly but it still won't
know how to hyphenate gnomoniec.

While it’s very good at hyphenating English. an English-language version of
IATEX will not hyphenate foreign words property. Without a version explicitly
made for a foreign language, you’ll have to correct hyphenation errors as they
occur by using \hyphenation or \- commands to tell TEX where it can hyphen-
ate a word. See the Local Guide to find out if any foreign-language versions of
[ATX are available for your computer.

Not all line-breaking problems can be solved by hyphenation. Sometinies
there is just no good way to break a paragraph into lines. TEX is normally very
fussy about line breaking: it lets you solve the problem rather than producing
a paragraph that doesn’t meet its high standards. There are three things you
can do when this happens. The first is to rewrite the paragraph. However.
having carefully polished your prose. you probably don’t want to change it just
to produce perfect line breaks.

The second way to handle a line breaking problem is to use a sloppypar
environment or \sloppy declaration. which direct TEX not to be so fussy about
where it breaks lines. Most of the time. you just enclose the entire paragraph that
contains the bad line break between \begin{sloppypar} and \end{sloppypar}
commands. However. sometimes its easier to use a \sloppy declaration. To ex-
plain how to use this declaration, it helps to introduce the concept of a paragraph
unit. A paragraph unit is a portion of text that is treated as a single string of
words to be broken into lines at any convenient point. For examiple. a paragraph
containing a displayed equation would consist of two paragraph units— the parts
of the paragraph that come before and after the equation. (Since the equation
itself can’t be broken across lines. it is not a paragraph unit.) Similarly. each
item in a list-making environment begins a new paragraph unit.

TEX does its line breaking for a paragraph unit when it encounters the com-
mand or blank line that ends the unit. based upon the declarations in effect at
that time. So. the scope of the \sloppy declaration should include the command
or blank line that ends the paragraph unit with the bad line break. You can
either delimit the scope of the \sloppy declaration with braces. or else use a
countermanding \fussy declaration that restores TEX to its ordinary compulsive

S

Ay T O §F¥ TN O M MmO m O nm O m e M Om i oan

2 A% "1Y I 8 8 [8 A} "r [A A -) -y) - awm

1D

5.2 Line and Page Breaking

89

self. The \begin{sloppypar} command is equivalent to a blank line followed
by {\sloppy. and \end{sloppypar} is equivalent to a blank line followed by
Qe

The third way to fix a bad line break is with a \linebreak command,
which forces TEX to break the line at that spot. The \linebreak is usually
inserted right before the word that doesn’t fit. An optional argument converts
the \linebreak conunand from a demand to a request. The argument must be
a digit from O through 4. a higher number denoting a stronger request. The
command \linebreak[0] allows T}X to break the line there, but neither en-
courages nor discourages its doing so. while \linebreak[4] forces the line break
just like an ordinary \linebreak command. The arguments 1, 2 and 3 provide
intermediate degrees of insistence. and may succeed in coaxing TEX to overcome
a bad line break. They can also be used to help TEX find the most aesthetically
pleasing line breaks. The \linebreak[0] command allows a line break where
it would normally be forbidden. such as within a word.

Both of these methods handle line-breaking problems by sweeping them un-
der the rug. The “lump in the carpet™ that they may leave is one or more lines
with too much blank space between the words. Such a lime will produce an
“Underfull \hbox" warning message.

Although unwanted line breaks are usually prevented with the = and \mbox
commands deseribed in Section 2.2.1. IATX also provides a \nolinebreak
command that forbids TX from breaking the line at that pont. Like the
\linebreak command. \nolinebreak takes a digit from O through 4 as an
optional argument to convert the prohibition into a suggestion that this isn’t
a good place for a line break the higher the number. the stronger the sug-
gestion. A \nolinebreak[0] command is equivalent to \linebreak[0], and
\nolinebreak[4] is equivalent to \nolinebreak.

A \linebreak connnand causes TEX to justify the line, stretching the space
between words so the line extends to the right margin. The \newline command
ends a line without justifying it.

I can think of no good reason why you would want I can think of no good reason why you would

to make a short line like this want to make a short line like this
in the middle of a paragraph. but perhaps you can \newline in the middle of a paragraph,
think of one. but perhaps you can think of one.

You can type \\. which is the usual IATRX command for ending a line, in place
of \newline. In fact., INIEX provides the \newline command only to maintain
a complete correspondence between the line-breaking commands and the page-
breaking coummands described below.

The \1linebreak. \nolinebreak. and \newline commands can be used only
in paragraph mode. They are fragile commands. See Section C.1.1 if a [follows
a \linebreak or \nolirebreak command that has no optional argument.

Designing It Yourself

5.2.2 Page Breaking

TEX is as fussy about page breaks as it is about line breaks. As with line
breaking, sometimes TEX can find no good place to start a new page. A bad
page break usually causes TEX to put too little rather than too much text onto
the page. When the \flushbottom declaration (Section 5.1.1) is in effect, this
produces a page with too much extra vertical space; with the \raggedbottom
declaration, it produces a page that is too short. In the first case, TEX warns
you about the extra space by generating an “Underfull \vbox” message. With
\raggedbottom in effect, TEX does not warn you about bad page breaks, so you
you should check your final output for pages that are too short.

The IATEX page-breaking commands are analogous to the line-breaking com-
mands described in Section 5.2.1 above. As with line breaking, IATRX provides

- commands to demand or prohibit a page break, with an optional argument trans-
forming the commands to suggestions. The \pagebreak and \nopagebreak com-
mands are the analogs of \linebreak and \nolinebreak. When used between
paragraphs, they apply to that point; when used in the middle of a paragraph,
they apply immediately after the current line. Thus, a \pagebreak command
within a paragraph insists that TEX start a new page after the line in which the
command appears, and \nopagebreak [3] suggests rather strongly that TEX not
start a new page there.

Sometimes TEX is adamant about breaking a page at a certain point, and
will not be deterred by a \nopagebreak command. When this happens, use
a \samepage declaration to inhibit all page breaks and explicit \pagebreak
commands where you wish to allow page breaking. A precise description of the
\samepage command is given in Appendix C, but you can use it as follows to
correct bad page breaks without understanding exactly how it works:

e Enclose a portion of text containing the bad page break in the scope of a
\samepage declaration. The scope should include the blank line or com-
mand ending the paragraph unit that contains the bad break.

e Put a \nopagebreak command immediately after any blank line in the
scope of the samepage declaration where you don’t want a page break to
occur.

e Put a \pagebreak command (with or without an optional argument) ev-
erywhere you wish to allow a page break.

The \samepage declaration also inhibits page breaking in the footnote generated
by a \footnote command within its scope.

You can’t put more text on a page than will fit. To squeeze extra text on a
page, you must usually make room for it by removing some vertical space. This
can be done with the commands of Section 5.4.2.

[B AR

t B

f¥Y f¥T (' EHOID I'®

el s ce T R = D s a s s c I = o &= A . s & oK & c N & o & o B R R R 1

5.3 Numbering

91

The \newpage command is the analog of \newline, creating a page that
ends prematurely right at that point. Even when a \flushbottom declaration
is in effect. a shortened page is produced. The \clearpage command is sim-
ilar to \newpage. except that any left-over figures or tables are put on one or
more separate pages with no text. The \chapter and \include commands
(Section 4.4) use \clearpage to begin a new page. Adding an extra \newpage
or \clearpage command will not produce a blank page; two such commands in
a row are equivalent to a single one. To generate a blank page, you must put
some invisible text on it. such as an empty \mbox.

When using the twoside style option for two-sided printing, you may want to
start a sectional unit on a right-hand page. The \cleardoublepage command
is the same as \clearpage except that it produces a blank page if necessary so
that the next page will be a right-hand (odd-numbered) one.

When used in two-column format, the \newpage and \pagebreak commands
start a new column rather than a new page. However. the \clearpage and
\cleardoublepage commands start a new page.

The page-breaking commands can be used only where it is possible to start
a new page— that is, in paragraph mode and not inside a box (Section 5.4.3).
They are all fragile.

5.3 Numbering

Every number that [ATRX generates has a counter associated with it. The name
of the counter is the same as the name of the environment or command that
produces the number, except with no \. Below is a list of the counters used by
IATEX's standard document styles to control numbering.

part paragraph figure enumi
chapter subparagraph table enumii
section page footnote enumiii
subsection equation mpfootnote enumiv
subsubsection

The counters enumi ... enumiv control different levels of enumerate environ-

ments. enumi for the outermost level, enumii for the next level, and so on. The
mpfootnote counter numbers footnotes inside a minipage environment (Sec-
tion 5.4.3). In addition to these. an environment created with the \newtheorem
command (Section 3.4.3) has a counter of the same name unless an optional
argument specifies that it is to be numbered the same as another environment.
There are also some other counters used for document-style parameters; they
are described in Appendix C.

The value of a counter is a single integer usually nonnegative. Multiple
numbers are generated with separate counters, the “2" and “4" of “Subsec-

92

Designing It Yourself

Because’

tion 2.4” coming from the section and subsection counters, respectively. The
value of a counter is initialized to zero and is incremented by the appropriate
command or environment. For example, the subsection counter is incremented
by the \subsection command before the subsection number is generated, and it
is reset to zero when the section counter is incremented, so subsection numbers
start froimn one in a new section.

The \setcounter command sets the value of a counter, and \addtocounter
increments it by a specified amount.

counters'” are stepped before being \setcounter{footnote}{17}

used, you set them to one less than the number Because\footnote{...}

you want.

\addtocounter{footnote}{-2}%
counters\footnote{...} are stepped ...

When used in the middle of a paragraph, these commands should be attached
to a word to avoid adding extra space.

The \setcounter and \addtocounter commands affect only the specified
counter; for example, changing the section counter with these commands does
not affect the subsection counter. The commands to change counter values are
global declarations (Section C.1.4): their effects are not limited by the normal
scope rules for declarations.

The page counter is used to generate the page number. It differs from
other counters in that it is incremented after the page number is generated,
so its value is the number of the current page rather than the next one. A
\setcounter{page}{27} command in the middle of the document therefore
causes the current page to be numbered 27. For this reason, the page counter
is initialized to one instead of zero.

IATEX provides the following commands for printing counter values; the list
shows what they produce when the page counter has the value four.

4 \arabic{page} iv. \roman{page} d \alph{page}
IV \Roman{page} D \Alph{page}

To generate a printed number, IATEX executes a command whose name is formed
by adding \the to the beginning of the appropriate counter’s name; redefining
this command changes the way the number is printed. For example, a subsection
number is made by the \thesubsection command. To change the numbering
of sections and subsections so the fourth subsection of the second section is
numbered “II-D", you type the following (see Section 3.4 for an explanation of
\renewcommand):

\renewcommand{\thesection}{\Roman{section}}
\renewcommand{\thesubsection}{\thesection-\Alph{subsection}}

Since sections are usually numbered the same throughout the document (at least
until the appendix). the obvious place for this command is in the preamble.

i &N 1

(1R #11

O MO M em (M Mm Mmm Yy fn

F calE: s R Y s oE - c K & s 2 d D & s 2 o O 2 &)

5.4 Length, Spaces, and Boxes

93

A new counter is created with a \newcounter command having the name
of the couuter as its argument. The new counter’s initial value is zero, and its
initial \the... command prints the value as an arabic numeral. See Section 5.7
for an example of how a new counter is used in defining an environment. The
\newcounter declaration should be used only in the preamble.

5.4 Length, Spaces, and Boxes

In visual design. one specifies how much vertical space to leave above a chapter
heading. how wide a line of text should be, and so on. This section describes
the basic tools for making these specifications.

5.4.1 Length

A length is a measure of distance. An amount of space or a line width is specified
by giving a length as an argument to the appropriate formatting command. A
length of one inch is specified by typing 1in; it can also be given in metric units
as 2.54cm or 25.4mm. or as 72.27pt, where pt denotes point—a unit of length
common with printers. A length can also be negative (for example, -2.54cn).

Note that 0 is not a length. A length of zero is written Oin or Ocm or Opt,
not 0. Writing 0 as a length is a common mistake.

While inches. centimeters, and points are convenient units, they should be
avoided because they specify fixed lengths. A .25-inch horizontal space that
looks good in one-column output may be too wide in a two-column format. It’s
better to use units of length that depend upon the appropriate document-style
parameters. The simplest such units are the em and the ex, which depend upon
the font (the size and style of type). A lem length is about equal to the width of
an “M". and lexis about the height of an “x”. The em is best used for horizontal
lengths and the ex for vertical lengths. An em ruler for the current font is given
below. and an ex ruler is in the margin.

10 20 30

In addition to writing explicit lengths such as 1in or 3.5em, you can also
express lengths with length commands. A length command has a value that is
a length. For example, \parindent is a length command whose value specifies
the width of the indentation at the beginning of a normal paragraph. Typing
\parindent as the argument of a command is equivalent to typing the current
value of \parindent. You can also type 2.5\parindent for a length that is
2.5 times as large as \parindent. or -2.5\parindent for the negative of that
length: -\parindent is the same as -1.0\parindent.

30

10

94

Designing It Yourself

A length such as 1.5em or \parindent is a rigid length. Specifying a space
of width 1cm always produces a one-centimeter-wide space. (It may not be
exactly one centimeter wide because your output device might uniformly change
all dimensions—for example, enlarging them by 5%.) However, there are also
rubber lengths that can vary.? Space specified with a rubber length can stretch
or shrink as required. For example, TEX justifies lines (produces an even right
margin) by stretching or shrinking the space between words to make each line
the same length.

A rubber length has a natural length and a degree of elasticity. Of particular
interest is the special length command \£fill that has a natural length of zero
but is infinitely stretchable, so a space of width \fill tends to expand as far
as it can. The use of such stretchable space is described in Section 5.4.2 below.
Multiplying a length command by a number destroys its elasticity, producing a
rigid length. Thus, 1\fi11 and .7\fill are rigid lengths of value zero inches.

Most lengths used in IATEX are rigid. Unless a length is explicitly said to be
rubber, you can assume it is rigid. All length commands are robust; a \protect
command should never precede a length command.

Below are some of INTX's length parameters—length commands that define
document-style parameters; others are given in Appendix C. By expressing
lengths in terms of these parameters, you can define formatting commands that
work properly with different document styles.

\parindent The amount of indentation at the beginning of a normal paragraph.
\textwidth The width of the text on the page.

\textheight The height of the body of the page—that is, the normal height of
everything on a page excluding the head and foot (Section 5.1.1).

\parskip The extra vertical space inserted between paragraphs. It is custom-
ary not to leave any extra space between paragraphs, so \parskip has a
natural length of zero (except in the letter style). However, it is a rubber
length, so it can stretch to add vertical space between paragraphs when
the \flushbottom declaration (Section 5.1.1) is in effect.

\baselineskip The normal vertical distance from the bottom of one line to
the bottom of the next line in the same paragraph. Thus, \textheight +
\baselineskip equals the number of lines of text that would appear on a
page if it were all one paragraph.

IATEX provides the following declarations for changing the values of length
commands and for creating new ones. These declarations obey the usual scoping
rules.

2 A rigid length is called a (dimen) and a rubber length is called a (skip) in The TEXbook.

. Y

5.4 Length, Spaces, and Boxes

\newlength Defines a new length command. You type \newlength{\gnat}
to make \gnat a length command with value 0in. An error occurs if a
\gnat command is already defined.

\setlength Sets the value of a length command. The value of \gnat is set to
1.01 inches by the command \setlength{\gnat}{1.01in}.

\addtolength Increwents the value of a length command by a specified amount.
If the current value of \gnat is .0l inches, then executing the command
\addtolength{\gnat}{-.1\gnat} changes its value to .009 inches—the
original value plus —.1 times its original value.

\settowidth Sets the value of a length command equal to the width of a spec-
ified piece of text. The command \settowidth{\gnat}{\em small} sets
the value \gnat to the width of small -the text produced by typesetting
{\em small} in LR mode.

The value of a length command created with \newlength can be changed
at any time. This is also true for some of IATRX’s length parameters, while
others should be changed only in the preamble and still others should never be
changed. Consult Appendix C to find out when you can safely change the value
of a IATRX parameter.

5.4.2 Spaces

A horizontal space is produced with the \hspace command. Think of \hspace
as making a blank “word”, with spaces before or after it producing an interword
space.

f— .5 in +
Here is a .5 inch space. Here\hspace{.5in}is a .5 inch space.
Here is a .5 inch space. Here \hspace{.5in}is a .5 inch space.
Here 1s a .5 inch space. Here \hspace{.5in} is a .5 inch space.
Negative space is a backspace like/his. ...---like this.\hspace{-.5in}/////

.5 in

TEX removes space from the beginning or end of each line of output text, except
at the beginning and end of a paragrapli including space added with \hspace.
The \hspace* command is the same as \hspace except that the space it pro-
duces is never removed. even when it comes at the beginning or end of a line.
The \hspace and \hspace* commands are robust.

The \vspace command produces vertical space. It is most commonly used
between paragraphs: when used within a paragraph. the vertical space is added
after the line i which the \vspace appears.

96

Designing It Yourself

You seldom add space like this between lines in
T
.25 in
i
a paragraph. but you sometimes remove space be-
tween them by adding some negative space.
7 mi

You more often add space between paragraphs-—-
especially before or after displayed material.

You\vspace{.25in} seldom add space like
this between lines in a paragraph, but you
. by adding some negative space.

\vspace{7 mm}

v

You more often add space between ...

Just as it removes horizontal space from the beginning and end of a line. TEX
removes vertical space that comes at the beginning or end of a page. The
\vspacex command creates vertical space that is never removed.

If the argument of an \hspace or \vspace command (or its *-form) is a
rubber length. the space produced will be able to stretch and shrink. This is
normally relevant only for the fine tuning of a document style. However, a space
made with an infinitely stretchable length such as \fill is useful for positioning
text because it stretches as much as it can. pushing everything else aside. The
command \hfill is an abbreviation for \hspace{\fil1}.

Here is a
Here are two

stretched space.
equal ones.

Here is a \hfill stretched space.
Here are \hfill two \hfill equal ones.

Note that when two equally stretchable spaces push against each other. they
stretch the same amount. You can use stretchable spaces to center objects or to
move them flush against the right-hand margin. However. IATEX provides more
convenient methods of doing that. described in Section 5.6.

Infinitely stretchable space can be used in the analogous way for moving
text vertically. The \vfill command is equivalent to a blank line followed by
\vspace{\fill}. Remember that spaces produced by \hfill or \vfill at the
beginning and end of a line or page disappear. You must use \hspacex{\fill}
or \vspace*#{\fi111} for space that does not disappear.

The \dotfill command acts just like \hfill except it produces dots instead
of spaces. The command \hrulefill works the same way. but it produces a

horizontal line.

Guats and gnus L see pests,
This is really it.

5.4.3 Boxes

Gnats and gnus \dotfill\ see pests.
This is \hrulefill\ really \hrulefill\ it.

A bor is a chunk of text that TEX treats as a unit. just as if it were a single
letter. No matter how big it 1s. TEX will never split a box to fit onto a liie or
a page. The array and tabular environments (Section 3.6.2) both produce a
single box that can be quite big. as does the picture enviroument described in

Section H.95.

5.4 Length, Spaces, and Boxes

IATEX provides additional commands and environments for making three
kinds of boxes: LR boxes. in which the contents of the box are processed in LR
mode; parboxes. mn wlich the contents of the box are processed in paragraph
mode; and rule boxes. consisting of a rectangular blob of ink.

A box-making command or environment can be used in any mode. TgX
uses the declarations in effect at that point when typesetting the box’s contents,
so the contents of a box appearing in the scope of an \em declaration will be
emphasized —usually by being set in italic type. An exceptional case occurs if a
box-making command appears in a mathematical formula, since the math-italic
style in which formulas are normally typeset (Section 3.3.8) can be used only in
math mode. Therefore. when a box-making command appears in math mode,
its contents are set in the most recently declared type style other than math
italic: this is usually the one in effect outside the math environment. Since the
input that produces the box's contents is either the argument of a box-making
command or the text of a box-making environment, any declarations made inside
it are local to the box.

A box is often displayed on a line by itself. This can be done by treating
the box as a formula and using the displaymath environment (\[... \]). The
center enviromment described in Section 5.6 can also be used.

LR Boxes

The \mbox command introduced in Section 2.2.1 makes an LR box—a box whose
contents are obtained by processing the command’s argument in LR mode. It
is an abbreviated version of the \makebox command; \makebox has optional
arguments that \mbox doesn’t. The box created by an \mbox command is just
wide enough to hold its contents. You can specify the width of the box with
a \makebox command that has an optional first argument. The default is to
center the contents in the box, but this can be overridden by a second optional
argument that consists of a single letter: 1 to move the contents to the left side
of the box and r to move it to the right.

f— 1in —»
Good gnus are here at last. Good \makebox[1in]{\em gnus} are here ...
Good gnus are here at last. Good \makebox[1in] [1]{\em gnus} are ...
Good gnus are here at last. Good \makebox[1in] [r]{\em gnus} are ...

A box is treated just like a word: space characters on either side produce an
interword space.
The \framebox command is exactly the same as \makebox except it puts
a frame around the outside of the box. There is also an \fbox command, the
abbreviation for a \framebox command with no optional arguments.
je— 1in —]

There was not a |gnu] or There was not a \framebox[1in] [1]{gnu}

in sight. or \fbox{armadillo} in sight.

98

Designing It Yourself

When you specify a box of a fixed width, TEX acts as if the box has exactly
that width. If the contents are too wide for the box. they will overflow into the
surrounding text.

X NN armadifoX X X X X\framebox[.5in]{wide armadillos}X X X

gorilla

fe— 1in —f

Breaking lines in
a narrow parbox
is hard.

This can be used to control where TEX normally puts text. To understand how,
first consider in what direction text overflows from a very narrow box.

gorillz&orilla \framebox[2mm] {gorilla gorilla}
I}orilla corilla \framebox[2mm]} [1]{gorilla gorilla}
° \framebox[2mm] [r]{gorilla gorilla}

gorillg

Now imagine that instead of a 2 mm-wide \framebox we used a \makebox of
width zero. Having no width, the box is a mathematically perfect vertical line.
With no positioning argument, the contents of the box are centered with respect
to that line. An 1 argument positions the contents so the left edge is on the
line, and an r argument positions it so the right edge is on the line. Thus, if
a \makebox [0in] [r] is placed at the beginning of an output line, its contents
appear in the left margin, with the right edge flush against the main text.

Zero-width boxes can be used in the tabular environment to align an item
on some point other than its edge. For example. you can make TEX align
#23.4"7 as if its right edge were between the 3" and the “." by typing it as
23\makebox [0Opt] [1]{.4}. (Remember that the width argument must be some-
thing like 0in or Omm. not simply 0.)

Parboxes

A parbox 1s a box whose contents are typeset in paragraph mode, with TEX
producing a series of lines just as in ordinary text. The figure and table
environments (Section 3.5.1) create parboxes. There are two ways to make
a parbox at a given point in the text: with the \parbox command and the
minipage environment. They can be used to put one or more paragraphs of
text inside a picture or in a table itemn.

FFor TEX to break text into lines. it must know how wide the lines should be.
Therefore. \parbox and the minipage environment have the width of the parbox
as an argument. The second mandatory argument of the \parbox command is
the text to be put in the parbox.

expect to get a lot \parbox{1in}{Breaking lines in a narrow

YOU CAN of bad line breaks parbox is hard.} \ YOU CAN \
: if you try this sort \parbox{lin}{expect to get a lot of bad

of thing. ' line breaks if you try L

(i s M

Rl B A

IYE §T11

M Om N mMm o om m

m

T M M Y MM T O Om O mm MmO mmn

5.4 Length, Spaces, and Boxes

99

There is no indentation at the beginning of a paragraph in these parboxes;
IATEX sets the \parindent parameter, which specifies the amount of indenta-
tion, to zero in a parbox. You can set it to any other value with \setlength
(Section 5.4.1).

In the above example. the parboxes are positioned vertically so the center of
the box is aligned with the center of the text line. An optional first argument
of t (for top) or b (for bottom) aligns the top or bottom line of the parbox with
the text line.

This is a parbox \parbox[b]{1in}{This is a parbox aligned

aligned on its bot- on its bottom line.}
tom line. AND THIS one is aligned on \ AND THIS \

its top line. \parbox[t]{lin}{one is aligned on its top

line.}

Finer control of the vertical positioning is obtained with the \raisebox com-
mand described below.

The \parbox command is generally used for a parbox containing a small
amount of text. For a larger parbox or one containing a tabbing environment,
a list-making environment, or any of the paragraph-making environments de-
scribed in Section 5.6, you should use a minipage environment. The minipage
environment has the same optional positioning argument and mandatory width
argument as the \parbox command.

When used in a minipage environment, the \footnote command puts a foot-
note at the bottom of the parbox produced by the environment. This is partic-
ularly useful for footnotes inside figures or tables. Moreover, unlike in ordinary
text. the \footnote command can be used anywhere within the environment
even inside another box or in an item of a tabular environment. To footnote
something in a minipage environment with an ordinary footnote at the bottom
of the page. use the \footnotemark and \footnotetext commands described
in Section C.2.3.

gnat: a tiny bug AND gnu: a beast® that \begin{minipage}[t]{1in}
that is very hard is hard to miss. {\em gnat\/}: a tiny bug that is very
to find. hard to find.

2See armadillo.
- \end{minipage} \ AND \

\begin{minipage} [t] {1in}

{\em gnu\/}: a beast\footnote{See
armadillo.} that is hard to miss.

\end{minipage}

If you have one minipage enviromment nested inside another, footnotes may
appear at the bottom of the wrong one.

You may find yourself wishing that TEX would determine the width of a
parbox by itself. making it just wide enough to hold the text inside. This

100

Designing It Yourself

1 mm

ol
ITS mim
Rule 1: § ¢°

is normally impossible because TEX must know the line width to do its line
breaking. However, it doesn’t have to know a line width when typesetting a
tabbing environment because the input specifies where every line ends. There-
fore, if a minipage environment consists of nothing but a tabbing environment,
then TEX will set the width of the parbox to be either the width specified by
the minipage environment’s argument or the actual width of the longest line,
choosing whichever is smaller. :

Rule Boxes

A rule box is a rectangular blob of ink. It is made with the \rule command,
whose arguments specify the width and height of the blob. There is also an
optional first argument that specifies how high to raise the rule (a negative
value lowers it).

n Rule 1: \rule{imm}{5mm}

Rule 2: ¥ -1in Rule 2: \rule[.1in]{.25in}{.02in}

A thin enough rule is just a line, so the \rule command can draw horizontal or
vertical lines of arbitrary length and thickness.

A rule box of width zero is called a strut. Having no width, a strut is invisible;
but it does have height, and TEX will adjust the vertical spacing to leave room
for it.

Compare with | this box | Compare \fbox{this box} with

\fbox{\rule[-.5cm] {Ocm}{icm}this box}.

Struts provide a convenient method of adding vertical space in places where
\vspace can’t be used, such as within a mathematical formula.
Raising and Lowering Boxes

The \raisebox command raises text by a specified length (a negative length
lowers the text). It makes an LR box. just like the \mbox command.

You can @S¢ or ;. .0r text. You can \raisebox{.6ex}{\em raise} or

\raisebox{-.6ex}{\em lower} text.

It is sometimes useful to change how big TEX thinks a piece of text is without
changing the text. The \makebox command tells TEX how wide the text is. while
a strut can increase the text's apparent height but cannot decrease it. Optional
arguments of \raisebox tell TEX how tall it should pretend that the text is.
The command

\raisebox{.4ex}[1.5ex] [.75ex]{\em text}

Feg] (1B R 'R R | an I B B

IS 8]

FrwsT SEWR 2 TwWR

5.5 Pictures

101

not only raises tert by .4ex. but also makes TEX think that it extends 1.5ex
above the bottom of the line and .75ex below the bottom of the line. (The
bottom of the line is where most characters sit: a letter like y extends below it.)
If vou omit the second optional argument. TEX will think the text extends as far
below the line as it actually does. By changing the apparent height of text. you
change how much space TEX leaves for it. This is sometimes used to eliminate
space above or below a formula or part of a formula.

Saving Boxes

If a single piece of text appears in several places, you can define a command with
\newcommand (Section 3.4) to generate it. While this saves typing, TEX doesn’t
save any time because it must do the work of typesetting the text whenever it
encounters the command. If the text is complicated- especially if it contains a
picture environment (Section 5.5)—TEX will waste a lot of time typesetting it
over and over agaii.

TEX can typeset something once as a box and then save it in a named storage
bin. from which it can be used repeatedly. The name of a storage bin is an
ordirary command name: a new bin is created and named by the \newsavebox
declaration. The \savebox command makes a box and saves it in a specified
bin: it has the bin name as its first argument and the rest of its arguments are
the same as for the \makebox command. The \usebox command prints the
contents of a bin.

\newsavebox{\toy}
\savebox{\toy}[.65in] {gnats}

je— .65 in —

It's gnats and gnats and gnats . It’s \usebox{\toy} and \usebox{\toy} and

wherever we go. \usebox{\toy}, wherever we go.

The \sbox command is the short form of \savebox. with no optional arguments.
The \savebox and \sbox commands are declarations that have the usual scope.
However, the \newsavebox declaration is global (Section C.1.1) and does not
obey the custoinary scoping rules.

5.5 Pictures

The picture environment is used to draw pictures composed of text. straight
lines. arrows, aud circles. You position objects in the picture by specifying their
r and y coordinates. So. before getting to the picture-making commands, let us
first review a little bit of coordinate geometry.

A coordinate is a number such as 5. —7. 2.3. or —=3.1416. Given an origin and
a unit length. a pair of coordinates specifies a position. As shown in Figure 5.1,

102

Designing It Yourself

Y
(2,1.4)
4= — — — — ¢
(—1.8,1)
- |
| |
origin
| 4 | z
—1.8 . unit "I 2
length

Figure 5.1: Points and their coordinates.

the coordinate pair (—1.8,1) specifies the position reached by starting at the
origin and moving left 1.8 units and up 1 unit.

The unit length used in determining positions in a picture environment
is the value of the length command \unitlength. Not just positions but
all lengths in a picture environment are specified in terms of \unitlength.
Its default value is 1 point (about 1/72"¢ of an inch), but it can be changed
with the \setlength command described in Section 5.4.1. Changing the value
of \unitlength magnifies or reduces a picture—halving the value halves the
lengths of all lines and the diameters of all circles. This makes it easy to ad-
just the size of a picture. However, changing \unitlength does not change
the widths of lines or the size of text characters, so it does not provide true
magnification and reduction. ,

IATRX provides two standard thicknesses for the lines in a picture—-thin as in
[:]and thick as in :I They are specified by the declarations \thinlines
and \thicklines, with \thinlines as the default. These commands are ordi-
nary declarations and can be used at any time.

Many picture-drawing commands have a coordinate pair as an argument.
Such an argument is not enclosed in braces, but is just typed with parentheses
and a comma, as in (-2,3.7) or (0,-17.2).

5.5.1 The picture Environment

The picture environment has a coordinate-pair argument that specifies the pic-
ture’'s size (in terms of \unitlength). The environment produces a box (Sec-
tion 5.4.3) whose width and height are given by the two coordinates. The origin’s
defanlt position is the lower-left corner of this box. However, the picture en-
vironment has an optional second coordinate-pair argument that specifies the

5.5 Pictures

103

coordinates of the box's lower-left corner, thereby determining the position of
the origin. For example, the command

\begin{picture}(100,200) (10,20)

produces a picture of width 100 units and height 200 units, whose lower-left cor-
ner has coordinates (10, 20). so the upper-right corner has coordinates (110, 220).
Unlike ordinary optional arguments. the picture environment’s optional argu-
ment is not enclosed in square brackets.

When first drawing a picture, you will usually omit the optional argument,
leaving the crigin at the lower-left corner. Later, if you want to modify the
picture by shifting everything. you just add the appropriate optional argument.

The environment's first argument specifies the nominal size of the picture,
which is used by TEX to determine how much room to leave for it. This need
bear no relation to how large the picture really is; IATiX allows you to draw
things outside the picture, or even off the page.

The \begin{picture} command puts IATX in picture mode, a special mode
that occurs nowhere else.> The only things that can appear in picture mode
are \put and \multiput commands (described below) and declarations such as
\em. \thicklines. and \setlength. You should not change \unitlength in
picture mode.

The examples in this section all illustrate commands in picture mode, but the
\begin{picture} and \end{picture} commands are not shown. To help you
think in terms of arbitrary unit lengths, the examples assume different values of
\unitlength. They are all drawn with the \thicklines declaration in effect.
The pictures in the examples also contain lines and arrows, not produced by
the commands being illustrated. that indicate positions and dimensions; these
are drawn with \thinlines in effect. allowing you to compare the two line
thicknesses.

Remember that the picture environment produces a box, which TEX treats
just like a single (usually) large letter. See Section 5.6 for commands and en-
vironments to position the entire picture on the page. All the picture-drawing
commands described in this section are fragile.

5.5.2 Picture Objects
Everything in a picture is drawn by the \put command. The command
\put (11.3,-.3){picture object}

puts the picture object in the picture with its reference point having coordinates
(11.3.—.3). The various kinds of picture objects and their reference points are
described below.

SIATEX s picture mode is really a restricted form of LR mode.

104 Designing It Yourself

Text

The simiplest kind of picture object is ordinary text, which is typeset in LR mode
with the lower-left corner of the text as its reference point.

an armadillo \put(2.3,5){an armadillo} €
(2.3.5)

Boxes

A box picture object is made with the \makebox or \framebox command. These
commands, and the related \savebox command, have a special form for use with
pictures. The first argument is a coordinate pair that specifies the width and
height of the box.

gnu Il.l units
— — \put(1.3,4){\framebox(3,1.1){gnu}}
3 units

(1.3.4)

The reference point is the lower-left corner of the box. The default is to center the
text both horizontally and vertically within the box, but an optional argument
specifies other positioning. This argument consists of one or two of the following
letters: 1 (left). r (right), t (top), and b (bottom). The letters in a two-letter
argument can appear in either order.

TTIT

\put (8, -5){\framebox(8,3.5) [t]1{gnu}}
gnat \put (18, -5) {\framebox (10, 3) [br] {gnat}}

(8,-5) (18, =3)

Unlike the ordinary \framebox command described in Seetion 5.4.3. the picture-
making version adds no space between the frame and the text. There is a
corresponding version of \makebox that works the same as \framebox except
it does not draw the frame. These picture-making versions are used mamly
as picture objects. although they can be used anywhere that an ordinary box-
making command can.

The discussion of zero-width boxes in Section 5.4.3 should explain why a
\makebox (0,0) command with no positioning argument puts the center of the
text on the reference point. and with a positioning argument puts the indicated
edge or corner of the text on the reference point.

5.5 Pictures

105

(0,1)
gnat'tang
(-1,.5)

armadillo
gnu
(1,0)

A \makebox(0,0) command is very useful for positioning text in a picture.

The \dashbox command is similar to \framebox but draws the frame with
dashed lines. It has an additional first argument that specifies the width of each
dash.

P ——
(4,2.2)/

A dashed box looks best when the width and the height are both multiples of
the dash length —in this example. the width is ten times and the height four
times the length of a dash.

Straight Lines

Straight lines can be drawn with only a fixed. though fairly large, choice of
slopes. A line is not specified by giving its endpoints, since that might produce
a slope not in IATEX's repertoire. Instead, the slope and length of the line are
specified. IATEX's method of describing slope and length was chosen to make
designing pictures easier, but it requires a bit of explanation.

The \1ine command produces a picture object that is a straight line, with
one end of the line as its reference point. The command has the form

\line(z,y){len}

where the coordinate pair (z. y) specifies the slope and len specifies the length, in
a manner [will now describe. (Figure 5.2 illustrates the following explanation
with a particular example.) Let pg be the reference point, and suppose its
coordinates are (zg. yg). Starting at pg, move z units to the right and y units up
to find the point p;. so p, has coordinates (g + z.yo + y). (Negative distances
have the expected meaning: moving right a distance of —2 units means moving
2 units to the left. and moving up —2 units means moving down 2 units.) The
line drawn by this command lies along the straight line through pg and p;. It
starts at po and goes in the direction of p; a distance determined as follows by
len. If the line is not vertical (z # 0). it extends len units horizontally to the
right or left of py (depending upon whether r is positive or negative). If the
line is vertical (x = 0), it extends len units above or below py (depending upon
whether y is positive or negative).

\put (0, 1) {\makebox (0,0){gnat tang}}
\put (1,0) {\makebox(0,0) [b] {gnu}}
\put (-1, .5) {\makebox(0,0) [tr] {armadillo}}

\put (4,2.2){\dashbox{.5}(5,2) [t] {gnat}}

106

Designing It Yourself

> T

1.4
Figure 5.2: \put (1.4,2.6){\1line(3,-1){4.8}}

The len argument therefore specifies the line’s horizontal extent except for

a vertical line, which has no horizontal extent. where it specifies the vertical
distance. It equals the actual length of the line only for horizontal and vertical
lines. The value of len must be nonnegative.
Since only a fixed number of slopes are available. there are only a limited
number of values that r and y can assume. They must both be integers (numbers
without decimal points) between —6 and +6. inclusive. Moreover. they can have
no common divisor bigger than one. In other words. r/y must be a fraction in
its simplest form. so y¥ou can't let r = 2 and y = —4: you must use r = 1 and
y = —2 instead. The following are all illegal arguments of a \line command:
(1.4.3). (3.6). (0,2). and (1,7).

IATEX draws slanted (neither horizontal nor vertical) lines using a special
font whose characters consist of small line segments. This means that there is
a smallest slanted line that IATEX can draw—its length is about 10 points, or
1/7-inch. If you try to draw a smaller slanted line. IATEX will print nothing.
It also means that JATEX must print lots of line segments to make up a long
slanted line. which can take a long time. However. IATEX draws a horizontal or
vertical line of any length reasonably quickly.

15t

Arrows

An arrow—a straight line ending in an arrowhead—is made by the \vector

\put (7,4) {\vector(1,2){5}}
\put(22,4) {\vector(-1,0){10}}
\put (22, 14) {\vector(3,-2){15}}

5.5 Pictures

107

The tip of the arrowhead lies on the endpoint of the line opposite the reference
point. This makes any normal-length arrow point away from the reference point.
However, for an arrow of length zero, both endpoints lie on the reference point,
so the tip of the arrow is at the reference point.

[ATEN can’t draw arrows with as many different slopes as it can draw lines.
The pair of integers specifying the slope in a \vector command must lie between
—4 and +4, inchusive: as with the \1ine command, they must have no comnion
divisor.

Stacks

The \shortstack comunand produces a box containing a single column of text
with reference point at its lower-teft corner. Its argument contains the text, rows
being separated by a \\ conunand. The \shortstack command is much like a
one-column tabular environment (Section 3.6.2), but the space between rows is
designed for a vertical column of text in a picture. The default alignment is to
center cach row in the colummn, but an optional positioning argument of 1 (left)
or r (right) aligns the text on the indicated edge.

Gnats

and break e
gnus

my

(1.7)/ (3.7)/ (5,7)/
Unlike an ordinary tabular environment. rows are not evenly spaced. You
can change the mter-row spacing by using either the \\ command’s optional
argument (Section C.1.6) or a strut (Section 5.4.3). The \shortstack command
is an ordinary box-making conunand that can be used anywhere, but it seldom
appears outside a picture environment.

Circles

The \circle command draws a circle of the indicated diameter. with the center
of the circle as reference point. and the \circle* command draws a disk (a
circle with the center filled in). IATEX has only a fixed collection of circles and
disks: the \circle and \circle* commands choose the one whose diameter is
closest to the specified diameter.

\put (20,0) {\circle{20}}
- \put (20,0) {\vector(0,1) {10}}
\put (560,0) {\circlex{5}}

On my computer. the largest circte that INTpX can draw has a diameter of 40
points (a little nore than 1/2 inch) and the largest disk has a diameter of 15
points (about .2 inch). Consult the Local Guide to find out what size cireles and
disks are available on your computer.

s \put (5,7){\shortstack[1]{Sh\\o\\e\\s}}

May Sh \put (1,7){\shortstack{Gnats\\ and \\ gnus}}
1 0 \put (3,7){\shortstack[r] {May\\ break \\my}}

108

Designing It Yourself

2 units

i’s

3.1 units

Ovals and Rounded Corners

An oval is a rectangle with rounded corners— that is, a rectangle whose corners
are replaced by quarter circles. It is generated with the \oval command, whose
argument specifies the width and height, the reference point being the center of
the oval. IATRX draws the oval with corners as round as possible, using quarter
cireles with the largest possible radius. ¥

8 units —b{

\put(1.1,-4){\oval(8,3.1)}

Giving an optional argument to the \oval command causes INTX to draw only
half or a quarter of the complete oval. The argument is one or two of the letters
1 (left), r (right), t (top), and b (bottom), a one-letter argument specifying
a half oval and a two-letter argument specifying a quarter oval. The size and
reference point are determined as if the complete oval were being drawn; the
optional argument serves only to suppress the unwanted part.

(5,0)

(

[

[

(11,0)

\put (5,0){\oval(6,2) [t]}
\put(11,0){\oval(2.2,3) [bl]}

Joining a quarter oval to straight lines produces a rounded corner. It takes a bit
of calculating to figure out where to \put the quarter oval.

4)

\put (5,4){\1line(0,-1){2}}
‘ 16.2) \put (6,2) {\oval(2,2) [bl]}
\put (6,1) {\vector(1,0){6}}

Framing

The \framebox connand puts a frame of a specified size around an object. It
is often convenient to let the size of the object determine the size of the frame.
The \fbox connnand described in Section 5.4.3 does this. but it puts extra space
around the object that you may not want in a picture. The \frame command
works very much like \fbox except it doesn’t add any extra space.

N
\put (2,3) {\frame{\shortstack{G\\N\\U}}}

5.5 Pictures

109

5.5.3 Reusing Objects

The \savebox command described in Section 5.4.3 is shinilar to \makebox except
that. instead of being drawn, the box is saved in the indicated storage bin. Like
\makebox. the \savebox conunand has a form in which the size of the box
is indicated by a coordinate pair. with positioning determined by an optional
argument.

le— 3 units —»| \savebox{\toy}(3,1.3) [tr]{gnu}
T T ..
1.3 unitsI \put (-2, 4) {\frame{\usebox{\toy}}}
\put (2,4) {\frame{\usebox{\toy}}}

The storage bin \toy in this example must be defined with \newsavebox. A
\savebox command can be used inside a picture environment to save an object
that appears several times in that picture, or outside to save an object that
appears in more than one picture. Remember that \savebox is a declaration
with the normal scoping rules.

It takes IATEX a long time to draw a picture, especially if it contains slanted
lines. 50 it's a good idea to use \savebox whenever an object appears in different
pictures or in different places within the same picture. However, a saved box also
uses TEX's valuable memory space. so a picture should be saved no longer than
necessary. The space used by a saved box is reclaimed upon leaving the scope
of the \savebox declaration. You can also use a command like \sbox{\toy}{},
which destroys the contents of storage bin \toy and reclaims its space.

5.5.4 Repeated Patterns

Pictures often contain repeated patterns formed by regularly spaced copies of
the saime object. Instead of using a sequence of \put commands, such a pattern
can be drawn with a \multiput command. For any coordinate pairs (z,y) and
(Az.Ay), the command

\multiput (r,y) (Az, Ay){17}{object}

puts 17 copies of object in the picture, starting at position (z.y) and stepping
the position by (Ar. Ay) units each time. It is equivalent to the 17 commands

\put (z,y) {object}

\put(r + Ar,y + Ay){object}
\put (x + 2Ar,y + 2Ay) {object}

\put (r + 16Ax,y + 16Ay) {object}

as illustrated by the following example:

110 Designing It Yourself

(3.2.4) l'_“ units —+| \multiput(3,2.4)(5.2,-1.3){4}{\circle*{.3}}

:E.B units
L]

You can make a two-dimensional pattern by using a picture environment con-
taining another \multiput in the argument of a \multiput command. However,
\multiput typesets the object anew for each copy it makes. so it is much more
efficient to make a two-dimensional pattern by saving a one-dimensional pat-
tern made with \multiput in a storage bin. then repeating it with another
\multiput. Saving the object in a bin can also save processing time for a
one-dimensional pattern. However, any pattern with more than about 100 rep-
etitions in all may cause TEX to run out of room.

5.5.5 Some Hints on Drawing Pictures

A small mistake in a picture-drawing command can produce strange results.
It’s usually simple to track down such an error, so don't panic when a picture
turns out all wrong. If you find that some part of the picture is incorrectly
positioned by a small amount. and you're sure that you haven’t made a mistake
in calculating its coordinates, check for stray spaces in the argument of the \put
command. Remember that this argument is typeset in LR mode. so spaces
before or after an object in that argument produce space in the output.

As you gain experience with the picture environment, you'll develop your
own techniques for designing pictures. Here. I will describe some methods that I
find useful. I like to use a small unit length. such as the default value of 1 point,
so I seldom need decimals. I lay out the complete picture on graph paper before
writing any IATEX commands, using special graph paper made with IATEX’s
picture environment. Designing your own graph paper is a nice exercise in
using \multiput: print only one copy with IATX and then make xerographic
copies of it. A copy made on a transparency provides a useful tool.

If a picture contains no slanted lines, I can just draw it on the graph paper
and determine the coordinates directly from the drawing. However. this doesn't
work well when using slanted lines because of IATEX's limited choice of slopes.
In that case. I first pick the slopes of all lines. then I calculate the position of
each object before drawing it on the graph paper.

It's a good idea to break a complicated picture into “subpictures”. The
subpicture is drawn in a separate picture environment inside a \put argument,
as in

\put(13,14.2){\begin{picture}(10,7) ... \end{picture}}

This permits easy repositioning of the subpicture and allows you to work in terms
of “local” coordinates relative to the subpicture’s origin instead of calculating

5.6 Centering and “Flushing” 111

the position of every picture conponent with respect to a single origin. You can
also magnify or reduce just the subpicture by changing the value of \unitlength
with a \setlength command in the \put command’s argument—but don’t leave
any space after the \setlength command.

5.6 Centering and “Flushing”

The center envirommuent is used to produce one or more lines of centered text,
a \\ command starting a new line.

This is the last line of text in the preceding para- ... of text in the preceding paragraph.
graph. \begin{center}

Here are three\\ centered \\

lines of text.

. centered \end{center}

lines of text. This is the text immediately ...

Here are three

This is the text immediately following the environ-
ment. It begins a new paragraph only if you leave
a blank line after the \end{center}.

IATEX is in paragraph mode inside the center environment, so it breaks lines
where necessary to keep them from extending past the margins.

The flushleft and flushright environments are similar, except instead
of each line of text being centered, it is moved to the left or right margin,
respectively.

These are the last lines of text from the preceding ... of text from the preceding paragraph.
paragraph. \begin{flushright}
These are two \\ flushed right lines.

These are two \end{flushright}
flushed right lines.

The center and flushright environments are most commonly used with the
\\ command indicating line breaking. There is little purpose to using the
flushleft enviroument in this way, since the \\ command in ordinary text
produces a flushed-left line. By letting TEX do the line breaking, flushleft
produces ragged-right text.

Notice how TEX leaves these lines uneven, \begin{flushleft}

without stretching them out to reach the right Notice how \TeX\ leaves these lines

margin. This is known as “ragged-right” text. uneven, withtout stretching them out
\end{flushleft}

The centering and flushing environments work by using certain declarations
that change how TEX makes paragraphs. These declarations are available as

112 Designing It Yourself

IATRX commands. the declaration that corresponds to each-environment is shown

below:
environment: center flushleft flushright
declaration: \centering \raggedright \raggedleft

These declarations can be used inside an environment such as quote or in a
parbox (Section 5.4.3). :

This is text that comes at the end of the preceding ... at the end of the preceding paragraph.
paragraph. \begin{quote}
Here 18 a_ quote enyironmest \raggedleft Here is a quote environment\\
ey o whose lines are \\ flushed right.

flushed right. \end{quote}

The text of a figure or table can be centered on the page by putting a \centering
declaration at the beginning of the figure or table environment.

Unlike the environments, the centering and flushing declarations do not start
a new paragraph; they simply change how TRX formats paragraph units (Sec-
tion 5.2.1). To affect a paragraph unit’s format, the scope of the declaration
must contain the blank line or \end command (of an environment like quote)
that ends the paragraph unit.

5.7 List-Making Environments

A [list is a sequence of items typeset in paragraph mode with indented left and
right margins. each item begun with a label. A label can be empty and an
indentation can be of length zero. so an environment not normally thought of
as a list can be regarded as one. In fact, almost every one of IATRX's envi-
ronments that begins on a new line is defined as a list. The list-making envi-
ronments are: quote. quotation. verse, itemize. enumerate. description,
thebibliography. center. flushleft. and flushright. as well as the theorem-
like environments declared by \newtheorem.

IATEX provides two primitive list-making environments: 1ist and trivlist.
the latter being a restricted version of 1ist. They are flexible enough to produce
most lists and are used to define the environments listed above.

5.7.1 The 1list Environment

The 1ist environment has two arguments. The first specifies how items should
be labeled when no argument is given to the \item command: the second con-
tains declarations to set the formnatting parameters. The general form of a list
and the meaning of most of its formatting parameters are shown in Figure 5.3.
The vertical-space parameters are rubber lengths: the horizontal-space parame-

114

Designing It Yourself

ters are rigid ones. The extra \partopsep space is added at the top of the list
only if the input file has a blank line before the environment. The vertical space
following the environment is the same as the one preceding it.

Inside the list, the values of \parskip and \parindent are set to the values
of \parsep and \listparindent, respectively. When one list is nested inside
another, the \leftmargin and \rightmargin distances of the inner list are
measured from the margins of the outer list. :

There is one spacing parameter not shown in Figure 5.3: an extra space of
length \itemindent is added before the label of each item, causing the label and
first line of the item to be indented by that amount. The value of \itemindent
is usually zero.

The default values of these parameters are determined by the document
style, as described in Section C.5.3, and will depend upon the level of nesting
of the list. These default values can be changed by declarations in the list
environment’s second argument. It is best to maintain the same spacing in all
lists, so the default values of the vertical spacing and margin parameters should
be used. However, the width and placement of the label may differ in different
kinds of lists.

The label is typeset in LR mode. If it fits within a box of width \1labelwidth,
it is placed flush with the right-hand edge of a box of that width, which is
positioned as shown in Figure 5.3. (It can be moved to a different position with
the \hfill command of Section 5.4.2.) If the label is wider than \1abelwidth,
it is put into a box of its own width that extends to the right of the position
shown in Figure 5.3. There is still a \labsep space to the right of the label’s
box, so the first line of the item will be indented to accomodate the extra-wide
label.

The first argument of the environment is the text to be used as the label
for any \item command with no optional argument. To number the items
automatically, the second argument of the list environment should contain a
\usecounter{ctr} command whose argument is the name of a counter— usually
one defined with \newcounter (Section 5.6). This counter is reset to zero at the
beginning of the environment and is incremented by one before the execution
of any \item command that has no optional argument, so it can be used to
generate a label number.

This sentence represents the end of the text that \newcounter{bean}

precedes the list.

. the text that precedes the list.
\begin{list}/

B I This is the first item of the list. Ob-
serve how the left and right margins {B--\Roman{bean}}{}usecounFer{bean} ;
are indented by the same amount. \setlength{\rightmargin}{\leftmargin}}
\item This is the first item of the list.
B II This is the second item. hacrue ey P Tk cnd ...
As usual, the following text starts a new paragraph \item This is the second item.
only if the 1ist environment is followed by a blank \end{list}

line.

As usual, the following text starts a ...

5.8 Fonts

115

A list envirommuent like this would be used to produce a one-of-a-kind list.
The 1ist environment is more commonly used with the \newenvironment com-
mand (Section 3.4) to define a new environment. Having many different list
formats tends to confuse the reader. Instead of formatting each list individually,
vou should define a small number of list-making environments.

5.7.2 The trivlist Environment

The trivlist enviromment is a restricted form of the list environment in
which margins are not indented and each \item command must have an op-
tional argument. The environment has no arguments and is very much like a
list environment whose second argument sets \leftmargin, \rightmargin,
\labelwidth, and \itemindent to a length of zero.

The trivlist environment is used to define other environments that create a
one-item list. usually with ann empty label. For example, the center environment
(Section 5.6) is equivalent to

\begin{trivlist} \centering \item[] ... \end{trivlist}

which is how it is defined.

5.8 Fonts

A font is a particular size and style of type from a font family. All the fonts used
in this book are from the Computer Modern font family designed by Donald
Knuth. The font used for most of this book is ten-point roman—its size is
ten-point and its style is roman. IATEX's fonts are now all chosen from the
Computer Modern family, but versions of IXTEX that use other font families
should be available in the future: see your Local Guide to find out if there are
such versions on your computer. (Other popular font families are Times Roman
and Helvetica.)

5.8.1 Changing Type Size

IATEXs default type style is roman and its default type size is ten-point, but
the 11pt style option makes the default size eleven-point and the 12pt option
makes it twelve-point. Section 3.1 describes declarations to change the type
style. IATEX also has declarations for changing the type size; they are illustrated
below:

Geu \tiny Gnu \normalsize Gnu \LARGE
Gnu \scr1pts1ze_a Gnu \large Gnu S
Gnu \footnotesize Gnu \Large

Gnu \small Gnu \Huge

116

Designing It Yourself

The point size of type produced by these declarations depends upon the default
type size; the examples above are for a ten-point default size. The \normalsize
declaration specifies the default size, \footnotesize specifies the size used for
footnotes, and \scriptsize specifies the size used for subscripts and super-
scripts in \normalsize formulas. These size-changing declarations specity the
roman style, regardless of the style currently in effect. For \large bold letters.
you must type \large\bf. not \bf\large.

When you typeset an entire paragraph unit (Section 5.2.1) in a certain size,
the scope of the size-changing declaration should include the blank line or \end
command that ends the paragraph unit. A size-changing command may not be
used in math mode. To set part of a formula in a different size of type. you
can put it in an \mbox containing the size-changing command. All size-changing
commands are fragile.

5.8.2 Loading Fonts

Not every type style is available in every size. If you try to use a font that is
not available, JATX will type a warning and substitute a font of the same size
that is as close as possible in style to the one you wanted.

There may be fonts available on your computer that INTEX does not know
about. Your Local Guide will tell you how to find out what fonts are available and
what their names are. Suppose there is a twelve-point Plus Roman boldface font
named “prbf10 scaled\magstepl”. You choose a command name by which to
call that font-—let’s call it \inhead—and type the declaration

\newfont{\inhead}{prbf10 scaled\magstepi}

which defines \inhead to be a declaration that causes TgX to use this font.
The \inhead declaration does nothing else: in particular, it does not change the
value of \baselineskip (Section 5.4.1). so it should be used within the scope
of an appropriate size-changing declaration if you're setting an entire paragraph
in this font. The \inhead command cannot be used in math mode. To use
characters from that font in a formula. put them in an \mbox. The \inhead
command is robust.

Some fonts contain special symbols in addition to or instead of ordinary
letters. To produce a symbol from a font. you must know the character-code
number of that symbol. which is a number from 0 to 255. The Local Guide
tells you where to find tables of character codes for different fonts. To produce
the symbol in the currently chosen font that has character code 26. you type
\symbol{26}. Tables often list character codes in octal (base 8) or hexadecimal
(base 16). An octal character code is prefaced by ’ and a hexadecimal one by ".
S0 \symbol{ 32} and \symbol{"1A} produce the same symbol as \symbol{26}.

nce 32 is the octal and 14 the hexadecimal representation of 26.

CHAPTER 6

Errors

118

Errors

Section 2.3 deseribes first aid for handling errors; it explains liow to deal with
siinple errors. This chapter is for use when you encounter an error or warning
message that you don’t understand. The following section tells how to locate the
error; the remaining sections explain the meaning of specific error and warning
nmessages.

As you saw in Section 2.3, an error can confuse INT;X and cause it to produce
spurious error messages when processing subsequent text that is perfectly all
right. Such spurious errors are not discussed here. When TEX writes a page
of output, it has usually recovered from the effects of any previous errors, so
the next error message probably indicates a real error. The following section
explains how to tell when TEX has written an output page.

6.1 Finding the Error

As desceribed in Section 2.3, an error message includes an error indicator stating
what TEX thinks the probleni is, and an error locator that shows how much of
your input file TiX had read when it found the error. Most of the time, the line
printed in the error locator displays an obvious error in the input. If not. you
should look up the error message in the following sections to find its probable
cause. If you still don’t see what’s wrong, the first thing to do is locate exactly
where the error occurred.

Thie error locator starts with a line number such as 1.14, meaning that
the error was found while INTEX was processing the fourteenth line from the
beginning of the file. If your text editor allows you to break a file into pages,
then the lime number might be something like p.3,1.4, which indicates the
fourteenth line of the third page of the input file.

If your input is all on a single file. then the error locator unambiguously iden-
tifies where TEX thinks the problem is. However, if you're using the commands
of Section 4.4 to split your input into several files. then you also must know
what file the error is in. Whenever Tj;X starts processing a file, it prints on your
terminal (and on the log file) a “(” followed by the file name. and it prints a
*)" when it finishes processing the file. For example. the terminal output

(myfile.tex [1] [2] [3] (partl.tex [4] [5]) (part2.tex [6] [7]
! Undefined control sequence.

1.249 \todzy
?

tells you that the error (a misspelled \today command) is on line 249 of the file
part2.tex. which was included by an \input or \include command contained
in the file myfile.tex. TEX had completely processed the file part1.tex. which
was also read by a command in myfile.tex.

The error locator tells yvou how much of the input file TEX had processed be-
fore it discovered the error: the last command that TEX processed is usually the

6.1 Finding the Error

119

source of the problem. There is oue limportaut exception: but before discussing
it. a digression is in order.

Logically, typesetting can be viewed as a two-step process: first the document
is typeset on one continuous scroll that unrolls vertically, then the scroll is cut
into individual pages to which headings and page numbers are added. (Since a
50-yard scroll of nietal type is somewhat unwicldy. printers partition the logical
seroll into convenient lengths called galleys.) Instead of first producing the entire
scroll and then cutting it into pages, TEX does both steps together. alternately
putting output on the scroll with one hand and cutting off a page with the other.
It usually puts text ou the scroll one paragraph unit (Section 5.2.1) at a time.
After each paragraph unit. it checks whether there's enough for a page. If so.
it cuts off the page. adds the heading and page nuinber, and writes it out on a
file. This way. TEX doesu’t have to keep much more than one page of text in
the computer's memory at a tine.

Whenever TEX writes a page on its output file. it prints the page number
on the terminal. enclosed in square brackets. Thus. any message that appears
on the terminal after TEX prints [27] and before it prints [28] is generated
between the time TEX wrote output pages 27 and 28. Whatever generated the
message probably appeared in the text printed on page 28. However. it might
also be in the text that was left on the scroll when TEX cut off page 28, putting
it in the first paragraph of page 29. IATEX's warning messages are generated
by TEX's scroll-making hand. It reports that a problem is on page 28 if it’s
detected between the time TEX writes pages 27 and 28. so the problem could
actually appear at the top of page 29.

Now. let's get back to locating an error. Most errors are discovered while TEX
is producing the scroll. but some errors. which (with apologies for abusing the
English language) I will call outputting errors, are detected while it is cutting off
a page. TEX identifies an outputting error by printing <output> on the terminal
at the beginning of a line somewhere above the error locator. For an outputting
error. the error locator shows how far TEX got when it was producing the scroll;
the actual error occurred at or before that point. An outputting error is usually
caused by a fragile command in a nioving arguinent.

There is one other time when an error can occur: when IATEX has reached
the end of your input file and is processing the \end{document} command. One
of the things it does then is read auxiliary files that it has written. An error
in the document can cause IATEX to write bad information on an auxiliary file,
producing an error when the file is read at the end. You can tell that this
has happencd because the crror locator will indicate that the problem is in the
\end{document} comimand. and the messages on your terminal will show that
TEX iz now reading a file with the extension aux.

When the terminal output doesn’t quickly lead you to the source of the error,
look at the output. If INTEX reaches the end of your input or is stopped with
a \stop comnand. the printed output will contain everything it has put on the

120

Errors

scroll, and the location of the error will probably be obvious. If you stopped
IATRX by typing an X, then it will not print what was left on the scroll after the
last full page was written out. Since the error probably occurred in this leftover
text, the output will just narrow the possible location of the error.

If you still can’t find the error, your next step is to find the smallest piece of
your input file that produces the error. Start by eliminating everything between
the \begin{document} and the last page or so of output. Then keep cutting
the input in half, throwing away the part that does not cause the error. This
should quickly lead to the source of the problem.

When all else fails, consult your Local Guide to find a IATEX expert near you.

6.2 INTpX’s Error Messages

Here is a complete alphabetical list of IATRX’s error indicators, together with
their causes.

! Bad \line or \vector argument.

The first argument of a \line or \vector command, which specifies the slope,
is illegal. Look up the constraints on this argument in Section 5.5.

! Bad math environment delimiter.

TEX has found either a math-mode-starting command such as \ [or \ (when it
is already in math mode, or else a math-mode-ending command such as \) or
\] while in LR or paragraph mode. The problem is caused by either unmatched
math mode delimiters or unbalanced braces.

! Bad use of \\.

A \\ command appears between paragraphs, where it makes no sense. This
error message occurs when the \\ is used in a centering or flushing environment
or else in the scope of a centering or flushing declaration (Section 5.6).

! \begin{...} ended by \end{...}.

IATjzX has found an \end command that doesn’t match the corresponding \begin
command. You probably misspelled the environment name in the \end com-
mand. have an extra \begin. or else forgot an \end.

! Can be used only in preamble.

IATX has encountered. after the \begin{document}. one of the following com-
mands that should appear only in the preamble: \documentstyle, \nofiles.
\includeonly. \makeindex. or \makeglossary. The error is also caused by an
extra \begin{document} command.

6.2 [ATpX’s Error Messages

121

! Command name ... already used.

You are using \newcommand. \newenvironment, \newlength, \newsavebox, or
\newtheorem to defie a command or enviromment name that is already defined,
or \newcounter to define a counter that already exists. (Defining an environ-
ment named gnu automatically defines the command \gnu.) You’ll have to
choose a new name or, in the case of \newcommand or \newenvironment, switch
to the \renew. .. command.

! Counter too large.

Soine object that is numbered with letters, probably an item in an enumerated
list, has received a munber greater than 26. Either you're making a very long
list or you've beeu resetting counter values.

! Environment ... undefined.

IATEX has encountered a \begin command for a nonexistent environment. You
probably misspelled the environment name. This error can be corrected on the
spot by typing an I followed by the correct command, ending with a return.
(This does not change the input file.)

| Float(s) lost.

You put a figure or table environment or a \marginpar command inside a
parbox—either one made with a minipage environment or \parbox command,
or one constructed by IATEX in making a footnote, figure, etc. This is an out-
putting error, and the offending environment or command may be quite a way
back from the point where IATRX discovered the problem. One or more figures,
tables, and/or marginal notes have been lost, but not necessarily the one that
caused the error.

! Illegal character in array arg.
There is an illegal character in the argument of an array or tabular environ-
ment. or in the second argument of a \multicolumn command.

! Missing \begin{document}.

[ATEX produced printed output before encountering a \begin{document} com-
mand. Either you forgot the \begin{document} conunand or there is something
wrong in the preamble. The problem may be a stray character or an error in a
declaration— for example, omitting the braces around an argument or forgetting
the \ in a command name.

! Missing p-arg in array arg.

There is a p that is not followed by an expression in braces in the arguinent of an
array or tabular environment, or in the second argument of a \multicolumn
command.

122

Errors

! Missing @-exp in array arg.

There is an @ character not followed by an @-expression in the argument of an
array or tabular environment, or in the second argument of a \multicolumn
command.

! No such counter. a

You have specified a nonexistent counter in a \setcounter or \addtocounter
command. This is probably caused by a simple typing error. However, if the er-
ror occurred while a file with the extension aux is being read. then you probably
used a \newcounter command outside the preamble.

! Not in outer par mode.
You had a figure or table environment or a \marginpar command in math
mode or inside a parbox.

! \pushtabs and \poptabs don’t match.
IATEX found a \poptabs with no matching \pushtabs, or has come to the
\end{tabbing} command with one or more unmatched \pushtabs commands.

! Something’s wrong--perhaps a missing \item.

The most probable cause is an omitted \item command in a list-making envi-
ronment. It is also caused by forgetting the argument of a thebibliography
environment.

! Tab overflow.
A \= command has exceeded the maximum number of tab stops that INTEgX
permits.

! There’s no line here to end.

A \newline or \\ command appears between paragraphs. where it makes no
sense. If you're trying to “leave a blank line”. use a \vspace command (Sec-
tion 5.4.2).

! This may be a LaTeX bug.

IATEX has become thoroughly confused. This is probably due to a previously
detected error, but it is possible that you have found an error in IMTRX itself.
If this is the first error message produced by the input file and you can’t find
anvthing wrong. save the file and contact the person listed in your Local Guide.

! Too deeply nested.

There are too many list-making environments nested within one another. How
many levels of nesting are permitted may depend upon what computer you are
using. but at least four levels are provided. which should be enough.

6.3 TEX’s Error Messages

123

! Too many unprocessed floats.

While this error can result from having too many \marginpar counnands oun a
page. a more likely cause is forcing INTX to save more figures and tables than
it hias room for. When typesetting its continuous scroll, INTRX saves figures and
tables separately and inserts theni as it cuts off pages. This error occurs when
IATEX finds too many figure and/or table environments before it is time to cut
off a page. a problem that is solved by moving some of the environments farther
towards the end of the input file. The error can also be caused by a “logjam”™ —a
figure or table that caunot be printed causing others to pile up behind it, since
IATEX will not print figures or tables out of order. The jam can be started by
a figure or table that either is too large to fit on a page or won't fit where its
optional placement argument (Section C.8.1) says it must go. This is likely to
happen if the argument does not contain a p option.

! Undefined tab position.
A \>. \+. \-. or \< command is trying to go to a nonexistent tab position—one
not defined by a \= conunand.

! \< in mid line.
A \< command appears in the middle of a line in a tabbing environment. This
command should come only at the beginning of a line.

6.3 TgEX’s Error Messages

Here is an alphabetical list of some of TEX's error messages and what may have
caused them.

I Counter too large.

Footnotes are being “numbered” with letters or footnote symbols (x, 1, ete.) and
IATEX has run out of letters or symbols. This is probably caused by too many
\thanks conimands.

I Double subscript.
There are two subscripts in a row in a mathematical formula —something like
x_{2}_{3}. which 1makes no sense. To produce z2,. type x_{2_{3}}.

I Double superscript.

There are two superscripts in a row in a mathematical formula-—something like
c 3 - -

x~{2}°{3}. which makes no sense. To produce z? . type x~{2°{3}}.

| Extra alignment tab has been changed to \cr.

There are too many separate items (columu entries) in a single row of an array
or tabular euvironment. In other words, there were too many &'s before the
end of the row. You probably forgot the \\ at the end of the preceding row.

124

Errors

! Extra }, or forgotten $.
The braces or math mode delimiters don’t match properly. You probably forgot

a{.\[.\Cors$.

! Font ... not loaded: Not enough room left.

The document uses more fonts than TEX has room for. If different parts of the
document use different fonts. then you can get around the problem by processing
it in parts (Section 4.4).

! I can’t find file “...°.

TEX can’t find a file that it needs. If the name of the missing file has the
extension tex. then it is looking for an input file that you specified—either your
main file or another file inserted with an \input or \include command. If
the missing file has the extension sty. then you have specified a nonexistent
document style or style option. After printing this error message, TEX prints:

Please type another input file name:

and waits for you to type the correct file name, followed by return.

I Illegal parameter number in definition of

This is probably caused by a \newcommand. \renewcommand. \newenvironment,
or \renewenvironment command in which a # is used incorrectly. A # charac-
ter. except as part of the command name \#. can be used only to indicate an
argument parameter, as in #2. which denotes the second argument. This error
is also caused by nesting one of the above four commands inside another, or
by putting a parameter like #2 in the last arguinent of a \newenvironment or
\renewenvironment command.

! Illegal unit of measure (pt inserted).
If you just got a

! Missing number, treated as zero.

error. then this is part of the same problem. If not. it means that IATRX was
expecting a length as an argument and found a number instead. The most
common cause of this error is writing 0 instead of something like Oin for a length
of zero. in which case typing refurn should result in correct output. However.
the error can also be caused by omitting a command argument.

I Misplaced alignment tab character &.

The special character &. which should be used only to separate items in an array
or tabular environment. appeared in ordinary text. You probably meant to type
\&. in which case typing I\& followed by return in response to the error message
should produce the correct output.

6.3 TEX’s Error Messages

125

! Missing control sequence inserted.
This is probably caused by a \newcommand. \renewcommand, \newlength, or
\newsavebox command whose first argument is not a command name.

! Missing number, treated as zero.

This is usually caused by a IATEX commnand expecting but not finding either a
number or a length as an argument. You may have omitted an argument, or
a square bracket in the text may have been mistaken for the beginning of an
optional argument. This crror is also caused by putting \protect in front of
either a length command or a comnmand such as \value that produces a number.

! Missing { inserted.

! Missing } inserted.

TEX has become confused. The position indicated by the error locator is prob-
ably beyond the point where the incorrect input is.

! Missing $ inserted.

TEX probably found a connnand that can be used only in math mode when it
wasn't in math mode. Remember that unless stated otherwise, all the commands
of Section 3.3 can be used only in math mode. TgX is not in math mode
when it begius processing the argument of a box-inaking command, even if that
conunand is inside a math environment. This error also occurs if TgX encounters
a blank line when it is in math mode.

! Not a letter.
Something appears in the argument of a \hyphenation command that doesn’t
belong there.

! Paragraph ended before ... was complete.
A blank line occurred in a command argument that shouldn’t contain one. You
probably forgot the right brace at the end of an argument.

! \scriptfont ... 1is undefined (character ...).
! \scriptscriptfont ... is undefined (character ...).
! \textfont ... is undefined (character ...).

These errors occur when an unconnnon font is used in math mode-— for example,
if you use a \sc command in a forinula inside a footnote, calling for a footnote-
sized small caps font. This problem is solved by using a \load commaud, as
explained in Section C.14.4.

I TeX capacity exceeded, sorry [...].
TEX has just run out of space and aborted its execution. Before you panic,
remember that the least likely cause of this error is TEX not having the capacity

126

Errors

to process your document. It was probably an error in your input file that
caused TEX to run out of room. The following discussion explains how to decide
whether you've really exceeded TEX's capacity and, if so, what to do. If the
problem is an error in the input, you may have to use the divide and conquer
method described previously to locate it. IATX seldom runs out of space on a
short input file, so if running it on the last few pages before the error indicator’s
position still produces the error, then there’s almost certainly something wrong
in the input file.

The end of the error indicator tells what kind of space TEX ran out of.
The more common ones are listed below, with an explanation of their probable
causes.

buffer size Can be caused by too long a piece of text as the argument of a
sectioning, \caption, \addcontentsline, or \addtocontents command.
This error will probably occur when the \end{document} is being pro-
cessed, but it could happen when a \tableofcontents, \listoffigures,
or \listoftables command is executed. To solve this problem, use a
shorter optional argument. Even if you're producing a table of contents
or a list of figures or tables, such a long entry won't help the reader.

exception dictionary You have used \hyphenation commands to give TEX
more hyphenation information than it has room for. Remove some of the
less frequently used words from the \hyphenation commands and insert
\- commands instead.

hash size Your input file defines too many command names and/or uses too
many cross-referencing labels.

input stack size This is probably caused by an error in a command definition.
For example. the following command makes a circular definition, defining
\gnu in terms of itself:

\newcommand{\gnu}{a \gnu} % This is wrong!

When TEX encounters this \gnu command. it will keep chasing its tail
trying to figure out what \gnu should produce. and eventually run out of
“input stack™.

main memory size This is one kind of space that TEX can run out of when
processing a short file. There are three ways you can run TEX out of main
memory space: (1) defining a lot of very long. complicated commands,
(2) making an index or glossary and having too many \index or \glossary
commands on a single page. and (3) creating so complicated a page of
output that TEX can't hold all the information needed to generate it.

6.3

TgEX’s Error Messages

127

pool

save

The solution to the first two problems is obvious: define fewer connuands
or use fewer \index and \glossary comunands. The third problem is
nastier. It can be caused by large tabbing, tabular, array, and picture
enviromuents. TEX's space may also be filled up with figures and tables
waiting for a place to go.

To find out if you've really exceeded TEX’s capacity in this way, put a
\clearpage command in your input file right before the place where TEX
ran out of roomn and try running it again. If it doesn’t run out of room
with the \clearpage command there, then you did exceed TiX's capacity.
If it still runs out of room, then there’'s probably an error in your file.

If TEX is really out of room, you must give it some help. Remember that
TEX processes a complete paragraph before deciding whether to cut the
page. Inserting a \newpage command in the middle of the paragraph,
where TEX should break the page, may save the day by letting TEX write
out the current page before processing the rest of the paragraph. (A
\pagebreak commnand won't help.) If the problem is caused by accumu-
lated figures and tables, you can try to prevent them from accumulating—
either by moving them further towards the end of the document or by
trying to get them to come out sooner. (See Section C.8.1 for more de-
tails.) If you are still writing the document, simply add a \clearpage
command and forget about the problem until you're ready to produce the
final version. Changes to the input file are likely to make the problem go
away.

size You probably used too many cross-referencing labels and/or defined
too many new command names. More precisely, the labels and command
names that you define have too many characters, so this problem can be
solved by using shorter names. However, the error can also be caused
by omitting the right brace that ends the argument of either a counter
command such as \setcounter, or a \newenvironment or \newtheorem
command.

size This occurs when commands, environments, and the scopes of dec-
larations are nested too deeply— for example, by having the argument of
a \multiput conmand contain a picture environment that in turn has a
\footnotesize declaration whose scope contains a \multiput command
containing a

! Text line contains an invalid character.
The input contains some strange character that it shouldn’t. A mistake when
creating the file probably caused your text editor to insert this character. Ex-

actly

what could have happened depends upon what text editor you used. If

128

Errors

examining the input file doesn’t reveal the offending character. consult the Local
Guide for suggestions.

! Undefined control sequence.

TEX encountered an unknown command name. You probably misspelled the
name. in which case typing I followed by the desired command and a return will
produce correct output. However, you still must change the input file later. If
this message occurs when a IATRX comiand is being processed, the command
is probably in the wrong place- for example, the error can be produced by an
\item command that’s not inside a list-making environment. The error can also
be caused by a missing \documentstyle command.

! Use of ... doesn’t match its definition.

If the .. ." 1s a IATjeX command, then it’s probably one of the picture-drawing
commands described in Section 5.5, and you have used the wrong syntax for
specifying an argument. If it’s \@array that doesn’t match its definition. then
there is something wrong in an @-expression in the argument of an array or
tabular environment—perhaps a fragile command that is not \protect'ed.

! You can’t use ‘macro parameter character #’ in ... mode.

The special character # has appeared in ordinary text. You probably meant
to type \#. in which case you can respond to the error message by typing I\#
followed by return to produce the correct output.

6.4 IATRpX Warnings

IATEXs warning messages all begin with “LaTeX Warning:". The meanings of
these messages are described below.

< bl

Citation on page ... undefined.

The citation key in a \cite command was not defined by a \bibitem command.
See Section 4.3.

Label ‘...’ multiply defined.
Two \1label or \bibitem commands have the same arguments. More precisely.
they had the same arguments the preceding time that IATEX processed the input.

Label(s) may have changed. Rerun to get cross-references right.
The numbers printed by \ref. \pageref. and \cite commands may be wrong
because the correct values have changed since the last time IATX processed the
input.

6.5 TgEX Warnings

129

Marginpar on page ... moved.

A marginal note was moved down on the page to avoid printing on top of a
previous marginal note. It will therefore not be aligned with the line of text
where the \marginpar command appeared.

No ... typeface in this size, using

A type style declaration specified a type style and size combination that is not
available, so IATRX is substituting another one.

Oval too small.

An \oval command specified an oval so small that IATRX couldn’t draw small
enough quarter-circles to put in its corners. What IATX did draw does not look
very good.

Reference ‘...’ on page ... undefined.

The argument of a \ref or \pageref command was not defined by a \label
command. See Section 4.2.

in math mode.

The indicated command is not permitted in math mode but was used there.
Remember that \boldmath. \unboldmath, and size-changing commands may
not be used in math mode.

6.5 TEX Warnings

You can identify a TgX warning message because it is not an error message, so
no ? is printed. and it does not begin with “LaTeX Warning:". Below is a list
of some of TEX's warnings.

Overfull \hbox
See Section 5.2.1.

Overfull \vbox
Because it couldn’t find a good place for a page break, TEX put more on the page
than it should. See Section 5.2.2 for how to deal with page-breaking problems.

Underfull \hbox

Check your output for extra vertical space. If you find some. it was probably
caused by a problem with a \\ or \newline command—for example. two \\ com-
mands in succession. This warning can also be caused by using the sloppypar
environment or \sloppy declaration. or by inserting a \linebreak command.

APPENDIX A

SLITEX

e sanc4
R

132

SLITRX

SLITRX is a version of IATEX for making black-and-white or color slides. Consult
your Local Guide for instructions on how to run SLITEX, and for any differences
between the version described here and the one on your computer. The fonts
used by SLITX are different from the IATEX fonts with which this book is printed,
so slides shown here are not accurate representations of SLITEX’s output.

¥

A.1 How SLITpX Makes Colors

No special printer is needed for color slides; they are made by copying ordinary
black-and-white output onto colored transparencies. To make the slide

+ +
RED
BLACK
BLUE

+ 9

where “RED” is colored red, “BLACK” is colored black, and “BLUE” is colored
blue, SLITEX would generate the following three separate pages of output:

RED

BLACK

BLUE

A.2 The Root File

133

These pages are called color layers. Copying each of them onto a special sheet
that produces a transparency of the appropriate color (such sheets are commer-
cially available in an assortment of colors) and laying the three transparencies
atop one another produces the desired three-color slide.

Text that is meant to be colored red on the slide, and is therefore printed
by SLITX on the red color layer. is called “red text”. The color of a piece of
text therefore refers only to the color layer on which it appears; SLITEX does
not print anything in red ink.

It’s hard to tell what a slide will look like from the separate color layers,
so SLITEX can produce a black-and-white version of the slide that contains all
the color layers properly superimposed. When creating a set of slides, you
should first generate only the black-and-white versions, making the color layers
after you've fixed all the problemns that are visible in black and white. If you
don’t want color slides, you can just copy the black-and-white versions onto
transparencies.

A.2 The Root File

The mput to SLITEX consists of a root file and a separate slide file. The root
file is the one whose name you type when running SLITEX. It begins with the
usual \documentstyle command. The slides docuimnent style is the standard
one for producing slides; there are no standard options. Consult your Local
Guide to see if any other styles or options are available on your computer. The
\documentstyle commmnand is followed by the preamble, which may contain only
declarations. followed in turn by the \begin{document} command.

Any text that comes after the \begin{document} is treated as “front matter”
and not as slide material. You can use it for notes to identify the slides.

\begin{document}

This is an example of page.
front matter. Note
the different type style,
and how the text is ver-
tically centered on the
page.

This is an example of front matter.
Note the different type style, and how
the text is vertically centered on the

134

SLITEX

To produce color slides, there must be a \colors command to tell SLITEX
what colors will be used. The command

\colors{red,black,blue}

states that there will be three colors named red, black, and blue. SLITEX
knows nothing about real colors, so the three colors could just as well be named
puce. mauve, and fred. No \colors command is needed if only black-and-white
slides are being made.

The text of the slides is contained in a separate slide file whose contents are
discussed in the next section. The slide file may have any first name, but must
have the extension tex. Suppose that it is called myslid.tex. Black-and-white
slides are generated by placing the command \blackandwhite{myslid} in the
root file. Color slides are generated by the command \colorslides{myslid}.
The latter command generates a set of color-layer pages for each color specified
by the \colors command. For example, the command

\colors{red,black,blue}

causes a subsequent \colorslides command to generate first all the red color-
layer pages, then the black ones. and then the blue ones.
As usual, the root file ends with an \end{document} command.

A.3 The Slide File

The main purpose of the root file is to tell SLITEX what colors to use and where
to find the slide file. so the root file is usually short. The slide file makes the indi-
vidual slides; it may be split into parts with the \input command of Section 4.4,
but this is seldom necessary because SLITEX provides commands, described be-
low. for selecting which slides to process. The \includeonly command may not
be used with SLITEX.

A.3.1 Slides

Each slide is produced by a slide environment with a single argument that is a
list of all the colors contained on the slide. A slide that has the colors red and
blue is created by an environment

\begin{slide}{red,blue}
\end{slide}

The colors in the argument must be declared by a \colors command in the root
file. They tell SLITEX which color layers to produce for this particular slide. If
there is green text in the slide. that text will appear in the black-and-white

A.3 The Slide File

135

version, but no green color layer will be generated unless green is included in
the slide environment's argument. If only black-and-white slides are to be
made, then you can just type:

\begin{slide}{}
iéﬁd{slide}

The text appearing on a slide is produced with ordinary IATEX commands.
Any commands that make sense for slides can be used. Commands that don’t
make sense include sectioning commands, figure and table environments, in-
dexing commands, commands for generating a bibliography, and page-breaking
commands. The latter make no sense in a slide because cach slide must fit on a
single page.

Output generated by SLITX differs from ordinary IATEX output in two ways:
text is automatically centered vertically on a slide and SLITX uses type fonts es-
pecially chosen for slides. The characters in these fonts are much larger than the
ones in the corresponding INTRX fonts; SLITX’s \normalsize produces roughly
the same size characters as IATpX's \LARGE (Section 5.8.1). Moreover, SLITzX's
ordinary roman type style is similar to IATX’s sans serif style. The only type
styles generally available are roman (\rm), italic (\it), bold (\bf), and type-
writer (\tt). The \em command works as usual.

The only special SLITiX commands needed inside a slide are ones to specify
color. The \colors comnmand in the root file defines the color declarations; if the
root file contains the command \colors{red,black,blue}, then \red, \black,
and \blue are declarations that specify the color. They have the same scope
rules as other declarations, as illustrated by the following example in which only
the red color layer 1s shown:

\red
+ + \begin{slide}{red,blue}

{\blue blue words} here.

This is more red text.

This is red text with \end{slide}

two here.

This is more red text.

This is red text with two

136

SLITEX

A color declaration does not affect the type style. For example, the following in-
put produces a slide whose red color layer contains only the words RED ITALIC
in italic.

\begin{slide}{red,blue}
\begin{blue} This is blue roman text. -
{\it This is blue italic and this is
{\red RED ITALIC}
text.}
\end{blue}
\end{slide}

A color declaration cannot be used in math mode. A multicolored formula is
made with \mbox commands that contain the color declarations.

The command \invisible is a special color declaration for invisible text.
Invisible text is not only colorless, appearing in no color layer, but does not ap-
pear in the black-and-white version either. The use of invisible text is explained
below. Like other color declarations, \invisible cannot be used in math mode.

A.3.2 Overlays

The overlay environment is for making an overlay—a slide meant to be placed
on top of another one. It is exactly the same as the slide environment except
for how the page is numbered. The first overlay following slide number 9 is
numbered “9-a”. the second one is numbered “9-b”, and so forth. To make
an overlay that perfectly overlays a slide, the slide and the overlay should be
identical except that text visible in one is invisible in the other.

An

\begin{slide}{red}

\red
An {\invisible overlay}
goes here.

\end{slide}
goes here.

138

SLITEX

or overlay number is controlled by the page style (Section 5.1.2). The slides
document style provides the following page styles.

headings Alignment marks and numbers are as shown in the examples. This
is the default. The \markboth and \markright commands have no effect.

plain There are no alignment marks, but slides, overlays, and notes are num-
bered as shown.

empty No alignment marks or numbers are printed.

The page style can be changed with the \pagestyle declaration described in
Section 5.1.2. It should not be used in a slide, overlay, or note environment.
The \thispagestyle command should not be used in SLITREX.

A.4 Making Only Some Slides

For making corrections, it’s convenient to generate only some of the slides from
your input file. The command

\onlyslides{4,7-13,23}

in the root file will cause the following \blackandwhite and \colorslides
commands to generate only slides numbered 4, 7-13 (inclusive) and 23, plus
all of their overlays. The slide numbers in the argument must be in ascending
order, and can include nonexistent slides—for example, you can type

\onlyslides{10-9999}

to produce all but the first nine slides. The argument of the \onlyslides
command must be nonempty.

There is also an analogous \onlynotes command to generate a subset of
the notes. Notes numbered 11-1, 11-2, ete. will all be generated by specifying
page 11 in the argument of the \onlynotes command. If the root file has an
\onlyslides command but no \onlynotes command, then notes are produced
for the specified slides. If there is an \onlynotes but no \onlyslides. then
no slides are generated. Including both an \onlyslides and an \onlynotes
command has the expected effect of producing only the specified slides and
notes.

APPENDIX B

The Bibliograph
Database graphy

140

The Bibliography Database

Section 4.3.2 explains how the \bibliography command specifies one or more
bib files—bibliographic database files whose names have the extension bib.
BIBTEX uses the bib file(s) to generate a bbl file that is read by \bibliography
to make the bibliography. This appendix explains how to create bib files.

The bibliography database files for use with BIBTEX are reasonably compat-
ible with the ones used by the Scribe text formatting system [6]. While a bib
file prepared according to the directions in this appendix will work with Scribe,
it is better to prepare separate files for BIBTRX and Secribe. The compatibility
makes it easy to convert from one to the other, or to maintain two copies of the
database.

For any single document, it’s easier to make the bibliography yourself than
to create the bib file needed by BIBTEX. However, when you've made a bib file
entry for a reference, it can be used for other documents as well. Once you start
using BIBTEX, you will soon compile a bibliographic database that eliminates
almost all the work of making a bibliography. Moreover, other people may have
bib files that you can copy, or there may be a common database that you can
use. Ask your friends or check the Local Guide to find out what facilities are
available to ease the task of making bib files.

B.1 The Format of the bib File
B.1.1 The Entry Format

A bib file contains a series of reference entries like the following:

@BOOK{kn:gnus,
AUTHOR = "Donald E. Knudson",

TITLE = "1966 World Gnus Almanac",
PUBLISHER = {Permafrost Press},
ADDRESS = {Novosibirsk} }

The @BOOK states that this is an entry of type book. Various entry types are
described below. The kn:gnus is the key, as it appears in the argument of a
\cite command referring to the entry.

This entry has four fields, named AUTHOR, TITLE, PUBLISHER, and ADDRESS.
The meanings of these and other fields are described below. A field consists of
the name. an = character with optional space around it, followed by its text. The
text of a field is a string of characters, with no unmatched braces, surrounded
by either a pair of braces or a pair of " characters. (Unlike in TgX input, \{ and
\} are considered to be braces with respect to brace matching.) Entry fields are
separated from one another. and from the key, by commas. A comma may have
optional space around it.

The outermost braces that surround the entire entry may be replaced by
parentheses. As in TEX input files, an end-of-line character counts as a space

B.1 The Format of the bib File

141

and one space is equivalent to one hundred. Unlike TEX. BIBTRX ignores the
case of letters in the eutry type. key. and field names. so the above entry could
have been typed as follows:

@Book(KN:Gnus, author={Donald E. Knudson} ,
TiTlE = "1966 World
Gnus Almanac", ..)

However. the case of letters does matter to IATRX, so the key should appear
exactly the same in all \cite commands in the IATRX input file.

The quotes or braces can be omitted around text consisting entirely of nu-
merals. The following two fields are equivalent:

Volume = "27" Volume = 27

B.1.2 The Text of a Field

The text of the ficld is enclosed in braces or double quote characters ("). A part
of the text is said to be enclosed in braces if it lies inside a matching pair of
braces other than the ones enclosing the entire entry.

Names

The text of an author or editor field represents a list of names. The bibliogra-
phy style determines the format in which the name is printed: whether the first
name or last name appears first. if the full first name or just the first initial is
used. etc. The bib file entry simply tells BIBTX what the name is. You should
type an author’s complete name and let the bibliography style decide what to
abbreviate. van Leunen (7] recommends typing an author’s name exactly as it
appears in the cited work. but this could produce a confusing reference list if his
name appears in a slightly different form in two different works— for example,
with and without a middle initial. In this case. I recommend typing the name
the way the author would like it. as indicated by how it appears in the majority
of his publications.

Most names can be entered in the obvious way. either with or without a
comma. as in the following examples.

"John Paul Jones" "Jones, John Paul"
"Ludwig von Beethoven" "von Beethoven, Ludwig"

Only the second form. with a comma, should be used for people who have
multiple last names that are capitalized. For example, Per Brinch Hansen’s last

name is Brinch Hansen. so his name should be typed with a comma:

"Brinch Hansen, Per"

142

The Bibliography Database

If you type "Per Brinch Hansen", BIBTEX will think that “Brinch” is his middle
name. “vou Beethoven™ or “de la Madrid” pose no problem because “von™ and
“de la” are not capitalized.

BIBTEX regards the text enclosed in braces as a single name, so braces should
be used in cases where BIBTEX would otherwise get confused. For example,
braces should surround a comma that is part of a name. The braces in

v

"{Barnes and Noble, Inc.}"

prevent “Inc.” from being interpreted as a first name, this particular author
having no first name. Note that the two names

"von Beethoven, Ludwig" "{von Beethoven}, Ludwig"

are considered by BIBTEX to be different names. In the first. “Beethoven” is
the last name, with “von™ an auxiliary word: in the second. which in this case
happens to be incorrect, the last name is “von Beethoven™. The bibliography
style will probably print both the same, but it may alphabetize them differently.

“Juniors” pose a special problem. Most people with “Jr.” in their name
precede it with a comma. Such a name should be entered as follows:

"Ford, Jr., Henry"

However. some people do not use a comma: they are handled by considering the
“Jr.” to be part of the last name:

"{Steele Jr.}, Guy L." "Guy L. {Steele Jr.}"

If there are multiple authors or editors. their names are separated by the
word “and”. A paper written by Alpher, Bethe. and Gamow has the following
entry:

AUTHOR = "Ralph Alpher and Bethe, Hans and George Gamow"

An “and” separates author’s names only if it is not enclosed in braces. Therefore.
if the word “and” appears as part of a name, it is enclosed in braces. as in the
example of “Barnes and Noble. Inc.” given above. If an author or editor
field has more names than you want to type. just end the list of names with
and others: the standard styles convert this to the conventional et al.

Titles

The bibliography style determines whether or not a title is capitalized: the titles
of books usually are. the titles of articles usually are not. You type a title the
way it should appear if it is capitalized.

TITLE = "The Agony and the Ecstasy"

B.1 The Format of the bib File 143

You should capitalize the first word of the title, the first word after a colon, and
all other words except articles and unstressed conjunctions and prepositions.
BIBTEX will change uppercase letters to lowercase if appropriate. Uppercase
letters that should not be changed are enclosed in braces. The following two
titles are equivalent: the A of Africa will not be made lowercase.

"The Gnats and Gnus of {Africa}"
"The Gnats and Gnus of {A}frica"

B.1.3 Abbreviations

Instead of an ordinary text string, the text of a field can be replaced by an
abbreviation for it. An abbreviation is a string of characters that starts with a
letter and does not contain a space or any of the following ten characters:

et .t), = {)

The abbreviation is typed in place of the text field. with no braces or quotation
marks. If jggi is an abbreviation for

Journal of Gnats and Gnus, Series™1

then the following are equivalent:

Journal = jggil
Journal = "Journal of Gnats and Gnus, Series™1"

Some abbreviations are predefined by the bibliography style. These always in-
clude the usual three-letter abbreviations for the month: jan, feb, mar, etc.
Bibliography styles usually contain abbreviations for the names of commonly
referenced journals. Consult your Local Guide for a list of the predefined abbre-
viations for the bibliography styles available on your computer.

You can define your own abbreviations by putting a @string command in
the bib file. The command

@string{jggl = "Journal of Gnats and Gnus, Series™1"}

defines jggl to be the abbreviation assuined in the previous example. Paren-
theses can be used in place of the outermost braces in the @string command,
and braces can be used instead of the quotation marks. The text must have
matching braces.

The case of letters is ignored in an abbreviation as well as in the command
name @string. so the above commmand is equivalent to

@STRING{JgG1 = "Journal of Gnats and Gnus, Series™1"}

144

The Bibliography Database

A @string command can appear anywhere before or between entries in a
bib file. However. it must come before any use of the abbreviation. so a sensible
place for @string commands is at the beginning of the file. A @string command
in the bib file takes precedence over a definition made by the bibliography style.
80 it can be used to change the definition of an abbreviation such as Feb.

B.2 The Entries

B.2.1 Entry Types

When entering a reference in the database. the first thing to decide is what
type of entry it is. No fixed classification scheme can be complete. but BIBTEX
provides enough entry types to handle almost any reference reasonably well.

References to different types of publications contain different information:
a reference to a journal article might include the volume and number of the
journal. which is usually not meaningful for a book. Therefore. database entries
of different types have different fields. For each entry type. the fields are divided
into three classes:

required Omitting the field will produce an error message and may result in
a badly formatted bibliography entry. If the required information is not
meaningful. you are using the wrong entry type.

optional The field's information will be used if present. but can be omitted
without causing any formatting problems. A reference should contain any
available information that might help the reader. so you should include
the optional field if it is applicable.

ignored The field is ignored. BIBTX ignores any field that is not required or
optional. so you can include any fields you want in a bib file entry. It's a
good idea to put all relevant information about a reference in its bib file
entry—even information that may never appear in the bibliography. For
example. if vou want to keep an abstract of a paper in a computer file. put
it in an abstract field in the paper’s bib file entry. The bib file is likely
to be as good a place as any for the abstract. and it is possible to design
a bibliography style for printing selected abstracts.

The following are all the entry types. along with their required and optional
fields. that are used by the standard bibliography styles. They are similar to
thiose adapted by Brian Reid from the classification scheme of van Leunen [7]
for use in the Seribe system. The meanings of the individual fields are explained
in the next section. A particular bibliography style may ignore some optional
fields in creating the reference. Remember that. when used in the bib file. the
entry-type name is preceded by an @ character.

B.2 The Entries 145

article An article from a journal or magazine. Required fields: author, title,
journal, year. Optional fields: volume, number, pages, month, note.

book A book with an explicit publisher. Required fields: author or editor,
title, publisher, year. Optional fields: volume, series, address,
edition, month, note.

booklet A work that is printed and bound, but without a named publisher or
sponsoring institution. Required field: title. Optional fields: author,
howpublished, address. month, year, note.

conference The sanie as inproceedings, included for Scribe compatibility.

inbook A part of a book, which may be a chapter and/or a range of pages.
Required fields: author or editor, title, chapter and/or pages,
publisher. year. Optional fields: volume, series, address, edition,
month, note.

incollection A part of a book with its own title. Required fields: author,
title, booktitle. publisher, year. Optional fields: editor, chapter,
pages, address. month, note.

inproceedings An article in a conference proceedings. Required fields: author,
title, booktitle. year. Optional fields: editor. pages, organization,
publisher, address. month, note.

manual Technical documentation. Required field: title. Optional fields:
author, organization. address, edition, month, year, note.

mastersthesis A Master’s thesis. Required fields: author, title, school,
year. Optional fields: address, month, note.

misc Use this type when nothing else fits. Required fields: none. Optional
fields: author. title, howpublished, month, year, note.

phdthesis A Ph.D. thesis. Required fields: author, title, school, year.
Optional fields: address. month, note.

proceedings The proceedings of a conference. Required fields: title, year.
Optional fields: editor. publisher. organization, address, month,
note.

techreport A report published by a school or other institution. usually num-
bered within a series. Required fields: author, title. institution, year.
Optional fields: type. number, address. month. note.

unpublished A document with an author and title. but not formally published.
Required fields: author, title. note. Optional fields: month. year.

146

The Bibliography Database

In addition to the fields listed above, each entry type also has an optional key
field, used in some styles for alphabetizing and forming a \bibitem label. You
should include a key field for any entry whose author and editor fields are
both missing. Do not confuse the key field with the key that appears in the
\cite command and at the beginning of the whole entry, after the entry type;
this field is named “key” only for compatibility with Scribe.

Ay

B.2.2 Fields

Below is a description of all the fields recognized by the standard bibliography
styles. An entry can also contain other fields that are ignored by those styles.

address Publisher’s address. For major publishing houses, just the city is given.
For small publishers, you can help the reader by giving the complete ad-
dress.

annote An annotation. It is not used by the standard bibliography styles, but
may be used by others that produce an annotated bibliography.

author The name(s) of the author(s), in the format described above.

booktitle Title of a book, part of which is being cited. See above for how to
type titles.

chapter A chapter number.
edition The edition of a book—for example, “second”.

editor Name(s) of editor(s), typed as indicated above. If there is also an author
field, then the editor field gives the editor of the book or collection in
which the reference appears.

howpublished How something strange has been published.
institution The institution that published the work.

journal A journal name. Abbreviations are provided for many journals; see the
Local Guide.

key Used for alphabetizing and creating a label when the author and editor
fields are missing. This field should not be confused with the key that
appears in the \cite command and at the beginning of the entry.

month The month in which the work was published or, for an unpublished
work, in which it was written. See above for abbreviations.

note Any additional information that can help the reader.

A Reference

Manual

APPENDIX C

-,
= "
e ey A g ey

Zpone 77 AL TLIAL - X .~\.‘."‘l ﬁ
QERITLIRL X T K T LIS, x5 \
o4 e Al

150

Reference Manual

This appendix describes all INTEX commands and environments, including some
features, anomalies and special cases not mentioned earlier. You should look
here when a command or environment does something surprising, or when you
encounter a formatting problem not discussed in earlier chapters.

Command and environment descriptions are concise; material explained in
an earlier chapter is sketched very briefly. The syntax of commands and envi-
ronments is indicated by a command form such as:

\newcommand{cmd} [args]{def}

Everything in a typewriter font, such as the “\newcommand{”, represents mate-
rial that appears in the input file exactly as shown. The italicized parts cmd,
args, and def represent items that vary; the command’s description explains
their function. Arguments enclosed in square brackets [] are optional; they
(and the brackets) may be omitted, so \newcomand can also have the form

\newcommand{cmd}{def}

The case in which an optional argument is missing is called the default. If
a command form has two optional arguments, when only one is present it is
assumed to be the first one.

A number of style parameters are listed in this appendix. Except where
stated otherwise, these parameters are length commands. A length is rigid
unless it is explicitly said to be a rubber length (Section 5.4.1).

C.1 Commands and Environments

C.1.1 Command Names and Arguments

The six commands # $ & ~ _ ~ are the only ones with single-character names.
The character %, while not a command, causes TEX to ignore all characters
following it on the input line—including the space character that ends the line.
A % can be used to begin a comment and to start a new line without producing
space in the output. However, a command name cannot be split across lines.

About two dozen commands have two-character names composed of \ fol-
lowed by a single nonletter. All other command names consist of \ followed by
one or more letters. Command names containing an @ character can be used
only in document-style (sty) files (Section 5.1.4). Upper- and lowercase letters
are considered to be different, so \gamma and \Gamma are different commands.
Spaces are ignored after a command name of this form, except that a blank line
following the command still denotes the end of a paragraph.

Commands may have mandatory and/or optional arguments. A manda-
tory argument is enclosed by curly braces { and } and an optional argument
is enclosed by square brackets [and 1. There should be no space between the
arguments.

C.1 Commands and Environments 151

The following commands take an optional last argument:

AR \linebreak \nolinebreak \newcounter \twocolumn
\item \pagebreak \nopagebreak \newtheorem

If that argument is missing and the next nouspace character in the text is a
[. then IATEX will mistake this [for the beginning of an optional argunent.
Enclosing the [in braces prevents this mistake.

Enclosing text in braces can seldom cause trouble. ... \begin{itemize}
o [This is an aside.] This is the rest of the item. \item {[This is an aside.]} This is

A] within the optional arguiment of an \item command must be enclosed in

braces to prevent its being mistaken for the] that marks the end of the argu-

ment.

[gnu] A large animal. found mainly in dictionar- \begin{description}
ies. \item [{[gnul}] A large animal...
[gnat] A small animal. found mainly in tents. \iten [{[gnat]}] 4 small aninal...

\end{description}

Some commands. including \\. have a *-form that is obtained by typing a *
right after the command name. If a * is the first nonspace character following a
\\ command. then it should be enclosed in braces: otherwise. INTEX will mistake
the \\ and * for a * command.

C.1.2 Environments

An environment is begun with a \begin command having the environment’s
name as the first argument. Any arguments of the environment are typed as
additional arguments to the \begin. The environment is ended with an \end
commnand having the environment’s name as its only argument. If an environ-
ment has a *-form. the = is part of the environment's name. appearing in the
argument of the \begin and \end commands.

C.1.3 Fragile Commands

Comumands are classified as either robust or fragile. Type-style-changing dec-
larations such as \em are robust. as are most of the math-mode commands of
Section 3.3. Any command with an optional argument is fragile.

Certain command arguments are called mowving arguments. A fragile com-
mand that appears in a moving argumnent must be preceded by a \protect
command. A \protect applies only to the command it precedes: fragile com-
mands appearing in its argument (s) require their own \protect eommands. The
following are all the commmands and enviromnents with moving arguments:

152

Reference Manual

e Comands with an argument that may be put into a table of contents,
list of figures, or list of tables: \addcontentsline, \addtocontents.
\caption, and the sectioning commands. If an optional argument is used
with a sectioning or \caption command, then it is this argument that is
the moving one.

o Comumands to print on the terminal: \typeout and \typein. The optional
argument of \typein is not a moving argument.

e Commands to generate page headings: \markboth (both arguments) and
\markright. (The sectioning commands, already listed, fall under this
category too.)

e The letter environment.
e The \thanks command.
e The optional argument of \bibitem.

e An @in an array or tabular environment. (Although @ is not a command,
fragile commands in an @-expression must be \protect'ed as if they were
in a moving argument.)

All length commands are robust and nrust not be preceded by \protect. A
\protect command should not be used in an argument of a \setcounter or
\addtocounter command.

C.1.4 Declarations

A declaration is a command that changes the value or meaning of some com-
mand or parameter. The scope of a declaration begins with the declaration itself
and ends with the first } or \end whose matching { or \begin occurs before the
declaration. The commands \], \), and $ that end a math-mode environment
and the } or] that end the argument of a IATjX command also delimit the
scope of a declaration: but the } ending the argument of a command defined
with \newcommand or \renewcommand does not delimit its scope. A declara-
tion 1s in effect throughout its scope, except within the scope of a subsequent
countermanding dectaration.

The following declarations are global: their scope is not delimited by braces
or enviromments.

\newcounter \pagenumbering \newlength
\setcounter \thispagestyle \newsavebox
\addtocounter \hyphenation \newtheorem

C.1.5 Invisible Commands and Environments

A number of conmmmands and environments are “invisible”. meaning that they do
not produce any text at the point wlhere they appear. TEX regards an invisible

C.1 _ Commands and Environments

153

command or environment in the middle of a paragraph as an invisible “word”.
Putting spaces or an end-of-line character both before and after an invisible word
can generate two separate iterword spaces, one on either side of this “word”,
producing extra space in the output. This is seldom a problem for a conunand
with no argument, since spaces are ignored when they follow a command name
that ends in a letter. Also, the following invisible commands and environments
usually eliminate this extra space:!

\pagebreak \nolinebreak \vspace figure
\nopagebreak \label \glossary table
\linebreak \index \marginpar

Any other invisible command with an argument that appears inside a paragraph
should be attached to an adjacent word, as should the above commands and
environments in certain unusual situations where they can produce extra space
m the output.

C.1.6 The \\ command

\\ [len]
* [len]

These commands start a 1ew line and add an extra vertical space of length len
above it. The default is to add no extra space. The *-form inhibits a page
break before the new line. They may be used in paragraph mode and within
the following commands and environments:

array egnarray \shortstack
tabular tabbing \author

TEX is in paragraph mode, so a \\ can be used, in the following environments
(among others):

verse center flushleft flushright

and when processing the argument of a \title. \date, or sectioning command.
Do not use two \\ commands in a row in paragraph mode; instead. use an
optional argument to add extra vertical space.

In the array and tabular enviromments. the spacing between rows is ob-
tained by putting a strut (Section 5.4.3) on each line: a positive value of len
increases the depth of this strut. This can fail to add the expected amount
of extra space if an object in the row extends further below the line than the
default strut

The \\ and * commmands are fragile.

More precisely. spaces that follow these commands and environments are ignored if there
is space in the output before the invisible “word” that they generate.

154

Reference Manual

C.2 Sentences and Paragraphs

C.2.1 Making Sentences

Except where otherwise indicated, the following commands and characters are
for use in paragraph and LR mode only and are robust.

<
quotes
> Apostrophe. ‘text’ Single quotes. ‘“text’’ Double quotes.

dashes
- Intra-word. -- Number-range. --- Punctuation.

spacing
\, Produces a small space used between a double and a single quote.
\o, Produces an interword space.
~ Produces an interword space where no line break can occur.

\@ Causes an “end-of-sentence” space after punctuation when typed before
the punctuation character. Needed only if the character preceding the
punctuation character is not a lowercase letter or a number.

\frenchspacing Suppresses extra space after punctuation, even when \@
is used. Fragile.

\nonfrenchspacing Reverses the effect of \frenchspacing. Fragile.

special characters
$ \$ % \% { - \o
& \& # \# oA}
See Sections 3.2 and 3.3.2 for other symbols.

logos The following commands may be used in math mode as well as paragraph
and LR modes:
\TeX Produces TEX logo. \LaTeX Produces IATEX logo.

\today Generates the current date, in the following format: July 29, 1985.
\em A declaration that emphasizes text. usually by printing it in italic type.

\mbox{text} Typesets text in LR mode inside a box, which prevents it from
being broken across lines. (See Section 5.4.3.)

C.2.2 Making Paragraphs

A paragraph is ended by one or more completely blank lines lines not contain-
ing even a %. A blank line should not appear where a new paragraph cannot be
started. such as in math mode or in the argument of a sectioning command.

C.2 Sentences and Paragraphs

155

\noindent When used at the beginning of the paragraph it suppresses the para-
graph indentation. It has no effect when used in the middle of a paragraph.
Robust.

\indent Produces a horizontal space whose width equals the width of the para-
graph indentation. It is used to add a paragraph indentation where it
would otherwise be suppressed. Robust.

\par Equivalent to a blauk line: often used to make command and environment
definitions easier to read. Robust.

Style Parameters

\textwidth Normal width of text on the page. Should be changed only in the
preamble.

\linewidth Width of hues in the current environment; equals \textwidth ex-
cept when inside a displayed-paragraph environment such as quote or
itemize. Its value should not be changed with the length-setting com-
mands.

\parindent Width of the indentation at the beginning of a paragraph. Its value
is set to zero in a parbox. Its value may be changed anywhere.

\baselineskip The minimuni space from the bottom of one line to the bottom
of the next line in a paragraph. (The space between individual lines may be
greater if they contain tall objects.) Its value is set by a type-size-changing
command (Section 5.8.1). The value used for the entire paragraph unit

(Section 5.2.1) is the one in effect at the blank line or command that ends
the paragraph unit. Its value may be changed anywhere.

\baselinestretch A decimal number (such as 2 or 1.5). Its default value is 1
and is changed with \renewcommand. The value of \baselineskip is set
by \begin{document} and by cach type-size-changing command? to its de-
fault value times \baselinestretch. You can produce a “double-spaced”
version of the document for copy editing by setting \baselinestretch
to 2. but it will be ugly and hard to read. Any other changes to the in-
terline spacing should be part of a complete document-style design, best
done by a competent typographic designer.

\parskip The extra vertical space inserted before a paragraph. It is a rubber
length that usually has a natural length of zero. Its value may be changed
anvwhere. but should be a stretchable length when a \flushbottom dec-
laration (Section 5.1.2) is in effect.

2However. a \normalsize command does not change \baselineskip when a \normalsize
declaration is in effect.

156 Reference Manual
It was |Gnats'? and Gnus'®| as we trekked It was \fbox{Gnats\footnotemark\ and
through Africa in the blazing noontime heat. Gnus\footnotemark}’,

\addtocounter{footnote}{-1}\footnotetext
{Small insects.}\addtocounter{footnote}{1}%

128 mall insects.
13Large mammals.

17

\footnotetext{Large mammals.} as we ...

v

igure C.1: Making footnotes without the \footnote command.

C.2.3 Footnotes

\footnote [num] {iext}

Produces a footnote with fext as its text and num as its number. The num
argument is a positive integer, even when footnotes are “numbered” with letters
or other symbols; if it is missing, then the footnote counter is stepped and
its value used as the footnote number. This command may be used only in
paragraph mode to produce ordinary footnotes. It should not be used inside
a box except within a minipage environment, in which case it may be used in
LR or math mode as well as paragraph mode and the footnote appears at the
bottom of the box ended by the next \end{minipage}, which may be the wrong
place for it if there are nested minipage environments. Fragile.

\footnotemark[num]

Used in conjunction with \footnotetext to footnote text where a \footnote
command cannot be used. It produces a footnote mark (the footnote number
that appears in the running text) just like \footnote, but it does not produce a
footnote. See Figure C.1 for an example of its use. It steps the footnote counter
if the optional argument is missing. It may be used in any mode. Fragile.

\footnotetext [num] {iext}

Used in conjunction with \footnotemark to footnote text where the \footnote
command cannot be used. See Figure C.1 for an example. It produces a footnote,
just like the corresponding \footnote command, except that no footnote mark
is generated and the footnote counter is not stepped. Fragile.

Style Parameters

\footnotesep The height of a strut placed at the beginning of every foot-
note to produce the vertical space between footnotes. It may be changed
anywhere; the value used is the one in effect when the \footnote or
\footnotetext command is processed.

\footnoterule A command that draws the line separating the footnotes from
the main text. It is used by IATEX in paragraph mode, between paragraphs

C.3 Sectioning and Table of Contents

157

(in TEX's ner vertical mode). The output it generates nwst take zero
vertical space. so negative space should be used to compeunsate for the space
occupied by the rule. It can be redefined anywhere with \renewcommand:
the definition used is the one in effect when TiX produces the page of
output.

C.2.4 Accents and Special Symbols

Connnands for making accents in normal text are listed in Table 3.1 on page 40:
commands for making accents in math formulas are listed in Table 3.11 on
page 51. See Section (1.9.1 for commands used in a tabbing environment to
produce the accents normally made with \=. \’. and *.

Foreign-language symbols are made with commands listed in Table 3.2 on
page 40. The following commands for making additional special symbols can
also be used in any mode:

T \dag § \s © \copyright

i \ddag ¢ \p £ \pounds
Section 3.3.2 gives many conmunands for generating symbols in mathematical
formulas.

C.3 Sectioning and Table of Contents

The use of the following commands for producing section headings and table of
contents entries is illustrated in Figure C.2.

C.3.1 Sectioning Commands

sec_emd [toc_entry) {heading?

sec_cmd*{heading}

Cominands to begin a sectional unit. The *-form suppresses the section number.
does not increment the counter. does not affect the running head, and produces
no table of contents entry. The secnumdepth counter. described below. deter-
mines which sectional units are numbered.

sec_emd One of the following:

\part \section \subsubsection \subparagraph
\chapter \subsection \paragraph

Each sectional unit should be contained in the next higher-level unit. ex-
cept that \part is optional. The article document style does not have a
\chapter commaid.

158

Reference Manual

Gnats and Gnus Forever

From insects embedded in amber and fossils found
i Africa, we find that ...

In table of contents:

Gnats o 37
I 2 ex

22x Gnus 37

2.3 Gunats and Gnus on Gneiss 37

In the text (on page 37):
2.3 Insects and Ungulates on Metamor-
phic Rock

\subsection*{Gnats and Gnus Forever}
From insects embedded in amber and ...

\addcontentsline{toc}{subsection}{Gnats}
\addtocontents{toc}{\protect\vspace
{2ex}} .
\addcontentsline{toc}{subsection}{\protect
\numberline{2.2x}{Gnus}}
\subsection[Gnats and Gnus on
Gneiss]{Insects and Ungulates on
Metamorphic Rock}

Figure C.2: Sectioning and table of contents commands.

toc_entry Produces the table of contents entry and may be used for the running
head (Section 5.1.2). It is a moving argument. If it is missing, the heading
argument 1s used for these purposes.

heading Produces the section heading. If the toc_entry argument is missing.
then it is a moving argument that provides the table of contents entry and
may be used for the running head (Section 5.1.2).

C.3.2 The Appendix

\appendix

A declaration that changes the way sectional units are numbered. In the article
document style, appendix sections are numbered “A”. “B”, etc. In the report
and book styles. appendix chapters are numbered “A™. "B”. etc.. and the chapter
number is printed in the heading as “Appendix A”. “Appendix B”. ete. The
\appendix command generates no text and does not affect the numbering of

parts.

C.3.3 Table of Contents

\tableofcontents
\listoffigures
\listoftables

Generate a table of contents, list of figures. and list of tables. respectively. These
commands cause IAT}X to write the necessary information on a file having the
same first name as the root file and the following extension:

command: \tableofcontents \listoffigures \listoftables

ertension: toc

lof lot

FRE] TR | 'R B 3 (R B} .1y

N

o

C.3 Sectioning and Table of Contents

159

A table of contents or a list of figures or tables compiled from the information
on the current version of this file is printed at the point where the command
appears.

Table of contents entries are produced by the sectioning commands, and list
of figures or tables entries are produced by a \caption command in a figure
or table environment (Section 3.5.1). The two commands described below also
produce entries.

\addcontentsline{file}{sec_unit}{entry}
Adds an entry to the specified list or table.

file The extension of the file on which information is to be written: toc (table
of contents), 1of (list of figures), or 1ot (list of tables).

sec_unit Controls the formatting of the entry. It should be one of the following,
depending upon the value of the file argument:

toc: the name of the sectional unit, such as part or subsection.
lof: figure
lot: table

There is no \ in the argument.

entry The text of the entry. It is a moving argument. To produce a line with a
sectional unit or figure or table number, entry should be of the form

\protect\numberline{sec.num}{heading}

where sec_num is the number and heading is the heading.

\addtocontents{file}{tert}

Adds text (or formatting commands) directly to the file that generates the table
of contents or list of figures or tables.

file The extension of the file on which information is to be written: toc (table
of contents), 1of (list of figures), or 1ot (list of tables).

tert The inforination to be written. It is a moving argument.

C.3.4 Style Parameters

Document-style parameters control which sectional units are numbered and
which are listed in the table of contents. Each sectional unit has a level num-
ber. In all document styles, sections have level number 1, subsections have level
number 2. etc. In the article document style, parts have level number 0; in
the report and book styles, chapters have level number 0 and parts have level
number —1.

160

Reference Manual

The following two counters (Section 5.3) are provided; they can be set in the
preamble.

secnumdepth The level number of the least significant sectional unit with num-
bered headings. A value of 2 means that subsections are numbered but
subsubsections are not.

v
tocdepth The level number of the least significant sectional unit listed in the
table of contents.

C.4 Document and Page Styles

C.4.1 Document Styles

\documentstyle [options] {style}

Specifies the document style and options. It is usually the first command in the
input file.

style The main document style: the standard ones are: article. report. book.
and letter (for letters only). There is also a slides style for use only
with SLITEX. The \documentstyle comnmand reads the file style.sty.

options A list of one or more style options. separated by conunas—with no

spaces. The standard IATRX options are:

11pt Makes eleven-point type the normal (default) type size instead of
ten-point type.

12pt Makes twelve-point type the normal (default) type size instead of
ten-point type.

twoside Formats the output for printing on both sides of a page. (This
is the default in the book style.)

twocolumn Produces two-colunm pages.

titlepage For article style only: causes the \maketitle command and
the abstract environment cach to make a separate page.

openbib Causes the bibliography (Section 4.3) to be formatted in open
style. (See van Leunen [7].)

legno Puts formula numbers on left side in equations and egnarray
environments.

fleqn Left-aligns displayed formulas.

Only leqno and fleqn can be used in SLITEX. IATEX implements style
options by doing the following for each specified option op: if the command
\ds@op is defined (usually by the main style). then it is executed, otherwise
the file op. sty is read.

= aNB PR R ITm PR] TR w1l 199 aY s o f am]

- e

C.4 Document and Page Styles

161

Style Parameters

\bibindent Width of the extra indentation of succeeding lines in a bibliography
block with the openbib style option.

\columnsep The width of the space between columns of text in twocolumn style.

\columnseprule The width of a vertical line placed between columns of text in
twocolumn style. Its default value is zero, producing an invisible line.

\mathindent The amount that formulas are indented from the left margin in
the fleqn document-style option.

C.4.2 Page Styles

An output page consists of a head. a body, and a foot. Document-style parameters
determine their dimensions: the page style specifies the contents of the head and
foot. Left-hand and right-hand pages have different parameters. In two-sided
style, even-numbered pages are left-hand and odd-numbered pages are right-
hand: in one-sided style. all pages are right-hand. All commands described in
this section are fragile.

\pagestyle{style}

A declaration. with normal scoping rules, that specifies the current page style.
The style used for a page is the one in effect when TEX “cuts the scroll”
(page 119). Standard style options are:

plain The head is empty. the foot has only a page number. It is the default
page style.
empty The head and foot are both empty.

headings The head contains information determined by the document style
(usually a sectional-unit heading) and the page number: the foot is empty.

myheadings Samne as headings. except head information specified by \markboth
and \markright commands. described below.

\thispagestyle

Same as \pagestyle except it applies only to the current page (the next one to
be “cut fromn the scroll™). This is a global declaration (Section C.1.4).

\markright{right_head}
\markboth{left_head}{right_head}

These commands specify the following heading information for the headings
and myheadings page styles:

Reference Manual

left-hand page Specified by left_head argument of the last \markboth before
the end of the page.

right-hand page Specified by right_head argument of the first \markright
or \markboth on the page, or if there is none, by the last one before the

beginning of the page.
J

Both right_head and left_head are moving arguments. In the heading page style,
sectioning commands set page headings with the \markboth and \markright
commands as follows:

Document Style
Printing Style | Command | book, report article
two-sided \markboth® | \chapter \section
\markright | \section \subsection
one-sided \markright | \chapter \section

%Specifies an empty right head.
These commands are overridden as follows:
\markboth Put a \markboth command right after the sectioning command.

\markright Put a \markright command immediately before and after the
sectioning command, but omit the first one if the sectional unit starts a
new page.

The right head information is always null for the first page of a document. If

this is a problem, generate a blank first page with the titlepage environment.

\pagenumbering{num_style}

Specifies the style of page numbers. It is a global declaration (Section C.1.4).
Possible values of num_style are:

arabic Arabic numerals.
roman Lowercase Roman numerals.
Roman Uppercase Roman numerals.

alph Lowercase letters.

Alph Uppercase letters.

The \pagenumbering command redefines \thepage to be \num_style{page?}.

\twocolumn [tezt]

Starts a new page by executing \clearpage (Section 5.2.2) and begins typeset-
ting in two-column format. If the text argument is present, it is typeset in a
double-column-wide parbox at the top of the new page. Fragile.

PEE Y FE B 'R o

-y

. =« - -

C.4 Document and Page Styles

163

\onecolumn
Starts a new page by executing \clearpage (Section 5.2.2) and begins typeset-
ting in single-column format. Fragile.

Style Parameters

The following parameters are normally changed only in the preamble. Anomalies
may occur if they are changed in the middle of the document.

\oddsidemargin Oue iuch less than the distance from the left edge of the paper
to the left margin of the text on right-hand pages.

\evensidemargin The same as \oddsidemargin except for left-hand pages.
\marginparwidth The width of marginal notes.

\marginparsep Tlie amount of horizontal space between the outer margin and
a marginal note.

\topmargin Omne inch less than the distance from the top edge of the paper to
the top of the page's head.

\headheight The height of (a box containing) the head.

\headsep The amount of vertical space between the head and the body of a
page.

\textheight The normnal height of the body of a page. With \flushbottom
(Section 5.1.1) in effect. rubber vertical space will be stretched to make
the body exactly this high.

\textwidth The normal width of the text on the page (when not inside an
environment that changes the margins).

\topskip The minimum distance from the top of the body to the bottom of
the first line of text. It acts like \baselineskip for first line of a page.

\footheight The height of (a box containing) the page’s foot.

\footskip The distance from the bottom of the last line of text in the body of
a page to the bottom of the foot.

C.4.3 The Title Page and Abstract

\maketitle

Generates a title on a separate title page except in the article document
style, where the title normally goes at the top of the first text page. (See also
the titlepage document-style option in Section 5.1.1.) Information used to
produce the title 1s obtained from the following declarations; an example of
their use is given in Figure C.3.

164

Reference Manual

Acme Kitchen Products

Gnu Veldt Cuisine \title{Gnu Veldt Cuisine}

G. Picking”
CEES \author{G. Picking\thanks{Supported

by a grant from the GSF.} \\

R. Dillo
A Kitch P
Cordon Puce School e 2 g il okd
\and
2 July 1984 R. Dillo \\ Cordon Puce ¥
Revised 5 January 1985 School\thanks{On leave during 1985.}}

\date{24 July 1984 \\
Revised 5 January 1985}

*Supported by a grant from the GSF.
tOn leave during 1985.

\maketitle

Figure C.3: An example title.

\title{fext} Declares text to be the title. You may want to use \\ to tell
IATEX where to start a new line in a long title.

\author{names} Declares the author(s), where names is a list of authors sepa-
rated by \and commands. Use \\ to separate lines within a single author’s
entry—for example, to give the author’s institution or address.

\date{text} Declares tezt to be the document’s date. With no \date command,
the current date is used.

The arguments of these three commands may include the following command.

\thanks{text} Produces a footnote to the title. The text is a moving argument.
Can be used for an acknowledgement of support, an author’s address, etc.
The footnote marker is regarded as having zero width, which is appropriate
when it comes at the end of a line: if the marker comes in the middle of a
line, add extra space with \, after the \thanks command.

\begin{abstract} text \end{abstract}

Generates an abstract. with fext as its contents. The abstract is placed on a page
by itself in the report document style or titlepage style option (Section 5.1.1).
[t is not available in the book document style.

\begin{titlepage} text \end{titlepage}

Produces a title page with the empty page style and resets the number of the
following page to one. You are completely responsible for formatting the contents
of this page.

C.5 Displayed Paragraphs

165

C.5 Displayed Paragraphs

The output produced by a displayed-paragraph environment starts on a new
line, as does the output produced by the text following it. In addition to the
environments described in this section, tlie tabbing, center, flushleft, and
flushright environments and the enviromments defined by \newtheorem (Scc-
tion 3.4.3) are also displayed-paragraph environments.

The text following a displayed-paragraph environment begins a new para-
graph if there is a blank line after the \end command. However, even with
no blank line, tle following text may have a paragraph imdentation if a right
brace or \end command comes between it and the environment’s \end com-
mand. This anomalous indentation is eliminated with a \noindent command
(Section C.2.2).

Anomalous extra vertical space may be added after a displayed-paragraph en-
vironment that ends with a displayed equation (one made with the displaymath,
equation, or eqnarray cuvironment). This space can be removed by adding a
negative vertical space with a \vspace command (Section 5.4.2).

All displayed-paragraph environments are implemented with the list or
trivlist environment. These environments and the relevant formatting pa-
rameters are described in Section C.5.3 below.

C.5.1 Quotations and Verse
\begin{quote} text \end{quote}

Left and right margins are indented equally. there is no paragraph indentation,
and extra vertical space is added between paragraphs.

\begin{quotation} tert \end{quotation}

Left and right margins are indented cqually; normal paragraph indentation and
interparagraph vertical space is used.

\begin{verse} tert \end{verse}

Left and right margins are indented equally. Lines within a stanza are separated
by \\ commands and stanzas are separated by one or more blank lines.

C.5.2 List-Making Environments

\begin{itemize} itern_list \end{itemize}

\begin{enumerate} itern_list \end{enumerate}
\begin{description} item_list \end{description}

The item_list consists of a sequence of items, cach one begun with an \item
command (see below). Numbering in an enumerate environment is controlled
by the counter enumi, enumii, enumiii, or enumiv. depending upon its nesting

166

Reference Manual

level within other enumerate environments. The printed value of this counter
is declared to be the current \ref value (Section C.10.2).

The default labels of an itemize environment are produced by the com-
mand \labelitemi, \1labelitemii, \labelitemiii, or \labelitemiv, depend-
ing upon its nesting level within other itemize environments. The “tick marks”
produced by the itemize environment may be changed by redefining these com-
mands with \renewcommand.

If an item of a description environment begins with a displayed-paragraph
environment, the item label may overprint the first line of that environment. If
this happens, the item should begin with an \mbox{} command to cause the
environment to start on a new line.

\item [label]

Starts a new item and produces its label. The item label is generated by the
label argument if present, otherwise the default label is used. In itemize and
enumerate, the label is typeset flush right a fixed distance from the item’s left
margin. In enumerate, the optional argument suppresses the incrementing of the
enumeration counter. The default label is null in the description environment.
The \item command is fragile.

C.5.3 The 1list and trivlist Environments

\begin{list}{default_label}{decls} item_list \end{list}

Produces a list of labeled items.

item_list The text of the items. Each item is begun with an \item command
(Section C.5.2).

default_label The label generated by an \item command with no optional argu-
ment.

decls A sequence of declarations for changing the default formatting parameters.
Before executing the commands in decls, one of the commands \@listi,
\@listii, \@listvi is executed, depending upon how many list
environments the current one is nested within—the \@listi command
being executed for the outermost 1ist environment. These commands set
the default values of some parameters.

The following are the parameters that control the formatting in a list
environment.

\topsep The amount of extra vertical space (in addition to \parskip)
inserted between the preceding text and the first list item, and be-
tween the last item and the following text. Its default value is set by
\@list... . It is a rubber length.

C.5 Displayed Paragraphs 167

\partopsep The extra vertical space (in addition to \topsep+ \parskip)
inserted. if the enviromment is preceded by a blank line, between the
preceding text and the first list item and between the last item and
the following text. Its default value is set by \@list... . It is a
rubber length.

\itemsep The amount of extra vertical space (in addition to \parsep)
inserted between successive list items. Its default value is set by
\@list... . It is a rubber length.

\parsep The amount of vertical space between paragraphs within an item.
It is the value to which \parskip is set within the list. Its default is
set by \@list... . It is a rubber length.

\leftmargin The horizontal distance between the left margin of the en-
closing environnient and the left margin of the list. It must be non-
negative. In the standard document styles, it is set to \leftmargini
by \@listi. to \leftmarginii by \@listii. etc.

\rightmargin The horizontal distance between the right margin of the
enclosing environment and the right margin of the list. It must be
nonnegative. Its default value is zero unless set by \@list... .

\listparindent The amount of extra indentation added to the first line
of every paragraph except the first one of an item. Its default value
is zero uuless set by \@list... . It may have a negative value.

\itemindent The amount of extra indentation added to each item before
the label. Its default value is zero unless set by \@list... . It may
have a negative value.

\labelsep The space between the end of the box containing the label and
the text of the item. In the standard document styles, it is not set
by \@list... . maintaining the same value for all nesting levels. It
may be set to a negative length.

\labelwidth The normal width of the box that contains the label. It
must be nonnegative. In the standard docunient styles. \@list...
sets it to \leftmargin... — \labelsep. so the left edge of the label
box is flush with the left margin of the enclosing environmient. If
the natural width of the label is greater than \labelwidth. then the
label 1= typeset in a box with its natural width, so the label extends
further to the right than “normal™.

\makelabel{label} A command that generates the label printed by the
\item command from the label argumnent. Unless it is redefined by
\@list... .its default definition positions the label flush right against
the right edge of its box. It may be redefined with \renewcommand.

168

Reference Manual

In addition to declarations that set tlie above parameters. the following
declaration may appear in decls:

\usecounter{ctr} Enables the counter ctr (Section 5.3) to be used for
numbering list items. It causes ctr to be initialized to zero and in-
cremented by \refstepcounter when executing an \item command
that has no optional argument, causing its value to become the cur-
rent \ref value (Section C.10.2). It is a fragile command.

\begin{trivlist} item_list \end{trivlist}

Acts like a 1list euvironment using the current values of the list-making pa-
rameters, except with \parsep set to the current value of \parskip and the
following set to zero: \leftmargin, \labelwidth, \itemindent. It does not
execute \@list... . so the values of the list-formatting parameters outside any
list should be made the same as the ones set by \@listi.

Every \item command in ztem_list must have an optional argument. The
trivlist environment is normally used to define an environment consisting of
a single list item, with an \item[] command appearing as part of the environ-
nient’s definition.

C.5.4 Verbatim

\begin{verbatim} lteral_text \end{verbatim}
\begin{verbatim*} [literal_text \end{verbatim*}

Typesets literal_text exactly as typed. including special characters, spaces and
line breaks, using a typewriter (\tt) type style. The only text following the
\begin command that is not treated literally is the \end command. The *-form
differs only in that spaces are printed as , symbols.

If there is no nonspace character on the line following the \begin command.
then lUteral_text effectively begins on the next line. There can be no space
between the \end and the {verbatim} or {verbatim*}.

A verbatim or verbatim* environment may not appear in the argument of
any command.

\verbchar literal_text char

\verb*char literal_text char

Typesets literal_text exactly as typed. including special characters and spaces,
using a typewriter (\tt) type style. There may be no space between \verb
or \verb* and char. The *-form differs only in that spaces are printed as .
symbols.

char Any nonspace character. except it may not be a * for \verb.

literal_text Ay sequence of characters not containing an end-of-line character
or char.

'S B | (BRI mE) =Yy

"I

C.6 Mathematica! Formulas

169

A \verb or \verb* command may not appear in the argument of any other
conmiand.

C.6 Mathematical Formulas

Unless otherwise noted. all commands deseribed in this section can be used only
in math mode. See Section 3.3.8 for an explanation of the display and text math
styles.

C.6.1 Math Mode Environments

$ Jormula $
\ (formula \)
\begin{math} formula \end{math}

These equivalent forms produce an in-text formula by typesetting formula in
math mode using text style. They may be used in paragraph or LR mode. The
\(and \) commands are fragile: $ is robust.

\ [formula \]
\begin{displaymath} formule \end{displaymath}

These equivalent forins produce a displayed formula by typesetting formula in
math mode using display stvle. They may be used only in paragraph mode.
The displayed formmla is centered unless the fleqn document-style option is
used (Section 5.1.1). The connmands \ [and \] are fragile.

\begin{equation} formula \end{equation}

The same as displaymath except that an equation number is generated using
the equation counter. The equation number is positioned flush with the right
margin, unless the legno document-style option is used (Section 5.1.1).

\begin{eqnarray} eqns \end{eqnarray}
\begin{eqnarray=} eqns \end{eqnarray*}

Produces a sequence of displayed formulas aligned in three columns. The egns
text is like the body of an array environment (Section 3.3.3) with argument rcl:
it consists of a sequence of rows separated by \\ commands. each row consisting
of three columns separated by & characters. (However. a \multicolumn comn-
mand may not be used.) The first and third columns are typeset in display style.
the second in text style. These environments may be used only in paragraph
mode.

The eqrarray enviromment produces an equation nmmnber for each row. gen-
erated from the equation counter and positioned as in the equation environ-

170

Reference Manual

ment. A \nonumber command suppresses the equation number for the row in
which it appears. The eqgnarray* environment produces no equation numbers.
The command \lefteqn{formula} prints formula in display math style (Sec-
tion 3.3.8). but pretends that it has zero width. It is used within an eqnarray
or eqnarray* environment for splitting long formulas across lines.
An overfull \hbox warning occurs if a formula extends beyond the prevailing
margins, but not if it only overprints the equation number.

Style Parameters

\jot The amount of extra vertical space added between rows in an eqnarray
or eqnarray* environment.

\mathindent The indentation from the left margin of displayed formulas in the
fleqgn document-style option.

\abovedisplayskip The amount of extra space left above a long displayed
formula— except in the fleqn document-style option. where \topsep is
used. A long formula is one that lies closer to the left margin than does
the end of the preceding line. It is a rubber length.

\belowdisplayskip The amount of extra space left below a long displayed
formula except in the flegn document-style option. where \topsep is
used. It is a rubber length.

\abovedisplayshortskip The amount of extra space left above a short dis-
played fornmla except in the fleqn document-style option. which uses
\topsep. A short formula is one that starts to the right of where the
preceding line ends. It is a rubber length.

\belowdisplayshortskip The amount of extra space left below a short dis-
played formula—except in the fleqn document-style option. which uses
\topsep. It is a rubber length.

C.6.2 Common Structures

_{sub} Typesets sub as a subscript. Robust.
“{sup} Tvypesets sup as a superscript. Robust.
* Produces a prime symbol (‘). Robust.

\frac{numer}{denom} Generates a fraction with numerator numer and de-
nominator denom. Robust.

\sqrt[nl{arg} Generates the notation for the n'® root of arg. With no argu-

ment. it produces the square root (no indicated root). Fragile.
ellipsis The following commands produce an ellipsis (three dots) arranged as
indicated. They are all robust.

'e al s al I B 'a al 'a al I s al [s al T ' &} ™y e l'aal s B =T

'R At ™1l mr rl [B} -~ e "™ e [B ol

1P

C.6 Mathematical Formulas

171

\1ldots Horizontally at tlie bottom of the line (...). It may be used in
paragraph and LR mode as well as math mode.

\cdots Horizontally at the center of the line (---).
\vdots Vertically (:).

\ddots Diagonally ("".).

C.6.3 Mathematical Symbols

See Tables 3.3 through 3.8 on pages 43-45. The ones in Table 3.8 are printed
differently in display and text styles: in display style, subscripts and superscripts
may be positioned directly above and below the symbol. All the commands listed
in those tables are robust.

Log-like functions. which are set in roman type, are listed in Table 3.9 on
page 46. Subscripts appear directly below the symbol in display style for \det,
\gcd. \inf, \1im, \liminf, \limsup, \max, \min, \Pr, and \sup. All log-like
commands are robust. The following commands also create symbols.

\bmod Produces a binary mod symbol. Robust.
\pmod{arg} Produces “(mod arg)". Robust.

\cal A type-style declaration to produce calligraphic letters. Only uppercase
letters should appear in its scope. Robust.

C.6.4 Arrays
See Section C.9.2.

C.6.5 Delimiters
\leftdelim formula \rightdelim

Typesets formula and puts large delimiters around it, where delim is one of
the delimiters in Table 3.10 on page 48 or a .’ character to signify an invisible
delimiter. The \1eft and \right commands are robust.

C.6.6 Putting One Thing Above Another

\overline{formula}

Typesets formula with a horizontal line above it. Robust.

\underline{formula}

Typesets formula with a horizontal line below it. May be used in paragraph or
LR mode as well as math mode. Fragile.

172

Reference Manual

accents

Table 3.11 on page 51 lists math-mode accent-making commands. They are
robust, as are the following additional accenting commands:

\widehat Wide version of \hat.
\widetilde Wide version of \tilde. v
\imath Dotless 7 for use with accents.

\jmath Dotless j for use with accents.

\stackrel{top}{bot}

Typesets top immediately above bot, using the same math style for top as if it
were a superscript.

C.6.7 Spacing

The following commands produce horizontal space in math mode. They are all
robust. The \, command may also be used in paragraph and LR mode.

\, thin space \: medium space
\! negative thin space \; thick space

C.6.8 Changing Style
Type Style

The type-style declarations of Section 3.1 may be used in math mode. They
affect only letters, not symbols, where uppercase Greek letters are treated as
letters and lowercase ones as symbols. There are two additional type-style dec-
larations that can be used only in math mode: \mit for math italic style and
\cal for calligraphic style (uppercase letters only). Like all type-style declara-
tions, they are robust.

See Section C.14 for an explanation of anomalous behavior by type-style-
changing commands when used in math mode, and for a description of the
\boldmath declaration that produces bold symbols.

Math Style

The following declarations can appear only in math mode. They choose the
type size and certain formatting parameters, including ones that control the
placement of subscripts and superscripts. All are robust commands.

\displaystyle Default style for displayed formulas.

\textstyle Default style for in-text formulas and for the items in an array
environment.

— — __._.. —
I 8 1 ' R} 'R BRI Yy

,_
 anl

T IMm Im

s a0 & o R 2 o B B

¥ W¥} I

-1

re

C.7 Definitions 173

\scriptstyle Default style for first-level subscripts and superseripts.

\scriptscriptstyle Default style for higher-level subscripts and superseripts.

C.7 Definitions

C.7.1 Defining Commands

\newcommand {cmd} [args]{def}
\renewcommand{cmd} [args]{def}

These commands define (or redefine) a command. They are both fragile.

emd A command name beginning with \. For \newcommand it must not be
already defined and must not begin with “\end": for \renewcommand it
must already be defined.

args An integer from 1 to 9 denoting thie number of arguments of the command
being defined. The default is for the command to have no arguments.

def The text to be substituted for every occurrence of ¢md; a parameter of the
form #n in emd is replaced by the text of the n'™ argument when this
substitution takes place. It should contain no command- or environment-
defining commarnd.

The argument-enclosing braces of a command defined with \newcommand or re-
defined with \renewcommand do not delimit the scope of a declaration in that
argunient. (However. the scope may be delimited by braces that appear within
def.) The defined command is fragile if def includes a fragile command. other-
wise it is robust.

C.7.2 Defining Environments

\newenvironment {nam} [args]{begdef}{enddef?}
\renewenvironment{nam} [args) {begdef}{enddef}

These commands define or redefine an environment. They are both fragile.

nam The name of the enviromment. For \newenvironment there must be no
currently defined enviromment by that name. and the command \ nam must
be undefined: for \renewenvironment the environment must already be
defined.

args An integer from 1 to 9 denoting the number of arguments of the newly-
defined environment. The default 1s no arguments.

begdef The text substituted for every occurrence of \begin{nam}: a parameter
of the form #n i emd is replaced by the text of the n'" argument when
this substitution takes place.

174

Reference Manual

enddef The text substituted for every occurrence of \end{nam}. It may not
contain any argument parameters.

The begdef and enddef arguments should contain no command- or environment-
defining command. The argument-enclosing braces of an environment defined
with \newenvironment or \renewenvironment do not delimit the scope of a
declaration contained in the argument.)

C.7.3 Theorem-like Environments

\newtheorem {env_name}{caption} [within]
\newtheorem {env_name}[numbered_like]{caption}

This command defines a theorem-like environment. It is a global declaration
(Section C.1.4) and is fragile.

env_name The name of the environment- -a string of letters. Must not be the
name of an existing environment or counter.

caption The text printed at the beginning of the environment. right before the
number.

within The name of an already-defined counter. usually of a sectional unit. If
this argument is present. the command \theenv_name is defined to be

\thewithin.\arabic{env_name}

and the env_name counter will be reset by a \stepcounter{within} or
\refstepcounter{within} command (Section C.7.4). If the within argu-
ment is missing. \theenv_name is defined to be \arabic{env_name}.

numbered_like The name of an already defined theoreni-like environment. If this
argument is present. the env_name environment will be numbered in the
same sequence (using the same counter) as the numbered_like environment
and will declare the current \ref value (Section C.10.2) to be the text
generated by \thenumbered_like.

Unless the numbered_like argument is present. this command creates a counter
named env_name. and the environment declares the current \ref value (Sec-
tion C.10.2) to be the text generated by \theenv_name.

The \newtheorem command may have at most one optional argument. See
Section C.1.1 if a \newcommand without a final optional argument is followed by
a [character.

C.7.4 Numbering

\newcounter{newctr} [within]

Defines a new counter named newctr that is initialized to zero. with \thenewectr
defined to be \arabic{newctr}. It is a global declaration. The \newcounter

e T = - . -]

il ool 2 o & o o ol & o &2 o = o s oa D o o o o 2 s s e Y ca . 2 a1

i & al

=" i 2 2l

)

™

M

C.7 Definitions

175

counnand may not be used in an \include'd file (Section 4.4). I'ragile.
newetr A string of letters that is not the nawe of an existing counter.

within The nawe of an already-defined counter. If this argumment is present, the
newetr counter is reset to zero whenever the within counter is stepped by
\stepcounter or \refstepcounter (sce below).

\setcounter{ctr}{num}

Sets the value of counter etr to num. It is a global declaration (Section C.1.4).
Fragile.

\addtocounter{ctr}{num?}
Increments the value of counter ctr by num. It is a global declaration (Sec-
tion C.1.4). Fragile.

\value{ctr}

Produces the value of counter ctr. It is used mainly in the num argument
of a \setcounter or \addtocounter command for example. the command
\setcounter{bean}{\value{page}} sets counter bean equal to the current
value of the page counter. However. it can be used anywhere that IATEX expects
a nummber. The \value command is robust. and must never be preceded by a
\protect command.

numbering commands

The following conunands print the value of counter ¢tr in the indicated format.
They are all robust.

\arabic{etr} Arabic numerals.

\roman{ctr} Lowercase Roman munerals.

\Roman{ctr} Uppercase Roman numerals.

\alph{ctr} Lowercase letters. Value of ctr must be less than 27.
\Alph{ctr} Uppercase letters. Value of ¢tr must be less than 27.

\fnsymbol{ctr} Producesone of the nine “footnote symbols™ from the following
sequenice: * + 1§ € (| =% 1 11 It may be used ouly in math mode.
The value of etr must be less than 10.

\thectr

A command used to print the value associated with counter ctr. Robust.

176

Reference Manual

\stepcounter {ctr}

\refstepcounter{ctr}

Increment the value of counter ctr by one and reset the value of any counter
numbered “within” it. For example. the subsection counter is numbered within
the section counter, which. in the report or book document style, is numbered
within the chapter counter. The \refstepcounter command also declares the
current \ref value (Section C.10.2) to be the text generated by \thectr.

C.8 Figures and Other Floating Bodies

C.8.1 Figures and Tables

\begin{figure} [loc] body \end{figure}

\begin{figurex}[loc] body \end{figurex}

\begin{table} [loc] body \end{table}

\begin{tablex}[loc] body \end{tablex}

These envirommnents produce floating figures and tables. In two-column format.
the ordinary forms produce single-column figures and tables and the *-forms
produce double-coluimn ones. The two forms are equivalent in single-column
format.

The body is typeset in a parbox of width \textwidth. It may contain one or
more \caption commands (sce below). The loc argument is a sequence of zero
to four letters. each one specifying a location where the figure or table may be
placed. as follows:

h Here: at the position in the text where the enviromment appears. (Not
possible for double-colunm figures and tables in two-column format.)

t Top: at the top of a text page.
b Bottom: at the bottom of a text page. (Not possible for double-column
figures or tables in two-column format.)
p Page of floats: on a separate page containing no text. only figures and
tables.
If the loc argument is missing. the default specifier is tbp. so the figure or
table may be placed at the top or bottom of a text page or on a separate page
consisting only of figures and/or tables. The placement of the figure or table is
determined by the following rules.
o [t is printed at the carliest place that does not violate subsequent rules.
except that an h (here) position takes precedence over a t (top) position.
e It will not be printed on an earlier page than the place in the text where
the figure or table enviromment appears.

-y

e &)

fag)}

C.8 Figures and Other Floating Bodies

177

A figure will not be printed before an earlier figure, and a table will not
be printed before an earlier table.

e It may appear only at a position allowed by the pos argument, or, if that
argument is missing, by the default tbp specifier.

e Placement of the figure cannot produce an overfull page.

e The page constraints determined by the formatting parameters described
below are not violated.

The last three rules are suspended when a \clearpage. \cleardoublepage.
or \end{document} command occurs, all unprocessed figures and tables being
allowed a p option and printed at that point.

When giving an optional loc argument, include enough options so the above
rules allow the figure or table to go somewhere, otherwise it and all subsequent
figures or tables will be saved until the end of the chapter or document, probably
causing TEX to run out of space.

\caption[ist_entryl {heading}

Produces a numbered caption.

Ist_entry Generates the entry in the list of figures or tables. Such an entry should
not contain more than about three hundred characters. If this argument
is missing, the heading argument is used. It is a moving argument.

heading The text of the caption. It produces the list of figures or tables entry if
the Ist_entry argument is missing, in which case it is a moving argument.
If this argument contains more than about three hundred characters, a
shorter lst_entry argument should be used—even if no list of figures or
tables is being produced.

A \label command that refers to the caption’s number must go in heading
or after the \caption command in the body of the figure or table environ-
ment. The \caption command can be used only in paragraph mode, but can
be placed in a parbox made with a \parbox command or minipage environment
(Section 5.4.3). It is fragile.

Style Parameters

Changes made to the following parameters in the preamble apply from the first
page on. Changes made afterwards take effect on the next page, not the current
one. A float denotes either a figure or a table, and a float page is a page
containing only floats and no text. Parameters that apply to all floats in a
one-column page style apply to single-column floats in a two-column style.

topnumber A counter whose value is the maxiinum number of floats allowed at
the top of a page.

178

Reference Manual

\topfraction The maximum fraction of the page that can be occupied by tloats
at the top of the page. Thus, the value .25 specifies that as much as the
top quarter of the page may be devoted to floats. It is changed with
\renewcommand.

bottomnumber Same as topnumber except for the bottom of the page.
\bottomfraction Same as \topfraction except for the bottom of the page.

totalnumber A counter whose value is the maximum number of floats that can
appear on a single page, irrespective of their positions.

\textfraction The minimum fraction of a text page that must be devoted to
text. The other 1 — \textfraction fraction may be occupied by floats. It
is changed with \renewcommand.

\floatpagefraction The minimum fraction of a float page that must be occu-
pied by floats. limiting the amount of blank space allowed on a float page.
It is changed with \renewcommand.

dbltopnumber The analog of topnumber for double-column floats in two-column
style.

\dbltopfraction The analog of \topfraction for double-column floats on a
two-column page.

\dblfloatpagefraction The analog of \floatpagefraction for a float page
of double-column floats.

\floatsep The vertical space added between floats that appear at the top or
bottom of a text page. It is a rubber length.

\textfloatsep The vertical space added between the floats appearing at the
top or bottom of a page and the text on that page. It is a rubber length.

\intextsep The vertical space placed above and below a float that is put in
the middle of the text with the h location option. It is a rubber length.

\dblfloatsep The analog of \floatsep for double-width floats on a two-col-
umn page. It is a rubber length.

\dbltextfloatsep The analog of \textfloatsep for double-width floats on a
two-column page. It is a rubber length.

C.8.2 Marginal Notes

\marginpar [left_tert]{right_text}

Produces a marginal note using right_tert if it goes in the right margin or there is
no optional argument. otherwise using left_texrt. The text is typeset in a parbox.

Pa——

C.9 Lining It Up in Columns

179

For two-sided, single-column printing, the default placement of marginal
notes is on the outside margin-—left for even-numbered pages, right for odd-
numbered ones. For one-sided, single-column printing, the default placement is
in the right margin. These defaults may be changed by the following declara-
tions:

\reversemarginpar Causes marginal notes to be placed in the opposite mar-
gin from the default one.

\normalmarginpar Causes marginal notes to be placed in the default margin.

When a marginal note appears within a paragraph, its placement is determined
by the declaration in effect at the blank line ending the paragraph. For two-
column format, marginal notes always appear in the margin next to the column
containing the note, irrespective of these declarations.

A marginal note is normally positioned so its top line is level with the line
of text containing the \marginpar command: if the command comes between
paragraphs, the note is usually level with the last line of the preceding para-
graph. However, the note is moved down and a warning message printed on
the terminal if this would make it overlap a previous note. Switching back and
forth between reverse and normal positioning with \reversemarginpar and
\normalmarginpar may inhibit this movement of marginal notes, resulting in
one being overprinted on top of another.

Style Parameters
\marginparwidth The width of the parbox containing a marginal note.

\marginparsep The horizontal space between the outer margin and a marginal
note.

\marginparpush The minimum vertical space allowed between two successive
marginal notes.

C.9 Lining It Up in Columns

C.9.1 The tabbing Environment
\begin{tabbing} rows \end{tabbing}

This environment may be used only in paragraph mode. It produces a sequence
of lines. each processed in LR mode. with alignment in columns based upon a
sequence of tab stops. Tab stops are numbered 0. 1. 2, etc. Tab stop number ¢
is said to be set if it is assigned a horizontal position on the page. Tab stop 0 is
always set to the prevailing left margin (the left margin in effect at the beginning
of the environment). If tab stop 7 is set, then all tab stops numbered 0 through

180 Reference Manual
Gnat: swatted by: men \begin{tabbing}
cows Armadillo: \= \kill
and gnus Gnat: \> swatted by: \= men \+\+ \\
not very filling cows \\
Armadillo: not edible and \’ gnus \- \\
(note also the: aardvark not very filling \- \\
albatross eton) Armadillo: \> not edible . \\
Gnu: eaten by gnats \pushtabs
(note also the: \= aardvark A\
\> albatross \‘ eton) \\
\poptabs
Gnu: \> eaten by \> gnats
\end{tabbing}

Figure C.4: A tabbing environment example.

7 — 1 are also set. Tab stop number 7 — 1 is normally positioned to the left of
tab stop number <.

The behavior of the tabbing commands is described in terms of the values
of two quantities called next_tab_stop and left_margin_tab. Initially, the value of
nezt_tab_stop is 1, the value of left_margin_tab is 0, and only tab number 0 is
set. The value of next_tab_stop is incremented by the \> and \= commands, and
it is reset to the value of left_margin_tab by the \\ and \kill commands. The
following commands, all of which are fragile, may appear in rows; their use is
illustrated in Figure C.4.

\= If the value of next_tab_stop is 7, then this command sets tab stop number
1’s position to be the current position on the line and changes the value of
next_tab_stop to 1 + 1.

\> If the value of next_tab_stop is 7, then this command starts the following text
at tab stop 7's position and changes the value of next_tab_stop to 7 + 1.

\\ Starts a new line and sets the value of nezt_tab_stop equal to the value of
left_margin_tab. See Section C.1.6 for more details.

\kill Throws away the current line. keeping the effects of any tab-stop-setting
commands, starts a new line, and sets the value of nert_tab_stop to the
value of left_margin_tab.

\+ Increases the value of left_margin_tab by one. This causes the left margin of
subsequent lines to be indented one tab stop to the right, just as if a \>
command were added to the beginning of subsequent lines. Multiple \+
commands have the expected cumulative effect.

\- Decreases the value of left_margin_tab. which must be positive. by one. This
has the effect of canceling one preceding \+ command. starting with the
following line.

C.9 Lining It Up in Columns

181

\< Decreases the value of nert_tab_stop by one. This command can be used only
at the beginning of a line. where it acts to cancel the effect. on that line.
of one previous \+ command.

\’ Used to put text flush right against the right edge of a column or against the
left margin. If the value of next_tab_stop is i. then it causes everything in
the current column —all text from the most recent \>. \=, \’, \\ or \kill
command — to be positioned flush right a distance of \tabbingsep (a style
parameter) from the position of tab stop number ¢ — 1. Text following the
\’ command is placed starting at the position of tab stop number 7 — 1.

\ ¢ Moves all following text on the line flush against the prevailing right margin.
There must be no \>, \=, or \ command after the \‘ and before the
command that ends the output line.

\pushtabs Saves the current positions of all tab stops. to be restored by a
subsequent \poptabs command. You can nest \pushtabs commands, but
\pushtabs and \poptabs commands must come in matching pairs within
a tabbing environment.

\poptabs See \pushtabs.

\a... The commands \=. \’. and \ © usually produce accents, but are redefined
to tabbing commands inside the tabbing environment. The commands
\a=. \a’. and \a“ produce those accents in a tabbing environment.

The tabbing environment exhibits the following anomalies:

e The scope of a declaration appearing in rows is ended by any of the fol-
lowing commands:

\= \> \+ Wy \pushtabs \kill
\\ \< \= \° \poptabs \end{tabbing}

No environment contained within the tabbing environment can contain
any of these tabbing commands.

e The commands \=. \’. \ ‘. and \- are redefined to have special meanings
inside a tabbing environment. The ordinary \- command would be use-
less in this environment: the effects of the other three are obtained with

the \a... conmnand described above. These connnands revert to their
ordinary meanings inside a parbox contained within the tabbing environ-
ment.

e One tabbing environment cannot be nested within another. even if the
inner one is inside a parbox.

Style Parameters

\tabbingsep See the description of the \” command above.

182

Reference Manual

\begin{tabular}{|r||r@{--}1|p{1.25in}|}

GG&A Hoofed Stock —| il
Price \multicolumn{4}{|c|}{GG\&A Hoofed Stock}
Year l()thigh Jomments \\ \hline\hline
1971 97 245 | Bad year for farmers &\multicolumn{2}{c|}{Price}& \\ \cline{2-3}
in the west. \multicolumn{1}{|c||}{Year}
72 || 245 245 | Light trading due to a & \multicolumn{1}{r@{\,\vline\,}}{low}
heavy winter. & high & \multicolumn{1}{c|}{Comments}
73 i 245-2001 | No gnus was very good \\ \hline
gnus this year. 1971 & 97 & 245 & Bad year for
farmers in the west. \\ \hline

72 & 245 & 245 & Light trading due to a
heavy winter. \\ \hline
73 & 245 & 2001 & No gnus was very
good gnus this year. \\ \hline
\end{tabular}

Figure C.5: An example of the tabular environment.

C.9.2 The array and tabular Environments

\begin{array} [posl{cols} rows \end{array}
\begin{tabular} [pos]{cols} rows \end{tabular}
\begin{tabular*}{wdth} [posl{cols} rows \end{tabularx}

These environments produce a box (Section 5.4.3) consisting of a sequence of
rows of items, aligned vertically in columns. The array environment can be used
only in math mode, while tabular and tabular* can be used in any mode. A
large example. illustrating most of the features of these environments, appears
in Figure C.5.

wdth Specifies the width of the tabular* environment. There must be rubber
space between columns that can stretch to fill out the specified width; see
the \extracolsep command below.

pos Specifies the vertical positioning; the default is alignment on the center of
the environment.

t align on top row.
b align on bottom row.

cols Specifies the column formatting. It consists of a sequence of the follow-
ing specifiers, corresponding to the sequence of columns and intercolumn
material.

1 A column of left-aligned items.

r A column of right-aligned items.

C.9 Lining It Up in Columns 183

¢ A columu of centered itenis.
| A vertical line the full height and depth of the environment.

@{text} This specifier is called an @-expression. It inserts text in every
row. where text is processed in math mode in the array environment
and in LR mode in the tabular and tabular* environments. The
text is considered a moving argument, so any fragile command within
it must be \protect'ed.

An @-expression suppresses the intercolumn space normally inserted
between coluinns; any desired space between the inserted text and the
adjacent items must be included in tezt. To change the space between
two coluimmns from the default to wd, put an @{\hspace{wd}} com-
mand (Section 5.4.1) between the corresponding column specifiers.
An \extracolsep{wd} command in an @-expression causes an extra
space of width wd to appear to the left of all subsequent columns,
until countermanded by another \extracolsep command. Unlike
ordinary intercolumn space, this extra space is not suppressed by an
@-expression. An \extracolsep command can be used only in an @-
expression in the cols argument. It is most commonly used to insert
a \fill space (Section 5.4.1) in a tabular* environment.

p{wd} Produces a column with each item typeset in a parbox of width
wd, as if it were the argument of a \parbox[t]{wd} command (Sec-
tion 5.4.3). However, a \\ may not appear in the item, except in the
following situations: (i) inside an environment like minipage, array
or tabular, (ii) inside an explicit \parbox, or (iii) in the scope of a
\centering. \raggedright, or \raggedleft declaration. The latter
declarations must appear inside braces or an environment when used
in a p-column element.

*{num}{cols} Equivalent to num copies of cols, where num is any positive
integer and cols is any list of column-specifiers, which may contain
another *-expression.

An extra space, equal to half the default intercolumn space, is put before
the first column unless cols begins with a | or @-expression, and after
the last column unless cols ends with a | or @-expression. This space
usually causes no problem, but is easily eliminated by putting an @{} at
the beginning and end of cols.

rows A sequence of rows separated by \\ commands (Section C.1.6). Each row
is a sequence of items separated by & characters: it should contain the same
number of items as specified by the cols argument. The text comprising
each item is processed as if it were enclosed in braces, so the scope of any
declaration in an item lies within that item. The following commands may
appear in an item:

184 Reference Manual

\multicolumn{num}{col}{item} Makes item the text of a single item
spanning num columns, positioned as specified by col. If num = 1,
then the command serves simply to override the item positioning
specified by the environinent argument. The col argument must con-
tain exactly one 1, r, or ¢ and may contain one or more @-expressions
and | characters. It replaces that part of the environment’s cols ar-
gument corresponding to the num spanned columns, where‘the part
corresponding to any column except the first begins with 1, r, c, or
p, so the cols argument |c|1@{:}1r has the four parts Ic|, 1@{:},
1, and r. A \multicolumn command must either begin the row or
else immediately follow an &. It is fragile.

\vline When used within an 1, r, or c item, it produces a vertical line
extending the full height and depth of its row. An \hfill command
(Section 5.4.2) can be used to move the line to the edge of the column.
A \vline command can also be used in an @-expression. It is robust.

The following commands can go between rows to produce horizontal lines.
They must appear either before the first row or immediately after a \\
cominand. A horizontal line after the last row is produced by ending the
row with a \\ followed by one of these commands. (This is the only case
in which a \\ command appears after the last row of an environment.)
These commands are fragile.

\hline Draws a horizontal line extending the full width of the environ-
ment. Two \hline commands in succession leave a space between the
lines; vertical rules produced by | characters in the cols arguinent do
not appear in this space.

\cline{col;-coly} Draws a horizontal line across columns col; through
coly. Two or more successive \cline commands draw their lines in
the same vertical position. See the \multicolumn comnmand above
for how to determine what constitutes a column.

The following properties of these environments, although mentioned above,
are often forgotten:

e These envirommnents make a box; see Section 5.6 for environments and
commands that can be used to position this box.

e The box made by these commands may have blank space before the first
column and after the last column: this space can be removed with an
@-expression.

e Any declaration in rows is within an item: its scope is contained within
the item.

e An @-expression in cols suppresses the default intercolumn space.

C.10 Moving Information Around

185

Style Parameters

The following style parameters can be changed anywhere outside an array or
tabular environment. They can also be changed locally within an itemn, but the
scope of the change should be explicitly delimited by braces or an environment.

\arraycolsep Half the width of the default horizontal space between columns
1 an array environment.

\tabcolsep Half the width of the default horizontal space between columns in
a tabular or tabularx enviromment.

\arrayrulewidth The width of the line created by a | in the cols argument or
by an \hline. \cline, or \vline command.

\doublerulesep The width of the space between lines created by two successive
| characters in the cols argument. or by two successive \hline commands.

\arraystretch Controls the spacing between rows. The normal interrow space
1s multiplied by \arraystretch. so changing it from its default value of 1
to 1.5 makes the rows 1.5 times farther apart. Its value is changed with
\renewcommand (Section 3.4).

C.10 Moving Information Around
C.10.1 Files

A number of different files may be created when IATEX is run. They all have the
same first name as the root file (Section 4.4). These files are referred to. and
listed below. by thieir extension. A \nofiles command in the preamble prevents
IATEX from writing some of them. Knowing when and under what circuimnstances
they are read and written can help in locating and recovering from errors.

aux Used for cross-referencing and in compiling the table of contents, hist of
figures and list of tables. In addition to the main aux file, a separate aux
file is also written for each \include'd file (Section 4.4). having the same
first name as that file. All aux files are read by the \begin{document}
command. The \begin{document} command also starts writing the main
aux file: writing of an \include'd file's aux file is begun by the \include
command and is ended when the \include'd file has been completely
processed. A \nofiles conunand suppresses the writing of all aux files.
The table of contents and cross-reference information in the aux files can
be printed by rumning IATEX on the file 1ablst. tex.

bbl This file is written by BIBTEX. not by INTEX. using information on the aux
file. It is read by the \bibliography commmand.

186

Reference Manual

dvi This file contains IATEX's output. in a form that is independent of any
particular printer. Another program must be run to print the information
on the dvi file. The file is always written unless IATEX has generated no
printed output.

glo Contains the \glossaryentry commands generated by \glossary com-
mands. The file is written only if there is a \makeglossary command and
no \nofiles command.

idx Contains the \indexentry commands generated by \index commands.
The file is written only if there is a \makeindex command and no \nofiles
command.

lof Read by the \listoffigures command to generate a list of figures; it
contains the entries generated by all \caption commands in figure envi-
ronments. The lof file is generated by the \end{document} command. It
is written only if there is a \listoffigures command and no \nofiles
command.

log Contains everything printed on the terminal when IATRX is executed, plus
additional information and some extra blank lines. It is always written.
In some systems, this file has an extension other than log.

lot Read by the \listoftables command to generate a list of tables; it con-
tains the entries generated by all \caption commands in table environ-
ments. The lot file is generated by the \end{document} command. It
is written only if there is a \1istoftables command and no \nofiles
command.

toc Read by the \tableofcontents command to generate a table of contents;
it contains the entries generated by all sectioning commands {(except the
*-forms). The toc file is generated by the \end{document} command. It
is written only if there is a \tableofcontents command and no \nofiles
command.

C.10.2 Cross-References

\label <{key}

\ref {key}

\pageref{key}

The key argument is any sequence of letters, digits, and punctuation symbols;
upper- and lowercase letters are regarded as different. IATX maintains a current
\ref value. which is set with the \refstepcounter declaration (Section C.7.4).
(This declaration 1s issued by the sectioning commands. by numbered environ-
ments like equation. and by an \item commmand in an enumerate environment.)
The \1abel command writes an entry on the aux file (Section C.10.1) containing
key. the current \ref value, and the number of the current page. When this aux

C.10 Moving Information Around

187

file entry is read by the \begin{document} command (the next time IATEX is
run on the same inpnt file). the \ref value and page number are associated with
key. causing a \ref{key} or \pageref{key} connnand to produce the associated
\ref value or page nmnber, respectively.

These three connmands are fragile. However, \label can be used in the
argunient of a sectioning or \caption connnand.

C.10.3 Bibliography and Citation

\bibliography{bib_files}

Used i conjunction with the BIBTRX program (Section 4.3.2) to produce a
bibliography. The bib_files argument is a list of first names of bibliographic
database (bib) files. separated by commas: these files must have the extension
bib. The \bibliography commmand does two things: (i) it creates an entry on
the aux file (Section C.10.1) containing bib_files that is read by BIBTEX, and
(i1) it reads the bbl file (Section C.10.1) generated by BIBTEX to produce the
bibliography. (The bbl file will contain a thebibliography environment.) The
database files are used by BIBTEX to create the bbl file.

\begin{thebibliography}{widest_label} entries \end{thebibliography}

Produces a bibliography or reference list. In the article docuinent style, this
reference list is labeled “References™: in the report and book style, it is labeled
“Bibliography™. See Section 5.1.4 for information on how to create a document-
style option to change the reference list’'s label.

widest_label Text that, when printed. is approximately as wide as the widest
item label produced by the \bibitem commands in entries. It controls the
formatting.

entries A list of entries. each begun by the command
\bibitem[labell {cite_key}

wlich generates an entry labeled by label If the label argument is missing.
a number is generated as the label, using the enumi counter. The cite_key is
any sequernce of letters. munbers, and punctuation symbols not containing
a comma. This command writes an entry on the aux file (Section C.10.1)
containing cite_key and the itenr’s label. When this aux file entry is read by
the \begin{document} cominand (the next time IATREX is run on the sanie
mput file). the item’s label is associated with cite_key. causing reference
to cite_key by a \cite command to produce the associated label.

188

Reference Manual

\cite [tert] {key_list}

The key_list argument is a list of citation keys (see \bibitem above). This
cominand generates an in-text citation to the references associated with the keys
in key_list by entries on the aux file read by the \begin{document} command.
It also writes key_list on the aux file, causing BIBTEX to add the associated
references to the bibliography(Section 4.3.2). If present. text is added as a
remark to the citation. Fragile.

\nocite{key_list}

Produces no text. but writes key_list. which is a list of one or more citation
keys. on the aux file. This causes BIBTEX to add the associated references to
the bibliography (Section 4.3.2). The \nocite command must appear after the
\begin{document}. It is fragile.

C.10.4 Splitting the Input

\input{file-name}

Causes the indicated file to be read and processed. exactly as if its contents had
been inserted in the current file at that point. The file_name may be a complete
file nanie with extension or just a first nanie. in which case the file file_name . tex
is used. If the file cannot be found. an error occurs and TEX requests another
file name.>

\include{file}
\includeonly{ file_list}

Used for the selective inclusion of files. The file argument is the first name of a
file. denoting the file file.tex. and file_list is a possibly empty list of first names
of files separated by commas. If file is one of the file names in file_list or if there
is no \includeonly conunand. then the \include command is equivalent to

\clearpage \input{file} \clearpage

except that if file file. tex does not exist. then a warning message rather than an
error is produced. If file is not in file_list. the \include comrmand is equivalent
to \clearpage.

The \includeonly command may appear only in the preamble: the \include
command may not appear in the preamble or in a file read by another \include
command. Both conmmands are fragile.

tain compatibility wi

file name in an \input com

h plain TEX. BRTEX allows you to leave out the braces around

C.10 Moving Information Around 189

C.10.5 Index and Glossary

Producing an Index

\begin{theindex} tert \end{theindex}

Produces a double-colummn index. Eacli entry i1s begun with either an \item
command, a \subitem comunand, or a \subsubitem conmnand.

Compiling the Entries

\makeindex Causes the \indexentry entries produced by \index commands
to be written on the idx file, unless a \nofiles declaration occurs. The
\makeindex commaid may appear only in the preamble.

\makeglossary Causes the \glossaryentry entries produced by \glossary
commands to be written on the glo file. unless a \nofiles declaration
occurs. The \makeglossary command may appear only in the preamble.

\index{str} If an idx file is being written, then this command writes an
\indexentry{str}{pg} entry on it. where pg is the page number. The
str argument may contain any characters, including special characters,
but it must have no umnatched braces, where the braces in \{ and \} are
mcluded in the brace matching. The \index command may not appear
inside another command’s argument unless str contains only letters, digits,
and punctuation characters. The command is fragile.

\glossary{str} If a glo file is being written, then this command writes a
\glossaryentry{str}{pg} entry on it. where str and pg are the same
as in the \index command. described above. The \glossary command
may not appear inside another command’s argument unless str contains
only letters, digits, aid punctuation characters. The command is fragile.

C.10.6 Terminal Input and Output
\typeout{msg}

Prints msg on the terminal and in the log file. Commands in msg that are
defined with \newcommand or \renewcommand are replaced by their definitions
before being printed. IATEX commands in msg may produce strange results.
Preceding a command name by \protect causes that command name to be
printed.

TEX's usual rules for treating multiple spaces as a single space and ignoring
spaces after a command name apply to msg. A \space command in msg causes a
single space to be printed. The \typeout command is fragile; moreover, putting
it in the argument of another IATEX command may do strange things. The msg
argunient is a moving argument.

190

Reference Manual

\typein[cmd]{msg}

Prints msg on the terminal, just like \typeout{msg}, and causes TEX to stop
and wait for you to type a line of input, ending with return. If the ¢md argument
is missing, the typed input is processed as if it had been included in the input
file in place of the \typein command. If the ¢md argument is present, it must
be a command name. This command name is then defined or redefined to be
the typed input. Thus, if ¢md is not already defined, then the command acts
like

\typeout{msg}
\newcommand{cmd}{typed input}

The \typein command is fragile; moreover, it may produce an error if it appears
in the argument of a INTX command. The msg argument is a moving argument.

C.11 Line and Page Breaking
C.11.1 Line Breaking

\linebreak [num]
\nolinebreak[num]

The \linebreak command encourages and \nolinebreak discourages a line
break, by an amount depending upon num, which is a digit from 0 through 4.
A larger value of num more strongly encourages or discourages the line break; the
default is equivalent to a num argument of 4, which either forces or completely
prevents a line break. An underfull \hbox message is produced if a \1inebreak
command results in too much space between words on the line. Both commands
are fragile.

\\ [len]

\newline

These commands start a new line without justifying the current one, producing
a “ragged right” effect. The optional argument adds an extra vertical space of
length len above the new line. The \newline command may be used only in
paragraph mode, and should appear within a paragraph; it produces an underfull
\hbox warning and extra vertical space if used at the end of a paragraph, and
an error when used between paragraphs. The \\ command behaves the same
way when used in paragraph mode. Both commands are fragile.

_

Permits the line to be hyphenated (the line broken and a hyphen inserted) at
that point. It inhibits hyphenation at any other point in the current word except
where allowed by another \- command. Robust.

C.11 Line and Page Breaking

191

\hyphenation{words}

Declares allowed hyphenation points, where words is a list of words, separated
by spaces, in which each hyplienation point is indicated by a - character. It is
a global declaration (Section C.1.4) and is robust.

\sloppy
\fussy

Declarations that control line breaking. The \fussy declaration, which is the
default, prevents too much space between words, but leaves words extending past
the right-hand margin if no good line break is found. The \sloppy declaration
almost always breaks lines at the right-hand margin, but may leave too much
space between words, in which case TEX produces an underfull \hbox warning.
Line breaking is controlled by the declaration in effect at the blank line ending
the paragrapl.

\begin{sloppypar} pars \end{sloppypar}

Typesets pars. which must consist of one or more comnplete paragraphs, with the
\sloppy declaration in effect.

C.11.2 Page Breaking

\pagebreak [num]
\nopagebreak [num]

The \pagebreak comnnand encourages and \nopagebreak discourages column
breaking by an amount depending upon num. where the entire page is a singte
column in a one-column page style. The num argument is a digit from 0 through
4. a larger value more strongly encouraging or discouraging a break; the default
is equivalent to num having the value 4. which forces or entirely prevents a
break. When used within a paragraph. these commands apply to the point
immediately following the line in which they appear. When \flushbottom is
in effect (Section 5.1.1). an underfull \vbox message is produced if \pagebreak
results in too little text on the page. A \nopagebreak command will have no
effect if another [ATEX command has explicitly allowed a page break to occur at
that point. Both commands are fragile.

\'samepage

A declaration that prevents page breaks in the following places: between lines of
a paragraph unit that ends within its scope. before or after a displayed equation,
disptayed-paragraph environment or section heading lying withiu its scope, or
before an item in a list environment. other than the first. whose \item com-
mand lies within its scope—except where explicily allowed by \pagebreak or
\nopagebreak (with optional arguinent). A paragraph unit is any portion of

192

Reference Manual

text that TEX treats as a single text stream for purposes of line-breaking, so a
displayed equation within a paragraph separates the paragraph into two para-
graph units. The \samepage cominand is fragile.

\newpage

\clearpage :
\cleardoublepage

When one-column pages are being produced, these commands all end the cur-
rent paragraph and the current page. Any unfilled space in the body of the page
(Section 5.1.2) appears at the bottom, even with \flushbottom in effect (Sec-
tion 5.1.1). The \clearpage and \cleardoublepage commands also cause all
figures and tables that have so far appeared in the input to be printed, using one
or more pages of only figures and/or tables if necessary. In a two-sided printing
style, \cleardoublepage also makes the next page a right-hand (odd-numbered)
page. producing a blank page if necessary.

When two-column text is being produced, \newpage ends the current col-
umn rather than the current page; \clearpage and \cleardoublepage end
the page, producing a blank right-hand column if necessary. These commands
should be used only in paragraph mode: they should not be used inside a par-
box (Section 5.4.3). The \newpage and \clearpage commands are robust;
\cleardoublepage is fragile.

C.12 Lengths, Spaces, and Boxes
C.12.1 Length

explicit lengths An explicit length is written as an optional sign (+ or -)
followed by a decimal number (a string of digits with an optional decimal
point) followed by a dimensional unit. The following dimensional units
are recognized by TEX.

cm Centimeters.

em One em is about the width of the letter M in the current font.
ex One ex is about the height of the letter z in the current font.
in Inches.

pc Picas (1pc = 12pt).

pt Points (1in = 72.27pt).

mm Millimeters.

\fill A rubber length (Section 5.4.1) having a natural length of zero and the
ability to stretch to any arbitrary (positive) length. Robust.

C.12 Lengths, Spaces, and Boxes

193

\stretch{dec_.num} A rubber length having zero natural length and dec.num
times the stretchability of \fill, where dec_num is a signed decimal num-
ber (an optional sign followed by a string of digits with an optional decimal
point). Robust.

\newlength{cmd} Declares ¢cmd to be a length command, where c¢md is the
name of a command not already defined. The value of cmd is initialized
to zero inches. Fragile.

\setlength{cmd}{len} Sets the value of the length command e¢md equal to
len. Robust.

\addtolength{cmd}{len} Sets the value of the length command e¢md equal to
its current value plus len. Robust.

\settowidth{emd}{tert} Sets the value of the length command emd equal to
the natural width of the output generated when text is typeset in LR mode.
Robust.

C.12.2 Space

\hspace {len}
\hspacex*{len}

Produce a horizontal space of width len. The space produced by \hspace is
removed if it falls at a line break: that produced by \hspacex is not. These
commands are robust.

\vspace {len}
\vspacex*{len}

Add a vertical space of height len. If the command appears in the middle of
a paragraph, then the space is added after the line containing it. The space
produced by \vspace is removed if it falls at a page break: that produced by
\vspacex is not. These commands may be used only in paragraph mode; they
are fragile.

\bigskip
\medskip
\smallskip

These commands are equivalent to the three commands

\vspace{\bigskipamount} \vspace{\smallskipamount}
\vspace{\medskipamount}

where the three length parameters \bigskipamount. \medskipamount. and
\smallskipamount are determined by the document style. These space-pro-
ducing commands can be used in the definitions of environments to provide
standard amounts of vertical space. They are fragile.

194

Reference Manual

\addvspace{len}

This command normally adds a vertical space of height len. However, if vertical
space has already been added to the same point in the output by a previous
\addvspace command, then this command will not add more space than needed
to make the natural length of the total vertical space equal to len. It is used to
add the extra vertical space above and below most IATEX environments.that start
a new paragraph. It may be used only in paragraph mode between paragraphs—
that is, after a blank line or \par command (in TiX'’s vertical mode). Fragile.

C.12.3 Boxes

A boz is an object that is treated by TEX as a single character, so it will not be
broken across lines or pages.

\mbox {text}
\makebox [wdth] [pos]{text}

Typesets text in LR mode in a box. The box has the width of the typeset text
except for a \makebox command with a wdth argument, in which it has width
wdth. In the latter case, the position of the text within the box is determined
by the one-letter pos argument as follows:

1 Flush against left edge of box.
r Flush against right edge of box.

The default positioning is centered in the box. The \mbox command is robust;
\makebox is fragile.

\fbox {text}
\framebox [wdth] [pos]{text}

Similar to \mbox and \makebox, except that a rectangular frame is drawn around
the resulting box. The \fbox command is robust; \framebox is fragile.

\newsavebox{cmd}

Declares ¢md. which must be a command name that is not already defined, to
be a bin for saving boxes. Fragile.

\sbox {cmd}{tert}
\savebox {cmd}[wdth] [pos]{text}

These commands typeset tert in a box just as for \mbox or \makebox. respec-
tively. However, instead of printing the resulting box, they save it in bin emd,
which must have been declared with \newsavebox. The \sbox command is
robust; \savebox is fragile.

C.12 Lengths, Spaces, and Boxes 195

\usebox {ecmd}

Prints the box most recently saved in bin ¢md by a \savebox command. Robust.

\parbox [pos]{wdth}{text}
\begin{minipage} [pos]{wdth} tert \end{minipage}

They produce a parbor —a box of width wdth formed by typesetting tezt in
paragraph mode. The vertical positioning of the box is specified by the one-
letter pos argument as follows:

b The bottom line of the box is aligned with the current line of text.
t The top line of the box is aligned with the current line of text.

The default vertical positioning is to align the center of the box with the center
of the current line of text.

The list-making environments listed in Section 5.7 and the tabular envi-
ronment may appear in tert with the minipage environment, but not with the
\parbox command. A \footnote or \footnotetext command appearing in
tert in a minipage environinent produces a footnote at the bottom of the parbox
ended by the next \end{minipage} command, which may be the wrong place
for it when there are nested minipage environments. These footnote-making
commands may not be used in the text argument of \parbox.

A minipage environuient that begins with a displayed equation or with an
eqnarray or eqnarray* environment will have extra vertical space at the top
(except with the fleqn docuinent-style option). This extra space can be removed
by starting text with a \vspace{-\abovedisplayskip} command.

The \parbox command is fragile.

\rule[raise_len] {wdth}{hght}

Generates a solid rectangle of width wdth and height hght, raised a distance of
raise_len above the bottom of the line. (A negative value of raise_len lowers it.)
The default value of raise_len is zero inches. Fragile.

\raisebox {raise_len} [hght] [dpth]{text}

Creates a box by typesetting text in LR mode, raising it by raise_len, and
pretending that the resulting box extends a distance of hght above the bottom
of the current line and a distance of dpth below it. If the dpth argument or both
optional arguments are omitted, TiEX uses the actual extent of the box. Fragile.

Style Parameters

\fboxrule The width of the lines comprising the box produced by \fbox and
\framebox. However, the version of \framebox used in the picture en-

196

Reference Manual

vironment (Section 5.5) employs the same width lines as other picture
commands.

\fboxsep The amount of space left between the edge of the box and its contents
by \fbox and \framebox. It does not apply to the version of \framebox
used in the picture environment (Section 5.5).

C.13 The picture Environment

A coordinate is a decimal number—an optional sign followed by a string of
digits with an optional decimal point. It represents a length in multiples of
\unitlength. All argument names in this section that begin with z or y are
coordinates.

\begin{picture}(z_dimen, y_-dimen) (z_offset , y_offset)
pict_cmds
\end{picture}

Creates a box of width z_dimen and height y_dimen, both of which must be non-
negative. The (z_offset,y_offset) argument is optional. If present. it specifies
the coordinates of the lower-left corner of the picture: if absent, the lower-left
corner has coordinates (0.0). (Like all dimensions in the picture environment,
the lengths specified by the arguments of the picture environment are given
in multiples of \unitlength.) The picture environment can be used anywhere
that ordinary text can. including within another picture environment.

The pict.cmds are processed in picture mode—a special form of LR mode—
and may contain only \put commands. \multiput commands. and declarations.
Figure C.6 illustrates many of the picture-drawing commands described below.

C.13.1 Picture-Mode Commands

The following are the only commands. other than declarations. that can be used
in picture mode.

\put (z_coord , y-coord) {picture_object}

Places picture_object in the picture with its reference point at the position speci-
fied by coordinates (z_coord. y_coord). The picture_object can be arbitrary text,
which is typeset in LR mode with its lower-left corner as the reference point.
or else one of the special picture-object commands described below. The \put

command is fragile.

\multiput (z_coord, y-coord) (z_incr, y-incr) {num}{picture_object

Places num copies of picture_object. the i*® one positioned with its reference

point having coordinates (z_coord + [i — 1]z_iner. y_coord + [i — 1]y_incr). The

C.13 The picture Environment 197

\newcounter{cms}

‘\\\\\ \setlength{\unitlength}{imm}

car \begin{picture} (50, 39)

\put (0, 7) {\makebox(0,0) [bl] {cm}}

@ @ \multiput (10,7) (10,0){5}{\addtocounter

{cms}{1}\makebox(0,0) [b] {\arabic{cms}}}

\put (15,20) {\circle{6}}

\put (30,20) {\circle{6}}

\put (15,20) {\circle*{2}}

||[| [ll“l[]'][l I] l I I \put (30,20) {\circlex{2}}
\put (10,24) {\framebox(25,8) {car}}
\put (10, 32) {\vector (-2,1) {10}}
\multiput(1,0) (1,0){49}{\1ine(0,1){2.5}}
\multiput(5,0) (10,0) {56}{\1ine (0,1){3.5}}
\thicklines
\put (0,0){\1line (1,0){50}}
\multiput (0,0) (10,0){6}{\1ine(0,1){5}}
\end{picture}

Figure C.6: A sample picture environment.

picture_object is the same as for the \put command above. It is typeset num
times. so the copies need not be identical if it includes declarations. (See Fig-
ure C.6.) Fragile.

C.13.2 Picture Objects

\makebox (z_dimen,y_dimen) [pos]{text}
\framebox(z_dimen , y_dimen) [pos] {text}
\dashbox {dash_dimen} (z_dimen,y_dimen) [pos){text}

Produce a box having width z_dimen and height y_dimen (in multiples of
\unitlength) with reference point at its lower-left corner. The text is type-
set in LR mode. positioned in the box as specified by the one- or two-letter pos
argument as follows:

1 Horizontally positioned flush against the left edge of the box.
r Horizontally positioned flush against the right edge of the box.
t Vertically positioned flush against the top edge of the box.

b Vertically positioned flush against the bottom edge of the box.

The default horizontal and vertical positioning is to center text in the box.
The \framebox command also draws a rectangle showing the edges of the box,
and \dashbox draws the rectangle with dashed lines. composed of dashes and

198

Reference Manual

spaces of length dash_dimen (in multiples of \unitlength), where dash_dimen
is a positive decimal number. For best results, z_dimen and y_dimen should be
integral multiples of dash-dimen. The thickness of the lines drawn by \framebox
and \dashbox equals the width of the lines produced by other picture commands;
it is not determined by \fboxrule. All three commands are fragile.

\line (h_slope,v_slope) {dimen}
\vector (h_slope, v_slope) {dimen}

Draw a line having its reference point at the beginning and its slope determined
by (h_slope, v_slope), where h_slope and v_slope are positive or negative integers
of magnitudeat most 6 for \1ine and at most 4 for \vector, with no common
divisors except £1. In addition, \vector draws an arrowhead at the opposite
end of the line from the reference point. The horizontal extent of the line is
dimen (in multiples of \unitlength) unless h_slope is zero, in which case dimen
is the (vertical) length of the line. However, a line that is neither horizontal
nor vertical may not be drawn unless dimen times \unitlength is at least
10 points (1/7 inch). The \vector command always draws the arrowhead.
Both commands are fragile.

\shortstack [pos]{col}

The pos argument must be either 1, r, or ¢, the default being equivalent to c.
This command produces the same result as

\begin{tabular}[b]{pos} col \end{tabular}

(Section 3.6.2) except that no space is left on either side of the resulting box and
there is usually less interrow space. The reference point is the lower-left corner
of the box. Fragile.

\circle {diam}
\circle*{diam}

Draw a (hollow) circle and a disk (filled circle), respectively, with diameter as
close as possible to diam times \unitlength and reference point in the center of
the circle. The largest circle INTEX can draw has a diameter of 40 points (about
1/2 inch) and the largest disk has a diameter of 15 points (about .2 inch). Both
commands are fragile.

\oval (z_dimen, y_dimen) [part]

Draws an oval inscribed in a rectangle of width z_dimen and height y_dimen, its
corners made with quarter circles of the largest possible diameter. The reference
point is the center of the (complete) oval. The part argument consists of one or
two of the following letters to specify a half or quarter oval: 1 (left), r (right).
t (top), b (bottom). The default is to draw the entire oval. Fragile.

C.14 Font Selection

199

\frame{picture_object?

Puts a rectangular frame around picture_object. The reference point is the bot-
tom left corner of the frame. No extra space is put between the frame and
picture_object. Fragile.

C.13.3 Picture Declarations

The following declarations can appear anywhere in the document, including in
picture mode. They obey the normal scope rules.

\savebox{cmd} (z_dimen, y_dimen) [pos]{text}

Same as the corresponding \makebox command, except the resulting box is
saved in the bin emd, which must be defined with \newsavebox (Section 5.4.3).
Fragile.

\thinlines
\thicklines

They select one of the two standard thicknesses of lines and circles in the picture
environment. The default is \thinlines. Robust.

\linethickness{len}

Declares the thickuess of horizontal and vertical lines in a picture environment
to be len. which must be a positive length. It does not affect the thickness of
slanted lines and circles. or of the quarter circles drawn by \oval to form the
corners of an oval.

C.14 Font Selection

C.14.1 Changing the Type Style

The following declarations select the indicated type style.

\rm Roman \it [talic \sc SMALL CAPS
\em Emphatic \sl Slanted \tt Typewriter
\bf Bold \sf Sans Serif

If a type style is not available in the current size, the declaration chooses a
substitute style and prints a warning message on the terminal. See Section C.14.4
below for restrictions on the use of these commands in math mode. These
commands are all robust. Words typeset in \tt style or in two different styles
are not hvphenated except where permitted by \- commands.

200

Reference Manual

C.14.2 Changing the Type Size

The following declarations select a type size and also select the roman style of
that size. They are listed in nondecreasing size; two of the declarations may
have the same effect in some document styles.

\tiny \small \large N \huge
\scriptsize \normalsize \Large \Huge
\footnotesize \LARGE

These commands may not be used in math mode; they are all fragile.

C.14.3 Loading Fonts

\newfont{cmd}{font_name}

Defines the command name cmd, which must not be currently defined, to be a
declaration that selects the font named font.name to be the current font. The
newly-defined e¢md command is robust, but it cannot be used in math mode.
The \newfont command is fragile.

\symbol{num?

Chooses the symbol with number num from the current font. Octal (base 8) and
hexadecimal (base 16) numbers are preceded by ’ and ", respectively. Robust.

C.14.4 Fonts in Math Mode

IATEX allows ten different sizes and eight different styles of type, including math
italic (Section 3.3.8). To each of these eighty size/style combinations corresponds
a separate font. These fonts are divided into three classes: preloaded, loaded on
demand, and unavailable. The Local Guide tells you to which category each
font belongs. When an unavailable font is requested, another one, which may
be preloaded or loaded on demand. is substituted for it and a warning message
printed on the terminal. Preloaded and loaded-on-demand fonts act the same
when used in paragraph and LR mode, but differ in math mode.

A size/style combination that corresponds to a loaded-on-demand font may
not work right when used in math mode, either printing the wrong size characters
or not printing any characters and generating one of the following error messages:

! \textfont ... is undefined (character ...).
! \scriptfont ... is undefined (character ...).
! \scriptscriptfont ... is undefined (character ...).

The rules describing exactly when this problem will occur are complicated. but
the solution is simple: use a command of the form

\load{size}{style}

C.14 Font Selection 201

where size is a size-changing command and style is the type-style command
that together specify the desired font. The \load command should come before
the first use of the font in math mode. and should not be inside braces or an
environment.

This proves that xt > 7 in all cases.’ This proves that ${\sf xt}>7$ in all
\load{\footnotesize}{\sf}
cases.\footnote{Remember that

5 Remember that xyt? is odd. ${\sf xyt}~{2}$ is odd.}

In math mode. there are four math styles: display, text, script, and script-
script. Display and text styles differ mainly in the size of the symbols in Table 3.8
(page 45) and in the placement of subscripts on some symbols and on the log-like
functions in Table 3.9 (page 46). The script style is used for sub- and superscripts
and the scriptseript style for further levels of sub- and superscripting.

Each type style/size combination requires three fonts in math mode: one for
display and text style. one for script style, and one for scriptscript style. Ideally,
these fonts should be of different size, except when this would result in a font
too small to read. However, the choice of fonts is restricted in IATEX by two
rules: (i) only preloaded fonts can be used in script and scriptscript style, and
(i1) a style/size combination corresponding to a loaded-on-demand font uses the
same font for all math styles. This means that subscripts and superscripts may
be typeset in too large a font for some style/size combinations.

\displaystyle
\textstyle
\scriptstyle
\scriptscriptstyle

These declarations choose the indicated math style. They are robust.

\boldmath
\unboldmath

The \boldmath declaration selects a bold math italic font and bold math symbol
fonts. This causes letters, numbers and most symbols used in math mode to be
set in bold type. including Greek letters. calligraphic letters (selected by \cal),
and the symbols in Tables 3.4 3.7 (pages 44-45). However, symbols made by
combining two other symbols. such as => (\Longrightarrow). which is made
from = and =. may produce incorrect results. The following are not emboldened
by \boldmath.

e Text (usually subscripts and superscripts) typeset in script or scriptscript
style.

e Text produced by the following input characters:

APPENDIX D

Using Plain
TrX Commands

)
RN
ot P
-
NYvAN
]

M*/ fl

] \ | -
NEigy 0 gi9/81972 >
\ Y z
s 1
I \ | V3 ‘

204

Using Plain TgX Commands

IATEX is implemented as a TEX “macro package”—a series of predefined TEX
commands. Plain TEX is the standard version of TEX, consisting of “raw” TEX
plus the plain macro package. Most Plain TgX commands can be used in IATRX,
but only with care. IATRX is designed so its commands fit together as a single
system. Many compromises have been made to ensure that a command will
work properly when used in any reasonable way with other IATEX commands. A
IATX command may not work properly when used with Plain TiX ‘commands
not described in this book.

There is no easy way to tell whether a Plain TEX command will cause trouble,
other than by trying it. A general rule is not to combine a IATEX command
or environment with Plain TgX commands that might modify parameters it
uses. For example, don’t use a Plain TEX command such as \hangindent that
modifies TEX’s paragraph-making parameters inside one of IATjX’s list-making
environments.

You should not modify any parameters that are used by IATRX's \output
routine, except as specified in this book. In particular, you should forget about
most of Chapter 15 of The TgXbook. However, IXTRX does obey all of TEX’s
conventions for the allocation of registers, so you can define your own counts,
boxes, etc., with ordinary TEX commands.

Below are listed all the Plain TEX commands whose definitions have been
eliminated or changed in IAT;X. Not listed are IATj;X commands that approx-
imate the corresponding Plain TEX versions, and some “internal” commands
whose names contain @ characters.

Tabbing Commands

The following commands are made obsolete by IATEX’s tabbing environment.

\tabs \tabsdone \settabs \+
\tabset \cleartabs \tabalign

Output, Footnotes, and Figures

The following commands that require Plain TEX’s output routine are obsolete.
They are replaced by IATEX's footnote-making commands and its figure and
table environments.

\pageno \nopagenumbers \makeheadline \footstrut
\headline \advancepageno \makefootline \topins
\footline \nopagenumbers \dosupereject \topinsert
\normalbottom \plainoutput \pagecontents \midinsert
\folio \pagebody \vfootnote \pageinsert

\endinsert

Index

u
ignored in math mode, 38, 52
in LR mode, 38
\u (interword space), 14, 16, 33, 34. 154
used with \thanks, 164
! (exclamation point). 12, 32, 34
in error message, 29
not made bold by \boldmath, 202
\! (negative thin space), 52, 172
1< (i), 40
" (double quote), 12
\" (" accent), 40
(hash mark), 12, 15. 31, 32, 33, 57,
150,
in command or environiment
definition, 56. 173
misplaced, 124, 128
\# (#). 15. 41, 154
$ (dollar sign). 12, 15, 20, 33. 41, 150,
169
entering math mode with, 38
missing, 125
not fragile, 24
scope ended by, 152
unmatched, 124
\$ ($), 15, 41, 154
% (percent sign), 12, 15, 20, 33, 150
for ending line without adding space,
34
comments made with, 79
in verbatim or \verb, 65
\% (%). 15, 41. 154
& (ampersand), 12, 15, 33, 47. 150, 183
too many in row, 123
misplaced, 124
\& (&). 15. 41, 154
< (left quote). 12. 13, 33. 34

209

\‘ (* accent), 40
in tabbing environment, 181
> (right quote), 12, 13, 33, 34, 154
in formula, 20, 170
\’ (" accent), 40
in tabbing environment, 181
((left parenthesis), 12, 33, 48
in terminal output, 118
not bold in \boldmath, 202
\ ((begin formula), 19, 34, 41, 169
entering math mode with, 38
is fragile, 24, 34
in math mode error, 120
) (right parenthesis), 12, 48
in terminal output, 118
not bold in \boldmath, 202
\) (end formula). 19, 34, 41, 169
is fragile, 24, 34
not in math mode error, 120
leaving math mode with, 38
scope ended by, 152
* (asterisk), 12, 33, 151
after command name, 27
following \\, 151
in array or tabular argument, 183
written on terminal, 31
*-cxpression, 183
*-form
of command, 27, 33, 151
of environment, 151
of sectioning command, 157
+ (plus sign), 12, 33
not bold in \boldmath, 202
on slides, 137
unary, 50
\+ (tabbing command). 180
in Plain TeX, 204

210

INDEX

error in. 123
- (dash or minus sign), 12. 14, 33, 34.
154
in overfull \hbox message, 87
unary. 50
\- (hyphenation or tabbing command),
87, 88. 180. 190, 199
in tabbing environment, 181
instead of \hyphenation, 126
error in. 123
-- (number-range dash). 14. 34, 154
--- (punctuation dash), 14, 34, 154
. (period). 12, 33, 34
invisible delimiter, 49
\. (" accent). 40
/ (slash), 12. 33. 41. 48, 52
\/ (space after italics). 17. 34. 39
. (colon). 12, 33
not bold in \boldmath, 202
\: (medium space), 52, 172
; (semicolon), 12. 33
not bold in \boldmath. 202
\; (thick space). 52. 172
, (comuma). 12. 33
not allowed in citation key, 73
\, (thin space). 14, 34, 52. 154. 172
{ (left brace). 12. 15, 17. 33. 65. 150
delimiting argument. 152
in \index argument. 79
missing. 125
\{ ({). 15. 41. 48. 154
in \index or \glossary argument. 189
in bib file. 140
not counted in brace matching. 17
} (right brace). 12. 15. 17. 33. 150
delimiting argument. 152
in \index argument. 79
missing. 125
scope delimited by. 17, 34, 152
ummnatched. 124
\} (}). 15, 41. 48, 154
in \index or \glossary. 189
in bib file. 140
not counted in brace matching. 17
< (less than sign). 12. 33
\< (tabbing command). 181

error in. 123

= (equals sign). 12. 33
\= (" accent), 40, 62
too many, 122
in tabbing enviromment, 180
> (greater than sign). 12, 33
\> (tabbing command), 62, 180
error in, 123 s
? (question mark), 12, 33, 34
n error message, 29
not bold in \boldmath, 202
?¢(;), 40
@ (at sign). 12, 33
in command name, 85, 150
\@, 14. 34. 154
@-expression, 183
fragile commands in. 152
missing, 122
\@array, 128
\@chapapp. 86
\@listi ... \@listvi, 166
@string. 143
[(left bracket), 12, 33, 48, 150
ambiguous. 27
following \linebreak, 89
following \nolinebreak, 89
not bold in \boldmath, 202
printed on screen, 119
\ [(begin displayed formula). 28. 35. 41.
169
entering math mode with, 38
is fragile. 34
in math mode error, 120
] (right bracket). 12. 33, 48. 150
ambiguous. 27
delimiting optional argument, 152
in \item argument, 151
not bold in \boldmath. 202
printed on screen. 119
\] (end displayed fornmla). 28. 35. 41.
169
is fragile. 34
not in math mode error. 120
scope ended by. 152
\ (backslash). 12. 16. 33
\\ (new line). 27. 35. 153. 180. 190
= following. 151

INDEX 211

after last row of array or tabular, 64. \a= (~ accent in tabbing environment).
184 181
bad use of, 120, 129 \a‘ (" accent in tabbing environment),
between paragraphs, 120, 122 181
in \address. 66 \aa (a), 40
in \author, 164 \AA (A), 40
in \signature, 66 abbreviation in bib file, 143
in \title. 164 \abovedisplayshortskip, 170
in array, 47, 183 \abovedisplayskip, 170
in center, 111 abstract 84, 164
in eqnarray. 49 abstract environment, 84, 164
in p-column, 183 accents, 40
in paragraph mode, 89. 190 dotless 1 and j for, 40
in tabbing. 62, 179 in tabbing environment, 181
in tabular. 64, 183 math mode, 51, 171
in verse. 27, 165 not in typewriter type face, 39
is fragile. 34 wide math, 51
line breaking with. 27 acknowledgement of support, 164
missing. 123 \acute (“math accent), 51
optional argument of 151 \addcontentsline, 159
underfull \hbox warning produced by, argument too long. 126
190 moving argument of, 152
* (new line), see \\ adding line to table of contents, etc., 159
= (caret), 12, 20. 33. 34. 41. 150. 170 adding space
\~ (" accent). 40 ending line without, 34
_ (underscore). 12, 15. 20. 33. 34. 41. horizontal, see horizontal space
150. 170 in mathematical formula, 52, 100
_ (-). 15, 41, 154 in message, 189
— (left arrow). 12 vertical, see vertical space
| (vertical line), 12, 33. 48 address of author, in title, 164
in array or tabular argument, 63. 183 address bibliography field, 146
\(]]). 45, 48 \address. 66
|| in array or tabular argument. 64, \addtocontents. 159
185 argument too long. 126
~ (tilde). 12. 18. 33. 34. 150. 154 moving argument of, 152
used with \ref and \pageref. 72 \addtocounter. 92. 175
\~ (~ accent). 40 error in, 122
no \protect in argument. 152
0 (zero). 12 scope of, 92, 152
used as length. 124 \addtolength. 95. 192
1 (one). 12 \addvspace, 194
11pt document-style option. 21, 115, 160 \advancepageno (TEX command), 204
sty file for. 86 \ae (x). 40

12pt document-style option. 21. 115. 160 \AE (/&E). 45
\aleph (R), 45
\a’ (” accent in tabbing environment), aligning
181 formulas ou left. 82. 160

212

INDEX

in columns, 62, 179
alignment tab error, 123, 124
alph number style. 162
\alph. 92, 175
Alph number style, 162
\Alph, 92, 175
alpha bibliography style, 74
\alpha (a), 43
\amalg (II), 44
ambiguous [or], 27
ambiguous * 27
ampersand, see &
and. separating names with, 142
\and, 22, 35, 164
\angle (Z), 45
annote bibliography field, 146
anomalous paragraph indentation, 165
apostrophe, 14, 154
apparent height and depth, 100, 101
appendix, 23, 158
\appendix, 23, 158
\@chapapp redefined by, 86
\approx (=), 44
arabic number style, 83, 162
Arabic page numbers, 83, 162
\arabic, 92. 175
\arccos (arccos), 4
\arcsin (arcsin), 4
\arctan (arctan)
\arg (arg), 4
argument (of command), 19, 33, 150
braces enclosing, 33, 56
coordinate pair as, 102
mandatory. 150
missing. 125
moving. see mMoving argument
optional. see optional argument
positioning. see positioning argument
scope of declaration in, 19. 173-174
too long, 126
array environment, 47ff, 182ff
@-expression in, 183
\\ in, 153
box made by. 96
error in. 121, 122, 123, 128
extra space around, 183
illegal character in argument, 121

intercolumn space in, 183
interrow space in, 153, 185
item. vertical position of, 47
large, 127
making symbols with, 44
math style of items, 172
scope of declaration in, 47 «
similar to eqnarray, 49
strut in, 153
versus tabbing, 62
versus tabular, 48, 63
vertical positioning of, 47
\arraycolsep, 185
\arrayrulewidth, 185
\arraystretch, 185
arrow
accent, see \vec
in formulas, 54
in margin, 61
in picture, 106, 198
symbols, 45
zero-length, 107
arrowhead, 107
article document style, 21. 82, 160
appendix in, 158
\chapter not defined in. 157
default page style for, 83
figure and table numbers in, 60
\raggedbottom default in, 83
sectional units in, 23
thebibliography in, 187
title in, 163
used in examples, 23
article bibliography entry type, 145
assumptions, 58
\ast (). 44
\asymp (x). 44
at sign. see @
author, 22
author bibliography field. 146
author’s address in title. 164
\author. 22, 35, 164
\\ in, 153
aux file, 75, 185
entry generated by \label. 186
entry written by \cite and \nocite,
188

INDEX

213

error when reading. 122
printing information from. 185
read by \begin{document}, 185
reading. 119

auxiliary files 75, 119

axioms, 58

b (bottom)
positioning argument, 47, 99, 104,
195, 197
placement specifier, 176
oval part argument, 108, 198
\b (_ accent), 40
backslash, 12, 16
\backslash (\). 45. 48
backspace. 52
bar over a symbol, 50
\bar (“math accent), 51
\baselineskip. 94. 155
unchanged by font declaration. 116
\baselinestretch. 155
\batchmode, 31
bbl (bibilography) file. 74. 140, 185. 187
\begin, 25, 151
delimits scope of declaration. 25
is fragile. 24. 34
of nonexistent environment, 121
unimatched. 120
\begin{document}. 21
aux file read by, 185
extra, 120
missing. 121
\beginsection (TEX command). 205
\belowdisplayshortskip, 170
\belowdisplayskip. 170
\beta (). 43
\bf (bold). 39. 199
bib file, see bibliographic database
\bibindent. 161
\bibitem, 73. 187
moving arguinent of, 153
bibliographic database. 72, 74, 140ff
specified by \bibliography, 187
bibliography
made with BIBTEX, 74, 187
open format. 160
style, 74, 75

\bibliography, 74, 187
bbl file read by, 185, 187
bib files specified by, 140
\bibliographystyle, 74
BIBTRX, 72, 74, 140ff, 185, 187
big delimiters, 48
\bigcap ([). 45
\bigeire (), 44
\bigcup (|J). 45
\bigodot ((©)). 45
\bigoplus (€P). 45
\bigotimes ((¥)), 45
\bigskip, 193
\bigskipamount, 193
\bigsqcup (| |), 45
\bigtriangledown (v7), 44
\bigtriangleup (A), 44
\biguplus (|4), 45
\bigvee (\/), 45
\bigwedge (/\), 45
bin, storage 101, 109
black and white slides, 132
\blackandwhite. 134
blank line, 13, 34, 154
above or below environment, 25
before displayed formula, 28
line in formula, 125
in input, 150
in math mode, 154
in sectioning command, 154
\par equivalent to, 155
paragraph-ending, 88
blank page, 91
made by \cleardoublepage, 192
made with titlepage, 162
blob of ink, rectangular, 100
\bmod, 46, 171
body, page, 83, 161
height of, 94
bold type style, 39, 199
in math mode, 53, 201
\boldmath, 53, 201 202
book document style, 21
appendix in, 158
figure and table numbers in, 60
\flushbottom default in. 83
no abstract in, 84. 164

214

INDEX

sectional units in, 23
thebibliography in, 187
title page in, 84
book bibliography entry type, 145
booklet bibliography entry type, 145
booktitle bibliography field, 146
\bot (L), 45
bottom of line, 101
\bottomfraction, 178
bottomnumber counter, 178
\bowtie (p<1), 44
box, 96ff, 194ff
dashed, 105, 197
framed, 97, 194
in picture environment, 197
LR, 97
positioning of text in, 104, 194
rule, 97, 100
saving a, 101, 109, 194
zero-width, 98, 104
\Box (O), 45
box-making command, 97, 107
brace, curly, 12, 150
horizontal, in a formula, 51
missing, 125
braces, curly, 12, 150
delimiting scope with, 17
enclosing command argument, 33, 56
error caused by unbalanced, 120
in \index argument, 79
matching, 17
unmatching, 32
brackets, square, 12, 150
enclosing optional argument, 22
in screen output, 119
mistaken for optional argument, 125
break, line, 87ff, 190
interword space without, 18
preventing, 18, 89, 154
with \\, 27 g
break, page, 87, 90. 191
bad, 90, 129
in tabbing environment, 62
\breve (“math accent), 51
Brinch Hansen, Per. 141
buffer size, 126
bug, I}TEX. 122

built-in ATEX command, 86
\bullet (o), 44
\bye (TEX command), 205

¢ positioning argument, 47, 183
\c (, accent}, 40
\cal, 43, 53, 171, 172 v
calligraphic letters, 43, 53, 171, 172
in \boldmath, 201
calligraphic type style, see \cal
\cap (N), 44
capacity exceeded, 125
caps, small 39, 199
captions, 59
cross reference to, 72
multiple, 60
\caption, 59, 72, 177
argument too long, 126
\label in argument, 187
list of figures or tables entry, 159, 186
moving argument of, 59, 152
caret, see ©
case of letters, 73
in command name, 16, 33
in key, 71
catching errors with text editor, 33
\cc in letter environment, 67
\cdot (-), 44
\cdots (---), 42, 171
center environment, 111
\\ in, 153
as displayed paragraph, 165
as list, 112
displaying a box with, 97
in title page, 84
tabular environment in, 65
center line of formula, 47
centered
array column, 47
ellipsis, 42
centering a figure or table, 112
\centering. 112
(TEX command), 205
in p-column, 183
centimeter (cm). 93, 192
chapter counter, 91
chapter bibliography field. 146

INDEX

215

\chapter, 23, 157
\clearpage used by, 91

not in article document style, 157

\pagestyle after, 84
character
code, 116
end of line. 12
illegal, in array arg, 121
invalid, 127
input. 33
invisible, 12, 33
punctuation, 12, 33
in key, 71, 73
space, see space character
special. see special character
\check (" math accent), 51
chgsam.tex, 9
\chi (x). 43
\circ (o), 44
circle, 107. 198
\circle. 107, 198
\circlex, 107. 198
circular reference, 233
citation, 72ff, 187
key. 73, 75, 140
remark in, 188
undefined. 128
\cite, 73. 188
key in argument. 140
label produced by. 187
wrong number printed by, 128
\cleardoublepage, 91, 192
figures and tables output by, 177
\clearpage, 91, 192

checking capacity exceeded error with,

127
figures and tables output by. 177
used by \onecolumn, 163
used by \twocolumn. 162
\cleartabs (TEX command). 204
\cline. 64. 184
\closing. 67
\clubsuit (&), 45
cm (centimeter), 93. 192
code. character. 116
colon, see :

color

declaration in SLITRX, 135
layer, 133
slides, 132

\colors, 134, 135
\colorslides, 134
column

aligning text in, 62, 179
array, 47

double, 21, 162

of text in picture, 107

\columnsep, 161
\columnseprule, 161
comma (,), 12, 33

not allowed in citation key, 73

command

*-form of, 27, 33, 151, 157
argument, see arguinent
built-in IATEX, 86
defining from keyboard, 79, 190
definition, 551f, 173
in, 56, 124
error in. 126
use of \mbox in, 55
form, 150
fragile, see fragile
invisible, 152
length, 93
name, 16, 33, 150
* after, 27
@ in, 85, 150
already used error, 121
case in, 16, 33
correcting misspelled, 128
one-character, 150
names, too many, 126, 127
nested, too deeply, 127
parameter, 56
Plain TEX, 203ff
printing on screen, 189
redefining, 57, 173
robust, 24, 151
sectioning, see sectioning command
text-generating, 15
visual design, 82
with two optional arguments, 150

commas, ellipsis between, 42

216 INDEX

comment, 20, 79, 150 set by \refstepcounter. 176, 186
common errors, 32 custom document style, 85
commutative diagrams, 54
computer programs, formatting, 62 \d (accent), 40
Computer Modern font family, 115 \dag (1), 40, 157
concepts versus notation, 32 \dagger (1). 44
\cong (&), 44 dash, 14, 34, 154 &
conjectures, 58 \dashbox, 105, 197
contents, table of, 70, 157ff, 186 dashed box, 105, 197
entry made by sectioning command, \dashv (), 44
23, 158 database, bibliographic, see
control sequence error. 125, 128 bibliographic
conventions, type style. 39 date, 22, 154
coordinate. 101, 196 generating with \today, 15
local, 110 in title page. 84
pair, 102 in title, 22
\coprod (]]). 45 \date, 22, 35. 164
\copyright (©), 40. 157 \\ in, 153
corner, rounded, 108 \dblfloatpagefraction, 178
correcting \dblfloatsep, 178
font undefined error, 125 \dbltextfloatsep, 178
hyphenation error, 88 \dbltopfraction, 178
misspelled command, 128 dbltopnumber counter, 178
\cos (cos), 46 \ddag (1), 40, 157
\cosh (cosh), 46 \ddagger (1), 44
\cot (cot). 46 \ddot ("math accent), 51
\coth (coth), 46 \ddots (‘.), 42, 171
counter, 911f, 174 declaration, 17, 152
command, error in, 127 color, 135
creating a new, 93 environment made from, 25. 34
reset by \refstepcounter and global, 152
\stepcounter, 174, 175 local to a box, 97
too large, 121, 123 picture, 199
undefined, 122 scope of, see scope
value of, 92, 175 style-specifying, 22
cross-reference, 71ff. 186 type-size changing. 115
aux file used for. 185 declarations, file of. 76
information. printing. 185 default. 150
labels. too many. 126, 127 labels of itemize. 166
\csc (csc). 46 page style. 83. 161
\cup (U), 44 type size. 115
curly brace, see brace defined. multiply, 128
current \ref value. 186 defining
in enumerate environment, 166 command. 55. 173
in list environment, 168 from keyboard. 79. 190
in theorem-like environment, 174 environment. 57. 173

set by \item. 186 length command. 95

INDEX

217

list counter, 114
list environment. 115
definition
. 124
use doesnu't match, 128
recursive, 56
\def (TEX commrand). 86
\deg (deg). 46
delimiter. 48, 171
bad. 120
not bold in \boldmath. 202
unmatched math mode. 124
delimiting
an argument. 152
scope of declaration, 17, 25
\delta (8). 43
\Delta (A). 43
depth
nesting., 122
changing apparent. 101
table of contents, 159

description enviromment. 26. 35. 165

as list. 112
label overprinting text in. 166
using for glossary. 78
design
logical. 6
typographic, 85
visual, 6. 61, 82
designer. typograplic. 5
\det (det). 46
subscript of, 171
details of IATEX. 87
determinant. 47
device-independent. see dvi file
diagonal ellipsis. 12
diagram. commutative. 54
\diamond (©), 44
\Diamond (<). 45
\diamondsuit (<). 45
dictionary. exception. 126
differential. 52
digit. 12. 33
\dim (dim). 46
dimensional unit. 192
disk. 107. 198
display math style. 54, 169, 201

displayed formula, 28. 35, 41

blank line before, 28

math style for. 54. 172

multiline. 49

numbered. 41

space above and below, 165. 170
displayed paragraph, 165
displayed quotation, 25
displaying a box. 97. 169
displaying structure in input file, 54
displaymath environment, 28, 35. 41.

44, 169

anomalous vertical space after. 165

displaying a box with. 97
\displaystyle. 54. 172. 201
distance. see length
\div (+). 44
doc (documentation) file, 86
document environment. 35
document style, 7, 21, 82. 160

article, see article

book. see book

custom. 85ff

file. 150

foreign language. 39

letter. see letter

nonexistent, 124

option, see document-style option

report, see report

slides, see slides

type-size commands in, 200
document-style option, 21, 82, 160

11pt, 21. 86. 115, 160

12pt. 21. 115, 160

creating, 85

fleqgn. 82, 160. 169

legno. 82. 160, 169

nonexistent. 124

openbib, 160

titlepage. 82. 160

twocolumn, 21. 160

twoside, sce twoside
\documentstyle, 21, 35, 82. 160

in \input file. 76

misplaced. 120)

miissing., 128

sty file read by. 85

218

INDEX

style option in, 85
dollar sign, see $
\dosupereject (TEX command), 204
\dot (" math accent). 51
\doteq (=). 44
\dotfill. 96
dotless i and j. 40, 51
dots, space-filling, 96
double spacing. 155
double sub- or superscript error, 123
double-column format, 21. 82. 162
double-quote character ("), 12. 13, 154
\doublerulesep. 185
\downarrow (), 45. 48
drawing pictures, 101
\ds@. ... 160
dvi (device-independent) file. 5. 186

editing toc file, 71
edition bibliography field. 146
editor. text, 12, 33
editor bibliography field. 146
el (1). 12
eleven-point type. 21, 160
11pt document-style option. 21, 115. 160
sty file for. 86
\ell (£). 45
ellipsis. 15. 42, 170
em (dimensional unit). 93. 192
\em (emphasis). 16. 34. 154. 199
in SLITEX, 135
changing type style with. 38
emphasis. 16. 34. 154
empty \mbox, 91
empty page style. 83. 84, 161
\emptyset (0). 45
\encl. 67
end of line
character. 12
space character at. 20
end of page. vertical space at, 96
end of paragraph. 13. 150
end of sentence. 13
end of word. 13
\end. 25. 151
delimits scope of declaration. 25
is fragile. 24, 34

(TEX command), 205

unmatched, 120
\end{document}. 21

error when processing. 126

figures and tables output by, 177

files written by. 186

missing, 31 v
\end{verbatim}, no space in. 66
\endinsert (TEX command). 204
entering math mode. 38
entering text from keyboard, 79. 189
entry field. bibliography, 140
entry type, bibliography, 140, 144ff
enumerate environment. 26. 35. 165

as list, 112

counters, 91. 165

suppressing advance of. 166

current \ref value in, 166

item, cross-reference to, 71-72
enumerated list, long. 121
enumi ... enumiv counters. 91. 165
environment. 25. 34. 150. 151

in definition. 124

x-form. 151

\begin of nonexistent. 121

blank lines around. 25

defining, 57. 72, 173

invisible. 152

list-making. 26. 99, 112, 115. 122, 166,

195

made from declaration. 25. 34

paragraph-making. 99. 165

redefining. 58

theorem-like. 58. 112, 174

undefined. 121

user-defined. 57
\epsilon (¢). 43
\egalignno (TEX command). 205
\eqalign (TEX command). 205
eqnarray environment. 49, 169

\\ in, 153

anomalous vertical space after. 165

formula numbers in. 82

in leqgno style option. 160

\multicolumn not allowed in. 169

space between rows in. 170
eqnarray* environment. 49. 169

INDEX

219

equation counter, 91, 169
equation environiment, 28, 35, 41, 169
anomolous vertical space below. 165
cross-reference to. 71
formula numbers in, 82
in legno style option, 160
extra vertical space above in minipage
environment, 195
\equiv (=), 44
error, 117fF
catching with text editor, 33
common. 32
indicator. 29, 118
locator, 29, 118, 119
message,
! in, 29
7 in. 29
IATEX, 120
TEX,; 123
outputting, 119
IATEX versus TEX. 29
reading aux file, 122
TEX versus IATRX, 29
typographic, 85
errsam.tex, 28
\eta (7). 43
\evensidemargin. 163
ex (dimensional unit), 93. 192
exception dictionary. 126
exclamation point (!), 34
in error message. 29
\exists (3), 45
\exp (exp). 46
extension. file. 12
\extracolsep. 183

face, type, see type style
family. font, 115
\fbox. 97, 194
versus \frame. 108
width of lines. 195
\fboxrule. 195
not used in pictures, 198
\fboxsep. 196
field. bibliography datapase entry, 140ff
figure counter. 91

figure environment, 59, 176
in parbox, 121, 122
\label in, 72
misplaced, 121, 122
parbox made by, 98
space around, 153
figure environments, too many, 123
figure* environment, 176
figures, 59, 176
centering, 112
in two-coluinn format, 176
list of, 71, 158
numbering, 60
output by \clearpage and
\cleardoublepage, 91, 177
output by and \end{document}, 177
placement, 176
vertical space in, 60
file
aux, see aux
auxiliary, 75, 119
bbl, see bbl
bib, see bibliographic database
device-independent (dvi), 5, 185
doc, 86
document-style, 150
dvi, 5, 185
extension, 12
first name of, 12
glo, 79, 186
idx, 78, 186
\include’d, 76
missing, 124
input, 12, 18
\input, 75, 188
in slide file, 134
missing, 124
inserting, 75
lof. 71, 158, 186
log. 29. 79. 186
lot, 71, 158, 186
missing. 124
name. 12
of declarations, 76
pages of inpuvt. 13, 118
root, 75. 133
sample inpat, 2

220

INDEX

sectional unit as separate, 77

slide. 133fF

SLITEX root, 133

sty. 85. 150, 160

suppressed by \nofiles, 189

text, 12

toc, 70, 71, 158, 186
files, multiple input, 75

finding error in, 118
\fill. 94, 192

in tabular* environment, 183
finding an error, 118ff
first name of file, 12
first page, right head for, 162
\fivebf (TEX command), 205
\fivei (TgX command), 205
\fiverm (TEX command), 205
\fivesy (TEX command), 205
\flat (b), 45

fleqn document-style option, 82, 160,

169
indentation in, 161, 170
\topsep in, 170
float. 59. 177
lost error. 121
page, 177
made by \clearpage. 91
placement option, 123. 176
placement specifier. 176
floating objects, 59
placement of, 60
\floatpagefraction. 178
floats, too many. 121
\floatsep, 178
flush left
array column. 47
flush right
array column. 47
text in tabbing, 181
text in quote. 112
\flushbottom, 82
bad page break with. 90
default in book style, 83
default in twoside option. 83
ignored by \newpage. 91
interparagraph space in, 94
\parskip value with, 155

flushleft environment, 111
flushright environment, 111
\\ in. 153
as displayed paragraph, 165
as list, 112
\fnsymbol, 175
\folio (TgX command), 204 =
font, 115
length dependent on, 93
loaded on demand, 200
loading, 116. 200
not loaded error, 124
preloaded, 200
selecting, 87
in formula, 116
in Plain TEX, 205
selecting symbol from, 200
unavailable, 116, 200
undefined error, 125

fonts
family of, 115
SLITREX, 135

too many, 124
foot. page, 83, 161
\footheight, 163
\footline (TEX command), 204
footnote, 19, 156

example of difficult, 156

in minipage environment, 156, 195

in parbox. 99

in tabular environment, 99

line above, 156

mark. 156

symbols, 175

type size of, 116
footnote counter, 91
\footnote, 19, 34, 156

in minipage. 99, 195

is fragile, 24, 34
\footnotemark, 156

for footnote in parbox. 99
\footnoterule. 156
\footnotesep. 156
\footnotesize. 115. 200
\footnotetext. 156

for footnote in parbox, 99

in minipage environment. 195

INDEX

221

\footskip. 163
\footstrut (TEX command). 204
\forall (V). 45
foreign language
document, 39
symbols, 39
words. hyphenating. 39. 88
form. coomnand, 150
format
double-column, 82. 91, 162
figures and tables in. 176
marginal notes . 61
open bibliography, 160
single-column. 163
formatting the input file, 18
formatting. visual, 50, 54. 66
formula. math, 19, 34, 41{f, 169ff
adding vertical space in. 100
aligning on left, 82, 160
blank line in, 125
box in. 97
center line of, 47
delimiters in, 171
displayed. 28. 35. 41
blank line before, 28
math style for. 54, 172
space above and below, 170
dotless 1 and j in, 51
formatting with picture, 54
in-text. 41
math style for, 172
logical structure of. 52
\mbox in. 40. 41
for font selection, 116
for size changing. 116
multicolored. 136
multiline, 49
numbered. 41
numbers. 82
on left side. 82. 160
space character in, 19
space above or below, 101
space . 52
visual formatting of. 50. 54
\frac, 42. 170
fraction. 41. 170

fragile command, 24, 27, 34, 151
in a moving argument, 119
protecting, 24

\frame, 108, 199

\framebox, 97, 194, 197
in picture environinent, 104
width of lines produced by, 195

framed box, 97, 194
in picture enviromment, 197

\frenchspacing, 154

front matter, 133

\frown (—), 44 ,

functions, log-like, 46

\fussy. 88, 191

galleys, 119
\gamma (v), 43
\Gamma (I'), 43
\ged (ged), 46
subscript of, 171
geometry, coordinate, 101
\geq (>). 44
\gg (>), 44
Gilkerson, Ellen, 221
glo (glossary) file, 79. 186
written by \makeglossary, 186, 189
\nofiles suppresses, 189
global declaration, 152
glossary. 77-79, 189
using description for, 78
\glossary. 79, 189
commands on page, too many, 126
glo file entry written by, 186
space around, 153
\glossaryentry, 79, 186, 189
gnomonly, 87
gorilla, 98
graph paper, making, 110
\grave (" math accent), 51
Greek letters, 43. 53
in \boldmath. 201
changing style of. 172
variant, 43
Guide, Local. see Local Guide

h placement specifier, 176
\H (“ accent), 40

222

INDEX

half oval. 108
hash size, 126
\hat (" math accent), 51
\hbar (h), 45
\hbox. overfull, 87, 129
\hbox, underfull, 87, 89. 129, 190. 191
head, page, 83. 161
for first page, 162
\headheight, 163
heading. page, 83, 84
information in. 161
set by sectioning commands, 23, 84.
158
headings page style, 83, 161
\headline (TEX command), 204
\headsep. 163
\heartsuit (), 45
height
of page body, 94
changing apparent, 100
Helvetica font family, 115
hexadecimal character code. 116
\hfill, 96, 184
in marginal note, 61
positioning label with, 114
\hline. 63. 184
\hom (hom). 46
\hookleftarrow («). 45
\hookrightarrow (—). 45
horizontal braces, 51
horizontal line
drawn with \rule. 100
in array or tabular, 64. 184
space-filling. 96
horizontal mode. 38
horizontal positioning in box. 104
horizontal space. 95
in math mode. 172
produced by invisible command. 153
howpublished bibliography field. 146
\hrulefill. 96
\hspace. 95, 193
rubber length in. 96
\hspacex*. 95. 193
\huge. 115. 200
\Huge. 115. 200
hyphen. 14. 18

hyphenating foreign words. 39, 88
hyphenation, 87. 190
correcting error in, 88
suppressed, 199
\hyphenation, 88, 191
\- instead of. 126
error in, 125
exceeding capacity with, 126

L i

i, dotless
for accents. 40
in formula, 51
\i (1), 40
idx (index) file. 78, 186
\nofiles suppresses. 189
listing, 78
made by \makeindex, 186, 189
idx.tex, 78
ignored bibliography field. 144
ignoring input. 20
illegal character in array arg. 121
illegal paraimmeter number. 124
illegal unit of measure, 124
\Im (B). 45
\imath (z). 45. 51. 172
in (inch). 60, 93. 192
\in (€). 44
in-text formula. 41
math style for. 172
inbook bibliography entry type. 145
inch (in). 60, 93. 192
\include. 76, 78. 188
uses \clearpage. 91
missing file in. 124
numbering with. 77
\include'd file. 76
\includeonly. 76. 188
entering from keyboard. 77. 79
misplaced. 120
not in SLITEX. 134
incollection bibliography entry type.
145
\indent. 155
indentation in flegn option. 161. 170
indentation. paragraph. see paragraph
indentation
index. 77ff. 189

INDEX

223

\index. 78, 189
\{ aud \} iun argument. 79, 189
idx file entry written by, 186
space arouud, 153
special characters in, 79
too many on page, 126
\indexentry. 78. 186. 189
\indexspace, 78
indicator. error. 29, 118
\inf (inf). 46
subscript of, 171
infinitely stretchable length. 94. 96. 192,
193
information in heading. 161
information. moving. G9ff
\infty (o0). 45
ink. rectangular blob of, 100
inproceedings bibliography entry type.
145
input
character, 33
file. 12
blank line in. 150
formatting. 18, 54
missing. 124
pages of. 118
preparmg, 12
files. multiple. 75
finding error in. 118
ignoring. 20
keyboard. 79, 189
sample. 8
stack size. 126
\input. 75, 78. 188
in slide file. 134
missing file in, 124
inserting files. 75
institution bibliography field. 146
\int ([). 45. 52
integral sigu. space around. 52
interaction, 79
intercolumn space. 161
in array and tabular. 183
interrow space
in array and tabular. 153. 185
in eqnarray environment, 170
in \shortstack. 107

interword space. 14, 154
before or after \hspace. 95
without hue break, 18
produced by invisible command, 153
\intextsep. 178
mtraword dash, 14, 154
invalid character error, 127
invisible
character, 12, 33
command, 152, 153
delimiter, 49
enviromuent, 152
term made with \mbox. 50
text, 91
\invisible, 136
\iota (¢). 43
\it (italic). 39. 199
italic type style. 16. 39. 199
switching to roman from. 17
used for emphasis, 154
math, 53, 200
itemn
of array or tabular environment
footnoting, 99
multiple column, 64, 184
paragraph in. 98
positioning, 64
processed in LR mode. 63
vertical positioning. 47
label. 26, 166
cross-reference to. 71
overprinting text in description,
166
matlh style of array. 172. 174
\item. 26. 35. 166
] in argument. 151
current \ref value set by. 186
in theindex. 77. 189
in trivlist. 115
1s fragile, 34
umissing. 122
optional argument of. 26. 151
outside list enviromnent. 128
\itemindent. 114. 167
in trivlist environment. 116
itemize envirommnent. 26. 35. 165
as list, 112

224

INDEX

labels of, 166
\itemsep, 113, 167

j. dotless
for accents, 40
in formula, 51
\j (1), 40
\jmath (7). 45, 51, 172
\Join (). 44
\jot. 170
journal bibliography field, 146
justifying lines, 89, 94

\kappa (&), 43
\ker (ker), 46
Kernighan, Brian, 7
key, citation, 72-74, 140
key, cross-reference, 71 72
key, return, 12
key bibliography field, 146
keyboard
defining command from, 79
entering input from. 79, 189
keys, listing, 72
\kill, 63, 180
Knuth, Donald Ervin, xi, xii, 4, 115

1 (left)
in \oval, 108, 198
positioning argument, 47, 97. 104,
107, 182, 194, 197
1 (letter el), 12
\1 (1), 40
label
produced by \cite, 187
multiply-defined, 128
item, 26, 166
positioning with \hfill, 114
\label. 71, 186
in figure environment, 72
in table environment, 72
missing. 129
similar to \bibitem, 73
space around, 153
\labelitemi, ... \labelitemiv. 166
labels
error, too many cross-referencing.

127

may have changed warning, 128
mailing, 67
\labelsep. 113, 167
\labelwidth, 113, 167
in trivlist environment, 115
lablst.tex, 72, 185
\lambda (A), 43
\Lambda (A), 43
\langle ((), 48
language, foreign, 88
document, 39
symbols, 39
large. counter too, 121, 123
\large, 115, 200
\Large, 115, 200
\LARGE, 115, 200
IATRX
bug, 122
built-in command, 86
distinguished from TEX, 5
error messages, 120
error versus TEX error, 29
inner details of, 87
logo, 5, 15, 34, 154
pronunciation of, 5
running unattended. 31
stopping, 31
typing X to stop, 31, 120
warning messages, 128
page number in, 119
\LaTeX (IATEX), 15. 34, 154
latex.tex, 86
laws, 58
layer, color, 133
\1lceil ([), 48
\ldots (...), 15, 34, 42, 171
\leadsto (~), 45
leaving math mode. 38
left-aligned array column. 47
left. flush. see flush left
left-hand page, 161
left margin. prevailing. 179
left quote, 13
left side. formula numbers on. 82, 160
\left. 48. 171
in \boldmath. 202
left-to-right mode, see LR mode

<

INDEX

225

\leftarrow («). 45
\leftegn. 50. 170
\leftharpoondown (—). 45
\leftharpoonup (—). 45
\leftmargin. 113. 167
mn trivlist environment. 115
\leftmargini ... \leftmarginvi. 167
\leftrightarrow («—). 45
lemmas. 58
length. 93. 192
0 used as. 124
command. 93
defining. 95
never \protect'ed. 94, 152
value of, 93
font-dependent. 93
infinitely stretchable. 94. 96. 192, 193
natural, 94
of line in picture. 105
parameters, 94
rubber. 94
rigid. 94
ity MO A9
zero. 93
\leq (). 44
\legalignno (TEX connnand). 205
legno document-style option. 82. 160,
169
letter, 12, 33
@ regarded as in sty file. 85
bold. in math mode. 201
case of. 71. 73
calligraphic. 43. 53. 201
for mailing. 66
Greek. 43. 53. 172. 201
not a. 125
script. 43
letter document style, 66
\parskip in. 94
letter environment. 66
moving argument of. 152
Leunen. Mary-Claire van. 8, 47. 144. 207
level number of sectional unit. 159
\1floor (|). 48
1fonts.tex. 87. 205
\1g (I1g). 46
\1hd (). 11

\lim (lim), 46
subseript of. 171
\liminf (liminf). 46
subscript of. 171
\limsup (limsup), 46
subscript of, 171
line
above footnotes, 156
blank, see blank line
bottom of. 101
break. see break, line
center. of formula. 47
end of, 12
horizontal, see horizontal line
in picture, 105
thickness of, 102, 199
Jjustifying, 89, 94
output. space at beginning or end of,
95
slanted. minimum size of, 106
vertical, see vertical line
width. 85, 155
\line. 105. 198
(TEX command). 205
error in. 120
\linebreak, 89, 190
[following. 89
space around, 153
warning caused by, 129. 190
\linethickness. 199
\linewidth, 155
list, 26. 35
of figures or tables. 71. 158
long enumnerated. 121
source. 72-74
list counter. defining, 114
list environment, 112. 166
\parindent in. 114
\parskip in, 114. 167
current \ref value m. 168
style parameters for. 166
list-making environment. 26. 112. 166
defining. 114
i parbox, 99. 195
\item not in. 128
margins of nested. 114
missing \item in. 122

226

INDEX

nested too deeply, 122
primitive, 112
listing idx file, 78
listing keys, 72
\listoffigures, 71, 158
error when processing, 126
lof file read by, 186
\listoftables, 71, 158
error when processing, 126
lot file read by, 186
\listparindent, 113, 167
\11 (<), 44
\1n (In}, 46
\load, 200
correcting font undefined error with,
125
loaded-on-demand font, 200
loading a font, 116, 200
local coordinates, 110
Local Guide, 2, 5, 8, 12, 21, 29, 31, 33,
39, 68, 72, 75, 78, 82, 86, 87, 88,

107, 115, 116, 120, 122, 128, 132,

133, 140, 143, 146, 200

locator, error, 29, 118, 119
1of (list of figures) file, 71, 158, 186
log file, 29, 79, 118, 186
\log (log). 46, 52
log-like function, 46
logical design, 6
logical structure, 82

displaying in input file, 54

of formula, 52

repeated, 54

type style not a, 39
logo, IATRX, 5, 15, 34, 154
logo, TEX, 5, 15. 34, 154
\longleftarrow («—), 45
\longleftrightarrow («—). 45
\longmapsto (—). 45
\longrightarrow (—). 45
lost float. 121
lot (list of tables) file. 71. 158, 186
low ellipsis, 42
lowercase letters. 12
lowering text, 100
LR box, 97

made by \raisebox, 100

LR mode, 38, 41
\markboth and \markright arguments
processed in, 84
box made in, 97
in tabbing environment, 179
space characters in, 38
tabular item processed in, 63

magnification of output, 205
\magnification (TEX command), 205
magnifying a picture, 102
mailing labels, 67
main memory size, 126
\makebox, 97, 194, 197

and \savebox, 109

in picture environment, 104
\makefootline (TEX command), 204
\makeglossary, 79, 189

glo file produced by, 186

misplaced, 120
\makeheadline (TEX command), 204
\makeindex, 78, 189

idx file written by, 186

misplaced, 120
\makelabel, 167
\makelabels, 67
\maketitle, 22, 35, 163

separate title page made with, 82, 160
mandatory argument, 150
manual bibliography entry type, 145
\mapsto (—), 45
margin

arrow in, 61

changing in tabbing, 180

prevailing, 179, 181
marginal note, 61, 178

\hfill in, 61

moved, 129

set in parbox, 178
marginpar moved warning, 61, 129
\marginpar. 61. 178

too many on page, 123

misplaced. 121, 122

space around. 153
\marginparpush. 179
\marginparsep. 163. 179
\marginparwidth. 163. 179

INDEX

227

margins of nested lists. 114
mark, footnote, 156
mark. question (?), 34
mark, quotation. 13. 34
\markboth. 84, 161
not used in slides document style,
138
moving arguments of, 152
\markright, 84, 161
in myheadings page style. 83. 161
not used in slides style, 138
moving argument of, 152
mastersthesis bibliography entry type,
145
matching, brace, 17
math
accents, 51
environment, 20, 41, 169
formula. see formula
italic. 53. 172. 200
mode. 38. 41
’in, 170
accents in. 51, 172
bold letters in, 201
changing type style in, 53
environments. 169
entering, 38
leaving, 38
loaded-on-demand font in, 200
spaces ignored in. 38, 52
unmatched delimiter, 124
notation. 54
style, 54, 172, 201
display. 54. 169. 201
for displayed formula. 54, 172
for in-text formula, 172
for sub- and superscripts. 54, 172
of array items, 172
scriptscript. 54, 201
script, 54, 20!
text. 54, 169. 201
symbols. 42{f
bold, 53, 201
variable-sized, 44
mathematical. see math
\mathindent. 161. 170
matrix, 47

matter. front, 133
\max (max), 46
subscript of, 171
\mbox, 18, 34, 53. 97. 154, 194
empty. 91
for font selection and size changing in
formula, 116
for multicolored formula, 136
how it works. 38
in formula, 40. 41
use in defining commands, 55
medium space. 52
\medskip, 193
\medskipamount, 193
memory size, 126
message
generating, 79. 189
IATEX error. 120
IATEX warning, 128
TEX error, 123
TEX warning. 129
warning, 31
\mho (U), 45
\mid (|). 44
\midinsert (TEX command), 204
millimeter (mm), 93, 192
\min (min), 46
subscript of, 171
minimum size of slanted line, 106
minipage environment, 98, 99, 195
footnote counter for, 91
footnote in. 156, 195
\footnote in. 99. 195
\footnotetext in, 195
in p-column. 183
nested. 99
tabbing environment in, 100
minus sign. 14
misc bibliography entry type. 145
misplaced
#. 128
&, 124
alignment tab error, 124
\documentstyle, 120
figure envirorment, 121, 122
\includeonly, 120
\makeglossary. 120

INDEX

\makeindex. 120
\marginpar, 121, 122
\nofiles, 120
table environment, 121, 122
missing
$ error, 125
\\, 123
{ error, 125
} error, 125
@-exp error, 125
argument, 125
in thebibliography, 122
\begin{document} error, 121
brace, 125
control sequence error, 125
\documentstyle, 128
\end{document}, 31
file, 124
\item, 122
\label, 129
number error, 125
p float-placement option, 123
p-arg error, 121
sty file. 124
misspelled command name, 32
correcting, 128
mistake, typographic, 6
\mit (math italic). 53, 172
mm (millimeter), 93, 192
mod. 46, 171
mode, 38
horizontal, 38
left-to-right, see LR mode
LR, see LR mode
math, see math mode
paragraph. see paragraph mode
picture, 103, 196
vertical, 38
\models (|=). 44
modulo, 46
month bibliography field. 146
moved marginal note, 61, 129
moving arguinent, 24, 34. 66. 74. 80, 151
fragile commmand in. 119
of @-expression, 183
of \caption. 59. 152
of \markboth. 84. 152

of \markright. 84. 152
of \typein and \typeout, 152, 189,

190
moving information around, 69ff
\mp (F), 44
mpfootnote counter, 91
\mu (u), 33 i

multicolored formula, 136
\multicolumn, 64, 184

not allowed in eqnarray, 169

error in, 121, 122
multiline formula, 49
multiple

authors. 22

captions, 60

column item, 64, 184

input files, 75

finding error in, 118

names in bib file field, 142
multiply defined label warning, 128
\multiput, 109, 196

exercise using, 110
myheadings page style, 83, 161

\nabla (V), 45

name, command, see command name

name in bib file field, 141

name, file, 12

named theorem, 59

natural length. 94

\natural (f), 45

\nearrow (), 45

\neg (). 45

negative thin space, 52

\neq (#). 44

nested
lists. margins of. 114
minipage environments. 99
too deeply. 122, 127

nesting depth error. 122

\newcommand. 55 57, 152. 173
error in, 121, 124. 125

\newcounter, 93, 174
defining list counter with. 114
error in, 121
optional argument of. 151
scope of, 152

FTE "R B Fa s

t R 3

ws R $SWe Tt Twe §fewmw trm FvE Tm =7y

INDEX

229

\newenvironment, 57, 173
defining list environment with. 115
error in, 121, 124, 127
\newfont. 116, 200
\newlength, 95. 193
error in, 121, 125
scope of. 152
\newline. 89, 91, 190
bad use of. 129
error in. 122
\newpage. 91, 192
\newsavebox, 101, 194
error in, 121, 125
scope of, 152
\newtheorem, 58. 174
counter created by. 91
cross-reference to environment defined
by. 72
error in, 121, 127
optional argument of, 151
next_tab_stop. 180
\ni (3). 44
Nixon, Richard. 26
\nocite 74. 188
\nofiles. 185
misplaced. 120
suppresses glo file, 189
suppresses idx file. 189
used when editing toc file, 71
\noindent. 155
removes paragraph indentation, 165
\nolinebreak, 89. 190
space around, 153
nonexistent
document style. 124
document-style option. 124
environment, 121
\nonfrenchspacing. 154
nonmath symbols, 40
\nonumber. 49. 170
\nopagebreak. 90. 191
space around. 153
\nopagenumbers (TEX command). 204
\normalbottom (T};X command). 204
\normalmarginpar. 179
\normalsize. 115. 200
\baselineskip not changed by. 155

\not, 44
notation, concepts versus, 32
notation, mathematical, 54
note, marginal, 61. 129, 178
note environnient, 137
note bibliography field, 146
\nu (v). 43
number
assigning key to a, 71
cross-reference to, 71
figure or table, 60
formula, 41, 82, 160
illegal parameter, 124
missing, 125
page, see page number
sectional-unit level, 159
wrong, 128
number bibliography field, 147
number-range dash, 14, 154
numbered displayed formula, 41
numbering, 91, 174
commands, \the..., 92
page, 92
section, 159
style, changing, 92
with \include, 76
within sectional unit, 58
\numberline, 159
\nwarrow (), 45

o (omicron), 43

\o (o). , 40

0 (letter oh), 12

\0 (0), , 40

object, floating, 59, 60
object, picture, 103, 197
octal character code, 116
\oddsidemargin, 163
\odot (®). 44

\oe (). 40

\OE ((E), 40

\oint (§). 45
\oldstyle (TX command), 205
\omega (w). 43

\Omega (2). 43

omicron, 43

\ominus (&), 44

230

INDEX

omitted argument, error caused by, 124
one (1), 12
one-character command names, 150
one-column format, 163
one-sided printing, marginal notes in, 61
\onecolumn, 82, 163
only in preamble error, 120
\onlynotes, 138
\onlyslides, 138
open bibliography format, 160
openbib document style option, 160
\opening, 66
\oplus (D), 44
option, document-style, see
document-style option
optional argument, 22, 150
* acts like, 27
[1 delimiting, 22, 152
of array environment, 47
of \item, 26, 151
of \marginpar, 61
of sectioning command, 158
square bracket mistaken for, 125
square brackets enclosing, 22, 152
optional arguments, command with two,
150
optional bibliography field, 144
organization bibliography field, 147
origin, 101
\oslash (@), 44
\otimes (®), 44
outer par mode, not in, 122
output
line, space at beginning or end of, 95
on screen, 79, 118, 186, 189
routine, Plain TEX, 204
<output> printed on terminal, 119
\output routine, 204
outputting error, 119
oval, 108, 198
too small warning. 129
\oval, 108, 198
\overbrace, 51
overfull \hbox message, 87, 129
overfull \vbox message, 87. 129
overlay environment, 136
\overline, 51, 171

overlining, 51, 171
overprinting
of marginal notes, 179
in description environment, 166
overriding item positioning in tabular,
64

T

P
float-placement specifier, 176

missing, 123
in array or tabular argument, 183
\P (), 40, 157
p-arg missing error, 121
p-column of array or tabular, 183
p-expression, 183
page
abstract on separate, 82
blank, 91
made by \cleardoublepage, 192
made with titlepage, 162
body, 83, 161
height of, 94
break, see break, page
counter, 91, 92
double-column, 82
first, right head for, 162
float, 177
made by \clearpage, 91
foot, 83, 161
head, 83, 161
heading in two-sided printing, 83, 84
last, output by \stop, 119
left-hand, 161
new, 192
number
Arabic, 83
cross-reference to, 72
printed on terminal, 119
Roman, 83
numbering, 92
of input file, 13, 118
right-hand, 161
starting on, 91
style, 82. 83, 161
default. 83. 161
empty. 83. 161
headings, 83, 161

INDEX

231

in slides style, 137
myheadings, 83, 161
plain, 83. 161
title, see title page
too many \glossary or \index
commands o, 126

too many \marginpar commands o,

123

vertical space at top or bottom of, 96

width of text on, 94, 155
\pagebody (TEX command). 204
\pagebreak, 90, 191

in two-column format, 91

space around, 153

\pagecontents (TEX command), 204

\pageinsert (TEX command), 204
\pageno (TEX command). 204
\pagenumbering. 83, 162
\thepage redefined by. 162
\pageref. 72, 186
~ used with, 72
undefined, 129
wrong number printed by, 128
pages, how \TeX makes. 119
pages bibliography field. 147
\pagestyle, 83, 161
after \chapter, 84
scope of, 83
in SLITEX, 137
pair, coordinate, 102
paper, graph. 110
\par. 155
paragraph. 13, 154
bad end of. 125
blank line ends, 88. 154
counter. 91
displayed. 165
end of, 13. 150
in a picture or table. 98
indentation, 155
anomalous. 165
width of. 93
mode, 38. 89
in center environment, 111
\\ in. 89. 190
box typeset in. 97. 98
marginal note processed in, 61

new, 34

unit, 88, 191
paragraph counter, 91
\paragraph, 23, 157

paragraph-making environment, 99, 165

paragraphs
\\ between, 120, 122
space between, 94, 155
\parallel (||). 44
paraneter, 57, 173
in command definition, 56
length, 94
number error, 124
style, 150
for list environment, 166
parbox, 98, 195
\’,\-,\=,and \‘ in, 181
\caption in, 177
figure or table in, 121, 122
footnote in, 99
in array or tabular column, 183
in tabbing environment, 181
list environment in, 99, 195
made by figure or table, 98
marginal note typeset in, 178

\parindent set to zero in, 99, 155

positioning with \raisebox, 99
tabbing and tabular in, 99, 195
\parbox, 98, 99, 195
parenthesis, 12, 15
\parindent, 93, 94, 155
equals zero in parbox, 99, 155
in 1list environment, 114
\parsep, 113, 167
\parskip, 94, 155
in letter style. 94
in list environment, 114, 167
value with \flushbottom, 155
part argument, oval, 198
part counter, 91
\part. 23. 157
\partial (), 45
\partopsep, 113, 167
when space is added, 114
pasting, 60
pattern, repeated, 109, 110
pc (pica), 192

232

INDEX

percent sign, see %
period (.), 15. 34
space after, 14
\perp (L). 44
phdthesis bibliography entry type, 145
\phi (@), 43
\Phi (), 43
\pi (7), 43
\Pi (IT), 43
pica (pc), 192
picture
arrow in. 106, 198
column of text in, 107
declarations, 199
line thickness in, 102, 199
lines in, 105
magnifying a, 102
mode, 103, 196
object, 103, 197
paragraph in a, 98
positioning text in, 105
reducing a, 102
repeated pattern in, 109, 110
picture environment, 101f, 196{f
box made by, 96
example. 197
\fboxrule not used in. 198
formatting formulas with, 54
large. 127
making figures with. 60
placement
of \protect, incorrect, 125
of figures and tables, 60, 176
of marginal notes, 61
of tabular environment. 65
specifier, 176
plain
bibliography style. 74
page style. 83. 161
\plainoutput (TEX command). 204
Plain TEX. 204fF
\pm (£). 44
\pmod. 46. 171
poetry. 27, 35
point
exclamation. 34
in error message, 29

(unit of length), 87, 93. 192
reference, 103, 196
pool size, 127
\poptabs, 181
unmatched, 122
position, specifying by coordigates, 102
positioning
argument, 47, 97, 99, 104, 194, 195,
197
horizontal, 104
item in array and tabular, 64
label with \hfil1, 114
text in picture, 105
vertical, see vertical positioning
\pounds (£), 40, 157
\Pr (Pr), 46
subscript of, 171
preamble, 21, 35, 88
command definitions in, 57
error in, 121
\includeonly in, 76
\makeindex in, 78
\newtheorem in, 58
only in, error, 121
visual design commands in, 82
\prec (<). 44
\preceq (<), 44
preloaded font, 200
preparing input file, 12
prevailing margin. 179, 181
prime symbol, 20, 170
\prime (/), 45
primitive list-making environment, 112
principles, 58
printing
aux file information, 185
counter values, 92
cross-reference keys, 185
double-column. 21
idx file entries. 78
on screen. 79, 189
one-sided, marginal notes in. 61
two-sided. 21. 160
page headings in, 83
proceedings bibliography entry type.
145
\prod ([]). 45

INDEX

233

programus, formatting computer. 62
pronunciation of INTRX and TEXN. 5
propositions, 58
\propto (). 44
\protect, 24, 34, 151
in @-expression, 183
in \caption argument, 59
in \typeout argument, 139
not before length command. 94
uot before \value, 175
not in \addtocounter or \setcounter
argument, 152
incorrect placement of, 125
protecting a fragile command. 24
\ps in letter enviromment, 67
\psi (¥). 43
\Psi (). 43
pt (point). 93, 192
publisher bibliography field, 147
punctuation character, 12, 33
in key, 71, 73
punctuation dash, 14, 154
punctuation, space after. 14, 154
suppressing, 154
\pushtabs, 181
unmatched, 122
\put, 103, 196
space in argument, 110
subpicture in, 110

quarter oval, 108
question mark (?), 34
quotation marks, 13. 34
quotation, displayed, 25. 35
quotation environment, 26. 35, 165
as list, 112
quote
double ("), 12, 13, 154
left (“), 12. 13. 34, 154
right (), 12, 13. 15, 20, 34, 154
quote environment, 25, 26, 35. 165
as list, 112
flushing in, 112
quotient symbol, 52

r (right)
in \oval argument, 108, 198

positioning argument, 47, 97, 104,
107, 194, 197
ragged right, 111
\raggedbottom, 82
bad page break with, 90
\raggedleft, 112
iir p-column, 183
\raggedright, 112
in p-columm, 183
\raisebox, 100, 195
positioning parbox with, 99
raising text, 100
\rangle ()), 48
\rceil (]). 48
\Re (R), 45
reading auxiliary files, 119
error when, 122
reclaiming saved box’s space, 109
rectangular blob of ink, 100
recursive definition, 56
redefining a command. 57, 79 80, 152,
173, 190
redefining an environment, 58, 173
redefinition of commands in tabbing,
181
reducing a picture, 102
\ref, 71, 186
~ used with, 72
similar to \cite, 73
undefined, 129
value, see current \ref value
wrong number printed by, 128
reference, circular, 215
reference point, 103, 196
reference undefined warning, 129
\refstepcounter, 174 176, 186
Reid, Brian, 7, 144
remark in citation, 188
removing
anomalous vertical space, 165
paragrapli indentation, 165
space above or below formula, 101
\renewcommand, 57, 152, 173
error in, 124, 125
\renewenvironment, 58, 173
error in, 124
repl0.sty, 86

234

INDEX

repll.sty. 86
repl2.sty. 86
repeated logical structure. 54
repeated pattern in picture, 109, 110
report document style, 21
abstract in. 164
appendix in. 158
default page style for, 83
figure and table numbers in. 60
\raggedbottom default in. 83
sectional units in, 23
thebibliography in. 187
title page in, 82
required bibliography field. 144
return key. 12
reusing a picture environment. 101
\reversemarginpar, 179
\rfloor (). 48
\rhd (B>). 44
\rho (p). 43
right-aligned array column. 47
right-hand page. 161
starting on. 91
right. flush. see flush right
right head for first page. 162
right margin. prevailing. 181
right quote (*). 12. 13. 15. 20. 34. 154
right. ragged. 111
\right. 171
in \boldmath. 202
\rightarrow (—). 45
\rightharpoondown (—). 45
\rightharpoonup (—). 45
\rightleftharpoons (=). 45
\rightmargin. 113. 167
in trivlist environment. 115
rigid length. 94
\rm (roman). 39. 199
in \stackrel. 52
robust command. 24, 151
roman nunber style, 83. 162
Roman nuinber style. 83. 162
Roman page numbers. 83
Roman type style. 38. 199
in SLITEX. 135

specified by size-changing declaration.

116

switching from italic to, 17
\roman. 92, 175
\Roman. 92. 175
root file, 75
SLITEX, 133
root. square, see square root
rounded corner. 108 g
row. \\ after last. 64
rows, space between. see interrow space
rubber length. 94
in \hspace or \vspace. 96
infinitely stretchable, 96. 192, 193
\rule. 100, 195
rule box. 97. 100
rules, 58
running IATEX unattended. 31
running head made by sectioning
command. 23. 157, 158

\S (§). 40, 157
\samepage. 90. 191
sample input, 2. 8
sample.tex. 2. 8. 21, 28. 87
saus serif type face. 39. 199
save size. 127
\savebox. 101. 109. 194. 199
for picture environment. 104
\makebox and. 109
saved box. reclaiming its space. 109
saving a box. 101. 109. 194
saving typing, 55
\sbox. 101. 194
reclaiming space with. 109
\sc (small caps). 39. 199
school bibliography field. 147
scope of a declaration. 17. 25. 152
in argument of user-defined command.
56
in argument of user-defined
environment. 37
in array. 47
in command argument. 19. 173. 174
in tabbing. 63. 181
screen output. 79. 189
(and) in. 118
[and] in. 119
= 1. 31

INDEX

235

coummands i, 189
<output> printed on. 119
page number in, 119
written on log file, 186
Scribe, 7
bib files, 140
seript letters, 43
script math style, 54. 201
\scriptfont undefined error. 125, 200
scriptscript math style. 54, 201
\scriptscriptfont undefined error.
125. 200
\scriptscriptstyle. 54, 173, 201
\scriptsize, 115, 200
\scriptstyle. 54, 173. 201
\searrow (\). 45
\sec (sec), 46
secnumdepth counter, 157, 160
section numbering, 159
section structure, 22
section counter. 91
\section. 23. 157
sectional unit, 23
as separate file. 77
cross-refereince to. 71
level number of, 159
numbering. 159
numbering within, 58
in document styles. 23
sectioning conmmand, 22, 157
*-form of, 157
argument
\\ in. 153
no blank line m. 154
\label in, 187
moving. 152
too long. 126
examples. 158
running head made by, 23, 84, 158
table of contents entry made by. 23.
158. 186
semicolon 12. 33. 202
sentence, 13. 34. 154
series bibliography field. 147
serif. sans. 39. 199
\setcounter. 92. 175
error in. 122

110 \protect in argument of, 152
scope of, 92, 152
\setlength, 95, 193
\setminus (\), 44
\settabs (TEX commmand), 204
setting tab stops, 62
\settowidth, 95, 193
\sevenbf (TEX command), 205
\seveni (TEX command), 205
\sevensy (TEX command), 205
\sf (sans serif). 39, 199
\sharp (4), 45
\shortstack, 107, 198
\\ in, 153
\sigma (o), 43
\Sigma (X), 43
sign, minus, 14
sign, integral, space around, 52
\signature, 66
\sim (~), 44
\simeq (~). 44
simulating typed text. 65
\sin (sin), 46
single quote, 12, 13, 15, 20, 34, 154
single-column format, 163
\sinh (sinh), 46
size
buffer, 126
default type, 115
hash, 126
input stack, 126
main memory, 126
minimum, of slanted line, 106
of variable-sized symbols. 54
pool, 127
save, 127
type, see type size
\sl (slanted). 39. 199
slanted line. minimum size of, 106
slanted type style, 39, 199
slash through symbol. 44
slide file, 133ff
slide environment, 134
slides
+ on. 137
black and white, 132
color. 132

INDEX

slides document style, 160
\markboth and \markright not in,
138
page style in, 137
SLITEX, 1314
fonts, 135
\em in, 135
\includeonly not in, 134
page styles, 137
\pagestyle in, 138
roman type style in, 135
root file, 133
\thispagestyle not in, 138
slope of line in picture, 105
\sloppy, 88, 191
underfull \hbox warning produced by,
129
sloppypar environment, 88, 191
underfull \hbox warning produced by,
129
small caps type style, 39, 199
\small, 115, 200
small.tex, 2
\smallskip, 193
\smallskipamount, 193
\smile (—), 44
source, 72
source list, 72- 74
space
added by \partopsep, 114
above displayed formula, 101, 170
in minipage environment, 195
after punctuation, 14, 154
after slanted font, see \/
around + and —. 50
around array and tabular, 183
around symbols, 52
at beginning or end of output line, 95
at top and bottom of page, 96
below displayed formula, 101, 165
between paragraphs, 94, 155
between rows, see interrow space
character. 13
at end of line, 20
after tabbing command. 63
ends command namne. 16
ignored after command name, 16

ignored in math mode, 38
ignored in \typeout or \typein
argument, 189
in command definition, 56
in formula, 19
in LR mode, 38
in math mode, 38
in \put argument, 110
ending line without adding, 34
horizontal, see horizontal
in array, 47
in figure, 60
in formula, 52
intercolumn, see intercolumn space
interrow, see interrow space
interword, see interword space
medium, 52
negative thin, 52
reclaiming, 109
thick, 52
thin, 52
vertical, see vertical space
\space, 189
space-filling dots, 96
space-filling horizontal line, 96
spacing, 95
commands, 154
double, 155
\spadesuit (#), 45
special character, 12, 33
printing, 154
in \index argument, 79
in verbatim environment, 65
used incorrectly, 32
special symbol, 40, 116
specifier, placement, 176
\sqcap (M), 44
\sqcup (LI}, 44
\sqrt (v/), 42, 52, 170
\sqsubset (C), 44
\sqsubseteq (C). 44
\sqsupset (1), 44
\sqsupseteq (J}. 44
square bracket, 12, 150
mistaken for optional argument, 125
enclosing optional argument, 22
in screen output. 119

INDEX

237

square root, 42, 170
space around. 52
\ss (8). 40
stack size. 126
stacking symbols, 52
\stackrel, 52, 172
making symbols with. 44
\star (x). 44
Steele Jr.. Guy. 142
\stepcounter. 174 176
stop. tab. 62. 179
too many. 122
\stop. 31
last page produced by, 119
stopping [ATEX. 31, 120
storage bin. 101. 109
Stravinsky. Igor. 7
\stretch. 193
stretchable length. 94. 96, 192, 193
structure
logical, 52, 54. 82
section, 22
theorem-like. 58
strut. 100. 153
sty (style) file. 85. 150. 160
missing. 124
style
bibliography. 74. 75
calligraphic. 172
declarations. 22
document, see document style
math, see math style
numbering. 92. 162
option. see document-style option
page. see page style
parameter. 150
type. see type style
subentry. index. 77
\subitem. 77. 189
subparagraph counter. 91
\subparagraph. 23, 157
subpicture, 110, 111
subscript. 20, 34. 41, 170
double. error. 123
of log-like function. 46. 171
math style for. 54. 173
not bold in \boldmath. 53. 201

type size for, 54, 116
subsection counter, 91
\subsection, 23, 157
\subset (C). 44
\subseteq (C). 44
subsubentry. index. 77. 189
\subsubitem. 77. 189
subsubsection counter, 91
\subsubsection. 23, 157
\succ (>). 44
\succeq (>). 44
\sum (}°). 45
sun dial. 88
\sup (sup). 46

subscript of, 171
superscript, 20, 34, 41. 170

double, error. 123

math style for, 54. 173

not emboldened by \boldmath, 53, 201

type size for, 54. 116
support, acknowledgement of. 164
\supset (D), 44
\supseteq (2). 44
\surd (/). 45
\swarrow (/). 45
symbol

bar over a. 50

bold. 53, 201

footnote. 175

foreign language. 39. 40

making with array. 44

making with \stackrel, 44

math. 42ff

nonmath, 40

slash through. 44

special, 40, 116

stacking, 52

variable-sized. 44

not bold in \boldmath. 202

changing size of. 54
symbols, ellipsis between, 42
\symbol. 200

t (top)
in \oval argument. 108, 198
placement specifier. 176

238 INDEX

positioning argument, 47, 99, 104, toc file read by, 186
195. 197 tables, 59
\t (" accent), 40 list of, 71, 158
tab made with tabular, 60
alignment, extra, 123 output by \cleardoublepage, 177
alignment, misplaced, 124 output by \clearpage, 91, 177
overflow error, 122 output by \end{document},177
position, undefined, 123 placement of, 176
stop, 62, 179 \tabsdone (TEX command), 204
stops, too many, 122 \tabset (TEX command), 204
\tabalign (TEX command), 204 \tabs (TEX command), 204
tabbing command tabular environment, 63ff, 182fF
spaces after, 63 \\ in. 64, 153, 183
Plain TEX, 204 box made by, 96
tabbing environment, 62ff, 179{f error in, 121, 122, 123, 128
\\ in, 153 footnoting item of, 99
as displayed paragraph, 165 in parbox, 195
example, 180 interrow space in. 153
in minipage, 100 large. 127
in parbox. 99 making tables with. 60
large, 127 strut in, 153
versus tabular, 62 versus tabular, 62
\tabbingsep, 181 zero-width box in, 98
\tabcolsep, 185 tabular* environment, 182
table \fill in, 183
caption, 59 \tan (tan), 46
centering a, 112 \tanh (tanh). 46
item, paragraph in a, 98 \tau (7). 43
numbers, 60 techreport bibliography entry type. 145
of contents, 70, 158ff ten-point type, 21
depth, 159 \teni (TEX command). 205
entry made by sectioning term, invisible 50
command, 23, 158 terminal input, see keyboard input
placement specifier, 176 TEX, 4, 5, 15, 203f
used in parbox, 121 distinguished from IATRX, 5
table counter, 91 error messages, 123ff
table environment, 59, 176 error versus JATEX error, 29
in parbox, 122 font-selecting commands, 204
in two-column format. 176 how it makes pages, 119
\label in. 72 logo. 5. 15. 34, 154
misplaced, 121. 122 Plain, 204
parbox made by. 98 pronunciation of, 5
space around, 153 warning messages. 129
table environments, too many, 123 \TeX. 15. 34. 154
tablex environment. 176 text
\tableofcontents, 70. 158 editor. 12. 33

error when processing, 126 file. 12

INDEX

239

invisible, 91

math style, 54, 169, 201
text-generating commands, 15
\textfloatsep. 178
\textfont undefined error, 125, 200
\textfraction, 178
\textheight, 94, 163
\textstyle, 54. 172, 201

used witlr \stackrel. 52
\textwidth, 94, 155, 163
\thanks, 164

moving argument of, 152

too many. 123
\the... numbering commands, 92, 175
thebibliography environment, 73, 187

as list, 112

missing argument in, 122
theindex environment, 77, 189
theorem-like environment, 58, 174

as list, 112

counter for, 91

current \ref value in, 174

cross-reference to, 72

named. 59
theorem-like structures. 58
theorems. 58

named, 59

\thepage redefined by \pagenumbering,

162
\theta (0). 43
\Theta (©). 43
thick space, 52, 172
\thicklines. 102, 199
thickness of lines in picture, 102, 199
thin space, 14, 34, 52, 154. 172
negative, 52, 172
\thinlines. 102, 199
\thispagestyle, 161
not used in SLITEX, 138
scope of, 152
tilde. 18
\tilde ("math accent). 51
\times (x), 44
Thnes Roman font family, 115
\tiny. 115. 200
title. 22
acknowledgement of support in, 164

author’s address in, 164

date in, 22

example, 164

in article style, 163

in bib file, 142

page, 22, 82, 84ft, 160, 163

witlr \maketitle, 82, 160

title bibliography field, 147
\title, 22, 35, 164

\\ in argument of, 153, 164
titlepage

document-style option, 82, 160

environment, 84, 164

making blank page with, 162
toc (table of contents) file, 70, 71, 158,
186

tocdepth counter, 160
\today, 15, 34, 154

in title page, 84
\top (T), 45
\topfraction, 178
\topinsert (TEX command), 204
\topins (TEX command), 204
\topmargin, 163
topnumber counter, 177
\topsep, 113, 166

in fleqn style option, 170
\topskip, 163
totalnumber counter, 178
\triangle (A), 44
\triangleleft (<), 44
\triangleright (>), 44
trivlist environment, 112, 115, 168
Truman, Harry, 26
\tt (typewriter), 39, 199

no accents in, 39
twelve-point type, 21, 160
12pt document-style option, 21, 115, 160
two-column format, 82, 162

\cleardoublepage in, 91

\clearpage in, 91

figures and tables in, 176

marginal notes in, 61

\newpage in, 91

\pagebreak in, 91
two-sided printing, 21, 160

page heading in, 83

240

INDEX

twocolumn document-style option, 21,
160
\twocolumn, 82, 162
optional argument of, 151
twoside document-style option, 21. 160
\flushbottom default in. 83
marginal notes in, 61
page headings in. 84
type
cleven-point, 21, 160
face, see type style
font, 115
size. 200
changing, 84, 115, 116, 200
commands in documnent style, 200
declarations, 115
default, 115
for sub- and superscripts, 54. 116
in footuote, 116
style, 38, 39, 199
style, calligraphic, 172
changing in title page. 84
changing with \em. 38
conventions, 39
in math mode, 53, 172
of Greek letters, 172
math italic, 172
roman, in SLITEX. 135
ten-point, 21
twelve-point. 21, 160
type bibliography field. 147
typed text, simulating. 65
\typein, 79. 190
for entering \includeonly, 77
like \newcommand. 80
like \renewcommand. 80
moving argument of, 152. 190
\typeout. 79. 189
moving argument of. 152
spaces ignored. 189
typesetter. 5
typewriter type style. 39. 199
liyphenation suppressed in. 199
no accents in. 39
typing. saving. 55
typographic
design. 85

designer, 5
errors, 95, 85

Au (7 accent), 40

unary + and —, 50
unattended. running IATEX, 31
unavailable font, 116, 200
unbalanced braces, error caused by, 120
\unboldmath, 201
undefined
citation, 128
control sequence error. 128
environment error, 121
\pageref. 129
\ref. 129
reference, 129
\scriptfont error. 125, 200
\scriptscriptfont error. 125. 200
tab position error, 123
\textfont error, 125, 200
\underbrace, 51
underfull \hbox message. 89. 129
caused by \\ and \newline. 190
caused by \linebreak. 190
caused by \sloppy. 191
underfull \vbox message, 129
caused by \pagebreak, 191
\underline, 51, 171
underlining, 51, 171
underscore character, 12
unit
dimensional, 192
illegal. of measure. 124
paragraph. 88. 191
sectional. see sectional unit
unit length. 101
\unitlength. 102. 196
for subpicture, 111
\unlhd (<). 44
unmmatched

$. 124

}. 124
\begin. 120
\end. 120

\poptabs. 122

\pushtabs. 122

math mode delimiter. 124
uninatching braces. 32

INDEX

unpublished bibliography entry type.
145

\unrhd (B). 44

unsrt bibliography style, 74

\uparrow (1), 45. 48

\updownarrow ([). 45. 48

\uplus (W), 44

uppercase letters, 12

\upsilon (v). 43

\Upsilon (7). 43

\usebox, 101. 195

\usecounter, 114, 168

user-defined
command, scope in argument of, 56
environment. scope in argument of, 57

\v (~ accent), 40
value
current \ref, see current \ref value
of counter. 175
printing, 92
of length command, 93
\value, 175
van Leunen. Mary-Claire, 8. 144. 207
\varepsilon (&), 43
variable-sized math symbols, 44
changing size of, 54
not bold in \boldmath. 202
variant Greek letters, 43
\varphi (). 43
\varpi (=). 43
\varrho (o). 43
\varsigma (¢). 43
\vartheta (7). 43
\vbox. overfull. 129
\vbox. underfull, 129. 191
\vdash (i), 44
\vdots (:). 42. 171
\vec (Tmath accent), 51
\vector. 106, 198
error in, 120
\vee (V). 44
\verb. 65. 168
\verb*, 65, 168
verbatim environment. 65. 168
verbatim#* environment, 65, 168

verse environment, 27, 35, 165
as list, 112
\\ in, 153, 165
vertical
ellipsis. 42
line
in tabular environment, 63, 183
drawn with \rule, 100
mode, 38
positioning
of array environment, 47
of array item, 47
of parbox, 99
of text in box, 104
space, 95, 100, 193
anomalous. after displayed formula,
165
at top or bottom of page, 96
in figure, 60
in math formula, 100
\vfill, 96
\vfootnote (TEX command), 204
visual design, 6, 61, 82
visual formatting, 50, 54, 66
\vline, 184
volume bibliography field, 147
\vspace, 95, 193
in figure, 60
rubber length in, 96
space around, 153
using strut instead of, 100
\vspacex. 96. 193

warning message, 31
citation undefined. 128
labels may have changed. 128
IATRX, 128
page number in. 119
marginpar moved, 61, 129
multiply defined label. 128
oval too small, 129
reference undefined, 129
TEX. 129
\wedge (A), 44
wide math accents, 51
\widehat (" math accent). 51, 172
\widetilde (" math accent), 51, 172

Sentences and Paragraphs

quotes single ‘...° double ‘...’

dashes intra-word - number range: --
punctuation: ---

spacing small \, inter-word \y unbreak-

able = sentence-ending period \@.

special characters $ \$ & \& % \%
#\ {(\ }\Y __

emphasis {\em ...}
unbreakable text \mbox{...}
footnotes \footnote{...}
date \today

Type Style
\rm Rom \it [tal \sc CAPS
\em Emph \sl Slan \tt Type
\bf Bold \sf SSif

\boldmath use bold math symbols

Type Size
\tiny \small \large \huge
\scriptsize \normalsize \Large \Huge
\footnotesize \LARGE

Accents and Symbols

o0 \‘{o} o \"{o} 6 \v{o} 9 \c{o}
6 \'{o} o6 \={o} 6 \H{o} o \d{o}
6 \"{o} o \.{o} 0o \t{oo} o \b{o}

o \"{o} 6 \u{o}

t \dag § \s © \copyright
1 \ddag € \p £ \pounds

Sectioning and Table of Contents

\part \section \paragraph
\chapter \subsection \subparagraph
\subsubsection

\appendix start appendix

\tableofcontents make table of contents

Mathematical Formulas

$...80r \(...\) in-text formula
\[...\] displayed formula

\begin{equation} ... \end{equation}
numbered equation

\begin{egnarray} ... \end{egnarray}
numbered equations, like 3-column array
environment; \nonumber omits one equa-
tion number, eqnarray* omits all

_{...} subscript

~{...} superscript

* prime (')

\frac{n}{d} print fraction %
\sqrt[n]{arg} print {/arg

ellipsis \ldots ... \cdots --- \vdots
symbols See Tables 3.4-3.8 (pp. 44-45)
Greek letters o \alpha ... (I \Omega

delimiters \left or \right followed by delim-
iter from Table 3.10 (p. 48)

\overline{ezp} print ezp

space thin \, medium \: thick \; neg-
ative thin \!

Displayed Paragraphs
\begin{quote} ... \end{quote}
short displayed quotation

\begin{quotation} ... \end{quotation}
long displayed quotation

\begin{center} ... \end{center}
centered lines, separated by \\

\begin{verse} ... \end{verse}
\\ between lines, blank line between stanzas

\begin{verbatim} ... \end{verbatim}
in typewriter font exactly as formatted

Lists

Begin each item with \item or \item[label]

\begin{itemize} ... \end{itemize}
“ticked” items

\begin{enumerate} ... \end{enumerate}
numbered items

\begin{description} ... \end{description}
labeled items

Common IATEX Commands
AL

Document and Page Styles

\documentstyle [options] {style}

style article letter (for letters)
report slides (SLITX only)
book

options 11pt twoside openbib
12pt twocolumn 1legno
titlepage fleqn

\pagestyle{style} style of head and foot:
plain empty headings myheadings

\pagenumbering{style} style of page numbers:
arabic roman alph Roman Alph

Title Page and Abstract
\maketitle make title with information declared
by \title, \author, and [optional] \date.

\begin{titlepage} ... \end{titlepage}
do-it-yourself titlepage

\begin{abstract} ... \end{abstract}
make abstract

Cross-Reference

\label{key} assign current counter value to key

\ref{key} print value assigned to key

Bibliography and Citation
\bibliography{...} make bibliography and tell
BIBTEX names of bib files

\begin{thebibliography}{/bl} ... \end{...}
make bibliography; (bl is widest entry label

\bibitem[/bi]{key} begin bibliography entry for
citation key [with [bl as label]

\cite[note] {keys} cite reference(s) keys [with
added note|

Splitting the Input

\input{file} read specified file

\include{file} read specified file unless excluded
by \includeonly

\includeonly{files} exclude any file not in files

Figures and Tables
\begin{figure} ... \end{figure}
make floating figure

\begin{table} ... \end{table}
make floating table

\caption{...} make figure or table caption

Lo
tabbing Environment

Rows separated by \\ ; columns determined by:
\= set tab stop
\> go to next tab stop

\kill throw away line

array and tabular Environments

\begin{array}[pos]{cols} ... \end{array}
\begin{tabular} [pos]{cols}... \end{tabular}
use array for formulas, tabular for text;
items separated by & and rows by \\; pos
aligns with top (t), bottom (b), or center
(default); cols entries format columns:
1 left-justified column
r right-justified column
¢ centered column
| vertical rule
@{...} text or space between columns
*{n}{...} equivalent to n copies of ...

\multicolumn{n}{col}{...} span next n col-
umns with col format

\hline draw horizontal line between rows

\cline{i-5} horizontal line across columns i—)

Definitions
\newcommand{cmd}[n]{...} define new com-
mand ¢md [with n arguments]

\newenvironment{nam} [n] {beg}{end}
define new environment nam [with n argu-
ments|

\newtheorem{nam}{cap} define a theorem-like
environment nam captioned by cap
Numbering

\setcounter{ctr}{n} set counter ctr to n

\addtocounter{ctr}{n} add n to counter ctr

Do you write technical documents — arf
computer for writing? Is the professional

If you answered yes to any of these questions, then LATEX

LATEX is a special version of Donald Knuth’s TeX program for computer ty
particularly suited for producing high-quality documents with mathematical text. LA
ally a collection of high-level commands, called “macros,” which simplify the use of
’ make typesetting relatively easy. With LATEX, users can concentrate more on their

on formatting detail, and still benefit from the sophisticated functionality of Knuth'’s sys

Leslie Lamport’s development of the LATEX system began three years ago. It has since gon
through several revisions and is currently installed at a large number of TgX sites around the
world. There are LATEX implementations for a wide variety of mainframe and minicomputers,
and versions are even available for microcomputers.

[ATEX: A Document Preparation System describes the final version of LATEX. The book is, at
once, a definitive user’s guide and a reference manual for LATEX. Itintroduces readers to LATEX,
shows them how to get started with it, then gradually leads them through more advanced tech-
niques. The book contains numerous examples that help explain system particulars. It also in-
cludes appendices on how to prepare slides (SLITEX) and a bibliography database (BIBTEX), and
how to use Knuth’s own Plain TeX commands. Like Knuth’s guide and manual, The TeXbook,
also published by Addison-Wesley, this one is delightfully illustrated by Duane Bibby.

LATEX: A Document Preparation System was typeset by the author with LATEX.

Leslie Lamport is a computer scientist specializing in the area of parallel processing. (' i
he works at Digital Equipment Corporation in Palo Alto, California. Prior to this, he w7

International. He holds a Ph.D. in mathematics from

Brandeis University. l‘ ||| |

m \$32.95

(27/

ISBN 0-201- l5?‘|U X
ADDISON-WESLEY PUBLISHING COMPANY

