
DONALD E. K N U T H 



Fred Lyon 

ABOUT THE AUTHOR 

Donald E. Knuth, author of renowned 
volumes on The Art of Computer Pro- 
gramming, is Fletcher Jones Professor of 
Computer Science at Stanford University. 
Knuth is a member of both the National 
Academy of Sciences and the National 
Academy of Engineering, and is the re- 
cipient of numerous awards and honors, 
including the Turing Prize and the Na- 
tional Medal of Science. He has authored 
over one hundred publications, including a 
mathematical novelette. Surreal Numbers. 





Digitized by the Internet Archive 
in 2017 with funding from 
Kahle/Austin Foundation 

https://archive.org/details/texbookOOdona 



The TpAbook 



A 11 '"1 
Ly'‘ 

-4 

»* 4 ’ * 

« 

ifi*. 

• « 

^ '• 

f 
» 
» I « 

4 

.. 

i 

A 

f 4 i 

i 
i 

« 

{•« 

I 

r 

4 
i 

n , 

Jt V.i&i<.. s »'■■?*', 



The TEXbook 
DONALD E. KNUTH Stanford University 

Illustrations by 

DUANE BIBBY 

TT 

ADDISON WESLEY 

PUBLISHING COMPANY 

Reading, Massachusetts 

Menlo Park, California 

Don Mills, Ontario 

Wokingham, England 

Amsterdam • Mexico City 

San Juan • Bogota • Sydney 

Santiago • Singapore • Tokyo 



The quotation on page 61 is copyright @ 1970 by Sesame Street, Inc., and used by permission 
of the Children’s Television Workshop. 

TgX is a trademark of the American Mathematical Society. 

METRFONT is a trademark of Addison Wesley Publishing Company. 

Library of Congress Cataloging-in-Publication Data 

Knuth, Donald Ervin, 1938- 
The TeXbook. 

(Computers & Typesetting ; A) 
Includes index. 
1. TeX (Computer system). 2. Computerized 

typesetting. 3. Mathematics printing. I. Title. 
II. Series: Knuth, Donald Ervin, 1938- 
Computers & typesetting ; A. 
Z253.4.T47K58 1986 686.2'2544 85-30845 
ISBN 0-201-13447-0 
ISBN 0-201-13448-9 (soft) 

Seventh printing, June 1986 

Copyright @ 1984, 1986 by the American Mathematical Society 

This book is published jointly by the American Mathematical Society and Addison Wesley 
Publishing Company. All rights reserved. No part of this publication may be reproduced, 

stored in a retrieval system, or transmitted, in any form or by any means, electronic, me- 
chanical, photocopying, recording, or otherwise, without the prior written permission of the 
publishers. Printed in the United States of America. Published simultaneously in Canada. 

ISBN 0-201-13447-0 
CDEFGHIJ-HA-89876 



To Jill: 
For your books and brochures 



i 



Preface 

GENTLE READER: This is a handbook about a new typesetting system 
intended for the creation of beautiful books—and especially for books 

that contain a lot of mathematics. By preparing a manuscript in format, 
you will be telling a computer exactly how the manuscript is to be transformed 
into pages whose typographic quality is comparable to that of the world’s finest 
printers; yet you won’t need to do much more work than would be involved if 
you were simply typing the manuscript on an ordinary typewriter. In fact, your 
total work will probably be significantly less, if you consider the time it ordinarily 
takes to revise a typewritten manuscript, since computer text files are so easy 
to change and to reprocess. (If such claims sound too good to be true, keep in 
mind that they were made by designer, on a day when happened to 
be working, so the statements may be biased; but read on anyway.) 

This manual is intended for people who have never used before, 
as well as for experienced hackers. In other words, it’s supposed to be a 
panacea that satisfies everybody, at the risk of satisfying nobody. Everything you 
need to know about T^ is explained here somewhere, and so are a lot of things 
that most users don’t care about. If you are preparing a simple manuscript, you 
won’t need to learn much about at all; on the other hand, some things that 
go into the printing of technical books are inherently difficult, and if you wish to 
achieve more complex effects you will want to penetrate some of IfeX’s darker 
corners. In order to make it possible for many types of users to read this manual 
effectively, a special sign is used to designate material that is for wizards only: 
When the symbol 

appears at the beginning of a paragraph, it warns of a “dangerous bend” in 
the train of thought; don’t read the paragraph unless you need to. Brave and 
experienced drivers at the controls of TgX will gradually enter more and more 
of these hazardous areas, but for most applications the details won’t matter. 

All that you really ought to know, before reading on, is how to get a 
file of text into your computer using a standard editing program. This manual 
explains what that file ought to look like so that will understand it, but basic 
computer usage is not explained here. Some previous experience with technical 
typing will be quite helpful if you plan to do heavily mathematical work with 
TgX, although it is not absolutely necessary. will do most of the necessary 



vi Preface 

formatting of equations automatically; but users with more experience will be 
able to obtain better results, since there are so many ways to deal with formulas. 

Some of the paragraphs in this manual are so esoteric that they are rated 

everything that was said about single dangerous-bend signs goes double for these. 
You should probably have at least a month’s experience with T^X before you 
attempt to fathom such doubly dangerous depths of the system; in fact, most 
people will never need to know in this much detail, even if they use it every 
day. After all, it’s possible to drive a car without knowing how the engine works. 
Yet the whole story is here in case you’re curious. (About not cars.) 

The reason for such different levels of complexity is that people change 
as they grow accustomed to any powerful tool. When you first try to use TgX, 
you’ll find that some parts of it are very easy, while other things will take some 
getting used to. A day or so later, after you have successfully typeset a few 
pages, you’ll be a different person; the concepts that used to bother you will now 
seem natural, and you’ll be able to picture the final result in your mind before it 
comes out of the machine. But you’ll probably run into challenges of a different 
kind. After another week your perspective will change again, and you’ll grow in 
yet another way; and so on. As years go by, you might become involved with 
many different kinds of typesetting; and you’ll find that your usage of will 
keep changing as your experience builds. That’s the way it is with any powerful 
tool: There’s always more to learn, and there are always better ways to do what 
you’ve done before. At every stage in the development you’ll want a slightly 
different sort of manual. You may even want to write one yourself. By paying 
attention to the dangerous bend signs in this book you’ll be better able to focus 
on the level that interests you at a particular time. 

Computer system manuals usually make dull reading, but take heart: 
This one contains JOKES every once in a while, so you might actually enjoy 
reading it. (However, most of the jokes can only be appreciated properly if you 
understand a technical point that is being made so read carefully.) 

Another noteworthy characteristic of this manual is that it doesn’t al- 
ways tell the truth. When certain concepts of are introduced informally, 
general rules will be stated; afterwards you will hud that the rules aren’t strictly 
true. In general, the later chapters contain more reliable information than the 



Preface vii 

earlier ones do. The author feels that this technique of deliberate lying will ac- 
tually make it easier for you to learn the ideas. Once you understand a simple 
but false rule, it will not be hard to supplement that rule with its exceptions. 

In order to help you internalize what you’re reading, EXERCISES are 
sprinkled through this manual. It is generally intended that every reader should 
try every exercise, except for questions that appear in the “dangerous bend” 
areas. If you can’t solve a problem, you can always look up the answer. But 
please, try first to solve it by yourself; then you’ll learn more and you’ll learn 
faster. Furthermore, if you think you do know the solution, you should turn to 
Appendix A and check it out, just to make sure. 

The TE|X language described in this book is similar to the author’s first 
attempt at a document formatting language, but the new system differs from 
the old one in literally thousands of details. Both languages have been called 
TE;X; but henceforth the old language should be called T^}X78, and its use should 
rapidly fade away. Let’s keep the name for the language described here, 
since it is so much better, and since it is not going to change any more. 

I wish to thank the hundreds of people who have helped me to formulate 
this “definitive edition” of the language, based on their experiences with 
preliminary versions of the system. My work at Stanford has been generously 
supported by the National Science Foundation, the Office of Naval Research, the 
IBM Corporation, and the System Development Foundation. I also wish to thank 
the American Mathematical Society for its encouragement, for establishing the 
TgX Users Group, and for publishing the TUGboat newsletter (see Appendix J). 

Stanford, California — D. E. K. 
June 1983 

'T/s pleasant, sure, to see one's name in print; 
A book's a book, although there's nothing in 't. 

— BYRON, English Bards and Scotch Reviewers (1809) 

A question arose as to whether we were covering the field 
that it was intended we should fill with this manual. 

— RICHARD R. DONNELLEY, Proceedings, United Typothetae of America (1897) 



1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

Contents 

The Name of the Game  1 

Book Printing versus Ordinary Typing  3 

Controlling   7 

Fonts of Type  13 

Grouping 19 

Running TgX  23 

How TgX Reads What You Type 37 

The Characters You Type  43 

T^’s Roman Fonts 51 

Dimensions  57 

Boxes 63 

Glue  69 

Modes 85 

How TgX Breaks Paragraphs into Lines  91 

How TgX Makes Lines into Pages 109 

Typing Math Formulas  127 

More about Math 139 

Fine Points of Mathematics Typing  161 

Displayed Equations 185 

Definitions (also called Macros)  199 

Making Boxes 221 

Alignment  231 

Output Routines 251 



Contents ix 

24 Summary of Vertical Mode  267 

25 Summary of Horizontal Mode 285 

26 Summary of Math Mode  289 

27 Recovery from Errors 295 

Appendices 

A Answers to All the Exercises  305 

B Basic Control Sequences 339 

C Character Codes  367 

D Dirty Tricks 373 

E Example Formats  403 

F Font Tables 427 

G Generating Boxes from Formulas  441 

H Hyphenation 449 

I Index  457 

J Joining the Tg^X Community 483 



1 
The Name of 

the Game 



Chapter 1: The Name of the Game 1 

English words like ‘technology’ stem from a Greek root beginning with the letters 
rex • • •; and this same Greek word means art as well as technology. Hence the 
name T^]X, which is an uppercase form of rex* 

Insiders pronounce the x of as a Greek chi, not as an ‘x’, so that 
TgX rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words like 
loch or German words like ach; it’s a Spanish ‘j’ and a Russian ‘kh’. When you 
say it correctly to your computer, the terminal may become slightly moist. 

The purpose of this pronunciation exercise is to remind you that 
is primarily concerned with high-quality technical manuscripts: Its emphasis is 
on art and technology, as in the underlying Greek word. If you merely want to 
produce a passably good document—something acceptable and basically read- 
able but not really beautiful—a simpler system will usually suffice. With 
the goal is to produce the finest quality; this requires more attention to detail, 
but you will not hnd it much harder to go the extra distance, and you’ll be able 
to take special pride in the hnished product. 

On the other hand, it’s important to notice another thing about T^)X’s 
name: The ‘E’ is out of kilter. This displaced ‘E’ is a reminder that TgX is about 
typesetting, and it distinguishes TgX from other system names. In fact, TEX 
(pronounced tecks) is the admirable Text Executive processor developed by 
Honeywell Information Systems. Since these two system names are pronounced 
quite differently, they should also be spelled differently. The correct way to refer 
to TgX in a computer hie, or when using some other medium that doesn’t allow 
lowering of the ‘E’, is to type ‘TeX’. Then there will be no confusion with similar 
names, and people will be primed to pronounce everything properly. 

► EXERCISE 1.1 

After you have mastered the material in this book, what will you be: A T^pert, 
or a TgXnician? 

They do certainly give 
very strange and new-fangled names to diseases. 

— PLATO, The Republic, Book 3 (c. 375 B.C.) 

Technique! The very word is like the shriek 
Of outraged Art. It is the idiot name 

Given to effort by those who are too weak, 
Too weary, or too dull to play the game. 

— LEONARD BACON, Sophia Trenton (1920) 



Book Printing 
versus 

Ordinary Typing 



Chapter 2: Book Printing versus Ordinary Typing 3 

When you first started using a computer terminal, you probably had to adjust 
to the difference between the digit ‘1’ and the lowercase letter ‘1’. When you 
take the next step to the level of typography that is common in book publishing, 
a few more adjustments of the same kind need to be made; your eyes and your 
fingers need to learn to make a few more distinctions. 

In the first place, there are two kinds of quotation marks in books, 
but only one kind on the typewriter. Even your computer terminal, which has 
more characters than an ordinary typewriter, probably has only a non-oriented 
double-quote mark (''), because the standard ASCII code for computers was not 
invented with book publishing in mind. However, your terminal probably does 
have two flavors of single-quote marks, namely ‘ and ^; the second of these is 
useful also as an apostrophe. American keyboards usually contain a left-quote 
character that shows up as something like ', and an apostrophe or right-quote 
that looks like ' or '. 

To produce double-quote marks with you simply type two single- 
quote marks of the appropriate kind. For example, to get the phrase 

“I understand.” 

(including the quotation marks) you should type 

‘‘I understand.’^ 

to your computer. 
A typewriter-like style of type will be used throughout this manual to 

indicate constructions that you might type on your terminal, so that the 
symbols actually typed are readily distinguishable from the output would 
produce and from the comments in the manual itself. Here are the symbols to 
be used in the examples: 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

abcdefghij klmnopqrstuvwxyz 
0123456789"#$y,&@*+-= 

If your computer terminal doesn’t happen to have all of these, don’t despair; 
can make do with the ones you have. An additional symbol 

u 

is used to stand for a blank space, in case it is important to emphasize that a 
blank space is being typed; thus, what you really type in the example above is 

‘‘luunderstand.’’ 

Without such a symbol you would have difficulty seeing the invisible parts of 
certain constructions. But we won’t be using ‘u’ very often, because spaces are 
usually visible enough. 



4 Chapter 2: Book Printing versus Ordinary Typing 

Book printing differs significantly from ordinary typing with respect to 
dashes, hyphens, and minus signs. In good math books, these symbols are all 
different; in fact there usually are at least four different symbols: 

a hyphen (-); 
an en-dash (-); 
an em-dash (—); 
a minus sign ( —). 

Hyphens are used for compound words like ‘daughter-in-law’ and ‘X-rated’. En- 
dashes are used for number ranges like ‘pages 13-34’, and also in contexts like 
‘exercise 1.2.6-52’. Em-dashes are used for punctuation in sentences—they are 
what we often call simply dashes. And minus signs are used in formulas. A 
conscientious user of will be careful to distinguish these four usages, and 
here is how to do it: 

for a hyphen, type a hyphen (-); 
for an en-dash, type two hyphens (—); 
for an em-dash, type three hyphens ( ); 
for a minus sign, type a hyphen in mathematics mode ($-$). 

(Mathematics mode occurs between dollar signs; it is discussed later, so you 
needn’t worry about it now.) 

► EXERCISE 2.1 

Explain how to type the following sentence to T^}X: Alice said, “I always use an 
en-dash instead of a hyphen when specifying page numbers like ‘480-491’ in a 
bibliography.” 

► EXERCISE 2.2 

What do you think happens when you type four hyphens in a row? 

If you look closely at most well-printed books, you will find that certain 
combinations of letters are treated as a unit. For example, this is true of the 
‘f’ and the ‘i’ of ‘find’. Such combinations are called ligatures^ and professional 
typesetters have traditionally been trained to watch for letter combinations such 
as ff, fi, fl, ffi, and ffl. (The reason is that words like ‘find’ don’t look 
very good in most styles of type unless a ligature is substituted for the letters 
that clash. It’s somewhat surprising how often the traditional ligatures appear 
in English; other combinations are important in other languages.) 

► EXERCISE 2.3 

Think of an English word that contains two ligatures. 

The good news is that you do not have to concern yourself with liga- 
tures: TgX is perfectly capable of handling such things by itself, using the same 
mechanism that converts ‘ — ’ into ‘-’. In fact, 1^]X will also look for combi- 
nations of adjacent letters (like ‘A’ next to ‘V’) that ought to be moved closer 
together for better appearance; this is called kerning. 



Chapter 2: Book Printing versus Ordinary Typing 5 

To summarize this chapter: When using TgX for straight copy, you type 

the copy as on an ordinary typewriter, except that you need to be careful about 

quotation marks, the number 1, and various kinds of hyphens/dashes. will 

automatically take care of other niceties like ligatures and kerning. 

(Are you sure you should be reading this paragraph? The “dangerous bend” 

sign here is meant to warn you about material that ought to be skipped on first 

reading. And maybe also on second reading. The reader-beware paragraphs sometimes 

refer to concepts that aren’t explained until later chapters.) 

If your keyboard does not contain a left-quote symbol, you can type \lq, 

followed by a space if the next character is a letter, or followed by a \ if the 

next character is a space. Similarly, \rq yields a right-quote character. Is that clear? 

\lq\lquluunderstand.\rq\rq\u 

In case you need to type quotes within quotes, for example a single quote 

followed by a double quote, you can’t simply type ’ ^ ’ because Tl^X will 

interpret this as ”’ (namely, double quote followed by single quote). If you have already 

read Chapter 5, you might expect that the solution will be to use grouping—namely, 

to type something like {’} ’ ^ But it turns out that this doesn’t produce the desired 

result, because there is usually less space following a single right quote than there is 

following a double right quote: What you get is ’”, which is indeed a single quote 

followed by a double quote (if you look at it closely enough), but it looks almost 
like three equally spaced single quotes. On the other hand, you certainly won’t want 

to type ’u’b because that space is much too large—it’s just as large as the space 

between words—and might even start a new line at such a space when making up 

a paragraph! The solution is to type ’ \thinspace ’', which produces ’ ” as desired. 

► EXERCISE 2.4 

OK, now you know how to produce ”’ and how do you get and ‘“? 

► EXERCISE 2.5 

Why do you think the author introduced the control sequence \thinspace to 

solve the adjacent-quotes problem, instead of recommending the trickier construction 

’ (which also works)? 

In modern Wit all printed Trash, is 
Set off with num'rous Breaks and Dashes— 

— JONATHAN SWIFT, On Poetry: A Rapsody (1733) 

Some compositors still object to work 
in offices where type-composing machines are introduced. 

— WILLIAM STANLEY JEVONS, Political Economy (1878) 





Chapter 3: Controlling TgK 7 

Your keyboard has very few keys compared to the large number of symbols 
that you may want to specify. In order to make a limited keyboard sufficiently 
versatile, one of the characters that you can type is reserved for special use, 
and it is called the escape character. Whenever you want to type something 
that controls the format of your manuscript, or something that doesn’t use the 
keyboard in the ordinary way, you should type the escape character followed by 
an indication of what you want to do. 

Note: Some computer terminals have a key marked ‘ESC’, but that is not 
your escape character! It is a key that sends a special message to the operating 
system, so don’t confuse it with what this manual calls “escape.” 

T^X allows any character to be used for escapes, but the “backslash” 
character ‘\’ is usually adopted for this purpose, since backslashes are reasonably 
convenient to type and they are rarely needed in ordinary text. Things work out 
best when different users do things consistently, so we shall escape via 
backslashes in all the examples of this manual. 

Immediately after typing ‘\’ (i.e., immediately after an escape character) 
you type a coded command telling what you have in mind. Such commands 
are called control sequences. For example, you might type 

\input MS 

which (as we will see later) causes to begin reading a file called ‘MS.tex’; 
the string of characters ‘\input’ is a control sequence. Here’s another example: 

George PX’olya and Gabor Szeg\''o. 

converts this to ‘George Polya and Gabor Szego.’ There are two control 
sequences, \’ and \", here; these control sequences have been used to place 
accents over some of the letters. 

Control sequences come in two flavors. The first kind, like \input, is 
called a control word; it consists of an escape character followed by one or more 
letters, followed by a space or by something besides a letter. (T^}X has to know 
where the control sequence ends, so you must put a space after a control word 
if the next character is a letter. For example, if you type ‘\inputMS’, will 
naturally interpret this as a control word with seven letters.) In case you’re 
wondering what a “letter” is, the answer is that TgX normally regards the 52 
symbols A. . .Z and a. . .z as letters. The digits 0. . .9 are not considered to be 
letters, so they don’t appear in control sequences of the first kind. 

A control sequence of the other kind, like \ ’, is called a control symbol; 
it consists of the escape character followed by a single nonletter. In this case you 
don’t need a space to separate the control sequence from a letter that follows, 
since control sequences of the second kind always have a exactly one symbol after 
the escape character. 

► EXERCISE 3.1 

What are the control sequences in ‘\I’m \exercise3.1\\I ’ ? 



8 Chapter 3: Controlling TgX 

► EXERCISE 3.2 

WeVe seen that the input P\ ’ olya yields ‘Polya’. Can you guess how the French 
words ‘mathematique’ and ‘centimetre’ should be specified? 

When a space comes after a control word (an all-letter control sequence), 
it is ignored by T^X; i.e., it is not considered to be a “real” space belonging to 
the manuscript that is being typeset. But when a space comes after a control 
symbol, it’s truly a space. 

Now the question arises, what do you do if you actually want a space 
to appear after a control word? We will see later that treats two or more 
consecutive spaces as a single space, so the answer is not going to be “type two 
spaces.” The correct answer is to type “control space,” namely 

\u 

(the escape character followed by a blank space); will treat this as a space 
that is not to be ignored. Notice that control-space is a control sequence of the 
second kind, i.e., a control symbol, since there is a single nonletter (u) following 
the escape character. Two consecutive spaces are considered to be equivalent to 
a single space, so further spaces immediately following \u will be ignored. But if 
you want to enter, say, three consecutive spaces into a manuscript you can type 

‘\u\u\u’- Incidentally, typists are often taught to put two spaces at the ends of 
sentences; but we will see later that has its own way to produce extra space 
in such cases. Thus you needn’t be consistent in the number of spaces you type. 

Nonprinting control characters like (return) might follow an escape character, 
and these lead to distinct control sequences according to the rules. l^X is 

initially set up to treat \(return) and \(tab) the same as \u (control space); these 
special control sequences should probably not be redefined, because you can’t see the 
difference between them when you look at them in a file. 

It is usually unnecessary for you to use “control space,” since control 
sequences aren’t often needed at the ends of words. But here’s an example that 
might shed some light on the matter: This manual itself has been typeset by 
TE?C, and one of the things that occurs fairly often is the tricky logo ‘TfeX’, which 
requires backspacing and lowering the E. There’s a special control word 

\TeX 

that produces the half-dozen or so instructions necessary to typeset ‘T^]X’. When 
a phrase like ignores spaces after control words.’ is desired, the manuscript 
renders it as follows: 

\TeX\ ignores spaces after control words. 

Notice the extra \ following \TeX; this produces the control space that is neces- 
sary because T^X ignores spaces after control words. Without this extra \, the 
result would have been 

TgXignores spaces after control words. 



Chapter 3: Controlling TpjX 9 

On the other hand, you can’t simply put \ after \TeX in all contexts. For 
example, consider the phrase 

the logo ‘\TeX’. 

In this case an extra backslash doesn’t work at all; in fact, you get a curious 
result if you type 

the logo ‘\TeX\’. 

Can you guess what happens? Answer: The \ ’ is a control sequence denoting 
an acute accent, as in our P\’olya example above; the effect is therefore to put 
an accent over the next nonblank character, which happens to be a period. In 
other words, you get an accented period, and the result is 

the logo ‘T^X.' 

Computers are good at following instructions, but not at reading your mind. 
TgX understands about 900 control sequences as part of its built-in 

vocabulary, and all of them are explained in this manual somewhere. But you 
needn’t worry about learning so many different things, because you won’t really 
be needing very many of them unless you are faced with unusually complicated 
copy. Furthermore, the ones you do need to learn actually fall into relatively 
few categories, so they can be assimilated without great difficulty. For example, 
many of the control sequences are simply the names of special characters used 
in math formulas; you type ‘\pi’ to get ‘TT’, ‘\Pi’ to get ‘11’, ‘\aleph’ to get ‘K’, 
‘\infty’ to get ‘oo’, ‘\le’ to get ‘<’, ‘\ge’ to get ‘>’, ‘\ne’ to get ‘\oplus’ to 
get ‘ ©’, ‘\otimes’ to get ‘C)’. Appendix F contains several tables of such symbols. 

There’s no built-in relationship between uppercase and lowercase letters in 

control sequence names. For example, ‘\pi’ and ‘\Pi’ and ‘\PI’ and ‘\pl’ are 

four different control words. 

The 900 or so control sequences that were just mentioned actually aren’t 
the whole story, because it’s easy to define more. For example, if you want to 
substitute your own favorite names for math symbols, so that you can remember 
them better, you’re free to go right ahead and do it; Chapter 20 explains how. 

About 300 of T^}X’s control sequences are called primitive; these are the 
low-level atomic operations that are not decomposable into simpler functions. 
All other control sequences are defined, ultimately, in terms of the primitive 
ones. For example, \input is a primitive operation, but \’ and \" are not; the 
latter are defined in terms of an \accent primitive. 

People hardly ever use I^}X’s primitive control sequences in their man- 
uscripts, because the primitives are ... well ... so primitive. You have to type 
a lot of instructions when you are trying to make T^^ do low-level things; this 
takes time and invites mistakes. It is generally better to make use of higher-level 
control sequences that state what functions are desired, instead of typing out 
the way to achieve each function each time. The higher-level control sequences 



10 Chapter 3: Controlling TpjK 

need to be defined only once in terms of primitives. For example, \TeX is a con- 
trol sequence that means “typeset the logo”; \ ^ is a control sequence that 
means “put an acute accent over the next character”; and both of these con- 
trol sequences might require different combinations of primitives when the style 
of type changes. If TgX’s logo were to change, the author would simply have 
to change one definition, and the changes would appear automatically wherever 
they were needed. By contrast, an enormous amount of work would be necessary 
to change the logo if it were specified as a sequence of primitives each time. 

At a still higher level, there are control sequences that govern the overall 
format of a document. For example, in the present book the author typed 
‘\exercise’ just before stating each exercise; this \exercise command was 
programmed to make Tpfi do all of the following things: 

■ compute the exercise number (e.g., ‘3.2’ for the second exercise in Chap- 
ter 3); 

■ typeset ‘►EXERCISE 3.2’ with the appropriate typefaces, on a line by 
itself, and with the triangle sticking out in the left margin; 

■ leave a little extra space just before that line, or begin a new page at 
that line if appropriate; 

■ prohibit beginning a new page just after that line; 

■ suppress indentation on the following line. 

It is obviously advantageous to avoid typing all of these individual instructions 
each time. And since the manual is entirely described in terms of high-level 
control sequences, it could be printed in a radically different format simply by 
changing a dozen or so definitions. 

How can a person distinguish a TgX primitive from a control sequence that 

has been defined at a higher level? There are two ways: (1) The index to this 

manual lists all of the control sequences that are discussed, and each primitive is marked 

with an asterisk. (2) You can display the meaning of a control sequence while running 

T^X. If you type ‘\show\cs’ where \cs is any control sequence, will respond 

with its current meaning. For example, ‘\show\input’ results in ‘> \input=\input. 

because \input is primitive. On the other hand, ‘\show\thinspace’ yields 

> \thinspace=macro: 

->\kern .16667em . 

This means that \thinspace has been defined as an abbreviation for ‘\kern . 16667em ’. 

By typing ‘\show\kern’ you can verify that \kern is primitive. The results of \show 

appear on your terminal and in the log file that you get after running 

► EXERCISE 3.3 

Which of the control sequences \u and \(return) is primitive? 

In the following chapters we shall frequently discuss “plain T^}X” for- 
mat, which is a set of about 600 basic control sequences that are defined in 
Appendix B. These control sequences, together with the 300 or so primitives. 



Chapter 3: Controlling TgX 11 

are usually present when begins to process a manuscript; that is why 
claims to know roughly 900 control sequences when it starts. We shall see how 
plain can be used to create documents in a flexible format that meets many 
people’s needs, using some typefaces that come with the system. However, 
you should keep in mind that plain is only one of countless formats that 
can be designed on top of T^’s primitives; if you want some other format, it 
will usually be possible to adapt so that it will handle whatever you have in 
mind. The best way to learn is probably to start with plain and to change 
its deflnitions, little by little, as you gain more experience. 

Appendix E contains examples of formats that can be added to Appendix B 

for special applications; for example, there is a set of definitions suitable for 

business correspondence. A complete specification of the format used to typeset this 

manual also appears in Appendix E. Thus, if your goal is to learn how to design T^]X 

formats, you will probably want to study Appendix E while mastering Appendix B. 

After you have become skilled in the lore of control-sequence definition, you will prob- 

ably have developed some formats that other people will want to use; you should then 

write a supplement to this manual, explaining your style rules. 

The main point of these remarks, as far as novice T^ users are con- 
cerned, is that it is indeed possible to define nonstandard control sequences. 
When this manual says that something is part of “plain T^,” it means that 
doesn’t insist on doing things exactly that way; a person could change the rules 
by changing one or more of the definitions in Appendix B. But you can safely 
rely on the control sequences of plain until you become an experienced 
TE;Xnical typist. 

EXERCISE 3.4 

X ^ How many different control sequences of length 2 (including the escape char- 

acter) are possible? How many of length 3? 

Syllables govern the world. 

— JOHN SELDEN, Table Talk (1689) 

/ claim not to have controlled events, 
but confess plainly that events have controlled me. 

— ABRAHAM LINCOLN (1864) 



4 
Fonts 

of Type 



Chapter J^: Fonts of Type 13 

Occasionally you will want to change from one typeface to another, for example 
if you wish to be bold or to emphasize something. deals with sets of up 
to 256 characters called “fonts” of type, and control sequences are used to select 
a particular font. For example, you could specify the last few words of the first 
sentence above in the following way, using the plain format of Appendix B: 

to be \bf bold \nn or to \sl emphasize \rm something. 

Plain provides the following control sequences for changing fonts: 

\rm switches to the normal “roman” typeface: Roman 
\sl switches to a slanted roman typeface: Slanted 
\it switches to italic style: Italic 
\tt switches to a typewriter-like face: Typewriter 
\bf switches to an extended boldface style: Bold 

At the beginning of a run you get roman type (\rm) unless you specify otherwise. 
Notice that two of these faces have an “oblique” slope for emphasis: 

Slanted type is essentially the same as roman, but the letters are slightly skewed, 
while the letters in italic type are drawn in a different style. (You can perhaps 
best appreciate the difference between the roman and italic styles by contemplat- 
ing letters that are in an nnslanted italic face.) Typographic conventions are 
presently in a state of transition, because new technology has made it possible 
to do things that used to be prohibitively expensive; people are wrestling with 
the question of how much to use their new-found typographic freedom. Slanted 
roman type was introduced in the 1930s, but it first became widely used as 
an alternative to the conventional italic during the late 1970s. It can be bene- 
ficial in mathematical texts, since slanted letters are distinguishable from the 
italic letters in math formulas. The double use of italic type for two different 
purposes—for example, when statements of theorems are italicized as well as the 
names of variables in those theorems—has led to some confusion, which can now 
be avoided with slanted type. People are not generally agreed about the relative 
merits of slanted versus italic, but slanted type is rapidly becoming a favorite 
for the titles of books and journals in bibliographies. 

Special fonts are effective for emphasis, but not for sustained reading; 
your eyes would tire if long portions of this manual were entirely set in a bold 
or slanted or italic face. Therefore roman type accounts for the bulk of most 
typeset material. But it’s a nuisance to say ‘\rm’ every time you want to go 
back to the roman style, so provides an easier way to do it, using “curly 
brace” symbols: You can switch fonts inside the special symbols { and }, without 
affecting the fonts outside. For example, the displayed phrase at the beginning 
of this chapter is usually rendered 

to be {\bf bold} or to {\sl emphasize} something. 

This is a special case of the general idea of “grouping” that we shall discuss in 
the next chapter. It’s best to forget about the first way of changing fonts, and 



14 Chapter 4- Fonts of Type 

to use grouping instead; then your TgX manuscripts will look more natural, and 
you’ll probably never* have to type ‘\nn’. 

► EXERCISE 4.1 
Explain how to type the bibliographic reference ‘Ulrich Dieter, Journal fur die 
reine und angewandte Mathematik 201 (1959), 37-70.’ [Use grouping.] 

We have glossed over an important aspect of quality in the preceding 
discussion. Look, for example, at the italicized and slanted words in this sentence. 
Since italic and slanted styles slope to the right, the d’s stick into the spaces that 
separate these words from the roman type that follows; as a result, the spaces 
appear to be too skimpy, although they are correct at the base of the letters. 
To equalize the effective white space, T^^ allows you to put the special control 
sequence ‘\/’ just before switching back to unslanted letters. When you type 

{\it italicizedX/} and {\sl slantedX/} words 

you get italicized and slanted words that look better. The ‘\/’ tells to add an 
“itaiic correction^^ to the previous letter, depending on that letter; this correction 
is about four times as much for an ‘/’ as for a ‘c’, in a typical italic font. 

Sometimes the italic correction is not desirable, because other factors 
take up the visual slack. The standard rule of thumb is to use \/ just before 
switching from slanted or italic to roman or bold, unless the next character is a 
period or comma. For example, type 

{\it italicsX/} for {\it emphasis}. 

Old manuals of style say that the punctuation after a word should be in the same 
font as that word; but an italic semicolon often looks wrong, so this convention 
is changing. When an italicized word occurs just before a semicolon, the author 
recommends typing ‘{\it word\/};’. 

► EXERCISE 4.2 
Explain how to typeset a roman word in the midst of an italicized sentence. 

Every letter of every font has an italic correction, which you can bring to life 

by typing \/. The correction is usually zero in unslanted styles, but there are 

exceptions: To typeset a bold ‘f’ in quotes, you should say a bold ‘{\bf f\/}% lest 

you get a bold ‘f. 

EXERCISE 4.3 

JL JL Define a control sequence \ic such that ‘\ic 

character c into TUX’s register \dimen0. 

c’ puts the italic correction of 

The primitive control sequence \nullfont stands for a font that has no char- 

acters. This font is always present, in case you haven’t specified any others. 

* Well ..., hardly ever. 



Chapter J^: Fonts of Type 15 

Fonts vary in size as well as in shape. For example, the font you are 

now reading is called a “10-point” font, because certain features of its design are 

10 points apart, when measured in printers’ units. (We will study the point 

system later; for now, it should suffice to point out that the parentheses around 

this sentence are exactly 10 points tall—and the em-dash is just 10 points wide.) 

The “dangerous bend” sections of this manual are set in 9-point type, the foot- 

notes in 8-point, subscripts in 7-point or 6-point, sub-subscripts in 5-point. 

Each font used in a manuscript is associated with a control se- 

quence; for example, the 10-point font in this paragraph is called \tenrm, and 

the corresponding 9-point font is called \ninerm. The slanted fonts that match 

Xtenrm and \ninerm are called \tensl and \ninesl. These control sequences 

are not built into TgX, nor are they the actual names of the fonts; users are 

just supposed to make up convenient names, whenever new fonts are introduced 

into a manuscript. Such control sequences are used to change typefaces. 

When fonts of different sizes are used simultaneously, T^ will line the 

letters up according to their “baselines.” For example, if you type 

\tenrm smaller \ninerm and smaller 

\eightrm and smaller \sevenrm and smaller 

\sixrm and smaller \fiverm and smaller \tenrm 

the result is smaller and smaller and smaller and smaller and smaller and smaller. Of course 

this is something that authors and readers aren’t accustomed to, because printers 

couldn’t do such things with traditional lead types. Perhaps poets who wish 

to speak in a still small voice will cause future books to make use of frequent font 

variations, but nowadays it’s only an occasional font freak (like the author of this manual) 

who likes such experiments. One should not get too carried away by the prospect 

of font switching unless there is good reason. 

An alert reader might well be confused at this point because we started 

out this chapter by saying that ‘\rm’ is the command that switches to roman 

type, but later on we said that ‘\tenrm’ is the way to do it. The truth is that 

both ways work. But it has become customary to set things up so that \rm means 

“switch to roman type in the current size” while \tenrm means “switch to roman 

type in the 10-point size.” In plain T^ format, nothing but 10-point fonts are 

provided, so \rm will always get you \tenrm; but in more complicated formats the 

meaning of \rm will change in different parts of the manuscript. For example, in 

the format used by the author to typeset this manual, there’s a control sequence 

‘\tenpoint’ that causes \rm to mean \tenrm, \sl to mean \tensl, and so on, 

while ‘\ninepoint’ changes the definitions so that \rm means \ninenn, etc. 

There’s another control sequence used to introduce the quotations at the end of 

each chapter; when the quotations are typed, \rm and \sl temporarily stand for 

8-point unslanted sans-serif type and 8-point slanted sans-serif type, respectively. 

This device of constantly redefining the abbreviations \rin and \sl, behind the 

scenes, frees the typist from the need to remember what size or style of type is 

currently being used. 



16 Chapter 4- Fonts of Type 

► EXERCISE 4.4 

Why do you think the author chose the names ‘\tenpoint’ and ‘\tennn’, etc., 

instead of ‘\10point’ and ‘\10rm’ ? 

► EXERCISE 4.5 

Suppose that you have typed a manuscript using slanted type for emphasis, 

but your editor suddenly tells you to change all the slanted to italic. What’s an easy 

way to do this? 

Each font has an external name that identifies it with respect to all other fonts 

in a particular library. For example, the font in this sentence is called ‘cnir9’, 

which is an abbreviation for “Computer Modern Roman 9 point.” In order to prepare 

TgX for using this font, the command 

\font\ninerm=cmr9 

appears in Appendix E. In general you say ‘\font\cs=(external font name)’ to load 

the information about a particular font into T^]X’s memory; afterwards the control 

sequence \cs will select that font for typesetting. Plain makes only sixteen fonts 

available initially (see Appendix B and Appendix F), but you can use \font to access 

anything that exists in your system’s font library. 

It is often possible to use a font at several different sizes, by magnifying or 

shrinking the character images. Each font has a so-called design size, which 

reflects the size it normally has by default; for example, the design size of cnir9 is 

9 points. But on many systems there is also a range of sizes at which you can use 
a particular font, by scaling its dimensions up or down. To load a scaled font into 

TgX’s memory, you simply say ‘\font\cs=(external font name) at (desired size)’. For 

example, the command 

\font\magnif iedfiverm=cinr5 at lOpt 

brings in 5-point Computer Modern Roman at twice its normal size. (Caution: Before 
using this ‘at’ feature, you should check to make sure that your typesetter supports 

the font at the size in question; will accept any (desired size) that is positive and 

less than 2048 points, but the final output will not be right unless the scaled font really 

is available on your printing device.) 

What’s the difference between cmrS at lOpt and the normal 10-point font, 

cmrlO? Plenty; a well-designed font will be drawn differently at different point 

sizes, and the letters will often have different relative heights and widths, in order to 

enhance readability. 

Ten point type is different from magnified five-point type. 

It is usually best to scale fonts only slightly with respect to their design size, unless 

the final product is going to be photographically reduced after has finished with 

it, or unless you are trying for an unusual effect. 

Another way to magnify a font is to specify a scale factor that is relative to 

the design size. For example, the command 

\font\magnifiedfiverin=ciiir5 scaled 2000 



Chapter Fonts of Type 17 

is another way to bring in the font cmrS at double size. The scale factor is specified 
as an integer that represents a magnification ratio times 1000. Thus, a scale factor of 
1200 specifies magnification by 1.2, etc. 

► EXERCISE 4.6 

State two ways to load font cmrlO into T^]X’s memory at half its normal size. 

At many computer centers it has proved convenient to supply fonts at magni- 
fications that grow in geometric ratios—something like well-tempered tuning 

on a piano. The idea is to have all fonts available at their true size as well as at 
magnifications 1.2 and 1^44 (which is 1.2 x 1.2); perhaps also at magnification 1.728 
(= 1.2 X 1.2 X 1.2) and even higher. Then you can magnify an entire document by 1.2 
or 1.44 and still stay within the set of available fonts. Plain T^]X provides the abbre- 
viations XmagstepO for a scale factor of 1000, \magstepl for a scaled factor of 1200, 
\magstep2 for 1440, and so on up to \magstep5. You say, for example, 

\font\bigtenrm=cmrlO scaled\magstep2 

to load font cmrlO at 1.2 x 1.2 times its normal size. 

“This is cmrlO at normal size (\magstepO).” 

“This is cmrlO scaled once by 1.2 (\magstepl).” 

“This is cmrlO scaled twice by 1.2 (\magstep2).” 
(Notice that a little magnification goes a long way.) There’s also \magstephalf, which 
magnifies by vT2, i.e., halfway between steps 0 and 1. 

Chapter 10 explains how to apply magnification to an entire document, over 
and above any magnification that has been specified when fonts are loaded. 

For example, if you have loaded a font that is scaled by \magstepl and if you also 
specify \magnif ication=\magstep2, the actual font used for printing will be scaled by 
\magstep3. Similarly, if you load a font scaled by \magstephalf and if you also say 
\magnif ication=\magstephalf, the printed results will be scaled by \magstepl. 

Type faces—like people’s faces—have distinctive features 
indicating aspects of character. 

— MARSHALL LEE, Bookmaking (1965) 

This was the Noblest Roman of them all. 

— WILLIAM SHAKESPEARE, The Tragedie of Julius Caesar (1599) 





Chapter 5: Grouping 19 

Every once in a while it is necessary to treat part of a manuscript as a unit, so you 
need to indicate somehow where that part begins and where it ends. For this 
purpose TglX gives special interpretation to two “grouping characters,” which 
(like the escape character) are treated differently from the normal symbols that 
you type. We assume in this manual that { and } are the grouping characters, 
since they are the ones used in plain 

We saw examples of grouping in the previous chapter, where it was men- 
tioned that font changes inside a group do not affect the fonts in force outside. 
The same principle applies to almost anything else that is defined inside a group, 
as we will see later; for example, if you define a control sequence within some 
group, that definition will disappear when the group ends. In this way you 
can conveniently instruct to do something unusual, by changing its normal 
conventions temporarily inside of a group; since the changes are invisible from 
outside the group, there is no need to worry about messing up the rest of a 
manuscript by forgetting to restore the normal conventions when the unusual 
construction has been finished. Computer scientists have a name for this aspect 
of grouping, because it’s an important aspect of programming languages in gen- 
eral; they call it “block structure,” and definitions that are in force only within 
a group are said to be “local” to that group. 

You might want to use grouping even when you don’t care about block 
structure, just to have better control over spacing. For example, let’s consider 
once more the control sequence \TeX that produces the logo ‘T^’ in this manual: 
We observed in Chapter 3 that a blank space after this control sequence will be 
gobbled up unless one types ‘\TeX\ yet it is a mistake to say ‘\TeX\’ when the 
following character is not a blank space. Well, in all cases it would be correct to 
specify the simple group 

{\TeX} 

whether or not the following character is a space, because the } stops from 
absorbing an optional space into \TeX. This might come in handy when you’re 
using a text editor (e.g., when replacing all occurrences of a particular word by 
a control sequence). Another thing you could do is type 

\TeX{} 

using an empty group for the same purpose: The ‘{}’ here is a group of no 
characters, so it produces no output, but it does have the effect of stopping 
from skipping blanks. 

► EXERCISE 5.1 
Sometimes you run into a rare word like ‘shelfful’ that looks better as ‘shelfful’ 
without the ‘ff’ ligature. How can you fool T^X into thinking that there aren’t 
two consecutive f’s in such a word? 

► EXERCISE 5.2 

Explain how to get three blank spaces in a row without using ‘\u’. 



20 Chapter 5: Grouping 

But also uses grouping for another, quite different, purpose, namely 
to determine how much of your text is to be governed by certain control se- 
quences. For example, if you want to center something on a line you can type 

\centerline{This information should be centered.} 

using the control sequence \centerline defined in plain format. 
Grouping is used in quite a few of 1^’s more intricate instructions; 

and it’s possible to have groups within groups within groups, as you can see by 
glancing at Appendix B. Complex grouping is generally unnecessary, however, 
in ordinary manuscripts, so you needn’t worry about it. Just don’t forget to 
finish each group that you’ve started, because a lost might cause trouble. 

Here’s an example of two groups, one nested inside the other: 

\centerline{This information should be {\it centered}.} 

As you might expect, will produce a centered line that also contains italics: 

This information should be centered. 

But let’s look at the example more closely: ‘\centerline’ appears outside the 
curly braces, while ‘\it’ appears inside. Why are the two cases different? And 
how can a beginner learn to remember which is which? Answer: \centerline 
is a control sequence that applies only to the very next thing that follows, so 
you want to put braces around the text that is to be centered (unless that text 
consists of a single symbol or control sequence). For example, to center the 
logo on a line, it would suffice to type ‘\centerline\TeX’, but to center the 
phrase ‘T^}X has groups’ you need braces: ‘\centerline{\TeX\ has groups}’. 
On the other hand, \it is a control sequence that simply means “change the 
current font”; it acts without looking ahead, so it affects everything that follows, 
at least potentially. The braces surround \it in order to confine the font change 
to a local region. 

In other words, the two sets of braces in this example actually have 
different functions: One serves to treat several words of the text as if they were 
a single object, while the other provides local block structure. 

► EXERCISE 5.3 
What do you think happens if you type the following: 

\centerline{This information should be {centered}.} 
\cehterline So should this. 

► EXERCISE 5.4 

And how about this one? 

\centerline{This information should be \it centered.} 

►EXERCISE 5.5 

JL Define a control sequence \ital so that a user could type ‘\ital{text}’ in- 
stead of ‘{\it text\/}’. Discuss the pros and cons of \ital versus \it. 



Chapter 5: Grouping 21 

Subsequent chapters describe many primitive operations of for which 

X ^ the locality of grouping is important. For example, if one of T^^X’s internal 

parameters is changed within a group, the previous contents of that parameter will 

be restored when the group ends. Sometimes, however, it’s desirable to make a def- 

inition that transcends its current group. This effect can be obtained by prefixing 

‘\global’ to the definition. For example, keeps the current page number in a 

register called \countO, and the routine that outputs a page wants to increase the page 

number. Output routines are always protected by enclosing them in groups, so that 

they do not inadvertently mess up the rest of T^; but the change to \countO would 

disappear if it were kept local to the output group. The command 

\global\advajice\countO by 1 

solves the problem; it increases \countO and makes this value stick around at the end 

of the output routine. In general, \global makes the immediately following definition 

pertain to all existing groups, not just to the innermost one. 

/^►EXERCISE 5.6 

If you think you understand local and global definitions, here’s a little test to 

make sure: Suppose \c stands for ‘\countl=’, \g stands for ‘\global\countl=’, and \s 

stands for ‘\showthe\countl’. What values will be shown? 

{\cl\s\g2{\s\c3\s\g4\s\c5\s>\s\c6\s}\s 

Another way to obtain block structure with is to use the primitives 
^ i \begingroup and \endgroup. These control sequences make it easy to be- 

gin a group within one control sequence and end it within another. The text that 

actually executes, after control sequences have been expanded, must have properly 

nested groups, i.e., groups that don’t overlap. For example, 

{ \begingroup } \endgroup 

is not legitimate. 

EXERCISE 5.7 

X X Define control sequences \beginthe (block name) and \endthe (block name) 

that provide a “named” block structure. In other words, 

\beginthe{beguine}\beginthe{waltz}\endthe{waltz}\endthe{beguine} 

should be permissible, but not 

\beginthe{beguine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}. 

/ have had recourse to varieties of type, 
and to braces. 

— JAMES MUIRHEAD, The Institutes of Gaius (1880) 

An encounter group is a gathering, for a few hours or a few days, 
of twelve or eighteen personable, responsible, certifiably normal 

and temporarily smelly people. 

— JANE HOWARD, Please Touch (1970) 





Chapter 6: Running TpjX 23 

The best way to learn how to use is to use it. Thus, it’s high time for you 
to sit down at a computer terminal and interact with the system, trying 
things out to see what happens. Here are some small but complete examples 
suggested for your first encounter. 

Caution: This chapter is rather a long one. Why don’t you stop reading 
now, and come back fresh tomorrow? 

OK, let’s suppose that you’re rested and excited about having a trial run 
of T^X. Step-by-step instructions for using it appear in this chapter. First do 
this: Go to the lab where the graphic output device is, since you will be wanting 
to see the output that you get—it won’t really be satisfactory to run Tf^X from 
a remote location, where you can’t hold the generated documents in your own 
hands. Then log in; and start Tj^X. (You may have to ask somebody how to 
do this on your local computer. Usually the operating system prompts you for 
a command and you type ‘TeX’ or ‘run tex’ or something like that.) 

When you’re successful, will welcome you with a message such as 

This is TeX, Version 1.0 (preloaded forinat=plain 83.7.15) 

The ‘**’ is Tt)X’s way of asking you for an input file name. 
Now type ‘\relax’ (including the backslash), and (return) (or whatever 

is used to mean “end-of-line” on your terminal). 1^}X is all geared up for action, 
ready to read a long manuscript; but you’re saying that it’s all right to take 
things easy, since this is going to be a real simple run. In fact, \relax is a 
control sequence that means “do nothing.” 

The machine will type another asterisk at you. This time type something 
like ‘Hello?’ and wait for another asterisk. Finally type ‘\end’, and stand back 
to see what happens. 

TgX should respond with ‘[1]’ (meaning that it has finished page 1 of 
your output); then the program will halt, probably with some indication that 
it has created a file called ‘texput. dvi’. (T^^C uses the name texput for its 
output when you haven’t specified any better name in your first line of input; 
and dvi stands for “device independent,” since texput .dvi is capable of being 
printed on almost any kind of typographic output device.) 

Now you’re going to need some help again from your friendly local com- 
puter hackers. They will tell you how to produce hardcopy from texput.dvi. 
And when you see the hardcopy—Oh, glorious day!—you will see a magnificent 
‘Hello?’ and the page number ‘1’ at the bottom. Congratulations on your first 
masterpiece of fine printing. 

The point is, you understand now how to get something through the 
whole cycle. It only remains to do the same thing with a somewhat longer 
document. So our next experiment will be to work from a file instead of typing 
the input online. 



24 Chapter 6: Running TpjK 

Use your favorite text editor to create a file called story.tex that con- 
tains the following 18 lines of text (no more, no less): 

1 \hrule 
2 \vskip lin 
3 \centerline{\bf A SHORT STORY} 
4 \vskip 6pt 
5 \centerline{\sl by A. U. Thor} 
6 \vskip .5cm 
7 Once upon a time, in a distant 
8 galaxy called \"0\"o\c c, 
9 there lived a computer 

10 named R.~J. Drofnats. 
11 

12 Mr.''Drofnats or ^ ^R. J.,’’ as 
13 he preferred to be called  
14 was happiest when he was at work 

15 typesetting beautiful documents. 
16 \vskip lin 
17 \hrule 
18 \vfill\eject 

(Don’t type the numbers at the left of these lines, of course; they are present only 
for reference.) This example is a bit long, and more than a bit silly; but it’s no 
trick for a good typist like you and it will give you some worthwhile experience, 
so do it. For your own good. And think about what you’re typing, as you go; 
the example introduces a few important features of that you can learn as 
you’re making the file. 

Here is a brief explanation of what you have just typed: Lines 1 and 17 
put a horizontal rule (a thin line) across the page. Lines 2 and 16 skip past one 
inch of space; ‘\vskip’ means “vertical skip,” and this extra space will separate 
the horizontal rules from the rest of the copy. Lines 3 and 5 produce the title and 
the author name, centered, in boldface and in slanted type. Lines 4 and 6 put 
extra white space between those lines and their successors. (We shall discuss 
units of measure like ‘6pt’ and ‘.5cm’ in Chapter 10.) 

The main bulk of the story appears on lines 7^15, and it consists of 
two paragraphs. The fact that line 11 is blank informs that line 10 is the 
end of the first paragraph; and the ‘\vskip’ on line 16 implies that the second 
paragraph ends on line 15, because vertical skips don’t appear in paragraphs. 
Incidentally, this example seems to be quite full of commands; but it is 
atypical in that respect, because it is so short and because it is supposed to 
be teaching things. Messy constructions like \vskip and \centerline can be 
expected at the very beginning of a manuscript, unless you’re using a canned 
format, but they don’t last long; most of the time you will find yourself typing 
straight text, with relatively few control sequences. 



Chapter-6: Running TpjK 25 

And now comes the good news, if you haven’t used computer typesetting 
before: You don’t have to worry about where to break lines in a paragraph (i.e., 
where to stop at the right margin and to begin a new line), because will 
do that for you. Your manuscript file can contain long lines or short lines, or 
both; it doesn’t matter. This is especially helpful when you make changes, since 
you don’t have to retype anything except the words that changed. Every time 
you begin a new line in your manuscript file it is essentially the same as typing 
a space. When has read an entire paragraph—in this case lines 7 to 11—it 
will try to break up the text so that each line of output, except the last, contains 
about the same amount of copy; and it will hyphenate words if necessary to keep 
the spacing consistent, but only as a last resort. 

Line 8 contains the strange concoction 

\"0\"o\c c 

and you already know that \" stands for an umlaut accent. The \c stands for a 
“cedilla,” so you will get ‘Oog’ as the name of that distant galaxy. 

The remaining text is simply a review of the conventions that we dis- 
cussed long ago for dashes and quotation marks, except that the signs in 
lines 10 and 12 are a new wrinkle. These are called ties, because they tie words 
together; i.e., TgX is supposed to treat as a normal space but not to break 
between lines there. A good typist will use ties within names, as shown in our 
example; further discussion of ties appears in Chapter 14. 

Finally, line 18 tells to ‘\vf ill’, i.e., to fill the rest of the page with 
white space; and to ‘\eject’ the page, i.e., to send it to the output file. 

Now you’re ready for Experiment 2: Get going again. This time 
when the machine says you should answer ‘story’, since that is the name 
of the file where your input resides. (The file could also be called by its full 
name ‘story.tex’, but automatically supplies the suffix ‘.tex’ if no suffix 
has been specified.) 

You might wonder why the first prompt was while the subsequent 
ones are the reason is simply that the first thing you type to is slightly 
different from the rest: If the first character of your response to ‘**’ is not a 
backslash, T^ automatically inserts ‘\input’. Thus you can usually run 
by merely naming your input file. (Previous systems required you to start 
by typing ‘\input story’ instead of ‘story’, and you can still do that; but most 
Tg^K users prefer to put all of their commands into a file instead of typing them 
online, so T^ now spares them the nuisance of starting out with \input each 
time.) Recall that in Experiment 1 you typed ‘\relax’; that started with a 
backslash, so \input was not implied. 

f There’s actually another difference between and If the first character 

after ** is an ampersand (‘&’), TEN will replace its memory with a precom- 

puted format file before proceeding. Thus, for example, you can type ‘feplain \input 

story’ or even ‘feplain story’ in response to if you are running some version of 

TEX that might not have the plain format preloaded. 



26 Chapter 6: Running TpjK 

Incidentally, many systems allow you to invoke by typing a one-liner like 

‘tex story’ instead of waiting for the similarly, ‘tex \relax’ works for 

Experiment 1, and ‘tex ftplain story’ loads the plain format before inputting the 

story file. You might want to try this, to see if it works on your computer, or you 

might ask somebody if there’s a similar shortcut. 

As begins to read your story file, it types ‘(story.tex’, possibly 

with a version number for more precise identification, depending on your local 

operating system. Then it types ‘[1]’, meaning that page 1 is done; and ‘)’, 

meaning that the file has been entirely input. 

TE;X will now prompt you with because the file did not contain 

‘\end’. Enter \end into the computer now, and you should get a file story.dvi 

containing a typeset version of Thor’s story. As in Experiment 1, you can proceed 

to convert story.dvi into hardcopy; go ahead and do that now. The typeset 

output won’t be shown here, but you can see the results by doing the experiment 

personally. Please do so before reading on. 

► EXERCISE 6.1 

Statistics show that only 7.43 of 10 people who read this manual actually type 

the story.tex file as recommended, but that those people learn best. So 

why don’t you join them? 

► EXERCISE 6.2 

Look closely at the output of Experiment 2, and compare it to story. tex: If you 

followed the instructions carefully, you will notice a typographical error. What 

is it, and why did it sneak in? 

With Experiment 2 under your belt, you know how to make a document 

from a file. The remaining experiments in this chapter are intended to help 

you cope with the inevitable anomalies that you will run into later; we will 

intentionally do things that will cause to “squeak.” 

But before going on, it’s best to fix the error revealed by the previous 

output (see exercise 6.2): Line 13 of the story.tex file should be changed to 

he preferred to be called 7» error has been fixed! 

The ‘7#’ sign here is a feature of plain TgX that we haven’t discussed before: It ef- 

fectively terminates a line of your input file, without introducing the blank space 

that ordinarily inserts when moving to the next line of input. Furthermore, 

TgX ignores everything that you type following a %, up to the end of that line 

in the file; you can therefore put comments into your manuscript, knowing that 

the comments are for your eyes only. 

Experiment 3 will be to make work harder, by asking it to set 

the story in narrower and narrower columns. Here’s how: After starting the 

program, type 

\hsize=4in \input story 



Chapter 6: Running TpjK 27 

in response to the This means, “Set the story in a 4-inch column.” More 

precisely, \hsize is a primitive of that specifies the horizontal size, i.e., the 

width of each normal line in the output when a paragraph is being typeset; and 

\input is a primitive that causes to read the specified file. Thus, you are 

instructing the machine to change the normal setting of \hsize that was defined 

by plain TgX, and then to process story.tex under this modification. 

TgX should respond by typing something like ‘(story.tex [1])’ as 

before, followed by Now you should type 

\hsize=3in \input story 

and, after says ‘(story.tex [2])’ asking for more, type three more lines 

\hsize=2.5in \input story 

\hsize=2in \input story 

\end 

to complete this four-page experiment. 

Don’t be alarmed when screams ‘Overfull \hbox’ several times 

as it works at the 2-inch size; that’s what was supposed to go wrong during 

Experiment 3. There simply is no good way to break the given paragraphs into 

lines that are exactly two inches wide, without making the spaces between words 

come out too large or too small. Plain TgX has been set up to ensure rather 

strict tolerances on all of the lines it produces: 

you don’t get spaces between words narrower than this, and 

you don’t get spaces between words wider than this. 

If there’s no way to meet these restrictions, you get an overfull box. And with 

the overfull box you also get (1) a warning message, printed on your terminal, 

and (2) a big black bar inserted at the right of the offending box, in your output. 

(Look at page 4 of the output from Experiment 3; the overfull boxes should stick 

out like sore thumbs. On the other hand, pages 1-3 should be perfect.) 

Of course you don’t want overfull boxes in your output, so provides 

several ways to remove them; that will be the subject of our Experiment 4. But 

first let’s look more closely at the results of Experiment 3, since reported 

some potentially valuable information when it was forced to make those boxes 

too full; you should learn how to read this data: 

Overfull \hbox (0.98807pt too wide) in paragraph at lines 7—11 

Xtenrm taut galaxy called [] 0''''?o''''Xc, there lived I 

Overfull \hbox (0.4325pt too wide) in paragraph at lines 7—11 

Xtenrm a com-puter named R. J. Drof-nats. I 

Overfull Xhbox (5.32132pt too wide) in paragraph at lines 12—16 

Xtenrm he pre-ferred to be called was hap-1 

Each overfull box is correlated with its location in your input file (e.g., the first 

two were generated when processing the paragraph on lines 7-11 of story.tex), 

and you also learn by how much the copy sticks out (e.g., 0.98807 points). 



28 Chapter 6: Running TgX 

Notice that also shows the contents of the overfull boxes in ab- 
breviated form. For example, the last one has the words ‘he preferred to be 
called—was hap-’, set in font \tenrm (10-point roman type); the first one has 
a somewhat curious rendering of ‘Oog’, because the accents appear in strange 
places within that font. In general, when you see ‘ [] ’ in one of these messages, 
it stands either for the paragraph indentation or for some sort of complex con- 
struction; in this particular case it stands for an umlaut that has been raised up 
to cover an ‘O’. 

► EXERCISE 6.3 

Can you explain the ‘ 1 ’ that appears after ‘lived’ in that message? 

► EXERCISE 6.4 

Why is there a space before the ‘ I ’ in ‘Drof-nats. 

You don’t have to take out pencil and paper in order to write down the 
overfull box messages that you get before they disappear from view, since 
always writes a “transcript” or “log file” that records what happened during each 
session. For example, you should now have a file called story.log containing 
the transcript of Experiment 3, as well as a file called texput.log containing 
the transcript of Experiment 1. (The transcript of Experiment 2 was probably 
overwritten when you did number 3.) Take a look at story.log now; you will 
see that the overfull box messages are accompanied not only by the abbreviated 
box contents, but also by some strange-looking data about hboxes and glue and 
kerns and such things. This data gives a precise description of what’s in that 
overfull box; TgX wizards will find such listings important, if they are called 
upon to diagnose some mysterious error, and you too may want to understand 
TgX’s internal code some day. 

The abbreviated forms of overfull boxes show the hyphenations that 
TE;X tried before it resorted to overfilling. The hyphenation algorithm, which is 
described in Appendix H, is excellent but not perfect; for example, you can see 
from the messages in story.log that finds the hyphen in ‘pre-ferred’, and 
it can even hyphenate ‘Drof-nats’. Yet it discovers no hyphen in ‘galaxy’, and 
every once in a while an overfull box problem can be cured simply by giving 
a hint about how to hyphenate some word more completely. (We will see later 
that there are two ways to do this, either by inserting discretionary hyphens 
each time as in ‘gal\-axy’, or by saying ‘\hyphenation{gal-axy}’ once at the 
beginning of your manuscript.) 

In the present example, hyphenation is not a problem, since found 
and tried all the hyphens that could possibly have helped. The only way to get 
rid of the overfull boxes is to change the tolerance, i.e., to allow wider spaces 
between words. Indeed, the tolerance that plain uses for wide lines is 
completely inappropriate for 2-inch columns; such narrow columns simply can’t 
be achieved without loosening the constraints, unless you rewrite the copy to fit. 

TgX assigns a numerical value called “badness” to each line that it sets, 
in order to assess the quality of the spacing. The exact rules for badness are 



Chapter 6: Running Tp]X 29 

different for different fonts, and they will be discussed in Chapter 14; but here 
is the way badness works for the roman font of plain TE?^: 

The badness of this line is 100. 
The badness of this line is 12. 
The badness of this line is 0. 
The badness of this line is 12. 
The badness of this line is 200. 
The badness of this line is 1000. 
The badness of this line is 5000. 

(very tight) 
(somewhat tight) 
(perfect) 
(somewhat loose) 
(loose) 
(bad) 
(awful) 

Plain normally stipulates that no line’s badness should exceed 200; but in 
our case, the task would be impossible since 

‘tant galaxy called 6og, there’ has badness 1521; 
‘he preferred to be called—was’ has badness 568. 

So we turn now to Experiment 4, in which spacing variations that are more 
appropriate to narrow columns will be used. 

Run TgX again, and begin this time by saying 

\hsize=2in \tolerance=1600 \input story 

so that lines with badness up to 1600 will be tolerated. Hurray! There are no 
overfull boxes this time. (But you do get a message about an underfull box, 
since reports all boxes whose badness exceeds a certain threshold called 
\hbadness; plain sets \hbadness=1000.) Now make T^]X work still harder 
by trying 

\hsize=1.5in \input story 

(thus leaving the tolerance at 1600 but making the column width still skimpier). 
Alas, overfull boxes return; so try typing 

\tolerance=10000 \input story 

in order to see what happens. TEX treats 10000 as if it were “infinite” tolerance, 
allowing arbitrarily wide space; thus, a tolerance of 10000 will never produce an 
overfull box, unless something strange occurs like an unhyphenatable word that 
is wider than the column itself. 

The underfull box that T^)X produces in the 1.5-inch case is really bad; 
with such narrow limits, an occasional wide space is unavoidable. But try 

\raggedright \input story 

for a change. (This tells TgX not to worry about keeping the right margin 
straight, and to keep the spacing uniform within each line.) Finally, type 

\hsize=.75in \input story 

followed by ‘\end’, to complete Experiment 4. This makes the columns almost 
impossibly narrow. 



30 Chapter 6: Running TpjK 

The output from this experiment will give you some feeling for the problem 

of breaking a paragraph into approximately equal lines. When the lines are 

relatively wide, will almost always find a good solution. But otherwise you will 

have to figure out some compromise, and several options are possible. Suppose you want 

to ensure that no lines have badness exceeding 500. Then you could set \tolerance to 

some high number, and \hbadness=500; would not produce overfull boxes, but it 

would warn you about the underfull ones. Or you could set \toleraiice=500; then 

might produce overfull boxes. If you really want to take corrective action, the second 

alternative is better, because you can look at an overfull box to see how much sticks 

out; it becomes graphically clear what remedies are possible. On the other hand, if you 

don’t have time to fix bad spacing—if you just want to know how bad it is—then the 

first alternative is better, although it may require more computer time. 

► EXERCISE 6.5 

When \raggedright has been specified, badness refiects the amount of space 

at the right margin, instead of the spacing between words. Devise an experiment by 

which you can easily determine what badness assigns to each line, when the story 

is set ragged-right in 1.5-inch columns. 

A parameter called \hfuzz allows you to ignore boxes that are only slightly 

overfull. For example, if you say \hfuzz=lpt, a box must stick out more than 

one point before it is considered erroneous. Plain sets \hfuzz=0. Ipt. 

EXERCISE 6.6 

^ ^ Inspection of the output from Experiment 4, especially page 3, shows that 

with narrow columns it would be better to allow white space to appear before and 

after a dash, whenever other spaces in the same line are being stretched. Define a 

\dash macro that does this. 

You were warned that this is a long chapter. But take heart: There’s 

only one more experiment to do, and then you will know enough about T^]X to 

run it fearlessly by yourself forever after. The only thing you are still missing 

is some information about how to cope with error messages—i.e., not just with 

warnings about things like overfull boxes, but with cases where T^ actually 

stops and asks you what to do next. 

Error messages can be terrifying when you aren’t prepared for them; 

but they can be fun when you have the right attitude. Just remember that you 

really haven’t hurt the computer’s feelings, and that nobody will hold the errors 

against you. Then you’ll find that running Tg^X might actually be a creative 

experience instead of something to dread. 

The first step in Experiment 5 is to plant two intentional mistakes in 

the story.tex file. Change line 3 to 

\centerline{\bf A SHORT \ERR0R STORY} 

and change ‘\vskip’ to ‘\vship’ on line 2. 

Now run T^^ again; but instead of ‘story’ type ‘sorry’. The computer 

should respond by saying that it can’t find file sorry.tex, and it will ask you 

to try again. Just hit (return) this time; you’ll see that you had better give the 



Chapter 6: Running Tp]X 31 

name of a real file. So type ‘story’ and wait for TgX to find one of the faux pas 

in that file. 

Ah yes, the machine will soon stop,* after typing something like this: 

! Undefined control sequence. 

1.2 \vship 

lin 
7 

TgX begins its error messages with ‘! ’, and it shows what it was reading at the 

time of the error by displaying two lines of context. The top line of the pair 

(in this case ‘\vship’) shows what has looked at so far, and where it came 

from (‘1.2’, i.e., line number 2); the bottom line (in this case ‘lin’) shows what 

TgX has yet to read. 

The ‘?’ that appears after the context display means that wants 

advice about what to do next. If you’ve never seen an error message before, or 

if you’ve forgotten what sort of response is expected, you can type ‘?’ now (go 

ahead and try it!); TgpC will respond as follows: 

Type <return> to proceed, S to scroll future error messages, 

R to run without stopping, Q to run quietly, 

I to insert something, E to edit your file, 

1 or ... or 9 to ignore the next 1 to 9 tokens of input, 

H for help, X to quit. 

This is your menu of options. You may choose to continue in various ways: 

1. Simply type (return). will resume its processing, after attempting 

to recover from the error as best it can. 

2. Type ‘S’. T^^ will proceed without pausing for instructions if further 

errors arise. Subsequent error messages will flash by on your terminal, 

possibly faster than you can read them, and they will appear in your 

log file where you can scrutinize them at your leisure. Thus, ‘S’ is sort 

of like typing (return) to every message. 

3. Type ‘R’. This is like ‘S’ but even stronger, since it tells not to stop 

for any reason, not even if a file name can’t be found. 

4. Type ‘Q’. This is like ‘R’ but even more so, since it tells not only to 

proceed without stopping but also to suppress all further output to your 

terminal. It is a fast, but somewhat reckless, way to proceed (intended 

for running T^^ with no operator in attendance). 

5. Type ‘I’, followed by some text that you want to insert. Tg^ will read 

this line of text before encountering what it would ordinarily see next. 

Lines inserted in this way are not assumed to end with a blank space. 

* Some installations of T^X do not allow interaction. In such cases all you can do is 
look at the error messages in your log file, where they will appear together with the 
“help” information. 



32 Chapter 6: Running TpjK 

6. Type a small number (less than 100). will delete this many charac- 
ters and control sequences from whatever it is about to read next, and 
it will pause again to give you another chance to look things over. 

7. Type ‘H’. This is what you should do now and whenever you are faced 
with an error message that you haven’t seen for a while. T^ has two 
messages built in for each perceived error: a formal one and an informal 
one. The formal message is printed first (e.g., ‘! Undefined control 
sequence.’); the informal one is printed if you request more help by 
typing ‘H’, and it also appears in your log file if you are scrolling error 
messages. The informal message tries to complement the formal one by 
explaining what TgX thinks the trouble is, and often by suggesting a 
strategy for recouping your losses. 

8. Type ‘X’. This stands for “exit.” It causes T^ to stop working on your 
job, after putting the finishing touches on your log file and on any pages 
that have already been output to your dvi file. The current (incomplete) 
page will not be output. 

9. Type ‘E’. This is like ‘X’, but it also prepares the computer to edit the 
file that Tg^X is currently reading, at the current position, so that you 
can conveniently make a change before trying again. 

After you type ‘H’ (or ‘h’, which also works), you’ll get a message that tries 
to explain that the control sequence just read by (i.e., \vship) has never 
been assigned a meaning, and that you should either insert the correct control 
sequence or you should go on as if the offending one had not appeared. 

In this case, therefore, your best bet is to type 

I\vskip 

(and (return)), with no space after the T’; this effectively replaces \vship by 
\vskip. (Do it.) 

If you had simply typed (return) instead of inserting anything, T^ 
would have gone ahead and read Tin’, which it would have regarded as part of 
a paragraph to be typeset. Alternatively, you could have typed ‘3’; that would 
have deleted Tin’ from TgX’s input. Or you could have typed ‘X’ or ‘E’ in order 
to correct the spelling error in your file. But it’s usually best to try to detect 
as many errors as you can, each time you run T^}X, since that increases your 
productivity while decreasing your computer bills. Chapter 27 explains more 
about the art of steering T^X through troubled text. 

► EXERCISE 6.7 

What would have happened if you had typed ‘5’ after the \vship error? 

You can control the level of interaction by giving commands in your file as well 

as online: The TT]X primitives \scrollmode, \nonstopmode, and \batchmode 

correspond respectively to typing ‘S’, ‘R’, or ‘Q’ in response to an error message, and 

\errorstopmode puts you back into the normal level of interaction. (Such changes are 

global, whether or not they appear inside a group.) Furthermore, many installations 



Chapter 6: Running TpjX 33 

have implemented a way to interrupt T^]X while it is running; such an interruption 

causes the program to revert to \errorstopmode, after which it pauses and waits for 

further instructions. 

What happens next in Experiment 5? TgX will hiccup on the other 
bug that we planted in the file. This time, however, the error message is more 
elaborate, since the context appears on six lines instead of two: 

! Undefined control sequence. 

<argument> \bf A SHORT \ERR0R 

STORY 

\centerline #l->\line {\hss #1 

\hss } 

1.3 \centerline{\bf A SHORT \ERR0R STORY} 

9 

You get multiline error messages like this when the error is detected while is 
processing some higher-level commands—in this case, while it is trying to carry 
out \centerline, which is not a primitive operation (it is defined in plain TfeX)- 

At first, such error messages will appear to be complete nonsense to you, because 
much of what you see is low-level code that you never wrote. But you can 
overcome this hangup by getting a feeling for the way operates. 

First notice that the context information always appears in pairs of lines. 
As before, the top line shows what has just read (‘\bf A SHORT \ERR0R’), 

then comes what it is about to read (‘STORY’). The next pair of lines shows the 
context of the first two; it indicates what was doing just before it began to 
read the others. In this case, we see that has just read ‘#1’, which is a special 
code that tells the machine to “read the first argument that is governed by the 
current control sequence”; i.e., “now read the stuff that \centerline is supposed 
to center on a line.” The definition in Appendix B says that \centerline, when 
applied to some text, is supposed to be carried out by sticking that text in place 
of the ‘#1’ in ‘\line{\hss#l\hss}’. So is in the midst of this expansion of 
\centerline, as well as being in the midst of the text that is to be centered. 

The bottom line shows how far has gotten until now in the story 

file. (Actually the bottom line is blank in this example; what appears to be the 
bottom line is really the first of two lines of context, and it indicates that 
has read everything including the ‘}’ in line 3 of the file.) Thus, the context in 
this error message gives us a glimpse of how TgX went about its business. First, 
it saw \centerline at the beginning of line 3. Then it looked at the definition 
of \centerline and noticed that \centerline takes an “argument,” i.e., that 
\centerline applies to the next character or control sequence or group that 
follows. So TE^ read on, and filed ‘\bf A SHORT \ERR0R STORY’ away as the 
argument to \centerline. Then it began to read the expansion, as defined in 
Appendix B. When it reached the #1, it began to read the argument it had saved. 
And when it reached \ERR0R, it complained about an undefined control sequence. 



34 Chapter 6: Running TpjX 

► EXERCISE 6.8 

Why didn’t complain about \ERR0R being undefined when \ERR0R was 

first encountered, i.e., before reading ‘STORY}’ on line 3? 

When you get a multiline error message like this, the best clues about 
the source of the trouble are usually on the bottom line (since that is what 
you typed) and on the top line (since that is what triggered the error message). 
Somewhere in there you can usually spot the problem. 

Where should you go from here? If you type ‘H’ now, you’ll just get the 
same help message about undefined control sequences that you saw before. If you 
respond by typing (return), will go on and finish the run, producing output 
virtually identical to that in Experiment 2. In other words, the conventional 
responses won’t teach you anything new. So type ‘E’ now; this terminates the 
run and prepares the way for you to fix the erroneous file. (On some systems, 

will actually start up the standard text editor, and you’ll be positioned at 
the right place to delete ‘\ERR0R’. On other systems, will simply tell you to 
edit line 3 of file story.tex.) 

When you edit story.tex again, you’ll notice that line 2 still contains 
\vship; the fact that you told to insert \vskip doesn’t mean that your file 
has changed in any way. In general, you should correct all errors in the input 
file that were spotted by during a run; the log file provides a handy way to 
remember what those errors were. 

Well, this has indeed been a long chapter, so let’s summarize what has 
been accomplished. By doing the five experiments you have learned at first 
hand (1) how to get a job printed via IfeX; (2) how to make a file that contains 
a complete manuscript; (3) how to change the plain format to achieve 
columns with difTerent widths; and (4) how to avoid panic when issues 
stern warnings. 

So you could now stop reading this book and go on to print a bunch 
of documents. It is better, however, to continue bearing with the author (after 
perhaps taking another rest), since you’re just at the threshold of being able 
to do a lot more. And you ought to read Chapter 7 at least, because it warns 
you about certain symbols that you must not type unless you want to do 
something special. While reading the remaining chapters it will, of course, be 
best for you to continue making trial runs, using experiments of your own design. 



Chapter 6: Running TgK 35 

What we have to learn to do we learn by doing. 

ARISTOTLE, Ethica Nicomachea II (c. 325 B.C.) 

He that runs may read. 

— WILLIAM COWPER, Tirocinium (1785) 



TEX Reads 

You Type 



Chapter 7: How TpjX Reads What You Type 37 

We observed in the previous chapter that an input manuscript is expressed in 
terms of “lines,” but that these lines of input are essentially independent of the 
lines of output that will appear on the finished pages. Thus you can stop typing 
a line of input at any place that’s convenient for you, as you prepare or edit a 
file. A few other related rules have also been mentioned: 

■ A (return) is like a space. 

■ Two spaces in a row count as one space. 

■ A blank line denotes the end of a paragraph. 

Strictly speaking, these rules are contradictory: A blank line is obtained by 
typing (return) twice in a row, and this is different from typing two spaces in a 
row. Some day you might want to know the real rules. In this chapter and the 
next, we shall study the very first stage in the transition from input to output. 

In the first place, it’s wise to have a precise idea of what your keyboard 
sends to the machine. There are 128 characters that might encounter at 
each step, in a file or in a line of text typed directly on your terminal. These 
128 characters are classified into 16 categories numbered 0 to 15: 

Category Meaning 

0 Escape character 
1 Beginning of group 
2 End of group 
3 Math shift 
4 Alignment tab 
5 End of line 
6 Parameter 
7 Superscript 
8 Subscript 
9 Ignored character 

10 Space 
11 Letter 
12 Other character 
13 Active character 
14 Comment character 
15 Invalid character 

(\ in this manual) 
({ in this manual) 
(} in this manual) 
($ in this manual) 
(& in this manual) 
((return) in this manual) 
(# in this manual) 

in this manual) 
(_ in this manual) 
((null) in this manual) 
(u in this manual) 
(A, ..., Z and a, ..., z) 
(none of the above or below) 

in this manual) 
(7» in this manual) 
((delete) in this manual) 

It’s not necessary for you to learn these code numbers; the point is only that 
TgX responds to 16 different types of characters. At first this manual led you to 
believe that there were just two types—the escape character and the others— 
and then you were told about two more types, the grouping symbols { and }. 
In Chapter 6 you learned two more: ~ and */». Now you know that there are 
really 16. This is the whole truth of the matter; no more types remain to be 
revealed. The category code for any character can be changed at any time, but 
it is usually wise to stick to a particular scheme. 



38 Chapter 1: How TpjX Reads What You Type 

The main thing to bear in mind is that each TgX format reserves certain 
characters for its own special purposes. For example, when you are using plain 
TgX format (Appendix B), you need to know that the ten characters 

\ { } $ & # "^ _ y. ~ 

cannot be used in the ordinary way when you are typing; each of them will cause 
TE;X to do something special, as explained elsewhere in this book. If you really 
need these symbols as part of your manuscript, plain makes it possible for 
you to type 

\$ for $, \y, for %, \& for &, \# for #, \_ for 

the \_ symbol is useful for compound.identifiers in computer programs. In math- 
ematics formulas you can use \{ and \} for { and }, while \backslash produces 
a reverse slash; for example, 

‘$\{a \backslash b\}$’ yields ^{a\b}\ 

Furthermore X" produces a circumflex accent (e.g., ‘\"e’ yields ‘e’); and \~ yields 
a tilde accent (e.g., ‘\~n’ yields ‘h’). 

► EXERCISE 7.1 
What horrible errors appear in the following sentence? 

Procter & Gamble’s stock climbed to $2, a 10*/, gain. 

► EXERCISE 7.2 
Can you imagine why the designer of plain decided not to make ‘\\’ the 
control sequence for reverse slashes? 

When TFX reads a line of text from a file, or a line of text that you entered 

directly on your terminal, it converts that text into a list of “tokens.” A 

token is either (a) a single character with an attached category code, or (b) a control 

sequence. For example, if the normal conventions of plain 1^^ are in force, the text 

‘{\hskip 36 pt}’ is converted into a list of eight tokens: 

hskip 3I2 6I2 ulO pil til 12 

The subscripts here are the category codes, as listed earlier: 1 for “beginning of group,” 

12 for “other character,” and so on. The hskip doesn’t get a subscript, because it 

represents a control sequence token instead of a character token. Notice that the space 

after \hskip does not get into the token list, because it follows a control word. 

It is important to understand the idea of token lists, if you want to gain a 

thorough understanding of TFX? and it is convenient to learn the concept by 

thinking of as if it were a living organism. The individual lines of input in your 

files are seen only by TfeX’s “eyes” and “mouth”; but after that text has been gobbled 

up, it is sent to “stomach” in the form of a token list, and the digestive processes 

that do the actual typesetting are based entirely on tokens. As far as the stomach is 

concerned, the input flows in as a stream of tokens, somewhat as if your TF)X manuscript 

had been typed all on one extremely long line. 



Chapter 7; How TpjK Reads What You Type 39 

You should remember two chief things about T^’s tokens: (1) A control 
sequence is considered to be a single object that is no longer composed of a 

sequence of symbols. Therefore long control sequence names are no harder for to 
deal with than short ones, after they have been replaced by tokens. Furthermore, spaces 
are not ignored after control sequences inside a token list; the ignore-space rule applies 
only in an input file, during the time that strings of characters are being tokenized. 
(2) Once a category code has been attached to a character token, the attachment is 
permanent. For example, if character ‘{’ were suddenly declared to be of category 12 
instead of category 1, the characters ‘fi’ already inside token lists of would still 
remain of category 1; only newly made lists would contain ‘{12’ tokens. In other words, 
individual characters receive a fixed interpretation as soon as they have been read from 
a file, based on the category they have at the time of reading. Control sequences 
are different, since they can change their interpretation at any time. T]E^’S digestive 
processes always know exactly what a character token signifies, because the category 
code appears in the token itself; but when the digestive processes encounter a control 
sequence token, they must look up the current definition of that control sequence in 
order to figure out what it means. 

^►EXERCISE 7.3 

Some of the category codes 0 to 15 will never appear as subscripts in character 
tokens, because they disappear in 'T^]X’s mouth. For example, characters of category 0 
(escapes) never get to be tokens. Which categories can actually reach T^’s stomach? 

There’s a program called INITEX that is used to install T^]X, starting from 
scratch; INITEX is like except that it can do even more things. It can 

compress hyphenation patterns into special tables that facilitate rapid hyphenation, and 
it can produce format files like ‘plain.fmt’ from ‘plain.tex’. But INITEX needs extra 
space to carry out such tasks, so it generally has less memory available for typesetting 
than you would expect to find in a production version of T^]X. 

When INITEX begins, it knows nothing but T^]X’s primitives. All 128 charac- 
ters are initially of category 12, except that (return) has category 5, (space) 

has category 10, (null) has category 9, (delete) has category 15, the 52 letters A ... Z and 
a... z have category 11, */, and \ have the respective categories 14 and 0. It follows that 
INITEX is initially incapable of carrying out some of T^]X’s primitives that depend on 
grouping; you can’t use \def or \hbox until there are characters of categories 1 and 2. 
The format in Appendix B begins with \ cat code commands to provide characters of 
the necessary categories; e.g.. 

\catcode ^\{=1 

assigns category 1 to the { symbol. The \catcode operation is like many other primi- 
tives of 1]EX that we shall study later; by modifying internal quantities like the category 
codes, you can adapt to a wide variety of applications. 

► EXERCISE 7.4 

Suppose that the commands 

\catcode‘\<=1 \catcode‘\>=2 

appear near the beginning of a group that begins with these specifications instruct 
T^X to treat < and > as group delimiters. According to T^’s rules of locality, the 



40 Chapter 7: How Tp^K Reads What You Type 

characters < and > will revert to their previous categories when the group ends. But 

should the group end with } or with > ? 

Although control sequences are treated as single objects, does provide 

a way to break them into lists of character tokens; If you write \string\cs, 

where \cs is any control sequence, you get the list of characters for that control se- 

quence’s name. For example, \string\TeX produces four tokens: \i2, T12, ei2, X12. 

Each character in this token list automatically gets category code 12 (“other”), in- 

cluding the backslash that \string inserts to represent an escape character. However, 

category 10 will be assigned to the character ‘u’ (blank space) if a space character 

somehow sneaks into the name of a control sequence. 

Conversely, you can go from a list of character tokens to a control sequence by 

^ ^ saying ‘\csname(tokens)Xendcsname’. The tokens that appear in this construc- 

tion between \csneuiie and Xendcsname may include other control sequences, as long as 

those control sequences ultimately expand into characters instead of primitives; the 

final characters can be of any category, not necessarily letters. For example, ‘\csname 

TeXXendcsname’ is essentially the same as ‘\TeX’; but ‘\csname\TeX\endcsname’ is il- 

legal, because \TeX expands into tokens containing the \kern primitive. Furthermore, 
‘\csname\string\TeX\endcsname’ will produce the unusual control sequence ‘\\TeX’, 

i.e., the token |\TeX|, which you can’t ordinarily write. 

EXERCISE 7.5 

^ ^ Experiment with T^]X to see what \string does when it is followed by an 

active character like (Active characters behave like control sequences, but they are 

not prefixed by an escape.) What is an easy way to conduct such experiments online? 

What control sequence could you put after \string to obtain the single character 

token \i2? 

EXERCISE 7.6 

What tokens does ‘\expandafter\string\csname a\string\ bXendcsname’ 
produce? (There are three spaces before the b. Chapter 20 explains Xexpandafter.) 

EXERCISE 7.7 
X X When \csname is used to define a control sequence for the first time, that 

control sequence is made equivalent to \relax until it is redefined. Use this fact to 

design a macro \ if undefined#! such that, for example, 

Xifundefined'CTeX}(true text)\else(false text)\fi 

expands to the (true text) if \TeX hasn’t previously been defined, or if \TeX has been 

Met equal to \relax; it should expand to the (false text) otherwise. 

In the examples so far, \string has converted control sequences into lists of 

tokens that begin with \i2. But this backslash token isn’t really hardwired into 
T^;;X; there’s a parameter called Xescapechax that specifies what character should be 

used when control sequences are output as text. The value of Xescapechair is normally 

T^^X’s internal code for backslash, but it can be changed if another convention is desired. 

has two other token-producing operations similar to the \string com- 

mand. If you write \number(number), you get the decimal equivalent of the 
(number); and if you write Xromainnumeral(number), you get the number expressed in 



Chapter 1: How TppC Reads What You Type 41 

“uppercase” or “lowercase” 

lowercase roman numerals. For example, ‘\romannumeral24’ produces ‘xxiv’, a list of 
four tokens each having category 12. The \nmnber operation is redundant when it is 
applied to an explicit constant (e.g., ‘\number24’ produces ‘24’); but it does suppress 
leading zeros, and it can also be used with numbers that are in T^’s internal registers 
or parameters. For example, ‘\number-0015’ produces and if register \couiit5 

holds the value 316, then ‘\number\count5’ produces ‘316’. 

^ The twin operations \uppercase{(token list)} and \lowercase{(token list)} 
go through a given token list and convert all of the character tokens to their 

equivalents. Here’s how: Each of the 128 possible charac- 
ters has two associated values called the \uccode and the \lccode; these values are 
changeable just as a \catcode is. Conversion to uppercase means that a character 
is replaced by its \uccode value, unless the \uccode value is zero (when no change 
is made). Conversion to lowercase is similar, using the \lccode. The category codes 
aren’t changed. When INITEX begins, all \uccode and \lccode values are zero except 
that the letters a to z and A to Z have \uccode values A to Z and \lccode values a to z. 

TgX performs the \uppercase and \lowercase transformations in its stomach, 
but the \string and Xnumber and \romaimumeral and Xcsnaine operations are 

carried out en route to the stomach (like macro expansion), as explained in Chapter 20. 

EXERCISE 7.8 

What token list results from ‘\uppercase{a\lowercase{bC}}’ ? 

EXERCISE 7.9 

T^X has an internal integer parameter called Xyeax that is set equal to the cur- 
rent year number at the beginning of every job. Explain how to use \yeajr, together with 
Xromannumeral and \uppercase, to print a copyright notice like ‘© MCMLXXXVF 
for all jobs run in 1986. 

/^►EXERCISE 7.10 

Define a control sequence Xappendroman with three parameters such that 
Xappendrom2Ln#l#2#3 defines control sequence #1 to expand to a control sequence whose 
name is the name of control sequence #2 followed by the value of the positive integer 
#3 expressed in roman numerals. For example, suppose Xcount20 equals 30; then 
‘XappendromaiiXaXTeX{Xcount20}’ should have the same effect as ‘XdefXafXTeXxxx}’. 

Some bookes are to bee tasted, 
others to bee swallowed, 

and some few to bee chewed and disgested. 

— FRANCIS BACON, Essayes (1597) 

'T/s the good reader that makes the good book. 

— RALPH WALDO EMERSON, Society Solitude (1870) 



The Characters 
Type 



Chapter 8: The Charaeters You Type 43 

A lot of different keyboards are used with but few keyboards can produce 
128 different symbols. Furthermore, as we have seen, some of the characters that 
you can type on your keyboard are reserved for special purposes like escaping 
and grouping. Yet when we studied fonts it was pointed out that there are 256 
characters per font. So how can you refer to the characters that aren’t on your 
keyboard, or that have been pre-empted for formatting? 

One answer is to use control sequences. For example, the plain format 
of Appendix B, which defines % to be an end-of-line symbol so that you can use 
it for comments, defines the control sequence \y, to mean a percent sign. 

To get access to any character whatsoever, you can type 

\ char (number) 

where (number) is any number from 0 to 255 (optionally followed by a space); 
you will get the corresponding character from the current font. That’s how 
Appendix B handles NX; it defines ‘\7«’ to be an abbreviation for ‘\char37’, since 
37 is the character code for a percent sign. 

The codes that TgX uses internally to represent characters are based on 
“ASCII,” the American Standard Code for Information Interchange. Appendix C 
gives full details of this code, which assigns numbers to certain control functions 
as well as to ordinary letters and punctuation marks. For example, (space) = 32 
and (return) = 13. There are 94 standard visible symbols, and they have been 
assigned code numbers from 33 to 126, inclusive. 

It turns out that ‘b’ is character number 98 in ASCII. So you can typeset 
the word bubble in a strange way by putting 

\char98 u\char98\char98 le 

into your manuscript, if the b-key on your typewriter is broken. (An optional 
space is ignored after constants like ‘98’. Of course you need the \, c, h, a, and r 
keys to type ‘\char’, so let’s hope that they are always working.) 

TE;X always uses the internal character code of Appendix C for the standard 
ASCII characters, regardless of what external coding scheme actually appears 

in the files being read. Thus, b is 98 inside of even when your computer normally 
deals with EBCDIC or some other non-ASCII scheme; the l^X software has been set 
up to convert text files to internal code, and to convert back to the external code when 
writing text files. Device-independent (dvi) output files use internal code. In 
this way, TEX is able to give identical results on all computers. 

Character code tables like those in Appendix C often give the code numbers in 
octal notation, i.e., the radix-8 number system, in which the digits are 0, 1, 2, 

3, 4^ 5, 6, and 7.* Sometimes hexadecimal notation is also used, in which case the digits 
are 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, and F. For example, the octal code for ‘b’ is 

* The author of this manual likes to use italic digits for octal numbers, and type- 
writer type for hexadecimal numbers, in order to provide a typographic clue to the 
underlying radix whenever possible. 



44 Chapter 8: The Characters You Type 

142, and its hexadecimal code is 62. A (number) in T^’s language can begin with a 

in which case it is regarded as octal, or with a ", when it is regarded as hexadecimal. 

Thus, \char’142 and \char"62 are equivalent to \char98. The legitimate character 

codes in octal notation run from '0 to '377', in hexadecimal, they run from "0 to "FF. 

But actually provides another kind of (number) that makes it unnecessary 

for you to know ASCII at all! The token ‘12 (left quote), when followed by 

any character token or by any control sequence token whose name is a single character, 

stands for T^’s internal code for the character in question. For example, \char‘b and 
\char Ab are also equivalent to \char98. If you look in Appendix B to see how \*/, is 

defined, you’ll notice that the definition is 

\def\’/,{\char‘\*/,} 

instead of \char37 as claimed above. 

► EXERCISE 8.1 

What would be wrong with \def \y,{\char‘*/,}? 

The preface to this manual points out that the author makes little white lies 

JY. ^ from time to time. Well, if you actually check Appendix B you’ll find that 

\chardef\*/,= ‘\*/, 

is the true definition of \'/,. Since format designers often want to associate a spe- 

cial character with a special control sequence name, provides the construction 

‘\chardef (control sequence)=(number)’ for numbers between 0 and 255, as an efficient 

alternative to ‘\def (control sequence){\char(number)}’. 

Although you can use \chax to access any character in the current font, 
you can’t use it in the middle of a control sequence. For example, if you type 

\\char98 

Tg^X reads this as the control sequence \\ followed by c, h, a, etc., not as the 
control sequence \b. 

You will hardly ever need to use \char when typing a manuscript, since 
the characters you want will probably be available as predefined control se- 
quences; \char is primarily intended for the designers of book formats like those 
in the appendices. But some day you may require a special symbol, and you 
may have to hunt through a font catalog until you find it. Once you find it, 
you can use it by simply selecting the appropriate font and then specifying the 
character number with \char. For example, the “dangerous bend” sign used in 
this manual appears as character number 127 of font manfnt, and that font is 
selected by the control sequence Xmauiual. The macros in Appendix E therefore 
display dangerous bends by saying ‘{\manual\char 127}’. 

We have observed that the ASCII character set includes only 94 printable 
symbols; but TgX works internally with 128 different character codes, from 0 
to 127, each of which is assigned to one of the sixteen categories described in 
Chapter 7. If your keyboard has additional symbols, or if it doesn’t have the 
standard 94, the people who installed your local T^^ system can tell you the 



Chapter 8: The Characters You Type 45 

correspondence between what you type and the character number that 
receives. Some people are fortunate enough to have keys marked and ‘<’ and 

it is possible to install so that it will recognize these handy symbols 
and make the typing of mathematics more pleasant. But if you do not have such 
keys, you can get by with the control sequences \ne, \le, and \ge. 

TgX has a standard way to refer to the invisible characters of ASCII: Code 0 

can be typed as the sequence of three characters '‘'‘O, code 1 can be typed 

■'“A, and so on up to code 31, which is (see Appendix C). If the character following 

has an internal code of 64 or more, T^]X subtracts 64 from the code, otherwise 

TgX adds 64. Hence code 127 can be typed and the dangerous bend sign can be 
obtained by saying ‘{Xmanual''"?}’. However, you must change the category code of 
character 127 before using it, since this character ordinarily has category 15 (invalid); 

say, e.g., ‘\catcode‘\"''?=12’. The notation is different from \char, because 

combinations are like single characters; for example, it would not be permissible to say 

\catcode Acharl27, but symbols can even be used as letters within control words. 

One of the overfull box messages in Chapter 6 illustrates the fact that 

sometimes uses the funny convention in its output: The umlaut character 

in that example appears as and the cedilla appears as "“X, because ‘" ’ and 

occur in positions '177 and '30 of the \tenrm font. 

Most of the codes are unimportant except in unusual applications. But 

^ ^ ■'“M is particularly noteworthy because it is code 13, the ASCII (return) that 

TgX normally places at the right end of every line of your input file. By changing the 

category of you can obtain useful special effects, as we shall see later. 

The control code '''‘I is also of potential interest, since it’s the ASCII (tab). 

Plain T^]X makes (tab) act like a blank space. 

People who install systems for use with non-American alphabets are 

advised to use character codes less than 32 for any additional letters, and to 

assign category 11 (letter) to those codes. For example, suppose you have a Norwegian 

keyboard that contains the letter ae. You could design your interface so that 

this letter comes in as code 26,* say, and your standard format package should define 
\catcode^ae=ll. Then you could have control sequences like \saertrykk; and your 

input files would be readable by American installations of that don’t have your 

keyboard, by substituting "“Z for character 26. (For example, the stated control 

sequence would appear as Xs^^Zrtrykk in the file; your American friends should also 

be provided with the format that you used, with its \catcode ‘ ""Z=ll.) Of course 

you should also arrange your fonts so that T^]X’s character 26 will print as ae; and 

you should change T^]X’s hyphenation algorithm so that it will do correct Norwegian 
hyphenation. The main point is that such changes are not extremely difficult; nothing 

in the design of limits it to the American alphabet, as long as you have at most 

128 different characters. 

* There’s nothing magic about this number 26, except that by coincidence the Com- 
puter Modern fonts of plain T^X happen to have an ‘ae’ in position 26 already. Some 
change to the font layout is inevitable, however, since all six of the special letters ae, 
0, a, JE, 0, and A should be assigned to positions less than 32. Characters already 
in those positions can easily be moved to positions greater than 127, since they are 
never accessed by plain TEN except via control sequences. 



46 Chapter 8: The Characters You Type 

But wait, you say. Why are characters numbered from 0 to 127, when fonts 

can contain up to 256 different symbols? The answer is that can access 

positions 128 to 255 of a font in several reasonably convenient ways, even though its 
character tokens are coded from 0 to 127. You can use \char, generally via a control 

sequence, as already mentioned; and the higher positions of a font can conveniently be 

occupied by math symbols, as we shall see later. Another important way to generate 

codes above 127 is by sequences of keystrokes (i.e., ligatures), when the font has been 

set up properly. It is often faster to touch-type a sequence of letters than to hunt for 

a single key on a large keyboard; thus the restriction to 128 typable characters is not 
actually unreasonable. 

For example, let’s consider Norwegian again, but suppose that you want to 

use a keyboard without an ae character. You can arrange the font metric file 

so that will interpret ae, o/, aa, AE, 0/, and AA as ligatures that produce ae, 0, a, 

iE, 0, and A, respectively; and you could put the characters a and A into positions 128 

and 129 of the font. By setting \catcode V=ll you would be able to use the ligature 
o/ in control sequences like ‘\ho/yre’. T^]X’s hyphenation method is not confused by 

ligatures; so you could use this scheme to operate essentially as suggested before, but 

with two keystrokes occasionally replacing one. (Your typists would have to watch 

out for the occasional times when the adjacent characters aa, oe, and o/ should not be 

treated as ligatures; also, ‘\/’ would be a control word, not a control symbol.) 

The rest of this chapter is devoted to T^]X’s reading rules, which define the 

conversion from text to tokens. For example, the fact that ignores spaces 

after control words is a consequence of the rules below, which imply among other things 

that spaces after control words never become space tokens. The rules are intended to 
work the way you would expect them to, so you may not wish to bother reading them; 

but when you are communicating with a computer, it is nice to understand what the 

machine thinks it is doing, and here’s your chance. 

The input to T^]X is a sequence of “lines.” Whenever is reading a line of 

text from a file, or a line of text that you entered directly on your terminal, 

the reading apparatus is in one of three so-called states: 

State N Beginning a new line; 

State M Middle of a line; 

State S Skipping blanks. 

At the beginning of every line it’s in state N; but most of the time it’s in state M, 

and after a control word or a space it’s in state S. Incidentally, “states” are different 

from the “modes” that we will be studying later; the current state refers to I^]X’s 

eyes and mouth as they take in characters of new text, but the current mode refers 

to the condition of 1]E^’S gastro-intestinal tract. Most of the things that T^]X does 

when it converts characters to tokens are independent of the current state, but there 

are differences when spaces or end-of-line characters are detected (categories 10 and 5). 

TE^ deletes any (space) characters (number 32) that occur at the right end 

_L _2_ of an input line. Then it inserts a (return) character (number 13) at the right 
end of the line, except that it places nothing additional at the end of a line that you 

inserted with ‘I’ during error recovery. Note that (return) is considered to be an actual 

character that is part of the line; you can obtain special effects by changing its catcode. 



Chapter 8: The Characters You Type 47 

If TEX sees an escape character (category 0) in any state, it scans the entire 
^ ^ control sequence name as follows, (a) If there are no more characters in the 

line, the name is empty (like \csname\endcsnajne). Otherwise (b) if the next character 

is not of category 11 (letter), the name consists of that single symbol. Otherwise (c) the 

name consists of all letters beginning with the current one and ending just before the 

first nonletter, or at the end of the line. This name becomes a control sequence token. 

TgX goes into state S in case (c), or in case (b) with respect to a character of category 10 

(space); otherwise TgX goes into state M. 

If sees a superscript character (category 7) in any state, and if that 
^ ^ character is followed by another identical character, and if those two equal 

characters aren’t at the end of the line, then they are deleted and 64 is added to or 

subtracted from the following character. (Thus, ""A is replaced by a single character 

whose code is 1, etc., as explained earlier.) This replacement is carried out also if such 

a trio of characters is encountered during steps (b) or (c) of the control-sequence-name 

scanning procedure described above. After the replacement is made, begins again 

as if the new character had been present all the time. If a superscript character is not 

the first of such a trio, it is handled by the following rule. 

If TgX sees a character of categories 1, 2, 3, 4, 6, 8, 11, 12, or 13, or a character 

XX of category 7 that is not the first of a trio as just described, it converts the 

character to a token by attaching the category code, and goes into state M. This is 

the normal case; almost every nonblank character is handled by this rule. 

If T^X sees an end-of-line character (category 5), it throws away any other 

information that might remain on the current line. Then if is in state N 

(new line), the end-of-line character is converted to the control sequence token ‘ par 

(end of paragraph); if is in state M (mid-line), the end-of-line character is con- 

verted to a token for character 32 (‘u’) of category 10 (space); and if is in state S 

(skipping blanks), the end-of-line character is simply dropped. 

If IfeX sees a character to be ignored (category 9), it simply bypasses that 
X ^ character as if it weren’t there, and remains in the same state. 

If sees a character of category 10 (space), the action depends on the 

^ current state. If T^]X is in state N or -S', the character is simply passed by, and 

'TEX remains in the same state. Otherwise T^jX is in state M; the character is converted 
to a token of category 10 whose character code is 32, and T^]X enters state S'. The 
character code in a space token is always 32. 

If'T^]X sees a comment character (category 14), it throws away that character 
V n and any other information that might remain on the current line. 

Finally, if sees an invalid character (category 15), it bypasses that char- 

X ^ acter, prints an error message, and remains in the same state. 

If T^X has nothing more to read on the current line, it goes to the next line 
JL X and enters state N. However, if \endinput has been specified for a file being 

\input, or if an \input file has ended, T^]X returns to whatever it was reading when 

the \input command was originally given. (Further details of \input and \endinput 

are discussed in Chapter 20.) 



48 Chapter 8: The Characters You Type 

EXERCISE 8.2 

Test your understanding of T^^X’s reading rules by answering the following 
quickie questions: (a) What is the difference between categories 5 and 14? (b) What is 
the difference between categories 3 and 4? (c) What is the difference between categories 
11 and 12? (d) Are spaces ignored after active characters? (e) When a line ends with a 
comment character like */., are spaces ignored at the beginning of the next line? (f) Can 
an ignored character appear in the midst of a control sequence name? 

/^►EXERCISE 8.3 

n Look again at the error message that appears on page 31. When reported 

that \vship was an undefined control sequence, it printed two lines of context, showing 
that it was in the midst of reading line 2 of the story file. At the time of that error 
message, what state was in? What character was it about to read next? 

EXERCISE 8.4 

n n Given the category codes of plain format, what tokens are produced from 
the input line ‘ $x''2$~ \TeX ~"C’? 

EXERCISE 8.5 

^ i Consider an input file that contains exactly three lines; the first line says ‘Hi! ’, 

while the other two lines are completely blank. What tokens are produced when 
reads this file, using the category codes of plain format? 

EXERCISE 8.6 

^ ^ Assume that the category codes of plain T^]X are in force, except that the char- 
acters ""A, '■"B, belong respectively to categories 0, 7, 10, and 11. What tokens 
are produced from the (rather ridiculous) input line 
(Remember that this line is followed by (return), which is "'■'M; and recall that '‘'‘Q 

denotes the (null) character, which has category 9 when INITEX begins.) 

The special character inserted at the end of each line needn’t be (return); 
^ actually inserts the current value of an integer parameter called Xendlinechair, 

which normally equals 13 but it can be changed like any other parameter. If the value 
of \endlinechar is negative or greater than 127, no character is appended, and the 
effect is as if every line ends with */, (i.e., with a comment character). 

Since it is possible to change the category codes, might actually use 
i several different categories for the same character on a single line. For example. 

Appendices D and E contain several ways to coerce to process text “verbatim,” 
so that the author could prepare this manual without great difficulty. (Try to imagine 
typesetting a manual; backslashes and other special characters need to switch back 
and forth between their normal categories and category 12!) Some care is needed to 
get the timing right, but you can make T^]X behave in a variety of different ways by 
judiciously changing the categories. On the other hand, it is best not to play with the 
category codes very often, because you must remember that characters never change 
their categories once they have become tokens. For example, when the arguments to a 
macro are first scanned, they are placed into a token list, so their categories are fixed 
once and for all at that time. The author has intentionally kept the category codes 
numeric instead of mnemonic, in order to discourage people from making extensive use 
of \catcode changes except in unusual circumstances. 



Chapter 8: The Characters You Type 49 

EXERCISE 8.7 

^ ^ Appendix B defines \lq and \rq to be abbreviations for 

and right quotes, respectively). Explain why the definitions 

\chaxdef\lq=96 \chaxdef\rq=39 

would not be as good. 

and ’ (single left 

for life’s not a paragraph 

And death i think is no parenthesis. 

— e. e. Cummings, since feeling is first (1926) 

This coded character set is to facilitate 
the general interchange of information 

among information processing systems, 
communication systems, and 

associated equipment. 
... An 8-bit set was considered 

but the need for more than 128 codes 
in general applications was not yet evident. 

— ASA SUBCOMMITTEE X3.2, American Standard 
Code for Information Interchange (1963) 



9 
TEX'S 

Roman Fonts 

I 



Chapter 9: Tp]X’s Roman Fonts 51 

When you’re typing a manuscript for TgX, you need to know what symbols 
are available. The plain format of Appendix B is based on the Computer 
Modern fonts, which provide the characters needed to typeset a wide variety 
of documents. It’s time now to discuss what a person can do with plain 
when typing straight text. We’ve already touched on some of the slightly subtle 
things—for example, dashes and quotation marks were considered in Chapter 2, 
and certain kinds of accents appeared in the examples of Chapters 3 and 6. The 
purpose of this chapter is to give a more systematic summary of the possibilities, 
by putting all the facts together. 

Let’s begin with the rules for the normal roman font (\rm or \tenrm); 
plain will use this font for everything unless you specify otherwise. Most of 
the ordinary symbols that you need are readily available and you can type them 
in the ordinary way: There’s nothing special about 

the letters A to Z and a to z 
the digits 0 to 9 
common punctuation marks : ; !?() [] ‘ ,0 

except that recognizes certain combinations as ligatures: 

ff yields ff; ffi yields ffi; ^ ‘ yields ^ yields j; 
fi yields fi; ffi yields ffl; ’ ’ yields ” ; yields i. 
fl yields fl; — yields-;  yields—; 

You can also type + and =, to get the corresponding symbols + and =; but it’s 
much better to use such characters only in math mode, i.e., enclosed between 
two $ signs, since that tells TgX to insert the proper spacing for mathemat- 
ics. Math mode is explained later; for now, it’s just a good idea to remember 
that formulas and text should be segregated. A non-mathematical hyphen and 
a non-mathematical slash should be specified by typing and V’ outside of 
mathematics mode, but subtraction and division should be specified by typing 

and V’ between $ signs. 
The previous paragraph covers 80 of the 94 visible characters of standard 

ASCII; so your keyboard probably contains at least 14 more symbols, and you 
should learn to watch out for the remaining ones, since they are special. Four of 
these are preempted by plain if your manuscript requires the symbols 

$#•/,& 

you should remember to type them as 

\$ \# \7o \& 

respectively. Plain also reserves the six symbols 

\ { } “^ . ~ 

but you probably don’t mind losing these, since they don’t appear in normal 
copy. Braces and backslashes are available via control sequences in math mode. 



52 Chapter 9: TpjK’s Roman Fonts 

There are four remaining special characters in the standard ASCII set: 

" I < > 

Again, you don’t really want them when you’re typesetting text. (Double-quote 

marks should be replaced either by ‘ ^ or by ’ C vertical lines and relation signs 

are needed only in math mode.) 

Scholarly publications in English often refer to other languages, so plain 

TgX makes it possible to typeset the most commonly used accents: 

Type to get 

Vo 
s 

0 (grave accent) 

Vo 
/ 

0 (acute accent) 

Vo 
.A 

0 (circumflex or “hat”) 

Vo b (umlaut or dieresis) 

Vo 0 (tilde or “squiggle”) 

\=o o (macron or “bar”) 

\.o 6 (dot accent) 

\u 0 6 (breve accent) 

\v 0 6 (hacek or “check”) 

\H 0 
n 

0 (long Hungarian umlaut) 

\t 00 00 (tie-after accent) 

Within the font, such accents are designed to appear at the right height for the 

letter ‘o’; but you can use them over any letter, and will raise an accent that 

is supposed to be taller. Notice that spaces are needed in the last four cases, to 

separate the control sequences from the letters that follow. You could, however, 

type ‘\H{o}’ in order to avoid putting a space in the midst of a word. 

Plain TgX also provides three accents that go underneath: 

Type to get 

\c 0 Q (cedilla accent) 

\d 0 0 (dot-under accent) 

\b 0 o (bar-under accent) 

ue are a few special letters: 

Type to get 

\oe,\0E oe, (E (French ligature OE) 

\ae,\AE ae, iE (Latin and Scandinavian ligature AE) 

\aa,\AA a, A (Scandinavian A-with-circle) 

\o,\0 0,0 (Scandinavian 0-with-slash) 

\1,\L 1,L (Polish suppressed-L) 

\ss B (German “es-zet” or sharp S) 

The \rm font contains also the dotless letters ‘i’ and ‘j’, which you can obtain by 

typing ‘\i’ and ‘\j’. These are needed because ‘i’ and ‘j’ should lose their dots 



Chapter 9: TpjK’s Roman Fonts 53 

when they gain an accent. For example, the right way to obtain ‘minus’ is to 
type ‘m\=\i n\u us’ or ‘m\={\i}n\u{u}s’. 

This completes our summary of the \rm font. Exactly the same conven- 
tions apply to \bf, \sl, and \it, so you don’t have to do things differently when 
you’re using a different typeface. For example, \bf\"o yields o and \it\& yields 
&. Isn’t that nice? 

However, \tt is slightly different. You will be glad to know that ff, fi, and so 

on are not treated as ligatures when you’re using typewriter type; nor do you 

get ligatures from dashes and quote marks. That’s fine, because ordinary dashes and 
ordinary double-quotes are appropriate when you’re trying to imitate a typewriter. 

Most of the accents are available too. But \H, \., \1, and \L cannot be used—the 

typewriter font contains other symbols in their place. Indeed, you are suddenly allowed 

to type ", I, <, and >; see Appendix F. All of the letters, spaces, and other symbols in 

\tt have the same width. 

► EXERCISE 9.1 

What’s the non-naive way to type ‘naive’ ? 

► EXERCISE 9.2 

List some English words that contain accented letters. 

► EXERCISE 9.3 

How would you type ‘Tlsop’s (Euvres en frangais’ ? 

► EXERCISE 9.4 

Explain what to type in order to get this sentence: Commentarii Academiae 
scientiarum imperialis petropolitanae is now Akademha Nauk SSSR, Doklady. 

► EXERCISE 9.5 

And how would you specify the names Ernesto Cesaro, Pal Erdos, 0ystein Ore, 
Stanislaw Swierczkowski, Sergei lur’ev, Munammad ibn Musa al-Khwarizmi? 

► EXERCISE 9.6 

Devise a way to typeset Pal Erdos in typewriter type. 

The following symbols come out looking exactly the same whether you 
are using \nn, \sl, \bf, \it, or \tt: 

Type to get 

\dag t 
\ddag t 

\S § 

\P 1 

(dagger or obelisk) 
(double dagger or diesis) 
(section number sign) 
(paragraph sign or pilcrow) 

(They appear in just one style because plain T^X gets them from the math 
symbols font. Lots of other symbols are needed for mathematics; we shall study 
them later. See Appendix B for a few more non-math symbols.) 



54 Chapter 9: TpjX’s Roman Fonts 

► EXERCISE 9.7 
In plain T^]X’s italic font, the ‘$’ sign comes out as '£\ This gives you a way 
to refer to pounds sterling, but you might want an italic dollar sign. Can you 
think of a way to typeset a reference to the book Europe on $15.00 a day 7 

Appendix B shows that plain handles most of the accents by using TTX’s 

\accent primitive. For example, \^#1 is equivalent to {\accentl9 #1}, where 

#1 is the argument being accented. The general rule is that \accent(number) puts an 

accent over the next character; the (number) tells where that accent appears in the 

current font. The accent is assumed to be properly positioned for a character whose 

height equals the x-height of the current font; taller or shorter characters cause the 

accent to be raised or lowered, taking due account of the slantedness of the fonts of 

accenter and accentee. The width of the final construction is the width of the character 
being accented, regardless of the width of the accent. Mode-independent commands like 

font changes may appear between the accent number and the character to be accented, 

but grouping operations must not intervene. If it turns out that no suitable character 

is present, the accent will appear by itself as if you had said \ char (number) instead of 

\ac cent (number). For example, \M} produces h 

EXERCISE 9.8 

^ ^ Why do you think plain TgX defines \’#1 to be ‘{\accentl9 #1}’ instead of 

simply letting be an abbreviation for ‘\accentl9 ’? (Why the extra braces, and 

why the argument #1?) 

It’s important to remember that these conventions we have discussed for ac- 

^ ^ cents and special letters are not built into TT]X itself; they belong only to the 

plain TTX format, which uses the Computer Modern fonts. Quite different conventions 

will be appropriate when other fonts are involved; format designers should provide rules 

for how to obtain accents and special characters in their particular systems. Plain 

works well enough when accents are infrequent, but the conventions of this chapter 

are by no means recommended for large-scale applications of TTX other languages. 

For example, a well-designed TTX fo^it for French would probably treat accents as lig- 

atures, so that one could e’er ire de cette manie're nai"ve en franc/ais without 

backslashes. (See the remarks about Norwegian in Chapter 8.) 



Chapter 9: TpjK’s Roman Fonts 55 

Let’s doo’t after the high Roman fashion. 

— WILLIAM SHAKESPEARE, The Tragedie of Anthony and Cleopatra (1606) 

English is a straightforward, frank, honest, open-hearted, no-nonsense language, 
which has little truck with such devilish devious devices as accents; 

indeed U.S. editors and printers are often thrown into a dither 
when a foreign word insinuates itself into the language. 

However there is one word on which Americans seem to have closed ranks, 
printing it confidently, courageously, and almost invariably 

complete with accent—the cheese presented to us as Munster. 

Unfortunately, Munster doesn't take an accent. 

— WAVERLEY ROOT, in the International Herald Tribune (1982) 



10 
Dimensions 



Chapter 10: Dimensions 57 

Sometimes you want to tell IjgX how big to make a space, or how wide to make 

a line. For example, the short story of Chapter 6 used the instruction ‘\vskip 

.5cm’ to skip vertically by half a centimeter, and we also said ‘\hsize=4in’ to 

specify a horizontal size of 4 inches. It’s time now to consider the various ways 

such dimensions can be communicated to T^. 

“Points” and “picas” are the traditional units of measure for printers 

and compositors in Epglish-speaking countries, so understands points and 

picas. also understands inches and metric units, as well as the continental 

European versions of points and picas. Each unit of measure is given a two-letter 

abbreviation, as follows: 

pt point (baselines in this manual are 12 pt apart) 

pc pica (1 pc = 12 pt) 

in inch (1 in = 72.27pt) 

bp big point (72 bp = 1 in) 

cm centimeter (2.54 cm = 1 in) 

mm millimeter (10 mm = 1cm) 

dd didot point (1157 dd = 1238 pt) 

cc cicero (Icc = 12 dd) 

sp scaled point (65536 sp = 1 pt) 

The output of T^X is firmly grounded in the metric system, using the conversion 

factors shown here as exact ratios. 

► EXERCISE 10.1 

How many points are there in 254 centimeters? 

When you want to express some physical dimension to T^, type it as 

(optional sign) (number) (unit of measure) 

or 

(optional sign) (digit string). (digit string) (unit of measure) 

where an (optional sign) is either a ‘+’ or a or nothing at all, and where a 

(digit string) consists of zero or more consecutive decimal digits. The ‘. ’ can 

also be a For example, here are six typical dimensions: 

3 in 29 pc 
-.013837in + 42,1 dd 

O.mm 123456789sp 

A plus sign is redundant, but some people occasionally like extra redundancy 

once in a while. Blank spaces are optional before the signs and the numbers and 

the units of measure, and you can also put an optional space after the dimension; 

but you should not put spaces within the digits of a number or between the letters 

of the unit of measure. 

► EXERCISE 10.2 

Arrange those six “typical dimensions” into order, from smallest to largest. 



58 Chapter 10: Dimensions 

► EXERCISE 10.3 

Two of the following three dimensions are legitimate according to T^’s rules. 
Which two are they? What do they mean? Why is the other one incorrect? 

’.77pt 

"Ccc 

-,sp 

The following “rulers” have been typeset by so that you can get 

some idea of how different units compare to each other. If no distortion has been 

introduced during the camera work and printing processes that have taken place 

after T^]?C did its work, these rulers are highly accurate. 

T 4 in 

I ^ , , , , I   r. , , I 3QQ 

I ' ' ' ' I ' ■ ' ' "I ' ' ’■■■■’■"I   1300 dd 

—^^ 1—I—^^^^^ ^ ^ I ^ ^ ^ ^ ^ I 10 cm 

► EXERCISE 10.4 

(To be worked after you know about boxes and glue and have read Chapter 21.) 
Explain how to typeset such a 10 cm ruler, using T^]X. 

TE;X represents all dimensions internally as an integer multiple of the tiny 
units called sp. Since the wavelength of visible light is approximately 100 sp, 

rounding errors of a few sp make no difference to the eye. However, T^]X does all 
of its arithmetic very carefully so that identical results will be obtained on different 
computers. Different implementations of will produce the same line breaks and 
the same page breaks when presented with the same document, because the integer 
arithmetic will be the same. 

The units have been defined here so that precise conversion to sp is efficient 
on a wide variety of machines. In order to achieve this, T^]X’s “pt” has been 

made slightly larger than the official printer’s point, which was defined to equal exactly 
.013837 in by the American Typefounders Association in 1886 [cf. National Bureau of 
Standards Circular 570 (1956)]. In fact, one classical point is exactly .99999999 pt, so 
the “error” is essentially one part in 10®. This is more than two orders of magnitude 
less than the amount by which the inch itself changed during 1959, when it shrank to 
2.54 cm from its former value of (1/0.3937) cm; so there is no point in worrying about 
the difference. The new definition 72.27pt = 1 in is not only better for calculation, it is 
also easier to remember. 

TgX will not deal with dimensions whose absolute value is 2®° sp or more. In 
other words, the maximum legal dimension is slightly less than 16384 pt. This 

is a distance of about 18.892 feet (5.7583 meters), so it won’t cramp your style. 



Chapter 10: Dimensions 59 

In a language manual like this it is convenient to use “angle brackets” 
in abbreviations for various constructions like (number) and (optional sign) and 
(digit string). Henceforth we shall use the term (dimen) to stand for a legitimate 
TgX dimension. For example, 

\hsize=(dimen) 

will be the general way to define the column width that is supposed to use. 
The idea is that (dimen) can be replaced by any quantity like ‘4in’ that satisfies 
TgX’s grammatical rules for dimensions; abbreviations in angle brackets make it 
easy to state such laws of grammar. 

When a dimension is zero, you have to specify a unit of measure even 
though the unit is irrelevant. Don’t just say ‘0’; say ‘Opt’ or ‘Oin’ or something. 

The 10-point size of type that you are now reading is normal in text- 
books, but you probably will often find yourself wanting a larger font. Plain T]gX 
makes it easy to do this by providing magnified output. If you say 

\magnification=1200 

at the beginning of your manuscript, everything will be enlarged by 20%; i.e., it 
will come out at 1.2 times the normal size. Similarly, ‘\magnif ication=2000’ 
doubles everything; this actually quadruples the area of each letter, since heights 
and widths are both doubled. To magnify a document by the factor /, you say 
\magnification= (number), where the (number) is 1000 times /. This instruc- 
tion must be given before the first page of output has been completed. You 
cannot apply two different magnifications to the same document. 

Magnification has obvious advantages: You’ll have less eyestrain when 
you’re proofreading; you can easily make transparencies for lectures; and you 
can photo-reduce magnified output, in order to minimize the deficiencies of a 
low-resolution printer. Conversely, you might even want ‘\magnif ication=500’ 
in order to create a pocket-size version of some book. But there’s a slight catch: 
You can’t use magnification unless your printing device happens to have the 
fonts that you need at the magnification you desire. In other words, you need 
to find out what sizes are available before you can magnify. Most installations 
of TgX make it possible to print all the fonts of plain TgX if you magnify by 
\magstep0, 1, 2, 3, and perhaps 4 or even 5 (see Chapter 4); but the use of large 
fonts can be expensive because a lot of system memory space is often required 
to store the shapes. 

► EXERCISE 10.5 

Try printing the short story of Chapter 6 at 1.2, 1.44, and 1.728 times the normal 
size. What should you type to get to do this? 

When you say \magnification=2000, an operation like ‘\vskip.5cin’ will ac- 

tually skip 1.0 cm of space in the final document. If you want to specify a 

dimension in terms of the final size, T^X allows you to say ‘true’ just before pt, pc, in, 



60 Chapter 10: Dimensions 

bp, cm, mm, dd, cc, and sp. This unmagnifies the units, so that the subsequent magni- 

fication will cancel out. For example, ‘\vskip.5truecm’ is equivalent to ‘\vskip.25cm’ 

if you have previously said ‘\magnif ication=2000’. Plain uses this feature in the 
\magnif ication command itself: Appendix B includes the instruction 

\hsize = 6.5 true in 

just after a new magnification has taken effect. This adjusts the line width so that the 

material on each page will be 6| inches wide when it is finally printed, regardless of the 

magnification factor. There will be an inch of margin at both left and right, assuming 

that the paper is 8| inches wide. 

If you use no ‘true’ dimensions, T]EX’S internal computations are not affected 

by the presence or absence of magnification; line breaks and page breaks will 

be the same, and the dvi file will change in only two places. TgX simply tells the 

printing routine that you want a certain magnification, and the printing routine will 

do the actual enlargement when it reads the dvi file. 

► EXERCISE 10.6 

Chapter 4 mentions that fonts of different magnifications can be used in the 

same job, by loading them ‘at’ different sizes. Explain what fonts will be used when 

you give the commands 

\magnification=\magstepl 

\font\first=cmrlO scaled\magstepl 

\font\second=cmrlO at 12truept 

Magnification is actually governed by TgX’s \mag primitive, which is an integer 

X i parameter that should be positive and at most 32768. The value of \mag is 

examined in three cases: (1) just before the first page is shipped to the dvi file; (2) when 

computing a true dimension; (3) when the dvi file is being closed. Alternatively, some 

implementations of produce non-dvi output; they examine \mag in case (2) and 

also when shipping out each page. Since each document has only one magnification, 

the value of \mag must not change after it has first been examined. 

TgX also recognizes two units of measure that are relative rather than absolute; 

i.e., they depend on the current context: 

em is the width of a “quad” in the current font; 

ex is the “x-height” of the current font. 

Each font defines its own em and ex values. In olden days, an “em” was the width 

of an ‘M’, but this is no longer true; ems are simply arbitrary units that come with a 

font, and so are exes. The Computer Modern fonts have the property that an em-dash 

is one em wide, each of the digits 0 to 9 is half an em wide, and lowercase ‘x’ is one ex 

high; but these are not hard-and-fast rules for all fonts. The \rm font (cmrlO) of plain 

TgX has 1 em = 10pt and lex^ 4.3 pt; the \bf font (cmbxlO) has 1 em = 11.5pt and 

1 ex 4.44 pt; and the \tt font (cmttlO) has 1 em = 10.5 pt and 1 ex 4.3 pt. All of 

these are “10-point” fonts, yet they have different em and ex values. It is generally best 

to use em for horizontal measurements and ex for vertical measurements that depend 

on the current font. 



Chapter 10: Dimensions 61 

A (dimen) can also refer to TgX’s internal registers or parameters. We shall 

discuss registers later, and a complete definition of everything that a (dimen) 

can be will be given in Chapter 24. For now it will suffice to give some hints about 

what is to come; ‘\hsize’ stands for the current horizontal line size, and ‘.5\hsize’ 

is half that amount; ‘2\wd3’ denotes twice the width of register \box3; ‘-\dimenl00’ is 

the negative of register \dimenl00. 

f Notice that the unit names in dimensions are not preceded by backslashes. The 

same is true of other so-called keywords of the T^]X language. Keywords can be 

given in uppercase letters or in a mixture of upper and lower case; e.g., ‘Pt’ is equivalent 

to ‘pt’. The category codes of these letters are irrelevant; you may, for example, be 

using a p of category 12 (other) that was generated by expanding ‘\the\hsize’ as 

explained in Chapter 20. TgX gives a special interpretation to keywords only when 

they appear in certain very restricted contexts. For example, ‘pt’ is a keyword only 

when it appears after a number in a (dimen); ‘at’ is a keyword only when it appears 

after the external name of a font in a \font declaration. Here is a complete list of 

TgX’s keywords, in case you are wondering about the full set; at, bp, by, cc, cm, dd, 
depth, em, ex, fil, height, in, 1, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to, 

true, width. (See Appendix I for references to the contexts in which each of these is 

recognized as a keyword.) 

The methods that have hitherto been taken 
to discover the measure of the Roman foot, 

will, upon examination, be found so unsatisfactory, that 
it is no wonder the learned are not yet agreed on that point. 

9 London inches are equal to 8,447 Paris inches. 

— MATTHEW PAPER, in Philosophical Transactions (1760) 

Without the letter U, 
units would be nits. 

— SESAME STREET (1970) 



Boxes 



Chapter 11: Boxes 63 

TgX makes complicated pages by starting with simple individual characters and 
putting them together in larger units, and putting these together in still larger 
units, and so on. Conceptually, it’s a big paste-up job. The T^nical terms used 
to describe such page construction are boxes and glue. 

Boxes in TgX are two-dimensional things with a rectangular shape, hav- 
ing three associated measurements called height, width, and depth. Here is a 
picture of a typical box, showing its so-called reference point and baseline: 

Reference point 

width 

From T^’s viewpoint, a single character from a font is a box; it’s one of the 
simplest kinds of boxes. The font designer has decided what the height, width, 
and depth of the character are, and what the symbol will look like when it is in 
the box; Tf^X uses these dimensions to paste boxes together, and ultimately to 
determine the locations of the reference points for all characters on a page. In 
plain T^’s \rm font (cmrlO), for example, the letter ‘h’ has a height of 6.9444 
points, a width of 5.5555 points, and a depth of zero; the letter ‘g’ has a height 
of 4.3055 points, a width of 5 points, and a depth of 1.9444 points. Only certain 
special characters like parentheses have height plus depth actually equal to 10 
points, although cmrlO is said to be a “lO-point” font. You needn’t bother to 
learn these measurements yourself, but it’s good to be aware of the fact that TRX 

deals with such information; then you can better understand what the computer 
does to your manuscript. 

The character shape need not fit inside the boundaries of its box. For 
example, some characters that are used to build up larger math symbols like 
matrix brackets intentionally protrude a little bit, so that they overlap properly 
with the rest of the symbol. Slanted letters frequently extend a little to the right 
of the box, as if the box were skewed right at the top and left at the bottom, 
keeping its baseline hxed. For example, compare the letter ‘g’ in the cmrlO and 
cmsllO fonts (\rm and \sl): 

In both cases TRX thinks that the box is 5 points wide, so both letters get exactly 
the same treatment. TRX doesn’t have any idea where the ink will go—only the 
output device knows this. But the slanted letters will be spaced properly in spite 
of TgX’s lack of knowledge, because the baselines will match up. 



64 Chapter 11: Boxes 

Actually the font designer also tells Tg;X one other thing, the so-called 
italic correction: A number is specified for each character, telling roughly how 
far that character extends to the right of its box boundary, plus a little to spare. 
For example, the italic correction for ‘g’ in cmrlO is 0.1389pt, while in cmsllO 
it is 0.8565 pt. Chapter 4 points out that this correction is added to the normal 
width if you type ‘\/’ just after the character. You should remember to use \/ 
when shifting from a slanted font to an unslanted one, especially in cases like 

the so-called {\sl italic correctionX/}: 

since no space intervenes here to compensate for the loss of slant. 

TgX also deals with another simple kind of box, which might be called 
a “black box,” namely, a rectangle like ‘ | ’ that is to be entirely filled with ink 
at printing time. You can specify any height, width, and depth you like for such 
boxes—but they had better not have too much area, or the printer might get 
upset. (Printers generally prefer white space to black space.) 

Usually these black boxes are made very skinny, so that they appear as 
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal 
rules” and “vertical rules,” so the terms uses to stand for black boxes are 
Xhrule and \vrule. Even when the box is square, as in ‘H’, you must call it 
either an Xhrule or a Xvrule. We shall discuss the use of rule boxes in greater 
detail later. (See Chapter 21.) 

Everything on a page that has been typeset by is made up of simple 
character boxes or rule boxes, pasted together in combination. pastes boxes 
together in two ways, either horizontally or vertically. When builds a 
horizontal list of boxes, it lines them up so that their reference points appear 
in the same horizontal row; therefore the baselines of adjacent characters will 
match up as they should. Similarly, when builds a vertical list of boxes, it 
lines them up so that their reference points appear in the same vertical column. 

Let’s take a look at what does behind the scenes, by comparing 
the computer’s methods with what you would do if you were setting metal type 
by hand. In the time-tested traditional method, you choose the letters that 
you need out of a type case—the uppercase letters are in the upper case—and 
you put them into a “composing stick.” When a line is complete, you adjust 
the spacing and transfer the result to the “chase,” where it joins the other rows 
of type. Eventually you lock the type up tightly by adjusting external wedges 
called “quoins.” This isn’t much different from what TgX does, except that 
different words are used; when locks up a line, it creates what is called an 
“hbox” (horizontal box), because the components of the line are pieced together 
horizontally. You can give an instruction like 

Xhbox{A line of type.} 

in a manuscript; this tells the computer to take boxes for the appropriate 
letters in the current font and to lock them up in an hbox. As far as is 



Chapter 11: Boxes 65 

concerned, the letter ‘A’ is a box ‘D’ and the letter ‘p’ is a box ‘Q’. SO the 
given instruction causes to form the hbox 

P 1033 nO i>TTL 

representing ‘A line of type.’ The hboxes for individual lines of type are eventu- 
ally joined together by putting them into a “vbox” (vertical box). For example, 
you can say 

\vbox{\hbox{Two lines}\hbox{of type.}} 

and will convert this into 

Two lines 
of type. 

The principal difference between 1^’s method and the old way is that metal 
types are generally cast so that each character has the same height and depth; 
this makes it easy to line them up by hand. TgX’s types have variable height 
and depth, because the computer has no trouble lining characters up by their 
baselines, and because the extra information about height and depth helps in 
the positioning of accents and mathematical symbols. 

Another important difference between setting and hand setting is, of 
course, that T^X will choose line divisions automatically; you don’t have to insert 
\hbox and \vbox instructions unless you want to retain complete control over 
where each letter goes. On the other hand, if you do use \hbox and \vbox, you 
can make TgX do almost everything that Ben Franklin could do in his printer’s 
shop. You’re only giving up the ability to make the letters come out charmingly 
crooked or badly inked; for such effects you need to make a new font. (And 
of course you lose the tactile and olfactory sensations, and the thrill of doing 
everything by yourself. will never completely replace the good old ways.) 

A page of text like the one you’re reading is itself a box, in I]E^’S view: 
It is a largish box made from a vertical list of smaller boxes representing the lines 
of text. Each line of text, in turn, is a box made from a horizontal list of boxes 
representing the individual characters. In more complicated situations, involving 
mathematical formulas and/or complex tables, you can have boxes within boxes 
within boxes ... to any level. But even these complicated situations arise from 
horizontal or vertical lists of boxes pasted together in a simple way; all that you 
and have to worry about is one list of boxes at a time. In fact, when you’re 
typing straight text, you don’t have to think about boxes at all, since TgX will 
automatically take responsibility for assembling the character boxes into words 
and the words into lines and the lines into pages. You need to be aware of the 
box concept only when you want to do something out of the ordinary, e.g., when 
you want to center a heading. 

From the standpoint of TfeX’s digestive processes, a manuscript comes in as a 
sequence of tokens, and the tokens are to be transformed into a sequence of 

boxes. Each token of input is essentially an instruction or a piece of an instruction; for 



66 Chapter 11: Boxes 

example, the token ‘An’ normally means, “put a character box for the letter A at the 

end of the current hbox, using the current font”; the token ‘ vskip ’ normally means, 

“skip vertically in the current vbox by the (dimen) specified in the following tokens.” 

The height, width, or depth of a box might be negative, in which case it is a 

“shadow box” that is somewhat hard to draw. doesn’t balk at negative 

dimensions; it just does arithmetic as usual. For example, the combined width of two 

adjacent boxes is the sum of their widths, whether or not the widths are positive. A 

font designer can declare a character’s width to be negative, in which case the character 

acts like a backspace. (Languages that read from right to left could be handled in this 

way, but only to a limited extent, since T^]X’s line-breaking algorithm is based on the 

assumption that words don’t have negative widths.) 

TE?C can raise or lower the individual boxes in a horizontal list; such adjust- 

ments take care of mathematical subscripts and superscripts, as well as the 

heights of accents and a few other things. For example, here is a way to make a box 

that contains the T^]X logo, putting it into T^’s internal register \boxO: 

\setboxO=\hbox{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125em X} 

Here ‘\kern-. 1667em’ means to insert blank space of —.1667 ems in the current font, 

i.e., to back up a bit; and ‘\lower.5ex’ means that the box \hbox{E} is to be lowered 

by half of the current x-height, thus offsetting that box with respect to the others. 

Instead of ‘\lower.5ex’ one could also say ‘\raise-.5ex’. Chapters 12 and 21 discuss 

the details of how to construct boxes for special effects; our goal in the present chapter 

is merely to get a taste of the possibilities. 

TgX will exhibit the contents of any box register, if you ask it to. For example, 

if you type ‘\showboxO’ after setting \boxO to the logo as above, your log 

file will contain the following mumbo jumbo: 

\hbox(6.83331+2.15277)xl8.6108 

.\tenrm T 

.\kern -1.66702 

.\hbox(6.83331+0.0)x6.80557, shifted 2.15277 

. .\tenrin E 

.\kern -1.25 

.\tenrm X 

The first line means that \box0 is an hbox whose height, depth, and width are re- 

spectively 6.83331 pt, 2.15277pt, and 18.6108pt. Subsequent lines beginning with ‘.’ 

indicate that they are inside of a box. The first thing in this particular box is the 

letter T in font \tenrm; then comes a kern. The next item is an hbox that contains 

only the letter E; this box has the height, depth, and width of an E, and it has been 

shifted downward by 2.15277pt (thereby accounting for the depth of the larger box). 

► EXERCISE 11.1 

Why are there two dots in the ‘. . \tenrm E’ line here? 

Such displays of box contents will be discussed further in Chapters 12 and 17. 

They are used primarily for diagnostic purposes, when you are trying to figure 

out exactly what thinks it’s doing. The main reason for bringing them up in the 



Chapter 11: Boxes 67 

present chapter is simply to provide a glimpse of how represents boxes in its 

guts. A computer program doesn’t really move boxes around; it fiddles with lists of 

representations of boxes. 

► EXERCISE 11.2 

By running T^]X, figure out how it actually handles italic corrections to char- 

acters: How are the corrections represented inside a box? 

► EXERCISE 11.3 

The “opposite” of T^’s logo—namely, T^X —is produced by 

\setboxl=\hbox{T\kern+.1667em\raise.5ex\hbox{E}\kern+.125em X} 

What would \showboxl show now? (Try to guess, without running the machine.) 

► EXERCISE 11.4 

Why do you think the author of didn’t make boxes more symmetrical 

between horizontal and vertical, by allowing reference points to be inside the boundary 

instead of insisting that the reference point must appear at the left edge of each box? 

EXERCISE 11.5 

X ^ Construct a \demobox macro for use in writing manuals like this, so that an 

author can write ‘\demobox{Tough exercise.}’ in order to typeset 

EXERCISE 11.6 

^ X Construct a \frac macro such that ‘\fracl/2’ yields ‘V2’- 

/ have several boxes in my memory 
in which I will keep them all very safe, 
there shall not a one of them be lost. 

— IZAAK WALTON, The Compleat Angler (1653) 

How very little does the amateur, dwelling at home at ease, 
comprehend the labours and perils of the author. 

— R. L. STEVENSON and L. OSBOURNE, The Wrong Box (1889) 





Chapter 12: Glue 69 

But there’s more to the story than just boxes: There’s also some magic mortar 
called glue that TgX uses to paste boxes together. For example, there is a little 
space between the lines of text in this manual; it has been calculated so that 
the baselines of consecutive lines within a paragraph are exactly 12 points apart. 
And there is space between words too; such space is not an “empty” box, it 
is part of the glue between boxes. This glue can stretch or shrink so that the 
right-hand margin of each page comes out looking straight. 

When T^ makes a large box from a horizontal or vertical list of smaller 
boxes, there often is glue between the smaller boxes. Glue has three attributes, 
namely its natural space, its ability to stretch, and its ability to shrink. 

In order to understand how this works, consider the following example 
of four boxes in a horizontal list separated by three globs of glue: 

width 5 

space 9 
stretch 3 
shrink 1 

width 3 

width 6 width 8 

space 9 
stretch 6 

space 12 
stretch 0 

shrink 2 shrink 0 

width 52 -> 

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next 
one also has 9 units of space, but 6 units of stretch and 2 of shrink; the last one 
has 12 units of space, but it is unable to stretch or to shrink, so it will remain 
12 units of space no matter what. 

The total width of boxes and glue in this example, considering only the 
space components of the glue, is 5 + 9 + 6 + 9 + 3 + 12 + 8 = 52 units. This 
is called the natural width of the horizontal list; it’s the preferred way to paste 
the boxes together. Suppose, however, that T^ is told to make the horizontal 
list into a box that is 58 units wide; then the glue has to stretch by 6 units. 
Well, there are 3 + 6 + 0 = 9 units of stretchability present, so T^ multiplies 
each unit of stretchability by 6/9 in order to obtain the extra 6 units needed. 
The hrst glob of glue becomes 9 + (6/9) x 3 = 11 units wide, the next becomes 
9 + (6/9) X 6 = 13 units wide, the last remains 12 units wide, and we obtain the 
desired box looking like this: 

width 58 

On the other hand, if is supposed to make a box 51 units wide from 
the given list, it is necessary for the glue to shrink by a total of one unit. There 
are three units of shrinkability present, so the hrst glob of glue would shrink by 
1/3 and the second by 2/3. 



70 Chapter 12: Glue 

The process of determining glue thickness when a box is being made 

from a horizontal or vertical list is called setting the glue. Once glue has been 

set, it becomes rigid; it won’t stretch or shrink any more, and the resulting box 

is essentially indecomposable. 

Glue will never shrink more than its stated shrinkability. For example, 

the first glob of glue in our illustration will never be allowed to become narrower 

than 8 units wide, and will never shrink the given horizontal list to make 

its total width less than 49 units. But glue is allowed to stretch arbitrarily far, 

whenever it has a positive stretch component. 

► EXERCISE 12.1 

How wide would the glue globs be if the horizontal list in the illustration were 

to be made 100 units wide? 

Once you understand concept of glue, you may well decide that 

it was misnamed; real glue doesn’t stretch or shrink in such ways, nor does it 

contribute much space between boxes that it welds together. Another word like 

“spring” would be much closer to the essential idea, since springs have a nat- 

ural width, and since different springs compress and expand at different rates 

under tension. But whenever the author has suggested changing 1^^’s termi- 

nology, numerous people have said that they like the word “glue” in spite of its 

inappropriateness; so the original name has stuck. 

TT;X is somewhat reluctant to stretch glue more than the stated stretchability; 
therefore you can decide how big to make each aspect of the glue by using the 

following rules: (a) The natural glue space should be the amount of space that looks 
best. (b) The glue stretch should be the maximum amount of space that can be 
added to the natural spacing before the layout begins to look bad. (c) The glue shrink 
should be the maximum amount of space that can be subtracted from the natural 
spacing before the layout begins to look bad. 

In most cases the designer of a book layout will have specified all the 

kinds of glue that are to be used, so a typist will not need to decide how big 

any glue attributes should be. For example, users of the plain format of 

Appendix B can type Asmallskip’ when they want a little extra space between 

paragraphs; a \smallskip turns out to be 3pt worth of vertical glue that can 

stretch or shrink by an additional Ipt. Here is a \smallskip: 

Instead of sprinkling various amounts of glue throughout a manuscript, express- 

ing each of them explicitly in terms of points, you will find it much better 

to explain your intentions more clearly by typing something like ‘\smallskip’ 

when you want abnormal spacing. The definition of \smallskip can readily 

be changed later, in case you want such spaces to be smaller or larger. Plain 

TgX also provides you with ‘\medskip’, which is worth two smallskips, and 

‘\bigskip’, which is worth two medskips. 

A plain T^X \medskip appears before and after each “dangerous bend” section 
of this manual, so you have already seen numerous examples of such spacing 



Chapter 12: Glue 71 

before you knew what it was called. Vertical glue is created by writing ‘\vskip(glue)’, 

where (glue) is any glue specification. The usual way to specify (glue) to is 

(dimen) plus (dimen) minus (dimen) 

where the ‘plus(dimen)’ and ‘minus(dimen)’ are optional and assumed to be zero if not 

present; ‘plus’ introduces the amount of stretchability, ‘minus’ introduces the amount 

of shrinkability. For example, Appendix B defines \medskip to be an abbreviation for 

‘\vskip6pt plus2pt minus2pt’. The normal-space component of glue must always be 

given as an explicit (dimen), even when it is zero. 

Horizontal glue is created in the same way, but with \hskip instead of \vskip. 

For example, plain defines \enskip as an abbreviation for the command 

‘\hskip. 5em\relax’; this skips horizontally by one “en,” i.e., by exactly half of an em 

in the current font. There is no stretching or shrinking in an \enskip. The control 

sequence \relax after ‘.5em’ prevents from thinking that a keyword is present, in 

case the text following \enskip just happens to begin with ‘plus’ or ‘minus’. 

One of the interesting things that happens when glue stretches and 

shrinks at different rates is that there might be glue with infinite stretchabil- 

ity. For example, consider again the four boxes we had at the beginning of this 

chapter, with the same glue as before except that the glue in the middle can 

stretch infinitely far. Now the total stretchability is infinite; and when the line 

has to grow, all of the additional space is put into the middle glue. If, for ex- 

ample, a box of width 58 is desired, the middle glue expands from 9 to 15 units, 

and the other spacing remains unchanged. 

If such infinitely stretchable glue is placed at the left of a row of boxes, 

the effect is to place them “flush right,” i.e., to move them over to the rightmost 

boundary of the constructed box. And if you take two globs of infinitely stretch- 

able glue, putting one at the left and one at the right, the effect is to center the 

list of boxes within a larger box. This in fact is how the \centerline instruction 

works in plain TppC: It places infinite glue at both ends, then makes a box whose 

width is the current value of \hsize. 

The short story example of Chapter 6 used infinite glue not only for 

centering, but also in the \vfill instruction at the end; ‘\vfill’ essentially 

means “skip vertically by zero, but with infinite stretchability.” In other words, 

\vfill fills up the rest of the current page with blank space. 

TgX actually recognizes several kinds of infinity, some of which are “more 

infinite” than others. You can say both \vfil and \vfill; the second is 

stronger than the first. In other words, if no other infinite stretchability is present, 

\vfil will expand to fill the remaining space; but if both \vfil and \vfill are present 

simultaneously, the \vfill effectively prevents \vfil from stretching. You can think 

of it as if \vf il has one mile of stretchability, while \vf ill has a trillion miles. 

Besides \vfil and \vfill, has \hfil and \hfill, for stretching indefi- 

nitely in the horizontal direction. You can also say \hss or \vss, in order to 

get glue that is infinitely shrinkable as well as infinitely stretchable. (The name ‘\hss’ 

stands for “horizontal stretch or shrink”; ‘\vss’ is its vertical counterpart.) Finally, the 



72 Chapter 12: Glue 

primitives \hfilneg and \vfilneg will cancel the stretchability of \hfil and \vfil; 

we shall discuss applications of these curious glues later. 

Here are some examples of \hf il, using the Mine macro of plain T^, which 

creates an hbox whose width is the current \hsize: 

\line{This text will be flush left.\hfil} 

\line{\hfil This text will be flush right.} 

\line{\hfil This text will be centered.\hfil} 

MinefSome text flush left\hfil and some flush right.} 

\line{Alpha\hfil centered between Alpha and Omega\hfil Omega} 

\line{Five\hfil words\hfil equally\hfil spaced\hfil out.} 

► EXERCISE 12.2 
Describe the result of 

\line{\hfil\hfil What happens now?\hfil} 

\line{\hfill\hfil and now?\hfil} 

EXERCISE 12.3 
How do the following three macros behave differently? 

\def\centerlinea#l{\line{\hfil#l\hfil}} 

\def\centerlineb#l{\line{\hfill#l\hfill}} 

\def\centerlinec#l{\line{\hss#l\hss}} 

In order to specify such infinities, you are allowed to use the special units ‘f il’, 

‘fill’, and ‘filll’ in the (dimen) parts of a stretchability or shrinkability 

component. For example, \vf il, \vf ill, \vss, and \vf ilneg are essentially equivalent 

to the glue specifications 

\vskip Opt plus Ifil 

\vskip Opt plus Ifill 

\vskip Opt plus Ifil minus Ifil 

\vskip Opt plus -Ifil 

respectively. It’s usually best to stick to the first order infinity (fil) as much as you can, 

resorting to second order (fill) only when you really need something extremely infinite. 

Then the ultimate order (filll) is always available as a last resort in emergencies. (T^]X 

does not provide a ‘\vfilll’ primitive, since the use of this highest infinity is not 

encouraged.) You can use fractional multiples of infinity like ‘3.25fil’, as long as 

you stick to fewer than 16384 fil units. actually does its calculations with integer 

multiples of fil (or fill or filll) ; so 0. OOOOOTf illl turns out to be indistinguishable 

from Opt, but O.OOOOlfilll is infinitely greater than 16383.99999fill. 

Now here’s something important for all Tg^nical typists to know: Plain 
T^X puts extra space at the end of a sentence; furthermore, it automatically 
increases the stretchability (and decreases the shrinkability) after punctuation 
marks. The reason is that it’s usually better to put more space after punctua- 
tion than between two ordinary words, when spreading a line out to reach the 
desired margins. Consider, for example, the following sentences from a classic 
kindergarten pre-primer: 

‘‘Oh, oh!’’ cried Baby Sally. Dick and Jane laughed. 



Chapter 12: Glue 73 

If TgX sets this at its natural width, all the spaces will be the same, except after 

the quote and after ‘Baby Sally.’: 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more, 

TgX will set it as 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

The glue after the comma stretches at 1.25 times the rate of the glue between 

adjacent words; the glue after the period and after the ! ’ ’ stretches at 3 times 

the rate. There is no glue between adjacent letters, so individual words will 

always look the same. If T^ had to shrink this line to its minimum width, the 

result would be 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

The glue after a comma shrinks only 80 percent as much as ordinary inter-word 

glue, and after a period or exclamation point or question mark it shrinks by only 

one third as much. 

This all makes for nice-looking output, but it unfortunately adds a bit 

of a burden to your job as a typist, because 1^^’s rule for determining the end of 

a sentence doesn’t always work. The problem is that a period sometimes comes 

in the middle of a sentence ... like when it is used (as here) to make an “ellipsis” 

of three dots. 

Moreover, if you try to specify ‘...’ by typing three periods in a row, 

you get ‘...’—the dots are too close together. One way to handle this is to go 

into mathematics mode, using the \ldots control sequence defined in plain 

format. For example, if you type 

Hmimn $\ldots$ I wonder why? 

the result is ‘Hmmm ... I wonder why?’. This works because math formulas are 

exempt from the normal text spacing rules. Chapter 18 has more to say about 

\ldots and related topics. 

Abbreviations present problems too. For example, the short story in 

Chapter 6 referred to ‘Mr. Drofnats’; must be told somehow that the period 

after ‘Mr.’ or ‘Mrs.’ or ‘Ms.’ or ‘Prof.’ or ‘Dr.’ or ‘Rt. Hon.’, etc., doesn’t count 

as a sentence-ending full stop. 

We avoided that embarrassment in Chapter 6 by typing ‘Mr. ~Drofnats’; 

the “tie” mark ~ tells plain TE)C to insert a normal space, and to refrain from 

breaking between lines at that space. Another way to get to put out a 

normal space is to type ‘\u’ (control space); e.g., ‘Mr.\ Drofnats’ would be 

almost the same as ‘Mr. "Drofnats’, except that a line might end after the ‘Mr.’. 



74 Chapter 12: Glue 

The tie mark is best for abbreviations within a name, and after several 

other common abbreviations like ‘Fig.’ and ‘cf.’ and ‘vs.’ and ‘resp.’; you will 

hnd that it’s easy to train yourself to type ‘cf. ~Fig. "5’. In fact, it’s usually 

wise to type ~ (instead of a space) just after a common abbreviation that occurs 

in the middle of a sentence. Manuals of style will tell you that the abbreviations 

‘e.g.’ and ‘i.e.’ should always be followed by commas, never by spaces, so those 

particular cases shouldn’t need any special treatment. 

The only remaining abbreviations that arise with signihcant frequency 

occur in bibliographic references; control spaces are appropriate here. If, for 

example, you are typing a manuscript that refers to ‘Proc. Amer. Math. Soc.’, 

you should say 

Proc.\ Amer.\ Math.\ Soc. 

Granted that this input looks a bit ugly, it makes the output look right. It’s one 

of the things we occasionally must do when dealing with a computer that tries 

to be smart. 

► EXERCISE 12.4 

Explain how to type the following sentence: “Mr. & Mrs. User were married by 

Rev. Drofnats, who preached on Matt. 19: 3-9.” 

► EXERCISE 12.5 

Put the following bibliographic reference into plain language: Donald E. 

Knuth, “Mathematical typography,” Bull. Amer. Math. Soc. 1 (1979), 337-372. 

On the other hand, if you don’t care about such refinements of spacing 

you can tell plain T^ to make all spaces the same, regardless of punctuation 

marks, by simply typing ‘\f renchspacing’ at the beginning of your manuscript. 

French spacing looks like this: 

“Oh, oh!” cried Baby Sally. Dick and Jane laughed. 

You can also shift back and forth between the two styles, either by saying 

‘\nonfrenchspacing’ to establish sophisticated spacing, or by making your use 

of \frenchspacing local to some group. For example, you might want to use 

French spacing only when typing the bibliography of some document. 

TgX doesn’t consider a period or question mark or exclamation point to be 
the end of a sentence if the preceding character is an uppercase letter, since 

TgX assumes that such uppercase letters are most likely somebody’s initials. Thus, for 

example, the A’ is unnecessary after the ‘I.’ in ‘Dr. ~Livingstone''I. \ Presume’; that 

particular period is not assumed to be a full stop. 

►EXERCISE 12.6 

JL What can you do to make recognize the ends of sentences that do end with 

uppercase letters (e.g., ‘... launched by NASA.’ or ‘Did I?’ or ‘... see Appendix A.’)? 



Chapter 12: Glue 75 

fYou can see the glue that T^]X puts between words by looking at the contents 

of hboxes in the internal diagnostic format that we discussed briefly in Chap- 
ter 11. For example, Baby Sally’s exclamation begins as follows, after has digested 

it and put it into a box, assuming \nonfrenchspacing: 

,\tenrm \ (ligature 

.\tenrm 0 

.\tenrm h 

.\tenrm , 

.\glue 3.33333 plus 2.08331 minus 0.88889 

.\tenrm o 

.\tenrm h 

.\tenrm ! 

.\tenrm " (ligature ’O 

.\glue 4.44444 plus 4.99997 minus 0.37036 

.\tenrm c 

.\tenrm r 

.\tenrm i 

.\tenrm e 

.\tenrm d 

.\glue 3.33333 plus 1.66666 minus 1.11111 

.\tenrm B 

.\tenrm a 

.\tenrm b 

.\kern-0.27779 

.\tenrm y 

.\glue 3.33333 plus 1.66666 minus 1.11111 

.\tenrm S 

.\tenrm a 

.\tenrm 1 

.\tenrm 1 

.\tenrm y 

.\kern-0.83334 

.\tenrm . 

.\glue 4.44444 plus 4.99997 minus 0.37036 

The normal interword glue in font \tenrm is 3.33333 pt, plus 1.66666 pt of stretchability, 

minus 1.11111 pt of shrinkability. Notice that the interword \glue in this list stretches 

more, and shrinks less, after the punctuation marks; and the natural space is in fact 

larger at the end of each sentence. This example also shows several other things that 

TE;X does while it processes the sample line of text: It converts ‘ ‘ and ^ ’ into single 

characters, i.e., ligatures; and it inserts small kerns in two places to improve the spacing. 

A \kern is similar to glue, but it is not the same, because kerns cannot stretch or shrink; 
furthermore, T^]X will never break a line at a kern, unless that kern is immediately 

followed by glue. 

2^2^ You may be wondering what T^^’s rules for interword glue really are, exactly. 
Y V For example, how did remember the effect of Baby Sally’s exclamation 

point, when quotation marks intervened before the next space? The details are slightly 



76 Chapter 12: Glue 

tricky, but not incomprehensible. When is processing a horizontal list of boxes 
and glue, it keeps track of a positive integer called the current “space factor.” The 
space factor is normally 1000, which means that the interword glue should not be 
modified. If the space factor / is different from 1000, the interword glue is computed 
as follows: Take the normal space glue for the current font, and add the extra space 
if/ ^ 2000. (Each font specifies a normal space, normal stretch, normal shrink, 
and extra space; for example, these quantities are 3.3333 pt, 1.66666 pt, 1.11111 pt, 
and 1.11111 pt, respectively, in cmrlO. We’ll discuss such font parameters in greater 
detail later.) Then the stretch component is multiplied by //lOOO, while the shrink 
component is multiplied by 1000//. 

However, T^]X has two parameters \spaceskip and \xspaceskip that allow 
JL you to override the normal spacing of the current font. If / > 2000 and if 

\xspaceskip is nonzero, the \xspaceskip glue is used for an interword space. Other- 
wise if \spaceskip is nonzero, the \spaceskip glue is used, with stretch and shrink 
components multiplied by //lOOO and 1000//. For example, the \raggedright macro 
of plain uses \spaceskip and \xspaceskip to suppress all stretching and shrinking 
of interword spaces. 

The space factor / is 1000 at the beginning of a horizontal list, and it is set to 
JL JL 1000 just after a non-character box or a math formula has been put onto the 
current horizontal list. You can say ‘\spacef actor=(number)’ to assign any particular 
value to the space factor; but ordinarily, / gets set to a number other than 1000 only 
when a simple character box goes on the list. Each character has a space factor code, 
and when a character whose space factor code is g enters the current list the normal 
procedure is simply to assign g as the new space factor. However, if g is zero, / is not 
changed; and if / <^ 1000 < P, the space factor is set to 1000. (In other words, / 
doesn’t jump from a value less than 1000 to a value greater than 1000 in a single step.) 

When INITEX creates a brand new T^]X, all characters have a space factor code 
of 1000, except that the uppercase letters ‘A’ through ‘Z’ have code 999. (This 

slight difference is what makes punctuation act differently after an uppercase letter; do 
you see why?) Plain redefines a few of these codes using the \sf code primitive, 
which is similar to \catcode (see Appendix B); for example, the instructions 

\sfcode')=0 \sfcode ^.=3000 

make right parentheses “transparent” to the space factor, while tripling the stretcha- 
bility after periods. The \frenchspacing operation resets \sfcode' . to 1000. 

When ligatures are formed, or when a special character is specified via Xchair, 
the space factor code is computed from the individual characters that gener- 

ated the ligature. For example, plain sets the space factor code for single-right- 
quote to zero, so that the effects of punctuation will be propagated. Two adjacent 
characters ’’ combine to form a ligature that is in character position '042] but the 
space factor code of this double-right-quote ligature is never examined by so plain 
T^X does not assign any value to \sfcode^042. A character whose character code is 
128 or more is required to have a space factor code of 1000, since maintains a 
changeable \sfcode only for characters 0 to 127. 

EXERCISE 12.7 

What are the space factors after each token of the Dick-and-Jane example? 



Chapter 12: Glue 77 

Here’s the way goes about setting the glue when an hbox is being wrapped 

up: The natural width, x, of the box contents is determined by adding up the 

widths of the boxes and kerns inside, together with the natural widths of all the glue 

inside. Furthermore the total amount of glue stretchability and shrinkability in the 

box is computed; let’s say that there’s a total of yo + yi fil + y2 fill + ys filll available 

for stretching and zo + zi fil + Z2 fill + Z3 filll available for shrinking. Now the natural 

width X is compared to the desired width w. U x = w, all glue gets its natural width. 

Otherwise the glue will be modified, by computing a “glue set ratio” r and a “glue set 

order” i in the following way: (a) U x < w, attempts to stretch the contents of 

the box; the glue order is the highest subscript i such that yi is nonzero, and the glue 

ratio \s r = {w — x)/yi. (If ^0 = yi = ^2 = ?/3 = 0, there’s no stretchability; both i 
and r are set to zero.) (b) li x > attempts to shrink the contents of the box 

in a similar way; the glue order is the highest subscript i such that Zi 7^ 0, and the 

glue ratio is normally r = {x — w)jZi. However, r is set to 1.0 in the case i = 0 and 

X — w > Zo, because the maximum shrinkability must not be exceeded, (c) Finally, 

every glob of glue in the horizontal list being boxed is modified. Suppose the glue has 

natural width u, stretchability y, and shrinkability z, where ^ is a jth order infinity 

and z is a kth order infinity. Then x < w (stretching), this glue takes the new width 

u ^ ry ii j = i; it keeps its natural width if j 7^ F li x > w (shrinking), this glue 

takes the new width u — rz if /c = z; it keeps its natural width u ii k ^ i. Notice that 

stretching or shrinking occurs only when the glue has the highest order of infinity that 

doesn’t cancel out. 

TgX will construct an hbox that has a given width w if you issue the command 

‘\hbox to (dimen){(contents of box)}’, where w is the value of the (dimen). 

For example, the Mine macro discussed earlier in this chapter is simply an abbreviation 

for ‘\hbox to\hsize’. TgX also allows you to specify the exact amount of stretching 

or shrinking; the command ‘\hbox spread(dimen){(contents of box)}’ creates a box 

whose width w is a given amount more than the natural width of the contents. For 

example, one of the boxes displayed earlier in this chapter was generated by 

\hbox spread 5pt{''0h, oh!^’ ... laughed.} 

In the simplest case, when you just want a box to have its natural width, you don’t 

have to write ‘\hbox spread Opt’; you can simply say ‘\hbox{(contents of box)}’. 

The baseline of a constructed hbox is the common baseline of the boxes inside. 

(More precisely, it’s the common baseline that they would share if they weren’t 

raised or lowered.) The height and depth of a constructed hbox are determined by the 

maximum distances by which the interior boxes reach above and below the baseline, 

respectively. The result of \hbox never has negative height or negative depth, but the 

width can be negative. 

► EXERCISE 12.8 

Assume that \boxl is 1 pt high, 1 pt deep, and 1 pt wide; \box2 is 2pt high, 

2 pt deep, and 2 pt wide. A third box is formed by saying 

\setbox3=\hbox to3pt{\hfil\lower3pt\boxl\hskip-3pt plus3fil\box2} 

What are the height, depth, and width of \box3? Describe the position of the reference 

points of boxes 1 and 2 with respect to the reference point of box 3. 



78 Chapter 12: Glue 

The process of setting glue for vboxes is similar to that for hboxes; but before 

we study the \vbox operation, we need to discuss how T^]X stacks boxes up 

vertically so that their baselines tend to be a fixed distance apart. The boxes in a 

horizontal list often touch each other, but it’s usually wrong to do this in a vertical list; 

imagine how awful a page would look if its lines of type were brought closer together 

whenever they didn’t contain tall letters, or whenever they didn’t contain any letters 

that descended below the baseline. 

T^X’s solution to this problem involves three primitives called \baselineskip, 

\lineskip, and Mineskiplimit. A format designer chooses values of these 

three quantities by writing 

\baselineskip=(glue) 

\lineskip=(glue) 
\lineskipliinit=(dimen) 

and the interpretation is essentially this: Whenever a box is added to a vertical list, 

inserts “interline glue” intended to make the distance between the baseline of the new 

box and the baseline of the previous box exactly equal to the value of \baselineskip. 

But if the interline glue calculated by this rule would cause the top edge of the new 

box to be closer than \lineskiplimit to the bottom edge of the previous box, then 

\lineskip is used as the interline glue. In other words, the distance between adjacent 

baselines will be the \baselineskip setting, unless that would bring the boxes too 

close together; the \lineskip glue will separate adjacent boxes in the latter case. 

The rules for interline glue in the previous paragraph are carried out without 

regard to other kinds of glue that might be present; all vertical spacing due 
to explicit appearances of \vskip and \kern acts independently of the interline glue. 

Thus, for example, a Xsmallskip between two lines always makes their baselines further 

apart than usual, by the amount of a Xsmallskip; it does not affect the decision about 

whether Xlineskip glue is used between those lines. 

For example, let’s suppose that Xbaselineskip=12pt plus 2pt, Xlineskip= 

3pt minus Ipt, and Xlineskiplimit=2pt. (These values aren’t particularly 

useful; they have simply been chosen to illustrate the rules.) Suppose further that a 

box whose depth is 3pt was most recently added to the current vertical list; we are 

about to add a new box whose height is h. U h = 5pt, the interline glue will be 

4pt plus 2pt, since this will make the baselines 12 pt plus 2 pt apart when we add h 
and the previous depth to the interline glue. But if h = 8pt, the interline glue will 

be 3pt minus Ipt, since Xlineskip will be chosen in order to keep from violating the 

given Xlineskiplimit when stretching and shrinking are ignored. 

When you are typesetting a document that spans several pages, it’s generally 

best to define the Xbaselineskip so that it cannot stretch or shrink, because 

this will give more uniformity to the pages. A small variation in the distance between 

baselines—say only half a point—can make a substantial difference in the appearance 

of the type, since it significantly affects the proportion of white to black. On the 

other hand, if you are preparing a one-page document, you might want to give the 

baselineskip some stretchability, so that T^]X will help you fit the copy on the page. 

► EXERCISE 12.9 

What settings of Xbaselineskip, Xlineskip, and Xlineskiplimit will cause 



Chapter 12: Glue 79 

the interline glue to be a “continuous” function of the next box height (i.e., the interline 

glue will never change a lot when the box height changes only a little)? 

fA study of internal box-and-glue representation should help to firm 

up some of these ideas. Here is an excerpt from the vertical list that 

constructed when it was typesetting this very paragraph: 

\glue 6.0 plus 2,0 minus 2.0 

\glue(\parskip) 0.0 plus 1.0 

\glue(\baselineskip) 1.25 

\hbox(7.5+1.93748)x312.0, glue set 0.80154, shifted 36.0 [] 
\penalty 10000 

\glue(\baselineskip) 2.81252 

\hbox(6.25+l.93748)x312.0, glue set 0.5816, shifted 36.0 [] 
\penalty 50 

\glue(\baselineskip) 2.81252 

\hbox(6.25+1.75)x348.0, glue set 116.70227fil [] 
\penalty 10000 

\glue(\abovedisplayskip) 6.0 plus 3.0 minus 1.0 

\glue(\lineskip) 1.0 

\hbox(149.25+0.74998)X348.0 [] 

The first \glue in this example is the \medskip that precedes each dangerous-bend 

paragraph. Then comes the \parskip glue, which is automatically supplied before 

the first line of a new paragraph. Then comes some interline glue of 1.25 pt; it was 

calculated to make a total of 11 pt when the height of the next box (7.5 pt) and the 

depth of the previous box were added. (The previous box is not shown—it’s the 

bottom line of exercise 12.9—but we can deduce that its depth was 2.25 pt.) The 

\hbox that follows is the first line of this paragraph; it has been shifted right 36 pt 

because of hanging indentation. The glue set ratio for this hbox is 0.80154; i.e., the 

glue inside is stretched by 80.154% of its stretchability. (In the case of shrinking, 

the ratio following ‘glue set’ would have been preceded by ’; hence we know that 

stretching is involved here.) TgX has put ‘ [] ’ at the end of each hbox line to indicate 

that there’s something in the box that isn’t shown. (The box contents would have 

been displayed completely, if \showboxdepth had been set higher.) The \penalty 

indications are used to discourage bad breaks between pages, as we will see later. The 

third hbox has a glue ratio of 116.70227, which applies to first-order-infinite stretching 

(i.e., fil); this results from an \hf il that was implicitly inserted just before the displayed 

material, to fill up the third line of the paragraph. Finally the big hbox whose height 

is 149.25 pt causes \lineskip to be the interline glue. This large box contains the 

individual lines of typewriter type that are displayed; they have been packaged into a 

single box so that they cannot be split between pages. Careful study of this example 

will teach you a lot about T^]X’s inner workings. 

Exception: No interline glue is inserted before or after a rule box. You can 

also inhibit interline glue by saying \nointerlineskip between boxes. 

T^X’s implementation of interline glue involves another primitive quantity 

called \prevdepth, which usually contains the depth of the most recent box 

on the current vertical list. However, \prevdepth is set to the sentinel value —lOOOpt 



80 Chapter 12: Glue 

at the beginning of a vertical list, or just after a rule box; this serves to suppress the 

next interline glue. The user can change the value of \prevdepth at any time when 

building a vertical list; thus, for example, the \nointerlineskip macro of Appendix B 

simply expands to ‘\prevdepth=-1000pt’. 

Here are the exact rules by which T^]X calculates the interline glue between 

boxes: Assume that a new box of height h (not a rule box) is about to 

be appended to the bottom of the current vertical list, and let \prevdepth = p, 

\lineskiplimit = /, \baselineskip = {b plus y minus z). If p < —lOOOpt, no in- 

terline glue is added. Otherwise ii b — p — h > I, the interline glue \b — p — h) plus y 

minus 2’ will be appended just above the new box. Otherwise the Mine skip glue will 

be appended. Finally, \prevdepth is set to the depth of the new box. 

^►EXERCISE 12.10 

^ Mr. B. L. User had an application in which he wanted to put a number of 

boxes together in a vertical list, with no space between them. He didn’t want to say 
\nointerlineskip after each box; so he decided to set \baselineskip, \lineskip, and 

\lineskiplimit all equal to Opt. Did this work? 

The vertical analog of \hbox is \vbox, and will obey the commands ‘\vbox 

to(dimen)’ and ‘\vbox spfead(dimen)’ in about the way you would expect, 

by analogy with the horizontal case. However, there’s a slight complication because 

boxes have both height and depth in the vertical direction, while they have only width 

in the horizontal direction. The dimension in a \vbox command refers to the final 

height of the vbox, so that, for example, ‘\vbox to 50pt{. . produces a box that 

is 50 pt high; this is appropriate because everything that can stretch or shrink inside a 
vbox appears in the part that contributes to the height, while the depth is unaffected 

by glue setting. 

The depth of a constructed \vbox is best thought of as the depth of the bottom 

box inside. Thus, a vbox is conceptually built by taking a bunch of boxes and 

arranging them so that their reference points are lined up vertically; then the reference 

point of the lowest box is taken as the reference point of the whole, and the glue is set 

so that the final height has some desired value. 

However, this description of vboxes glosses over some technicalities that come 

up when you consider unusual cases. For example, T^]X allows you to shift 

boxes in a vertical list to the right or to the left by saying ‘\moveright(dimen)(box)’ 

or Amoveleft(dimen)(box)’; this is like the ability to \raise or Mower boxes in a 

horizontal list, and it implies that the reference points inside a vbox need not always 
lie in a vertical line. Furthermore, it is necessary to guard against boxes that have 

too much depth, lest they extend too far into the bottom margin of a page; and later 

chapters will point out that vertical lists can contain other things like penalties and 

marks, in addition to boxes and glue. 

Therefore, the actual rules for the depth of a constructed vbox are somewhat 

i TgXnical. Here they are: Given a vertical list that is being wrapped up via 

\vbox, the problem is to determine its natural depth. (1) If the vertical list contains no 

boxes, the depth is zero. (2) If there’s at least one box, but if the final box is followed 

by kerning or glue, possibly with intervening penalties or other things, the depth is zero. 

(3) If there’s at least one box, and if the final box is not followed by kerning or glue. 



Chapter 12: Glue 81 

the depth is the depth of that box. (4) However, if the depth computed by rules (1), 

(2), or (3) exceeds \boxmaxdepth, the depth will be the current value of \boxmaxdepth. 

(Plain TgX sets Xboxmaxdepth to the largest possible dimension; therefore rule (4) 

won’t apply unless you specify a smaller value. When rule (4) does decrease the depth, 

TgX adds the excess depth to the box’s natural height, essentially moving the reference 

point down until the depth has been reduced to the stated maximum.) 

The glue is set in a vbox just as in an hbox, by determining a glue set ratio 

and a glue set order, based on the difference between the natural height x and 

the desired height w, and based on the amounts of stretchability and shrinkability that 

happen to be present. 

The width of a computed \vbox is the maximum distance by which an enclosed 

box extends to the right of the reference point, taking possible shifting into 

account. This width is always nonnegative. 

► EXERCISE 12.11 

Assume that \boxl is 1 pt high, 1 pt deep, and 1 pt wide; \box2 is 2pt high, 

2 pt deep, and 2 pt wide; the baselineskip, lineskip, and lineskiplimit are all zero; and 

the \boxmaxdepth is very large. A third box is formed by saying 

\setbox3=\vbox to3pt{\moveright3pt\boxl\vskip-3pt plus3fil\box2} 

What are the height, depth, and width of \box3? Describe the position of the reference 

points of boxes 1 and 2 with respect to the reference point of box 3. 

EXERCISE 12.12 

^ ^ Under the assumptions of the previous exercise, but with \baselineskip=9pt 

minus3fil, describe \box4 after 

\setbox4=\vbox to4pt{\vss\boxl\moveleft4pt\box2\vss} 

► EXERCISE 12.13 

Solve the previous problem but with \boxmaxdepth=-4pt. 

We have observed that \vbox combines a bunch of boxes into a larger box that 

has the same baseline as the bottom box inside. has another operation 

called \vtop, which gives you a box like \vbox but with the same baseline as the top 

box inside. For example. 

\hbox{Here are \vtop{\hbox{two lines}\hbox{of text.}}} 

produces 

Here are two lines 

of text. fYou can say ‘\vtop to(dimen)’ and ‘\vtop spread(dimen)’ just as with \vbox, 

but you should realize what such a construction means. implements \vtop 

as follows: (1) First a vertical box is formed as if \vtop had been \vbox, using all of 

the rules for \vbox as given above. (2) The final height x is defined to be zero unless 

the very first item inside the new vbox is a box; in the latter case, x is the height of 

that box. (3) Let h and d be the height and depth of the vbox in step (1). T^ 

completes the \vtop by moving the reference point up or down, if necessary, so that 

the box has height x and depth h + d — x. 



82 Chapter 12: Glue 

EXERCISE 12.14 

X ^ Describe the empty boxes that you get from ‘\vbox to(dimen){}’ and ‘\vtop 

to(dimen){}’. What are their heights, depths, and widths? 

(^►EXERCISE 12.15 

X Define a macro \nullbox#l#2#3 that produces a box whose height, depth, and 

width are given by the three parameters. The box should contain nothing that will 

show up in print. 

The \vbox operation tends to produce boxes with large height and small depth, 

while \vtop tends to produce small height and large depth. If you’re trying 

to make a vertical list out of big vboxes, however, you may not be satisfied with either 

\vbox or \vtop; you might well wish that a box had two reference points simultaneously, 

one for the top and one for the bottom. If such a dual-reference-point scheme were in 

use, one could define interline glue based on the distance between the lower reference 

point of one box and the upper reference point of its successor in a vertical list. But 

alas, TgX gives you only one reference point per box. 

There’s a way out of this dilemma, using an important idea called a “strut.” 

Plain TgX defines \strut to be an invisible box of width zero that extends 

just enough above and below the baseline so that you would need no interline glue at 

all if every line contained a strut. (Baselines are 12 pt apart in plain it turns 

out that \strut is a vertical rule, 8.5pt high and 3.5pt deep and Opt wide.) If you 

contrive to put a strut on the top line and another on the bottom line, inside your large 

vboxes, then it’s possible to obtain the correct spacing in a larger assembly by simply 

letting the boxes butt together. For example, the \footnote macro in Appendix B 

puts struts at the beginning and end of every footnote, so that the spacing will be right 

when several footnotes occur together at the bottom of some page. 

If you understand boxes and glue, you’re ready to learn the \rlap and \llap 

macros of plain T^]X; these names are abbreviations for “right overlap” and 

“left overlap.” Saying ‘\rlap{(something)}’ is like typesetting (something) and then 

backing up as if you hadn’t typeset anything. More precisely, ‘\rlap{(something)}’ 

creates a box of width zero, with ‘(something)’ appearing just at the right of that 

box (but not taking up any space). The \llap macro is similar, but it does the 

backspacing first; in other words, ‘\llap{(something)}’ creates a box of width zero, 

with ‘(something)’ extending just to the left of that box. Using typewriter type, for 

example, you can typeset ‘ji^’ by saying either ‘\rlap/=’ or ‘/\llap=’. It’s possible to 

put text into the left margin using \llap, or into the right margin using \rlap, because 

T^]X does not insist that the contents of a box must be strictly confined within that 

box’s boundaries. 

The interesting thing about \rlap and \llap is that they can be done so 

simply with infinite glue. One way to define \rlap would be 

\def\rlap#l{{\setboxO=\hbox{#l}\copyO\kern-\wdO}} 

but there’s no need to do such a lengthy computation. The actual definition in Appen- 

dix B is much more elegant, namely, 

\def\rlap#l{\hbox to Opt{#l\hss}} 



Chapter 12: Glue 83 

and it’s worth pondering why this works. Suppose, for example, that you’re doing 

\rlap{g} where the letter ‘g’ is 5pt wide. Since \rlap makes an hbox of width Opt, 

the glue represented by \hss must shrink by 5pt. Well, that glue has Opt as its natural 

width, but it has infinite shrinkability, so it can easily shrink to —5 pt; and ‘\hskip-5pt’ 

is exactly what \rlap wants in this case. 

► EXERCISE 12.16 

Guess the definition of \llap, without peeking at Appendices A or B. 

► EXERCISE 12.17 

(This is a sequel to exercise 12.2, but it’s trickier.) Describe the result of 

\line{\hfil A puzzle.\hfilneg} 

There was things which he stretched, 
but mainly he told the truth. 

— MARK TWAIN, Huckleberry Finn (1884) 

Every shape exists only because of the space around it. 
... Hence there is a ‘right’ position for every shape in every situation. 

If we succeed in finding that position, we have done our job. 

— JAN TSCHICHOLD, Typographische Gestaltung (1935) 



Modes 



Chapter 13: Modes 85 

Just as people get into different moods, TgX gets into different “modes.” (Except 
that TgX is more predictable than people.) There are six modes: 

■ Vertical mode. [Building the main vertical list, from which the pages of 
output are derived.] 

■ Internal vertical mode. [Building a vertical list for a vbox.] 

■ Horizontal mode. [Building a horizontal list for a paragraph.] 

■ Restricted horizontal mode. [Building a horizontal list for an hbox.] 

■ Math mode. [Building a mathematical formula to be placed in a hori- 
zontal list.] 

■ Display math mode. [Building a mathematical formula to be placed on 
a line by itself, temporarily interrupting the current paragraph.] 

In simple situations, you don’t need to be aware of what mode is in, because 
the computer just does the right thing. But when you get an error message 
that says ‘ ! You can’t do such-suid-such in restricted horizontal mode’, 

a knowledge of modes helps to explain why thinks you goofed. 
Basically TB^ is in one of the vertical modes when it is preparing a list 

of boxes and glue that will be placed vertically above and below one another on 
the page; it’s in one of the horizontal modes when it is preparing a list of boxes 
and glue that will be strung out horizontally next to each other with baselines 
aligned; and it’s in one of the math modes when it is reading a formula. 

A play-by-play account of a typical TgX job should make the mode idea 
clear: At the beginning, T^X is in vertical mode, ready to construct pages. If 
you specify glue or a box when TgX is in vertical mode, the glue or the box 
gets placed on the current page below what has already been specified. For 
example, the \vskip instructions in the sample run we discussed in Chapter 6 
contributed vertical glue to the page; and the \hrule instructions contributed 
horizontal rules at the top and bottom of the story. The \centerline commands 
also produced boxes that were included in the main vertical list; but those boxes 
required a bit more work than the rule boxes: Tg^ was in vertical mode when 
it encountered ‘\centerline{\bf A SHORT STORY}’, and it went temporarily 
into restricted horizontal mode while processing the words ‘A SHORT STORY’; 

then the digestive process returned to vertical mode, after setting the glue in 
the \centerline box. 

Continuing with the example of Chapter 6, TgX switched into horizontal 
mode as soon as it read the ‘0’ of ‘Once upon a time’. Horizontal mode is the 
mode for making paragraphs. The entire paragraph (lines 7 to II of the story 

file) was input in horizontal mode; then the text was divided into output lines of 
the appropriate width, those lines were put in boxes and appended to the page 
(with appropriate interline glue between them), and TgX was back in vertical 
mode. The ‘M’ on line 12 started up horizontal mode again. 

When TB^ is in vertical mode or internal vertical mode, the first token of 
a new paragraph changes the mode to horizontal for the duration of a paragraph. 



86 Chapter 13: Modes 

In other words, things that do not have a vertical orientation cause the mode to 

switch automatically from vertical to horizontal. This occurs when you type any 

character, or \char or \accent or \hskip or \u or \vrule or math shift ($); 

TgX inserts the current paragraph indentation and rereads the horizontal token 

as if it had occurred in horizontal mode. 

You can also tell explicitly to go into horizontal mode, instead of relying 

on such implicit mode-switching, by saying ‘\indent’ or ‘\noindent’. For 

example, if line 7 of the story file in Chapter 6 had begun 

\indent Once upon a time, ... 

the same output would have been obtained, because ‘\indent’ would have instructed 

TgX to begin the paragraph. And if that line had begun with 

\noindent Once upon a time, ... 

the first paragraph of the story would not have been indented. The \noindent com- 

mand simply tells T^X to enter horizontal mode if the current mode is vertical or 

internal vertical; \indent is similar, but it also creates an empty box whose width is 

the current value of \parindent, and it puts this empty box into the current horizontal 

list. Plain sets \paxindent=20pt. If you say \indent\indent, you get double 
indentation; if you say \noindent\noindent, the second \noindent does nothing. 

► EXERCISE 13.1 

If you say ‘\hbox{. . in horizontal mode, 1^]X will construct the specified 

box and it will contribute the result to the current paragraph. Similarly, if you say 

‘\hbox{. . .}’ in vertical mode, T^jX will construct a box and contribute it to the current 

page. What can you do if you want to begin a paragraph with an \hbox? 

When handling simple manuscripts, 1^]X spends almost all of its time in 

horizontal mode (making paragraphs), with brief excursions into vertical mode 

(between paragraphs). A paragraph is completed when you type \par or when 

your manuscript has a blank line, since a blank line is converted to \pax by 

the reading rules of Chapter 8. A paragraph also ends when you type certain 

things that are incompatible with horizontal mode. For example, the command 

‘\vskip lin’ on line 16 of Chapter 6’s story file was enough to terminate the 

paragraph about ‘...beautiful documents.’; no \par was necessary, since 

\vskip introduced vertical glue that couldn’t belong to the paragraph. 

If a begin-math token ($) appears in horizontal mode, T^}X plunges into 

math mode and processes the formula up until the closing ‘$’, then appends the 

text of this formula to the current paragraph and returns to horizontal mode. 

Thus, in the “I wonder why?” example of Chapter 12, went into math mode 

temporarily while processing \ldots, treating the dots as a formula. 

However, if two consecutive begin-math tokens appear in a paragraph 

($$), T^}X interrupts the paragraph where it is, contributes the paragraph-so-far 

to the enclosing vertical list, then processes a math formula in display math 

mode, then contributes this formula to the enclosing list, then returns to hori- 

zontal mode for more of the paragraph. (The formula to be displayed should 



Chapter 13: Modes 87 

end with ‘$$’.) For example, suppose you type 

the number $$\pi \approx 3.1415926536$$ is important. 

TEX goes into display math mode between the $$’s, and the output you get 
states that the number 

TT 3.1415926536 

is important. 

TpX ignores blank spaces and blank lines (or \par commands) when it’s 
in vertical or internal vertical mode, so you need not worry that such things 

might change the mode or affect a printed document. A control space (\u) will, 

however, be regarded as the beginning of a paragraph; the paragraph will start 

with a blank space after the indentation. 

At the end of a manuscript it’s usually best to finish everything 

off by typing ‘\bye’, which is plain TgX’s abbreviation for ‘\vf ill\eject\end’. 

The ‘\vf ill’ gets into vertical mode and inserts enough space to fill up the 

last page; ‘\eject’ outputs that last page; and ‘\end’ sends the computer into 

its endgame routine. 

T^X gets into internal vertical mode when you ask it to construct something 

from a vertical list of boxes (using \vbox or \vtop or \vcenter or \valign 

or \vadjust or \insert). It gets into restricted horizontal mode when you ask it to 

construct something from a horizontal list of boxes (using \hbox or \halign). Box 

construction is discussed in Chapters 12 and 21. We will see later that there is very 

little difference between internal vertical mode and ordinary vertical mode, and very 

little difference between restricted horizontal mode and ordinary horizontal mode; but 

they aren’t quite identical, because they have different goals. 

Whenever T^X looks at a token of input to decide what should be done next, 

the current mode has a potential influence on what that token means. For 

example, \kern specifies vertical spacing in vertical mode, but it specifies horizontal 

spacing in horizontal mode; a math shift character like ‘$’ causes entry to math mode 

from horizontal mode, but it causes exit from math mode when it occurs in math mode; 

two consecutive math shifts ($$) appearing in horizontal mode will initiate display math 

mode, but in restricted horizontal mode they simply denote an empty math formula. 

T^X uses the fact that some operations are inappropriate in certain modes to help you 

recover from errors that might have crept into your manuscript. Chapters 24 to 26 

explain exactly what happens to every possible token in every possible mode. 

TgX often interrupts its work in one mode to do some task in another mode, 

after which the original mode is resumed again. For example, you can say 

‘\hbox{’ in any mode; when T^X digests this, it suspends whatever else it was doing 

and enters restricted horizontal mode. The matching ‘}’ will eventually cause the hbox 

to be completed, whereupon the postponed task will be taken up anew. In this sense 

TTX can be in many modes simultaneously, but only the innermost mode influences the 
calculations at any time; the other modes have been pushed out of T^’s consciousness. 



88 Chapter 13: Modes 

One way to become familiar with T^]X’s modes is to consider the following 

curious test file called modes.tex, which exercises all the modes at once: 

1 \tracingcoinmaiids=l 

2 \hbox{ 

3 $ 

4 \vbox{ 

5 \noindent$$ 

6 x\showlists 

7 $$}$}\bye 

The first line of modes .tex tells to log every command it receives; TgX will produce 

diagnostic data whenever \tracingcommands is positive. Indeed, if you run on 

modes.tex you will get a modes.log file that includes the following information: 

{vertical mode: \hbox} 

{restricted horizontal mode: blank space} 

{math shift character $} 

{math mode: blank space} 

{\vbox} 

{internal vertical mode: blank space} 

{\noindent} 

{horizontal mode: math shift character $} 

{display math mode: blank space} 

{the letter x} 

The meaning is that TgX first saw an \hbox token in vertical mode; this caused it to 

go ahead and read the ‘{’ behind the scenes. Then entered restricted horizontal 

mode, and saw the blank space token that resulted from the end of line 2 in the 

file. Then it saw a math shift character token (still in restricted horizontal mode), 

which caused a shift to math mode; another blank space came through. Then \vbox 

inaugurated internal vertical mode, and \noindent instituted horizontal mode within 

that; two subsequent $ signs led to display math mode. (Only the first $ was shown 

by \tracingcommcinds, because that one caused to look ahead for another.) 

The next thing in modes.log after the output above is ‘{\showlists}’. This 

is another handy diagnostic command that you can use to find out things that 
T^X ordinarily keeps to itself; it causes T)gX to display the lists that are being worked 

on, in the current mode and in all enclosing modes where the work has been suspended: 

### display math mode entered at line 5 

\mathord 

.\fciml X 

### internal vertical mode entered at line 4 

prevdepth ignored 

### math mode entered at line 3 

### restricted horizontal mode entered at line 2 

\glue 3.33333 plus 1.66666 minus 1.11111 

spacefactor 1000 

### vertical mode entered at line 0 

prevdepth ignored 



Chapter 13: Modes 89 

In this case the lists represent five levels of activity, all present at the end of line 6 of 

raodes.tex. The current mode is shown first, namely, display math mode, which began 

on line 5. The current math list contains one “mathord” object, consisting of the 

letter x in family 1. (Have patience and you will understand what that means, when 

you learn about T^]X’s math formulas.) Outside of display math mode comes internal 

vertical mode, to which TgX will return when the paragraph containing the displayed 

formula is complete. The vertical list on that level is empty; ‘prevdepth ignored’ 

means that \prevdepth has a value < — lOOOpt, so that the next interline glue will be 

omitted (cf. Chapter 12). The math mode outside of this internal vertical mode has 

an empty list, likewise, but the restricted horizontal mode enclosing the math mode 

contains some glue. Finally, we see the main vertical mode that encloses everything; 

this mode was ‘entered at line O’, i.e., before the file modes.tex was input; nothing 

has been contributed so far to the vertical list on this outermost level. 

► EXERCISE 13.2 

Why is there glue in one of these lists but not in the others? 

► EXERCISE 13.3 

After this output of \showlists, the modes.log file contains further output 

from \tracingcommands. In fact, the next two lines of that file are 

{math shift character $} 

{horizontal mode: end-group character }} 

because the ‘$$’ on line 7 finishes the displayed formula, and this resumes horizontal 

mode for the paragraph that was interrupted. What do you think are the next three 

lines of modes . log ? 

► EXERCISE 13.4 

Suppose has generated a document without ever leaving vertical mode. 

What can you say about that document? 

^►EXERCISE 13.5 

V Some of T^]X’s modes cannot immediately enclose other modes; for example, 

display math mode is never directly enclosed by horizontal mode, even though displays 

occur within paragraphs, because an interrupted paragraph-so-far of horizontal mode is 

always completed and removed from T^’s memory before the processing of a displayed 

formula begins. Give a complete characterization of all pairs of consecutive modes that 

can occur in the output of \showlists. 

Every mode of life has its conveniences. 

— SAMUEL JOHNSON, The Idler (1758) 

[Hindu musicians] have eighty-four modes, 
of which thirty-six are in general use, 

and each of which, it appears, has a peculiar expression, 
and the power of moving some particular sentiment or affection. 

— MOUNTSTUART ELPHINSTONE, History of India (1841) 



14 
How TfX Breaks 

Paragraphs into Lines 



Chapter I4: How TpjX Breaks Paragraphs into Lines 91 

One of a typesetting system’s chief duties is to take a long sequence of words 
and to break it up into individual lines of the appropriate size. For example, 
every paragraph of this manual has been broken into lines that are 29 picas wide, 
but the author didn’t have to worry about such details when he composed the 
manuscript. chooses breakpoints in an interesting way that considers each 
paragraph in its entirety; the closing words of a paragraph can actually influence 
the appearance of the first line. As a result, the spacing between words is as 
uniform as possible, and the computer is able to reduce the number of times that 
words must be hyphenated or formulas must be split between lines. 

The experiments of Chapter 6 have already illustrated the general ideas: 
We discussed the notion of “badness,” and we ran into “overfull” and “underfull” 
boxes in difficult situations. We also observed that different settings of T^)X’s 
\tolerance parameter will produce different effects; a higher tolerance means 
that wider spaces are acceptable. 

will find the absolutely best way to typeset any given paragraph, 
according to its ideas of minimum badness. But such “badness” doesn’t account 
for everything, and if you rely entirely on an automatic scheme you will occasion- 
ally encounter line breaks that are not really the best on psychological grounds; 
this is inevitable, because computers don’t understand things the way people do 
(at least not yet). Therefore you’ll sometimes want to tell the machine that 
certain places are not good breakpoints. Conversely, you will sometimes want 
to force a break at a particular spot. provides a convenient way to avoid 
psychologically bad breaks, so that you will be able to obtain results of the finest 
quality by simply giving a few hints to the machine. 

“Ties”—denoted by in plain TgX—are the key to successful line 
breaking. Once you learn how to insert them, you will have graduated from 
the ranks of ordinary T^nical typists to the select group of Distinguished 
TgXnicians. And it’s really not difficult to train yourself to insert occasional 
ties, almost without thinking, as you type a manuscript. 

When you type ~ it’s the same as typing a space, except that won’t 
break a line at this space. Furthermore, you shouldn’t leave any blanks next to 
the ~, since they will count as additional spaces. If you put ~ at the very end 
of a line in your input file, you’ll get a wider space than you want, because the 
(return) that follows the ~ produces an extra space. 

We have already observed in Chapter 12 that it’s generally a good idea 
to type ~ after an abbreviation that does not come at the end of a sentence. Ties 
also belong in several other places: 

■ In references to named parts of a document: 

Chapter~12 Theorem~1.2 

Appendix~A Table~\hbox{B-8} 

Figure^S Lemmas 5 cLnd~6 

(No ~ appears after ‘Lemmas’ in the final example, since there’s no harm in having 
‘5 and 6’ at the beginning of a line. The use of \hbox is explained below.) 



92 Chapter 14: How TppC Breaks Paragraphs into Lines 

■ Between a person’s forenames and between multiple surnames: 

Donald^E. Knuth Luis~I. Trabb~Pardo 
Bartel~Leendert vaii~der~Waerden Charles~XII 

Note that it is sometimes better to hyphenate a name than to break it be- 
tween words; e.g., ‘Don-’ and ‘aid E. Knuth’ is more tolerable than ‘Donald’ 
and ‘E. Knuth’. The previous rule can be regarded as a special case of this one, 
since we may think of ‘Chapter 12’ as a compound name; another example is 
‘register^X’. Sometimes a name is so long that we dare not tie it all together, 
lest there be no way to break the line: 

Charles Louis Xavier"Joseph de~la Vall\’ee"Poussin. 

■ Between math symbols in apposition with nouns: 

dimension~$d$ width"$w$ function~$f(x)$ 
string~$s$ of length~$l$ 

However, the last example should be compared with 

string~$s$ of length $l$"or more. 

■ Between symbols in series: 

1,"2, or~3 
$a$,"$b$, aiid"$c$. 
1,~2, \dots,"$n$. 

■ When a symbol is a tightly bound object of a preposition: 

of"$x$ 
from 0 to~l 

increase $z$ by~l 
in common with"$m$. 

The rule does not, however, apply to compound objects: 

of $u$"and~$v$. 

■ When mathematical phrases are rendered in words: 

equals~$n$ less th2Ln"$\epsilon$ (given"$X$) 
mod~2 modulo~$p"e$ for all large"$n$ 

Compare ‘is"15’ with ‘is 15"times the height’. 

■ When cases are being enumerated within a paragraph: 

(b)"Show that $f(x)$ is (1)"continuous; (2)"boimded. 

It would be nice to boil all of these rules down to one or two simple principles, 
and it would be even nicer if the rules could be automated so that keyboarding 



Chapter I4: How Tp]X Breaks Paragraphs into Lines 93 

could be done without them; but subtle semantic considerations seem to be 
involved. Therefore it’s best to use your own judgment with respect to ties. The 
computer needs your help. 

A tie keeps from breaking at a space, but sometimes you want to 
prevent the machine from breaking at a hyphen or a dash. This can be done 
by using \hbox, because T^];X will not split up the contents of a box; boxes are 
indecomposable units, once they have been constructed. We have already il- 
lustrated this principle in the ‘Table~\hbox{B-8}’ example considered earlier. 
Another example occurs when you are typing the page numbers in a bibliographic 
reference: It doesn’t look good to put ‘22.’ on a line by itself, so you can type 
‘\hbox{13—22}. ’ to prohibit breaking ‘13-22.’ On the other hand, T^ doesn’t 
often choose line breaks at hyphens, so you needn’t bother to insert \hbox com- 
mands unless you need to correct a bad break that Tj^X has already made on a 
previous run. 

► EXERCISE 14.1 
Here are some phrases culled from previous chapters of this manual. How do 
you think the author typed them? 

(cf. Chapter 12). 
Chapters 12 and 21. 
line 16 of Chapter 6’s story 
lines 7 to 11 
lines 2, 3, 4, and 5. 
(2) a big black bar 
All 128 characters are initially of category 12, 
letter x in family 1. 
the factor /, where n is 1000 times /. 

► EXERCISE 14.2 
How would you type the phrase ‘for all n greater than no’ ? 

► EXERCISE 14.3 
And how would you type ‘exercise 4.3.2 15’ ? 

► EXERCISE 14.4 
Why is it better to type ‘Chapter~12’ than to type ‘\hbox{Chapter 12}’? 

► EXERCISE 14.5 

TgX will sometimes break a math formula after an equals sign. How can you 
stop the computer from breaking the formula ‘r = 0’ ? 

EXERCISE 14.6 

Explain how you could instruct not to make any breaks after explicit 

hyphens and dashes. (This is useful in lengthy bibliographies.) 

Sometimes you want to permit a line break after a ‘/’ just as if it were 
a hyphen. For this purpose plain TgX allows you to say ‘\slash’; for example, 
‘inputXslash output’ produces ‘input/output’ with an optional break. 



94 Chapter 14-’ How TpjX Breaks Paragraphs into Lines 

If you want to force to break between lines at a certain point in the 
middle of a paragraph, just say ‘\break’. However, that might cause the line to 
be really spaced out. 
If you want TgX to fill up the right-hand part of a line with blank space just 
before a forced line break, 
without indenting the next line, say ‘\hf il\break’. 

You may have several consecutive lines of input for which you want the output 

to appear line-for-line in the same way. One solution is to type ‘\par’ at the 

end of each input line; but that’s somewhat of a nuisance, so plain provides the 
abbreviation ‘\obeylines’, which causes each end-of-line in the input to be like Xpax. 

After you say \obeylines you will get one line of output per line of input, unless an 

input line ends with ‘7,’ or unless it is so long that it must be broken. For example, you 

probably want to use \obeylines if you are typesetting a poem. Be sure to enclose 

\obeylines in a group, unless you want this “poetry mode” to continue to the end of 

your document. 

{\obeylines\smallskip 

Roses are red, 

\quad Violets are blue; 

Rhymes can be typeset 

\quad With boxes and glue. 

\smallskip} 

► EXERCISE 14.7 

Explain the uses of \quad in this poem. What would have happened if ‘\quad’ 

had been replaced by ‘\indent’ in both places? 

Roughly speaking, breaks paragraphs into lines in the following 
way: Breakpoints are inserted between words or after hyphens so as to produce 
lines whose badnesses do not exceed the current \tolerance. If there’s no way 
to insert such breakpoints, an overfull box is set. Otherwise the breakpoints are 
chosen so that the paragraph is mathematically optimal, i.e., best possible, in 
the sense that it has no more “demerits” than you could obtain by any other 
sequence of breakpoints. Demerits are based on the badnesses of individual lines 
and on the existence of such things as consecutive lines that end with hyphens, 
or tight lines that occur next to loose ones. 

But the informal description of line breaking in the previous paragraph is 

an oversimplification of what really happens. The remainder of this chapter 

explains the details precisely, for people who want to apply T^]X in nonstandard ways. 

TgX’s line-breaking algorithm has proved to be general enough to handle a surprising 

variety of different applications; this, in fact, is probably the most interesting aspect 

of the whole TgX system. However, every paragraph from now on until the end of the 

chapter is prefaced by at least one dangerous bend sign, so you may want to learn the 

following material in easy stages instead of all at once. 

Before the lines have been broken, a paragraph inside of TRX is actually a 

horizontal list, i.e., a sequence of items that has gathered while in hori- 

zontal mode. We have been saying informally that a horizontal list consists of boxes 



Chapter 14-' How TppC Breaks Paragraphs into Lines 95 

and glue; the truth is that boxes and glue aren’t the whole story. Each item in a 

horizontal list is one of the following types of things: 

■ a box (a character or ligature or rule or hbox or vbox); 

■ a discretionary break (to be explained momentarily); 

■ a “whatsit” (something special to be explained later); 

■ vertical material (from \mark or \vadjust or \insert); 

■ a glob of glue (or \leaders, as we will see later); 

■ a kern (something like glue that doesn’t stretch or shrink); 

■ a penalty (representing the undesirability of breaking here); 

■ “math-on” (beginning a formula) or “math-off” (ending a formula). 

The last four types (glue, kern, penalty, and math items) are called discardable, since 

they may change or disappear at a line break; the first four types are called non- 

discardable, since they always remain intact. Many of the things that can appear in 

horizontal lists have not been touched on yet in this manual, but it isn’t necessary to 

understand them in order to understand line breaking. Sooner or later you’ll learn how 

each of the gismos listed above can infiltrate a horizontal list; and if you want to get 

a thorough understanding of internal processes, you can always use \showlists 

with various features of the language, in order to see exactly what is doing. 

A discretionary break consists of three sequences of characters called the pre- 

break, post-break, and no-break texts. The idea is that if a line break occurs 

here, the pre-break text will appear at the end of the current line and the post-break 

text will occur at the beginning of the next line; but if no break occurs, the no-break 

text will appear in the current line. Users can specify discretionary breaks in complete 

generality by writing 

\discretionary{(pre-break text)}{(post-break text)}{(no-break text)} 

where the three texts consist entirely of characters, boxes, and kerns. For example, 

can hyphenate the word ‘difficult’ between the f’s, even though this requires breaking 

the ‘fR’ ligature into ‘f-’ followed by an ‘fi’ ligature, if the horizontal list contains 

di\discretionaxy{f-}{fi}{ffi}cult. 

Fortunately you need not type such a mess yourself; T^)K’s hyphenation algorithm 

works behind the scenes, taking ligatures apart and putting them into discretionary 

breaks when necessary. 

The most common case of a discretionary break is a simple discretionary 

hyphen 

\discretionary{-}{}{} 

for which accepts the abbreviation The next most common case is 

\discretionary{}{}{} 

(an “empty discretionary”), which T]EX automatically inserts after and after every 

ligature that ends with In the case of plain T^]X, empty discretionaries are therefore 

inserted after hyphens and dashes. (Each font has an associated \hyphenchar, which 

we can assume for simplicity is equal to ‘-’.) 



96 Chapter 14’- How TpjX Breaks Paragraphs into Lines 

When hyphenates words, it simply inserts discretionary breaks into the 

horizontal list. For example, the words ‘discretionary hyphens’ are trans- 

formed into the equivalent of 

dis\-cre\-tionary hy\-phens 

if hyphenation becomes necessary. But T^]X doesn’t apply its hyphenation algorithm 

to any word that already contains a discretionary break; therefore you can use explicit 
discretionaries to override T^^’s automatic method, in an emergency. 

► EXERCISE 14.8 

Some compound words in German text change their spelling when they are 

split between lines. For example, ‘backen’ becomes ‘bak-ken’ and ‘Bettuch’ becomes 
‘Bett-tuch’. How can you instruct T^]X to produce this effect? 

In order to save time, tries first to break a paragraph into lines without 

inserting any discretionary hyphens. This first pass will succeed if a sequence 

of breakpoints is found for which none of the resulting lines has a badness exceeding 

the current value of \pretolerajice. If the first pass fails, the method of Appendix H 

is used to hyphenate each word of the paragraph by inserting discretionary breaks 

into the horizontal list, and a second attempt is made using Xtolerance instead of 

Xpretolerance. When the lines are fairly wide, as they are in this manual, experiments 

show that the first pass succeeds more than 90% of the time, and that fewer than 2 words 

per paragraph need to be subjected to the hyphenation algorithm, on the average. 

But when the lines are very narrow the first pass usually fails rather quickly. Plain 

sets Xpretoleraiice=100 and Xtolerajice=200 as the default values. If you make 

Xpretoleraiice=10000, the first pass will essentially always succeed, so hyphenations 

will not be tried (and the spacing may not be very good); on the other hand if you make 

Xpretoleraiice=-l, T^]X will omit the first pass and will try to hyphenate immediately. 

Line breaks can occur only in certain places within a horizontal list. Roughly 

speaking, they occur between words and after hyphens, but in actuality they 

are permitted in the following five cases; 

a) at glue, provided that this glue is immediately preceded by a non-discardable 

item, and that it is not part of a math formula (i.e., not between math-on and 

math-off). A break “at glue” occurs at the left edge of the glue space. 

b) at a kern, provided that this kern is immediately followed by glue, and that it 

is not part of a math formula. 

c) at a math-off that is immediately followed by glue. 

d) at a penalty (which might have been inserted automatically in a formula). 

e) at a discretionary break. 

Notice that if two globs of glue occur next to each other, the second one will never be 

selected as a breakpoint, since it is preceded by glue (which is discardable). 

Each potential breakpoint has an associated “penalty,” which represents the 

“aesthetic cost” of breaking at that place. In cases (a), (b), (c), the penalty is 
zero; in case (d) an explicit penalty has been specified; and in case (e) the penalty is the 

current value of Xhyphenpenalty if the pre-break text is nonempty, or the current value 

of Xexhyphenpenalty if the pre-break text is empty. Plain sets Xhyphenpenalty=50 

and Xexhyphenpenalty=50. 



Chapter 14: How Tp]X Breaks Paragraphs into Lines 97 

fFor example, if you say ‘\penalty 100’ at some point in a paragraph, that 

position will be a legitimate place to break between lines, but a penalty of 100 
will be charged. If you say ‘\penalty-100’ you are telling that this is a rather 

good place to break, because a negative penalty is really a “bonus”; a line that ends 

with a bonus might even have “merits” (negative demerits). 

Any penalty that is 10000 or more is considered to be so large that will 

never break there. At the other extreme, any penalty that is —10000 or less 

is considered to be so small that TgX will always break there. The \nobreak macro of 
plain is simply an abbreviation for ‘\penaltyl0000’, because this prohibits a line 

break. A tie in plain T^X is equivalent to ‘\nobreak\u’; there will be no break at the 

glue represented by \u in this case, because glue is never a legal breakpoint when it is 

preceded by a discardable item like a penalty. 

► EXERCISE 14.9 

Guess how the XbrecLk macro is defined in plain T^]X. 

► EXERCISE 14.10 

What happens if you say \nobrecLk\breaLk or XbreeLkXnobreaik? 

When a line break actually does occur, removes all discardable items that 

follow the break, until coming to something non-discardable, or until coming 

to another chosen breakpoint. For example, a sequence of glue and penalty items will 
vanish as a unit, if no boxes intervene, unless the optimum breakpoint sequence includes 

one or more of the penalties. Math-on and math-off items act essentially as kerns that 

contribute the spacing specified by \mathsurround; such spacing will disappear into the 

line break if a formula comes at the very end or the very beginning of a line, because 

of the way the rules have been formulated above. 

The badness of a line is an integer that is approximately 100 times the cube 

of the ratio by which the glue inside the line must stretch or shrink to make 

an hbox of the required size. For example, if the line has a total shrinkability of 

10 points, and if the glue is being compressed by a total of 9 points, the badness is 
computed to be 73 (since 100 x (9/10)^ = 72.9); similarly, a line that stretches by 

twice its total stretchability has a badness of 800. But if the badness obtained by 

this method turns out to be more than 10000, the value 10000 is used. (See the 
discussion of “glue set ratio” r and “glue set order” i in Chapter 12; if z 7^ 0, there is 

infinite stretchability or shrinkability, so the badness is zero, otherwise the badness is 

approximately min(100r^, 10000).) Overfull boxes are considered to be infinitely bad; 

they are avoided whenever possible. 

A line whose badness is 13 or more has a glue set ratio exceeding 50%. We 

call such a line tight if its glue had to shrink, loose if its glue had to stretch, 

and very loose if it had to stretch so much that the badness is 100 or more. But if the 
badness is 12 or less we say that the line is decent. Two adjacent lines are said to be 

visually incompatible if their classifications are not adjacent, i.e., if a tight line is next 

to a loose or very loose line, or if a decent line is next to a very loose one. 

Tg^X rates each potential sequence of breakpoints by totalling up demerits that 

are assessed to individual lines. The goal is to choose breakpoints that yield 

the fewest total demerits. Suppose that a line has badness b, and suppose that the 



98 Chapter 14: How Tp]X Breaks Paragraphs into Lines 

penalty p is associated with the breakpoint at the end of this line. As stated above, 
TgX will not even consider such a line ifp > 10000, or if b exceeds the current tolerance 
or pretolerance. Otherwise the demerits of such a line are defined by the formula 

r + +p^ if 0 <p < 10000; 
d = } (/ + 6)2 - if -10000 < p < 0; 

I (/ + 6)2, ifp < -10000. 

Here I is the current value of \linepenalty, a parameter that can be increased if you 
want TJEX to try harder to keep all paragraphs to the minimum number of lines; plain 

sets \linepenalty=10. For example, a line with badness 20 ending at glue will 
have (10 + 20)^ = 900 demerits, if / = 10, since there’s no penalty for a break at glue. 
Minimizing the total demerits of a paragraph is roughly the same as minimizing the sum 
of the squares of the badnesses and penalties; this usually means that the maximum 
badness of any individual line is also minimized, over all sequences of breakpoints. 

EXERCISE 14.11 

The formula for demerits has a strange discontinuity: It seems more reasonable 
at first to define d = {I b)^ — 10000^, in the case p < —10000. Can you account for 
this apparent discrepancy? 

Additional demerits are assessed based on pairs of adjacent lines. If two con- 
secutive lines are visually incompatible, in the sense explained a minute ago, 

the current value of \adjdemerits is added to d. If two consecutive lines end with dis- 
cretionary breaks, the \doublehyphendemerits are added. And if the second-last line of 
the entire paragraph ends with a discretionary, the \f inalhyphendemerits are added. 
Plain sets up the values \adjdemerits=10000, \doublehyphendemerits=10000, 

and \f inalhyphendemerits=5000. Demerits are in units of “badness squared,” so the 
demerit-oriented parameters need to be rather large if they are to have much effect; 
but tolerances and penalties are given in the same units as badness. 

If you set \tracingpaxagraphs=l, your log file will contain a summary of 
X TgX’s line-breaking calculations, so you can watch the tradeoffs that occur 

when parameters like \linepenalty and \hyphenpenalty and \adjdemerits are twid- 
dled. The line-break data looks pretty scary at first, but you can learn to read it with a 
little practice; this, in fact, is the best way to get a solid understanding of line breaking. 
Here is the trace that results from the second paragraph of the story file in Chapter 6, 
when \hsize=2.5in and \tolerance=1000: 

[]\tenrm Mr. Drofnats or ‘‘R. J.,’’ as he pre- 

®\discretionaLry via QQO b=0 p=50 d=2600 

Q®1: line 1.2- t=2600 -> QQO 

ferred to be called was hap-pi-est when 

Q via QQl b=131 p=0 d=29881 

m2: line 2.0 t=32481 -> 

he 

Q via QQl b=25 p=0 d=1225 

QQ3: line 2.3 t=3825 -> 

was at work type-set-ting beau-ti-ful doc- 

QXdiscretionaxy via Q02 b=l p=50 d=12621 

QXdiscretioneiry via ®Q3 b=291 p=50 d=103101 



Chapter 14'- How TpjK Breaks Paragraphs into Lines 99 

Q®4: line 3.2- t=45102 -> @02 
u- 

®\discretionary via @@3 b=44 p=50 d=15416 
®@5: line 3.1- t=19241 -> 003 
ments. 
OXpeir via @04 b=0 p=-10000 d=5100 
@\pajr via 005 b=0 p=-10000 d=5100 
006: line 4.2- t=24341 -> 005 

Lines that begin with ‘00’ represent feasible breakpoints, i.e., breakpoints that can 
be reached without any badness exceeding the tolerance. Feasible breakpoints are 
numbered consecutively, starting with @01; the beginning of the paragraph is considered 
to be feasible too, and it is number @00. Lines that begin with ‘0’ but not ‘00’ are 
candidate ways to reach the feasible breakpoint that follows; will select only the 
best candidate, when there is a choice. Lines that do not begin with ‘0’ indicate how 
far TE;X has gotten in the paragraph. Thus, for example, we find ‘002: line 2.0 
t=32481 -> 001’ after ‘. . .hap-pi-est when’ and before ‘he’, so we know that feasible 
breakpoint 002 occurs at the space between the words when and he. The notation ‘line 
2.0’ means that this feasible break comes at the end of line 2, and that this line will 
be very loose. (The suffixes .0, .1, .2, .3 stand respectively for very loose, loose, 
decent, and tight.) A hyphen is suffixed to the line number if that line ends with a 
discretionary break, or if it is the final line of the paragraph; for example, ‘line 1.2-’ 
is a decent line that was hyphenated. The notation ‘t=32481’ means that the total 
demerits from the beginning of the paragraph to 002 are 32481, and ‘-> 001’ means 
that the best way to get to @02 is to come from 001. On the preceding line of trace data 
we see the calculations for a typeset line to this point from @01: the badness is 131, 
the penalty is 0, hence there are 29881 demerits. Similarly, breakpoint 003 presents 
an alternative for the second line of the paragraph, obtained by breaking between ‘he’ 
and ‘was’; this one makes the second line tight, and it has only 3825 demerits when 
the demerits of line 1 are added, so it appears that 003 will work much better than 
002. However, the next feasible breakpoint (004) occurs after ‘doc-’, and the line from 
002 to 004 has only 12621 demerits, while the line from @03 to 004 has a whopping 
103101; therefore the best way to get from @00 to @04 is via 002. If we regard demerits 
as distances, TgX is finding the “shortest paths” from 000 to each feasible breakpoint 
(using a variant of a well-known algorithm for shortest paths in an acyclic graph). 
Finally the end of the paragraph comes at breakpoint 006, and the shortest path from 
000 to 006 represents the best sequence of breakpoints. Following the arrows back 
from @06, we deduce that the best breaks in this particular paragraph go through @05, 
003, and 001. 

EXERCISE 14.12 

JL JL Explain why there are 29881 demerits from 001 to @02, and 12621 demerits 
from @02 to 004. 

If ‘b=*’ appears in such trace data, it means that an infeasible breakpoint had 

to be chosen because there was no feasible alternative. 

We still haven’t discussed the special trick that allows the final line of a para- 
graph to be shorter than the others. Just before begins to choose break- 

points, it does two important things: (1) If the final item of the current horizontal 



100 Chapter 14'- How Tp]X Breaks Paragraphs into Lines 

list is glue, that glue is discarded. (The reason is that a blank space often gets into a 

token list just before \par or just before $$, and this blank space should not be part 

of the paragraph.) (2) Three more items are put at the end of the current horizontal 

list: \penalty 10000 (which prohibits a line break); \hskip\parf illskip (which adds 
“finishing glue” to the paragraph); and \penalty-10000 (which forces the final break). 

Plain sets \parf illskip=0pt plus If il, so that the last line of each paragraph will 

be filled with white space if necessary; but other settings of \parf illskip are appro- 

priate in special applications. For example, the present paragraph ends fiush with the 

right margin, because it was typeset with \parf illskip=0pt; the author didn’t have to 

rewrite any of the text in order to make this possible, since a long paragraph generally 

allows so much flexibility that a line break can be forced at almost any point. You 

can have some fun playing with paragraphs, because the algorithm for line breaking 

occasionally appears to be clairvoyant. Just write paragraphs that are long enough. 

► EXERCISE 14.13 

Ben User decided to say ‘\hf ilnegXpar’ at the end of a paragraph, intending 

that the negative stretchability of \hfilneg would cancel with the \parf illskip of 

plain T^]X. Why didn’t his bright idea work? 

► EXERCISE 14.14 

How can you set \parf illskip so that the last line of a paragraph has exactly 

as much white space at the right as the first line has indentation at the left? 

EXERCISE 14.15 

X ^ Since reads an entire paragraph before it makes any decisions about 

line breaks, the computer’s memory capacity might be exceeded if you are typesetting 

the works of some philosopher or modernistic novelist who writes 200-line paragraphs. 

Suggest a way to cope with such authors. 

TgX has two parameters called \leftskip and \rightskip that specify glue 

to be inserted at the left and right of every line in a paragraph; this glue is 

taken into account when badnesses and demerits are computed. Plain normally 

keeps \leftskip and \rightskip zero, but it has a ‘\narrower’ macro that increases 
both of their values by the current \parindent. You may want to use \narrower when 

quoting lengthy passages from a book. 

{\narrower\smallskip\noindent 
This paragraph will have narrower lines than 

the surrounding paragraphs do, because it 

uses the ‘^narrower'^ feature of plain \TeX. 

The former margins will be restored after 

this group ends.\smallskip} 

(Try it.) The second ‘\smallskip’ in this example ends the paragraph. It’s important 

to end the paragraph before ending the group, for otherwise the effect of \narrower 

will disappear before begins to choose line breaks. 

► EXERCISE 14.16 

When an entire paragraph is typeset in italic or slanted type, it sometimes 

appears to be offset on the page with respect to other paragraphs. Explain how you 

could use \leftskip and \rightskip to shift all lines of a paragraph left by Ipt. 



Chapter 1^: How Tp]X Breaks Paragraphs into Lines 101 

► EXERCISE 14.17 
The \centerline, \leftline, \rightline, and Mine macros of plain 

don’t take \leftskip and \rightskip into account. How could you make them do so? 

If you suspect that \raggedright setting is accomplished by some appropriate 

manipulation of \rightskip, you are correct. But some care is necessary. For 
example, a person can set \rightskip=Opt pluslfil, and every line will be filled 

with space at the right. But this isn’t a particularly good way to make ragged-right 

margins, because the infinite stretchability will assign zero badness to lines that are 

very short. To do a decent job of ragged-right setting, the trick is to set \rightskip 

so that it will stretch enough to make line breaks possible, yet not too much, because 

short lines should be considered bad. Furthermore the spaces between words should 

be fixed so that they do not stretch or shrink. (See the definition of \raggedright in 

Appendix B.) It would also be possible to allow a little variability in the interword 

glue, so that the right margin would not be quite so ragged but the paragraphs would 

still have an informal appearance. 

TgX looks at the parameters that affect line breaking only when it is breaking 

lines. For example, you shouldn’t try to change the \hyphenpenalty in the 

middle of a paragraph, if you want to penalize the hyphens in one word more than 

it does in another word. The relevant values of \hyphenpenalty, \rightskip, \hsize, 

and so on, are the ones that are current at the end of the paragraph. On the other 

hand, the width of indentation that you get implicitly at the beginning of a paragraph 

or when you say ‘\indent’ is determined by the value of \parindent at the time the 

indentation is contributed to the current horizontal list, not by its value at the end 

of the paragraph. Similarly, penalties that are inserted into math formulas within a 
paragraph are based on the values of \binoppenalty and \relpenalty that are current 

at the end of each particular formula. Appendix D contains an example that shows how 

to have both ragged-right and ragged-left margins within a single paragraph, without 

using \leftskip or \rightskip. 

It’s possible to control the length of lines in a much more general way, if 

simple changes to \leftskip and \rightskip aren’t flexible enough for your 

purposes. For example, a semicircular hole has been cut out of the present 
paragraph, in order to make room for a circular illustration that con- 

tains some of Galileo’s immortal words about circles; all of the line 

breaks in this paragraph and in the circular quotation were found 

by TEX’S line-breaking algorithm. You can specify an essentially 
arbitrary paragraph shape by saying \parshape=(number), where 

the (number) is a positive integer n, followed by 2n (dimen) spec- 

ifications. In general, ‘\parshape=n ii h i2 h • ■ • in IC specifies 

a paragraph whose first n lines will have lengths /i, h, In, 

respectively, and they will be indented from the left margin by the 

respective amounts ii, i2, ■ ■ ■, in- If the paragraph has fewer than 

n lines, the additional specifications will be ignored; if it has more 
than n lines, the specifications for line n will be repeated ad infinitum. 

You can cancel the effect of a previously specified \parshape by saying ‘\parshape=0’. 

^►EXERCISE 14.18 

Typeset the following Pascalian quotation in the shape of an isosceles triangle: 

The area of 
a circle is a mean 

proportional between any 

two regular and similar poly- 
gons of which one circumscribes 

it and the other is isoperimetric 
with it. In addition, the area of the 

circle is less than that of any circum- 

scribed polygon and greater than that 

of any isoperimetric polygon. And fur- 
ther, of these circumscribed polygons, 

the one that has the greater num- 
ber of sides has a smaller area than 

the one that has a lesser number; 

but, on the other hand, the iso- 
perimetric polygon that has 

the greater number of 

sides is the larger. 

[Galileo, 1638] 



102 Chapter I4: How Tp]X Breaks Paragraphs into Lines 

“I turn, in the following treatises, to various uses of those triangles whose generator 

is unity. But I leave out many more than I include; it is extraordinary how fertile in 

properties this triangle is. Everyone can try his hand.” 

You probably won’t need unusual parshapes very often. But there’s a special 

case that occurs rather frequently, so T^]X provides a special abbreviation 

for it in terms of two parameters .called \hangindent and \hajigafter. The command 

‘\hangindent=(dimen)’ specifies a so-called hanging indentation, and the command 

‘\haiigaf ter=(number)’ specifies the duration of that indentation. Let x and n be the 

respective values of Xhangindent and \haiigafter, and let h be the value of \hsize; 

then if n >0, hanging indentation will occur on lines n + 1, n-|-2, ... of the paragraph, 

but if n < 0 it will occur on lines 1, 2, ..., |n|. Hanging indentation means that lines will 

be of width h — \x\ instead of their normal width h; ii x > 0, the lines will be indented 

at the left margin, otherwise they will be indented at the right margin. For example, 

the “dangerous bend” paragraphs of this manual have a hanging indentation of 3 picas 

that lasts for two lines; they were set with \hangindent=3pc and \haiigafter=-2. 

Plain T^X uses hanging indentation in its ‘\itein’ macro, which produces a 

paragraph in which every line has the same indentation as a normal \indent. 

Furthermore, \item takes a parameter that is placed into the position of the indentation 

on the first line. Another macro called ‘\itemitem’ does the same thing but with double 

indentation. For example, suppose you type 

\iteirifl.} This is the first of several cases that are being 

enumerated, with heinging indentation applied to entire paragraphs. 

\itemitem{a)} This is the first subcase. 

\itemitem{b)} And this is the second subcase. Notice 

that subcases have twice as much hanging indentation. 

\item{2.}- The second case is similar. 

Then you get the following output: 

1. This is the first of several cases that are being enumerated, with 

indentation applied to entire paragraphs. 

a) This is the first subcase. 

b) And this is the second subcase. Notice that subcases have 

much hanging indentation. 

2. The second case is similar. 

(Indentations in plain TgX are not actually as dramatic as those displayed here; Appen- 

dix B says ‘\parindent=20pt’, but this manual has been set with \parindent=36pt.) 

It is customary to put \medskip before and after a group of itemized paragraphs, and 

to say \noindent before any closing remarks that apply to all of the cases. Blank lines 

are not needed before \item or \itemitem, since those macros begin with \par. 

► EXERCISE 14.19 

Suppose one of the enumerated cases continues for two or more paragraphs. 

How can you use \item to get hanging indentation on the subsequent paragraphs? 

► EXERCISE 14.20 

Explain how to make a “bulleted” item that says instead of ‘1.’. 

hanging 

twice as 



Chapter 14’ How TpjK Breaks Paragraphs into Lines 103 

EXERCISE 14.21 
^ JL The ‘\itein’ macro doesn’t alter the right-hand margin. How could you indent 

at both sides? 

EXERCISE 14.22 
Explain how you could specify a hanging indentation of —2 ems (i.e., the lines 

should project into the left margin), after the first two lines of a paragraph. 

If \parshape and hanging indentation have both been specified, Xpeirshape 

takes precedence and Nhangindent is ignored. You get the normal paragraph 

shape, in which every line width is \hsize, when \paj:shape=0, \hangindent=Opt, and 

\hangafter=l. automatically restores these normal values at the end of every 

paragraph, and (by local definitions) whenever it enters internal vertical mode. For 

example, hanging indentation that might be present outside of a \vbox construction 

won’t occur inside that vbox, unless you ask for it inside. 

^►EXERCISE 14.23 
Suppose you want to leave room at the right margin for a rectangular illus- 

tration that takes up 15 lines, and you expect that three paragraphs will go by before 

you have typeset enough text to get past that illustration. Suggest a good way to do 

this without trial and error, given the fact that resets hanging indentation. 

If displayed equations occur in a paragraph that has a nonstandard shape, 

always assumes that the display takes up exactly three lines. For example, a 

paragraph that has four lines of text, then a display, then two more lines of text, is 

considered tobe4-|-3-l-2 = 9 lines long; the displayed equation will be indented and 

centered using the paragraph shape information appropriate to line 6. 

T^X has an internal integer variable called \prevgraf that records the number 

of lines in the most recent paragraph that has been completed or partially 

completed. You can use \prevgraf in the context of a (number), and you can set 

\prevgraf to any desired nonnegative value if you want to make T^]X think that it is in 

some particular part of the current paragraph shape. For example, let’s consider again 

a paragraph that contains four lines plus a display plus two more lines. When 

starts the paragraph, it sets \prevgraf=0; when it starts the display, \prevgraf will 

be 4; when it finishes the display, \prevgraf will be 7; and when it ends the paragraph, 

\prevgraf will be 9. If the display is actually one line taller than usual, you could set 

\prevgraf=8 at the beginning of the two final lines; then T^)X will think that a 10-line 

paragraph is being made. The value of \prevgraf affects line breaking only when 

is dealing with nonstandard Xpaxshape or \hajigindent. 

EXERCISE 14.24 
Solve exercise 14.23 using \prevgraf. 

You are probably convinced by now that T^]X’s line-breaking algorithm has 

plenty of bells and whistles, perhaps even too many. But there’s one more 

feature, called “looseness”; some day you might find yourself needing it, when you are 

fine-tuning the pages of a book. If you set \looseness=l, will try to make the 

current paragraph one line longer than its optimum length, provided that there is a 

way to choose such breakpoints without exceeding the tolerance you have specified for 

the badnesses of individual lines. Similarly, if you set \looseness=2, TgX^ will try to 



104 Chapter 14: How TpjK Breaks Paragraphs into Lines 

make the paragraph two lines longer; and \looseness=-l causes an attempt to make 

it shorter. The general idea is that first finds breakpoints as usual; then if the 

optimum breakpoints produce n lines, and if the current \looseness is /, T^]X will 

choose the final breakpoints so as to make the final number of lines as close as possible 

to n + / without exceeding the current tolerance. Furthermore, the final breakpoints will 

have fewest total demerits, considering all ways to achieve the same number of lines. 

For example, you can set \looseness=l if you want to avoid a lonely “club 

line” or “widow line” on some page that does not have sufficiently flexible glue, 

or if you want the total number of lines in some two-column document to come out 

to be an even number. It’s usually best to choose a paragraph that is already pretty 

“full,” i.e., one whose last line doesn’t have much white space, since such paragraphs 

can generally be loosened without much harm. You might also want to insert a tie 

between the last two words of that paragraph, so that the loosened version will not 

end with only one “widow word” on the line; this tie will cover your tracks, so that 

people will find it hard to detect the fact that you have tampered with the spacing. 

On the other hand, can take almost any sufficiently long paragraph and stretch it 

a bit, without substantial harm; the present paragraph is, in fact, one line looser than 

its optimum length. 

TgX resets the looseness to zero at the same time as it resets Xhangindent, 

Xhangafter, and \paxshape. 

EXERCISE 14.25 

Explain what will do if you set \looseness=-1000. 

Just before switching to horizontal mode to begin scanning a paragraph, 

inserts the glue specified by \parskip into the vertical list that will contain 
the paragraph, unless that vertical list is empty so far. For example, ‘\paxskip=3pt’ 

will cause 3 points of extra space to be placed between paragraphs. Plain sets 

\parskip=Opt pluslpt; this gives a little stretchability, but no extra space. 

After line breaking is complete, appends the lines to the current vertical 

list that encloses the current paragraph, inserting interline glue as explained in 

Chapter 12; this interline glue will depend on the values of \baselineskip, \lineskip, 

and Mineskiplimit that are currently in force. T^]X will also insert penalties into the 

vertical list, just before each glob of interline glue, in order to help control page breaks 

that might have to be made later. For example, a special penalty will be assessed for 

breaking a page between the first two lines of a paragraph, or just before the last line, 

so that “club” or “widow” lines that are detached from the rest of a paragraph will not 

appear all alone on a page unless the alternative is worse. 

Here’s how interline penalties are calculated: has just chosen the break- 

points for some paragraph, or for some partial paragraph that precedes a 

displayed equation; and n lines have been formed. The penalty between lines j and 

j + 1, given a value of j in the range 1 < j < n, is the value of \interlinepenalty 
plus additional charges made in special cases: The \clubpenalty is added if j = 1, 

i.e., just after the first line; then the \displaywidowpenalty or the \widowpenalty is 

added if j = n — 1, i.e., just before the last line, depending on whether or not the 

current lines immediately precede a display; and finally the \brokenpenalty is added, 

if the jth line ended at a discretionary break. (Plain sets \clubpenalty=150. 



Chapter I4: How TpjX Breaks Paragraphs into Lines 105 

\widowpenalty=150,\displaywidowpenalty=50, and \brokenpenalty=100; the value 
of \interlinepenalty is normally zero, but it is increased to 100 within footnotes, so 

that long footnotes will tend not to be broken between pages.) 

► EXERCISE 14.26 

Consider a five-line paragraph in which the second and fourth lines end with 

hyphens. What penalties does plain T^]X put between the lines? 

EXERCISE 14.27 

What penalty goes between the lines of a two-line paragraph? 

If you say \vadjust{(vertical list)} within a paragraph, will insert the 

specified internal vertical list into the vertical list that encloses the paragraph, 

immediately after whatever line contained the position of the \vadjust. For example, 

you can say ‘\vadjust{\kernlpt}’ to increase the amount of space between lines of a 
paragraph if those lines would otherwise come out too close together. (The author 

did it in the previous line, just to illustrate what happens.) Also, if you want to 

make sure that a page break will occur immediately after a certain line, you can say 

‘\vadjust{\eject}’ anywhere in that line. 

f Later chapters discuss \insert and \mark commands that are relevant to 

T^X’s page builder. If such commands appear within a paragraph, they are 

removed from whatever horizontal lines contain them and placed into the enclosing 

vertical list, together with other vertical material from \vadjust commands that might 

be present. In the final vertical list, each horizontal line of text is an hbox that is 

immediately preceded by interline glue and immediately followed by vertical material 

that has “migrated out” from that line (with left to right order preserved, if there are 

several instances of vertical material); then comes the interline penalty, if it is nonzero. 

Inserted vertical material does not infiuence the interline glue. 

^►EXERCISE 14.28 

Design a \marginalstax macro that can be used anywhere in a paragraph. It 

should use \vadjust to place an asterisk in the margin just to the left of the line where 

Xmajrginalstax occurs. 

When TgX enters horizontal mode, it will interrupt its normal scanning to read 

tokens that were predefined by the command \everypar={(token list)}. For 

example, suppose you have said ‘\everypar={A}’. If you type ‘B’ in vertical mode, 

will shift to horizontal mode (after contributing \parskip glue to the current page), 

and a horizontal list will be initiated by inserting an empty box of width \parindent. 

Then Tg^ will read ‘AB’, since it reads the \everypar tokens before getting back to the 

‘B’ that triggered the new paragraph. Of course, this is not a very useful illustration of 

Xeverypajr; but if you let your imagination run you will think of better applications. 

/^►EXERCISE 14.29 

^ Use \everypar to define an \insertbullets macro: All paragraphs in a group 

of the form ‘{\insertbullets . . .\par}’ should have a bullet symbol as part of 
their indentation. 

A paragraph of zero lines is formed if you say ‘\noindent\par’. If \everypar 
n is null, such a paragraph contributes nothing except \parskip glue to the 

current vertical list. 



106 Chapter 14'- How Tp]X Breaks Paragraphs into Lines 

EXERCISE 14.30 

^ ^ Guess what happens if you say ‘\noindent$$. . .$$ \par’. 

Experience has shown that TgX’s line-breaking algorithm can be harnessed 
to a surprising variety of tasks. Here, for example, is an application that 

indicates one of the possibilities: Articles that are published in Mathematical Reviews 
are generally signed with the reviewer’s name and address, and this information is 
typeset flush right, i.e., at the right-hand margin. If there is sufficient space to put 
such a name and address at the right of the final line of the paragraph, the publishers 
can save space, and at the same time the results look better because there are no 
strange gaps on the page. 

This is a case where the name and address fit in nicely 
with the review. A. Reviewer (Ann Arbor, Mich.) 

But sometimes an extra line must be added. 
N. Bourbaki (Paris) 

Let’s suppose that a space of at least two ems should separate the reviewer’s name 
from the text of the review, if they occur on the same line. We would like to design a 
macro so that the examples shown above could be typed as follows in an input file: 

... with the review, \signed A. Reviewer (Ann Arbor, Mich.) 

... an extra line must be added, \signed N. Bourbaiti (Paris) 

Here is one way to solve the problem: 

\def\signed #1 (#2){{\unskip\nobreaLk\hfil\penalty50 

\hskip2em\hbox{}\nobrecLk\hfil\sl#l\/ \rm(#2) 

\parfillskip=Opt \finalhyphendemerits=0 \par}} 

If a line break occurs at the \penalty50, the \hskip2em will disappear and the empty 
\hbox will occur at the beginning of a line, followed by \hf il glue. This yields two lines 
whose badness is zero; the first of these lines is assessed a penalty of 50. But if no line 
break occurs at the \penalty50, there will be glue of 2 em plus 2 fil between the review 
and the name; this yields one line of badness zero. T^]X will try both alternatives, 
to see which leads to the fewest total demerits. The one-line solution will usually be 
preferred if it is feasible. 

► EXERCISE 14.31 

Explain what would happen if ‘\hbox{}’ were left out of the \signed macro. 

► EXERCISE 14.32 

Why does the \signed macro say ‘\f inalhyphendemerits=0’? 

^►EXERCISE 14.33 

JL In one of the paragraphs earlier in this chapter, the author used Xbrecik to force 
a line break in a specific place; as a result, the third line of that particular paragraph was 
really spaced out. 
Explain why all the extra space went into the third line, instead of being distributed 
impartially among the first three lines. 



Chapter I4: How Tp]X Breaks Paragraphs into Lines 107 

/^►EXERCISE 14.34 

Y. Devise a \raggedcenter macro (analogous to \raggedright) that partitions 
the words of a paragraph into as few as possible lines of approximately equal size and 
centers each individual line. Hyphenation should be avoided if possible. 

When the author objects to [a hyphenation] 
he should be asked to add or cancel or substitute 

a word or words that will prevent the breakage. 

Authors who insist on even spacing always, 
with sightly divisions always, 

do not clearly understand the rigidity of types. 

— T. L. DE VINNE, Correct Composition (1901) 

In reprinting his own works, whenever [William Morris] 
found a line that Justified awkwardly, he altered the wording 

solely for the sake of making it look well in print. 

When a proof has been sent me with two or three 
lines so widely spaced as to make a grey band across the page, 

I have often rewritten the passage so as to fill up the lines better; 
but I am sorry to say that my object has generally been so little 

understood that the compositor has spoilt all the rest 
of the paragraph instead of mending his former bad work. 

— GEORGE BERNARD SHAW, in The Dolphin (1940) 



How TfX Makes 
Lines into Pages 



Chapter 15: How TpiX Makes Lines into Pages 109 

TgX attempts to choose desirable places to divide your document into individual 
pages, and its technique for doing this usually works pretty well. But the problem 
of page make-up is considerably more difficult than the problem of line breaking 
that we considered in the previous chapter, because pages often have much less 
flexibility than lines do. If the vertical glue on a page has little or no ability to 
stretch or to shrink, usually has no choice about where to start a new page; 
conversely, if there is too much variability in the glue, the result will look bad 
because different pages will be too irregular. Therefore if you are fussy about 
the appearance of pages, you can expect to do some rewriting of the manuscript 
until you achieve an appropriate balance, or you might need to Addle with the 
\looseness as described in Chapter 14; no automated system will be able to do 
this as well as you. 

Mathematical papers that contain a lot of displayed equations have an 
advantage in this regard, because the glue that surrounds a display tends to 
be quite flexible. TjgX also gets valuable room to maneuver when you have 
occasion to use \smallskip or \medskip or \bigskip spacing between certain 
paragraphs. For example, consider a page that contains a dozen or so exercises, 
and suppose that there is 3 pt of additional space between exercises, where this 
space can stretch to 4pt or shrink to 2pt. Then there is a chance to squeeze 
an extra line on the page, or to open up the page by removing one line, in 
order to avoid splitting an exercise between pages. Similarly, it is possible to use 
flexible glue in special publications like membership rosters or company telephone 
directories, so that individual entries need not be split between columns or pages, 
yet every column appears to be the same height. 

For ordinary purposes you will probably find that I^^’s automatic 
method of page breaking is satisfactory. And when it occasionally gives un- 
pleasant results, you can force the machine to break at your favorite place by 
typing ‘\eject’. But be careful: \eject will cause to stretch the page 
out, if necessary, so that the top and bottom baselines agree with those on other 
pages. If you want to eject a short page. Ailing it with blank space at the bottom, 
type ‘\vf illXeject’ instead. 

If you say ‘\eject’ in the middle of a paragraph, the paragraph will end 

first, as if you typed ‘\pax\eject’. But Chapter 14 mentions that you can say 
‘\vadjust{\eject}’ in mid-paragraph, if you want to force a page break after whatever 

line contains your current position when the full paragraph is eventually broken up into 

lines; the rest of the paragraph will go on the following page. 

To prevent a page break, you can say ‘\nobreak’ in vertical mode, just as 
\nobreak in horizontal mode prevents breaks between lines. For example, it 

is wise to say \nobreak between the title of a subsection and the first line of text in that 
subsection. But \nobreak does not cancel the effect of other commands like \eject 

that tell TgX to break; it only inhibits a break at glue that immediately follows. You 
should become familiar with T^’s rules for line breaks and page breaks if you want to 

maintain fine control over everything. The remainder of this chapter is devoted to the 

intimate details of page breaking. 



110 Chapter 15: How Tp^K Makes Lines into Pages 

TgX breaks lists of lines into pages by computing badness ratings and penal- 

ties, more or less as it does when breaking paragraphs into lines. But pages 

are made up one at a time and removed from T^’s memory; there is no looking ahead 

to see how one page break will affect the next one. In other words, TgX uses a special 

method to find the optimum breakpoints for the lines in an entire paragraph, but it 

doesn’t attempt to find the optimum breakpoints for the pages in an entire document. 

The computer doesn’t have enough high-speed memory capacity to remember the con- 

tents of several pages, so simply chooses each page break as best it can, by a 

process of “local” rather than “global” optimization. 

Let’s look now at the details of T^’s page-making process. Everything you 

contribute to the pages of your document is placed on the main vertical list, 

which is the sequence of items that T^]X has accumulated while in vertical mode. Each 

item in a vertical list is one of the following types of things: 

■ a box (an hbox or vbox or rule); 

■ a “whatsit” (something special to be explained later); 

■ a mark (another thing that will be explained later); 

■ an insertion (yet another thing that we will get to); 

■ a glob of glue (or \leaders, as we will see later); 

■ a kern (something like glue that doesn’t stretch or shrink); 

■ a penalty (representing the undesirability of breaking here). 

The last three types (glue, kern, and penalty items) are called discardable, for the 

same reason that we called them discardable in horizontal lists. You might want to 

compare these specifications with the analogous rules for the horizontal case, found 

in Chapter 14; it turns out that vertical lists are just like horizontal ones except that 

character boxes, discretionary breaks, \vadjust items, and math shifts cannot appear 

in vertical lists. Chapter 12 exhibits a typical vertical list in T^EpC’s internal box-and-glue 

representation. 

Page breaks can occur only at certain places within a vertical list. The per- 

missible breakpoints are exactly the same as in the horizontal case, namely 

at glue, provided that this glue is immediately preceded by a non-discardable 

item (i.e., by a box, whatsit, mark, or insertion); 

at a kern, provided that this kern is immediately followed by glue; 

at a penalty (which might have been inserted automatically in a paragraph). 

Interline glue is usually inserted automatically between the boxes of a vertical list, as 

explained in Chapter 12, so there is usually a valid breakpoint between boxes. 

As in horizontal lists, each potential breakpoint has an associated penalty, 

which is high for undesirable breakpoints and negative for desirable ones. The 

penalty is zero at glue and kern breaks, so it is nonzero only at explicit penalty breaks. 

If you say ‘\penalty-100’ between two paragraphs, you are indicating that should 
try to break here because the penalty is negative; a bonus of 100 points for breaking at 

this place will essentially cancel up to 100 units of badness that might be necessary to 

achieve such a break. A penalty of 10000 or more is so large that it inhibits breaking; 

a penalty of —10000 or less is so small that it forces breaking. 



Chapter 15: How Tp]X Makes Lines into Pages 111 

f Plain TgX provides several control sequences that help to control page breaks. 

For example, Xsmallbreak, \medbreak;, and \bigbreak specify increasingly 

desirable places to break, having respective penalties of —50, —100, and —200; further- 

more, they will insert a \smallskip, \medskip, or \bigskip of space, respectively, if a 

break is not taken. However, \smallbreak, Xmedbrecik, and Xbigbreaik do not increase 

existing glue unnecessarily; for example, if you say \smallbreak; just after a displayed 

equation, you won’t get a \smallskip of space in addition to the glue that already 

follows a display. Therefore these commands can conveniently be used before and after 

the statements of theorems, in a format for mathematical papers. In the present manual 

the author has used a macro that puts \medbreak before and after every dangerous- 

bend paragraph; \medbreak;\medbreak is equivalent to a single \medbreak, so you don’t 

see two medskips when one such paragraph ends and another one begins. 

The Xgoodbreak macro is an abbreviation for ‘XparXpenalty-500’. This is a 

good thing to insert in your manuscript when proofreading, if you are willing 

to stretch some page a little bit extra in order to improve the following one. Later on 

if you make another change so that this Xgoodbreak command does not appear near 

the bottom of a page, it will have no effect; thus it is not as drastic as Xeject. 

The most interesting macro that plain provides for page make-up is called 

Xf ilbreak. It means, roughly, “Break the page here and fill the bottom with 

blank space, unless there is room for more copy that is itself followed by Xf ilbreak.” 

Thus if you put Xf ilbrecik at the end of every paragraph, and if your paragraphs aren’t 

too long, every page break will occur between paragraphs, and will fit as many 

paragraphs as possible on each page. The precise meaning of XfilbreaJk is 

XvfilXpenalty-200Xvfilneg 

according to Appendix B; and this simple combination of T^^’s primitives produces 

the desired result: If a break is taken at the XpeRalty-200, the preceding Xvf il will 

fill the bottom of the page with blank space, and the Xvf ilneg will be discarded after 

the break; but if no break is taken at the penalty, the Xvf il and Xvf ilneg will cancel 

each other and have no effect. 

Plain also provides a Xraggedbottom command, which is a vertical analog 

of Xraggedright: It tells T^]X to permit a small amount of variability in the 

bottom margins on different pages, in order to make the other spacing uniform. 

We saw in Chapter 14 that breakpoints for paragraphs are chosen by comput- 
n ing “demerits” for each line and summing them over all lines. The situation 

for pages is simpler because each page is considered separately. figures the “cost” 

of a page break by using the following formula: 

if 6 < (X) and p < —10000 and q < 10000; 

if 5 < 10000 and -10000 <p < 10000 and q < 10000; 

if 6 > 10000 and -10000 <p < 10000 and q < 10000; 
if (5 = oo or g > 10000) and p < 10000. 

Here b is the badness of the page that would be formed if a break were chosen here; 

p is the penalty associated with the current breakpoint; and q is ‘Xinsertpenalties’, 

the sum of all penalties for split insertions on the page, as explained below. Vertical 

badness is computed by the same rules as horizontal badness; it is an integer between 

0 and 10000, inclusive, except when the box is overfull, when it is oo (infinity). 

r P, 
I b + p-\-q, 

I 100000, 

I oo. 



112 Chapter 15: How TpjX Makes Lines into Pages 

When a page is completed, it is removed from the main vertical list and passed 

JL to an “output routine,” as we will see later; so its boxes and glue eventually 

disappear from T^]X’s memory. The remainder of the main vertical list exists in two 

parts: First comes the “current page,” which contains all the material that TgX has 

considered so far as a candidate for the next page to be broken off; then there are 

“recent contributions,” i.e., items that will be moved to the current page as soon as 

TgX finds it convenient to do so. If you say \showlists, TppC will display the contents 
of the current page and the recent contributions, if any, on your log file. (The example 

in Chapter 13 doesn’t show any such lists because they were both empty in that case. 

Chapter 24 explains more about T^}X’s timing.) 

Whenever is moving an item from the top of the “recent contributions” to 

i the bottom of the “current page,” it discards a discardable item (glue, kern, or 

penalty) if the current page does not contain any boxes. This is how glue disappears at 

a page break. Otherwise if a discardable item is a legitimate breakpoint, calculates 

the cost c of breaking at this point, using the formula that we have just discussed. If the 

resulting c is less than or equal to the smallest cost seen so far on the current page, 

remembers the current breakpoint as the best so far. And if c = CXD or if p < —10000, 

TgX seizes the initiative and breaks the page at the best remembered breakpoint. Any 

material on the current page following that best breakpoint is moved back onto the 

list of recent contributions, where it will be considered again; thus the “current page” 

typically gets more than one page’s worth of material before the breakpoint is chosen. 

This procedure may seem mysterious until you see it in action. Fortunately, 

there is a convenient way to watch it; you can set \tracingpages=l, thereby 

instructing to put its page-cost calculations into your log file. For example, here is 

what appeared on the log file when the author used \tracingpages=l at the beginning 

of the present chapter: 

y,y, goal height=528.0, max depth=2.2 

7, t=10.0 g=528.0 b=10000 p=150 c=100000# 

7. t=22.0 g=528.0 b=10000 p=0 c=100000# 

7. t=34.0 g=528.0 b=10000 p=0 c=100000# 

7. 
7. 
7. 
7. 
7. 
7. 
7. 
7. 
7, 
7. 
7. 
7. 
7. 
7, 
7. 

(25 similar lines are being omitted here) 
t=346.0 plus 2.0 

C
O

 
C

N
 

L
O

 
II h
O

 0 b= =10000 p= =0 c=100000# 
t=358.0 plus 2.0 g=528. 0 b= =10000 p= =150 c=100000# 
t=370.02223 plus 2.0 g= =528. 0 b=10000 p=-100 c=100000# 

t=398.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=0 c=100000# 
t=409.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=0 c=100000# 
t=420.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=150 c=100000# 

o
 

C
O

 

II plus 5.0 minus 2.0 g=528.0 b=10000 p=-100 c=100000# 
t=459.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000# 
t=470.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000# 

o
 

0
0

 

II 
+-> plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000# 

t=492.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000# 
t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 ; p=0 c=3049# 
t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p^ =150 c=683# 
t=525.0 plus 8.0 minus 4.0 g=528.0 b=5 p=- 100 c=-95# 
t=553.0 plus 11.0 minus ; 6.C > g=528.0 b=* p=i 0 c=* 



Chapter 15: How TpjX Makes Lines into Pages 113 

This trace output is admittedly not “user-friendly” in appearance, but after all it comes 
from deep inside T^]X’s bowels where things have been reduced to numeric calculations. 
You can learn to read it with a little practice, but you won’t need to do so very often 
unless you need to plunge into page-breaking for special applications. Here’s what it 
means: The first line, which starts with ‘V,*/,’, is written when the first box or insertion 
enters the current page list; it shows the “goal height” and the “max depth” that will 
be used for that page (namely, the current values of \vsize and \maxdepth). In the 
present manual we have \vsize=44pc and \maxdepth=2.2pt; dimensions in the log file 
are always displayed in points. The subsequent lines, which start with a single are 
written whenever a legal breakpoint is being moved from the list of recent contributions 
to the current page list. Every '/, line shows t, which is the total height so far if a page 
break were to occur, and g, which is the goal height; in this example g stays fixed at 
528 pt, but g would have decreased if insertions such as footnotes had occurred on the 
page. The values of t are steadily increasing from 10 to 22 to 34, etc.; baselines are 
12 pt apart at the top of the page and 11 pt apart at the bottom (where material is 
set in nine-point type). We are essentially seeing one 7, line per hbox of text being 
placed on the current page. However, the 7, lines are generated by the penalty or glue 
items that follow the hboxes, not by the boxes themselves. Each 7i line shows also the 
badness 6, the penalty p, and the cost c associated with a breakpoint; if this cost is the 
best so far, it is marked with a ‘#’ sign, meaning that “this breakpoint will be used for 
the current page if nothing better comes along.” Notice that the first 40 or so breaks 
all have b = 10000, since they are so bad that considers them indistinguishable; in 
such cases c = 100000, so T^)X simply accumulates material until the page is full enough 
to have b < 10000. A penalty of 150 reflects the \clubpenalty or the \widowpenalty 
that was inserted as described in Chapter 14. The three lines that say p=-100 are 
the breakpoints between “dangerous bend” paragraphs; these came from XmedbreaJc 
commands. The notation b=* and c=* on the final line means that b and c are infinite; 
the total height of 553 pt cannot be reduced to 528 pt by shrinking the available glue. 
Therefore the page is ejected at the best previous place, which turns out to be a pretty 
good break: b=5 and p=-100 yield a net cost of —95. 

EXERCISE 15.1 

n ^ Suppose the paragraph at the bottom of the example page had been one line 
shorter; what page break would have been chosen? 

EXERCISE 15.2 

Y Y The last two “7. lines” of this example show the natural height of t jumping 

by 28 pt, from 525.0 to 553.0. Explain why there was such a big jump. 

The \maxdepth parameter tells to raise the bottom box on the page if 
that box has too much depth, so that the depth of the constructed page will 

not exceed a specified value. (See the discussion of \boxmaxdepth in Chapter 12.) In 
our example \maxdepth=2.2pt, and the influence of this parameter can be seen in the 
line that says ‘7. t=370.02223’. Ordinarily t would have been 370.0 at that breakpoint; 
but the hbox preceding it was unusual because it contained the letter j in \tt, and 
a 10-point typewriter-style j descends 2.22223 pt below the baseline. Therefore 
figured badness as if the hbox were .02223 pt higher and only 2.2 pt deep. 

Notice that the first “7. line” of our example says t=10.0; this is a consequence 
of another parameter, called \topskip. Glue disappears at a page break, but 



114 Chapter 15: How TpjX Makes Lines into Pages 

it is desirable to produce pages whose top and bottom baselines occur in predetermined 

positions, whenever possible; therefore inserts special glue just before the first box 

on each page. This special glue is equal to \topskip, except that the natural space 

has been decreased by the height of the first box, or it has been set to zero in lieu 

of a negative value. For example, if \topskip=20pt plus2pt, and if the first box on 

the current page is 13 pt tall, inserts ‘\vskip7pt plus2pt’ just above that box. 

Furthermore, if the first box is more than 20 pt tall, ‘\vskip0pt plus2pt’ is inserted. 

But this example is atypical, since the \topskip glue usually has no stretchability or 

shrinkability; plain T^]X sets \topskip=10pt. 

EXERCISE 15.3 

^ i Assume that \vsize=528pt, \maxdepth=2.2pt, \topskip=10pt, and that no 

\insert commands are being used. will make pages that are 528 pt high, and the 

following two statements will normally be true: (a) The baseline of the topmost box 

on the page will be 10 pt from the top, i.e., 518 pt above the baseline of the page itself, 

(b) The baseline of the bottommost box on the page will coincide with the baseline of 

the page itself. Explain under what circumstances (a) and (b) will fail. 

Since \vsize, \maxdepth, and \topskip are parameters, you can change them 

^ at any time; what happens if you do? Well, T^]X salts away the values of 
\vsize and \maxdepth when it prints the “*/,*/, line,” i.e., when the first box or insertion 

occurs on the current page; subsequent changes to those two parameters have no effect 

until the next current page is started. On the other hand, T^X looks at \topskip only 

when the first box is being contributed to the current page. If insertions occur before 

the first box, the \topskip glue before that box is considered to be a valid breakpoint; 

this is the only case in which a completed page might not contain a box. 

You can look at the t and g values that are used in page breaking by referring 

^ to the (dimen) values ‘\pagetotal’ and ‘\pagegoal’, respectively. You can 
even change them (but let’s hope that you know what you are doing). For example, 

the command \pagegoal=500pt overrides the previously saved value of \vsize. Be- 

sides \pagetotal, which represents the accumulated natural height, maintains the 

quantities \pagestretch,\pagefilstretch, \pagefillstretch, \pagefilllstretch, 

\pageshrink, and \pagedepth. When the current page contains no boxes, \pagetotal 

and its relatives are zero and \pagegoal is 16383.99998pt (T^)K’s largest (dimen)); 

changing their values has no effect at such times. The integer q in the formula for page 

costs is also available for inspection and change; it is called \insertpenalties. 

Page breaking differs from line breaking in one small respect that deserves 

mention here: If you say \eject\eject, the second \eject is ignored, because 

it is equivalent to \penalty-10000 and penalties are discarded after a page break. But if 

you say \bre2Lk\break in a paragraph, the second \break causes an empty line, because 

penalties are discarded after a break in a paragraph only if they do not belong to the 

final sequence of breakpoints. This technicality is unimportant in practice, because 

\break\break isn’t a good way to make an empty line; that line will usually be an 

underfull hbox, since it has only the \leftskip and \rightskip glue in it. Similarly, 

‘\eject\eject’ would not be a good way to make an empty page, even if were to 

change its rules somehow so that an \eject would never be ignored. The best way to 

eject an empty page is to say ‘\eject\line{}\vf il\eject’, and the best way to create 

an empty line is ‘\break\hbox{}\hf ilXbreaik’. Both of these avoid underfull boxes. 



Chapter 15: How TpjK Makes Lines into Pages 115 

You are probably wondering how page numbers and such things get attached 

to pages. The answer is that allows you to do further processing after 

each page break has been chosen; a special “output routine” goes into action before 

pages actually receive their final form. Chapter 23 explains how to construct output 

routines and how to modify the output routine of plain T^]X. 

Every once in a while, TgX will produce a really awful-looking page and you 

will wonder what happened. For example, you might get just one paragraph 

and a lot of white space, when some of the text on the following page would easily fit 

into the white space. The reason for such apparently anomalous behavior is almost 

always that no good page break is possible; even the alternative that looks better to 

you is quite terrible as far as TgX is concerned! does not distinguish between two 

choices that both have 10000 units of badness or more, even though some bad breaks 

do look much worse than others. The solution in such cases is to insert \eject or 

\vfill\eject in some acceptable spot, or to revise the manuscript. If this problem 

arises frequently, however, you probably are using a format that sets overly strict 

limitations on page format; try looking at the output of \tracingpages and modifying 

some of T^X’s parameters, until you have better luck. 

The remainder of this chapter is about insertions: things like footnotes and 

illustrations, and how they interact with page breaks. Before we discuss the 

primitive operations by which TgX deals with insertions, we will take a look at the 

facilities that plain provides at a higher level. 

Illustrations can be inserted in several ways using plain T^]X; The simplest of 

these is called a “floating topinsert”; you say 

\topinsert (vertical mode material)\endinsert 

and TgX will attempt to put the vertical mode material at the top of the current page. 

If there’s no room for such an insertion on one page, will insert it at the top of 

the next page. The (vertical mode material) can contain embedded paragraphs that 

temporarily interrupt vertical mode in the usual way; for example: 

\topinsert \vskip 2in 

\hsize=3in \raggedright 

\noindent{\bf Figure 3.} This is the caption to the 

third illustration of my paper. I have left two inches 

of space above the caption so that there will be room 

to introduce special artwork, \endinsert 

The caption in this example will be set ragged-right in a 3-inch column at the left of 

the page. Plain TgX automatically adds a “bigskip” below each topinsert; this will 

separate the caption from the text. The effects of \hsize=3in and \raggedright do 

not extend past the \endinsert, since grouping is implied. 

► EXERCISE 15.4 

Modify this example so that the caption is moved over next to the right margin, 

instead of appearing at the left. 

Similarly, if you say ‘\pageinsert (vertical mode material) \endinsert’, the 

vertical mode material will be justified to the size of a full page (without a 

bigskip below it); the result will appear on the following page. 



116 Chapter 15: How TpjX Makes Lines into Pages 

There’s also ‘Xmidinsert (vertical mode material) \endinsert’, which tries 

first to insert the material in place, wherever you happen to be, in the middle 

of the current page. If there is enough room, you get the effect of 

\bigskip\vbox{(vertical mode material)>\bigbreak 

otherwise the Xmidinsert is effectively converted to a \topinsert. There is a slight 

probability that \midinsert will not find the best placement, because T^gX is sometimes 

processing text ahead of the current page. You may want to say ‘\goodbreaLk’ just 

before \midinsert. 

You should use the commands \topinsert, \pageinsert, \midinsert in ver- 

tical mode (i.e., between paragraphs), not inside of boxes or other insertions. 

If you have two or more \topinsert, \pageinsert, or \midinsert commands 

in quick succession, they may carry over to several subsequent pages; but they 

will retain their relative order when they are carried over. For example, suppose you 

have pages that are nine inches tall, and suppose you have already specified 4 inches of 

text for some page, say page 25. Then suppose you make seven topinserts in a row, of 

respective sizes 1,2, 3, 9, 3, 2,1 inches; the 9-inch one is actually a \pageinsert. What 

happens? Well, the first and second will appear at the top of page 25, followed by the 

4 inches of copy you have already typed; that copy will immediately be followed by two 

more inches that you type after the seven inserts. The third topinsert will appear at 

the top of page 26, followed by six more inches of text; the fourth will fill page 27; and 

the remaining three will appear at the top of page 28. 

► EXERCISE 15.5 

What would happen in the example just discussed if the final 1-inch insertion 

were a \midinsert instead of a \topinsert? 

At the end of a paper, you probably want to make sure that no insertions 

are lost; and at the end of a chapter, you probably want to make sure that 

no insertions float into the following chapter. Plain will flush out all remain- 

ing insertions, with blank space filling the bottom of incomplete pages, if you say 

‘\vf illXsupereject’. 

Besides illustrations that are inserted at the top of a page, plain T^]X will also 

insert footnotes at the bottom of a page. The \footnote macro is provided 

for use within paragraphs;* for example, the footnote in the present sentence was typed 

in the following way: 

... paragraphs;\footnote*{Like this.} for example, ... 

There are two parameters to a \footnote; first comes the reference mark, which will 

appear both in the paragraph** and in the footnote itself, and then comes the text of 

the footnote.The latter text may be several paragraphs long, and it may contain 

* Like this. 

** The author typed ‘p^^^g^^phXfootnote{**}{The author . . .}’ here. 

And ‘footnote.\footnote{$~{45}$}{And . . .}’ here. The footnotes in this manual 
appear in smaller type, and they are set with hanging indentation; furthermore a 
smallskip occurs between footnotes on the same page. But in plain footnotes 



Chapter 15: How Tp^K Makes Lines into Pages 117 

displayed equations and such things, but it should not involve other insertions. 
will ensure that each footnote occurs at the bottom of the same page as its reference.! 

A long footnote will be split, if necessary, and continued at the bottom of the following 

page, as you can see in the somewhat contrived example that appears here. Authors 

who are interested in good exposition should avoid footnotes whenever possible, since 

footnotes tend to be distracting.! 

The \footnote macro should be used only in paragraphs or hboxes that are 

contributed to T^]X’s main vertical list; insertions will be lost if they occur 
inside of boxes that are inside of boxes. Thus, for example, you should not try to put 

a \f ootnote into a subformula of a math formula. But it’s OK to use footnotes within 

\centerline, e.g., 

\centerline{A paper by A. U. Thor*/, 

\footnote*{Supported by NSF.}} 

or even on the outer level of a table entry inside an \halign. 

^ Topinserts work fine by themselves, and footnotes work fine by themselves, 

X but complications can arise when you try to mix them in devious ways. For 

example, if a \pageinsert floats to the page that follows a long footnote that had 

to be broken, both of the held-over insertions may try to force themselves onto the 

same page, and an overfull vbox may result. Furthermore, insertions cannot appear 

within insertions, so you can’t use \footnote within a \topinsert. If you really need 

a footnote in some caption, there’s a \vfootnote macro that can be used in vertical 

mode. To use it, you put a reference mark like in the caption, and then you say 

‘\vfootnote*{The footnote}’ somewhere on the page where you guess that the caption 

will finally fall. In such complex circumstances you might want to rethink whether or 

not you are really using the most appropriate format for the exposition of your ideas. 

f Chapter 24 explains the exact rules about migration of vertical-mode material 

(like footnotes) from horizontal lists to the enclosing vertical list. Insertions, 

marks, and the results of \vadjust all migrate in the same fashion. 

Now let’s study the primitives of T^]X that are used to construct macros like 

\topinsert and \footnote. We are about to enter behind the scenes into a 

sublanguage of that permits users to do complex manipulations with boxes and 

glue. Our discussion will be in two parts: First we shall consider T^]X’s “registers,” 

with which a user can do arithmetic related to typesetting; and then we shall discuss 

the insertion items that can appear in horizontal and vertical lists. Our discussion 

of the first topic (registers) will be marked with single dangerous-bend signs, since 

registers are of general use in advanced applications of T^]X, whether or not they relate 

to insertions. But the second topic will be marked with double dangerous-bend signs, 

since insertions are rather esoteric. 

are typeset with the normal size of type, with \t ext indent used for the reference 
mark, and without extra smallskips. The \textindent macro is like \item, but it 
omits hanging indentation. 

f Printers often use the symbols \dag (f), \ddag (f), \S (§), and \P (^) as reference 
marks; sometimes also $\|$ (||). You can say, e.g, ‘\footnote\dag{. . 

f Yet Gibbon’s Decline and Fall would not have been the same without footnotes. 



118 Chapter 15: How Tp]X Makes Lines into Pages 

TgX has 256 registers called \countO to \count255, each capable of containing 

integers between —2147483647 and +2147483647, inclusive; i.e., the magni- 

tudes should be less than 2^^. T^];X also has 256 registers called \dimenO to \dimen255, 

each capable of containing a (dimen) (see Chapter 10). There are another 256 registers 

called \skipO to \skip255, each containing (glue) (see Chapter 12); and \muskipO to 

\muskip255, each containing (muglue) (see Chapter 18). You can assign new values to 

these registers by saying 

\count (number) = (number) 

\dimen(number) = (dimen) 

\skip(number) = (glue) 

\muskip(number) = (muglue) 

and then you can add or subtract values of the same type by saying 

\advance\count(number) by (number) 

\advance\dimen(number) by (dimen) 

\adveLnce\skip(number) by (glue) 

\advance\muskip(number) by (muglue) 

For example, ‘\dimen8=\hsize \advaiice\dimen8 by lin’ sets register \dimen8 to an 

inch more than the current value of the normal line size. 

If infinite glue components are added, lower order infinities disappear. For 

example, after the two commands 

\skip2 = Opt plus 2fill minus 3fill 

\advajice\skip2 by 4pt plus Ifil minus 2filll 

the value of \skip2 will be 4pt plus 2 fill minus 2filll. 

Multiplication and division are possible too, but only by integers. For example, 

‘\multiply\dimen4 by 3’ triples the value of \dimen4, and ‘\divide\skip5 

by 2’ cuts in half all three components of the glue that is currently registered in \skip5. 
You shouldn’t divide by zero, nor should you multiply by numbers that will make the 

results exceed the register capacities. Division of a positive integer by a positive integer 

discards the remainder, and the sign of the result changes if you change the sign of 

either operand. For example, 14 divided by 3 yields 4; —14 divided by 3 yields —4; 

— 14 divided by —3 yields 4. Dimension values are integer multiples of sp (scaled points). 

You can use any \count register in the context of a (number), any \dimen 
register in the context of a (dimen), any \skip register in the context of (glue), 

and any \muskip register in the context of (muglue). For example, ‘\hskip\skipl’ puts 

horizontal glue into a list, using the value of \skipl; and if \count5 is 20, the command 

‘\advaiice\dimen20 by\dimen\count5’ is equivalent to ‘\multiply\dimen20 by 2’. 

A \dimen register can be used also in the context of a (number), and a \skip 

register can be used as a (dimen) or a (number). converts (glue) to 

(dimen) by omitting the stretch and shrink components, and it converts (dimen) to 

(number) by assuming units of sp (scaled points). For example, if \skipl holds the 

value 1 pt plus 2pt, then ‘\dimenl=\skipl’ sets \dimenl equal to Ipt; and the com- 

mands ‘\count2=\dimenl’ or ‘\count2=\skipl’ will set \count2 equal to 65536. These 

rules also apply to T^’s internal parameters; for example, ‘\dimen2=\baselineskip’ 
will set \dimen2 to the natural space component of the current baselineskip glue. 



Chapter 15: How TpjX Makes Lines into Pages 119 

► EXERCISE 15.6 

Test your knowledge of TgX’s registers by stating the results of each of the 
following commands when they are performed in sequence: 

\countl=50 \dimen2=\countIpt \divide\countl by 8 

\skip2=-10pt plus\countlfil minus\dimen2 

\multiply\skip2 by-\countl \divide\skip2 by \dimen2 \count6=\skip2 

\skipl=.5\dimen2 plus\skip2 minus\count\countIfill 

\multiply\skip2 by\skipl \advaiice\skipl by-\skip2 

► EXERCISE 15.7 

What is in \skip5 after the following three commands have acted? 

\skip5=0pt plus Ipt 

\advcLnce\skip5 by \skip4 \advajice\skip5 by -\skip4 

► EXERCISE 15.8 

(For mathematicians.) Explain how to round \dimen2 to the nearest multiple 

of \dimen3, assuming that \dimen3 is nonzero. 

The registers obey T^]X’s group structure. For example, changes to \count3 

inside {...} will not affect the value of \count3 outside. Therefore T^]X 

effectively has more than 256 registers of each type. If you want the effect of a register 

command to transcend its group, you must say \global when you change the value. 

► EXERCISE 15.9 

What is in \countl after the following sequence of commands? 

\countl=5 {\countl=2 \global\advaiice\countlby\countl 

\advance\countlby\count1} 

The first ten \count registers, \countO through \count9, are reserved for a 

special purpose: TgX displays these ten counts on your terminal whenever 
outputting a page, and it transmits them to the output file as an identification of that 

page. The counts are separated by decimal points on your terminal, with trailing ‘.0’ 

patterns suppressed. Thus, for example, if \count0=5 and \count2=7 when a page is 

being shipped out to the dvi file, and if the other count registers are zero, will 

type ‘[5.0.7]’. Plain T^]X uses \count0 for the page number, and it keeps \countl 
through \count9 equal to zero; that is why you see just ‘[1]’ when page 1 is being 

output. In more complex applications the page numbers can have further structure; 
ten counts are shipped out so that there will be plenty of identification. 

It’s usually desirable to have symbolic names for registers. provides a 
\countdef command (similar to \chardef, cf. Chapter 8), which makes it 

easy to do this: You just say 

\countdef\chapno=28 

and \chapno is henceforth an abbreviation for \count28. Similar commands \dimendef, 
\skipdef, and \muskipdbf are available for the other types of numeric registers. After 

a control sequence has been defined by \countdef, it can be used in commands 

exactly as if it were an integer parameter like Xtolereuice. Similarly, \dimendef ef- 
fectively creates a new dimension parameter, \skipdef effectively creates a new glue 

parameter, and \muskipdef effectively creates a new muglue parameter. 



120 Chapter 15: How Tp^K Makes Lines into Pages 

Besides the numerical registers, also has 256 box registers called \boxO to 

\box255. A box register gets a value when you say \setbox(number) = (box); 

for example, ‘\setbox3=\hbox{A}’ sets \box3 to an hbox that contains the single let- 

ter A. Several other examples of \setbox have already appeared in Chapter 12. Chap- 

ter 10 points out that ‘2\wd3’ is a (dimen) that represents twice the width of \box3; 

similarly, \ht(number) and \dp(number) can be used to refer to the height and depth 

of a given box register. 

Box registers are local to groups just as arithmetic registers are. But there’s a 

big difference between box registers and all the rest: When you use a \box, it 

loses its value. For example, the construction ‘\raise2pt\box3’ in a horizontal list not 

only puts the contents of \box3 into the list after raising it by 2 pt, it also makes \box3 

void. does this for efficiency, since it is desirable to avoid copying the contents 

of potentially large boxes. If you want to use a box register without wiping out its 

contents, just say ‘\copy’ instead of ‘\box’; for example, ‘\raise2pt\copy3’. 

Another way to use a box register is to extract the inside of an hbox by saying 

‘\unhbox’. This annihilates the contents of the register, like ‘\box’ does, and 

it also removes one level of boxing. For example, the commands 

\setbox3=\hbox{A} \setbox3=\hbox{\box3 B} 

\setbox4=\hbox{A} \setbox4=\hbox{\unhbox4 B} 

put \hbox{\hbox{A}B} into \box3 and \hbox{AB} into \box4. Similarly, \unvbox un- 

wraps a vbox. If you want to construct a large box by accretion (e.g., a table of 

contents), it is best to use \unhbox or \unvbox as in the \setbox4 example; otherwise 

you use more of T^jK’s memory space, and you might even obtain boxes inside boxes 

nested to such a deep level that hardware or software limits are exceeded. 

The operations \unhcopy and \unvcopy are related to \unhbox and \unvbox 

as \copy is to \box. (But their names are admittedly peculiar.) 

An unboxing operation “unsets” any glue that was set at the box’s outer level. 

For example, consider the sequence of commands 

\setbox5=\hbox{A \hbox{B C}} \setbox6=\hbox to 1.05\wd5{\unhcopy5} 

This makes \box6 five percent wider than \box5; the glue between A and \hbox{B C} 

stretches to make the difference, but the glue inside the inner hbox does not change. 

A box register is either “void” or it contains an hbox or a vbox. There is a 

difference between a void register and one that contains an empty box whose 
height, width, and depth are zero; for example, if \box3 is void, you can say \unhbox3 

or \unvbox3 or \uiihcopy3 or \unvcopy3, but if \box3 is equal to \hbox{} you can say 

only \unhbox3 or \unhcopy3. If you say ‘\global\setbox3=(box)’, register \box3 will 

become “globally void” when it is subsequently used or unboxed. 

► EXERCISE 15.10 

What is in register \box5 after the following commands? 

\setbox5=\hbox{A} \setbox5=\hbox{\copy5\unhbox5\box5\unhcopy5} 

► EXERCISE 15.11 

And what’s in \box3 after ‘{\global\setbox3=\hbox{A}\setbox3=\hbox{}}’? 



Chapter 15: How TpjX Makes Lines into Pages 121 

If you are unsure about how operates on its registers, you can experiment 

online by using certain ‘\show’ commands. For example, 

\showthe\count1 \showthe\dimen2 \showthe\skip3 

will display the contents of \countl, \dimen2, and \skip3; and ‘\showbox4’ will dis- 

play the contents of \box4. Box contents will appear only in the log file, unless you 

say ‘\tracingonline=l’. Plain provides a macro ‘\tracingall’ that turns on 

every possible mode of interaction, including \tracingonline. The author used these 

features to check the answers to several of the exercises above. 

Large applications of TgX make use of different sets of macros written by 

different groups of people. Chaos would reign if a register like \countl00, say, 

were being used simultaneously for different purposes in different macros. Therefore 

plain T^X provides an allocation facility; cooperation will replace confusion if each 

macro writer uses these conventions. The idea is to say, e.g., ‘\newcoimt’ when you 

want to dedicate a \count register to a special purpose. For example, the author 

designed a macro called ‘\exercise’ to format the exercises in this manual, and one of 

the features of \exercise is that it computes the number of the current exercise. The 

format macros in Appendix E reserve a \count register for this purpose by saying 

\newcount\exno 

and then the command ‘\exno=0’ is used at the beginning of each chapter. Similarly, 

‘\advance\exno byl’ is used whenever a new exercise comes along, and ‘\the\exno’ 

is used to typeset the current exercise number. The \newcount operation assigns a 

unique count register to its argument \exno, and it defines \exno with a \countdef 

command. All of the other format macros are written without the knowledge of exactly 

which \count register actually corresponds to \exno. 

Besides \newcount, plain provides \newdimen, \newskip, \newmuskip, 

and \newbox; there also are \newtoks, \newread, \newwrite, \newfam, and 

\newinsert, for features we haven’t discussed yet. Appendices B and E contain sev- 

eral examples of the proper use of allocation. In the cases of \newbox, \newread, 

etc., the allocated number is defined by \chardef. For example, if the command 
‘\newbox\abstract’ is used to define a box register that will contain an abstract, 

and if the \newbox operation decides to allocate \box45 for this purpose, then it 

defines the meaning of \abstract by saying ‘\chardef\abstract=45’. allows 

Xchardef’d quantities to be used as integers, so that you can say \box\abstract and 
\copy\abstract, etc. (There is no \boxdef command.) 

► EXERCISE 15.12 

Design a \note macro that produces footnotes numbered sequentially. For 

example,^ it should produce the footnotes here^ if you type 

... example,\note{First note.} it should produce 

the footnotes here\note{Second note.} if ... 

(Use \newcount to allocate a \count register for the footnotes.) 

^ First note. 

2 Second note. 



122 Chapter 15: How TpjK Makes Lines into Pages 

Sometimes, however, you want to use a register just for temporary storage, 

and you know that it won’t conflict with anybody else’s macros. Registers 

\count255, \dimen255, \skip255, and \muskip255 are traditionally kept available for 

such purposes. Furthermore, plain T]gX reserves \dimenO to \dimen9, \skipO to \skip9, 

\muskipO to \muskip9, and \boxO to \box9 for “scratchwork”; these registers are never 

allocated by the \new. . . operations. We have seen that \countO through \count9 are 

special, and \box255 also turns out to be special; so those registers should be avoided 

unless you know what you are doing. 

fOf course any register can be used for short-term purposes inside a group 

(including \countO to \count9 and \box255, and including registers that have 

been allocated for other purposes), since register changes are local to groups. However, 

you should be sure that TgX will not output any pages before the group has ended, 

because output routines might otherwise be invoked at unfortunate times. TgX is liable 

to invoke an output routine whenever it tries to move something from the list of recent 

contributions to the current page, because it might discover a page break with c = oo 
then. Here is a list of the times when that can happen: (a) At the beginning or end of a 

paragraph, provided that this paragraph is being contributed to the main vertical list, 

(b) At the beginning or end of a displayed equation within such a paragraph, (c) After 

completing an \halign in vertical mode, (d) After contributing a box or penalty or 

insertion to the main vertical list, (e) After an \output routine has ended. 

fNow that we are armed with the knowledge of T^]X’s flexible registers, we 

can plunge into the details of insertions. There are 255 classes of insertions, 

\insertO to \insert254, and they are tied to other registers of the same number. 

For example, \insertl00 is connected with \countl00, \dimenl00, \skipl00, and 

\boxl00. Therefore plain provides an allocation function for insertions as it does 
for registers; Appendix B includes the command 

\newinsert\footins 

which defines \footins as the number for footnote insertions. Other commands that 

deal with footnotes refer to \count\footins, \dimen\footins, and so on. The macros 

for floating topinserts are similarly prefaced by ‘\newinsert\topins’, which defines 

\topins as the number of their class. Each class of insertions is independent, but 

preserves the order of insertions within a class. It turns out that \footins is class 254, 

and \topins is class 253, but the macros do not use such numbers directly. 

For our purposes let’s consider a particular class of insertions called class n; 

X we will then be dealing with T^]X’s primitive command 

\insert n{(vertical mode material)} 

which puts an insertion item into a horizontal or vertical list. For this class of insertions 

\boxn is where the material appears when a page is output; 

\countn is the magnification factor for page breaking; 

\dimenn is the maximum insertion size per page; 

\skipn is the extra space to allocate on a page. 

For example, material inserted with \insertl00 will eventually appear in \boxl00. 



Chapter 15: How TpjX Makes Lines into Pages 123 

Let the natural height plus depth of \insertn be x; then \countn is 1000 

^ times the factor by which x affects the page goal. For example, plain sets 

\count\footins=1000, since there is a one-to-one relationship; A 10-point footnote 
effectively makes a page 10 pt shorter. But if we have an application where footnotes 
appear in double columns, a count value of 500 would be appropriate. One of the 

insertion classes in Appendix E makes marginal notes for proofreading purposes; in 

that case the count value is zero. No actual magnification is done; \count n is simply 

a number used for bookkeeping, when estimating the costs of various page breaks. 

f/^ The first footnote on a page requires extra space, since we want to separate 

the footnotes from the text, and since we want to output a horizontal rule. 

Plain sets ‘\skip\footins=\bigskipamount’; this means that a bigskip of extra 

space is assumed to be added by the output routine to any page that contains at least 

one insertion of class \footins. 

Sometimes it is desirable to put a maximum limitation on the size of insertions; 

^ for example, people usually don’t want an entire page to consist of footnotes. 

Plain sets \dimen\footins=8in; this means that \box\footins is not supposed 

to accumulate more than 8 inches of footnotes for any one page. 

You might want to review the page-breaking algorithm explained at the be- 

ginning of this chapter, before reading further. On the other hand, maybe you 

don’t really want to read the rest of this chapter at all, ever. 

Here now is the algorithm that T^X performs when an \insertn is moved 

from the “recent contributions” to the “current page.” (Remember that such 

a move does not mean that the insertion will actually take place; the current page will 

be backed up later, to the breakpoint of least cost, and only the insertions preceding 

that breakpoint will actually be performed.) Let g and t be the current \pagegoal 

and \pagetotal; let q be the \insertpenalties accumulated for the current page; 

and let d and z be the current \pagedepth and \pageshrink. (The value of d is at 

most \maxdepth; this value has not yet been incorporated into t.) Finally, let x be 

the natural height plus depth of the \insert n that we are moving to the current page; 

and let / be the corresponding magnification factor, i.e., \countn divided by 1000. 

Step 1. If there is no previous \insertn on the current page, decrease g by hf w, 

where h is the current height plus depth of \boxn, and where w is the natural space 

component of \skipn; also include the stretch and shrink components of \skipn in 

the totals for the current page (in particular, this affects z). 

Step 2. If a previous \insert n on the current page has been split, add the parameter 

called \floatingpenalty to q, and omit Steps 3 and 4. 

Step 3. Test if the current insertion will fit on the page without splitting. This means 

that it will not make the height plus depth of \boxn surpass \dimenn, when it is 

added to \boxn together with all previous \insertn amounts on the current page; 

furthermore, it means that either xf < 0 or t-{-d-\-xf — z < g. If both tests are passed, 

subtract xf from g and omit Step 4. 

Step 4. (The current insertion will be split, at least tentatively; but the split will not 

actually take place if the least-cost page turns out to have occurred earlier than the 

present insertion.) First compute the largest amount v such that a height plus depth 



124 Chapter 15: How TgX Makes Lines into Pages 

of V will not make the total insertions into \boxn bigger than \dimenn, and such that 

t ^ d ^ vf < g. (Notice that z is omitted from the latter formula, but the available 

shrinkability was considered in Step 3 when we tried to avoid splitting.) Then find the 

least-cost way to split the beginning of the vertical list of the insertion so as to obtain a 

box of height v. (Use an algorithm just like page-breaking, but without the complexity 

of insertion; an additional ‘\penalty-10000’ item is assumed to be present at the end 

of the vertical list, to ensure that a legal breakpoint exists.) Let u be the natural 

height plus depth of that least-cost box, and let r be the penalty associated with the 
optimum breakpoint. Decrease g by uf, and increase q by r. (If \tracingpages=l, the 

log file should now get a cryptic message that says “/, split n v ,u p=r’. For example. 

•/. split254 180.2,175.3 p=100 

means that the algorithm has tried to split an \insert254 to 180.2 pt; the best split is 

actually 175.3 pt tall, and the penalty for breaking there is 100.) 

This algorithm is admittedly complicated, but no simpler mechanism seems to 

do nearly as much. Notice that penalties of —10000 inside insertions will make 

certain splits very attractive in Step 4, so the user can provide hints about where to 

break, in difficult situations. The interesting thing is that the algorithm can be adapted 

to behave in a variety of different ways. Floating insertions are accommodated as a 

special case of split insertions, by making each floating topinsert start with \penalty0, 

so that it can split for free, and by having zero as the associated \f loatingpenalty; 

non-floating insertions like footnotes are accommodated by associating larger penalties 

with split insertions (see Appendix B). 

The splitting operation mentioned in Step 4 is also available as a primitive: 

X ‘\vsplit(number) to(dimen)’ produces a vbox obtained by splitting off a 

specified amount of material from a box register. For example, 

\setbox200=\vsplitl00 to 50pt 

sets \box200 to a vbox whose height is 50 pt; it goes through the vertical list inside 

\boxl00 (which should be a vbox) and finds the least-cost break assuming a goal height 

of 50 pt, considering badnesses and penalties just as in the case of page-breaking (but 

with q = 0). The algorithm uses \splitmaxdepth instead of \maxdepth to govern 

the maximum depth of boxes. Then it prunes the top of \boxl00 by removing every- 

thing up to and including any discardable items that immediately follow the optimum 

breakpoint; and it uses \splittopskip to insert new glue before the first box inside 

\boxl00, just as \topskip glue appears at the top of a page. However, if the optimum 

breakpoint occurs at the end of the vertical list inside \boxl00—a ‘\penalty-10000’ 

item is assumed to be present there—or if all items after the optimum breakpoint are 

discarded, \boxl00 will be void after the \vsplit. And if \boxl00 was void before the 

\vsplit, both \boxl00 and \box200 will be void afterwards. 

You had better not change \boxn, \countn, \dimenn, or \skipn while 

is contributing insertions to the current page, since the algorithm described 

above assumes that those quantities are static. But you can change \floatingpenalty, 

\splittopskip, and \splitmaxdepth; will use the values that were current just 

inside the closing right brace of ‘\insertn{. . when it splits and floats insertions. 
For example. Appendix B uses \f loatingpenalty=20000 in footnote insertions, in order 



Chapter 15: How TpjX Makes Lines into Pages 125 

to discourage footnotes that split before others can start; but the \floatingpenalty is 

zero in floating topinserts. Appendix B also uses special values of \splittopskip and 

\splitmaxdepth, together with struts, so that split footnotes will be typeset with the 

same spacing as unsplit ones. 

The \f ootnote macro puts an \insert into the horizontal list of a paragraph. 

^ After the paragraph has been broken into lines, this insertion will move out 

into the vertical list just after the line that contained it (see Chapter 14). Since there 

is no legal breakpoint between that box (i.e., that line) and the insertion, will put 

the insertion onto the page that contains the line that contains the insertion. 

(^►EXERCISE 15.13 

^ Study the page-breaking algorithm carefully. Is it possible that a footnote 

might not appear on the same page as its reference? 

When the best page break is finally chosen, T^]X removes everything after the 

X chosen breakpoint from the bottom of the “current page,” and puts it all back 

at the top of the “recent contributions.” The chosen breakpoint itself is placed at the 

very top of the recent contributions. If it is a penalty item, the value of the penalty 

is recorded in \outputpenalty and the penalty in the contribution list is changed to 

10000; otherwise \outputpenalty is set to zero. The insertions that remain on the 

current page are of three kinds: For each class n there are unsplit insertions, followed 

possibly by a single split insertion, followed possibly by others. The unsplit insertions 

are appended to \boxn, with no interline glue between them. (Struts should be 

used, as in the \vfootnote macro of Appendix B.) If a split insertion is present, it is 

effectively \vsplit to the size that was computed previously in Step 4; the top part is 

treated as an unsplit insertion, and the remainder (if any) is converted to an insertion 

as if it had not been split. This remainder, followed by any other floating insertions 

of the same class, is held over in a separate place. (They will show up on the “current 

page” if \showlists is used while an \output routine is active; the total number of 

such insertions appears in \insertpenalties during an \output routine.) The non- 

insertion items before the best break on the current page are put together in a \vbox 

of height g, where g was the \pagegoal at the time of the break, using the saved value 

of \maxdepth; this box becomes \box255. Now the user’s \output routine enters T^]X’s 

scanner (see Chapter 23); its duty is to assemble the final pages based on the contents of 

\box255 and any insertion boxes that it knows about. The output routine will probably 

unbox those boxes, so that their glue can be reset; the glue in insertion boxes usually 

cooperates nicely with the glue on the rest of the page, when it is given a chance. After 

the \output routine is finished, held-over insertion items are placed first on the list of 

recent contributions, followed by the vertical list constructed by \output, followed by 

the recent contributions beginning with the page break. (Deep breath.) You got that? 

Since it is impossible to foresee how [footnotes] will happen to come out 
in the make-up, it is impracticable to number them from 1 up on each page. 

The best way is to number them consecutively throughout an article 
or by chapters in a book. 

— UNIVERSITY OF CHICAGO PRESS, Manual of Style (1910) 

Don’t use footnotes in your books, Don. 

— JILL KNUTH (1962) 



Typing 
Math Formulas 



Chapter 16: Typing Math Formulas 127 

TgX is designed to handle complex mathematical expressions in such a way that 

most of them are easy to input. The basic idea is that a complicated formula 

is composed of less complicated formulas put together in a simple way; the less 

complicated formulas are, in turn, made up of simple combinations of formulas 

that are even less complicated; and so on. Stating this another way, if you know 

how to type simple formulas and how to combine formulas into larger ones, you 

will be able to handle virtually any formula at all. So let’s start with simple ones 

and work our way up. 

The simplest formula is a single letter, like ‘x’, or a single number, like 

‘2’. In order to put these into a T[^ text, you type ‘$x$’ and ‘$2$’, respectively. 

Notice that all mathematical formulas are enclosed in special math brackets; we 

are using $ as the math bracket in this manual, in accord with the plain Tp;X 

format defined in Appendix B, because mathematics is supposedly expensive. 

When you type ‘$x$’ the ‘x’ comes out in italics, but when you type 

‘$2$’ the ‘2’ comes out in roman type. In general, all characters on your key- 

board have a special interpretation in math formulas, according to the normal 

conventions of mathematics printing: Letters now denote italic letters, while 

digits and punctuation denote roman digits and punctuation; a hyphen (-) now 

denotes a minus sign ( —), which is almost the same as an em-dash but not quite 

(see Chapter 2). The first $ that you type puts you into “math mode” and the 

second takes you out (see Chapter 13). So if you forget one $ or type one $ too 

many, Tg^ will probably become thoroughly confused and you will probably get 

some sort of error message. 

Formulas that have been typeset by a printer who is unaccustomed to 

mathematics usually look quite strange to a mathematician, because a novice 

printer usually gets the spacing all wrong. In order to alleviate this problem, 

does most of its own spacing in math formulas; and it ignores any spaces that you 

yourself put between $’s. For example, if you type ‘$ x$’ and ‘$ 2 $’, they will 

mean the same thing as ‘$x$’ and ‘$2$’. You can type ‘$(x + y)/(x - y)$’ or 

‘$(x+y) / (x-y)$’, but both will result in ‘(x + y)/(x — y)\ a formula in which 

there is a bit of extra space surrounding the + and — signs but none around 

the / sign. Thus, you do not have to memorize the complicated rules of math 

spacing, and you are free to use blank spaces in any way you like. Of course, 

spaces are still used in the normal way to mark the end of control sequences, 

as explained in Chapter 3. In most circumstances TgX’s spacing will be what a 

mathematician is accustomed to; but we will see in Chapter 18 that there are 

control sequences by which you can override TjBl^’s spacing rules if you want to. 

One of the things mathematicians like to do is make their formulas look 

like Greek to the uninitiated. In plain T^ language you can type ‘$$\alpha, 

\beta, Xgamina, \delta;$$’ and you will get the first four Greek letters 

Q;,/3,7,(5; 

furthermore there are uppercase Greek letters like ‘F’, which you can get by 

typing ‘$\Gaimna$’. Don’t feel intimidated if you aren’t already familiar with 



128 Chapter 16: Typing Math Formulas 

Greek letters; they will be easy to learn if you need them. The only difficulty 

is that some symbols that look nearly the same must be carefully distinguished. 

For example, the Greek letters \nu {v) and \kappa [n) should not be confused 

with the italic letters v and x; the Greek \phi (0) is different from the slashed 

zero called \emptyset (0). A lowercase epsilon (e) is quite different from the 

symbol used to denote membership in a set (G); type ‘$\epsilon$’ for e and 

‘$\in$’ for G. Some of the lowercase Greek letters have variant forms in plain 

T^iX’s math italic fonts: ‘$(\phi,\theta,\epsilon,\rho)$’ yields ‘((/), e, p)’ 

while ‘$(\varphi ,\vartheta,\varepsilon,\varrho)$’ yields ‘((p, "d, 5, p)’. 

Besides Greek letters, there are a lot of funny symbols like (which 

you get by typing ‘$\approx$’) and ‘H->’ (which you get by typing ‘$\mapsto$’). 

A complete list of these control sequences and the characters they correspond to 

appears in Appendix F. Such control sequences are allowed only in math mode, 

i.e., between $’s, because the corresponding symbols appear in the math fonts. 

► EXERCISE 16.1 

What should you type to get the formula ‘7 + G F’ ? 

► EXERCISE 16.2 

Look at Appendix F to discover the control sequences for ‘<’, ‘>’, and 

(These are probably the three most commonly used math symbols that are not 

present on your keyboard.) What does plain T^ call them? 

Now let’s see how the more complex formulas get built up from simple 

ones. In the first place, you can get superscripts and subscripts (down low) 

by using and as shown in the following examples: 

Input 

$x"2$ 

$x_2$ 

$2^x$ 

$x^2y^2$ 

$x 2y 2$ 

$x_2y_2$ 

$_2F_3$ 

Notice that '' and _ apply only to the next single character. If you want several 

things to be superscripted or subscripted, just enclose them in braces: 

$x"{2y}$ 

$2''{2^x}$ 

$2''{2^{2''x}}$ 

$y_{x_2}$ 

$y_{x''2}$ 

'■> ^ 
2^ 

6x2 

Vx^ 

Output 

X2 
2x 

x^y‘^ 

x‘^y‘^ 

^262 

2F3 



Chapter 16: Typing Math Formulas 129 

The braces in these examples have been used to specify “subformulas,” i.e., 

simpler parts of a larger formula. makes a box for each subformula, and 

treats that box as if it were a single symbol. Braces also serve their usual purpose 

of grouping, as discussed in Chapter 5. 

It is illegal to type ‘x'^y^z’ or ‘x_y_z’; will complain of a “double 

superscript” or “double subscript.” You must type ‘x''{y"z}’ or ‘x"{yz}’ or 

‘x_{y_z}’ or ‘x_{yz}’ in order to make your intention clear. 

A superscript or subscript following a character applies to that character 

only; but when following a subformula it applies to that whole subformula, and 

it will be raised or lowered accordingly. For example, 

$((x^2)^3)^4$ 

${({(x''2)}-3)}-4$ 

In the hrst formula the ‘''3’ and ‘^4’ are superscripts on the right parentheses, 

i.e., on the characters that immediately precede them, but in the second 

formula they are superscripts on the subformulas that are enclosed in braces. 

The first alternative is preferable, because it is much easier to type and it is just 

as easy to read. 

A subscript or superscript following nothing (as in the ‘_2F_3’ example on 

the preceding page, where the ‘_2’ follows nothing) is taken to mean a sub- 

script or superscript of an empty subformula. Such notations are (fortunately) rare in 
mathematics; but if you do encounter them it is better to make your intention clear by 

showing the empty subformula explicitly with braces. In other words, the best way to 

get ‘2F3’ in a formula is to type ‘{}_2F_3’ or ‘{_2}F_3’ or ‘{_2F_3}’. 

► EXERCISE 16.3 

What difference, if any, is there between the output of ‘$x + _2F_3$’ and the 

output of‘$x + {}_2F_3$’? 

► EXERCISE 16.4 

Describe the differences between the outputs of ‘${x"y}~z$’ and ‘$x~{y~z}$’. 

You can have simultaneous subscripts and superscripts, and you can 

specify them in any order: 

$x^2_3$ 

$x_3^2$ 

$x^{31415}_{92}+\pi$ 

$x_{y"a_b}"{z_c"d}$ 

X 
31415 
92 + TT 

Vi 

Notice that simultaneous su^^'^scripts are positioned over each other. However, a 

subscript will be “tucked in” slightly when it follows certain letters; for example, 

‘$P_2"2$’ produces . If for some reason you want the left edges of both 

subscript and superscript to be aligned, you can fool T^X by inserting a null 

subformula: ‘$P{}_2^2$’ produces 



130 Chapter 16: Typing Math Formulas 

The control sequence \prime stands for the symbol which is used 

mostly in superscripts. In fact, b’ is so big as it stands that you would never 

want to use it except in a subscript or superscript, where it occurs in a smaller 

size. Here are some typical examples: 

Input Output 

$y_l"\prime$ y'l 
$y_2"{\prime\prime}$ y'i 
$y_3''{\prime\prime\prime}$ Vz 

Since single and double primes occur rather frequently, plain provides a 

convenient abbreviation: You can simply type ’ instead of "\prime, and ^ ’ 

instead of "{\prime\prime}, and so on. 

$f’[g(x)]g’(x)$ 

$y_l’+y_2’’$ 

$y’_l-»-y^ >_2$ 

$y’ ’‘^_3+g^''2$ 

► EXERCISE 16.5 

Why do you think treats \prime as a large symbol that appears only in 
superscripts, instead of making it a smaller symbol that has already been shifted up 
into the superscript position? 

► EXERCISE 16.6 

Mathematicians sometimes use “tensor notation” in which subscripts and su- 
perscripts are staggered, as in Explain how to achieve such an effect. 

f'[9{x)]g'{x) 

y'l + 62 

y'l + 62 

63 + g'^ 

Another way to get complex formulas from simple ones is to use the con- 

trol sequences \sqrt, \underline, or \overline. Like and _, these operations 

apply to the character or subformula that follows them: 

$\sqrt2$ 

$\sqrt{x+2}$ \/x + 2 

$\underline4$ 4 

$\overline{x+y}$ xFy 

$\overline x+\overline y$ x + y 

$x"{\underline n}$ X— 

$x"{\overline{m+n}}$ ^m+n 

$\sqrt{x"3-»-\sqrt\alpha}$ ^x^ F y/a 

You can also get cube roots and similar things by using \root: 

+ y'^ 

$\root 3 \of 2$ 

$\root n \of {x"n+y''n}$ 

$\root n+1 \of a$ n -|-1 



Chapter 16: Typing Math Formulas 131 

fThe \sqrt and \underline and \overline operations are able to place lines 

above or below subformulas of any size or shape; the bar lines change their size 
and position, so that they are long enough to cover the subformula, and high enough 

or low enough not to bump into it. For example, consider ‘\overline 1’ (/) versus 

‘\overline m’ (m): the first has a shorter bar line, and this line has been raised higher 

than the bar in the second. Similarly, the bar in ‘\underline y’ (y) is lower than 

the bar in ‘\underline x’ (x); and square root signs appear in a variety of positions 

based on the height and depth of what is being \sqrt’d: y/a + Vd + knows 

the height, depth, and width of every letter and every subformula, because it considers 

them to be boxes, as explained in Chapter 11. If you have a formula in which there 

is only one \sqrt, or only one \overline or \underline, the normal positioning rules 

work fine; but sometimes you want to have uniformity between different parts of a 

complex formula. For example, you might want to typeset ‘y/a + y/d + \/y\ putting 

all square roots in the same vertical position. There’s an easy way to do this, using the 

control sequence \mathstrut as follows: 

$\sqrt{\mathstrut a}+\sqrt{\mathstrut d}+\sqrt{\mathstrut y}$. 

A \mathstrut is an invisible box whose width is zero; its height and depth are the 

height and depth of a parenthesis ‘(’. Therefore sub formulas that contain \mathstrut 

will always have the same height and depth, unless they involve more complicated 

constructions like subscripts and superscripts. Chapter 18 discusses more powerful 

operations called \smash and Xphantom by which you can obtain complete control over 

the positioning of roots and similar signs. 

► EXERCISE 16.7 
Test your understanding of what you have read so far in this chapter by explain- 
ing what should be typed to get the following formulas. (Be sure to check your 
answer with Appendix A to confirm that you’re right.) 

IQIO 2^+^ (n + 1)^ \/l — wFz p\^ ^h'^{ax) 
dg 

► EXERCISE 16.8 
What mistake did B. C. Dull discover after he typed the following? 

If$ X = y$, then $x$ is equal to $y.$ 

► EXERCISE 16.9 
Explain how to type the following sentence: 

Deleting an element from an n-tuple leaves an (n — l)-tuple. 

► EXERCISE 16.10 
List all the italic letters that descend below the baseline. (These are the letters 
for which \underline will lower its bar line.) 

We have discussed the fact that the characters you type have special 
meanings in math mode, but the examples so far are incomplete; they don’t 
reveal all the power that is at your hngertips just after you press the ‘$’ key. It’s 
time now to go back to basics: Let us make a systematic survey of what each 
character does, when it is used in a formula. 



132 Chapter 16: Typing Math Formulas 

The 52 letters (A to Z and a to z) denote italic symbols (A to Z and 

a to z)^ which a mathematician would call “variables.” just calls them 

“ordinary symbols,” because they make up the bulk of math formulas. There 

are two variants of lowercase L in plain T^, namely T (which you get by simply 

typing ‘1’) and T’ (which you get by typing ‘\ell’). Although mathematicians 

commonly write something that looks like T’ in their manuscripts, they do so 

only to distinguish it from the numeral ‘T. This distinguishability problem is 

not present in printed mathematics, since an italic T is quite different from a ‘1’; 

therefore it is traditional to use T unless T’ has been specifically requested. 

Plain Tf^X also treats the 18 characters 

0123456789!?. I/'O" 

as ordinary symbols; i.e., it doesn’t insert any extra space when these symbols 

occur next to each other or next to letters. Unlike the letters, these 18 characters 

remain in roman type when they appear in formulas. There’s nothing special for 

you to remember about them, except that the vertical line ‘ I ’ has special uses 

that we shall discuss later. Furthermore, you should be careful to distinguish 

between ‘oh’ and ‘zero’: The italic letter O is almost never used in formulas 

unless it appears just before a left parenthesis, as in ‘0(n)’; and the numeral 0 is 

almost never used just before a left parenthesis unless it is preceded by another 

digit, as in ‘10(n — 1)’. Watch for left parentheses and you’ll be OK. (Lowercase 

o’s also tend to appear only before left parentheses; type ‘x_0’ instead of ‘x_o’, 

since the formula is generally more correct than ‘Xo’.) 

The three characters +, -, and * are called “binary operations,” because 

they operate on two parts of a formula. For example, + is a plus sign, which is 

used for the sum of two numbers; - is a minus sign. The asterisk (*) is rarer in 

mathematics, but it also behaves as a binary operation. Here are some exam- 

ples of how T[^ typesets binary operations when they appear next to ordinary 

symbols: 

Input 

$x+y-z$ 

$x+y*z$ 

$x*y/z$ 

Output 

X F y — z 

X F y ^ z 

X ^ y/ z 

Notice that - and * produce quite different math symbols from what you get in 

normal text: The hyphen (-) becomes a minus sign ( —), and the raised aster- 

isk (*) drops down to a lower level (*). 

TpA does not treat / as a binary operation, even though a slash stands for 
division (which qualifies as a binary operation on mathematical grounds). The 

reason is that printers traditionally put extra space around the symbols -|-, —, and *, 
but not around /. If TLN were to typeset / as a binary operation, the formula ‘$1/2$’ 
would come out ‘1/2’, which is wrong; so TLN considers / to be an ordinary symbol. 



Chapter 16: Typing Math Formulas 133 

Appendix F lists many more binary operations, for which you type control 

sequences instead of single characters. Here are some examples: 

$x\times y\cdot z$ 

$x\circ y\bullet z$ 

$x\cup y\cap z$ 

$x\sqcup yXsqcap z$ 

$x\vee yXwedge z$ 

$xXpm yXmp z$ 

X X y ■ z 

X o y • z 

X U y n z 

X U y n z 

X y y A z 

X Fy ^ z 

It is important to distinguish x (Xtimes) from X (X) and from x (x); to distinguish U 

(Xcup) from U (U) and from u (u); to distinguish V (Xvee) from V (V) and from v (v); 

to distinguish o (Xcirc) from O (0) and from o (o). The symbols ‘V’ and ‘A’ can also 

be called Xlor and Xland, since they frequently stand for binary operations that are 

called “logical or” and “logical and.” 

Incidentally, binary operations are treated as ordinary symbols if they don’t 
occur between two quantities that they can operate on. For example, no extra 

space is inserted next to the , and * in cases like the following: 

$x=+l$ 

$3,142-$ 

$(D*)$ 

X = +1 

3.142- 

(D*) 

Consider also the following examples, which show that binary operations can be used 

as ordinary symbols in superscripts and subscripts: 

Ki,K. 

Z 

$K_n''+ ,K_n~-$ 

$z~*_{ij}$ 

$g"Xcirc Xmapsto g"Xbullet$ 

$f~*(x) Xcap f_*(y)$ 

► EXERCISE 16.11 

How would you obtain the formulas and F'^(z)X 

9^9 

r{x)nC{y) 

Plain TE;X treats the four characters =, <, >, and : as “relations” because 
they express a relationship between two quantities. For example, ‘x < means 
that X is less than y. Such relationships have a rather different meaning from 
binary operations like +, and the symbols are typeset somewhat differently: 

$x=y>z$ 

$x:=y$ 

$xXle yXne z$ 

SxXsim yXsimeq z$ 

SxXequiv yXnotXequiv z$ 

SxXsubset yXsubseteq z$ 

X = y > z 

X :=y 

X <y ^ z 

X ^ y zz z 

X = y ^ z 

X C y C z 

(The last several examples show some of the many other relational symbols that 
plain TgX makes available via control sequences; see Appendix F.) 



134 Chapter 16: Typing Math Formulas 

The two characters (comma) and (semicolon) are treated as 
punctuation marks in formulas; this means that puts a little extra space 
after them, but not before them. 

$f(x,y;z)$ f{x,y;z) 

It isn’t customary to put extra space after a ‘’ (period) in math formulas, so 
TgX treats a period as an ordinary symbol. If you want the ‘: ’ character to be 
treated as a punctuation mark instead of as a relation, just call it \colon: 

$f :A\to B$ f : A-^ B 

$f\colon A\to B$ f’.A^B 

If you want to use a comma as an ordinary symbol (e.g., when it appears in a 
large number), just put it in braces; treats anything in braces as an ordinary 
symbol. For instance, 

$12,345x$ 12,345x (wrong) 

$12{,}345x$ 12,345x (right) 

► EXERCISE 16.12 

What’s an easy way to get a raised dot in a decimal constant (e.g., ‘3T416’)? 

So far we have considered letters, other ordinary symbols, binary oper- 
ations, relations, and punctuation marks; hence we have covered almost every 
key on the typewriter. There are just a few more: The characters ‘ (’ and ‘ [’ are 
called “openings,” while ‘)’ and ‘] ’ are called “closings”; these act pretty much 
like ordinary symbols, but they help to decide when a binary operation is 
not really being used in a binary way. Then there is the character ’, which we 
know is used as an abbreviation for \prime superscripts. Finally, we know that 
plain TgX reserves the other ten characters: 

\ $ 7o # & ~ ^ 

These are not usable for symbols in math mode unless their \catcode values 
are changed (see Chapter 7). Although { and } specify grouping, the control 
sequences ‘\{’ and ‘\}’ can be used to get as an opening and as a closing. 

All of these math mode interpretations are easily changeable, since each char- 
JL JL acter has a \mathcode, as explained in Chapter 17; none of the conventions are 
permanently built into However, most of them are so standard that it is usually 
unwise to make many changes, except perhaps in the interpretations of ", and Q. 

The special characters " and _ that designate superscripts and subscripts 
should not be used except in formulas. Similarly, the names of math symbols 
like \alpha and \approx, and the control sequences for math operations like 
\overline, must not invade ordinary text. uses these facts to detect missing 
dollar signs in your input, before such mistakes cause too much trouble. For 
example, suppose you were to type 

The smallest $n such that $2''n>1000$ is~10. 



Chapter 16: Typing Math Formulas 135 

TgX doesn’t know that you forgot a ‘$’ after the first ‘n’, because it doesn’t 
understand English; so it finds a “formula” between the first two $ signs: 

The smallest nsuchthat 

after which it thinks that ‘2’ is part of the text. But then the '' reveals an 
inconsistency; will automatically insert a $ before the ", and you will get 
an error message. In this way the computer has gotten back into synch, and the 
rest of the document can be typeset as if nothing had happened. 

Conversely, a blank line or \par is not permitted in math mode. This gives 

TgX another way to recover from a missing $; such errors will be confined to 

the paragraph in which they occur. 

If for some reason you cannot use " and _ for superscripts and subscripts, 

because you have an unusual keyboard or because you need " for French 

accents or something, plain lets you type \sp and \sb instead. For example, 

‘$x\sp2$’ is another way to get ‘x^’. On the other hand, some people are lucky enough 

to have keyboards that contain additional symbols besides those of standard ASCII. 

When such symbols are available, can be set up to make math typing a bit more 

pleasant. For example, at the author’s installation there are keys labeled t and 4- that 

produce visible symbols (these make superscripts and subscripts look much nicer on 

the screen); there are keys for the relations <, >, and # (these save time); and there are 

about two dozen more keys that occasionally come in handy. (See Appendix C.) 

Mathematicians are fond of using accents over letters, because this is often 

an effective way to indicate relationships between mathematical objects, and 

because it greatly extends the number of available symbols without increasing the 
number of necessary fonts. Chapter 9 discusses the use of accents in ordinary text, but 

mathematical accents are somewhat different, because spacing is not the same; 

uses special conventions for accents in formulas, so that the two sorts of accents will not 

be confused with each other. The following math accents are provided by plain TTX: 

$\hat a$ a 

$\check a$ a 

$\tilde a$ a 

$\acute a$ a 

$\grave a$ h 

$\dot a$ a 

$\ddot a$ d 

$\breve a$ d 

$\bar a$ d 

$\vec a$ a 

The first nine of these are called \^, \v, \~, \C \C \., \", \u, and \=, respectively, 

when they appear in text; \vec is an accent that appears only in formulas. will 

complain if you try to use or \v, etc., in formulas, or if you try to use \hat or 

\check, etc., in ordinary text. 



136 Chapter 16: Typing Math Formulas 

It’s usually a good idea to define special control sequences for accented letters 
that you need frequently. For example, you can put 

\def\Ahat{{\hat A}} 

\def\chat{{\hat c}} 

\def\scheck{{\check s}} 

\def\xtilde{{\tilde x}} 

\def\zbar{{\baj: z}} 

at the beginning of a manuscript that uses the symbols A, c, s, x, and z more than, 
say, five times. This saves you a lot of keystrokes, and it makes the manuscript easier 
to read. Chapter 20 explains how to define control sequences. 

When the letters i and j are accented in math formulas, dotless symbols i 
and j should be used under the accents. These symbols are called \imath and 

\jmath in plain TgX. Thus, for example, a paper that uses ‘F and ‘j’ ought to begin 
with the following definitions: 

\def\ihat{{\hat\imath}} 

\def\jhat{{\hat\jmath}} 

You can put accents on top of accents, making symbols like A that might cause 
a mathematician to squeal with ecstasy. However, it takes a bit of finesse to 

get the upper accent into a position that looks right, because the designer of a font 
for mathematics usually tells to position math accents in special ways for special 
letters. Plain provides a control sequence called \skew that makes it fairly easy to 
shift superaccents into their proper place. For example, ‘\skew6\hat\Ahat’ was used 
to produce the symbol above. The number ‘6’ in this example was chosen by trial and 
error; ‘5’ seems to put the upper accent a bit too far left, while ‘7’ makes it a bit too 
far right, at least in the author’s opinion. The idea is to fiddle with the amount of skew 
until you find what pleases you best. 

It’s possible, in fact, to put math accents on any subformula, not just on 
single characters or accented characters. But there’s usually not much point 

in doing so, because T^]X just centers the accent over the whole subformula. For 
example, ‘$\hat{I+M}$’ yields ‘7 + M’. In particular, a \bar accent always stays the 
same size; it’s not like \overline, which grows with the formula under it. Some people 
prefer the longer line from \overline even when it applies to only a single letter; for 
example, ‘$\bar z+\overline z$’ produces ‘z + z’, and you can take your pick when 
you define \zbar. However, plain TgX does provide two accents that grow; they are 
called \widehat and \widetilde: 

$\widehat x,\widetilde x$ x,x 

$\widehat{xy},\widetilde{xy}$ xy,xy 

$\widehat{xyz}, \widetilde{xyz}$ 

The third example here shows the maximum size available. 

► EXERCISE 16.13 
This has been another long chapter; but cheer up, you have learned a lot! Prove 

it by explaining what to type in order to get the formulas e~^ , D ^ p°^M + /, 



Chapter 16: Typing Math Formulas 137 

and g G )'. (In the last example, assume that a control sequence \ghat 

has already been dehned, so that \ghat produces the accented letter g.) 

Producing Greek letters is as easy as TT. 

You Just type ... as easy as $\pi$. 

— LESLIE LAMPORT, The LFT^X Document Preparation System (1983) 

T^X has no regard for the glories of the Greek tongue— 
as far as it is concerned, Greek letters are Just additional weird symbols, 

and they are allowed only in math mode. 
In a pinch you can get the output rey by typing $\tau\epsilon\chi$, 

but if you’re actually setting Greek text, you will be using 
a different version of T^X, designed for a keyboard with Greek letters on it, 

and you shouldn’t even be reading this 
manual, which is undoubtedly all English to you. 

— MICHAEL SPIVAK, The Joy of T^X (1982) 



More about Math 



Chapter 17: More about Math 139 

Another thing mathematicians like to do is make fractions—and they like to 

build symbols up on top of each other in a variety of different ways: 

3 ■ 

^ n=l 

You can get these four formulas as displayed equations by typing ‘$$l\over2$$’ 

and ‘$$n+l\over3$$’ and ‘$$n+l\choose3$$’ and ‘$$\srLm_{n=l}"3 Z_n''2$$’; 

we shall study the simple rules for such constructions in this chapter. 

First let’s look at fractions, which use the ‘\over’ notation. The control 

sequence \over applies to everything in the formula unless you use braces to 

enclose it in a specific subformula; in the latter case, \over applies to everything 

in that subformula. 

1 

2 
and 

n + 1 
and 

Input Output 

$$x+y"2\over k+l$$ 
X 

k -h 1 

$${x+y"2\over k}+l$$ 
k 

$$x+{y"2\over k}+l$$ X — + 1 
k 

$$x+{y"2\over k+l}$$ 

$$x+y"{2\over k+l}$$ 
2 

X + y fc + 1 

You aren’t allowed to use \over twice in the same subformula; instead of typing 

something like ‘a \over b \over 2’, you must specify what goes over what: 

$${a\over b}\over 2$$ h 

2 

$$a\over{b\over 2}$$ 
a 
T 
9 

Unfortunately, both of these alternatives look pretty awful. Mathematicians 

tend to “overuse” \over when they hrst begin to typeset their own work on a 

system like T^X. A good typist or copy editor will convert fractions to a “slashed 

form,” whenever a built-up construction would be too small or too crowded. For 

example, the last two cases should be treated as follows: 

$$a/b \over 2$$ 
a/h 

2 

$$a \over b/2$$ 
a 

b/2 

Conversion to slashed form takes a little bit of mathematical knowhow, since 

parentheses sometimes need to be inserted in order to preserve the meaning of 



140 Chapter 17: More about Math 

the formula. Besides substituting 7’ for ‘\over’, the two parts of the fraction 
should be put in parentheses unless they are single symbols; for example, | be- 
comes simply a/b, but becomes (a -t-1)/^, and becomes (a -f 1)/(6 -f- 1). 
Furthermore, the entire fraction should generally be enclosed in parentheses if 
it appears next to something else; for example, becomes {a/b)x. If you are 
a typist without mathematical training, it’s best to ask the author of the manu- 
script for help, in doubtful cases; you might also tactfully suggest that unsightly 
fractions be avoided altogether in future manuscripts. 

► EXERCISE 17.1 
2 

What’s a better way to render the formula x 

► EXERCISE 17.2 

Convert to slashed form. 

► EXERCISE 17.3 
What surprise did B. L. User get when he typed ‘$$x = (y"2\over k+l)$$’? 

► EXERCISE 17.4 
How can you make (Assume that the control sequence \cents yields 'f.) 

The examples above show that letters and other symbols sometimes get 
smaller when they appear in fractions, just as they get smaller when they are 
used as exponents. It’s about time that we studied T^}X’s method for choosing 
the sizes of things. T^ actually has eight different styles in which it can treat 
formulas, namely 

display style 
text style 
script style 
scriptscript style 

(for formulas displayed on lines by themselves) 
(for formulas embedded in the text) 
(for formulas used as superscripts or subscripts) 
(for second-order superscripts or subscripts) 

and four other “cramped” styles that are almost the same except that exponents 
aren’t raised quite so much. For brevity we shall refer to the eight styles as 

D, D\ T, T', 5, 5", SS, SS\ 

where D is display style, D' is cramped display style, T is text style, etc. 
also uses three different sizes of type for mathematics; they are called text size, 
script size, and scriptscript size. 

The normal way to typeset a formula with T^}X is to enclose it in dollar 
signs $...$; this yields the formula in text style (style T). Or you can enclose it in 
double dollar signs $$... $$; this displays the formula in display style (style D). 
The subformulas of a formula might, of course, be in different styles. Once you 
know the style, you can determine the size of type that TgX will use: 

If a letter is in style then it will be set in 

Z),D',r, T' text size (like this) 
5, S' script size (like this) 

SS, SS' scriptscript size (i.ke this) 



Chapter 17: More about Math 141 

There is no “5'55'” style or “scriptscriptscript” size; such tiny symbols would 
be even less readable than the scriptscript ones. Therefore stays with 
scriptscript size as the minimum: 

In a formula 
of style 

D,T 
D',T' 
s, ss 
S', ss' 

the superscript 
style is 

5 
5' 
SS 
SS' 

and the subscript 
style is 

5' 
6" 

SS' 
SS' 

For example, if x"{a_b} is to be typeset in style D, then a_b will be set in 
style 5, and b in style SS'; the result is 

So far we haven’t seen any difference between styles D and T. Actually 
there is a slight difference in the positioning of exponents, although script size 
is used in each case: You get in D style and in T style and in D' or 
T' style—do you see the difference? But there is a big distinction between D 
style and T style when it comes to fractions: 

In a formula the style of the and the style of the 
a\over/? of style numerator a is denominator (3 is 

D T T' 
D' T' T' 
T S S' 
T' S' S' 
5, SS SS SS' 
S', SS' ss' ss' 

Thus if you type T\over2’ (in a text) you get namely style S over style S'; 
but if you type ‘$$l\over2$$’ you get 

1 

2 

(a displayed formula), which is style T over style T'. 

While we’re at it, we might as well finish the style rules: \underline does 

not change the style. Math accents, and the operations \sqrt and \overline, 

change uncramped styles to their cramped counterparts; for example, D changes to D', 
but D' stays as it was. 

► EXERCISE 17.5 

State the style and size of each part of the formula \/^, assuming that the 

formula itself is in style D. 

Suppose you don’t like the style that TgpC selects by its automatic style 
rules. Then you can specify the style you want by typing \displaystyle or 
Xtextstyle or \scriptstyle or \scriptscriptstyle; the style that you se- 
lect will apply until the end of the formula or subformula, or until you select 



142 Chapter 17: More about Math 

another style. For example,‘$$n+\scriptstyle n+\scriptscriptstyle n.$$’ 

produces the display 

This is a rather silly example, but it does show that the plus signs get smaller 

too, as the style changes. TgX puts no space around T signs in script styles. 

Here’s a more useful example of style changes: Sometimes you need to 

typeset a “continued fraction” made up of many other fractions, all of which are 

supposed to be in display style: 

1 
ao H    

Ui H  
1 

02 H — 

03 H  
04 

In order to get this effect, the idea is to type 

$$a_0+{l\over\displaystyle a_l+ 

{\strut l\over\displaystyle a_2-t- 

{\strut l\over\displaystyle a_3+ 

{\strut l\over a_4}}}}$$ 

(The control sequence \strut has been used to make the denominators taller; 

this is a rehnement that will be discussed in Chapter 18. Our concern now is with 

the style commands.) Without the appearances of \strut and \displaystyle 

in this formula, the result would be completely different: 

1 
OQ H 1  

These examples show that the numerator and denominator of a fraction are 

generally centered with respect to each other. If you prefer to have the nu- 

merator or denominator appear flush left, put ‘\hfill’ after it; or if you prefer flush 

right, put ‘\hf ill’ at the left. For example, if the first three appearances of T\over’ 

in the previous example are replaced by T\hf ill\over’, you get the display 

1 
ao +   

1 
ai -)-   

1 
02 H  

1 
03 H  

04 

(a format for continued fractions that many authors prefer). This works because \hf ill 

stretches at a faster rate than the glue that is actually used internally by TTpC when it 

centers the numerators and denominators. 



Chapter 17: More about Math 143 

TgX has another operation ‘\atop’, which is like \over except that it 

leaves out the fraction line: 
X 

$$x\atop y+2$$ 
y + 2 

The plain TgX format in Appendix B also defines ‘\choose’, which is like \atop 

but it encloses the result in parentheses: 

$$n\choose k$$ 

It is called \choose because it’s a common notation for the so-called binomial 

coefficient that tells how many ways there are to choose k things out of n things. 

You can’t mix \over and \atop and \choose with each other. For 

example, ‘$$n \choose k \over 2$$’ is illegal; you must use grouping, to get 

either ‘$${n\choose k}\over2$$’ or ‘$$n\choose{k\over2}$$’, i.e.. 

The latter formula, incidentally, would look better as ‘$$n\choose k/2$$’ or 

‘$$n\choose{l\over2}k$$’, yielding 

► EXERCISE 17.6 

As alternatives to 

1 

2 

discuss how you could obtain the two displays 

► EXERCISE 17.7 
Explain how to specify the displayed formula 

 — 

1 — X 1 X‘ 

TgX has a generalized version of \over and \atop in which you specify the 

exact thickness of the line rule by typing Aabove(dimen)’. For example, 

$$\displaystyle{a\over b}\abovelpt\displaystyle{c\over d}$$ 

will produce a compound fraction with a heavier (Ipt thick) rule as its main bar: 

a 

c ' 

d 

This sort of thing occurs primarily in textbooks on elementary mathematics. 



144 Chapter 17: More about Math 

Mathematicians often use the sign ^ to stand for “summation” and the 

sign J to stand for “integration.” If you’re a typist but not a mathematician, 

all you need to remember is that \suin stands for \int for f; these 

abbreviations appear in Appendix F together with all the other symbols, in case 

you forget. Symbols like ^ and f (and a few others like |J and Y[ and ^ and 0, 

all listed in Appendix F) are called large operators, and you type them just as 

you type ordinary symbols or letters. The difference is that will choose a 

larger large operator in display style than it will in text style. For example. 

$\sum x_n$ yields {T style) 

$$\sum x_n$$ yields (D style). 

A displayed \suin usually occurs with “limits,” i.e., with subformulas 

that are to appear above and below it. You type limits just as if they were 

superscripts and subscripts; for example, if you want 

m 

E 
n = l 

you type either ‘$$\suin_{n=l}"m$$’ or ‘$$\sum"m_{n=l}$$’. According to the 

normal conventions of mathematical typesetting, TppC will change this to 

(i.e., without limits) if it occurs in text style rather than in display style. 

Integrations are slightly different from summations, in that the super- 

scripts and subscripts are not set as limits even in display style: 

$\int_{-\inf ty}''{+\inf ty}$ 

$$\int_{-\inf ty}''{+\inf ty}$$ 

yields 

yields 
— oo 

(T style) 

(D style). 

Some printers prefer to set limits above and below J signs; this takes more 

space on the page, but it gives a better appearance if the subformulas are 

complex, because it keeps them out of the way of the rest of the formula. Similarly, 

limits are occasionally desirable in text style or script style; but some printers prefer 

not to set limits on displayed Yh signs. You can change TgX’s convention by simply 

typing Alimits’ or Anolimits’ immediately after the large operator. For example. 

$$\int\limits_0''{\pi\over2}$$ 

$ $ \ suinXno 1 imi t s _ {n= 1} m$ $ 

yields 

yields 

TT 

2 

0 

If you say Anolimits\limits’ (presumably because some macro like \int 

specifies \nolimits, but you do want them), the last word takes precedence. 

There’s also a command Adisplaylimits’ that can be used to restore TF^’s normal 

conventions; i.e., the limits will be displayed only in styles D and D'. 



Chapter 17: More about Math 145 

Sometimes you need to put two or more rows of limits under a large operator; 
you can do this with ‘\atop’. For example, if you want the displayed formula 

0<i <m 
0< j<n 

the correct way to type it is 

$$\suin_{\scriptstyleO\le i\le m\atop\scriptstyleO<j<n}P(i,j)$$ 

(perhaps with a few more spaces to make it look nicer in the manuscript file). The 
instruction ‘\scriptstyle’ was necessary here, twice—otherwise the lines ‘0 < z < m’ 
and ‘0 < j < n’ would have been in scriptscript size, which is too small. This is another 
instance of a rare case where TgX’s automatic style rules need to be overruled. 

► EXERCISE 17.8 
p q r 

How would you type the displayed formula EEE 
i=lj=lk—1 

► EXERCISE 17.9 

And how would you handle E UijbjkCki ? 
1 < i <p 

l<fc<r 

Since mathematical formulas can get horribly large, T^ has to have 
some way to make ever-larger symbols. For example, if you type 

$$\sqrt{l+\sqrt{l+\sqrt{l+ 

\sqrt{l+\sqrt{l+\sqrt{l+\sqrt{l+x}}}}}}}$$ 

the result shows a variety of available square-root signs: 

1 + yj 1 + vT + X 

The three largest signs here are all essentially the same, except for a vertical 
segment ‘ I ’ that gets repeated as often as necessary to reach the desired size; 
but the smaller signs are distinct characters found in T^^X’s math fonts. 

A similar thing happens with parentheses and other so-called “delimiter” 
symbols. For example, here are some of the different sizes of parentheses and 
braces that plain T^^ might use in formulas: 

The three largest pairs in each case are made with repeatable extensions, so they 
can become as large as necessary. 



146 Chapter 11: More about Math 

Delimiters are important to mathematicians, because they provide good 

visual clues to the underlying structure of complex expressions; they delimit the 

boundaries of individual subformulas. Here is a list of the 22 basic delimiters 

provided by plain 

Input Delimiter 

( left parenthesis: ( 

) right parenthesis: ) 

[ or \lbrack left bracket: [ 

] or \rbrack right bracket: ] 

\{ or \lbrace left curly brace: { 

\} or \rbrace right curly brace: } 

\lfloor left floor bracket: [ 

\rfloor right floor bracket: J 

\lceil left ceiling bracket: [ 

\rceil right ceiling bracket: ] 

Mangle left angle bracket: { 

\rangle right angle bracket: ) 

/ slash: / 

\backslash reverse slash: \ 

1 or \vert vertical bar: | 

\ 1 or Wert double vertical bar: || 

\uparrow upward arrow: j 

\Uparrow double upward arrow: fl 

\downarrow downward arrow: | 

\Downarrow double downward arrow: jj. 

\updownarrow up-and-down arrow: | 

\Updownarrow double up-and-down arrow: 

In some cases, there are two ways to get the same delimiter; for example, you 

can specify a left bracket by typing either ‘ [’ or ‘\lbrack’. The latter alternative 

has been provided because the symbol ‘ [’ is not readily available on all computer 

keyboards. Remember, however, that you should never try to specify a left brace 

or right brace simply by typing ‘{’ or the { and } symbols are reserved for 

grouping. The right way is to type ‘\{’ or ‘\}’ or ‘\lbrace’ or ‘\rbrace’. 

In order to get a slightly larger version of any of these symbols, just 

precede them by ‘\bigl’ (for opening delimiters) or ‘\bigr’ (for closing ones). 

This makes it easier to read formulas that contain delimiters inside delimiters: 

Input 

$\bigl(x-s(x)\bigr)\bigl(y-s(y)\bigr)$ 

$\bigl[x-s[x]\bigr]\bigl[y-s[y]\bigr]$ 

$\bigl| Ixl+lyl \bigr|$ 

$\bigl\lfloorXsqrt A\bigr\rfloor$ 

Output 

{x ~ s{x)) {y - s(y)) 

X - sis]] [y - s[j/]^ 

kl + \y\ 

Lv/Aj 



Chapter 17: More about Math 147 

The \big delimiters are just enough bigger than ordinary ones so that the dif- 
ference can be perceived, yet small enough to be used in the text of a paragraph. 
Here are all 22 of them, in the ordinary size and in the \big size: 

OIKUJ nO/Mll 
()[]{}[jn()/\iii 

You can also type \Bigl and \Bigr to get larger symbols suitable for displays: 
- .. 

y' ■' \ 

These are 50% taller than their \big counterparts. Displayed formulas most 
often use delimiters that are even taller (twice the size of \big); such delimiters 
are constructed by \biggl and \biggr, and they look like this: 

Finally, there are \Biggl and \Biggr versions, 2.5 times as tall as the \bigl 
and \bigr delimiters: 

► EXERCISE 17.10 

Guess how to type the formula 
d 

dx2 + ^ j ^ display style, 

using \bigg delimiters for the large parentheses. (The symbols d and ip that 
appear here are called \partial and \varphi.) 

► EXERCISE 17.11 

In practice, \big and \bigg delimiters are used much more often than \Big 

and \Bigg ones. Why do you think this is true? 

A \bigl or \Bigl or \biggl or \Biggl delimiter is an opening, like a left 

parenthesis; a \bigr or \Bigr or \biggr or \Biggr delimiter is a closing, like 

a right parenthesis. Plain also provides \bigin and \Bigin and \biggm and \Biggin 

delimiters, for use in the middle of formulas; such a delimiter plays the role of a relation, 

like an equals sign, so puts a bit of space on either side of it. 

$\bigl(x\in A(n)\bigm|x\in B(n)\bigr)$ {x E A{n) | x E B{n)^ 

$\bigcup_n X_n\bigin\ I \bigcap_n Y_n$ Un II Hn 
You can also say just \big or \Big or \bigg or \Bigg; this produces a delimiter that 

acts as an ordinary variable. It is used primarily with slashes and backslashes, as in 

the following example. 

a 
$${a+l\over b}\bigg/{c+l\over d}$$ — 

+ 1 /c-fl 
hid 

► EXERCISE 17.12 

What’s the professional way to type (x + /(x)) j [x — j(x)) ? (Look closely.) 



148 Chapter 17: More about Math 

TgX has a built-in mechanism that figures out how tall a pair of delim- 

iters needs to be, in order to enclose a given subformula; so you can use this 

method, instead of deciding whether a delimiter should be \big or \bigg or 

whatever. All you do is say 

\lef t {delimi) (subformula) \r ight (delim2) 

and TgX will typeset the subformula, putting the specified delimiters at the left 

and the right. The size of the delimiters will be just big enough to cover the 

subformula. For example, in the display 

$$l+\left (l\overl-x''2\right) "3$$ 1 -1- 

TgX has chosen \biggl( and \biggr), because smaller delimiters would be too 

small for this particular fraction. A simple formula like ‘$\left (x\right) $’ 

yields just ‘(x)’; thus, \left and \right sometimes choose delimiters that are 

smaller than \bigl and \bigr. 

Whenever you use \lef t and \right they must pair up with each other, 

just as braces do in groups. You can’t have \lef t in one formula and \right in 

another, nor are you allowed to type things like ‘\left(. . . .\right) . . .}’ 

or ‘\left(. . . \begingroup. . .\right) . . .\endgroup’. This restriction makes 

sense, because Tp;X needs to typeset the subformula that appears between \lef t 

and \right before it can decide how big to make the delimiters. But it is 

worth explicit mention here, because you do not have to match parentheses and 

brackets, etc., when you are not using \left and \right: Tp;X will not complain 

if you input a formula like ‘$[0,1)$’ or even ‘$) ($’ or just ‘$)$’. (And it’s a 

good thing T]gX doesn’t, for such unbalanced formulas occur surprisingly often 

in mathematics papers.) Even when you do use \left and \right, T^ doesn’t 

look closely at the particular delimiters that you happen to choose; thus, you 

can type strange things like ‘\left)’ and/or ‘\right(’ if you know what you’re 

doing. Or even if you don’t. 

The \over operation in the example displayed above does not involve 

the ‘1+’ at the beginning of the formula; this happens because \left and \right 

have the function of grouping, in addition to their function of delimiter-making. 

Any definitions that you happen to make between \left and \right will be 

local, as if braces had appeared around the enclosed subformula. 

► EXERCISE 17.13 

Use \left and \right to typeset the following display (with \phi for cp): 

m 
k-l_' 

At this point you are probably wondering why you should bother learn- 

ing about \bigl and \bigr and their relatives, when \left and \right are 

there to calculate sizes for you automatically. Well, it’s true that \left and 

\right are quite handy, but there are at least three situations in which you 



Chapter 17: More about Math 149 

will want to use your own wisdom when selecting the proper delimiter size: 

(1) Sometimes \left and \right choose a smaller delimiter than you want. For 

example, we used \bigl and \bigr to produce ||x| + |^|| in one of the previous 

illustrations; \left and \right don’t make things any bigger than necessary, 

so ‘$\left I \left I xXright I +\left I yXright 1 Xright 1 $’ yields only ‘||x| + |^||’. 

(2) Sometimes Xleft and Xright choose a larger delimiter than you want. This 

happens most frequently when they enclose a large operator in a display; for 

example, compare the following two formulas: 

$$Xleft( Xsum_{k=l}~n A_k Xright)$$ 

$$Xbiggl( Xsuin_{k=l}^n A_k Xbiggr)$$ 

The rules of Xleft and Xright cause them to enclose the Xsum together with 

its limits, but in special cases like this it looks better to let the limits hang out 

a bit; Xbigg delimiters are better here. (3) Sometimes you need to break a huge 

displayed formula into two or more separate lines, and you want to make sure 

that its opening and closing delimiters have the same size; but you can’t use 

Xleft on the first line and Xright on the last, since Xleft and Xright must 

occur in pairs. The solution is to use XBiggl (say) on the first line and XBiggr 

on the last. 

Of course, one of the advantages of Xleft and Xright is that they can make 
arbitrarily large delimiters—much bigger than Xbiggggg! The slashes and 

angle brackets do have a maximum size, however; if you ask for really big versions of 

those symbols you will get the largest ones available. 

► EXERCISE 17.14 

Prove that you have mastered delimiters: Coerce into producing the formula 

n 

7r(«) = ^ 

— 1 

m=2 L ^ A:=l 

If you type ‘.’ after Xleft or Xright, instead of specifying one of the basic 

delimiters, you get a so-called null delimiter (which is blank). Why on earth 

would anybody want that, you may ask. Well, you sometimes need to produce formulas 

that contain only one large delimiter. For example, the display 

I I _ r r, if .T > 0 

^ I —X, if X < 0 

has a but no It can be produced by a construction of the form 

$$IX I=XleftX{ ... Xright.$$ 

Chapter 18 explains how to fill in the ‘’ to finish this construction; let’s just notice 

for now that the ‘Xright.’ makes it possible to have an invisible right delimiter to go 

with the visible left brace. 



150 Chapter 17: More about Math 

A null delimiter isn’t completely void; it is an empty box whose width is a 
parameter called \nulldelimiterspace. We will see later that null delimiters 

are inserted next to fractions. Plain sets \nulldelimiterspace=l. 2pt. 

You can type or ‘>’ as convenient abbreviations for Mangle and 

\rangle, when is looking for a delimiter. For example, AbigK’ is equiv- 

alent to ‘\bigl\langle’, and ‘\right>’ is equivalent to ‘\right\rangle’. Of 

course ‘<’ and ‘>’ ordinarily produce the less-than and greater-than relations 

which are quite different from angle brackets ‘()’. 

Plain ^Iso makes available a few more delimiters, which were not listed 

in the basic set of 22 because they are sort of special. The control sequences 

\arrowvert, \Arrowvert, and \bracevert produce delimiters made from the repeatable 

parts of the vertical arrows, double vertical arrows, and large braces, respectively, 

without the arrowheads or the curly parts of the braces. They produce results similar 

to \vert or Wert, but they are surrounded by more white space and they have a 

different weight. You can also use \lgroup and \rgroup, which are constructed from 

braces without the middle parts; and \lmoustache and \rmoustache, which give you 

the top and bottom halves of large braces. For example, here are the \Big and \bigg 
versions of \vert, \Vert, and these seven special delimiters: 

( ) / i 

( ) I I 
Notice that \lgroup and \rgroup are rather like bold parentheses, with sharper bends 

at the corners; this makes them attractive for certain large displays. But you can- 

not use them exactly like parentheses, because they are available only in large sizes 

(\Big or more). 

Question: What happens if a subscript or superscript follows a large delim- 

X iter? Answer: That’s a good question. After a \left delimiter, it is the first 

subscript or superscript of the enclosed subformula, so it is effectively preceded by {}. 

After a \right delimiter, it is a subscript or superscript of the entire \left. . .\right 

subformula. And after a \bigl or \bigr or \bigin or \big delimiter, it applies only to 

that particular delimiter. Thus, ‘\bigl(_2’ works quite differently from ‘\left(_2’. 

If you look closely at the examples of math typesetting in this chapter, you 

will notice that large parentheses and brackets are symmetric with respect to 

an invisible horizontal line that runs a little bit above the baseline; when a delimiter 

gets larger, its height and depth both grow by the same amount. This horizontal line 

is called the axis of the formula; for example, a formula in the text of the present 

paragraph would have an axis at this level:  . The bar line in every fraction is 

centered on the axis, regardless of the size of the numerator or denominator. 

Sometimes it is necessary to create a special box that should be centered 

vertically with respect to the axis. (For example, the Ml — { • • •’ example 

above was done with such a box.) T^X provides a simple way to do this: You just say 

\vcenter{(vertical mode material)} 



Chapter 17: More about Math 151 

and the vertical mode material will be packed into a box just as if \vcenter had been 

\vbox. Then the box will be raised or lowered until its top edge is as far above the axis 

as the bottom edge is below. 

The concept of “axis” is meaningful for only in math formulas, not in 

ordinary text; therefore allows you to use \vcenter only in math mode. 

If you really need to center something vertically in horizontal mode, the solution is 

to say ‘$\vcenter{, . (Incidentally, the constructions ‘\vcenter to(dimen)’ and 

‘\vcenter spread(dimen)’ are legal too, in math mode; vertical glue is always set by 

the rules for \vbox in Chapter 12. But \vcenter by itself is usually sufficient.) 

Any box can be put into a formula by simply saying \hbox or \vbox or \vtop 

or \box or \copy in the normal way, even when you are in math mode. Fur- 

thermore you can use \raise or \lower, as if you were in horizontal mode, and you 

can insert vertical rules with \vrule. Such constructions, like \vcenter, produce boxes 

that can be used like ordinary symbols in math formulas. 

f Sometimes you need to make up your own symbols, when you run across 

something unusual that doesn’t occur in the fonts. If the new symbol occurs 

only in one place, you can use \hbox or \vcenter or something to insert exactly what 

you want; but if you are defining a macro for general use, you may want to use different 

constructions in different styles. T^]X has a special feature called \mathchoice that 

comes to the rescue in such situations: You write 

\mathchoice{ (math)}{(math)}{(math)}{(math)} 

where each (math) specifies a subformula. will choose the first subformula in style 

D or D', the second in style T or T', the third in style S or S\ the fourth in style SS 

or SS'. (TEX actually typesets all four subformulas, before it chooses the final one, 

because the actual style is not always known at the time a \mathchoice is encountered; 

for example, when you type ‘\over’ you often change the style of everything that has 

occurred earlier in the formula. Therefore \mathchoice is somewhat expensive in terms 

of time and space, and you should use it only when you’re willing to pay the price.) 

EXERCISE 17.15 

Guess what output is produced by the following commands: 

\def\puzzle{{\mathchoice{D}{T}{S}{SS}}} 

$$\puzzle{\puzzle\over\puzzle~{\puzzle''\puzzle}}$$ 

/^►EXERCISE 17.16 

Y Devise a ‘\square’ macro that produces a ‘n’ for use in math formulas. The 

box should be symmetrical with respect to the axis, and its inside dimensions should 

be 3pt in display and text styles, 2.1 pt in script styles, and 1.5 pt in scriptscript styles. 

The rules should be 0.4 pt thick in display and text styles, 0.3 pt thick otherwise. 

Plain TgX has a macro called \mathpalette that is useful for \mathchoice 

V constructions; ‘\mathpalette\a{xyz}’ expands to the four-pronged array of 

choices ‘\mathchoice {\a\displaystyle {xyz}} . . . {\a\scriptscriptstyle {xyz}}’. 

Thus the first argument to \mathpalette is a control sequence whose first argument is 

a style selection. Appendix B contains several examples that show how \mathpalette 

can be applied. (See in particular the definitions of \phantom, \root, and \smash; the 
congruence sign \cong (=) is also constructed from = and ~ using \mathpalette.) 



152 Chapter 17: More about Math 

At the beginning of this chapter we discussed the commands \over, \atop, 

V \choose, and \above. These are special cases of T^]X’s “generalized fraction” 

feature, which includes also the three primitives 

\overwithdelims (delimi) (delim2) 

\at opwithdelims (delimi) (delim2) 

\abovewithdelims (delimi) (delim2) (dimen) 

The third of these is the most general, as it encompasses all of the other generalized 

fractions: \overwithdelims uses a fraction bar whose thickness is the default for the 

current size, and \atopwithdelims uses an invisible fraction bar whose thickness is zero, 

while \abovewithdelims uses a bar whose thickness is specified explicitly. places 

the immediately preceding subformula (the numerator) over the immediately following 

subformula (the denominator), separated by a bar line of the desired thickness; then it 

puts (delimi) at the left and (delim2) at the right. For example, ‘\choose’ is equivalent 

to ‘XatopwithdelimsO’. If you define \legendre to be ‘\overwithdelims()’, you 

can typeset the Legendre symbol ‘(f)’ by saying ‘{a\legendre b}’. The size of the 

surrounding delimiters depends only on the style, not on the size of the fractions; larger 

delimiters are used in styles D and D' (see Appendix G). The simple commands \over, 

\atop, and \above are equivalent to the corresponding ‘withdelims’ commands when 

the delimiters are null; for example, ‘\over’ is an abbreviation for ‘\overwithdelims. . 

/^►EXERCISE 17.17 

^ Define a control sequence \euler so that the Eulerian number will be 

produced when you type ‘{n\euler k}’ in a formula. 

Appendix G explains exactly how computes the desired size of delimiters 

for \left and \right. The general idea is that delimiters are vertically cen- 

tered with respect to the axis; hence, if we want to cover a subformula between \lef t 

and \right that extends yi units above the axis and y2 units below, we need to make 

a delimiter whose height plus depth is at least y units, where y = 2max(^i,^2). It is 

usually best not to cover the formula completely, however, but just to come close; so 

TgX allows you to specify two parameters, the \delimiterfactor / (an integer) and 

the \delimitershortf all 8 (a dimension). The minimum delimiter size is taken to be 

at least y • //lOOO, and at least y — 8. Appendix B sets f = 901 and ^ = 5pt. Thus, 

ii y = 30 pt, the plain format causes the delimiter to be more than 27 pt tall; if 

y = 100 pt, the corresponding delimiter will be at least 95 pt tall. 

So far we have been discussing the rules for typing math formulas, but we 

haven’t said much about how actually goes about converting its input into 
lists of boxes and glue. Almost all of the control sequences that have been mentioned in 

Chapters 16 and 17 are “high level” features of the plain TjgX format; they are not built 

into T^jX itself. Appendix B defines those control sequences in terms of more primitive 

commands that T^]X actually deals with. For example, ‘\choose’ is an abbreviation 
for ‘\atopwithdelims0’; Appendix B not only introduces \choose, it also tells T^]X 

where to find the delimiters ( and ) in various sizes. The plain T^]X format defines all 

of the special characters like \alpha and \mapsto, all of the special accents like \tilde 

and \widehat, all of the large operators like \smn and \int, and all of the delimiters 

like \lfloor and \vert. Any of these things can be redefined, in order to adapt 

to other mathematical styles and/or to other fonts. 



Chapter 17: More about Math 153 

The remainder of this chapter discusses the low-level commands that T^]X 

actually obeys behind the scenes. Every paragraph on the next few pages is 

marked with double dangerous bends, so you should skip to Chapter 18 unless you are 

a glutton for T^]Xnicalities. 

All characters that are typeset in math mode belong to one of sixteen families 

of fonts, numbered internally from 0 to 15. Each of these families consists 

of three fonts: one for text size, one for script size, and one for scriptscriptsize. The 

commands \textfont, \scriptfont, and \scriptscriptfont are used to specify the 

members of each family. For example, family 0 in the plain format is used for 

roman letters, and Appendix B contains the instructions 

\textf ontO=\teiirm 

\scriptfontO=\sevenrm 

\scriptscriptfontO=\fiverm 

to set up this family: The 10-point roman font (\tenrm) is used for normal symbols, 

7-point roman (Xsevenrm) is used for subscripts, and 5-point roman (\f iverm) is used 

for sub-subscripts. Since there are up to 256 characters per font, and 3 fonts per family, 

and 16 families, TgX can access up to 12,288 characters in any one formula (4096 in each 

of the three sizes). Imagine that. 

A definition like \textf ont (family number) = (font identifier) is local to the 

group that contains it, so you can easily change family membership from one 

set of conventions to another and back again. Furthermore you can put any font into 

any family; for example, the command 

\scriptscriptfont0=\scriptfont0 

makes sub-subscripts in family 0 the same size as the subscripts currently are. 

doesn’t check to see if the families are sensibly organized; it just follows instructions. 

(However, fonts cannot be used in families 2 and 3 unless they contain a certain number 

of special parameters, as we shall see later.) Incidentally, uses \nullfont, which 

contains no characters, for each family member that has not been defined. 

During the time that a math formula is being read, remembers each 

symbol as being “character position so-and-so in family number such-and- 
such,” but it does not take note of what fonts are actually in the families until reaching 

the end of the formula. Thus, if you have loaded a font called \Helvetica that contains 

Swiss-style numerals, and if you say something like 

$\textfontO=\tenrm 9 \textfontO=\Helvetica 9$ 

you will get two 9’s in font \Helvetica, assuming that T^]X has been set up to take 9’s 

from family 0. The reason is that \textf onto is \Helvetica at the end of the formula, 

and that’s when it counts. On the other hand, if you say 

$\textfont0=\tenrm 9 \hbox{$9\textfontO=\Helvetica$}$ 

the first 9 will be from \tenrm and the second from \Helvetica, because the formula 

in the hbox will be typeset before it is incorporated into the surrounding formula. 

EXERCISE 17.18 

If you say ‘${\textf ontO=\Helvetica 9}$’, what font will be used for the 9? 



154 Chapter 17: More about Math 

Every math character is given an identifying code number between 0 and 4095, 

obtained by adding 256 times the family number to the position number. This 

is easily expressed in hexadecimal notation, using one hexadecimal digit for the family 

and two for the character; for example, "24A stands for character ''4A in family 2. Each 
character is also assigned to one of eight classes, numbered 0 to 7, as follows: 

Class Meaning Example Class Meaning Example 

0 Ordinary 1 4 Opening ( 
1 Large operator \sum 5 Closing ) 
2 Binary operation + 6 Punctuation 

3 Relation = 7 Variable family X 

Classes 0 to 6 tell what “part of speech” the character belongs to, in math-printing 

language; class 7 is a special case discussed below. The class number is multiplied by 

4096 and added to the character number, and this is the same as making it the leading 

digit of a four-digit hexadecimal number. For example. Appendix B defines \suin to 

be the math character "1350, meaning that it is a large operator (class 1) found in 

position "50 of family 3. 

EXERCISE 17.19 

The \oplus and \bullet symbols (0 and •) are binary operations that appear 

in positions 8 and 15 (decimal) of family 2, when the fonts of plain are being used. 

Guess what their math character codes are. (This is too easy.) 

Class 7 is a special case that allows math symbols to change families. It 

behaves exactly like class 0, except that the specified family is replaced by the 

current value of an integer parameter called \f cun, provided that \fain is a legal family 

number (i.e., if it lies between 0 and 15). automatically sets \fain=-l whenever 

math mode is entered; therefore class 7 and class 0 are equivalent unless \f am has been 

given a new value. Plain changes \fam to 0 when the user types ‘\rm’; this makes 

it convenient to get roman letters in formulas, as we will see in Chapter 18, since 

letters belong to class 7. (The control sequence \rm is an abbreviation for ‘\fam=0 
\tenrm’; thus, \rm causes Xfeun to become zero, and it makes \tenrm the “current 

font.” In horizontal mode, the \f am value is irrelevant and the current font governs the 

typesetting of letters; but in math mode, the current font is irrelevant and the \fam 

value governs the letters. The current font affects math mode only if \u is used or if 

dimensions are given in ex or em units; it also has an effect if an \hbox appears inside 

a formula, since the contents of an hbox are typeset in horizontal mode.) 

The interpretation of characters in math mode is defined by a table of 128 

“mathcode” values; these table entries can be changed by the \mathcode com- 

mand, just as the category codes are changed by \catcode (see Chapter 7). Each 

mathcode specifies class, family, and character position, as described above. For exam- 

ple, Appendix B contains the commands 

\mathcode‘<="313C 

\mathcode ‘ *=''2203 

which cause to treat the character ‘<’ in math mode as a relation (class 3) found 

in position "3C of family 1, and to treat an asterisk as a binary operation found in 

position 3 of family 2. The initial value of \mathcode^b is "7162; thus, b is character 



Chapter 17: More about Math 155 

"62 in family 1 (italics), and its family will vary with \fain. looks at the mathcode 

only when it is typesetting a character whose catcode is 11 (letter) or 12 (other), or 

when it encounters a character that is given explicitly as \ char (number). (If \char is 

used with a character code between 128 and 255, there is no \mathcode value; family 0 

and class 0 are implied.) 

A \mathcode can also have the special value "8000, which causes the character 

to behave as if it has catcode 13 (active). Appendix B uses this feature to 

make ’ expand to "{\prime} in a slightly tricky way. The mathcode of ’ does not 

interfere with the use of ’ in octal constants. 

The mathcode table allows you to refer indirectly to any character in any 

family, with the touch of a single key. You can also specify a math character 

code directly, by typing \mathchax, which is analogous to \char. For example, the 

command ‘Xmathchar'TABC’ specifies a character of class 1, family 10 ( "A), and position 

"BC. A hundred or so definitions like 

\def\suin{\mathchar"1350 } 

would therefore suffice to define the special symbols of plain T^]X. But there is a better 

way: has a primitive command \mathchardef, which relates to \mathchar just as 

\chardef does to \char. Appendix B has a hundred or so definitions like 

\mathchaxdef\suin=" 1350 

to define the special symbols. A \mathchax must be between 0 and 32767 ("7FFF). 

A character of class 1, i.e., a large operator like \suin, will be vertically centered 

with respect to the axis when it is typeset. Thus, the large operators can be 

used with different sizes of type. This vertical adjustment is not made for symbols of 

the other classes. 

T^X associates classes with subformulas as well as with individual characters. 
X X Thus, for example, you can treat a complex construction as if it were a bi- 

nary operation or a relation, etc., if you want to. The commands \mathord, \mathop, 

\mathbin, Xmathrel, \mathopen, \mathclose, and \mathpunct are used for this pur- 

pose; each of them is followed either by a single character or by a subformula in 

braces. For example, \mathopen\mathchar"1234 is equivalent to \mathchar"4234, be- 

cause \mathopen forces class 4 (opening). In the formula ‘$G\mathbin:H$’, the colon 

is treated as a binary operation. And Appendix B constructs large opening symbols 

by defining \bigl#l to be an abbreviation for 

\mathopen{\hbox{$\left#l ...\right.$}} 

There’s also an eighth classification, \mathinner, which is not normally used for in- 

dividual symbols; fractions and \left. . .\right constructions are treated as “inner” 

subformulas, which means that they will be surrounded by additional space in cer- 

tain circumstances. All other subformulas are generally treated as ordinary symbols, 

whether they are formed by \overline or \hbox or \vcenter or by simply being en- 

closed in braces. Thus, \mathord isn’t really a necessary part of the language; 

instead of typing ‘$l\mathord,234$’ you can get the same effect from ‘$1{,}234$’. 



156 Chapter 17: More about Math 

/>>► EXERCISE 17.20 

Commands like \mathchardef\alpha="10B are used in Appendix B to define 

the lowercase Greek letters. Suppose that you want to extend plain by putting 

boldface math italic letters in family 9, analogous to the normal math italic letters 

in family 1. (Such fonts aren’t available in stripped down versions of TgX, but let’s 

assume that they exist.) Assume that the control sequence \bmit has been defined as 

an abbreviation for ‘\f ain=9’; hence ‘{\bmit b}’ will give a boldface math italic b. What 

change to the definition of \alpha will make {\bmit\alpha} produce a boldface alpha? 

Delimiters are specified in a similar but more complicated way. Each character 

has not only a \catcode and a \mathcode but also a \delcode, which is either 

negative (for characters that should not act as delimiters) or less than "1000000. In 

other words, nonnegative delcodes consist of six hexadecimal digits. The first three 

digits specify a “small” variant of the delimiter, and the last three specify a “large” 

variant. For example, the command 

\delcode‘x="123456 

means that if the letter x is used as a delimiter, its small variant is found in position 

"23 of family 1, and its large variant is found in position "56 of family 4. If the 

small or large variant is given as 000, however (position 0 of family 0), that variant is 

ignored. looks at the delcode when a character follows \left or \right, or when 

a character follows one of the withdelims commands; a negative delcode leads to an 

error message, but otherwise finds a suitable delimiter by first trying the small 

variant and then the large. (Appendix G discusses this process in more detail.) For 

example. Appendix B contains the commands 

\delcode‘(="028300 \delcode'.=0 

which specify that the small variant of a left parenthesis is found in position "28 of 

family 0, and that the large variant is in position 0 of family 3; also, a period has 

no variants, hence ‘\left.’ will produce a null delimiter. There actually are several 

different left parenthesis symbols in family 3; the smallest is in position 0, and the others 

are linked together by information that comes with the font. All delcodes are —1 until 

they are changed by a \delcode command. 

^►EXERCISE 17.21 

Appendix B defines \delcode ‘ < so that there is a shorthand notation for angle 

brackets. Why do you think Appendix B doesn’t go further and define \delcode‘{? 

A delimiter can also be given directly, as ‘\delimiter(number)’. In this case 

the number can be as high as "7FFFFFF, i.e., seven hexadecimal digits; the 

leading digit specifies a class, from 0 to 7, as in a \mathchar. For example. Appendix B 

contains the definition 

\def\langle{\delimiter"426830A } 

and this means that Maingle is an opening (class 4) whose small variant is "268 and 

whose large variant is "30A. When \delimiter appears after \left or \right, the 

class digit is ignored; but when \delimiter occurs in other contexts, i.e., when T^]X 

isn’t looking for a delimiter, the three rightmost digits are dropped and the remaining 

four digits act as a \mathchar. For example, the expression ‘$\l€Lngle x$’ is treated 

as if it were ‘$\mathchar"4268 x$’. 



Chapter 17: More about Math 157 

EXERCISE 17.22 

What goes wrong if you type ‘\bigl\delimiter"426830A’? 

Granted that these numeric conventions for \mathchar and Xdelimiter are not 

beautiful, they sure do pack a lot of information into a small space. That’s why 
TgX uses them for low-level definitions inside formats. Two other low-level primitives 

also deserve to be mentioned: \radical and \mathaccent. Plain makes square 

root signs and math accents available by giving the commands 

\def\sqrt{\radical"270370 } 

\def\widehat{\mathaccent"362 > 

and several more like them. The idea is that \radical is followed by a delimiter 

code and \mathaccent is followed by a math character code, so that knows the 

family and character positions for the symbols used in radical and accent constructions. 

Appendix G gives precise information about the positioning of these characters. By 

changing the definitions, T^X could easily be extended so that it would typeset a variety 

of different radical signs and a variety of different accent signs, if such symbols were 

available in the fonts. 

Plain TgX uses family 1 for math italic letters, family 2 for ordinary math 

symbols, and family 3 for large symbols. T^]X insists that the fonts in fami- 

lies 2 and 3 have special \fontdimen parameters, which govern mathematical spacing 

according to the rules in Appendix G; the cmsy and cmex symbol fonts have these 

parameters, so their assignment to families 2 and 3 is almost mandatory. (There is, 

however, a way to modify the parameters of any font, using the \f ontdimen command.) 

INITEX initializes the mathcodes of all letters A to Z and a to z so that they are symbols 

of class 7 and family 1; that’s why it is natural to use family 1 for math italics. Sim- 

ilarly, the digits 0 to 9 are class 7 and family 0. None of the other families is treated 

in any special way by TgX. Thus, for example, plain puts text italic in family 4, 

slanted roman in family 5, bold roman in family 6, and typewriter type in family 7, but 

any of these numbers could be switched around. There is a macro \newf am, analogous 

to \newbox, that will assign symbolic names to families that aren’t already used. 

When TgX is in horizontal mode, it is making a horizontal list; in vertical 

^ mode, it is making a vertical list. Therefore it should come as no great surprise 

that T^X is making a math list when it is in math mode. The contents of horizontal 

lists were explained in Chapter 14, and the contents of vertical lists were explained in 
Chapter 15; it’s time now to describe what math lists are made of. Each item in a 

math list is one of the following types of things: 

■ an atom (to be explained momentarily); 

■ horizontal material (a rule or discretionary or penalty or “whatsit”); 

■ vertical material (from \mark or \insert or \vadjust); 

■ a glob of glue (from \liskip or \mskip or \nonscript); 

■ a kern (from \kern or \mkern); 

■ a style change (from \displaystyle, \textstyle, etc.); 

■ a generalized fraction (from \above, \over, etc.); 

■ a boundary (from \left or \right); 

■ a four-way choice (from \mathchoice). 



158 Chapter 17: More about Math 

The most important items are called atoms, and they have three parts: 

nucleus, a superscript, and a subscript. For example, if you type 

a 

(x_i+y)"{\overline{n+l}} 

in math mode, you get a math list consisting of five atoms: (, Xt, +, y, and 

The nuclei of these atoms are (, x, +, y, and ); the subscripts are empty except for 

the second atom, which has subscript i; the superscripts are empty for the last atom, 

whose superscript is n + 1. This superscript is itself a math list consisting of one atom, 

whose nucleus is n + 1; and that nucleus is a math list consisting of three atoms. 

There are thirteen kinds of atoms, each of which 

formula; for example, ‘(’ is an Open atom because 

Here is a complete list of the different kinds: 

might act differently in a 

it comes from an opening. 

Ord 

Op 
Bin 

Rel 

Open 

Close 

Punct 

Inner 

Over 

Under 

Acc 

Rad 

Vcent 

is an ordinary atom like ‘x’; 

is a large operator atom like ‘X]’ ^ 

is a binary operation atom like ‘+’; 

is a relation atom like ‘ = ’; 

is an opening atom like ; 

is a closing atom like ; 

is a punctuation atom like V 5 

is an inner atom like ; 

is an overline atom like ‘x’; 

is an underline atom like ‘x’; 

is an accented atom like ‘x’; 

is a radical atom like ‘\/2’; 

is a vbox to be centered, produced by \vcenter. 

An atom’s nucleus, superscript, and subscript are called its fields, and there 

are four possibilities for each of these fields; a field can be 

> empty; 

■ a math symbol (specified by family and position number); 

■ a box; or 

■ a math list. 

For example, the Close atom considered above has an empty subscript field; its 

nucleus is the symbol ‘)’, which is character "28 of family 0 if the conventions of plain 

TgX are in force; and its superscript field is the math list n + 1. The latter math list 

consists of an Over atom whose nucleus is the math list n + 1; and that math list, in 

turn, consists of three atoms of types Ord, Bin, Ord. 

You can see T^^X’s view of a math list by typing \showlists in math mode. 

JL For example, after ‘$(x_i+y) ~{\overline{n+l}}\showlists’ your log file gets 

the following curious data: 

\mathopen 

AfamO ( 

\mathord 

Afaml X 

_\faml i 



Chapter 17: More about Math 159 

\mathbin 

AfamO + 

\mathord 

Afaml y 

\mathclose 

AfamO ) 

~\overline 

“.\mathord 

■'. . \f ami n 

".\mathbin 

“..\f amO + 

. \mathord 

"..\famO 1 

In our previous experiences with \showlists we observed that there can be boxes within 

boxes, and that each line in the log file is prefixed by dots to indicate its position in 

the hierarchy. Math lists have a slightly more complex structure; therefore a dot is 

used to denote the nucleus of an atom, a is used for the superscript field, and a 

is used for the subscript field. Empty fields are not shown. Thus, for example, the Ord 

atom Xi is represented here by three lines Amathord’, ‘.\faml x’, and A\faml i’. 

Certain kinds of atoms carry additional information besides their nucleus, 

subscript, and superscript fields: An Op atom will be marked ‘\limits’ or 
‘\nolimits’ if the normal \displaylimits convention has been overridden; a radical 

atom contains a delimiter field to specify what radical sign is to be used; and an Acc 

atom contains the family and character codes of the accent symbol. 

When you say \hbox{. . .} in math mode, an Ord atom is placed on the current 

math list, with the hbox as its nucleus. Similarly, \vcenter{. . .} produces a 

Vcent atom whose nucleus is a box. But in most cases the nucleus of an atom will be 

either a symbol or a math list. You can experiment with \showlists to discover how 

other things like fractions and mathchoices are represented internally. 

Chapter 26 contains complete details of how math lists are constructed. As 

soon as math mode ends (i.e., when the closing ‘$’ occurs), TgX dismantles the 

current math list and converts it into a horizontal list. The rules for this conversion are 

spelled out in Appendix G. You can see “before and after” representations of such math 

typesetting by ending a formula with ‘\showlists$\showlists’; the first \showlists 

will display the math list, and the second will show the (possibly complex) horizontal 

list that is manufactured from it. 

The learning time is short. A few minutes gives the general flavor, and 
typing a page or two of a paper generally uncovers most of the misconceptions. 

— KERNIGHAN and CHERRY, A System for Typesetting Mathematics (1975) 

Within a few hours (a few days at most) 
a typist with no math or typesetting experience 

can be taught to input even the most complex equations. 

— PETER J. BOEHM, Software and Hardware Considerations for a 
Technical Typesetting System (1976) 



Fine Points of 
Mathematics 



Chapter 18: Fine Points of Mathematics Typing 161 

We have discussed most of the facilities needed to construct math formulas, but 

there are several more things a good mathematical typist will want to watch for. 

After you have typed a dozen or so formulas using the basic ideas of Chapters 

16 and 17, you will find that it’s easy to visualize the hnal appearance of a 

mathematical expression as you type it. And once you have gotten to that level, 

there’s only a little bit more to learn before you are producing formulas as beau- 

tiful as any the world has ever seen; tastefully applied touches of l^nique will 

add a professional polish that works wonders for the appearance and readability 

of the books and papers that you type. This chapter talks about such tricks, 

and it also hlls in a few gaps by mentioning some aspects of math that didn’t fit 

comfortably into Chapters 16 and 17. 

1. Punctuation. When a formula is followed by a period, comma, semicolon, 

colon, question mark, exclamation point, etc., put the punctuation after the $, 

when the formula is in the text; but put the punctuation before the $$ when the 

formula is displayed. For example. 

If $x<0$, we have shown that $$y=f(x).$$ 

Tg^X’s spacing rules within paragraphs work best when the punctuation marks 

are not considered to be part of the formulas. 

Similarly, don’t ever type anything like 

for $x = a, b$, or $c$. 

It should be 

for $x = a$, $b$, or $c$. 

(Better yet, use a tie: ‘or~$c$’.) The reason is that Tp;X will typeset expression 

‘$x = a, b$’ as a single formula, so it will put a “thin space” between the comma 

and the b. This space will not be the same as the space that Th;X puts after 

the comma after the 6, since spaces between words are always bigger than thin 

spaces. Such unequal spacing looks bad, but when you type things right the 

spacing will look good. 

Another reason for not typing ‘$x = a, b$’ is that it inhibits the pos- 

sibilities for breaking lines in a paragraph: Tg;X will never break at the space 

between the comma and the b because breaks after commas in formulas are usu- 

ally wrong. For example, in the equation ‘$x = f(a, b)$’ we certainly don’t 

want to put ‘r = /(«,’ on one line and ‘6)’ on the next. 

Thus, when typing formulas in the text of a paragraph, keep the math 

properly segregated: Don’t take operators like — and = outside of the $’s, and 

keep commas inside the formula if they are truly part of the formula. But if a 

comma or period or other punctuation mark belongs linguistically to the sentence 

rather than to the formula, leave it outside the $’s. 

► EXERCISE 18.1 

Type this: R{n,t) = as t 0+. 



162 Chapter 18: Fine Points of Mathematics Typing 

Some mathematical styles insert a bit of extra space around formulas to sep- 

arate them from the text. For example, when copy is being produced on an 

ordinary typewriter that doesn’t have italic letters, the best technical typists have tra- 

ditionally put an extra blank space before and after each formula, because this provides 

a useful visual distinction. You might find it helpful to think of each $ as a symbol that 

has the potential of adding a little space to the printed output; then the rule about 
excluding sentence punctuation from formulas may be easier to remember. 

TgX does, in fact, insert additional space before and after each formula; the 

JL amount of such space is called \mathsurround, which is a (dimen)-valued 
parameter. For example, if you set \mathsurround=lpt, each formula will effectively 

be 2 points wider (Ipt at each side): 

For X = a, 6, or c. (\mathsurround=lpt) 

For X = a, b, or c. (\mathsurround=Opt) 

This extra space will disappear into the left or right margin if the formula occurs at 

the beginning or end of a line. The value of \mathsurround that is in force when 

reads the closing $ of a formula is used at both left and right of that formula. Plain 

TgX takes \mathsurround=Opt, so you won’t see any extra space unless you are using 

some other format, or unless you change \mathsurround yourself. 

2. Non-italic letters in formulas. The names of algebraic variables are usually 

italic or Greek letters, but common mathematical functions like ‘log’ are always 

set in roman type. The best way to deal with such constructions is to make 

use of the following 32 control sequences (all of which are defined in plain TgpC 

format, see Appendix B): 

\arccos \cos \csc \exp \ker \limsup \min \sinh 
\arcsin \cosh \deg \gcd \lg \ln \Pr \sup 
\arctan \cot \det Xhorn \lim \log \sec \tan 
\arg \coth \dim \inf \liminf \max \sin \tanh 

These control sequences lead to roman type with appropriate spacing: 

Input 

$\sin2\theta=2\sin\theta\cos\theta$ 

$0(n\log n\log\log n)$ 

$\Pr(X>x)=\exp(-x/\mu)$ 

$$\max_{l\le n\le m}\log_2P_n$$ 

$$\lini_{x\toO}{\sin x\over x}=l$$ 

Output 

sin 2Q — 2 sin Q cos Q 

0{n log n log log n) 

Pr(X > x) — exp(—x/p) 

max log2 Pfi 
l<n<m 

sinx 
Inn   = 1 

X—>-0 X 

The last two formulas, which are displays, show that some of the special control 

sequences are treated by T^]X as “large operators” with limits just like The 

subscript on \max is not treated like the subscript on \log. Subscripts and 

superscripts will become limits when they are attached to \det, \gcd, \inf, 

\lim, \liminf, \limsup, \max, \inin, \Pr, and \sup, in display style. 



Chapter 18: Fine Points of Mathematics Typing 163 

► EXERCISE 18.2 
Express the following display in plain T^X language, using ‘\nu’ for V’: 

Pi(n) = lim — cos^”^(i/!’"'7r/n)). 
m—>-00 ^ 

u=0 

If you need roman type for some mathematical function or operator that isn’t 
included in plain TE^’s list of 32, it is easy to define a new control sequence by 

mimicking the definitions in Appendix B. Or, if you need roman type just for a “one 
shot” use, it is even easier to get what you want by switching to \rm type, as follows: 

$\sqrt{{\rin VcLr}(X)}$ 

$x_{\rm max}-x_{\rm inin}$ 

${\rin LL} (k) \Rightarrow{\rm LR}(k)$ 

$\exp(x+{\rni constaiit})$ 

$x"3+{\rm lower\ order\ terms}$ 

yVarCJf) 

^^max Xmin 

LL{k) => LR(fc) 

exp(a; + constant) 

X + lower order terms 

Notice the uses of ‘\u’ in the last case; without them, the result would have been 
+ lowerorderterms’, because ordinary blank spaces are ignored in math mode. 

You can also use \hbox instead of \rm to get roman letters into formulas. For 
example, four of the last five formulas can be generated by 

$\sqrt{\hbox{Vaj:}(X)}$ 

$\hbox{LL}(k)\Rightarrow\hbox{LR}(k)$ LL(/c) LR(A:) 

$\exp(x+\hbox{constaiit})$ exp(x + constant) 

$x"3+\hbox{lower order terms}$ +lower order terms 

In this case ‘\u’ isn’t necessary, because the material in an \hbox is processed in horizon- 
tal mode, when spaces are significant. But such uses of \hbox have two disadvantages: 
(1) The contents of the box will be typeset in the same size, whether or not the box 
occurs as a subscript; for example, ‘$x_{\hbox{max}}$’ yields ‘rmax’- (2) The font 
that’s used inside \hbox will be the “current font,” so it might not be roman. For ex- 
ample, if you are typesetting the statement of some theorem that is in slanted type, and 
if that theorem refers to ‘$\sqrt{\hbox{Var}(X)}$’, you will get the unintended result 

^ y/Var{Xy. In order to make sure that an \hbox uses roman type, you need to specify 
\rm, e.g., ‘$\sqrt{\hbox{\rm Var}(X)}$’; and then the \hbox serves no purpose. We 
will see later, however, that \hbox can be very useful in displayed formulas. 

EXERCISE 18.3 

X ^ When the displayed formula ‘$$\lim_{n\to\infty}x_n {\rm\ exists} \iff 

\limsup_{n\to\infty}x_n = \liminf_{n\to\infty}x_n.$$’ is typeset with the stan- 
dard macros of plain TgX, you get 

lim Xn exists limsupa^n = lim inf Xn- 
n >-00 ji—>oQ n >oo 

But some people prefer a different notation: Explain how you could change the defini- 
tions of \limsup and Miminf so that the display would be 

lim Xn exists lim Xn = Ihn Xn- 
n—►oc n—*oo n—>-00 



164 Chapter 18: Fine Points of Mathematics Typing 

The word ‘mod’ is also generally set in roman type, when it occurs in formulas; 

but this word needs more care, because it is used in two different ways that 

require two different treatments. Plain provides two different control sequences, 

\bmod and \pmod, for the two cases: \bmod is to be used when ‘mod’ is a binary operation 

(i.e., when it occurs between two quantities, like a plus sign usually does), and \pmod 

is to be used when ‘mod’ occurs parenthetically at the end of a formula. For example. 

$\gcd(m,n)=\gcd(n,m\bmod n)$ gcd(m, n) = gcd(n, m mod n) 

$x\equiv y+l\pmod{m~2}$ x = y + 1 (mod m^) 

The ‘b’ in ‘\bmod’ stands for “binary”; the ‘p’ in ‘\pmod’ stands for “parenthesized.” 

Notice that \pmod inserts its own parentheses; the quantity that appears after ‘mod’ in 

the parentheses should be enclosed in braces, if it isn’t a single symbol. 

► EXERCISE 18.4 

What did poor B. L. User get when he typed ‘$x\equivO (\pmod y~n)$’? 

► EXERCISE 18.5 

Explain how to produce 
(n mod p 

k mod p 
(mod p). 

The same mechanism that works for roman type in formulas can be used to 

get other styles of type as well. For example, \bf yields boldface: 

$\bf a+b=\Phi_m$ a + b = 

Notice that whole formula didn’t become emboldened in this example; the ‘+’ and 
‘ = ’ stayed the same. Plain sets things up so that commands like \rm and \bf 

will affect only the uppercase letters A to Z, the lowercase letters a to z, the digits 

0 to 9, the uppercase Greek letters \Gainma to \0mega, and math accents like \hat and 
\tilde. Incidentally, no braces were used in this example, because $’s have the effect 

of grouping; \bf changes the current font, but the change is local, so it does not affect 

the font that was current outside the formula. 

The bold fonts available in plain T^]X are “bold roman,” rather than “bold 

i italic,” because the latter are rarely needed. However, could readily be 

set up to make use of bold math italics, if desired (see Exercise 17.20). A more extensive 

set of math fonts would also include script, Fraktur, and “blackboard bold” styles; plain 

TE^ doesn’t have these, but other formats like ^^*S-TEX do. 

Besides \rm and \bf, you can say \cal in formulas to get uppercase letters in 

a “calligraphic” style. For example, ‘$\cal A$’ produces ‘^’ and ‘$\cal Z$’ 

produces But beware: This works only with the letters A to Z; you’ll get weird 

results if you apply \cal to lowercase or Greek letters. 

There’s also \mit, which stands for “math italic.” This affects uppercase 

Greek, so that you get (T, zA, 0, A, S’, 77, U, T, iF, i7) instead of (r,...,^). 
When \mit is in effect, the ordinary letters A to Z and a to z are not changed; they 

are set in italics as usual, because they ordinarily come from the math italic font. 

Gonversely, uppercase Greek letters and math accents are unaffected by \rm, because 

they ordinarily come from the roman font. Math accents should not be used when the 

\mit family has been selected, because the math italic font contains no accents. 



Chapter 18: Fine Points of Mathematics Typing 165 

► EXERCISE 18.6 

Type the formula x^Mx = 0 x = 0, using as few keystrokes as possible. 

(The first ‘0’ is roman, the second is bold.) 

► EXERCISE 18.7 

Figure out how to typeset ‘5 C T’ S E S'. 

Plain TgX also allows you to type \it, \sl, or \tt, if you want text italic, 

slanted, or typewriter letters to occur in a math formula. However, these fonts 

are available only in text size, so you should not try to use them in subscripts. 

If you’re paying attention, you probably wonder why both \mit and \it are 

provided; the answer is that \mit is “math italic” (which is normally best for 

formulas), and \it is “text italic” (which is normally best for running text). 

$This\ is\ math\ italic. $ This is math italic. 

{\it This is text italic.} This is text italic. 

The math italic letters are a little wider, and the spacing is different; this works better 

in most formulas, but it fails spectacularly when you try to type certain italic words 

like ^diffevent' using math mode (‘$different$’). A wide ‘/’ is usually desirable 

in formulas, but it is undesirable in text. Therefore wise typists use \it in a math 

formula that is supposed to contain an actual italic word. Such cases almost never 

occur in classical mathematics, but they are common when computer programs are 

being typeset, since programmers often use multi-letter “identifiers”: 

$\it last:=first$ last := first 

$\it x\_coord(point\_2)$ x-COord{point-2) 

The first of these examples shows that recognizes the ligature ^fi' when text italic 

occurs in a math formula; the other example illustrates the use of short underlines to 

break up identifier names. When the author typeset this manual, he used ‘$\it SS$’ 
to refer to style 55, since ‘$SS$’ makes the 5’s too far apart; 55. 

► EXERCISE 18.8 

What plain TgX commands will produce the following display? 

n 

available + max(/ii//(z), reserved{i)) = capacity. 

i = l 

EXERCISE 18.9 

n Y How would you go about typesetting the following computer program, using 

the macros of plain T^Y? 

for j := 2 step 1 until n do 
begin accum := A[j]; k j — 1; A[0] := accum; 

while A[k] > accum do 
begin A[k + 1] := A[k]; k := k — 1; 

end; 
A[k T 1] := accum; 

end. 



166 Chapter 18: Fine Points of Mathematies Typing 

3. Spacing between formulas. Displays often contain more than one formula; for 
example, an equation is frequently accompanied by a side condition: 

Fn = Fn-l + Fn-2i U >2. 

In such cases you need to tell TgX how much space to put after the comma, 
because T^X’s normal spacing conventions would bunch things together; without 
special precautions you would get 

Fn — ^n-1 + Fn-2^ n > 2. 

The traditional hot-metal technology for printing has led to some in- 
grained standards for situations like this, based on what printers call a “quad” 
of space. Since these standards seem to work well in practice, TgX makes it easy 
for you to continue the tradition: When you type ‘\quad’ in plain format, 
you get a printer’s quad of space in the horizontal direction. Similarly, ‘\qquad’ 

gives you a double quad (twice as much); this is the normal spacing for situations 
like the Fn example above. Thus, the recommended procedure is to type 

$$ F_n = F_{n-1} + F_{n-2}, \qquad n \ge 2. $$ 

It is perhaps worth reiterating that T^ ignores all the spaces in math mode 
(except, of course, the space after ‘\qquad’, which is needed to distinguish be- 
tween ‘\qquad n’ and ‘\qquadn’); so the same result would be obtained if you 
were to leave out all but one space: 

$$F_n=F_{n-l}+F_{n-2},\qquad n\ge2.$$ 

Whenever you want spacing that differs from the normal conventions, you must 
specify it explicitly by using control sequences such as \quad and \qquad. 

A quad used to be a square piece of blank type, 1 em wide and 1 em tall— 

approximately the size of a capital M, as explained in Chapter 10. This 
tradition has not been fully retained: The control sequence \quad in plain T^]X is simply 

an abbreviation for ‘\hskip lem\relax’, so T^’s quad has width but no height. 

You can use \quad in text as well as in formulas; for example. Chapter 14 

illustrates how \quad applies to poetry. When \quad appears in a formula it 
stands for one em in the current text font, independent of the current math size or 

style or family. Thus, for example, \quad is just as wide in a subscript as it is on the 

main line of a formula. 

Sometimes a careless author will put two formulas next to each other in 
the text of a paragraph. For example, you might find a sentence like this: 

The Fibonacci numbers satisfy + F„_2, n > 2. 

Everybody who teaches proper mathematical style is agreed that formulas ought 
to be separated by words, not just by commas; the author of that sentence 
should at least have said ‘for ri > 2’, not simply ‘n > 2’. But alas, such lapses 
are commonplace, and many prominent mathematicians are hopelessly addicted 



Chapter 18: Fine Points of Mathematics Typing 167 

to clusters of formulas. If we are not allowed to change their writing style, we can 
at least insert extra space where they neglected to insert an appropriate word. 
An additional interword space generally works well in such cases; for example, 
the sentence above was typeset thus: 

... $F_n=F_{n-l}+F_{n-2}$, \ $n\ge2$.}$$ 

The ‘\u’ here gives a visual separation that partly compensates for the bad style. 

► EXERCISE 18.10 

Put the following paragraph into form, treating punctuation and spacing 
carefully; also insert ties to prevent bad line breaks. 

Let be a Hilbert space, C a closed bounded convex subset of iL, 

T a nonexpansive self map of C. Suppose that as n ^ oo, a-n^k 0 

for each A:, and 7^ = Then for each x in C, 

^n,kT^x Converges weakly to a fixed point of T. 

4. Spacing within formulas. Chapter 16 says that does automatic spacing of 
math formulas so that they look right, and this is almost true. But occasionally 
you must give TgX some help. The number of possible math formulas is vast, 
and Tg^’s spacing rules are rather simple, so it is natural that exceptions should 
arise. Of course, it is desirable to have fine units of spacing for this purpose, 
instead of the big chunks that arise from \u, \quad and \qquad. 

The basic elements of space that puts into formulas are called thin 
spaces, medium spaces, and thick spaces. In order to get a feeling for these units, 
let’s take a look at the Fn example again: Thick spaces occur just before and 
after the = sign, and also before and after the > ; medium spaces occur just 
before and after the + sign. Thin spaces are slightly smaller, but noticeable, it’s 
a thin space that makes the difference between doglog’ and dog log’. The normal 
space between words of a paragraph is approximately equal to two thin spaces. 

TgX inserts thin spaces, medium spaces, and thick spaces into formulas 
automatically, but you can add your own spacing whenever you want to, by using 
the control sequences 

\, thin space (normally 1/6 of a quad); 
\> medium space (normally 2/9 of a quad); 
\; thick space (normally 5/18 of a quad); 
\! negative thin space (normally —1/6 of a quad). 

In most cases you can rely on T^X’s spacing while you are typing a manuscript, 
and you’ll want to insert or delete space with these four control sequences only 
in rare circumstances after you see what comes out. 

We observed a minute ago that \quad spacing does not change with the style 
_IL of formula, nor does it depend on the math font families that are being used. 

But thin spaces, medium spaces, and thick spaces do get bigger and smaller as the size 
of type gets bigger and smaller; this is because they are defined in terms of (rnuglue). 



168 Chapter 18: Fine Points of Mathematics Typing 

a special brand of glue intended for math spacing. You specify (muglue) just as if it 

were ordinary glue, except that the units are given in terms of ‘mu’ (math units) instead 

of pt or cm or something else. For example, Appendix B contains the definitions 

\thinmuskip = 3mu 

\medmuskip = 4mu plus 2mu minus 4mu 

\thickmuskip = 5mu plus 5mu 

and this defines the thin, medium, and thick spaces that T^]X inserts into formulas. 
According to these specifications, thin spaces in plain do not stretch or shrink; 

medium spaces can stretch a little, and they can shrink to zero; thick spaces can stretch 

a lot, but they never shrink. 

f There are 18 mu to an em, where the em is taken from family 2 (the math 

symbols family). In other words, \t ext font 2 defines the em value for mu 

in display and text styles; \scriptfont 2 defines the em for script size material; and 
\scriptscriptfont 2 defines it for scriptscript size. 

You can insert math glue into any formula just by giving the command 

^ JL ‘\mskip(muglue)’. For example, ‘\mskip 9mu plus 2mu’ inserts one half em of 

space, in the current size, together with some stretchability. Appendix B defines 

to be an abbreviation for ‘\mskip\thinmuskip’. Similarly, you can use the command 

‘\mkern’ when there is no stretching or shrinking; ‘\mkernl8mu’ gives one em of hori- 

zontal space in the current size. T^]X insists that \mskip and \mkern be used only with 
mu; conversely, \hskip and \kern (which are also allowed in formulas) must never give 

units in mu. 

Formulas involving calculus look best when an extra thin space appears 

before dx or dy or d whatever; but TE;X doesn’t do this automatically. Therefore 

a well-trained typist will remember to insert ‘\,’ in examples like the following: 

Output 

fo°° f(^) dx 

Input 

$\int_0"\infty f(x)\,dx$ 

$y\,dx-x\,dy$ 

$dx\,dy=r\,dr\,d\theta$ 

$x\,dy/dx$ 

Notice that no ‘\,’ was desirable after 

there’s no need for ‘\,’ in cases like 

$$\int_l"x{dt\over t}$$ 

since the dt appears all by itself in the 

visually from the rest of the formula. 

y dx — X dy 

dx dy = r dr dO 

xdy/dx 

the ‘/’ in the last example. Similarly, 

numerator of a fraction; this detaches it 

► EXERCISE 18.11 

Explain how to handle the display 

•CXD 
t — ih Aat dt = 

0 C -b 6^ 
a, 6 > 0. 



Chapter 18: Fine Points of Mathematies Typing 169 

When physical units appear in a formula, they should be set in roman type 

and separated from the preceding material by a thin space: 

$55\rm\ ,mi/hr$ 55nii/hr 

$g=9.8\rm\ ,m/sec''2$ g = 9.8 m/sec^ 

$\rml\,ml=l.000028\,cc$ 1 ml = 1.000028 cc 

► EXERCISE 18.12 

Typeset the following display, assuming that ‘\hbar’ generates ‘ft’: 

h = 1.0545 X 10~^^ergsec. 

Thin spaces should also be inserted after exclamation points (which stand for 

the “factorial” operation in a formula), if the next character is a letter or a 

number or an opening delimiter: 

$(2n) ! /\bigl(n! \ , (n+1) ! \bigr)$ (2n)!/(n! (n + 1)!) 

52! 
$${52!\overl3!\,13!\,26!}$$ —; ; r 

13113126! 

Besides these cases, you will occasionally encounter formulas in which 

the symbols are bunched up too tightly, or where too much white space appears, 

because of certain unlucky combinations of shapes. It’s usually impossible to 

anticipate optical glitches like this until you see the first proofs of what you 

have typed; then you get to use your judgment about how to add finishing 

touches that provide extra beauty, clarity, and finesse. A tastefully applied 

or ‘\!’ will open things up or close things together so that the reader won’t be 

distracted from the mathematical significance of the formula. Square root signs 

and multiple integrals are often candidates for such fine tuning. Here are some 

examples of situations to look out for: 

$\sqrt2\,x$ \/2 X 

$\sqrt{\,\log x}$ \/logx 

$0\bigl(l/\sqrt n\,\bigr)$ 0{\/s/n) 

$[\,0,1)$ [0,1) 

$\log n\,(\log\log n)^2$ logn (log logn) 

$x^2\!/2$ x^l2 

$n/\!\log n$ n/log n 

$\Gainma_{\ ! 2}+\Delta^{\ ! 2}$ r2 +A2 

$R_i{}''j{}_{\!kl}$ Rpki 

$\int_0^x\!\int_0"y dF(u,v)$ fofo' dF{u,v) 

$$\int\!\!\!\int_D dx\,dy$$ jj dx dy 

In each of these formulas the omission of \, or \! would lead to somewhat less 

satisfactory results. 



170 Chapter 18: Fine Points of Mathematics Typing 

'^\ Most of these examples where thin-space corrections are desirable arise because 

X of chance coincidences. For example, the superscript in $x~2/2$ leaves a hole 

before the slash (x^/2); a negative thin space helps to fill that hole. The positive 

thin space in $\sqrt{\,\log x}$ compensates for the fact that ‘logo:’ begins with a 

tall, unslanted letter; and so on. But two of the examples involve corrections that were 
necessary because TgX doesn’t really know a great deal about mathematics: (1) In the 

formula $\log n(\log\log n)'‘2$, TgX inserts no thin space before the left parenthesis, 

because there are similar formulas like $\log n(x)$ where no such space is desired. 

(2) In the formula $n/\log n$, TgX automatically inserts an unwanted thin space 

before \log, since the slash is treated as an ordinary symbol, and since a thin space is 

usually desirable between an ordinary symbol and an operator like \log. 

f/^ In fact, rules for spacing in formulas are fairly simple. A formula is con- 

JL verted to a math list as described at the end of Chapter 17, and the math list 

consists chiefly of “atoms” of eight basic types: Ord (ordinary). Op (large operator). 

Bin (binary operation), Rel (relation). Open (opening). Close (closing), Punct (punc- 

tuation), and Inner (a delimited subformula). Other kinds of atoms, which arise from 

commands like \overline or \mathaccent or \vcenter, etc., are all treated as type Ord; 

fractions are treated as type Inner. The following table is used to determine the spacing 

between pairs of adjacent atoms: 
Right atom 

Ord Op Bin Rel Open Close Punct Inner 

Ord 0 1 (2) (3) 0 0 0 (1) 

Op 1 1 * (3) 0 0 0 (1) 
Bin (2) (2) ♦ * (2) * * (2) 

Left Rel (3) (3) ♦ 0 (3) 0 0 (3) 
atom Open 0 0 * 0 0 0 0 0 

Close 0 1 (2) (3) 0 0 0 (1) 
Punct (1) (1) * (1) (1) (1) (1) (1) 
Inner (1) 1 (2) (3) (1) 0 (1) (1) 

Here 0, I, 2, and 3 stand for no space, thin space, medium space, and thick space, 

respectively; the table entry is parenthesized if the space is to be inserted only in 

display and text styles, not in script and scriptscript styles. For example, many of the 

entries in the Rel row and the Rel column are ‘(3)’; this means that thick spaces are 

normally inserted before and after relational symbols like but not in subscripts. 

Some of the entries in the table are such cases never arise, because Bin atoms must 

be preceded and followed by atoms compatible with the nature of binary operations. 

Appendix G contains precise details about how math lists are converted to horizontal 

lists; this conversion is done whenever TjgX is about to leave math mode, and the 

inter-atomic spacing is inserted at that time. 

For example, the displayed formula specification 

$$x+y=\max\{x,y\}+\min\{x,y\}$$ 

will be transformed into the sequence of atoms 

23 El 0 B mss H 23 n 0 U B EUll H 23 n 0 0 



Chapter 18: Fine Points of Mathematies Typing 171 

of respective types Ord, Bin, Ord, Rel, Op, Open, Ord, Punct, Ord, Close, Bin, Op, 

Open, Ord, Punct, Ord, and Close. Inserting spaces according to the table gives 

Ord \> Bin \> Ord \; Rel \; Op Open Ord Punct \, Ord Close \> 

Bin \> Op Open Ord Punct \, Ord Close 

and the resulting formula is 

i.e., 

X -\- y = max{2:, y} -f min{x, y} 

This example doesn’t involve subscripts or superscripts; but subscripts and superscripts 

merely get attached to atoms without changing the atomic type. 

EXERCISE 18.13 

^ ^ Use the table to determine what spacing will insert between the atoms 

of the formula ‘$f (x,y)<x"2+y~2$’. 

The plain T^]X macros \bigl, \bigr, \bigin, and \big all produce identical 

delimiters; the only difference between them is that they may lead to different 

spacing, because they make the delimiter into different types of atoms: \bigl produces 

an Open atom, \bigr a Close, \bigin a Rel, and \big an Ord. On the other hand, when 

a subformula appears between \left and \right, it is typeset by itself and placed into 

an Inner atom. Therefore it is possible that a subformula enclosed by \left and \right 

will be surrounded by more space than there would be if that subformula were enclosed 

by \bigl and \bigr. For example, Ord followed by Inner (from \left) gets a thin 

space, but Ord followed by Open (from \bigl) does not. The rules in Chapter 17 

imply that the construction ‘\iiiathinner{\bigl({(subformula)}\bigr)}’ within any 

formula produces a result exactly equivalent to ‘\left((subformula)\right)’, except 

that the delimiters are forced to be of the \big size regardless of the height and depth 

of the subformula. 

TgX’s spacing rules sometimes fail when ‘I’ and ‘\l’ appear in a formula, 

because | and || are treated as ordinary symbols instead of as delimiters. For 

example, consider the formulas 

$|-x| = |+x|$ | —a;| = |+a:| 

$\lef 11-x\right I =\lef 11+x\right I $ |—a:| = |+x| 

$\lfloor-x\rfloor=-\lceil+x\rceil$ 

In the first case the spacing is wrong because thinks that the plus sign is computing 

the sum of ‘|’ and ‘x’. The use of \left and \right in the second example puts T^]X 

on the right track. The third example shows that no such corrections are needed with 

other delimiters, because knows whether they are openings or closings. 

(^►EXERCISE 18.14 

^ Some perverse mathematicians use brackets backwards, to denote “open in- 

tervals.” Explain how to type the following bizarre formula: ] —oo,T[ x ] —(X),T[. 

EXERCISE 18.15 

^ Study Appendix G and determine what spacing will be used in the formula 

‘$x++l$’. Which of the plus signs will be regarded as a binary operation? 



172 Chapter 18: Fine Points of Mathematies Typing 

5. Ellipses (“three dots”). Mathematical copy looks much nicer if you are careful 

about how groups of three dots are typed in formulas and text. Although it looks 

fine to type ‘’ on a typewriter that has fixed spacing, the result looks too 

crowded when you’re using a printer’s fonts: ‘$x. . .y$’ results in ^x...y\ and 

such close spacing is undesirable except in subscripts or superscripts. 

An ellipsis can be indicated by two different kinds of dots, one higher 

than the other; the best mathematical traditions distinguish between these two 

possibilities. It is generally correct to produce formulas like 

H \- Xn and (xi,... ,Xn), 

but wrong to produce formulas like 

xiXn and 

The plain format of Appendix B allows you to solve the “three dots” problem 

very simply, and everyone will be envious of the beautiful formulas that you 

produce. The idea is simply to type \ldots when you want three low dots (... )^ 

and \cdots when you want three vertically centered dots (•••)• 

In general, it is best to use \cdots between + and — and x signs, and 

also between = signs or < signs or C signs or other similar relations. Low dots 

are used between commas, and when things are juxtaposed with no signs between 

them at all. For example: 

$x_l+\cdots+x_n$ 

$x_l=\cdots=x_n=0$ 

$A_l\times\cdots\times A_n$ 

$f(x_l,\ldots,x_n)$ 

$x_lx_2\ldots x_n$ 

$(l-x)(l-x"2)\ldots(l-x~n)$ 

$n(n-l)\ldots(1)$ 

Xi ‘ Xn 

Xi = ■ • ■ = Xn = 0 

Ai X - - X An 

/(Xl, . ..,Xn) 
X\X2 • . • a^n 

(I — x)(I — ... (I — x”) 

n(n — 1)... (1) 

► EXERCISE 18.16 

Type the formulas ‘xi -\-X1X2 + • • • + X1X2 ... xC and ‘(xi,..., x^) • (^1,..., yn) = 

F ' - ’ A ^^nyC^ [Hint: A single raised dot is called ‘\cdot’.] 

But there’s an important special case in which \ldots and \cdots don’t 

give the correct spacing, namely when they appear at the very end of a formula, 

or when they appear just before a closing delimiter like ‘)’. In such situations 

an extra thin space is needed. For example, consider sentences like this: 

Prove that (I — x)“^ = l + x + x^ + -- -. 

Clearly a* < 6* for z = I, 2, ..., n. 

The coefficients CQ, Ci, ..., are positive. 

To get the first sentence, the author typed 

Prove that $ (1-x) "{-l}=l+x+x''2+\cdots\, $ . 



Chapter 18: Fine Points of Mathematics Typing 173 

Without the the period would have come too close to the \cdots. Similarly, 

the second sentence was typed thus: 

Clearly $a_i<b_i$ for $i=l$,~2, $\ldots\,$,~$n$. 

Notice the use of ties, which prevent bad line breaks as explained in Chapter 14. 

Such ellipses are extremely common in some forms of mathematical writing, so 

plain allows you to say just ‘\dots’ as an abbreviation for ‘$\ldots\,$’ in 

the text of a paragraph. The third sentence can therefore be typed 

The coefficients $c_0$,~$c_l$, \dots,''$c_n$ are positive. 

► EXERCISE 18.17 

B. C. Dull tried to take a shortcut by typing the second example this way: 

Clearly $a_i<b_i$ for~$i=l, 2, \ldots, n$. 

What’s so bad about that? 

► EXERCISE 18.18 

How do you think the author typed the footnote in Chapter 4 of this book? 

6. Line breaking. When you have formulas in a paragraph, may have to 

break them between lines. This is a necessary evil, something like the hyphen- 

ation of words; we want to avoid it unless the alternative is worse. 

A formula will be broken only after a relation symbol like = or < or 

or after a binary operation symbol like + or — or x, where the relation or binary 

operation is on the “outer level” of the formula (i.e., not enclosed in and 

not part of an ‘\over’ construction). For example, if you type 

$f(x,y) = x^2-y''2 = (x+y)(x-y)$ 

in mid-paragraph, there’s a chance that will break after either of the = signs 

(it prefers this) or after the - or + or - (in an emergency). But there won’t be 

a break after the comma in any case—commas after which breaks are desirable 

shouldn’t appear between $’s. 

If you don’t want to permit breaking in this example except after the 

= signs, you could type 

$f(x,y) = {x^2-y^2} = {(x+y)(x-y)>$ 

because these additional braces “freeze” the subformulas, putting them into un- 

breakable boxes in which the glue has been set to its natural width. But it isn’t 

necessary to bother worrying about such things unless T^]X actually does break 

a formula badly, since the chances of this are pretty slim. 

fA “discretionary multiplication sign” is allowed in formulas: If you type 
‘$(x+y)\*(x-y)$’, TgX will treat the \* something like the way it treats \-; 

namely, a line break will be allowed at that place, with the hyphenation penalty. How- 

ever, instead of inserting a hyphen, will insert a x sign in text size. 



174 Chapter 18: Fine Points of Mathematics Typing 

If you do want to permit a break at some point in the outer level of a formula, 

you can say \allowbreak;. For example, if the formula 

$(x_l,\ldots,x_m,\allowbreak y_l,\ldots,y_n)$ 

appears in the text of a paragraph, will allow it to be broken into the two pieces 

‘(xi,... ,Xmf and ‘yi,.. ..ynY- 

f(^\ The penalty for breaking after a Rel atom is called \relpenalty, and the 

JL penalty for breaking after a Bin atom is called \binoppenalty. Plain sets 

\relpenalty=500 and \binoppenalty=700. You can change the penalty for breaking 

in any particular case by typing ‘\penalty(number)’ immediately after the atom in 

question; then the number you have specified will be used instead of the ordinary 

penalty. For example, you can prohibit breaking in the formula Y = 0’ by typing 

‘$x=\nobreakO$’, since \nobreak is an abbreviation for ‘\penaltyl0000 

► EXERCISE 18.19 

Is there any difference between the results of ‘$x=\nobreakO$’ and ‘${x=0}$’? 

/^►EXERCISE 18.20 

How could you prohibit all breaks in formulas, by making only a few changes 

to the macros of plain TgX? 

7. Braces. A variety of different notations have sprung up involving the symbols 

‘{’ and plain TpX includes several control sequences that help you cope with 
formulas involving such things. 

In simple situations, braces are used to indicate a set of objects; for 

example, ‘{a, 6, c}’ stands for the set of three objects a, 6, and c. There’s nothing 

special about typesetting such formulas, except that you must remember to use 

\{ and \} for the braces: 

$\{a,b,c\}$ {a,6,c} 

$\{1,2,\ldots,n\}$ {1,2,...,n} 

$\{\rm red,white ,blue\}$ {red, white, blue} 

A slightly more complex case arises when a set is indicated by giving a generic 

element followed by a specific condition; for example, ‘{x | x > 5}’ stands for 

the set of all objects x that are greater than 5. In such situations the control 

sequence \mid should be used for the vertical bar, and thin spaces should be 

inserted inside the braces: 

$\{\,x\mid x>5\,\}$ {r|x>5} 

$\{\,x:x>5\,\}$ { r : r > 5} 

(Some authors prefer to use a colon instead of ‘|’, as in the second example here.) 

When the delimiters get larger, as in 

xe D} 



Chapter 18: Fine Points of Mathem,aUcs Typing 175 

they should be called \bigl, Xbigm, and \bigr; for example, the formula just 

given would be typed 

\bigl\{\,\bigl(x,f(x)\bigr)\bigm|x\iri D\,\bigr\} 

and formulas that involve still larger delimiters would use \Big or \bigg or even 

\Bigg, as explained in Chapter 17. 

► EXERCISE 18.21 

How would you typeset the formula { | h{x) € { —1,0,+1} }? 

► EXERCISE 18.22 

Sometimes the condition that defines a set is given as a fairly long English 
description, not as a formula; for example, consider ‘'{p \ p and p -\- 2 are prime An 
hbox would do the job: 

$\{\,p\niid\hbox{$p$ and $p+2$ are prime}\,\}$ 

but a long formula like this is troublesome in a paragraph, since an hbox cannot be 
broken between lines, and since the glue inside the \hbox does not vary with the 
interword glue in the line that contains it. Explain how the given formula could be 
typeset with line breaks allowed. [Hint: Go back and forth between math mode and 
horizontal mode.] 

Displayed formulas often involve another sort of brace, to indicate a 

choice between various alternatives, as in the construction 

II f X, if X > 0; 
\x\ — \ 

[ —X, otherwise. 

You can typeset it with the control sequence \cases: 

$$IXI=\cases{x,&if $x\ge0$;\cr 

-X,&otherwise.\cr}$$ 

Look closely at this example and notice that it uses the character &, which we 

said in Chapter 7 was reserved for special purposes. Here for the first time in 

this manual we have an example of why & is so special: Each of the cases has 

two parts, and the & separates those parts. To the left of the & is a math formula 

that is implicitly enclosed in to the right of the & is ordinary text, which 

is not implicitly enclosed in $...$. Eor example, the ‘-x,’ in the second line 

will be typeset in math mode, but the ‘otherwise’ will be typeset in horizontal 

mode. Blank spaces after the & are ignored. There can be any number of cases, 

but there usually are at least two. Each case should be followed by \cr. Notice 

that the \cases construction typesets its own there is no corresponding 

1/3 if0<x<l; 

2/3 if3<j:<4; 

0 elsewhere. 

► EXERCISE 18.23 

Typeset the display f{x) 



176 Chapter 18: Fine Points of Mathematics Typing 

You can insert ‘\noalign(vertical mode material)’ just after any \cr within 

\cases, as explained in Chapter 22, because \cases is an application of the 

general alignment constructions considered in that chapter. For example, the command 

‘\noalign{\vskip2pt}’ can be used to put a little extra space between two of the cases. 

Horizontal braces will be set over or under parts of a displayed formula if you 

use the control sequences \overbrace or \underbrace. Such constructions are 

considered to be large operators like \sum, so you can put limits above them or below 

them by specifying superscripts or subscripts, as in the following examples: 

k times 

$$\overbrace{x+\cdots+x}~{k\rm\;times}$$ 

$$\underbrace{x+y+z}_{>\,0}.$$ 

8. Matrices. Now comes the fun part. Mathematicians in many different disci- 

plines like to construct rectangular arrays of formulas that have been arranged 

in rows and columns; such an array is called a matrix. Plain T^X provides a 

\matrix control sequence that makes it convenient to deal with the most com- 

mon types of matrices. 

For example, suppose that you want to specify the display 

A = 

^ X — \ 

0 

0 

1 
X — X 

0 N X — X J 
All you do is type 

$$A=\left(\matrix{x-\lambda&l&0\cr 

0&x-\lambda&l\cr 

0&0&x-\lainbda\cr}\right) .$$ 

This is very much like the \cases construction we looked at earlier; each row of 

the matrix is followed by \cr, and signs are used between the individual entries 

of each row. Notice, however, that you are supposed to put your own \lef t and 

\right delimiters around the matrix; this makes \matrix different from \cases, 

which inserts a big ‘{’ automatically. The reason is that \cases always involves 

a left brace, but different delimiters are used in different matrix constructions. 

On the other hand, parentheses are used more often than other delimiters, so 

you can write \pmatrix if you want plain Tp^K to fill in the parentheses for you; 

the example above then reduces to 

$$A=\pmatrix{x-\lambda&. . . &x-\lainbda\cr}. $$ 

► EXERCISE 18.24 

Typeset the display 

' U X " 
b 

1 d e / J V y 
, w 

using \lgroup and \rgroup. 



Chapter 18: Fine Points of Mathematics Typing 177 

The individual entries of a matrix are normally centered in columns. Each 

column is made as wide as necessary to accommodate the entries it contains, 

and there’s a quad of space between columns. If you want to put something flush 

right in its column, precede it by \hf ill; if you want to put something flush left in its 

column, follow it by \hfill. 

Each entry of a matrix is treated separately from the others, and it is typeset 

as a math formula in text style. Thus, for example, if you say \rm in one entry, 

it does not affect the others. Don’t try to say ‘{\rin x&y}’. 

Matrices often appear in the form of generic patterns that use ellipses 

(i.e., dots) to indicate rows or columns that are left out. You can typeset such 

matrices by putting the ellipses into rows and/or columns of their own. Plain 

Tp;X provides \vdots (vertical dots) and \ddots (diagonal dots) as companions 

to \ldots for constructions like this. For example, the generic matrix 

A = 

/ ail CLi2 

«21 0.22 

' Oml OJYI2 

Oln ^ 

02n 

Omn ' 

is easily specified: 

$$A=\pmatrix{a_{ll}&a_{12}&\ldots&a_{ln}\cr 
a_{21}&a_{22}&\ldots&a_{2n}\cr 
\vdots&\vdots&\ddots&\vdots\cr 
a_{inl>&a_{m2}&\ldots&a_{mn}\cr}$$ 

► EXERCISE 18.25 

How can you get Tf}X to produce the column vector 

/j/i \ 

\ykl 

? 

Sometimes a matrix is bordered at the top and left by formulas that give 

labels to the rows and columns. Plain TpX provides a special macro called 

\bordermatrix for this situation. For example, the display 

C I c 

c f 1 0 0 \ 
M = I I b 1-6 0 

C"\0 a 1 — ay 

is obtained when you type 

$$M=\borderinatrix{&C&I&C ’\CT 

C&l&0&0\cr l&b&l-b&0\cr C’&0&a&l-a\cr}$$ 

The first row gives the upper labels, which appear above the big left and right paren- 

theses; the-first column gives the left labels, which are typeset flush left, just before 

the matrix itself. The first column in the first row is normally blank. Notice that 

\bordermatrix inserts its own parentheses, like \pmatrix does. 



178 Chapter 18: Fine Points of Mathematics Typing 

It’s usually inadvisable to put matrices into the text of a paragraph, be- 

cause they are so big that they are better displayed. But occasionally you 

may want to specify a small matrix like (QI), which you can typeset for example as 

‘$1\, l\chooseO\, 1$’. Similarly, the small matrix ^ can be typeset as 

$\bigl({a\atop l}{b\atop m}{c\atop n}\bigr)$ 

The \matrix macro does not produce small arrays of this sort. 

9. Vertical spacing. If you want to tidy up an unusual formula, you know already 
how to move things farther apart or closer together, by using positive or negative 
thin spaces. But such spaces affect only the horizontal dimension; what if you 
want something to be moved higher or lower? That’s an advanced topic. 

Appendix B provides a few macros that can be used to fool into thinking 

that certain formulas are larger or smaller than they really are; such tricks can 

be used to move other parts of the formula up or down or left or right. For example, we 

have already discussed the use of \mathstrut in Chapter 16 and \strut in Chapter 17; 

these invisible boxes caused to put square root signs and the denominators of 

continued fractions into different positions than usual. 

If you say ‘\phantom{(subformula)}’ in any formula, TgX will do all of its 

spacing as if you had said simply ‘{(subformula)}’, but the subformula itself 

will be invisible. Thus, for example, ‘\phaiitom{0}2’ takes up just as much space as 

‘02’ in the current style, but only the 2 will actually appear on the page. If you want 

to leave blank space for a new symbol that has exactly the same size as but if you 

are forced to put that symbol in by hand for some reason, ‘\mathop{\phajitom\siim}’ 

will leave exactly the right amount of blank space. (The ‘\mathop’ here makes this 

phantom behave like \suin, i.e., as a large operator.) 

Even more useful than \phantom is Xvphautom, which makes an invisible box 

whose height and depth are the same as those of the corresponding Xphaoitom, 

but the width is zero. Thus, \vphaiitom makes a vertical strut that can increase a 

formula’s effective height or depth. Plain defines \mathstrut to be an abbreviation 

for ‘\vphantom(’. There’s also Xhphautom, which has the width of a Xphantom, but its 

height and depth are zero. 

Plain TgX also provides ‘\smash{(subformula)}’, a macro that yields the same 

result as ‘{(subformula)}’ but makes the height and depth zero. By using 

both \smash and \vphantom you can typeset any subformula and give it any desired 

nonnegative height and depth. For example, 

\mathop{\smash\limsup\vphaiitom\liminf} 

produces a large operator that says ‘limsup’, but its height and depth are those of 

Miminf (i.e., the depth is zero). 

EXERCISE 18.26 

JL ^ If you want to underline some text, you could use a macro like 

\def\undertext#l{$\underline{\hbox{#l}}$} 

to do the job. But this doesn’t always work right. Discuss better alternatives. 



Chapter 18: Fine Points of Mathematics Typing 179 

You can also use \raise and \lower to adjust the vertical positions of boxes 

in formulas. For example, the formula ‘$2''{\raiselpt\hbox{$\scriptstyle 

n$}}$’ will have its superscript n one point higher than usual (2^^ instead of 2”). Note 

that it was necessary to say \scriptstyle in this example, since the contents of an 

\hbox will normally be in text style even when that hbox appears in a superscript, and 

since \raise can be used only in connection with a box. This method of positioning 

is not used extremely often, but it is sometimes helpful if the \root macro doesn’t put 

its argument in a suitable place. For example. 

\root\raise (dimen)\hbox{$\script script style (argument) $}\of 

will move the argument up by a given amount. 

Instead of changing the sizes of subformulas, or using \raise, you can also 

JL control vertical spacing by changing the parameters that uses when it is 

converting math lists to horizontal lists. These parameters are described in Appen- 

dix G; you need to be careful when changing them, because such changes are global 

(i.e., not local to groups). Here is an example of how such a change might be made: 

Suppose that you are designing a format for chemical typesetting, and that you expect 

to be setting a lot of formulas like ‘Fe^^Cr204’. You may not like the fact that the 

subscript in Fe^ is lower than the subscript in Cr2; and you don’t want to force users 

to type monstrosities like 

$\rm Fe_2''{+2}Cr_2~{\vphantom{+2}}0_4''{\vphcLntom{+2}}$ 

just to get the formula Fe^^Cr2 04 with all subscripts at the same level. Well, all 

you need to do is set ‘\f ontdimenl6\tensy=2.7pt’ and ‘\f ontdimenl7\tensy=2.7pt’, 
assuming that \tensy is your main symbol font (\textfont2); this lowers all normal 

subscripts to a position 2.7 pt below the baseline, which is enough to make room for a 

possible superscript that contains a plus sign. Similarly, you can adjust the positioning 

of superscripts by changing \f ontdimenl4\tensy. There are parameters for the position 

of the axis line, the positions of numerator and denominator in a generalized fraction, 

the spacing above and below limits, the default rule thickness, and so on. Appendix G 

gives precise details. 

10. Special features for math hackers. TgX has a few more primitive operations 
for math mode that haven’t been mentioned yet. They are occasionally useful if 
you are designing special formats. 

If a glue or kern specification is immediately preceded by ‘\nonscript’, 

JL will not use that glue or kern in script or scriptscript styles. Thus, for example, 

the sequence ‘\nonscript\; ’ produces exactly the amount of space specified by ‘(3)’ 

in the spacing table for mathematics that appeared earlier in this chapter. 

f Whenever has scanned a $ and is about to read a math formula that 

appears in text, it will first read another list of tokens that has been predefined 

by the command \everymath={(token list)}. (This is analogous to \everypar, which 

was described in Ghapter 14.) Similarly, you can say \everydisplay={(token list)} to 
predefine a list of tokens for TgX to read just after it has scanned an opening $$, i.e., just 

before reading a formula that is to be displayed. With \everymath and \everydisplay, 

you can set up special conventions that you wish to apply to all formulas. 



180 Chapter 18: Fine Points of Mathematics Typing 

11. Summary. We have discussed more different kinds of formulas in this chapter 
than you will usually hnd in any one book of mathematics. If you have faithfully 
done the exercises so far, you can face almost any formula with confidence. 

But here are a few more exercises, to help you review what you have learned. 

Each of the following “challenge formulas” illustrates one or more of the prin- 

ciples already discussed in this chapter. The author confesses that he is trying to trip 

you up on several of these. Nevertheless, if you try each one before looking at the 

answer, and if you’re alert for traps, you should find that these formulas provide a 

good way to consolidate and complete your knowledge. 

^ ►EXERCISE 18.27 

JL Challenge number 1: Explain how to type the phrase ’’n^^ root’, where ‘n^^’ 

is treated as a mathematical formula with a superscript in roman type. 

V 
► EXERCISE 18.28 

Challenge number 2: 

► EXERCISE 18.29 

Challenge number 3: 

► EXERCISE 18.30 

Challenge number 4: 

► EXERCISE 18.31 

Challenge number 5: 

► EXERCISE 18.32 

Challenge number 6: 

► EXERCISE 18.33 

Challenge number 7: 

► EXERCISE 18.34 

Challenge number 8: 

S-iTS = dg(a;i,...,w„) = A. 

Pr( m = n|m + 77, = 3). 

sin 18° = |(\/5 — 1). 

k = 1.38 X 10-^®erg/°K. 

!> C NLl/N - Zj C . ■ • C NLl/N = Z;. 

/(A) = dxdy. 

fo' ' ■ fo ...,Xn)dXi... dXn. 

► EXERCISE 18.35 

Challenge number 9: Here’s a display. 

_ r Q(X^ - P2W^) - 2S^ (m odd) 
^2m — 

\Pi{Xl-P2Wl)-2S^ (meven) 

► EXERCISE 18.36 

Challenge number 10: And another. 

(1 + XiZ + xfz^ -I )...(!+ XnZ + H ) = 

►EXERCISE 18.37 

Challenge number 11: And another. 

(1 - Xiz) ... (1 - XnZ)' 

J>0 ^k>0 
= E ^Oko ^l/ci 

n>0 \ /co ,/ei ,...>0 
fco -|“/ci • =77. 



Chapter 18: Fine Points of Mathematies Typing 181 

► EXERCISE 18.38 

Challenge number 12: And, 

(rzi + 712 + • • • + ^m)* _ F /TT-I + ?l2 + 7I3 

ni!7l2!...llm! V ^2 / V ^3 

► EXERCISE 18.39 

Challenge number 13: Yet another display. 

UR 
ai, 02,..., OM 

61, 62,..., 6iv n (^2 — _ qaM+n'^ 

(1 - qF+n)(^l _ qb2+n^ ... (1 - gfeiv+n) ' 

► EXERCISE 18.40 

Challenge number 14: And another. 

Y f(p'> = 
p prime t>l 

► EXERCISE 18.41 

Challenge number 15: Still another. 

k a’s I b's 

{a,..., a,5,..., 5}. 
" V " 

k + l elements 

► EXERCISE 18.42 

Challenge number 16: Put a \smallskip between the rows of matrices in the 
compound matrix 

/(a b\ [e f\\ 
\c d) \g h) 

\ 0 ( i j 
\k I 

► EXERCISE 18.43 

Challenge number 17: Make the columns flush left here. 

Co Cl C2 . . . 
Cl C2 C3 - • • 

det C2 C3 C4 • • • C7^4.2 

Cn Cn + 1 Cn + 2 ••• C2n 

EXERCISE 18.44 

JL JL Challenge number 18: The main problem here is to prime the 

XGA X^A 



182 Chapter 18: Fine Points of Mathematics Typing 

► EXERCISE 18.45 

Challenge number 19: You may be ready now for this display. 

def 
2]] k = 2 

/^►EXERCISE 18.46 

n Challenge number 20: And finally, when you have polished off all the other 

examples, here’s the ultimate test. Explain how to obtain the commutative diagram 

0 

0 —> Oc 

0 ^ Oc 

£ -^ C 

1p 

TT^OD R^f.Ovi-D) 

0 

0 

0i<S>'y ^ 

0 

using \matrix. (Many of the entries are blank.) 

12. Words of advice. The number of different notations is enormous and still 

growing, so you will probably continue to find new challenges as you continue to 

type mathematical papers. It’s a good idea to keep a personal notebook in which 

you record all of the non-obvious formulas that you have handled successfully, 

showing both the final output and what you typed to get it. Then you’ll be able 

to refer back to those solutions when you discover that you need to do something 

similar, a few months later. 

If you’re a mathematician who types your own papers, you have now 

learned how to get enormously complex formulas into print, and you can do so 

without going through an intermediary who may somehow distort their meaning. 

But please, don’t get too carried away by your newfound talent; the fact that you 

are able to typeset your formulas with doesn’t necessarily mean that you 

have found the best notation for communicating with the readers of your work. 

Some notations will be unfortunate even when they are beautifully formatted. 



Chapter 18: Fine Points of Mathematics Typing 183 

Mathematicians are like Frenchmen: 
whenever you say something to them, they translate it into their own language, 

and at once it is something entirely different. 

— GOETHE, Maxims and Reflexions (1829) 

The best notation is no notation; 
whenever it is possible to avoid the use of a complicated alphabetic apparatus, 

avoid it. 
A good attitude to the preparation of written mathematical exposition 

is to pretend that it is spoken. 
Pretend that you are explaining the subject to a friend 
on a long walk in the woods, with no paper available; 

fall back on symbolism only when it is really necessary. 

— PAUL HALMOS, How to Write Mathematics (1970) 



19 
Displayed Equations 



Chapter 19: Displayed Equations 185 

By now you know how to type mathematical formulas so that will handle 

them with supreme elegance; your knowledge of math typing is nearly complete. 

But there is one more part to the story, and the purpose of this chapter is to 

present the happy ending. We have discussed how to deal with individual formu- 

las; but displays often involve a whole bunch of different formulas, or different 

pieces of a huge formula, and it’s a bit of a problem to lay them out so that they 

line up properly with each other. Fortunately, large displays generally fall into 

a few simple patterns. 

1. One-line displays. Before plunging into the general question of display layout, 

let’s recapitulate what we have already covered. If you type ‘$$(formula)$$’, 

TgX will display the formula in flamboyant display style, centering it on a line 

by itself. We have also noted in Chapter 18 that it’s possible to display two 

short formulas at once, by typing ‘$$(formulai)\qquad(formula2)$$’; this reduces 

the two-formula problem to a one-formula problem. You get the two formulas 

separated by two quads of space, the whole being centered on a line. 

Displayed equations often involve ordinary text. Chapter 18 explains 

how to get roman type into formulas without leaving math mode, but the best 

way to get text into a display is to put it into an \hbox. There needn’t even be 

any math at all; to typeset 

Displayed Text 

you can simply say ‘$$\hbox{Displayed Text}$$’. But here’s a more interesting 

example: 

Xn = Xk if and only if = Yk and Zn^ Zk^ 

Formulas and text were combined in this case by typing 

$$X_n=X_k \qquad\hbox{if and only if}\qquad 

Y_n=Y_k \quad\hbox{and}\quad Z_n=Z_k.$$ 

Notice that \qquad appears around ‘if and only if’, but a single \quad surrounds 

‘and’; this helps to indicate that the Y and Z parts of the display are related 

more closely to each other than to the X part. 

Consider now the display 

Yn = Xn niod p and = X^ mod q for all n > 0. 

Can you figure out how to type this? One solution is 

$$Y_n=X_n\bmod p \quad\hbox{and}\quad Z_n=X_n\bmod q 

\qquad\hbox{for all }n\ge0.$$ 

Notice that a space has been left after ‘all’ in the hbox here, since spaces 

disappear when they are out in formula-land. But there’s a simpler and more 

logical way to proceed, once you get used to TgX’s idea of modes: You can type 

... \qquad\hbox{for all $n\ge0$.}$$ 



186 Chapter 19: Displayed Equations 

Wow—that’s math mode inside of horizontal mode inside of display math mode. 

But in this way your manuscript mirrors what you are trying to accomplish, 

while the previous solution (with the space after ‘all’) looks somewhat forced. 

► EXERCISE 19.1 
Typeset the following four displays (one at a time): 

oo 

E 
n—O 

OnZ 
n converges if |z| < flimsup yjo^ 

n—>’00 

f{x + Ax) - f(x) 

Ax 
f'(x) as Ax 0. 

||w,|| = 1, Ui-Uj =0 if z / j. 

1 ( an arc I ( an arc "j 

The eonfluent image of < a circle 

[a fan J [ ” 1 an arc or a circle > 

[ a fan or an arc J 
► EXERCISE 19.2 

Sometimes display style is too grandiose, when the formula being displayed is 

1 
y = -X 
^ 2 

or something equally simple. One day B. L. User tried to remedy this by typing it as 
‘$$y={\scriptstylel\over\scriptstyle2}x$$’, but the resulting formula 

1 

wasn’t at all what he had in mind. What’s the right way to get simply ‘y = ^x’’ when 

you don’t want big fractions in displays? 

► EXERCISE 19.3 

What difference, if any, is there between the result of typing ‘$$(formula)$$’ 

and the result of typing ‘$$\hbox{$(formula)$}$$’? 

► EXERCISE 19.4 

You may have noticed that most of the displays in this manual are not cen- 

tered; displayed material is usually aligned at the left with the paragraph indentation, 

as part of the book design, because this is an unusual book. Explain how you could 

typeset a formula like 

1 

4 
+ • • • = In 2 

that is off-center in this way. 

If you’ve had previous experience typing mathematical papers, you prob- 

ably have been thinking, “What about equation numbers? When is this book 

going to talk about them?” Ah yes, now is the time to discuss those sneaky little 

labels that appear off to the side of displays. If you type 

$ $ (formula) \ e qno (formula) $ $ 



Chapter 19: Displayed Equations 187 

TgX will display the first formula and it will also put an equation number (the 

second formula) at the right-hand margin. For example, 

$$x"2-y"2 = (x+y)(x-y).\eqno(15)$$ 

will produce this: 

x‘^ - y'^ = (xy)(x - y). (15) 

You can also get equation numbers at the left-hand margin, with \leqno. For 

example. 

$$x"2-y"2 = (x+y)(x-y).\leqno(16)$$ 

will produce this: 

(16) x‘^ -y'^ = {xE y)(x - y). 

Notice that you always give the equation number second, even when it is going 

to appear at the left. Everything from the \eqno or \leqno command to the $$ 

that ends the display is the equation number. Thus, you’re not allowed to have 

two equation numbers in the same display; but there’s a way to get around that 

restriction, as we’ll see later. 

Nowadays people are using right-hand equation numbers more and more, be- 

cause a display most often comes at the end of a sentence or clause, and the 

right-hand convention keeps the number from intruding into the clause. Furthermore, 

it’s often possible to save space when a displayed equation follows a short text line, 

since less space is needed above the display; such savings are not possible with \leqno, 

because there’s no room for overlap. For example, there is less space above display (15) 

than there is above (16) in our illustrations of \eqno and \leqno, although the formulas 

and text are otherwise identical. 

If you look closely at (15) and (16) above, you can see that the displayed 

formulas have been centered without regard to the presence of the equation 

numbers. But when a formula is large, makes sure that it does not interfere with 

its number; the equation number may even be placed on a line by itself. 

► EXERCISE 19.5 

How would you produce the following display? 

n 1 

(1 — q^z) n (1 
n>0 ' 

(16') 

► EXERCISE 19.6 

Equation numbers are math formulas, typeset in text style. So how can you 

get an equation number like ‘(3-1)’ (with an en-dash)? 

^►EXERCISE 19.7 

B. L. User tried typing ‘\eqno(*)’ and ‘\eqno(**)’, and he was pleased to 

discover that this produced the equation numbers ‘(*)’ and ‘(**)’. [He had been a bit 

worried that they would come out ‘(*)’ and ‘(**)’ instead.] But then a few months 

later he tried ‘\eqno(***)’ and got a surprise. What was it? 



188 Chapter 19: Displayed Equations 

Somewhere in this manual there ought to be a description of exactly how 

TgX displays formulas; i.e., how it centers them, how it places the equation 

numbers, how it inserts extra space above and below, and so on. Well, now is the time 

for those rules to be stated. They are somewhat complex, because they interact with 

things like \parshape, and because they involve several parameters that haven’t been 

discussed yet. The purpose of the rules is to explain exactly what sorts of boxes, glue, 

and penalties are placed onto the current vertical list when a display occurs. 

If a display occurs after, say, four lines of a paragraph, T^]X’s internal register 

called \prevgraf will be equal to 4 when the display starts. The display will be 

assumed to take three lines, so \prevgraf will become 7 when the paragraph is resumed 

at the end of the display (unless you have changed \prevgraf in the meantime). 

assigns special values to three (dimen) parameters immediately after the opening $$ is 

sensed: \displaywidth and \displayindent are set to the line width z and the shift 

amount s for line number \prevgraf+ 2, based on the current paragraph shape or hang- 

ing indentation. (Usually \displaywidth is the same as \hsize, and \displayindent 

is zero, but the paragraph shape can vary as described in Chapter 14.) Furthermore, 
\predisplaysize is set to the effective width p of the line preceding the display, as 

follows: If there was no previous line (e.g., if the $$ was preceded by \noindent or by 

the closing $$ of another display), p is set to —16383.99999 pt (i.e., to the smallest legal 

dimension, — \maxdimen). Otherwise looks inside the hbox that was formed by the 

previous line, and sets p to the position of the right edge of the rightmost box inside 

that hbox, plus the indentation by which the enclosing hbox has been moved right, plus 

two ems in the current font. However, if this value of p depends on the fact that glue in 

that hbox was stretching or shrinking—for example, if the \parf illskip glue is finite, 

so that the material preceding it has not been set at its natural width—then p is set to 

\maxdimen. (This doesn’t happen often, but it keeps TgX machine independent, since 
p never depends on quantities that may be rounded differently on different computers.) 

Notice that \displaywidth and \displayindent are not affected by \leftskip and 

\rightskip, but \predisplaysize is. The values of \displaywidth, \displayindent, 

and \predisplaysize will be used by TgX after the displayed formula has been read, 

as explained below; your program can examine them and/or change them, if you want 

the typesetting to be done differently. 

After a display has been read, T[^ converts it from a math list to a horizontal 

list h in display style, as explained in Appendix G. An equation number, if 

present, is processed in text style and put into an hbox a with its natural width. Now 

the fussy processing begins: Let z, s, and p be the current values of \displaywidth, 

\displayindent, and \predisplaysize. Let q and e be zero if there is no equation 

number; otherwise let e be the width of the equation number, and let q be equal to 

e plus one quad in the symbols font (i.e., in \textfont2). Let WQ be the natural width 

of the displayed formula h. If wo -\- q < z, list h is packaged in an hbox b having its 

natural width wo- But if u'o + ^ > -^ (i-e., if the display is too wide to fit at its natural 

width), TgX performs the following “squeeze routine”: If e 0 and if there is enough 

shrinkability in the displayed formula h to reduce its width to z — g, then list h is 

packaged in an hbox b of width z — q. Otherwise e is set to zero, and list h is packaged 
in a (possibly overfull) hbox b of width min(ico,z). 

(Continuation.) T^X tries now to center the display without regard to the 
equation number. But if such centering would make it too close to that number 



Chapter 19: Displayed Equations 189 

(where “too close” means that the space between them is less than the width e), the 

equation is either centered in the remaining space or placed as far from the equation 

number as possible. The latter alternative is chosen only if the first item on list h is 

glue, since TgX assumes that such glue was placed there in order to control the spacing 

precisely. But let’s state the rules more formally: Let w be the width of box h. 

computes a displacement d, to be used later when positioning box 6, by first setting 

d = \{z — w). If e > 0 and if d < 2e, then d is reset to ^(z — w — e) or to zero, where 

zero is chosen if list h begins with a glue item. 

f (Continuation.) TgX is now ready to put things onto the current vertical list, 

just after the material previously constructed for the paragraph-so-far. First 

comes a penalty item, whose cost is an integer parameter called \predisplaypenalty. 

Then comes glue. If d + s < p, or if there was a left equation number (\leqno), 

TgX sets Qa and gh to glue items specified by the parameters \abovedisplayskip and 

\belowdisplayskip, respectively; otherwise pa and pb become glue items correspond- 

ing to \abovedisplayshortskip and \belowdisplayshortskip. [Translation: If the 

predisplaysize is short enough so that it doesn’t overlap the displayed formula, the glue 

above and below the display will be “short” by comparison with the glue that is used 

when there is an overlap.] If e = 0 and if there is an \leqno, the equation number is 

appended as an hbox by itself, shifted right s and preceded by interline glue as usual; 

an infinite penalty is also appended, to prevent a page break between this number and 

the display. Otherwise a glue item pa is placed on the vertical list. 

f (Continuation.) Now comes the displayed equation itself. If e 0, the 

equation number box a is combined with the formula box h as follows: Let k 

be a kern of width z — w — e — d. In the \eqno case, box b is replaced by an hbox 

containing (6, fc, a); in the \leqno case, box b is replaced by an hbox containing (a, k, 6), 

and d is set to zero. In all cases, box b is then appended to the vertical list, shifted 

right by s + d. 

(Continuation.) The final task is to append the glue or the equation number 

n that follows the display. If there was an \eqno and if e = 0, an infinite 

penalty is placed on the vertical list, followed by the equation number box a shifted 

right by s + z minus its width, followed by a penalty item whose cost is the value 

of \postdisplaypenalty. Otherwise a penalty item for the \postdisplaypenalty is 

appended first, followed by a glue item for pb as specified above. now adds 3 to 

\prevgraf and returns to horizontal mode, ready to resume the paragraph. 

fOne consequence of these rules is that you can force an equation number to 

appear on a line by itself by making its width zero, i.e., by saying either 

‘\eqno\llap{$(formula)$}’ or ‘\leqno\rlap{$(formula)$}’. This makes e = 0, and the 

condition e = 0 controls T]E^’S positioning logic, as explained in the rules just given. 

Plain T^ sets \predisplaypenalty=10000, because fine printers tradition- 

ally shun displayed formulas at the very top of a page. You can change 

\predisplaypenalty and \postdisplaypenalty if you want to encourage or discourage 

page breaks just before or just after a display. For example, ‘$$\postdisplaypenalty= 

-10000(formula)$$’ will force a page break, putting the formula at the bottom line. It 

is better to, force a page break this way than to say \eject right after $$. . .$$; such 

an eject (which follows the \belowdisplayskip glue below the display) causes the page 

to be short, because it leaves unwanted glue at the bottom. 



190 Chapter 19: Displayed Equations 

EXERCISE 19.8 

JL JL Read the rules carefully and deduce the hnal position of ‘x = y’’ in the formula 

$$\quad x=y \hskipl0000pt minus Ifil \eqno(5)$$ 

assuming that there is no hanging indentation. Also consider \leqno instead of \eqno. 

TgX also allows “alignment displays,” which are not processed in math mode 
n because they contain no formulas at the outer level. An alignment display is 

created by commands of the general form 

$$ (assignments) \halign{ (alignment)} (assignments) $$ 

where the (assignments) are optional things like parameter changes that do not produce 
any math lists. In such displays, the \halign is processed exactly as if it had appeared 
in vertical mode, and it will construct a vertical list v as usual, except that each row 
of the alignment will be shifted right by the \displayindent. After the alignment and 
the closing assignments have been processed, will put a \predisplaypenalty item 
and some \abovedisplayskip glue on the main vertical list, followed by v, followed by 
a \postdisplaypenalty item and \belowdisplayskip glue. Thus, alignment displays 
are essentially like ordinary alignments, except that they can interrupt paragraphs; 
furthermore, they are embedded in glue and penalties just like other displays. The 
\displaywidth and \predisplaysize do not affect the result, although you could use 
those parameters in your \halign. An entire alignment display is considered to be only 
three lines long, as far as \prevgraf is concerned. 

2. Multi-line displays. OK, the use of displayed formulas is very nice. But when 
you try typing a lot of manuscripts you will run into some displays that don’t 
ht the simple pattern of a one-line formula with or without an equation num- 
ber. Plain TJ^ provides special control sequences that will cover most of the 
remaining cases. 

Multi-line displays usually consist of several equations that should be 
lined up by their ‘ = ’ signs, as in 

A"! -b • • • + Xp = 'uq 

n + • • • + Ig = n. 

The recommended procedure for such a display is to use \eqalign, which works 
with special markers & and \cr that we have already encountered in connection 
with \cases and \matrix in Chapter 18. Here’s how to type this particular one: 

$$\eqalign{X_l+\cdots+X_p&=m,\cr 
Y_l+\cdots+Y_q&=n.\cr}$$ 

There can be any number of equations in an \eqalign; the general pattern is 

\eqalign{(left-hand sidei)&(right-hand sidei)\cr 
(left-hand side2)&(right-hand side2)\cr 

(left-hand side„,)&(right-hand sideTi)\cr} 



Chapter 19: Displayed Equations 191 

where each (right-hand side) starts with the symbol on which you want alignment 

to occur. For example, every right-hand side often begins with an = sign. The 

equations will be typeset in display style. 

► EXERCISE 19.9 

In practice, the left-hand sides of aligned formulas are often blank, and the 

alignment is often done with respect to other symbols as well as =. For example, 

the following display is typical; see if you can guess how the author typed it: 

T{n) < _ 2rig^l) 

< 3c-3‘sn 

= 3c 

The result of \eqalign is a vertically centered box. This makes it easy 

to get a formula like 

I a = f(z) ^ 

< 0 = f{z^) \ 
X = — P 

y = 2-r 

You simply use \eqalign twice in the same line: 

$$\left\{ 

\eqalign{\alpha&=f (z)\cr \beta&=f (z"2)\cr \gainina&=f (z~3)\cr} 

\right\}\qquad\left\{ 

\eqalign{x&=\alpha"2-\beta\cr y&=2\gamina\cr}\right\}.$$ 

► EXERCISE 19.10 

Try your hand at the numbered two-line display 

P{x) = ao + aix + a2X^ + • • • + UnX^, 

P{ — x) = Uo ~ + Ci2X^ — . . . q- ( — 

[Hint: Use the fact that \eqalign produces a vertically centered box; the equa- 

tion number ‘(30)’ is supposed to appear halfway between the two lines.] 

► EXERCISE 19.11 

What happens if you forget the & in one equation of an \eqalign? 

Multi-line formulas sometimes fit together in odd ways, and you’ll find that 

every once in a while you will want to move certain lines farther apart or 

closer together. If you type ‘\noalign{\vskip(glue)}’ after any \cr, T^X will insert 

the given amount of extra glue just after that particular line. For example, 

\noalign{\vskip3pt} 

will put 3pt of additional space between lines. You can also change the amount of 

space before the first line, in the same way. 



192 Chapter 19: Displayed Equations 

The next level of complexity occurs when you have several aligned equa- 

tions with several equation numbers. Or perhaps some of the lines are numbered 

and others are not: 

(x -f y){x y) = - xy + yx - y‘^ 
2. 

1 

{x + y)"^ = + 2xy + y^. 

(4) 

(5) 

For this situation plain Tp;X provides \eqalignno; you use it like \eqalign, but 

on each line that you want an equation number you add ‘&(equation number)’ 

just before the \cr. The example above was generated by 

$$\eqalignno{(x+y)(x-y)&=x"2-xy+yx-y"2\cr 

&=x"2-y~2;&(4)\cr 

(x+y) ''2&=x"2+2xy+y"2 .&(5) \cr}$$ 

Notice that the second & is omitted unless there’s an equation number. 
And there’s also Meqalignno, which puts equation numbers at the left. 

In this case it is appropriate to move the ‘(4)’ to the beginning of its equation: 

(4) 

(5) 

{x -h y)(x y) = x‘^ - xy + yx - y'^ 
2. 

1 

(x + y)'^ = -h 2xy -I- y^. 

Although the equation numbers appear at the left, you are still supposed to input 

them at the right, just as you do with \leqno; in other words, you should type 

‘$$\leqalignno{(x+y) (x-y)&. . .&(4)\cr. . .}$$’ to get the previous display. 

Caution: \eqalignno and Meqalignno both center the set of equations 

without regard to the widths of the equation numbers. If the equations or their 

numbers get too wide, they might overlap, yet no error message will be given. 

► EXERCISE 19.12 

Typeset the following display: 

gcd(M,r’) = gcd(?;,u); 

gcd(u,r’) = gcd{—u,v). 

► EXERCISE 19.13 

(9) 

(10) 

And here’s another one to try, just to keep in practice: 
*oo 

— oo 

-X dx 1 = 
•oo /•oo 

— ooJ—oo 

•271 /»oo 

e ) dx dy 

e ^ r dr dO 
'0 ^0 

= TT. (11) 



Chapter 19: Displayed Equations 193 

Although Xeqalign and \eqaligrmo look nearly the same, there’s really a 

fundamental distinction between them: \eqalign makes a single, vertically 

centered box, which is no wider than it needs to be; but \eqaligrmo generates a set of 

lines that have the full display width (reaching all the way to both margins). Thus, for 

example, you can use \eqalign several times in a display, but \eqalignno can appear 

only once. If you try to use \eqno in conjunction with \eqalign, you get a decent 

result, but if you try to use \eqno in connection with \eqaligimo you’ll get some sort 

of weird error message(s). 

f/^ The definitions in Appendix B reveal why \eqalign and \eqalignno be- 

^ have differently: \eqalign is an abbreviation for \vcenter{\halign{. . .}}, 

while Xeqaligimo is an abbreviation for \halign to\displaywidth{. . .thus the 

\eqaligimo macro generates an “alignment display.” 

fThis difference between \eqalign and \eqalignno has two interesting con- 

sequences. (1) It’s impossible to break an \eqalign between pages, but an 

\eqalignno can be broken. In fact, you can force a page break after a particular 

line if you insert ‘\noalign{\break}’ after the \cr for that line; and you can prohibit 

such a break if you insert AnoalignfXnobreak}’. You can prohibit all breaks in an 

Xeqalignno if you enclose the whole works in a Xvbox: 

$$Xvbox{Xeqalignno{...}}$$ 

(2) You can also insert a line of text between two equations, without losing the align- 

ment. For example, consider the two displays 

and 

X y + z 

X y 

These were actually generated as a single display by typing 

$$Xeqalignno{x&=y+zXcr 

Xnoalign{Xhbox{and}} 

x"2&=y''2+z~2. Xcr}$$ 

Therefore the fact that their = signs line up is not just a lucky coincidence. Sometimes 

you will want to adjust the spacing above or below such a line of inserted text, by 

putting a Xvskip or two inside of the Xnoalignf. . .}. Incidentally, this example also 

shows that it is possible to use Xeqalignno without giving any equation numbers. 

EXERCISE 19.14 

JLJL What happens if Xeqalign is substituted for Xeqalignno in this last example? 

EXERCISE 19.15 

JL JL Our friend Ben User got into trouble again when he tried to move an equation 

number up higher than its usual position, by typing this: 

$$Xeqalignno{...&Xraise6ptXhbox{(5)}Xcr}$$ 

What was his oversight, and what could he have done instead? 



194 Chapter 19: Displayed Equations 

For other types of displays, plain provides \displaylines, which lets you 

display any number of formulas in any way you want, without any alignment. 

The general form is 

$$\displaylines{(displayed formulai)\cr 

(displayed formula2)\cr 

(displayed formulan)\cr}$$ 

Each formula will be centered, because \displaylines puts \hfil at the left and the 

right of each line; you can override this centering to get things flush left or flush right 

by inserting \hfill, which takes precedence over \hfil. 

► EXERCISE 19.16 

Use \displaylines to typeset the three-line display 

X = x; (1) 

if X = y then y = x; (2) 

if X = y and y = z then x = z. (3) 

If you look closely at the multi-line displays in this chapter, you’ll see that the 

baselines are farther apart than they are in normal text; mathematics publish- 

ers generally do this in order to make the displays easier to read. In accordance with 

this tradition, \eqalign and its relatives automatically increase the \baselineskip. 

If you are making a multi-line display with T^^’s primitive \halign command, instead 

of using one of the plain T^]X macros, you might want to make this same baseline ad- 

justment, and you can do it easily by saying ‘$$\openupl\jot \halign{. . .}$$’. The 
\openup macro increases \lineskip and \lineskiplimit as well as \baselineskip. 

If you say ‘\openup2\jot’, the lines are spread apart 2 extra units, where plain 

opens things up in units of 3pt. Since $$...$$ acts as a group, the effect of \openup 

will disappear when the display is finished. Any (dimen) can follow \openup, but it’s 

customary to express the amount symbolically in terms of a \jot instead of using 

absolute units; then your manuscript can be used with a variety of different formats. 

Plain T^]X’s \displaylines, \eqalignno, and \leqalignno macros begin with 

X ‘\openupl\jot’. If you don’t want the lines to be opened up, you can cancel 

this by saying, e.g., ‘$$\openup-l\jot \eqalignno{. . .}$$’, because \openup has a 

cumulative effect. 

Suppose that you have decided to make a homegrown display having the gen- 
_2_ eral form ‘$$\openupl\jot \halign{. . .}$$’; and for convenience, let’s sup- 

pose that the normal conventions of plain T^]X are in force, so that \jot=3pt and 

\baselineskip=12pt. Then the \openup macro changes the baselineskip distance to 

15 pt. It follows that the baseline of the text line that immediately precedes the display 

will be 15 pt above the topmost baseline of the display, plus the \abovedisplayskip. 

But when the paragraph resumes, its next baseline will be only 12 pt below the bot- 

tom baseline of the display, plus the \belowdisplayskip, because the \baselineskip 

parameter will have reverted to its normal value. The \eqalignno and \displaylines 

macros say ‘\noalign{\vskip—d}’ before their first lines, where d is the net amount 

of opening-up, in order to compensate for this difference. 



Chapter 19: Displayed Equations 195 

3. Long formulas. Our discussion of mathematics typing is almost complete; we 
need to deal with just one more problem: What should be done when a formula 
is so long that it doesn’t ht on a single line? 

For example, suppose that you encounter the equation 

You’ll have to break it up somehow; TgX has done its best to squeeze everything 
together by shrinking the spaces next to the + and - signs to zero, but still the 
line has come out overfull. 

Let’s try to break that equation just before the ‘+7’. One common way 
to do this is to type 

$$\eqalign{\sigma(2"{34}-l,2"{35},1) 

&=-3+(2^{34}-l)/2''{35}+2^{35}\!/(2^{34}-l)\cr 

&\qquad+7/2^{35}(2''{34}-l)-\sigina(2^{35},2^{34}-l,l) Acr}$$ 

which yields 

(j(2®'* - l,2^^ 1) = -3 + (2-'^^ - l)/2^^ + 2“/(2^‘* - 1) 

+ 7/2“(2^‘‘ - 1) - <T(2®®, 2®^ - 1,1). 

The idea is to treat a long one-line formula as a two-line formula, using \qquad 
on the second line so that the second part of the formula appears well to the 
right of the = sign on the first line. 

► EXERCISE 19.17 

Explain how to deal with the following display. 

XfiUl H 1- Xn-et-lUt = XnUi 4- (aXn + c)U2   

-|- {a^ + c^of ^ + • • • -|- 1))^^ 

= {ui + au2 + h a^~^ut)xn + ..., Ut). (47) 

It’s quite an art to decide how to break long displayed formulas into several 
lines; TLA never attempts to break them, because no set of rules is really 

adequate. The author of a mathematical manuscript is generally the best judge of 
what to do, since break positions depend on subtle factors of mathematical exposition. 
For example, it is often desirable to emphasize some of the symmetry or other structure 
that underlies a formula, and such things require a solid understanding of exactly what 
is going on in that formula. 

Nevertheless, it is possible to state a few rules of thumb about how to deal 
with long formulas in displays, since there are some principles that the best 

mathematical typesetters tend to follow: 

a) Although formulas within a paragraph always break after binary operations 
and relations, displayed formulas always break before binary operations and relations. 
Thus, we didn’t end the first line of our (T{. .example with ‘ (2''{34}-l)+’; we ended 
it with ‘(2~{34}-l)’ and began the second line with ‘+’. 



196 Chapter 19: Displayed Equations 

b) When an equation is broken before a binary operation, the second line should 

start at least two quads to the right of where the innermost subformula containing that 

binary operation begins on the first line. For example, if you wish to break 

$$\suin_{0<k<n}\left ((formulai) + (formula2)\right)$$ 

at the plus sign between (formulai) and (formula2), it is almost mandatory to have the 

plus sign on the second line appear somewhat to the right of the large left parenthesis 

that corresponds to ‘\left(’. 

In the example just considered, special care is needed to break the formula into 

two lines, because \left and \right delimiters cannot be used in isolation; 

you can’t have only \left in one line of a formula and only \right in the second. 

Furthermore, you’ll want the two delimiters to be of the same size, even though they 
occur in different lines. The best solution is usually to choose the delimiter size yourself; 

for example, you could type 

$$\eqalign{\sum_{0<k<n}\biggl(&(formulai)\cr 
& \qquad{ }+(for mula2) \b i ggr) \ c r } $ $ 

if \bigg delimiters are best. Notice that the & markers don’t occur at = signs in this 

example, they just mark a point of alignment. 

There’s another way to break long formulas, sometimes called the two-line 

form. The idea is to put the first part of the formula almost flush left, and to 
put the second part almost flush right, where “almost flush” means “one quad away.” 

Thus, the two-line form of the long cr(...) equation considered earlier is 

cr(2^^ - l,2^^ 1) -3 + (2^^ - l)/2^^ + 2^7(2^^ - 1) 

+ 7/235(2^4 - 1) - a(2^7 2^^ - 1,1). 

It isn’t difficult to get this two-line effect with \displaylines: 

$$\displaylines{\quad\sigma(2^{34}-l, 2''{35} ,1) 

=-3+(2"{34}-l) /2''{35}+2''{35} \ ! / (2''{34}-l) \hf ill\cr 

\hf ill{}+7/2''{35}(2"{34}-l)-\sigma(2"{35} ,2''{34}-! , 1) . \quad\cr}$$ 

An extra was typed on the second line here so that T^ would know that the ‘+’ 

is a binary operation. The two-line form is especially recommended for equations that 

have a long left-hand side; in that case the break generally comes just before the = sign. 

► EXERCISE 19.18 

Typeset the following display: 

E 
1 

{Xj XiJ . . . (^Xj X j — i') (^X Xj^i^Xj .Tj-fi) . . . {Xj Xn) 

{x — Xi) . . . {x — Xn) 
(27) 

EXERCISE 19.19 

If it is necessary to typeset a huge fraction like 

^^n(n+i)^g^. q^)^i^caq/e\ q^)oo{cq^/ae\ q^) 

{e\q)oo(cq/e\q) 

OO 

'CXD 



Chapter 19: Displayed Equations 197 

in a single narrow column, you might have to break up the numerator and resort to 

qi’'^^^^\ea;q^U(eq/a;q^U 

 (caq/e- q^)o^{cq'^/ae] g^)oo 

{e\q)oc>{cq/e\q)oo 

How would you specify the latter fraction to TlgX? 

When a formula is too long for the page-width 
and has to be broken into successive lines 

(and we are now, of course, speaking of displayed formulae), 
it should be broken, if possible, at the end of a natural ‘phrase’; 

if, for example, it is a much-bracketed formula, 
it should be broken at the end of one of the major brackets 

and not at an inner symbol. 
This natural phrasing (as in music or speech) 

makes for intelligibility between writer and reader 
and should not be left to the compositor. 

An author, when he finds himself writing a longish formula, 
should indicate a convenient point of fracture in case of need. 

— CHAUNDY, BARRETT, and BATEY, The Printing of Mathematics (1954) 

Some authors use display with discretion, 
some run even extremely long, complicated equations into the text, 

while others tend to display every equation in the paper. 
The tendency to overdisplay is probably more predominant 

than the tendency to underdisplay; 
for this reason it is possible for the copy editor to shorten 

(and even improve) papers by running displayed material into text. ... 
On the other hand, there are occasions when the copy editor needs 

to suggest the display of complicated expressions that have been run into text, 
particularly when it would involve a bad break at the end of a text line. 

— ELLEN SWANSON, Mathematics into Type (1971) 



20 
Definitions 

(also called Macros) 



Chapter 20: Definitions (also called Macros) 199 

You can often save time typing math formulas by letting control sequences stand 

for constructions that occur frequently in a particular manuscript. For example, 

if some document uses the vector ‘(xi,... ^XnY a lot, you can type 

\def\xvec{(x_l,\ldots,x_n)> 

and \xvec will henceforth be an abbreviation for ‘ (x_l ,\ldots ,x_n) Complex 

displays like 

^ . . ,Xn) + g(Xi,...,Xn)) 

{xi ,...,X7i)^(0,...,0) 

can then be typed simply as 

$$\suin_{\xvec\ne(0,\ldots,0)} \bigl(f\xvec+g\xvec\bigr)$$ 

instead of in a tedious long form. By defining a control sequence like \xvec, you 

not only cut down on the number of keystrokes that you need to make, you also 

reduce your chances of introducing typographical errors and inconsistencies. 

Of course, you usually won’t be making a definition just to speed up 

the typing of one isolated formula; that doesn’t gain anything, because time 

goes by when you’re deciding whether or not to make a definition, and when 

you’re typing the definition itself. The real payoff comes when some cluster of 

symbols is used dozens of times throughout a manuscript. A wise typist will look 

through a document before typing anything, thereby getting a feeling for what 

sorts of problems will arise and what sorts of definitions will be helpful. For 

example. Chapter 16 recommends that the control sequence \Ahat be defined at 

the beginning of any manuscript that makes frequent use of the symbol A. 

Abbreviations like \xvec turn out to be useful in many applications of 

computers, and they have come to be known as macros because they are so 

powerful; one little macro can represent an enormous amount of material, so it 

has a sort of macroscopic effect. System programs like T^X that are designed 

to deal with macro definitions are said to expand the user’s macros; for ex- 

ample, \xvec expands into (x_l,\ldots ,x_n), and \ldots in turn is a macro 

that expands into \mathinner{\ldotp\ldotp\ldotp>. Thus, \xvec is actually 

an abbreviation for ‘ (x_l, \niathinner{\ldotp\ldotp\ldotp} ,x_n)’. (The ex- 

pansion stops here, because \mathinner is a primitive control sequence of T^}X, 

and because \ldotp has been defined with \mathchardef; thus \mathinner and 

\ldotp are not macros.) 

TgX users generally build up their own personal library of macros for 

things that they want to do in different documents. For example, it is common 

to have a file called macros.tex that contains definitions of your favorite spe- 

cial control sequences, perhaps together with commands that load your favorite 

special fonts, etc. If you begin a document with the command 

\input macros 

then TgX will read all those definitions, saving you all the trouble of retyping 

them. Of course, T^X’s memory is limited, and it takes time to read a file, so 



200 Chapter 20: Definitions (also called Macros) 

you shouldn’t put thousands of dehnitions into macros.tex. A large collection 

of macro definitions (e.g., the set of definitions in Appendix B) is called a format 

(e.g., “plain T^X format”); TgX has a special way to input a format at high 

speed, assuming that the format doesn’t change very often. 

The \xvec and \Ahat examples apply to math formulas, but you can 

make good use of macro definitions even when you aren’t doing any math at all. 

For example, if you are using TgX for business correspondence, you can have a 

\yours macro that stands for ‘Sincerely yours, A. U. Thor’. If you often write 

form letters you can have macros that generate entire sentences or paragraphs 

or groups of paragraphs. The Internal Revenue Service could, for example, make 

use of the following two macros: 

\def\badcheck{A penalty has been added because your 

check to us was not honored by your bankApar} 

\def\cheater{A penalty of 50\y« of the underpaid tax 

has been added for fraudApar} 

Simple macro definitions, like these, start with ‘\def’; then comes the control 

sequence name, e.g., ‘\badcheck’; and then comes the replacement text enclosed 

in and ‘}’. The braces do not represent grouping in this case; they simply 

show the extent of the replacement text in the definition. You could, of course, 

define a macro that includes actual braces in its replacement text, as long as 

those braces match each other properly. For example, ‘\def \xbold{{\bf x}}’ 

makes \xbold an abbreviation for ‘{\bf x}’. 

► EXERCISE 20.1 

Write a Xpunishment macro that prints 100 lines containing the message ‘I must 

not talk in class.’ [Hint: First write a macro \mustnt that prints the message 

once; then write a macro \five that prints it five times.] 

► EXERCISE 20.2 

What is the expansion of \puzzle, given the following definitions? 

\def\a{\b} 

\def\b{A\def\a{B\def\a{C\def\a{\b}}}} 
\def\puzzle{\a\a\a\a\a} 

As soon as you get the hang of simple macros like those illustrated above, 

JL you will probably begin to think, “Boy, wouldn’t it be nice if I could have a 

macro in which some of the text in the expansion is changeable? I’d like to be able 

to stick different things into the middle of that text.” Well, TTA has good news for 

you: Control sequences can be defined in terms of parameters, and you can supply 

arguments that will be substituted for the parameters. 

fFor example, let’s consider \xvec again. Suppose that you not only refer 

to ‘(xi,..., Xn)’, but you also make frequent use of ‘(yi,..., and other 
similar things. Then you might want to type 

\def\row#!{(#!_1Aldots,#l_n)} 



Chapter 20: Definitions (also called Macros) 201 

after which \row x will produce ‘(xi,.. ., Xn)’ and \row y will produce ‘(^i,..., yn)’- 

The symbol #1 stands for the first parameter to the macro, and when you say ‘\row x’ 

the X is a so-called argument that will be inserted in place of the #l’s in the replace- 

ment text. In this case the argument consists of a single letter, x. You can also say 

\row\alpha, in which case the argument will be the control sequence \alpha, and the 

result will be ‘(ai,. .. , oin)’. If you want the argument to contain more than one symbol 

or control sequence, you can simply enclose it in braces; for example, \row{x'} yields 

(xi,... ,x'n). The argument in this case is x^ (without the braces). Incidentally, if you 

say \row{{x'}}, you get {x\,..., x'n); the reason is that only one pair of braces is 

stripped off when the argument is collected, and (a:'i,..., x'n) is what you get from 

({x^}_l,\ldots,{x’}_n) in math mode, according to the rules of Chapter 16. 

► EXERCISE 20.3 

Continuing this example, what is the result of $\row{\bf x}$? 

The notation ‘#1’ suggests that there might be an opportunity to have more 

than one parameter, and indeed there is. You can write, for example, 

\def\row#l#2{(#l_l,\ldots,#1_#2)} 

after which ‘\row xn’ would be the proper protocol for ‘(xi,... ,Xn)’. There can be as 

many as nine parameters, #1 to #9, and when you use them you must number them in 

order. For example, you can’t use #5 in a definition unless the previous parameter 

in that definition was called #4. (This restriction applies only to the initial statement 

of parameters, before the replacement text starts; the stated parameters can be used 

any number of times, in any order, in the replacement text itself.) 

A control sequence has only one definition at a time, so the second definition 

of \row would supersede the first one if both had appeared in the same doc- 

ument. Whenever TgX encounters a macro that it wants to expand, it uses the most 

recent definition. However, definitions are local to the group that contains them; old 

definitions will be restored in the usual way when a group ends. 

Caution: When you define a macro with simple parameters, as in these exam- 

ples, you must be careful not to put blank spaces before the that begins the 

replacement text. For example, ‘\def\row #1 #2 will not give the same result 

as ‘\def \row#l#2{. . because the spaces after #1 and #2 tell T)gX to look for argu- 

ments that are followed by spaces. (Arguments can be “delimited” in a fairly general 

way, as explained below.) But the space after \row is optional, as usual, because 

always disregards spaces after control words. After you have said ‘\def \row#l#2{ 

you are allowed to put spaces between the arguments (e.g., ‘\row x n’), because T^]X 

doesn’t use single spaces as undelimited arguments. 

The following exercise is particularly recommended for people who want to 

learn to write TgX macros. Even if you have gotten into the dangerous habit 

of skimming other exercises, you should try your hand at this one. 

► EXERCISE 20.4 

Extending exercise 20.1, write a “generalized punishment” macro that has two 

parameters, so that \punishment{run}{the halls} will produce 100 paragraphs that 

say ‘I must not run in the halls.’ 



202 Chapter 20: Definitions (also called Macros) 

T^K also allows you to define macros whose parameters are delimited in quite 

JL a general way; you needn’t always enclose arguments in braces. For example, 

\def\cs #1. #2\par{...} 

defines a control sequence \cs with two parameters, and its two arguments will be 
determined as follows: #1 will consist of all tokens between \cs and the next subsequent 

appearance of ‘.u’ (period and space); #2 will consist of all tokens between that ‘.u’ 

and the next \par token. (The \par might be given explicitly, or it might be generated 

by a blank line as explained in Chapter 8.) For example, when expands 

\cs You owe \$5.00. Pay it.\par 

the first argument is ‘You owe \$5.00’ and the second is ‘Pay it.’. The period in 

‘\$5.00’ doesn’t stop #1, in this example, because T^ keeps going until finding a 

period that is followed immediately by a space. 

f/^ Furthermore, an argument will not stop when its delimiter is enclosed in 
n braces, because that would produce unbalanced braces. For example, in 

\def\cs #1.#2\par{...} 

the first argument is now delimited by a single period, so #1 would be ‘You owe \$5’ 

and the #2 would be ‘00. Pay it.’ if \cs were invoked as above. But 

\cs You owe {\$5.00}. Pay it.\par 

satisfactorily hides the first period, making it part of argument #1, which becomes 

‘You owe {\$5.00}’. 

If you are designing a format for mathematical papers, you will probably 

JL want to include a macro for the statement of theorems, definitions, lemmas, 

corollaries, and such things. For example, you might want to typeset a statement like 

Theorem 1. has a powerful macro capability. 

from the input 

\proclaim Theorem 1. \TeX\ has a powerful macro capability.\par 

In fact, plain TgX includes a \proclaim macro that does just that; its definition is 

\def\proclaim #1. #2\par{\medbrecLk 

\noindent{\bf#l.\enspace}{\sl#2}\par\medbrecLk} 

so the arguments are delimited exactly as in our first \cs example. The replacement 

text here uses \medbreak to separate the proclaimed paragraph from what precedes 

and follows; the title of the proclamation is set in bold face type, while the text itself is 

set slanted. (The actual definition of \proclaim in Appendix B is not quite the same 

as this; the final \medbreak has been modified so that a break between pages will be 

discouraged immediately following the statement of a theorem. Hence a short theorem 
will tend to appear at the top of a page rather than at the bottom.) 

By making changes to the \proclaim macro, you can change the format of 

JL all the proclamations in your paper, without changing the text of the paper 

itself. For example, you could produce something like 

THEOREM 1: TpjX has a powerful macro capability. 



Chapter 20: Definitions (also called Macros) 203 

by making simple alterations to the replacement text of Xproclaim, assuming that you 
have a “caps and small caps” font. is intended to support higher-level languages 
for composition in which all of the control sequences that a user actually types are 
macros rather than T^X primitives. The ideal is to be able to describe important 
classes of documents in terms of their components, without mentioning actual fonts or 
point sizes or details of spacing; a single style-independent document can then be set 
in many different styles. 

fNow that we have seen a number of examples, let’s look at the precise rules 
that govern macros. Definitions have the general form 

\def (control sequence)(parameter text){(replacement text)} 

where the (parameter text) contains no braces, and where all occurrences of { and } 
in the (replacement text) are properly nested. Furthermore the # symbol has a special 
significance: In the (parameter text), the first appearance of # must be followed by 1, 
the next by 2, and so on; up to nine #’s are allowed. In the (replacement text) each # 
must be followed by a digit that appeared after # in the (parameter text), or else the # 
should be followed by another #. The latter case stands for a single # token when the 
macro is expanded; the former case stands for insertion of the corresponding argument. 

f/^ For example, let’s consider a “random” definition that doesn’t do anything 
JL useful except that it does exhibit T^]X’s rules. The definition 

\def\cs AB#1#2C$#3\$ {#3{ab#l}#l c##\x #2} 

says that the control sequence \cs is to have a parameter text consisting of nine tokens 

All, Bii, #1, #2, Cii, $3, #3, [$ uio 

(assuming the category codes of plain T^]X), and a replacement text of twelve tokens 

#3, {i, ail, hii, #1, >2, #1, uio, cii, #6, [xj, #2 

Henceforth when reads the control sequence \cs it will expect that the next two 
tokens will be An and Bn (otherwise you will get the error message ‘Use of \cs doesn’t 

match its definition’); then comes argument #1, followed by argument #2, then Cn, 

then $3, then argument #3, then \$, and finally a space token. It is customary to use the 
word “argument” to mean the string of tokens that gets substituted for a parameter; 
parameters appear in a definition, and arguments appear when that definition is used. 
(For the purposes of these rules, we are extending Chapter 7’s definition of token: 
In addition to control sequences and (character code, category code) pairs, also 
recognizes “parameter tokens,” denoted here by #1 to #9. Parameter tokens can appear 
only in token lists for macros.) 

fHow does TgX determine where an argument stops, you ask. Answer: There 
are two cases. A delimited parameter is followed in the (parameter text) 

by one or more non-parameter tokens, before reaching the end of the parameter text 
or the next parameter token; in this case the corresponding argument is the shortest 
(possibly empty) sequence of tokens with properly nested {. . .} groups that is followed 
in the input by this particular list of non-parameter tokens. (Category codes and 
character codes must both match, and control sequence names must be the same.) An 
undelimited parameter is followed immediately in the (parameter text) by a parameter 



204 Chapter 20: Definitions (also called Macros) 

token, or it occurs at the very end of the parameter text; in this case the corresponding 

argument is the next nonblank token, unless that token is when the argument will 

be the entire {. . .} group that follows. In both cases, if the argument found in this 

way has the form ‘{(nested tokens)}’, where (nested tokens) stands for any sequence of 

tokens that is properly nested with respect to braces, the outermost braces enclosing 

the argument are removed and the (nested tokens) will remain. For example, let’s 

continue with \cs as defined above and suppose that the subsequent text contains 

\cs AB {\Look}C${And\$ }{look}\$ 5 

Argument #1 will be the token |Look|, since #1 is an undelimited parameter (it is 

followed immediately by #2 in the definition); in this case TgX ignores the blank space 

after B, and strips the braces off of {\Look}. Argument #2 will be empty, since C$ 

follows immediately. And argument #3 will be the thirteen tokens corresponding to 

the text {And\$u}{look}, because #3 is to be followed by ‘\$u’, and because the first 

occurrence of ‘\$u’ is within braces. Even though argument #3 begins with a left brace 

and ends with a right brace, the braces are not removed, since that would leave the 
unnested tokens ‘And\$ }{look’. The net effect then, after substituting arguments for 

parameters in the replacement text, will be that TgX will next read the token list 

{And\$ }{look}{ab\Look}\LookuC#\x5. 

The space u here will be part of the resulting token list, even though it follows the 

control word \Look, because spaces are removed after control word tokens only when 
TgX first converts input lines to token lists as described in Chapter 8. 

^►EXERCISE 20.5 

The example definition of \cs includes a ## in its replacement text, but the 
way ## is actually used in that example is rather pointless. Give an example of a 

definition where ## serves a useful purpose. 

A special extension is allowed to these rules: If the very last character of 

the (parameter text) is #, so that this # is immediately followed by {, 
will behave as if the { had been inserted at the right end of both the parameter text 

and the replacement text. For example, if you say ‘\def\a#l#{\hbox to #1}’, the 

subsequent text ‘\a3pt{x}’ will expand to ‘\hbox to 3pt{x}’, because the argument 
of \a is delimited by a left brace. 

Tokens that precede the first parameter token in the (parameter text) of a 

definition are required to follow the control sequence; in effect, they become 
part of the control sequence name. For example, the author might have said 

\def\TeX/{...} 

instead of defining \TeX without the slash. Then it would be necessary to type \TeX/ 

each time the logo is desired, but the new definition would have the advantage that 

spaces are not ignored after ‘\TeX/’. You can use this idea to define macros that are 

intended to be used in sentences, so that users don’t have to worry about the possible 

disappearance of spaces. 

EXERCISE 20.6 

Define a control sequence \a such that \a{. . .} expands to \b{. . .}, and such 
that gives an error message if \a is not immediately followed by a left brace. 



Chapter 20: Definitions (also called Macros) 205 

Complicated macros have a habit of behaving differently from what you ex- 
JL pect, when you first define them, even though T^]X’s rules are not especially 

complicated. If you have trouble understanding why some \def doesn’t work the way 
you think it should, help is available: You can set \tracingmacros=l, whereupon 

will write something in your log file whenever it expands a macro, and whenever it 

has read a macro argument. For example, if \tracingmacros is positive when 

processes the \cs example above, it will put the following four lines into the log: 

\cs AB#1#2C$#3\$ ->#3{ab#l}#l c##\x #2 

#l<-\Look 

#2<- 

#3<-{And\$ }{look} 

In all of the rules stated above, and and ‘#’ stand for any characters 

whose category codes are respectively 1, 2, and 6 in the token list when 

reads the macro definition; there’s nothing sacred about the particular symbols that 

plain T^X uses to denote grouping and parameters. You can even make use of several 

different characters with these category codes, all at the same time. 

EXERCISE 20.7 

JL JL Suppose that ‘[’, ‘]’, and ‘!’ have the respective catcodes 1, 2, and 6, as do 

and ‘#’. See if you can guess what the following definition means: 

\def\!!1#2![{!#]#!!2> 

What token list will result when ‘\! x{[y]] [z}’ is expanded? 

In practice, we all make mistakes. And one of the most common typographic 

errors is to forget a or to insert an extra somewhere in an argument 

to a macro. If TgX were to follow the rules blindly in such a case, it would have to 

keep absorbing more and more tokens in hopes of finding the end of the argument. But 

a mistyped argument is unending, like so many arguments in real life (sigh); so T^)X 

would have to go on until the end of the file, or (more likely) until tokens completely fill 

the computer’s memory. In either case, a single typographical error would have ruined 

the run, and the user would be forced to start over. Therefore has another rule, 

intended to confine such errors to the paragraph in which they occur: The token Apar’ 

is not allowed to occur as part of an argument, unless you explicitly tell 1^]X that \par 

is OK. Whenever T^X is about to include \par as part of an argument, it will abort 

the current macro expansion and report that a “runaway argument” has been found. 

If you actually want a control sequence to allow arguments with \par tokens, 

you can define it to be a “long” macro by saying Along’ just before ‘\def’. 
For example, the \bold macro defined by 

\long\def\bold#l{{\bf#1}} 

is capable of setting several paragraphs in boldface type. (However, such a macro is 

not an especially good way to typeset bold text. It would be better to say, e.g., 

\def\beginbold{\begingroup\bf} 

\def\endbold{\endgroup} 

because this doesn’t fill T^’s memory with a long argument.) 



206 Chapter 20: Definitions (also ealled Macros) 

The \par-forbidding mechanism doesn’t catch all conceivable missing-brace 

errors, however; you might forget the } at the end of a \def, and the same 

problem would arise. In this case it’s harder to confine the error, because \par is a useful 

thing in replacement texts; we wouldn’t want to forbid \par there, so TgX has another 

mechanism: When a macro definition is preceded by ‘\outer’, the corresponding control 

sequence will not be allowed to appear in any place where tokens are being absorbed 

at high speed. An \outer macro cannot appear in an argument (not even when \par is 

allowed), nor can it appear in the parameter text or the replacement text of a definition, 

nor in the preamble to an alignment, nor in conditional text that is being skipped over. 

If an \outer macro does show up in such places, T^]X stops what it is doing and reports 

either a “runaway” situation or an “incomplete” conditional. The end of an input file 

is also considered to be \outer in this sense; for example, a file shouldn’t end in the 

middle of a definition. If you are designing a format for others to use, you can help them 

detect errors before too much harm is done, by using \outer with all control sequences 

that should appear only at “quiet times” within a document. For example. Appendix B 

defines \proclaim to be \outer, since a user shouldn’t be stating a theorem as part of 

a definition or argument or preamble. 

We have now seen that \def can be preceded by \long or \outer, and it 

can also be preceded by \global if the definition is supposed to transcend 

its group. These three prefixes can be applied to \def in any order, and they can 

even appear more than once. also has a \gdef primitive that is equivalent to 

\global\def. Thus, for example. 

\long\outer\global\long\def 

means the same thing as ‘\outer\long\gdef’. 

So far in this manual we have encountered several ways to assign a meaning 

to a control sequence. For example. 

\font\cs=(external font name) makes \cs a font identifier; 

\chardef\cs=(number) makes \cs a character code; 

\countdef\cs=(number) makes \cs a \couiit register; 

\def\cs. makes \cs a macro. 

It’s time now to reveal another important command of this type: 

\let\cs=(token) gives \cs the token’s current meaning. 

If the (token) is another control sequence, \cs will acquire the same significance as 

that control sequence. For example, if you say ‘\let\a=\def’, you could then say 

‘\a\b. to define a macro \b, because \a would behave like T^]X’s primitive 

\def command. If you say 

\let\a=\b \let\b=\c \let\c=\a 

you have interchanged the former meanings of \b and \c. And if you say 

\outer\def\a#l.{#1:} 

\let\b=\a 

the effect is exactly the same as ‘\outer\def \b#l. {#1: } \let\a=\b’. 



Chapter 20: Definitions (also ealled Macros) 207 

If the (token) in a \let is a single character—i.e., if it is a (character code, 

JL category code) pair—then the control sequence will behave to a certain extent 

like that character; but there are some differences. For example, after ‘\let\zero=0’ 

you can’t use \zero in a numerical constant, because requires the tokens in a 

numerical constant to be digits, after macro expansion; \zero is not a macro, so it 

doesn’t expand. However, such uses of Met have their value, as we will see later. 

^►EXERCISE 20.8 

Is there a significant difference between ‘\let\a=\b’ and ‘\def\a{\b}’? 

EXERCISE 20.9 

Experiment with TgX to discover the answers to the following questions: (a) If 

the control sequence \par has been redefined (e.g., ‘\def\par{\endgroup\par >’), is 

\par still forbidden to appear in an argument? (b) If you say \let\xpar=\par, is 

\xpar also forbidden in an argument? 

TgX also allows the construction ‘\futurelet\cs(tokeni)(token2)’, which has 

the effect of ‘\let\cs = (token2)(tokeni)(token2)’. The idea is that you can 

say, for example, ‘\futurelet\a\b’ at the end of the replacement text of a macro; 

TgX will set \a to the token that follows the macro, after which \b will be expanded. 

The control sequence \b can continue the processing, and it can examine \a to see 

what’s coming up next. 

The next thing a person wants, after getting used to macros with parameters, 

is the ability to write macros that change their behavior depending on current 

conditions. TgX provides a variety of primitive commands for this purpose. The general 

form of such “conditional text” is 

\if(condition)(true text)\else(false text)\fi 

where the (true text) is skipped unless the (condition) is true, and the (false text) 

is skipped unless the (condition) is false. If the (false text) is empty, you can omit 

the \else. The ‘\if (condition)’ part of this construction begins with a control sequence 

whose first two letters are ‘if’; for example, 

\ifodd\countO \rightpage \else\leftpage \fi 

specifies a condition that is true when TgX’s integer register \countO is odd. Since 

generally keeps the current page number in \countO, the macro \rightpage will be 

expanded in this example if the page number is odd, while \lef tpage will be expanded 

if the page number is even. Conditional commands always end with a final ‘\fi’. 

Conditionals are primarily intended for experienced TgX users, who want to 

define high-level macros; therefore the remaining paragraphs in this chapter 

are headed by “double dangerous bends.” Do not feel guilty about skipping right to 

Chapter 21; in other words, imagine that the manual says ‘\ifexperienced’ right here, 

and that there is a matching ‘\f i’ at the end of the present chapter. 

Before we discuss T^]X’s repertoire of \if. . . commands, let’s look at another 

JL example, so that the general ideas will be clear. Suppose that the \count 

register \balance holds an amount that somebody has paid in excess of his or her 

income tax; this amount is given in pennies, and it might be positive, negative, or zero. 



208 Chapter 20: Definitions (also called Macros) 

Our immediate goal will be to write a macro that generates a suitable statement 

for the Internal Revenue Service to include as part of a letter to that person, based on 

the amount of the balance. The statement will be quite different for positive balances 

than for negative ones, so we can exploit T^]X’s ability to act conditionally: 

\def\statement{\ifnuin\balaiice=0 \fullypaid 

\else\ifnum\balaiice>0 \overpaid 

\else\imderpaid 

\fi 

\fi> 

Here \ifnum is a conditional command that compares two numbers; the \statement 

macro reduces to \fullypaid if the balance is zero, and so on. 

It is vastly important to notice the spaces after the O’s in this construction. 

If the example had said 

...=0\fullypaid... 

then TgX would have begun to expand ‘\fullypaid’ before it knew the value of the 

constant 0, because \fullypaid might start with a 1 or something that would change 

the number. (After all, ‘01’ is a perfectly acceptable (number), in T^^X’s eyes.) In this 

particular case the program would still have worked, because we will see in a moment 

that \fullypaid begins with the letter Y; thus, the only problem caused by the missing 

space would be that T^]X would go slower, since it would have to skip over the whole 

expansion of \fullypaid instead of just skipping \fullypaid as a single, unexpanded 

token. But in other situations a missing space like this might cause T^X to expand 

macros when you don’t want any expansion, and such anomalies can cause subtle and 

confusing errors. For best results, always put a blank space after a numeric constant; 

this blank space tells T]E)X that the constant is complete, and such a space will never “get 

through” to the output. In fact, when you don’t have a blank space after a constant, 

T^X actually has to do more work, because each constant continues until a non-digit 

has been read; if this non-digit is not a space, T^]X takes the token you did have and 

backs it up, ready to be read again. (On the other hand, the author often omits the 

space when a constant is immediately followed by some other character, because extra 

spaces do look funny in the file; aesthetics are more important than efficiency.) 

^►EXERCISE 20.10 

^ Continuing the IRS example, assume that \fullypaid and \underpaid are 

defined as follows: 

\def\fullypaid{Your taxes are fully paid thank you.} 

\def\underpaid{{\countO=-\balajice 

\ifnumXcount0<100 

You owe \doliar amount, but you need not pay it, because 

our policy is to disregard amounts less them \$1.00. 

\else Please remit \dollaramount\ within ten days, 

or additional interest charges will be due.\fi}} 

Write a macro \overpaid to go with these, assuming that \dollaramount is a macro 

that generates the contents of \count0 in dollars and cents. Your macro should say 

that a check will be mailed under separate cover, unless the amount is less than $1.00, 

in which case the person must specifically request a check. 



Chapter 20: Definitions (also called Macros) 209 

EXERCISE 20.11 

Write a Xdollaramount macro, to complete the Internal Revenue \statement. 

Now let’s make a complete survey of T^^’s conditional commands. Some of 

them involve features that have not yet been introduced in this manual. 

■ \ifnum(numberi) (relation) (number2) (compare two integers) 

The (relation) must be either ‘<12’ or ‘=12’ or ‘>12’. The two integer numbers are 

compared to each other in the usual way, and the result is true or false accordingly. 

■ \ifdim(dimeni)(relation)(dimen2) (compare two dimensions) 

This is like \ifnuin, but it compares two (dimen) values. For example, to test whether 

the value of \hsize exceeds 100pt, you can say ‘\ifdiin\hsize>100pt’. 

■ \ifodd(number) (test for odd integer) 

The condition is true if the (number) is odd, false if it is even. 

■ Xifvmode (test for vertical mode) 

True if TgX is in vertical mode or internal vertical mode (see Chapter 13). 

■ Xifhmode (test for horizontal mode) 

True if T^X is in horizontal mode or restricted horizontal mode (see Chapter 13). 

■ Xifmmode (test for math mode) 

True if T^ is in math mode or display math mode (see Chapter 13). 

■ X if inner (test for an internal mode) 

True if is in internal vertical mode, or restricted horizontal mode, or (nondisplay) 

math mode (see Chapter 13). 

■ Xif (tokeni)(token2) (test if character codes agree) 

TgX will expand macros following Xif until two unexpandable tokens are found. If 

either token is a control sequence, considers it to have character code 256 and 

category code 16, unless the current equivalent of that control sequence has been Xlet 

equal to a non-active character token. In this way, each token specifies a (charac- 

ter code, category code) pair. The condition is true if the character codes are equal, 

independent of the category codes. For example, after XdefXaf*} and XletXb=* and 

XdefXcf/}, the tests ‘Xif*Xa’ and ‘XifXaXb’ will be true, but ‘XifXaXc’ will be false. 

Also ‘XifXaXpar’ will be false, but ‘XifXparXlet’ will be true. 

■ Xif cat(tokeni)(token2) (test if category codes agree) 

This is just like Xif, but it tests the category codes, not the character codes. Active 

characters have category 13, but you have to say ‘Xnoexpand(active character)’ in order 

to suppress expansion when you are looking at such characters with Xif or Xif cat. For 

example, after 

Xcatcode‘ [=13 Xcatcoden=13 Xdef[{*} 

the tests ‘Xif catXnoexpandEXnoexpand] ’ and ‘Xifcat[*’ will be true, but the test 
‘Xif catXnoexpajid[*’ will be false. 



210 Chapter 20: Definitions (also called Macros) 

■ \ifx(tokeni)(token2) (test if tokens agree) 

In this case, T^]X does not expand control sequences when it looks at the two tokens. 

The condition is true if (a) the two tokens are not macros, and they both represent the 

same (character code, category code) pair or the same primitive or the same \f ont 

or \chardef or \countdef, etc.; or if (b) the two tokens are macros, and they both 

have the same status with respect to \long and \outer, and they both have the same 

parameters and “top level” expansion. For example, after ‘\def\a{\c} \def\b{\d} 
\def\c{\e} \def\d{\e} \def\e{A}’, an \ifx test will find \c and \d equal, but not 

\a and \b, nor \d and \e, nor any other combinations of \a, \b, \c, \d, \e. 

■ \ifvoid(number), \ifhbox(number), \if vbox(number) (test a box register) 

The (number) should be between 0 and 255. The condition is true if that \box is void 

or contains an hbox or a vbox, respectively (see Chapter 15). 

■ \ifeof (number) (test for end of file) 

The (number) should be between 0 and 15. The condition is true unless the corre- 

sponding input stream is open and not fully read. (See the command \openin below.) 

■ \iftrue, \iffalse (always true or always false) 

These conditions have a predetermined outcome. But they turn out to be useful in 

spite of this, as explained below. 

Finally, there’s one more conditional construction, which is somewhat different 

from the rest because it is capable of making a many-way branch: 

■ \if case (number) (text for case 0)\or(text for case l)\or • • • 

\or(text for case n)\else(text for all other cases)\fi 

Here there are n + 1 cases separated by n \or’s, where n can be any nonnegative 

number. The (number) selects the text that will be used. Once again the \else part is 

optional, if you don’t want to specify any text for cases when the (number) is negative 

or greater than n. 

^►EXERCISE 20.12 

^ Design a \category macro that prints a character’s current category code 

symbolically, given a one-character control sequence for that character. For example, if 

the category codes of plain are in force, ‘\category\\’ should expand to ‘escape’, 

and ‘\category\a’ should expand to ‘letter’. 

EXERCISE 20.13 

JL ^ Test yourself on the following questions to see if you understand certain bor- 

derline situations: After the definitions ‘\def\a{} \def\b{**} \def\c{True}’, which 

of the following are true? (a) ‘\if\a\b’; (b) ‘\if cat\a\b’; (c) ‘\ifx\a\b’; (d) ‘\if\c’; 

(e) ‘\ifcat\c’; (f) ‘\ifx\ifx\ifx’. (g) ‘\if\ifx\a\b\c\else\if\a\b\c\fi\fi’. 

Notice that all of the control sequences for conditionals begin with \if. . ., 

^ and they all have a matching \fi. This convention—that \if. . . pairs up 

with \f i—makes it easier to see the nesting of conditionals within your program. The 

nesting of \if . . . \f i is independent of the nesting of {, . .thus, you can begin or end 

a group in the middle of a conditional, and you can begin or end a conditional in the 

middle of a group. Extensive experience with macros has shown that such independence 

is important in applications; but it can also lead to confusion if you aren’t careful. 



Chapter 20: Definitions (also ealled Maeros) 211 

It’s sometimes desirable to pass information from one macro to another, and 

there are several ways to do this: by passing it as an argument, by putting 
it into a register, or by defining a control sequence that contains the information. 

For example, the macros \hphcmtom, Xyphemtom, and Xphantom in Appendix B are 

quite similar, so the author wanted to do most of the work in another macro Xphauit 

that would be common to all three. Somehow \phaiit was to be told what kind of 

phantom was desired. The first approach was to define control sequences \hph and 

\vph something like this: 

\def\hphajitom{\ph YN} \def\vphcLntom{\ph NY} \defXphajitomfXph YY} 

XdefXph#l#2{XdefXhph{#l}XdefXvph{#2}Xphaiit} 

after which Xphant could test ‘Xif YXhph’ and ‘Xif YXvph’. This worked, but there were 

various ways to make it more efficient; for example, ‘XdefXhph{#l}’ could be replaced 

by ‘XletXhph=#l’, avoiding macro expansion. An even better idea then suggested itself: 

XdefXyesfXif00} XdefXnofXif01} 

Xdef XhphajitomfXphXyesXno} . . . Xdef XpheLntomfXphXyesXyes} 

XdefXph#l#2{XletXifhph=#lXletXifvph=#2Xphant} 

after which Xphamt could test ‘Xifhph’ and ‘Xifvph’. (This construction was tried 

before Xiftrue and Xiffalse were part of the T^]X language.) The idea worked fine, 

so the author started to use Xyes and Xno in a variety of other situations. But then 

one day a complex conditional failed, because it contained an Xifhph-like test inside 

another conditional: 

Xif... Xifhph...Xfi ... Xelse ... Xfi 

Do you see the problem that developed? When the (true text) of the outermost con- 

ditional was executed, everything worked fine, because Xifhph was either Xyes or Xno 

and it expanded into either XifOO or XifOl. But when the (true text) was skipped, the 

Xifhph was not expanded, so the first Xfi was mistakenly paired with the first Xif; 

everything soon went haywire. That’s when Xiftrue and Xiffalse were put into the 

language, in place of Xyes and Xno; now Xifhph is either Xiftrue or Xiffalse, so 

will match it properly with a closing Xfi, whether or not it is being skipped over. 

To facilitate Xif. . . constructions, plain has a Xnewif macro, such that 

JL. after you say ‘XnewifXifabc’ three control sequences will be defined: Xifabc 
(for testing the switch), Xabctrue (for making the switch true), and Xabcfalse (for 

making it false). The Xphantom problem is now solved in Appendix B by writing 

XnewifXifhph XnewifXifvph 

Xdef Xhphant om{Xhpht rue X vphf als e Xpheuit} 

and with similar definitions of Xvphantom and Xphantom. There is no longer any need 

for a Xph macro; again Xphant tests Xifhph and Xifvph. Appendix E contains other 

examples of conditionals created by Xnewif. New conditionals are initially false. 

Caution: Don’t say anything like ‘XletXifabc=Xiftrue’ in conditional text. 

JL If skips over this command, it will think that both Xifabc and Xiftrue 

require a matching Xfi, since the Xlet is not being executed! Keep such commands 

buried inside macros, so that T^]X will see the ‘Xif. . .’ only when it is not skipping 

over the text that it is reading. 



212 Chapter 20: Definitions (also called Macros) 

TgX has 256 “token list registers” called \toksO through \toks255, so that 

^ token lists can easily be shuffled around without passing them through I^’s 

reading apparatus. There’s also a \toksdef instruction so that, e.g., 

\toksdef\catch=22 

makes \catch equivalent to \toks22. Plain provides a \newtoks macro that 

allocates a new token list register; it is analogous to \newcount. Token list registers 

behave like the token list parameters \everypar, \everyhbox, \output, \errhelp, etc. 

To assign a new value to a token list parameter or register, you say either 

(token variable)={(replacement text)} 

or (token variable)=(token variable) 

where (token variable) means either a token list parameter or a control sequence defined 

by \toksdef or \newtoks, or an explicit register designation ‘\toks(number)’. 

Everyone who makes extensive use of a powerful macro facility encounters 

situations when the macros do surprising things. We have already mentioned 

the possibility of setting \tracingmacros=l, in order to see when TgX expands macros 

and what arguments it finds. There’s also another helpful way to watch what T^]X is 

doing; If you set \tracingcoinniaiids=l, will show every command that it executes, 

as we saw in Chapter 13. Furthermore, if you set \tracingcoinmaiids=2, T^]X will show 

all conditional commands and their outcomes, as well as the unconditional commands 

that are actually performed or expanded. This diagnostic information goes into your log 

file. You can also see it on your terminal, if you say \tracingonline=l. (Incidentally, 

if you make \tracingcoininaiids greater than 2, you get the same information as when 

it equals 2.) Similarly, \tracingmacros=2 will trace \output, \everypar, etc. 

One way to understand the occasional strangeness of macro operation is to 

use the tracing features just described, so that you can watch what does 
in slow motion. Another way is to learn the rules for how macros are expanded; we 

shall now discuss those rules. 

TgX’s mastication process converts your input to a long token list, as explained 
in Chapter 8; and its digestive processes work strictly on this token list. When 

TgX encounters a control sequence in the token list, it looks up the current meaning, 

and in certain cases it will expand that token into a sequence of other tokens before 

continuing to read. The expansion process applies to macros and to certain other 

special primitives like \number and \if that we shall consider momentarily. Sometimes, 

however, the expansion is not carried out; for example, when is taking care of a 

\def, the (control sequence), the (parameter text), and the (replacement text) of that 

\def are not subject to expansion. Similarly, the two tokens after \ifx are never 

expanded. A complete list of occasions when tokens are not expanded appears later in 

this chapter; you can use it for reference in an emergency. 

Now let’s consider the control sequences that are expanded whenever expan- 

sion has not been inhibited. Such control sequences fall into several classes: 

■ Macros. When a macro is expanded, TgX first determines its arguments (if 

any), as explained earlier in this chapter. Each argument is a token list; the tokens 

are not expanded when they are being accepted as arguments. Then replaces the 

macro and its arguments by the replacement text. 



Chapter 20: Definitions (also called Macros) 213 

■ Conditionals. When an \if. . , is expanded, TgX reads ahead as far as nec- 
essary to determine whether the condition is true or false; and if false, it skips ahead 

(keeping track of \if. . Afi nesting) until finding the \else, \or, or \fi that ends 

the skipped text. Similarly, when \else, \or, or \fi is expanded, reads to the 

end of any text that ought to be skipped. The “expansion” of a conditional is empty. 

(Conditionals always reduce the number of tokens that are seen by later stages of the 

digestive process, while macros usually increase the number of tokens.) 

■ \nuinber(number). When TgX expands \number, it reads the (number) that 

follows (expanding tokens as it goes); the final expansion consists of the decimal rep- 

resentation of that number, preceded by if negative. 

■ \romajmumeral(number). This is like \number, but the expansion consists of 

lowercase roman numerals. For example, Aromaimumeral 1984’ produces ‘mcmlxxxiv’. 

The expansion is empty if the number is zero or negative. 

■ \string(token}. first reads the (token) without expansion. If a control 

sequence token appears, its \string expansion consists of the control sequence name 

(including \escapechar as an escape character, if the control sequence isn’t simply an 

active character). Otherwise the (token) is a character token, and its character code is 

retained as the expanded result. 

■ \jobname. The expansion is the name that has chosen for this job. For 

example, if T^X is putting its output on files paper.dvi and paper.log, then \jobname 

expands to ‘paper’. 

■ \font name (font). The expansion is the external file name corresponding to the 

given font; e.g., ‘\f ontname\tenrm’ might expand to ‘cmrlO’ (five tokens). If the font is 

not being used at its design size, the “at size” also appears in the expansion. A (font) 

is either an identifier defined by \font; or \textfont(number), \scriptfont(number), 

or \scriptscriptfont(number); or \font, which denotes the current font. 

■ \meaiiing(token). TgX expands this to the sequence of characters that would 

be displayed on your terminal by the commands ‘\let\test=(token) \show\test’. 

For example, ‘\meaning A’ usually expands to ‘the letter A’; ‘\meaiiing\A’ after 

‘\def\A#1B{\C}’ expands to ‘macro:#1B->\C ’. 

■ \csname. . .\endcsname. When expands \csname it reads to the matching 

\endcsname, expanding tokens as it goes; only character tokens should remain after this 

expansion has taken place. Then the “expansion” of the entire \csnaane. . .\endcsname 

text will be a single control sequence token, defined to be like \relax if it has not 

previously occurred. 

■ \expajidaf ter (token). T^]X first reads the token that comes immediately after 

Xexpandafter, without expanding it; let’s call this token t. Then reads the token 

that comes after t (and possibly more tokens, if that token has an argument), replacing 

it by its expansion. Finally puts t back in front of that expansion. 

■ \noexpaiid(token). The expansion is the token itself; but that token is inter- 

preted as if its meaning were ‘\relax’ if it is a control sequence that would ordinarily 

be expanded by T^]X’s expansion rules. 

■ Xtopmeirk, \f irstmaxk, \botmark, \splitf irstmark, and \splitbotmark. The 

expansion is the token list in the corresponding “mark” register (see Chapter 23). 



214 Chapter 20: Definitions (also ealled Maeros) 

■ \ input (file name). The expansion is null; but prepares to read from the 

specified file before looking at any more tokens from its current source. 

■ \endinput. The expansion is null. The next time gets to the end of an 

\input line, it will stop reading from the file containing that line. 

■ \the(internal quantity). The expansion is a list of tokens representing the 

current value of one of T]E^’S variables, as explained below. For example, ‘\the\skip5’ 

might expand into ‘5.Opt plus 2.0fil’ (17 tokens). 

The powerful \the operation has many subcases, so we shall discuss them one 

i at a time. A variety of internal numeric quantities can be brought up front: 

■ \ the (parameter), where (parameter) is the name of one of T^^’s integer pa- 

rameters (e.g., \the\widowpenalty), dimension parameters (e.g., \the\paxindent), 

glue parameters (e.g., \the\leftskip), or muglue parameters (e.g., \the\thiimiuskip). 

■ \the(register), where (register) is the name of one of T^]X’s integer registers 

(e.g., \the\count 0), dimension registers (e.g., \the\dimenl69), glue registers (e.g., 

\the\skip255), or muglue registers (e.g., \the\muskip\count2). 

■ \the(codename)(7-bit number), where (codename) stands for either \catcode, 

\mathcode, \lccode, \uccode, \sfcode, or \delcode. For example, \the\mathcode V 

produces the current (integer) math code value for a slash. 

■ \the(special register), where (special register) is one of the integer quantities 

\prevgraf, \deadcycles, \insertpenalties, or \parshape (denoting only the number 

of lines of \parshape); or one of the dimensions \pagegoal, \pagetotal, \pagestretch, 

\pagefilstretch, \pagefillstretch, \pagefilllstretch, \pageshrink, \pagedepth. 

In horizontal modes you can also get a special integer, \the\spacefactor; in vertical 

modes you can also get a special dimension, \the\prevdepth. 

■ \the\fontdimen(parameter number)(font). This produces a dimension; for 

example, parameter 6 of a font is its “em” value, so ‘\the\f ontdimen6\tenrm’ yields 

TO.Opt’ (six tokens). 

■ \the\hyphenchar(font), \the\skewchar(font). These produce the correspond- 

ing integer values defined for the specified font. 

■ \the\lastpenalty, \the\lastkern, \the\lastskip. These yield the amount 

of penalty, kerning, glue, or muglue in the final item on the current list, provided that 

the item is a penalty, kern, or glue, respectively; otherwise they yield ‘0’ or ‘O.Opt’. 

■ \the(defined character), where (defined character) is a control sequence that 

has been given an integer value with \chardef or \mathchardef; the result is that 

integer value, in decimal notation. 

f/^ In all of the cases listed so far, \the produces a result that is a sequence of 

X ASCII character tokens. Category code 12 (“other”) is assigned to each token, 

except that character code 32 gets category 10 (“space”). The same rule is used to 
assign category codes to the tokens produced by \number, Xromajuiumeral, \string, 

Xmeaning, Xjobname, and Xfontname. 

There also are cases in which \the produces non-character tokens, either a 

JL font identifier like \tenrm, or an arbitrary token list: 

■ \the(font) produces a font identifier that selects the specified font. For exam- 

ple, ‘\the\font’ is a control sequence corresponding to the current font. 



Chapter 20: Definitions (also ealled Maeros) 215 

■ \the (token variable) produces a copy of the token list that is the current value 

of the variable. For example, you can expand ‘\the\everypar’ and ‘\the\toks5’. 

f/^ TgX’s primitive command ‘\showthe’ will display on your terminal exactly 

JL what ‘\the’ would produce in an expanded definition; the expansion is pre- 

ceded by ‘> ’ and followed by a period. For example, ‘\showthe\parindent’ will display 

> 20.Opt. 

if the plain paragraph indentation is being used. 

Here now is the promised list of all cases when expandable tokens are not ex- 

panded. Some of the situations involve primitives that haven’t been discussed 

we’ll get to them eventually. Expansion is suppressed at the following times: 

When tokens are being deleted during error recovery (see Chapter 6). 

When tokens are being skipped because conditional text is being ignored. 

When TgX is reading the arguments of a macro. 

When T^]X is reading a control sequence to be defined by Met, \futurelet, 

\def, \gdef, \edef, \xdef, \chaj:def, \mathchardef, \coiintdef, \dimendef, 

\skipdef, \muskipdef, \toksdef, \read, and \font. 

When is reading argument tokens for Xexpaindafter, Nnoexpeind, \string, 

\mesLning, Met, \futurelet, \ifx, \show, \afterassignment, \aftergroup. 

When T^]X is absorbing the parameter text of a \def, \gdef, \edef, or \xdef. 

When TgX is absorbing the replacement text of a \def or \gdef or \read; 

or the text of a token variable like \everypar or \toks0; or the token list 

for \uppercase or \lowercase or \write. (The token list for \write will be 

expanded later, when it is actually output to a file.) 

When TgX is reading the preamble of an alignment, except after a token for 

the primitive command \spaji or when reading the (glue) after \tabskip. 

Just after a $3 token that begins math mode, to see if another $3 follows. 

Just after a ^ 12 token that begins an alphabetic constant. 

Sometimes you will find yourself wanting to define new macros whose replace- 

ment text has been expanded, based on current conditions, instead of simply 

copying the replacement text verbatim. T^]X provides the \edef (expanded definition) 

command for this purpose, and also \xdef (which is equivalent to \global\edef). The 

general format is the same as for \def and \gdef, but blindly expands the tokens 

of the replacement text according to the expansion rules above. For example, consider 

\def\double#l{#l#l} 

\edef\a{\double{xy}} \edef\a{\double\a} 

Here the first \edef is equivalent to ‘\def\a{xyxy}’ and the second is equivalent to 

‘\def \a{xyxyxyxy}’. All of the other kinds of expansion will take place too, including 

conditionals; for example, 

\edef \b#l#2{Mfinmode#l\else#2\f i} 

gives a result equivalent to ‘\def \b#l#2{#l}’ if T^]X is in math mode at the time of 

the \edef, otherwise the result is equivalent to ‘\def \b#l#2{#2}’. 

yet, but 



216 Chapter 20: Definitions (aka Macros) 

Expanded definitions that are made with \edef or \xdef continue to expand 
n tokens until only unexpandable tokens remain, except that token lists pro- 

duced by ‘\the’ are not expanded further. Furthermore a token following ‘Xnoexpand’ 
will not be expanded, since its ability to expand has been nullified. These two opera- 

tions can be used to control what gets expanded and what doesn’t. 

Suppose, for example, that you want to define \a to be equal to \b (expanded) 

X followed by \c (not expanded) followed by \d (expanded), assuming that \b 
and \d are simple macros without parameters. There are two easy ways to do it: 

\edef \a{\b\noexpaiid\c\d} 
\toksO={\c} \edef\a{\b\the\toksO \d} 

And it’s even possible to achieve the same effect without using either Xnoexpand or Xthe; 
a reader who wants to learn more about T^]X’s expansion mechanism is encouraged to 

try the next three exercises. 

^►EXERCISE 20.14 

^ Figure out a way to define Xa as in the previous paragraph, without using 

TgX’s primitives ‘Xnoexpand’ and ‘Xthe’. 

/^►EXERCISE 20.15 

5. Continuing the example of expansion avoidance, suppose that you want to 

expand Xb completely until only unexpandable tokens are left, but you don’t want 

to expand Xc at all, and you want to expand Xd only one level. For example, after 

XdefXbfXcXc} and XdefXcf*} and XdefXdfXbXc} the goal would be to get the effect of 

XdefXa{**XcXbXc}. How can such a partial expansion be achieved, using Xthe? 

EXERCISE 20.16 

X JL Solve the previous exercise without Xthe or Xnoexpand. (This is difficult.) 

TgX’s primitive commands Xmarkf. . .}, Xmessagef. . .}, Xerrmessagef. . .}, 
^ ^ Xspecialf. . .}, and Xwrite(number)!. . .} all expand the token lists in braces 

almost exactly as Xedef and Xxdef do. However, a macro parameter character like # 

should not be duplicated in such commands; you need to say ## within an Xedef, but 

only # within a Xmark. The Xwrite command is somewhat special, because its token 

list is first read without expansion; expansion occurs later, when the tokens are actually 
being written to a file. 

EXERCISE 20.17 

X ^ Compare the following two definitions: 

XdefXa{Xiftrue{Xelse}Xfi} 

XedefXb{Xiftrue!XelsefXfi} 

Which of them yields an unmatched left brace? (This is tricky.) 

TgX has the ability to read individual lines of text from up to 16 files at once, 

JL in addition to the files that are being Xinput. To initiate reading such an 

auxiliary file, you should say 

Xopenin(number) = (file name) 

where the (number) is between 0 and 15. (Plain allocates input stream numbers 

0 through 15 with the Xnewread command, which is analogous to Xnewbox.) In most 



Chapter 20: Definitions (also called Macros) 217 

installations of the extension ‘.tex’ will be appended to the file name, as with 

\input, if no extension is given explicitly. If the file cannot be found, will give no 

error message; it will simply consider that the input stream is not open, and you can 

test this condition with \ifeof. When you’re done with a file, you can say 

\ close in(number) 

and the file associated with that input stream number will be closed, i.e., returned to 

its initial condition, if such a file was open. To get input from an open file, you say 

\read(number)to(control sequence) 

and the control sequence is defined to be a parameterless macro whose replacement 

text is the contents of the next line read from the designated file. This line is converted 

to a token list, using the procedure of Chapter 8, based on the current category codes. 

Additional lines are read, if necessary, until an equal number of left and right braces 

has been found. An empty line is implicitly appended to the end of a file that is being 

\read. If the (number) is not between 0 and 15, or if no such hie is open, or if the 

hie has ended, input will be from the terminal; will prompt the user unless the 

(number) is negative. The macro dehnition will be local unless you say \global\read. 

For example, it’s easy to have dialogs with the user, by using \read together 

jiL with the \message command (which writes an expanded token list on the 

terminal and in the log hie): 

\message{Please type your name:} 

\readl6 to\myname 

\message{Hello, \myname!} 

The \read command in this case will print ‘\myname=’ and it will wait for a response; 

the response will be echoed on the log hie. The ‘\myname=’ would have been omitted if 

‘\readl6’ had been ‘\read-l’. 

/^►EXERCISE 20.18 

^ The \myname example just given doesn’t work quite right, because the (return) 

at the end of the line gets translated into a space. Figure out how to hx that glitch. 

/^►EXERCISE 20.19 

Continuing the previous example, dehne a macro \MYNAME that contains the 

letters of \myname all in uppercase letters. For example, if \myncane expands to Arthur, 

\MYNAME should expand to ARTHUR. Assume that \myname contains only letters and 

spaces in its expansion. 

Appendices B, D, and E contain numerous examples of how to make macros 

JL do useful things. Let’s close this chapter by presenting a few examples that 
show how TgX can actually be used as a primitive programming language, if you want 

to achieve special effects, and if you don’t care very much about computer costs. 

Plain TgX contains a \loop. . .\repeat construction, which works like this; 

JL You say ‘\loop a \if. . . /3 \repeat’, where a and (3 are any sequences of 

commands, and where \if. . . is any conditional test (without a matching \fi). 

will first do then if the condition is true, will do (3 and repeat the whole process 

again starting with a. If the condition ever turns out to be false, the loop will stop. 



218 Chapter 20: Definitions (also called Macros) 

For example, here is a program that carries out a little dialog in which T^]X waits for 
the user to type ‘Yes’ or ‘No’: 

\def\yes{Yes } \def\no{No } \newif\ifgarbage 

\loop\message{Are you happy? } 

\read-l to\answer 

\ifx\Euiswer\yes\garbagefalse */, the answer is Yes 

\else\ifx\2uiswer\no\gaxbagefalse */, the answer is No 

\else\gaxbagetrue\fi\fi */, the answer is garbage 

\ifgarbage\message{(Please type Yes or No.)} 

\repeat 

EXERCISE 20.20 

Use the \loop. . .\repeat mechanism to construct a general \punishment 

macro that repeats any given paragraph any given number of times. For example, 

Xpunishmentfl must not talk in class.}{100} 

should produce the results desired in exercise 20.1. 

The first thirty prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 
41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, and 113. 

You may not find this fact very startling; but you may be surprised to learn that the 
previous sentence was typeset by saying 

The first thirty prime numbers axe \primes{30}. 

did all of the calculation by expanding the \primes macro, so the author is pretty 
sure that the list of prime numbers given above is quite free of typographic errors. Here 
is the set of macros that did it: 

\newif\ifprime \newif\ifunknown */, boolean variables 

\newcount\n \newcount\p \newcount\d \newcount\a */, integer variables 

\def \primes#l{2, "3*/, assume that #1 is at least 3 

\n=#l \advcLnce\n by-2 7, n more to go 

\p=5 7, odd primes starting with p 

\loop\ifnum\n>0 \printifprime\adveLnce\p by2 \repeat} 

\def\printp{, 7. we will invoke \printp if p is prime 

\ifnum\n=l amd'Xfi % ‘and’ precedes the last value 

\number\p \adv2Lnce\n by -1 } 

\def\printifprime{\testprimality \ifprime\printp\fi} 

\def\testprimality{{\d=3 \global\primetrue 

\loop\trialdivision \ifunknown\advcLnce\d by2 \repeat}} 

\def\trialdivision{\a=\p \divide\a by\d 

\ifnum\a>\d \unknowntrue\else\unknownfalse\fi 

\multiply\a by\d 

\ifnum\a=\p \global\primefalse\unknownfalse\fi} 

The computation is fairly straightforward, except that it involves a loop inside a loop; 
therefore \testprimality introduces an extra set of braces, to keep the inner loop 
control from interfering with the outer loop. The braces make it necessary to say 
‘\global’ when \ifprime is being set true or false. spent more time constructing 



Chapter 20: Definitions (also called Macros) 219 

that sentence than it usually spends on an entire page; the \trialdivision macro was 

expanded 132 times. 

The \loop macro that does all these wonderful things is actually quite simple. 

It puts the code that’s supposed to be repeated into a control sequence called 

\body, and then another control sequence iterates until the condition is false: 

\def\loop#l\repeat{\def\body{#l}\iterate} 

\def\iterate{\body\let\next=\iterate\else\let\next=\relax\fi\next} 

The expansion of \iterate ends with the expansion of \next; therefore T^]X is able 

to remove \iterate from its memory before invoking \next, and the memory does not 

fill up during a long loop. Computer scientists call this “tail recursion.” 

The \hex macro below, which converts count register \n to hexadecimal no- 

JL JL tation, illustrates a recursive control structure in which many copies of \hex 

can be active simultaneously. Recursion works better than simple \loop iteration in 

this application because the hexadecimal digits are discovered from right to left, while 

they must be output from left to right. (The number in \n should be > 0.) 

\def\hex{{\countO=\n \divide\n byl6 

\ifnuni\n>0 \hex\fi \count2=\n \multiply\count2 by-16 

XadvanceXcount0 by\count2 \hexdigit}} 

\def\h8xdigit{\ifnuin\count0<10 \number\countO 

\else\advance\countO by-10 \advance\countO by‘A \char\countO \fi} 

Our final example is a macro that computes the number of nonblank tokens 

in its argument; for example, ‘\length{argument}’ expands to ‘8’. This illus- 

trates yet another aspect of macro technique. 

\def\length#l{{\count0=0 \getlength#l\end \number\countO}} 
\def\getlength#!{\ifx#l\end \let\next=\relax 

\else\advance\countO byl \let\next=\getlength\fi \next} 

By this time [37 A.D.] the influence of Macro had become supreme. 

— TACITUS, Annals (c. 120 A.D.) 

/ hate definitions. 

BENJAMIN DISRAELI, Vivian Grey (1826) 





Chapter 21: Making Boxes 221 

In Chapters 11 and 12 we discussed the principles of boxes and glue, and by 
now we have seen many applications of those concepts. You can get by in most 
cases with the boxes that manufactures automatically with its paragraph 
builder, its page builder, and its math formula processor; but if you want to do 
nonstandard things, you have the option of making boxes by yourself. For exam- 
ple, Chapter 14 points out that you can keep something from being hyphenated 
or split between lines if you enclose it in an \hbox; Chapter 19 points out that 
\hbox allows you to get ordinary text into a displayed equation. 

The purpose of the present chapter is to nail down whatever details about 

boxes haven’t been covered yet. Fortunately, there isn’t much more to discuss; 

we have already mentioned most of the rules, so this chapter is fairly short. In fact, 

the previous chapters have dealt with almost everything except the rules about rules. 

To make a rule box (i.e., a solid black rectangle), you type ‘\hrule’ in vertical 

mode or ‘\vrule’ in horizontal mode, followed by any or all of the specifications 

‘width(dimen)’, ‘height(dimen)’, ‘depth(dimen)’, in any order. For example, if 

\vrule height4pt widthSpt depth2pt 

appears in the middle of a paragraph, will typeset the black box ‘ If you specify 

a dimension twice, the second specification overrules the first. If you leave a dimension 

unspecified, you get the following by default; 

\hrule \vrule 

width ★ 0.4 pt 

height 0.4 pt ♦ 
depth 0.0 pt ♦ 

Here means that the actual dimension depends on the context; the rule will extend 

to the boundary of the smallest box or alignment that encloses it. 

For example, the author typed ‘\hrule’ just before typing this paragraph, 

and you can see what happened: A horizontal rule, 0.4 pt thick, was extended 

across the page, because the vertical box that encloses it turned out to be just that 

wide. (In fact, the vertical box that encloses it is the page itself.) Another example 

appears immediately after this paragraph, where you can see the result of 

\hrule widthScm heightIpt \vskiplpt \hrule widthficm 

TgX does not put interline glue between rule boxes and their neighbors in a vertical 

list, so these two rules are exactly 1 pt apart. 

► EXERCISE 21.1 

B. L. User didn’t want one of his horizontal rules to touch the left margin, so 

he put it in a box and moved it right, like this: 

\moveright lin \vbox{\hrule widthSin} 

But he found that this produced more space above and below the rule than when he 

had simply said ‘\hrule width 4in’ with no \vbox. Why did insert more space, 

and what should he have done to avoid it? 



222 Chapter 21: Making Boxes 

If you specify all three dimensions of a rule, there’s no essential difference 

between \hrule and \vrule, since both will produce exactly the same black 

box. But you must call it an \hrule if you want to put it in a vertical list, and you 

must call it a \vrule if you want to put it in a horizontal list, regardless of whether it 

actually looks like a horizontal rule or a vertical rule or neither. If you say \vrule in 

vertical mode, T^)K starts a new paragraph; if you say \hrule in horizontal mode, 

stops the current paragraph and returns to vertical mode. 

The dimensions of a rule can be negative; for example, here’s a rule whose 

height is 3pt and whose depth is —2pt: ‘ ’. However, a rule 

is invisible unless its height plus depth is positive and its width is positive. A rule 

whose width is negative cannot be seen, but it acts like a backspace when it appears 

in a horizontal list. 

► EXERCISE 21.2 

Explain how the author probably obtained the rule ‘ 

previous paragraph. [Hint: It’s one inch long.] 

’ in the 

Now let’s summarize all of the ways there are to specify boxes explicitly to 

TgX. (1) A character by itself makes a character box, in horizontal mode; 

this character is taken from the current font. (2) The commands \hrule and \vrule 

make rule boxes, as just explained. (3) Otherwise you can make hboxes and vboxes, 

which fall under the generic term (box). A (box) has one of the following seven forms: 

\hbox(box specification){(horizontal material)} 

\vbox(box specification){(vertical material)} 

\vtop(box specification){(vertical material)} 

\box(register number) 

\copy(register number) 

\vsplit(register number)to(dimen) 

\lastbox 

(see Chapter 12) 

(see Chapter 12) 

(see Chapter 12) 

(see Chapter 15) 

(see Chapter 15) 

(see Chapter 15) 

(see Chapter 21) 

Here a (box specification) is either ‘to(dimen)’ or ‘spread(dimen)’ or empty; this gov- 

erns the setting of glue in the horizontal or vertical lists inside the box, as explained 

in Chapter 12. A (register number) is between 0 and 255; after you say \box, that 

register becomes void, but after \copy the register is unchanged, as explained in Chap- 

ter 15. The \vsplit operation is also explained in Chapter 15. In math modes an 

additional type of box is available: \vcenter(box specification){(vertical material)} 

(see Chapter 17). 

The bottom line of the table above refers to \lastbox, a primitive operation 

^ that hasn’t been mentioned before. If the last item on the current horizontal 

list or vertical list is an hbox or vbox, it is removed from the list and it becomes the 

\lastbox; otherwise \lastbox is void. This operation is allowed in internal vertical 

mode, horizontal mode, and restricted horizontal mode, but you cannot use it to take a 

box from the current page in vertical mode. In math modes, \lastbox is always void. 

At the beginning of a paragraph, ‘{\setboxO=\lastbox}’ removes the indentation box. 

The operation \unskip is something like \lastbox, except that it applies to 

glue instead of to boxes. If the last thing on the current list is a glue item (or 
leaders, as explained below), it is removed. You can’t remove glue from the current 



Chapter 21: Making Boxes 223 

page by using \unskip in vertical mode, but you can say ‘\vskip-\lastskip’, which 
has almost the same effect. 

Chapters 24 to 26 present summaries of all operations in all modes, 
^ and when those summaries mention a ‘(box)’ they mean one of the seven 

possibilities just listed. For example, you can say ‘\setbox(register number) = (box)’ in 
any mode, and you can say ‘\moveright(dimen)(box)’ in vertical modes. But you can’t 
say ‘\setbox(register number)=C’ or ‘\moveright(dimen)\hrule’; if you try either of 
these, TgX will complain that a (box) was supposed to be present. Characters and 
rules are so special, they aren’t regarded as (box)es. 

EXERCISE 21.3 

^ i Define a control sequence \boxit so that ‘\boxit{(box)}’ yields the given box 
surrounded by 3 points of space and by ruled lines on all four sides. 

For example, the sentence you are now reading was typeset as part of 
the displayed formula $$\boxit{\boxit{\box4}}$$, where box 4 was 
created by typing ‘\setbox4=\vbox{\hsize 23pc \noindent \strut 

For example, the sentence you are now reading ... \strut}’. 

Let’s look also at what can go inside a box. An hbox contains a horizontal 
list; a vbox contains a vertical list. Both kinds of lists are made up primarily 

of things like boxes, glue, kerns, and penalties, as we have seen in Chapters 14 and 15. 
But you can also include some special things that we haven’t discussed yet, namely 
“leaders” and “whatsits.” Our goal in the rest of this chapter will be to study how to 
make use of such exotic items. 

The dots you see before your eyes here are called leaders 
because they lead your eyes across the page; such things are often used in 

indexes or tables of contents. The general idea is to repeat a box as many times as 
necessary to fill up some given space. treats leaders as a special case of glue; 
no, wait, it’s the other way around: treats glue as a special case of leaders. 
Ordinary glue fills space with nothing, while leaders fill space with any desired thing. 
In horizontal mode you can say 

\leaders(box or rule)\hskip(glue) 

and the effect will be the same as if you had said just ‘\hskip(glue)’, except that the 
space will be occupied by copies of the specified (box or rule). The glue stretches or 
shrinks in the usual way. For example, 

\def\leaderfill{\leaders\hbox to lem{\hss.\hss}\hfill} 

\line{Alpha\leaderfill Omega} 

MinefThe Beginning\leaderfill The Ending} 

will produce the following two lines: 

Alpha  
The Beginning  

. . Omega 
The Ending 

Here ‘\hbox to lem{\hss. \hss}’ specifies a box one em wide, with a period in its 
center; the control sequence \leaderfill then causes this box to be replicated when 



224 Chapter 21: Making Boxes 

filling space in the Mine box. (Plain I^’s Mine macro makes an hbox whose width 
is the \hsize.) 

Notice that the dots in the two example lines appear exactly above each other. 
This is not a coincidence; it’s a consequence of the fact that the Meaders 

operation acts something like a window that lets you see part of an infinite row of 
boxes. If the words ‘Alpha’ and ‘Omega’ are replaced by longer words, the number of 
dots might be different but the ones that you see will be in the same places as before. 
The infinitely replicated boxes are lined up so that they touch each other, and so that, 
if you could see them all, one of them would have the same reference point as the 
smallest enclosing box. Thus, Meaders will put a box flush with the left edge of an 
enclosing box, if you start the leaders there; but you won’t get a box flush right unless 
the width of the enclosing box is exactly divisible by the width of the repeated box. 
If the repeated box has width re, and if the space to be filled is at least 2w, then you 
will always see at least one copy of the box; but if the space is less than 2w the box 
may not appear, because boxes in the infinite row are typeset only when their entire 
width falls into the available space. 

When leaders are isolated from each other, you might not want them to be 
aligned as just described, so also provides for nonaligned leaders. In this 

case a box of width w will be copied q times when the space to be filled is at least qw 
and less than (g + l)w] furthermore, the results will be centered in the available space. 
There are two kinds of nonaligned leaders in T^]X, namely \cleaders (centered leaders) 
and \xleaders (expanded leaders). Centered leaders pack the boxes tightly next to 
each other leaving equal amounts of blank space at the left and right; expanded leaders 
distribute the extra space equally between the q 1 positions adjacent to the q boxes. 
For example, let’s suppose that a lOpt-wide box is being used in leaders that are 
supposed to fill 56 pt of space. Five copies of the box will be used; \cleaders will 
produce 3pt of space, then the five boxes, then another 3pt of space. But \xleaders 
will produce 1 pt of space, then the first box, then another I pt of space, then the second 
box, ..., then the fifth box, and 1 pt of space. 

EXERCISE 21.4 
Suppose that a lOpt-wide box is to fill 38 pt of space starting 91 pt from the 

left of its enclosing box. How many copies of the box will be produced by Meaders, 
\cleaders, and \xleaders? Where will the boxes be positioned, relative to the left 
edge of the enclosing box, in each of the three cases? 

EXERCISE 21.5 
Assuming that the ‘. ’ in the Meaderfill macro on the previous page is only 

0.2 em wide, there is 0.4 em of blank space at both sides of the one-em box. Therefore 
the Meaders construction will leave between 0.4 em and 1.4 em of blank space between 
the periods and the text at either end. Redefine \leaderfill so that the amount of 
blank space at either end will be between 0.1 em and 1.1 em, but the leaders on adjacent 
lines will still be aligned with each other. 

Instead of giving a (box) in the leaders construction, you can give a (rule), 
which means either \hrule or \vrule, followed by optional height, width, 

and depth specifications as usual. The rule will then be made as wide as the corre- 
sponding (glue). This is a case where \hrule makes sense in horizontal mode, because 



Chapter 21: Making Boxes 225 

it gives a horizontal rule in text. For example, if the \leaderf ill macro in our earlier 

illustration is changed to 

\def\leaderfill{ \leaders\hrule\hfill\ } 

then the results look like this: 

Alpha  

The Beginning 
 Omega 

The Ending 

When a rule is used instead of a box, it fills the space completely, so there’s no difference 

between \leaders, \cleaders, and \xleaders. 

^►EXERCISE 21.6 

What does \leaders\vrule\hf ill produce? 

Leaders work in vertical mode as well as in horizontal mode. In this case 

vertical glue (e.g., \vskip(glue) or \vfill) is used instead of horizontal glue, 

and \leaders produces boxes that are aligned so that the top of each repeated box 

has the same vertical position as the top of the smallest enclosing box, plus a multiple 

of the height-plus-depth of the repeated box. No interlineskip glue is placed between 

boxes in vertical leaders; the boxes are just stacked right on top of each other. 

If you specify horizontal leaders with a box whose width isn’t positive, or if 

you specify vertical leaders with a box whose height-plus-depth isn’t positive, 

TgX silently ignores the leaders and produces ordinary glue instead. 

/^►EXERCISE 21.7 

^ Explain how you can end a paragraph with a rule that is at least 10 pt long 

and extends all the way to the right margin, like this:   

Horizontal leaders differ slightly from horizontal glue, because they have height 

and depth when calculates the size of the enclosing box (even though the 
number of replications might be zero). Similarly, vertical leaders have width. 

EXERCISE 21.8 

Demonstrate how to produce the following ‘T^^Xture’ 

by using vertical leaders inside of horizontal leaders. (The logo has been put into 

a rectangular box, and copies of this box have been packed together tightly.) 

► EXERCISE 21.9 

Use vertical leaders to solve exercise 20.1. 

The \overbrace and \underbrace macros of plain are constructed by 
combining characters with rules. Font cmexlO contains four symbols 

each of which has depth zero and height equal to the thickness of a rule that joins them 

properly. Therefore it’s easy to define \upbracefill and \downbracefill macros so 

that you can obtain, e.g.. 



226 Chapter 21: Making Boxes 

by saying ‘\hbox to 100pt{\downbracefill}\hbox to 50pt{\upbracefill}’ in ver- 

tical mode. Details of those macro definitions appear in Appendix B. 

The definition of \overrightarrow in Appendix B is more complex than that 

of \overbrace, because it involves a box instead of a rule. The fonts of plain 

T^X are designed so that symbols like ^ and —> can be extended with minus signs; 
similarly, ■<= and ^ can be extended with equals signs. However, you can’t simply put 

the characters next to each other, because that leaves gaps  ’ and it is 
necessary to backspace a little between characters. An additional complication arises 

because the extension line in a long arrow might need to be some non-integer number 

of minus signs long. To solve this problem, the \rightarrowf ill macro in Appendix B 

uses \cleaders with a repeatable box consisting of the middle 10 units of a minus sign, 

where one unit is em. The leaders are preceded and followed by — and there’s 

enough backspacing to compensate for up to 5 units of extra space, fore and aft, that 
\cleaders might leave blank. In this way a macro is obtained such that 

\hbox to 100pt{\rightarrowfill} 

yields ‘  

fNow we know all about leaders. What about whatsits? Well, whatsits have 

been provided as a general mechanism by which important special printing 

applications can be handled as extensions to 1^^. It’s possible for system wizards to 

modify the program, without changing too much of the code, so that new features 
can be accommodated at high speed instead of encoding them in macros. The author 

hopes that such extensions will not be made very often, because he doesn’t want incom- 

patible pseudo-T^X systems to proliferate; yet he realizes that certain special books 

deserve a special treatment. Whatsits make it possible to incorporate new things into 

boxes without bending the existing conventions too much. But they make applications 

less portable from one machine to another. 

Two kinds of whatsits are defined as part of all T]gX implementations. They 

i aren’t really extensions to T^]X, but they are coded as if they were, so that 

they provide a model of how other extensions could be made. The first of these is con- 

nected with output to text files, and it involves the T^]X primitive commands \openout, 

\closeout, \write, and Ximmediate. The second is connected with special instructions 

that can be transmitted to printing devices, via T^’s \special command. 

fThe ability to write text files that can later be input by other programs (includ- 

ing TgX) makes it possible to take care of tables of contents, indexes, and many 

other things. You can say ‘\openout(number) = (file name)’ and ‘\closeout(number)’ 

by analogy with the \openin and \closein commands of Chapter 20; the (number) 

must be between 0 and 15. The filename is usually extended with ‘.tex’ if it has no 

extension. There is a \write command that writes one line to a file, analogous to the 

\read command that reads one line; you say 

\write(number){(token list)} 

and the material goes out to the file that corresponds to the given stream number. 

If the (number) is negative or greater than 15, or if the specified stream has no file 

open for output, the output goes to the user’s log file, and to the terminal unless the 



Chapter 21: Making Boxes 227 

number is negative. Plain TgX has a \newwrite command that allocates output stream 

numbers from 0 to 15. Output streams are completely independent of input streams. 

f/^ However, the output actually takes place in a delayed fashion; the \openout, 

^ \closeout, and \write commands that you give are not performed when T]gX 

sees them. Instead, puts these commands into whatsit items, and places them 

into the current horizontal or vertical or math list that is being built. No actual 

output will occur until this whatsit is eventually shipped out to the dvi file, as part 

of a larger box. The reason for this delay is that \write is often used to make an 

index or table of contents, and the exact page on which a particular item will appear 

is generally unknown when the \write instruction occurs in mid-paragraph. is 

usually working ahead, reading an entire paragraph before breaking it into lines, and 

accumulating more than enough lines to fill a page before deciding what goes on the 

page, as explained in Chapters 14 and 15. Therefore a deferred writing mechanism is 

the only safe way to ensure the validity of page number references. 

The (token list) of a \write command is first stored in a whatsit without per- 

forming any macro expansion; the macro expansion takes place later, when 

TgX is in the middle of a \shipout operation. For example, suppose that some para- 

graph in your document contains the text 

... For \write\inx{exainple: \the\countO}example, suppose ... 

Then the horizontal list for the paragraph will have a whatsit just before the word 

‘excunple’, and just after the interword space following ‘For’. This whatsit item con- 

tains the unexpanded token list ‘example: \the\countO’. It sits dormant while the 

paragraph is being broken into lines and put on the current page. Let’s suppose that 

this word ‘example’ (or some hyphenated initial part of it, like ‘ex-’) is shipped out on 

page 256. Then TgX will write the line 

example: 256 

on output stream \inx, because the ‘\the\countO’ will be expanded at that time. 

Of course, \write commands are usually generated by macros; they are rarely typed 
explicitly in mid-paragraph. 

TgX defers \openout and \closeout commands by putting them into whatsits 

too; thus, the relative order of output commands will be preserved, unless 

boxes are shipped out in some other order due to insertions or such things. 

Sometimes you don’t want T^ to defer a \write or \openout or \closeout. 
i You could say, e.g., ‘\shipout\hbox{\write. . .}’, but that would put an un- 

wanted empty page in your dvi file. So has another feature that gets around this 

problem: If you type ‘\immediate’ just before \write or \openout or \closeout, the 

operation will be performed immediately, and no whatsit will be made. For example. 

\immediate\writel6{Goodbye} 

prints ‘Goodbye’ on your terminal. Without the \immediate, you wouldn’t see the 
‘Goodbye’ until the current list was output. (In fact, you might never see it; or you 

may see it more than once, if the current list goes into a box that was copied.) An 

‘\inimediate\writel6’ differs from \message in that \write prints the text on a line 



228 Chapter 21: Making Boxes 

by itself; the results of several \message commands might appear on the same line, 

separated by spaces. 

The (token list) of a \write ought to be rather short, since it makes one line 

JL of output. Some implementations of are unable to write long lines; if you 

want to write a lot of stuff, just give several \write commands. Alternatively, you can 

set T^]X’s \newlinechar parameter to the ASCII code number of some character that 

you want to stand for “begin a new line”; then T^]X will begin a new line whenever it 

would ordinarily output that character to a file. For example, one way to output two 

lines to the terminal in a single \write command is to say 

\newlinechar= A" J 
\immediate\writel6{Two~~Jlines.} 

Each \write command produces output in the form that always uses to dis- 

play token lists symbolically: Characters represent themselves (except that you get 

duplicated characters like ## for macro parameter characters); unexpandable control 

sequence tokens produce their names, preceded by the \escapechar and followed by 

a space (unless the name is an active character or a control sequence formed from a 

single nonletter). 

Tg)X ignores \write, \openout, and \closeout whatsits that appear within 

boxes governed by leaders. If you are upset about this, you shouldn’t be. 

Since the (token list) of a deferred \write is expanded at a fairly random time 
(when \shipout occurs), you should be careful about what control sequences 

it is allowed to contain. The techniques of Chapter 20 for controlling macro expansion 

often come in handy with respect to \write. 

/^►EXERCISE 21.10 

Suppose that you want to \write a token list that involves a macro \chapno, 

containing the current chapter number, as well as ‘\the\count0’ which refers to the 

current page. You want \chapno to be expanded immediately, because it might change 

before the token list is written; but you want \the\count0 to be expanded at the time 

of \shipout. How can you manage this? 

Now let’s wrap up our study of boxes by considering one more feature. The 

command ‘\special{(token list)}’ can be given in any mode. Like \write, 

it puts its token list into a whatsit; and like \message, it expands the token list im- 

mediately. This token list will be output to the dvi file with the other typesetting 

commands that TgX produces. Therefore it is implicitly associated with a particular 

position on the page, namely the reference point that would have been present if a box 

of height, depth, and width zero had appeared in place of the whatsit. The (token list) 

in a \special command should consist of a keyword followed if necessary by a space 

and appropriate arguments. For example, 

\special{halftone picl} 

might mean that a picture on file picl should be inserted on the current page, with 

its reference point at the current position. doesn’t look at the token list to see 

if it makes any sense; the list is simply copied to the output. However, you should 

be careful not to make the list too long, or you might overflow Tg;X’s string memory. 



Chapter 21: Making Boxes 229 

The \special command enables you to make use of special equipment that might be 

available to you, e.g., for printing books in glorious T^]Xnicolor. 

/JK Software programs that convert dvi files to printed or displayed output should 

be able to fail gracefully when they don’t recognize your special keywords. 

Thus, \special operations should never do anything that changes the current position. 

Whenever you use \special, you are taking a chance that your output file will not be 

printable on all output devices, because all \special functions are extensions to T^]X. 

However, the author anticipates that certain standards for common graphic operations 

will emerge in the TgX user community, after careful experiments have been made by 

different groups of people; then there will be a chance for some uniformity in the use 

of \special extensions. 

If age or weaknes doe prohibyte bloudletting, 
you must use boxing. 

— PHILIP BARROUGH, The Methode of Phisicke (1583) 

The only thing that never looks right is a rule. 
There is not in existence a page with a rule on it 
that cannot be instantly and obviously improved 

by taking the rule out. 

— GEORGE BERNARD SHAW, in The Dolphin (1940) 





Chapter 22: Alignment 231 

Printers charge extra when you ask them to typeset tables, and they do so for 
good reason: Each table tends to have its own peculiarities, so it’s necessary 
to give some thought to each one, and to fiddle with alternative approaches 
until finding something that looks good and communicates well. However, you 
needn’t be too frightened of doing tables with T^X, since plain has a “tab” 
feature that handles simple situations pretty much like you would do them on a 
typewriter. Furthermore, has a powerful alignment mechanism that makes 
it possible to cope with extremely complex tabular arrangements. Simple cases 
of these alignment operations will suffice for the vast majority of applications. 

Let’s consider tabbing first. If you say ‘\settabs n Xcolumns’, plain 
TgX makes it easy to produce lines that are divided into n equal-size columns. 
Each line is specified by typing 

\+{texti)&{text2)& • • • \cr 

where (texti) will start flush with the left margin, (text2) will start at the left of 
the second column, and so on. Notice that ‘\+’ starts the line. The final column 
is followed by ‘\cr’, which old-timers will recognize as an abbreviation for the 
“carriage return” operation on typewriters that had carriages. For example, 
consider the following specification: 

\settabs 4 Xcolumns 
\+&&Text that starts in the third columnXcr 
\+&Text that starts in the second columnXcr 
X+Xit Text that starts in the first column, and&&& 

the fourth, and&beyond!Xcr 

After ‘Xsettabs4Xcolumns’ each X+ line is divided into quarters, so the result is 

: Text that starts in the third column : 
Text that starts in the second column : 

'Text that starts in the first column, and the fourth, and beyond! 

This example merits careful study because it illustrates several things. 
(1) The is like the TAB key on many typewriters; it tells to advance 
to the next tab position, where there’s a tab at the right edge of each column. 
In this example, TgX has set up four tabs, indicated by the dashed lines; a 
dashed line is also shown at the left margin, although there isn’t really a tab 
there. (2) But isn’t exactly like a mechanical typewriter TAB, because it first 
backs up to the beginning of the current column before advancing to the next. 
In this way you can always tell what column you’re tabbing to, by counting 
the number of &’s; that’s handy, because variable-width type otherwise makes 
it difficult to know whether you’ve passed a tab position or not. Thus, on the 
last line of our example, three &’s were typed in order to get to column 4, even 
though the text had already extended into column 2 and perhaps into column 3. 
(3) You can say ‘Xcr’ before you have specified a complete set of columns, if the 
remaining columns are blank. (4) The &’s are different from tabs in another way. 



232 Chapter 22: Alignment 

too: ignores spaces after hence you can conveniently finish a column 
by typing at the end of a line in your input file, without worrying that an 
extra blank space will be introduced there. (The second-last line of the example 
ends with and there is an implicit blank space following that symbol; if TgpC 
hadn’t ignored that space, the words ‘the fourth’ wouldn’t have started exactly 
at the beginning of the fourth column.) Incidentally, plain also ignores 
spaces after ‘\+’, so that the first column is treated like the others. (5) The 
‘\it’ in the last line of the example causes only the first column to be italicized, 
even though no braces were used to confine the range of italics, because 
implicitly inserts braces around each individual entry of an alignment. 

Once you have issued a \settabs command, the tabs remain set until you 
reset them, even though you go ahead and type ordinary paragraphs as usual. 

But if you enclose \settabs in {...}, the tabs defined inside a group don’t affect the 
tabs outside; ‘\global\settabs’ is not permitted. 

Tabbed lines usually are used between paragraphs, in the same places where 
you would type Mine or \centerline to get lines with a special format. But 

it’s also useful to put \+ lines inside a \vbox; this makes it convenient to specify displays 
that contain aligned material. For example, if you type 

$$\vbox{\settabs 3 Xcolumns 

\+This is&a strange&exampleXcr 

\+of displayed&three-column&format.\cr}$$ 

you get the following display: 

This is a strange example 
of displayed three-column format. 

In this case the first column doesn’t appear flush left, because centers a box that 
is being displayed. Columns that end with \cr in a \+ line are put into a box with 
their natural width; so the first and second columns here are one-third of the \hsize, 

but the third column is only as wide as the word ‘example’. We have used $$ in this 
construction even though no mathematics is involved, because $$ does other useful 
things; for example, it centers the box, and it inserts space above and below. 

People don’t always want tabs to be equally spaced, so there’s another 
way to set them, by typing ‘\+{sample line)\cr’ immediately after ‘\settabs’. 
In this case tabs are placed at the positions of the &’s in the sample line, and 
the sample line itself does not appear in the output. For example, 

\settabs\+\indent&Horizontal lists\quad&\cr % sample line 
\+&Horizontal lists&Chapter 14\cr 
\+&Vertical lists&Chapter 15\cr 
\+&Math lists&Chapter 17\cr 

causes T^X to typeset the following three lines of material: 

Horizontal lists Chapter 14 
Vertical lists Chapter 15 
Math lists Chapter 17 



Chapter 22: Alignment 233 

The \settabs command in this example makes column 1 as wide as a paragraph 

indentation; and column 2 is as wide as ‘Horizontal lists’ plus one quad of space. 

Only two tabs are set in this case, because only two &’s appear in the sample 

line. (A sample line might as well end with &, because the text following the 

last tab isn’t used for anything.) 

The first line of a table can’t always be used as a sample line, because it 

won’t necessarily give the correct tab positions. In a large table you have to look 

ahead and figure out the biggest entry in each column; the sample line is then 

constructed by typing the widest first column, the widest second column, etc., 

omitting the last column. Be sure to include some extra space between columns 

in the sample line, so that the columns won’t touch each other. 

► EXERCISE 22.1 
Explain how to typeset the following table [from Beck, Bertholle, and Child, 

Mastering the Art of French Cooking (New York: Knopf, 1961)]: 

Weight Servings Approximate Cooking Time"^ 

8 lbs. 6 1 hour and 50 to 55 minutes 

9 lbs. 7 to 8 About 2 hours 

91/2 lbs. 8 to 9 2 hours and 10 to 15 minutes 

IOV2 lbs. 9 to 10 2 hours and 15 to 20 minutes 

* For a stuffed goose, add 20 to 40 minutes to the times given. 

If you want to put something flush right in its column, just type ‘Xhfill’ 

before it; and be sure to type after it, so that TTN will be sure to move the 

information all the way until it touches the next tab. Similarly, if you want to center 

something in its column, type ‘\hfill’ before it and after it. For example, 

\settabs 2 \columns 

\+\hfill This material is set flush rightfe 

\hfill This material is centered\hfill&\cr 

\+\hfill in the first half of the line.& 

\hfill in the second half of the line.\hfill&\cr 

produces the following little table: 

This material is set flush right This material is centered 

in the first half of the line. in the second half of the line. 

The \+ macro in Appendix B works by putting the (text) for each column into 

an hbox as follows: 

\hbox to (column width){(text)\hss} 

The \hss means that the text is normally flush left, and that it can extend to the right 

of its box. Since \hf ill is “more infinite” than \hss in its ability to stretch, it has 

the effect of right-justifying or centering as stated above. Furthermore, \hf ill doesn’t 

shrink, so T^X will complain of an overfull box if something doesn’t fit in its column. 

You could also center some text by putting ‘\hss’ before it and just after it; in that 

case the text would be allowed to extend to the left and right of its column, and the 



234 Chapter 22: Alignment 

box would never be considered overfull. The last column of a \+ line (i.e., the column 

entry that is followed by \cr) is treated differently, however; \hss is not inserted into 

it, and the (text) is simply put into an hbox with its natural width. 

Computer programs present difficulties of a different kind, since some people 

like to adopt a style in which the tab positions change from line to line. For 

example, consider the following program fragment: 

if n < r then n := n + 1 

else begin print-totals; n := 0; 

end; 

while p > 0 do 

begin q := link{p); free-node{p); p := q; 

end; 

Special tabs have been set up so that ‘then’ and ‘else’ appear one above the other, 

and so do ‘begin’ and ‘end’. It’s possible to achieve this by setting up a new sample 

line whenever a new tab position is needed; but that’s a tedious job, so plain 

makes it a little simpler. Whenever you type & to the right of all existing tabs, the 

effect is to set a new tab there, in such a way that the column just completed will have 

its natural width. Furthermore, there’s an operation ‘\cleartabs’ that resets all tab 

positions to the right of the current column. Therefore the computer program above 

can be T^Xified as follows: 

$$\vbox{\+\bf if $n<r$ \cleartabs&;\bf then $n:=n+l$\cr 

\+&\bf else &{\bf begin} ${\it print\_totals}$; $n:=0$;\cr 

\+&&{\bf end};\cr 

(The remaining part is left as an exercise)}$$ 

► EXERCISE 22.2 

Complete the example computer program by specifying three more \+ lines. 

Although \+ lines can be used in vertical boxes, you must never use \+ inside 

of another \+ line. The \+ macro is intended for simple applications only. 

fThe \+ and \settabs macros of Appendix B keep track of tabs by maintaining 

register \box\tabs as a box full of empty boxes whose widths are the column 

widths in reverse order. Thus you can examine the tabs that are currently set, by 

saying ‘\showbox\tabs’; this puts the column widths into your log file, from right to 

left. For example, after ‘\settabs\+\hskipl00pt&\hskip200pt&\cr\showbox\tabs’, 

TgX will show the lines 

\hbox(0.0+0.0)x300.0 

.\hbox(0.0+0.0)x200.0 

.\hbox(0.0+0.0)xl00.0 

^►EXERCISE 22.3 

i Study the \+ macro in Appendix B and figure out how to change it so that 

tabs work as they do on a mechanical typewriter (i.e., so that ‘&’ always moves to 

the next tab that lies strictly to the right of the current position). Assume that 

the user doesn’t backspace past previous tab positions; for example, if the input is 
‘\+&&\hskip-2em&x\cr’, do not bother to put ‘x’ in the first or second column, just 

put it at the beginning of the third column. (This exercise is a bit difficult.) 



Chapter 22: Alignment 235 

TgX has another important way to make tables, using an operation called 

\halign (“horizontal alignment”). In this case the table format is based on 

the notion of a template, not on tabbing; the idea is to specify a separate environment 

for the text in each column. Individual entries are inserted into their templates, and 

presto, the table is complete. 

For example, let’s go back to the Horizontal/Vertical/Math list example that 

appeared earlier in this chapter; we can specify it with \halign instead of 

with tabs. The new specification is 

\halign{\indent#\hfil&\quad#\hfil\cr 

Horizontal lists&Chapter 14\cr 

Vertical lists&Chapter 15\cr 

Math lists&Chapter 17\cr} 

and it produces exactly the same result as the old one. This example deserves careful 

study, because \halign is really quite simple once you get the hang of it. The first 

line contains the preamble to the alignment, which is something like the sample line 

used to set tabs for \+. In this case the preamble contains two templates, namely 

‘\indent#\hf il’ for the first column and ‘\quad#\hf il’ for the second. Each template 

contains exactly one appearance of ‘#’, and it means “stick the text of each column entry 

in this place.” Thus, the first column of the line that follows the preamble becomes 

\indent Horizontal lists\hfil 

when ‘Horizontal lists’ is stuffed into its template; and the second column, similarly, 

becomes ‘\quad Chapter 14\hf il’. The question is, why \hf il? Ah, now we get to the 

interesting point of the whole thing: reads an entire \halign{. . .} specification 

into its memory before typesetting anything, and it keeps track of the maximum width 

of each column, assuming that each column is set without stretching or shrinking the 

glue. Then it goes back and puts every entry into a box, setting the glue so that each 

box has the maximum column width. That’s where the \hfil comes in; it stretches to 

fill up the extra space in narrower entries. 

► EXERCISE 22.4 

What table would have resulted if the template for the first column in this 

example had been ‘\indent\hfil#’ instead of ‘\indent#\hf il’? 

Before reading further, please make sure that you understand the idea of tem- 

plates in the example just presented. There are several important differences 

between \halign and \+: (1) \halign calculates the maximum column widths auto- 

matically; you don’t have to guess what the longest entries will be, as you do when 

you set tabs with a sample line. (2) Each \halign does its own calculation of column 

widths; you have to do something special if you want two different \halign operations 

to produce identical alignments. By contrast, the \+ operation remembers tab positions 

until they are specifically reset; any number of paragraphs and even \halign operations 

can intervene between \+’s, without affecting the tabs. (3) Because \halign reads an 

entire table in order to determine the maximum column widths, it is unsuitable for 

huge tables that fill several pages of a book. By contrast, the \+ operation deals with 

one line at a time, so it places no special demands on T^’s memory. (However, if 

you have a huge table, you should probably define your own special-purpose macro 



236 Chapter 22: Alignment 

for each line instead of relying on the general \+ operation.) (4) \halign takes less 

computer time than \+ does, because \halign is a built-in command of while 

\+ is a macro that has been coded in terms of \halign and various other primitive 

operations. (5) Templates are much more versatile than tabs, and they can save you a 

lot of typing. For example, the Horizontal/Vertical/Math list table could be specified 

more briefly by noticing that there’s common information in the columns: 

\halign{\indent# lists\hfil&\quad Chapter #\cr 

Horizontal&14\cr Vertical&15\cr Math&17\cr} 

You could even save two more keystrokes by noting that the chapter numbers all start 

with T’! (Caution: It takes more time to think of optimizations like this than to type 

things in a straightforward way; do it only if you’re bored and need something amusing 

to keep up your interest.) (6) On the other hand, templates are no substitute for tabs 
when the tab positions are continually varying, as in the computer program example. 

Let’s do a more interesting table, to get more experience with \halign. Here 

is another example based on the Beck/Bertholle/Child book cited earlier: 

American French Age Weight Cooking 

Chicken Connection (months) (lbs.) Methods 

Squab Poussin 2 3/4 to 1 Broil, Grill, Roast 

Broiler Poulet Nouveau 2 to 3 IV2 to 21/2 Broil, Grill, Roast 

Fryer Poulet Reine 3 to 5 2 to 3 Fry, Saute, Roast 

Roaster Poularde 51/2 to 9 Over 3 Roast, Poach, Fricassee 

Fowl Poule de lAnnee 10 to 12 Over 3 Stew, Fricassee 

Rooster Coq Over 12 Over 3 Soup stock. Forcemeat 

Note that, except for the title lines, the first column is set right-justified in boldface 

type; the middle columns are centered; the second column is centered and in italics; 

the final column is left-justified. We would like to be able to type the rows of the table 

as simply as possible; hence, for example, it would be nice to be able to specify the 

bottom row by typing only 

Rooster&Coq&Over 12&0ver 3&Soup stock, Forcemeat\cr 

without worrying about type styles, centering, and so on. This not only cuts down on 

keystrokes, it also reduces the chances for making typographical errors. Therefore the 

template for the first column should be ‘\hf il\bf#’; for the second column it should be 

‘\hf il\it#\hf il’ to get the text centered and italicized; and so on. We also need to al- 
low for space between the columns, say one quad. Voild! La typographic est sur la table: 

\halign{\hfil\bf #&\quad\hfil\it#\hfil&\quad\hfil#\hfil& 

\quad\hfil#\hfil&\quad#\hfil\cr 

(the title lines) 

Squab&Poussin&2&\frac3/4 to l&Broil, Grill, Roast\cr 

... Forcemeat\cr} 

As with the \+ operation, spaces are ignored after &, in the preamble as well as in the 

individual rows of the table. Thus, it is convenient to end a long row with when 

the row takes up more than one line in your input file. 



Chapter 22: Alignment 237 

► EXERCISE 22.5 

How was the ‘Fowl’ line typed? (This is too easy.) 

The only remaining problem in this example is to specify the title lines, which 

have a different format from the others. In this case the style is different only 

because the typeface is slanted, so there’s no special difficulty; we just type 

\sl American&Xsl French&\sl Age&\sl Weight&\sl Cooking\cr 

\sl Chicken&\sl Connection&\sl(months)&\sl(lbs.)&\sl Methods\cr 

It is necessary to say ‘\sl’ each time, because each individual entry of a table is 

implicitly enclosed in braces. 

The author used ‘\openup2pt’ to increase the distance between baselines in 

the poultry table; a discriminating reader will notice that there’s also a bit of 

extra space between the title line and the other lines. This extra space was inserted by 

typing ‘\noalign{\smallskip}’ just after the title line. In general, you can say 

\noalign{(vertical mode material)} 

just after any \cr in an \halign; will simply copy the vertical mode material, 

without subjecting it to alignment, and it will appear in place when the \halign is 

finished. You can use \noalign to insert extra space, as here, or to insert penalties 

that affect page breaking, or even to insert lines of text (see Chapter 19). Definitions 

inside the braces of \noalign{. . .} are local to that group. 

The \halign command also makes it possible for you to adjust the spacing 
between columns so that a table will fill a specified area. You don’t have to 

decide that the inter-column space is a quad; you can let T^]X make the decisions, 

based on how wide the columns come out, because puts “tabskip glue” between 

columns. This tabskip glue is usually zero, but you can set it to any value you like by 

saying ‘\tabskip=(glue)’. For example, let’s do the poultry table again, but with the 

beginning of the specification changed as follows; 

\tabskip=lem plus2em minus.5em 

\halign to\hsize{\hfil\bf#&\hfil\it#\hfil&\hfil#\hfil& 

\hfil#\hfil&#\hfil\cr 

The main body of the table is unchanged, but the \quad spaces have been removed 

from the preamble, and a nonzero \tabskip has been specified instead. Furthermore 

‘\halign’ has been changed to ‘\halign to\hsize’; this means that each line of the 

table will be put into a box whose width is the current value of \hsize, i.e., the 

horizontal line width usually used in paragraphs. The resulting table looks like this: 

American French Age Weight Cooking 

Chicken Connection (months) (lbs.) Methods 

Squab Poussin 2 3/4 to 1 Broil, Grill, Roast 

Broiler Poulet Nouveau 2 to 3 1 V2 to 21/2 Broil, Grill, Roast 

Fryer Poulet Reine 3 to 5 2 to 3 Fry, Saute, Roast 

Roaster Poularde 51/2 to 9 Over 3 Roast, Poach, Fricassee 

Fowl Poule de I’Annee 10 to 12 Over 3 Stew, Fricassee 

Rooster Coq Over 12 Over 3 Soup stock. Forcemeat 



238 Chapter 22: Alignment 

In general, puts tabskip glue before the first column, after the last column, 

and between the columns of an alignment. You can specify the final aligned 

size by saying ‘\halign to(dimen)’ or ‘\halign spread(dimen)’, just as you can say 
‘\hbox to(dimen)’ and ‘\hbox spread(dimen)’. This specification governs the setting 

of the tabskip glue; but it does not affect the setting of the glue within column entries. 

(Those entries have already been packaged into boxes having the maximum natural 

width for their columns, as described earlier.) 

Therefore ‘\halign to \hsize’ will do nothing if the tabskip glue has no 

JL stretchability or shrinkability, except that it will cause to report an 

underfull or overfull box. An overfull box occurs if the tabskip glue can’t shrink to 

meet the given specification; in this case you get a warning on the terminal and in your 

log file, but there is no “overfull rule” to mark the oversize table on the printed output. 

The warning message shows a “prototype row” (see Chapter 27). 

The poultry example just given used the same tabskip glue everywhere, but 

you can vary it by resetting \tabskip within the preamble. The tabskip glue 

that is in force when reads the following \halign will be used before the first 

column; the tabskip glue that is in force when reads the after the first template 

will be used between the first and second columns; and so on. The tabskip glue that 

is in force when T^X reads the \cr after the last template will be used after the last 

column. For example, in 

\tabskip=3pt 

\halign{\hfil#\tabskip=4pt& #\hfil& 

\hbox to 10em{\hss\tabskip=5pt # \hss}\cr ...} 

the preamble specifies aligned lines that will consist of the following seven parts: 

tabskip glue 3pt; 

first column, with template ‘\hfil#’; 

tabskip glue 4pt; 

second column, with template ‘#\hfil’; 

tabskip glue 4pt; 

third column, with template ‘\hbox to 10em{\hss# \hss}’; 

tabskip glue 5pt. 

TgX copies the templates without interpreting them except to remove any 

\tabskip glue specifications. More precisely, the tokens of the preamble are 

passed directly to the templates without macro expansion; T^ looks only for ‘\cr’ 

commands, ‘#’, ‘\span’, and ‘\tabskip’. The (glue) following ‘\tabskip’ is scanned 
in the usual way (with macro expansion), and the corresponding tokens are not in- 

cluded in the current template. Notice that, in the example above, the space after 

‘5pt’ also disappeared. The fact that \tabskip=5pt occurred inside an extra level of 

braces did not make the definition local, since didn’t “see” those braces; similarly, 

if \tabskip had been preceded by ‘\global’, T^]X wouldn’t have made a global defini- 

tion, it would just have put Aglobal’ into the template. All assignments to \tabskip 

within the preamble are local to the \halign (unless \globaldefs is positive), so the 

value of \tabskip will be 3pt again when this particular \halign is completed. 

When ‘\spaji’ appears in a preamble, it causes the next token to be expanded, 

i.e., “ex-span-ded,” before reads on. 



Chapter 22: Alignment 239 

► EXERCISE 22.6 

Design a preamble for the following table: 

England P. Philips 1560 1628 

J. Bull C1563-1628 
Germany H. L. Hassler 1562-1612 

M. Praetorius 1571-1621 

France J. Titelouze 1563-1633 

Netherlands 

Italy 
Spain 
Portugal 

J. P. Sweelinck 
P. Cornet 
G. Frescobaldi 
F. Correa de Arauxo 
M. R. Coelho 

1562-1621 

cl570 1633 

1583-1643 
C1576-1654 

cl555-cl635 

The tabskip glue should be zero at the left and right of each line; it should be 1 em 
plus 2 em in the center; and it should be .5em plus .5em before the names, Oein plus 
.5em before the dates. Assume that the lines of the table will be specified by, e.g., 

Frcoice&J. Titelouze&1563—1633& 

Portugal&M. R. Coelho&\\1555--\\1635\cr 

where ‘\\’ has been predefined by ‘\def\\{{\it c\/}}’. 

► EXERCISE 22.7 

Design a preamble so that the table 

rydw i = I am 
rwyt ti = thou art 
mae e = he is 
mae hi = she is 
rydyn ni = we are 
rydych chi = you are 
maen nhw = they are 

ydw i = am I 
wyt ti = art thou 
ydy e = is he 
ydy hi = is she 
ydyn ni = are we 
ydych chi = are you 
ydyn nhw = are they 

roeddwn i = I was 
roeddet ti = thou wast 
roedd e = he was 
roedd hi = she was 
roedden ni = we were 
roeddech chi = you were 
roedden nhw = they were 

can be specified by typing lines like 

mae hi=she is&ydy hi=is she&roedd hi=she was\cr 

^►EXERCISE 22.8 

i The line breaks in the second 
column of the table at the right were 
chosen by TgX so that the second col- 
umn was exactly 16 ems wide. Fur- 
thermore, the author specified one of 
the rows of the table by typing 

\\393&Plato^s {\sl ApologyX/}; 

Xenophon^ s 

{\sl MemorabiliaX/}; 

Aristophanes’ 

{Xsl EcclesiazusXaeX/lXcr 

Can you guess what preamble was used 
in the alignment? [The data comes 
from Will Durant’s The Life of Greece 
(Simon & Schuster, 1939).] 

B.C. 

397: War between Syracuse and Carthage 
396: Aristippus of Gyrene and Antisthe- 

nes of Athens (philosophers) 
395: Athens rebuilds the Long Walls 
394: Battles of Coronea and Cnidus 

c393: Plato’s Apology; Xenophon’s Memo- 
rabilia; Aristophanes’ Ecclesiazusae 

391-87: Dionysius subjugates south Italy 
391: Isocrates opens his school 
390: Evagoras Hellenizes Cyprus 
387: “King’s Peace”; Plato visits Archy- 

tas of Taras (mathematician) and 
Dionysius I 

386: Plato founds the Academy 
383: Spartans occupy Cadmeia at Thebes 
380: Isocrates’ Panegyricus 



240 Chapter 22: Alignment 

Sometimes a template will apply perfectly to all but one or two of the entries 

in a column. For example, in the exercise just given, the colons in the first 

column of the alignment were supplied by the template ‘\hfil#:u’; but the very first 

entry in that column, ‘B.C.’, did not have a colon. allows you to escape from the 

stated template in the following way: If the very first token of an alignment entry is 

‘\omit’ (after macro expansion), then the template of the preamble is omitted; the 

trivial template ‘#’ is used instead. For example, ‘B.C.’ was put into the table above 

by typing ‘\omit\hfil\sevenrm B.C.’ immediately after the preamble. You can use 
\omit in any column, but it must come first; otherwise will insert the template 

that was defined in the preamble. 

If you think about what T^]X has to do when it’s processing \halign, you’ll 

realize that the timing of certain actions is critical. Macros are not expanded 

when the preamble is being read, except as described earlier; but once the \cr at the 

end of the preamble has been sensed, must look ahead to see if the next token is 
\noalign or \omit, and macros are expanded until the next non-space token is found. 

If the token doesn’t turn out to be \noalign or \omit, it is put back to be read again, 

and TgX begins to read the template (still expanding macros). The template has two 

parts, called the u and v parts, where u precedes the ‘#’ and v follows it. When 

has finished the u part, its reading mechanism goes back to the token that was neither 
\noalign nor \oinit, and continues to read the entry until getting to the & or \cr that 

ends the entry; then the v part of the template is read. A special internal operation 

called \endtemplate is always placed at the end of the v part; this causes to put 

the entry into an “unset box” whose glue will be set later when the final column width 

is known. Then is ready for another entry; it looks ahead for \omit (and also for 

\noalign, after \cr) and the process continues in the same way. 

One consequence of the process just described is that it may be dangerous 

to begin an entry of an alignment with \if. . ., or with any macro that will 

expand into a replacement text whose first token is \if. the reason is that the 

condition will be evaluated before the template has been read. (T^]X is still looking 

to see whether an \omit will occur, when the \if is being expanded.) For example, if 

\strut has been defined to be an abbreviation for 

\ifmmode(text for math modes)\else(text for nonmath modes)\f i 

and if \ strut appears as the first token in some alignment entry, then will expand 

it into the (text for nonmath modes) even though the template might be ‘$#$’, because 
Tg^ will not yet be in math mode when it is looking for a possible \omit. Chaos will 

probably ensue. Therefore the replacement text for \strut in Appendix B is actually 

\relax\iframode... 

and Arelax’ has also been put into all other macros that might suffer from such timing 

problems. Sometimes you do want T^]X to expand a conditional before a template is 

inserted, but careful macro designers watch out for cases where this could cause trouble. 

When you’re typesetting numerical tables, it’s common practice to line up the 

decimal points in a column. For example, if two numbers like ‘0.2010’ and 

‘297.1’ both appear in the same column, you’re supposed to produce ‘297 • This 

result isn’t especially pleasing to the eye, but that’s what people do, so you might 



Chapter 22: Alignment 241 

have to conform to the practice. One way to handle this is to treat the column as two 

columns, somewhat as \eqalign treats one formula as two formulas; the can be 

placed at the beginning of the second half-column. But the author usually prefers to 

use another, less sophisticated method, which takes advantage of the fact that the digits 

0, 1, ..., 9 have the same width in most fonts: You can choose a character that’s not 

used elsewhere in the table, say ‘?’, and change it to an active character that produces 

a blank space exactly equal to the width of a digit. Then it’s usually no chore to put 

such nulls into the table entries so that each column can be regarded as either centered 

or right-justified or left-justified. For example, ‘??0.2010’ and ‘297.1???’ have the 

same width, so their decimal points will line up easily. Here is one way to set up ‘?’ 

for this purpose: 

\newdimen\digitwidth 

\setboxO=\hbox{\rmO} 

\digitwidth=\wdO 

\catcode‘?=\active 

\def?{\kern\digitwidth} 

The last two definitions should be local to some group, e.g., inside a \vbox, so that ‘?’ 

will resume its normal behavior when the table is finished. 

Let’s look now at some applications to mathematics. Suppose first that you 

want to typeset the small table 

n = 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ... 

g(n) 1 2 4 3 6 7 8 16 18 25 32 11 64 31 128 10 256 5 512 28 1024 ... 

as a displayed equation. A brute force approach using \eqalign or \atop is cumbersome 

because Q{n) and n don’t always have the same number of digits. It would be much 

nicer to type 

$$\vbox{\halign{(preamble)\cr 

n\ph2uitom)&0&l&2&3& ... &20&\dots\cr 

{\cal G}(n)&l&2&4&3& ... &1024&\dots\cr}}$$ 

for some (preamble). On the other hand, the (preamble) is sure to be long, since 

this table has 23 columns; so it looks as though \settabs and \+ will be easier. 

has a handy feature that helps a lot in cases like this: Preambles often have a periodic 

structure, and if you put an extra just before one of the templates, will consider 

the preamble to be an infinite sequence that begins again at the marked template when 

the \cr is reached. For example, 

& ^2 & t3 && t4 & ^5 \cr is treated like H & ^2 & ^3 & ^4 & ^5 & ^4 & ^5 & <4 & • • • 
and 

k.ti & ^2 & ^3 & <4 & ^5 \cr is treated like H & ^2 & ^3 & ^4 & H & ^2 & ^3 & • • • • 

The tabskip glue following each template is copied with that template. The preamble 

will grow as long as needed, based on the number of columns actually used by the 

subsequent alignment entries. Therefore all it takes is 

$\hfil#$ =&&\ \hfil#\hfil\cr 

to make a suitable (preamble) for the Q{n) problem. 



242 Chapter 22: Alignment 

Now suppose that the task is to typeset three pairs of displayed formulas, with 

all of the = signs lined up: 

Vi = Vi - QiVj, Xi = Xi - QiXj, Ui = Ui, for i j; 

Vj=Vj, X,=X], Uj = Uj+ Y„^,qiU,- 
(23) 

It’s not easy to do this with three \eqalign’s, because the ^ with a subscript ‘i / j’ 

makes the right-hand pair of formulas bigger than the others; the baselines won’t agree 

unless “phantoms” are put into the other two \eqalign’s (see Chapter 19). Instead of 

using \eqalign, which is defined in Appendix B to be a macro that uses \halign, let’s 

try to use \halign directly. The natural way to approach this display is to type 

$$\vcenter{\openupl\jot \halign{(preamble)\cr 

(first line)\cr (second line)\cr}}\eqno(23)$$ 

because the \vcenter puts the lines into a box that is properly centered with respect 

to the equation number ‘(23)’; the \openup macro puts a bit of extra space between 

the lines, as mentioned in Chapter 19. 

OK, now let’s figure out how to type the (first line) and (second line). The 

JL usual convention is to put before the symbols that we want to line up, so 

the obvious solution is to type 

V_i&=v_i-q_iv_j ,&X_i&;=x_i-q_ix_j ,& 

U_i&=u_i,\qqu.ad\hbox{for $i\ne j$};\cr 

V_j&=v_j,&X_j&=x_j,& 

U_j&=u_j+\smn_{i\ne j}q_iu_i.\cr 

Thus the alignment has six columns. We could take common elements into the preamble 

(e.g., ‘V_’ and ‘=v_’), but that would be too error-prone and too tricky. 

fThe remaining problem is to construct a preamble to support those lines. To 

the left of the = signs we want the column to be filled at the left; to the right 

of the = signs we want it to be filled at the right. There’s a slight complication because 

we are breaking a math formula into two separate pieces, yet we want the result to 

have the same spacing as if it were one formula. Since we’re putting the just before 

a relation, the solution is to insert ‘{}’ at the beginning of the right-hand formula; 

will put the proper space before the equals sign in ‘${}=. . .$’, but it puts no space 

before the equals sign in ‘$=. . .$’. Therefore the desired (preamble) is 

$\hfil#$&${}#\hfil$& 

\qquad$\hfil#$&${}#\hfil$& 

\qquad$\hfil#$&${}#\hfil$ 

The third and fourth columns are like the first and second, except for the \qquad that 

separates the equations; the fifth and sixth columns are like the third and fourth. Once 

again we can use the handy shortcut to reduce the preamble to 

$\hfil#$&&${}#\hfil$&\qquad$\hfil#$ 

With a little practice you’ll find that it becomes easy to compose preambles as you are 

typing a manuscript that needs them. However, most manuscripts don’t need them, so 

it may be a while before you acquire even a little practice in this regard. 



Chapter 22: Alignment 243 

► EXERCISE 22.9 

Explain how to produce the following display: 

lOw + 3x + 3y + 18z = 1, 

Qw — 17x — 5z = 2. 

(9) 

(10) 

The next level of complexity occurs when some 

or more columns. provides two ways to 

\hidewidth, which plain defines to be equivalent to 

entries of a table span two 

handle this. First there’s 

\hskip-1000pt plus Ifill 

In other words, \hidewidth has an extremely negative “natural width,” but it will 

stretch without limit. If you put \hidewidth at the right of some entry in an alignment, 

the effect is to ignore the width of this entry and to let it stick out to the right of its 

box. (Think about it; this entry won’t be the widest one, when \halign figures the 

column width.) Similarly, if you put \hidewidth at the left of an entry, it will stick 

out to the left; and you can put \hidewidth at both left and right, as we’ll see later. 

The second way to handle table entries that span columns is to use the \spaji 
primitive, which can be used instead of in any line of the table. (We’ve 

already seen that Xspan means “expand” in preambles; but outside of preambles its 

use is completely different.) When ‘\span’ appears in place of the material before 

and after the Xspan is processed in the ordinary way, but afterward it is placed into a 

single box instead of two boxes. The width of this combination box is the sum of the 

individual column widths plus the width of the tabskip glue between them; therefore 

the spanning box will line up with non-spanning boxes in other rows. 

For example, suppose that there are three columns, with the respective tem- 

plates ui U vi &, U2 ^ V2 ic U3 ^ V3; suppose that the column widths are rci, W2,W3; 

suppose that ^0, ^1, p2, gs are the tabskip glue widths after the glue has been set; and 

suppose that the line 

fliXspan a2Xspaii aaXcr 

has appeared in the alignment. Then the material for ‘ni01^1^2<22'^'2"asastJa’ (i.e., the 

result ‘uiaini’ of column 1 followed by the results of columns 2 and 3) will be placed 

into an hbox of width ici + + 102 + ^2 + 2^3. That hbox will be preceded by glue of 

width go and it will be followed by glue of width ga, in the larger hbox that contains 

the entire aligned line. 

You can use Xomit in conjunction with Xspan. For example, if we continue 
with the notation of the previous paragraph, the line 

Xomit ai Xspan 02 XspanXomit 03 Xcr 

would put the material for ‘ain2a2f2a3’ into the hbox just considered. 

It’s fairly common to span several columns and to omit all their templates, 

i so plain T^X provides a Xmultispan macro that spans a given number of 

columns. For example, ‘XmultispanS’ expands into ‘XomitXspanXomitXspanXomit’. If 

the number of spanned columns is greater than 9, you must put it in braces, e.g., 

‘Xmultispan{13}’. 



244 Chapter 22: Alignment 

The preceding paragraphs are rather abstract, so let’s look at an example that 

shows what \span actually does. Suppose you type 

$$\tabskip=3em 

\vbox{\halign{&\hrulefill#\hrulefill\cr 

first&second&third\cr 

first-ajid-second\span\omit&\cr 

&second-and-third\spaii\oinit\cr 

first-second-third\span\omit\spaii\omit\cr>}$$ 

The preamble specifies arbitrarily many templates equal to ‘\hrulef ill#\hrulef ill’; 

the \hrulefill macro is like \hfill except that the blank space is filled with a hor- 

izontal rule. Therefore you can see the filling in the resulting alignment, which shows 

the spanned columns: 

first second third 

_first-and-second_   

  _second-and-third_ 

 first-second-third  

The rules stop where the tabskip glue separates columns. You don’t see rules in the 

first line, since the entries in that line were the widest in their columns. However, if 

the tabskip glue had been lem instead of 3em, the table would have looked like this: 

first —Second— third 

first-and-second   

  second-and-third 

 first-second-third  

EXERCISE 22.10 

i i Consider the following table, which is called Walter’s worksheet: 

1 Adjusted gross income  $4,000 

2 Zero bracket amount for 

a single individual  $2,300 

3 Earned income  1,500 
4 Subtract line 3 from line 2  800 

5 Add lines 1 and 4. Enter here 

and on Form 1040, line 35  $4,800 

Define a preamble so that the following specification will produce Walter’s worksheet. 

\halign{ (preamble)\cr 

l&Adjusted gross income\dotfill\span\omit\spcLn&\$4,000\cr 

2&Zero bracket amount for&\cr 

&a single individual\dotfill\span\omit&\$2,300\cr 

3&Earned income\dotfill\speLn\omit&\underbar{ l,500}\cr 

4&Subtract line 3 from line 2\dotfill 

\span\omit\spaji&\underbar{ 800}\cr 

5&Add lines 1 aind 4. Enter here\spcLn\omit\span\cr 

&and on Form 1040, line 35\dotfill\speLn\omit\span&\$4,800\cr} 

(The macro \dotfill is like \hrulefill but it fills with dots; the macro \underbar 

puts its argument into an hbox and underlines it.) 



Chapter 22: Alignment 245 

Notice the “early” appearance of \cr in line 2 of the previous exercise. You 

needn’t have the same number of columns in every line of an alignment; ‘\cr’ 

means that there are no more columns in the current line. 

EXERCISE 22.11 

Explain how to typeset the generic matrix 

/ ail ai2 • ain 

a2i a22 a2n 

\ ami am2 • amn 

The presence of spanned columns adds a complication to T^’s rules for calcu- 

lating column widths; instead of simply choosing the maximum natural width 

of the column entries, it’s also necessary to make sure that the sum of certain widths 

is big enough to accommodate spanned entries. So here is what actually does: 

First, if any pair of adjacent columns is always spanned as a unit (i.e., if there’s a \spaji 

between them whenever either one is used), these two columns are effectively merged 

into one and the tabskip glue between them is set to zero. This reduces the problem to 

the case that every tab position actually occurs at a boundary. Let there be n columns 

remaining after such reductions, and for 1 < z < jf < n let Wij be the maximum nat- 

ural width of all entries that span columns i through j, inclusive; if there are no such 

spanned entries, let Wij = —oo. (The merging of dependent columns guarantees that, 

for each j, there exists i < j such that Wij > — oo.) Let tk be the natural width of the 

tabskip glue between columns k and /c-f-l, forl</c<n. Now the final width Wj of 

column j is determined by the formula 

Wj = max (tcxj - 
1<2<J — 

for j = 1, 2, ..., n (in this order). It follows that Wij < Wi -\-ti • -\-tj-i -\- wj, for all 

* < J? as desired. After the widths wj are determined, the tabskip amounts may have 

to stretch or shrink; if they shrink, Wij might turn out to be more than the final width 

of a box that spans columns i through j, hence the glue in such a box might shrink. 

These formulas usually work fine, but sometimes they produce undesirable 

effects. For example, suppose that n = 3, wn = W22 = W33 = 10, W12 = 

W23 = —00, and wi3 = 100; in other words, the columns by themselves are quite 
narrow, but there’s a big wide entry that’s supposed to span all three columns. In this 

case Tfip^’s formula makes wi = W2 — 10 but tea = 80 — — ^2, so all the excess width 

is allocated to the third column. If that’s not what you want, the remedy is to use 

\hidewidth, or to increase the natural width of the tabskip glue between columns. 

The next level of complexity that occurs in tables is the appearance of hor- 

izontal and vertical ruled lines. People who know how to make ruled tables 

are generally known as Masters. Are you ready? 

If you approach vertical rules in the wrong manner, they can be difficult; but 

there is a decent way to get them into tables without shedding too many tears. 

The first step is to say ‘\of f interlineskip’, which means that there will be no blank 

space between lines; T^]X cannot be allowed to insert interline glue in its normal clever 

way, because each line is supposed to contain a \vrule that abuts another \vrule in the 
neighboring lines above and/or below. We will put a strut into every line, by including 

one in the preamble; then each line will have the proper height and depth, and there 
will be no need for interline glue. puts every column entry of an alignment into 



246 Chapter 22: Alignment 

an hbox whose height and depth are set equal to the height and depth of the entire 

line; therefore \vrule commands will extend to the top and bottom of the lines even 
when their height and/or depth are not specified. 

A “column” should be allocated to every vertical rule, and such a column can 

^ be assigned the template Avrule#’. Then you obtain a vertical rule by simply 

leaving the column entries blank, in the normal lines of the alignment; or you can say 

‘\omit’ if you want to omit the rule in some line; or you can say ‘height lOpt’ if you 

want a nonstandard height; and so on. 

fHere is a small table that illustrates the points just made. [The data appeared 

in an article by A. H. Westing, BioScience 31 (1981), 523-524.] 

\vbox{\offinterlineskip 

\hrule 

\halign{&\vrule#& 

\strut\quad\hfil#\quad\cr 

height2pt&\oinit&&\omit&;\cr 

&Year\hfilMWorld Population&\cr 

height2pt&\omit&&\omit&\cr 

\noalign{\hrule} 

height2pt&\omit&&\omit&\cr 

&8000\BC&&5,000,OOO&Xcr 

&50\AD&&200,000,000&\cr 

&1650\AD&&500,000,000&\cr 

&1850\AD&&1,000,000,000&\cr 

&1945\AD&&2,300,000,000&\cr 

&1980\AD&&4,400,000,000&\cr 

height2pt&\omit&&\omit&\cr} 

\hrule} 

In this example the first, third, and fifth columns are reserved for vertical rules. Hori- 

zontal rules are obtained by saying ‘\hrule’ outside the \halign or ‘\noalign{\hrule}’ 

inside it, because the \halign appears in a vbox whose width is the full table width. 

The horizontal rules could also have been specified by saying ‘XmultispeaiSXhrulef ill’ 

inside the \halign, since that would produce a rule that spans all five columns. 

fThe only other nonobvious thing about this table is the inclusion of several 

lines that say ‘height2pt&\omit&&\omit&\cr’; can you see what they do? The 

\omit instructions mean that there’s no numerical information, and they also suppress 

the \strut from the line; the ‘height2pt’ makes the first \vrule 2 pt high, and the 
other two rules will follow suit. Thus, the effect is to extend the vertical rules by two 

points, where they touch the horizontal rules. This is a little touch that improves the 

appearance of boxed tables; look for it as a mark of quality. 

EXERCISE 22.12 

Explain why the lines of this table say ‘&\cr’ instead of just ‘\cr’. 

Another way to get vertical rules into tables is to typeset without them, then 

back up (using negative glue) and insert them. 

Year World Population 

8000 B.C. 5,000,000 

50 A.D. 200,000,000 

1650 A.D. 500,000,000 

1850 A.D. 1,000,000,000 

1945 A.D. 2,300,000,000 

1980 A.D. 4,400,000,000 



Chapter 22: Alignment 247 

Here is another table; this one has become a classic, ever since Michael Lesk 

published it as one of the first examples in his report on a program to format 

tables [Bell Laboratories Computing Science Technical Report 49 (1976)]. It illustrates 

several typical problems that arise in connection with boxed information. In order to 

demonstrate T^]X’s ability to adapt a table to different circumstances, tabskip glue is 

used here to adjust the column widths; the table appears twice, once generated by 

‘\halign tol25pt’ and once by ‘\halign to200pt’, with nothing else changed. 

AT&T Common Stock 

Year Price Dividend 

1971 41-54 $2.60 

2 41-54 2.70 

3 46-55 2.87 

4 40-53 3.24 

5 45-52 3.40 

6 51-59 .95* 

AT&T Common Stock 

Year Price Dividend 

1971 41-54 $2.60 

2 41-54 2.70 

3 46-55 2.87 

4 40-53 3.24 

5 45-52 3.40 

6 51-59 .95* 

* (first quarter only) * (first quarter only) 

The following specification did the job: 

\vbox{\tabskip=Opt \offinterlineskip 

\def\tablerule{\noalign{\hrule}} 

\halign to(dimen){\strut#& \vrule#\tabskip=lem plus2em& 

\hfil#& \vrule#& \hfil#\hfil& \vrule#& 

\hfil#& \vrule#\tabskip=Opt\cr\tablerule 

&&\multispaii5\hfil AT\&T Common Stock\hfil&\cr\tablerule 

&&\omit\hidewidth Year\hidewidth&& 

\omit\hidewidth Price\hidewidth&& 

\omit\hidewidth Dividend\hidewidth&\cr\tablerule 

&&1971&&41—54&&\$2.60&\cr\tablerule 

&& 2&&41—54&&2.70&\cr\tablerule 

&& 3&&46—55&&2.87&\cr\tablerule 

&& 4&&40—53&&3.24&\cr\tablerule 

&& 5&&45—52&&3.40&\cr\tablerule 

&& 6&&51—59&&.95\rlap*&\cr\tablerule \noalign{\smallskip} 

&\multispan7* (first quarter only)\hfil\cr}} 

Points of interest are: (1) The first column contains a strut; otherwise it would have 

been necessary to put a strut on the lines that say ‘AT&T’ and ‘(first quarter only)’, 

since those lines omit the templates of all other columns that might have a built-in 

strut. (2) ‘\hidewidth’ is used in the title line so that the width of columns will be 

affected only by the width of the numeric data. (3) ‘\rlap’ is used so that the asterisk 

doesn’t affect the alignment of the numbers. (4) If the tabskip specification had been 

‘Oem plus3em’ instead of ‘lem plus2em’, the alignment wouldn’t have come out right, 

because ‘AT&T Common Stock’ would have been wider than the natural width of 

everything it spanned; the excess width would all have gone into the ‘Dividend’ column. 

^►EXERCISE 22.13 

JL Explain how to add 2 pt more space above and below ‘AT&T Common Stock’. 



248 Chapter 22: Alignment 

► EXERCISE 22.14 

Typeset the following chart, making it exactly 36em wide; 

J. H. Bohning, 1838 

M. J. H. Bdhning, 1882 

L. M. Bohning, 1912 

C. L. Wischmeyer, 1850 

M. D. Blase, 1840 

E. F. Ehlert, 1845 

P. A. M. Ehlert, 1884 

fif you’re having trouble debugging an alignment, it sometimes helps to put 
‘\ddt’ at the beginning and end of the templates in your preamble. This 

is an undefined control sequence that causes to stop, displaying the rest of the 

template. When stops, you can use \showlists and other commands to see what 

the machine thinks it’s doing. If doesn’t stop, you know that it never reached that 

part of the template. 

f/^ It’s possible to have alignments within alignments. Therefore when sees a 

^ or ‘spam’ or ‘\cr’, it needs some way to decide which alignment is involved. 

The rule is that an entry ends when or ‘\spam’ or ‘\cr’ occurs at the same level of 

braces that was current when the entry began; i.e., there must be an equal number of 

left and right braces in every entry. For example, in the line 

\matrix{l&l\cr 0&l\cr}&\matrix{0&l\cr 0&0\cr}\cr 

TgX will not resume the template for the first column when it is scanning the argument 

to \matrix, because the &’s and \cr’s in that argument are enclosed in braces. Similarly, 
&’s and \cr’s in the preamble do not denote the end of a template unless the resulting 

template would have an equal number of left and right braces. 

You have to be careful with the use of & and Xspam and \cr, because these 

^ tokens are intercepted by T^]X’s scanner even when it is not expanding macros. 
For example, if you say ‘\let\x=\spcm’ in the midst of an alignment entry, T^]X will 

think that the ‘\spaii’ ends the entry, so \x will become equal to the first token fol- 

lowing the ‘#’ in the template. You can hide this \spaji by putting it in braces; e.g., 

‘{\global\let\x=\spcm}’. (And Appendix D explains how to avoid \global here.) 

f Sometimes people forget the \cr on the last line of an alignment. This can 

cause mysterious effects, because T^^ is not clairvoyant. For example, con- 

sider the following apparently simple case: 

\halign{\centerline{#}\cr 

A centered line.\cr 

And another?} 

(Notice the missing \cr.) A curious thing happens here when T^]X processes the 

erroneous line, so please pay attention. The template begins with ‘\centerline{’, 

so TgX starts to scan the argument to \centerline. Since there’s no ‘\cr’ after the 

question mark, the ‘}’ after the question mark is treated as the end of the argument 

to \centerline, not as the end of the \halign. T]gX isn’t going to be able to finish 

the alignment unless the subsequent text has the form . .\cr’. Indeed, an entry 



Chapter 22: Alignment 249 

like ‘a}b{c’ is legitimate with respect to the template ‘\centerline{#}’, since it yields 

‘\centerline{a}b{c}’; TgX is correct when it gives no error message in this case. But 
the computer’s idea of the current situation is different from the user’s, so a puzzling 

error message will probably occur a few lines later. 

f/^ To help avoid such situations, there’s a primitive command \crcr that acts 

JL exactly like \cr except that it does nothing when it immediately follows a \cr 

or a \noalign{. . .}. Thus, when you write a macro like \matrix, you can safely insert 

\crcr at the end of the user’s argument; this will cover up an error if the user forgot 

the final \cr, and it will cause no harm if the final \cr was present. 

Are you tired of typing \cr? You can get plain to insert an automatic 

\cr at the end of each input line in the following way: 

\begingroup \let\par=\cr \obeylines 7, 

\halign{ (preamble) 

(first line of alignment) 

(last line of alignment) 

}\endgroup 

This works because \obeylines makes the ASCII (return) into an active character that 

uses the current meaning of \par, and plain puts (return) at the end of an input 

line (see Chapter 9). If you don’t want a \cr at the end of a certain line, just type 

‘7,’ and the corresponding \cr will be “commented out.” (This special mode doesn’t 

work with \+ lines, since \+ is a macro whose argument is delimited by the token ‘\cr’, 

not simply by a token that has the same meaning as \cr. But you can redefine \+ to 

overcome this hurdle, if you want to. For example, define a macro \alternateplus 

that is just like \+ except that its argument is delimited by the active character "'‘M; 

then include the command ‘\let\+=\alternateplus’ as part of \obeylines.) 

The control sequence \valign is analogous to \halign, but rows and columns 

change roles. In this case \cr marks the bottom of a column, and the aligned 

columns are vboxes that are put together in horizontal mode. The individual entries 

of each column are vboxed with depth zero (i.e., as if \boxmaxdepth were zero, as 

explained in Chapter 12); the entry heights for each row of a \valign are maximized 

in the same fashion as the entry widths for each column of an \halign are maximized. 

The \noalign operation can now be used to insert horizontal mode material between 

columns; the \spaji operation now spans rows. People usually work with TgX at least a 

year before they find their first application for \valign; and then it’s usually a one-row 

‘\valign{\vf il#\vf il\cr. . But the general mechanism is there if you need it. 

If sixteen pennies are arranged in the form of a square 
there will be the same number of pennies in every row, every column, 

and each of the two long diagonals. 
Can you do the same with twenty pennies? 

— HENRY ERNEST DUDENEY, The Best Coin Problems (1909) 

It was she who controlled the whole of the Fifth Column. 

— AGATHA CHRISTIE, N or M? (1941) 





Chapter 23: Output Routines 251 

We investigated T^’s page-building technique in Chapter 15, where we dis- 

cussed the basic two-stage strategy that is used: gathers material until it 

has accumulated more than will fit on a page; then it spews out one page of data, 

based on what it thinks is the best breakpoint between pages; then it returns 

to gather material for the next page in the same way. Page numbers, headings, 

and similar things are attached after each page has been ejected, by a special 

sequence of commands called the current output routine. 

Plain has an output routine that takes care of ordinary jobs. It han- 

dles the simple things that most manuscripts require, and it also copes with more 

complicated things like the insertions made with \footnote and \topinsert, 

as described in the dangerous bends of Chapter 15. We shall begin the present 

chapter by discussing how to make simple changes to the behavior of plain 1^^’s 

output routine; then we shall turn to the details of how to define output routines 

that do more complex tasks. 

If you run TgX without modifying the plain format, you get pages 

that are numbered at the bottom; and each page will be approximately 8^ inches 

wide and 11 inches tall, including 1-inch margins at all four sides. This format 

is suitable for preprints of technical papers, but you might well want to change 

it, especially if you are not using to make a preprint of a technical paper. 

For example, we saw in the experiments of Chapter 6 that the width 

of the material on a page can be changed by giving a different value to the 

horizontal line size, \hsize. Plain TgX format says ‘\hsize=6.5in’, in order to 

obtain 8.5-inch pages with 1-inch margins; you can change \hsize to whatever 

you want. Similarly, you can control the vertical size of a page by changing 

\vsize. Plain sets \vsize=8.9in (not 9in, since \vsize doesn’t include 

the space for page numbers at the bottom of each page); if you say ‘\vsize=4in’ 

you will get shorter pages, with only 4 inches of copy per sheet. It’s best not to 

monkey with \hsize and \vsize except at the very beginning of a job, or after 

you have ejected all pages from TgX’s memory. 

If you want your output to be positioned differently when it is ultimately 

printed, you can offset it by giving nonzero values to \hoffset and \voffset. 

For example, 

\hoffset=.5in \voffset=l.5in 

will move the output half an inch to the right of its normal position, and 1.5 

inches down. You should be careful not to offset the output so much that it 

falls off the edge of the physical medium on which it is being printed, unless you 

know that such out-of-bounds activity won’t cause trouble. 

TgX is often used to typeset announcements, brochures, or other docu- 

ments for which page numbers are inappropriate. If you say 

Xnopagenumbers 

at the beginning of your manuscript, plain Tp;X will refrain from inserting num- 

bers at the bottom of each page. 



252 Chapter 23: Output Routines 

In fact, \nopagenumbers is a special case of a much more general mechanism 

by which you can control headings and footings. The plain output rou- 

tine puts out a special line of text called the headline at the top of each page, and 

another special line of text called the footline at the bottom. The headline is normally 

blank, and the footline is normally a centered page number, but you can specify any 

headline and footline that you want by redefining the control sequences \headline and 

\footline. For example, 

\headline={\hrulefill} 

will put a horizontal rule at the top of every page. The basic idea is that plain puts 
‘\line{\the\headline}’ at the top and ‘\line{\the\footline}’ at the bottom, with 

blank lines separating these extra lines from the other material. (Recall that Mine 

is an abbreviation for ‘\hbox to\hsize’; hence the headline and footline are put into 
boxes as wide as the normal lines on the page itself.) The normal value of \headline 

is ‘\hfil’, so that no heading is visible. The \nopagenumbers macro described earlier 

is simply an abbreviation for ‘\footline={\hf il}’. 

The normal value of \footline is ‘\hss\tenrm\folio\hss’; this centers the 

page number on a line, using font \tenrm, because \folio is a control sequence 

that produces the number of the current page in text form. 

The page number appears in T^]X’s internal register \countO, as explained in 

Chapter 15, and plain TgX makes \pageno an abbreviation for \countO. Thus 

you can say ‘\pageno=100’ if you want the next page of your output to be number 100. 

The \f olio macro converts negative page numbers to roman numerals; if your manu- 

script begins with ‘\pageno=-l’, the pages will be numbered i, ii, iii, iv, v, etc. In fact. 

Appendix B defines \folio to be an abbreviation for 

\ifnuin\pageno<0 \romaiuiuineral-\pageno \else\number\pageno \fi 

It is important to include the name of each font explicitly whenever you are 

defining a headline or footline, because an output routine in can come 

into action at somewhat unpredictable times. For example, suppose that \footline 

had been set to ‘\hss\folio\hss’, without specifying \tenrm; then the page number 

would be typeset in whatever font happens to be current when decides to output a 

page. Mysterious effects can occur in such cases, because is typically in the midst 

of page 101 when it is outputting page 100. 

► EXERCISE 23.1 

Explain how to put en-dashes around the page numbers in a plain job. 

For example, ‘ - 4 - ’ should appear at the bottom of page 4. 

Here is an example of a headline in which the page numbers appear at the top. 

Furthermore, odd-numbered and even-numbered pages are treated differently: 

\nopagenumbers '/, suppress footlines 

\headline={\ifodd\pageno\rightheadline \else\leftheadline\fi} 

\def\rightheadline{\tenrm\hfil RIGHT RUNNING HEAD\hfil\folio} 

\def\leftheadline{\tenrm\folio\hfil LEFT RUNNING HEAD\hfil} 

\voffset=2\baselineskip 



Chapter 23: Output Routines 253 

English-language books traditionally have odd-numbered pages on the right and even- 

numbered pages on the left. Text that appears as a headline on several pages is often 

called a “running head.” When you use headlines, it is generally wise to set \voffset 

to the equivalent of two lines of text, as shown in this example, so that there will still 

be a margin of one inch at the top of your output pages. 

► EXERCISE 23.2 

Suppose that you’re using to typeset your resume, which is several pages 

long. Explain how to define \headline so that the first page is headed by ‘RESUME’, 

centered in boldface type, while each subsequent page has a headline like this: 

Resume of A. U. Thor   Page 2 

If you don’t change the \vsize, all of the headlines and footlines will occur 

in the same place regardless of the contents of the page between them. Thus, 

for example, if you are using \raggedbottom as explained in Chapter 15, so that pages 

do not always contain the same amount of text, the raggedness will occur above the 

footline; the footline won’t move up. If you do change \vsize, the footline position 

will change correspondingly, while the headline will stay put. 

The rest of this chapter is intended for people who want an output format 

that is substantially different from what plain 'I^]X provides. Double dangerous 

bends are used in all of the subsequent paragraphs, because you should be familiar with 

the rest of T^X before you plunge into these final mysteries of the language. Chapter 22 

taught you how to be a Master, i.e., a person who can produce complicated tables 

using \halign and \valign; the following material will take you all the way to the rank 

of Grandmaster, i.e., a person who can design output routines. When you are ready 
for this rank, you will be pleased to discover that—like alignments—output routines 

are not really so mysterious as they may seem at first. 

Let’s begin by recapping some of the rules at the end of Chapter 15. 

periodically chooses to output a page of information, by breaking its main 

vertical list at what it thinks is the best place, and at such times it enters internal 

vertical mode and begins to read the commands in the current \output routine. When 

the output routine begins, \box255 contains the page that T^]X has completed; the 

output routine is supposed to do something with this vbox. When the output routine 

ends, the list of items that it has constructed in internal vertical mode is placed just 

before the material that follows the page break. In this way TgX’s page-break decisions 

can effectively be changed: Some or all of the material on the broken-off page can be 

removed and carried forward to the next page. 

The current \output routine is defined as a token list parameter, just like 
Y \everypar or \errhelp, except that T^X automatically inserts a begin-group 

symbol ‘-f’ at the beginning and an end-group symbol ‘>’ at the end. These grouping 

characters help to keep the output routine from interfering with what was doing 

when the page break was chosen; for example, an output routine often changes the 

\baselineskip when it puts a headline or footline on a page, and the extra braces 

keep this change local. If no \output routine has been specified, or if the user has 

said ‘\output={>’, TgX supplies its own routine, which is essentially equivalent to 
‘\output={\shipout\box255}’; this outputs the page without any headline or footline, 

and without changing the page number. 



254 Chapter 23: Output Routines 

f/^ TgX’s primitive command \shipout(box) is what actually causes output. It 
n sends the contents of the box to the dvi file, which is T^]X’s main output file; 

after has finished, the dvi file will contain a compact device-independent encoding 

of instructions that specify exactly what should be printed. When a box is shipped out, 

T^X displays the values of \countO through \count9 on your terminal, as explained 

in Chapter 15; these ten counters are also recorded in the dvi file, where they can be 

used to identify the page. All of the \openout, \closeout, and \write commands that 

appear inside of the (box) are performed in their natural order as that box is being 

shipped out. Since a \write command expands macros, as explained in Chapter 21, 

TgX’s scanning mechanism might detect syntax errors while a \shipout is in progress. 

If \tracingoutput is nonzero at the time of a \shipout, the contents of the (box) 

being shipped are written into your log file in symbolic form. You can say \shipout 

anywhere, not only in an output routine. 

The delayed aspect of \write imposes a noteworthy restriction: It is necessary 

^ to be sure that all macros that might appear within the text of a \write are 

properly defined when a \shipout command is given. For example, the plain T^]X for- 

mat in Appendix B temporarily makes spaces active and says ‘\global\letu=\space’; 

the reason is that \obeyspaces might be in force during a \write command, so a defi- 

nition for u as an active character should exist during the next \shipout, even though 

TgX might no longer be making spaces active at that time. 

f Chapter 15 points out that gives special values to certain internal registers 

and parameters, in addition to \box255, just before the output routine begins. 

Insertions are put into their own vboxes, and \insertpenalties is set equal to the total 

number of heldover insertions; furthermore the \outputpenalty parameter is set to the 

value of the penalty at the current breakpoint. An output routine can be made to do 

special things when these quantities have special values. For example, the output 

routine of plain recognizes a \supereject (which ejects all held-over insertions) 

by the fact that \supereject causes \outputpenalty to be —20000, and by using 

\insertpenalties to decide if any insertions are being held over. 

The default output routine, Ashipout\box255’, illustrates one extreme in 

which nothing is put into the vertical list that is carried over to the next page. 

The other extreme is 

\output={\unvbox255 \penalty\outputpenalty} 

which ships nothing out and puts everything back onto the main vertical list. (The 

command ‘\unvbox255’ takes the completed page out of its box, and the command 

‘\penalty\outputpenalty’ reinserts the penalty at the chosen breakpoint.) This 

makes a seamless join between the completed page and the subsequent material, be- 

cause TgX has still not discarded glue and penalties at the breakpoint when it invokes 

an \output routine; hence TgX will go back and reconsider the page break. If the 

\vsize hasn’t changed, and if no insertions have been held over, the same page break 

will be found; but it will be found much faster than before, because the vertical list 

has already been constructed—the paragraphing doesn’t need to be done again. Of 

course, an output routine like this makes spin its wheels endlessly, so it is of no 

use except as an example of an extreme case. 



Chapter 23: Output Routines 255 

To prevent such looping, your output routine should always make progress 

^ of some sort whenever it comes into play. If you make a mistake, may 

be able to help you diagnose the error, because a special loop-detection mechanism 

has been built in: There is an internal integer variable called \deadcycles, which 

is cleared to zero after every \shipout and increased by 1 just before every \output. 
Thus, \deadcycles keeps track of how many times an output routine has been initiated 

since the most recent \shipout, unless you change the value of \deadcycles yourself. 

There’s also an integer parameter called \maxdeadcycles, which plain T^]X sets to 25. 

If \deadcycles is greater than or equal to \maxdeadcycles when your output routine 

is about to be started (i.e., when \deadcycles is about to be increased), issues an 
error message and performs the default output routine instead of yours. 

When your output routine is finished, \box255 should be void. In other words, 

JL you must do something with the information in that box; it should either be 

shipped out or put into some other place. Similarly, \box255 should be void when 

is getting ready to fill it with a new page of material, just before starting an output 

routine. If \box255 is nonvoid at either of those times, T^]X will complain that you are 

misusing this special register, and the register contents will be destroyed. 

But let’s not talk forever about borderline cases and special parameters; let’s 
¥ look at some real examples. The output routine of plain TE^C, found in Ap- 

pendix B, is set up by saying ‘\output={\plainoutput}’, where \plainoutput is an 

abbreviation for 

\shipout\vbox{\mak;eheadline 
\pagebody 
Xmakefootline} 

Xadvajicepageno 
\ifnum\outputpenalty>-20000 \else\dosupereject\fi 

Let us consider this “program” one line at a time: 

1) The Xmakeheadline macro constructs a vbox of height and depth zero in such 

a way that the headline is properly positioned above the rest of the page. Its actual 

code is 

\vbox to 0pt{\vskip-22.5pt 
\line{\vbox to8.5pt{}\the\headline}\vss} 

Xnointerlineskip 

The magic constant —22.5pt is equal to (topskip — height of strut — 2(baselineskip)), 

i.e., 10 pt — 8.5 pt — 24 pt; this places the reference point of the headline exactly 24 pt 

above the reference point of the top line on the page, unless the headline or the top 

line are excessively large. 

2) The Xpagebody macro is an abbreviation for 

\vbox to\vsize{\boxmaxdepth=\maxdepth Xpagecontents} 

The value of Xboxmaxdepth is set to \maxdepth so that the vbox will be constructed 

under the assumptions that T^’s page builder has used to set up \box255. 



256 Chapter 23: Output Routines 

3) The \pagecontents macro produces a vertical list for everything that belongs 

on the main body of the page, namely the contents of \box255 together with illustra- 

tions (inserted at the top) and footnotes (inserted at the bottom): 

\ifvoid\topins \else\unvbox\topins\fi 

\dimen0=\dp255 \unvbox255 
\ifvoid\footins\else ’/, footnote info is present 

\vskip\skip\footins 

\footnoterule 

\unvbox\footins\fi 

\ifraggedbottom \kern-\dimenO \vfil \fi 

Here \topins and \f ootins are the insertion class numbers for the two kinds of inser- 

tions used in plain T^X; if more classes of insertions are added, \pagecontents should 

be changed accordingly. Notice that the boxes are unboxed so that the glue coming 

from insertions can help out the glue on the main page. The \footnoterule macro in 
Appendix B places a dividing line between the page and its footnotes; it makes a net 

contribution of Opt to the height of the vertical list. Ragged-bottom setting is achieved 

by inserting infinite glue, which overpowers the stretchability of \topskip. 

4) The \makefootline macro puts \footline into its proper position: 

\baselineskip=24pt 

\line{\the\footline} 

5) The \advancepageno macro normally advances \pageno by 4-1; but if \pageno 

is negative (for roman numerals), the advance is by —1. The new value of \pageno will 

be appropriate for the next time the output routine is called into action. 

\ifnuin\pageno<0 \global\advELnce\pageno by-1 
\else \global\advance\pageno by 1 \fi 

6) Finally, the \dosupereject macro is designed to clear out any insertions that 

have been held over, whether they are illustrations or footnotes or both: 

\ifnum\insertpenalties>0 
\line{} \kern-\topskip \nobreak 

\vfill\supereject\fi 

The mysterious negative \kern here cancels out the natural space of the \topskip 

glue that goes above the empty Mine; that empty line box prevents the \vf ill from 

disappearing into a page break. The vertical list that results from \dosupereject is 

placed on TgX’s list of things to put out next, just after the straggling insertions have 

been reconsidered as explained in Chapter 15. Hence another super-eject will occur, 

and the process will continue until no insertions remain. 

^►EXERCISE 23.3 

M Explain how to change the output routine of plain so that it will produce 

twice as many pages. The material that would ordinarily go on pages 1, 2, 3, etc., should 

go onto pages 1, 3, 5, ...; and the even-numbered pages should be entirely blank except 

for the headline and footline. (Imagine that photographs will be mounted on those 

blank pages later.) 



Chapter 23: Output Routines 257 

f Suppose now that double-column format is desired. More precisely, let’s at- 

tempt to modify plain T^]X so that it sets type in columns whose width is 

\hsize=3.2in. Each actual page of output should contain two such columns separated 

by 0.1 in of space; thus the text area of each page will still be 6.5 inches wide. The 

headlines and footlines should span both columns, but the columns themselves should 

contain independent insertions as if they were the facing pages of a book. In other 

words, each column should contain its own footnotes and its own illustrations; we do 

not have to change the \pagebody macro. 

In order to solve this problem, let us first introduce a new dimension register 

called \fullhsize that represents the width of an entire page. 

\newdimen\fullhsize 
\fullhsize=6.5in \hsize=3.2in 
\def\fullline-C\hbox to\fullhsize} 

The Xmcikeheadline and \makefootline macros should be modified so that they use 

‘\fullline’ instead of ‘\line’. 

fThe new output routine will make use of a control sequence \lr that is set 

to either ‘L’ or ‘R’, according as the next column belongs at the left or at the 

right of the next page. When a left column has been completed, the output routine 

simply saves it in a box register; when a right column has been completed, the routine 

outputs both columns and increases the page number. 

\let\lr=L \newbox\leftcolumn 
\output={\if L\lr 

\global\setbox\leftcoluiiin=\coluinnbox \global\let\lr=R 
\else \doubleformat \global\let\lr=L\fi 
\ifnuin\outputpenalty>-20000 \else\dosupereject\fi} 

\def\doubleformat{\shipout\vbox{\mak;eheadline 
\fullline{\box\leftcolumn\hfilXcolumnbox} 
Xmeikef ootline} 

Xadvancepageno} 
XdefXcolumnboxfXleftlinelXpagebody}} 

The Xcolumnbox macro uses Xleftline in order to ensure that it produces a box whose 
width is Xhsize. The width of Xbox255 is usually, but not always, equal to Xhsize at 

the beginning of an output routine; any other width would louse up the format. 

fWhen double-column setting ends, there’s a 50-50 chance that the final column 

has fallen at the left, so it will not yet have been output. The code 

Xsupereject 

Xif RXlr XnullXvfillXejectXfi 

supplies an empty right-hand column in this case, ensuring that all of the accumulated 

material will be printed. It’s possible to do fancier column balancing on the last page, 

but the details are tricky if footnotes and other insertions need to be accommodated 

as well. Appendix E includes the macros that were used to balance the columns at the 

end of the index in Appendix I, and to start two-column format in mid-page. 

^►EXERCISE 23.4 

Y How should the example above be modified if you want three-column output? 



258 Chapter 23: Output Routines 

Since T^)K’s output routine lags behind its page-construction activity, you can 
n get erroneous results if you change the \headline or the \footline in an 

uncontrolled way. For example, suppose that you are typesetting a book, and that the 

format you are using allows chapters to start in the middle of a page; then it would 

be a mistake to change the running headline at the moment you begin a new chapter, 

since the next actual page of output might not yet include anything from the new 

chapter. Consider also the task of typesetting a dictionary or a membership roster; a 

well-designed reference book displays the current range of entries at the top of each 

page or pair of pages, so that it is easy for readers to thumb through the book when they 

are searching for isolated words or names. But T^^’s asynchronous output mechanism 

makes it difficult, if not impossible, to determine just what range of entries is actually 

present on a page. 

Therefore TgX provides a way to put “marks” into a list; these marks inform 

the output routine about the range of information on each page. The general 

idea is that you can say 

\mark{(mark text)} 

in the midst of the information you are typesetting, where the (mark text) is a token 

list that is expanded as in the commands \edef, \message, etc. puts an internal 

representation of the mark text into the list it is building; then later on, when a 

completed page is packed into \box255, allows the output routine to refer to the 

first and last mark texts on that page. 

The best way to think of this is probably to imagine that generates an 

i arbitrarily long vertical list of boxes, glue, and other items such as penalties 

and marks. Somehow that long vertical list gets divided up into pages, and the pages 

are made available to the output routine, one at a time. Whenever a page is put in 

\box255, sets up the value of three quantities that act essentially like macros: 

■ \botmark is the mark text most recently encountered on the page that was 

just boxed; 

■ \f irstmark is the mark text that was first encountered on the page that was 

just boxed; 

■ \topmark has the value that \botmark had just before the current page was 

boxed. 

Before the first page, all three of these are null, i.e., they expand to nothing. When 

there is no mark on a page, all three are equal to the previous \botmark. 

For example, suppose that your manuscript includes exactly four marks, and 

JL. that the pages are broken in such a way that Xmarkfo;} happens to fall on 

page 2, \mark{/3} and Xmarkfq} on page 4, and \mark{^} on page 5. Then 

On page \topmark is \f irstmark is \botmark is 

1 null null null 
2 null a a 
3 a a a 
4 a (3 7 
5 7 6 6 
6 6 6 6 



Chapter 23: Output Routines 259 

When you use a \mark command in vertical mode, puts a mark into the 

^ main vertical list. When you use a \mark command in horizontal mode, 

treats it as vertical mode material like \vadjust and \insert; i.e., after the paragraph 

has been broken into lines, each mark will go into the main vertical list just after the 

box for the line where that mark originally appeared. If you use \mark in restricted 

horizontal mode, the mark may migrate out to the enclosing vertical list in the same 

way that \insert and \vadjust items do (see Chapter 24); but a mark that is locked 

too deeply inside a box will not migrate, so it will never appear as a \firstmark or 

\botmark. Similarly, a \mark that occurs in internal vertical mode goes into a vbox, 

and it is not accessible in the main vertical list. 

Chapter 15 discusses the \vsplit command, which allows you to break up 

vertical lists by yourself. This operation sometimes provides a useful alterna- 

tive to Tg;X’s ordinary page-building mechanism. For example, if you simply want to 

typeset some material in two columns of equal height, you can put that material into 

a vbox, then \vsplit the box into two pieces; no output routine is needed at all. The 

\vsplit operation sets up the values of two macro-like quantities that were not men- 

tioned in Chapter 15: \splitf irstmark and Xsplitbotmark expand to the mark texts 

of the first and last marks that appear in the vertical list that was split off by the most 

recent \vsplit command. Both quantities are null if there were no such marks. The 

values of \topmark, \f irstmark, \botmark, \splitf irstmark, and Xsplitbotmark are 

global; i.e., they are not affected by TgX’s grouping mechanism. 

Most dictionaries use the equivalent of Xf irstmark and Xbotmark to give guide 

i words at the top of each pair of facing pages. For example, if the definition of 

the word ‘type’ starts on page 1387 and continues onto page 1388, the guide word on 

page 1387 (a right-hand page) will be ‘type’; but the guide word at the top of page 1388 

(a left-hand page) will be the next word in the dictionary (e.g., ‘typecast’) even though 

the top of page 1388 is about ‘type’. 

The dictionary scheme works fine for dictionaries, since a reader should start 

reading each dictionary entry at its beginning. But a different scheme is 

appropriate for a technical book like the author’s Art of Computer Programming, 

where Section 1.2.8 (for example) starts in the middle of page 78, but the top of 

page 78 contains exercises 19 24 of Section 1.2.7. The headline at the top of page 78 

refers to ‘1.2.7’, because that will help somebody who is searching for exercise 1.2.7 22. 

Notice that the dictionary convention would put ‘1.2.8’ at the top of page 78, but that 

would be appropriate only if Section 1.2.8 had begun exactly at the top of that page. 

Continuing this example from The Art of Computer Programming, let’s sup- 

pose that the TgX manuscript for Section 1.2.8 begins with a macro call like 

Xbeginsection 1.2.8. Fibonacci Numbers. 

How should Xbeginsection be defined? Here is one attempt: 

XdefXbeginsection #1. #2. 

{Xsectionbreeik 
XleftlinefXsectionfont #1. #2} 

Xmarkf#!} 

XnobreakXsmallskipXnoindent} 



260 Chapter 23: Output Routines 

The \sectionbreak macro should encourage T]EX either to break the page at the current 
position, or to leave a goodly amount of blank space; e.g., \sectionbreak might be an 

abbreviation for ‘\penalty-200 \vskipl8pt plus4pt minus6pt’. The \beginsection 

macro ends with commands that suppress indentation of the first paragraph in the 

section. But the thing that concerns us with respect to output routines is the \mark 

command that follows \leftline. In the example we have been considering, the begin- 

ning of Section 1.2.8 would insert ‘\mark{l. 2.8}’ into the main vertical list just after 

the box containing the title of that section. 

Is such a \mark adequate? Unfortunately, no, not even if we assume for sim- 

i plicity that at most one section begins on each page. The page that contains 

the beginning of Section 1.2.8 will then have \topmark=l. 2.7 and \f irstmark=l. 2.8, 

regardless of whether or not the section starts at the very top of the page. What we 

want in this application is a cross between \topmark and \f irstmark: something that 

will reflect the mark text that represents the state of affairs just after the first line of 

the page. And doesn’t provide that. 

The solution is to emit the \mark just before the \sectionbreak, instead of 

just after the \leftline. Then \topmark will always reflect the truth about 
the section that is current at the top line. (Think about it.) 

However, the format for The Art of Computer Programming is more complex 

JL than this. On left-hand pages, the section number in the headline is sup- 

posed to reflect the situation at the top of the page, as we have just discussed, but on 

right-hand pages it is supposed to refer to the bottom of the page. Our solution to 

the previous problem made \topmark correct for the top, but it can make \botmark 

incorrect at the bottom. In order to satisfy both requirements, it is necessary to pack 

more information into the marks. Here’s one way to solve the problem: 

\def\beginsection #1. #2. 

{\mark{\currentsection \noexpaiid\else #1} 
\sectionbresLk 

\leftline{\sectionfont #1. #2} 

\mark{#l\noexpand\else #1} \def\currentsection{#l} 

\nobreak\smallskip\noindent} 
\def\currentsection{} */, the current section number 

The idea is to introduce two marks, one just before the section break and one just after 

the section has begun. Furthermore each mark has two parts; the mark just before the 

potential break between Sections 1.2.7 and 1.2.8 is T.2.7\else 1.2.8’, while the one 

just after that potential break is T . 2.8\else 1.2.8’. It follows that the section number 

corresponding to the bottom of a page is the left component of \botmark; the section 

number corresponding to the top of a page is the right component of \topmark. The 

\rightheadline macro can make use of ‘\if true\botmark\f i’ to read the left compo- 

nent, and the \leftheadline macro can say ‘Xexpandafter\iffalse\topmark\fi’ to 

read the right component. 

EXERCISE 23.5 

XX B. C. Dull used a construction very much like the one above, but he put the 

second \mark just before the \leftline instead of just after it. What went wrong? 



Chapter 23: Output Routines 261 

EXERCISE 23.6 

The marks in the previous construction have the form ‘aXelse/?’, where a 

and (3 are two independent pieces of information. The ‘\else’ makes it possible to 

select either a or ^ by means of \iftrue and \iffalse. Generalize this idea: Suppose 

that you have an application in which marks are supposed to carry five independent 

pieces of information, and that each mark has the form ‘oioXor Q!i\or Q;2\or aaXor 0:4’. 

Explain how to select any one of the five a’s from such a mark. 

Let’s conclude our discussion of output routines by considering an application 

to indexes, such as the index to this manual that appears in Appendix I. The 

most complicated entries in such an index will look something like this: 

Main entry, 4, 6, 8~10, 12, 14-16, 

18-22, 24-28, 30. 

first subsidiary entry, 1-3, 6, 10-11, 

15, 21, 24, 28. 

second subsidiary entry, 1, 3, 6 7, 

10, 15, 21, 25, 28, 31. 

Main entries and subsidiary entries are typeset ragged-right, with two ems of hanging 

indentation after the first line; subsidiary entries are indented one em on the first line. 

Our goal will be to typeset such material from input that looks like this: 

Xbeginindex 

Main entry, 4, 6, 8—10, 12, 14—16, 18—22, 24—28, 30. 

Xsub first subsidiary entry, 1—3, 6, 10—11, 15, 21, 24, 28. 

Xsub second subsidiary entry, 1, 3, 6—7, 10, 15, 21, 25, */, 

28, 31. 

Xendindex 

where ‘. . . ’ stands for other entries. Each line of input normally specifies one main 

entry or one subsidiary entry; if an entry is so long that it doesn’t fit on a single input 

line, ‘u*/.’ is typed at the end of the line so that it merges with the following one. 

The interesting thing about this index problem is that it is desirable to set 
n Y up a system of marks so that the output routine can insert special lines of 

text when an entry has been broken between columns or pages. For example, if a page 

break occurs between any of the six lines of typeset output shown above, the output 

routine should emit the special line 

Main entry (continued): 

and if a page break occurs within a subsidiary entry, an additional special line 

subsidiary entry (continued): 

should also appear. The solution below produces marks so that Xbotmark will be null if 

a break occurs between main entries; it will be ‘Main entry’ if a break occurs after lines 

1, 2, or 4 of the six example output lines; it will be ‘Main entryXsub first subsidiary 

entry’ if a break occurs after line 3 (within the first subsidiary entry); and it will be 

‘Main entryXsub second subsidiary entry’ if a break occurs after line 5. 



262 Chapter 23: Output Routines 

The reader may wish to try solving this problem before looking at the solution, 

X because it will then be easier to appreciate the subtler issues that are involved. 

(Go ahead: Try to define a macro \beginindex that does the ragged-right setting and 

produces the specified marks. Turn back to the previous page to study the problem 

carefully, before peeking at the answer.) 

\def\beginindex{\begingroup 
\parindent=lem \maxdepth=\maxdimen 

\def\par{\endgraf \futurelet\next\inxentry} 

\obeylines \everypax={\hcLngindent 2\paxindent} 

\exhyphenpenalty=10000 \raggedright} 

\def\inxentry{\ifx\next\sub \let\next=\subentry 

\else\ifx\next\endindex \let\next=\vfill 

\else\let\next=\mainentry \fi\fi \next} 
\def\endindex{\mark{}\break\endgroup} 

\let\sub=\indent \newtoks\maintoks \newtoks\subtoks 

\def \mainentry#l, {\m£Lrk{}\noindent 

\niaintoks={#l}\mark{\the\maintoks}#l,} 

\def\subentry\sub#l,{\mark{\the\maintoks}\indent 
\subtoks={#l}\mark{\the\iiiaintoks\sub\the\subtoks}#l,} 

Even if you have read this solution, you probably want an explanation of what it does, 

because it uses “T^^tics” that have not appeared before in this manual. 

1) The \beginindex macro uses \begingroup to keep other changes local; thus, 

it won’t be necessary to restore \parindent and \maxdepth, etc., to their former values 

when the index is finished. The \maxdepth parameter is set to \maxdimen, which is 

essentially infinite, so that \box255 will have the true depth of the last box that it 

contains; we will use this fact below. (It is safe to disable \maxdepth in this way, since 

the entries in an index can be assumed to have reasonably small depth.) Notice that 

\obeylines is used, so that Xpeir will effectively be inserted at the end of every line of 

input. The meaning of \par is changed so that it does more than usual: First it does 

\endgraf, which is TgX’s ordinary \par operation; then it sets \next to the first token 

of the next line, after which the macro \inxentry will be expanded. 

2) When \inxentry comes into play it looks at \next to decide what to do. 

There are three cases: If \next is ‘\sub’, the line will be treated as a subsidiary entry; 

if \next is ‘\endindex’, the next commands executed will be ‘\vf ill\mark{}\break; 

\endgroup’; otherwise the line will be treated as a main entry. 

3) The text of a main entry is put into parameter #1 of \mainentry; this param- 

eter is delimited by a comma. The first thing that \mainentry does is ‘Xmarkf}’, which 

clears the mark in case of a break between entries. Then comes ‘\noindent’, which 

causes TgX to go into horizontal mode and to emit \parskip glue. (The \parskip 

glue will be a legal breakpoint between lines; it will later be followed by interline glue, 

when the first line of the main entry has been typeset by T^]X’s paragraphing routine.) 

Then another \mark is put into the paragraph itself; this one contains the text of the 

main entry, and a \toks register called \maintoks is used to inhibit expansion of the 

mark text. When the paragraph is completed and broken into lines, this particular 

mark will immediately follow the box for the paragraph’s first line, so it will be the 

\botmark if a page break occurs anywhere within the paragraph. 



Chapter 23: Output Routines 263 

4) A similar construction is used for \subentry, but the mark is more compli- 

cated. The \maintoks register will still contain the main entry. The text for the 

subsidiary entry is added using another token list register, \subtoks. Since \sub has 

been defined to equal \indent, it will not be expanded in this \mark. 

<^)<^ The macros just defined will typeset entries that contain the necessary marks; 
X X now we must construct an output routine that uses these marks in the desired 

way, to insert new lines that say ^{continuedy as mentioned above. Again, the reader 

is advised to try solving this problem before looking at the following solution. 

\output={\dimen0=\dp255 \normaloutput 

Xexpandafter\inxcheck\botmark\sub\end} 

\def\inxcheck#l\sub#2\end{\def\next {#!}*/, 
\ifx\next\empty */, do nothing if \botmark is null 

\else\noindent #l\continued */, ‘Main entry (continued) : ^ 

\def \next{#2}’/, 

\ifx\next\empty */, nothing more if \botmark has no \sub 

\else\let\sub=\continued \indent #2\fi 

\advaiice\dimenO by-\prevdepth \kern\dimenO \fi} 

\def\continued{ ({\it continued}\thinspace):\endgraf} 

This coding is a bit more subtle than usual. It assumes that \normaloutput takes care 

of shipping out \box255 (possibly putting it into multicolumn format) and advanc- 

ing the page number; then comes new stuff, which is performed by \inxcheck. The 

\inxcheck macro is invoked in an interesting way that allows \botmark to be separated 

into its components. If \botmark is null, argument #1 to \inxcheck will be null; hence 

\next will be found equivalent to \empty. (Plain says ‘\def \empty{}’ in order to 

accommodate situations like this.) If \botmark doesn’t contain the token \sub, argu- 

ment #1 will be the contents of \botmark while #2 will be null. Otherwise, if \botmark 

has the form rrXsub/?, argument #1 will be a and #2 will be ‘/3Xsub’. 

If Xbotmark isn’t null, the Xinxcheck macro produces one or more lines of text 

X that will be contributed to T^]X’s main vertical list at the position of the page 

break. And here’s where the most subtle point arises: There will be interline glue at 

the page break, computed on the basis of the depth of the box that preceded the break. 

That depth is known to the output routine, since it’s the depth of Xbox255. (The value 

of Xmaxdepth was made infinite for precisely this reason.) Therefore the Xinxcheck 

macro can insert a Xkern to compensate for the difference in depth between the old 

box and the one that will be inserted before the interline glue that has already been 

computed. Without this Xkern, the spacing would be wrong. The reader should study 
this example carefully, to understand the reasoning behind the Xkern command, before 

designing an output routine that inserts new boxes between random lines of output. 

EXERCISE 23.7 

^ X Modify this construction so that continuation lines are inserted only in the 

left columns of even-numbered pages, assuming two-column format. 

EXERCISE 23.8 

X X True or false: The Xinxcheck macro in this example contributes at most two 

lines of output to the main vertical list. 



264 Chapter 23: Output Routines 

When sees an \end command, it terminates the job only if the main 

^ vertical list has been entirely output and if \deadcycles=0. Otherwise it 

inserts the equivalent of 

\line{} \vfill \penalty-’10000000000 

into the main vertical list, and prepares to read the ‘\end’ token again. This has the 

effect of invoking the output routine repeatedly until everything has been shipped out. 

In particular, the last column of two-column format will not be lost. 

It is possible to devise output routines that always leave a residue on the main 

JL vertical list, yet they never allow \deadcycles to increase. In such a case 

will never come to an end! An output routine can recognize that it is being invoked by 

T^X’s endgame, because of the highly negative \outputpenalty caused by the special 
\penalty- ’ 10000000000. At such times the output routine should modify its behavior, 

if necessary, so that a happy ending will ensue. 



Chapter 23: Output Routines 265 

/ think you will like them, 
when you shall see them on a beautiful quarto page, 

where a neat rivulet of text 
shall meander through a meadow of margin. 

'Fore Gad they will be the most elegant things of their kind! 

— RICHARD BRINSLEY SHERIDAN, The School for Scandal (1777) 

The influence of technical changes upon outputs 
through variation in the general investment level p 

is so small that actually it could have been neglected. 

WASSILY W. LEONTIEF, The Structure of American Economy, 1919-1929 (1941) 



24 
Summary of 
^ Vertical 
n Mode 



Chapter 24-' Summary of Vertical Mode 267 

The whole language has been presented in the previous chapters; we have fi- 
nally reached the end of our journey into previously uncharted territory. Hurray! 
Victory! Now it is time to take a more systematic look at what we have encoun- 
tered: to consider the facts in an orderly manner, rather than to mix them up 
with informal examples and applications as we have been doing. A child learns 
to speak a language before learning formal rules of grammar, but the rules of 
grammar come in handy later on when the child reaches adulthood. The purpose 
of this chapter—and of the two chapters that follow—is to present a precise and 
concise summary of the language that TgX understands, so that mature users 
will be able to communicate as effectively as possible with the machine. 

We will be concerned in these chapters solely with T^)K’s primitive oper- 
ations, rather than with the higher-level features of plain format that most 
people deal with. Therefore novice users should put off reading Chapters 24-26 
until they feel a need to know what goes on inside the computer. Appendix B 
contains a summary of plain together with a ready-reference guide to the 
things that most people want to know about TgX usage. The best way to get an 
overview of T^ from a high level is to turn to the opening pages of Appendix B. 

Our purpose here, however, is to survey the low-level parts of TTN on which 

higher-level superstructures have been built, in order to provide a detailed reference 

for people who do need to know the details. The remainder of this chapter is set in 

small type, like that of the present paragraph, since it is analogous to material that is 

marked “doubly dangerous” in other chapters. Instead of using dangerous bend signs 

repeatedly, let us simply agree that Chapters 24-26 are dangerous by definition. 

TgX actually has a few features that didn’t seem to be worth mentioning in 

previous chapters, so they will be introduced here as part of our complete survey. If 

there is any disagreement between something that was said previously and something 

that will be said below, the facts in the present chapter and its successors should be 

regarded as better approximations to the truth. 

We shall study TgX’s digestive processes, i.e., what TT]X does with the lists 

of tokens that arrive in its “stomach.” Chapter 7 has described the process by which 

input files are converted to lists of tokens in TT^X’s “mouth,” and Chapter 20 explained 

how expandable tokens are converted to unexpandable ones in Tj^X’s “gullet” by a 

process similar to regurgitation. When unexpandable tokens finally reach gastro- 

intestinal tract, the real activity of typesetting begins, and that is what we are going 

to survey in these summary chapters. 
Each token that arrives in TT^’s tummy is considered to be a command that 

the computer will obey. For example, the letter ‘L’ is a command to typeset an ‘L’ 
in the current font; ‘\par’ tells TTX to finish a paragraph. TTN is always in one of 

six modes, as described in Chapter 13, and a command sometimes means different 

things in different modes. The present chapter is about vertical mode (and internal 

vertical mode, which is almost the same): We shall discuss TTN’s response to every 

primitive command, when that command occurs in vertical mode. Chapters 25 and 26 

characterize horizontal mode and math mode in a similar way, but those chapters are 

shorter than this one because many commands have the same behavior in all modes; 

the rules for such commands will not be repeated thrice, they will appear only once. 



268 Chapter 24: Summary of Vertical Mode 

Some commands have arguments. In other words, one or more of the tokens 

that follow a command might be used to modify that command’s behavior, and those 

tokens are not considered to be commands themselves. For example, when pro- 

cesses the sequence of tokens that corresponds to ‘\dimen2=2.5pt’, it considers only 

the first token ‘\dimen’ to be a command; the next tokens are swept up as part of the 
operation, because needs to know what \dimen register is to be set equal to what 

(dimen) value. 

We shall define I^’s parts of speech by using a modified form of the gram- 

matical notation that was introduced about 1960 by John Backus and Peter Naur for 

the definition of computer languages. Quantities in angle brackets will either be ex- 

plained in words or they will be defined by syntax rules that show exactly how they 

are formed from other quantities. For example, 

(unit of measure) —> (optional spaces) (internal unit) 

I (optional true)(physical unit) 

defines a (unit of measure) to be either an occurrence of (optional spaces) followed by 

an (internal unit), or (optional true) followed by (physical unit). The symbol ‘ —>• ’ 

in a syntax rule means “is defined to be,” and ‘ 1 ’ means “or.” 

Sometimes a syntax rule is recursive, in the sense that the right-hand side of 

the definition involves the quantity being defined. For example, the rule 

(optional spaces) —> (empty) | (space token) (optional spaces) 

defines the grammatical quantity called (optional spaces) to be either (empty), or a 

(space token) followed by (optional spaces). The quantity (empty) stands for “noth- 

ing,” i.e., for no tokens at all; hence the syntax rule just given is a formalized way of 
saying that (optional spaces) stands for a sequence of zero or more spaces. 

The alternatives on the right-hand side of a syntax rule need not consist 

entirely of quantities in angle brackets. Explicit tokens can be used as well. For 

example, the rule 

(plus or minus) —+12 \ -12 

says that (plus or minus) stands for a character token that is either a plus sign or 

a minus sign, with category code 12. 

We shall use a special convention for keywords, since the actual syntax of a 

keyword is somewhat technical. Letters in typewriter type like ‘ pt ’ will stand for 

(optional spaces) (p or P)(t or T), 

where (p or P) denotes any non-active character token for either p or P (independent 

of the category code), and where (t or T) is similar. 

When a control sequence like ‘\dimen’ is used in the syntax rules below, it 

stands for any token whose current meaning is the same as the meaning that \dimen 

had when started up. Other tokens can be given this same meaning, using Met 

or \futurelet, and the meaning of the control sequence \dimen itself may be redefined 

by the user, but the syntax rules take no note of this; they just use ‘\dimen’ as a 

way of referring to a particular primitive command of (This notation is to be 

distinguished from ‘|diinen|’, which stands for the control sequence token whose actual 

name is dimen; see Chapter 7.) 



Chapter 24: Summary of Vertical Mode 269 

Control sequences sometimes masquerade as characters, if their meaning has 

been assigned by Met or \futurelet. For example, Appendix B says 

\let\bgroup={ \let\egroup=} 

and these commands make \bgroup and \egroup act somewhat like left and right curly 

braces. Such control sequences are called “implicit characters”; they are interpreted in 

the same way as characters, when acts on them as commands, but not always when 

they appear in arguments to commands. For example, the command ‘\let\plus=+’ 

does not make \plus an acceptable substitute for the character token ‘+12’ in the 
syntax rule for (plus or minus) given above, nor does the command ‘\let\p=p’ make 

\p acceptable as part of the keyword pt. When T^]X’s syntax allows both explicit and 

implicit characters, the rules below will be careful to say so, explicitly. 

The quantity (space token), which was used in the syntax of (optional spaces) 

above, stands for an explicit or implicit space. In other words, it denotes either a 

character token of category 10, or a control sequence or active character whose current 

meaning has been made equal to such a token by \let or \futurelet. 

It will be convenient to use the symbols and ‘$’ to stand for any 

explicit or implicit character tokens of the respective categories 1,2, and 3, whether or 

not the actual character codes are braces or dollar signs. Thus, for example, plain T^^’s 

\bgroup is an example of a and so are the tokens ‘fi’ and ‘(1’; but ‘{12’ is not. 

The last few paragraphs can be summarized by saying that the alternatives 
on the right-hand sides of T^^K’s formal syntax rules are made from one or more of the 

following things: (1) syntactic quantities like (optional spaces); (2) explicit character 

tokens like +12; (3) keywords like pt; (4) control sequence names like \dimen; or (5) the 

special symbols {, }, $. 

Let us begin our study of T^’s syntax by discussing the precise meanings of 

quantities like (number), (dimen), and (glue) that occur frequently as arguments to 

commands. The most important of these is (number), which specifies an integer value. 

Here’s exactly what a (number) is: 

(number) —^ (optional signs) (unsigned number) 

(optional signs) —>• (optional spaces) 

I (optional signs) (plus or minus) (optional spaces) 

(unsigned number) —> (normal integer) | (coerced integer) 

(normal integer) —> (internal integer) 

I (integer constant) (one optional space) 

I H2 (octal constant) (one optional space) 
I "12 (hexadecimal constant) (one optional space) 

I S2(character token)(one optional space) 

(integer constant) —> (digit) | (digit) (integer constant) 

(octal constant) —^ (octal digit) | (octal digit) (octal constant) 

(hexadecimal constant) —^ (hex digit) | (hex digit) (hexadecimal constant) 

(octal digit) —> O12 | I12 | 2i2 | 3i2 | 4i2 | 612 | 612 | 7i2 

(digit) —(octal digit) | 812 | 9i2 

(hex digit) —> (digit) [ An | Bn | Cn | Dn | En | Fn 

I AI2 I BI2 I C12 I DI2 I EI2 I FI2 

(one optional space) —(space token) ] (empty) 

(coerced integer) —^ (internal dimen) | (internal glue) 



270 Chapter 24-' Summary of Vertical Mode 

The value of a (number) is the value of the corresponding (unsigned number), times — 1 

for every minus sign in the (optional signs). An alphabetic constant denotes the char- 

acter code in a (character token); does not expand this token, which should either 

be a (character code, category code) pair, or an active character, or a control se- 

quence whose name consists of a single character. (See Chapter 20 for a complete 

list of all situations in which TgX does not expand tokens.) An (integer constant) 

must not be immediately followed by a (digit); in other words, if several digits appear 

consecutively, they are all considered to be part of the same (integer constant). A 

similar remark applies to the quantities (octal constant) and (hexadecimal constant). 

The quantity (one optional space) is (empty) only if it has to be; i.e., looks for 

(one optional space) by reading a token and backing up if a (space token) wasn’t there. 

EXERCISE 24.1 

^ ^ Can you think of a reason why you might want ‘A12’ to be a (hex digit) even 

though the letter A has category 11? (Don’t worry if your answer is “no.” ) 

The definition of (number) is now complete except for the three quantities 

called (internal integer), (internal diinen), and (internal glue), which will be explained 

later; they represent things like parameters and registers. For example, \countl 
and Xtolerance and \hyphenchar\tenrm are internal integers; XdimenlO and Xhsize 
and XfontdimenfiXtenrm are internal dimensions; XskiplOO and Xbaselineskip and 

Xlastskip are internal glue values. An internal dimension can be “coerced” to be an 

integer by assuming units of scaled points. For example, if Xhsize=100pt and if Xhsize 
is used in the context of a (number), it denotes the integer value 6553600. Similarly, an 

internal glue value can be coerced to be an integer by first coercing it to be a dimension 

(omitting the stretchability and shrinkability), then coercing that dimension. 

Let’s turn now to the syntax for (dimen), and for (mudimen) its cousin: 

(dimen) —^ (optional signs) (unsigned dimen) 

(unsigned dirnen) —> (normal dimen) | (coerced dimen) 

(coerced dimen) —>• (internal glue) 

(normal dimen) —> (internal dimen) | (factor) (unit of measure) 

(factor) —> (normal integer) | (decimal constant) 

(decimal constant) —>• .12 | ,12 

I (digit) (decimal constant) 

I (decimal constant) (digit) 

(unit of measure) —> (optional spaces) (internal unit) 

I (optional true)(physical unit)(one optional space) 

(internal unit) —^ em (one optional space) | ex (one optional space) 

I (internal integer) | (internal dimen) | (internal glue) 

(optional true) —^ true | (empty) 

(physical unit)  >• pt | pc | in | bp | cm | mm | dd | cc | sp 

(mudimen) —>■ (optional signs) (unsigned mudimen) 

(unsigned mudimen)  > (normal mudimen) | (coerced mudimen) 

(coerced mudimen) —> (internal niuglue) 

(normal mudimen) —^ (factor) (mu unit) 

(mu unit)  > (optional spaces) (internal niuglue) | mu (one optional space) 

When ‘true’ is present, the factor is multiplied by 1000 and divided by the Xmag 

parameter. Physical units are defined in Chapter 10; mu is explained in Chapter 18. 



Chapter 24-' Summary of Vertical Mode 271 

Encouraged by our success in mastering the precise syntax of the quantities 
(number), (dimen), and (mudimen), let’s tackle (glue) and (muglue): 

(glue) —^ (optional signs) (internal glue) 

I (dimen) (stretch) (shrink) 

(stretch) —>• plus (dimen) | plus (fil dimen) | (optional spaces) 

(shrink)  ^ minus (dimen) | minus (fil dimen) | (optional spaces) 

(fil dimen) —> (optional signs) (factor) (fil unit) (optional spaces) 

(fil unit) —^ fil I (fil unit) 1 

(muglue) -—>• (optional signs) (internal muglue) 

I (mudimen) (mustretch)(mushrink) 

(mustretch) —^ plus (mudimen) | plus (fil dimen) | (optional spaces) 

(mushrink) —>■ minus (mudimen) | minus (fil dimen) | (optional spaces) 

TgX makes a large number of internal quantities accessible so that a format 

designer can influence TgX’s behavior. Here is a list of all these quantities, except for 

the parameters (which will be listed later). 

(internal integer) —^ (integer parameter) | (special integer) | \lastpenalty 

I (countdef token) | \count (8-bit number) 

I (chardef token) | (mathchardef token) 

I \hyphenchar(font) | \skewchar(font) 

I (codename) (7-bit number) | \parshape 

(special integer) —^ \spacefactor | \prevgraf 

I \deadcycles | \insertpenalties 

(codename) —\catcode | \mathcode 
I \lccode I \uccode | \sfcode | \delcode 

(font)  >■ (fontdef token) | \f ont | (family member) 

(family member) —^ (font range) (4-bit number) 

(font range) —^ \textfont | \scriptfont | \scriptscriptfont 

(internal dimen) —>■ (dimen parameter) | (special dimen) | \lastkern 

I (dimendef token) | \dimen(8-bit number) 

I \fontdimen(number)(font) 

I (box dimension) (8-bit number) 

(special dimen) —^ \prevdepth | \pagegoal | \pagetotal 

I \pagestretch | \pagefilstretch | \pagefillstretch 

I \pagefilllstretch | \pageshrink | \pagedepth 

(box dimension)  ^ \ht | \wd | \dp 

(internal glue) —^ (glue parameter) | \lastskip 

I (skipdef token) | \skip(8-bit number) 

(internal muglue) —^ (muglue parameter) | \lastskip 

I (muskipdef token) | \muskip(8-bit number) 

A (countdef token) is a control sequence token in which the control sequence’s cur- 

rent meaning has been defined by \countdef; the other quantities (dimendef token), 

(skipdef token), (muskipdef token), (chardef token), (mathchardef token), and (toksdef 
token) are defined similarly. A (fontdef token) refers to a definition by \font, or it can 

be the predefined font identifier called \nullfont. When a (countdef token) is used as 

an internal integer, it denotes the value of the corresponding \count register, and sim- 

ilar statements hold for (dimendef token), (skipdef token), (muskipdef token). When 



272 Chapter 24-’ Summary of Vertical Mode 

a (chardef token) or (mathchardef token) is used as an internal integer, it denotes the 

value in the \chardef or \mathchardef itself. An (8-bit number) is a (number) whose 

value is between 0 and 2® - 1 = 255; a (7-bit number) is a (number) whose value is 

between 0 and 2^ - 1 = 127; and so on. 

TgX allows \spacefactor to be an internal integer only in horizontal modes; 
\prevdepth can be an internal dimension only in vertical modes; \lastskip can be 

(internal muglue) only in math mode when the current math list ends with a muglue 

item; and \lastskip cannot be (internal glue) in such a case. When \parshape is used 

as an internal integer, it denotes only the number of controlled lines, not their sizes or 

indentations. The seven special dimensions \pagetotal, \pagestretch, and so on are 

all zero when the current page contains no boxes, and \pagegoal is \maxdimen at such 

times (see Chapter 15). 

From the syntax rules just given, it’s possible to deduce exactly what hap- 

pens to spaces when they are in the vicinity of numerical quantities: T^]X allows 

a (number) or (dimen) to be preceded by arbitrarily many spaces, and to be fol- 

lowed by at most one space; however, there is no optional space after a (number) 

or (dimen) that ends with an unexpandable control sequence. For example, if 

sees ‘\space\space24\space\space’ when it is looking for a (number), it gobbles up 

the first three spaces, but the fourth one survives; similarly, one space remains when 

‘24pt\space\space’ and ‘\dimen24\space\space’ and ‘\pagegoal\space’ are treated 

as (dimen) values. 

EXERCISE 24.2 

Is ‘24\space\space pt’ a legal (dimen)? 

EXERCISE 24.3 

X i Is there any difference between ‘+\baselineskip’, -\baselineskip’, and 

T\baselineskip’, when reads them as (glue)? 

EXERCISE 24.4 

X X What (glue) results from "DD DDPLUS2,5 \spacefactor\space, assuming the 

conventions of plain when \spacef actor equals 1000? 

Let’s turn now to T^’s parameters, which the previous chapters have in- 

troduced one at a time; it will be convenient to assemble them all together. An 
(integer parameter) is one of the following tokens: 

Xpretolerance (badness tolerance before hyphenation) 

\tolerance (badness tolerance after hyphenation) 

\hbadness (badness above which bad hboxes will be shown) 

\vbadness (badness above which bad vboxes will be shown) 

\linepenalty (amount added to badness of every line in a paragraph) 

\hyphenpenalty (penalty for line break after discretionary hyphen) 

\exhyphenpenalty (penalty for line break after explicit hyphen) 

\binoppenalty (penalty for line break after binary operation) 

\relpenalty (penalty for line break after math relation) 

\clubpenalty (penalty for creating a club line at bottom of page) 

\widowpenalty (penalty for creating a widow line at top of page) 

\displaywidowpenalty (ditto, before a display) 



Chapter 24: Summary of Vertical Mode 273 

\brokenpenalty (penalty for page break after a hyphenated line) 

\predisplaypenalty (penalty for page break just before a display) 

\postdisplaypenalty (penalty for page break just after a display) 

\interlinepenalty (additional penalty for page break between lines) 

\floatingpenalty (penalty for insertions that are split) 

\outputpenalty (penalty at the current page break) 

\doublehyphendemerits (demerits for consecutive broken lines) 

\f inalhyphendemerits (demerits for a penultimate broken line) 

\adjdemerits (demerits for adjacent incompatible lines) 

\looseness (change to the number of lines in a paragraph) 

\pausing (positive if pausing after each line is read from a file) 

\tracingonline (positive if showing diagnostic info on the terminal) 

Xtracingmacros (positive if showing macros as they are expanded) 

\tracingstats (positive if showing statistics about memory usage) 

\tracingpaxagraphs (positive if showing line-break calculations) 

\tracingpages (positive if showing page-break calculations) 

\tracingoutput (positive if showing boxes that are shipped out) 

\tracinglostchars (positive if showing characters not in the font) 

Xtracingcommaiids (positive if showing commands before they are executed) 

\tracingrestores (positive if showing deassignments when groups end) 

\uchyph (positive if hyphenating words beginning with capital letters) 

Xglobaldef s (nonzero if overriding Xglobal specifications) 

Xdef aulthyphenchar (Xhyphenchar value when a font is loaded) 

Xdefaultskewchar (Xskewchar value when a font is loaded) 

Xescapechar (escape character in the output of control sequence tokens) 

Xendlinechar (character placed at the right end of an input line) 

Xnewlinechar (character that starts a new output line) 

Xmaxdeadcycles (upper bound on Xdeadcycles) 

Xhangafter (hanging indentation changes after this many lines) 

Xfam (the current family number) 

Xmag (magnification ratio, times 1000) 

Xdelimit erf actor (ratio for variable delimiters, times 1000) 

Xtime (current time of day in minutes since midnight) 

Xday (current day of the month) 

Xmonth (current month of the year) 

Xyear (current year of our Lord) 
Xshowboxbreadth (items per level when boxes are shown) 

Xshowboxdepth (maximum level when boxes are shown) 

The first few of these parameters have values in units of “badness” and “penalties” 

that affect line breaking and page breaking. Then come demerit-oriented parameters; 

demerits are essentially given in units of “badness squared,” so those parameters tend to 

have larger values. By contrast, the next few parameters (Xlooseness, Xpausing, etc.) 

generally have quite small values (either -1 or 0 or 1 or 2). Miscellaneous parameters 

complete the set. computes the date and time when it begins a job, if the operating 

system provides such information; but afterwards the clock does not keep ticking: The 

user can change Xtime just like any ordinary parameter. Chapter 10 points out that 

Xmag must not be changed after is committed to a particular magnification. 



274 Chapter 24: Summary of Vertical Mode 

A (dimen parameter) is one of the following; 

\hfuzz (maximum overrun before overfull hbox messages occur) 

\vfuzz (maximum overrun before overfull vbox messages occur) 

\overfullrule (width of rules appended to overfull boxes) 

\hsize (line width in horizontal mode) 

\vsize (page height in vertical mode) 

\maxdepth (maximum depth of boxes on main pages) 

\splitmaxdepth (maximum depth of boxes on split pages) 

\boxmaxdepth (maximum depth of boxes on explicit pages) 

\lineskiplimit (threshold where \baselineskip changes to \lineskip) 

\delimitershortf all (maximum space not covered by a delimiter) 

\nulldelimiterspace (width of a null delimiter) 

\scriptspace (extra space after subscript or superscript) 

\mathsurround (kerning before and after math in text) 

\predisplaysize (length of text preceding a display) 

\displaywidth (length of line for displayed equation) 

\displayindent (indentation of line for displayed equation) 

\parindent (width of \indent) 

\hangindent (amount of hanging indentation) 

\hoffset (horizontal offset in \shipout) 

\voffset (vertical offset in \shipout) 

And the possibilities for (glue parameter) are: 

\baselineskip (desired glue between baselines) 

\lineskip (interline glue if \baselineskip isn’t feasible) 

\parskip (extra glue just above paragraphs) 

\abovedisplayskip (extra glue just above displays) 

\abovedisplayshortskip (ditto, following short lines) 

\belowdisplayskip (extra glue just below displays) 

\belowdisplayshortskip (ditto, following short lines) 

\leftskip (glue at left of justified lines) 

\rightskip (glue at right of justified lines) 

\topskip (glue at top of main pages) 

\splittopskip (glue at top of split pages) 

\tabskip (glue between aligned entries) 

\spaceskip (glue between words, if nonzero) 

\xspaceskip (glue between sentences, if nonzero) 

\parf illskip (additional \rightskip at end of paragraphs) 

Finally, there are three permissible (muglue parameter) tokens: 

\thinmuskip (thin space in math formulas) 

\medmuskip (medium space in math formulas) 

\thickmuskip (thick space in math formulas) 

All of these quantities are explained in more detail somewhere else in this book, and 

you can use Appendix I to find out where. 



Chapter 24-' Summary of Vertical Mode 275 

TgX also has parameters that are token lists. Such parameters do not enter 

into the definitions of (number) and such things, but we might as well list them now 

so that our tabulation of parameters is complete. A (token parameter) is any of: 

\output (the user’s output routine) 

Neverypax (tokens to insert when a paragraph begins) 

\everymath (tokens to insert when math in text begins) 

\everydisplay (tokens to insert when display math begins) 

\everyhbox (tokens to insert when an hbox begins) 

\everyvbox (tokens to insert when a vbox begins) 

\everyjob (tokens to insert when the job begins) 

\everycr (tokens to insert after every \cr or nonredundant \crcr) 
\errhelp (tokens that supplement an \errmessage) 

That makes a total of 97 parameters of all five kinds. 

^►EXERCISE 24.5 

Explain how \everyjob can be non-null when a job begins. 

It’s time now to return to our original goal, namely to study the commands 

that are obeyed by TgX’s digestive organs. Many commands are carried out in the same 

way regardless of the current mode. The most important commands of this type are 

called assignments, since they assign new values to the meaning of control sequences or 

to TgX’s internal quantities. For example, ‘\def\a{a}’ and ‘\parshape=l 5pt lOOpt’ 
and ‘\advance\count20 by-1’ and ‘\font\ff = cmff at 20pt’ are all assignments, 

and they all have the same effect in all modes. Assignment commands often include 

an = sign, but in all cases this sign is optional; you can leave it out if you don’t mind 

the fact that the resulting code might not look quite like an assignment. 

(assignment) —>• (non-macro assignment) | (macro assignment) 

(non-macro assignment) —> (simple assignment) 

I \global(non-macro assignment) 

(macro assignment) —^ (definition) | (prefix) (macro assignment) 

(prefix) —\global | \long | \outer 

(equals) —(optional spaces) | (optional spaces) =12 

This syntax shows that every assignment can be prefixed by \global, but only macro- 

definition assignments are allowed to be prefixed by \long or \outer. Incidentally, if the 

\globaldef s parameter is positive at the time of the assignment, a prefix of \global is 

automatically implied; but if \globaldef s is negative at the time of the assignment, a 

prefix of \global is ignored. If \globaldef s is zero (which it usually is), the appearance 

or nonappearance of \global determines whether or not a global assignment is made. 

(definition) —^ (def) (control sequence) (definition text) 

(def) —^ \def | \gdef | \edef | \xdef 
(definition text) —> (parameter text) (left brace) (balanced text) (right brace) 

Here (control sequence) denotes a token that is either a control sequence or an active 
character; (left brace) and (right brace) are explicit character tokens whose category 

codes are respectively of types 1 and 2. The (parameter text) contains no (left brace) 

or (right brace) tokens, and it obeys the rules of Chapter 20. All occurrences of 



276 Chapter 2J^: Summary of Vertical Mode 

(left brace) and (right brace) tokens within the (balanced text) must be properly nested 

like parentheses. A \gdef command is equivalent to \global\def, and \xdef is equiv- 

alent to \global\edef. T^X reads the (control sequence) and (parameter text) tokens 

and the opening (left brace) without expanding them; it expands the (balanced text) 

(right brace) tokens only in the case of \edef and \xdef. 

Several commands that we will study below have a syntax somewhat like that 

of a definition, but the (parameter text) is replaced by an arbitrary sequence of spaces 

and ‘\relax’ commands, and the (left brace) token can be implicit: 

(filler) —> (optional spaces) | (filler)\relax(optional spaces) 

(general text) —^ (filler){(balanced text)(right brace) 

The main purpose of a (general text) is to specify the (balanced text) inside. 

Many different kinds of assignments are possible, but they fall into compara- 

tively few patterns, as indicated by the following syntax rules: 

(simple assignment) —>• (variable assignment) | (arithmetic) 

I (code assignment) | (let assignment) [ (shorthand definition) 

I (fontdef token) | (family assignment) | (shape assignment) 

I \read(number) to (optional spaces) (control sequence) 

I \setbox(8-bit number)(equals)(filler)(box) 

I \font (control sequence) (equals) (file name) (at clause) 

I (global assignment) 

(variable assignment) —>• (integer variable) (equals) (number) 

I (dimen variable) (equals) (dimen) 

I (glue variable) (equals) (glue) 

I (muglue variable) (equals) (muglue) 

I (token variable) (equals) (general text) 

I (token variable) (equals) (filler) (token variable) 

(arithmetic) —> \advance(integer variable) (optional by) (number) 

I \advance(dimen variable)(optional by) (dimen) 

I \advance(glue variable)(optional by)(glue) 

I \advance (muglue variable) (optional by) (muglue) 

I \multiply(numeric variable) (optional by) (number) 

I \divide (numeric variable) (optional by) (number) 

(optional by) —>• by | (optional spaces) 

(integer variable) —(integer parameter) | (countdef token) 

I \count(8-bit number) 

(dimen variable) —> (dimen parameter) | (dimendef token) 

I \dimen(8-bit number) 

(glue variable) —>• (glue parameter) | (skipdef token) 

I \skip(8-bit number) 

(muglue variable) —> (muglue parameter) | (muskipdef token) 

I \muskip(8-bit number) 

(token variable) —>• (token parameter) | (toksdef token) 

I \toks (8-bit number) 

(numeric variable) —>• (integer variable) | (dimen variable) 

I (glue variable) | (muglue variable) 



Chapter 24-' Summary of Vertical Mode 277 

(code assignment) —(code name)(7-bit number)(equals)(number) 
(let assignment) —>• \futurelet(control sequence) (token)(token) 

1 Met (control sequence) (equals) (one optional space) (token) 
(shorthand definition) —>■ \chardef (control sequence) (equals) (8-bit number) 

I \mathchardef (control sequence) (equals) (15-bit number) 
I (registerdef) (control sequence) (equals) (8-bit number) 

(registerdef) —^ \countdef | \dimendef | \skipdef | \muskipdef | \toksdef 

(family assignment) —^ (family member) (equals) (font) 
(shape assignment) —>■ \parshape (equals) (number) (shape dimensions) 

The (number) at the end of a (code assignment) must not be negative, except in the 
case that a \delcode is being assigned. Furthermore, that (number) should be at most 
15 for \catcode, 32768 for \mathcode, 127 for \lccode or \uccode, 32767 for \sfcode, 

and 2^'^ — 1 for \delcode. In a (shape assignment) for which the (number) is n, the 
(shape dimensions) are (empty) if n < 0, otherwise they consist of 2n consecutive 
occurrences of (dimen). TgX does not expand tokens when it scans the arguments of 
Met and \futurelet. 

EXERCISE 24.6 

i ^ We discussed the distinction between explicit and implicit character tokens 
earlier in this chapter. Explain how you can make the control sequence \cs into an 
implicit space, using (a) \futurelet, (b) \let. 

All of the assignments mentioned so far will obey T^]X’s grouping structure; 
i.e., the changed quantities will be restored to their former values when the current 
group ends, unless the change was global. The remaining assignments are different, 
since they affect T^^X’s global font tables or hyphenation tables, or they affect certain 
control variables of such an intimate nature that grouping would be inappropriate. In 
all of the following cases, the presence or absence of \global as a prefix has no effect. 

(global assignment) —(font assignment) 
I (hyphenation assignment) 
I (box size assignment) 
I (interaction mode assignment) 
I (intimate assignment) 

(font assignment) —^ \fontdimen(number) (font) (equals) (dimen) 
I \hyphenchar(font) (equals) (number) 
I \skewchar(font)(equals)(number) 

(at clause) —>■ at (dimen) | scaled (number) | (optional spaces) 
(hyphenation assignment) —>■ \hyphenation(general text) 

I \patterns (general text) 
(box size assignment) —^ (box dimension) (8-bit number) (equals) (dimen) 
(interaction mode assignment) —^ \errorstopmode | \scrollmode 

I \nonstopmode | \batchmode 

(intimate assignment) —^ (special integer) (equals) (number) 
I (special dimen) (equals) (dimen) 

When a \fontdimen value is assigned, the (number) must be positive and not greater 
than the number of parameters in the font’s metric information file, unless that font 
information has just been loaded into T^]X’s memory; in the latter case, you are allowed 



278 Chapter 24: Summary of Vertical Mode 

to increase the number of parameters (see Appendix F). The (special integer) and 

(special dimen) quantities were listed above when we discussed internal integers and 

dimensions. When \prevgraf is set to a (number), the number must not be negative. 

The syntax for (file name) is not standard in because different operating 

systems have different conventions. You should ask your local system wizards for 

details on just how they have decided to implement file names. However, the following 

principles should hold universally: A (file name) should consist of (optional spaces) 

followed by explicit character tokens (after expansion). A sequence of six or fewer 

ordinary letters and/or digits followed by a space should be a file name that works in 

essentially the same way on all installations of T^. Uppercase letters are not considered 

equivalent to their lowercase counterparts in file names; for example, if you refer to fonts 

cmrlO and CMRIO, TgX will not notice any similarity between them, although it might 

input the same font metric file for both fonts. 
TgX takes precautions so that constructions like ‘\chardef\cs=10\cs’ and 

‘\font\cs=naine\cs’ won’t expand the second \cs until the assignments are done. 

Our discussion of assignments is complete except that the \setbox assignment 

involves a quantity called (box) that has not yet been defined. Here is its syntax: 

(box) —^ \box(8-bit number) | \copy(8-bit number) 

1 \lastbox I \vsplit (8-bit number) to (dimen) 

I \hbox(box specification){(horizontal mode material)} 

I \vbox(box specification){(vertical mode material)} 

I \vtop(box specification){(vertical mode material)} 

(box specification) —>■ to (dimen) (filler) 

I spread (dimen) (filler) | (filler) 

The \lastbox operation is not permitted in math modes, nor is it allowed in vertical 

mode when the main vertical list has been entirely contributed to the current page. 

But it is allowed in horizontal modes and in internal vertical mode; in such modes it 

refers to (and removes) the last item of the current list, provided that the last item is 

an hbox or vbox. 

The three last alternatives for a (box) present us with a new situation: The 

(horizontal mode material) in an \hbox and the (vertical mode material) in a \vbox 

can’t simply be swallowed up in one command like an (8-bit number) or a (diinen); 

thousands of commands may have to be executed before that box is constructed and 

before the \setbox command can be completed. 

Here’s what really happens: A command like 

\setbox(number)=\hbox to(dimen){(horizontal mode material)} 

causes T)EX to evaluate the (number) and the (dimen), and to put those values on 

a “stack” for safe keeping. Then T^]X reads the ‘{’ (which stands for an explicit or 

implicit begin-group character, as explained earlier), and this initiates a new level of 

grouping. At this point TgX enters restricted horizontal mode and proceeds to execute 

commands in that mode. An arbitrarily complex box can now be constructed; the fact 

that this box is eventually destined for a \setbox command has no effect on T^]X’s 

behavior while the box is being built. Eventually, when the matching ‘}’ appears, 

TgX restores values that were changed by assignments in the group just ended; then 

it packages the hbox (using the size that was saved on the stack), and completes the 

\setbox command, returning to the mode it was in at the time of the \setbox. 



Chapter 24-' Summary of Vertical Mode 279 

Let us now consider other commands that, like assignments, are obeyed in 

basically the same way regardless of T^’s current mode. 

■ \relax. This is an easy one: TgX does nothing. 

■ }. This one is harder, because it depends on the current group. T^]X should 

now be working on a group that began with {; and it knows why it started that 

group. So it does the appropriate finishing actions, undoes the effects of non-global 

assignments, and leaves the group. At this point might leave its current mode and 

return to a mode that was previously in effect. 

■ \begingroup. When sees this command, it enters a group that must be 

terminated by \endgroup, not by }. The mode doesn’t change. 

■ \endgroup. T^X should currently be processing a group that began with 

\begingroup. Quantities that were changed by non-global assignments in that group 

are restored to their former values. leaves the group, but stays in the same mode. 

■ \show (token), \showbox (8-bit number), \showlists, \showthe(internal 

quantity). These commands are intended to help you figure out what thinks it 

is doing. The tokens following \showthe should be anything that can follow \the, as 

explained in Chapter 20. 

EXERCISE 24.7 

JL ^ Review the rules for what can follow \the in Chapter 20, and construct a 

formal syntax that defines (internal quantity) in a way that fits with the other syntax 

rules we have been discussing. 

■ \shipout(box). After the (box) is formed—possibly by constructing it explic- 

itly and changing modes during the construction, as explained for \hbox earlier—its 

contents are sent to the dvi file (see Chapter 23). 

■ \ignorespaces (optional spaces). reads (and expands) tokens, doing 

nothing until reaching one that is not a (space token). 

■ Xafterassignment(token). The (token) is saved in a special place; it will be 

inserted back into the input just after the next assignment command has been per- 

formed. An assignment need not follow immediately; if another Xafterassignment is 

performed before the next assignment, the second one overrides the first. If the next 

assignment is a Xsetbox, and if the assigned (box) is Xhbox or Xvbox or Xvtop, the 

(token) will be inserted just after the { in the box construction, not after the }; it will 

also come just before any tokens inserted by Xeveryhbox or Xeveryvbox. 

■ Xaftergroup(token). The (token) is saved on T^}X’s stack; it will be inserted 

back into the input just after the current group has been completed and its local 

assignments have been undone. If several Xaftergroup commands occur in the same 

group, the corresponding commands will be scanned in the same order; for example, 
‘{XaftergroupXaXaftergroupXb}’ yields ‘XaXb’. 

■ Xuppercase(general text), Xlowercase(general text). The (balanced text) in 

the general text is converted to uppercase form or to lowercase form using the Xuccode 

or Xlccode table, as explained in Chapter 7; no expansion is done. Then T^]X will read 

that (balanced text) again. 

■ Xmessage(general text), Xerrmessage(general text). The balanced text (with 

expansion) is written on the user’s terminal, using the format of error messages in the 



280 Chapter 24: Summary of Vertical Mode 

case of \errmessage. In the latter case the \errhelp tokens will be shown if they are 

nonempty and if the user asks for help. 

■ \openin(4-bit number) (equals) (filename), \closein(4-bit number). These 

commands open or close the specified input stream, for use in \read assignments as 

explained in Chapter 20. 

■ \immediate\openout(4-bit number)(equals)(filename), \iminediate\closeout 
(4-bit number). The specified output stream is opened or closed, for use in \write 

commands, as explained in Chapter 21. 

■ \irmnediate\write(number)(general text). The balanced text is written on 

the file that corresponds to the specified stream number, provided that such a file 

is open. Otherwise it is written on the user’s terminal and on the log file. (See 

Chapter 21; the terminal is omitted if the (number) is negative.) 

That completes the list of mode-independent commands, i.e., the commands 

that do not directly affect the lists that is building. When is in vertical mode 

or internal vertical mode, it is constructing a vertical list; when T^]X is in horizontal 

mode or restricted horizontal mode, it is constructing a horizontal list; when is 
in math mode or display math mode, it is constructing—guess what—a math list. In 

each of these cases we can speak of the “current list”; and there are some commands 

that operate in essentially the same way, regardless of the mode, except that they deal 

with different sorts of lists: 

■ \openout(4-bit number)(equals)(filename), \closeout(4-bit number), \write 
(number)(general text). These commands are recorded into a “whatsit” item, which 

is appended to the current list. The command will be performed later, during any 

\shipout that applies to this list, unless the list is part of a box inside leaders. 

■ \special(general text). The balanced text is expanded and put into a “what- 

sit” item, which is appended to the current list. The text will eventually appear in the 

dvi file as an instruction to subsequent software (see Chapter 21). 

■ \penalty(number). A penalty item carrying the specified number is appended 

to the current list. In vertical mode, also exercises the page builder (see below). 

■ \kern(dimen), \mkern(mudimen). A kern item carrying the specified dimen- 

sion is appended to the current list. In vertical modes this denotes a vertical space; 

otherwise it denotes a horizontal space. An \mkern is allowed only in math modes. 

■ \unpenalty, \unkern, \unskip. If the last item on the current list is respec- 

tively of type penalty, kern, or glue (possibly including leaders), that item is removed 

from the list. However, like \lastbox, these commands are not permitted in vertical 

mode if the main vertical list-so-far has been entirely contributed to the current page, 

since never removes items from the current page. 

■ \mark(generai text). The balanced text is expanded and put into a mark item, 

which is appended to the current list. The text may eventually become the replacement 

text for \topmark, \firstmark, \botmark, \splitfirstmark, and/or \splitbotmark, 
if this mark item ever gets into a vertical list. (Mark items can appear in horizontal 

lists and math lists, but they have no effect until they “migrate” out of their list. The 

migration process is discussed below and in Chapter 25.) 

■ \ insert (8-bit number) (filler) {(vertical mode material)}; the (8-bit number) 

must not be 255. The ‘{’ causes T^]X to enter internal vertical mode and a new 



Chapter 24: Summary of Vertical Mode 281 

level of grouping. When the matching ‘}’ is sensed, the vertical list is put into an 

insertion item that is appended to the current list using the values of \splittopskip, 

\splitmaxdepth, and \floatingpenalty that were current in the group just ended. 

(See Chapter 15.) This insertion item leads ultimately to a page insertion only if it 

appears in TgX’s main vertical list, so it will have to “migrate” there if it starts out in 

a horizontal list or a math list. also exercises the page builder (see below), after 

an \insert has been appended in vertical mode. 

■ \vadjust(filler){(vertical mode material)}. This is similar to \insert; the 

constructed vertical list goes into an adjustment item that is appended to the current 

list. However, \vadjust is not allowed in vertical modes. When an adjustment item 

migrates from a horizontal list to a vertical list, the vertical list inside the adjustment 

item is “unwrapped” and put directly into the enclosing list. 

* 

Almost everything we have discussed so far in this chapter could equally well have 

appeared in a chapter entitled “Summary of Horizontal Mode” or a chapter entitled 

“Summary of Math Mode,” because TgX treats all of the commands considered so far 

in essentially the same way regardless of the current mode. Chapters 25 and 26 are 

going to be a lot shorter than the present one, since it will be unnecessary to repeat 

all of the mode-independent rules. 

But now we come to commands that are mode-dependent; we shall conclude 

this chapter by discussing what 1^]X does with the remaining commands, when in 

vertical mode or internal vertical mode. 

One of the things characteristic of vertical mode is the page-building operation 

described in Chapter 15. T^]X periodically takes material that has been put on the 

main vertical list and moves it from the “contribution list” to the “current page.” At 

such times the output routine might be invoked. We shall say that exercises the 

page builder whenever it tries to empty the current contribution list. The concept of 

contribution list exists only in the outermost vertical mode, so nothing happens when 

TgX exercises the page builder in internal vertical mode. 

Another thing characteristic of vertical modes is the interline glue that is 

inserted before boxes, based on the values of \prevdepth and \baselineskip and 

\lineskip and \lineskiplimit as explained in Chapter 12. If a command changes 

\prevdepth, that fact is specifically mentioned below. The \prevdepth is initially set 

to — lOOOpt, a special value that inhibits interline glue, whenever T^]X begins to form 

a vertical list, except in the case of \halign and \noalign when the interline glue 
conventions of the outer list continue inside the inner one. 

■ \vskip(glue), \vf il, \vfill, \vss, \vf ilneg. A glue item is appended to the 

current vertical list. 

■ (leaders)(box or rule)(vertical skip). Here (vertical skip) refers to one of the 

five glue-appending commands just mentioned. The formal syntax for (leaders) and for 

(box or rule) is 

(leaders)  >• \leaders | \cleaders | \xleaders 

(box or rule) —^ (box) | (vertical rule) | (horizontal rule) 

(vertical rule) —^ \vrule(rule specification) 

(horizontal rule) —^ \hrule(rule specification) 



282 Chapter 2J^: Summary of Vertical Mode 

(rule specification) —^ (optional spaces) | (rule dimension) (rule specification) 
(rule dimension) —>■ width (dimen) | height (dimen) | depth (dimen) 

A glue item that produces leaders is appended to the current list. 

■ (space token). Spaces have no effect in vertical modes. 

■ (box). The box is constructed, and if the result is void nothing happens. 

Otherwise the current vertical list receives (1) interline glue, followed by (2) the new 

box, followed by (3) vertical material that migrates out of the new box (if the (box) 

was an \hbox command). Then \prevdepth is set to the new box’s depth, and T^]X 

exercises the page builder. 

■ \moveleft(dimen)(box), \moveright(dimen)(box). This acts exactly like an 

ordinary (box) command, but the new box that is appended to the vertical list is also 

shifted left or right by the specified amount. 

■ \unvbox(8-bit number), \unvcopy(8-bit number). If the specified box register 

is void, nothing happens. Otherwise that register must contain a vbox. The vertical 

list inside that box is appended to the current vertical list, without changing it in any 

way. The value of \prevdepth is not affected. The box register becomes void after 

\unvbox, but it remains unchanged by \unvcopy. 

■ (horizontal rule). The specified rule is appended to the current list. Then 

\prevdepth is set to — lOOOpt, this will prohibit interline glue when the next box is 

appended to the list. 

■ \halign(box specification){(alignment material)}. The (alignment material) 

consists of a preamble followed by zero or more lines to be aligned; see Chapter 22. 

TgX enters a new level of grouping, represented by the ‘{’ and ‘}’, within which changes 

to \tabskip will be confined. The alignment material can also contain optional occur- 

rences of ‘\noalign(filler){(vertical mode material)}’ between lines; this adds another 

level of grouping. operates in internal vertical mode while it works on the ma- 

terial in \noalign groups and when it appends lines of the alignment; the resulting 

internal vertical list will be appended to the enclosing vertical list after the alignment 

is completed, and the page builder will be exercised. The value of \prevdepth at the 

time of the \halign is used at the beginning of the internal vertical list, and the fi- 

nal value of \prevdepth is carried to the enclosing vertical list when the alignment is 

completed, so that the interline glue is calculated properly at the beginning and end of 

the alignment. also enters an additional level of grouping when it works on each 

individual entry of the alignment, during which time it acts in restricted horizontal 

mode; the individual entries will be hboxed as part of the final alignment, and their 

vertical material will migrate to the enclosing vertical list. The commands \noalign, 

\omit, \sp8Ln, \cr, \crcr, and & (where & denotes an explicit or implicit character of 

category 4) are intercepted by the alignment process, enroute to T^]X’s stomach, so 

they will not appear as commands in the stomach unless T^]X has lost track of what 

alignment they belong to. 

■ \indent. The \parskip glue is appended to the current list, unless Tp;X is in 

internal vertical mode and the current list is empty. Then enters unrestricted 

horizontal mode, starting the horizontal list with an empty hbox whose width is 

\parindent. The \everypar tokens are inserted into T^]X’s input. The page builder 

is exercised. When the paragraph is eventually completed, horizontal mode will come 

to an end as described in Chapter 25. 



Chapter 24: Summary of Vertical Mode 283 

■ \noindent. This is exactly like \indent, except that starts out in hori- 

zontal mode with an empty list instead of with an indentation. 

■ \par. The primitive \par command has no effect when is in vertical 

mode, except that the page builder is exercised in case something is present on the 

contribution list, and the paragraph shape parameters are cleared. 

■ {. A character token of category 1, or a control sequence like \bgroup that 

has been \let equal to such a character token, causes to start a new level of 

grouping. When such a group ends—with —T^]X will undo the effects of non-global 

assignments without leaving whatever mode it is in at that time. 

■ Some commands are incompatible with vertical mode because they are intrin- 

sically horizontal. When the following commands appear in vertical modes they cause 

T^X to begin a new paragraph: 

(horizontal command) —(letter) | (otherchar) | \char | (chardef token) 

1 \unhbox I \unhcopy | \valign | \vrule 

I \hskip I \hfil I \hfill | \hss ] \hfilneg 

I \accent 1 \discretionary | \- | \u | $ 

Here (letter) and (otherchar) stand for explicit or implicit character tokens of categories 

11 and 12. If any of these tokens occurs as a command in vertical mode or internal 

vertical mode, automatically performs an \indent command as explained above. 

This leads into horizontal mode with the \everypar tokens in the input, after which 

TgX will see the (horizontal command) again. 

■ \end. This command is not allowed in internal vertical mode. In regular 

vertical mode it terminates T^]X if the main vertical list is empty and \deadcycles=0. 

Otherwise TgX backs up the \end command so that it can be read again; then it 

exercises the page builder, after appending a box/glue/penalty combination that will 

force the output routine to act. (See the end of Chapter 23.) 

■ \dump. (Allowed only in INITEX, not in production versions of This 

command is treated exactly like \end, but it must not appear inside a group. It 

outputs a format file that can be loaded into T^]X’s memory at comparatively high 

speed to restore the current status. 

■ None of the above: If any other primitive command of occurs in vertical 

mode, an error message will be given, and will try to recover in a reasonable way. 

For example, if a superscript or subscript symbol appears, or if any other inherently 

mathematical command is given, TE;X will try to insert a ‘$’ (which will start a para- 

graph and enter math mode). On the other hand if a totally misplaced token like 

\endcsname or \omit or \eqno or # appears in vertical mode, will simply ignore it, 

after reporting the error. You might enjoy trying to type some really stupid input, just 

to see what happens. (Say ‘\tracingall’ first, as explained in Chapter 27, in order 

to get maximum information.) 

The first and most striking feature is the Verticality of composition, 
as opposed to the Horizontality of all anterior structural modes. 

— COCKBURN MUIR, Pagan or Christian? (1860) 

Sometimes when I have finished a book I give a summary of the whole of it. 

— ROBERT WILLIAM DALE, Nine Lectures on Preaching (1878) 



Summary of 
Horizontal Mode 



Chapter 25: Summary of Horizontal Mode 285 

Continuing the survey that was begun in Chapter 24, let us investigate exactly 
what TfeiX’s digestive processes can do, when TgX is building lists in horizontal 
mode or in restricted horizontal mode. 

* * * 

Three asterisks, just like those that appear here, can be found near the end of Chap- 

ter 24. Everything preceding the three asterisks in that chapter applies to horizontal 

mode as well as to vertical mode, so we need not repeat all those rules. In particular. 

Chapter 24 explains assignment commands, and it tells how kerns, penalties, marks, 

insertions, adjustments, and “whatsits” are put into horizontal lists. Our present goal 

is to consider the commands that have an intrinsically horizontal flavor, in the sense 

that they behave differently in horizontal mode than they do in vertical or math modes. 

One of the things characteristic of horizontal mode is the “space factor,” which 

modifies the width of spaces as described in Chapter 12. If a command changes the 

value of \spacef actor, that fact is specifically noted here. The space factor is initially 

set to 1000, when begins to form a horizontal list, except in the case of \valign 
and \noalign when the space factor of the outer list continues inside the inner one. 

■ \hskip(glue), \hf il, \hf ill, \hss, \hf ilneg. A glue item is appended to the 

current horizontal list. 

■ (leaders)(box or rule)(horizontal skip). Here (horizontal skip) refers to one of 

the five glue-appending commands just mentioned; the formal syntax for (leaders) and 

for (box or rule) is given in Chapter 24. A glue item that produces leaders is appended. 

■ (space token). Spaces append glue to the current list; the exact amount of 

glue depends on \spacefactor, the current font, and the \spaceskip and \xspaceskip 
parameters, as described in Chapter 12. 

■ \u. A control-space command appends glue to the current list, using the same 

amount that a (space token) inserts when the space factor is 1000. 

■ (box). The box is constructed, and if the result is void nothing happens. Oth- 

erwise the new box is appended to the current list, and the space factor is set to 1000. 

■ \raise(dimen)(box), \lower(dimen)(box). This acts exactly like an ordinary 

(box) command, but the new box that is appended to the horizontal list is also shifted 

up or down by the specified amount. 

■ \unhbox(8-bit number), \unhcopy(8-bit number). If the specified box register 

is void, nothing happens. Otherwise that register must contain an hbox. The horizontal 

list inside that box is appended to the current horizontal list, without changing it in 

any way. The value of \spacefactor is not affected. The box register becomes void 

after \unhbox, but it remains unchanged by \unhcopy. 

■ (vertical rule). The specified rule is appended to the current list, and the 

\spacefactor is set to 1000. 

■ \valign(box specification){(alignment material)}. The (alignment material) 

consists of a preamble followed by zero or more columns to be aligned; see Chap- 

ter 22. enters a new level of grouping, represented by the ‘{’ and ‘}’, within which 

changes to \tabskip will be confined. The alignment material can also contain op- 

tional occurrences of ‘\noalign(flller){(horizontal mode material)}’ between columns; 

this adds another level of grouping. TE;X operates in restricted horizontal mode while 



286 Chapter 25: Summary of Horizontal Mode 

it works on the material in \noalign groups and when it appends columns of the align- 

ment; the resulting internal horizontal list will be appended to the enclosing horizontal 

list after the alignment is completed. The value of \spacefactor at the time of the 

\valign is used at the beginning of the internal horizontal list, and the final value of 
\spacefactor is carried to the enclosing horizontal list when the alignment is com- 

pleted. The space factor is set to 1000 after each column; hence it affects the results 

only in \noalign groups. also enters an additional level of grouping when it works 

on each individual entry of the alignment, during which time it acts in internal vertical 

mode; the individual entries will be vboxed as part of the final alignment. 

■ \indent. An empty box of width \parindent is appended to the current list, 

and the space factor is set to 1000. 

■ \noindent. This command has no effect in horizontal modes. 

■ \par. The primitive \par command, also called \endgraf in plain T^]X, does 

nothing in restricted horizontal mode. But it terminates horizontal mode: The current 

list is finished off by doing \unskip \penalty 10000 \hskip\parf illskip, then it is 

broken into lines as explained in Chapter 14, and T^X returns to the enclosing vertical or 

internal vertical mode. The lines of the paragraph are appended to the enclosing vertical 

list, interspersed with interline glue and interline penalties, and with the migration of 

vertical material that was in the horizontal list. Then T^]X exercises the page builder. 

■ {. A character token of category 1, or a control sequence like \bgroup that 

has been \let equal to such a character token, causes T^]X to start a new level of 

grouping. When such a group ends—with will undo the effects of non-global 

assignments without leaving whatever mode it is in at that time. 

■ Some commands are incompatible with horizontal mode because they are in- 

trinsically vertical. When the following commands appear in unrestricted horizontal 

mode, they cause to conclude the current paragraph: 

(vertical command) —> \unvbox | \unvcopy | \halign | \hrule 

I \vskip I \vfil I \vfill | \vss | \vfilneg | \end | \duinp 

The appearance of a (vertical command) in restricted horizontal mode is forbidden, but 

in regular horizontal mode it causes to insert the token par into the input; after 

reading and expanding this par token, will see the (vertical command) again. 

(The current meaning of the control sequence \par will be used; pax may no longer 

stand for TgX’s \par primitive.) 

■ (letter), (otherchar), \char(8-bit number), (chardef token). This is the most 
common type of “command” in horizontal modes; it causes to append a character 

to the current list, using the current font. If two or more commands of this type occur 
in succession, TgX processes them all as a unit, converting pairs of characters into 

ligatures and/or inserting kerns as directed by the font information. Each character 

command for characters numbered 0 to 127 adjusts \spacef actor by means of the 

\sfcode table as described in Chapter 14; characters numbered 128 to 255 set the 

space factor to 1000. In unrestricted horizontal mode, a ‘\discretionary{}{}{}’ item 

is appended after a character whose code is the \hyphenchar of its font, or after a 

ligature formed from a sequence that ends with such a character. 

■ \accent(8-bit number)(optional assignments). Here (optional assignments) 

stands for zero or more (assignment) commands. If the assignments are not followed 



Chapter 25: Summary of Horizontal Mode 287 

by a (character), where (character) stands for any of the commands just discussed in 

the previous paragraph, treats \accent as if it were \char, except that the space 

factor is set to 1000. Otherwise the character that follows the assignment is accented by 

the character that corresponds to the (8-bit number). (The purpose of the intervening 

assignments is to allow the accenter and accentee to be in different fonts.) If the accent 

must be moved up or down, it is put into an hbox that is raised or lowered. Then the 

accent is effectively superposed on the character by means of kerns, in such a way that 

the width of the accent does not influence the width of the resulting horizontal list. 

Finally, TgX sets \spacefactor=1000. 

■ \/. If the last item on the current list is a character or ligature, an explicit 

kern for its italic correction is appended. 

■ \discretionary(general text)(general text)(general text). The three general 

texts are processed in restricted horizontal mode. They should contain only fixed-width 

things; hence they aren’t really very general in this case. More precisely, the horizontal 

list formed by each discretionary general text must consist only of characters, ligatures, 

kerns, boxes, and rules; there should be no glue or penalty items, etc. This command 

appends a discretionary item to the current list; see Chapter 14 for the meaning of a 

discretionary item. The space factor is not changed. 

■ \-. This command is equivalent to ‘\discretionary{-}{}{}’. 

■ $. A “math shift” character causes to enter math mode or display math 

mode in the following way; TgX looks at the following token without expanding it. If 

that token is a $ and if T)gX is currently in unrestricted horizontal mode, then 

breaks the current paragraph into lines as explained above (unless the current list is 

empty), returns to the enclosing vertical mode or internal vertical mode, calculates 

values like \prevgraf and \displaywidth and \predisplaysize, enters a new level of 

grouping, inserts the \everydisplay tokens into the input, exercises the page builder, 

processes ‘(math mode material)$$’ in display math mode, puts the display into the 

enclosing vertical list as explained in Chapter 19 (letting vertical material migrate), 

exercises the page builder again, increases \prevgraf by 3, and resumes horizontal 

mode again, with an empty list and with the space factor equal to 1000. (You got 

that?) Otherwise T^]X puts the looked-at token back into the input, enters a new level 

of grouping, inserts the \everymath tokens, and processes ‘(math mode material)$’; the 

math mode material is converted to a horizontal list and appended to the current list, 

surrounded by “math-on” and “math-off” items, and the space factor is set to 1000. 

One consequence of these rules is that ‘$$’ in restricted horizontal mode simply yields 

an empty math formula. 

■ None of the above: If any other primitive command of occurs in horizontal 

mode, an error message will be given, and will try to recover in a reasonable way. 

For example, if a superscript or subscript symbol appears, or if any other inherently 

mathematical command is given, will try to insert a ‘$’ just before the offending 

token; this will enter math mode. 

Otherwise. You may reduce all Verticals into Horizontals. 

— JOSEPH MOXON, A Tutor to Astronomie and Geographie (1659) 

! You can^t use Amoveleft^ in horizontal mode. 

— TEX (1982) 



Summary of 
Math Mode 



Chapter 26: Summary of Math Mode 289 

To conclude the survey that was begun in Chapter 24, let us investigate exactly 
what T^^X’s digestive processes can do when TgX is building lists in math mode 
or in display math mode. 

* 

Three asterisks, just like those that appear here, can be found near the end of Chap- 

ter 24. Everything preceding the three asterisks in that chapter applies to math mode as 

well as to vertical mode, so we need not repeat all those rules. In particular. Chapter 24 

explains assignment commands, and it tells how kerns, penalties, marks, insertions, ad- 

justments, and “whatsits” are put into math lists. Our present goal is to consider the 

commands that have an intrinsically mathematical flavor, in the sense that they behave 

differently in math mode than they do in vertical or horizontal modes. 

Math lists are somewhat different from T^X’s other lists because they contain 

three-pronged “atoms” (see Chapter 17). Atoms come in thirteen flavors: Ord, Op, 

Bin, Rel, Open, Close, Punct, Inner, Over, Under, Acc, Rad, and Vcent. Each atom 

contains three “fields” called its nucleus, superscript, and subscript; and each held is 

either empty or is filled with a math symbol, a box, or a subsidiary math list. Math 

symbols, in turn, have two components: a family number and a position number. 

It’s convenient to introduce a few more rules of syntax, in order to specify 

what goes into a math list: 

(character) —>■ (letter) | (otherchar) | \char(8-bit number) | (chardef token) 

(math character) —^ \mathchar( 15-bit number) | (mathchardef token) 

I \deliiiiiter(27-bit number) 

(math symbol) —(character) | (math character) 

(math held) —>■ (math symbol) | (filler){(math mode material)} 

(delim) —(filler)\deliiniter(27-bit number) 

I (filler) (letter) | (filler) (otherchar) 

We have already seen the concept of (character) in Chapter 25. Indeed, characters 

are T^X’s staple food: The vast majority of all commands that reach TTX’s digestive 

processes in horizontal mode are instances of the (character) command, which specifies 

a number between 0 and 255 that causes TTlX to typeset the corresponding character 

in the current font. When T^X is in math mode or display math mode, a (character) 

command takes on added significance: It specifies a number between 0 and 32767 = 
215 _ 2 xhis is done by replacing the character number by its \mathcode value, if the 

character number is between 0 and 127; character numbers in the range 128 to 255 are 

left unchanged. If the \mathcode value turns out to be 32768, however, the (character) 

is replaced by an active character token having the original character code (0 to 127); 

TgX forgets the original (character) and expands this active character according to the 

rules of Chapter 20. 
A (math character) defines a 15-bit number either by specifying it directly 

with \mathchar or in a previous \mathchardef, or by specifying a 27-bit Xdelimiter 
value; in the latter case, the least significant 12 bits are discarded. 

It follows that every (math symbol), as defined by the syntax above, specifies 

a 15-bit number, i.e., a number between 0 and 32767. Such a number can be repre- 
sented in the form 4096c + 256/ + a, where 0 < c < 8, 0 < / < 16, and 0 < a < 256. 

If c = 7, TE^ changes c to 0; and in this case if the current value of \f am is between 

0 and 15, TfeX also replaces / by \fam. This procedure yields, in all cases, a class 



290 Chapter 26: Summary of Math Mode 

number c between 0 and 6, a family number / between 0 and 15, and a position num- 

ber a between 0 and 255. initializes the value of \fain by implicitly putting the 

assignment ‘\fam=-l’ at the very beginning of \everymath and \everydisplay. Thus, 

the substitution of \fam for / will occur only if the user has explicitly changed \fain 

within the formula.) 

A (math field) is used to specify the nucleus, superscript, or subscript of an 

atom. When a (math field) is a (math symbol), the / and a numbers of that sym- 

bol go into the atomic field. Otherwise the (math field) begins with a which 

causes TgX to enter a new level of grouping and to begin a new math list; the en- 

suing (math mode material) is terminated by a at which point the group ends and 

the resulting math list goes into the atomic field. If the math list turns out to be 

simply a single Ord atom without subscripts or superscripts, the enclosing braces are 

effectively removed. 

A (delim) is used to define both a “small character” a in family / and a “large 

character” h in family p, where 0 < a,b < 255 and 0 < f.g < 15; these character 

codes are used to construct variable-size delimiters, as explained in Appendix G. If the 

(delim) is given explicitly in terms of a 27-bit number, the desired codes are obtained 

by interpreting that number as c • 2^^ + / • 2^^ + a • 2^^ -\- g ■ 2^ b, ignoring the value 

of c. Otherwise the delimiter is specified as a (letter) or (otherchar) token, and the 

24-bit \delcode value of that character is interpreted as / • 2^*^ 4- a • 2^^ + p • 2® + 5. 

Now let’s study the individual commands as Tp;X obeys them in math mode, 

considering first the ones that have analogs in vertical and/or horizontal mode: 

■ \hskip(glue), \hfil, \hfill, \hss, \hfilneg, \mskip(muglue). A glue item 

is appended to the current math list. 

■ (leaders)(box or rule)(mathematical skip). Here (mathematical skip) refers to 

one of the six glue-appending commands just mentioned; the formal syntax for (leaders) 

and for (box or rule) is given in Chapter 24. A glue item that produces leaders is 

appended to the current list. 

■ \nonscript. A special glue item of width zero is appended; it will have 

the effect of cancelling the following item on the list, if that item is glue and if the 
\nonscript is eventually typeset in “script style” or in “scriptscript style.” 

■ (space token). Spaces have no effect in math modes. 

■ \u. A control-space command appends glue to the current list, using the same 

amount that a (space token) inserts in horizontal mode when the space factor is 1000. 

■ (box). The box is constructed, and if the result is void nothing happens. 

Otherwise a new Ord atom is appended to the current math list, and the box becomes 

its nucleus. 

■ \raise(dimen)(box), \lower(dimen)(box). This acts exactly like an ordinary 

(box) command, but the new box that is put into the nucleus is also shifted up or down 

by the specified amount. 

■ \vcenter(box specification){(vertical mode material)}. A vbox is formed as 

if ‘\vcenter’ had been ‘\vbox’. Then a new Vcent atom is appended to the current 

math list, and the box becomes its nucleus. 

■ (vertical rule). A rule is appended to the current list (not as an atom). 



Chapter 26: Summary of Math Mode 291 

■ \halign(box specification){(alignment material)}. This command is allowed 

only in display math mode, and only when the current math list is empty. The align- 

ment is carried out exactly as if it were done in the enclosing vertical mode (see Chap- 

ter 24), except that the lines are shifted right by the \di splay indent. The closing 

‘}’ may be followed by optional (assignment) commands, after which ‘$$’ must con- 

clude the display. will insert the \abovedisplayskip and \belowdisplayskip glue 

before and after the result of the alignment. 

■ \indent. An empty box of width Xpeirindent is appended to the current list, 

as the nucleus of a new Ord atom. 

■ \noindent. This command has no effect in math modes. 

■ {(math mode material)}. A character token of category 1, or a control se- 

quence like \bgroup that has been \let equal to such a character token, causes 

to start a new level of grouping and also to begin work on a new math list. When such 

a group ends—with ‘}’—uses the resulting math list as the nucleus of a new Ord 

atom that is appended to the current list. If the resulting math list is a single Acc 

atom, however (i.e., an accented quantity), that atom itself is appended. 

• (math symbol). (This is the most common command in math mode; see the 

syntax near the beginning of this chapter.) A math symbol determines three values, 

c, /, and a, as explained earlier. appends an atom to the current list, where the 

atom is of type Ord, Op, Bin, Rel, Open, Close, or Punct, according as the value of c is 

0, 1, 2, 3, 4, 5, or 6. The nucleus of this atom is the math symbol defined by / and a. 

■ (math atom)(math field). A (math atom) command is any of the following: 

\mathord | \mathop | \mathbin [ \mathrel | \mathopen 

I \mathclose | \mathpunct | \mathinner | \underline | \overline 

processes the (math field), then appends a new atom of the specified type to the 

current list; the nucleus of this atom contains the specified field. 

■ \mathac cent (15-bit number) (math field). converts the (15-bit number) 

into c, /, and a as it does with any Nmathchax. Then it processes the (math field) and 

appends a new Acc atom to the current list. The nucleus of this atom contains the 

specified field; the accent character in this atom contains (u,/). 

■ \radical(27-bit number)(math field). converts the (27-bit number) into 

a, /, 6, and g as it does with any \delimiter. Then it processes the (math field) and 

appends a new Rad atom to the current list. The nucleus of this atom contains the 

specified field; the delimiter field in this atom contains (u,/) and {b,g). 

m (superscript)(math field). A (superscript) command is an explicit or implicit 

character token of category 7. If the current list does not end with an atom, a new Ord 

atom with all fields empty is appended; thus the current list will end with an atom, 

in all cases. The superscript field of this atom should be empty; it is made nonempty 

by changing it to the result of the specified (math field). 

■ (subscript)(math field). A (subscript) command is an explicit or implicit char- 

acter token of category 8. It acts just like a (superscript) command, except, of course, 

that it affects the subscript field instead of the superscript field. 

■ Xdisplaylimits, Mimits, \noliniits. These commands are allowed only if 

the current list ends with an Op atom. They modify a special field in that Op atom. 



292 Chapter 26: Summary of Math Mode 

specifying what conventions should be used with respect to limits. The normal value 

of that field is \displaylimits. 

■ \/. A kern of width zero is appended to the current list. (This will have the 

effect of adding the italic correction to the previous character, if the italic correction 

wouldn’t normally have been added.) 

■ \discretionary(general text)(general text)(general text). This command is 

treated just as in horizontal mode (see Chapter 25), but the third (general text) must 

produce an empty list. 

■ \-. This command is equivalent to ‘\discretionary{-}{}{}’; the is there- 

fore interpreted as a hyphen, not as a minus sign. 

■ \mathchoice(general text)(general text)(general text)(general text). The four 

general texts are each treated as sub formulas (i.e., like the second alternative in the 

definition of (math field)). The four math lists defined in this way are recorded in a 

“choice item” that is appended to the current list. 

■ \displaystyle, \textstyle, \scriptstyle, \scriptscriptstyle. A style- 

change item that corresponds to the specified style is appended to the current list. 

■ \left(delim)(math mode material)\right(delim). T^]X begins a new group, 

and processes the (math mode material) by starting out with a new math list that 

begins with a left boundary item containing the first delimiter. This group must be 

terminated by ‘\right’, at which time the internal math list is completed with a right 

boundary item containing the second delimiter. Then appends an Inner atom to 

the current list; the nucleus of this atom contains the internal math list. 

■ (generalized fraction command). This command takes one of six forms: 

\over I \atop | \above(dimen) 
I \overwithdelims(delim)(delim) 

I \atopwithdelims(delim)(delim) 

I \abovewithdelims(delim) (delim) (dimen) 

(See Chapter 17.) When TjgX sees a (generalized fraction command) it takes the entire 

current list and puts it into the numerator field of a generalized fraction item. The 

denominator field of this new item is temporarily empty; the left and right delimiter 

fields are set equal to the specified delimiter codes. T^]X saves this generalized fraction 

item in a special place associated with the current level of math mode processing. 

(There should be no other generalized fraction item in that special place, because 

constructions like ‘a\over b\over c’ are illegal.) Then TgX makes the current list 

empty and continues to process commands in math mode. Later on, when the current 

level of math mode is completed (either by coming to a ‘$’ or a or a \right, 

depending on the nature of the current group), the current list will be moved into the 

denominator field of the generalized fraction item that was saved; then that item, all by 

itself, will take the place of the entire list. However, in the special case that the current 

list began with \left and will end with \right, the boundary items will be extracted 

from the numerator and denominator of the generalized fraction, and the final list will 

consist of three items: left boundary, generalized fraction, right boundary. (If you 

want to watch the process by which math lists are built, you might find it helpful to 

type ‘\showlists’ while is processing the denominator of a generalized fraction.) 



Chapter 26: Summary of Math Mode 293 

■ (eqno)(math mode material)$. Here (eqno) stands for either \eqno or \leqno; 

these commands are allowed only in display math mode. Upon reading (eqno), 

enters a new level of grouping, inserts the \everymath tokens, and enters non-display 

math mode to put the (math mode material) into a math list. When that math list is 

completed, TgX converts it to a horizontal list and puts the result into a box that will 

be used as the equation number of the current display. The closing $ token will be put 

back into the input, where it will terminate the display. 

■ $. If TgpC is in display math mode, it reads one more token, which must also 

be $. In either case, the math-shift command terminates the current level of math 

mode processing and ends the current group, which should have begun with either $ 

or (eqno). Once the math list is finished, it is converted into a horizontal list as 

explained in Appendix G. 

■ None of the above: If any other primitive command of occurs in math 

mode, an error message will be given, and will try to recover in a reasonable way. 

For example, if a \par command appears, or if any other inherently non-mathematical 

command is given, will try to insert a ‘$’ just before the offending token; this will 

lead out of math mode. On the other hand if a totally misplaced token like \endcsname 

or \omit or # appears in math mode, will simply ignore it, after reporting the error. 

You might enjoy trying to type some really stupid input, just to see what happens. (Say 

‘\tracingall’ first, as explained in Chapter 27, in order to get maximum information.) 

EXERCISE 26.1 

JL ^ Powers of ten: The whole TgiX language has now been summarized completely. 

To demonstrate how much you know, name all of the ways you can think of in which 

the numbers 10, 100, 1000, 10000, and 100000 have special significance to T^]X. 

/^►EXERCISE 26.2 

^ Powers of two: Name all of the ways you can think of in which the numbers 

8, 16, 32, 64, 128, 256, ... have special significance to T^]X. 

Mathematics is known in the trade as difficult, or penalty, copy 
because it is slower, more difticult, and more expensive to set in type 
than any other kind of copy normally occurring in books and Journals. 

— UNIVERSITY OF CHICAGO PRESS, A Manual of Style (1969) 

The tale of Math is a complex one, 
and it resists both a simple plot summary 

and a concise statement of its meaning. 

— PATRICK K. FORD, The Mabinogi (1977) 



Recovery from 
Errors 



Chapter 21: Recovery from Errors 295 

OK, everything you need to know about has been explained—unless you 
happen to be fallible. If you don’t plan to make any errors, don’t bother to read 
this chapter. Otherwise you might find it helpful to make use of some of the 
ways that tries to pinpoint bugs in your manuscript. 

In the trial runs you did when reading Chapter 6, you learned the general 
form of error messages, and you also learned the various ways in which you can 
respond to 1^’s complaints. With practice, you will be able to correct most 
errors “online,” as soon as has detected them, by inserting and deleting a 
few things. The right way to go about this is to be in a mellow mood when 
you approach 1^1^, and to regard the error messages that you get as amusing 
puzzles—“Why did the machine do that?”—rather than as personal insults. 

TE;X knows how to issue more than a hundred different sorts of error 
messages, and you probably never will encounter all of them, because some 
types of mistakes are very hard to make. We discussed the “undefined control 
sequence” error in Chapter 6; let’s take a look at a few of the others now. 

If you misspell the name of some unit of measure—for example, if you 
type ‘\hsize=4im’ instead of ‘\hsize=4in’—you’ll get an error message that 
looks something like this: 

! Illegal unit of measure (pt inserted). 
<to be read again> 

i 
<to be read again> 

m 
<*> \hsize=4im 

\input story 
7 

TgX needs to see a legal unit before it can proceed; so in this case it has implicitly 
inserted ‘pt’ at the current place in the input, and it has set \hsize=4pt. 

What’s the best way to recover from such an error? Well, you should 
always type ‘H’ or ‘h’ to see the help message, if you aren’t sure what the error 
message means. Then you can look at the lines of context and see that 
will read ‘i’ and then ‘m’ and then ‘ \input story ’ if you simply hit (return) 
and carry on. Unfortunately, this easy solution isn’t very good, because the ‘i’ 
and ‘m’ will be typeset as part of the text of a new paragraph. A much more 
graceful recovery is possible in this case, by first typing ‘2’. This tells T^]X to 
discard the next two tokens that it reads; and after has done so, it will stop 
again in order to give you a chance to look over the new situation. Here is what 
you will see: 

<recently read> m 

<*> \hsize=4im 

7 

\input story 



296 Chapter 21: Recovery from Errors 

Good; the ‘i’ and ‘m’ are read and gone. But if you hit (return) now, Tj^ will 
‘\input story’ and try to typeset the story.tex file with \hsize=4pt; that 
won’t be an especially exciting experiment, because it will simply produce dozens 
of overfull boxes, one for every syllable of the story. Once again there’s a better 
way: You can insert the command that you had originally intended, by typing 

I\hsize=4in 

now. This instructs to change \hsize to the correct value, after which it 
will \input story and you’ll be on your way. 

► EXERCISE 27.1 
Ben User typed ‘8’, not ‘2’, in response to the error message just considered; his 
idea was to delete ‘i’, ‘m’, ‘\input’, and the five letters of ‘story’. But T^’s 
response was 

<♦> \hsize=4im \input stor 

y 

Explain what happened. 

T^ usually tries to recover from errors either by ignoring a command 
that it doesn’t understand, or by inserting something that will keep it happy. For 
example, we saw in Chapter 6 that TgX ignores an undefined control sequence; 
and we just observed that inserts ‘pt’ when it needs a physical unit of 
measure. Here’s another example where T^]X puts something in: 

! Missing $ inserted. 
<inserted text> 

$ 

<to be read again> 

1.11 the fact that 32768=2" 
{15} wasn’t interesting 

? H 
I’ve inserted a begin-math/end-math symbol since I think 
you left one out. Proceed, with fingers crossed. 

(The user has forgotten to enclose a formula in $ signs, and TgX has tried to 
recover by inserting one.) In this case the (inserted text) is explicitly shown, 
and it has not yet been read; by contrast, our previous example illustrated a 
case where had already internalized the ‘pt’ that it had inserted. Thus the 
user has a chance here to remove the inserted ‘$’ before really sees it. 

What should be done? The error in this example occurred before 
noticed anything wrong; the characters ‘32768=2’ have already been typeset in 
horizontal mode. There’s no way to go back and cancel the past, so the lack of 
proper spacing around the ‘=’ cannot be fixed. Our goal of error recovery in this 
case is therefore not to produce perfect output; we want rather to proceed in some 



Chapter 21: Recovery from Errors 297 

way so that will pass by the present error and detect subsequent ones. If we 
were simply to hit (return) now, our aim would not be achieved, because 
would typeset the ensuing text as a math formula: wasn'tinieresting .. 2 \ 
another error would be detected when the paragraph is found to end before any 
closing ‘$’ has appeared. On the other hand, there’s a more elaborate way to 
recover, namely to type ‘6’ and then this deletes ‘$"{15}’ and inserts 
a correct partial formula. But that’s more complicated than necessary. The best 
solution in this case is to type just ‘2’ and then go on; will typeset the 
incorrect equation ‘32768=215’, but the important thing is that you will be able 
to check out the rest of the document as if this error hadn’t occurred. 

► EXERCISE 27.2 

Here’s a case in which a backslash was inadvertently omitted: 

! Missing control sequence inserted. 

<inserted text> 

\inaccessible 

<to be read again> 

m 

1.10 \def m 

acrofreplacement} 

TgX needs to see a control sequence after ‘\def’, so it has inserted one that will allow 

the processing to continue. (This control sequence is shown as ‘\inaccessible’, but 

it has no relation to any control sequence that you can actually specify in an error-free 

manuscript.) If you simply hit (return) at this point, will define the inaccessible 

control sequence, but that won’t do you much good; later references to \macro will be 

undefined. Explain how to recover from this error so that the effect will be the same 

as if line 10 of the input file had said ‘\def \macro{replacement}’. 

► EXERCISE 27.3 

When you use the ‘I’ option to respond to an error message, the rules of 

Chapter 8 imply that TDX removes all spaces from the right-hand end of the line. 

Explain how you can use the ‘I’ option to insert a space, in spite of this fact. 

Some of the toughest errors to deal with are those in which you make 
a mistake on line 20 (say), but cannot tell that anything is amiss until it 
reaches line 25 or so. For example, if you forget a ‘}’ that completes the argu- 
ment to some macro, T^X won’t notice any problem until reaching the end of 
the next paragraph. In such cases you probably have lost the whole paragraph; 
but TgX will usually be able to get straightened out in time to do the subse- 
quent paragraphs as if nothing had happened. A “runaway argument” will be 
displayed, and by looking at the beginning of that text you should be able to 
figure out where the missing ‘}’ belongs. 

It’s wise to remember that the first error in your document may well 
spawn spurious “errors” later on, because anomalous commands can inflict seri- 
ous injury on T^’s ability to cope with the subsequent material. But most of 
the time you will find that a single run through the machine will locate all of 
the places in which your input conflicts with TgX’s rules. 



298 Chapter 21: Recovery from Errors 

When your error is due to misunderstanding rather than mistyping, the 
situation is even more serious: TfeX’s error messages will probably not be very 
helpful, even if you ask for help. If you have unknowingly redefined an 
important control sequence—for example, if you have said ‘\def \box{ . . . >’—all 
sorts of strange disasters might occur. Computers aren’t clairvoyant, and 
can only explain what looks wrong from its own viewpoint; such an explanation 
is bound to be mysterious unless you can understand the machine’s attitude. 
The solution to this problem is, of course, to seek human counsel and advice; or, 
as a last resort, to read the instructions in Chapters 2,3, ..., 26. 

► EXERCISE 27.4 

J. H. Quick (a student) once defined the following set of macros: 

\newcount\serialnumber 

\def\firstnumber{\serialniimber=0 } 

\def\nextnumber{\advcLnce \serialnumber by 1 

\nuinber\serialnumber)\nobreak\hskip.2em } 

Thus he could type, for example, 

\firstnumber 

\nextnumber xx, \nextnumber yy, aind \nextnumber zz 

and T^]X would typeset T) xx, 2) yy, and 3) zz’. Well, this worked fine, and he showed 

the macros to his buddies. But several months later he received a frantic phone call; 

one of his friends had just encountered a really weird error message: 

! Missing number, treated as zero. 

<to be read again> 

c 

1.107 \nextnumber minusc 

ule chances of error 
7 

Explain what happened, and advise Quick what to do. 

Sooner or later—hopefully sooner—you’ll get T^ to process your whole 
file without stopping once to complain. But maybe the output still won’t be right; 
the mere fact that T^ didn’t stop doesn’t mean that you can avoid proofreading. 
At this stage it’s usually easy to see how to fix typographic errors by correcting 
the input. Errors of layout can be overcome by using methods we have discussed 
before: Overfull boxes can be cured as described in Chapter 6; bad breaks can 
be avoided by using ties or \hbox commands as discussed in Chapter 14; math 
formulas can be improved by applying the principles of Chapters 16-19. 

But your output may contain seemingly inexplicable errors. For exam- 
ple, if you have specified a font at some magnification that is not supported by 
your printing software, TEX will not know that there is any problem, but the 
program that converts your dvi file to hardcopy might not tell you that it has 
substituted an “approximate” font for the real one; the resultant spacing may 
look quite horrible. 



Chapter 21: Recovery from Errors 299 

If you can’t find out what went wrong, try the old trick of simplifying 
your program: Remove all the things that do work, until you obtain the shortest 
possible input file that fails in the same way as the original. The shorter the file, 
the easier it will be for you or somebody else to pinpoint the problem. 

Perhaps you’ll wonder why didn’t put a blank space in some posi- 
tion where you think you typed a space. Remember that ignores spaces that 
follow control words, when it reads your file. also ignores a space after a 
(number) or a (unit of measure) that appears as an argument to a primitive com- 
mand; but if you are using properly designed macros, such rules will not concern 
you, because you will probably not be using primitive commands directly.) 

On the other hand, if you are designing macros, the task of troubleshooting 

X can be a lot more complicated. For example, you may discover that I]EX has 

emitted three blank spaces when it processed some long sequence of complicated code, 

consisting of several dozen commands. How can you find out where those spaces crept 

in? The answer is to set ‘\tracingcoininaiids=l’, as mentioned in Chapter 13. This 

tells TTX to put an entry in your log file whenever it begins to execute a primitive 

command; you’ll be able to see when the command is ‘blank space’. 

Most implementations of TRX allow you to interrupt the program in some way. 

This makes it possible to diagnose the causes of infinite loops. switches to 

\errorstopmode when interrupted; hence you have a chance to insert commands into 

the input: You can abort the run, or you can \show or change the current contents of 

control sequences, registers, etc. You can also get a feeling for where is spending 

most of its time, if you happen to be using an inefficient macro, since random interrupts 

will tend to occur in whatever place T^X visits most often. 

Sometimes an error is so bad that TRX is forced to quit prematurely. For 

example, if you are running in \batchmode or \nonstopmode, TRX makes an 

“emergency stop” if it needs input from the terminal; this happens when a necessary 

file cannot be opened, or when no \end command was found in the input document. 

Here are some of the messages you might get just before gives up the ghost: 

Fatal format error; I’m stymied. 

This means that the preloaded format you have specified cannot be used, because it 

was prepared for a different version of T^]X. 

That makes 100 errors; please try again. 

TE;X has scrolled past 100 errors since the last paragraph ended, so it’s probably in 

an endless loop. 

Interwoven alignment preambles axe not allowed. 

If you have been so devious as to get this message, you will understand it, and you will 

deserve no sympathy. 

I can’t go on meeting you like this. 

A previous error has gotten out of whack. Fix it and try again. 

This can’t happen. 

Something is wrong with the TRX you are using. Complain fiercely. 



300 Chapter 27: Recovery from Errors 

There’s also a dreadful message that issues only with great reluctance. 

But it can happen; 

TeX capacity exceeded, sorry. 

This, alas, means that you have tried to stretch too far. The message will tell 

you what part of T^X’s memory has become overloaded; one of the following fourteen 

things will be mentioned: 

number of strings (names of control sequences and files) 

pool size (the characters in such names) 

main memory size (boxes, glue, breakpoints, token lists, characters, etc.) 

hash size (control sequence names) 

font memory (font metric data) 

exception dictionairy (hyphenation exceptions) 

input stack size (simultaneous input sources) 

semantic nest size (unfinished lists being constructed) 

pairameter stack size (macro parameters) 

buffer size (characters in lines being read from files) 

save size (values to restore at group ends) 

text input levels (\input files and error insertions) 

grouping levels (unfinished groups) 

pattern memory (hyphenation pattern data) 

current amount of memory available will also be shown. 

If you have a job that doesn’t overflow T^)X’s capacity, yet you want to see 

just how closely you have approached the limits, just set \tracingstats to 

a positive value before the end of your job. The log file will then conclude with a 

report on your actual usage of the first eleven things named above (i.e., the number of 

strings, ..., the save size), in that order. Furthermore, if you set \tracingstats equal 

to 2 or more, will show its current memory usage whenever it does a \shipout 

command. Such statistics are broken into two parts; ‘490&5950’ means, for example, 

that 490 words are being used for “large” things like boxes, glue, and breakpoints, 

while 5950 words are being used for “small” things like tokens and characters. 

What can be done if T^’s capacity is exceeded? All of the above-listed 

components of the capacity can be increased, provided that your computer 

is large enough; in fact, the space necessary to increase one component can usually 

be obtained by decreasing some other component, without increasing the total size of 

T^]X. If you have an especially important application, you may be able to convince 

your local system people to provide you with a special whose capacities have been 

hand-tailored to your needs. But before taking such a drastic step, be sure that you are 

using T]E;X properly. If you have specified a gigantic paragraph or a gigantic alignment 

that spans more than one page, you should change your approach, because has to 

read all the way to the end before it can complete the line-breaking or the alignment 

calculations; this consumes huge amounts of memory space. If you have built up an 

enormous macro library, you should remember that has to remember all of the 

replacement texts that you define; therefore if memory space is in short supply, you 

should load only the macros that you need. (See Appendices B and D, for ideas on 

how to make macros more compact.) 



Chapter 21: Recovery from Errors 301 

diately 

Some erroneous programs will overflow any finite memory capacity. For 

example, after ‘\def\recurse{(\recurse)}’, the use of \recurse will imme- 

bomb out: 

! TeX capacity exceeded, sorry [input stack size=80]. 

\recurse ->(\recurse 

) 
\recurse ->(\recurse 

) 

The same sort of error will obviously occur no matter how much you increase T^]X’s 

input stack size. 

The special case of “save size” capacity exceeded is one of the most trou- 

^ JL blesome errors to correct, especially if you run into the error only on long 

jobs. generally uses up two words of save size whenever it performs a non-global 

assignment to some quantity whose previous value was not assigned at the same level 

of grouping. When macros are written properly, there will rarely be a need for more 

than 100 or so things on the “save stack”; but it’s possible to make save stack usage 

grow without limit if you make both local and global assignments to the same variable. 

You can figure out what puts on the save stack by setting \tracingrestores=l; 

then your log file will record information about whatever is removed from the stack at 

the end of a group. For example, let \a stand for the command ‘\advaiice\day by 1’; 

let \g stand for ‘\global\advance\day by 1’; and consider the following commands: 

\day=l {\a\g\a\g\a} 

The first \a sets \day=2 and remembers the old value \day=l by putting it on the 

save stack. The first \g sets \day=3, globally; nothing needs to go on the save stack 

at the time of a global assignment. The next \a sets \day=4 and remembers the 

old value \day=3 on the save stack. Then \g sets \day=5; then \a sets \day=6 and 

remembers \day=5. Finally the causes to go back through the save stack; if 

\tracingrestores=l at this point, the log file will get the following data: 

{restoring \day=5} 

{retaining \day=5} 

{retaining \day=5} 

Explanation: The \day parameter is first restored to its global value 5. Since this 

value is global, it will be retained, so the other saved values (\day=3 and \day=l) are 

essentially ignored. Moral: If you find retaining a lot of values, you have a set of 

macros that could cause the save stack to overflow in large enough jobs. To prevent 

this, it’s usually wise to be consistent in your assignments to each variable that you 

use; the assignments should either be global always or local always. 

T^X provides several other kinds of tracing in addition to \tracingstats and 
\tracingrestores: We have already discussed Xtracingcommands in Chapters 

13 and 20, \tracingparagraphs in Chapter 14, \tracingpages in Chapter 15, and 
Xtracingmacros in Chapter 20. There is also Xtracinglostchars, which (if positive) 

causes TgX to record each time a character has been dropped because it does not 
appear in the current font; and Xtracingoutput, which (if positive) causes to 



302 Chapter 21: Recovery from Errors 

display in symbolic form the contents of every box that is being shipped out to the 

dvi file. The latter allows you to see if things have been typeset properly, if you’re 

trying to decide whether some anomaly was caused by or by some other software 

that acts on T^X’s output. 

When displays a box as part of diagnostic output, the amount of data 

is controlled by two parameters called \showboxbreadth and \showboxdepth. 

The first of these, which plain sets equal to 5, tells the maximum number of items 

shown per level; the second, which plain sets to 3, tells the deepest level. For 

example, a small box whose full contents are 

\hbox(4.30554+1.94444)x21.0, glue set 0.5 

.\hbox(4.30554+1.94444)x5.0 

..\tenrm g 

.\glue 5.0 plus 2.0 

.\tenrm I (ligature  ) 

will be abbreviated as follows when \showboxbreadth=l and \showboxdepth=l: 

\hbox(4.30554+1.94444)x21.0, glue set 0.5 

.\hbox(4.30554+1.94444)x5.0 [] 

. etc. 

And if you set \showboxdepth=0, you get only the top level: 

\hbox(4.30554+1.94444)x21.0, glue set 0.5 [] 

(Notice how ‘ [] ’ and ‘etc.’ indicate that the data has been truncated.) 

A nonempty hbox is considered “overfull” if its glue cannot shrink to achieve 

the specified size, provided that \hbadness is less than 100 or that the excess 

width (after shrinking by the maximum amount) is more than \hfuzz. It is “tight” if 

its glue shrinks and the badness exceeds \hbadness; it is “loose” if its glue stretches 

and the badness exceeds \hbadness but is not greater than 100; it is “underfull” if 

its glue stretches and the badness is greater than \hbadness and greater than 100. 

Similar remarks apply to nonempty vboxes. prints a warning message and displays 

the offending box, whenever such anomalies are discovered. Empty boxes are never 

considered to be anomalous. 

When an alignment is “overfull” or “tight” or “loose” or “underfull,” you don’t 

^ get a warning message for every aligned line; you get only one message, and 

TgX displays a prototype row (or, with \valign, a prototype column). For example, 

suppose you say ‘\tabskip=0pt pluslOpt \halign to200pt{&#\hf il\cr. . .\cr}’, and 

suppose that the aligned material turns out to make two columns of widths 50 pt and 

60 pt, respectively. Then you get the following message: 

Underfull \hbox (badness 2698) in alignment at lines 11—18 

[] [] 
\hbox(0.0+0.0)x200.0, glue set 3.0 

.\glue(\tabskip) 0.0 plus 10.0 

.\unsetbox(0.0+0.0)x50.0 

.\glue(\tabskip) 0.0 plus 10.0 

.\unsetbox(0.0+0.0)x60.0 

.\glue(\tabskip) 0.0 plus 10.0 



Chapter 21: Recovery from Errors 303 

The “unset boxes” in a prototype row show the individual column widths. In this case 

the tabskip glue has to stretch 3.0 times its stretchability, in order to reach the 200 pt 

goal, so the box is underfull. (According to the formula in Chapter 14, the badness 

of this situation is 2700; actually uses a similar but more efficient formula, so it 

computes a badness of 2698.) Every line of the alignment will be underfull, but only 

the prototype row will be displayed in a warning message. “Overfull rules” are never 

appended to the lines of overfull alignments. 

fThe \tracing. , . commands put all of their output into your log file, unless 

the \tracingonline parameter is positive; in the latter case, all diagnostic 

information goes to the terminal as well as to the log file. Plain has a \tracingall 

macro that turns on the maximum amount of tracing of all kinds. It not only sets up 

Xtracingcommands, \tracingrestores, \tracingparagraphs, and so on, it also sets 

\tracingonline=l, and it sets \showboxbreadth and \showboxdepth to extremely high 

values, so that the entire contents of all boxes will be displayed. 

Some production versions of 'T^]|X have been streamlined for speed. These im- 

^ X plementations don’t look at the values of the parameters \tracingparagraphs, 
\tracingpages, \tracingstats, and \tracingrestores, because runs faster when 

it doesn’t have to maintain statistics or keep tabs on whether tracing is required. If 

you want all of T^]X’s diagnostic tools, you should be sure to use the right version. 

If you set \pausing=l, T^]X will give you a chance to edit each line of input 

as it is read from the file. In this way you can make temporary patches (e.g., 

you can insert \show. . . commands) while you’re troubleshooting, without changing 

the actual contents of the file, and you can keep running at human speed. 

Final hint: When working on a long manuscript, it’s best to prepare only 

a few pages at a time. Set up a “galley” file and a “book” file, and enter your 

text on the galley file. (Put control information that sets up your basic format 

at the beginning of this file; an example of galley.tex appears in Appendix E.) 

After the galleys come out looking right, you can append them to the book file; 

then you can run the book file through T^}X occasionally, in order to see how the 

pages really fit together. For example, when the author prepared this manual, 

he did one chapter at a time, and the longer chapters were split into subchapters. 

EXERCISE 27.5 

^ ^ Final exercise: Find all of the lies in this manual, and all of the jokes. 

Final exhortation: GO FORTH now and create masterpieces of the publishing art! 

Who can understand his errors? 

— Psalm 19:12 (c. 1000 B.C.) 

It is one thing, to shew a Man that he is in an Error, 
and another, to put him in possession of Truth. 

— JOHN LOCKE, An Essay Concerning Humane Understanding (1690) 



Answers to 
All the 

Exercises 



Appendix A: Answers to All the Exercises 305 

The preface to this manual points out the wisdom of trying to figure out each 
exercise before you look up the answer here. But these answers are intended to 
be read, since they occasionally provide additional information that you are best 
equipped to understand when you have just worked on a problem. 

1.1. A TT^Xnician (underpaid); sometimes also called a Tracker. 

2.1. Alice said, always use an en-dash instead of a hyphen when 

specifying page numbers like ‘480—491^ in a bibliography.’’ (The wrong 

answer to this question ends with ’480-491’ in a bibliography.") 

2.2. You get em-dash and hyphen (—), which looks awful. 

2.3. fluffier firefly fisticuffs, flagstaff fireproofing, chiffchaff and riffraff. 

2.4. ‘ ‘\thinspace ‘; and either or or something similar. Reason: 

There’s usually less space preceding a single left quote than there is preceding a double 

left quote. (Left and right are opposites.) 

2.5. Eliminating \thinspace would mean that a user need not learn the term; 

but it is not advisable to minimize terminology by “overloading” math mode with 

tricky constructions. For example, a user who wishes to take advantage of TTlX’s 

\mathsurround feature would be thwarted by non-mathematical uses of dollar signs. 

(Incidentally, neither \thinspace nor \, are built into TT]X; both are defined in terms 

of more primitive features, in Appendix B.) 

3.1. \I, \exercise, and \\. (The last of these is of type 2, i.e., a control symbol, 

since the second backslash is not a letter; the first backslash keeps the second one from 

starting its own control sequence.) 

3.2. math\’ematique and centim\‘etre. 

3.3. According to the index, \u is primitive but \(return) isn’t. The command 
‘\def\"“M{\ }’ in Appendix B is what actually defines \(return), since a return is repre- 

sentable as Asking T^X to \show\""M produces the response ‘> \"''M=macro: ->\u. ’. 

3.4. There are 128 of length 2; most of these are undefined when begins. 

(T^X allows any character to be an escape, but it does not distinguish between control 

sequences that start with different escape characters.) If we assume that there are 52 

letters, there are exactly 52^ possible control sequences of length 3 (one for each pair 

of letters, from AA to zz). But Chapter 7 explains how to use \catcode to change any 
character into a “letter”; therefore it’s possible to use any of 128^ potential control 

sequences of length 3. 

4.1. Ulrich Dieter, {\sl Journal f\"ur die reine und eingewandte 

MathematikX/ \bf201} (1959), 37—70. 

It’s convenient to use a single group for both \sl and \bf here. The ‘\/’ is a refinement 

that you might not understand until you read the rest of Chapter 4. 

4.2. {\it Explain ... typeset a\/ -CXrm roman} word ... sentence.} Note 

the position of the italic correction in this case. 

4.3. \def\ic#l{\setboxO=\hbox{#l\/>\dimenO=\wdO 
\setboxO=\hbox{#l}\advance\dimenO by -\wd0>. 



306 Appendix A: Answers to All the Exercises 

4.4. Control word names are made of letters, not digits. 

4.5. Say \def\sl{\it} at the beginning, and delete other definitions of \sl that 

might be present in your format file (e.g., there might be one inside a \tenpoint macro). 

4.6. \font\squinttenrin=cnirlO at 5pt 
\font\squinttenrm=cinrlO scaled 500 

5.1. {shelf}ful or shelf{}ful, etc.; or even shelf\/ful, which yields a shelfful 

instead of a shelfful. In fact, the latter idea—to insert an italic correction—is prefer- 

able because will reinsert the ff ligature by itself after hyphenating shelf {}ful. 
(Appendix H points out that ligatures are put into a hyphenated word that contains no 

“explicit kerns,” and an italic correction is an explicit kern.) But the italic correction 

may be too much (especially in an italic font); shelf{\kernOpt}ful is often best. 

5.2. ‘ufufu’ or ‘uffuffu’, etc. Plain TjgX also has a \space macro, so you can type 

\space\space\space. (These aren’t strictly equivalent to ‘XuXuXu’, since they adjust 

the spaces by the current “space factor,” as explained later.) 

5.3. In the first case, you get the same result as if the innermost braces had not 

appeared at all, because you haven’t used the grouping to change fonts or to control 

spacing or anything. doesn’t mind if you want to waste your time making groups 

for no particular reason. But in the second case, the necessary braces were forgotten. 

You get the letter ‘S’ centered on a line by itself, followed by a paragraph that begins 
with ‘o should this.’ on the next line. 

5.4. You get the same result as if another pair of braces were present around ‘\it 

centered’, except that the period is typeset from the italic font. (Both periods look 

about the same.) The \it font will not remain in force after the \centerline, but 

this is something of a coincidence: T^]X uses the braces to determine what text is to 

be centered, but then it removes the braces. The \centerline operation, as defined in 

Appendix B, puts the resulting braceless text inside another group; and that’s why \it 

disappears after \centerline. (If you don’t understand this, just don’t risk leaving 

out braces in tricky situations, and you’ll be OK.) 

5.5. \def\ital#l{{\it#l\/}}. Pro: Users might find this easier to learn, because 

it works more like \centerline and they don’t have to remember to make the italic 

correction. Con: To avoid the italic correction just before a comma or period, users 

should probably be taught another control sequence; for example, with 

\def\nocorr{\kernOpt } 

a user could type ‘\ital{comma} or \ital{period\nocorr},’. The alternative of 

putting a period or comma in italics, to avoid the italic correction, doesn’t look as 

good. A long sequence of italics would be inefficient for T]EX, since the entire text for 

the argument to \ital must be read into memory only to be scanned again. 

5.6. {1 {2 3 4 5} 4 6} 4. 

5.7. \def\beginthe#l{\begingroup\defXblocknaunef#!}} 

\def\endt he# l{\def\ test {#!}*/, 

\if x\test\blocknaine\endgroup 

\else\errmessage{You should have said 

\string\endthe{\blocknaine}}\f i} 



Appendix A: Answers to All the Exercises 307 

6.1. Laziness and/or obstinacy. 

6.2. There’s an unwanted space after ‘called—because (as the book says) 

treats the end of a line as if it were a blank space. That blank space is usually what 

you want, except when a line ends with a hyphen or a dash; so you should WATCH OUT 

for lines that end with hyphens or dashes. 

6.3. It represents the heavy bar that shows up in your output. (This bar wouldn’t 

be present if \overfullrule had been set to Opt, nor is it present in an underfull box.) 

6.4. This is the \parfillskip space that ends the paragraph. In plain the 

parfillskip is zero when the last line of the paragraph is full; hence no space actually 

appears before the rule in the output of Experiment 3. But all hskips show up as spaces 

in an overfull box message, even if they’re zero. 

6.5. Run with \hsize=l. 5in \tolerance=10000 \raggedright \hbadness=-l 

and then \input story. T)EX will report the badness of all lines (except the final lines 

of paragraphs, where fill glue makes the badness zero). 

6.6. \def\extraspace{\nobreak \hskip Opt plus . 15ein\relax}- 
\def\dash{\unskip\extraspace \extraspace} 

(If you try this with the story at 2-inch and 1.5-inch sizes, you will notice a substantial 

improvement. The \unskip allows people to leave a space before typing \dash. 

will try to hyphenate before \dash, but not before ‘ ’; cf. Appendix H. The \relax 

at the end of \extraspace is a precaution in case the next word is ‘minus’.) 

6.7. TE^ would have deleted five tokens: 1, i, n, u, \centerline. (The space was 

at the end of line 2, the \centerline at the beginning of line 3.) 

6.8. A control sequence like \centerline might well define a control sequence 

like \ERR0R before telling T^];X to look at #1. Therefore doesn’t interpret control 

sequences when it scans an argument. 

7.1. Three forbidden characters were used. One should type 

Procter \& Gamblers ... \$2, a 10X7, gain. 

(Also the facts are wrong.) 

7.2. Reverse slashes (backslashes) are fairly uncommon in formulas or text, and \\ 

is very easy to type; it was therefore felt best not to reserve \\ for such limited use. 

Typists can define \\ to be whatever they want (including \backslash). 

7.3. 1, 2, 3, 4, 6, 7, 8, 10, 11, 12, 13. Active characters (type 13) are somewhat 

special; they behave like control sequences in most cases (e.g., when you say ‘\let\x=''’ 

or ‘XifxXx"’), but they behave like character tokens when they appear in the token list 

of \uppercase or \lowercase, and when unexpanded after \if or \ifcat. 

7.4. It ends with either > or } or any character of category 2; then the effects of all 

\catcode definitions within the group are wiped out, except those that were \global. 

doesn’t have any built-in knowledge about how to pair up particular kinds of 

grouping characters. New category codes take effect as soon as a \catcode assignment 

has been digested. For example. 

{\catcode‘\>=2 > 



308 Appendix A: Answers to All the Exercises 

is a complete group. But without the space after ‘2’ it would not be complete, since 

would have read the ‘>’ and converted it to a token before knowing what category code 

was being specified; always reads the token following a constant before evaluating 

that constant. 

7.5. If you type ‘XmessagefXstring"}’ and ‘\message{\string\~}’, responds 

with and respectively. To get \i2 from \string you therefore need to make 

backslash an active character. One way to do this is 

{\catcodeV=0 \catcode ‘\\=13 /message{/string\}} 

(The “null control sequence” that you get when there are no tokens between \csname 
and \endcsname is not a solution to this exercise, because \string converts it to 
‘\csnaine\endcsname’. There is, however, another solution: If 1^’s \escapechar 
parameter—which will be explained in one of the next dangerous bends—is negative 

or greater than 127, then ‘\string\\’ works.) 

7.6. \i2 ai2 \i2 uio bi2. 

7.7. \def\ifundefined#l{\expandafter\ifx\csname#l\endcsname\relax} 
Note that a control sequence like this must be used with care; it cannot be included in 

conditional text, because the \ifx will not be seen when \ifundefined isn’t expanded. 

7.8. First \uppercase produces ‘A\lowercase{BC}’; then you get ‘Abe’. 

7.9. ‘ \copyright\ \uppercase\expandaf ter{\romannumeral\yeaLr}’. (This is 

admittedly tricky; the ‘\expandafter’ expands the token after the not the token 

after the group.) 

7.10. (We assume that parameter #2 is not simply an active character, and that 

\escapechar is between 0 and 127.) 

\def\gobble#l{} */, remove one token 
\def\appendroman#l#2#3{\edef#l{\def\noexpEUid#l{\csname 

\exp2Lndafter\gobble\string#2\romannumeral#3\endcsname}}#l} 

8.1. The ’/, would be treated as a comment character, because its category code 

is 14; thus, no */, token or } token would get through to the gullet of where numbers 

are treated. When a character is of category 0, 5, 9, 14, or 15, the extra \ must be 

used; and the \ doesn’t hurt, so you can always use it to be safe. 

8.2. (a) Both characters terminate the current line; but a character of category 5 

might be converted into uio or a par token, while a character of category 14 never 

produces a token, (b) They produce character tokens stamped with different category 

numbers. For example, $3 is not the same token as $4, so T^]X’s digestive processes 

will treat them differently, (c) Same as (b), plus the fact that control sequence names 

treat letters differently, (d) No. (e) Yes; characters of category 10 are ignored at the 

beginning of every line, since every line starts in state N. (f) No. 

8.3. T^];X had just read the control sequence \vship, so it was in state S, and it 

was just ready to read the space before ‘lin’. Afterwards it ignored that space, since it 

was in state 5; but if you had typed I\obeyspaces in response to that error message, 

you would have seen the space. Incidentally, when T^]X prints the context of an error 

message, the bottom pair of lines comes from a text file, but the other pairs of lines 



Appendix A: Answers to All the Exercises 309 

are portions of token lists that is reading (unless they begin with when they 
represent text inserted during ^rror recovery). 

TeX 8.4. $3 Xii “y 2I2 $3 ~13 ulO 

(return) placed at the end of the line 
space is ignored, because state N governs the beginning of the line. 

uio- The final space comes from the 
The character code for "'‘C is 3. The initial 

8.5. Hii ii] I 
12 UlO pax peir . The ‘u’ comes from the (return) at the end of the 

first line; the second and third lines each contribute a par 

8.6. The two ~~B’s are not recognized as consecutive superscript characters, since 
the first "'“B is converted to code 2 which doesn’t equal the following character Hence 
the result is seven tokens: '“'By "'“By Mu |''"B| uio ‘'^Mn The last of these is a 
control word whose name has two letters. The (space) after \M is deleted before 
inserts the (return) token. 

8.7. Both alternatives work fine in text; in particular, they combine as in \lq\lq 

to form ligatures. But the definition in Appendix B works also in connection with 
constants; e.g., \chax\lq\y, and \char\rql40 are valid. (Incidentally, the construction 
\let\lq=‘ would not work with constants, since the quotes in a (number) must come 
from character tokens of category 12; after \let\lq=‘ the control sequence token \lq 

will not expand into a character token, nor is it a character token!) 

9.1. na\"\i ve or na{\"\i}ve or na\"{\i}ve. 

9.2. Beloved protege; role coordinator; souffles, crepes, pates, etc. 

9.3. \AE sop’s \0E uvres en fran\c cais. 

9.4. {\sl Commentarii Academi\ae\ scientiarum imperialis 

petropolit2Ui\ae\/} is now {\sl Akademi\t\i a Nauk SSSR, Doklady}. 

9.5. Ernesto Ces\‘aro, P\’al Erd\H os, \0 ystein Ore, SteuiisM aw \’Swier*/, 

czkowski, Serge\u\i\ \t lur’ev, Mu\d hammad ibn MX^usN^a al-Khw\''arizm\"\i. 

9.6. The proper umlaut is \H, which isn’t available in \tt, so it’s necessary to 
borrow the accent from another font. For example, {\tt P\’al Erd{\bf\H{\tt o}}s} 

uses a bold accent, which is suitably dark. 

9.7. {\it Europe on {\sl\$}15.00 a day\/} 

9.8. The extra braces keep font changes local. An argument makes the use of \’ 
more consistent with the use of other accents like \d, which are manufactured from 
other characters without using the \accent primitive. 

10.1. Exactly 7227 pt. 

10.2. -.013837 in, O.mm, +42.1 dd, 3 in, 29 pc, 123456789 sp. (The lines of text in 
this manual are 29 picas wide.) 

10.3. The first is not allowed, since octal notation cannot be used with a decimal 
point. The second is, however, legal, since a (number) can be hexadecimal according 
to the rule mentioned in Chapter 8; it means 12 cc, which is 144 dd ^ 154.08124 pt. 
The third is also accepted, since a (digit string) can be empty; it is a complicated way 
to say 0 sp. 



310 Appendix A: Answers to All the Exereises 

10.4. \def\tick#l{\vrule height Opt depth #lpt} 

\def\\{\hbox to lcni{\hfil\tick4\hfil\tick8}} 

\vbox{\hrule\hbox{\tick8\\\\\\\\\\\\\\\\\\\\}} 

(You might also try putting ticks at every millimeter, in order to see how good your 
system is; some output devices can’t handle 101 rules all at once.) 

10.5. For example, say ‘\magnification=\magstepl \input story \end’ to get 

magnification 1200; \magstep2 and \magstep3 are 1440 and 1728. Three separate runs 

are needed, since there can be at most one magnification per job. The output may look 

funny if the fonts don’t exist at the stated magnifications. 

10.6. Magnification is by a factor of 1.2. Since font \first is cmrlO at 12 pt, it will 

be cmrlO at 14.4 pt after magnification; font \second will be cmrlO at 12 pt. 

changes T2truept’ into TOpt’, and the final output magnifies it back to 12 pt.) 

11.1. This E is inside a box that’s inside a box. 

11.2. The idea is to construct a box and to look inside. For example, 

\setbox0=\hbox{\sl g\/} \showbox0 

reveals that \/ is implemented by placing a kern after the character. Further experiment 

shows that this kern is inserted even when the italic correction is zero. 

11.3. The height, depth, and width of the enclosing box should be just large enough 

to enclose all of the contents, so the result is: 

\hbox(8.98608+0.0)x24.44484 
.\tenrm T 

.\kern 1.66702 

.\hbox(6.83331+0.0)x6.80557, shifted -2.15277 

..\tenrm E 

.\kern 1.25 

.\tenrm X 

(You probably predicted a height of 8.9861; T^]X’s internal calculations are in sp, not 

pt/100000, so the rounding in the fifth decimal place is not readily predictable.) 

11.4. No applications of such symmetrical boxes to English-language printing were 

apparent; it seemed pointless to carry extra generality as useless baggage that would 

rarely if ever be used, merely for the sake of symmetry. In other words, the author 

wore a computer science cap instead of a mathematician’s mantle on the day that I^’s 

boxes were born. Time will tell whether or not this was a fundamental error! 

11.5. The following solution is based on a general \mak;eblaiikbox macro that prints 

the edges of a box using rules of given thickness outside and inside that box; the box 

dimensions are those of \box0. 

\def\dolist{\afterassignment\dodolist\let\next= } 

\def\dodolist{\ifx\next\endlist \let\next\relax 

\else \\\let\next\dolist \fi 

\next} 

\def\endlist{\endlist} 



Appendix A: Answers to All the Exereises 311 

\def \hidehrule#l#2{\kern-#l*/, 

\hrule height#! depth#2 \kern-#2 } 

\def\hidevrule#l#2{\kern-#l{\dimen0=#l 

\advajice\dimenO by#2\vrule width\dimen0}\kern-#2 } 

\def \makeblajikbox#l#2{\hbox{\lower\dp0\vbox{\hidehrule{#l}{#2}y, 

\kern-#l */, overlap the rules at the corners 

\hbox to \wd0{\hidevrule{#l}{#2}*/, 

\raise\htO\vbox to #!{}*/, set the vrule height 

\lower\dpO\vtop to #!{}*/, set the vrule depth 

\hf il\hidevrule{#2}{#l}}'/, 

\kern-#l\hidehrule{#2}{#l}}}} 

\def \mcLketypebox{\mak;eblajikbox{Opt}{lpt}} 

\def \mcLkelightbox{\mcLkeblaiikbox{. 2pt}{ . 2pt}} 

\defWlXexpandafter\if\space\next\ 

\else \setboxO=\hbox{\next}\meLketypebox\fi} 

\def \demobox#l{\setboxO=\hbox{\dolist#l\endlist}*/, 

\copyO\kern-\wdO\mcLkelightbox} 

11.6. \def\frac#l/#2{\leavevinode\kern. lem 

\raise.5ex\hbox{\the\scriptfontO #l}\kern-.lem 

/\kern-.15em\lower.25ex\hbox{\the\scriptfontO #2}} 

12.1. 9 + 16 units, 9 + 32 units, 12 + 0 units. (But would consider so much 

stretching to be “infinitely bad.”) 

12.2. ‘What happens now?’ is placed in a line of width \hsize, with twice as much 

space at the left as at the right; ‘and now?’ is put flush right on the following line. 

12.3. The first two give an “overfull box” if the argument doesn’t fit on a line; 

the third allows the argument to stick out into the margins instead. (Plain T^]X’s 

\centerline is \centerlinec; the stickout effect shows up in the narrow-column ex- 

periment of Chapter 6.) If the argument contains no infinite glue, \centerlinea and 

\centerlineb produce the same effect; but \centerlineb will center an argument that 

contains ‘fil’ glue. 

12.4. Mr.~\& Mrs."User were married by Rev."Drofnats, who preached on 

Matt. ~19\thinspace :\thinspace3—9. (Such thin spaces are traditional for Biblical 

references to chapter and verse, but you weren’t really expected to know that. Plain 

TgX defines \thinspace to be a kern, not glue; hence no break between lines will occur 

at a thinspace.) 

12.5. Donald"E.\ Knuth, ‘‘Mathematical typography,’’ {\sl Bull.\ Amer.\ 

Math.\ Soc.\ \bfl} (1979), 337—372. (But the ‘\’ after ‘E.’ isn’t necessary, 

because of a rule you will learn if you venture around the next dangerous bend.) 

12.6. There are several ways; perhaps the easiest are to type ‘\hbox{NASA}. ’ or 

‘NASA\null.’ (The \null macro is an abbreviation for ‘\hbox{}’.) 

12.7. 1000, except: 999 after B, S, D, and J; 1250 after the comma; 3000 after the 

exclamation point, the double-right-quote, and the periods. If a period had come right 

after the B (i.e., if the text had said ‘B. Sally’), the space factor after that period 

would have been 1000, not 3000. 



312 Appendix A: Answers to All the Exercises 

12.8. \box3 is 2pt high, 4pt deep, 3pt wide. Starting at the reference point of 

\box3, go right .75 pt and down 3pt to reach the reference point of \boxl; or go right 

1 pt to reach the reference point of \box2. 

12.9. The stretch and shrink components of \baselineskip and \lineskip should 

be equal, and the \lineskiplimit should equal the normal \lineskip spacing, to 

guarantee continuity. 

12.10. Yes it did, but only because none of his boxes had a negative height or depth. 

He would have been safer if he had set \baselineskip=-1000pt, \lineskip=Opt, and 
\lineskiplimit=16383pt. (Plain d^]X’s \off interlineskip macro does this.) 

12.11. The interline glue will be zero, and the natural height is 4pt (because the 

depth of \box2 isn’t included in the natural height); so the glue will ultimately become 

\vskip-lpt when it’s set. Thus, \box3 is 3pt high, 2pt deep, 4pt wide. Its reference 

point coincides with that of \box2; to get to the reference point of \boxl you go up 

2 pt and right 3 pt. 

12.12. The interline glue will be 6pt minus 3fil; the final depth will be zero, since 

\box2 is followed by glue; the natural height is 12 pt; and the shrinkability is 5 fil. So 

\box4 will be 4pt high. Opt deep, Ipt wide, and it will contain five items: \vskip 

-1.6pt, \boxl, \vskipl.2pt, \moveleft4pt\box2, \vskip-l.6pt. Starting at the ref- 

erence point of \box4, you get to the reference point of \boxl by going up 4.6 pt, or 

to the reference point of \box2 by going up .4pt and left 4pt. (For example, you go 

up 4pt to get to the upper left corner of \box3; then down —1.6pt, i.e., up 1.6 pt, to 

get to the upper left corner of \boxl; then down 1 pt to reach its reference point. This 
problem is clearly academic, since it’s rather ridiculous to include infinite shrinkability 

in the baselineskip.) 

12.13. Now \box4 will be 4pt high, —4pt deep, Ipt wide, and it will contain \vskip 

-2.4pt,\boxl,\vskip-l.2pt,\moveleft4pt\box2,\vskip-2.4pt. From the baseline 

of \box4, go up exactly 5.4pt to reach the baseline of \boxl, or exactly 3.6 pt to reach 

the baseline of \box2. 

12.14. \vbox to x{} produces height x; \vtop to a:{} produces depth x; the other 

dimensions are zero. (This holds even when x is negative.) 

12.15. There are several possibilities: 

\def\nullbox#l#2#3{\vbox to#l{\vss\hrule height-#2depth#2width#3}} 

works because the rule will be of zero thickness. Less tricky is 

\def\nullbox#l#2#3{\vbox to#l{\vss\vtop to#2{\vss\hbox to#3{}}}} 

Both of these are valid with negative height and/or depth, but they do not produce 

negative width. If the width might be negative, but not the height or depth, you can 

use, e.g., \def\nullbox#l#2#3{\hbox to#3{\hss\raise#l\null\lower#2\null}}. It’s 

impossible for \hbox to construct a box whose height or depth is negative; it’s impossible 
for \vbox or \vtop to construct a box whose width is negative. 

However, there’s actually a trivial solution to the general problem, based on 

features that will be discussed later: 

\def\nullbox#l#2#3{\setbox0=\null 

\htO=#l \dp0=#2 \wd0=#3 \boxO } 



Appendix A: Answers to All the Exercises 313 

12.16. \def\llap#l{\hbox to Opt{\hss#l}} 

12.17. You get ‘A’ at the extreme left and ‘puzzle.’ at the extreme right, because the 

space between words has the only stretchability that is finite; the infinite stretchability 

cancels out. (In this case, T]E^’S rule about infinite glue differs from what you would 

get in the limit if the value of 1 fil were finite but getting larger and larger. The true 

limiting behavior would stretch the text ‘A puzzle.’ in the same way, but it would also 

move that text infinitely far away beyond the right edge of the page.) 

13.1. Simply saying \hbox{. . .} won’t work, since that box will just continue the 

previous vertical list without switching modes. You need to start the paragraph explic- 

itly, and the straightforward way to do that is to say \indent\hbox{. . .}. But suppose 

you want to define a macro that expands to an hbox, where this macro is to be used in 

the midst of a paragraph as well as at the beginning; then you don’t want to force users 

to type \indent before calling your macro at the beginning of a paragraph, nor do you 

want to say \indent in the macro itself (since that might insert unwanted indenta- 

tions). One solution to this more general problem is to say ‘\u\unskip\hbox{. . 

since \u makes the mode horizontal while \unskip removes the unwanted space. Plain 

provides a Meavevmode macro, which solves this problem in what is probably 

the most efficient way: Meavevmode is an abbreviation for ‘\unhbox\voidbox’, where 

\voidbox is a permanently empty box register. 

13.2. The output of \tracingcommaiids shows that four blank space tokens were 

digested; these originated at the ends of lines 2, 3, 4, and 5. Only the first had any 

effect, since blank spaces are ignored in math formulas and in vertical modes. 

13.3. The end-group character finishes the paragraph and the \vbox, and \bye 

stands for ‘\vfill. . so the next three commands are 

{math mode: math shift character $} 

{restricted horizontal mode: end-group character }} 

{vertical mode: \vfill} 

13.4. It contains only mixtures of vertical glue and horizontal rules whose reference 

points appear at the left of the page; there’s no text. 

13.5. Vertical mode can occur only as the outermost mode; horizontal mode and 

display math mode can occur only when immediately enclosed by vertical or internal 

vertical mode; ordinary math mode cannot be immediately enclosed by vertical or 

internal vertical mode; all other cases are possible. 

14.1. (cf . ”Chapter''12) . 
Chapters 12 and~21. 

line"16 of Chapter's^s {\tt story} 

lines 7 to"ll 

lines 2,"3, 4, and~5. 

(2)"a big black bar 

All 128~char-acters are initially of category"12, 
letter"{\tt x} in family"!. 

the factor"$f$, where $n$"is 1000"times"$f$. 

14.2. ‘for all $n$~greater than"$n_0$’ avoids distracting breaks. 



314 Appendix A: Answers to All the Exercises 

14.3. ‘exercise \hbox{4.3.2—15}’ guarantees that there is no break after the en- 
dash. But this precaution is rarely necessary, so ‘exercise 4.3.2—15’ is an acceptable 
answer. No ” is needed; ‘4.3.2-15’ is so long that it causes no offense at the beginning 
of a line. 

14.4. The space you get from " will stretch or shrink with the other spaces in the 
same line, but the space inside an hbox has a fixed width since that glue has already 
been set once and for all. Furthermore the first alternative permits the word Chap- 
ter to be hyphenated. 

14.5. ‘\hbox{$x=0$}’ is unbreakable, and we will see later that ‘${x=0}$’ cannot be 
broken. Both of these solutions set the glue surrounding the equals sign to some fixed 
value, but such glue normally wants to stretch; furthermore, the \hbox solution might 
include undesirable blank space at the beginning or end of a line, if \mathsurround is 
nonzero. A third solution ‘$x=\nobre£ikO$’ avoids both defects. 

14.6. \exhyphenpenalty=10000 prohibits all such breaks, according to the rules 
found later in this chapter. Similarly, \hyphenpenalty= 10000 prevents breaks after 
implicit (discretionary) hyphens. 

14.7. The second and fourth lines are indented by an additional “quad” of space, 
i.e., by one extra em in the current type style. (The control sequence \quad does an 
\hskip; when T^]X is in vertical mode, \hskip begins a new paragraph and puts glue 
after the indentation.) If \indent had been used instead, those lines wouldn’t have 
been indented any more than the first and third, because \indent is implicit at the 
beginning of every paragraph. Double indentation on the second and fourth lines could 
have been achieved by ‘\indent\indent’. 

14.8. ba\ck en and Be\ttt uch, where the macros \ck and \ttt are defined by 

\def\ck{\discretionary{k-}{k}{ck}} 

\def\ttt{tt\discretionary{-}{t}{}} 

T^X’s hyphenation algorithm will not make such spelling changes automatically. 

14.9. \def\break;{\penalty-10000 } 

14.10. You get a forced break as if \nobreak were not present, because \break cannot 
be cancelled by another penalty. In general if you have two penalties in a row, their 
combined effect is the same as a single penalty whose value is the minimum of the two 
original values, unless both of those values force breaks. (You get two breaks from 
\break\break; the second one creates an empty line.) 

14.11. Breaks are forced when p < —10000, so there’s no point in subtracting a large 
constant whose effect on the total demerits is known a priori, especially when that 
might cause arithmetic overflow. 

14.12. (10 + 131)^ + 0^ T 10000 = 29881 and (10 + 1)^ + 50^ + 10000 = 12621. In 
both cases the \adjdemerits were added because the lines were visually incompati- 
ble (decent, then very loose, then decent); plain T^]X’s values for \linepenalty and 
\adjdemerits were used. 

14.13. Because T^X discards a glue item that occurs just before \par. Ben should 
have said, e.g., ‘\hfilneg\ \par’. 



Appendix A: Answers to All the Exereises 315 

14.14. Just say \parfillskip=\parindent. Of course, will not be able to find 

appropriate line breaks unless each paragraph is sufficiently long or sufficiently lucky; 

but with an appropriate text, your output will be immaculately symmetrical. 

14.15. Assuming that the author is deceased and/or set in his or her ways, the remedy 

is to insert ‘{\parf illskip=Opt\par\parskip=Opt\noindent}’ in random places, after 

each 50 lines or so of text. (Every space between words is usually a feasible breakpoint, 

when you get sufficiently far from the beginning of a paragraph.) 

14.16. {\leftskip=-lpt \rightskip=lpt (text) \par} 

(This applies to a full paragraph; if you want to correct only isolated lines, you have 

to do it by hand.) 

14.17. ‘\def\line#l{\hbox to\hsize{\hskip\leftskip#l\hskip\rightskip}}’ is 

the only change needed. (Incidentally, displayed equations don’t take account of 

\leftskip and \rightskip either; it’s more difficult to change that, because so many 

variations are possible.) 

14.18. The author’s best solution is based on a variable \dimen register \x: 

\setboxl=\hbox{I} 

\setboxO=\vbox{\parshape=ll -0\x0\x -l\x2\x -2\x4\x -3\x6\x 

-4\x8\x -5\xl0\x -6\xl2\x -7\xl4\x -8\xl6\x -9\xl8\x -10\x20\x 

\ifdim \x>2em \rightskip=-\wdl 

\else \frenchspacing \rightskip=-\wdl pluslpt minuslpt 

\leftskip=Opt plus Ipt minuslpt \fi 

\parfillskip=Opt \tolerance=1000 \noindent I turn, ... hand.} 

\centerline{\hbox to \wdl{\boxO\hss}} 

Satisfactory results are obtained with font cmrlO when \x is set to 8.9 pt, 13.4 pt, 

18.1 pt, 22.6 pt, 32.6 pt, and 47.2 pt, yielding triangles that are respectively 11, 9, 8, 7, 

6, and 5 lines tall. 

14.19. \item{} at the beginning of each paragraph that wants hanging indentation. 

14.20. \item{$\bullet$} 

14.21. Either change \hsize or \rightskip. The trick is to change it back again at 

the end of a paragraph. Here’s one way, without grouping: 

\let\endgraf=\par \edef\restorehsize{\hsize=\the\hsize} 

\def\par{\endgraf \restorehsize \let\par=\endgraf} 

\advance\hsize by-\parindent 

14.22. \dimenO=\hsize \advance\dimenO by 2em 
\parshape=3 0pt\hsize 0pt\hsize -2em\dimen0 

14.23. The three paragraphs can be combined into a single paragraph, if you use 
‘\hf il\vadjust{\vskip\parskip}\break\indent’ instead of ‘\par’ after the first two. 

Then of course you say, e.g., \hangindent=-50pt \hangafter=-15. (The same idea 

can be applied in connection with \looseness, if you want to make one of three 
paragraphs looser but if you don’t want to choose which one it will be. However, long 

paragraphs fill 1^’s memory; please use restraint.) See also the next exercise. 



316 Appendix A: Answers to All the Exercises 

14.24. Use Xhangcarryover between paragraphs, defined as follows: 

\def\hangcarryover{\edef\next{\hangafter=\the\haiigafter 

\haiigindent=\the\hangindent} 

\par\next 
\edef\next{\prevgraf=\the\prevgraf} 

\indent\next} 

14.25. It will set the current paragraph in the minimum number of lines that can be 

achieved without violating the tolerance; and, given that number of lines, it will break 

them optimally. (However, nonzero looseness makes work harder, so this is not 

recommended if you don’t want to pay for the extra computation. You can achieve 

almost the same result much more efficiently by setting \linepenalty=100, say.) 

14.26. 150, 100, 0, 250. (When the total penalty is zero, as between lines 3 and 4 in 

this case, no penalty is actually inserted.) 

14.27. \interlinepenalty plus \clubpenalty plus \widowpenalty (and also plus 

\brokenpenalty, if the first line ends with a discretionary break). 

14.28. The tricky part is to avoid “opening up” the paragraph by adding anything 

to its height; yet this star is to be contributed after a line having an unknown depth, 

because the depth of the line depends on details of line breaking that aren’t known until 

afterwards. The following solution uses \strut, and assumes that the line containing 

the marginal star does not have depth exceeding \dp\strutbox, the depth of a \strut. 

\def\strutdepth{\dp\strutbox} 
\def\marginalstar{\strut\vadjust{\kern-\strutdepth\specialstar}} 

Here \specialstar is a box of height zero and depth \strutdepth, and it puts an 

asterisk in the left margin: 

\def\specialstar{\vtop to \strutdepth{ 
\baselineskip\strutdepth 
\vss\llap{* }\null}} 

14.29. \def\insertbullets{\everypax={\llap{$\bullet$\enspace}}} 

(A similar device can be used to insert hanging indentation, and/or to number the 

paragraphs automatically.) 

14.30. First comes \parskip glue (but you might not see it on the current page if you 

say \showlists, since glue disappears at the top of each page). Then comes the result 

of \everypar, but let’s assume that \everypar doesn’t add anything to the horizontal 

list, so that you get an empty horizontal list; then there’s no partial paragraph before 

the display. The displayed equation follows the normal rules (it occupies lines 1-3 of 

the paragraph, and uses the indentation and length of line 2, if there’s a nonstandard 

shape). Nothing follows the display, since a blank space is ignored after a closing ‘$$’. 

Incidentally, the behavior is different if you start a paragraph with ‘$$’ instead 

of with \noindent$$, since inserts a paragraph indentation that will appear on a 

line by itself (with \leftskip and \parfillskip and \rightskip glue). 

14.31. A break at \penalty50 would cancel \hskip2em\nobre2Lk\hf il, so the next 

line would be forced to start with the reviewer’s name flush left. (But \vadjust{} 

would actually be better than \hbox{}; it uses more efficiently.) 



Appendix A: Answers to All the Exercises 317 

14.32. Otherwise the line-breaking algorithm might prefer two final lines to one final 
line, simply in order to move a'hyphen from the second-last line up to the third-last line 
where it doesn’t cause demerits. This in fact caused some surprises when the \signed 
macro was being tested; \tracingpaLragraphs=l was used to diagnose the problem. 

14.33. Distributing the extra space evenly would lead to three lines of the maximum 
badness (10000). It’s better to have just one bad line instead of three, since T^]X doesn’t 
distinguish degrees of badness when lines are really awful. In this particular case the 
Xtolerauice was 200, so didn’t try any line breaks that would stretch the first two 
lines; but even if the tolerance had been raised to 10000, the optimum setting would 
have had only one underfull line. If you really want to spread the space evenly you can 
do so by using \spaceskip to increase the amount of stretchability between words. 

14.34. \def\raggedcenter{\leftskip=0pt plus4em \rightskip=\leftskip 
\parfillskip=0pt \spaceskip=.3333em \xspaceskip=.5em 
\pretoleraiice=9999 \tolerance=9999 
\hyphenpenalty=9999 \exhyphenpenalty=9999 } 

15.1. The last three page-break calculations would have been 

*/, t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 p=150 c=3199# 
7, t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p=-100 c=433# 
y« t=542.0 plus 11.0 minus 6.0 g=528.0 b=* p=0 c=* 

so the break would have occurred at the same place. The badness would have been 533, 
but the page would still have looked tolerable. (On the other hand if that paragraph 
had been two lines shorter instead of one, the first two lines of the next “dangerous 
bend” paragraph would have appeared on that page; the natural height t = 531 pt 
would have been able to shrink to g = 528 pt because the three “medskips” on the page 
would have had a total shrinkability of 6pt. This would certainly have been preferable 
to a stretched-out page whose badness was 3049; but the author might have seen it and 
written another sentence or two, so that the paragraph would not have been broken 
up. After all, this manual is supposed to be an example of good practice.) 

15.2. The next legal break after the beginning of a dangerous bend paragraph occurs 
28 pt later, because there is 6 pt additional space for a \medskip, followed by two lines 
of llpt each. does not allow breaking between those two lines; the \clubpenalty 
is set briefly to 10000 in Appendix E, since the dangerous bend symbol is two lines tall. 

15.3. A page always contains at least one box, if there are no insertions, since the 
legal breakpoints are discarded otherwise. Statement (a) fails if the height of the 
topmost box exceeds 10 pt. Statement (b) fails if the depth of the bottommost box 
exceeds 2.2 pt, or if some glue or kern comes between the bottommost box and the 
page break (unless that glue or kern exactly cancels the depth of the box). 

15.4. \topinsert\vskip2in\rightline{\vbox{\hsize ... artwork.}}\endinsert 
does the job. But it’s slightly more efficient to avoid \rightline by changing \lef tskip 
as follows: ‘\leftskip=\hsize \advance\leftskip by-3in’. Then doesn’t have 
to read the text of the caption twice. 

15.5. It would appear on page 25, since it does fit there. A \midinsert will jump 
ahead of other insertions only if it is not carried over to another page; for example. 



318 Appendix A: Answers to All the Exercises 

if the second 3-inch insertion were a \midinsert, it would not appear on page 26, 

because it is converted to a \topinsert as soon as the \midinsert macro notices that 

the insertion is too big for page 25. 

15.6. Set \countl to 50, then \dimen2 to 50pt, then \countl to 6, then \skip2 

to — lOpt plus 6fil minus 50 pt, then \skip2 to 60 pt plus —36fil minus —300pt, then 

\skip2 to Isp minus —6sp, then \count6 to 1, then \skipl to 25 pt plus 1 sp mi- 

nus 1 fill, then \skip2 to 25pt minus — 150pt, then \skipl to Opt plus Isp minus 1 fill. 

15.7. If \skip4 has infinite stretchability, \skip5 will be zero; otherwise it will be 

0 pt plus 1 pt. 

15.8. \advaiice\dimen2 by0.5\dimen3 \divide\dimen2 by\dimen3 

\multiply\dimen2 by\dimen3 

15.9. \countl takes the values 5, then 2 (the old 5 is saved), then 4 (which is made 

global), then 8 (and 4 is saved); finally the value 4 is restored, and that is the answer. 

(For further remarks, see the discussion of \tracingrestores in Chapter 27.) 

15.10. \hbox{\hbox{A}A}. After ‘\nnhbox5’, \box5 is void; \unhcopy5 yields nothing. 

15.11. \hbox{A}. But after ‘{\global\setbox3=\hbox{A}\setbox3=\box3}’, \box3 

will be void. 

15.12. \newcount\notenuinber 

\def\clearnotenumber{\notenumber=0} 

\def\note{\advaiice\notenumber by 1 

\footnote{$"{\the\notenumber}$}} 

15.13. Yes, in severe circumstances. (1) If there is no other legal breakpoint, 

will take a break whose cost is oo. (2) If \vadjust{\eject} occurs on the same line 

as a footnote, before that footnote, the reference will be forcibly detached. (3) Other 

\vadjust commands on that line could also interpose breakpoints before the insertion. 

16.1. $\gaimna+\nu\in\Gainma$. 

16.2. \le, \ge, and \ne. (These are short for “less-or-equal,” “greater-or-equal,” 

and “not-equal.”) You can also use the names \leq, \geq, and \neq. (The fourth most 

common symbol is, perhaps, ‘oo’, which stands for “infinity” and is called ‘\infty’.) 

16.3. In the former, the ‘_2’ applies to the plus sign {x +2 F3); but in the latter, it 

applies to an empty subformula (a: + 2^3). 

16.4. The results are and ’; the 2: in the first alternative is the same size as 

the but in the second it is smaller. Furthermore, the y and 2: in the first case aren’t 

quite at the same height. (Good typists never even think of the first construction, 

because mathematicians never want it.) 

16.5. The second alternative doesn’t work properly when there’s a subscript at the 

same time as a prime. Furthermore, some mathematicians use \prime also in the 

subscript position; they write, for example, F'{w,z) = dF{w, z)/dz and F,(w,z) = 

dF(w, z)ldw. 

16.6. $R_i{}^{jk}{}_l$. 



Appendix A: Answers to All the Exereises 319 

16.7. lO^llO}; 2~{n+l}; (n+l)''2; \sqrt{l-x"2}; \overline{w+\overline z}; 

a_{b_{c_{d_e}}}; \root3\of {h’ ’_n(\alpha x)}. (Of course, you should 

enclose these formulas in dollar signs so that TgX will process them in math mode. 

Superscripts and subscripts can be given in either order; for example, h’ ^_n and h_n^ ’ 
both work the same. You should not leave out any of the braces shown here; for 

example, ‘$10^10$’ would yield ‘10^0’. But it doesn’t hurt to insert additional braces 

around letters or numbers, as in ‘ ({n}+{l}) ~{2}’. The indicated blank spaces are 

necessary unless you use extra braces; otherwise will complain about undefined 

control sequences \overlinez and \alphax.) 

16.8. He got ‘Ifx = y...’ because he forgot to leave a space after Tf’; spaces dis- 

appear between dollar signs. He should also have ended the sentence with ‘$y$.’; 

punctuation that belongs to a sentence should not be included in a formula, as we will 

see in Chapter 18. (But you aren’t expected to know that yet.) 

16.9. Deleting an element from an $n$-tuple leaves an $(n-l)$-tuple. 

16.10. Q,/, y, J,p, y, y. (The analogous Greek letters are /3,7, C, 77, y, (^, p, </>,(/?, X, V’-) 

16.11. $z~{*2}$ and $h_*^ (z)$. 

16.12. $3{\cdot}1416$. (One of the earlier examples in this chapter showed that 

\cdot is a binary operation; putting it in braces makes it act like an ordinary symbol.) 

If you have lots of constants like this, for example in a table, there’s a way to 

make ordinary periods act like \cdot symbols: Just define \mathcode‘ . to be "0202, 

assuming that the fonts of plain are being used. However, this could be dangerous, 

since ordinary periods are used frequently in displayed equations; the \mathcode change 

should be confined to places where every period is to be a \cdot. 

16.13. $e"{-x"2}$, $D\sim p~\alpha M+l$, and $\ghat\in(H''{\pi_l~{-l}}) ’$. (If 

you are reading the dangerous bend sections, you know that the recommended way to 

define \ghat is ‘\def \ghat{{\hat g}}’.) 

17.1. + ($x+y'{2/(k+l)>$). 

17.2. ((a^l)/(b^l))x ($((a+l)/(b+l))x$). 

17.3. He got the displayed formula 

X = jy^ 
k + l) 

because he forgot that an unconfined \over applies to everything. (He should probably 

have typed ‘$$x=\left(y~2\over k+l\right)$$’, using ideas that will be presented 

later in this chapter; this not only makes the parentheses larger, it keeps the ‘x =’ out 

of the fraction, because \left and \right introduce subformulas.) 

17.4. ‘$7{l\over2}\cents$’ or ‘7$l\over2$\cents’. (Incidentally, the definition 

used here was \def\cents{\hbox{\rm\rlap/c}}.) 

17.5. Style D' is used for the subformula p2 , hence style S' is used for the super- 

script e' and the subscript 2, and style SS' is used for the supersuperscript prime. The 

square root sign and the p appear in text size; the 2 and the e appear in script size; 

and the / is in scriptscript size. 



320 Appendix A: Answers to All the Exercises 

17.6. $${l\over2}{n\choose k}$$; $$\displaystyle{n\choose k}\over2$$. All 

of these braces are necessary. 

17.7. $${p \choose 2} x~2 y^{p-2} - {1 \over l-x}{l \over l-x^2}.$$ 

17.8. $$\sum_{i=l}'‘p\smn_{j = l}^q\suin_{k=l}~ra_{ij}b_{jk}c_{ki}$$. 

17.9. $$\sum_{{\scriptstyle l\le i\le p \atop \scriptstyle l\le j\le q} 
\atop \scriptstyle l\le k\le r} a_{ij} b_{jk} c_{ki}$$. 

17.10. $\displaystyle\biggl({\partial“2\over\p2Lrtial x^2}+ 

{\partial^2\over\partial y''2}\biggr)\biglI\varphi(x+iy)\bigrI“2=0$. 

17.11. Formulas that are more than one line tall are usually two lines tall, not l| or 

21 lines tall. 

17.12. $\bigl(x+f (x)\bigr) \big/ \bigl(x-f (x)\bigr)$. (Notice especially the 

‘\big/’; an ordinary slash would look too small between the \big parentheses. 

17.13. $$\pi(n)=\sum_{k=2}“n\left\lfloor\phi(k)\over k-l\right\rfloor.$$ 

17.14. $$\pi(n)=\smn_{m=2}“n\left\lfloor\biggl(\suin_{k=l}“{in-l}\bigl 

\lfloor(m/k)\big/\lceil m/k\rceil\bigr\rfloor\biggr)“{-l}\right\rfloor.$$ 

17.15. A displayed formula equivalent to $${D}{{T}\over{T}“{{S}“{SS}}}$$. 

17.16. \def\sqr#l#2{{\vcenter{\vbox{\hrule height.#2pt 
\hbox{\vrule width.#2pt height#lpt \kern#lpt 

\vrule width.#2pt} 

\hrule height.#2pt}}}} 
\def\square{\mathchoice\sqr34\sqr34\sqr{2.l}3\sqr{l.5}3} 

17.17. \def\euler{\atopwithdelims<>}. 

17.18. The \textfontO that was current at the beginning of the formula will be 

used, because this redefinition is local to the braces. (It would be a different story if 
‘\global\textfont’ had appeared instead; that would have changed the meaning of 

\textfonto at all levels.) 

17.19. "2208 and "220F. 

17.20. \mathchardef \alpha="710B. Incidentally, {\rm\alpha} will then give a spu- 

rious result, because character position "OB of roman fonts does not contain an alpha; 

you should warn your users about what characters they are allowed to type under the 

influence of special conventions like \rm. 

17.21. If \delcode‘{ were set to some nonnegative delimiter code, you would get no 

error message when you wrote something like ‘\left{’. This would be bad because 

strange effects would happen when certain subformulas were given as arguments to 

macros, or when they appeared in alignments. But it has an even worse defect, because 

a user who gets away with ‘\left{’ is likely to try also ‘\bigl{’, which fails miserably. 

17.22. Since \bigl is defined as a macro with one parameter, it gets just Adelimiter’ 

as the argument. You have to write ‘\bigl{\delimiter"426830A}’ to make this work. 

On the other hand, \lef t will balk if the following character is a left brace. Therefore 

it’s best to have control sequence names for all delimiters. 



Appendix A: Answers to All the Exercises 321 

18.1. $R(n,t)=0(t~{n/2})$, as $t\toO"+$. (N.B.: ‘0(’, not ‘0(\) 

18.2. $$p_l (n)=\liiii_{m\to\infty}\suin_{\nu=0}"\infty 

\bigl(l-\cos''{2m}(\nu! '■n\pi/n)\bigr) .$$ 

[Mathematicians may enjoy interpreting this formula; 
Mathematics 35 (1906), 145-146. 

cf. G. H. Hardy, Messenger of 

18.3. \def\limsup{\mathop{\overline{\rin lim}}} 

\def\liminf{\mathop{\underline{\rin lim}}} 

[Notice that the limits ‘n —> oo’ appear at different levels, in both of the displays, 
because ‘sup’ and the underbar descend below the baseline. It is possible to unify the 
limit positions by using phantoms, as explained later in this chapter. For example. 

\def\limsup{\mathop{\vph2intom{\underline{}}\overline{\rm lim}}} 

would give lower limits in the same position as \liminf.] 

18.4. a; = 0( (mod y)^). He should have typed ‘$x\equivO\pmod{y"n}$’. 

18.5. $${n\choose k}\equiv{\lfloor n/p\rfloor\choose 

\lfloor k/p\rfloor}{n\bmod p\choose k\bmod p}\pmod p.$$ 

18.6. ${\bf\bar x}~T\bf Mx={\rm0}\iff x=0$. (Another solution is ‘$\bf\bar 

x"{\mit T}Mx={\rmO}\iff x=0$’, but this needs one more keystroke.) 

18.7. $S\subseteq{\mit\Sigma}\iff S\in{\cal S}$. In this case the braces are 
redundant and could be eliminated; but you shouldn’t try to do everything with fewest 
keystrokes, or you’ll outsmart yourself some day. 

18.8. $${\it available}+\sum_{i=l}''n\max\bigl({\it full}(i), 

{\it reserved}(i)\bigr)={\it capacity}.$$ 

[If \it had been used throughout the formula, the subscript i and superscript n would 
have caused error messages saying ‘\scriptfont 4 is undefined’, since plain 
makes \it available only in text size.] 

18.9. {\obeylines \sfcode‘;=3000 

{\bf for $j:=2$ step $1$ until $n$ do} 

\quad {\bf begin} ${\it accum};=A[j]$; $k:=j-l$; $A[0]:=\it accum$; 

\quad {\bf while $A[k]>\it accum$ do} 

\qquad {\bf begin} $A[k+1]:=A[k]$; $k:=k-l$; 

\qquad {\bf end}; 

\quad $A[k+l]:=\it accum$; 

\quad {\bf end}.\par} 

[This is something like the “poetry” example in Chapter 14, but much more difficult. 
Some manuals of style say that punctuation should inherit the font of the preceding 
character, so that three kinds of semicolons should be typeset; e.g., these experts 
recommend := j — 1; A[0] := accum; end;’. The author heartily disagrees.] 

18.10. Let $H$''be a Hilbert space, \ $C$''a closed bounded convex subset 

of''$H$, \ $T$~a nonexpansive self map of''$C$. Suppose that as $n\to\infty$, 

\ $a_{n,k}\to0$ for each''$k$, and $\gamma_n=\sum_{k=0}'‘\infty(a_{n,k+l}- 



322 Appendix A: Answers to All the Exereises 

a_{n,k})~+\toO$. Then for each $x$''in''$C$, \ $A_nx=\smn_{k=0}~\infty 

a_{n,k}T"kx$ converges weaikly to a fixed point of"$T$. 

[If any mathematicians are reading this, they might either appreciate or re- 

sent the following attempt to edit the given paragraph into a more acceptable style; 

“Let C be a closed, bounded, convex subset of a Hilbert space H, and let T be a non- 

expansive self map of C. Suppose that as n —^ oo, we have an,k 0 for each k, 

and 7n = + l Q'n,k)^ 0. Then for each x in C, the infinite sum 

AnX = 'Yllk=o 0in,kT^x couverges weakly to a fixed point of T.”] 

18.11. $$\int_0'‘\infty{t-ib\over t~2+b''2}e"{iat}\,dt= 
e'‘{ab}E_l(ab) ,\qquad a,b>0.$$ 

18.12. $$\hbar=l .0545\timesl0''{-27}\rin\,erg\,sec .$$ 

18.13. There are ten atoms (the first is / and last is their types, and the inter- 

atomic spacing, are respectively 

Ord Open Ord Punct \, Ord Close \; Rel \; Ord \> Bin \> Ord. 

18.14. $\left]-\infty,T\right[\times\left]-\infty,T\right[$. (Or one could 

say \mathopen and \mathclose instead of \left and \right; then T^]X would not 

choose the size of the delimiters, nor would it consider the subformulas to be of type 

Inner.) Open intervals are more clearly expressed in print by using parentheses instead 

of reversed brackets; for example, compare ‘( —oo,T) x ( —(X),T)’ to the given formula. 

18.15. The first + will become a Bin atom, the second an Ord; hence the result is x, 

medium space, -|-, medium space, +, no space, 1. 

18.16. $x_l+x_lx_2+\cdots+x_lx_2\ldots x_n$ and 

$(x_l,\ldots,x_n)\cdot(y_l,\ldots,y_n)=x_ly_l+\cdots+x_ny_n$. 

18.17. The commas belong to the sentence, not to the formula; his decision to put 

them into math mode meant that didn’t put large enough spaces after them. Also, 

his formula = 1, 2,... ,n’ allows no breaks between lines, except after the =, so he’s 

risking overfull box problems. But suppose the sentence had been more terse: 

Clearly ai <bi (z = 1, 2,..., n). 

Then his idea would be basically correct: 

Clearly $a_i<b_i$ \ ($i=l,2,\ldots,n$). 

18.18. ... never\footnote*{Well \dots, hardly ever.} have ... 

18.19. Neither formula will be broken between lines, but the thick spaces in the 

second formula will be set to their natural width while the thick spaces in the first 

formula will retain their stretchability. 

18.20. Set \relpenalty=10000 and \binoppenalty=10000. And you also need to 

change the definitions of \bmod and \pmod, which insert their own penalties. 

18.21. $\bigl\{\,x"3\bigm|h(x)\in\{-l,0,+l\}\,\bigr\}$. 



Appendix A: Answers to All the Exercises 323 

18.22. $\{\,p\mid p$''cLnd $p+2$ are prime$\,\}$, assuming that \mathsurround 

is zero. The more difficult alternative ‘$\-C\,p\inid p\ {\riii and}\ p+2\rm\ are\ 

prime\,\}$’ is not a solution, because line breaks do not occur at \u (or at glue of any 
kind) within math formulas. Of course it may be best to display a formula like this, 

instead of breaking it between lines. 

18.23. $$f(x)=\cases{l/3&if $0\le x\lel$;\cr 2/3&if $3\le x\le4$;\cr 

O&elsewhere.\cr}$$ 

18.24. $$\left\lgroup\matrix{a&b&c\cr d&e&f\cr}\right\rgroup 

\left\lgroup\matrix{u&x\cr v&y\cr w&z\cr}\right\rgroup$$. 

18.25. \pmatrix{y_l\cr \vdots\cr y_k\cr}. 

18.26. \def \undertext#l{$\underline{\smash{\hbox{#!}}}$} will underline the 

words and cross through the descenders; or you could insert Xvphaiitomfy} before 

the \hbox, thereby lowering all of the underlines to a position below all descenders. 

Neither of these gives exactly what is wanted. (See also \underbar in Appendix B.) 

Underlining is actually not very common in fine typography, since font changes usually 

work just as well or better, when you want to emphasize something. If you really want 

underlined text, it’s best to have a special font in which all the letters are underlined. 

18.27. $ii"{\rm th}$ root. (Incidentally, it is also acceptable to type ‘$n$th’, 

getting ‘nth’, in such situations; the fact that the n is in italics distinguishes it from 

the suffix. Typed manuscripts generally render this with a hyphen, but ‘n-th’ is frowned 

on nowadays when an italic n is available.) 

18.28. ${\bf S'{\rm-l}TS=dg}(\omega_l,\ldots,\oniega_n) =\bf\Leimbda$. (Did 

you notice the difference between \omega {LU) and w (w)?) 

18.29. $\Pr(\,m=n\mid m+n=3\,)$. (Analogous to a set.) 

18.30. $\sinl8~\circ={l\over4}(\sqrt5-l)$. 

18.31. $k=l .38\timesl0"{-16}\rm\,erg/'‘\circ K$. 

18.32. $\bar\Phi\subset NL_1~*/N=\bar L_l"* 

\subseteq\cdots\subseteq NL_n''*/N=\bar L_n''*$. 

18.33. $I(\lambda)=\int\!\!\int_Dg(x,y)e~{i\lainbda h(x,y)}\,dx\,dy$. 

(Although three \!’s work out best between consecutive integral signs in displays, the 

text style seems to want only two.) 

18.34. $\int_0^1\!\cdots\int_0"lf(x_l,\ldots,x_ii)\,dx_l\ldots\,dx_n$. 

18.35. $$x_{2m}\equiv\cases{Q(X_m"2-P_2W_m''2)-2S~2&($m$ odd)\cr 
\noalign{\vskip2pt} */, spread the lines apart a little 

P_2^2(X_in"2-P_2W_m''2)-2S~2&($m$ even)\cr}\pmod N.$$ 

18.36. $$(l+x_lz+x_l~2z~2+\cdots\,)\ldots(l+x_nz+x_n~2z"2+\cdots\,) 
={l\over(l-x_lz)\ldots(l-x_nz)}.$$ (Notice the uses of \,.) 



324 Appendix A: Answers to All the Exercises 

18.37. $$\prod_{j\geO}\biggl(\smn_{k\geO}a_{jk}z^k\biggr) 

=\sum_{n\geO}z~n\, \Biggl(\suiii_ 

{\scriptstyle k_0,k_l,\ldots\geO\atop 

\scriptstyle k_0+k_l+\cdots=n} 

a_{0k_0}a_{lk_l}\ldots\,\Biggr).$$ 

Some people would prefer to have the latter parentheses larger; but \left and \right 

come out a bit too large in this case. It’s not difficult to define \bigggl and \bigggr 

macros, analogous to the definitions of \biggl and \biggr in Appendix B. 

18.38. $${(n_l+n_2+\cdots+n_m)!\over n_l!\,n_2!\ldots n_m!} 

={n_l+n_2\choose n_2}{n_l+n_2+n_3\choose n_3} 

\ldots{n_l+n_2+\cdots+n_m\choose n_in}.$$ 

18.39. $$\def\\#l#2{(l-q~{#l_#2+n})} */, to save typing 

\Pi_R{a_l,a_2,\ldots,a_M\atopwithdelims[] b_l,b_2,\ldots,b_N} 

=\prod_{n=0}'‘R{\\al\\a2\ldots\\aM\over\\bl\\b2\ldots\\bN}.$$ 

18.40. $$\suin_{p\rm\;prime}f(p)=\int_{t>l}f(t)\,d\pi(t).$$ 

18.41. $$\{\underbrace{\overbrace{\mathstrut a,\ldots,a} 

"{k\;a\mathchar‘Arm s}, 

\overbrace{\mathstrut b,\ldots,b} 

'‘{1\ ;b\mathchar ^ Arm s}}_{k+l\rm\; element s}\}. $$ 

Notice how apostrophes (instead of primes) were obtained. 

18.42. $$\pmatrix{\pmatrix{a&b\cr c&d\cr}& 

\pmatrix{e&f\cr g&h\cr}\cr 

\noalign{\smallskip} 

0&\pmatrix{i&j\cr k&l\cr}\cr}.$$ 

18.43. $$\det\lef 11 \, \niatrix{ 

c_0&c_l\hfill&c_2\hfill&\ldots&c_n\hfill\cr 

c_l&c_2\hfill&c_3\hfill&\ldots&c_{n+l}\hfill\cr 

c_2&c_3\hfill&c_4\hfill&\ldots&:c_{n+2}\hfill\cr 

\,\vdots\hfill&\,\vdots\hfill& 

\,\vdots\hfill&&\,\vdots\hfill\cr 

c_n&c_{n+l}\hfill&c_{n+2}\hfill&\ldots&c_{2n}\hfill\cr 

}\rightI>0.$$ 

18.44. $$\mathop{{\sum} A_{x\in A}f (x)\mathrel{\mathop='‘{\rm def}} 

\sum_{\scriptstyle x\in A\atop\scriptstyle x\ne0}f(x).$$ 

This works because {\sum} is type Ord (so its superscript is not set above), but 

\mathop{{\sum} A is type Op (so its subscript is set below). The limits are centered 

on however, not on If you don’t like that, the remedy is more difficult; one 

solution is to use \sumprime_{x\in A} where \sumprime is defined as follows: 

\def\sumprime_#l{\setboxO=\hbox{$\scriptStyle{#l}$} 

\setbox2=\hbox{$\displaystyle{\sum}$} 

\setbox4=\hbox{${}’\mathsurround=Opt$} 

\dimen0=.5\wd0 \advance\dimenO by-.5\wd2 

\ifdim\dimen0>0pt 



Appendix A: Answers to All the Exercises 325 

\ifdim\dimen0>\wd4 \kern\wd4 \else\kern\dimenO\fi\fi 

\mathop{{\suin} 0_{\kern-\wd4 #1}} 

18.45. $$2\up2Lrrow\uparrow k\mathrel{\mathop="{\rm def}} 

2“{2~{2"{\cdot''{\cdot "{\cdot~2}}}}} 

\vbox{\hbox{$\Big\}\scriptstyle k$}\kernOpt}.$$ 

18.46. If you have to do a lot of commutative diagrams, you will want to define some 

macros like those in the first few lines of this solution. The \matrix macro resets 

the baselines to \normalbaselines, because other commands like \openup might have 

changed them, so we redefine \normalbaselines in this solution. Some of the things 

shown here haven’t been explained yet, but Chapter 22 will reveal all. 

$$\def \nonnalbaselines-C\baselineskip20pt 

\lineskip3pt \lineskiplimit3pt } 

\de f\mapright #1{\smashf 

\mathop{\longrightarrow}\limits ■'{#!}}} 

\def\mapdown#l{\Big\downaxrow 

\rlap{$\vcenter{\hbox{$\scriptstyle#l$}}$}} 

\matrix{&&&&MO\cr 

&&&&&&:\mapdown{ } \ cr 

0&\mapright{}&{\cal 0}_C&\mapright\iota& 

\cal E&\mapright\rho&\cal L&\mapright{}&0\cr 

&&\Big\Vert&&\mapdown\phi&&\mapdown\psi\cr 

0&:\mapright{}&:{\cal 0}_C&\mapright{}& 

\pi_*{\cal 0}_D&\mapright\delta& 

R"lf_*{\cal 0}_V(-D)&\mapright{}&0\cr 

&&&&&&\mapdown{\theta_i\otimes\gaimna''{-l}}\cr 

&&&&&&\hidewidth R~lf_*\bigl({\cal 0} 

_V(-iM)\bigr)\otimes\gajnma'‘{-l}\hidewidth\cr 

&&&&&&\mapdown{}\cr 

&&&&&&0\cr}$$ 

19.1. $$\suin_{n=0}"\infty a_nz''n\qquad\hbox{converges if}\qquad 

I z I <\Bigl(\limsup_{n\to\infty}\root n\ ! \of { I a_n I }\,\Bigr) ‘'{-1}. $$ 

$${f(x+\Delta x)-f(x)\over\Delta x}\to f'(x) 

\qquad\hbox{as $\Delta x\to0$.}$$ 

$$\|u_i\|=l,\qquad u_i\cdot u_j=0\quad\hbox{if $i\ne j$.}$$ 

$$\it\hbox{The confluent image of}\quad\left\{ 

\matrix{\hbox{an arc}\hfill\cr\hbox{a circle}\hfill\cr 

\hbox{a faji}\hfill\cr} 

\right\}\quad\hbox{is}\quad\left\{ 

\matrix{\hbox{an arc}\hfill\cr 

\hbox{an arc or a circle}\hfill\cr 

\hbox{a fan or an arc}\hfill\cr}\right\}.$$ 

The first example includes \! and \, to give slightly refined spacing; but the point of 

the problem was to illustrate the hbox, not to fuss over such extra details. The last 
example can be done much more simply using the ideas of Chapter 22, if you don’t 



326 Appendix A: Answers to All the Exercises 

mind descending to the level of primitives; for example, the first matrix could be 

replaced by 

\,\vcenter{\halign{#\hfil\cr an arc\cr a circle\cr a faji\cr}}\, 

and the second is similar. 

19.2. $$\textstyle y={l\over2}x$$. (Switching to text style is especially common 

in multiline formulas. For example, you will probably find occasions to use \t ext style 

on both sides of the &’s within an \eqalign.) 

19.3. The latter formula will be in text style, not display style. And even if you do 

type ‘$$\hbox{$\displaystyle{(formula)}$}$$’, the results are not quite the same, as 

we will see later: T^X will compress the glue in ‘$$(formula)$$’ if the formula is too 

wide to fit on a line at its natural width, but the glue inside \hbox{. . .} is frozen at 

its natural width. 

19.4. One solution is to put the formula in an hbox that occupies a full line: 

$$\leftline{\indent$\displaystyle 

l-{l\over2}+{l\over3}-{l\over4}+\cdots=\ln2$}$$ 

But this takes a bit of typing. If you make the definitions 

\def\leftdisplay#l$${\leftline{\indent$\displayStyle{#l}$}$$} 

\everydisplay{\leftdisplay} 

you can type ‘$$(formula)$$’ as usual, and the formatting will be inserted automat- 

ically. (This doesn’t work with equation numbers; Appendix D illustrates how to 

handle them as well.) 

19.5. $$\prod_{k\geO}{l\over(l-q"kz)}= 

\siini_{n\geO}z''n\bigg/\ ! \ ! \prod_{l\le k\le n}(l-q'‘k). \eqno(160$$ 

19.6. \eqno\hbox{(3—1)}. 

19.7. When you type an asterisk in math mode, plain considers * to be a 

binary operation. In the cases ‘(*)’ and ‘the binary operations are converted to 

type Ord, because they don’t appear in a binary context; but the middle asterisk in 

‘(***)’ remains of type Bin. So the result was ‘(* * *)’. To avoid the extra medium 
spaces, you can type ‘\eqno(*{*}*)’; or you can change \mathcode ‘ if you never use 

* as a binary operation. 

19.8. Assuming that \hsize is less than 10000 pt, the natural width of this equation 

will be too large to fit on a line; also, \quad specifies glue at the left. Therefore ‘a: = y’ 

will appear exactly 1 em from the left, and ‘(5)’ will appear flush right. (The widths 

will satisfy w = z — = k = q — e = 18 mu.) In the case of \leqno, ‘(5)’ will 

appear flush left, followed by one quad of space in \textfont2, followed by one quad 

of space in the current text font, followed by ‘a: = y\ 

19.9. (Note in particular that the final ‘.’ comes before the final ‘\cr’.) 

$$\eqalign{T(n)\le T(2"{\lceil\lg n\rceil}) 
&\le c(3"{\lceil\lg n\rceil}-2''{\lceil\lg n\rceil})\cr 

&<3c\cdot3''{\lg n}\cr 

&=3c\,n"{\lg3}.\cr}$$ 



Appendix A: Answers to All the Exercises 327 

19.10. $$\eqalign{P(x)&=a_0+a_lx+a_2x'‘2+\cdots+a_nx"n,\cr 

P(-x)&=a_0-a_lx+a_2x~2-\cdots+(-l)"na_nx'‘n.\cr}\eqno(30)$$ 

19.11. Both sides of that equation are considered to be on the left, so you get results 

that look like this: , 
[ « ^ f{z) 

I 7 = 

19.12. $$\leqalignno{\gcd(u,v)&=\gcd(v,u);&(9)\cr 

\gcd(u,v)&=\gcd(-u,v).&(10)\cr}$$ 

19.13. $$\eqalignno{\biggl(\int_{-\infty}"\infty e''{-x'‘2}\ ,dx\biggr) ~2 

&=\int_{-\infty}"\inf ty\int_{-\infty}'‘\infty 

e~{-(x~2+y"2)}\,dx\,dy\cr 

&=\int_0''{2\pi}\int_0'‘\infty e"{-r"2}r\,dr\,d\theta\cr 

&=\int_0'‘{2\pi}\biggl(-{e~{-r''2}\over2} 

\biggI_{r=0}~{r=\infty}\,\higgr)\,d\theta\cr 

&=\pi.&(ll)\cr}$$ 

19.14. You get the displayed box 

X = y z 

and 
2 2,2 X = y + z . 

Reason: The ‘and’ occurs at the left of the \eqalign box, not at the left of the whole 

display, and the \eqalign box is centered as usual. 

19.15. By raising the equation number, he increased the line height, so T^]X put extra 

space between that line and the previous line when it calculated the inter-line glue. If 

he had said ‘\smash{\raise. . he wouldn’t have had that problem. 

19.16. $$\displaylines{\hfill x\equiv x;\hfill\llap{(l)}\cr 

\hfill\hbox{if}\quad x\equiv y\quad\hbox{then}\quad 

y\equiv x;\hfill\llap{(2)}\cr 

\hfill\hbox{if}\quad x\equiv y\quad\hbox{ajid}\quad 

y\equiv z\quad\hbox{then}\quad 

x\equiv z.\hfill\llap{(3)}\cr}$$ 

There’s also a trickier solution, which begins with 

$$\displaylines{x\equiv x;\hfil\llap{(1)}\hfilneg\cr 

19.17. $$\eqalignno{x_nu_l+\cdots+x_{n+t-l}u_t 

&=x_nu_l+(ax_n+c)u_2+\cdots\cr 

&\qquad+\bigl(a''{t-l}x_n+c (a'‘{t-2}+\cdots+l)\bigr)u_t\cr 

&=(u_l+au_2+\cdots+a“{t-l}u_t)x_n+h(u_l,\ldots,u_t). 

\quad&(47)\cr}$$ 

You weren’t, expected to insert the ‘\quad’ on the last line; such refinements usually 

can’t be anticipated until you see the first proofs. But without that \quad the ‘(47)’ 

would occur half a quad closer to the formula. 



328 Appendix A: Answers to All the Exercises 

19.18. $$\displaylines{\quad\suin_{l\le j\le n}{l\over 

(x_j-x_l)\ldots(x_j-x_{j-l})(x-x_j)(x_j-x_{j+l}) 

\ldots(x_j-x_n)}\hfill\cr 

\hfill={l\over(x-x_l)\ldots(x-x_n)}.\quad(27)\cr}$$ 

19.19. $$\def\\#l;{(#l;q"2)_\infty} */, to save typing 

\displaystyle{q''{{l\over2}n(n+l)}\\ea;\\eq/a;\qquad\atop 

\hf ill\\caq/e; \\cq''2\ ! /ae;} 

\over(e;q)_\infty(cq/e;q)_\infty$$ 

20.1. \def\mustnt{I must not talk in class.\par} 

\def\five-C\mustnt\mustnt\mustnt\mustnt\mustnt} 

\def\twenty{\five\five\five\five} 

\def\punishment{\twenty\twenty\twenty\twenty\twenty} 

Solutions to more complicated problems of this type are discussed later. 

20.2. ABCAB. (The first \a expands into A\def\a{B. . .}; this redefines \a, so the 

second \a expands into B. . etc.) At least, that’s what happens if \puzzle is en- 

countered when is building a list. But if \puzzle is expanded in an \edef or 

\message or something like that, we will see later that the interior \def commands are 

not performed while the expansion is taking place, so the result is an infinite string 

A\def\a{B\def\a{C\def\a{A\def\a{B\def\a{C\def\a{A... 

which causes to abort because the program’s input stack is finite. This example 

points out that a control sequence (e.g., \b) need not be defined when it appears in the 

replacement text of a definition. The example also shows that doesn’t expand a 

macro until it needs to. 

20.3. (xi,...,Xn). Note that the subscripts are bold here, because the expansion 

(\bf x_l,\ldots,\bf x_n) doesn’t “turn off” \bf. To prevent this, one should write 

\row{{\bf x}}; or (better), \row\xbold, in conjunction with \def \xbold{{\bf x}}. 

20.4. The catch is that the parameters have to percolate down to the \mustnt macro, 

if you extend the previous answer: 

\def\mustnt#l#2-Cl must not #1 in #2.\par} 

\def\five#l#2{\mustnt{#l}{#2}...\mustnt{#l}{#2}} 

\def\twenty#l#2{\five{#l}{#2}...\five{#l}{#2}} 

\def\punishment#l#2{\twenty{#l}{#2}...\twenty{#l}{#2}} 

When you pass parameters from one macro to another in this way, you need to enclose 

them in braces as shown. But actually this particular solution punishes T^]X much 

more than it needs to, because it takes a lot of time to copy the parameters and read 

them again and again. There’s a much more efficient way to do the job, by defining 

control sequences: 

\def\mustnt{I must not \doit\ in \thatplace.\par} 

\def \punishment#l#2{\def \doit{#l}\def\thatplace{#2}*/, 

\twenty\twenty\twenty\twenty\twenty} 

and by defining \five and \twenty without parameters as before. You can also delve 

more deeply into T^nicalities, constructing solutions that are more efficient yet; 



Appendix A: Answers to All the Exercises 329 

works even faster when macros communicate with each other via boxes. For example, 

\def\mustnt{\copyO } 

\d.ef \punishment#l#2{\setbox0= 

\vbox{\strut I must not #1 in #2.\strut}7, 

\twenty\twenty\twenty\twenty\twenty} 

sets 100 identical paragraphs at high speed, because has to process the paragraph 

and break it into lines only once. It’s much faster to copy a box than to build it up from 

scratch. (The struts in this example keep the interbaseline distances correct between 

boxed paragraphs, as explained in Chapter 12. Two struts are used, for if the message 

takes more than one line there will be a strut at both top and bottom. If it were known 

that each sentence will occupy only a single line, no struts would be needed, because 

interline glue is added as usual when a box created by \copy is appended to the current 

vertical list.) 

20.5. The ## feature is indispensible when the replacement text of a definition con- 

tains other definitions. For example, consider 

\def\a#l{\def\b##l{##l#l}} 

after which ‘\a!’ will expand to ‘\def \b#l{#l!}’. We will see later that ## is also 

important for alignments; see, for example, the definition of \matrix in Appendix B. 

20.6. \def\a#{\b}. 

20.7. Let’s go slowly on this one, so that the answer will give enough background 

to answer all similar questions. The (parameter text) of the definition consists of 

the three tokens #1, #2, fi; the (replacement text) consists of the six tokens fi, #6, 

]2, le, #2, [i. (When two tokens of category 6 occur in the replacement text, the 
character code of the second one survives; the character code of a category-6 character 

is otherwise irrelevant. Thus, ‘\def \ ! #1! 2# [{##] ! !#2]’ would produce an essentially 

identical definition.) When expanding the given token list, argument #1 is xn, since 

it is undelimited. Argument #2 is delimited by [i, which is different from {i, so it is 

set provisionally to {[y] ]; but the outer “braces” are stripped off, so #2 reduces to the 

three tokens [i, yn, ]2. The result of the expansion is therefore 

fi #6 ]2 U Cl yii ]2 [l Zll }2- 

Incidentally, if you display this with \tracingmacros=l, says 

\!!1#2 [->{##]!!#2[ 

#l<-x 

#2<-[y] 

Category codes are not shown, but a character of category 6 always appears twice in 

succession. A parameter token in the replacement text uses the character code of the 

final parameter in the parameter text. 

20.8. Yes indeed. In the first case, \a receives the meaning of \b that is current at 

the time of the \let. In the second case, \a becomes a macro that will expand into the 

token \b whenever \a is used, so it has the meaning of \b that is current at the time 

of use. You need Met, if you want to interchange the meanings of \a and \b. 



330 Appendix A: Answers to All the Exercises 

20.9. (a) Yes. (b) No; any other control sequence can appear (except those declared 
as \outer macros). 

20.10. \def\overpaid{{\countO=\count\balaiice 

You have overpaid your tax by Xdollaramount. 

\ifnuin\count0<100 It is our policy to refund 

such a small amount only if you ask for it. 

\else A check for this amount is being mailed 

under separate cover.\fi}} 

20.11. The tricky part is to get the zero in an amount like ‘$2.01’. 

\def\dollaramount{\count2=\count0 \divide\count2 bylOO 

\$\number\count2. */, 

\multiply\count2 by-100 \advance\count2 by\countO 

\ifnum \count2<10 0\fi 

\number\count2 } 

20.12. \def\category#l{\ifcaseXcatcode‘#1 

escapeXor begingroupXor endgroupXor mathXor 

alignXor endlineXor parameterXor superscriptXor 

subscriptXor ignoredXor spaceXor letterXor 

othercharXor activeXor commentXor invalidXfi} 

20.13. (a,b) True. (c,d) False. (e,f) True. In case (e), the (true text) starts with 
‘ue’. (g) The Xifx is false and the inner Xif is true; so the outer Xif becomes ‘Xif 
True. . which is false. (Interestingly, knows that the outer Xif is false even 
before it has looked at the Xfi’s that close the Xifx and the inner Xif.) 

20.14. One idea is to say 

XletXsave=Xc XletXc=0 XedefXafXbXcXd} XletXc=Xsave 

because control sequences equivalent to characters are not expandable. However, this 
doesn’t expand occurrences of Xc that might be present in the expansions of Xb and Xd. 

Another way, which is free of this defect, is 

XedefXnext#l#2{Xdef#l{Xb#2Xd}} XnextXaXc 

(and it’s worth a close look!). 

20.15. XtoksO={Xc} Xtoks2=XexpandafterfXd} 

XedefXafXbXtheXtoksO XtheXtoks2 } 

(Notice that Xexpajidafter expands the token after the left brace here.) 

20.16. The following shouldn’t be taken too seriously, but it does work: 

{XsetboxO=Xvbox{Xhalign{#{XcXspaiiXd}Xcr 

XletXnext=OXedefXnext#l{XgdefXnext{Xb#l}}XnextXcr}}} 

XletXa=Xnext 

20.17. Neither one, although Xa will behave like an unmatched left brace when it is 
expanded. The definition of Xb is not complete, because it expands to ‘XdefXb{{}’; 

will continue to read ahead, looking for another right brace, possibly discovering a 
runaway definition! It’s impossible to define a macro that has unmatched braces. But 
you can say XletXa={; Appendix D discusses several other brace tricks. 



Appendix A: Answers to All the Exereises 331 

20.18. One way is to redefine \catcode^~M=9 (ignored) just before the \read, so 

that the (return) will be ignored. Another solution is to redefine \endlinechar=-l, 

so that no character is put at the end of the line. Or you could try to be tricky by 

stripping off the space with macro expansion as follows: 

\def\stripspace#l \next{#l} 

\edef \mynajne{\expandaf ter\stripspace\myneLme\next} 

The latter solution doesn’t work if the user types at the end of his or her name, or 

if the name contains control sequences. 

20.19. Here are two solutions: 

\def\next#l\endname{\uppercase{\def\MYNAME{#1}}} 

\ expauidaf t er \ne x t Xmynajne \ endnciine 

\edef \next{\def \noexpaiid\MYNAME{\mynajiie}} 

\uppercase\expandafter{\next} 

20.20. (Here’s a solution that also numbers the lines, so that the number of repetitions 

is easily verifiable. The only tricky part about this answer is the use of \endgraf, which 

is a substitute for \par because \loop is not a \long macro.) 

\newcount\n 

\def\punishment#l#2{\n=0 

\loop\ifnuin\n<#2 \advajice\n byl 

\item{\nuinber\n. }#l\endgraf \repeat} 

21.1. The interline skip is added for vboxes, but not for rules; he forgot to say 

\nointerlineskip, before and after the \moveright construction. 

21.2. \vrule heightSpt depth-2pt widthlin. Notice that it was necessary to call 

it a \vrule since it appeared in horizontal mode. 

21.3. \def\boxit#l{\vbox{\hrule\hbox{\vrule\kern3pt 

\vbox{\kern3pt#l\kern3pt}\kern3pt\vrule}\hrule}} 

(The resulting box does not have the baseline of the original one; you have to work a 

little bit harder to get that.) 

21.4. \leaders: two boxes starting at 100 pt, 110 pt. 

\cleaders: three boxes starting at 95 pt, 105 pt, 115 pt. 

\xleaders: three boxes starting at 93pt, 105pt, 117pt. 

21.5. \def\leaderf ill{\kern-0.3em\leaders\hbox to lem{\hss . \hss}’/, 

\hskip0.Bern plusIfill \kern-0.3em } 

21.6. Since no height or depth specification follows the \vrule, the height and 

depth are i.e., the rule extends to the smallest enclosing box. This usually makes 

a heavy black band, which is too horrible to demonstrate here. However, it does work 

in the \downbracef ill macro of Appendix B; and \leaders\vrule\vf ill works fine 

in vertical mode. 



332 Appendix A: Answers to All the Exercises 

21.7. For example, say 

\null\nobreak\leaders\hrule\hskiplOpt pluslfilll\ \par 

The ‘\u’ provides extra glue that is wiped out by the implied \unskip at the end of 
every paragraph (see Chapter 14), and the ‘\null\nobreak’ makes sure that the leaders 
do not disappear at a line break; ‘filll’ overtakes the \parfillskip glue. 

21.8. $$\hbox to 2.5in{\cleaders 

\vbox to .5in{\cleaders\hbox{\TeX}\vfil}\hfil}$$ 

21.9. We assume that a strut is 12 pt tall, and that 50 lines fit on a page: 

\setboxO=\hbox{\strut I must not talk in class.} 

\null\cleaders\copy0\vskip600pt\vfill\eject */, 50 times on page 1; 

\null\cleaders\box0\vskip600pt\bye */, 50 more on page 2. 

The \null keeps glue (and leaders) from disappearing at the top of the page. 

21.10. {\let\the=0\edef\next{\write\cont{(token list)}}\next} will expand ev- 
erything but \the when the \write command is given. 

22.1. Notice the uses of ‘\smallskip’ here to separate the table heading and footing 
from the table itself; such refinements are often worthwhile. 

\settabs\+\indent&10\fracl/2 lbs.\qquad&:\it Servings\qquad&\cr 

\+&\negthinspace\it Weight&\it Servings& 

{\it Approximate Cooking Time\/}*\cr 

\smallskip 

\+&;8 lbs.&6&l hour and 50 to 55 minutes\cr 

\+&9 lbs.&7 to S&About 2 hours\cr 

\+&9\fracl/2 lbs.&8 to 9&2 hours aind 10 to 15 minutes\cr 

\+&10\fracl/2 lbs.&:9 to 10&2 hours and 15 to 20 minutes\cr 

\smallskip 

\+&* For a stuffed goose, 

add 20 to 40 minutes to the times given.\cr 

The title line specifies ‘\it’ three times, because each entry between tabs is treated 
as a group by T^X; you would get error messages galore if you tried to say something 
like ‘\+&{\it Weight&Servingsfe. . .}\cr’. The ‘\negthinspace’ in the title line is a 
small backspace that compensates for the slant in an italic W; the author inserted this 
somewhat unusual correction after seeing how the table looked without it, on the first 
proofs. (You weren’t supposed to think of this, but it has to be mentioned.) See 
exercise 11.6 for the ‘\frac’ macro; it’s better to say ‘1/2’ than in a cookbook. 

Another way to treat this table would be to display it in a vbox, instead of 
including a first column whose sole purpose is to specify indentation. 

22.2. In such programs it seems best to type \cleartabs just before &, whenever 
it is desirable to reset the old tabs. Multiletter identifiers look best when set in text 
italics with \it, as explained in Chapter 18. Thus, the following is recommended: 

\+\bf while $p>0$ do\cr 

\+\quad\cleartabs&{\bf begin} $q:={\it link}(p)$; 

${\it free\_node}(p)$; $p:=q$;\cr 

\+&{\bf end};\cr 



Appendix A: Answers to All the Exercises 333 

22.3. Here we retain the idea that & inserts a new tab, when there are no tabs to the 
right of the current position. Only one of the macros that are used to process \+ lines 
needs to be changed; but (unfortunately) it’s the most complex one: 

\def\tQbbQx{\ifQcr\egroup 7, now \boxO holds the column 

\else\hss\egroup \dimenQ=0\pQ 

\dimenQii=\wdO \adv8uice\dimenQii bylsp 

\loop\ifdim \dimen(9<\dimenQii 

\global\setbox\tabsyet=\hbox{\unhbox\tabsyet 

\global\setboxl=\lastbox}y, 

\ifvoidl \adv2Lnce\dimenQii by-\dimen(9 

\adv2Lnce\dimenQii by-lsp \global\setboxl 

=\hbox to\dimen(9ii{}\dimenQii=-lpt\fi 

\advance\dimen(9 by\wdl \global\setbox\tabsdone 

=\hbox{\boxl\unhbox\tabsdone}\repeat 

\setboxO=\hbox to\dimenQ{\unhboxO}\fi 

\boxO} 

22.4. Horizontal lists Chapter 14 
Vertical lists Chapter 15 

Math lists Chapter 17 (i-e., the first column would be right-justified) 

22.5. Fowl&Poule de I’AnnX’ee&lO to 12&0ver 3&Stew, Fricassee\cr 

22.6. $$\halign to\hsize{\sl#\hfil\tabskip=.5em plus.5em& 

#\hfil\tabskip=Opt plus.5em& 

\hfil#\tabskip=lem plus2em& 

\sl#\hfil\tabskip=.5em plus.5em& 

#\hfil\tabskip=Opt plus.5em& 

\hfil#\tabskip=Opt\cr ...}$$ 

22.7. The trick is to define a new macro for the preamble: 

$$\def\welshverb#l={{\bf#1} = } 

\halign to\hsize{\welshverb#\hfil\tabskip=lem pluslemft 

\welshverb#\hfil&\welshverb#\hfil\tabskip=Opt\cr ...}$$ 

22.8. \hfil#: &\vtop{\paxindent=0pt\hsize=16em 

\hangindent.5em\strut#\strut}\cr 

With such narrow measure and such long words, the \tolerance should probably also 
have been increased to, say, 1000 inside the \vtop; luckily it turned out that a higher 
tolerance wasn’t needed. 

Note: The stated preamble solves the problem and demonstrates that T^]X’s 
line-breaking capability can be used within tables. But this particular table is not 
really a good example of the use of \halign, because could typeset it directly, 
using \everypar in an appropriate manner to set up the hanging indentation, and using 
\pax instead of \cr. For example, one could say 

\hsize20em \paxindentOpt \clubpenaltyl0000 \widowpenaltyl0000 

\def\history#l&{\hangindent4.5em 

\hbox to4em{\hss#l: }\ignorespaces} 

\everypax=-C\history} \def\\{\leavevmode{\it c\/}} 



334 Appendix A: Answers to All the Exercises 

which spares all the work of \haligii but yields essentially the same result. 

22.9. The equation is divided into separate parts for terms and plus/minus signs, 

and tabskip glue is used to center it: 

$$\openupl\jot \tabskip=Opt pluslfil 

\halign to\displaywidth{\tabskip=Opt 

$\hfil#$&$\hfil{}#{}$& 

$\hfil#$&$\hfil{}#{}$& 

$\hfil#$&$\hfil{}#{}$& 

$\hfil#$&${}#\hfil$\tabskip=Opt plusIflife 

\llap{#}\tabskip=Opt\cr 

10w&+&3x&+&3y&+&18z&=l,&(9)\cr 

6w&-&17x&&&-&5z&=2.&(10)\cr}$$ 

\hfil# &#\hfil&\quad#&\ \hfil#&\ \hfil#\cr 

\pmatrix{a_{ll}&a_{12}&\ldots&a_{ln}\cr 

a_{21}&a_{22}&\ldots&a_{2n}\cr 

\multispan4\dotfill\cr 

a_{ml}&a_{m2}&\ldots&a_{mn}\cr} 

‘\cr’ would have omitted the final column, which is a vertical rule. 

One way is to include two lines just before and after the title line, saying 

‘\omit&height2pt&\multispaii5&\cr’. Another way is to put \bigstrut into some 

column of the title line, for some appropriate invisible box \bigstrut of width zero. 
Either way makes the table look better. 

22.14. The trick is to have “empty” columns at the extreme left and right; then the 

\hrulef ill’s are able to span the tabskip glue. 

$$\vbox{\tabskip=Opt \offinterlineskip 

\halign to 36em{\tabskip=0pt pluslem#& 

#\hfil&#&#\hfil&#&#\hfil&#\tabskip=Opt\cr 

&&&&&\strut J. H. B\"ohning, 1838&\cr 

&&&&\inul t i s p aji3 \ hr u 1 e f i 11 \ c r 

&&&\strut M. J. H. B\"ohning, 1882&\vrule\cr 

&&\inultispan3\hrulef ill\cr 

&&\vrule&&\vrule&\strut M. D. Blase, 1840&\cr 

&&\vrule&&:\multispcLn3\hrulef ill\cr 

&\strut L. M. Bohning, 1912&\vrule\cr 

\multispan3\hrulefill\cr 

&;&\vrule&&&\strut E. F. Ehlert, 1845&\cr 

&&\vrule&&\multispeLn3\hrulef ill\cr 

&&\vrule&\strut P. A. M. Ehlert, 1884&\vrule\cr 

&&\multispan3\hrulefill\cr 

&&&&:\vrule&\strut C. L. Wischmeyer, 1850&\cr 

&&&&\multispaii3\hrulefill\cr}}$$ 

22 .oo. (Solution to Dudeney’s problem.) Let None and \two be macros that produce 

a vertical list denoting one and two pennies, respectively. The problem can be solved 

22.10. 
22.11. 

22.12. 

22.13. 



Appendix A: Answers to All the Exereises 335 

with \valign as follows: 

\valign{\vfil#&\vfil#&\vfil#&\vfil#\cr 

\two&\one&\one&\one\cr 

\one&\one&\two&\one\cr 

\one&\one&\one&\two\cr 

\one&\two&\one&\one\cr} 

Since \valign transposes rows and columns, the result is 

OOOQ 
oOoo 
ooOo 

23.1. \footline={\hss\tenrm— \folio\ —\hss} 

23.2. \headline={\ifnuin\pageno=l \hss\tenbf R\^ESUM\’E\hss 

\else\tenrm R\’esuin\^e of A. U. Thor \dotfill\ Page \folio\fi} 

(You should also say \nopagenumbers and \voff set=2\baselineskip.) 

23.3. \output={\plainoutput\blcinkpageoutput} 

\def\blankpageoutput{\shipout\vbox{\makeheadline 

\vbox to\vsize{}\makefootline}\advajicepageno} 

23.4. Set \hsize=2. lin, allocate ‘\newbox\midcoluinn’, and use the following code: 

\output={\if L\lr 

\global\setbox\leftcoluiiin=\coluinnbox \global\let\lr=M 

\else\if M\lr 

\global\setbox\midcoluinn=\coluinnbox \global\let\lr=R 

\else \tripleformat \global\let\lr=L\fi\fi 

\ifnmn\outputpenalty>-20000 \else\dosupereject\fi} 

\def\tripleformat{\shipout\vbox{\makeheadline 

\fullline{\box\leftcoluinn\hf il\box\midcoluinn\hf il\columnbox} 

\makefootline} 

\advancepageno} 

At the end,\supereject and say ‘\if L\lr \else\null\vfill\eject\fi’ twice. 

23.5. He forgot that interline glue is inserted automatically before the \leftline; 

this permits a legal breakpoint between the \mark and the \leftline box, according 

to the rules of page breaking in Chapter 15. One cure would be to say Xnobrectk just 
after the \mark; but it’s usually best to put marks and insertions just after boxes. 

23.6. Say, for example, \if case2\expandafter\relax\botmark\f i to read part a2 

of \botmark. Another solution puts the five components into five parameters of a 

macro, analogous to the method used by \inxcheck later in this chapter; but the 

\if case approach is usually more efficient, because it lets T^]X pass over the unselected 

components at high speed. 

23.7. \output={\dimen0=\dp255 \normaloutput 

\ifodd\pageno\else\if L\lr 

Nexpeindafter\inxcheck\botmark\sub\end\fi\fi} 

In this case the \normaloutput macro should be the two-column output routine that 

was described earlier in this chapter, beginning with ‘\if L\lr’ and ending with 

‘\let\lr=L\fi’. (There is no need to test for \supereject.) 



336 Appendix A: Answers to All the Exercises 

23.8. False. If the text of the main and/or subsidiary entry is lengthy, a continuation 

line may actually become two or more lines. (Incidentally, hanging indentation will 
then occur, because the \everypar command—which was set up outside the \output 

routine—is effective inside.) The \vsize must be large enough to accommodate all 
continuation lines plus at least one more line of index material, or else infinite looping 

will occur. 

24.1. If \cs has been defined by \chardef or \mathchardef, uses hexadecimal 

notation when it expands \meaning\cs, and it assigns category 12 to each digit of 

the expansion. You might have an application in which you want the last part of the 

expansion to be treated as a (number). (This is admittedly an obscure reason.) 

24.2. Yes; any number of spaces can precede any keyword. 

24.3. The first two have the same meaning; but the third coerces \baselineskip to 

a (dimen) by suppressing the stretchability and shrinkability that might be present. 

24.4. The natural width is 221 dd (which rounds to 15497423 sp and displays 

as 236.47191pt). The stretchability is 2500sp, since an internal integer is coerced to a 

dimension when it appears as an (internal unit). The shrinkability is zero. Notice that 

the final \space is swallowed up as part of the optional spaces of the (shrink) part in 

the syntax for (glue). (If PLUS had been MINUS, the final \space would not have been 

part of this (glue)!) 

24.5. If it was non-null when a \dump operation occurred. Here’s a nontrivial exam- 

ple, which sets up Xbatchmode and puts \end at the end of the input file: 

\everyjob={\batchmode\input\jobnaine\end} 

24.6. (a) \def\\#l\\{}\futurelet\cs\\u\\. (b) \def\\{\let\cs= }\\u. (There 

are many other solutions.) 

24.7. (internal quantity) —^ (internal integer) | (internal dimen) 

I (internal glue) | (internal muglue) | (internal nonnumeric) 

(internal nonnumeric) -—^ (token variable) | (font) 

26.1. Radix 10 notation is used for numeric constants and for the output of numeric 

data. The first 10 \count registers are displayed at each \shipout, and their values 

are recorded on the dvi file at such times. A box whose glue has stretched or shrunk to 

its stated stretchability or shrinkability has badness 100; this badness value separates 

“loose” boxes from “very loose” or “underfull” ones. will scroll up to 100 errors in a 

single paragraph before giving up (see Chapter 27). The normal values of \spacef actor 

and \mag are 1000. A \prevdepth value of —lOOOpt suppresses interline glue. The 

badness rating of a box has a maximum value of 10000. INITEX initializes \tolerance 

to 10000, thereby making all line breaks feasible. Penalties of 10000 or more prohibit 

breaks; penalties of —10000 or less make breaks mandatory. The cost of a page break 

is 100000, if the badness is 10000 and if the associated penalties are less than 10000 in 

magnitude (see Chapter 15). 

26.2. allows constants to be expressed in radix 8 (octal) or radix 16 (hexadeci- 

mal) notation, and it uses hexadecimal notation to display \char and Xmathchair codes. 

There are 16 families for math fonts, 16 input streams for \read, 16 output streams 



Appendix A: Answers to All the Exercises 337 

for \write. A \catcode value must be less than 16. The notation ''"(9, '‘"A spec- 

ifies characters whose ASCII codes differ by 64 from the codes of ?, ®, A. Characters 

have ASCII codes less than 128; hence there are 128 entries in each of the \catcode, 

\mathcode, \lccode, \uccode, \sf code, and \delcode tables. All \lccode and \uccode 

values must be less than 128. A \char value must be less than 256. A font has at most 

256 characters. There are 256 \box registers, 256 \count registers, 256 \dimen regis- 

ters, 256 \skip registers, 256 \muskip registers, 256 \toks registers. The “at size” of 

a font must be less than 2048 pt, i.e., 2^^ pt. Math delimiters are encoded by multi- 

plying the math code of the “small character” by 2^^. The magnitude of a (dimen) 

value must be less than 16384 pt, i.e., 2^'* pt; similarly, the (factor) in a (fil dimen) 

must be less than 2^"*. A \mathchar or \spacefactor or \sfcode value must be less 

than 2^^; a \mathcode or \mag value must be less than or equal to 2^^, and the latter 

value denotes an “active” math character. There are 2 sp per pt. A \delimiter or 

\delcode value must be less than 2 . The \end command sometimes contributes a 

penalty of —2^® to the current page. A (dimen) must be less than 2^® sp in absolute 

value; a (number) must be less than 2^^ in absolute value. 

27.1. He forgot to count the space; T^]X deleted ‘i’, ‘m’, ‘u’, ‘\input’, and four letters. 

(But all is not lost; he can type T’ or ‘2’, then (return), and after being prompted by 

‘♦’he can enter a new line of input.) 

27.2. First delete the unwanted tokens, then insert what you want: Type ‘6’ and 

then ‘I\macro’. (Incidentally, there’s a sneaky way to get at the \inaccessible control 

sequence by typing 

I\gaxbage{}\let\accessible= 

in response to an error message like this. The author designed in such a way that 

you can’t destroy anything by playing such nasty tricks.) 

27.3. does the trick, if*/, is a comment character. 

27.4. The ‘minus’ of ‘minuscule’ was treated as part of the \hskip command in 

\nextnumber. Quick should put ‘\relax’ at the end of his macro. (The keywords 1, 

plus, minus, width, depth, or height might just happen to occur in text when is 

reading a glue specification or a rule specification; designers of general-purpose macros 

should guard against this. If you get a ‘Missing number’ error and you can’t guess 
why is looking for a number, plant the instruction ‘\tracingcommands=l’ shortly 

before the error point; your log file will show what command is working on.) 

27.5. If this exercise isn’t just a joke, the title of this appendix is a lie. 

If you can't solve a problem, 
you can always look up the answer. 

But please, try first to solve it by yourself; 
then you'll learn more and you'll learn faster. 

— DONALD E. KNUTH, The TEXbOOk (1983) 

How answer you for your selues? 

— WILLIAM SHAKESPEARE, Much Adoe About Nothing (1598) 



Basic 
Control 

Sequences 



Appendix B: Basic Control Sequences 339 

Let’s begin this appendix with a chart that summarizes plain T^]X’s conventions. 

Characters that are reserved for special purposes: \ { } $ & # ’/, 

\rm roman, {\sl slanted}, {\bf boldface}, {\it italic\/} type 

roman, slanted, boldface, italic type 

 jC \gg \Q 

- — ii$#&%ae^oe(Ea A fi00 

\‘a \’e \^o \"u \=y \~n \.p \u\i \v s \H\j \t\i u \b k \c c \d h 

aeoiiyhpi s j m k g h 

\1 \L \dag \ddag \S \P {\it\$ \&} \copyright \TeX \dots 

1 L t t § f £ & © TfeX ... 

Line break controls: \break \nobreak \allowbreak \hbox{unbreakable} 

dis\-cre\-tion\-ary hy\-phens virguleXslash breakpoint 

Breakable horizontal spaces: Unbreakable horizontal spaces: 

Xu normal interword space normal interword space 

Xenskip this much Xenspace this much 

Xquad this much Xthinspace this much 

Xqquad this much Xnegthinspace thianuch 

Xhskip (arbitrary dimen) Xkern (arbitrary dimen) 

Vertical spaces: \smallskip \medskip  \bigskip 

Page break controls: \eject \supereject \nobreak \goodbreak \filbreak 

Vertical spaces and good breakpoints: \smallbreak \medbreak \bigbreak 

\settabs 4 \columns 

\+Here’s an example&of\hfill some &tabbing:&\hrulefill&\cr 

Here’s an example of some tabbing:   

\hrulefill   \dotfill   

\leftarrowf ill ^  \rightarrowf ill  ^ 

Xupbracefill ' ^^ Xdownbracefill , 

More general alignments use Xhalign, Xvalign, Xomit, Xspan, and Xmultispan. 

Examples of the principal conventions for text layout appear on the next page. 



340 Appendix B: Basic Control Sequences 

y. This test file generates the output shown on the opposite page, 

y. It’s a bit complex because it tries to illustrate lots of stuff, 

y TeX ignores commentary (like this) that follows a ^y«’ sign. 

% First the standard output style is changed slightly: 

\hsize=29pc % The lines in this book are 29 picas wide. 

\vsize=42pc */, The page body is 42 picas (not counting footlines) . 

\footline={\tenrm Footline\quad\dotfill\quad Page \folio} 

\pageno=1009 % This is the starting page number (don’t ask why). 

y* See Chapter 23 for the way to make other page format changes via 

y, \hoffset, \voffset, \nopagenumbers, \headline, or \raggedbottom. 

\vglue lin % This makes an inch of blank space (lin=2.54cm). 

\centerline{\bf A Bold, Centered Title} 

\smallskip */, This puts a little extra space after the title line. 

\rightline{\it avec un sous-titre \‘a la fran\c caise} 

y, Now we use \beginsection to introduce part 1 of the document. 

\beginsection 1. Plain \TeX nology */« The next line must be blank! 

The first paragraph of a new section is not indented. 

\TeX\ recognizes the end of a paragraph when it comes to a blank 

line in your manuscript file. % or to a ‘\par’: see below. 

Subsequent paragraphs {\it are\/} indented.\footnote*{The amount 

of indentation can be changed by changing a parameter called 

{\tt\char‘Wparindent}. Turn the page for a summary of \TeX’s most 

important parameters.} (See?) The computer breaks a paragraph’s 

text into lines in an interesting way see ref erence~ [1] and h*/, 

yphenates words automatically when necessary. 

\midinsert */* This begins inserted material, e.g., a figure. 

\narrower\narrower */« This brings the margins in (see Chapter 14) . 

\noindent \llap{‘‘}If there hadn’t been room for this material on 

the present page, it would have been inserted on the next one.’’ 

\endinsert */« This ends the insertion and the effect of \narrower. 

\proclaim Theorem T. The typesetting of $math$ is discussed in 

Chapters 16—19, and math symbols are summarized in Appendix~F. 

\beginsection 2. BibliographyXpar % ^\par’ acts like a blank line. 

\frenchspacing */« (Chapter 12 recommends this for bibliographies.) 

\item{[l]} D.~E. Knuth and M.~F. Plass, ‘^Breciking paragraphs 

into lines,’’ {\sl Softw. pract. exp. \bfll} (1981), 1119—1184. 

\bye y, This is the way the file ends, not with a Xbaing but a \bye. 



Appendix B: Basic Control Sequences 341 

A Bold, Centered Title 

avec un sous-titre d la frangaise 

1. Plain T^]|Xnology 

The first paragraph of a new section is not indented. T^}X recognizes the end of 
a paragraph when it comes to a blank line in your manuscript file. 

Subsequent paragraphs are indented.* (See?) The computer breaks a para- 
graph’s text into lines in an interesting way—see reference [1]—and hyphenates 
words automatically when necessary. 

“If there hadn’t been room for this material on the present 
page, it would have been inserted on the next one.” 

Theorem T. The typesetting of math is discussed in Chapters 16-19, and math 
symbols are summarized in Appendix F. 

2. Bibliography 

[1] D. E. Knuth and M. F. Plass, “Breaking paragraphs into lines,” Softw. 
pract. exp. 11 (1981), 1119-1184. 

* The amount of indentation can be changed by changing a parameter called 
\parindent. Turn the page for a summary of T^X’s most important parameters. 

Footline Page 1009 



342 Appendix B: Basic Control Sequences 

The preceding example illustrates most of the basic things that you can 

do directly with plain T^, but it does not provide an exhaustive list. Thus, 

it uses \centerline.and \rightline, but not \leftline or Mine; it uses 

\midinsert, but not \topinsert or \pageinsert; it uses \smallskip, but not 

\medskip or \bigskip; it uses \llap but not \rlap, \item but not \itemitem, 

\vglue but not \hglue. It does not illustrate \raggedright setting of para- 

graphs; it does not use \obeylines or \obeyspaces to shut off l^]X’s automatic 

formatting. All such control sequences are explained later in this appendix, and 

further information can be found by looking them up in the index. The main 

purpose of the example is to serve as a reminder of the repertoire of possibilities. 

Most of the control sequences used in the example are defined by macros 

of plain format, but three of them are primitive, i.e., built in: ‘\pax’ (end of 

paragraph), ‘\noindent’ (beginning of non-indented paragraph), and ‘\/’ (italic 

correction). The example also assigns values to two of T^]X’s primitive param- 

eters, namely \hsize and \vsize. T^ has scores of parameters, all of which 

are listed in Chapter 24, but only a few of them are of special concern to the 

majority of users. Here are examples of how you might want to give new 

values to the most important parameters other than \hsize and \vsize: 

\tolerajice=500 (T^^X will tolerate lines whose badness is rated 500 or less.) 

\looseness=l (The next paragraph will be one line longer than usual.) 

\parindent=4niin (Paragraphs will be indented by four millimeters.) 

\hoffset=l .5in (All output will be shifted right by one and a half inches.) 

\voffset=24pt (All output will be shifted down by 24 points.) 

\baselineskip=llpt plus. Ipt (Baselines will be 11 pt apart, or a bit more.) 

\parskip=3pt plus Ipt minus. 5pt (Extra space will precede each paragraph.) 

Plain T^ uses \parindent also to control the amount of indentation provided 

by \item, \itemitem, and \narrower. 

fThe remainder of this appendix is devoted to the details of the plain T^X 

format, which is a set of macros that come with normal implementations of 

TEX- These macros serve three basic purposes: (1) They make TEX usable, because 
TEX’s primitive capabilities operate at a very low level. A “virgin” TEX system that 
has no macros is like a newborn baby that has an immense amount to learn about the 

real world; but it is capable of learning fast. (2) The plain TEX macros provide a basis 

for more elaborate and powerful formats tailored to individual tastes and applications. 

You can do a lot with plain TEX? but pretty soon you’ll want to do even more. (3) The 

macros also serve to illustrate how additional formats can be designed. 

Somewhere in your computer system you should be able to find a file called 
plain.tex that contains exactly what has been preloaded into the running TEX system 

that you use. Our purpose in the rest of this appendix will be to discuss the contents 

of plain.tex. However, we will not include a verbatim description, because some 

parts of that file are too boring, and because the actual macros have been “optimized” 

with respect to memory space and running time. Unoptimized versions of the macros 

are easier for humans to understand, so we shall deal with those; plain.tex contains 

equivalent constructions that work better on a machine. 



Appendix B: Basic Control Sequences 343 

So here’s the plan for the rest of Appendix B: We shall go through the con- 

tents of plain.tex, interspersing an edited transcription of that file with comments 

about noteworthy details. When we come to macros whose usage has not yet been 

explained—for example, somehow \vglue and \beginsection never made it into Chap- 

ters 1 through 27—we shall consider them from a user’s viewpoint; but most of the 

time we shall be addressing the issues from the standpoint of a macro designer. 

1. The code tables. A format’s first duty is to establish \catcode values. This is nec- 

essary because, for example, a \def command can’t be used until there are characters 

like { and } of categories 1 and 2. The INITEX program (which reads plain.tex so 

that T^]X can be initialized) begins without knowing any grouping characters; hence 

plain.tex starts out as follows: 

*/, This is the plain TeX format that^s described in The TeXbook. 

'/, N.B.: A version number is defined at the very end of this file; 

'/, please change that number whenever the file is modified! 

*/, And don’t modify the file under any circumsteinces. 

\catcode ‘\{=1 */, left brace is begin-group character 

\catcode ‘\}=2 '/, right brace is end-group character 

\catcode ‘\$=3 */, dollar sign is math shift 

\catcodeA&=4 */, ampersand is alignment tab 

\catcodeA#=6 */, hash mark is macro parameter character 

\catcode^"=7 \catcodeA~"K=7 */, circumflex and uparrow for superscripts 

\catcodeA_=8 \catcodeA""A=8 */, underline euid downarrow for subscripts 

\catcode‘\~''I=10 */, ASCII tab is treated as a blank space 

\chaxdef\active=13 \catcode ‘\~=\active '/, tilde is active 

\catcodeA"~L=\active \outer\def"~L{\par} 7, ASCII form-feed is \outer\par 

\message{Preloading the plain format: codes,} 

These instructions set up the nonstandard characters and ~"A for superscripts and 

subscripts, in addition to " and _, so that people with extended character sets can 

use t and 1 as recommended in Appendix C. Furthermore ""I (ASCII (tab)) is given 

category 10 (space); and (ASCII (formfeed)) becomes an active character that 

will detect runaways on files that have been divided into “file pages” by (formfeed) 

characters. The control sequence \active is defined to yield the constant 13; this is 

the one category code that seems to deserve a symbolic name, in view of its frequent 

use in constructing special-purpose macros. 

When INITEX begins, category 12 (other) has been assigned to all 128 possible 

characters, except that the 52 letters A. . .Z and a. . .z are category 11 (letter), and a 

few other assignments equivalent to the following have been made: 

\catcode A\ =0 \catcode‘\ =10 \catcode A7i =14 

\catcode' W''Q=9 \catcode‘\"~M=5 \catcode ‘\~~?=15 

Thus ‘\’ is already an escape character, ‘u’ is a space, and “/,’ is available for comments 

on the first line of the file; ASCII (null) is ignored, ASCII (return) is an end-of-line 
character, and ASCII (delete) is invalid. 

The \message command shown above prints a progress report on the terminal 

when plain.tex is being input by INITEX. Later on comes Amessagefregisters,}’ 



344 Appendix B: Basic Control Sequences 

and several other messages, but we won’t mention them specifically. The terminal will 

eventually display something like this when initialization is complete: 

** plain 

(plain.tex Preloading the plain format: codes, registers, 

pareimeters, fonts, more fonts, macros, math definitions, 

output routines, hyphenation (hyphen.tex)) 

* \dump 

Beginning to dump on file plain.fmt 

followed by a variety of statistics about what fonts were loaded, etc. If you want to 

make a new format super.tex that adds more features to plain.tex, it’s best not 

to make a new file containing all the plain stuff, or even to \input plain; just type 

‘&plain super’ in response to INITEX’s ** prompt, to input plain.fmt at high speed. 

After the opening \message, plain.tex goes on to define a control sequence 

\dospecials that lists all the characters whose catcodes should probably be changed 

to 12 (other) when copying things verbatim: 

\def\dospecials{\do\ \do\\\do\{\do\}\do\$\do\&*/, 

\do\#\do\~\do\''"K\do\_\do\"''A\do\*/,\do\"'} 

(Appendix E illustrates how to use \dospecials.) The ASCII codes for (null), (tab), 

(linefeed), (formfeed), (return), and (delete) have not been included in the list. 

At this point plain.tex completes its initialization of category codes by set- 

ting \catcode ^\(9=11, thereby making the character ‘Q’ behave temporarily like a letter. 

The command \catcode ^ \(9=12 will appear later, hence at-sign characters will act just 

like ordinary punctuation marks when is running. The idea is to make it easy 

for plain to have private control sequences that cannot be redefined by ordinary 

users; all such control sequences will have at least one in their names. 

The next job is to set up the \mathcode table: 

\mathcode ‘\"(9="2201 

\mathcode ‘\''''C="010C 

\mathcode‘\~~F="3232 

\mathcode ‘\"'‘I="010D 

\mathcode‘^L="2206 

\mathcode'\~"0="0140 

\mathcode ‘ \''''R="225C 

\mathcode'\^^U="0239 

\mathcode ‘ \"''X="3220 

\mathcode ‘ \'''' [="2205 

\mathcode‘\ ="3211 

\mathcode‘\ ="8000 

\mathcode‘\(="4028 

\mathcode'\+="202B 

\mathcode'\.="013A 

\mathcode'\;="603B 

\mathcode ^\>="313E 

\mathcode'\\="026E 

\mathcode‘\{="4266 

\mathcode‘\~-'A="3223 

\mathcode ^ \"''D="225E 

\mathcode^\~~G="0119 

\mathcode ‘ J="010E 

\mathcode‘\^~M="2208 

\mathcode ‘ X" ■'P="321A 

\mathcode'~S="225B 

\mathcode‘^V="220A 

\mathcode‘^Y="3221 

\mathcode ‘ X'' "\="3214 

Xmathcode ‘ X''"_="225F 

Xmathcode ^ X!="5021 

Xmathcode‘X)="5029 

Xmathcode‘X,="613B 

Xmathcode‘X/="013D 

Xmathcode'X<="313C 

Xmathcode'X?="503F 

Xmathcode‘X]="505D 

Xmathcode‘X I="026A 

Xmathcode ^ X''''B="010B 

Xmathcode ^ X''"E="023A 

Xmathcode‘X''~H="0115 

Xmathcode'X^''K="3222 

Xmathcode'X^~N="0231 

Xmathcode' X"Q="321B 

XmathcodeA~~T="0238 

XmathcodeA^~W="3224 

Xmathcode‘X~"Z="8000 

Xmathcode‘X""] ="3215 

Xmathcode‘X~~?="1273 

Xmathcode‘X ^ = "8000 

Xmathcode‘X*="2203 

Xmathcode‘X“="2200 

Xmathcode‘X:="303A 

Xmathcode‘X=="303D 

Xmathcode‘X[="405B 

Xmathcode A_="8000 

Xmathcode‘X}="5267 



Appendix B: Basic Control Sequences 345 

A mathcode is relevant only when the corresponding category code is 11 or 12; therefore 
many of these codes will rarely be looked at. For example, the math code for '''‘M 
specifies the character \oplus, but it’s hard to imagine a user who would want ''"'M 

(ASCII (return)) to produce an 0 sign in the middle of a math formula, since plain 
TgX appends ""M to the end of every line of input. The math codes have been set up 
here, however, to be entirely consistent with the extended character set presented in 
Appendix C and the Computer Modern fonts described in Appendix F. INITEX has 
done the rest of the work, as far as mathcodes are concerned: It has set \inathcode x = 

X 0 "7000 for each of the ten digits x — ‘0 to ^9; \mathcodea; = x -\- "7100 for each of 
the 52 letters; and \mathcodex = x for all other values of x. 

There’s no need to change the \uccode and \lccode tables. INITEX has made 
\uccode ^X=^X, \uccode ^x=^X, \Iccode‘X=‘x, \lccode‘x=‘x, and it has made similar 
assignments for all other letters. The codes are zero for all nonletters. These tables are 
used by TgX’s \uppercase and \lowercase operations, and the hyphenation algorithm 
also looks at \Iccode (see Appendix H). Changes should be made only in format 
packages that set T^X up for languages with more than 26 letters (see Chapter 8). 

Next comes the \sf code table, which INITEX has initialized entirely to 1000, 

except that \sf code^X=999 for each of the 26 uppercase letters. Some characters are 
made “transparent” by setting 

\sfcodeA)=0 \sfcodeA’=0 \sfcode‘\]=0 */, won’t change the space factor 

and the \nonfrenchspacing macro will be used later to change the sfcodes of special 
punctuation marks. (Chapter 12 explains what an \sfcode does.) 

The last code table is called \delcode, and again it’s necessary to change only 
a few values. INITEX has made all delimiter codes equal to —1, which means that no 
characters are recognized as delimiters in formulas. But there’s an exception: The value 
\delcode‘\.=0 has been prespecified, so that stands for a “null delimiter.” (See 
Chapter 17.) Plain format sets up the following nine values, based on the delimiters 
available in Computer Modern: 

\delcode'\(="028300 \deIcode'\/="02F30E \deIcode A) = ''029301 

\delcode'\[="05B302 \delcode A I =''26A30C \delcode A] =''05D303 

\delcode‘\<="26830A \delcode A\=''26E30F \delcode ‘\>=''26930B 

It’s important to note that \delcodeAf and \delcode A} have been left equal to —1. 
If those codes were set to certain values, a user would be able to type, e.g., ‘\big{’ 

to get a big left brace; but it would be a big mistake. The reason is that braces are 
used for grouping, when supplying arguments to macros; all sorts of strange things can 
happen if you try to use them both as math delimiters and group delimiters. 

At this point the plain.tex file contains several definitions 

\chardef\(9ne=l \chardef\tw@=2 \chardef\thr®@=3 \chardef\sixt(90n=16 

\chardef\@cclv=255 \mathchardef\®cclvi=256 

\mathchaxdef\@in=1000 \mathchardef\QM=10000 \mathchardef\QMM=20000 

which allow “private” control sequences \(9ne, \tw(9, etc., to be used as abbreviations 
for commonly used constants 1, 2, ...; this convention makes run a little faster, 
and it means that the macros will consume slightly less memory space. The usage 
of these abbreviations will not, however, be shown below unless necessary; we shall 
pretend that Tu’ appears instead of XOne, TOOOOu’ instead of \@M, and so on, since 



346 Appendix B: Basic Control Sequences 

that makes the programs more readable. (Notice that the long form of \Qne is ‘ly’ 

including a space, because T^]X looks for and removes a space following a constant.) 

2. Allocation of registers. The second major part of the plain.tex file provides a 
foundation on which systems of independently developed macros can coexist peacefully 

without interfering in their usage of registers. The idea is that macro writers should 

abide by the following ground rules: (1) Registers numbered 0 to 9 are always free for 

temporary “scratch” use, but their values are always assumed to be clobbered whenever 

any other macro might get into control. (This applies to registers like \dimenO, \toksO, 

\skipl, \box3, etc.; but T^]X has already reserved \countO through \count9 for page 

number identification.) (2) The registers \count255, \dimen255, and \skip255 are 

freely available in the same way. (3) All assignments to the scratch registers whose 

numbers are 1, 3, 5, 7, and 9 should be \global; all assignments to the other scratch 

registers (0, 2, 4, 6, 8, 255) should be non-\global. (This prevents the phenomenon 

of “save stack buildup” discussed in Chapter 27.) (4) Furthermore, it’s possible to 

use any register in a group, if you ensure that T^’s grouping mechanism will restore 

the register when you’re done with the group, and if you are certain that other macros 

will not make global assignments to that register when you need it. (5) But when a 

register is used by several macros, or over long spans of time, it should be allocated 

by \newcount, \newdimen, \newbox, etc. (6) Similar remarks apply to input/output 

streams used by \read and \write, to math families used by \fani, and to insertions 
(which require \box, \count, \dimen, and \skip registers all having the same number). 

Some handy abbreviations are introduced at this point so that the macros 

below will have easy access to scratch registers: 

\countdef\countQ=255 \toksdef\toks0=O \skipdef\skip(9=0 

\dimendef \dimen(a=0 \dimendef \dimen(9i=l \dimendef \dimenQii=2 

Here now are the macros that provide allocation for quantities of more per- 

manent value. These macros use registers \coimtlO through \countl9 to hold the 

numbers that were allocated most recently; for example, if \newdimen has just reserved 

\dimenl5, the value of \countll will be 15. However, the rest of the world is not 

supposed to “know” that \countll has anything to do with \dimen registers. There’s 

a special counter called \allocatioimiimber that will be equal to the most recently al- 

located number, after every \newcount, \newdimen, ..., \newinsert operation; macro 

packages are supposed to refer to \allocationnumber if they want to find out what 

number was allocated. It turns out that \allocationnumber is \count20, but other 

packages aren’t supposed to know that either. In other words, the inside story of how 

allocation is actually performed should not be relevant when the allocation macros are 

used at a higher level; you mustn’t assume that plain.tex really does allocation in 

any particular way. 

\countl0=21 * 'i this counter allocates 

\countll=9 / this counter allocates 

\count12=9 / this counter allocates 

\count13=9 / 'i this counter allocates 

\count14=9 * this counter allocates 

\count15=9 / 'I this counter allocates 

\countl6=-l * this counter allocates 

\countl7=-l * this counter allocates 

\count registers 22, 23, 24, ... 

\dimen registers 10, 11, 12, ... 

\skip registers 10, 11, 12, ... 

\muskip registers 10, 11, 12, ... 

\box registers 10, 11, 12, ... 

\toks registers 10, 11, 12, ... 

input streams 0, 1, 2, ... 

output streeuns 0, 1, 2, ... 



Appendix B: Basic Control Sequences 347 

\countl8=3 */, this counter allocates math families 4, 5, 6, ... 

\countl9=255 */, this counter allocates insertions 254, 253, 252, ... 

\co\intdef\insc(9unt=19 */, nickname for the insertion counter 

\countdef\allocationnumber=20 */, the most recent allocation 

\countdef\mQne=21 \m@ne=-l */, a handy constant 

\def\wlog{\immediate\write-l} */, this will write on log file (only) 

\outer\def\newcount-C\alloc@0\count\countdef\insc®unt} 

\outer\def\newdimen{\alloc(91\dimen\dimendefXinscOunt} 

\outer\def\newskip{\alloc@2\skip\skipdefXinscQunt} 

\outer\def\newmuskip{\alloc(93\muskip\muskipdefXQcclvi} 

\outer\def\newbox{\alloc(94\box\chardefXinscOunt} 

XletXnewtoks=Xrelax */, this allows plain.tex to be read in twice 

XouterXdefXnewhelp#l#2{Xnewtoks#l#l=Xexpandafter{Xcsncmie#2Xendcsname}} 

XouterXdefXnewtoks{Xalloc(95XtoksXtoksdefXOcclvi} 

XouterXdefXnewread{XallocQ6XreadXchardefXsixt@(9n} 

XouterXdefXnewwrite{Xalloc@7XwriteXchardefXsixtOOn} 

XouterXdefXnewfcim{Xalloc@8XfamXchardefXsixt@@n} 

XdefXalloc@#l#2#3#4#5{XglobalXadvanceXcountl#l by 1 

Xch@ck#l#4#2y, make sure there’s still room 

Xallocationnumber=Xcount1#1 

Xglobal#3#5=Xallocationnumber 

Xwlog{Xstring#5=Xstring#2XtheXallocationnumber}} 

XouterXdefXnewinsert#l{XglobalXadvanceXinsc®unt by-1 

XchQckOXinscQuntXcount XchOcklXinscOuntXdimen 

Xch@ck2Xinsc@untXskip Xch@ck4Xinsc®untXbox 

Xallocationnumber=Xinsc@unt 

XglobalXchardef#l=Xallocationnumber 

Xwlog{Xstring#l=XstringXinsertXtheXallocationnumber}} 

Xdef Xch@ck#l#2#3{XifnumXcountl#l<#2'/, 

XelseXerrmessage{No room for a new #3}Xfi} 

The ‘XallocQ’ macro does most of the work of allocation. It puts a message like 
‘Xmaxdimen=XdimenlO’ into the log file after Xnewdimen has allocated a place for the 
Xdimen register that will be called Xmaxdimen; such information might be useful when 
difficult macros are being debugged. 

A Xnewhelp macro has been provided to aid in creating home-made help texts: 
You can say, e.g., XnewhelpXhelpoutfThis is a help message.}, and then give the 
command ‘Xerrhelp=Xhelpout’ just before issuing an Xerrmessage. This method of 
creating help texts makes efficient use of T^}X’s memory, because it puts the text into 
a control sequence name where it doesn’t take up space that is needed for tokens. 

The plain file now goes ahead and allocates registers for important constants: 

XnewdimenXmaxdimen Xniaxdimen=16383.99999pt 

XnewskipXhideskip Xhideskip=-1000pt pluslfill 

XnewskipXcentering Xcentering=Opt plus lOOOpt minus lOOOpt 

XnewdimenXp® Xp®=lpt 7, this saves macro space and time 

XnewdimenXz® Xz@=0pt XnewskipXzOskip Xz<9skip=0pt plusOpt minusOpt 

XnewboxXvoidb®x 7, permanently void box register 



348 Appendix B: Basic Control Sequences 

The control sequence \maxdimen stands for the largest permissible (dimen). Alignment 

macros that appear below will make use of special glue values called \hideskip and 

\centering. N.B.: These three constants must not be changed under any circum- 

stances] you should either ignore them completely or just use them and enjoy them. 

In fact, the next four constant registers (\p®, \z(9, \zQskip, and XvoidbQx) have been 

given private names so that they are untouchable. The control sequence \p(9 is used 

several dozen times as an abbreviation for ‘pt and \zQ is used quite often to stand for 

either ‘Opt ’ or ‘0 the use of such abbreviations saves almost 10% of the space needed 

to store the tokens in plain 1^’s macros. But we shall stick to the unabbreviated forms 
below, so that the macros are more readable. 

A different sort of allocation comes next: 

\outer\def\newif#l{\countQ=\escapechar \escapechar=-l 

\expandafter\expaiidafter\expaiidaf ter 

\edef \@if #l{true}{\let\noexpeind#l=\noexpand\if true}'/, 

\expandafter\expcLndafter\expandafter 

\edef\®if#l{false}{\let\noexpand#l=\noexpand\if false}*/, 

\®if#l{false}\escapechar=\countQ} */, the condition starts out false 

\def \<aif #l#2{\csn2mie\expaiidafter\if Q\string#l#2\endcsnajne} 

{\uccode‘ 1=‘i \uccode‘2=‘f \uppercase{\gdef\if®12{}}} */, ‘if’ is required 

For example, the command \newif\ if alpha creates a trio of control sequences called 

\alphatrue, \alphafalse, and \ifalpha (see Chapter 20). 

3. Parameters. INITEX sets almost all of the numeric registers and parameters equal 

to zero; it makes all of the token registers and parameters empty; and it makes all of 

the box registers void. But there are a few exceptions: \inag is set initially to 1000, 

\tolerance to 10000, \maxdeadcycles to 25, Xhaugafter to 1, \escapechar to ‘\\, 

and \endlinechar to Plain assigns new parameter values as follows: 

\pretolerance=100 \tolerance=200 \hbadness=1000 \vbadness=1000 

\linepenalty=10 \hyphenpenalty=50 \exhyphenpenalty=50 

\binoppenalty=700 \relpenalty=500 

\clubpenalty=150 \widowpenalty=150 \displaywidowpenalty=50 

\brokenpenalty=100 \predisplaypenalty=10000 

\doublehyphendemerits=10000 \finalhyphendemerits=5000 \adjdemerits=10000 
\tracinglostchars=l \uchyph=l \delimiterfactor=901 

\defaulthyphenchar=‘\- \defaultskewchar=-l \newlinechar=-l 

\showboxbreadth=5 \showboxdepth=3 

\hfuzz=0.1pt \vfuzz=0.1pt \overfullrule=5pt 

\hsize=6.5in \vsize=8.9in \parindent=20pt 

\maxdepth=4pt \splitmaxdepth=\maxdimen \boxmaxdepth=\maxdimen 

\delimitershortfall=5pt \nulldelimiterspace=l.2pt \scriptspace=0.5pt 

\parskip=0pt plus Ipt 

\abovedisplayskip=12pt plus 3pt minus 9pt 

\abovedisplayshortskip=Opt plus 3pt 

\belowdisplayskip=12pt plus 3pt minus 9pt 

\belowdisplayshortskip=7pt plus 3pt minus 4pt 

\topskip=10pt \splittopskip=10pt 

\parfillskip=0pt plus Ifil 



Appendix B: Basic Control Sequences 349 

\thinmuskip=3mu 

\medmuskip=4mu plus 2mu minus 4mu 

\thickmuskip=5mu plus 5mu 

(Some parameters are set by itself as it runs, so it is inappropriate to ini- 

tialize them: \time, \day, \month, and \year are established at the beginning of a job; 

\outputpenalty is given a value when an \output routine is invoked; \predisplaysize, 

\displaywidth, and \displayindent get values just before a display is processed; and 

the values \looseness=0, \hangindent=Opt, \hangafter=l, \parshape=0 are assigned 

at the end of a paragraph and when enters internal vertical mode.) 

The parameters \baselineskip, \lineskip, and \lineskiplimit have not 

been initialized here, but a macro called \normalbaselines is defined below; this 

macro sets \baselineskip=\normalbaselineskip, \lineskip=\normallineskip, and 

\lineskiplimit=\normallineskiplimit. An indirect approach like this has been used 

so that several different type sizes may be handled, as illustrated in Appendix E. Plain 

TE;X deals exclusively with 10 pt type, but it supports extension to other styles. 

Some “pseudo parameters” come next. These quantities behave just like in- 

ternal parameters of and users are free to change them in the same way, but they 

are part of the plain T^];X format rather than primitives of the language. 

\newskip\smallskipamount */, the amount of a \smallskip 

\smallskipamount=3pt pluslpt minuslpt 

\newskip\medskipamount '/, the amount of a \medskip 

\medskipamount=6pt plus2pt minus2pt 

\newskip\bigskipamount */, the amount of a \bigskip 

\bigskipamount=12pt plus4pt minus4pt 

\newskip\normalbaselineskip */, normal value of \baselineskip 

\normalbaselineskip=12pt 

\newskip\normallineskip */, normal value of \lineskip 

\normallineskip=lpt 

\newdimen\normallineskiplimit */, normal value of \lineskiplimit 

\normallineskiplimit=Opt 

\newdimen\jot */, unit of measure for opening up displays 

\jot=3pt 

\newcount\interdisplaylinepenalty */, interline penalty in \displaylines 

\interdisplaylinepenalty=100 

\newcount\interfootnotelinepenalty */, interline penalty in footnotes 

\interfootnotelinepenalty=100 

4. Font information. Now plain.tex brings in the data that needs to know about 

how to typeset lots of characters in lots of different fonts. First the \magstep macros 

are defined, to support font scaling: 

\def\magstephalf{1095 } 

\def\magstep#l{\ifcase#l 1000\or 

1200\or 1440\or 1728\or 2074\or 2488\fi\relax} 

(Incidentally, \magstep doesn’t use \multiply to compute values, since it is supposed to 

expand to a (number) enroute to IfeX’s “stomach”; \multiply wouldn’t work, because 

it is an assignment command, performed only in the stomach.) 



350 Appendix B: Basic Control Sequences 

One of the main things that distinguishes one format from another is the fact 

that each format gives the necessary knowledge about a certain family of typefaces. 

In this case the Computer Modern types described in Appendix F are taken as a basis, 

although there is a provision for incorporating other styles. 

\font\tenrm=cmrlO 

\f ont \ se venrin=cmr7 

\font\teni=cmmilO 

\f ont\seveni=cinmi7 

\font\tensy=cmsylO 

\font\sevensy=cmsy7 

\font\tenex=cmexlO 

\font\tenbf=cmbxlO 

\f ont\sevenbf=cmbx7 

\font\tensl=cmsllO 

\font\tentt=cmtt10 

\font\tenit=cmtilO 

\font\preloaded=cmsslO 

\font\preloaded=cmssilO 

\f ont\preloaded=cinr9 

\f ont\preloaded=cinr6 

\f ont\preloaded=cmini9 

\f ont\preloaded=ciiiini6 

\font\preloaded=cmsy9 

\font\preloaded=cmsy6 

\font\preloaded=cmbx9 

\font\preloaded=cmbx6 

\font\preloaded=cmsl9 

\font\preloaded=cmtt9 

\font\preloaded=cmti9 

\font\preloaded=cmssq8 

\font\preloaded=cmssqi8 

\f ont\preloaded=cinr8 

\ f ont\f i ve rin= cmr 5 

\f ont\preloaded=cnimi8 

\f ont\f ivei=ciniiii5 

\font\preloaded=cmsy8 

\font\fivesy=cmsy5 

\font\preloaded=cmbx8 

\font\fivebf=cmbx5 

\font\preloaded=cmsl8 

\font\preloaded=cmtt8 

\font\preloaded=cmti8 

\font\preloaded=cmr7 scaled \magstep4 */, for titles 

\font\preloaded=cmtt10 scaled \magstep2 

\font\preloaded=cmssbxlO scaled \magstep2 

*/, Additional \preloaded fonts cam be specified here. 

'/, (And those that were \preloaded above can be eliminated.) 

\let\preloaded=\undefined */♦ preloaded fonts must be declared anew later. 

Notice that most of the fonts have been called \preloaded; but the control sequence 

\preloaded is made undefined at the very end, so those fonts cannot be used directly. 

There are two reasons for this strange approach: First, it is desirable to keep the total 

number of fonts of plain relatively small, because plain is a sort of standard 

format; it shouldn’t cost much for someone to acquire all the fonts of plain in 

addition to those he really wants. Second, it is desirable on many computer systems to 

preload the information for most of the fonts that people will actually be using, since 

this saves a lot of machine time. The \preloaded font information goes into TgX’s 
memory, where it will come alive instantly if the user defines the corresponding \f ont 

again. For example, the book format in Appendix E says ‘\font\ninerm=cmr9’; after 

that assignment has been obeyed, the control sequence \ninerm will identify the cmr9 

font, whose information does not have to be loaded again. 

The exact number and nature of fonts that are preloaded is unimportant; the 

only important thing needed for standardization between machines is that sixteen basic 

fonts (cmr 10, ciiir7, ..., cmtilO) should actually be loaded. The plain.tex files used 
on different machines can be expected to differ widely with respect to preloaded fonts, 

since the choice of how many fonts to preload and the selection of the most important 

fonts depends on local conditions. For example, at the author’s university it is useful 

to preload a font that contains the Stanford seal, but that particular font is not very 

popular at Berkeley. 



Appendix B: Basic Control Sequences 351 

Most of these fonts have the default values of \hyphenchar and \skewchar, 

namely and -1; but the math italic and math symbol fonts have special \skewchar 

values, which are defined next: 

\skewchar\teni= M77 \skewchar\seveni= M77 \skewchar\fivei= M77 

\skewchcLr\tensy=^60 \skewchar\sevensy=^60 \skewchar\fivesy=’60 

Once the fonts are loaded, they are also grouped into families for use in math 

setting, and shorthand names like \rm and \it are defined: 

\textfont0=\tenrm \scriptfontO=\sevenrm \scriptscriptfont0=\fiverm 

\def\rm{\fcimO \tenrm} 

\textfontl=\teni \scriptfontl=\seveni \scriptscriptfontl=\fivei 

\def\mit{\fciml } \def\oldstyle{\fami \teni} 

\textfont2=\tensy \scriptfont2=\sevensy \scriptscriptfont2=\fivesy 

\def\cal{\fam2 } 

\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex 

\newfam\itfam \def\it{\fcim\itfam\tenit} \textfont\itfemi=\tenit 

\newfam\slfam \def\sl{\fam\slfaimXtensl} \textfont\slfam=\tensl 

\newfam\bffam \def\bf{\fam\bffam\tenbf} \textfont\bffam=\tenbf 

\scriptfont\bffam=\sevenbf \scriptscriptfont\bffam=\fivebf 

\newfam\ttfam \def\tt{\femi\ttfam\tentt} \textfont\ttfam=\tentt 

5. Macros for text. The fifth part of plain.tex introduces macros that do basic for- 
matting unrelated to mathematics. First come some macros that were promised above: 

\def\frenchspacing{\sfcode‘\.=1000 \sfcode ^\?=1000 \sfcode ^\!=1000 

\sfcode‘\:=1000 \sfcode'\;=1000 \sfcode'\,=1000 } 

\def\nonfrenchspacing{\sfcode‘\.=3000 \sfcode‘\?=3000 \sfcode‘\!=3000 

\sfcode'\:=2000 \sfcode'\;=1500 \sfcode'\,=1250 } 

\def\normalbaselines{\lineskip=\normallineskip 

\baselineskip=\normalbaselineskip \lineskiplimit=\normallineskiplimit} 

The next macros are simple but vital. First \(tab) and \(return) are defined 

so that they expand to \(space); this helps to prevent confusion, since all three cases 

look identical when displayed on most computer terminals. Then the macros \lq, 

\rq, \lbrack, and \rbrack are defined, for people who have difficulty typing quota- 

tion marks and/or brackets. The control sequences \endgraf and \endline are made 

equivalent to T^]X’s primitive \par and \cr operations, since it is often useful to rede- 

fine the meanings of \par and \cr themselves. Then come the definitions of \space 

(a blank space), \empty (a list of no tokens), and \null (an empty hbox). Finally, 
\bgroup and \egroup are made to provide “implicit” grouping characters that turn 

out to be especially useful in macro definitions. (See Chapters 24-26 and Appendix D 

for information about implicit characters.) 

\def\~M{\ } \def\~^M{\ } 

\def\lq{‘} \def\rq{’} \def\lbrack{[} \def\rbrack{]} 

\let\endgraf=\par \let\endline=\cr 

\def\space{ } \def\empty{} \def\null{\hbox{}} 

\let\bgroup={ \let\egroup=>   



352 Appendix B: Basic Control Sequences 

Something a bit tricky comes up now in the definitions of \obeyspaces and 

\obeylines, since is only “half obedient” while these definitions are half finished: 

\def\obeyspaces{\catcode=\active} 

{\obeyspaces\global\let =\space} 

{\catcode‘\"''M=\active */, these lines must end with ’ 

\gdef\obeylines{\cat code' \ " ~M=\act ive Met" ~M=\par}7, 

\global\let~"M=\par} */, this is in case appears in a \write 

The \obeylines macro says ‘\let"~M=\par’ instead of ‘\def ~"M{\par}’ because the 

Met technique allows constructions such as ‘\let\par=\cr \obeylines \halign{. . 

in which \cr’s need not be given within the alignment. 

The Moop. . Arepeat macro provides for iterative operations as illustrated at 

the end of Chapter 20. In this macro and several others, the control sequence ‘\next’ 

is given a temporary value that is not going to be needed later; thus, \next acts like a 

“scratch control sequence.” 

\defMoop#l\repeat{\def\body{#l}\iterate} 

\def\iterate{\body Met\next=\iterate \elseMet\next=\relax\fi \next} 

Met\repeat=\f i */, this meikes Moop...\if .. Arepeat skippable 

Spacing is the next concern. The macros \enskip, \quad, and \qquad provide 

spaces that are legitimate breakpoints within a paragraph; \enspace, \thinspace, 

and \negthinspace produce space that cannot cause a break (although the space will 

disappear if it occurs just next to certain kinds of breaks). All six of these spaces 

are relative to the current font. You can get horizontal space that never disappears 

by saying ‘\hglue(glue)’; this space is able to stretch or shrink. Similarly, there’s a 

vertical analog, ‘\vglue(glue)’. The \nointerlineskip macro suppresses interline glue 

that would ordinarily be inserted before the next box in vertical mode; this is a “one 

shot” macro, but \of f interlineskip is more drastic—it sets things up so that future 

interline glue will be present, but zero. There also are macros for potentially breakable 

vertical spaces: \smallskip, \medskip, and \bigskip. 

\def\enskip{\hskip.5em\relax} 

\def\quad{\hskiplem\relax} \def\qquad{\hskip2em\relax} 

\def\enspace{\kern.5em } 

\def\thinspace{\kern .16667em } \def\negthinspace{\kern-.16667em } 

\def\hglue{\aft er assignment \hgl@\skip(9=} 

\def\hgl@{Meavevmode \count@=\spacefactor \vrule widthOpt 

\nobreak\hskip\skip@ \spacefactor=\countQ} 

\def \vglue{\afterassignment\vgl(9\skipQ=} 

\def\vgl(9{\par \dimen@=\prevdepth \hrule heightOpt 

\nobreak\vskip\skip® \prevdepth=\dimen(9} 

\def\nointerlineskip{\prevdepth=-1000pt } 

\def\offinterlineskip{\baselineskip=-1000pt 

Mineskip=Opt \lineskiplimit=\maxdimen} 

\def\smallskip{\vskip\smallskipamount} 

\def\medskip{\vskip\medskipamount} 

\def\bigskip{\vskip\bigskipamount} 



Appendix B: Basic Control Sequences 353 

Speaking of breakpoints, the following macros introduce penalty markers that 

make breaking less, or more, desirable. The \break, \nobreak, and \allowbreak 

macros are intended for use in any mode; the ~ (tie) and \slash (hyphen-like 7’) 

macros are intended for horizontal mode. The others are intended only for vertical 

mode, i.e., between paragraphs, so they begin with \par. 

\def\breeLk{\penalty-10000 } \def\nobreak;{\penaltyl0000 } 

\def\allowbreak{\penaltyO } 

\def"{XpenaltylOOOOX } 

XdefXslashf/XpenaltyXexhyphenpenalty} 

XdefXfilbreaJtfXparXvfilXpenalty-200Xvfilneg} 

XdefXgoodbreaLk{XparXpenalty-500 } 

XdefXejectfXparXpenalty-10000 } 

XdefXsupereject{XparXpenalty-20000 } 

XdefXremovelastskipfXifdimXlastskip=Opt XelseXvskip-XlastskipXfi} 

XdefXsmallbreakfXpar XifdimXlastskip<Xsmallskipamount 

Xremovelastskip Xpenalty-50 Xsmallskip Xfi} 

XdefXmedbrectkfXpar XifdimXlastskip<Xmedskip2iinount 

Xremovelastskip Xpenalty-100 Xmedskip Xfi} 

XdefXbigbreetkfXpar XifdimXlastskip<Xbigskipamount 

Xremovelastskip Xpenalty-200 Xbigskip Xfi} 

Boxes are next: Xline, Xleftline, Xrightline, and Xcenterline produce 

boxes of the full line width, while Xllap and Xrlap make boxes whose effective width 

is zero. The Xunderbar macro puts its argument into an hbox with a straight line at a 

fixed distance under it. 

XdefXlinefXhbox toXhsize} 

XdefXleftline#l{Xline{#lXhss}} XdefXrightline#!{XlinefXhss#!}} 

XdefXcenterline#l{Xline{Xhss#lXhss}} 

XdefXllap#l{Xhbox to OptfXhss#!}} XdefXrlap#l{Xhbox to Opt{#lXhss}} 

XdefXm@th{Xmathsurround=Opt } 

XdefXunderbar-#l{$XsetboxO=Xhbox{#l} Xdp0=0pt 

Xm@th Xunderline{XboxO}$} 

(Notice that Xunderbar uses math mode to do its job, although the operation is essen- 

tially non-mathematical in nature. A few of the other macros below use math mode 

in similar ways; thus, TE^’S mathematical abilities prove to be useful even when no 

mathematical typesetting is actually being done. A special control sequence XmOth is 

used to “turn off” Xmathsurround when such constructions are being performed.) 

A Xstrut is implemented here as a rule of width zero, since this takes minimum 

space and time in applications where numerous struts are present. 

XnewboxXstrutbox 
XsetboxXstrutbox=Xhbox{Xvrule heights.5pt depths.5pt widthOpt} 

XdefXstrut{XrelaxXifmmodeXcopyXstrutboxXelseXunhcopyXstrutboxXfi} 

The ‘Xrelax’ in this macro and in others below is necessary in case Xstrut appears 

first in an alignment entry, because TgX is in a somewhat unpredictable mode at such 

times (see Chapter 22). 



354 Appendix B: Basic ^Control Sequences 

The Malign macro provides for alignments when it is necessary to be sure 

that \tabskip is initially zero. The \hidewidth macro can be used essentially as \hf ill 

in alignment entries that are permitted to “stick out” of their column. There’s also 

\multispan, which permits alignment entries to span one or more columns. 

\def\ialign{\everycr={}\tabskip=Opt \halign} */, initialized \halign 

\def\hidewidth{\hskip\hideskip} 

\newcount\mscount 

\def\multispan#l{\omit \mscount=#l \loop\ifnuin\mscount>1 \sp@n\repeat} 

\def\sp(9n{\span\omit \adveuice\mscount by -1 } 

Now we get to the “tabbing” macros, which are more complicated than any- 

thing else in plain T]EX. They keep track of the tab positions by maintaining boxes 

full of empty boxes having the specified widths. (The best way to understand these 

macros is probably to watch them in action on simple examples, using \tracingall.) 

\newif\ifusQ \newif\if(9cr 

\newbox\tabs \newbox\tabsyet \newbox\tabsdone 

\def\cleartabs{\global\setbox\tabsyet=\null \setbox\tabs=\null} 

\def\settabs{\setbox\tabs=\null \futurelet\next\sett@b} 

\let\+=\relax */. in case this file is being read in twice 

\def\settQb{\ifx\next\+ \let\next=\relax */, turn off \outerness 

\def \next{\af ter assignment \s@ttQb\let\next}y, 

\else\let\next=\s@tcols\fi\next} 

\def\s<att0b{\let\next=\relax \us(9false\mQketabbox} 

\outer\def\+{\tabalign} \def\tabalign{\us(9true \mQketabbox} 

\def\sQtcols#l\coluinns{\count®=#l \dimen®=\hsize 

\loop \ifnum\count(9>0 \Qnother \repeat} 

\def\(9nother{\dimenQii=\dimenQ \divide\dimen<9ii by\count® 

\setbox\tabs=\hbox{\hbox to\dimen(9ii{}\unhbox\tabs}'/, 

\advance\dimen(9 by-\dimenQii \advance\countQ by -1 } 

\def \m(9ketabbox{\begingroup 

\global\setbox\tabsyet=\copy\tabs \global\setbox\tabsdone=\null 

\def\cr{\(9crtrue\crcr\egroup\egroup 

\ifusQ \unvboxO \lastbox\fi \endgroup 

\setbox\tabs=\hbox{\unhbox\tabsyet\unhbox\tabsdone}}*/, 

\setboxO=\vbox\bgroup\Qcrfalse \ialign\bgroup&\t(9bbox##\tQbbQx\crcr} 

\def\tQbbox{\setboxO=\hbox\bgroup} 

\def\t(9bbQx{\if<3cr\egroup */, now \boxO holds the column 

\else\hss\egroup \global\setbox\tabsyet=\hbox{\unhbox\tabsyet 

\global\setboxl=\lastbox}*/, now \boxl holds its size 

\ifvoidl \global\setboxl=\hbox to\wdO{}*/, 

\else\setboxO=\hbox to\wdl{\unhboxO}\fi 

\global\setbox\tabsdone=\hbox{\boxl\unhbox\tabsdone}\fi 

\boxO} 

The macro \+ has been declared ‘\outer’ here, so that will be better able to 

detect runaway arguments and definitions (see Chapter 20). A non-\outer version. 



Appendix B: Basic Control Sequences 355 

called \tabalign, has also been provided in case it is necessary to use \+ in some 

“inner” place. You can use \tabalign just like \+, except after \settabs. 

• Paragraph shapes of a limited but important kind are provided by \item, 

\itemitem, and \narrower. There are also two macros that haven’t been mentioned 

before: (1) \hang causes hanging indentation by the normal amount of \parindent, 

after the first line; thus, the entire paragraph will be indented by the same amount 

(unless it began with \noindent). (2) \textindent{stuff} is like \indent, but it puts 

the ‘stuff’ into the indentation, flush right except for an en space; it also removes spaces 

that might follow the right brace in ‘{stuff}’. For example, the present paragraph 

was typeset by the commands ‘\textindent{$\bullet$} Paragraph shapes . . the 

opening ‘P’ occurs at the normal position for a paragraph’s first letter. 

\def\hcing{\h8Lngindent\par indent} 

\def \ it emf \par\haiig\t ext indent} 

\def\itemitein{\par\indent \hajigindent2\parindent \textindent} 

\def\textindent#l{\indent\llap{#l\enspace}\ignorespaces} 
\def\narrower{\advcLnce\leftskip by\parindent 

\adv8Lnce\rightskip by\parindent} 

The \beginsection macro is intended to mark the beginning of a new major 

subdivision in a document; to use it, you say ‘\beginsection(section title)’ followed by 

a blank line (or \par). The macro first emits glue and penalties, designed to start a new 

page if the present page is nearly full; then it makes a \bigskip and puts the section 

title flush left on a line by itself, in boldface type. The section title is also displayed on 

the terminal. After a \smallskip, with page break prohibited, a \noindent command 

is given; this suppresses indentation in the next paragraph, i.e., in the first paragraph 

of the new section. (However, the next “paragraph” will be empty if vertical mode 

material immediately follows the \beginsection command.) 

\outer\def\beginsection#l\par{\vskipOpt plus.3\vsize\penalty-250 

\vskipOpt plus-.3\vsize\bigskip\vskip\parskip 

\message{#l}\leftline{\bf#l}\nobreak\sinallskip\noindent} 

Special statements in a mathematical paper are often called theorems, lemmas, 

definitions, axioms, postulates, remarks, corollaries, algorithms, facts, conjectures, or 

some such things, and they generally are given special typographic treatment. The 
Xproclaim macro, which was illustrated earlier in this appendix and also in Chapter 20, 

puts the title of the proclamation in boldface, then sets the rest of the paragraph in 

slanted type. The paragraph is followed by something similar to Xmedbreeik, except 

that the amount of penalty is different so that page breaks are discouraged: 

\outer\defXproclaim #1. #2Xpar{Xmedbreak 

XnoindentfXbf#1.Xenspace}{Xsl#2}Xpar 
XifdimXlastskip<Xmedskipainount XremovelastskipXpenalty55XmedskipXfi} 

Ragged-right setting is initiated by restricting the spaces between words to 

have a fixed width, and by putting variable space at the right of each line. You should 

not call Xraggedright until your text font has already been specified; it is assumed that 

the ragged-right material will not be in a variety of different sizes. (If this assumption 

is not valid, a different approach should be used: Xf ontdimen parameters 3 and 4 of the 

fonts you will be using should be set to zero, by saying, e.g., ‘Xfontdimen3Xtenrm=0pt’. 



356 Appendix B: Basic Control Sequences 

These parameters specify the stretchability and shrinkability of interword spaces.) A 

special macro \ttraggedright should be used for ragged-right setting in typewriter 

type, since the spaces between words are generally bigger in that style. (Spaces are 

already unstretchable and unshrinkable in font cmtt.) 

\def\raggedright{\rightskip=Opt plus2eni 

\spaceskip=.3333em \xspaceskip=.5em } 

\def\ttraggedright{\tt\rightskip=Opt plus2em } 

Now we come to special symbols and accents, which depend primarily on the 

characters available in the Computer Modern fonts. Different constructions will be 
necessary if other styles of type are used. When a symbol is built up by forming a box, 

the \leavevmode macro is called first; this starts a new paragraph, if is in vertical 

mode, but does nothing if is in horizontal mode or math mode. 

\chardef\’/,= ‘\7» \chardef \&= A& \chardef \#=‘\# \chardef\$= A$ 

\chardef\ss="19 

\chardef\ae="lA \chardef\oe="lB \chardef\o="1C 

\chardef\AE="lD \chardef\0E="1E \chardef\0="IF 

\chardef\i="10 \chardef\j = " 11 7, dotless letters 

\def\aa{\accent’27a} \def\l{\char’401} 

\def\leavevmode{\uiihbox\voidb(9x} */, begins a paragraph, if necessary 

\def\_{\leavevmode \kern.06em \vbox{\hrule widthO.3ein}} 

\def\L{\leavevinode\setboxO=\hbox{L}\hbox to\wdO{\hss\char’40L}} 

\def\AA-C\leavevmode\setboxO=\hbox{h}\dimen®=\htO \advance\dimen(9 by-lex 

\rlap{\raise.67\dimen@\hbox{\char’27}}A} 

\def\mathhexbox#l#2#3{\leavevmode 

\hbox{$\mQth \mathchar"#1#2#3$}} 

\def\dag{\mathhexbox279} \def\ddag{\mathhexbox27A} 

\def\S{\mathhexbox278} \def\P{\raathhexbox27B} 

\def\oalign#l{\leavevinode\vtop{\baselineskipOpt \lineskip.25ex 

\ialign{##\crcr#l\crcr}}} */, put characters over each other 

\def\ooalign{\lineskiplimit-\maxdimen \oalign} 

\def\d#l{\oalign{#l\crcr\hidewidth.\hidewidth}} 

\def\b#l{\oalign{#l\crcr\hidewidth 

\vbox to.2ex{\hbox{\char’22}\vss}\hidewidth}} 

\def\c#l{\setboxO=\hbox{#l}\ifdim\htO=lex \accent’30 #17. 

\else{\ooalign{\hidewidth\char’30\hidewidth\crcr\unhbox0}}\fi} 

\def\copyright{{\ooalign 

{\hfilXraise.07ex\hbox{c}\hfil\crcr\mathhexbox20D}}} 

\def\dots{\relax\ifmmode\ldots\else$\mQth \ldots\,$\fi} 

\def\TeX{T\kern-.1667em \lower.5ex\hbox{E}\kern-.125em X} 

\def\‘#l{{\accent'T2 #1}} \def\’#l{{\accent"13 #1}} 

\def\v#l{{\accent"14 #1}} \def\u#l{{\accent"15 #1}} 

\def\=#l{{\accent"16 #1}} \def\~#l{{\accent"5E #1}} 

\def\.#l{{\accent"5F #1}} \def\H#l{{\accent"7D #1}} 

\def\~#l{{\accent"7E #1}} \def\"#l{{\accent"7F #1}} 

\def\t#l{{\edef\next{\the\font}\the\textfontl\accent''7F\next#l}} 



Appendix B: Basic Control Sequences 357 

At this point three alternative control-symbol accents are defined, suitable for 

keyboards with extended character sets (cf. Appendix C): 

\let\^~_=\v \let\~~S=\u \let\“~D=\^ 

Various ways to fill space with leaders are provided next. 

\def\hrulefill{\leaders\hrule\hfill} 

\def\dotfill{\cleaders\hbox{$\m@th \inkernl.5mu . Xmkernl.5mu$}\hfill} 

\def\rightarrowfill{$\mQth \mathord- \inkern-6mu 

\cleaders\hbox{$\mkern-2mu \mathord- \mkern-2mu$}\hfill 

\inkern-6mu \mathord\rightarrow$} 

\def\leftarrowfill{$\iiiQth \mathord\leftaxrow \mkern-6inu 

\cleaders\hbox{$\inkern-2mu \mathord- \inkern-2inu$}\hfill 

\mkern-6mu \mathord-$} 

\mathchardef\braceld="37A \mathchardef\bracerd="37B 

\mathchardef\bracelu="37C \mathchardef\braceru="37D 

\def\upbracefill{$\mQth 

\bracelu\leaders\vrule\hfill\bracerd 

\braceld\leaders\vrule\hfill\braceru$} 

\def\downbracef ill{$\in<9th 

\braceld\leaders\vrule\hfill\braceru 

\bracelu\leaders\vrule\hfill\bracerd$} 

The \upbracefill and \downbracef ill macros have restricted usage: they must ap- 

pear all by themselves in an hbox or an alignment entry, except for horizontal spacing. 

Finally, the fifth section of plain.tex closes by defining \bye: 

\outer\def\bye{\paj:\vfill\supereject\end} */, the recommended way to stop 

6. Macros for math. The sixth section of plain.tex is the longest; but it will suffice to 

give only excerpts here, because most of it is simply a tedious listing of special symbols 
together with their font locations, and the same information appears in Appendix F. 

Some rudimentary things come first: The control sequences \sp and \sb are 

provided for people who can’t easily type ^ and there are four control symbols that 

provide spacing corrections; a “discretionary times sign” \* is defined; and then there’s 

an interesting set of macros that convert f ^ ' into f'‘{\prime\prime\prime}: 

\let\sp='' \let\sb=_ 

\def\,{\mskip\thinmuskip} \def\!{\mskip-\thinmuskip} 

\def\>{\mskip\medmuskip} \def\;{\mskip\thickmuskip} 

\def\*{\discretionary{\thinspace\the\textfont2\char2}{}{}} 

{\catcode‘\“"Z=\active \gdef^~Z{\not=}} */, '“"Z is like \ne in math 

{\catcodeA^=\active \gdef’{"\bgroup\primQs}} 

\def \prim(as{\prime\futurelet\next\pr(amQs} 

\def\prQmQs{\ifx^\next\let\next\prQQQs \else\ifx''\next\let\next\prQ®Qt 

\else\let\next\egroup\fi\fi \next} 

\def\pr®@Qs#l{\primQs} \def\prQQ(9t#l#2{#2\egroup} 



358 Appendix B: Basic Control Sequences 

The next job is to define Greek letters and other symbols of type Ord. Up- 

percase Greek letters are assigned hexadecimal codes of the form ''7xxx, so that they 

will change families when \f am changes. Three dots ‘ ’ are used here and below to 

indicate that additional symbols, having similar definitions, are listed in Appendix F. 

\mathchardef\alpha="010B • • • \mathcheirdef \omega="0121 

\mathchaxdef\Gamma="7000 • • • Xmathcheirdef\0mega="700A 

\mathchardef\aleph="0240 • • • \mathchardef\spadesuit="027F 

\def \hb2Lr{{\mathchar ^ 26\mkern-9muh}} 

\def\surd{{\mathch2Lr " 1270}} 

\def\aiigle{{\vbox{\ialign{$\m0th\scriptstyle##$\crcr 

\not\mathrel{\mkernl4mu}\crcr \noalign-C\nointerlineskip} 

\mkern2.5mu\leaders\hrule height.34pt\hfill\mkern2.5mu\crcr}}}} 

Large operators are assigned hexadecimal codes of the form "Ixxx: 

\mathchaxdef\smallint="1273 

\mathchardef\siim="1350 ••• \mathchardef\biguplus="1355 

Xmathcheir def \ int op="1352 \def \ int { \ int op\nol imi t s } 

\mathchaxdef\ointop="1348 \def\oint{\ointop\nolimits} 

Integral signs get special treatment so that their limits won’t be set above and below. 

Binary operations are next; nothing exciting here. 

Xmathchairdef \pm="2206 ••• \mathchaxdef\aanalg="2271 

Relations are also fairly straightforward, except for the ones that are con- 

structed from other characters. The \mapstochar is a character ‘i’ of width zero that 

is quite useless by itself, but it combines with right arrows to make \mapsto ‘i—and 

\longmapsto ‘i—»■’. Similarly, \not is a relation character of width zero that puts 

a slash over the character that follows. When two relations are adjacent in a math 

formula, puts no space between them. 

\mathchaxdef\leq="3214 • • • \mathchardef\perp="323F 

\def\joinrel{\mathrel{\mkern-3mu}} 

\def\relbax{\mathrel{\smash-}} \def\RelbeLr{\mathrel=} 

\def\longrightaxrow{\relbax\joinrel\rightarrow} 

\def\Longrightaxrow{\RelbaLr\joinrel\Rightarrow} 

\def\longleftarrow-C\lef tarrow\joinrel\relbar} 

\def \Longleftaxrow-C\Lef tarrow\joinrel\Relbar} 

\def\longlefbrightarrow{\leftaxrow\joinrel\rightarrow} 

\def\Longlefbrightarrow{\Leftarrow\joinrel\Rightarrow} 

\mathchaxdef\mapsbochax="322F \def\mapsto{\mapstochar\rightarrow} 

\def\longmapsto{\mapstochax\longrightarrow} 

\mathch2Lrdef\lhook="312C \def\hookrightarrow{\lhook\joinrel\rightarrow} 

\mathchardef\rhook="312D \def\hookleftarrow{\leftarrow\joinrel\rhook} 

\def \neq-C\nob=} \def \models{\mathrel | \joinrel=} 

\def\bowtie{\mathrel\briaiigleright\joinrel\mathrel\triem.gleleft} 

After defining characters \ldobp and \cdotp that act as math punctuation, 

it is easy to define \ldots and \cdobs macros that give the proper spacing in most 



Appendix B: Basic Control Sequences 359 

circumstances. Vertical and diagonal dots (\vdots and \ddots) are also provided here: 

\mathchcirdef\ldotp="602E\mathchardef\cdotp="6201\mathchardef\colon="603A 

\def \ldots-C\mathiimer{\ldotp\ldotp\ldotp}} 

\def\cdots{\mathinner{\cdotp\cdotp\cdotp}} 

\def\vdots{\vbox{\baselineskip=4pt \lineskiplimit=Opt 

\kern6pt \hbox{.}\hbox{.}\hbox{.}}} 

\def \ddots{\mathiimer-C\inkernlmu\raise7pt\vbox{\kern7pt\hbox{. }}\inkern2mu 

\raise4pt\hbox{.}\mkern2mu\raiselpt\hbox{.}\mkernlmu}} 

Most of the math accents are handled entirely by the \mathaccent primitive, 

but a few of the variable-width ones are constructed the hard way: 

\def\acute{\mathaccent"7013 } ••• \def\ddot{\mathaccent"707F } 

\def\widetilde{\mathaccent"0365 } \def\widehat{\mathaccent"0362 } 

\def\overrightELrrow#l{\vbox{\ialign{##\crcr 

\rightaxrowfill\crcr\noaligii{\kern-lpt\nointerlineskip} 

$\hfil\displaystyle{#l}\hfil$\crcr}}} 

\def\overleftarrow#l{\vbox{\ialign{##\crcr 

\leftaxrowfill\crcr\noalign{\kern-lpt\nointerlineskip} 

$\hfil\displaystyle{#l}\hfil$\crcr}}} 

\def\overbrace#l{\mathop{\vbox{\ialigii{##\crcr\noalign{\kern3pt} 

\downbracefill\crcr\noalign{\kern3pt\nointerlineskip} 

$\hfil\displaystyle{#l}\hfil$\crcr}}}\limits} 

\def\underbrace#l{\mathop{\vtop{\ialign{##\crcr 

$\hfil\displaystyle{#l}\hfil$\crcr\noalign{\kern3pt\nointerlineskip} 

\upbracefill\crcr\noalign{\kern3pt}}}}\limits} 

\def \skew#l#2#3{{#2{#3\mkern#lmu}\iiikern-#lmu}{}} 

Now we come to 24 delimiters that can change their size: 

\def\langle{\*delimiter"426830A } 

\def\lbrace{\delimiter"4266308 } 

\def\lceil{\delimiter"4264306 } 

\def\lfloor{\delimiter"4262304 } 

\def\lgroup{\delimiter"400033A } 

\def\rangle{\delimiter"526930B } 

\def\rbrace{\deliiniter"5267309 } 

\def\rceil{\delimiter"5265307 } 

\def\rfloor{\delimiter"5263305 } 

\def\rgroup{\delimiter"500033B } 

\def\lmoustache{\delimiter"4000340 } \def\rmoustache{\delimiter"5000341 } 

\def\upaxrow{\delimiter"3222378 } \def\Uparrow{\delimiter"322A37E } 

\def\downarrow{\delimiter"3223379 } \def\Downarrow{\delimiter"322B37F } 

\def\updownaxrow{\deliiniter"326C33F } \def\arrowvert{\delimiter"000033C } 

\def\Updownarrow{\delimiter"326D377 } \def\Arrowvert{\delimiter"000033D } 

\def\vert-C\delimiter"026A30C } \def\Vert{\delimiter"026B30D } 

\def\backslash{\delimiter"026E30F } \def\bracevert{\delimiter"000033E } 

The ‘\big. . .\Bigg’ macros produce specific sizes: 

\def\bigl{\mathopen\big} \def\bigm{\mathrel\big} \def\bigr{\mathclose\big} 

\def\Bigl{\mathopen\Big} \def\Bigni{\mathrel\Big} \def\Bigr{\mathclose\Big} 

\def\biggl{\mathopen\bigg} \def\Biggl{\mathopen\Bigg} 

\def\biggin{\mathrel\bigg} \def\Biggm{\mathrel\Bigg} 

\def\biggr{\mathclose\bigg} \def\Biggr{\mathclose\Bigg} 



360 Appendix B: Basic Control Sequences 

\def\big#l{{\hbox{$\left#l\vbox to 8.5pt{}\right.\n<9space$}}} 

\def\Big#l{{\hbox{$\left#l\vbox to 11.5pt{}\right.\n(9space$}}} 

\def\bigg#l{{\hbox{$\left#l\vbox to 14.5pt{}\right.\n@space$}}} 

\def\Bigg#l{{\hbox{$\left#l\vbox to 17.5pt{}\right.\n@space$}}} 

\def\n(aspace{\nulldelimiterspace=Opt \m@th} 

There are a few other simple abbreviations related to delimiters: 

\def\choose{\atopwithdelims()} 

\def\brack{\atopwithdelims[]} 

\def\brace{\atopwithdelims\{\}} 

\def\sqrt{\radical"270370 } 

And now we come to something more interesting. The \mathpalette opera- 
tion constructs a formula in all four styles; it is applied here in the implementation of 

Xphantom, \smash, \root, and other operations. 

\def\mathpalette#l#2{\mathchoice{#l\displaystyle{#2}} 

{#l\textstyle{#2}}{#l\scriptStyle{#2}}{#l\scriptscriptStyle{#2}}} 

\newbox\rootbox 

\def\root#l\of{\setbox\rootbox= 

\hbox{$\m@th \scriptscriptstyle{#l}$} 

\mathpalette\r@Ot} 

\def\rQQt#l#2{\setboxO=\hbox{$\m®th #l\sqrt{#2}$} 

\dimenQ=\htO \advaiice\dimenQ by-\dpO 

\mkern5mu \raise.6\dimen@\copy\rootbox \nikern-10mu \box0} 

\newif\ifv(9 \newif\ifh<9 

\def\vphantoiii{\v@true\h@f alse\ph®nt} 

\def \hphaiitora{\v<9f alse\hQtrue\phQnt} 

\def\phaiitom{\v0true\h0true\ph@nt} 

\def \ph0nt{\ifmmode\def \next{\mathpalette\mathphQnt}*/, 

\else\let\next=\makeph@nt\fi \next} 

\def\makeph@nt#l{\setboxO=\hbox{#l}\finphOnt} 

\def\mathph(ant#l#2{\setbox0=\hbox{$\m(9th#l{#2}$}\f inph®nt} 

\def\finph®nt{\setbox2=\null \ifv® \ht2=\ht0 \dp2=\dp0 \fi 

\ifhQ \wd2=\wd0 \fi \box2 } 

\def \mathstrut{\vphantoin(} 

\def\smash{\relax */, \relax, in case this comes first in \halign 

\ifmmode\def\next{\mathpalette\mathsmQsh}\else\let\next\makesm(9sh 
\fi \next} 

\def\makesmQsh#l{\setboxO=\hbox{#l}\finsmOsh} 

\def\mathsm(9sh#l#2{\setbox0=\hbox{$\m®th#l{#2}$}\f insm<3sh} 

\def\finsm®sh{\htO=Opt \dp0=0pt \boxO } 

\def\cong{\mathrel{\mathpalette\®vereq\sim}} */, \sim over = 

\def\(9vereq#l#2{\lower.5pt\vbox{\baselineskip0pt \lineskip-.5pt 

\ialign{$\mQth#l\hfil##\hfil$\crcr#2\crcr=\crcr}}} 

\def\notin{\mathrel{\mathpalette\c(9ncel\in}} 

\def\cQncel#l#2{\ooalign{$\hfil#l\mkernlmu/\hfil$\crcr$#l#2$}} 

\def\rightleftharpoons{\mathrel{\mathpalette\rlh<9{}}} 



Appendix B: Basic Control Sequences 361 

\def\rlh@#l{\vcenter{\hbox{\ooalign{\raise2pt 

\hbox{$#l\righthaxpoonup$}\crcr $#l\leftharpoondown$}}}} 

\def\buildrel#l\over#2{\mathrel{\mathop{\kern0pt #2}\limits"{#l}}} 

\def\doteq{\buildrel\textstyle.\over=} 

These definitions illustrate how other built-up symbol combinations could be defined 

to work in all four styles. 

Alternate names are defined now: 

\let\ne=\neq \let\le=\leq \let\ge=\geq 

\let\{=\lbrace \let\|=\Vert \let\}=\rbrace 

\let\to=\rightaj:row \let\gets=\leftarrow \let\owns=\ni 

\let\laiid=\wedge \let\lor=\vee \let\lnot=\neg 

\def\iff{\;\Longleftrightarrow\;} 

The 32 common functions whose names generally appear in roman letters are 

listed in Chapter 18. Only a few of the definitions need to be shown here: 

\def\2Lrccos{\mathop{\rm arccos}\nolimits} 

\def\tcLn.h{\mathop{\rin tajih}\nolimits} 

\def\det{\mathop{\rm det}} • • • \def\sup{\mathop{\rin sup}} 

\def\liminf{\mathop{\rm liin\,inf}} \def\limsup{\mathop{\rm lim\,sup}} 

\def\bmod{\mskip-\medmuskip \mkern5mu 

\mathbin{\riii mod} \penalty900 \mkern5mu \mskip-\medmuskip} 

\def\pmod#l{\allowbrecLk \mkernl8mu ({\rm mod}\,\>#l)} 

The definition of \matrix goes to some pains to ensure that two n-rowed 

matrices will have the same height and the same depth, unless at least one of their 

rows is unusually big. The definition of \bordermatrix is even more complicated, but 

it seems to work reasonably well; it uses a constant XpOrenwd that represents the width 

of a big extensible left parenthesis. 

\def\matrix#l{\null\,\vcenter{\normalbaselines\m®th 

\ialign{\hfil$##$\hfil&&\quad\hfil$##$\hfilXcrcr 

XmathstrutXcrcrXnoalignfXkern-Xbaselineskip} 

#lXcrcrXmathstrutXcrcrXnoalign{Xkern-Xbaselineskip}}}X,} 

XnewdimenXpSrenwd XsetboxO=Xhbox{Xtenex B} Xp®renwd=XwdO 

XdefXbordermatrix#l{Xbegingroup XmQth 

XsetboxO=Xvbox{XdefXcr{XcrcrXnoalign{Xkern2ptXglobalXletXcr=Xendline}} 

Xialign{$##$XhfilXkern2ptXkernXp@renwd&XthinspaceXhfil$##$Xhfil 

&&XquadXhfil$##$XhfilXcrcr 

XomitXstrutXhfilXcrcrXnoalignlXkern-Xbaselineskip} 

#lXcrcrXomitXstrutXcr}} 

Xsetbox2=Xvbox{XunvcopyO XglobalXsetboxl=Xlastbox} 

Xsetbox2=Xhbox{Xunhboxl Xunskip XglobalXsetboxl=Xlastbox} 

Xsetbox2=Xhbox{$XkernXwdlXkern-Xp@renwd Xleft( Xkern-Xwdl 

XglobalXsetboxl=Xvbox{XboxlXkern2pt} 

Xvcenter{Xkern-Xhtl XunvboxO Xkern-Xbaselineskip} X,Xright)$} 

XnullX;Xvbox{XkernXhtlXbox2}Xendgroup} 



362 Appendix B: Basic Control Sequences 

The next macros are much simpler: 

\def\cases#l{\lef t\{\, \vcenter{\normalbaselines\in<9th 

\ialign{$##\hfil$&\quad##\hfil\crcr#l\crcr}}\right.} 

\def\pmatrix#l{\left( \matrix{#l} \right)} 

Finally there are macros for displayed equations: 

\def \openup{\afterassigninent\<9penup\dimen(9=} 

\def\@penup{\advance\lineskip\dimen@ 

\advaiice\baselineskip\dimenQ \advaiice\lineskiplimit\dimen@} 

\def\eqalign#l{\null\,\vcenter{\openupl\jot \m@th 

\ialign{\strut\hfil$\displayStyle{##}$&$\displayStyle{{}##}$\hfil 

\crcr#l\crcr}}\,} 

\newif\ifdt®p 

\def\displ®y{\global\dt(9ptrue \openupl\jot \mOth 

\everycr{\noalign{\ifdtOp \global\dt(9pfalse 

\vskip-\lineskiplimit \vskip\normallineskiplimit 

\else \penalty\interdisplaylinepenalty 

\def\(91ign{\tabskip=0pt\everycr={}} */, restore inside \displ(9y 

\def \displaylines#l{\displ(9y 

\halign{\hbox to\displaywidth{$\hfil\@lign\displaystyle##\hfil$}\crcr 

#l\crcr}} 

\def\eqalignno#l{\displ@y \tabskip=\centering 

\halign to\displaywidth{\hfil$\Qlign\displaystyle{##>$\tabskip=Opt 

&$\®lign\displaystyle{{}##}$\hfil\tabskip=\centering 

&\llap{$\Qlign##$}\tabskip=Opt\crcr 

#l\crcr}} 

\def\leqalignno#l{\displQy \tabskip=\centering 

\halign to\displaywidth{\hfil$\@lign\displaystyle{##}$\tabskip=Opt 

&$\Qlign\displaystyle{{}##}$\hfil\tabskip=\centering 

&\kern-\displaywidth\rlap{$\Qlign##$}\tabskip=\displaywidth\crcr 
#l\crcr}} 

The value of Xlineskiplimit is assumed to be \normallineskiplimit plus the ac- 

cumulated amount of “opening up.” Thus, the \vskip instructions in XdisplOy will 

compensate for the fact that the first baseline of an alignment is separated by an 

opened-up baselineskip from the last line preceding the display. 

7. Macros for output. The plain.tex file also contains the output routine described in 

Chapters 15 and 23. First there are simple facilities related to page numbers, headings, 

and footings: 

\countdef\pageno=0 \pageno=l 7, first page is number 1 

\newtoks\headline \headline={\hfil} */, headline is normally blank 

\newtoks\footline \footline={\hss\tenrm\folio\hss} 

*/, footline is normally a centered page niimber in font \tenrm 

\def\foliofXifnum\pageno<0 \romcLnnumeral-\pageno \else\number\pageno \fi} 

\def\nopagenumbers{\footline={\hfil}} */, blcink out the footline 

\def\advcLncepageno{\ifnum\pageno<0 \global\advance\pageno by -1 

\else\global\advance\pageno by 1 \fi} */, increase Ipagenol 



Appendix B: Basic Control Sequences 363 

\newif\ifrQggedbottom 

\def\raggedbottom{\topskiplOpt plus60pt \r@ggedbottomtrue} 

\def\norinalbottom{\topskiplOpt \r@ggedbottomfalse} '/, undoes Xraggedbottom 

The \footnote macro has a few subtle features that can best be appreciated 

by someone who reads Chapter 15 very carefully. It also uses some \bgroup and 

\futurelet and \aftergroup trickery, so that the footnote text does not need to be a 

parameter to \vfootnote: 

\newinsert\footins 

\def\footnote#l{\let\Qsf=\empty */, parameter #2 (the text) is read later 

\ifhmode\edef\@sf{\spacefactor=\the\spacefactor}\/\fi 

#l\®sf\vfootnote{#l}} 

\def\vfootnote#l{\insert\footins\bgroup 

\interlinepenalty=\interfootnotelinepenalty 

\splittopskip=\ht\strutbox */, top baseline for broken footnotes 

\splitmaxdepth=\dp\strutbox \floatingpenalty=20000 

\leftskip=0pt \rightskip=Opt \spaceskip=Opt \xspaceskip=Opt 

\textindent{#l}\footstrut\futurelet\next\foOt} 

\def\foOtfXifcat\bgroup\noexpand\next \let\next\f@@t 

\else\let\next\f@t\fi \next} 

\def\f (9(9t{\bgroup\af tergroup\@f oot\let\next} 

\def\f(9t#l{#l\(9foot} 

\def\@foot{\strut\egroup} 

\def\footstrut{\vbox to\splittopskipf}} 

\skip\footins=\bigskipamount */, space added when footnote is present 

\count\footins=1000 ’/, footnote magnification factor (1 to 1) 

\dimen\footins=8in */, maximum footnotes per page 

Floating insertions are handled by doing an \insert whose vertical list consists 

of a penalty item followed by a single box: 

\newinsert\topins \newif\ifp®ge \newif\ifOmid 

\def\topinsert{\@midfalseXpOgefalse\@ins} 

\def \midinsert{\<9midtrue\@ins} 

\def\page insert {\<9midfalse\p(9getrue\(9ins} 

\skip\topins=Opt */, no space added when a topinsert is present 

\count\topins=1000 */, magnification factor (1 to 1) 

\dimen\topins=\maxdimen */, no limit per page 

\def\@ins{\par\begingroup\setboxO=\vbox\bgroup} '/ start a \vbox 

\def\endinsert{\egroup */, finish the \vbox 

\if@mid \dimen(9=\ht0 \advance\dimen@ by\dpO 

\advance\dimen@ byl2\p<9 \advance\dimen® byXpagetotal 

\ifdim\dimen@>\pagegoal \QmidfalseXpOgefalse\fi\fi 

\if®mid \bigskip \boxO XbigbreaJk 

\else\insert\topins{\penaltylOO ’/, floating insertion 

\splittopskip=Opt \splitmaxdepth=\maxdimen \floatingpenalty=0 

XifpQge Xdimen(9=XdpO 

Xvbox toXvsizefXunvboxO Xkern-XdimenO} */, depth is zero 

Xelse XboxO XnobreakXbigskipXfifXfiXendgroup} 



364 Appendix B: Basic Control Sequences 

Most of the \output routine appears in Chapter 23; it is given here in full: 

\output={\plainoutput} 

\def \plainout put {\shipout\vbox-C\makeheadline\pagebody\makefoot line}*/, 

\advancepageno 

\ifnuin\outputpenalty>-20000 \else\dosupereject\fi} 

\def\pagebody{\vbox to\vsize{\boxmaxdepth=\maxdepth \pagecontents}} 

\def\m2Lkeheadline{\vbox to 0pt{\vskip-22.5pt 

\line{\vbox to8.5pt{}\the\headline}\vss}\nointerlineskip} 

\def\makefootline{\baselineskip=24pt \line{\the\footline}} 

\def\dosupereject{\ifnuin\insertpenalties>0 */, something is being held over 

\line{}\kern-\topskip\nobreak\vfill\supereject\fi} 

\def\pagecontents{\ifvoid\topins\else\unvbox\topins\fi 

\dimen®=\dp255 \unvbox255 

\ifvoid\footins\else */, footnote info is present 

\vskip\skip\footins \footnoterule \unvbox\footins\fi 

\ifrOggedbottom \kern-\dimenQ \vfil \fi} 

\def\footnoterule{\kern-3pt 

\hrule width 2truein \kern 2.6pt} */, the \hrule is .4pt high 

8. Hyphenation and everything else. The last part ofplain.tex reads the hyphenation 

patterns and exceptions found on file hyphen.tex (see Appendix H); then it defines a 

few miscellaneous macros, sets up \rm type, and that’s all! 

\input hyphen */, the hyphenation patterns and exceptions 

\def\magnification{\afterassignment\m@g\count®} 

\def\m@g{\mag=\count@ 

\hsize6.5truein\vsize8.9truein\dimen\footins8truein} 

\def\tracingall{\tracingonline=l \tracingcommands=2 \tracingstats=2 

\tracingpages=l \tracingoutput=l \tracinglostchars=l 

\tracingmacros=2 \tracingparagraphs=l \tracingrestores=l 

\showboxbreadth=\maxdimen \showboxdepth=\maxdimen \errorstopmode} 

\def\showhyphens#l{\setboxO=\vbox{\parfillskipOpt \hsize=\maxdimen \tenrm 

\pretolerance=-l \tolerance=-l \hbadness=0 \showboxdepth=0 \ #1}} 

\normalbaselines\rm */, select roman font 

\nonfrenchspacing */, punctuation affects the spacing 

\catcode ‘ Q=12 */, at signs are no longer letters 

\def\fmtname{plain}\def\fmtversion{2.0} */, identifies the current format 

The format name and version number are recorded in control sequences, in order to 

help the people who might have to explain why something doesn’t work. Macro files 

like plain.tex should not be changed in any way, except with respect to preloaded 

fonts, unless the changes are authorized by the author of the macros. 



Appendix B: Basic Control Sequences 365 

The purpose of a programming system is to make a computer easy to use. 
To do this, it furnishes languages and various facilities 

that are in fact programs invoked and controlled by language features. 
But these facilities are bought at a price: 

the external description of a programming system is ten to twenty times 
as large as the external description of the computer system itself. 

The user finds it far easier to specify any particular function, 
but there are far more to choose from, 

and far more options and formats to remember. 

— FREDERICK P. BROOKS, JR., The Mythical Man Month (1975) 

When someone says, “I want a programming language 
in which I need only say what I wish done,” 

give him a lollipop. 

— ALAN PERLIS, Epigrams on Programming (1982) 



Character 
Codes 



Appendix C: Character Codes 367 

Different computers tend to have different ways of representing the characters in files of 
text, but gives the same results on all machines, because it converts everything to 
a standard internal code when it reads a file. also converts back from its internal 
representation to the appropriate external code, when it writes a file of text; therefore 
most users need hot be aware of the fact that the codes have actually switched back 
and forth inside the machine. 

The purpose of this appendix is to define T^’s internal code, which has the 
same characteristics on all implementations of T^]X. The existence of such a code is 
important, because it makes constructions “portable.” For example, allows 
alphabetic constants like ‘b to be used as numbers; the fact that 'b always denotes the 
integer 98 means that it’s possible to write machine-independent macros that decide, for 
instance, whether a given character is a digit between 0 and 9. Furthermore the internal 
code of also survives in its dvi output files, which can be printed by software that 
knows nothing about where the dvi data originated; essentially the same output will 
be obtained from all implementations of T^]X, regardless of the host computer, because 
the dvi data is expressed in a machine-independent code. 

T^X’s internal code is based on the American Standard Code for Information 
Interchange, known popularly as “ASCII.” There are 128 codes, numbered 0 to 127; 
we conventionally express the numbers in octal notation, from '000 to '177, or in 
hexadecimal notation, from "00 to "7F. Thus, the value of ^b is normally called '142 or 
"62, not 98. In the ASCII scheme, codes '000 through 'O4O and code '177 are assigned 
to special functions; for example, code '007 is called BEL, and it means “Ring the bell.” 
The other 94 codes are assigned to visible symbols. Here is a chart that shows ASCII 
codes in such a way that octal and hexadecimal equivalents can easily be read off: 

'0 '1 '3 V '5 '6 '7 

'OOx NUL SOH STX ETX EOT ENQ ACK BEL 
"Ox 

'Olx BS HT LF VT FF CR SO SI 

'02x DLE DCl DC2 DCS DC4 NAK SYN ETB 
"lx 

'03x CAN EM SUB ESC FS GS RS US 

'04x SP 1 M # $ ‘/o & J 

2x 
'05x ( ) ♦ + 9 - • / 

'06x 0 1 2 3 4 5 6 7 
"3x 

'07x 8 9 ; • 

9 < = > 7 

'lOx @ A B C D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z [ \ ] 

'14x < a b c d e f g 
"6x 

'15x h i j k 1 m n 0 

'16x P q r s t u V w 
"7x 

'17x X y z { 1 } DEL 

"8 "9 "A "B "C "D "E "F 



368 Appendix C: Character Codes 

Ever since ASCII was established in the early 1960s, people have had dif- 
ferent ideas about what to do with positions '000-'037 and '177, because most of 
the functions assigned to those codes are appropriate only for special purposes like hie 
transmission, not for applications to printing or to interactive computing. It turned out 
that manufacturers soon started producing line printers that were capable of generating 
128 characters, 33 of which were tailored to the special needs of particular customers; 
part of the advantage of a standard code was therefore lost. On the other hand, the 
remaining 95 codes (including '40 =SP, a blank space) have become widely adopted, 
and they are now implanted within most of today’s computer terminals. When an 
ASCII keyboard is available, you can specify each of the 128 codes to TgX in terms of 
the 95 standard characters, as follows: 

'0 '1 '3 '5 '6 '7 

'OOx 
"Ox 

'Olx 

'02x --p -Q 
"lx 

'03x ..y ^ ^ ^ 

'04x u ! II # $ 1 & J 
"2x 

'05x ( ) * + y - • / 

'06x 0 1 2 3 4 5 6 7 
"3x 

'07x 8 9 ; 5 < = > 7 

'lOx 0 A B c D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z [ \ ] 

'14x ( a b c d e f g 
6x 

'15x h i j k 1 m n 0 

'16x P q r s t u V w 
"7x 

'17x X y z { 1 } ^ ~7 

"8 "9 "A "B "C "D "E "F 

(Here doesn’t necessarily mean two circumhex characters; it means two identical 
characters whose current \catcode is 7. In such cases simply adds or subtracts 
'100 from the internal code of the character that immediately follows. For example, 
* can also be typed as ""'j; j can also be typed as 

An extended ASCII code intended for text editing and interactive computing 
was developed at several universities about 1965, and for many years there have been 
terminals in use at Stanford, MIT, Carnegie-Mellon, and elsewhere that have 120 or 121 
symbols, not just 95. Ahcionados of these keyboards (like the author of this book) are 
loath to give up their extra characters; it seems that such people make heavy use of 
about 5 of the extra 25, and occasional use of the other 20, although different people 
have different groups of hve. For example, the author developed on a keyboard 
that includes the symbols i, #, <, and >, and he hnds that this makes it much more 



Appendix C: Character Codes 369 

pleasant to type class notes, technical papers, and computer programs of the kind he 
likes to write; his logician friends make heavy use of the V and 3 keys; and so on. It 
is recommended that T^]X implementations on systems with large character sets be 
consistent with the following codes: 

'0 '1 '3 V '5 '6 '7 

'OOx • a p A “1 € TT 
"Ox 

'Olx A 7 6 t ± 0 03 <9 

'02x c D n U V 3 0 <- -f 
"lx 

'03x 4- -+ o < > = V 

'04x ! II # $ 7, & ) 
"2x 

'05x ( ) * + 
9 

- * / 

'06x 0 1 2 3 4 5 6 7 
"3x 

'07x 8 9 • J 
< = > 7 

'lOx 0 A B C D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z [ \ ] 

'14x c a b c d e f g 
"6x 

'15x h i j k 1 m n 0 

'16x P q r s t u V w 
"7x 

'17x X y z { 1 > / 

"8 "9 "A "B "C "D "E "F 

Of course, designers of macro packages that are intended to be widely used should 
stick to the standard ASCII characters. 

Incidentally, the ASCII character ^ that appears in position '136 is sometimes 
called a “caret,” but dictionaries of English tell us that a caret is a larger symbol, more 
like character '004 in the extended set above. The correct name for ^ is “circumflex,” 
but this is quite a mouthful, so a shorter name like “hat” is preferable. It seems 
desirable to preserve the traditional distinction between caret and hat. 

The extended code shown above was developed at MIT; it is similar to, but 
slightly better than, the code actually used at Stanford. Seven of the codes are con- 
ventionally assigned to the standard ASCII control functions NUL ((null)), HT ((tab)), 
LF ((linefeed)), FF ((formfeed)), CR ((return)), ESC ((escape)), and DEL ((delete)), and 
they appear in the standard ASCII positions; hence the corresponding seven charac- 
ters • 7 <5 ± ® O / do not actually appear on the keyboard. These seven “hidden” 
characters show up only on certain output devices. 

Many people, unfortunately, have the opposite problem: Instead of the 95 stan- 
dard characters and some others, they have fewer than 95 symbols actually available. 
What can he done in such cases? Well, it’s possible to use with fewer symbols, 
by invoking more control sequences; for example, plain defines \lq, \rq, \lbrack, 
\rbrack, \sp, and \sb, so that you need not type and _, respectively. 



370 Appendix C: Character Codes 

A person who implements on computer systems that do not have 95 ex- 
ternally representable symbols should adhere to the following guidelines: (a) Stay as 
close as possible to the ASCII conventions, (b) Make sure that each unrepresentable 
internal code leads to a representable code when '100 is added or subtracted; then 
all 128 codes can be input and output, (c) Cooperate with everyone else who shares 
the same constraints, so that everybody adopts the same policy. (See Appendix J for 
information about the T^]X Users Group.) 

Very few conventions about character codes are hardwired into Almost 
everything can be changed by a format package that sets up \catcode, \mathcode, 

\uccode, \lccode, \sfcode, and \delcode tables, and that changes parameters like 
\escapechar. Thus a manuscript that has been written in Denmark, say, can 
be run in California, and vice versa, even though quite different conventions might be 
used in different countries. The only character codes that actually “knows” are 
these: (1) INITEX initializes the code tables as described in Appendix B; the same 
initialization is done by all implementations of T^^X. (2) uses the character codes 
U+-.,' ’ "<=>0123456789ABCDEF in its syntax rules (Chapters 20, 24, and Appendix H), 

and it uses most of the uppercase and lowercase letters in its keywords pt, to, plus, 

etc. These same codes and keywords are used in all implementations of T^]X. For 
example, when TgX is implemented for Cyrillic keyboards, the letter ‘n’ should be 
assigned to code '160 and ‘T’ to code '164 ? so that ‘ni’ still means ‘pt’; or else control 
sequences should be defined so that what sees is equivalent to the keywords it 
needs. (3) The operations \nuinber, \romannumeral, \the, and Xmeaining can generate 
letters, digits, spaces, decimal points, minus signs, double quotes, colons, and ‘>’ signs; 
these same codes are generated in all implementations of T^]X. (4) The \hyphenation 

and \pattern commands described in Appendix H give special interpretation to the 
ten digits and to the characters and (5) The codes for the four characters 
$ . { } are inserted when recovers from certain errors, and braces are inserted 
around an \output routine; appropriate catcodes are attached to these tokens, so it 
doesn’t matter if these symbols have their plain meanings or not. 



Appendix C: Character Codes 371 

Code sets obtained by modifying the standard as shown above 
or by other replacements are nonstandard. 

— ASA SUBCOMMITTEE X3.2, American Standard 
Code for Information Interchange (1963) 

Both the Stanford and DEC uses of the ASCII control characters 
are in 'violation of the USA Standard Code, 

but no Federal Marshal is likely to come running out 
and arrest people who type control-T to their computers. 

— BRIAN REID, SCRIBE Introductory User's Manual (1978) 



Dirty Tricks 



Appendix D: Dirty Tricks 373 

TgX was designed to do the ordinary tasks of typesetting: to make paragraphs 
and pages. But the underlying mechanisms that facilitate ordinary typesetting— 
e.g., boxes, glue, penalties, and macros—are extremely versatile; hence people 
have discovered sneaky ways to coerce into doing tricks quite different from 
what its author originally had in mind. Such clever constructions are not gen- 
erally regarded as examples of “high TgX”; but many of them have turned out 
to be useful and instructive, worthy of being known (at least by a few wizards). 
The purpose of this appendix is to introduce crafty and/or courageous readers 
to the nether world of T^arcana. 

Please don’t read this material until you’ve 

had plenty of experience with plain 

After you have read and understood the secrets below, you’ll know all sorts of devious 

combinations of TT;X commands, and you will often be tempted to write inscrutable 

macros. Always remember, however, that there’s usually a simpler and better way to 

do something than the first way that pops into your head. You may not have to resort 

to any subterfuge at all, since is able to do lots of things in a straightforward way. 

Try for simple solutions first. 

1. Macro madness. If you need to write complicated macros, you’ll need to be familiar 

with the fine points in Chapter 20. TTX’s control sequences are divided into two main 

categories, “expandable” and “unexpandable”; the former category includes all macros 

and \if. . .\fi tests, as well as special operations like \the and \input, while the lat- 
ter category includes the primitive commands listed in Chapter 24. The expansion of 

expandable tokens takes place in TTiX’s “mouth,” but primitive commands (including 

assignments) are done in TgX’s “stomach.” One important consequence of this struc- 

ture is that it is impossible to redefine a control sequence or to advance a register while 

TE;X is expanding the token list of, say, a \message or \write command; assignment 

operations are done only when T^X is building a vertical or horizontal or math list. 

For example, it’s possible to put \n asterisks into a paragraph, by saying 

simply ‘{\loop\ifnuin\n>0 *\advaiice\n-l \repeat}’. But it’s much more difficult to 

define a control sequence \asts to consist of exactly \n consecutive asterisks. If \n 

were known to be at most 5, say, it would be possible to write 

\edef\astsf\ifcase\n\or*\or**\or***\or****\or*****\else\bad\fi} 

since handles \if case in its mouth. But for general \n it would be impossible 

to use a construction like ‘\edef\asts{\loop\ifnuin\n>0 *\advance\n-l \repeat}’, 

since \n doesn’t change during an \edef. A more elaborate program is needed; e.g., 

{\xdef\asts{} 
\loop\ifnuin\n>0 \xdef\asts{\asts*}\advance\n-l \repeat} 

And here’s another solution (which is faster, because token list registers can be ex- 

panded more quickly than macros, using \the): 

\newcount\m \newtoks\t \m=\n \t=-C} 

\loop \ifnuin\m>0 \t=\expandafter{\the\t ♦} \advance\m-l \repeat 
\edef\asts{\the\t} 



374 Appendix D: Dirty Tricks 

However, both of these solutions have a running time proportional to the 

square of \n. There’s a much quicker way to do the job: 

\begingroup\aftergroupXedef\aftergroup\asts\aftergroup{ 

\loop \ifnuin\n>0 \aftergroup*\advajice\n-l \repeat 
\aftergroup}\endgroup 

Get it? The \aftergroup commands cause a whole list of other tokens to be saved up 
for after the group! This method has only one flaw, namely that it takes up \n cells of 

space on Tg^’s input stack and \n more on T^]X’s save stack; hence a special version 

of may be required when \n is larger than 150 or so. 

(Incidentally, there’s a completely different way to put \n asterisks into a 

paragraph, namely to say ‘\setboxO=\hbox{*}\cleaders\copyO\hskip\n\wdO’. This 

may seem to be the fastest solution of all; but actually it is not so fast, when all things 

are considered, since it generates four bytes of dvi output per asterisk, compared to 

only one byte per asterisk in the other methods. Input/output time takes longer than 

computation time, both in T^ itself and in the later stages of the printing process.) 

The problem just solved may seem like a rather special application; after all, 

who needs a control sequence that contains a variable number of asterisks? But the 

same principles apply in other similar cases, e.g., when you want to construct a variable- 

length \parshape specification. Similarly, many of the “toy problems” solved below 

are meant to illustrate paradigms that can be used in real-life situations. 

The precise rules for expansion are explained in Chapter 20; and the best way 

to get familiar with T^jK’s expansion mechanism is to watch it in action, looking at the 

log file when \tracingmacros=2 and \tracingcoinmaiids=2. One of the important ways 

to change the normal order of expansion is to use \expandafter; the construction 

\expajidaf ter\a\b 

causes \b to be expanded first, then \a. And since Xexpandafter is itself expandable, 
the construction 

\expandaf ter\expaiidafter\expaiidafter\a\expaiidafter\b\c 

causes \c to be expanded first, then \b, then \a. (The next step, 

\expaiidafter\expaiidaf terXexpandaf terXexpandaf ter 

\expajidaf terXexpandaf terXexpaindaf ter\a 

Xexpandaf terXexpaiidaf terXexpeindaf ter\b\expaiidaf ter\c\d 

is probably too lengthy to be of any use.) 

It’s possible to make good use of XexpandafterXaXb even when Xa isn’t ex- 

pandable. For example, the token list assignment ‘Xt=XexpeLndafterfXtheXt *>’ in the 

example on the previous page was able to invade territory where expansion is normally 

suppressed, by expanding after a left brace. Similarly, 

Xt=XexpaiidafterfXexpandafter+XtheXt} 

would have worked; and 

XuppercaseXexpaindafterfXromeLnnuineralXn} 

yields the value of register Xn in uppercase roman numerals. 



Appendix D: Dirty Tricks 375 

Here’s a more interesting example: Recall that \f ontdimenl is the amount of 

“slant per point” of a font; hence, for example, ‘\the\f ontdimenl\tenit’ expands to 

‘0.25pt’, where the characters ‘pt’ are of category 12. After the macro definitions 

{\catcode‘p=12 \catcode‘t=12 \gdef\\#lpt{#l}-} 

\let\getfactor=\\ 

\def \kslajit#l{\kern\expeLndafter\getf actor\the\f ontdimenl#l\htO} 

one can write, e.g., ‘\ksleuit\tenit’ and this will expand to ‘\kernO. 25\ht0’. If the 

boundary of \boxO is considered to be slanted by 0.25 horizontal units per vertical unit, 

this kern measures the horizontal distance by which the top edge of the box is skewed 

with respect to an edge at the baseline. All of the computation of \kslant is done in 

TgX’s mouth; thus, the mouth can do some rather complicated things even though it 
cannot assign new values. (Incidentally, an indirect method was used here to define 

the control sequence \getfactor when the character t had category 12, since control 

words normally consist only of letters. The alternative construction 

{\catcode‘p=12 \catcode^t=12 

Xcsname expandafter\endcsname\gdef 

Xcsname getfactor\endcsnajne#lpt{#l}} 

would also have worked, since Xcsname and Xendcsneane don’t contain ‘p’ or ‘t’!) 

The mechanism by which determines the arguments of a macro can be 

applied in unexpected ways. Suppose, for example, that \t is a token list register that 

contains some text; we wish to determine if at least one asterisk (*12) appears in that 

text. Here’s one way to do it: 

\newif\ifresult */, for the result of a computed test 

\def\atest#l{\expandafter\a\the#l*\atest\a} 

\long\def\a#l*#2#3\a{\ifx\atest#2\resultfalse\else\resulttrue\fi} 

Now after ‘\atest\t’, the control sequence \ifresult will be \iftrue or \iffalse, 

depending or whether or not \t contains an asterisk. (Do you see why?) And here’s 

a slightly more elegant way to do the same thing, using \futurelet to look ahead: 

\def\btest#l{\expaiidafter\b\the#l*\bb} 

\long\def\b#l*{\futurelet\next\bb} 
\long\def\bb#l\bb{\ifx\bb\next\resultfalse\else\resulttrue\fi} 

In both cases the solution works if \t contains control sequence tokens as well as 
character tokens, provided that the special control sequences \atest, \a, and \bb 

don’t appear. Notice, however, that an asterisk is “hidden” if it appears within a 

group {. . .}; the test is limited to asterisks at nesting level zero. A token list register 

is always balanced with respect to grouping, so there is no danger of the test leading 

to error messages concerning missing braces or extra braces. 

We can apply the ideas in the preceding paragraph to solve a problem related 

to generalized math formatting: The goal is to set up so that the respective 
constructions ‘ $$«$$’, ‘$$a\eqno/3$$’, and ‘ $$ a\leqno/? $$ ’ will cause a macro 
$$\generaldisplay$$ to be invoked, with \eq defined to be a\ furthermore, the test 

\ifeqno should be true when an equation number /3 is present, and \ifleqno should 

be true in the case of \leqno. When j3 is present, it should be stored in \eqn. Here 



376 Appendix D: Dirty Tricks 

a and are arbitrary balanced token lists that don’t contain either \eqno or \leqno 

at nesting level zero. The following macros do the required maneuvers: 

\newif\ifeqno \newif\ifleqno \everydisplay{\displaysetup} 
\def\displaysetup#l$${\displaytest#l\eqno\eqno\displaytest} 

\def \displaytest#l\eqno#2\eqno#3\displaytest{*/, 

\if!#3!\ldisplaytest#l\leqno\leqno\ldisplaytest 
\else\eqnotrue\leqnofalse\def\eqn{#2}\def\eq{#l}\fi 

\generaldisplay$$} 

\def\ldisplaytest#l\leqno#2\leqno#3\ldisplaytest{\def\eq{#l}y, 

\if!#3!\eqnofalse\else\eqnotrue\leqnotrue\def\eqn{#2}\fi} 

An examination of the three cases $$«$$, $$ Q:\eqno /3 $$, $$ aXleqno (3 $$ shows that 

the correct actions will ensue. Parameter #3 in the tests ‘\if ! #3! ’ will be either empty 

or \eqno or \leqno; thus, the condition will be false (and the second ‘! ’ will be skipped) 

unless #3 is empty. 

Returning to the problem of *’s in \t, suppose that it’s necessary to consider 

*’s at all levels of nesting. Then a slower routine must be used: 

\def\ctest#l{\resultfalseXexpaindafter\c\the#l\ctest} 

\def \c{\afterassigiiment\cc\let\next= } 

\def\cc{\ifx\next\ctest \let\next\relax 

\else\ifx\next*\resulttrue\fi\let\next\c\fi \next} 

Here \ after assignment has been used to retain control after a non-future \let; the 

‘= ’ ensures that exactly one token is swallowed per use of \c. This routine could 

be modified in an obvious way to count the total number of ♦’s and/or tokens in \t. 

Notice the ‘\let\next’ instructions in \cc; it should be clear why the alternative 

\def\cc{\ifx\next\ctest\else\ifx\next*\resulttrue\fi\c\fi} 

would not work. (The latter \c would always swallow a ‘\fi’.) 

Space tokens are sometimes anomalous, so they deserve special care. The 

following macro \futurenonspacelet behaves essentially like \futurelet except that 

it discards any implicit or explicit space tokens that intervene before a nonspace is 

scanned: 

\def\futurenonspacelet#l{\def \cs{#l}y, 

\afterassignment\stepone\let\nexttoken= } 

\def\\{\let\stoken= } \\ */, now \stoken is a space token 

\def\stepone{\expandafter\futurelet\cs\steptwo} 

\def\steptwo{\expaiidafter\ifx\cs\stoken\let\next=\stepthree 

\else\let\next=\nexttoken\fi \next} 

\def\stepthree{\afterassignment\stepone\let\next= } 

An operation like \futurenonspacelet is useful, for example, when implementing 

macros that have a variable number of arguments. 

Notice that ‘\def\stepthree#l{\stepone}’ would not work here, because 

of rule that a uio token is bypassed if it would otherwise be treated as an 

undelimited argument. Because of this rule it is difficult to distinguish explicit space 

tokens from implicit ones. The situation is surprisingly complex, because it’s possible 



Appendix D: Dirty Tricks 377 

to use \uppercase to create “funny space” tokens like *io; for example, the commands 

\uccode‘ \uppercase{\uppercase{\def\fspace{ }\let\ftoken= } } 

make \fspace a macro that expands to a funny space, and they make \ftoken an 

implicit funny space. (The tests \if\fspace*, \if\ftoken*, \ifcat\fspace\stoken, 

and \if cat\ftokenXstoken will all be true, assuming that * has category 12; but if * 

has category 10, \if\f space* will be false, because normalizes all newly created 

space tokens to uio, as explained in Chapter 8.) Since the various forms of space 

tokens are almost identical in behavior, there’s no point in dwelling on the details.f 

The argument to \write is expanded when a \shipout occurs, but sometimes 
expansion isn’t desired. Here’s a macro (suggested by Todd Allen) that suppresses all 

expansion, by inserting \noexpaiid before each control sequence or active character. 

The macro assumes that " is an active character, and that the tokens being written do 

not include implicit spaces or braces. Funny spaces are changed to ordinary ones. 

\long\def Xunexpcindedwr it e#l#2{\def\f inwrit e{\wr it e#l}*/, 

{\aftergroupXfinwrite\aftergroup{\sanitize#2\endsanity}}} 

\def\sanitize{\futurelet\next\sanswitch} 

\def\sanswitch{\ifx\next\endsanity 

\else\ifcat\noexpaiid\next\stoken\aftergroup\space\let\next=\eat 

\else\ifcat\noexpcLnd\next\bgroup\aftergroup{\let\next=\eat 

\else\ifcat\noexpand\next\egroup\aftergroup}\let\next=\eat 

\else\let\next=\copytoken\fi\fi\fi\fi \next} 

\def\eat{\afterassignmentXsanitize XletXnext= } 

XlongXdefXcopytoken#l{XifcatXnoexpand#lXrelaxXaftergroupXnoexpand 

XelseXif catXnoexpajid#lXnoexpand''XaftergroupXnoexpandXf iXf i 
Xaftergroup#lXsanitize} 

XdefXendsanityXendsanityf} 

As before, the heavy use of Xaftergroup in Xunexpandedwrite means that parameter 

#2 should not include more than about 150 tokens. 

f The following little program is for exegetes who insist on learning the whole 
story: Macro Xstest decides whether or not the first token of a given token list 
register is a (space token) as defined in Chapter 24. If so, the macro decides whether 
or not the token is “funny,” i.e., whether or not the character code is different from an 

ASCII (space); and the macro also decides whether the token is explicit or implicit. 

XnewifXifspace XnewifXiffunny XnewifXifexplicit 

Xdef Xstest #l{Xexpajidaft erXsX the# 1 Xstest} 

XdefXsfXfutureletXnextXss} 

XdefXssfXifcatXnoexpandXnextXstokenXspacetrue 

XifxXnextXstokenXletXnext=XsssXelseXletXnext=Xssss\fi 

XelseXletXnext=XsssssXfi Xnext} 

XlongXdefXsss#l #2Xstest{Xfunnyfalse 
XdefXnext{#l}Xifx\nextXemptyXexplicittrueXelseXexplicitfalse\fi} 

XlongXdefXssss#l#2Xstest{Xfunnytrue 

\ifcatXnoexpand#lXnoexpand~Xexplicitfalse % active funny space 

Xelse{Xescapechar=Xif*#1‘?Xelse‘*\fi 
Xif#lXstring#lXglobalXexplicittrue\else\globalXexplicitfalseXfi}Xfi} 

XlongXdefXsssss#!Xstest{Xspacefalse} 



378 Appendix D: Dirty Tricks 

2. List macros. The next several macros we shall discuss can be used to maintain lists 

of information in the form 

\\{(itemi)}\\{(item2)> ... \\{(itemn)} 

where each (item) is a balanced list of tokens. A parameterless control sequence whose 

replacement text has this form may be called a list macro. The empty list macro has 

n = 0 and it is called \empty. 

It’s easy to add new items at either end of a list macro, and to concatenate 

list macros, for example as follows: 

\toksdef\ta=0 \toksdef\tb=2 7, token list registers for temp use 
\long\def \leftappenditem#l\to#2{\ta={\\{#l}}\tb=\expaiidaf ter{#2}y, 

\edef#2{\the\ta\the\tb}} 

\long\def \right appenditem#l\to#2{\ta={\\{#l}}\tb=\expaiidaf ter{#2}7. 

\edef#2{\the\tb\the\ta}} 

\def\concatenate#l=#2&#3{\ta=\expandafter{#2}\tb=\expandafter{#3}7» 
\edef#l{\the\ta\the\tb}} 

Conversely, the left item of a list can be removed and placed in a control sequence by 

the \lop macro defined in the following curious way: 

\def\lop#l\to#2{\expeLndafter\lopoff#l\lopoff#1#2} 

\long\def\lopoff\\#l#2\lopoff#3#4{\def#4{#l}\def#3{#2}} 

For example, if \1 expands to the list ‘\\{a\b}\\{c}\\{{d}}’, the macro invocation 

\lop\l\to\z makes \1 expand to ‘\\{c}\\{{d}}’ and \z expand to ‘a\b’. The \lop 

operation should be used only when \1 is nonempty, otherwise an error will occur; to 

test if \1 is empty, one simply says ‘\ifx\l\empty’. 

The programming details of the \lop macro indicate why individual items have 

been enclosed in {. . .} groups. A simpler kind of list, in which grouping is omitted 

and an extra \\ appears at the end, suffices for many purposes; one could define, for 

instance. 

\long\def\lopoff\\#l\\#2\lopoff#3#4{\def#4{#l}\def#3{\\#2}} 

and the results would be almost the same as before. In this case an empty list macro 

expands to ‘\\’. However, the new \lop resulting from this new \lopoff macro also 

removes a pair of braces, if the leftmost item happens to be a group; extra braces are 

included in our general scheme to prevent such anomalies. 

So far the examples we’ve considered haven’t revealed why the W’s appear in 

the general scheme; it appears that grouping by itself should be enough. But in fact, 

the \\ separators are enormously useful, because we can define \\ to be any desired 

one-argument macro, and then we can execute the list! For example, here’s a way to 

count the number of items: 

\def\cardinality#l\to#2{#2=0 \long\def\\##l{\advajice#2 byl }#!} 

(Parameter #2 is supposed to be the name of a count register.) And here’s a way to 

take a list macro and center all its items on individual lines within a \vbox: 

\def \ center list# l{\def\\##l{\relax##l\cr}7. 
\vbox{\halign{\hfil##\hfil\cr#l}}} 



Appendix D: Dirty Tricks 379 

A particular item can be selected by its position number from the left: 

\def \ select# l\of#2\to#3{\def#3{\out of range}*/, 
\long\def\\##l{\advance#l-l \ifnum#l=0 \def#3{##l}\fi}#2} 

(Here #1 is a count register, #2 is a list macro, and #3 is a control sequence.) And so 

on; hundreds of other applications can be imagined.} 

TgX does all of the preceding operations efficiently, in the sense that the 

running time will be proportional to the length of the list macro involved. It’s natural 

to ask if the rightmost item can be removed with equal efficiency, since the final item 

of a list is somewhat hard to isolate. There is apparently no way to delete the nth 

item of an n-item list in order n steps, maintaining complete generality, unless the 

\aftergroup trick (by which we created a macro that expands to n asterisks) is used; 

and the \aftergroup trick is somewhat unattractive in the list application, because 

the list might be quite long.} However, if we restrict list items to unexpandable tokens, 

it turns out to be possible to remove the rightmost item quite efficiently: 

\def\deleterightmost#l{\edef#l{\expandafter\xyzzy#l\xyzzy} 

\long\def\xyzzy\\#l#2{\ifx#2\xyzzy\yzzyx 

\else\noexpajid\\{#l}\fi\xyzzy#2} 

\long\def\yzzyx#l\xyzzy\xyzzy{\fi} 

Careful study of this example shows that T^]?C’s mouth is capable of doing recursive 

operations, given sufficiently tricky macros. 

The contents of a \count register can easily be converted to decimal and stored 

in a control sequence; for example, if \n is a register, ‘\edef\csn{\the\n}’ puts its value 

into \csn. Conversely, a value from \csn can be put back into \n by saying simply 

‘\n=\csn’. There’s usually no point in doing this transformation just to minimize the 

usage of \count registers, since TgX has 256 of them; but a decimal representation 

like the expansion of \csn can be stored in a list macro, and that might be useful in 

some applications. Incidentally, there’s a neat way to test if such a control-sequence- 
number is zero: ‘\if0\csn(true text)\else(false text)\fi’ works because extra digits 

of a nonzero number will be ignored with the (true text). 

A technique something like list macros can be used to maintain unordered sets 

of control sequences. In this case it’s convenient to leave off the braces; for example, 

\def\l{\\\alpha\\\beta\\\gaituna} 

defines a “set macro” \1 that represents the control sequences { \alpha, \beta, \gairraia }. 

A straightforward construction tests whether a given control sequence is in the set: 

\def\ismember#l\of#2{\resultf alse\def \given{#l}*/. 

\def\\##l{\def\next{##l}\ifx\next\given\resulttrue\fi}#2} 

And an efficient but not-so-straightforward construction removes all occurrences of 

f The concept of a list macro is strongly related to the concept of a list procedure in 

a programming language; see Communications of the ACM 7 (1964), 280. 

} The interested reader may enjoy constructing a macro that removes the /eth item of an 
n-item list macro \1 in 0(n log n) steps, given k and \1, without using \aftergroup. 



380 Appendix D: Dirty Tricks 

control sequences that are \if x-equivalent to a given control sequence: 

\def\remequi valent #l\from#2{\let\given=#iy, 
\ifx#2\empty\else\edef#2{\expandafter\plugh#2\plugh}\fi} 

\def\plugh\\#l#2{\ifx#l\given\else\noexpand\\\noexpand#l\fi 

\ifx#2\plugh\hgulp\fi\plugh#2} 

\def\hgulp\fi\plugh\plugh{\fi} 

3. Verbatim listing. Plain includes a macro called \dospecials that is essentially 
a set macro, representing the set of all characters that have a special category code. 

(The control sequence \do plays the role of \\ in the discussion above.) Therefore it’s 

easy to change all of the special characters to category 12 (other): 

\def\uncatcodespecials{\def\do##l{\catcode ^##1=12 }\dospecials} 

This works even when the set of special characters has been changed, provided that 

\dospecials has been updated to represent the current set. 

The operation \unc at code specials just defined is important, of course, when 

T^X’s automatic features need to be temporarily disabled. Let’s suppose that we want 

to create a listing of some computer file, reproducing the characters and the spacing 

exactly as they appear in the file. To make the problem more interesting, let’s also print 

line numbers in front of each line, as in the listing of story.tex on page 24. To make 

the problem simpler, let’s assume that the file contains only standard ASCII printing 

characters: no tab marks or form feeds or such things. Our goal is to devise a Misting 

macro such that, e.g., ‘\listing{story}’ will insert a listing of the story.tex file into 

a manuscript, after which T^]X’s normal conventions will be restored. The listing should 

be in \tt type. A macro of the following form meets the desired specifications: 

\defMisting#l{\par\begingroup\setupverbatim\input#1 \endgroup} 

Notice that the \endgroup command here will nicely “turn off” all the weird things that 

\setupverbatim turns on. Notice also that the commands ‘\input#l \endgroup’ will 

not be listed verbatim, even though they follow \setupverbatiiii, since they entered 

T^’s reading mechanism when the \listing macro was expanded (i.e., before the 

verbatim business was actually set up). 

But what should \setupverbatim do? Well, it ought to include \obeylines, 

since this automatically inserts a \par at the end of each line that is input; it ought 

to include \uncatcodespecials, so that special characters print as themselves; and it 

ought to include \obeyspaces, so that each space counts. But we need to look carefully 

at each of these things to see exactly what they do: (1) Plain T^’s \obeylines macro 

changes the \catcode of to \active, and then it says ‘\let~~M=\par’. Since "'“M 

is placed at the end of each line, this effectively ends each line with \par; however, 
\obeylines doesn’t say ‘\def'“'MfXpar}’, so we must make any desired changes to 

\par before invoking \obeylines. (2) The \uncatcodespecials operation changes a 

space to category 12; but the \tt font has the character ‘u’ in the (space) position, so we 

don’t really want ui2- (3) The \obeyspaces macro in Appendix B merely changes the 

(space) character to category 13; active character ui3 has been defined to be the same 

as \space, a macro that expands to uie- This is usually what is desired; for example, 

it means that spaces in constructions like ‘\hbox to 10 pt won’t cause any 

trouble. But in our application it has an undesirable effect, because it produces spaces 

that are affected by the space factor. To defeat this feature, it’s necessary either to 



Appendix D: Dirty Tricks 381 

say \frenchspacing or to redefine ui3 to be the same as \u. The latter alternative is 

better, because the former will discard spaces at the beginning of each line. 

The \setupverbatim macro should also take care of putting a line number 

into the position of the paragraph indentation. We can take care of this by introducing 

a counter variable and using Neverypeir, as follows: 

\newcount\lineiio */, the number of file lines listed 

\def\setupverbatim{\tt \lineno=0 

\obeylines \uncatcodespecials \obeyspaces 

\everypcLr{\adv2Lnce\lineno byl \llap{\sevenrm\the\lineno\ \ }}} 

{\obeyspaces\global\let =\ } */, let active space = control space 

In theory, this seems like it ought to work; but in practice, it fails in two ways. One 

rather obvious failure—at least, it becomes obvious when the macro is tested—is that 

all the empty lines of the file are omitted. The reason is that the \par command at the 

end of an empty line doesn’t start up a new paragraph, because it occurs in vertical 

mode. The other failure is not as obvious, because it occurs much less often: The \tt 

fonts contain ligatures for Spanish punctuation, so the sequences ? ‘ and ! ‘ will be 

printed as i and j respectively. Both of these defects can be cured by inserting 

\def\paj:{\leavevmode\endgraf} \catcode ^\‘=\active 

before \obeylines in the \setupverbatim macro, and by defining As as follows: 

{\catcode ^\‘=\active \gdef‘{\relax\lq}} 

A similar scheme could be used to produce verbatim listings in other fonts; but more 

characters would have to be made active, in order to break ligatures and to compensate 

for ASCII characters that aren’t present. 

Instead of listing a file verbatim, you might want to define a \verbatim macro 
such that ‘\verbatim{$this$ is {\it!}}’yields ‘$this$ is {\it!}’. It’s somewhat 

dangerous to change category codes, because stamps the category on each char- 

acter when that character is first read from a file. Thus, if \verbatim were defined by 

a construction of the form \long\def\verbatim#l{(something)}, argument #1 would 

already be converted to a list of tokens when (something) starts; \catcode changes 

would not affect the argument. The alternative is to change category codes before 

scanning the argument to \verbatim: 

\def\verbatim{\begingroup\tt\uncatcodespecials 

\obeyspaces\doverbatim} 

\newcount\balance 

{\catcode^<=1 \catcode^>=2 \catcode'\{=12 \catcodeA}=12 
\gdef\doverbatim{<\balaiice=l\verbatimloop> 

\gdef \verbat imloop#l<\def \next<#l\verbatimloop>’/, 
\if#l{\advaiice\balaiice byl 

\else\if#l}\advance\balance by-1 
\ifnum\balance=0\let\next=\endgroup\fi\fi\fi\next>> 

This works; but it’s slow, and it allows verbatim setting only of text that has balanced 

braces. It would not be suitable for typesetting the examples in a book like The 
T^Kbook. (Appendix E contains the verbatim macros that were actually used.) Note 

also that if this \verbatim{. . .} macro appears in the argument to another macro like 



382 Appendix D: Dirty Tricks 

\centerline, it will fail because the category codes can no longer be changed. The 

\f ootnote macro in Appendix B is careful to avoid scanning its argument prematurely; 

it uses \bgroup and \egroup in a somewhat tricky way, so that category code changes 

are permitted inside plain T^X footnotes. 
On the other hand, there is a fairly fast way to convert a token list to an 

almost-verbatim transcript: 

\long\def \ verbat im# 1 {\def \next {# 1 }7, 
{\tt\frenchspacing\expeLndafter\strip\meaiiing\next}} 

\def\strip#l>{} 

Tokens are stripped off in this construction since, for example, \meaning\next might 

be ‘macro :->$this$ is {\it !}’. Notice that a space will be inserted after the 

control word \it, but no space might actually have occurred there in the argument to 

\verbatim; such information has been irretrievably lost. 

One of the problems with verbatim mode is that it’s hard to stop; if we 

turn off all of T^’s normal control capabilities, we end up “painting ourselves into 

a corner” and reaching a point of no return. The \listing macro was able to solve 

this problem because the end of a file brings an old token list back to life. Another 

solution would be to specify a certain number of lines, after which verbatim mode 

should end. Otherwise it’s necessary to put some constraint on the text, i.e., to make 

certain texts unprintable in verbatim mode. For example, here’s an approach that 

typesets everything between \beginverbatim and \endverbatim, assuming only that 

the control sequence \endverbatim does not need to be set: 

\def\beginverbatim{\par\begingroup\setupverbatim\doverbatim} 

{\catcode' \ I =0 \catcode‘\\=12 */, | is temporary escape character 

I obeylines I gdef | doverbatim'' "M#l\endverbatim{#l I endgroup}} 

This construction assumes that \beginverbatim appears at the end of a line in the 

manuscript file. Argument #1 will be read entirely into T^]X’s memory before anything 

happens, so the total amount of verbatim material had better not be too voluminous. 

Incidentally, it isn’t necessary to say that this macro is \long, because the \par’s 

inserted by \obeylines are really ""'M’s. 

Another approach is to keep one character untouchable. For example, it’s 

possible to define things so that ‘\verbatim(char)(text)(char)’ will typeset the (text) 

verbatim, where the (text) is not supposed to contain any occurrences of the repeated 

delimiter (char): 

\def\verbatim{\begingroup\setupverbatim\doverbatim} 

\def\doverbatim#l{\def\next##!#!{##l\endgroup}\next} 

4. Selective loading of macros. Some interesting problems arise when a computer sys- 
tem acquires a large library of macro files. For example, suppose that a file macs.tex 

contains the lines 

\let\italcorr=\/ 

\def\/{\unskip\italcorr} 

because somebody thought it would be nice to allow an optional space before T^]X’s 

primitive \/ command. That’s fine, except ifmacs.tex is input twice; for example, two 

other macro files might both say \input macs. When those lines are processed the sec- 

ond time, \italcorr will be \let equal to a macro that expands to ‘\unskip\italcorr’. 



Appendix D: Dirty Tricks 383 

and you can guess what will happen: will get into an infinite loop, stoppable only 
by interrupting the program manually. 

Fortunately there’s an easy way to prevent this problem, by placing a suitable 
interlock near the beginning of every macro file that might introduce such anomalies: 

\ifx\macsisloaded\relax\endinput\else\let\macsisloaded=\relax\fi 

Then \macsisloaded will be undefined at the time of the first \ifx, but the file will 
not be read twice. A different control sequence should, of course, be used for each file. 

Another difficulty with large sets of macros is that they take up space. It 
would be nice to preload every macro that every TgX user has ever dreamed up; but 
there might not be enough room, because T^]X’s memory capacity is finite. You might 
find it necessary to hold back and to load only the macros that are really needed. 

How much memory space does a macro require? Well, there are four kinds 
of memory involved: token memory, name memory, string memory, and character 
memory. (If any of these becomes too full, it will be necessary to increase what 
calls the macro memory size, the hash size, the number of strings, and/or the pool size, 
respectively; see Chapter 27.) The token memory is most important; a macro takes 
one cell of token memory for each token in its definition, including the and the ‘}’. 
For example, the comparatively short definition 

\def \excimple#l\two{\f our} 

takes five tokens: #1, |two|, {i, |four|, and >2. Each control sequence also takes up 
one cell of name memory, one cell of string memory, and as many cells of character 
memory as there are characters in the name (seven in the case of Xexainple). Character 
memory is comparatively cheap; four characters, or in some cases five, will fit in the 
same number of bits as a single cell of token memory, inside the machine. Therefore 
you don’t save much by choosing short macro names. 

TE;X will tell you how close you come to exceeding its current memory capacity 
if you say \tracingstats=l. For example, one of the runs that the author made while 
testing galley proofs of this appendix reported the following statistics: 

Here is how much of TeX’s memory you used: 

197 strings out of 1077 

1616 string characters out of 9424 

3434&13407 words of memory out of 25000&33001 

1244 multiletter control sequences out of 2100 

Consequently there was plenty of room for more macros: 33001 — 13407 — 19594 unused 
cells of token memory, 2100 - 1244 = 856 of name memory, 1077 - 197 = 880 of string 
memory, and 9424 — 1616 = 7808 of character memory. But a fairly large was being 
used, and only the macros of Appendices B and E were loaded; in other circumstances 
it might have been necessary to conserve space. 

One obvious way to keep from loading too many macros is to keep the macro 
files short and to \input only the ones that you need. But short files can be a nuisance; 
sometimes there’s a better way. For example, let’s suppose that a file contains five 
optional classes of macros called A, B, C, D, E, and that a typical user will probably 
want only at most two or three of these five; let’s design a \load macro so that, for 
example, ‘\load{macs}{AC}’ will load file macs.tex including options A and C but not 



384 Appendix D: Dirty Tricks 

options B, D, or E. The following \load macro converts its second argument into a 
set macro called \options: 

\def\load#l#2{\let\options=\empty \addoptions#2\end \input#l } 

\def\addoptions#l{\ifx#l\end \let\next=\relax 

\else\let\\=\relax\edef \options{\options\\#l>'/, 

\let\next=\addoptions \fi \next} 

Inside the file macs.tex, a portion of code that should be loaded only under option B, 

say, can be enclosed by ‘\ifoption B ... \fi’, where \ifoption is defined thus: 

\def \if option#l{\def\\##l{\if ##l#l\resulttrue\f i}*/, 

\resultfalse \options \ifresult} 

(This is a simple application of ideas presented earlier in this appendix.) 
However, the \ifoption. . .\fi scheme isn’t very robust, because it requires 

all of the macros in the optional part to be well nested with respect to \if. . . and \f i; 

a macro like \if option itself couldn’t easily be defined in such a place! There’s a better 
scheme that also runs faster, based on category code changes. This idea (due to Max 
Diaz) requires that the leftmost nonblank character on each line be either ‘\’ or 
it’s usually easy to arrange this. Furthermore, one other symbol, say ", is reserved. 
Then the text material that is to be loaded only under option B is preceded by the line 
‘\beginoption B’ and followed by a line that says ‘"endoptionalcode’. The \catcode 

for " is set to 14 (comment character), hence the "endoptionalcode line will have no 
effect if code is not being skipped. The \beginoption macro works like this: 

\def\beginoption#l{\ifoption#l\else\begingroup\swapcategories\fi} 

\def\swapcategories{\catcode‘\\=14 \catcode‘\{=14 \catcode^\~=0 } 

\let\endoptionalcode=\endgroup 

\catcode‘\~=14 

Once the categories have been swapped, all lines will be skipped at high speed until the 
control sequence "endoptionalcode is encountered; then everything will be restored 
to its former state. Under this scheme, material that should be loaded only under 
both options B and D can be prefaced by both ‘\beginoption B’ and ‘\beginoption D’; 

material that should be loaded under either option B or option D (or both) can be 
prefaced by 

\beginoption B 

"oroption D 

if we define \oroption#l to be an abbreviation for ‘\if option#l\endgroup\f i’. 

Another kind of selective loading is sometimes appropriate, based on whether 
or not a particular control sequence is defined. In this scheme, if the control sequence 
is undefined, it should remain undefined and it should take up no space whatever in 

TgX’s memory. There’s a slick way to do this, namely to say 

\ifx\cs\undefined ... \fi 

(assuming that \undefined has never been defined). does not put undefined 
control sequences into its internal tables if they follow \if x or if they are encountered 
while skipping conditional text. You can use this idea, for example, to prepare a 
bibliography for a paper, by reading a suitably arranged bibliography file; only the 
entries that correspond to defined control sequences will be loaded. 



Appendix D: Dirty Tricks 385 

5. Brace hacks. Several of T^]X’s operations depend on grouping, and you’ll want to 

know exactly what this means if you try to do certain tricky things. For example, plain 

TgX’s control sequences \bgroup and \egroup are “implicit braces” because they have 

been defined by 

\let\bgroup={ \let\egroup=} 

This means that you can include them in the replacement texts of definitions without 

worrying about how they nest; for example, the macros 

\beginbox{\setboxO=\hbox\bgroup} 

\def\endbox{\egroup\copyO } 

allow you to make a box between \beginbox and \endbox; the behavior is almost the 

same as 

\def\beginbox#l\endbox{\setboxO=\hbox{#l}\copyO } 

but different in three important ways: (1) The first alternative allows category codes 

to change inside the box. (2) The first alternative is faster, because it doesn’t need 

to scan the box contents both as an argument and as a sequence of actual commands. 

(3) The first alternative takes less memory space, because no argument needs to be 

stored. Thus, the first alternative is usually superior. 

For the purposes of this discussion we shall assume that only ‘{’ has category 1 

and that only ‘}’ has category 2, although any characters can actually be used as group 

delimiters. Group nesting is crucial during two of T^]X’s main activities: (a) when 

is scanning a (balanced text), e.g., when TgpC is forming the replacement text of a 

macro, a parameter, or a token list variable; (b) when T^]X must determine whether 

the token & or \spaii or \cr or \crcr is the end of an entry within an alignment. 
T^’s mouth has two internal counting mechanisms to deal with nesting: The 

“master counter” goes up by 1 for each fi scanned by T^]X, and down by 1 for each >2; 

the “balance counter” is similar, but it is affected only by explicit {1 and >2 tokens 

that are actually contributed to a token list that is being formed. The master counter 

decreases by 1 when evaluates the alphabetic constant A, and it increases by 1 

when evaluates ^}, hence the net change is zero when such constants are evaluated. 

As a consequence of these rules, certain constructions produce the following effects: 

Input 

Master counter change 

expanded unexpanded 

Balance counter change 

expanded unexpanded 

i 1 1 1 1 

\bgroup 0 0 0 0 

\iffalse{\fi 1 1 0 1 

\ifnuinO=H\f i 0 1 0 1 

The last two cases produce no begin-group tokens when expanded, but they do affect 

the master counter as shown. Thus, for example, 

\def\eegroup{\ifnuinO= ^ {\f i}} 

makes \eegroup behave rather like \egroup, but the expansion of \eegroup also de- 

creases the master counter. 
Alignment processing uses only the master counter, not the balance counter. 

An alignment entry ends with the first & or \span or \cr or \crcr that appears when 



386 Appendix D: Dirty Tricks 

the master counter has the value that was present in the counter at the beginning of 

the entry. Thus, for example, the curious construction 

\halign{\show\par#\relax\cr 

\global\let\par=\cr 

{\global\let\par=\cr}\cr 

\par} 

causes to perform three \show instructions, in which the respective values of \par 

shown are \par, \relax, and \cr. Similarly, each template in the preamble to an 
alignment ends with the first & or \cr or \crcr that appears at the master counter 

level that was in effect at the beginning of the entry; hence & and \cr and \crcr tokens 

can appear within a template of an alignment, if they are hidden by braces (e.g., if 

they appear in a definition). 
These facts allow us to draw two somewhat surprising conclusions: (1) If an 

alignment entry has the form ‘ cr \if f alse{\f i/3\if f alse}\f i 7’, it’s possible for /3 

to include & and \cr tokens that aren’t local to a group.* (2) The construction 

{\spaji\if f alse}\f i 

appearing in a preamble contributes ‘{’to the template without any net change to the 

master counter; thus, it’s very much like \bgroup, except that it produces {1 explicitly. 

If you understand (1) and (2), you’ll agree that the present appendix deserves its name. 

6. Box maneuvers. Let’s turn now from syntax to semantics, i.e., from T^)K’s mouth to 

its gastro-intestinal tract. Sometimes an odd symbol is needed in boldface type, but it’s 

available only in a normal weight. In such cases you can sometimes get by with “poor 

man’s bold,” obtained by overprinting the normal weight symbol with slight offsets. 

The following macro typesets its argument three times in three slightly different places, 

equidistant from each other; but the result takes up just as much space as if \pmb had 

been simply \hbox: 

\def \pmb#l{\setboxO=\hbox{#l}y, 

\kern-. 025ein\copy0\kern-\wd0 

\kern.05em\copy0\kern-\wd0 

\kern-.025em\raise.0433em\box0 } 

For example, ‘\pmb{$\infty$}’ yields ‘00’. The results are somewhat fiizzy, and they 

certainly are no match for the real thing if it’s available; but poor man’s bold is better 

than nothing, and once in a while you can get away with it. 

When you put something into a box register, you don’t need to put the con- 

tents of that register into your document. Thus, you can write macros that do experi- 

ments behind the scenes, trying different possibilities before making a commitment to a 

particular decision. For example, suppose you are typesetting a text in two languages, 

and you would like to choose the column widths so that the same number of lines is 

obtained in both cases. For example, the following texts balance perfectly when the 

* The token list a should not be empty, however, because expands the first token 
of an alignment entry before looking at the template, in order to see if the entry 

begins with \noalign or \omit. The master counter value that is considered to be 
present at the beginning of an entry is the value in the counter just after the “u part” 
of the template has been entirely read. 



Appendix D: Dirty Tricks 387 

first column is 157.1875 pt wide and the second column is 166.8125 pt wide; but the 

second column would be one line longer than the first if they were both 162 pt wide: 

A. The creative part is really more in- 

teresting than the deductive part. In- 
stead of concentrating just on finding 
good answers to questions, it’s more 
important to learn how to find good 
questions! 

B. You’ve got something there. I wish our 

teachers would give us problems like, 
“Find something interesting about x,” 
instead of “Prove x.” 

A. Exactly. But teachers are so conser- 

vative, they’d be afraid of scaring off 
the “grind” type of students who obe- 
diently and mechanically do all the 
homework. Besides, they wouldn’t like 

the extra work of grading the answers 
to nondirected questions. 

The traditional way is to put off all 
creative aspects until the last part 
of graduate school. For seventeen or 
more years, a student is taught exams- 
manship, then suddenly after passing 
enough exams in graduate school he’s 
told to do something original. 

A. La parte creativa es mucho mejor que la 

deductiva. En vez de concentrarse en bus- 
car buenas respuestas a ciertas cuestiones 
es mas importante aprender a proponerse 
buenas preguntas. 

B. Me parece una buena ocurrencia. Me 

gustaria que los profesores propusieran 
problemas del estilo de ((Encuentren algo 
interesante sobre x)) en vez de {(Demuestre 
que X ...)). 

A. Exactamente. Pero los profesores son 
tan conservadores que temerian espan- 
tar al tipo de estudiante ((apisonadora)) 
que hace lo que le proponen para casa, 
obedientemente y de forma mecanica. 
Ademas, no creo que les gustase el tra- 
bajo adicional de calificar respuestas a 
preguntas abiertas. 

La forma tradicional es dejar la parte 
creativa para los cursos altos. Durante 
diecisiete ahos o mas se enseha al estu- 
diante a aprobar, luego de golpe, cerca de 
la graduacion, se le pide que haga algo 
original. 

Some implementations of T^pC display the output as you are running, so that 

you can choose column widths interactively until a suitable balance is obtained. It’s 

fun to play with such systems, but it’s also possible to ask to compute the column 

widths automatically. The following code tries up to ten times to find a solution in 

which the natural heights of the two columns are different by less than a given value, 

\delheight. The macros \firstcol and \secondcol are supposed to generate the 

columns, and the sum of column widths is supposed to be \doublewidth. 

\newdimen\doublewidth \newdimen\delheight \newif\iffail \newcount\n 

\newdimen\trialwidth \newdimen\lowwidth \newdimen\highwidth 

\def\balajicetwocols{\lowwidth=10em */, lower bound on \trialwidth 

\highwidth=\doublewidth \advance\highwidth-10em */, upper bound 

{\n=l \hbadness=10000 \hfuzz=\maxdimen */, disable warnings 

\loop \maketrial \testfailure \iffail \preparenewtrial \repeat} 

\maketrial} '/, now under/overfull boxes will be shown 

\def\maketrial{\trialwidth=.5\lowwidth \advance\trialwidth by.5\highwidth 

\setboxO=\vbox{\hsize=\trialwidth \firstcol} 

\setbox2=\vbox{\hsize=\doublewidth\adveLnce\hsize-\trialwidth\secondcol}} 

\def\testfailure{\dimenO=\htO \advance\dimen0-\ht2 

\ifnum\dimen0<0 \dimenO=-\dimenO \fi 

\ifdiin\dimenO>\delheight \ifnuin\n=10 \failfalse\else\failtrue\fi 

\else\failfalse\fi} 

\def\preparenewtrial{\ifdim\ht0>\ht2 \global\lowwidth=\trialwidth 

\else\global\highwidth=\trialwidth\fi \advance\n byl } 



388 Appendix D: Dirty Tricks 

Neither column will be less than 10 ems wide. This code does a “binary search,” 

assuming that a column will not increase in height when it is made wider. If no 

solution is found in 10 trials, there probably is no way to obtain the desired balance, 

because a tiny increase in the width of the taller column will make it shorter than 

the other one. The values of \hbadness and \hfuzz are made infinite during the trial 

settings, because warning messages that relate to unused boxes are irrelevant; after a 
solution is found, it is computed again, so that any relevant warnings will be issued. 

When a box has been put into a box register, you can change its height, width, 

or depth by assigning a new value to the \ht, \wd, or \dp. Such assignments don’t 

change anything inside the box; in particular, they don’t affect the setting of the glue. 

But changes to a box’s dimensions can be confusing if you don’t understand 

exactly how T^X deals with boxes in lists. The rules are stated in Chapter 12, but it 

may be helpful to restate them here in a different way. Given a box and the location of 

its reference point, T^]X assigns locations to interior boxes as follows: (1) If the box is 

an hbox, starts at the reference point and walks through the horizontal list inside. 

When the list contains a box, TJ^X puts the reference point of the enclosed box at the 

current position, and moves right by the width of that box. When the list contains 

glue or kerning, etc., T^]X moves right by the appropriate amount. (2) If the box is a 
vbox, T^]X starts at the upper left corner (i.e., first moves up from the reference 

point, by the height of the box) and walks through the vertical list inside. When the 

list contains a box, T^ puts the upper left corner of that box at the current position; 

i.e., T^]X moves down by the height of that box, then puts the box’s reference point at 

the current position, then moves down by the depth of the box. When the list contains 

glue or kerning, etc., TgX moves down by the appropriate amount. 

As a consequence of these rules, we can work out what happens when the 

dimensions of a box are changed. Let \delta be a (dimen) register, and let \h and \hh 

specify horizontal lists that don’t depend on \boxO. Consider the following macro: 

\newdimen\temp \newdimen\delta 

\def\twohboxes#l{\setboxl=\hbox{\h \copy0 \hh} 
\temp=#10 \advaiice\temp by \delta #10=\temp 

\setbox2=\hbox{\h \copyO \hh}} 

For example, \twohboxes\wd makes two hboxes, \boxl and \box2, that are identical 

except that the width of \boxO has been increased by 6 in \box2. What difference 

does this make? There are several cases, depending on whether #1 is \wd, \ht, or \dp, 

and depending on whether \boxO is an hbox or a vbox. Case f, \twohboxes\wd: The 

material from \hh is moved right by 6 in \box2, compared to its position in \boxl. Also 
\wd2 is 6 more than \wdl. Case 2, \twohboxes\ht: If \box0 is an hbox, everything 

remains in the same position; but if \box0 is a vbox, everything in \copyO moves up 

by 6. Also \ht2 may differ from \htl. Case 5, \twohboxes\dp: Everything remains 

in the same position, but \dp2 may differ from \dpl. 

Similarly, we can work out the changes when box dimensions are changed for 
boxes within vertical lists. In this case we shall ignore the influence of interline glue by 

defining \twovboxes as follows: 

\def\twovboxes#l{ 

\setboxl=\vbox{\v\nointerlineskip\copyO\nointerlineskip\vv} 
\temp=#10 \advciiice\temp by \delta #10=\temp 

\setbox2=\vbox{\v\nointerlineskip\copy0\nointerlineskip\vv}} 



Appendix D: Dirty Tricks 389 

What is the difference between \boxl and \box2 now? Case \twovboxes\wd: 

Everything remains in the same position, but \wd2 may differ from \wdl. Case 2, 

\twovboxes\ht: If \boxO is an hbox, everything in \v moves up by S in \box2, com- 
pared to the corresponding positions in \boxl, if we make the reference points of the 

two boxes identical; but if \boxO is a vbox, everything in it moves up by S, together 

with the material in \v. Also, \ht2 is 6 more than \htl. Case <?, \twovboxes\dp: If 

\vv is empty, \dp2 is 6 mote than \dpl, and nothing else changes. Otherwise everything 

in \v and in \copyO moves up by 8, and \ht2 is 8 more than \htl. 

T^X is designed to put boxes together either horizontally or vertically, not 

diagonally. But that’s not a serious limitation, because the use of negative spacing 

makes it possible to put things anywhere on a page. For 

example, the seven points in the diagram at the right of this 

paragraph were typeset by saying simply 

\hbox{\unit=\baselineskip 

\point 0 0 

\point 0 8 

\point 0 -8 

\point -1 -2.5 

\point 4 7 

\point 4 2 

\point 1 1.5 

} 

The \point macro makes a box of width zero; hence the 

individual \point specifications can be given in any order, 

and there’s no restriction on the coordinates: 

\newdimen\unit 

\def\point#l #2 {\rlap{\kern#l\unit 

\raise#2\unit\hbox{$ 

\scriptstyle\bullet\;(#1,#2)$}}} 

If the \point specifications are not enclosed in an \hbox—i.e., if they occur in vertical 

mode—a similar construction can be used. In this case \point should create a box 

whose height and depth are zero: 

\def\point#l #2 {\vbox to0pt{\kern-#2\unit 

\hbox{\kern#l\unit$\scriptstyle\bullet\;(#1,#2)$}\vss} 

\nointerlineskip} 

(The \nointerlineskip is necessary to prevent interline glue from messing things up.) 

If you enjoy fooling around making pictures, instead of typesetting ordinary 

text, TgX will be a source of endless frustration/amusement for you, because almost 

anything is possible if you have suitable fonts. For example, suppose you have a font 

\qc that contains four quarter circles: 

* = b=>' c=V. ^ 

Each of these characters has the same height, the same width, and the same depth; the 

width and the height-plus-depth are equal to the diameter of the corresponding full 

circle. Furthermore, the reference point of each character is in a somewhat peculiar 

• (0,8) 

• (4,7) 

• (1,1-5) 
• (4,2) 

• (0,0) 

• (-1,-2.5) 

• (0,-8) 



390 Appendix D: Dirty Tricks 

place: Each quarter arc has a horizontal endpoint such that the lower edge of the curve 
is at the baseline, and a vertical endpoint such that the left edge is directly above 
or below the reference point. This convention makes it possible to guarantee perfect 
alignment between these characters and rules that meet them at the endpoints; the 
thickness of such rules should be \f ontdimen8\qc. 

Given those characters, it’s possible to devise macros \path, \L, \R, \S, and \T 
such that \path{(any string of \L’s, \R’s, \S’s, and XT’s)} produces a path that starts 
traveling East, but it turns left for each \L, right for each \R, goes straight for each \S, 
and turns backward for each \T. Thus, for example, \path{\L\T\S\T\R\L\T\S\T\R} 
yields and you can also get the following effects: 

\path{\L\R\S\R\S\R\S\S\R\R} 

\path{\R\R\R\R\T\S\S\L\L\L\L\L\S\S} CTD 

\def\X{\L\T\L\L\T\L\L\T} \path{\X\X\X\X} 

Furthermore, there are operations \B and \W that make the path black (visible) and 
white (invisible), respectively: 

\path{\R\R\S 

\W\S\S\S\R\R 

\B\R\R\S\R\S\R\S\S\S\R\S\S\S\S\S\R\S\R 

\W\R\R\R\S\L\S 

\B\L\S\S\S\S} 
k. 

(It may be necessary to put kerns before and after the path, since the box produced 
by Xpath may not be as wide as the actual path itself.) 

The Xpath macros work differently from Xpoint, since the boxes need not have 
zero width in this application: 

Xcatcode^X =9 Xendlinechar=-1 */, ignore all spaces (temporarily) 
XnewcountXdir XnewdimenXy XnewdimenXw 
XnewifXifvisible XletXB=Xvisibletrue XletXW=Xvisiblefalse 
XnewboxXNE XnewboxXNW XnewboxXSE XnewboxXSW XnewboxXNS XnewboxXEW 
XsetboxXSW=Xhbox{Xqc a} XsetboxXNW=Xhbox{Xqc b} 
XsetboxXNE=Xhbox{Xqc c} XsetboxXSE=Xhbox{Xqc d} 
Xw=XwdXSW XdimenO=XfontdimenSXqc 
XsetboxXEW=Xhbox{Xkern-XdpXSW Xvrule heightXdimenO widthXwdXSW} XwdXEW=Xw 
XsetboxXNS=Xhbox{Xvrule heightXhtXSW depthXdpXSW widthXdimenO} XwdXNS=Xw 
XdefXLfXifcaseXdir Xdy+XNW XorXdx-XSW XorXdy-XSE XorXdx+XNEXdd-4Xfi Xdd+1} 
XdefXSfXifcaseXdir Xdx+XEW Xor Xdy+XNS Xor Xdx-XEW Xor Xdy-XNS Xfi} 
XdefXRfXifcaseXdir Xdy-XSWXdd+4 XorXdx+XSE XorXdy+XNE XorXdx-XNWXfi Xdd-1} 

XdefXTfXifcaseXdirXkern-XwXdd+2XorXey-Xdd+2XorXkernXwXdd-2XorXey+Xdd-2Xfi} 



Appendix D: Dirty Tricks 391 

\edef\dd#l#2{\global\advaiice\dir#l#2\space} 

\def\dx#l#2{\ifvisible\raise\y\copy#2 \if#l-\kern-2\w\fi\else\kern#l\w\fi} 

\def\dy#l#2{\ifvisible\raise\y\copy#2 \kern-\w \fi \global\advaiice\y#l\w} 

\def \ey#l{\global\advaiice\y#l\w} 

\def\path#l{\hbox{\B \dir=0 \y=Opt #1}} 

\catcode‘\ =10 \endlinechar='\''''M */, resume normal spacing conventions 

\newcount\n 7, the current order in the \dragon and \nogard macros 

\def\dragon{\ifnum\n>0{\advance\n-l \dragon\L\nogard}\fi} 

\def\nogard{\ifnum\n>0{\advcLnce\n-l \dragon\R\nogard}\fi} 

(The last three lines are not part of the \path macros, but they can be used as an 

interesting test case. To get the famous “dragon curve” of order 9, all you have to say 

is ‘\path{\dir=3 \n=9 \dragon}’.) 

Let’s turn now to another box-oriented problem. The Misting macro dis- 

cussed earlier in this appendix was restricted to listing files that contain only visible 

ASCII characters. Sometimes it’s desirable to deal with ASCII (tab) marks too, where 
a (tab) is equivalent to 1 or 2 or ••• or 8 spaces (whatever is necessary to make the 

current line length a multiple of 8). How can this be done? 

We shall assume that files can contain a special symbol that T^]X will input 

as character number 9, the ASCII (tab) code; some implementations can’t actually do 

this. If a file contains the three symbols "I, plain T^];X will normally input them as a 

single character, number 9; but in a verbatim listing of the file we naturally want such 

symbols to print as themselves, i.e., as '‘~I. 

The following construction redefines \setupverbatim so that the previous 

Misting macro will work with (tab) characters. The idea is to keep the line-so-far 

in an hbox, which can be “measured” in order to find out how many characters have 

appeared since the beginning of the line or since the most recent (tab). 

\def\setupverbatim{\tt Mineno=0 

\def \par{Meavevmode\egroup\boxO\endgraf } 

\obeylines \uncatcodespecials \obeyspaces 

\catcodeM‘=\active \catcode M"~I=\active 
\everypar{\advanceMineno byl 

Mlap{\sevenrm\theMineno\ \ }\startbox}} 

\newdimen\w \setboxO=\hbox{\tt\space} \w=8\wd0 7, tab amount 
\def\startbox{\setboxO=\hbox\bgroup} 

{\catcode M~~I=\active 
\gdef " " I{Meavevmode\egroup 

\dimen0=\wd0 7. the width so far, or since the previous tab 
\divide\dimenO by\w 

\multiply\dimenO by\w 7. compute previous multiple of \w 

\advance\dimenO by\w 7. advance to next multiple of \w 

\wd0=\dimen0 \box0 \startbox}} 

(The new things in \setupverbatim are the ‘\egroup\box0’ in the redefinition of \par; 

the ‘\catcode‘\"^I=\active’; and the ‘\startbox’ in \everypar.) The \settabs 

and \+ macros of Appendix B provide another example of how tab operations can be 
simulated by boxing and unboxing. 



392 Appendix D: Dirty Tricks 

Chapter 22 explains how to put vertical rules in tables by considering the rules 

to be separate columns. There’s also another way, provided that the rules extend all 

the way from the top of the table to the bottom. For example, 

\beginvrtilealign 

\tabskip=10pt 

\halign{&\strut#\hfil\cr 

Theseft after\cr 

vertical& the\cr yields 

rules& alignment\cr 

were& was\cr 

insertedfe completed!\cr} 

\endvrulealign 

The magic macros in this case examine the bottom row of the alignment, which consists 

of alternating tabskip glue and boxes; each item of tabskip glue in that bottom row 

will be bisected by a vertical rule. Here’s how: 

\def\beginvrulealign-C\setboxO=\vbox\bgroup} 

\def\endvrulealign{\egroup */, now \boxO holds the entire alignment 

\setbox0=\vbox{\setbox2=\hbox{\vrule height\htO depth\dpO widthOpt} 

\unvboxO \setboxO=\lastbox */, now \boxO is the bottom row 

\nointerlineskip \copyO */, put it back 

\global\setboxl=\hbox{} 7, initialize box that will contain rules 

\setbox4=\hbox{\unhbox0 7, now open up the bottom row 

\loop \skipO=\lastskip \unskip 7» remove tabskip glue 

\adveuice\skipO by-.4pt 7. rules axe .4pt wide 

\divide\skipO by 2 

\global\setboxl=\hbox{\hskip\skipO\vrule\hskip\skipO 

\unhbox2\unhbox 1 }7» 
\setbox2=\lastbox 7# remove alignment entry 

\ifhbox2 \setbox2=\hbox{\kern\wd2}\repeat}}7. 

\hbox{\rlap{\boxO}\boxl}} 7. superimpose the alignment on the rules 

This method works with all alignments created by \halign{. . .}. For alignments 

created by, say, \halign tol00pt{. . .}, the method works only if the bottom row of 

the alignment contains all of the columns, and only if ‘\boxl’ is replaced by ‘\hbox 

tol00pt{\unhboxl}’ at the end of \endvrulealign. 

7. Paragraph maneuvers. Chapter 14 promised that Appendix D would present an ex- 

ample where ragged right and ragged left setting occur in the same paragraph. The 

following interesting example was suggested by the “Key Index” in Mathematical Re- 

views, where the entries consist of a possibly long title followed by dot leaders followed 

by a possibly long list of review numbers. If the title doesn’t fit on one line, it should 

be set ragged right, with hanging indentation on all lines after the first; if the references 

don’t all fit on one line, they should be set ragged left. For example, given the input 

ACM Symposium on Theory of Computing, Eighth Annual (Hershey, */, 

Pa., 1976)\:1879, 4813, 5414, 6918, 6936, 6937, 6946, 6951, 7, 

6970, 7619, 9605, 10148, 11676, 11687, 11692, 11710, 13869 

These after 

vertical the 

rules alignment 

were was 

inserted completed! 



Appendix D: Dirty Tricks 393 

the following three types of output are 

ACM Symposium on 
Theory of Computing, 
Eighth Annual 
(Hershey, Pa., 1976) 
  1879, 4813, 5414, 

6918, 6936, 6937, 6946, 
6951, 6970, 7619, 9605, 

10148, 11676, 11687, 
 11692, 11710, 13869 

desired, depending on the column width: 

ACM Symposium on Theory of 
Computing, Eighth Annual 
(Hershey, Pa., 1976)   

1879, 4813, 5414, 6918, 6936, 6937, 
6946, 6951, 6970, 7619, 9605, 10148, 

11676, 11687, 11692, 11710, 13869 

ACM Symposium on Theory of Computing, Eighth Annual 
(Hershey, Pa., 1976) ... 1879, 4813, 5414, 6918, 6936, 6937, 6946, 
6951, 6970, 7619, 9605, 10148, 11676, 11687, 11692, 11710, 13869 

Notice that the dot leaders are treated in three different ways, depending on which 
works out best: They may occur at the left of the first line after the title, or they 
may appear at the end of the last line of the title (in which case they stop well be- 
fore the right margin), or they may occur in the middle of a line. Furthermore, the 
ragged-right lines are supposed to end at least 0.5 em from the right margin. Our goal 
is to achieve all this as a special case of d^’s general paragraphing method. The sim- 
ple approach of Appendix B won’t work, because \raggedright is achieved there by 
adjusting \rightskip; uses the same \rightskip value in all lines of a paragraph. 

The solution to this problem requires an understanding of the line-breaking 
algorithm; it depends on how demerits are calculated, and on how items are removed 
at the breakpoints, so the reader should review Chapter 14 until those concepts are 
firmly understood. Basically, we need to specify a sequence of box/glue/penalty items 
for the spaces in the title portion, another sequence for the spaces in the reference 
portion, and another sequence for the dot leaders. In the title portion of each index 
entry, interword spaces can be represented by the sequence 

\penaltyl0000 \hskip.5em plus3em \penalty0 

\hskip-.17em plus-3em minus.Hem 

Thus, there is a stretchability of 3em if a line break occurs at the \penalty0; otherwise 
the net interword space will be .33 em, shrinkable to .22 em. This gives ragged right 
margins. The interword spaces in the reference portion are designed to produce ragged 
left margins and to minimize the number of lines devoted to references: 

\penaltyl000 \hskip.33em plus-3em minus.Hem 

\vadjust{}\penaltyl0000 \hskip0pt plus3em 

The \vadjust{} does nothing, but it doesn’t disappear at a line break. Thus, if a break 
occurs at the \penaltyl000, the following line will begin with stretchability 3em; but 
if no break occurs, the net space will be .33em minus .Hem. Finally, the transition 
between title and references can be specified by 

\penaltyl0000 \hskip.5em plus3em \penalty600 

\hskip+.17em plus-3em minus.Hem 

\vadjust{}\penalty10000 

\leaders\copy\dbox\hskip-3.3\wd\dbox pluslfil minus.3\wd\dbox 

\kern3em \penalty600 \hskip-2.67em plus-3em minus.Hem 

\vadjust{}\penaltyl0000 \hskip0pt plus3em 



394 Appendix D: Dirty Tricks 

(Quite a mouthful.) This long sequence of penalty and glue items begins rather like 

the interword spaces in the first part, and it ends rather like the interword spaces in 

the last part. It has two permissible breakpoints, namely at the ‘\penalty600’ items. 

The first breakpoint causes the leaders to appear at the beginning of a line; the second 

causes them to appear at the end, but 3 ems away. The leader width will always be 

at least three times the width of \dbox, so at least two copies of \dbox will always 

appear. Here is the actual code that can be used to set up the desired behavior: 

\hyphenpenalty 10000 \exhyphenpenalty 10000 Xpretolereince 10000 '/, no hyphens 

\newbox\dbox \setbox\dbox=\hbox to . 4em{\hss. \hss} */, dot box for leaders 

\newskip\rrskipb \rrskipb=. 5em plusSem */, ragged right space before break 

\newskip\rrskipa \rrskipa=-. 17em plus-3em minus, llem */, ditto, after 

\newskip\rlskipa \rlskipa=0pt plusSem */, ragged left space after break 

\newskip\rlskipb \rlskipb=.33em plus-3em minus .llem 7, ditto, before 

\newskip\lskip \lskip=3.3\wd\dbox pluslfil minus.3\wd\dbox 7, for leaders 

\newskip\lskipa \lskipa=-2.67em plus-3em minus.llem 7« after leaders 

\mathchardef\rlpen=1000 \mathchardef\leadpen=600 7o constants used 

\def\rrspace{\nobreak\hskip\rrskipb\penaltyO\hskip\rrskipa} 

\def \rlspace{\penalty\rlpen\hskip\rlskipb\vadjust{}\nobrecLk\hskip\rlskipa}■ 
\uccode^''=' \uppercase{ 

\def\:{\nobreak\hskip\rrskipb \penalty\leadpen \hskip\rrskipa 

\vadjust{}\nobreak\leaders\copy\dbox\hskip\lskip 

\kern3em \penalty\leadpen \hskip\lskipa 

\vadjust{}\nobreak\hskip\rlskipa \let''=\rlspace} 

\everypar{\hangindent=l.5em \hangafter=l \let~=\rrspace}} 

\uccode'~=0 \parindent=0pt \parfillskip=0pt \obeyspaces 

Putting the interword glue into \skip registers saves a great deal of time and memory 

space when T^]X works with such paragraphs; ‘\hskip(explicit glue)’ occupies six cells 

of T^]X’s box memory, but ‘\hskip(skip register)’ occupies only two. Notice the tricky 

use of \uppercase here to convert ~i3 into uia; “random” active characters can be 

obtained in a similar way. 

Let’s turn now to a much simpler problem: hanging punctuation. 

“What is hanging punctuation?” asked Alice, 
with a puzzled frown. ‘Well, y’know, actually,’ 

answered Bill, ‘I’d rather demonstrate it than 
explain it.’ “Oh, now I see. Commas, periods, 
and quotes are allowed to stick out into the 

margins, if they occur next to a line break.” 
‘Yeah, I guess.’ “Really! But why do all your 
remarks have single quotes, while mine are 
double?” ‘I haven’t the foggiest; it’s weird. 
Ask the author of this crazy book.’ 

Each comma in Alice and Bill’s demonstration paragraph was represented inside of 

by the sequence of three items ‘, \kern-\conimafiajig\kern\commahajig’, and there were 

similar replacements for periods and for closing quotes; opening quotes were represented 

by the longer sequence 

\kern\qquoteheLng\vadjust{}\kern-\qquotehajig' ' \allowhyphens 

where \allowhyphens allows the following word to be hyphenated. This construction 

works because kerns disappear into line breaks in the proper way; the relevant rules 

from Chapter 14 are: (1) A line break can occur at a kern that is immediately followed 

by glue. (2) Consecutive glue, kern, and penalty items disappear at a break. 



Appendix D: Dirty Tricks 395 

To set up for hanging punctuation, you can say 

\newdimen\cominaliaiig \setboxO=\hbox{,} \commaLhaLng=\wdO 

\newdimen\periodh2Lng \setboxO=\hbox{.} \periodheLng=\wdO 

\newdimen\quotehaiig \setboxO=\hbox{'} \quotehaiig=\wdO 

\newdimen\qquotehcing \setboxO=\hbox{ ^} \qquotehaiig=\wdO 

\newskip\zzz \def\allowhyphens{\nobreak\hskip\zzz} 

\def\lqq{‘‘} \def\rqq{’’} \def\pnt{.} 

\def\comma{, \kern-\coiraneLhaiig\kern\cominahcing} 

\def \period{. \kern-\periodhaiig\kern\periodhaiig} 

\def \rquote{ ’ \kern-\quotehaiig\kern\quotehaiig} 

\def\lquote{\ifhinode\kern\quotehaiig\vadjust{}\else\leavevinode\f i 

\kern-\quotehaiig‘\allowhyphens} 

\catcode ‘ ,=\active Met ,=\coinma \catcode ‘ . =\active Met. =\period 

\catcode‘’=\active \defM\futurelet\next\rqtest} 

\catcode‘ '=\active \def M\futurelet\nextMqtest} 

\def \rqtest{Mf x\next Mlet\next=\rquotes\elseMet\next=\rquote\f i\next} 

\def\lqtest{Mf x\next ‘ Met\next=Mquotes\elseMet\next=Mquote\f i\next} 

\def \rquotes ’ {\rqq\kern-\qquotehaiig\kern\qquotehaiig} 

\def Mquotes ^ {\ifhmode\kern\qquoteheLng\vadjust{}\elseMeavevmode\f i 

\kern- \ qquot ehaingX lqq\ allowhyphens } 

Notice that the macros need to do their own checking for ligatures, and they also take 
appropriate actions when a paragraph begins with an opening quote. Since \kern 

does not affect the space factor, hanging punctuation doesn’t affect T]EX’S spacing 

conventions within a line. Partially hanging punctuation can be obtained by decreasing 

the amounts of Xcommafiang, etc. The macros \pnt, \lq, and \rq should be used 

in constants; for example, a dimension of 6.5 in must be written ‘6\pnt5in’ when 

hanging punctuation is in effect, and ‘\catcodeMq, = 12’ makes commas inactive again. 

A special font with zero-width \hyphenchar should be used for “hanging hyphenation.” 

And now for our next trick, let’s consider an application to short footnotes. 

The footnotes at the bottom of this funny, because most of 

them are quite short. When a document has lots of footnotes, and when most of them 

take up only a small part of a line, the output routine ought to reformat them in some 

more appropriate way. 

^ First footnote. 

^ Second footnote. (Every once in a while a long footnote might occur, just to make 
things difficult.) 

^ Third footnote. 

^ Fourth footnote. 

^ Fifth footnote. (This is incredibly boring, but it’s just an example.) 

® Another. 

^ And another. 

® Ho hum. 

^ Umpteenth footnote. 

Oodles of them. 



396 Appendix D: Dirty Tricks 

For example, one approach would be to typeset the footnotes in narrow 

columns and to put, say, three columns of footnotes at the bottom of each page. The 

ten example footnotes might then look like this: 

First footnote. 
Second footnote. (Every 
once in a while a long 
footnote might occur, 
just to make things 
difficult.) 

Third footnote. 
Fourth footnote. 
Fifth footnote. (This is 
incredibly boring, but it’s 

just an example.) 

° Another. 
^ And another. 
® Ho hum. 
^ Umpteenth footnote. 

Oodles of them. 

In this case, the footnotes could be generated by 

\insert\footins{\eightpoint \hsize=9pc \parindent=lpc 

\leftskip=0pt \raggedright \pretolereLnce=10000 
\hyphenpenalty=10000 \exphyphenpenalty=10000 
\interlinepenalty=\interfootnotelinepenalty 

\floatingpenalty=20000 
\splittopskip=\ht\strutbox \splitmaxdepth=\dp\strutbox 

\item{$~{\the\footno}$}\strut(text of footnote)\strut 

\par\allowbreak} 

and \count\footins would be set to 333 so that each footnote line would be considered 

to occupy about one third of a line on the page. The output routine would then see a 
\box\footins that looks like this: 

\vbox(142.0+2.0)xl08.0 

.\hbox(7.0+2.0)xl08.0, glue set 42.23425fil [] 

.\penalty 0 

.\hbox(7.0+2.0)xl08.0, glue set 0.29266 [] 

.\penalty 250 

.\glue(\baselineskip) 1.44444 

.\hbox(5.55556+1.55556)x96.0, glue set 0.8693, shifted 12.0 [] 

.\penalty 100 

.\glue(\baselineskip) 1.88889 

.\hbox(5.55556+1.55556)x96.0, glue set 0.92438, shifted 12.0 [] 

.\hbox(7.0+2.0)xl08.0, glue set 18.56308fil [] 

.\penalty 0 

.\hbox(7.0+2.0)xl08.0, glue set 36.92476fil [] 

.\penalty 0 

The individual footnotes each end with ‘\penalty O’; footnotes that take up more than 

one line have larger penalties between the lines, and interline glue appears there too. 

How should the output routine break such a box up into three roughly equal 

pieces? Notice that the contents of the box are completely rigid, i.e, there is no glue 

that can stretch or shrink. Furthermore, we can assume that the contents of the box are 

regular, i.e., that the inter-baseline distances are all the same. In such circumstances 

a fairly simple balancing routine can be used to trisect the box. 

Let’s consider a more general problem: Suppose that a rigid vbox is given, 

n lines tall, where adjacent baselines are h units apart. Suppose also that the top 



Appendix D: Dirty Tricks 397 

baseline is h units from the top of the vbox, where 0 < h < b. (In our footnote 

example, 6 = 9pt and /i = 7pt; in the standard settings of plain b = 12pt and 
h = 10 pt. We might as well work the problem for general b and h.) It follows that 

the height of the vbox is H = hb{n — 1) = bn h - b. 

If n lines are to be distributed evenly into k columns, the first column should 

contain \n/k] lines. (This denotes the smallest integer greater than or equal to n/k.) 

For example, our application to footnotes has n = 16 and k = 3, hence the first column 

should contain 6 lines. After forming the first column, we have reduced the problem 

to n = 10 and k = 2, so two 5-line columns will complete the operation. (Notice that 

it is better to divide 16 into 6 + 5 + 5 instead of 6 + 6 + 4.) Once we have found the 

first column, it’s always possible to reduce the /c-column problem to a (A: — l)-column 

problem, so we need only concentrate on finding the first column. 

Let m = [n/k]. The height of the given box is 5n + h — 6, and the height of 

the first column should be bm + h — 6; hence we want to do a \vsplit to that height. 

However, it isn’t necessary to calculate bm h — b exactly, since a bit of arithmetic 

proves that 

I 7 7 + h — b , . 
bm + h — b <    \- h < b{m + 1) + h — 6. 

k 

Therefore it suffices to \vsplit to height H' = H/k h\ under the assumptions of 

rigidity, and assuming that a valid break is possible after each line, \vsplit to H' will 

split after the maximum number of lines that yield a box of height < H'. (We have 

observed that m lines produce a box of height < H' while m + 1 lines produce a box 

of height > H'.) The following TgpC code does this: 

\newcount\k \newdimen\h */, registers used by the \rigidbalance routine 

\def\rigidbalajice#l#2 #3 {\setboxO=\box#l \k=#2 \h=#3 

\line{\splittopskip=\h \vbadness=10000 \hfilneg 

\valign{##\vfil\cr\dosplits}}} 

\def\dosplits{\ifnum\k>0 \noalign{\hfil}\splitoff 

\global\advance\k-l\cr\dosplits\fi} 

\def\splitoff{\dimenO=\htO 

\divide\dimenO by\k \advajice\dimenO by\h 

\vsplitO to \dimenO } 

This code is interesting on a number of counts. First, notice that the calculation does 

not depend on 6, only on h and the height of the given box; hence \rigidbalance has 
three parameters: a box register number, the number of columns k, and the top baseline 

height h. The routine splits the given vbox into k nearly equal pieces and justifies the 

result in a Mine. The value of \splittopskip is set to h so that subsequent vboxes 

will satisfy the ground rules of the original vbox, as the problem is reduced from k 

to k — 1. Each column will be preceded by \hf il, hence \hf ilneg is used to cancel the 

\hf il before the first column. A \valign is used to align all of the columns at the top. 

Notice that the preamble to this \valign is quite simple; and the body of the \valign 

is generated by a recursive macro \dosplits that produces the k columns. The value 

of \vbadness is set to 10000 because each \vsplit operation will produce an underfull 
vbox whose badness is 10000. 



398 Appendix D: Dirty Tricks 

In our application to footnotes, the \output routine can reformat the contents 

of \box\footins by saying, for example, 

\rigidbalaiice\footins 3 7pt 

\setbox\footins=\lastbox 

since \lastbox will be the result of Xrigidbalance. 

This solution to the problem of short footnotes might result in club lines or 

widow lines, since the balancing routine we have described simply trisects the total 

number of lines. For example, if the tenth footnote of our example had not been 

present, the fifteen remaining lines would have been split 5 + 5 + 5; the second column 

would have been headed by the lonely word ‘difficult.)’, and the third column would have 

started with ‘just an example.)’. The rigid balancing procedure could be replaced by one 

that allows ragged-bottom columns, but there’s also another approach: The entire set 

of footnotes could be combined into a single paragraph, with generous spacing between 

the individual items. For example, the ten footnotes we have been considering might 

appear as follows: 

^First footnote. ^Second footnote. (Every once in a while a long footnote might occur, just 

to make things difficult.) ^Third footnote. “^Fourth footnote. ^Fifth footnote. (This 

is incredibly boring, but it’s just an example.) ^Another. ^And another. ®Ho hum. 

^Umpteenth footnote. ^^Oodles of them. 

It would be possible to take the contents of \box\footins shown previously 

and to reformat everything into a paragraph, but such an operation would be needlessly 

complicated. If footnotes are to be paragraphed by the output routine, it’s better simply 

to prepare them in unjustified hboxes. Each of these hboxes will be unboxed later, so 

we are free to play with their heights, widths, and depths. It’s convenient to set the 

depth to zero and the height to an estimate of how much a particular footnote will 

contribute to the final paragraph. For example, if a footnote takes up exactly half of 

the \hsize, and if the final footnote is going to be set with \baselineskip=10pt, then 

the height of the footnote hbox should be set to 5 pt. By letting \count\f ootins=1000, 

we’ll have a pretty good estimate of the size of the final footnote paragraph. In other 

words, the following insertion scheme is suggested: 

\insert\footins{\floatingpenalty=20000 

\eightpoint \setboxO=\hbox{*/, 

$"{\the\footno}$(text of footnote)\penalty-10\hskip\f ootglue} 

\dp0=0pt \htO=\fudgefactor\wdO \boxO} 

The penalty of —10 tends to favor line breaks between footnotes; \footglue is the 

amount of glue between footnotes in the final footnote paragraph; and \fudgef actor 

is the ratio of \baselineskip to \hsize in that paragraph. The author defined the 

necessary quantities as follows in his experiments: 

\eightpoint \newskip\footglue \footglue=l.5em plus.Sem minus.3em 

\newdimen\footnotebaselineskip \footnotebaselineskip=10pt 

\dimenO=\footnotebaselineskip \multiply\dimenO by 1024 

\divide \dimen0 by \hsize \multiply\dimenO by 64 

\xdef\fudgefactor{\expajidafter\getfactor\the\dimenO } 

(The computation of \fudgef actor uses the fact that I pt = 1024 x 64 sp, and it 

assumes that the \footnotebaselineskip is less than 16 pt.) 



Appendix D: Dirty Tricks 399 

Inside the output routine, \box\footins will now be a vbox of hboxes, and 
the height of this vbox will be an estimate of the height of the final paragraph. For 

example, our ten footnotes produce 

\vbox(34.48158+0.0)x386.4221 

.\hbox(2.00175+0.0)x70.68285 [] 

.\hbox(10.94359+0.0)x386.4221 [] 

.\hbox(2.09749+0.0)x74.06345 [] 

.\hbox(2.2077+0.0)x77.95517 [] 

.\hbox(7.6296+0.0)x269.40376 [] 

.\hbox(l.40851+0.0)x49.73532 [] 

.\hbox(l.87659+0.0)x66.26334 [] 

.\hbox(l.38826+0.0)x49.02003 [] 

.\hbox(2.67213+0.0)x94.35402 [] 

.\hbox(2.25597+0.0)x79.65926 [] 

and the height of 34.48158 pt corresponds to an estimate of about three and a half 

lines. (TgX’s page builder has also added \skip\footins when estimating the total 

contribution due to footnotes.) 

The reformatting of \box\footins takes place in three stages. First the vbox 

of hboxes is changed to an hbox of hboxes, so that we obtain, e.g., 

\hbox(10.94359+0.0)xl217.5593 

.\hbox(2.00175+0.0)x70.68285 [] 

.\hbox(2.25597+0.0)x79.65926 [] 

(the same contents as before, but strung in a horizontal row instead of a vertical 

column). Then the inner hboxes are unboxed, and we obtain 

\hbox(6.68999+2.0)xl217.5593 

.\mathon 

.\hbox(3.86665+0.0)x4.16661, shifted -2.82333 [] 

.\mathoff 

.Xeightrm F 

. etc. 

Finally the outer hbox is unboxed, and the horizontal list inside it is converted into a 

paragraph. Here is the actual T^]X code: 

\def\m2Lkefootnoteparagraph{\unvbox\footins XmaJsehboxofhboxes 

\setbox0=\hbox{\unhbox0 \removehboxes} 

\baselineskip=\footnotebaselineskip\noindent\unhboxO\par} 

\def\makehboxofhboxes{\setboxO=\hbox{} 

\loop\setbox2=\lastbox \ifhbox2 \setbox0=\hbox{\box2\unhbox0}\repeat} 

\def\removehboxes{\setboxO=\lastbox 

\ifhbox0{\removehboxes}\unhbox0 \fi} 

The \removehboxes operation is especially noteworthy, because it uses TfeX’s save 

stack to hold all of the hboxes before unboxing them. Each level of recursion in this 

routine uses one cell of input stack space and three cells of save stack space; thus. 



400 Appendix D: Dirty Tricks 

it is generally safe to do more than 100 footnotes without exceeding capacity. 

The \makehboxofhboxes routine is not as efficient; doesn’t allow a vbox to be 

unboxed in horizontal mode, or vice versa, hence the trick of \removehboxes cannot be 

used. This means that the running time is proportional to n^, if there are n footnotes, 

because the time to make or unmake a box is proportional to the number of items in 

the top-level list inside. However, the constant of proportionality is small, so there is 

no need to resort to a more complicated scheme that would be asymptotically faster. 

Indeed, the \lastbox operation itself has a running time approximately equal to a+m6, 

where m is the number of items on the list preceding the box that is removed; hence 
\removehboxes has a running time of order as well. But the constant b is so small 

that for practical purposes it’s possible to think of \lastbox as almost instantaneous. 

Note, however, that it would be a mistake to bypass the \removehboxes operation by 

saying ‘\setboxO=\hbox{\unhbox2\unhboxO}’ in Xmaikehboxofhboxes; that would make 

the top-level list inside \box0 too long for efficient unboxing. 

8. Communication with output routines. It would be possible to write an entire book 
about output routines; but the present appendix is already too long, so it will 

suffice to mention only one or two sneaky tricks that a person might not readily think of. 
(Appendix E gives some less sneaky examples.) 

Sometimes an output routine needs to know why it was invoked, so there’s 

a problem of communicating information from the rest of the program. provides 

general \mark operations, but marks don’t always yield the right sorts of clues. Then 

there’s \outputpenalty, which can be tested to see what penalty occurred at a break- 

point; any penalty of —10000, —10001, —10002, or less, forces the output routine to 

act, hence different penalty values can be used to pass different messages. (When 

the output routine puts material back on the list of contributions, it need not restore 

the penalty at the breakpoint.) If output has been forced by a highly negative value 

of \outputpenalty, the output routine can use \vbox{\unvcopy255} to discover how 

full the page-so-far actually is. Underfull and overfull boxes are not reported when 

\box255 is packaged for use by the output routine, so there’s no harm in ejecting a 

page prematurely if you want to pass a signal. 

Perhaps the dirtiest trick of all is to communicate with the output routine via 

the depth of \box255. For example, suppose that you want to know whether or not 

the current page ends with the last line of a paragraph. If each paragraph ends with 
‘\specialstrut’, where \specialstrut is like \strut but 1 sp deeper, then \dp255 will 

have a recognizable value if a page ends simultaneously with a paragraph. (Of course, 

\maxdepth must be suitably large; plain takes \maxdepth=4pt, while struts are 

normally 3.5 pt deep, so there’s no problem.) A distance of 1000 sp is invisible to the 

naked eye, so a variety of messages can be passed in this way. 

If the value of \vsize is very small, will construct paragraphs as usual 

but it will send them to the output routine one line at a time. In this way the output 

routine could attach marginal notes, etc., based on what occurs in the line. Paragraphs 

that have been rebuilt in this way can also be sent back from the output routine to the 

page builder; normal page breaks will then be found, if \vsize has been restored. 

An output routine can also write notes on a file, based on what occurs in a 

manuscript. A two-pass system can be devised where simply gathers information 

during the first pass; the actual typesetting can be done during the second pass, using 

\read to recover information that was written during the first. 



Appendix D: Dirty Tricks 401 

9. Syntax checking. Suppose you want to run a manuscript through just to check 

for errors, without getting any output. Is there a way to make run significantly 

faster while doing this? Yes; here’s how: (1) Say ‘\f ont\duimny=duininy’; your system 

should include a file dummy.tfm that defines a font with no characters (but with enough 

\f ontdimen parameters to qualify as a math symbol font). (2) Set all the font identifiers 

you are using equal to \dummy. For example, \let\tenrm=\dummy, \let\tenbf=\dummy, 

..., \textfontO=\dummy, etc. (3) Say ‘\dummy’ to select the dummy font (since plain 

TgX may have selected the real \tenrm). (4) Set \tracinglostchars=0, so that 

won’t complain when characters aren’t present in the dummy font. (5) Set 

\output={\setbox0=\box255\deadcycles=0} 

so that nothing will be shipped out, yet will not think that your output routine 

is fiaky. (6) Say \newtoks\output, so that no other output routine will be defined. 

(7) Say \frenchspacing so that will not have to do space factor calculations. 

(8) Say \hbadness=10000 so that underfull boxes will not be reported. (9) And if you 

want to disable \write commands, use the following trick due to Frank Yellin: 

\let\immediate=\relax \def\write#l#{{\afterassignment}\toksO=} 

These changes usually make T^]X run more than four times as fast. 

Wolfe, who had moved around the desk and into his chair, 
put up a palm at him: '‘Please, Mr. Hombert. 

I think it is always advisable to take a short-cut when it is feasible." 

— REX STOUT, The Rubber Band (1936) 

‘‘My dear Watson, try a little analysis yourself,” 
said he, with a touch of impatience. 

‘‘You know my methods. Apply them, 
and it will be instructive to compare results.” 

— CONAN DOYLE, The Sign of the Four (1890) 



Example Formats 



Appendix E: Example Eormats 403 

Although the plain TgX format of Appendix B is oriented to technical reports, 
it can readily be adapted to quite different applications. Examples of three such 
adaptations are provided in this appendix: (1) a format for business letters; 
(2) a format for concert programs; (3) the format used to typeset this book. 

Let’s consider business letters first. Suppose that you want to for- 
mat your correspondence, and that you have n letters to send. If your computer 
system contains a file letterformat.tex like the one described later in this 
appendix, it’s easy to do the job by applying to a file that looks like this: 

(optional magnification) 
\input letterformat 
(business letteri) 

(business letter^) 
\end 

Here each of the n business letters has the form 

(letterhead) 
\address 
(one or more lines of address) 
\body 
(one or more paragraphs of text) 
\closing 
(one or more lines for salutation and signature) 
(optional annotations) 
(optional postscripts) 
\endletter 
\makelabel % omit this if you don’t want an address label 

The (letterhead) at the beginning of this construction is usually a control se- 
quence like \rjdletterhead for letters by R. J. D.; each letter writer can have 
a personalized letterhead that is stored with the letterformat macros. The 
(optional annotations) at the end are any number of one-line notes preceded by 
‘\annotations’; the (optional postscripts) are any number of paragraphs pre- 
ceded by Aps’. When T^ is processing the \address and the \closing and the 
optional \annotations, it produces output line-for-line just as the lines appear 
in the input file; but when T^ is processing the \body of the letter and the 
optional \ps, it chooses line breaks and justifies lines as it normally does when 
typesetting paragraphs in books. 

A complete example, together with the resulting output, appears on 
the next two pages. This example starts with ‘\magnification=\magstepl’ 
because the letter is rather short. Magnification is usually omitted if the letters 
are long-winded; Amagnif ication=\magstephalf ’ is appropriate when they are 
medium-size. The same magnification applies to all n letters, so you must run 
Tg?^ more than once if you want more than one magnification. 



404 Appendix E: Example Formats 

\magnification=\magstepl 

\input letterformat 

\rjdletterhead 7# (see the output on the next page) 

\address 

Prof .''Briaii~K. Reid 

Department of Electrical Engineering 

Stamford University 

Stanford, CA 94305 

\body 

Dear Prof.~Reid: 

I understand that you are having difficulties with 

Alka-Seltzer tablets. Since there are 25~pills 

per bottle, while the manufacturer's directions 

recommend ^‘plop,~plop, fizz,~fizz,’’ my colleagues 

tell me that you have accumulated a substantial 

number of bottles in which there is one tablet 

left. 7, (See the 1978 SCRIBE User Manual, page 90.) 

At present I am engaged in research on the potential 

applications of isolated analgesics. If you would 

be so kind as to donate your Alka-Seltzer collection 

to our project, I would be more than happy to send 

you preprints of any progress reports that we may 

publish concerning this critical problem. 

\closing 

Sincerely, 

R. J. Drofnats 

Professor 

\annotations 

RJD/dek 

cc: {\sl The \TeX book} 

\ps 

P. S. \ If you like, I will check into the 

possibility that your donation and the meals that 

you have been eating might be tax-deductible, in 

connection with our research. 

\endletter 

\makelabel 



Appendix E: Example Formats 405 

CIQZ) TKe University of St. AnforJ 
BOX 1009 

HAGA ALTO, CA 94321 

R. J, DROFNATS, F.T.U.G. 
PROFESSOR OF FARM ECOLOGY 
TEX.RJD ® SU-SCORE.ARPA 
[415)497-4975 

November 19, 1982 

Prof. Brian K, Reid 

Department of Electrical Engineering 

Stanford University 

Stanford, CA 94305 

Dear Prof. Reid: 

I understand that you are having difficulties with Alka-Seltzer tablets. Since there 

are 25 pills per bottle, while the manufacturer’s directions recommend “plop, plop, 

fizz, fizz,” my colleagues tell me that you have accumulated a substantial number of 

bottles in which there is one tablet left. 

At present I am engaged in research on the potential applications of isolated analgesics. 

If you would be so kind as to donate your Alka-Seltzer collection to our project, I would 

be more than happy to send you preprints of any progress reports that we may publish 

concerning this critical problem. 

Sincerely, 

R. J. Drofnats 

Professor 

RJD/dek 

cc: The TgAbook 

P. S. If you like, I will check into the possibility that your donation and the meals that 

you have been eating might be tax-deductible, in connection with our research. 



406 Appendix E: Example Formats 

If the letter is more than one page long, the addressee, date, and page 
number will appear at the top of subsequent pages. For example, the previous 
letter comes out as follows, if additional paragraphs are added to the text: 

CZQ~$ZI) The University oF St, Auforcl HAGA AMO. CA M321 

R. J. DROFNATS, F.T-U.G. 
PROFESSOR OF FARM ECOLOGY 
TEX.RJD O SU-SCORE.ARPA 
(41S] 497-497$ 

November 19, 19S2 

Prof. Driaii K. Reid 

Departmei\t of Electrical Engineering 

Stanford University 

Stanford, CA 94305 

Dear Prof. Reid: 

I understand that you are having difficulties with .Alka-Seltzer tablets. Since there 

are 25 pills per bottle, while the manufacturer's directions recommend “plop, plop, 

fizz, fizz,” my colleagues tell me that you have accumulated a substantial number of 

bottles in which there is one tablet left. 

-At present I am engaged in research on the potential applications of isolated analgesics. 

If you would be so kind as to donate your .Alka-Seltzer collection to our project. 1 would 

be more than happy to send you preprints of any progress reports that we may publish 

concerning this critical problem. 

At present I am engaged in research on the potential applications of isolated analgesics. 

If you would be so kind as to donate your Alka-Seltzer collection to our project, 1 would 

be more than happy to send you preprints of any progress reports that we may publish 

concerning this critical problem. 

At present I am engaged in research on the potential applications of isolated analgesics. 

If you would be so kind as to donate your Alka-Seltzer collection to our project, I would 

be more than happy to send you preprints of any progress reports that we may publish 

concerning this critical problem. 

At present I am engaged in research on the potential applications of isolated analgesics. 

If you would be so kind as to donate your .Alka-Seltzer collection to our project, I would 

be more than happy to send you preprints of any progress reports that we may publi.";!! 

concerning this critical problem. 

To Prof. Brian K. Fleid November 19, 19S2 Page 2 

At present I am engaged in research on the potential applications of isolated analgesics. 

If you would be so kind as to donate your Alka-Seltzer collection to our project. I would 

be more than happy to send you preprints of any progress reports that we may publish 

concerning this critical problem. 

Sincerely, 

R. J. Drofnats 

Professor 

RJD/dek 

cc; The 1^'book 

P. S. If you like, I will check into the possibility that your donation and the meals that 

you have been eating might be tax-deductible, in connection with our research. 

The macro package letterformat.tex that produces this format begins with 

a simple macro that expands to the current date. 

\def\today{\ifcase\month\or 

JcinuaryXor February\or March\or April\or May\or June\or 

July\or August\or September\or 0ctober\or November\or December\fi 

\space\number\day, \number\yeax} 

Then comes the specification of page layout, which is “ragged” at the bottom. 

A rather large \interlinepenalty is used so that page breaks will tend to occur 

between paragraphs. 

\raggedbottom 

\interlinepenalty=1000 

\hsize=6.25truein 

\voffset=24pt 

\advaiice\vsize by-\voffset 

\parindent=0pt 

\parskip=0pt 

Xnopagenumbers 

\headline={\ifnum\pageno>l 

\tenrm To \addressee\hfil\today\hfil Page \folio 

\else\hfil\fi} 



Appendix E: Example Eormats 407 

The contents of a letter are typeset either in “line mode” (obeying lines) 
or in “paragraph mode” (producing paragraphs in block style). Control sequences 

\beginlinemode and \beginparmode are defined to initiate these modes; and another 

control sequence, \endmode, is defined and redefined so that the current mode will 

terminate properly: 

\def\beginlinemode{\endmode 

\begingroup\obeylines\def\endinode{\par\endgroup}} 

\def\beginparmode{\endmode 

\begingroup\parskip=\medskipainouiit \def\endmode{\par\endgroup}} 

\let\endmode=\par 

\def\endletter{\endmode\vfill\supereject} 

One of the chief characteristics of this particular business letter format is a 

parameter called \longindentation, which is used to indent the closing material, the 

date, and certain aspects of the letterhead. The \address macro creates a box that 

will be used both in the letter and in the label on the envelope. If individual lines 

of the address exceed \longindentation, they are broken, and hanging indentation is 

used for any material that must be carried over. 

\newdimen\longindentation \longindentation=4truein 

\newbox\theaddress 

\def\addre s s{\beginlinemode\get addre s s} 

{\obeylines\gdef\getaddress #1 

#2 
{#l\gdef\addressee{#2}*/, 

\global\setbox\theaddress=\vbox\bgroup\raggedright'/, 

\hsize=\longindentation \everypar{\haiigindent2em}#2 

\def\endmode{\egroup\endgroup \copy\theaddress \bigskip}}} 

(Parameter #2 to \getaddress will be the contents of the line following \address, i.e., 

the name of the addressee.) 
The closing macros are careful not to allow a page break anywhere between 

the end of the \body and the beginning of a \ps. 

\def\body{\beginparmode} 

\def\closing{\beginlinemode\getclosing} 

{\obeylines\gdef\getclosing #1 

#2 

{#l\nobreak\bigskip \leftskip=\longindentation #2 

\nobreak\bigskip\bigskip\bigskip */, space for signature 

\def 

{\endgraf\nobreak}}} 

\def\annotations{\beginlinemode\def\par{\endgraf\nobreak}\obeylines\par} 

\def\ps{\beginparmode\nobreak; 

\interlinepenalty5000\def\par{\endgraf\penalty5000}} 

The remaining portion of letterformat.tex deals with letterheads and labels, 

which of course will be different for different organizations. The following macros were 

used to generate the examples in this appendix; they can be modified in more-or-less 
obvious ways to produce suitable letterheads of other kinds. Special fonts are generally 



408 Appendix E: Example Formats 

needed, and they should be loaded at ‘true’ sizes so that they are not affected by 

magnification. One tiny refinement worth noting here is the \up macro, which raises 

brackets so that they look better in a telephone number. 

\def\up#l{\leavevmode \raise.16ex\hbox{#l}} 

\font\smallheadfont=cmr8 at Struept 

\fontMeirgeheadfont=cmdunhlO at 14.4truept 

\fontMogofont=maiifnt at 14.4truept 

\def\rjdletterhead{ 

\def\sendingaddress{R. J. DROFNATS, F.T.U.G.Xpar 

PROFESSOR OF FARM EC0L0GY\par 

TEX.RJD 0 SU-SCORE.ARPA\par 

\up[415\up]\thinspace 497-4975\par} 

\def\returnaddress{R. J. Drofnats, Dept.~of Farm EcologyXpax 

The University of St."AnfordXpar 

P. 0. Box 1009, Haga Alto, CA 94321 USA} 

Xletterhead} 

XdefXletterhead{Xpageno=l XdefXaddresseef} Xunivletterhead 

{Xleftskip=Xlongindentation 

{Xbaselineskip9trueptXsmallheadfontXsendingaddress} 

XbigskipXbigskipXrmXtodayXbigskip}} 

XdefXunivletterheadfXvglue-Xvoffset 

XhboxfXhbox toXlongindentation{Xraise4trueinmXhbox{Xlogofont 

Xkern2truept XXkern-1.667truept 

Xlower2trueptXhbox{X}Xkern-l.667truept X}Xhfil 

Xlargeheadf ont The University of St. ~Anf ordXhf il}*/, 

Xkern-Xlongindentation 

XvboxfXsmallheadfontXbaselineskip9truept 

Xleftskip=Xlongindentation BOX 1009Xpar HAGA ALTO, CA 94321}} 

Xvskip2trueptXhruleXvskip4truept } 

Xdef XmaikelabelfXendletterXhboxfXvrule 

XvboxfXhrule XkernGtruept 

Xhbox{Xkern6trueptXvbox to 2truein{Xhsize=Xlongindentation 

X smallheadf ont Xbaseline skip9truept Xreturnaddre s s 

XvfillXmoveright 2trueinXcopyXtheaddressXvfill}*/, 

Xkern6truept}Xkern6trueptXhrule}Xvrule} 

Xpageno=0XvfillXej ect} 

Our second example is a format for concert programs, to be used in connection 

with orchestra performances, recitals, and the like. We shall assume that the entire 

program fits on a single page, and that the copy is to be 4 inches wide. Comparatively 

large type (12 pt) will normally be used, but there is a provision for 10 pt and even 

8pt type in case the program includes pieces with a lot of subparts (e.g., Bach’s Mass 

in B minor, or Beethoven’s Diabelli Variations). To select the type size, a user says 

Xbigtype, Xmedtype, or Xsmalltype, respectively. These macros for size switching are 

comparatively simple because concert programs don’t require any mathematics; hence 



Appendix E: Example Formats 409 

the math fonts don’t need to be changed. On the other hand, the format does take 
sharp and flat signs from the “math italic” font, which it calls Amus’: 

\font\twelverm=cmrl2 

\font\twelvebf=cmbxl2 

\font\twelveit=cmtil2 

\font\twelvesl=cmsll2 

\f ont\twelvemus=cmmi12 

\f ont\eight nn=cmr8 

\font\eightbf=cmbx8 

\font\eightit=cmti8 

\font\eightsl=cmsl8 

\f ont\eightmus=cinini8 

\def\bigtype{\let\rm=\twelvenn \let\bf=\twelvebf 

\let\it=\twelveit \let\sl=\twelvesl \let\inus=\twelvemus 

\baselineskip=14pt minus Ipt 

\rm} 

\def\medtype{\let\rm=\tenrm \let\bf=\tenbf 

\let\it=\tenit \let\sl=\tensl \let\mus=\teni 

\baselineskip=12pt minus Ipt 

\rm} 

\def\smalltype{\let\rm=\eightrm \let\bf=\eightbf 

\let\it=\eightit \let\sl=\eightsl \let\mus=\eightmus 

\baselineskip=9.5pt minus .75pt, 

\rm} 

\hsize=4in 

\nopagenumber s 

\bigtype 

Notice the shrinkability in the \baselineskip settings. This would be undesirable in a 
book format, because different spacing between lines on different pages would look bad; 
but in a one-page document it helps squeeze the copy to fit the page, in an emergency. 
(There’s no need for stretchability in the baselineskip here, because a \vfill will be 
used at the bottom of the page.) 

Musical programs have a specialized vocabulary, and it is desirable to define 
a few control sequences for things that plain T]EX doesn’t make as convenient as they 
could be for this particular application: 

\def\(#l){{\rm(}#l\/{\rm)}} 

\def\shaxp{\raise.4ex\hbox{\mus\char"5D>} 

\def \f lat{\raise . 2ex\hbox{\mus\char''5B}} 

\let\,=\thinspace 

The \( macro produces roman parentheses in the midst of italicized text; the \sharp 

and \flat macros produce musical signs in the current type size. The \, macro makes 
it easy to specify the thin space that is used in constructions like ‘K. 550’ and ‘Op. 59’. 
(Plain has already defined \, and \sharp and \flat in a different way; but those 
definitions apply only to math formulas, so they aren’t relevant in this application.) 

Before discussing the rest of the music macros, let’s take a look at a complete 
example. The next two pages show the input and output for a typical concert program. 



410 Appendix E: Example Formats 

\input concert 

\tsaologo 

\medskip 

\centerline{Friday, November 19, 1982, 8:00 p.m.} 

\bigskip 

\centerline{\bf PROGRAM} 

\medskip 

\composition{Variations on a Theme by Tchaikovsky} 

\composer{Anton S. Arensky (1861—1906)} 

\smallskip 

{\medtype 

\movements{Tema: Moderato\cr 

Var."!: Un poco pi\‘u mosso&Var."V: AndanteXcr 

Var.~II: Allegro non troppo&Var."VI: Allegro con spiritoXcr 

Var.~III: Andantino tranquillo&Var."VII: Andante con motoXcr 

Var."IV: Vivace&Coda: ModeratoXcr} 

} 

Xbigskip 

Xcomposition{Concerto for Horn and Hardart, S.X,27} 

Xcomposer{P. D. Q. Bach (1807—1742)?} 

Xsmallskip 

Xmovements{Allegro con brilloXcr 

Tema con variazione X(su una tema differente)Xcr 

Menuetto con panna e zuccheroXcr} 

Xmedskip 

Xsoloists{Ben Lee User, hornXcr 

Peter Schickele, hardartXcr} 

Xbigskip 

Xcenterline{INTERMISSION} 

Xbigskip 

Xcomposition{Symphony No.X,3 in EXflatX MajorXcr 

Op.X,55, ^ ^The Eroica’^ Xcr} 

Xcomposer{Ludwig van Beethoven (1770—1827)} 

Xsmallskip 

Xmovements{Allegro con brioXcr 

Marcia funebre: Adagio assaiXcr 

Scherzo: Allegro vivaceXcr 

Finale: Allegro moltoXcr} 

Xbigskip 

Xsmalltype Xnoindent 

Members of the audience are kindly requested to turn off the 

alarms on their digital watches, cind to cough only between movements. 

Xbye 



Appendix E: Example Formats 411 

THE ST. ANFORD ORCHESTRA 
R. J. Drofnats, Conductor . 

Friday, November 19, 1982, 8:00 p.m. 

PROGRAM 

Variations on a Theme by Tchaikovsky 
Anton S. Arensky (1861-1906) 

Tema: Moderato 
Var. I: Un poco piu mosso 
Var. II: Allegro non troppo 
Var. Ill: Andantino tranqmllo 
Var. IV: Vivace 

Var. V: Andante 
Var. VI: Allegro con spirito 
Var. VII: Andante con moto 
Coda: Moderato 

Concerto for Horn and Hardart, S. 27 
R D. Q. Bach (1807-1742)? 

Allegro con brillo 
Tema con variazione {su una tema differente) 
Menuetto con panna e zucchero 

Ben Lee User, horn 
Peter Schickele, hardart 

INTERMISSION 

Symphony No. 3 in Eb Major 

Op. 55, ‘‘The Eroica” 
Ludwig van Beethoven (1770—1827) 

Allegro con brio 
Marcia funebre: Adagio assai 
Scherzo: Allegro vivace 
Finale: Allegro molto 

Members of the audience are kindly requested to turn off the alarms on their 

digital watches, and to cough only between movements. 



412 Appendix E: Example Formats 

Most of the macros in concert.tex have already been defined. Plain T^]X 
takes care of things like \centerline and \bigskip, so only \composition, \composer, 

\movements, and \soloists remain to be specified: 

\def\composition#l{\halign{\bf\quad##\hfil\cr 

\kern-lem#l\crcr)-} 7, use \cr^s if more than one line 

\def\composer#l{\rightline{\bf#1}} 

\def\movements#l{\halign{\quad\it##\hfil&:&\qquad\it##\hfil\cr#l\crcr}} 

\def\soloists#l{\centerline{\bf\vbox{\halign{##\hfil\cr#l\crcr}}}} 

The \composition macro is set up to put the title of the composition on two or 
more lines, if needed, but a single line usually suffices. Notice that \crcr has been 
used so that the final \cr in the argument to \composition is not needed. Similarly, 
\movements might be used to produce only a single line, and \soloists might be used 
when there is only one soloist. 

There’s also a \tsaologo macro. It applies only to one particular orchestra, 
but the definition is somewhat interesting nonetheless: 

\def\tsaologo{\vbox{\bigtype\bf 

\line{\hrulefill} 

\kern-.5\baselineskip 

\line{\hrulefill\phantom{ THE ST.\,ANF0RD ORCHESTRA >\hrulefill} 

\kern-.5\baselineskip 

\line{\hrulefill\hbox{ THE ST.\,ANF0RD ORCHESTRA }\hrulefill} 

\kern-.5\baselineskip 

\line{\hrulefillXphaintomf R. J. Drofnats, Conductor }\hrulefill} 

\kern-.5\baselineskip 

\line{\hrulefill\hbox{ R. J. Drofnats, Conductor }\hrulefill} 

}} 

The author has extended these macros to a more elaborate format that in- 
cludes special features for listing the members of the orchestra and for program notes, 
etc.; in this way it becomes fairly easy to typeset little booklets for concert patrons. 
Such extensions need not be discussed further in this appendix, because they don’t 
illustrate any essentially new ideas. 

Notice that the \composition and \movements and \soloists macros do 
not include any special provision for vertical spacing; the user is supposed to insert 
\smallskip, \medskip, and \bigskip as desired. This was done deliberately, because 
different concert programs seem to demand different spacing; no automatic scheme 
actually works very well in practice, since musical literature is so varied. 

Let’s turn now to the design of a format for an entire book, using this book 
itself as an example. How did the author prepare the computer file that generated The 
Tp]Xbook? We have already seen several hundred pages of output produced from that 
file; our goal in the remainder of this appendix will be to examine the input that was 
used behind the scenes. 

In the first place, the author prepared sample pages and showed them to the 
publisher’s book designer. (The importance of this step cannot be overemphasized. 
There is a danger that authors—who are now able to typeset their own books with 

—will attempt to do their own designs, without professional help. Book design is 



Appendix E: Example Formats 413 

an art that requires considerable creativity, skill, experience, and taste; it is one of the 
most important services that a publisher traditionally provides to an author.) 

Sample pages that are used as the basis of a design should show each of the 
elements in the book. In this case the elements included chapter titles, illustrations, 
subchapter headings, footnotes, displayed formulas, typewriter type, dangerous bends, 
exercises, answers, quotations, tables, numbered lists, bulleted lists, etc.; the author 
also expressed a desire for generous margins, so that readers could make marginal notes. 

The designer. Herb Caswell, faced a difficult problem of bringing all those 
disparate elements into a consistent framework. He decided to achieve this by using a 
uniform indentation of 3 picas for normal paragraph openings as well as for dangerous 
bends; and to establish this element of the design by using it also for all the displayed 
material, instead of centering the displays. 

He decided to put the page numbers in bold type, out in the margins (where 
there was plenty of room, thanks to the author’s request for white space); and he 
decided to use italic type with caps and lower case for the running headlines, so that 
the pages would have a somewhat informal flavor. 

He chose 10-point type (on a 12-point base) for the main text, and 9-point 
type (on an 11-point base) for the dangerous bends; the typeface was predetermined. 
He chose an \hsize of 29 picas and a \vsize of 44 picas. He decided to give subhead- 
ings like ‘►EXERCISE 13.8’ in boldface caps before the statement of each exercise. 
He specified the amount of vertical space before and after such things as exercises, 
dangerous-bend paragraphs, and displayed equations. He decided to devote an entire 
left-hand page to each chapter illustration. And so on; each decision influenced the 
others, so that the flnal book would appear to be as coherent and attractive as possible 
under the circumstances. After the main portion of the book was designed, he worked 
out a format for the front matter (i.e., the pages that precede page 1); he arranged to 
have the same amount of “sinkage” (white space) at the top of each page there, so that 
the opening pages of the book would look unified and “open.” 

The author hasn’t actually followed the designer’s specifications in every de- 
tail. For example, nothing about stretching or shrinking of vertical spaces appeared in 
the design specs; the author introduced the notion of flexible glue on his own initiative, 
based on his observations of cut-and-paste operations often used in page makeup. If 
this book has any beauties, they should be ascribed to Herb Caswell; if it has any 
blemishes, they should be ascribed to Don Knuth, who wrote the formatting macros 
that we are now about to discuss. 

The computer file mauiual.tex that generated The Tp^Kbook begins with a 
copyright notice, and then it says ‘\input manmac’. The auxiliary file mainmac.tex con- 
tains the formatting macros, and it begins by loading 9-point, 8-point, and 6-point fonts: 

\font\ninenn=cmr9 
\f ont\ninei=cinmi9 
\font\ninesy=cmsy9 
\font\ninebf=cmbx9 
\f ont\ninett=cintt9 
\font\nineit=cmti9 
\font\ninesl=cmsl9 

\font\eight nn=cmr8 
\font\eighti=cmmi8 
\font\eightsy=cmsy8 
\font\eightbf=cmbx8 
\font\eighttt=cmtt8 
\font\eightit=cmti8 
\font\eightsl=cmsl8 

\font\sixrm=cmr6 
\font\sixi=cmmi6 
\font\sixsy=cmsy6 
\font\sixbf=cmbx6 

(These fonts had been \preloaded in Appendix B; now they’re officially loaded.) 



414 Appendix E: Example Formats 

The fonts intended for math formulas need to have a nonstandard \skewchax. 

The typewriter fonts are given \hyphenchar=-l so that hyphenation is inhibited when 
control sequence names and keywords appear in the text of a paragraph. 

\skewchar\ninei=^177 \skewchar\eighti=^177 \skewchar\sixi=’177 

\skewchar\ninesy='60 \skewchar\eightsy=’60 \skewchar\sixsy=^60 

\hyphenchar\ninett=-l \hyphenchar\eighttt=-l \hyphenchar\tentt=-l 

A few more fonts are needed for special purposes: 

\font\tentex=cmtexlO 

\font\inchhigh=cminch 

\font\titlefont=cmssdclO at 40pt 

\font\eightss=cmssq8 

\font\eightssi=cmssqi8 

\f ont\tenu=cmul0 

\f ont\manual=manfnt 

\font\magnifiedfiverm=cnir5 at lOpt 

y, TeX character set as in Appendix C 

*/, inch-high caps for chapter openings 

*/, titles in chapter openings 

y, quotations in chapter closings 

y, ditto, slanted 

y, unslcinted text italic 

y, METAFONT logo and special symbols 

y, to demonstrate magnification 

Now we come to the size-switching macros, which are much more elaborate 
than they were in the previous example because mathematics needs to be supported in 
three different sizes. The format also provides for a pseudo “small caps” (\sc); a true 
caps-and-small-caps font was not really necessary in the few cases that \sc was used. 
A dimension variable \ttglue is set equal to the desired spacing for the typewriter-like 
text that occasionally appears in paragraphs; the \tt fonts have fixed spacing, which 
doesn’t mix well with variable spacing, hence the macros below use \ttglue between 
words in appropriate places. 

\catcode'0=11 */, we will access private macros of plain TeX (carefully) 

\newskip\ttglue 

\def\tenpoint{\def\rm{\famO\tenrm}y, switch to 10-point type 

\textfont0=\tenrm \scriptfontO=\sevenrm \scriptscriptfont0=\fiverm 

\textfontl=\teni \scriptfontl=\seveni \scriptscriptfontl=\fivei 

\textfont2=\tensy \scriptfont2=\sevensy \scriptscriptfont2=\fivesy 

\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex 

\textf ont\itf am=\tenit \def \it{\f cim\itf cimXtenit}*/, 

\textf ont\slf cim=\tensl \def\sl{\f am\slf amXtensl}*/, 

\textf ont\ttf ajn=\tentt \def\tt{\f am\ttf amXtentt}*/, 

\textfont\bffam=\tenbf \scriptfont\bffam=\sevenbf 

\scriptscriptf ont\bf f am=\f ivebf \def \bf {\f eim\bf f am\tenbf }*/, 

\tt \ttglue=,5em plus.25em minus.15em 

\normalbaselineskip=12pt 

\setbox\strutbox=\hbox{\vrule height8.5pt depth3.5pt widthOpt}*/, 

\let\sc=\eightrm \let\big=\tenbig \normalbaselines\rm} 

\def\ninepoint{\def\rm{\famO\ninerm}y, switch to 9-point type 

\textfontO=\ninerm \scriptfont0=\sixrm \scriptscriptfont0=\fiverm 

\textfontl=\ninei \scriptfontl=\sixi \scriptscriptfontl=\fivei 

\textfont2=\ninesy \scriptfont2=\sixsy \scriptscriptfont2=\fivesy 

\textfont3=\tenex \scriptfont3=\tenex \scriptscriptfont3=\tenex 

\textf ont\itf 2un=\nineit \def\it{\f ean\itf amXnineit}*/, 



Appendix E: Example Eormats 415 

\textf ont\slf ain=\ninesl \def \sl{\f ain\slf am\ninesl}*/, 

\textfont\ttfain=\ninett \def\tt{\f am\ttf amXninett}*/, 

\textf ont\bf f can=\ninebf \scriptf ont\bf f ajn=\sixbf 

\scriptscriptfont\bff ain=\f ivebf \def \bf {\f ain\bf f amXninebf }*/, 

Xtt Xttglue=. 5ein plus . 25em minus. IBem 

Xnormalbaselineskip=llpt 

XsetboxXstrutbox=Xiibox{Xvrule heightSpt depthSpt widthOpt}*/, 

XletXsc=Xsevenrm XletXbig=Xninebig XnormalbaselinesXrm} 

XdefXeightpointlXdefXrm{XfamOXeightrm}*/, switch to 8-point type 

XtextfontO=Xeightrm XscriptfontO=Xsixrm XscriptscriptfontO=Xfiverm 

Xtextfontl=Xeighti Xscriptfontl=Xsixi Xscriptscriptfontl=Xfivei 

Xtextfont2=Xeightsy Xscriptfont2=Xsixsy Xscriptscriptfont2=Xfivesy 

Xtextfont3=Xtenex Xscriptfont3=Xtenex Xscriptscriptfont3=Xtenex 

Xtextf ont Xitfam=Xeight it Xdef Xit{Xf amXitf amXeightit}*/, 

Xtextf ont Xslfajn=Xeight si Xdef Xsl{Xf amXslf cimXeightsl}*/, 

Xtextf ont Xtt fam=Xeighttt Xdef Xtt {XfamXttfamXeighttt}’/, 

XtextfontXbffam=Xeightbf XscriptfontXbffam=Xsixbf 

Xscriptscriptf ont Xbffam=Xf ivebf Xdef Xbf {Xf amXbf f amXeightbf }'/, 

Xtt Xttglue=.5em plus.25em minus.15em 

Xnormalbaselineskip=9pt 

XsetboxXstrutbox=Xhbox{Xvrule heightTpt depth2pt widthOpt}*/, 

XletXsc=Xsixrm XletXbig=Xeightbig XnormalbaselinesXrm} 

XdefXtenbig#l{{Xhbox{$Xleft#lXvbox to8.5pt{}Xright.Xn@space$}}} 

XdefXninebig#l{{Xhbox{$Xtextfont0=XtenrmXtextfont2=Xtensy 

Xleft#lXvbox to7.25pt{}Xright.Xn@space$}}} 

XdefXeightbig#l{{Xhbox{$Xtextfont0=XninermXtextfont2=Xninesy 

Xlef t#lXvbox to6.5pt{}Xright. Xn<9space$}}} 

XdefXtenmathlXtenpointXfam-1 } */, for 10-point math in 9-point territory 

Issues of page layout are dealt with next. First, the basics: 

XnewdimenXpagewidth XnewdimenXpageheight XnewdimenXruleht 

Xhsize=29pc Xvsize=44pc Xinaxdepth=2.2pt Xparindent=3pc 

Xpagewidth=Xhsize Xpageheight=Xvsize Xruleht=.5pt 

Xabovedisplayskip=6pt plus 3pt minus Ipt 

Xbelowdisplayskip=6pt plus 3pt minus Ipt 

Xabovedisplayshortskip=Opt plus 3pt 

Xbelowdisplayshortskip=4pt plus 3pt 

(The curious value of Xmaxdepth was chosen only to provide an example in Chapter 15; 

there’s no deep reason behind it.) 

When the author prepared this book, he made notes about what things ought 

to go into the index from each page. These notes were shown in small type on his 

proofsheets, like the words ‘marginal hacks’ in the right margin of this page. The 

manmac format uses an insertion class called Xmargin to handle such notes. 

XnewinsertXmargin 

XdimenXinargin=Xinaxdimen % no limit on the number of marginal notes 

XcountXmargin=0 XskipXmargin=Opt '/, marginal inserts take up no space 



416 Appendix E: Example Formats 

The \footnote macro of plain T^]X needs to be changed because footnotes 

are indented and set in 8-point type. Some simplifications have also been made, since 

footnotes are used so infrequently in this book. 

\def\footnote#l{\edef\Qsf{\spacefactor\the\spacefactor}#l\Qsf 

\insert\footins\bgroup\eightpoint 

\interlinepenaltylOO \let\par=\endgraf 

\leftskip=Opt \rightskip=Opt 

\splittopskip=10pt plus Ipt minus Ipt \floatingpenalty=20000 

\smallskip\item{#l}\bgroup\strut\aftergroup\®foot\let\next} 

\skip\footins=12pt plus 2pt minus 4pt */, space added when footnote exists 

\dimen\footins=30pc */, maximum footnotes per page 

The text of running headlines will be kept in a control sequence called \rhead. 

Some pages should not have headlines; the \titlepage macro suppresses the headline 
on the next page that is output. 

\newif\iftitle 

\def\titlepage{\global\titletrue} 7, for pages without headlines 

\def\rhead{} 7, \rhead contains the running headline 

\def\leftheadline{\hbox to \pagewidth{7. 

\vbox to 10pt{}7. strut to position the baseline 

\llap{\tenbf\folio\kernlpc}7. folio to left of text 

\tenit\rhead\hfil}} 7. running head flush left 

\def\rightheadline{\hbox to \pagewidth{\vbox to 10pt{}7. 

\hfil\tenit\rhead\/7. running head flush right 

\rlap{\kernlpc\tenbf\folio}}} 7. folio to right of text 

Pages are shipped to the output by the \onepageout macro, which attaches 

headlines, marginal notes, and/or footnotes, as appropriate. Special registration marks 

are typeset at the top of title pages, so that the pages will line up properly on printing 

plates that are made photographically from T^]X’s “camera-ready” output. A small 

page number is also printed next to the corner markings; such auxiliary information 

will, of course, be erased before the pages are actually printed. 

\def\onepageout#l{\shipout\vbox{ 7i here we define one page of output 

\offinterlineskip 7. butt the boxes together 

\vbox to 3pc{ 7. this part goes on top of the 44pc pages 

\iftitle \global\titlefalse \setcornerrules 

\else\ifodd\pageno\rightheadline\else\leftheadline\fi\fi \vfill} 

\vbox to \pageheight{ 

\ifvoid\margin\else 7. marginal info is present 

\rlap{\kern31pc\vbox to0pt{\kern4pt\box\margin \vss}}\fi 

#1 7* now insert the main information 

\ifvoid\footins\else 7* footnote info is present 

\vskip\skip\footins \kern-3pt 

\hrule height\ruleht width\pagewidth \kern-\ruleht \kern3pt 

\unvbox\footins\fi 

\boxmaxdepth=\maxdepth}} 

\advancepageno} 



Appendix E: Example Formats 417 

\def\setcornerniles{\hbox to \pagewidth{y, for ceunera alignment 

\vrule width Ipc height\ruleht \hfil \vrule width Ipc} 

\hbox to \pagewidth{\llap{\sevenrm(page \folio) \kernlpc}7, 

\vrule heightIpc width\ruleht depthOpt 

\hfil \vrule width\ruleht depthOpt}} 

\output{\onepageout{\unvbox255}} 

A different output routine is needed for Appendix I (the index), because most 

of that appendix appears in two-column format. Instead of handling double columns 

with an ‘\lr’ switch, as discussed in Chapter 23, manmac does the job with \vsplit, 

after collecting more than enough material to fill a page. This approach makes it 

comparatively easy to balance the columns on the last page of the index. A more 

difficult approach would be necessary if the index contained insertions (e.g., footnotes); 

fortunately, it doesn’t. Furthermore, there is no need to use \mark as suggested in the 

index example of Chapter 23, since the entries in Appendix I tend to be quite short. 

The only real complication that memmac faces is the fact that Appendix I begins and 

ends with single-column format; partial pages need to be juggled carefully as the format 

changes back and forth. 

\newbox\paxtialpage 

\def\begindoublecolumns{\begingroup 

\output={\global\setbox\p2Lrtialpage=\vbox{\unvbox255\bigskip}}\eject 

\output={\doublecolumnout} \hsize=14pc \vsize=89pc} 

\def\enddoublecolumns{\output={\balaiicecolumns}\eject 

\endgroup \pagegoal=\vsize} 

\def\doublecolumnout{\splittopskip=\topskip \splitmaxdepth=\maxdepth 

\dimenQ=44pc \advaiice\dimenQ by-\ht\paxtialpage 

\setbox0=\vsplit255 toXdimen® \setbox2=\vsplit255 to\dimen(9 

\onepageout\pagesofax \unvbox255 \penalty\outputpenalty} 

\def \page sof arfXunvboxNpeirt ialpage 

\wdO=\hsize \wd2=\hsize \hbox to\pagewidth{\boxO\hfil\box2}} 

\def\balaiicecolumns{\setbox0=\vbox{\unvbox255} \dimenQ=\htO 

\advance\dimen(9 by\topskip \advaiice\dimen@ by-\baselineskip 

\divide\dimen(9 by2 \splittopskip=\topskip 

{\vbadness=10000 \loop \global\setbox3=\copy0 

\global\setboxl=\vsplit3 to\dimenQ 

\ifdim\ht3>\dimenQ \global\advance\dimen® bylpt \repeat} 

\setboxO=\vbox to\dimen®{\unvboxl} \setbox2=\vbox to\dimen®{\unvbox3} 

\pagesofar} 

The balancing act sets \vbadness infinite while it is searching for a suitable column 

height, so that underfull vboxes won’t be reported unless the actual columns are bad 

after balancing. The columns in Appendix I have a lot of stretchability, since there’s a 

\parskip of Opt plus .8pt between adjacent entries, and since there is room for more 

than 50 lines per column; therefore the manmac balancing routine tries to make both 

the top and bottom baselines agree at the end of the index. In applications where the 

glue is not so flexible it would be more appropriate to let the right-hand column be a 

little short; the best way to do this is probably to replace the command ‘\unvbox3’ by 
‘\dimen2=\dp3 \unvbox3 \kern-\dimen2 \vfil’. 



418 Appendix E: Example Formats 

The next macros are concerned with chapter formatting. Each chapter in the 

manuscript file starts out with the macro \beginchapter; it ends with \endchapter 

and two quotations, followed by \eject. For example, Chapter 15 was generated by 

T^X commands that look like this in the file manual.tex: 

\beginchapter Chapter 15. How \TeX\ MakesWLines into Pages 

\TeX\ attempts to choose desirable places to divide your document into 

(about 1100 lines of the manuscript are omitted here) 

breeik. \ (Deep breath.) \ You got that? 

\endchapter 

Since it is impossible to foresee how [footnotes] will happen to come out 

in the make-up, it is impracticable to number them from 1 up on each page. 

The best way is to number them consecutively throughout an article 

or by chapters in a book. 

\author UNIVERSITY OF CHICAGO PRESS, {\sl Manual of Style\/} (1910) 

\bigskip 

Don't use footnotes in your books, Don. 

\author JILL KNUTH (1962) 

\eject 

The ‘\\’ in the title line specifies a line break to be used on the left-hand title page 

that faces the beginning of the chapter. Most of the \beginchapter macro is devoted 

to preparing that title page; the \TeX logo needs somewhat different spacing when it 

is typeset in \titlefont, and the \inchhigh digits need to be brought closer together 

in order to look right in a title. 

\newcount\exno */, for the number of exercises in the current chapter 

\newcount\subsecno */, for the number of subsections in the current chapter 

\outer\def\beginchapter#l #2#3. #4\par{\def\chapno{#2#3)- 

\global\exno=0 \subsecno=0 

\4fodd\pageno 

\errmessage{You had too much text on that last page; I'm backing up} 

\advance\pageno by-1 \fi 

\def\\{ } */, W's in the title will be treated as spaces 

\message{#l #2#3:} */, show the chapter title on the terminal 

\xdef\rhead{#l #2#3: #4\unskip} '/, establish a new running headline 

{\def\TeX{T\kern-.2em\lower.5ex\hbox{E}\kern-.06em X} 

\def\\{#3} 

\ifx\empty\\ \rightline{\inchhigh #2\kern-.04em} 

\else\rightline{\inchhigh #2\kern-.06em#3\kern-.04em}\fi 

\vskipl.75pc \baselineskip=36pt \lineskiplimit=lpt \lineskip=12pt 

\let\\=\cr '/, now the W's are line dividers 

\halign{\line{\titlefont\hfil##}\\#4\unskip\\} 

\titlepage\vfill\eject} */, output the chapter title page 

\tenpoint\noindent\ignorespaces} */, the first paragraph is not indented 



Appendix E: Example Eormats 419 

An extra page is ejected at the end of a chapter, if necessary, so that the 

closing quotations will occur on a right-hand page. (The logic for doing this is not 

perfect, but it doesn’t need to be, because it fails only when the chapter has to be 

shortened or lengthened anyway; book preparation with TjgX encourages interaction 

between man and machine.) The lines of the quotations are set flush right by using 

\obeylines together with a stretchable \leftskip: 

\outer\def\endchapter{\ifodd\pageno \else\vfill\eject\null\fi 

\begingroup\bigskip\vfill */, beginning of the quotes 

\def\eject{\endgroup\eject} */, ending of the quotes 

\def\par{\ifhinode\/\endgraf\fi}\obeylines 

\def\TeX{T\kern-.2em\lower.5ex\hbox{E}X} 

\eightpoint \let\tt=\ninett \baselineskip=10pt \interlinepenalty=10000 

\leftskip=0pt plus 40pc minus \parindent \parfillskip=Opt 

\let\rm=\eightss \let\sl=\eightssi \everypar{\sl}} 

\def\author#l(#2){\smallskip\noindent\rm  #l\unskip\enspace(#2)} 

We come now to what goes on inside the chapters themselves. Dangerous and 

doubly dangerous bends are specifled by typing ‘\danger’ or ‘\ddanger’ just before a 

paragraph that is supposed to display a warning symbol: 

\def\dbend{{\m2inual\charl27}} '/, "dangerous bend" sign 

\def\dQnger{\medbreaLk\begingroup\clubpenalty=10000 

\def\par{\endgraf\endgroup\medbreak;} \noindent\h€Lng\hangafter=-2 

\hbox toOpt{\hskip-\hangindent\dbend\hfill}\ninepoint} 

\outer\def \danger{\d(9nger} 

\def\dd(9nger{\medbreak\begingroup\clubpenalty=10000 

\def\par{\endgraf\endgroup\medbreeLk} \noindent\hang\heLngafter=-2 

\hbox toOpt{\hskip-\hajigindent\dbend\kernlpt\dbend\hfill}\ninepoint} 

\outer\def\ddanger{\dd@nger} 

\def\enddanger{\endgraf\endgroup} */, omits the \medbreak 

(It’s necessary to type ‘\enddanger’ at the end of a dangerous bend only in rare cases 

that a medium space is not desired after the paragraph; e.g., ‘\smallskip\item’ might 

be used to give an itemized list within the scope of the dangerous bend sign.) 

A few chapters and appendices of this book (e.g.. Chapter 18 and Appendix B) 

are divided into numbered subsections. Such subsections are specifled in the manuscript 

by typing, for example, 

\subsection Allocation of registers. 

Appendix A is subdivided in another way, by paragraphs that have answer numbers: 

\outer\def\subsection#l. {\medbre2Lk\advaiice\subsecno by 1 

\noindent{\it \the\subsecno.\enspace#l.\enspace}} 

\def\ansno#l. #2: {XmedbreaJkX no indent 

\hbox to\parindent{\bf\hss#l.#2.\enspace}\ignorespaces} 

We will see below that the manuscript doesn’t actually specify an \ansno directly; each 

call of \aiisno is generated automatically by the \answer macro. 

Appendix H points out The TpiKbook calls for three hyphenation exceptions: 

\hyphenation{man-u-script man-u-scripts ap-pen-dix} 



420 Appendix E: Example Formats 

A few macros in maiimac provide special constructions that are occasionally 
needed in paragraphs: \MF for ‘METRFONT’, \AmSTeX for \bull for ‘B’, 

\dn and \up for ‘i’ and ‘t’, \1 and \] for ‘I’ and ‘u’- To typeset 

3pt of (stuff), '105 = 69, "69 = 105, wow 

the manuscript says 

$3\pt$ of \<stuff>, $\oct{105}=69$, $\hex{69}=105$, \cstok{wow} 

using the macros \pt, \<, \oct, \hex, and \cstok. 

\def\MF{{\manual META}\-{\manual FONT}} 

\def\AinSTeX{$\cal A\kern-.1667em\lower.5ex\hbox{$\cal M$}\kern-.075em 

S$-\TeX} 

\def\bull{\vrule height .9ex width .8ex depth -.lex } */, square bullet 

\def\SS{{\it SS}} */, scriptscript style 

\def\dn{\leavevmode\hbox{\tt\char ’ 14}} */, downward arrow 

\def\up{\leavevmode\hbox{\tt\char ’ 13}} */, upward arrow 

\def \ I {\leavevinode\hbox{\tt\charI }} */, vertical line 

\def \] {\leavevinode\hbox{\tt\char ‘ \ }} */, visible space 

\def\pt{\,{\rm pt}} */, units of points, in math formulas 

\def\<#l>{\leavevmode\hbox{$\langle$#l\/$\rangle$}} */, syntactic quantity 

\def\oct#l{\hbox{\rm\K}\kern-.2em.\it#l\/\kern.05em}} */, octal constant 

\def\hex#l{\hbox{\rm\H{}\tt#l}} */, hexadecimal constant 

\def\cstok#l{\leavevmode\thinspace\hbox{\vrule\vtop{\vbox{\hrule\kernlpt 

\hbox{\vpheLntom{\tt/}\thinspace{\tt#l}\thinspace}} 

\kernlpt\hrule}\vrule}\thinspace} */, control sequence token 

Displays in this book are usually indented rather than centered, and they usu- 
ally involve text rather than mathematics. The manmac format makes such displays 
convenient by introducing two macros called \begindisplay and \enddisplay; there’s 
also a pair of macros \begintt and \endtt for displays that are entirely in typewriter 
type. The latter displays are copied verbatim from the manuscript file, without inter- 
preting symbols like \ or $ in any special way. For example, part of the paragraph 
above was typed as follows: 

... To typeset 

\begindisplay 

$3\pt$ of \<stuff>, $\oct{105}=69$, $\hex{69}=105$, \cstok{wow} 

\enddisplay 

the manuscript says 

\begintt 

$3\pt$ of \<stuff>, $\oct{105}=69$, $\hex{69}=105$, \cstok{wow} 

\endtt 

using the macros I \pt I , |\<|, I \oct I , I \hex I , aind |\cstok|. 

(The last line of this example illustrates the fact that verbatim typewriter text can be 
obtained within a paragraph by using vertical lines as brackets.) The \begindisplay 

macro is actually more general than you might expect from this example; it allows 



Appendix E: Example Eormats 421 

multiline displays, with \cr following each line, and it also allows local definitions 

(which apply only within the display) to be specified immediately after \begindisplay. 

\outer\def\begindisplay{\obeylines\startdisplay)- 

{\obeylines\gdef\startdisplay#l 

{\catcode‘\"'‘M=5$$#l\halign\bgroup\indent##\hfil&&\qquad##\hfil\cr}} 

\outer\def\enddisplay{\crcr\egroup$$} 

\ch2Lrdef\other=12 

\def\ttverbatim{\begingroup \catcode ^\\=\other \catcode ^\{=\other 

\catcode‘\}=\other \catcode^\$=\other \catcode'\&=\other 

\catcode ‘ \#=\other \catcode ^\'/,=\other \catcode ‘\~=\other 

\catcode‘\_=\other \catcode‘\~=\other 

\obeyspaces \obeylines \tt} 

{\obeyspaces\gdef {\ }} */, \obeyspaces now gives \ , not \space 

\outer\def\begintt{$$\let\par=\endgraf \ttverbatim \parskip=Opt 

\catcode‘\I=0 \rightskip=-5pc \ttfinish} 

{\catcode ^ \ I =0 I catcode M \=\other ’/, 1 is temporary escape character 

lobeylines ’/, end of line is active 

I gdef I ttf inish#l''''M#2\endtt{#l I vbox{#2} I endgroup$$})- 

\catcode‘\1=\active 

{\obeylines\gdefI{\ttverbatim\spaceskip=\ttglue\let“''M=\ \letI=\endgroup}} 

These macros are more subtle than the others in this appendix, and they deserve 

careful study because they illustrate how to disable T^]X’s normal formatting. The ‘ 1 ’ 
character is normally active (category 13) in mcinmac format, and its appearance causes 

the \ttverbatim macro to make all of the other unusual characters into normal symbols 

(category 12). However, within the scope of \begintt. . .\endtt a vertical line is an 

escape character (category 0); this permits an escape out of verbatim mode. 

The \begintt macro assumes that a comparatively small amount of text will 

be displayed; the verbatim lines are put into a vbox, so that they cannot be broken 

between pages. A different approach has been used for most of the typewriter copy 

in this appendix and in Appendix B: Material that is quoted from a format file is 

delimited by \beginlines and \endlines, between which it is possible to give com- 

mands like ‘\smallbreak’ to help with spacing and page breaking. The \beginlines 

and \endlines macros also insert rules, fore and aft: 

\def\beginlines{\par\begingroup\nobreak;\medskip\parindent=Opt 

\hrule\kernlpt\nobreak \obeylines \everypar{\strut}> 

\def\endlines{\kernlpt\hrule\endgroup\medbreak\noindent} 

For example, the previous three lines were typeset by the specification 

\beginlines 

I\def\beginlines{\par\begingroup\nobreak\medskip\parindent=Opt| 

\nobreak 

1 \hrule\kernlpt\nobreak \obeylines \everypar{\strut}}| 

1\def\endlines{\kernlpt\hrule\endgroup\medbreak\noindent}| 

\endlines 



422 Appendix E: Example Formats 

A strut is placed in each line so that the rules will be positioned properly. The manmac 
format also has macros \beginmathdemo. . . Xendmathdemo that were used to produce ex- 
amples of mathematics in Chapters 16-19, \beginsyntax. . .\endsyntax for the formal 
syntax in Chapters 24-26, \beginchaxt. . . \endchart for the font tables in Appendices 
C and F, etc.; those macros are comparatively simple and they need not be shown here. 

Exercises are specified by an \exercise macro; for example, the first exercise 
in Chapter 1 was generated by the following lines in the manuscript: 

\exercise After you have mastered the material in this book, 

what will you be: A \TeX pert, or a \TeX nician? 

\answer A \TeX nician (underpaid); sometimes also called 

a \TeX acker. 

Notice that the Xamswer is given immediately after each exercise; that makes it easy 
to insert new exercises or to delete old ones, without keeping track of exercise num- 
bers. Exercises that are dangerous or doubly dangerous are introduced by the macros 
\dangerexercise and \ddangerexercise. 

\outer\def\exercise{\medbreak; \global\advance\exno by 1 
\noindent\llap{\manual\char’ 170\rm\kern. 15em}*/, triangle in margin 

{\ninebf EXERCISE \bf\chapno.\the\exno}\par\nobreaJc\noindent} 

\def\dexercise{\global\advance\exno by 1 

\llap{\manual\char’ 170\rm\kern. 15em}*/, triangle in indented space 

{\eightbf EXERCISE \bf\chapno.\the\exno}\hfilXbreeik} 

\outer\defXdeingerexercisefXdQnger Xdexercise} 
XouterXdefXddangerexercisefXddQnger Xdexercise} 

(The last two lines use XdOnger and XddQnger, which are non-Xouter equivalents of 
Xdanger and Xddanger; such duplication is necessary because control sequences of type 
Xouter cannot appear within a Xdef.) 

The Xanswer macro copies an answer into a file called answers.tex; then 
Appendix A reads this file by saying ‘XimmediateXcloseoutXans Xninepoint Xinput 
euiswersX Each individual answer ends with a blank line; thus, Xpar must be used 
between the paragraphs of a long answer. 

XnewwriteXans 

XimmediateXopenoutXans=aiiswers */, file for answers to exercises 
XouterXdefXanswer{XparXmedbreak; 

XimmediateXwriteXansf} 

XimmediateXwriteXansfXstringXansnoXchapno.XtheXexno:} 
Xcopytoblaukline} 

XdefXcopytoblcinklinefXbegingroupXsetupcopyXcopyaus} 
XdefXsetupcopyfXdefXdo##l{Xcatcode ^##l=Xother}Xdospecials 

Xcatcode‘X I=Xother Xobeylines} 
{Xobeylines XgdefXcopyains#! 

{Xdef Xnext {#!}*/, 
XifxXnextXemptyXletXnext=Xendgroup */, 

XelseXimmediateXwriteXans{Xnext} XletXnext=XcopyaiisXfiXnext}} 



Appendix E: Example Eormats 423 

Notice the use of \dospecials here, to set up the verbatim copying. The \ttverbatim 

macro could have invoked \dospecials in the same way; but \ttverbatim is used quite 

frequently, so it was streamlined for speed. 

The remaining macros in majimac format are designed to help in producing 

a good index. When a paragraph contains a word or group of words that deserve to 

be indexed, the manuscript indicates this by inserting for example, the hrst 

sentence of the present paragraph actually ends with ‘a good ~{index}’. This caused 

an appropriate entry to be written onto a file index.tex when T^]X was typesetting 

the page; it also put the word ‘index’ into the margin of the proofsheets, so that the 

author could remember what had been marked for indexing without looking into the 

manuscript file. Indexing with the notation doesn’t change T^}X’s behavior in 

any essential way; thus, the word ‘index’ appears in the text as well as in the index. 

\newwrite\inx 

\iininediate\openout\inx=index 7, file for index reminders 

\def\marginstyle{\sevenrm 7, marginal notes are in 7-point type 

\vrule heightbpt depth2pt widthOpt } 7# a strut for \insert\margin 

Sometimes it is desirable to index words that don’t actually appear on the 

page; the notation stands for a “silent” index entry, and spaces are ignored 

after the closing ‘}’ in such a case. For example. Appendix I lists page 1 under ‘beauty’, 

even though page 1 contains only the word ‘beautiful’; the manuscript achieves this 

by saying ‘beautiful ~"{beauty}’. (The author felt that it was important to index 

‘beauty’ because he had already indexed ‘truth’.) 

It’s not difficult to make " into an active character that produces such index 

entries, while still retaining its use for superscripts in math formulas, because \ifmmode 

can be used to test whether a control sequence is being used in math mode. However, 

maiimac’s use of " as an active character means that ""M cannot be used to refer to a 

(return) character. Fortunately the ""M notation isn’t needed except when the format- 

ting macros themselves are being defined. 

The following macros set things up so that " and " " are respectively converted 

to \silentf alse\xref and \silenttrue\xref, outside of math mode: 

\newif\ifsilent 

\def\specialhat{\ifmmode\def\next{"}\else\let\next=\beginxref\fi\next} 

\def\beginxref{\futurelet\next\beginxrefswitch} 

\def\beginxrefswitch{\ifx\next\specialhat\let\next=\silentxref 

\else\silentfalse\let\next=\xref\fi \next} 

\catcode'\"=\active \let ''=\specialhat 

\def\silentxref"{\silenttrue\xref} 

Entries in the index aren’t always words in roman type; they might require 

special typesetting conventions. For example, there are hundreds of items in Appen- 

dix I that are preceded by a backslash and set in typewriter type. The manmac for- 

mat makes it easy to produce such entries by typing, e.g., ‘" I Ximmediate I ’ instead 

of I\immediate 1}’. In this case the backslash is not written onto the index file, 

because it would interfere with alphabetization of the entries; a code number is written 

out so that the backslash can be reinstated after the index has been sorted. The code 

number also is used to put the entry in typewriter type. 



424 Appendix E: Example Formats 

The indexing macros of mammae produce entries of four kinds, which are as- 

signed to codes 0, 1, 2, and 3. Code 0 applies when the argument is enclosed in braces, 

e.g., ‘■'{word}’; code 1 applies when the argument is enclosed in vertical lines and there’s 

no backslash, e.g., ‘"IplusT; code 2 is similar but with a backslash, e.g., ‘'‘IXparl’; 

code 3 applies when the argument is enclosed in angle brackets, e.g., ‘~\<stuff>’. The 

four example entries in the previous sentence will be written on file index.tex in the 

form 

word !0 123. 

plus !1 123. 

par !2 123. 

stuff !3 123. 

if they appear on page 123 of the book. 

\chardef\bslash=‘\\ '/, \bslash meikes a backslash (in tt fonts) 

\def\xref{\futurelet\next\xrefswitch} */, branch on the next character 

\def\xrefswitch{\begingroup\ifx\nextI\aftergroupXvxref 

XelseXifxXnextX<XaftergroupXanglexref 

XelseXaftergroupXnormalxref XfiXfi Xendgroup} 

XdefXvxrefI{Xcatcode‘XX=Xactive XfutureletXnextXvxrefswitch} 

XdefXvxrefswitch#!I{Xcatcode‘XX=0 

Xif xXnextXemptyXdef Xxreftype{2}*/, 

XdefXnext{{XttXbslashXtext}}*/, code 2, IXargI 

XelseXdefXxreftype{l}XdefXnext{{XttXtext}}Xfi */♦ code 1, largi 

Xedef Xtext{#l}XmaLkexref } 

{Xcatcode‘X I=0 Xcatcode‘XX=Xactive |gdefX{}} 

Xdef XanglexrefX<#l>{Xdef Xxref type{3}XdefXt ext {#1}*/, 

XdefXnext{X<Xtext>}Xmakexref} */, code 3, X<arg> 

XdefXnormalxref#l{XdefXxreftype{0}XdefXtext{#l}XletXnext=XtextXmeikexref} 

Indexing is suppressed unless the proofmode switch is set to true, since mate- 

rial is gathered for the index only during trial runs—not on the triumphant occasion 

when the book is finally being printed. 

XnewifXifproofmode 

Xproofmodetrue 7, this should be false when making camera-ready copy 

Xdef Xmeikexref {Xif proof modeXinsert Xmargin{Xhbox{XmarginstyleXt ext }}y, 

XxdefXwriteit{XwriteXinx{XtextXspace!XxreftypeXspace 

XnoexpandXnumberXpageno.}}Xwriteit 

XelseXifhmodeXkernOpt XfiXfi 

XifsilentXignorespacesXelseXnextXfi} 

(The Xinsert suppresses hyphenation when proofs are being checked; a XkernOpt is 

therefore emitted to provide consistent behavior in the other case.) 

The material that accumulates on file index.tex gives a good first approxi- 

mation to an index, but it doesn’t contain enough information to do the whole job; a 

topic often occurs on several pages, but only the first of those pages is typically listed 

in the file. The author prefers not to generate indexes automatically; he likes to reread 

his books as he checks the cross-references, thereby having the opportunity to rethink 

everything and to catch miscellaneous errors before it is too late. As a result, his books 



Appendix E: Example Formats 425 

tend to be delayed, but the indexes tend to be pretty good. Therefore he designed 

the indexing scheme of manmac to provide only the clues needed to make a real index. 

On the other hand, it would be possible to extend the macros above and to obtain 

a comprehensive system that generates an excellent index with no subsequent human 

intervention; see, for example, “An indexing facility for T^]X” by Terry Winograd and 
Bill Paxton, in TUGboat 1 (1980), A1-A12. 

The manmac macros have now been fully presented; we shall close this appendix 
by presenting one more example of their use. Chapter 27 mentions the desirability of 

creating a long book in small parts, by using a “galley” file. The author adopted that 

strategy for The TppCbook, entering each chapter into a small file galley.tex that 

looked like this: 

\ input meinmac 

\tenpoint 

\pageno=800 

\def\rhead{Experimental Pages for The \TeX book} 

\def\chapno{ X} 

{\catcode‘\*/,= 12 \immediate\write\ajis{y, Answers for galley proofs:}} 

(new text being tested, usually an entire chapter) 

*/, that blsink line will stop an unfinished Nauiswer 

\immediate\closeoutNans 

\vfill\eject 

\ninepoint \input answers */, typeset the new answers, if einy 

\bye 

It is much easier to use macros than to define them. 

The use of macro libraries, in fact, mirrors almost exactly 
the use of subroutine libraries for programming languages. 

There are the same levels of specialization, 
from publicly shared subroutines 

to special subroutines within a single program, 
and there is the same need for a programmer 
with particular skills to define the subroutines. 

— PETER BROWN, Macro Processors (1974) 

The epigraph is among the most delightful of scholarly habits. 
Donald Knuth’s work on fundamental algorithms would be 

Just as important if he hadn't begun with a quotation 
from Betty Crocker, but not so enjoyable. 

Part of the fun of an epigraph is turning a source to an unexpected use. 

— MARY-CLAIRE VAN LEUNEN, A Handbook for Scholars (1978) 



Font Tables 



Appendix F: Font Tables 427 

The purpose of this appendix is to summarize the chief characteristics of the 
Computer Modern typefaces. TgX is able to typeset documents with any fonts, 
having any arrangement of characters; the fonts and layouts to be described here 
are the particular ones that correspond to plain format, i.e., to the macros 
in Appendix B. (Complete information about the Computer Modern family, 
including the METRFONT programs that draw the characters, can be found in 
the author’s book Computer Modern Typefaces.) 

The first pages of this appendix show what the fonts contain; the last 
pages show what the symbols are called when they’re used in math formulas. 
(See Appendix B for the conventions that apply in non-mathematical text.) 

There are exactly 128 different characters in each of the Computer Mod- 
ern fonts, although TgX can work up to 256 characters per font. The text fonts 
are laid out as shown in the table below, which illustrates font cmrlO (Computer 
Modern Roman 10 point). Thus, for example, if you ask for \char^35 when 
cmrlO is the current font, you get the symbol iE. These text fonts include the 
ligatures and accents described in Chapter 9; each symbol that happens to be 
a visible ASCII character appears in its ASCII position. Some of the ASCII 
symbols (namely " < > \ _ { I }) are not included because they don’t occur 
in normal printer’s fonts. If you mistakenly type ", you get ”; and < outside of 
math mode yields j! Incidentally, the ten digits all have width 0.5em. 

Figure 1. Text font layout, showing cmrlO (\rm, \textfontO). 

'0 T '3 '5 '6 '7 

'OOx r A 0 A n E T 
"Ox 

'Olx $ ff fi fi ffi ffl 

'02x 1 J 
\ — o 

"lx 
'03x 6 ae oe 0 iE (E 0 

'04x I # $ % & 5 

"2x 
'05x { ) 

* + 5 - • / 
'06x 0 1 2 3 4 5 6 7 

"3x 
'07x 8 9 ; 5 i — i ? 

'lOx @ A B c D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z [ 
44 

] ■ 

'14x C a b c d e f g "6x 
'15x h i j k 1 m n o 

'16x P q r s t u V w 
"7x 

'17x X y z — — 

n 

"8 "9 "A "B "C "D "E "F 



428 Appendix F: Font Tables 

Plain T^X makes use of sixteen basic fonts: 

cmrlO 

cmrT 

cmr5 

cmbxlO 

cmbx7 

cmbx5 

cmsllO 

cmtilO 

cmttlO 

cmmilO 

cininiT 

cminiS 

cmsylO 

cmsy7 

cmsy5 

cmexlO 

(Computer Modern Roman 10 point) ' 

(Computer Modern Roman 7 point) 

(Computer Modern Roman 5 point) 

(Computer Modern Bold Extended 10 point) ^ 

(Computer Modern Bold Extended 7 point) 

(Computer Modern Bold Extended 5 point) 

(Computer Modern Slanted Roman 10 point) 

(Computer Modern Text Italic 10 point) > 

(Computer Modern Typewriter Type 10 point) ' 

(Computer Modern Math Italic 10 point) 

(Computer Modern Math Italic 7 point) 

(Computer Modern Math Italic 5 point) 

(Computer Modern Math Symbols 10 point) 

(Computer Modern Math Symbols 7 point) 

(Computer Modern Math Symbols 5 point) 

(Computer Modern Math Extension 10 point) > 

text 

special 

The first eight of these all have exactly the same layout; but cmtilO is slightly 
different because many of its symbols have different shapes. Notice, for example, 
that the ampersand becomes an ‘E.T.’, and the dollar changes to pound sterling: 

Figure 2. Text font layout, showing cmtilO (\it). 

'0 '1 '3 '4 '5 '6 '1 

'OOx F A G A n E T 
"Ox 

'Olx F n ff fi fl ffi ffl 

'02x i J 
\ — o 

"lx 
'03x fi (£ oe 0 M (E 0 

'04x / # £ % & 7 

"2x 
'05x ( ; 

* + 7 - ■ / 
'06x 0 1 2 3 4 5 6 1 

"3x 
'Olx 8 9 ; 

7 i — d Q 

'lOx @ A B c D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z [ 
a 

] 
* 

'14x a b c d e / 9 
"6x 

'15x h i J k 1 m n 0 

'16x P Q r s t u V w 
"7x 

'llx X y z — — 
// •• 

”8 "9 "A "B "C "D "E "F 



Appendix F: Font Tables 429 

The typewriter font cmttlO is almost like the fonts for ordinary text, but it 
includes all of the visible ASCII characters, in their correct positions. It also has 
vertical arrows t and i, as well as an undirected single quote mark, '. Fourteen 
of the 128 positions are changed from the normal text layout conventions, namely 
codes '013-'017, 'O4O, 'O42, '074, '076, '134, and '173-'175. All of the 
ligatures are absent, except for the Spanish j and (The characters for Spanish 
ligatures appear in different positions, but that makes no difference to the user, 
because each font tells TgX where to locate its own ligatures.) The Polish 1, the 
dot accent, and the long Hungarian umlaut have disappeared to make room for 
new symbols. In a sense, positions '052 and '055 also differ from the normal 
text conventions: The asterisk is not up as high as usual, and the hyphen is just 
like a minus sign. 

Each character in cmttlO has the same width, namely 0.5em; the spaces 
between words also have this width, and they will not stretch or shrink. puts 
two spaces at the end of each sentence when you are typesetting with a typewriter 
font. (These spacing conventions can be changed by assigning nonzero values to 
\spaceskip and \xspaceskip; or you can assign new values to the \fontdimen 
parameters, which will be described shortly.) 

Figure 3. Typewriter text font layout, showing cmttlO (\tt). 

'0 '1 '3 V '5 '6 '7 

'OOx r A 0 A n E T 
"Ox 

'Olx Q t i 1 i i 

'02x 1 J 
— • 

"lx 
'03x 13 ae oe 0 E CE 0 

'04x u j (1 # $ % & } 
"2x 

'05x ( ) ♦ + J - * / 

'06x 0 1 2 3 4 5 6 7 
"3x 

'07x 8 9 ; > < = > 7 

'lOx @ A B C D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z [ \ ] — 

'14x < a b c d e f g 
"6x 

'15x h i j k 1 m n 0 

'16x P q r s t u V w 
"7x 

'17x x y z { 1 > • • 

”8 "9 "A "B "C "D "E "F 



430 Appendix F: Font Tables 

You can see at a glance that the math italic font, cmmilO, is quite different from 

text italic. It contains lowercase Greek letters as well as uppercase ones; this, 

of course, is mathematicians’ Greek, not a text font that would be suitable for 

typesetting classical Greek literature. And if you look closely at the non-Greek 

italic letters, you will find that their proportions and spacing have been changed 

from cmtilO to make them work better in l^]X’s mathematics mode. 

Some special unslanted characters appear in positions '050-'077 and 

'133-'137^ including “oldstyle numerals”: ‘$\mitl984$’ and ‘$\oldstylel984$’ 

both yield ‘1984’. Some of the characters are intended to be combined with 

others; for example, '054 forms the first part of the symbol (See the 

definition of \hookrightarrow in Appendix B.) This portion of the font doesn’t 

deserve the name math italic; it’s really a resting place for characters that don’t 

fit anywhere else. (The author didn’t want to leave any places unfilled, since 

that would tempt people to create incompatible ways to fill them.) 

Plain takes its comma, period, and slash from cmmilO in math 

mode, so that appropriate kerning will be computed in certain formulas that 

would otherwise be spaced poorly. For the correct positioning of math accents 

with this font, you should set its \skewchar to '177. 

Figure 4. Math italic font layout, showing cmmilO (\mit, \textfontl). 

'0 '1 '3 '5 '0 '7 

'OOx F A 9 A n E T 
"Ox 

'Olx F n a n 7 S e 

'02x c 0 0 i K, A 0 n 
"lx 

'03x e TT p a T V (t> X 

'04x ip U £ d W Q P 
"2x 

'05x — — — c 5 0 <1 

'06x 0 1 2 3 4 5 6 7 
"3x 

'07x 8 9 • 1 < / > 'k 

'lOx d A B C D E F G 
"4x 

'llx H I J K L M N 0 

'12x P Q R S T U V W 
"5x 

'13x X Y Z b tt — 

'14x i a b c d e f 9 
"6x 

'15x h i j k 7 m n 0 

'16x P q r s t u V w 
"7x 

'17x X y z i J P 
-* 

"8 "9 "A "B "C "D "E "F 



Appendix F: Font Tables 431 

When typesets mathematics it assumes that family 0 contains normal roman 

fonts and that families 1, 2, and 3 contain math italic, math symbol, and math 

extension fonts. The special characters in these fonts are usually given symbolic 

names by a \mathchardef instruction, which assigns a hexadecimal code to the 

symbol. This code has four digits, where the first tells what kind of symbol is 

involved, the second specifies the family, and the other two give the font position. 

For example, 

\mathchardef\11="321C 

says that \11 is character "IC of the math symbol font (family 2), and that it’s 

a “relation” (class 3). A complete list of the symbolic names provided by the 

plain T^X format appears later in this appendix. 

Font cmsylO is plain TgX’s math symbol font, and it contains 128 sym- 

bols laid out as shown below. Its \skewchar should be set to '060 so that math 

accents will be positioned properly over the calligraphic capital letters. 

Figure 5. Math symbol font layout, showing cmsylO (\cal, \textfont2). 

'0 '1 '3 '4 '5 '6 '1 

'OOx — • X * o ± T 
"Ox 

'Olx e © 0 0 © o o • 

'02x C © < > 
"lx 

'OSx C © < > >- 

'04x T i / \ 
"2x 

'05x fr \ X oc 

'06x / oo G 9 A V / 1 
"3x 

'07x V 3 —1 0 3^ T T 

'lOx A 8 C V e T 
"4x 

'llx 'H I J JC C M N O 

'12x V Q 'R S r U V w 
"5x 

'13x X y Z u n d A V 

'14x h 3 [ J r 1 { } 
"6x 

'15x ( ) 1 II I \ \ 

'16x U V / u n C □ 
"lx 

'llx § t 1 1 A 0 9 

"8 "9 "A "B "C "D "E "F 



432 Appendix F: Font Tables 

The final font of plain is cmexlO, which includes large symbols and 

pieces that can be used to build even larger ones. For example, arbitrarily large 

left parentheses can be constructed by putting '060 at the top and '100 at the 

bottom, and by using as many copies of '102 as necessary in the middle. Large 

square root signs are made from '164 5 165, and '166; large left braces have four 
component parts: '070^ '072 , 074076. 

Figure 6. Math extension font layout, showing cmexlO (\textf ont3). 

'0 '1 '3 '5 '6 '7 

'OOx ( ) "Ox 
'Olx { ] ( ) 1 II / \ 

'02x 1 
( ) "lx 

'03x 
{ 

' 
1 

( ) / \ 

'04x 

• 

1 

( 

"2x 

'05x 1 
' ' ( ) / \ / \ 

'06x 
1 ( 1 I 

"3x 
'07x r I } i 1 I 

'lOx 1 
K ) 

1 1 
( ) u U 

"4x 

'llx 
/ 

0 O © 0 © 0 

'12x E n / u n li) A V 
"5x 

'13x E n / U n y A V 

'Ux u u 
'— — 

"6x 
'15x < 

r ' 

'16x V y \ \ 
\ 

1 r II 

"7x 
'17x /* ■N s. 

”8 ”9 "A "B "C "D "E "F 



Appendix F: Font Tables 433 

When TgX “loads” a font into its memory, it doesn’t look at the actual shapes of 
the characters; it only loads the font metric information (e.g., cmrlO. tfm), which 
includes the heights, widths, depths, and italic corrections, together with infor- 
mation about ligatures and kerning. Furthermore, the metric information that 
comes with a font like cmexlO tells that certain characters form a series; for 
example, all of the left parentheses are linked together in order of increasing size: 
'000, '020, '022, and 'O4O, followed by the extensible left parenthesis, which 
is '060 + ['102]'^ -t- '100. Similarly, the two summation signs {'120, '130) and 
the three \widehat accents {'142, '143, '144) ^-re linked together. Appendix G 
explains how goes about choosing particular sizes for math delimiters, math 
operators, and math accents. 

Each font also has at least seven \fontdimen parameters, which have 
the following significance and typical values (rounded to two decimal places): 

# Meaning Value in cmrlO cmbxlO cmsllO cmtilO cmttlO cimnilO 

1 slant per pt 0.00 pt 0.00 pt 0.17pt 0.25 pt 0.00 pt 0.25 pt 
2 interword space 3.33 pt 3.83 pt 3.33 pt 3.58 pt 5.25 pt 0.00 pt 
3 interword stretch 1.67 pt 1.92 pt 1.67 pt 1.53 pt 0.00 pt 0.00 pt 
4 interword shrink 1.11 pt 1.28 pt 1.11 pt 1.02 pt 0.00 pt 0.00 pt 
5 x-height 4.31 pt 4.44 pt 4.31 pt 4.31 pt 4.31 pt 4.31 pt 
6 quad width 10.00 pt 11.50 pt 10.00 pt 10.22 pt 10.50 pt 10.00 pt 
7 extra space 1.11 pt 1.28 pt 1.11 pt 1.02 pt 5.25 pt 0.00 pt 

The slant parameter is used to position accents; the next three parameters define 
interword spaces when text is being typeset; the next two define the font-oriented 
dimensions lex and lem; and the last is the additional amount that is added to 
interword spaces at the end of sentences (i.e., when \spacef actor is 2000 or more 
and \xspaceskip is zero). When a font is magnified (using ‘at’ or ‘scaled’), all 
of the parameters except the slant are subject to magnification at the time the 
font is loaded into Tg^C’s memory. 

Notice that cmmilO has zero spacing. This is the mark of a font that is 
intended only for mathematical typesetting; the rules in Appendix G state that 
the italic correction is added between adjacent characters from such fonts. 

Math symbol fonts (i.e., fonts in family 2) are required to have at least 
22 \f ontdimen parameters instead of the usual seven; similarly, math extension 
fonts must have at least 13. The significance of these additional parameters is 
explained in Appendix G. If you want to increase the number of parameters past 
the number that actually appear in a font’s metric information file, you can assign 
new values immediately after that font has been loaded. For example, if some 
font \ff with seven parameters has just entered T^’s memory, the command 
\fontdimenl3\ff=5pt will set parameter number 13 to 5pt; the intervening 
parameters, numbers 8-12, will be set to zero. You can even give more than 
seven parameters to \nullfont, provided that you assign the values before any 
actual fonts have been loaded. 



434 Appendix F: Font Tables 

Now that the font layouts have all been displayed, it’s time to consider 

the names of the various mathematical symbols. Plain TgX defines more than 

200 control sequences by which you can refer to math symbols without having to 

find their numerical positions in the layouts. It’s generally best to call a symbol 

by its name, for then you can easily adapt your manuscripts to other fonts, and 

your manuscript will be much more readable. 

The symbols divide naturally into groups based on their mathematical 

class (Ord, Op, Bin, Rel, Open, Close, or Punct), so we shall follow that order 

as we discuss them. N.B.: Unless otherwise stated, math symbols are available 

only in math modes. For example, if you say ‘\alpha’ in horizontal mode, 

will report an error and try to insert a $ sign. 

1. Lowercase Greek letters. 

a \alpha L \iota Q \varrho 

P \beta \kappa (7 \sigma 

7 Xgamma A \lambda \varsigma 

6 \delta fi \mu T \tau 

e \epsilon ly \nu V \upsilon 

£ \varepsilon ^ \xi 0 \phi 

c \zeta 0 0 T \varphi 

V \eta TT \pi X \chi 

0 \theta w \varpi \psi 

d \vartheta p \rho LU \omega 

There’s no \omicron, because it would look the same as o. Notice that the letter 

\upsilon (v) is a bit wider than v (^;); both of them should be distinguished 

from \nu (ly). Similarly, \varsigma (^) should not be confused with \zeta (C). 

It turns out that \vaxsigma and \upsilon are never used in math formulas; 

they are included in plain T^ only because they are occasionally needed in 

short Greek citations (cf. Appendix J). 

Uppercase Greek letters. 

F \Gaimna S \Xi 4> \Phi 

A \Delta n \Pi \Psi 

0 \Theta S \Sigma n \0mega 

A \Lambda T \Upsilon 

The other Greek capitals appear in the roman alphabet (\Alpha = {\rm A}, 

\Beta = {\rm B}, etc.). It’s conventional to use unslanted letters for uppercase 

Greek, and slanted letters for lowercase Greek; but you can obtain (F, A,..., i?) 

by typing $({\mit\Gaiimia}, {\mit\Delta}, \ldots, {\mit\0mega}) $. 

3. Calligraphic capitals. To get the letters A... Z that appear in Figure 5, type 

${\cal A}\ldots{\cal Z}$. Several other alphabets are also used with math- 

ematics (notably Fraktur, script, and “blackboard bold”); they don’t come with 

plain TE;X, but more elaborate formats like do provide them. 



Appendix F: Font Tables 435 

4. Miscellaneous symbols of type Ord. 

\aleph / \prime V \forall 
n \hbar 0 \emptyset 3 \exists 
1 \imath V \nabla -1 \neg 
J \jmath y/ \surd b \f lat 
i \ell T \top \natural 
p \wp T \bot \sharp 

\Re II \i h \clubsuit 
7s \Im L \angle A \diamondsuit 
d \partial A \triangle 9 \heartsuit 
00 \infty \ \backslash \spadesuit 

The dotless letters \imath and \ jmath should be used when i and j are accented; 
for example, $\hat\imath$ yields i. The \prime symbol is intended for use in 
subscripts and superscripts, as explained in Chapter 16, so you usually see it in 
a smaller size. On the other hand, the \angle symbol has been built up from 
other pieces; it does not get smaller when it appears in a subscript or superscript. 

5. Digits. To get italic digits 0123456789, say {\it0123456789}; to get boldface 
digits 0123456789, say {\bf 0123456789}; to get oldstyle digits 0123456789, say 
{\oldstyle0123456789}. These conventions work also outside of math mode. 

6. “Large” operators. The following symbols come in two sizes, for text and 
display styles: 

n n 
uU \coprod 

/ j 
\oint 

n n 
U IJ \bigcup 

UU \bigsqcup 

V \J \bigvee 

A A \^igwedge 

O Q \bigodot 

(g) \bigot imes 

0 0 \bigoplus 

1+) (jj \biguplus 

It is important to distinguish these large Op symbols from the similar but smaller 
Bin symbols whose names are the same except for a ‘big’ prefix. Large operators 
usually occur at the beginning of a formula or subformula, and they usually are 
subscripted; binary operations usually occur between two symbols or subformu- 
las, and they rarely are subscripted. For example, 

$\bigcup_{n=l}^m(x_n\cup y_n)$ yields ^ Vn) 

The large operators \sum, \prod, \coprod, and \int should also be distin- 
guished from smaller symbols called \Sigma (S), \Pi (11), \amalg (II), and 
\smallint (/), respectively; the \smallint operator is rarely used. 



436 Appendix F: Font Tables 

'•y operations. Besides + and —, you can type 

± \pm n Xcap V Xvee 

T \mp U Xcup A Xwedge 

\ Xsetminus l+j Xuplus 0 Xoplus 

• Xcdot n Xsqcap 0 Xominus 

X Xtimes U Xsqcup 0 Xotimes 

* Xast <1 Xtriangleleft 0 Xoslash 

X Xstar > Xtriangleright 0 Xodot 

0 Xdiamond 1 Xwr t Xdagger 

0 Xcirc 0 Xbigcirc t Xddagger 

• Xbullet A Xbigtriajigleup U Xamalg 
• 

• Xdiv V Xbigtriangledown 

It’s customary to say $G\backslash H$ to denote double cosets of by if (G\if), 

and $p\backslash n$ to mean that p divides n (p\n); but $X\setminus Y$ 

denotes the elements of set X minus those of set F (X \ F). Both operations 

use the same symbol, but \backslash is type Ord, while Xsetminus is type Bin 

(so TgX puts more space around it). 

8. Relations. Besides <, >, and =, you can type 

< Xleq > \geq — Xequiv 

Xprec Xsucc Xsim 

Xpreceq Xsucceq Xsimeq 

< Xll > \gg X Xasymp 

C Xsubset 0 Xsupset Xapprox 
C Xsubseteq D Xsupseteq Xcong 
□ Xsqsubseteq □ Xsqsupseteq M Xbowtie 

G Xin 3 Xni (X Xpropto 

h Xvdash H Xdashv h Xmodels 

Xsmile 1 Xmid Xdoteq 

Xfrown II Xparallel _L Xperp 

The symbols \mid and \parallel define relations that use the same characters 

as you get from 1 and \ I; puts space around them when they are relations. 

9. Negated relations. Many of the relations just listed can be negated or “crossed 

out” by prefixing them with \not, as follows: 

^ \not< 

^ \not\leq 

7^ \not\prec 

2^ \not\preceq 

^ \not\subset 

2 \not\subseteq 

2 \not\sqsubseteq 

\not> 

2 \not\geq 
)/- \not\succ 

^ \not\succeq 

\not\supset 

2 \not\supseteq 

3 \not\sqsupseteq 

3 \not= 
^ \not\equiv 

/ \not\sim 

9^ \not\simeq 
76 \not\approx 

^ \not\cong 

^ \not\asymp 



Appendix F: Font Tables 437 

The symbol \not is a relation character of width zero, so it will overlap a relation 

that comes immediately after it. The positioning isn’t always ideal, because some 

relation symbols are wider than others; for example, \not\in gives ‘0’, but it is 

preferable to have a steeper cancellation, The latter symbol is available as a 

special control sequence called \notin. The definition of \notin in Appendix B 

indicates how similar symbols can be constructed. 

10. Arrows. There’s also another big class of relations, namely those that point: 

\leftarrow <- 

\Leftarrow <; 

\rightarrow 

\Rightarrow = 

\leftrightarrow 

\Lef trightarrow <t 

\mapsto H 

\hookleftarrow ' 

\leftharpoonup 

\leftharpoondown 

\rightleftharpoons 

\longleftarrow 

\Longleftarrow 

\longrightarrow 

\Longrightarrow 

\longleftrightarrow 

\Longleftrightarrow 

Mongmapsto 

\hookrightarrow 

\rightharpoonup 

\rightharpoondown 

t \uparrow 

ft \Uparrow 

[ \downarrow 

\Downarrow 

J \updownarrow 

ft \Updownarrow 

y’ \nearrow 

\ \searrow 

\swarrow 

\ \nwarrow 

Up and down arrows will grow larger, like delimiters (see Chapter 17). To put 

symbols over left and right arrows, plain provides a \buildrel macro: You 

type \buildrel{superscript)\over{relation}, and the superscript is placed on 

top of the relation just as limits are placed over large operators. For example, 

—> \buildrel \alpha\beta \over \longrightarrow 

= \buildrel \rm def \over = 

(In this context, ‘\over’ does not define a fraction.) 

11. Openings. The following left delimiters are available, besides ‘(’: 

[ \lbrack [ \lfloor [ \lceil 

{ \lbrace ( Mangle 

You can also type simply ‘ [’ to get \lbrack. All of these will grow if you prefix 

them by \bigl, \Bigl, \biggl, \Biggl, or \left. Chapter 17 also mentions 

Mgroup and \lmoustache, which are available in sizes greater than \big. If 

you need more delimiters, the following combinations work reasonably well in 

the normal text size: 

[ \lbrack\!\lbrack ({ \langle\! Mangle (( (\!( 

12. Closings. The corresponding right delimiters are present too: 

] \rbrack J \rfloor ] \rceil 

} \rbrace ) \rangle 

Everything that works for openings works also for closings, but reversed. 



438 Appendix F: Font Tables 

13. Punctuation. puts a thin space after commas and semicolons that ap- 
pear in mathematical formulas, and it does the same for a colon that is called 
\colon. (Otherwise a colon is considered to be a relation, as in ‘x := y’ and 
‘a : 6 :: c : d\ which you type by saying ‘$x:=y$’ and ‘$a:b: :c:d$’.) Examples 
of \colon are 

$f\colon A\rightarrow B$ 
L{a,b;c: x,y; z) $L(a,b;c\colon x,y;z)$ 

Plain also defines \ldotp and \cdotp to be and with the spacing of 
commas and semicolons. These symbols don’t occur directly in formulas, but 
they are useful in the definition of \ldots and \cdots. 

14- Alternate names. If you don’t like plain name for some math symbol— 
for example, if there’s another name that looks better or that you can remember 
more easily—the remedy is simple: You just say, e.g., ‘\let\cupcap=\asyinp’. 
Then you can type ‘f (n)\cupcap n’ instead of ‘f (n)\asymp n’. 

Some symbols have alternate names that are so commonly used that 
plain TgX provides two or more equivalent control sequences: 

5^ \ne or \neq (same as \not=) 
< Me (same as Meq) 
> \ge (same as \geq) 

{ \{ (same as Mbrace) 

} \} (same as \rbrace) 
\to (same as \rightarrow) 
\gets (same as Meftarrow) 

9 \owns (same as \ni) 
A Maud (same as \wedge) 
V Mor (same as \vee) 
—1 Mnot (same as \neg) 

1 \vert (same as I) 

II Wert (same as \ I) 

There’s also \iff ( ), which is just like \Longleftrightarrow except that 
it puts an extra thick space at each side. 

15. Non-math symbols. Plain makes four special symbols available outside 
of math mode, although the characters themselves are actually typeset from the 
math symbols font: 

§ \s 
% \P 
t \dag 
t \ddag 

These control sequences do not act like ordinary math symbols; they don’t change 
their size when they appear in subscripts or superscripts, and you must say, e.g.. 



Appendix F: Font Tables 439 

$x"{\P}$ instead of $x"\P$ when you use them in formulas. However, the \dag 
and \ddag symbols are available in math mode under the names \dagger and 
\ddagger. It would be easy to define mathematical equivalents of \S and \P, 
if these symbols suddenly caught a mathematician’s fancy. 

Seek not for fresher founts afar, 
Just drop your bucket where you are. 

— SAM WALTER FOSS, Back Country Poems (1892) 

No one compositor will have all the signs and symbols available. 
The number of special signs and symbols is almost limitless, 

with new ones being introduced all the time. 

— UNIVERSITY OF CHICAGO PRESS, Manual of Style (1969) 



Generating Boxes 
om Formulas 



Appendix G: Generating Boxes from Formulas 441 

People who define new math fonts and/or macros sometimes need to know exactly 

how manipulates the constituents of formulas. The purpose of this appendix is to 

explain the precise positioning rules by which converts a math list into a horizontal 

list. (It is a good idea to review the introduction to math lists in Chapter 17 before 

reading further; “double dangerous bends” are implied throughout this appendix.) 

T^X relies on lots of parameters when it typesets formulas, and you have the 

option of changing any or all of them. But of course you will want to know what each 

parameter means, before you change it. Therefore each rule below is numbered, and a 

table appears at the end to show which rules depend on which parameters. 

The most important parameters appear in the symbol fonts (family 2) and 

the extension fonts (family 3). will not typeset a formula unless \textfont2, 

\scriptfont2, and \scriptscriptfont2 each contain at least 22 \fontdimen param- 

eters. For brevity we shall call these parameters ai to (722, where the parameter is 

taken from \textf ont2 if the current style is display or text {D or D' or T or T'), from 

\scriptfont2 if the current style is S or S', and from \scriptscriptf ont2 otherwise. 

Similarly, the three fonts in family 3 must each have at least 13 \fontdimen parameters, 

and we will denote them by to ^13. The notation ^9, for example, stands for the 

ninth parameter of \scriptf ont3, if T]EX is typesetting something in \scriptstyle. 

A math list is a sequence of items of the various kinds listed in Chapter 17, 

and typesets a formula by converting a math list to a horizontal list. When such 
typesetting begins, has two other pieces of information in addition to the math list 

itself, (a) The starting style tells what style should be used for the math list, unless 
another style is specified by a style item. For example, the starting style for a displayed 

formula is D, but for an equation in the text or an equation number it is T; and for a 

subformula it can be any one of the eight styles defined in Chapter 17. We shall use C 

to stand for the current style, and we shall say that the math list is being typeset in 

style C. (b) The typesetting is done either with or without penalties. Formulas in the 

text of a paragraph are converted to horizontal lists in which additional penalty items 

are inserted after binary operations and relations, in order to aid in line breaking. Such 

penalties are not inserted in other cases, because they would serve no useful function. 

The eight styles are considered to be D > D' > T > T' > S' > 5' > S'S' > SS', 

in decreasing order. Thus, C < S means that the current style is S, S', SS, or SS'. 

Style C' means the current style with a prime added if one isn’t there; for example, we 

have C' = T' if and only if C = T oi C — T'. Style Cj is the superscript style for C; 

this means style S if C is O or T, style S' if C is D' or T', style SS if C is S or SS, 

and style SS' if C is S' or SS'. Finally, style C[ is the subscript style, which is [C])'. 

Chapter 17 stated that the most important components of math lists are called 

atoms, and that each atom has three fields called its nucleus, subscript, and superscript. 

We frequently need to execute a subroutine called “Set box x to the so-and-so field in 

style such-and-such.” This means (a) if the specified field is empty, x is set equal to a 

null box; (b) if the field contains a symbol, x is set to an hbox containing that symbol 

in the appropriate size, and the italic correction for the character is included in the 

width of the box; (c) if the field contains a math list or horizontal list, x is set to 

an hbox containing the result of typesetting that list with the specified starting style. 

In case (c), the glue is set with no stretching or shrinking, and an additional level of 

hboxing is omitted if it turns out to’ be redundant. 
Another subroutine sets box a: to a specified variable delimiter, having a spec- 

ified minimum height plus depth. This means that a search is conducted as follows: 



442 Appendix G: Generating Boxes from Formulas 

The delimiter is defined by two symbols, a “small character” a in family / and a “large 

character” b in family g. The search looks first at character a in scriptscriptfont /, if 

C < SS] then it looks at a in scriptfont /, if C < *9; then it looks at a in textfont /. If 
nothing suitable is found from a and /, the larger alternative b and g is examined in 

the same way. Either (a, /) or (b,g) may be (0, 0), which means that the corresponding 

part of the search is to be bypassed. When looking at a character in a font, the search 

stops immediately if that character has sufficient height plus depth, or if the character 

is extensible; furthermore, if the character does not stop the search, but if it has a 
successor in the font, the successor is looked at next. (See the METRFONT manual 

or the system documentation of tfm files for further information about successors and 

extensible characters.) If the search runs all the way to completion without finding a 

suitable character, the one with greatest height plus depth is chosen. If no characters 

at all were found (either because a = f = b = g = 0oi because the characters did not 

exist in the fonts), x is set to an empty box whose width is \nulldelimiterspace. If 

an extensible character was found, x is set to a vbox containing enough pieces to build 

up a character of sufficient size; the height of this vbox is the height of the topmost 

piece, and the width is the width of the repeatable piece. Otherwise x is set to an 

hbox containing the character that was found; the italic correction of the character is 

included in the width of this box. 

There’s also a subroutine that “reboxes” a given box to a given width. If the 
box doesn’t already have the desired width, unpackages it (unless it was a vbox), 

then adds a kern for an italic correction if one was implied, and inserts \hss glue at 

both left and right; the resulting horizontal list is packaged into an hbox. This process 

is used, for example, to give a common width to the numerator and denominator of a 

fraction; it centers whichever is smaller, unless infinite glue is present in addition to 

the newly added \hss. 

If a: is a box, we shall use the abbreviations h{x), d{x), and w{x) for its height, 

depth, and width, respectively. 

Here now are the rules for typesetting a given math list in starting style C. 

The process applies from left to right, translating each item in turn. Two passes are 

made over the list; most of the work is done by the first pass, which compiles individual 

translations of the math items. We shall consider this part of the task first: 

1. If the current item is a rule or discretionary or penalty or “whatsit” or bound- 

ary item, simply leave it unchanged and move to the next item. 

2. If the current item is glue or a kern, translate it as follows: If it is glue from 

\nonscript, check if the immediately following item is glue or a kern; and if so, remove 

that item if (7 < S'. Otherwise, if the current item is from \mskip or \mkern, convert 

from mu to absolute units by multiplying each finite dimension by Then move on 

to the next item. 

3. If the current item is a style change, set C to the specified style. Delete the 

current item from the list and move on to the next. 

4. If the current item is a four-way choice, it contains four math lists for the four 

main styles. Replace it by the math list that corresponds to the current style (7, then 

move to the first unprocessed item. 

5. If the current item is a Bin atom, and if this was the first atom in the list, or 

if the most recent previous atom was Bin, Op, Rel, Open, or Punct, change the current 

Bin to Ord and continue with Rule 14. Otherwise continue with Rule 17. 



Appendix G: Generating Boxes from Formulas 443 

6. If the current item is a Rel or Close or Punct atom, and if the most recent 

previous atom was Bin, change that previous Bin to Ord. Continue with Rule 17. 

7. If the current item is an Open or Inner atom, go directly to Rule 17. 

8. If the current item is a Vcent atom (from \vcenter), let its nucleus be a vbox 

of height-plus-depth v. Change the height to a and the depth to — a, where 

a is the axis height, a22- Change this atom to type Ord and continue with Rule 17. 

9. If the current item is an Over atom (from \overline), set box x to the nucleus 

in style C'. Then replace the nucleus by a vbox containing kern 6, hrule of height 6, 
kern 30, and box x, from top to bottom, where 6 = is the default rule thickness. 

(This puts a rule over the nucleus, with 3^ clearance, and with 6 units of extra white 

space assumed to be present above the rule.) Continue with Rule 16. 

10. If the current item is an Under atom (from \underline), set box x to the 

nucleus in style C. Then replace the nucleus by a vtop made from box x, kern 3^, and 

hrule of height 0, where ^ is the default rule thickness; and add 6 to the depth of 

the box. (This puts a rule under the nucleus, with 36 clearance, and with 0 units of 

extra white space assumed to be present below the rule.) Continue with Rule 16. 

11. If the current item is a Rad atom (from \radical, e.g., \sqrt), set box x to 

the nucleus in style C'. Let ^ and let p = ag ii C > T, otherwise (f = 0. Set 

Ip = 0-\- this is the minimum clearance that will be allowed between box x and the 

rule that will go above it. Set box ^ to a variable delimiter for this radical atom, having 

height plus depth h{x) + d{x) -\-^p -\-6 or more. Then set 6 h{y)] this is the thickness 

of the rule to be used in the radical construction. (Note that the font designer specifies 

the thickness of the rule by making it the height of the radical character; the baseline of 

the character should be precisely at the bottom of the rule.) If d{y) > h{x) ■i-d{x) + ip, 

increase 'ip by half of the excess; i.e., set ip <— ^('tp F d{y) — h{x) — d{x)). Construct a 

vbox consisting of kern 9, hrule of height 6, kern 'ip, and box x, from top to bottom. 

The nucleus of the radical atom is now replaced by box y raised by h{x) + 'ip, followed 

by the new vbox. Continue with Rule 16. 

12. If the current item is an Acc atom (from \mathaccent), just go to Rule 16 

if the accent character doesn’t exist in the current size. Otherwise set box x to the 

nucleus in style C, and set u to the width of this box. If the nucleus is not a single 

character, let s = 0; otherwise set s to the kern amount for the nucleus followed by the 

\skewchar of its font. If the accent character has a successor in its font whose width 

is < u, change it to the successor and repeat this sentence. Now set 6 inm{h{x), x)i 

where x is \fontdimen5 (the x-height) in the accent font. If the nucleus is a single 

character, replace box x by a box containing the nucleus together with the superscript 

and subscript of the Acc atom, in style C, and make the sub/superscripts of the Acc 

atom empty; also increase 6 by the difference between the new and old values of h{x). 

Put the accent into a new box y, including the italic correction. Let z he a vbox 

consisting of: box y moved right s F ^{u — w{y)), kern —6, and box x. If h{z) < h{x), 

add a kern of h(x) - h{z) above box y and set h(z) ^ h{x). Finally set w{z) ^ w{x), 

replace the nucleus of the Acc atom by box 2, and continue with Rule 16. 

13. If the current item is an Op atom, mark this atom as having limits if it has 

been marked with \limits, or if it has been marked with \displaylimits and C > T. 

If the nucleus is not a symbol, set 6 <— 0 and go to Rule 13a. Otherwise if (7 > T and 

if the nucleus symbol has a successor in its font, move to the successor. (This is where 



444 Appendix G: Generating Boxes from Formulas 

operators like ^ and f change to a larger size in display styles.) Put the symbol into 

a new box x, in the current size, and set S to the italic correction for the character; 

include 6 in the width of box x if and only if limits are to be set or there is no subscript. 

Shift box X down by ^(h(x) + d(x)) - a, where a = (722, so that the operator character 

is centered vertically on the axis; this shifted box becomes the nucleus of the Op atom. 

13a. If limits are not to be typeset for this Op atom, go to Rule 17; otherwise the 

limits are attached as follows: Set box x to the superscript field in style set box y 

to the nucleus field in style C; and set box z to the subscript field in style C|. Rebox 

all three of these boxes to width maiyi{w{x)^w(y)^w{z)). If the superscript field was not 

empty, attach box x above box y, separated by a kern of size max(^9,^ii — d{x))^ and 

shift box X right by |<5; also put a kern of size ^13 above box x. If the subscript field was 

not empty, attach box z below box y, separated by a kern of size max(^io,^i2 — h{z)), 

and shift box 2: left by also put a kern of size ^13 below box 2. The resulting vbox 

becomes the nucleus of the current Op atom; move to the next item. 

14. If the current item is an Ord atom, go to Rule 17 unless all of the following 

are true: The nucleus is a symbol; the subscript and superscript are both empty; the 

very next item in the math list is an atom of type Ord, Op, Bin, Rel, Open, Close, 

or Punct; and the nucleus of the next item is a symbol whose family is the same as 

the family in the present Ord atom. In such cases the present symbol is marked as 

a text symbol. If the font information shows a ligature between this symbol and the 
following one, using the specified family and the current size, then delete the present 

atom, insert the ligature character into the symbol of the following item, and move to 

that item. Otherwise if the font information shows a kern between the current symbol 

and the next, insert a kern item after the current Ord atom and move to the next item 

after that. Otherwise (i.e., if no ligature or kern is specified between the present text 

symbol and the following character), go to Rule 17. 

15. If the current item is a generalized fraction (and it had better be, because 

that’s the only possibility left if Rules 1-14 don’t apply), let 9 be the thickness of 

the bar line and let (A,p) be the left and right delimiters. If this fraction was gen- 

erated by \over or \overwithdelims, then 6 = ^s; if it was generated by \atop or 
\atopwithdelims, ^ 0; otherwise it was generated by \above or \abovewithdelims, 
and a specific value of 6 was given at that time. The values of A and p are null unless 

the fraction is “with delims.” 

15a. Put the numerator into box x, using style T or T' if C is D or D\ otherwise 

using style C]. Put the denominator into box 2, using style T' if C > T, otherwise using 

Cj. If w{x) < w{z)^ rebox x to width w{z)-^ if w{z) < w{x), rebox 2 to width w{x). 

15b. If C > T, set u ^ as and v •«— an. Otherwise set u ag ov (Jio, according 

as ^ 7^ 0 or ^ = 0, and set v <— ai2. (The fraction will be typeset with its numer- 
ator shifted up by an amount u with respect to the current baseline, and with the 

denominator shifted down by v, unless the boxes are unusually large.) 

15c. If ^ = 0 (\atop), the numerator and denominator are combined as follows: 

Set ip ■«— 7(^8 or 3^8, according as C > T or C < T; p is the minimum clearance that 

will be tolerated between numerator and denominator. Let if = [u — d(x)) — (h{z) — v) 

be the actual clearance that would be obtained with the current values of u and u; if 

Ip < (f, add ^{(fi — Ip) to both u and v. Then construct a vbox of height h{x) + u and 

depth d{z) V, consisting of box x followed by an appropriate kern followed by box 2. 



Appendix G: Generating Boxes from Formulas 445 

15d. If ^ 7^ 0 (\over), the numerator and denominator are combined as follows: 

Set (f 36 or 6, according as C > T or C < T; is the minimum clearance that 

will be tolerated between numerator or denominator and the bar line. Let a = (J22 

be the current axis height; the middle of the bar line will be placed at this height. If 

(u - d(x)) - (a + ^0) < (f, increase u by the difference between these quantities; and 

if {a - ^6) - {h(z) - v) < p, increase v by the difference. Finally construct a vbox of 

height h{x) + u and depth d{z) + v, consisting of box x followed by a kern followed by 

an hrule of height 6 followed by another kern followed by box 2:, where the kerns are 

figured so that the bottom of the hrule occurs at a — above the baseline. 

15e. Enclose the vbox that was constructed in Rule 15c or 15d by delimiters whose 

height plus depth is at least a2o, if C > T, and at least 0-21 otherwise. Shift the delim- 

iters up or down so that they are vertically centered with respect to the axis. Replace 

the generalized fraction by an Inner atom whose nucleus is the resulting sequence of 

three boxes (left delimiter, vbox, right delimiter). 

Rules 1-15 account for the preliminary processing of math list items; but we still haven’t 

specified how subscripts and superscripts are to be typeset. Therefore some of those 

rules lead to the following post-process: 

16. Change the current item to an Ord atom, and continue with Rule 17. 

17. If the nucleus of the current item is a math list, replace it by a box obtained 

by typesetting that list in the current style. Then if the nucleus is not simply a symbol, 

go on to Rule 18. Otherwise we are in the common case that a math symbol is to be 

translated to its horizontal-list equivalent: Convert the symbol to a character box for 

the specified family in the current size. If the symbol was not marked by Rule 14 above 

as a text symbol, or if \fontdimen parameter number 2 of its font is zero, set 6 to the 

italic correction; otherwise set 6 to zero. If 6 is nonzero and if the subscript field of the 

current atom is empty, insert a kern of width 6 after the character box, and set 6 to 

zero. Continue with Rule 18. 

18. (The remaining task for the current atom is to attach a possible subscript and 

superscript.) If both subscript and superscript fields are empty, move to the next item. 

Otherwise continue with the following subrules: 

18a. If the translation of the nucleus is a character box, possibly followed by a kern, 

set u and v equal to zero; otherwise set u ^ h — q and u d + r, where h and d are 

the height and depth of the translated nucleus, and where q and r are the values of 

(718 and (719 in the font corresponding to styles C] and C|. (The quantities u and v 
represent minimum amounts by which the superscript and subscript will be shifted up 

and down; these preliminary values of u and v may be increased later.) 

18b. If the superscript field is empty (so that there is a subscript only), set box x 

to the subscript in style C[, and add \scriptspace to w{x). Append this box to the 
translation of the current item, shifting it down by max(u, (7i6, h{x) - ||(75|), and move 

to the next item. (The idea is to make sure that the subscript is shifted by at least v 

and by at least (Tie; furthermore, the top of the subscript should not extend above | of 

the current x-height.) 

18c., Set box X to the superscript field in style CG and add \scriptspace to w(x). 

Then set u max(u,p, d{x) + | |u-51), where p = ais A C = D, p = cris if C = C , and 

p = (714 otherwise; this gives a tentative position for the superscript. 



446 Appendix G: Generating Boxes from Formulas 

18d. If the subscript field is empty (so that there is a superscript only), append 

box X to the translation of the current atom, shifting it up by u, and move to the next 

item. Otherwise (i.e., both subscript and superscript are present), set box y to the 

subscript in style Ci, add \scriptspace to 'w{y), and set v -H- max(v,(7i7). 

18e. (The remaining task is to position a joint subscript/superscript combination.) 

Let ^ = ^8 be the default rule thickness. If {u — d{x)) — {h{y) — v)> AO, go to Rule 18f. 

(This means that the white space between subscript and superscript is at least AO.) 

Otherwise reset v so that (u — d(x)) — {h{y) — v) = AO. Let -0 = ||cr51 — (w — d{x)). 

If ‘0 > 0, increase u hy and decrease v by ip. (This means that the bottom of the 
superscript will be at least as high above the baseline as | of the x-height.) 

18f. Finally, let 6 be zero unless it was set to a nonzero value by Rules 13 or 17. 

(This is the amount of horizontal displacement between subscript and superscript.) 

Make a vbox of height h{x) + u and depth d{y) + v, consisting of box x shifted right 

by 6, followed by an appropriate kern, followed by box y. Append this vbox to the 

translation of the current item and move to the next. 

After the entire math list has been processed by Rules 1-18, looks at the last atom 

(if there was one), and changes its type from Bin to Ord (if it was of type Bin). Then 

the following rule is performed: 

19. If the math list begins and ends with boundary items, compute the maximum 

height h and depth d of the boxes in the translation of the math list that was made on 

the first pass, taking into account the fact that some boxes may be raised or lowered. 

Let a = (722 be the axis height, and let 6 = max(/i —a, d+n) be the amount by which the 

formula extends away from the axis. Replace the boundary items by delimiters whose 

height plus depth is at least max( L^/500j/, 2^ — /), where / is the \delimiterf actor 

and I is the \delimitershortf all. Shift the delimiters up or down so that they are 

vertically centered with respect to the axis. Change the left boundary item to an Open 

atom and the right boundary item to a Close atom. (All of the calculations in this 

step are done with C equal to the starting style of the math list; style items in the 

middle of the list do not affect the style of the right boundary item.) 

20. Rules 1-19 convert the math list into a sequence of items in which the only 

remaining atoms are of types Ord, Op, Bin, Rel, Open, Close, Punct, and Inner. After 

that conversion is complete, a second pass is made through the entire list, replacing 

all of the atoms by the boxes and kerns in their translations. Furthermore, additional 

inter-element spacing is inserted just before each atom except the first, based on the 

type of that atom and the preceding one. Inter-element spacing is defined by the three 

parameters \thininuskip, \medmuskip, and Xthickmuskip; the mu units are converted 

to absolute units as in Rule 2 above. Chapter 18 has a chart that defines the inter- 

element spacing, some of which is \nonscript, i.e., it is inserted only in styles > S. 

The list might also contain style items, which are removed during the second pass; they 

are used to change the current style just as in the the first pass, so that both passes 

have the same value of C when they work on any particular atom. 

21. Besides the inter-element spacing, penalties are placed after the translation of 

each atom of type Bin or Rel, if the math list was part of a paragraph. The penalty 

after a Bin is \binoppenalty, and the penalty after a Rel is \relpenalty. However, 

the penalty is not inserted after the final item in the entire list, or if it has a numeric 



Appendix G: Generating Boxes from Formulas 447 

value > 10000, or if the very next item in the list is already a penalty item, or after a 

Rel atom that is immediately followed by another Rel atom. 

22. After all of the preceding actions have been performed, the math list has 

been totally converted to a horizontal list. If the result is being inserted into a larger 

horizontal list, in horizontal mode or restricted horizontal mode, it is enclosed by 

“math-on” and “math-off” items that each record the current value of \mathsurround. 

Or if this list is a displayed formula, it is processed further as explained in Chapter 19. 

Summary of parameter usage. Here is the promised index that refers to everything 

affected by the mysterious parameters in the symbol fonts. Careful study of the rules 

allows you to get the best results by appropriately setting the parameters for new 

fonts that you may wish to use in mathematical typesetting. Each font parameter has 

an external name that is used in supporting software packages; for example, (J14 is 

generally referred to as ‘sup2’ and as ‘default_rule_thickness’. These external names 

are indicated in the table. 

Parameter Used in Parameter Used in 

(X2 space 17 (717 sub2 18d 

(Tb x_ height 11,18b, 18c, 18e (T18 sup_drop 18a 

ere quad 2,20 (T19 sub-drop 18a 

CTg numl 15b (T20 deliml 15e 

erg num2 15b (T2I delim2 15e 

CTlO num3 15b (T22 axis, height 8,13,15d,19 

(Til denoml 15b ^8 default_rule_thickness 9,10,11,15,15c, 18e 

(T12 denom2 15b big_op_spacingl 13a 

(T13 supl 18c 60 big_op_spacing2 13a 

(714 sup2 18c big_op_spacing3 13a 

(T15 sup3 18c 62 big_op_spacing4 13a 

(T16 subl 18b ^13 big_op_spacing5 13a 

Besides the symbol and extension fonts (families 2 and 3), the rules above also refer 

to parameters in other families: Rule 17 uses \fontdimen parameter 2 (space) to de- 

termine whether to insert an italic correction between adjacent letters, and Rule 12 

uses parameter 5 (x_height) to position an accent character. Several non-font parame- 

ters also affect the typesetting of mathematics: dimension parameters delimiterlimit 

(Rule 19), Xnulldelimiterspace (in the construction of variable delimiters for Rules 

11, 15e, 19), \mathsurround (Rule 22), and \scriptspace (Rules ISbcd); integer pa- 

rameters Xdelimiterfactor (Rule 19), \binoppenalty (Rule 21), and \relpenalty 

(Rule 21); muglue parameters \thinmuskip, \medmuskip, and \thickinuskip (Rule 20). 

Woe to the author who always wants to teach! 
The secret of being a bore is to tell everything. 

— VOLTAIRE, De la Nature de I’Homme (1737) 

Very few Compositors are fond of Algebra, 
and rather chuse to be employed upon plain work. 

— PHILIP LUCKOMBE, The History and Art of Printing (1770) 



o 



Appendix H: Hyphenation 449 

It’s better to break a word with a hyphen than to stretch interword spaces too 
much. Therefore TgX tries to divide words into syllables when there’s no good 
alternative available. 

But computers are notoriously bad at hyphenation. When the type- 
setting of newspapers began to be fully automated, jokes about “the-rapists who 
pre-ached on wee-knights” soon began to circulate. 

It’s not hard to understand why machines have behaved poorly at this 
task, because hyphenation is quite a difficult problem. For example, the word 
‘record’ is supposed to be broken as ‘rec-ord’ when it is a noun, but ‘re-cord’ 
when it is a verb. The word ‘hyphenation’ itself is somewhat exceptional; if 
‘hy-phen-a-tion’ is compared to similar words like ‘con-cat-e-na-tion’, it’s not 
immediately clear why the ‘n’ should be attached to the ‘e’ in one case but not 
the other. Examples like ‘dem-on-stra-tion’ vs. ‘de-mon-stra-tive’ show that the 
alteration of two letters can actually affect hyphens that are nine positions away. 

A good solution to the problem was discovered by Frank M. Liang dur- 
ing 1980-1982, and incorporates the new method. Liang’s algorithm works 
quickly and finds nearly all of the legitimate places to insert hyphens; yet it 
makes few if any errors, and it takes up comparatively little space in the com- 
puter. Moreover, the method is flexible enough to be adapted to any language, 
and it can also be used to hyphenate words in two languages simultaneously. 
Liang’s Ph.D. thesis, published by Stanford University’s Department of Com- 
puter Science in 1983, explains how to take a dictionary of hyphenated words 
and teach it to T^]X; i.e., it explains how to compute tables by which will be 
able to reconstruct most of the hyphens in the given dictionary, without error. 

TgX hyphenates a given word by first looking for it in an “exception 
dictionary,” which specifies the hyphen positions for words that deserve special 
treatment. If the word isn’t there, TgX looks for patterns in the word, and this 
is the key idea underlying Liang’s method. Here’s how it works, using the word 
‘hyphenation’ as an example, when TgX is operating with the English-oriented 
patterns of plain Tg^ format: The given word is first extended by special markers 
at either end; in this case we obtain 

.hyphenation. 

if ‘. ’ denotes the special marker. The extended word has subwords 

. hyphenation . 

of length one, 

•h hy yp ph he en na at ti io on n. 

of length two, 

.hy hyp yph phe hen ena nat ati tio ion on. 

of length three, and so on. Each subword of length A: is a pattern that defines 
k-\-l small integer values relating to the desirability of hyphens in the positions 



450 Appendix H: Hyphenation 

between and adjacent to its letters. We can show these values by attaching them 
as subscripts; for example, ‘oho62^0’ means that the values corresponding to the 
subword ‘hen’ are 0, 0, 2, and 0, where the 2 relates to hyphens between the ‘e’ 
and the ‘n’. The interletter values are entirely zero for all subwords except those 
that match an entry in TgiX’s current “pattern dictionary”; and in this case, only 
the subwords 

ohoysPoho ohoe2iio ohoeoiioa-4 
ohoeoHsaoto lUoao oii23-o'to itoioOG 2ioOo 

occur as special patterns. now computes the maximum interletter value 
that occurs at each subword touching each interletter position. For example, 
between ‘e’ and ‘n’ there are four relevant values in this case (2 from ohoe2no, 
0 from ohoeonoa-4, 0 from ohoeonsaoto, and 1 from inoao); the maximum of 
these is 2. The result of all the maximizations is 

• ohoy3Pohoe2n5a4t2ioOorto • 

Now comes the final step: A hyphen is considered to be acceptable between 
two letters if the associated interletter value is odd. Thus, two potential break- 
points have been found: ‘hy-phen-ation’. Similarly, the word ‘concatenation’ 
contains the patterns 

O02no OOQIIICO ICQ^O IHQ^O 0ll23-0t^0 it^oioOO 2ioOO 

and this yields ‘oCo02niCoaotoein2ait2ioOoiio’5 he., ‘con-cate-na-tion’. 
Let’s try a 34-letter word: ‘supercalifragilisticexpialidocious’ 

matches the plain TjgX patterns 

uipe ric ica alii agii gil4 ilii il4ist isiti st2i 
Sitic lexp X3P pisa 211^ i2a-l 2id ido ici 210 2^3 

(where subscripts that aren’t shown are zero), and this yields 

•oSoUipoeo^iCo^oliioforo3-ogiiol4iosit2ioCieoX3p2i3aol2iidoOiC2io02UoSo• 

The resulting hyphens ‘su-per-cal-ifrag-ilis-tic-ex-pi-ali-do-cious’ 
agree with Random House’s Unabridged Dictionary (which also shows a few 
more: ‘su-per-cal-i-frag-i-lis-tic-ex-pi-al-i-do-cions’). 

Plain T^ loads exactly 4447 patterns into T^’s memory, beginning 
with ‘0 . oa-oCoh4’ and ending with ‘4Z1Z2’ and ‘oZ4Zoyo’- The interletter values in 
these patterns are all between 0 and 5; a large odd value like the 5 in ‘ohseoloOo’ 
forces desirable hyphen points in words like ‘bach-e-lor’ and ‘ech-e-lon’, while 
a large even value like the 4 in ‘ohoaoCoh4’ suppresses undesirable hyphens in 
words like ‘tooth-aches’. Liang derived these patterns by preparing a special 
version of Webster^s Pocket Dictionary (Merriam, 1966) that contains about 
50,000 words including derived forms. Then he checked a preliminary set of 
patterns obtained from this data against an up-to-date hyphenation dictionary of 
about 115,000 words obtained from a publisher; errors found in this run led to the 



Appendix H: Hyphenation 451 

addition of about 1000 words like camp-fire, Af-ghan-i-stein, and bio-rhythm 
to the pocket dictionary list. He weighted a few thousand common words more 
heavily so that they would be more likely to be hyphenated; as a result, the 
patterns of plain TgX guarantee complete hyphenation of the 700 or so most 
common words of English, as well as common technical words like al-go-rithm. 
These patterns find 89.3% of the hyphens in Liang’s dictionary as a whole, and 
they insert no hyphens that are not present. 

Patterns derived from the common words of a language tend to work 
well on uncommon or newly coined words that are not in the original dictionary. 
For example, Liang’s patterns find a correct subset of the hyphens in the word 
that all of today’s unabridged dictionaries agree is the longest in English, namely 

pneu-monoul-tra-mi-cro-scop-ic-sil-i-co-vol-canoco-nio-sis. 

They even do fairly well on words from other languages that aren’t too dis- 
tant from English; for example, the pseudo-German utterances of Mark Twain’s 
Connecticut Yankee come out with only six or seven bad hyphens: 

Con-stanti-nop-o-li-tanis-cher- 
dudel-sack-spfeifen-mach-ers-ge-sellschafft; 

Ni-hilis-ten-dy-na-mitthe- 
aterkaestchensspren-gungsat-ten-taetsver-suchun-gen; 

Transvaal-trup-pen-tropen-trans-port- 
tram-pelth-iertreib-er-trau-ungsthrae-nen-tra-goedie; 

Mekka-musel-man-nen-massen-menchen- 
mo-er-der-mohren-mut-ter-mar-mor-mon-u-menten-machen. 

But when plain T^X is tried on the name of a famous Welsh city, 

Llan-fair-p-wll-gwyn-gyll-gogerych- 
wyrn-drob-wl-l-l-lan-tysil-i-o-gogogoch, 

linguistic differences became quite evident, since the correct hyphens are 

Llan-fair-pwll-gwyn-gyll-go-ger-y- 
chwyrn-dro-bwll-llan-ty-sil-i-o-go-go-goch. 

Appropriate pattern values for other languages can be derived by applying 
Liang’s method to suitable dictionaries of hyphen points. 

Dictionaries of English do not always agree on where syllable boundaries 
occur. For example, the American Heritage Dictionary says ‘in-de-pend-ent’ 
while Webster’s says ‘in-de-pen-dent’. Plain generally follows Webster 
except in a few cases where other authorities seem preferable. 

[From here to the end of this appendix, will be typesetting with 

\hyphenpenalty=-1000 \pretolerajice=-l \tolerance=1000 
\doublehyphendemerits=-100000 \finalhyphendemerits=-100000 

so that hyphens will be inserted much more often than usual.] 



452 Appendix H: Hyphenation 

The fact that plain finds only 90% of the permissible hyphen 
points in a large dictionary is, of course, no cause for alarm. When word fre- 
quency is taken into account, the probability rises to well over 95%. Since 
T^’s line-breaking algorithm often succeeds in finding a way to break a para- 
graph without needing hyphens at all, and since there’s a good chance of find- 
ing a different hyphen point near to one that is missed by T^’s patterns, it is 
clear that manual intervention to correct or insert hyphenations in output is 
rarely needed, and that such refinements take a negligible amount of time com- 
pared to the normal work of keyboarding and proofreading. 

But you can always insert words into IJE^’S exception dictionary, if 
you find that the patterns aren’t quite right for your application. For exam- 
ple, this book was typeset with three exceptional words added: The format in Ap- 
pendix E includes the command 

\hyphenation{man-u-script man-u-scripts ap-pen-dix} 

which tells how to hyphenate the words ‘manuscript’, ‘manuscripts’, and 
‘appendix’. Notice that both singular and plural forms of ‘manuscript’ were en- 
tered, since the exception dictionary affects hyphenation only when a word agrees 
completely with an exceptional entry. (Precise rules for the \hyphenation com- 
mand are discussed below.) 

If you want to see all of the hyphens that plain will find in some ran- 
dom text, you can say ‘\showhyphens{(random text)}’ and the results will ap- 
pear on your terminal (and in the log file). For example, 

♦\showhyphens{random mainuscript manuscripts appendix} 

Underfull \hbox (badness 10000) detected at line 0 
[] \tenrm ran-dom manuscript manuscripts ap-pendix 

shows the hyphen positions that would have been found in this book with- 
out the addition of any \hyphenation exceptions. Somehow the word ‘man- 
uscript’ slips through all of the ordinary patterns; the author added it as an ex- 
ception for this particular job because he used it 80 times (not counting its ap- 
pearances in this appendix). 

The \showhyphens macro creates an hbox that is intentionally underfull, 
so you should ignore the warning about ‘badness 10000’; this spurious message 
comes out because displays hyphens in compact form only when it is dis- 
playing the contents of anomalous hboxes. (IfeX wizards may enjoy study- 
ing the way \showhyphens is defined in Appendix B.) 

If you want to add one or more words to the exception dictionary, just 
say \hyphenation{(words)} where (words) consists of one or more (word) 

items separated by spaces. A (word) must consist entirely of letters and hy- 
phens; more precisely, a “hyphen” in this context is the token -12. A “let- 
ter” in this context is a character token whose category code is 11 or 12, or a con- 
trol sequence defined by \chardef, or \char(8-bit number), such that the correspond- 
ing character has a nonzero \lccode. T]EX uses the \lccode to convert each let- 



Appendix H: Hyphenation 453 

ter to “lowercase” form; a word-to-be-hyphenated will match an entry in the excep- 

tion dictionary if and only if both words have the same lowercase form after conver- 

sion to lowercase. 

TgX will henceforth insert discretionary hyphens in the specified positions, 

whenever it attempts to hyphenate a word that matches an entry in the excep- 
tion dictionary, except that hyphens are never inserted after the very first letter or be- 

fore the last or second-last letter of a word. You must insert your own discretionary hy- 

phens if you want to allow them in such positions. A \hyphenation entry might con- 
tain no hyphens at all; then will insert no hyphens in the word. 

The exception dictionary is global; i.e., exceptions do not disappear at the end 

of a group. If you specify \hyphenation of the same word more than once, its 

most recently specified hyphen positions are used. 

The exception dictionary is dynamic, but the pattern dictionary is static: To 

change T^]X’s current set of hyphenation patterns, you must give an entirely 

new set, and TgX will spend a little time putting them into a form that makes the hy- 

phenation algorithm efficient. The command format is \patterns{(patterns)}, where 

(patterns) is a sequence of (pattern) items separated by spaces. This command is avail- 

able only in INITEX, not in production versions of T^]X, since the process of pattern com- 

pression requires extra memory that can be put to better use in a production sys- 

tem. INITEX massages the patterns and outputs a format file that production ver- 

sions can load at high speed. 

A (pattern) in the \patterns list has a more restricted form than a (word) 

in the \hyphenation list, since patterns are supposed to be prepared by ex- 

perts who are paid well for their expertise. Each (pattern) consists of one or more occur- 

rences of (value)(letter), followed by (value). Here (value) is either a digit (O12 to 912) or 

empty; an empty (value) stands for zero. For example, the pattern ‘oaibo’ can be rep- 

resented as OalbO or albO or Oalb or simply alb. A (letter) is a character token of cate- 

gory 11 or 12 whose \lccode is nonzero. If you want to use a digit as a (letter), you must 

precede it by a nonempty (value); for example, if for some reason you want the pat- 

tern ‘iaol2’ you can obtain it by typing Ta012’, assuming that \lccode‘l is nonzero. 

Exception: The character is treated as if its \lccode were 128 when it ap- 

pears in a pattern. Code 128 (which cannot be a real \lccode) is used by to rep- 

resent the left or right edge of a word when it is being hyphenated. 

Plain T^)X inputs a file called hyphen.tex that sets up the pattern dictio- 

nary and the initial exception dictionary. The file has the form 

\patterns{.ach4 .ad4der .aflt .al3t ••• zte4 4zlz2 z4zy} 
\hyphenation{as-so-ciate as-so-ciates dec-li-na-tion oblig-a-tory 

phil-an-thropic present presents project projects reci-procity 

re-cog-ni-zaiice ref-or-ma-tion ret-ri-bu-tion ta-ble} 

The first thirteen exceptions keep from inserting incorrect hyphens; for ex- 

ample, ‘pro-ject’ and ‘pre-sent’ are words like ‘re-cord’, that cannot be hy- 
phenated without knowing the context. The other exception, ‘ta-ble’, is in- 

cluded just to meet the claim that plain fully hyphenates the 700 or so most com- 

mon words of English. 



454 Appendix H: Hyphenation 

But how does decide what sequences of letters are “words” that should 

^ be hyphenated? Let’s recall that is working on a horizontal list that con- 

tains boxes, glue, rules, ligatures, kerns, discretionaries, marks, whatsits, etc., in addi- 

tion to simple characters; somehow it has to pick out things to hyphenate when it is un- 

able to find suitable breakpoints without hyphenation. The presence of punctua- 

tion marks before and/or after a word should not make a word unrecognizable or unhy- 

phenatable; neither should the presence of ligatures and kerns within a word. On the 

other hand, it is desirable to do hyphenation quickly, not spending too much time try- 

ing to handle unusual situations that might be hyphenatable but hard to recog- 

nize mechanically. 

TgX looks for potentially hyphenatable words by searching ahead from each 

^ glue item that is not in a math formula. The search bypasses charac- 

ters whose \lccode is zero, or ligatures that begin with such characters; it also by- 

passes whatsits and implicit kern items, i.e., kerns that were inserted by 1^]X it- 

self because of information stored with the font. If the search finds a charac- 

ter with nonzero \lccode, or if it finds a ligature that begins with such a charac- 

ter, that character is called the starting letter. But if any other type of item oc- 

curs before a suitable starting letter is found, hyphenation is abandoned (until af- 

ter the next glue item). Thus, a box or rule or mark, or a kern that was explicitly in- 

serted by \kern or \/, must not intervene between glue and a hyphenatable word. If 

the starting letter is not lowercase (i.e., if it doesn’t equal its own \lccode), hyphen- 

ation is abandoned unless \uchyph is positive. 

If a suitable starting letter is found, let it be in font /. Hyphenation is aban- 

JL doned unless the \hyphenchar of / is between 0 and 255. If this test is passed, 

TgX continues to scan forward until coming to something that’s not one of the following 

three “admissible items”: (1) a character in font / whose \lccode is nonzero; (2) a lig- 

ature formed entirely from characters of type (1); (3) an implicit kern. The first inad- 

missible item terminates this part of the process; the trial word consists of all the let- 

ters found in admissible items. Notice that all of these letters are in font /. 

If a trial word h .. .In has been found by this process, hyphenation will still be 

abandoned unless n > 4. Furthermore, the items immediately following the 

trial word must consist of zero or more characters, ligatures, and implicit kerns, fol- 

lowed immediately by either glue or an explicit kern or a penalty item or a what- 

sit or an item of vertical mode material from \mark, \insert, or \vadjust. Thus, a box 

or rule or math formula or discretionary following too closely upon the trial word will in- 

hibit hyphenation. (Since T^]X inserts empty discretionaries after explicit hy- 

phens, these rules imply that already-hyphenated compound words will not be fur- 

ther hyphenated by the algorithm.) 

Trial words h .. .In that pass all these tests are submitted to the hyphen- 

JL ation algorithm described earlier. Hyphens are not inserted before I2 or af- 

ter ln-2- If other hyphenation points are found, one or more discretionary items are in- 

serted in the word; ligatures and implicit kerns are reconstituted at the same time. 

Since ligatures and kerns are treated in quite a general manner, it’s pos- 

_IL sible that one hyphenation point might preclude another because the lig- 

atures that occur with hyphenation might overlap the ligatures that occur with- 



Appendix H: Hyphenation 455 

out hyphenation. This anomaly probably won’t occur in real-life situations; there- 

fore TgX’s interesting approach to the problem will not be discussed here. 

According to the rules above, there’s an important distinction between im- 

i plicit and explicit kerns, because T^]X recomputes implicit kerns when 

it finds at least one hyphen point in a word. You can see the difference be- 

tween these two types of kerns when T^X displays lists of items in its internal for- 

mat, if you look closely: ‘\kern2.0’ denotes an implicit kern of 2 pt, and ‘\kern 2.0’ de- 

notes an explicit kern of the same magnitude. The italic correction command \/ in- 

serts an explicit kern. 

If all problems of hyphenation have not been solved, 
at least some progress has been made 

since that night, when according to legend, 
an RCA Marketing Manager received a phone call 

from a disturbed customer. His 301 had Just hyphenated “God.” 

— PAUL E. JUSTUS, There's More to Typesetting Than Setting Type (1972) 

The committee skeptically re- 
commended more study for a bill 
to require warning labels on rec- 

ords with subliminal messages re- 
corded backward. 

— THE PENINSULA TIMES TRIBUNE (April 28, 1982) 



c 



Appendix I: Index 457 

The author has tried to provide as complete an index as possible, so that people 

will be able to find things that are tucked away in obscure corners of this long 

book. Therefore the index itself is rather long. A short summary of the simpler 

aspects of TgX appears at the beginning of Appendix B; a summary of special 

symbols appears at the end of Appendix F; a summary of other special things 

appears under ‘tables’ below. 

Page numbers are underlined in the index when they represent the definition 
or the main source of information about whatever is being indexed. (Underlined entries 
are the most definitive, but not necessarily the easiest for a beginner to understand.) 
A page number is given in italics (e.g., ‘‘123') when that page contains an instructive 
example of how the concept in question might be used. Sometimes both underlining 
and italics are appropriate. When an index entry refers to a page containing a relevant 
exercise, the answer to that exercise (in Appendix A) might divulge further information; 
an answer page is not indexed here unless it refers to a topic that isn’t included in the 
statement of the relevant exercise. 

Control sequence names that are preceded by an asterisk (*) in this index are 
primitives of TT]X; i.e., they are built in. It may be dangerous to redefine them. 

u (visible space), 3, 420, 429; 
see also (space), spaces. 

*\u (control space), 8, 10, 19, 73, 74, 
86-87, 154, 163, 167, 283, m, 
290, 323, 351, 381. 

# (hash mark), 38, 51, 113, 200-202, 203, 
204-205, 228, 2^, 236-240. 

\# ( # ), 38, 51, 
##, 203-205, 228, 359-362, 378-379. 
###, 88. 

#{, 204, 401. 
$ (dollar sign), 4, 38, 51, 54, 86-88, 92, 127, 

134-135, 185-186, 209, 283, 
\$ ( $ ), 38, 51, 202, 309, 
$$, 86-89, 185, 186-196, 232, m, 2^, 

375-376, 421. 
7, (percent sign), 26, 38, 39, 43, 48, 51, 113, 

124, 249, 337, 340, 343. 
\7. ( % ), 38, 43-44, 51, 
•/,•/„ 112-113. 
& (ampersand), 38, 51, 175-177, 190-196, 

231-248, 2^, 385-386. 
for preloaded formats, 25, 26, 344. 

\& ( & ), 38, 51, 53, 
&&, 241-242, 361, 412. 
’ (apostrophe or right quote), 3-5, 51, 130, 

155, 201, 305, 324, 394 395; 
see also octal. 

\’ (acute accent), 7-9, 52-53, 305, 
335, 420. 

” ( ” ), 3-5, 24, 394-395. 

‘ (reverse apostrophe or left quote), 3-5, 51, 
132, 134, 305, 391, 394-395; 
see also alphabetic constant. 

\‘ (grave accent), 8, 52-53, 305, 356. 
“ ( “ ), 3-5, 24, 394-395. 
" (double quote or ditto mark), 52, 53, 

134; see also hexadecimal. 
\" (dieresis or umlaut accent), 7, 9, 24-, 

25, 52-53, 55, 356. 
( (left parenthesis), 51, 134, I40, 

145-150, 345. 
\(, 409. 
) (right parenthesis), 51, 134, I4O, 

145-150, 345. 
[ (left bracket), 51, 134, I46-I48, 

171, 4O8, 437. 
[], 28, 79, 302. 
[1], 23, 119. 
] (right bracket), 51, 134, 146-147, 

171, 345, 4O8, 437. 
{ (left brace), 13-14, 19-21, 38, 51, 

200-202, 203-204. 205-206, 216, 2^, 
275-276, 2^, 2^, 330. 

\{ ( { ), 134, 146-147, 174-175, Mi- 
{}, 19, 54, 82, 95, 114, 129, 130, 150, 

169, 196, 242, 253, 262, 305, 315, 
318, 351, 393. 

} (right brace), 13-14, 19-21, 38, 51, 
200-202, 203-204. 205-206, ME, 

275-276, ME, 301, 330. 
\} ( } ), 134, 146-147, 174-175, Mi- 



458 Appendix I: Index 

+ (plus sign), 51, 132, 268. 
\+ (begin tabbed line), 231-234^ 249, 

339, 354. 
- (hyphen or minus), 4-> 51, 93, 95, 

127, 132, 268. 
*\- (discretionary hyphen), 95, 283, 287, 292. 

—, , see en-dash, em-dash. 
±, see \pm. 
=p, see \mp. 
* (asterisk), 23, 25, 51, 99, 113, 116, 

132-133, 154, 326. 
\* (discretionary x), 173, 357. 
♦ *, 23, 25, 344. 
/ (slash), 51, 15^, 146-147, 320, 430. 

*\/ (italic correction), I4, 64, 287, 292, 
306, 382, 455. 

I (vertical line), 52, 53, 132, 146-147, 
171, 174, 438. 

\! ( I ), 146-147, 171, Mi, 435, 438. 
\ (backslash), 7, 38, 39, 40, 51, 146-147, 

343, 436. 
W, 38, 378, 418. 
< (less than sign), 52, 53, 133, 150, 154, 209. 
<, 45, 135, 369; see also \le. 
= (equals sign), 51, 133, 209, 226, 275, 376. 
\= (macron accent), 52, 53, 356. 

181, 437. 
#, 45, 135, 369; see also \ne. 
> (greater than sign), 52, 53, 133, 150, 209. 
\> (medium space), 167, 171, 357. 
>, 45, 135, 369; see also \ge. 
(}, see angle brackets. 
, (comma), 51, 72-73, 134, 161-162, 

172-174, 394-395, 430. 
\, (thin space), 5, 167-173, 305, 357, 

409-410. 
. (period), 51, 72-73, 133-134, 149, 161, 

345, 394-395, 430. 
space after, 75-75; 76- 

\. (dot accent), 52, 356. 
..., see \ldots, ellipses. 
• • •, see \cdots, ellipses. 
:, see \vdots, ellipses. 
; (semicolon), 51, 134, 161. 
\; (thick space), 167, 171, 357. 

(colon), 51, 133-134, 155, 161, 174, 438. 
: = , 133. 
? (question mark), 31, 51, 73, 161. 
I (open question), 51. 
! (exclamation point), 51, 72, 73, 75, 

161, 169. 
i (open exclamation), 51. 

\! (negative thin space), 167, 169, 357. 
_ (underscore), 38, 51, 128-130, 134. 
\_ ( _ ), 38, 165, 
~ (hat), 38, 51, 128-130, 134, 369, 423. 

(circumflex accent), 52-53, 356. 
45, 47, 48, M8, 370, 423. 
(ASCII (return)), 45, 249, 331, U3, 345, 
348, 352, 380, 390-391, 421, 423. 

\-^M, 8, 305, 351. 
(tilde), 38, 51, 91-92-, see also ties. 

\~ (tilde accent), 52, 356, 387. 
t4, 135, 343, 368, 429; 

see also \uparrow, \downarrow. 
0 (at sign), 51, 98-99, 132, 134, 344, 

364, 4O8, 414. 
@0, 98-99. 
\(9ne, 345. 

\aa ( a ), 356. 
\AA ( A ), 356. 
abbreviations, 73-74, 340] see also macros. 

*\above (general fraction), 143, 152, 
292, 444-445. 

*\abovedisplayshortskip, 189, 274, 
348, 415. 

*\abovedisplayskip, 189, 190, 194, 274, 
291, 348, 415. 

*\abovewithdelims, 152, 292, 444-445. 
absolute value, I46, 149, 171, 175. 
Acc atom, 158, 289, 443. 

*\accent (general accent), 9, 54, 86, 283, 286. 
accents (' ' " etc.), 7, 52-53, 339, 356, 

357, 427-429. 
as ligatures, 46, 54. 
in math, 135-137, 141, 164-165, 

359, 435, 443. 
on top of accents, 136. 
table, 52, 135, 339. 

\active (category 13), 241, 343, 395, 431. 
active character, 37, 40, 209, 241, 307, 

377, 380-381, 394-395. 
active math character, 155, 289. 
active spaces, 381, 394, 421. 
\acute (math accent: x), 135, 359. 
acute accent ('), see \ ’, \acute. 
\address, 403-404, 407. 

*\adjdemerits, 273, 314, 348. 
*\advance, 21, 118-119, 218, 256, m, 355. 
\advcuicepageno, 256, 257, 362, 4IO. 
\ae ( ae ), vii, 17, 45-46, 52-53, 239, M6. 
\AE ( ^ ), 52-53, 356. 

*\afterassignment, 215, 279, 352, 
364, 376, 401. 



Appendix I: Index 459 

*\aftergroup, 215, 363, 374, S77, 379. 
‘ain, see reverse apostrophe, 
al-Khwarizmi, abu Ja‘far Muhammad 

ibn Musa, 53. 
\aleph ( K ), 9, 435. 
Alice, 4, 387, 394. 
alignment displays, 190, 193, 291. 
(alignment material), 282, 285. 
alignments, 231-249, 302-303, 385-386, 

392; see aJso tabbing. 
Alka-Seltzer, 404-405. 
all caps, see \uppercase. 
Allen, Todd Andrew, 377. 
allocation, 121-122, 346, 347. 
\allocationnumber, 346. 
\allowbreak, 174i 353, 396. 
\allowhyphens, 394i 395. 
\alpha ( a ), 127, 201, 434. 
\Alpha, 434. 
alphabetic constants, 4A~A^-, 215, 269, 

270, 309, MZ, 385. 
alternatives, see \cases. 
\ainalg ( II ), 358, 436. 
American Mathematical Society, ii, vii. 
ampersand, 25, 38, 51, 175-177, 190-196, 

231-248, 2^, 344, 385-386, 428. 

4M‘5-TEX, 164, 434. 

anatomy of 38-39, 46, 85, 267, 349, 
373, 379, 385, 386, 4^. 

\angle ( Z ), 435. 
angle brackets ( () ), 59, 146-147, 150, 268, 

420, 437; see also Meoigle, \rajigle. 
angstrom unit, see \AA. 
\annotations, 403, 404^ 4:07. 
answers to the exercises, 305-337. 
Antisthenes of Athens, 239. 
apostrophe, 3-5, 51, 130, 155, 201, 324; 

see also octal. 
\approx ( ~ ), 128, 436. 
Arabic, 66. 
\arccos ( arccos ), 162, 361. 
Archytas of Taras, 239. 
\arcsin ( arcsin ), 162, 361. 
\arctan ( arctan ), 162, 361. 
Arenskh, Anton Stepanovich, 410. 
\arg ( arg ), 162, 361. 
arguments, 33, 200-205, 263, 268, 375-380. 
Aristippus of Cyrene, 239. 
Aristophanes, 239. 
Aristotle, 35. 
arithmetic, 117-119, see \advance, 

\multiply, \divide. 
(arithmetic), 276. 

arrays, 176-178, see matrices, 
arrows, I46-I47, 182, 226, 437. 

\arrowvert ( 

\Arrowvert ( 

), 150, 

), 150, 359. 
The Art of Computer Programming, 

259-260. 
as is, see \obeylines, \obeyspaces, 

verbatim. 
ASCII, 3, 43-45, 49, 214, 343, MI, 371. 
(assignment), 275- 
assignments, 275-278, 373. 
\ast ( * ), 436. 
asterisk, 23, 25, 51, 99, 113, 116, 132-133, 

154, 326. 
\asymp ( X ), 436. 
at, 16-17, 60, 213, 277, 4O8, 414, 433. 
(at clause), 277. 
at sign, 51, 98-99, 132, 134, 344, ^^4, 

4O8, 414. 
AT&T, 247. 
atoms, 157-159, 170-171, 289-290, 441-447. 

table of atomic types, 158. 
*\atop, 143, 145, 152, 178, 292, 444. 
*\atopwithdelims, 152, 292, 324, 360, 444. 
author, typesetting by, 182, 412-413. 
auxiliary spaces, see ties, 
axis line, 150-152, 179, 443-447. 

\b (bar-under accent), 52, 356. 
Bach, Johann Sebastian, 408. 
Bach, P. D. Q., 410-411, 481. 
backslash, 7, 38, 39, 40, 51, 146-147, 

343, 436. 
\backslash ( \ ), 38, I46-I47, M9, 435, 436. 
backspacing, 66, 82-83, 222, 394-395, 413. 
Backus, John Warner, 268. 
Bacon, Francis, viscount St. Albans, 41. 
Bacon, Leonard, 1. 
bad breaks, avoiding, 27-30, 91-94, 

173-174, 197. 
badness, 28-30, 97-99, 111-113, 302. 
(balanced text), 275, 276, 385. 
balancing columns, 386-388, 396-397, 417. 
\bar (math accent: x), 135, 136. 
bar accent (”), see \=, \bar. 
bar-under accent (_), see \b. 
Barrett, Percy Reginald, 197. 
Barrough, Philip, 229. 
baseline, 15, ^’^5 80-81, 150. 

*\baselineskip (normal vertical distance 
between baselines), 78-79, 104, 
194, 253, 256, 274, 281, 342, 349, 
351-352, 409, 414-415. 



460 Appendix I: Index 

*\batchmode, 277, 299, 336. 
Batey, Charles, 197. 
beauty, 1. 
Beck, Simone, 233, 236. 
Beethoven, Ludwig van, 408, 410-411. 
Beeton, Barbara Ann Neuhaus Friend 

Smith, 483. 
\beginchapter, 418. 

*\begingroup, 21, 249, 262, 279, 380, 
407, 419. 

\beginsection, 340-34 1 355. 
*\belowdisplayshortskip, 189, 274, 

348, 415. 
*\belowdisplayskip, 189, 190, 194, 274, 

291, 348, 415. 
Berner, Robert William, see TEX, ASCII, 
bent bars, see angle brackets. 
Bertholle, Louisette, 233, 236. 
\beta ( 0 ), 127, 434. 
\Beta, 434. 
\bf (use boldface type), 13-14, 164-165, 

328, 409, 414-415. 
\bffam, 414-415. 
\bgroup (implicit {), 269, 351, 363, 

382, 407, 421. 
Bibby, Duane Robert, i. 
Biblical references, 303, 311. 
bibliographies, 4, 74, 93, 340-341- 
\big (largish delimiter), 147, 171, 320, 

359, 414-415. 
\Big (between \big and \bigg), 147, 

175, 359, 360. 
big-O notation, 132, 161-162, 169. 
big point, 57, see bp. 
\bigbreak. 111, 116, 353, 363. 
\bigcap (large fl), 147, 435. 
\bigcirc ( Q^, 436. 
\bigcup (large U), 147, 435. 
\bigg (large delimiter), 147, 175, 196, 

327, 359, MQ. 
\Bigg (larger than \bigg), 147, 175, 

359, 360. 
\bigggl, \bigggr, 324. 
\biggl (\bigg left delimiter), 147, 

149, 437. 
\Biggl (\Bigg left delimiter), 147, 

149, 437. 
\biggm (\bigg middle delimiter), 147, 359. 
\Biggin (\Bigg middle delimiter), 147, 359. 
\biggr (\bigg right delimiter), 147, 

149, 359. 
\Biggr (\Bigg right delimiter), 147, 

149, 359. 

\bigl (\big left delimiter), I46-I47, 
149-150, 155, 171, 175, 437. 

\Bigl (\Big left delimiter), 147, 359, 437. 
\bigm (\big middle delimiter), 147, 

359, 171, 175. 
\Bigm (\Big middle delimiter), 147, 359. 
\bigodot (large O), 435. 
\bigoplus (large 0), 435. 
\bigotimes (large 0), 435. 
\bigr (\big right delimiter), 146-147, 

149-150, 171, 175, 359. 
\Bigr (\Big right delimiter), 147, 359. 
\bigskip, 70, 109, 111, 115-116, 

355, 407, 410-412. 
Nbigskipamount, 123, 349, 352-353, 363. 
\bigsqcup (large U), 435. 
\bigtriangledown ( V ), 436. 
\bigtriangleup ( A ), 436. 
\bigtype, 408-409, 411. 
\biguplus (large 0), 358, 435. 
\bigvee (large V), 435. 
\bigwedge (large A), 435. 
Bill, 387, 394. 
Bin atom, 158, 170-171, 289, 442-444, 446. 
binary operations, 132-133, 154-155, 164, 

196, 358, 435, 436; see also Bin atom, 
binary search, 387-388. 
binomial coefficient, 143, see \choose. 

*\binoppenalty, 10*1, 174, 272, 322, 348, 446. 
black box, 64, 221, 222. 
blackboard bold (e.g., IR), 164, 434. 
blank line in input file, 24, 37, 47, 

340-341, 381. 
blank space, see spaces. 
Blase Bohning, Maria Dorothea, 248. 
block structure, see grouping, 
block style, 405-407. 
\bmit (boldface math italic), 156. 
\bmod ( mod ), 164, 322, 361. 
\body, 403-404, 407. 
Boehm, Peter James, 159. 
Bohning, Jobst Heinrich, 248. 
Bohning, Martin John Henry, 248. 
Bohning Knuth, Louise Marie, 248. 
boldface, 13, 156, 164-165, 386. 
book design, 412. 
book preparation, 303, 425. 
\bordermatrix, 177, 361. 
\bot ( _L ), 435. 

*\botmark, 213, 2^, 259-260, 262-263, 280. 
boundary item, 157, 442, 446. 
Bourbaki, Nicolas, 106. 
\bowtie ( M ), 358, 436. 



Appendix I: Index 461 

(box), 120, 222, 2;^, 282, 285, 290. 
*\box (use box register), 120-122, 151, 222, 

278, 346, 354, 386, 387. 
\box255, 125, 253-258. 
(box dimension), 271, 277. 
box displays, 66, 75, 79, 158-159, 302, 455. 
box memory, 300, 394. 
(box or rule), 281. 
(box size assignment), 277. 
(box specification), 222, 278. 
boxed] control sequence names, 38. 
boxed material, 223, 420. 
boxes, 63-67, 77-83. 

*\boxmaLxdepth, 113, 249, 255, 274, 348. 
bp (big point), 270. 

\brace (notation like {^})5 360. 
\braceld, \bracelu, \bracerd, \braceru 

(pieces of horizontal braces), 357. 
braces, 51, 216, 2^, 275-276, 279, 283, 286, 

289-291, 330, 345, 385-386. 
for arguments to macros, 20, 200-202, 

203, 204, 205-206, 385-386. 
for grouping, 13-14^ 19-21, 232, 248, 253. 
horizontal, 176, 225-226, 339. 
implicit, 269, see \bgroup, \egroup. 
in math formulas, 145-147, 174-176. 

\bracevert ( | ), 150, 359. 

\brack (notation like [^]), 360. 
brackets, 51, 134, I46-I48, 171, 4O8, 437. 
\break (force line or page break), 94, 

97, 106, 114, 193, 353. 
breakpoints, 96, 97-100, 110, 111-114, 394. 

avoiding bad, 27-30, 91-94, 109-111, 
173-174, 197. 

discretionary, 95-96, 173, 287, 292, 357. 
forcing good, 94, 105, 109-111, 114. 
in displays, 195-197. 
in formulas, 173-174, 446-447. 

\breve (math accent: x), 135. 
breve accent ("), see \u, \breve. 
British pound sign, 54. 
brochures, 251. 

*\brokenpenalty, 104, 105, 273, 348. 
Brooks, Frederick Phillips, Jr., 365. 
Brown, Peter John, 425. 
\buildrel, 361, 407. 
built-up (extensible) characters, 442. 
built-up fractions, see \over. 
\bull ( ■ ), 420. 
Bull, John, 239. 
\bullet ( • ), 133, 154, 355, 436. 
bulleted lists, 102, 105. 
business correspondence, 200, 403-408. 

by, 118, m. 
\bye, 87-88, 340, 357. 
Byron, George Gordon Noel Byron, 

baron, vh. 

\c (cedilla accent), 24-25, 52, 356. 
\cal (calligraphic caps), 164, 351, 431, 434. 
calculus, 168-169, 180-181. 
camera alignment, 416-417. 
\cap ( n ), 133, 436. 
capacity of T^X, 100, 300-301, 383. 
caps and small caps, 203. 
captions, 115. 
caret, 369. 
carriage return, 231, see (return), \cr. 
\cases ( { '' ), 175, 362. 
Caswell, Herbert Ernest, 413. 

*\catcode, 39, 134, 214, m, 305 , 343, 
380-382, 384, 390-391, 421, 424. 

category codes, 37-40, 48, 203-205, 
209-210, 214, 381. 

table, 37. 
cc (cicero), 57, 270. 
\cdot ( • ), 133, 172, 319, 436. 
\cdotp, 358, 359, 438. 
\cdots {■■■), 172, 176, 180-181, 438. 
cedilla accent (^), 25, 52, 54, see \c. 
ceiling brackets ( [] ), 146-147, see \lceil, 

\rceil. 
centering, 71, 233, 236. 
\centering, 347, 348, 362. 
\centerline (make a centered line), 20, 24, 

33, 71, 85, 101, 117, 232, 311, 340, 353. 
\cents ( ^ ), 140, 319. 
Cesaro, Ernesto, 53. 
Chaikovskh, Petr Il’ich, 410-411. 

*\char, 43-46, 76, 86, 155, 283, m, 
289, 340, 427, 452. 

(character), 289. 
character codes, 43-46, 367-370; 

see also category codes. 
(character token), 270. 

*\chardef, 44, 121, 155, 210, 214, 215, 272, 
277, 336, 343, 345, 452. 

(chardef token), 271, 272. 
Charles XII of Sweden, 92. 
Chaundy, Theodore William, 197. 
\check (math accent: x), 135. 
check accent ("'), see \v, \check. 
chemical typesetting, 179. 
Cherry, Lorinda Landgraf, 159. 
\chi ( X 434. 



462 Appendix I: Index 

Chicago, University of, Press, 125, 
293, 418, 439. 

Child, Julia, 233, 236. 
Children’s Television Workshop, ii. 
choice, four-way, 157, 292, 442. 

\choose (notation like (^))5 139, 143, 
152, 178, 360. 

Christie Mallowan, Dame Agatha Mary 
Clarissa (Miller), 249. 

cicero, see cc. 
\circ ( o ), 133, 323, 436. 
circles, see \circ, \bigcirc. 
circular quotation, 101. 
circumflex, 369, see hat. 
circumflex accent ('“), 52, 356, see \“. 
classes of math characters, table, 154. 

*\cleaders, m, 225-226, 357, 374. 
\cleartabs, 234, 354. 
Close atom, 158, 170-171, 289, 443-444, 446. 

*\closein, 217, 280. 
*\closeout, 226-228, 254, m, 422. 
\closing, 403-404, 407. 
closings, 134, 147, 154-155, 359, 437; 

see also Close atom, 
club lines, 104, 272, 398. 

*\clubpenalty, 104, 113, 272, 317, 348, 4^9. 
\clubsuit ( X ), 435. 
cm (centimeter), 24, 270. 
cmbx fonts, 60, 350, 413, 428, 433. 
cmex fonts, 157, 225, 350, 432 433. 
ciruni fonts, 350-351, 413-414, 430, 433. 
cmr fonts, 16-17, 60, 63-64, 76, 350, 

413, 427, 433. 
cmsl fonts, 63-64, 350, 413, 428, 433. 
cmsy fonts, 157, 350-351, 413-414, 431. 
cmti fonts, 350, 413, 428, 433. 
cmtt fonts, 60, 350, 413-414, 429, 433. 
(code assignment), 277. 
(codename), 271. 
codes for characters, 43 46, 367 370. 
Coelho, Manuel Rodrigues, 239. 
coerce (dimen) to (number), 270. 
coerce (glue) to (dimen), 270. 
coerce (number) to (dimen), 336. 
(coerced dimen), 270. 
(coerced integer), 269. 
(coerced mudimen), 270. 
collective signs, see large operators. 
colon, 51, 133-134, 155, 161, 174, 438. 
\colon ( : ), 134, 359, 438. 
color, 229. 
column vector, 177. 
column width, 29, 231, 257, 387, 417. 

\columns, 231, 354. 
comma, 51, 72-73, 134, 161-162, 172-174, 

394-395, 430. 
commands, 267-293. 
comments, 26, 47, 337, 340. 
communication between macros, 211, 

328-329, 375-376, 407-408. 
commutative diagram, 182. 
composing stick, 64-65. 
compound fraction, 143. 
compound matrix, 181. 
Computer Modern fonts, 16, 350, 427-438. 
computer programs, 38, 165, 234- 
concert programs, 408-412. 
conditionals, 206-208, 209, 210, 211, 

240, 308, 384. 
\cong ( ^ ), 151, 360, 436. 
constants, 269, 270, 308. 
continued fractions, 142. 
(control sequence), 275, 277. 
control sequences, 7-11, 199, 457. 

misspelled, 31-32. 
control space (\u), 8, 10, 19, 73, 74, 86-87, 

154, 163, 167, 283, m, 351, 381. 
control symbols, 7-8, 46-47. 
control words, 7-8, 38, 46-47, 204. 
coordinates, 389. 
\coprod (large U), 435. 

*\copy (copy a box), 120, 151, 222, 278, 
329, 374, 386, 407. 

\copyright ( © ), ii, 308, 339, 356. 
Cornet, Peeter, 239. 
Correa de Arauxo, Francisco, 239. 
correspondence, 200, 403-408. 
\cos ( cos ), 162, 361. 
\cosh ( cosh ), 162, 361. 
cost of a page break, 111-113, 124. 
\cot ( cot ), 162, 361. 
\coth ( coth ), 162, 361. 

*\count registers, 118-122, 207-208, 271, 
276, 346-347, 379. 

\count0, 119, 207, 252-254, 362. 
*\countdef, 119, 121, 210, 215, 271, 

277, 346-347. 
(countdef token), 271. 
Cowper, William, 35. 

*\cr (end of aligned row), 175-177, 190-197, 
231-238, 2^, 2^, 275, 282, 351, 352, 
385-386, 412, 4I8, 421. 

avoiding, 249. 
cramped styles, 140 141, 445. 

*\crcr (force \cr), 249, 275, 282, 361-362, 
385, 412, 421. 



Appendix I: Index 463 

Crocker, Betty, 425. 
cross, see \dag ( f ), \times ( x ). 
crotchets, see brackets. 
\csc ( CSC ), 162, 361. 

*\csname, 40-41, 213, 348, 375. 
\csname\endcsname, 47, 308. 
cube root, 130-131. 
Cummings, Edward Estlin, 49. 
\cup ( U ), 133, 436. 
curly braces, see braces. 
current font, 13, 20, 154, 163, 213-214. 
current page, 112, 122-125, 278, 280. 
cyclic preambles, 241, 2^2, 246, 361, 412. 
Cyrillic characters, 370. 

\d (dot-under accent), 52-53, 356. 
\dag ( t ), 53, 117, 438-439. 
\dagger (f as binary operator), 436, 439. 
Dale, Robert William, 283. 
\danger, 419. 
dangerous bend, v-vi, 5, 15, 44-45, 70, 419. 
Danish characters, 45-46, 52-53, 370. 
\dash, 30. 
dashes, 4, 26, 30, 51, 93, 95. 
\dashv ( H ), 436. 
date, today’s, 406. 

*\day, 273, 349, 406. 
dd (didot point), 270, 272. 
\ddag ( t ), 117, 438-439. 
\ddagger (| as binary operator), 436, 439. 
\ddot (math accent: x), 135, 359. 
\ddots ( ), 177, 359. 
\ddt (debugging aid), 248. 
De Vinne, Theodore Low, 107. 

*\deadcycles, 214, 2^, 264, 271, 283, 401. 
debugging, 205, 248, 298-303, 347. 
decent lines, 97, 99. 
(decimal constant), 270. 
decimal points, 57, 134, 240. 
(def), 

*\def, 44, 136, 199-208, 215, 275-276. 
default output routine, 253-255. 
default rule thickness, 443-447. 
default values of parameters, 348 349. 

*\defaulthyphenchar, 273, 348. 
*\defaultskewchcir, 273, 348. 
defining a control sequence, 199-208. 
(definition), 275. 
(definition text), 275. 
\deg ( deg ), 162, 361. 
degrees-( ° ), 180. 

*\delcode, IM, 214, 271, 345. 
(delete) (ASCII code 127), 37, 39, 343, 369. 

deleting tokens, 32, 215, 295-297. 
(delim), 289-290. 
delimited arguments and parameters, 

203-205, 249, 263, 375-377, 407. 
*\delimiter, 156, 289-290, 359. 
*\delimiterfactor, 152, 273, 348, 446. 
delimiters, 145-150, 156-157, 171, 

290, 437, 442. 
*\delimitershortfall, 152, 274, 348, 446. 
\delta ( 6 ), 127, 434. 
\Delta { A ), 169, 186, 434. 
demerits, 94, 97-99, 273, 481- 
denominator, 141, 152, 179, 444-445. 
depth, 221, 224, 337. 
depth of a box, 63-67, 77, 80-82, 225. 
Derek, Bo, 293. 
descenders, 63, 113, 319, 323. 
design size, 16-17, 213. 
\det ( det ), 162, 361. 
device-independent output, 23; 

see also .dvi. 
Diabelli, Antonio, 408. 
diagnostic form of lists, 66, 75, 79, 

158-159, 302, 455. 
dialogs with the user, 217-218. 
\dicLmond ( o ), 436. 
diamond leaders, viii. 
\diamondsuit ( 'O’ ), 435. 
Diaz de la Pena, Maximiliano Antonio 

Temistocles, 384. 
Dick and Jane, 72-74, 76. 
Dictionaries, 259, 449-453. 
Didot, Francois Ambroise, 57. 
didot point, 57, see dd. 
dieresis (")? ^5 53, 356, see \". 
diesis ( J ), see \ddag. 
Dieter, Ulrich Otto, 14. 
(digit), 269. 
(digit string), 57. 
digits, 51, 132, 435, 453. 

width of, 60, 241, 427. 
\dim ( dim ), 162, 361. 
(dimen), 59, 61, 71, 118, 271. 
(dimen parameter), 271, 274, 276. 

*\dimen registers, 118-122, 271, 276, 
346-347, 349, 360, 363, 395. 

(dimen variable), 276. 
*\dimendef, 119, 215, 277_, 346-347. 
(dimendef token), 271. 
dimensions, 57-61. 

as arguments, 204, 362. 
Dionysius I of Syracuse, 239. 
diphthongs, see \ae, \oe. 



464 Appendix I: Index 

discardable items, 95, 110-112, 124, 393. 
*\discretionary, 95-96, 283, 286, 287, 292. 
discretionary hyphens, 28, 95-96, 453. 
discretionary multiplication signs, 173, 357. 
display math mode, 85-89, 289-293. 
display style, 140-142, 441-447. 

*\displayindent, 188, 190, 274, 291, 349. 
*\displaylimits, 144, 159, 291-292, 443. 
\displaylines, 194, 196, 362. 
Displays, 87, 103, 139-145, 166-167, 

185-197, 232, 241, 315. 
at beginning of paragraph, 316. 
non-centered, 186, 326, 375, 420-421. 
positioning of, 188-190. 

*\displaystyle, 141-142, 292, 362. 
*\displaywidowpenalty, 104, 272, 348. 
*\displaywidth, 188, 190, 274, 349. 
Disraeli [Beaconsfield], Benjamin, earl, 219. 
ditto mark, 53, 441. 
\div ( -b ), 436. 

*\divide, 118-119, 218-219, m, 391, 
397, 398, 417. 

\do, 344, 380, 423. 
dollar sign, 4, 38, 51, 54, 86-88, 92, 127, 

134-135, 185-186, 283, 2^, 293. 
Donnelley, Richard Robert, vii. 
\dospecials, 344, 380, 422-423. 
\dosupereject, 256, 364. 
\dot (math accent: x), 135. 
dot accent ('), see \ ., \dot. 
dot-under accent ( ), see \d. 
\doteq ( = ), 361, 436. 
\dotfill ( ), 244, 334, 335, 

340-341, 357. 
dotless letters, 52-53, 136, 435. 
\dots ( ... ), 173, 356; see also ellipses, 
double-column format, 257, 386-388, 41'^- 
double dagger, see \ddag, \ddagger. 
double dangerous-bend signs, vi, 419. 
double integrals, 169, 180. 
double quote mark, 52, 53, 134; 

see also hexadecimal. 
*\doublehyphendemerits, 98, 273, 348, 451. 

Xdowneirrow ( | ), 146-147, 182, 359, 437. 
XDownaxrow ( JJ- ), 146-147, 359, 437. 
\downbracef ill ^ 225-226, 

331, 357. 
Doyle, Sir Arthur Conan, 401. 

*\dp, 120, 271, 316, 388-389, ^17. 
dragon curve, 391. 
Drofnats, Revinu Jitis, 24, 27-28, 73-74, 

404-406, 408, 410-412. 
Dudeney, Henry Ernest, 249, 334. 

Dull, Brutus Cyclops, 131, 173, 260. 
Xdununy, 401. 

*\duinp, 2^, m, 336, 344. 
Durant, William James, 239. 
.dvi, 23, 43, 60, 119, 213, 228, 254, 279, 

280, 302, 367, 374. 
Dvorak, Antonin Leopold, 409. 
dx, 168. 

EBCDIC, 43. 
*\edef, 215-216, 275, 328, 348, 373-374. 
editing, 34, 139, 197. 
efficiency, 329, 333, 342, 345, 347, 383, 

384, 394, 400, 423. 
\egroup (implicit }), 269, 351, 363, 

382, 407, 421. 
Ehlert, Ernst Fred, 248. 
Ehlert Bohning, Pauline Anna Marie, 248. 
\eightpoint, 415, Jld. 
\eject (force page break), 24-25, 105, 

109, 189, 4I8, 419. 
elbows, see angle brackets. 
Nell ( i ), 132, 435. 
ellipses (•••), 73, 172-174, 176-177, 

180-182, 245. 
Elphinstone, Mountstuart, 89. 

*\else, 207, 210, 213. 
em, 60, 154, 166, 214, m, 352, 414, 433. 
em-dash ( — ), 4, 302. 
em quad, see \quad. 
embellished letters, see accents, 
emergency stops, 299-300. 
Emerson, Ralph Waldo, 41. 
emphatics, see dot-under. 
(empty), 268. 
Nempty, 263, 378. 
empty discretionary, 95, 286. 
empty group, 19, 253, 305. 
empty line in input file, 24, 37, 47, 

340-341, 381. 
at end of file, 217. 

empty line in output, 114, 316. 
empty page, 114. 
Nemptyset ( 0 ), 128, 435. 
en-dash ( - ), 4, 187, 252, 314. 
en quad, 71, see \enspace. 

*\end, 23, 26, 27, 87, 2^, 2^, 286, 
299, 336, 403. 

end of an input file, 206, 214, 217. 
end of file line, see (return), \cr. 
end of file page, see (formfeed), 
end of paragraph, 286, see Npar. 
Nendchapter, 418-419. 



Appendix I: Index 465 

*\endcsname, 40-41, 213, 283, 348^ 375. 
endgame, 87, 264, 283. 
\endgraf, 262, 286, 331, 407, 4I6, 419. 

*\endgroup, 21, 249, 262, 380, 407, 419. 
*\endinput, 47, 214. 
\endinsert, 115-116, 363. 
\endletter, 403-404 i 407. 
\endline, 351. 

*\endlinechar, 273, 331, 348, 390-391. 
\endtemplate, 240. 
\enskip, 71, 352. 
\enspace, 202, 352, 4^3. 
enumerated cases, in formulas, 175. 

in separate paragraphs, 102, 340. 
within a paragraph, 92. 

enunciations, see \proclaim. 
epigraphs, 418-419, 425. 
\epsilon ( e ), 1, 128, 434. 
\eqalign, 190-191, 193, 242, 326, 362. 
\eqalignno, 192-193, 194, 362. 
(eqno), 293. 

*\eqno, 186-187, 189-191, 193, 2^, 375-376. 
(equals), 275, 276-277. 
equals sign, 51, 133, 209, 226, 275, 376. 
equation numbers, 186-196. 
\equiv ( = ), 133, 436. 
Erdos, Pal (= Paul), 53. 

*\errhelp, 275, 280, 347. 
*\ernnessage, 216, 279-280, 347, 418- 
error messages, 30-33, 295-301, 308-309. 
error recovery, 31-32, 46, 215, 295-303, 309. 

*\errorstopmode, 277, 299. 
es-zet ( fi ), see \ss. 
(escape) (ASCII code 27), 369. 
escape character, 7, 37, 421. 

*\escapechax, 40, 213, 228, 273, 308, 
348, 377. 

\eta { T] ), 434. 
etc., 302. 
Eulerian numbers, 152. 
Evagoras of Salamis, 239. 
even-numbered pages, 252-253, 4^8. 

*\everycr, 275, 362. 
*\everydisplay, 179, 275, 287, 326. 
*\everyhbox, 275, 279. 
*\everyjob, 275. 
*\everyinath, 179, 275, 287, 293. 
*\everypax, 105, 215, 253, 262, 275, 282, 

283, 333, 381, 407, 421. 
*\everyvbox, 275, 279. 
ex, 60, 154, 270, 356, 433. 
exception dictionary, 449, 452-453. 
exclamation point, 51, 72, 73, 75, 161, 169. 

\exercise, 10, 422. 
exercises, vii, 1-303. 

*\exhyphenpenalty, 262, 272, 348. 
\exists ( 3 ), 435. 
\exp ( exp ), 162, 361. 

*\expandafter, 40-, 213, 215, 260, 308, 
330, 348, 374-380. 

expansion of expandable tokens, 212-216, 
267, 373-374. 

avoiding, 216, 262-263, 377. 
explicit hyphens, 4, 93, 454. 
explicit kerns, 40, 280, 306, 454-455. 
exponents, see superscripts, 
extensible characters, 442. 
extension fonts, 157, 351, 432-433, 441, 447. 
extensions to 226, 228-229. 
eyestrain, reducing, 59. 

faces, 13, 17, 390. 
(factor), 270. 
factorial, 169, 181. 

*\fam, 154-159, 273, 289-290, 346-347, 
351, 358, 414-415. 

families, 153-159, 289-290, 346, 431, 442. 
(family assignment), 277. 
(family member), 271, 277. 
family tree, 248. 
family 0 (math roman fonts), 153-157, 351. 
family 1 (math italic fonts), 155-157, 351. 
family 2 (math symbol fonts), 157, 351, 

431, 441, 447. 
family 3 (math extension fonts), 157, 

351, 432-433, 441, 447. 
Fatal format error, 299. 
feasible breakpoints, 99, 315. 
fences, see openings, closings, delimiters, 
ffl, see ligatures. 

*\fi, 207, 210, 213. 
Fibonacci, Leonardo, of Pisa, 166. 
fields of atoms, 158-159, 289-291. 
fil, 72, 118-119, 271, 348, 394. 
(fil dimen), 271. 
(fil unit), 271. 
\filbreak. 111, 353. 
(file name), 214, 216, 226, 277, 
file names, 25, 214, 216-217, 226, 278. 
file pages, 343. 
file types, see .dvi, .fmt, .tfm, .tex, 

log file, terminal, 
fill, 72, 118-119, 271, 347. 
fill page with blank space, see \vf ill. 
(filler), 276, 278, 280-282, 289. 
filll, 72, 118, 271, 332. 



466 Appendix I: Index 

*\f inalhyphendemerits, 98, 106, 273, 
348, 451. 

*\f irstmark, 213, 258, 259-260, 280. 
\f iverm, 153, 351, 414-415. 
\flat ( \> ), 409, 435. 
floating insertions, 115-116, 125, 363. 

*\floatingpenalty, 123-125, 273, 281, 363. 
floor brackets ( [J ), 146-147, see \lfloor, 

\rfloor. 
flush left, 72, 142, 177, 181, 196. 
flush right, 71-72, 106, 142, 177, 196, 

233, 419. 
.fmt, 39, 344. 
Xfmtname and \fmtversion, 364. 
\folio (typeset page number), 252 253, 

362, 4O6, 4I6. 
(font), 214, 271, 277. 

*\font, 16-17, 60, 210, m, 214-215, 
271, 276. 

(font assignment), 277. 
font metric files, 46, 433. 
(font range), 271. 

*\fontdimen, 76, 157, 179, 214, 271, m, 
355-356, 375, 390, 441, 447. 

*\fontnajne, 213, 214. 
fonts, 13-17; 

see also Computer Modern fonts. 
\footins, 256, 363, 396-399, 4^9. 
\footline, 252, 256, 340-341, 362. 
\footnote, 82, 116, 251, 256, 340, 

363, 382, 416. 
\footnoterule, 256, 364. 
footnotes, 105, 116-117, 121, 125, 

173, 416 417. 
short, 395 400. 

\forall ( V ), 435. 
forbidden control sequence, 206. 
Ford, Patrick Kildea, 293. 
foreign languages, 45-46, 52-54, 370, 

387, 449, 451. 
form letters, 200, 207-209. 
format file, 25-26, 39, 283, 344. 
format-independent documents, 194, 203. 
formats, 11, 39, 200, 403-425, 434. 
(formfeed) (ASCII code 12), 343, 369. 
formulas, 127 199. 
Foss, Sam Walter, 439. 
fractions, 67, 139-143, 152, 170, 179, 

186, 444 445. 
huge, 196. 
slashed form, 67, 139-140, 233, 236. 

Fraktur, 164, 434. 
Franklin, Benjamin, 65. 

French, 54, 340-341. 
\frenchspacing, 74, 340, 351, 381, 401. 
Frescobaldi, Girolamo, 239. 
front matter, 413. 
\frown ( '^ ), 436. 
full stop, see period. 
\fullhsize, 257. 
\fullline, 257. 
funny space, 377. 

*\futurelet, 207, 215, 262, 277, 363, 
375-377, 423. 

\futurenonspacelet, 376. 

Galilei, Galileo, 101. 
galley file, 303, 425. 
Gamble, James, 38. 
Xgainma ( 7 ), 127, 434. 
XGamrna {Y ), 127, 169, 434. 
\gcd ( gcd ), 162, 192, 361. 

*\gdef, m, 215, 275, 352, 407. 

\ge ( > ), 9, 45, 175, 318, Mi, 438. 
(general text), 276, 277, 279, 280, 287, 292. 
generalized fraction, 152, 157, 292, 444-445. 
generic coding, 194, 203. 
generic matrix, 177, 245. 
\geq ( > ), 318, 436. 
German, 52, 96, 451. 
German black letters, see Fraktur. 
\getfactor, 375. 
\gets ( <— ), 361, 438. 
\gg ( > ), 436. 
Gibbon, Edward, 117. 

*\global, 21, 119, 206, 218, 232, 256, TI5, 
301, 307, 320, 346. 

(global assignment), 179, 277. 
*\globaldef s, 238, 273, 2^. 
glue, 63, 69-83, 95, 110, 157, 222-225, 

302, 412. 
above and below displays, 189-190, 194. 
at top of page, 113-114, 124, 256. 
between aligned columns, 237-239, 

247, 392. 
between lines, see interline glue, 
between paragraphs, 79, 104-105, 262, 

282, 342, 406, 417. 
between words, 74 76, 356, 393-394, 433. 

(glue), 71, 118, m. 
\glue, 75, 79, 302. 
(glue parameter), 271, 274, 276. 
glue set, 79, 302. 
glue set order, 77, 79, 81, 97. 
glue set ratio, 77, 79, 81, 97. 
(glue variable), 276. 



Appendix I: Index 467 

goal height, 112-114, 123-125. 
Goethe, Johann Wolfgang von, 183. 
\goodbreak. 111, 116, 353. 
GrandnicLSter, 253. 
\grave (math accent: i), 135. 
grave accent ('), see \‘, \grave. 
greater than or equal, see \ge. 
greater than sign, 52, 53, 133^ 150, 209. 
Greek, 127-128, 137, 156, 319, 358, 430, 434. 
Green, Walter, 244. 
grouping, 13-14, 19-21, 119-120, 122, 

200, 201, 241, 259, 279, 283, 286, 291, 
301, 375, 378, 385, 453. 

characters for, 39-40, 381-382. 
implicit, 115, 148, 194, 253, 2^, 292, 293. 

guide words, 259. 

\H (long Hungarian umlaut), 52, 53, 
356, 420. 

H&J, see hyphenation, line breaking, 
setting glue. 

hacek accent (’), see \v, \check. 
halftones, 228. 

*\halign, 117, 190, 193, 194, 235-249, 
282, 286, 291, 302, 326, 352, 
361-362, 386, 392. 

compared to tabbing, 235. 
Halmos, Paul Richard, 183. 
Hamza, see apostrophe. 
Xheing, 355, 4^^- 

*\hcaigafter, 102, 103-104, 273, 
348-349, 419. 

*\hangindent, 102, 262, 274, 349, ^<77. 
hanging indentation, 79, 102-103. 
hanging punctuation, 394-395. 
Hardy, Godfrey Harold, 321. 
harpoons, 437. 
hash mark, 38, 51, 113, 200-202, 203, 

204-205, 228, 236-240. 
Hassler, Hans Leo, 239. 
hat, 38, 51, 128-130, 134, 369, 423. 
\hat (math accent: x), 135-136, 164. 
hat accent (''), see \~, \hat, \widehat. 

*\hbadness, 29, 272, 302, 348, 381-388, 401. 
\hbar ( h ), 169, 435. 
hbox (box with horizontal list inside), 64. 

*\hbox, 64-67, 77, 86, 93, 151, 159, 163, 
175, 179, 185-186, 221, 222, 278, 
282, 388-389. 

\headline, 252-253, 255, M2, 406. 
\heartsuit ( '^ ), 435. 
Hebrew, 66. 
height, 221, 224, 282, 337. 

height of a box, 63-67, 77, 80-82, 225. 
help messages, 32, 280, 295-296. 
(hex digit), 269. 
(hexadecimal constant), 269. 
hexadecimal notation, A4-, ^^4^ 

219, 336, 420. 
*\hfil, 71-72, 194, 235-237, 283, 285, 

290, 397. 
*\hfill, 71-72, 142, 177, 194, 233, 

283, 285, 290. 
*\hfilneg, 72, 100, 283, 285, 290, 397. 
*\hfuzz, 30, 274, M2, 348, 381-388. 
\hglue, 352. 
\hideskip, 347, 348, 354. 
\hidewidth, 243, 245, 247, 325, 354. 
higher-level languages for composition, 203. 
Highton, Albert H., 481. 
Hilbert, David, 167. 

*\hoffset, 251, 274, 342. 
Holmes, Thomas Sherlock Scott, 401. 
\hom ( horn ), 162, 361. 
Hombert, Humbert, 401. 
Honeywell Information Systems, 1. 
\hookleftarrow ( ^ ), 358, 437. 
\hookrightarrow ('—>), 358, 430, 437. 
hooks, see \subset, \supset. 
horizontal braces, 116, 225-226, 339. 
(horizontal command), 283. 
horizontal lists, 64, 94-95. 
horizontal mode, 85-89, 105, 285-287. 
(horizontal mode material), 278. 
(horizontal rule), 281. 
horizontal rules, 24, 64, 221-226, 246, 282. 
(horizontal skip), 285. 
Hornschuch, Hieronymus, 483. 
Howard, Jane Temple, 21. 
\hphantom, 178, 211, 360. 

*\hrule, 24, 64, 85, 221-225, 246, 281-282, 
286, 351, 420, 421. 

\hrulefill ( ), 244, 252, MI, 4^2. 
*\hsize, 26-21, 60, 102, 188, 237, 251, 

251, 274, 340-341, 348, 381, 4O6, 
401, 413, 415, 411. 

*\hskip, 71, 86, 168, 283, 290, 314. 
*\hss, 71, 82-83, 233, 283, 285, 290, 442. 
*\ht, 120, 271, 388-389, 417. 
Hungarian umlaut ("), see \H. 
hyphen, 4, 51, 93, 95, 132, 292. 
hyphen.tex, 364, 453. 
hyphenation, 28, 39, 96, 306, 314, 394-395, 

414, 424, 449-455. 
*\hyphenation, 277, 4^0, 452-453. 
(hyphenation assignment), 277. 



468 Appendix I: Index 

*\hyphenchar, 95, 214, 271, 273, 277, 286, 
351, 395, 414, 454. 

*\hyphenpenalty, 96, 101, 272, 348, 431- 

\i ( 1 ), 52-53, 356. 
I cem’t go on, 299. 
\ialign, 354. 
IBM Corporation, vii. 
identifiers in programs, 38, 165, 234- 

*\if, 2^, 210-211, 307, 377, 379. 
*\ifcase, 210, 349, 373, 390, 4O6. 
*\ifcat, 210, 307, 377. 
*\ifdim, 2^, 353, 387, 417. 
*\ifeof, 210, 217. 
\iff ( ), 163, 438. 

*\iffalse, 211, 260-261, 348, 385-386. 
*\ifhbox, 210, 392, 399. 
*\ifhinode, 209, 363. 
*\ifinner, 209. 
*\ifimnode, 215, 24O, 353, 356, 360, 423. 
*\ifnuiii, 208, 209, 218-219. 
*\ifodd, 207, 209, 4I6, 4I8-419. 
*\iftrue, 210, 211, 260-261, 348. 
\ifundefined, 40. 

*\ifvbox, 210. 
*\ifvinode, 209. 
*\ifvoid, 210, 256. 
*\ifx, 210, 215, 307, 375-377, 4I8. 
ignored characters, 37, 390. 

*\ignorespaces, 279, 333, 355, 4^4- 
! Illegal unit, 295. 
illustrations, 115-116. 

fitting copy around, 101. 
\Im ( ^ ), 435. 
\imath { z ), 136, 435. 

*\iinmediate, 226-228, 280, 4^^i 4^3. 
implicit braces, 269, see \bgroup, \egroup. 
implicit characters, 269, 277, 309, 

351, 376-377. 
implicit kerns, 306, 454, 455. 
in (inch), 24, 270. 
\in ( € ), 128, 147, 436. 
\inaccessible, 297. 
inch, 57-58. 
incomplete conditionals, 206. 

*\indent, 86, 94, 101, 263, m, m, 355. 
indentation, 86, 222, 282. 

hanging, 79, 102-103. 
indention, see indentation, 
indexes, 261-263, 392-394, 423-425, 481. 
indices, see subscripts. 
\inf ( inf ), 162, 361. 
inferiors, see subscripts. 

infinite badness, 97, 111, 317. 
infinite glue, 71-72, 118-119, 256, 313, 332. 
infinite loop, 299, 301, 383. 
infinite penalty, 97, 111, 254-256, 

264, 286, 400. 
\infty ( 00 ), 9, 318, 435. 
inhibiting expansion, 216, 262-263, 377. 
INITEX, 39, 41, 76, 157, 283, 336, 

343-345, 453. 
Inner atom, 158, 170, 289, 443, 445-446. 

*\input, 7, 9, 25-27, 47, 199, 214, 217, 
380, 382-383, 403, 422. 

input/output commands, see \input, \read, 
\write, \message, \dump. 

input/output streams, 346, see \openin, 
\openout. 

input stack, 300, 374. 
*\insert, 95,122-125, 259, 280-281, 

363, 416, 424, 454. 
inserting text online, 31. 
insertions, 110, 115-117, 122-125, 256, 335. 

*\insertpenalties, 111, 114, 123-125, 
214, 254, 256, 271. 

\int (large /), 144, 168-169, 192, 358, 435. 
(integer constant), 269-270. 
(integer parameter), 271, 272-273, 276. 
(integer variable), 276. 
integral signs, see \int, \smallint. 

multiple, 169, 180. 
inter-column spacing, 237-239, 247, 392. 
interacting with TgX, 31-34, 217-218, 

228, 295-299. 
(interaction mode assignment), 277. 
\interdisplaylinepenalty, 349, 362. 
\interfootnotelinepenalty, 349, 363. 
interline glue, 78-79, 104, 105, 221, 245, 

263, 281-282, 335, 352, 409. 
*\interlinepenalty, 104, 273, 363, 406, 4IO. 
internal box-and-glue representation, 66, 

75, 79, 158-159, 302, 455. 
internal character codes, 43-46, 367-370. 
(internal dimen), 271. 
(internal glue), 271. 
(internal integer), 271. 
(internal muglue), 271. 
(internal quantity), 279. 
Internal Revenue Service, 200, 208-209, 

244, 404. 
(internal unit), 270. 
internal vertical mode, 85, 87-89, 

222, 278-283. 
interrupts, 33, 299, 383. 
interword spacing, 74-76, 356, 393-394, 433. 



Appendix I: Index 469 

Interwoven alignment preambles, 299. 
(intimate aissignment), 277. 
invalid characters, 37, 45. 
\iota ( L ), 325, 434. 
Isocrates, 239. 
\it (use italic type), 13-14, 165, 231-232, 

332, 409, 414-415, 419, 428. 
italic corrections, I4, 64 , 287, 306, 441, 455. 
italic letters with descenders, 319. 
italic type, 13-14, 100, 127, 409, 428, 430. 
\item, 102-103, 117, 340-342, 4I6, 419. 
\itemitem, 102, 342, 355. 
iteration, see \loop. 
\itfam, 414-415. 
lur’ev, Sergei Petrovich, 53. 

\j (j), 52, m- 
Jevons, William Stanley, 5. 
\jmath { j ), 136, 435. 

*\jobname, 213, 214, 336. 
Johnson, Samuel, 89. 
\joinrel, 358. 
jokes, vi, 303, 449. 
\jot, 194, 242, 362. 
Joyce, James Augustine, 100. 
justification, see setting glue, line breaking. 
Justus, Paul E., 455. 

\kappa ( /c ), 128, 434. 
\ker ( ker ), 162, 361. 

*\kern, 10, 40, 66, 75, 87, 168, 256, 263, 2^, 
306, 389, 394-395, 416, 424, 454-455. 

Kernighan, Brian Wilson, 159. 
kerns, 4, 66, 75, 95-97, 110, 157, 168, 

280, 306, 454-455. 
Key Index, 392-394. 
keyboards, 3, 5, 43-46, 368-370. 
keywords, 71, 268, 337, 370. 
Knuth, Donald Ervin, i, ii, vii, 74, 92, 211, 

259, 337, 340-341, 412-413, 424-425. 
Knuth, Nancy Jill Carter, iii, 125, 418. 
Kochel, Ludwig, Ritter von, 409. 

1 after fil, 271, 337. 
£, see pound sterling. 
\1 ( 1 ), 52-53, 
\L ( L ), 52-53, 356. 
\lambda ( A ), 176, 434. 
\Lambda ( A ), 323, 434. 
Lamport, Leslie B., 137. 
\land ( A ), 133, Mi, 438. 
Mangle ( ( ), I46-I4I, 359, 437. 
large delimiters, 145-150, 442. 

large operators, 144-145, 154-155, 358, 
435; see also Op atom. 

*\lastbox, 222, 2^, 354, 392, 398, 399. 
*\lastkern, 214, 271. 
*\lastpenalty, 214, 271. 
*\lastskip, 214, 223, 271, 392. 

I^TEX, 137. 

Mbrace ( { ), I46-I47, Mi, 437. 
Mbrack ( [ ), 146-147, Mi, 369, 437. 

♦Mccode, 41, 214, 271, 345, 452-454. 
\lceil ( r ), 146-147, M9, 437. 
\ldotp, 358, 359, 438. 
\ldots {...), 73, 172-174, 177, 180-181, 

199-201, M9, 438. 
Me ( < ), 9, 45, 133, 162, 318, Mi, 438. 
leaders, 222, 223-226, 228, 280-282, 285, 

290, 357, 392-394. 
(leaders), 281. 

♦Meaders, 95, 110, 223, 224, 225, 357, 
392-394. 

leading, see \baselineskip, \vskip. 
Meavevmode, 313, 333, 356, 408, 4^0. 
Lee, Marshall, 17. 

*Meft, 148-150, 155-157, 171, 196, 292, 437. 
left brace, 13-14, 19-21, 38, 51, 200-202, 

203-204, 205-206, 216, 269, 275-276, 
283, 286, 291, 330. 

(left brace), 275. 
left bracket, 51, 134, I46-I48, 171, 4O8, 437. 
left delimiters, see openings, 
left-hand pages, 252-253, 4I6. 
left parenthesis, 51, 134, I4O, 145-150, 345. 
left quote, 3-5, 132, 134, 305, 394-395; 

see also alphabetic constant. 
Meftarrow (-<—), 226, 437. 
\Leftarrow ( ^ ), 226, 437. 
Meftarrowfill (-* ), 357. 
Meftharpoondown ( ^ ), 437. 
Mefthaxpoonup ( -^ ), 437. 
Meftline, 101, 257, 259-260, 326, 353. 
Meftrightarrow { ^ ), 437. 
\Leftrightarrow ( >^::^ ), 437. 

*Meftskip, 100, 274, 317, 407, 419. 
Legendre symbol, 152. 
Leontief, Wassily Wassily, 265. 
Meq ( < ), 318, M8, 436. 
Meqalignno, 192, 194, 362. 

*Meqno, 187, 189, 293, 375-376. 
Lesk, Michael Edward, 247. 
less than or equal, see Me. 
less than sign, 52, 53, 133, 150, 209. 

*Met, 206-207, 215, 277, 307, 309, 352, 376. 
(let assignment), 277. 



470 Appendix I: Index 

letterformat.tex, 403, 406-408. 
letterheads, 407. 
letters, 7-8, 41, 45-46, 51, 132, 

157, 344, 370. 
\lfloor ( [ ), 146-147, 3^, 437. 
\lg ( Ig ), 162, 361. 
\lgroup, 150, 176, 359, 437. 
\lhook, 358. 
Liang, Franklin Mark, 449. 
library of macros, 199, 382-384, 425. 
lies, vii, 303. 
ligatures, 4, 19, 46, 51, 54, 75, 95, 165, 

302, 381, 427, 454. 
\lim ( lim ), 162, 163, 361. 
\liminf ( lim inf ), 162, 163, 178, 361. 

*\limits, 144, 159, 291-292, 359, 443. 
limits above and below operators, 

144-145, 149, 179. 
\limsup ( lim sup ), 162, 163, 178, 361. 
Lincoln, Abraham, 11. 
Mine, 72, 77, 101, 224, 232, 252, 

255-257, 412. 
line breaking, 97-100, 173-174, 392-395, 

398-400. 
line breaks, avoiding bad, 27-30, 91-94, 

173-174, 197. 
forcing good, 94, 114. 

line rules, see \hrule, \vrule. 
(linefeed) (ASCII code 10), 369. 

*\linepenalty, 272 , 314, 316, 348. 
lines of input, 24, 46-48, 340. 

*\lineskip, 78-80, 104, 194, 274, 281, 
349, 351-352. 

*\lineskiplimit, 78-80, 104, 194, 274, 
281, 349, 351-352, 362. 

list macros, 378-380. 
Misting, 380, 391. 
Ml ( <C ), 431, 436. 
Llanfair P. G., 451. 
Mlap, 82-83, 189, 340-341, 355, 

381, 4I6-417, 422. 
Mmoustache, 150, 359, 437. 
Mn ( In ), 162, 186, 361. 
Mnot ( -• ), 361, 438. 
local, 19-21, see grouping. 
Locke, John, 303. 
Mog ( log ), 162, 169-170, 361. 
log file, 10, 28, 66, 226, 303, 347. 
logical operators, see Memd, Mor, Mnot. 
logo, 1, 8, 412, see \TeX. 

*Mong, 205-206, 210, 275, 331, 375, 378, 382. 
long formulas, 195-197. 
Mongindentation, 407. 

Mongleftarrow ( <  ), 358, 437. 
\Longleftarrow ( <t= ), 358, 437. 
Mongleftrightarrow ( < ^ ), 358, 437. 
\Longleftrightarrow ( ), 358, 437. 
Mongmapsto ( 1 >■ ), 358, 437. 
Mongrightarrow (  »■ ), 325, 358, 437. 
\Longrightarrow ( ), 358, 437. 
looking ahead, 207, 376-377. 
Moop, 217-219, M2, 373-374, 387, 417. 
loose lines, 97, 99, 302. 

*\looseness, 103-104, 109, 273, 342, 349. 
Mor ( V ), 133, Mi, 438. 
low-resolution printer, 59. 

*Mower, 66, 80, 151, 179, 290. 
*\lowercase, 41, 215, 279, 307, 345. 
lowercase letters, 9, 268, 370, 453. 
Mq ( ‘ ), 5, 49, Mi, 369, 395. 
Luckombe, Philip, 447. 
Ixix, 420. 

NinOne, 347. 
\m<9th. Mi- 
machine-independence, 58; see also .dvi. 
Macro, Naevius Sertorius, 219. 
macro arguments and parameters, 

33, 200-205, 249, 263, 362, 363, 
375-380, 407. 

(macro assignment), 275. 
macro conventions, 121, 346, 364. 
macron accent (~), see \=, \bar. 
macros, 199-219, 373-401. 

to save typing in math, 136, 199-200, 324. 
*\mag, M, 270, 273, 348. 
\magnif ication, 17, 59-60, 364, 403-404- 
magnified output, 16-17, 59-60, 403, 433. 
\magstep, 17, 59-60, 349, 403-404- 
\magstephalf, 17, 349, 403. 
mail, 403-408. 
main vertical list, 85, 110, 112, 125, 

253-254, 281. 
\maintoks, 262. 
\makef ootline, 255-257, 364. 
\makeheadline, 255, 257, 364. 
\makelabel, 403, 404~405, 408. 
mainfnt, 44, 408, 414. 
manmac.tex, 413-425. 
\manual, 44, 414, 4^0-420. 
\mapsto ( ^ ), 128, 358, 437. 
\mapstochar ( 1), 358. 
Xmeirgin, 415, 424. 
marginal hacks, 82, 105, 400, 415, 424. 
margins, see \hsize, \narrower. 

*\mark, 95, 157, 216, 258-263, MO, 417, 454. 



Appendix I: Index 471 

marks, 95, 110, 157, 213, 258-263. 
markup commands, see control sequences, 
math accents, 135-137, 141, 164-165, 

359, 435, 443. 
(math atom), 291. 
(math character), 289. 
math character codes, 154-157. 
(math field), 289. 
math fonts, 157, 351, 430-433, 441, 447. 
math formulas, how to type, 127-197. 
math italic, 164-165, 409, 430, 433. 
math lists, 157-159, 441-446. 
math mode, 85-89, 127, 157, 289-293. 
math spacing table, 170-171. 
(math symbol), 289. 
math symbols, 127-128. 

construction of, 151, 178, 358-361. 
table of, 434-438. 

math-off, 95-97, 287, 447. 
math-on, 95, 97, 287, 447. 

*\ffiathaccent, 157, 170, 291, 359, 443. 
*\mathbin, 155, 291, 361. 
*\mathchar, 155, 289. 
*\mathchardef, 155, 199, 214, 215, 272, 

277, 289, 336, 394. 
(mathchardef token), 271. 

*\mathchoice, 151, 157, 292. 
*\mathclose, 155, 291, 322, 359. 
*\mathcode, 134, 154-156, 214, 271, 289, 

319, 326, 344. 
mathematical expressions, 127-197. 
Mathematical Reviews, 106, 392-394. 
(mathematical skip), 290. 
mathematical style, 166-167, 182-183. 
\mathhexbox, 356. 

*\mathinner, 155, 171, 199, 291, 359. 
*\mathop, 155, 178, 291, 324-325, 361. 
*\mathopen, 155, 291, 322, 359. 
*\mathord, 88-89, 155, 291. 
\mathpalette, 151, 360. 

*\mathpunct, 155, 291. 
*\mathrel, 155, 291, 359-361. 
\mathstrut, 131, 178, 360. 

*\mathsurround, 97, 162, 274, 305, 314, 
323, 353, 447. 

matrices, 176-178, 181; see also alignments. 
Nmatrix, 176-178, 182, 325, 361. 
\max ( max ), 162-163, 170-171, 361. 

*\maxdeadcycles, 255, 273, 348. 
*\maxdepth, 112-114, 123-125, 255, 262-263, 

274, 348, 400, 415. 
\maxdimen, 58, 188, 262-263, ML, 348. 
maximum legal dimension, 58. 

maximum legal integer, 118. 
*\meaning, 213-215, 336, 382. 
measure, see \hsize. 
\medbreak. 111, 113, 353, 355, 419, 422. 

*\medmuskip (medium math space), 
167-168, 274, 349, 446. 

\medskip (medium extra vertical space), 70, 
79, 102, 109, 111, 410-412. 

\medskipamount, 349, 352-353, 355, 407. 
\medtype, 408-411. 
membership, see \in, \ni, \notin. 
memory space, 100, 300-301, 342, 345, 

347, 383, 384, 394, 400. 
*\inessage, 216, 217-218, 227-228, 308, 

328, 343-344, 355, 418. 
METRFONT, 420, 427, 442, 483. 
metric units, 57-60. 
\mid {\), 174, 436. 
\midinsert, 116, 340-341, 363. 
migration, 105, 117, 259, 280-281, 

282, 286, 287. 
\min ( min ), 162-163, 170-171, 361. 
minus, 71, 271, 337. 
minus sign, 4, 51, 127, 132, 226, 268. 
! Missing something, 296-297, 337. 
\mit (math italic family), 164, 351, 430, 434- 

*\mkern, 168, 280, 442. 
mm (millimeter), 270. 
mod, 164, 322, 361. 
\models ( |= ), 358, 436. 
modes, 46, 85-89, 175, 267-293. 
modes.tex, 88-89. 
money, 54, 140, 208-209. 

*\month, 273, 349, 4O6. 
Morris, William, 107. 
moustaches, 150. 
mouth, see anatomy of TgX. 

*\moveleft, 80-81, 282, 287. 
*\moveright, 80-81, 221, 282. 

Moxon, Joseph, 287. 
Mozart, Johann Chrysostom Wolfgang 

Gottlieb (= Theophilus = Amadeus), 
409. 

\mp ( T ), 133, 436. 
*\mskip, 168, 290, 442. 

mu (math unit), 168, 270, 442. 
\mu in), 162, 434. 
(mu unit), 270. 
(mudimen), 270. 
(muglue), 118, 167-168, 271. 
(muglue parameter), 271, 274, 276. 
(muglue variable), 276. 
Muir, Cockburn, 283. 



472 Appendix I: Index 

multicolumn format, 257, 396-397, 417. 
multiple integrals, 169, 180. 

*\multiply, 118-119, 218, 27Q, 349, 391, 398. 
\multispan, 243, 246-247, 334, 354. 
Munster, 55. 
(mushrink), 271. 
music, 408-412. 

*\muskip registers, 118, 168, 271, 276. 
*\muskipdef, 119, 215, 277. 
(muskipdef token), 271. 
(mustretch), 271. 

\nabla ( V ), 435. 
names, 73, 92. 
\narrower, 100, 340-341, 355. 
National Science Foundation, vii. 
\natural ( t] ), 435. 
natural width, 69. 
Naur, Peter, 268. 
\ne ( ^ ), 9, 45, 133, 318, m, 438. 
\neeirrow { /" ), 437. 
\neg ( -- ), 435. 
negated relations, 436-437. 
negative dimensions, 66, 222. 
\negthinspace, 332, 352. 
\neq ( ^ ), 318, 438. 
nesting (i.e., groups inside groups), 

20-21, 210, 385. 
new symbols, 151, 178, 358-361. 
\newbox, 121, 346, MI, 353, 394, 4^7. 
\newcount, 121, 218, 346, 347, 349, 4^8. 
\newdimen, 121, 346, 347, 349, 4^5. 
\newfam, 121, 157, 346, MI, 351. 
\newhelp, 346, 347. 
\newif, 211, 218, MS, 354, 375, 416, 423. 
\newinsert, 121, 122, 346, 347, 363, 4^5. 

*\newlinechar, 228, 273, 348. 
\newmuskip, 121, 346, 347. 
\newread, 121, 216, 346, 347. 
\newskip, 121, 346, MI, 349, 394 , 414- 
\newtoks, 121, 212, 262, 346, MI, 401. 
\newwrite, 121, 227, 346, 347, 4^2-423. 
\next, 352. 
\ni ( 9 ), 436. 
\ninepoint, 15, 414, 4^0. 
\ninerm, 15, 413. 
\ninesl, 15, 413. 
No room, 347. 

*\noalign, 176, 191, 193, MI, ^46, 
249, M2, 286. 

\nobreak (inhibit line or page break), 97, 
109, 174, 193, 335, Ml, 394, 407. 

*\noindent, 86, 188, 262-263, Ml, 286, 
291, 340-341, 355, 419. 

\nointerlineskip, 79-80, 255, 331, 
352, 389. 

*\nolimits, 144, 159, 291-292, 358, 361. 
(non-macro assignment), 275. 
nonaligned leaders, 224-226. 
\nonfrenchspacing, 74, 351. 

*\nonscript, 179, 290, 442, 446. 
*\nonstopmode, M, 277, 299. 
\nopagenumbers, 251-252, 362, 4O6, 409. 
norm symbol, see absolute value, 

vertical line. 
(normal dimen), 270. 
(normal integer), 269. 
(normal mudimen), 270. 
\normalbaselines, 325, 349, 351, 414~413. 
\normalbaselineskip, 349, 414'~413. 
\normalbottom, 363. 
\normallineskip, 349, 351. 
\normallineskiplimit, 349, 351, 362. 
Norwegian characters, 45-46, 52-53, 370. 
\not {/), 133, Ml, 436-437. 
\notin ( ^ ), 360, 437. 
nth, 323. 
\nu ( n ), 128, 163, 434. 
nucleus, 158-159, 289-292, 441-446. 
\null, 311, 332, Mi- 
(null) (ASCII code 0), 37, 39, 48, 343, 369. 
null control sequence, 47, 308. 
null delimiter, 149-150, 152, 156, 345, 

360, 362. 
null set, see \ empty set. 

*\nulldelimiterspace, 150, 274, 348, 442. 
*\nullfont, 14, 153, 271, 433. 
(number), 44, 118, 269-270, 272, 309, 349. 

*\number, 40-41, 2U, 214, 252, 4O6, 424. 
number sign, see hash mark, 
numbered footnotes, 121, 125. 
numerals, see digits, roman numerals, 
numerator, 141, 152, 179, 444-445. 
(numeric variable), 276. 
numerical tables, 240-241. 
\nwarrow ( \ ), 437. 

0 versus 0, 132. 
\o ( 0 ), M6. 
\0 ( 0 ), M6. 
\oalign, 356. 
obelisk or obelus, 53. 
\obeylines, 94, 249, 262, 342, 352, 

380-382, 407, 419. *\noexpand, M9, ‘AlA, 215, 216, 348, 377, 424. 



Appendix I: Index 473 

\obeyspaces, 254, 308, 342, 352, 380-381, 

394, 421. 
oblique, see slanted. 
(octal constant), 269. 
(octal digit), 269. 
octal notation, 44i 155, 420. 
odd-numbered pages, 252-253, 4^^- 
\odot ( O ), 436. 
\oe ( oe ), 52, 356. 
NOE ( CE ), 52, 53, 356. 
Office of Naval Research, vii. 
\offinterlineskip, 245-247, 312, 352, 4^^- 
\oint (large f), 358, 435. 
Noldstyle, 351. 
oldstyle numerals, 430, 435. 
\omega ( w ), 323, 358, 434. 
\0mega ( H ), 358, 434. 
Nomicron, 434. 
Nominus ( © ), 436. 

*Nomit, 240, 243-244, 246-247, 282. 
one half, 141, 186. 
(one optional space), 269-270. 
online interaction, see interacting with TgX- 
Nooalign, 356. 
Op atom, 158-159, 170-171, 289, 442-444. 
Open atom, 158, 170-171, 289, 442-444, 446. 
open intervals, 171. 
openface, see blackboard bold. 

*Nopenin, 216-217, 280. 
openings, 134, 147, 154-155, 359, 437; 

see also Open atom. 
*Nopenout, 226-228, 254, 2^, 422, 423. 

Nopenup, 194, 237, 242, 362. 
Noplus ( © ), 9, 154, 436. 
optimization of macros, 342, 345, 348. 
(optional assignments), 286. 
(optional by), 276. 
(optional sign), 
(optional signs), 269. 
(optional spaces), 268, 269-271. 
(optional true), 270. 

*Nor, 210, 213, 406. 
Ord atom, 158, 170-171, 289, 358, 442-446. 
ordinary symbols, 132, see Ord atom. 
Ore, Oystein, 53. 
organists, 239. 
organs, 38-39, 46, 85, 373, 456. 
orphan, see widow word. 
Osbourne, Lloyd, 67. 
Noslash ( 0 ), 436. 
Nother, 421. 
other character, 37. 
Notimes ( 0 ), 9, 436. 

*Nouter, m, 210, 275 , 354 , 357, 
4I8-419, 422. 

*Noutput, 125, 2^, 254-257, 275, 364, 
370, 417. 

output routines, 21, 112, 251-264, 417. 
when invoked, 122, 125, 281. 

*Noutputpenalty, 125, 254-255, 273, 
349, 400, 4^7. 

*Nover, 139-141, 148, 152, 292, 437, 444-445. 
Over atom, 158, 289, 443. 
Noverbrace, 176, 225, 359. 
overfull box, 27-30, 94, 238, 302-303, 

307, 400. 
*Noverfullrule, 274, 307, 348. 
overlaps, 82-83, 386. 
Noverleftarrow, 359. 

*Noverline, 130-131, 136, 141, 170, 291, 443. 
overloading, 54, 243. 
Noverrightarrow, 226, 359. 

*Noverwithdelims, 152, 292, 444-445. 
Nowns { 3 ), 361, 438. 

NP ( If ), 53, 117, 438-439. 
Np®, MI, 348. 
NpQrenwd, 361. 
page breaks, avoiding bad, 109-111, 

189, 193. 
forcing good, 109-111; see also Neject. 

page builder, 110-114, 122-125, 281. 
when exercised, 122, 281-283, 286-287. 

page format, modifying, 251-253. 
page make-up, 109, see output routines, 
page numbers, 21, 23, 119, 207, 251-253. 
Npagebody, 255-257, 364. 
Npagecontents, 256, 364. 

*Npagedepth, 114, 123, 214, 271. 
*Npagefilllstretch, 114, 214, 271. 
*Npagef illstretch, 114, 214, 271. 
*Npagef ilstretch, 114, 214, 271. 
*Npagegoal, 114, 123, 214, 271. 
Npageinsert, 115, 363. 
Npageno, 252, 256, 340, 362, 4O6. 

*Npageshrink, 114, 123, 214, 271. 
*Npagestretch, 114, 214, 271. 
*Npagetotal, 114, 123, 214, 271. 
*Npar, 47, 86-87, 100, 135, 202, 249, 262, 

283, 286, 340, 351, 380-381. 
forbidden in arguments, 205, 207. 

paragraph, implied beginning of, 85-86, 283. 
implied end of, 24, 86, 286. 
last line of, 99-100. 
shape parameters reset, 103. 

paragraph sign, 53. 



474 Appendix I: Index 

\parallel ( 1| ), 436. 
(parameter text), 203, 275. 
parameters, see macro arguments and 

parameters. 
parameters, numeric, 119, 342; 

see also \fontdimen. 
default values, 348-349. 
table, 272 274. 

parentheses, 51, 129, 134, I40, 145-150, 
345, 437. 

roman, in italic text, 409-411. 
*\parf illskip, 100, 188, 274, m, 307, 

315, 332, 348, 394, 419. 
*\parindent, 86, 100, 101-102, 105, 262, 

274, 282, 286, 291, 342, 348, 355, 
394, 4O6, 415. 

*\parshape, 101-102, 214, 271, 277, 
315, 349, 374. 

*\parskip, 79, 104-105, 262, 274, 282, 
342, 348, 355, 406, 417. 

\partial ( d ), 147, 435. 
Pascal, Blaise, 101-102. 
\path, 390-391. 

*\patterns, 277, 453. 
patterns for hyphenation, 449 453. 

*\pausing, 273, 303. 
Paxton, William Hamilton, 425. 
pc (pica), 270, 415. 
penalties, 95-100, 110-114, 189. 

infinite, 97, 111, 286, 400. 
negatively infinite, 97, 111-112, 114, 

254-256, 264, 400. 
*\penalty, 79, 97, 110-111, 174, 2^, 353. 
\penalty-’10000000000, 264. 
percent sign, 26, 38, 39, 43, 48, 51, 113, 

124, 249, 337, 340. 
period, 51, 72-73, 133 134, 149, 161, 

345, 394-395, 430. 
space after, 75-75; 76. 

periodic preambles, 241-242, 244i 
246, 361, 412. 

Perils, Alan J., 365. 
\perp ( -L ), 358, 436. 
\phantom, 131, 178, 211, 360, 4^^- 
\phi ( (f) ), 128, 148, 434. 
\Phi ( 4> ), 323, 434. 
Philips, Peter, 239. 
philosophers, 100, 239. 
(physical unit), 270. 
\pi ( TT ), 9, 87, 137, 148-149, 434. 
\Pi ( n ), 9, 324, 434, 435. 
piano, 17. 
pica, 57, 413, see pc. 

pictures, 228-229. 
pieces of symbols, 145, 432, 442. 
pilcrow, see \P. 
plain.tex, 342-364. 
plain format, 10-11, 343-364. 

summary, 339-342. 
\plainoutput, 255, 364. 
Plass, Michael Frederick, 340-341. 
Plato, 1, 239. 
plus, 71, 271, 337. 
(plus or minus), 268. 
plus sign, 51, 132, 268. 
\pm ( ± ), 133, MS, 436. 
\pmatrix, 176, 323, 362. 
\pmod (notation like (mod p)), 164, 322, 361. 
\pnt, 395. 
pocket-size, 59. 
poem, 94. 
points (printers’ units), 15, 57-58. 
points with arbitrary coordinates, 389. 
Polish characters, 52-53. 
Polya, Gyorgy (= George), 7. 
poor man’s bold, 386. 

*\postdisplaypenalty, 189—190, 273. 
poultry, 236-237. 
pound sign, see hash mark, 
pound sterling, 54, 428. 
powers of ten, 293. 
powers of two, 293. 
\Pr ( Pr ), 162, 323, 361. 
preambles, 206, 235-249. 
\prec ( -< ), 436. 
\preceq { :< ), 436. 

*\predisplaypenalty, 189-190, 273, 348. 
*\predisplaysize, 188, 190, 274, 349. 
(prefix), 275. 
\preloaded, 350, 413. 
preloaded formats, 25-26, 39, 283, 344. 
Presume, Livingstone Irving, 74. 

*\pretolerance, 96, 272, 317, 348, 
364, 394, 451. 

pretty-printed programs, 165, 234. 
*\prevdepth, 79-80, 89, 271, 281, 282. 
prevdepth ignored, 88-89. 

*\prevgraf, 103, 188, 190, 214, 271. 
\prime ( / ), 130, 155, 357, 435. 
prime numbers, 148-149, 218. 
primitive, 9-11, 267, 342, 457. 
private control sequences, 344, 364, 414. 
\proclaim, 202-203, 206, 340-341, 355. 
Procter, William Alexander, 38. 
\prod (large H), 180-181, 435. 
programming with TgX, 217-219, 387-388. 



Appendix I: Index 475 

programs, for computers, 38, 165, 234. 
for music, 408-412. 

proofreading, 59, 303. 
proper names, 73, 92. 
\propto ( oc ), 436. 
prototype row, 238, 302-303. 
Praetorius [Schultheiss], Michael, 239. 
\ps, 403, 404, 407. 
pseudo parameters, 119, 349. 
\psi ( ), 325, 434. 
\Psi ( ^ ), 434. 
psychologically bad breaks, 91-93. 
pt (printer’s point), 24, 57-58, 268-270. 
Punct atom, 158, 170-171, 289, 

442-443, 446. 
punctuation, 14, 51, 72-76, 321, 394-395. 

in formulas, 134, 154-155, 161, 358-359, 
438; see also Punct atom. 

\qquad, 166, 185, 352. 
quad, 60, 166-168, 177, 433. 
\quad, 94, 166-167, 185, 232-233, 352. 
quad left, see flush left. 
quad middle, see \brecik. 
quad right, see flush right. 
quarter circles, 389-391. 
question mark, 51, 73, 161. 
Quick, Jonathan Horatio, 298. 
quotation marks, 3-5, 24, 394-395. 
quotations, 100, 418-419, 425. 
quotes within quotes, 5. 

IR, see blackboard bold. 
Rad atom, 158, 289, 443. 

*\radical, 157-159, 291, 443. 
ragged bottom margins. 111, 253, 256, 398. 
ragged left margins, 392-394. 
ragged right margins, 29-30, 101, 261-262, 

355-356, 392-394. 
\raggedbottom. 111, 253, 363, 406. 
\raggedcenter, 107. 
\raggedright, 29-30, 76, 101, 107, 115, 

262, 396, 407. 
*\raise, 66-67, 80, 151, 179, 193, 2^, 

290, 408. 
\rangle ( ) ), I46-I47, 150, 437. 
Raper, Matthew, 61. 
\rbrace ( } ), 146 147, 437. 
\rbrack ( ] ), I46-I47, 369, 437. 
\rceil ( 1 ), 146-147, 437. 
\Re ( ^ ), 435. 

*\read, 215, 217-218, 276, 346. 
recent contributions, 112, 125, 281. 
recovery from errors, 30-34, 295-303. 

recursion, 219, 268, 301, 379, 391, 397. 
inflnite, 299, 301, 383. 

reduction, 16. 
reference marks, 116-117. 
reference point of a box, 63-64, 77, 

80-82, 388-389. 
(registerdef), 277. 
registers, 117-122, 212, 214, 346-348. 
registration marks, 416. 
Reid, Brian Keith, 371, ,404-406. 
Rel atom, 158, 170-171, 289, 442-444, 

446-447. 
(relation), 209. 
relations, 133-134, 147, 154-155, 358, 436, 

437; see also Rel atom. 
*\relax, 23, 25, 71, 240, 276, 307, 353. 
\relbar ( — ), 358. 
\Relbar ( = ), 358. 

*\relpenalty, 101, 174, 272, 322, 348, 446. 
\removelastskip, 353. 
\repeat, 217-219, 352. 
repeating commands, see \loop. 
reserved characters, 37-38, 51-52, 134. 
reserved words, 71, 268, 337, 370. 
restricted horizontal mode, 85, 87-89, 

285-287. 
resume, 253. 
(return) (ASCII code 13), 23, 39, 43, 45, 46, 

48, 249, 331, 343, 345, 369, 380. 
\(return), 8, 305, 351. 
reverse apostrophe, 3-5, 51, 132, 134, 391, 

394-395; see also alphabetic constant, 
reverse slash, see backslash. 
Reviewer, Ann Arbor, 106. 
\rfloor ( J ), 146-147, M9, 437. 
\rgroup, 150, 176, 359, 437. 
\rho ( p ), 128, 325, 434. 
\rhook, 358. 

*\right, 148-150, 155-157, 171, 196, 
292, 437. 

right brace, 13-14, 19-21, 38, 51, 200-202, 
203-204, 205-206, 275-276, 
279, 301, 330. 

(right brace), 275. 
right bracket, 51, 134, I46-I47, 171, 

345, 4O8, 437. 
right delimiters, see openings, 
right-hand pages, 252-253, 4^0. 
right justiflcation, 71. 
right parenthesis, 51, 134, I4O, 145-150, 

345. 
right quote, 3-5, 51, 130, 155, 201, 305, 

324, 394-395; see also octal. 



476 Appendix I: Index 

\rightarrow ( —> ), 226, 437. 
\Rightarrow ( ^ ), 226, 437. 
\rightarrowfill ( 226, 357. 
\righth8Lrpoondown ( ^ ), 437. 
\rightharpoonup ( ^ ), 437. 
\rightlefthaxpoons ( ^ ), 360-361, 437. 
\rightline, 101, 317, 340-341, 353. 

*\rightskip, 100-101, 274, 317, 356, 
393, 421. 

\rlap, 82-83, 189, 247, 319, 389, 416. 
\rm (use roman type), 13-15, 154, 163, 320, 

351, 364, 409, 4U-4i5, 419, 427. 
\rmoustache, 150, 359. 
roman letters in math, 162-164. 
roman numerals, 40-41, 252, 256. 

uppercase, 374. 
roman parentheses in italic text, 409—411. 
roman type, 13-17, 51-55, 127, 

162-165, 427. 
*\roinannumeral, 40-41, 213, 214, 252. 
Root, Waverley Lewis, 55. 
\root, 130-131, 179, 325, 360. 
rounding, 58, 119. 
\rq ( ’ ), 5, 49, 369, 395. 
rule boxes, 24, 64, 221-225, 281-282, 

285, 290. 
(rule dimension), 282. 
(rule specification), 282. 
rule thickness, 143, 179, 221, 447. 
ruled tables, 245-248, 392. 
rulers, 58. 
runaways, 205-206, 297. 
running headlines, 253, 258-260, 416. 
running the program, 23-35. 
Russian characters, 370. 

\S ( § ), 53, 117, 438-439. 
Sally, Baby, 72-76. 
sample line for tabbing, 232-234. 
sample pages for book design, 412-413. 
save size, 300-301, 374, 399-400. 
save stack buildup, 301, 346. 
\sb, 135, 369. 
\sc (use SMALL CAPS type), 414-415. 
scaled, 16-17, 60, 277, 350, 433. 
scaled points, 57-58, 270. 
Scandinavian letters, 45-46, 52-53. 
Schickele, Prof. Peter, 410-411, 481. 
scratch control sequence, 352. 
scratch registers, 122, 346. 
Scribe, 371, 404. 
script letters, 164, 434. 
script size, 140, 153, 442. 

script style, 140-142, 441-447. 
*\scriptfont, 153, 168, 213, 271, 321, 

351, 414-415, 441-442. 
scriptscript size, 140, 145, 153, 442. 
scriptscript style, 140-142, 441-447. 

*\scriptscriptfont, 153, 168, 213, 271, 
351, 414-415, 441-442. 

*\dcriptscriptstyle, 141—142, 179, 292. 
*\scriptspace, 274, 348,445-446. 
*\scriptstyle, 141-142, 145, 179, 292. 
*\scrollmode, 277. 
\searrow ( \ ), 437. 
\sec ( sec ), 162, 361. 
section number sign, see \S. 
Selden, John, 11. 
selection, see \cases. 
semicolon, 51, 134, 161- 
sentences, 72-76. 
Sesame Street, 61. 
set macro, 379. 
set notation, 147, 174-175. 

*\setbox, 66-67, 77, 81, 120, 276, 386-392. 
\setminus ( \ ), 4^6. 
\settabs, 231-234, 354, 355. 
setting the glue, 70, 77, 81, 388. 
\setupverbatim, 380-381, 391. 
\sevenrm, 15, 153, 350, 351, 4i4~4^5. 

*\sfcode, 76, 214, 271, 286, 321, 345, 351. 
shadow boxes, 66. 
Shakespeare, William, 17, 55, 337. 
(shape assignment), 277. 
(shape dimensions), 277. 
\sharp ( tl ): 409, 435. 
sharp S ( 6 ), see \ss. 
sharp sign, see hash mark. 
Shaw, George Bernard, 107, 229. 
Sheridan, Richard Brinsley Butler, 265. 
shifted output, see \hoffset, \voffset. 
shilling sign, see slash. 

*\shipout, 227, 253-254, 279, 300, 302. 
shortest paths, 99. 
(shorthand definition), 277. 

*\show, 10, 215, 279, 299. 
*\showbox, 66-67, 121, 234, 279. 
*\showboxbreadth, 273, 302-303, 348. 
*\showboxdepth, 79, 273, 302-303, 348. 
\showhyphens, 364, 4^2. 

*\showlists, 88-89, 95, 112, 125, 158-159, 
279, 292. 

*\showthe, 121, 215, 279. 
shriek, see exclamation point. 
(shrink), 271. 
shrinkability, 69-71, 75, 409. 



Appendix I: Index 477 

side conditions, 166-167, 185-186. 
\sigma ( a ), 195-196, 434. 
\Sigma ( S ), 165, 434, 435. 
sigma signs, see \sum. 
\signed, 106. 
\siin ( ~ ), 133, 436. 
\simeq ( — ), 133, 436. 
(simple assignment), 276. 
\sin ( sin ), 162, 361. 
\sinh ( sinh ), 162, 361. 
sinkage, 413. 
size switching, 15, 408, 414-415. 
sizes of type for mathematics, 140, 153. 
\skew, 136, 359. 

*\skewchar, 214, 271, 273, 277, 351, 
414, 430, 431, 443. 

*\skip registers, 118-122, 271, 276 , 346-347, 
349, 352, 363, 394. 

*\skipdef, 119, 215, 346-347. 
(skipdef token), 271. 
skipping space, see glue. 
\sl (use slanted type), 13-15, 165, 351, 

409, 4U-415, 419. 
slant of a font, 375, 433. 
slanted type, 13, 63-64, 100. 
slash, 51, 132, 146-147, 320, 430. 
\slash (/ with break allowed), 93, 353. 
slashed form of fractions, 139-140. 
Slavic hacek accent, see \v. 
Nslfam, 351, 414~4^5- 
slides, 59. 
slurs, see \smile, \frown. 
small caps, 414. 
\smallbreak. 111, 353, 421. 
\smallint ( / ), 358, 435. 
\smallskip, 70, 78, 100, 109, 111, 181, 

340-341, 355, 410-412. 
Xsmallskipamount, 349, 352-353. 
\smalltype, 408-411. 
\smash, 131, 178, 327, 360. 
\smile { ^ ), 436. 
solidus, see slash. 
sophisticated spacing, 74. 
sp (scaled point), 118-119, 270, 398, 400. 
\sp (superscript), 135, 357, 369. 
(space) (ASCII code 32), 39, 43, 46, 343. 
\(space), see \u (near the beginning). 
\space, 254, 272, 306, 380, 4O6. 
space after a constant, 208, 272. 
space factor, 76, 285-287, 306, 380, 395. 
(space token), 268, 269, 282, 285, 290, 

376-377. 
*\spacefactor, 76, 271, 285, 363, 433. 

spaces, 3, 5, 8-9, 19, 37, 40, 47-48, 127, 204, 
232, 272, 297, 299, 319, 336. 

as active characters, 254, 380-381. 
*\spaceskip, 76, 274, 317, 356, 429. 
spacing, see glue. 

in formulas, 162, 167-171. 
\spadesuit ( ), 358, 435. 

*\span, 215, 238, 243-245, 248, 249, 282, 385. 
Spanish ligatures, 51, 381, 427. 
spanned columns in tables, 243-245. 
spanned rows in tables, 249. 

*\special, 216, 226, 228-229, 280. 
special characters, 37-38, 43-46, 51-52, 

134, 367-371. 
(special dimen), 271, 277. 
(special integer), 271, 277. 
special symbols for math, 128, 434-438. 
Spivak, Michael David, 137. 
*/, split, 124. 
split insertion penalty, 124. 

*\splitbotmark, 213, 259, 280. 
*\splitfirstmark, 213, 259, 280. 
*\splitmeixdepth, 124, 274, 281, 348, 

363, 417. 
*\splittopskip, 124, 274, 281, 348, 

363, 397, 417. 
spread, 77, 222, 238, 278. 
springs, 70. 
\sqcap ( n ), 133, 436. 
\sqcup ( U ), 133, 436. 
\sqrt, 130-131, 141, 145, 157, 169-170, 

360, 443. 
\sqsubseteq ( C ), 436. 
\sqsupseteq ( ^ ), 436. 
Nsquaire ( □ ), 151. 
square brackets, see brackets, 
square bullet ( ■ ), 420. 
square root, see \sqrt. 
squeeze routine, 188. 
squiggle accent (~), see \~, \tilde, 

\widetilde. 
squint print, 59. 
\ss ( 6 ), 52, 356. 
stack positions, 300-301, 374, 399-400. 
stacked fractions, see \over. 
\star ( ★ ), 436; cf. asterisk, 
states, 46-48. 
sterling, 54, 428. 
Stevenson, Robert Louis Balfour, 67. 
Stirling numbers, see \brace, \brack. 
stomach, see anatomy of TgX. 
stopping TgX, see \end. 
story.tex, 24, 26, 30—31. 



478 Appendix I: Index 

Stout, Rex Todhunter, 401. 
(stretch), 271. 
stretchability, 69-71, 75, 409. 

*\string, 40-41, 213-214, 215 , 348, 377. 
\strut, 82, 142, 178, 240, 246-247, 316, 

329, 333, 396, 400, 421. 
\strutbox, 316, 353, 396, 414~4i5- 
struts, 125, 131, 142, 178, 245-247, 

255, 329, 416, 422, 423. 
style change items, 157, 442. 
style-independent documents, 194, 203. 
styles of math formatting, 140-141, 441-447. 
styles of math writing, 166-167, 182-183. 
subformulas, 129, 171, 173. 
(subscript), 291. 
subscripts, 15, 128-131, 133, 150, 158-159, 

163, 179, 289-291, 343. 
\subset ( C ), 133, 436. 
\subseteq ( C ), 133, 436. 
\succ { y ), 436. 
\succeq ( ^ ), 436. 
\sum (large E), 139, 144~i45, 148-149, 

358, 432-433, 435. 
\sum', 181, 324-325. 

summary of plain 339-342. 
summation, see \sum. 
\sup ( sup ), 162, 361. 
\supereject, 116, 254, 256, 257, 353, 407. 

superiors, see superscripts. 
(superscript), 291. 
superscripts, 128-131, 133, 150, 158-159, 

179, 289-291, 343. 
suppressed-L, 52-53. 
\supset ( D ), 436. 
\supseteq ( ^ ), 436. 
\surd ( \/ ), 358, 435. 
surd signs, see \radical, \sqrt. 
Swanson, Ellen Esther, 197. 
\swaxrow { y' ), 437. 
Swedish characters, 52-53, 370. 
Sweelinck, Jan Pieterszoon, 239. 
Swierczkowski, Stanislaw Slawomir, 53. 

Swift, Jonathan, 5. 
symbol fonts, 157, 351, 431, 433, 441, 447. 
symbolic box format, 66, 75, 79, 158 159, 

302, 455. 
symbols in math, table, 434-438. 
syntax rules, 268-269. 
System Development Foundation, vii. 
Szego, Gabor, 7. 

\t (tie-after accent), 52-53, 356. 
(tab) (ASCII code 9), 8, 45, 343, 369, 391. 
\(tab), 8, 351. 
\tabalign, 354, 355. 
tabbing, 231-234, 339, 354. 

compared to \halign, 235. 
tables, see alignments, tabbing, 
tables of contents, 120, 226. 
tables of TgX trivia: 

accents (non-math), 52, 339. 
atomic types, 158. 
category codes, 37. 
character codes, 367-369. 
default values, 343-345, 348-349. 
\fontdimen parameters, 433, 447. 
keywords, 61. 
math accents, 135. 
math classes, 154. 
math spacing, 170-171. 
math symbols, 434-438. 
parameters, 272-275. 
units of measure, 57. 

\tabs, 234, 354. 

*\tabskip, 215, 237-239, 244, U7, 274, 
282, 285, 354. 

tabskip glue, 237-239, 245, 302-303, 392. 
Tacitus, Publius Cornelius, 219. 
tags, see equation numbers, 
tail recursion, 219. 
\tan ( tan ), 162, 361. 

\tcLnh ( tanh ), 162, 361. 
\tau ( r ), 1, 434. 

Tchaikovsky, see Chaikovskii. 
telephone numbers, 408. 
templates, 235-236, 240-243. 
\tenex, 351, 361, 414-415. 
\tenpoint, 15, 414, 4^^- 
\tenrm, 15, 27-28, 45, 153, 252, 335, 

350, 351, 414. 
\tensl, 15, 351, 4I4. 
tensor notation, 130, 169. 
\tensy, 179, 351, 414. 
terminal, input from, 217-218. 

output to, 217-218, 226-228, 279-280. 
TEX, 1. 
TgX, bad puns on, 1, 11, 63, 153, 161, 225, 

229, 262, 305, 340-341, 373. 
pronunciation of, 1. 

TeX, 1. 

\TeX ( TEX ), 8-10, 19, 66-67, 204, 225, 

340-341, 418, 419. 

.tex, 25, 217, 226. 

TeX capacity exceeded, 300-301. 



Appendix I: Index 479 

TgX Grandmasters, 253. 
Users Group, vii, 408, 483. 

TEX78, vii. 
texput, 23. 
text between aligned displays, 193. 
text size, 140, 153, 442. 
text style, 140-142, 441-447. 

*\textfont, 153, 168, 188, 213, 271, 
414-415, 441-442. 

\textindent, 117, 355. 
*\textstyle, 141—142, 292, 326. 

.tfm (font metric files), 401, 433, 442. 
*\the, 214-215, 216, 373, 375, 422. 
theorems. 111, 202-203 , 340-341, 
\theta {B), 128, 162, 325, 434. 
\Theta ( © ), 434. 

*\thickinuskip (thick math space), 167-168, 
274, 349, 446. 

thin spaces, 161, 167-173, 305, 409. 
*\thinmuskip (thin math space), 167-168, 

274, 349, 446. 
\thinspace, 5, 10, 305, 311, 352, 409. 
This can’t happen, 299. 
Thor, Arthur Uther, 24, 117, 200, 253. 
three-column output, 257, 396-398. 
three dots, see ellipses. 
tie-after accent, see \t. 
ties, 25, 73-74, 104, 161, 167, 

173, 404. 
tight lines, 97, 99, 302. 
tilde, 38, 51, 91-92, see ties. 
\tilde (math accent: x), 135, 164. 
tilde accent (~), see \~, \tilde, \widetilde. 

*\time, 273, 349. 
\times ( X ), 133, 436. 
Times Tribune, Peninsula, 455. 
Titelouze, Jehan, 239. 
to, 77, 217, 222, 238, m, 278. 
\to, 134, Mi, 438. 
\today, 4O6. 
token list parameters and registers, 

212, 215, 275, 373. 
token lists, as displayed by Tfl^, 228, 

329, 382. 
(token parameter), 275. 
(token variable), 212, 276- 
tokens, 38-41, 46-48, 203-207. 

*\toks, 212, 215, 262, 276. 
*\toksdef, 212, 215, 277, 347, 378. 
(toksdef token), 271. 

*\tolerance, 29-30, 91, 94, 96, 272, 317, 
333, 342, 348, 364, 451. 

\top ( T ), 435. 

\topins, 256, 363, 364- 
\topinsert, 115 116, 251, 363. 

*\topmark, 213, 258, 259-260, 280. 
*\topskip, 113-114, 124, 256, 274, 348. 
Trabb Pardo, Luis Isidoro, 92. 
\tracingall, 121, 303, 364. 

*\tracingcoininands, 88-89, 212, 273, 299. 
*\tracinglostchars, 273, 301, 348, 4OI. 
*\tracingmacros, 205, 212, 273, 329. 
*\tracingonline, 121, 212, 273, 303. 
*\tracingoutput, 254, 273, 301-302. 
*\tracingpages, 112-114, 124, 273, 303. 
*\tracingparagraphs, 98-99, 273, 303. 
*\tracingrestores, 273, 301, 303. 
*\tracingstats, 273, 300, 303, 383. 
transcript, see log file, 
transparencies, 59. 
\triangle ( A ), 435. 
\triangleleft ( <1 ), 436. 
\triangleright ( > ), 436. 
triangular quotation, 101-102. 
tricky macros, 41, 261-263, 354, 360, 

361, 373-401, 421. 
true, 59-60, 270, 407-408. 
truth, vi, 267. 
Tschichold, Jan, 83. 
\tt (use typewriter type), 13, 53, 113, 165, 

340-341, Mi, 380-382, 414-415, 429. 
Xttfam, 351, 414~415. 
\ttglue, 414-415, 421. 
\ttraggedright, 356. 
TUGboat, vii, 425, 483. 
turtle commands, 390-391. 
Twain, Mark (= Clemens, Samuel 

Langhorne), 83, 451. 
two-column format, 257, 386-388, J17. 
two-line displays, 196. 
type size switching, 15, 408, 414 415. 
typefaces, 13, 17, 427. 
typewriter type, 13, 53, 165, 356, 

420-421, 429. 

\u (breve accent), 52-53, 356. 
*\uccode, 41, 214, 271, 345 , 348, 377, 394. 
*\uchyph, 273, 348, 454. 
umlaut accent ("), see \", \ddot. 
unbreakable spaces, see ties. 
\uncatcodespecials, 380. 
\undefined, 384. 
undelimited parameters, 203 204, 376-377. 
Under atom, 158, 289, 443. 
\underbar, 244, 323, 353. 
\underbrace, 176, 225-226, 359. 



480 Appendix I: Index 

underfull box, 29, 94, 238, 302-303, 
397, 400, 417, 452. 

*\underline, 130-131, 141, 291, 443. 
underlined text, 178; see also \underbar. 
underscore (the character 38, 51, 

128-130, 134, 165. 
*\unhbox, 120, 283, 285, 354, 356, 361, 399. 
*\unhcopy, 120, 283, 285, 353. 
(unit of measure), 268, 270. 
units of measure, 57-61, 270. 

in formulas, 169. 
table, 57. 

*\unkern, 280. 
unmatched left brace, 216; 

see also runaways. 
*\unpenalty, 280. 
unset box, 240, 302 303. 
(unsigned dimen), 270. 
(unsigned mudimen), 270. 
(unsigned number), 269. 

*\unskip, 222-223, 280, 286, 313, 392, 
4I8-419. 

*\unvbox, 120, 254, 282, 286, 354, 361, 
363, 364, 392, 399, 417. 

*\unvcopy, 120, 282, 286, 361. 
\up, 408. 
\uparrow ( t ), 146-147, 182, 359, 437. 
\Uparrow ( ft ), I46-I47, 437. 
\upbracef ill 225-226, 357. 
Xupdowneirrow ( | ), 146-147, 359, 437. 
\Updownarrow ( :j}; ), I46-I47, 359, 437. 
\uplus ( l±) ), 436. 

*\uppercase, 41, 215, 217, 307, 345, 
348, 374, 377, 394. 

uppercase letters, 9, 64, 268, 370. 
Greek, 127, 164, 434. 
roman numerals, 374. 

\upsilon { V ), 434, 483. 
\Upsilon ( T ), 434. 
Ursa Major, 389. 
User, Ben Lee, 74, 80, 100, 140, 164, 186, 

187, 193, 221, 296, 410-411. 

\v (check accent), 52, 356. 
*\vadjust, 95, 105, 109, 110, 117, 259, 

281, 393, 454. 
*\valign, 249, 283, 285-286, 302, 335, 397. 
Vallee Poussin, Charles Louis Xavier 

Joseph de la, 92. 
van der Waerden, Bartel Leendert, 92. 
van Leunen, Mary-Claire, 425. 
\varepsilon { £ ), 128, 434. 
(variable assignment), 276. 

variable family, 154, 289, 358-359. 
variables in formulas, 132, 358, 434-435; 

see also Ord atom. 
\varphi ( (p ), 128, 147, 434. 
\varpi ( w ), 434. 
\vcirrho ( p ), 128, 434. 
\vcLrsigma ( ), 434, 483. 
XvajTtheta ( 0 ), 128, 434. 

*\vbadness, 272, 348, 397, 417. 
vbox (box with vertical list inside), 65. 

*\vbox, 65, 80-82, 103, 151, 193, 222, 
278, 388-389. 

Vcent atom, 158, 290, 443. 
*\vcenter, 151, 159, 170, 193, 222, 242, 

290, 361,'443. 
\vdash ( k ), 436. 
Nvdots ( ; ), 177, 359. 
\vec (math accent: x), 135; 

see also \overrightarrow. 
vectors, 177, 199-201; see also \vec. 
\vee ( V ), 133, 436. 
verbatim copying, 422-423. 
verbatim listing, 48, 380-382, 391, 420-421. 
\vert ( I ), 146-147, 150, 438; cf. \mid. 
Wert ( 11 ), 117, 146-147, 150, 186. 
(vertical command), 286. 
vertical line (the character ‘ I ’), 52, 53, 132, 

146-147, 171, 174, 438; 
see also vertical rules, 

vertical lists, 64, 110. 
vertical mode, 85-89, 267-283. 
(vertical mode material), 278. 
(vertical rule), 281. 
vertical rules, 64, 151, 221-226, 285, 

290, 392. 
(vertical skip), 281. 
very loose lines, 97, 99. 

*\vfil, 71-72, 111, 256, 281, 286, 417. 
*\vfill, 24, 25, 71, 256-257, 281, 286. 
\vfilll, 72. 

*\vfilneg, 72, 111, 281, 286. 
\vfootnote, 117, 363. 

*\vfuzz, 274, 348. 
\vglue, 340, 352. 
vinculum, see \overline. 
virgule, see slash, 51. 
visible space, 3, 420, 429. 

*\voffset, 252-253, 274, 342, 4O6. 
void, 120, 210. 
\voidb®x, 348. 
Voltaire, de (= Arouet, 

Frangois Marie), 447. 
\vphantom, 178-179, 211, 321, 



Appendix I: Index 481 

*\vrule, 64, 86, 151, 221-222, 224, 245-247, 
281-282, 283, 357, 392, 420. 

*\vsize, 113-114, 251, 253, 255, 274, 
340-341, 348, 400, 4O6, 413, 415, 417. 

*\vskip, 24, 71, 85, 191, m, 286. 
*\vsplit, VU, 222, 259, 278, 397, 417. 
*\vss, 71-72, 255, m, 286. 
*\vtop, 81-82, 151, 222, 278, 333. 

Walter’s worksheet, 244. 
Walton, Izaak, 67. 
Watson, John Hamish, M.D., 401. 

*\wd, 120, 271, 388-389, 391, 417. 
\wedge ( A ), 133, 436. 
Weierstrass p, see \wp. 
weird error, 298. 
Welsh, 239, 451. 
Westing, Arthur Herbert, 246. 
whatsits, 95, 110, 157, 226-229. 
\widehat (math accent: x), 136, 359, 433. 
\widetilde (math accent: x), 136, 359. 
widow lines, 104, 272, 398. 
widow words, 104. 

*\widowpenalty, 104, 113, 272, 348. 
width, 221, 224, 2^, 337. 
width of a box, 63-67, 77, 80-82, 225. 
wiggle, see \sim. 
Winograd, Terry Allen, 425. 
Wischmeyer Ehlert, Clara Louise, 248. 
withdelims, 152, 156. 

\wlog, 347. 
Wolfe [Holmes], Nero, 401. 
\wp ( p ), 435. 
\wr ( I ), 436. 
wreath product, see \wr. 

*\write, 215, 216, 226-228, 254, 2^, 
346, 377, 422, 424. 

X, see \times, \*. 
x-height, 54, 60, 433, 443, 445-447. 

*\xdef, 215-216, 275, 373, 4I8, 424. 
Xenophon,239. 
\xi ( ^ ), 434, 447. 
\Xi ( H ), 434. 

*\xleaders, 224. 
*\xspaceskip, 76, 274, 317, 356, 429, 433. 
\xyzzy, 379. 

*\year, 41, 273, 349, 4O6. 
Yellin, Frank Nathan, 401. 

\zQ, 348. 
\z@skip, 348. 
\zeta ( C )? 434. 

1/2, in unslashed form, 141, 186. 
(4-bit number), 272. 
(7-bit number), 272. 
(8-bit number), 272. 
(15-bit number), 272. 
(27-bit number), 272. 

Important works such as histories, biographies, 
scientific and technical text-books, etc., should contain indexes. 

Indeed, such works are scarcely to be considered complete without indexes. 

An index is almost invariably placed at the end of a volume 
and is set in smaller type than the text-matter. 
Its subjects should be thoroughly alphabetized. 

The compiling of an index is interesting work, though 
some authors are apt to find it tedious and delegate the work to others. 

The proofreader who undertakes it will find that it is splendid mental exercise 
and brings out his latent editorial capability. 

— ALBERT H. HIGHTON, Practical Proofreading (1926) 

Important references are given in boldface. 
Italicized numbers indicate fleeting references, 

whereas numbers in parentheses refer to 
mere implications or unwarranted extrapolations. 

Asterisks are used to'identify particularly distasteful passages. 

— PROF. PETER SCHICKELE, The Definitive Biography of P. D. Q. Bach (1976) 



J 
Joining the 

TfX Community 



Appendix J: Joining the TpjX Community 483 

This appendix is about grouping of another kind: users from around the 
world have banded together to form the Users Group (TUG), in order to 
exchange information about common problems and solutions. 

A newsletter called TUGhoat has been published since 1980, featuring 
articles about all aspects of and METRFONT. TUG has a network of “site 
coordinators” who serve as focal points of communication for people with the 
same computer configurations. Occasional short courses are given in order to 
provide concentrated training in special topics; videotapes of these courses are 
available for rental. Meetings of the entire TUG membership are held at least 
once a year. You can buy T-shirts at these meetings. 

Information about membership in TUG and subscription to TUGboat 
is available from 

{\obeylines 

\TeX\ Users Group 

c/o American Mathematical Society 

P.O. Box 9506 

Providence RI 02940-9506, USA. 

} 

Don’t delay, write today! That number again is 

TgX Users Group 
c/o American Mathematical Society 
P.O. Box 9506 
Providence RI 02940-9506, USA. 

[The printer] should refuse to employ wandering men, 
foreigners who, after having committed some grievous error, 

can easily disappear and return to their own country. 

— HIERONYMUS HORNSCHUCH, 'OpeoTV'Kcnpa4)Ca<, (1608) 

An author writing an article for publication in TUGboat 
is encouraged to create it on a computer file and submit it on magnetic tape. 

— BARBARA BEETON, \title How to Prepare a File\cT 
For Publication in TUGboat\cr (1981) 



4 

* T' 
V ^ 2K5^'ij'r<nx ^yacL: 

M • ■■■’'*', s’k 'Tr* *1*'.^ f»4V,V»H bh'^.* 

f I* ■4.* 11*. I fw"'! ^?\*Mllt,' \fl t.<*lf«' 

.*<W' W » 4^siy-ttjj'.rr v:^ V'iM hn.** /•; i^Hi. ?4i 

’«*! iL’'/.*'- >l- ;^ -4<: v»£ »<-'-!• , «i^ti»t>| f//^lCU^i.O 

f !??»>.• i ‘ V rsofe* ; Y>- nni^ ^ :9iiir ~. 

'i-.^<7i’:/*y^ vv':-^ V> tt>JcK)4 /T7 ihiwnf 
>••• ^^ hn^cf' -' ^ij t[ 4*f*^ ikU ':o 

J’jrf . *v* null b<^*'* 
* •:' Ik.'. 

VlS’ird/: 

T ft 

u! * 

‘ ^ ‘1^'osn6/r,7^i Q‘.:* 

.'■n 
6 

:OC:>jt>f1^0-I^ ’'-f k. 

■>» r 
t 

!»(• *iLr.V^ ‘• 
♦ « •• .4 

T1 ‘•■w .r*Ub yiTfiifS^ 

‘ ^^"'^ W' ' '/c*^‘ V J 

."fwi.l .V‘J''*^ rj**>K'-•»4 K o \ •> 

r.‘j-T* ^ ^ ' V'i P •i'.JU ■•? ■« • ’ t H 

■i ■> 't * /^n> ,4 ^' 

J'0%-«r-/ ■- Vl ■' 
\> i?' * Vit ■ ■ 

AV f' 

t.* 

4 
I - 

X > 

• < 

A 

*> - .. 

■v-'- ’ liiiw' ' ’ 

m'y'yt--.*. 

I* \<>‘ .*«V^ 

“’ 'T 
sL-^-i-.i'*'*^-^?.' -Si. 

• ■ v^t. v, 

j, ^ I.. 

iv'^or. -., H'. IM)' !t i ' ' /-'.e*^' 

'■■■ ■■ 
V/ ^7^ **-4 '*C^ ^ 

'i '~ . 's-'. ■ ‘ - '^"-L 

kll 





texbookOOdona 

texbookOOdona 

texbookOOdona 



COMPUTERS AND TYPESETTING 
SERIES by Donald E. Knuth: 

Volume A The T^Xbook, 1986 

Volume B T^X: The Program, 1986 

Volume C The METRFONTbook, 1986 

Volume D METRFONT: The Program, 1986 

Volume E Computer Modern Typefaces, 1986 

The T^Xbook and The METRFONTbook 
are also available in softcover. 

OTHER TITLES OF INTEREST: 

L'^T^X: A Document Preparation System 
by Leslie Lamport, 1986 

Proceedings of the First European Conference 
on T^X for Scientific Documentation, 
edited by Dario Lucarella, 1985 

SOFTWARE: 

MicroTEX, a complete implementation of T^X for 
microcomputers, developed by David Fuchs 

L'^TEX, for use with MicroTEX 



MNIALO E„ 

A Complete User's Guide to Computer Typesetting with TgX 

4 

Here is the definitive guide to the use of Tf^X, written by the system's creator, 
Donald E. Knuth. 

T^X represents the state-of-the-art in computer typesetting. It is particularly 
valuable where the document, article, or book to be produced contains a lot 
of mathematics, and where the user is concerned about typographic quality. 
T^X software offers both writers and publishers the opportunity to produce 
technical text of all kinds, in an attractive form, with the speed and efficiency 
of a computer system. 

Novice and expert users alike will gain from The T^Xbook the level of informa- 
tion they seek. Knuth warns newcomers away from more difficult areas, while he 
entices experienced users with new challenges. The novice need not learn much 
about T^X to prepare a simple manuscript with it. But for the preparation of more 
complex documents. The Tj^Xbook contains all the detail required. 

Knuth’s familiar wit, and illustrations specially drawn by Duane Bibby, add a light 
touch to an unusually readable software manual. 

The T^Xbook is the first In a five-volume series on Computers and Typesetting, 
all authored by Knuth. The T^Xbook is also available in softcover. 

ISBN 


