$3.00

R

Fred Lyon

ABOUT THE AUTHOR

Donald E. Knuth, author of renowned
volumes on The Art of Computer Pro-
gramming, i1s Fletcher Jones Professor of
Computer Science at Stanford University.
Knuth is a member of both the National
Academy of Sciences and the National
Academy of Engineering, and is the re-
cipient of numerous awards and honors,
including the Turing Prize and the Na-
tional Medal of Science. He has authored
over one hundred publications, including a
mathematical novelette, Surreal Numbers.

COMPUTERS & TYPESETTING / A

The TEXbook

DONALD E KNUTH Stanford University

oo \(\.\\\\\\\

.= w NN N

~

SIS

— SN NS S AOONNOONDNONI]

SRS NIRRT ST
0%

= SN N OV UK

N R

&

B , ; T
B 8, T OB, a8 $/,
‘("/f;\'{l\g{\\\’(@\\‘{\\'s:-:'~ ' @

AL

()
h
g

7

‘.-"'!’-“ - B
& .t > ‘._: By - o o
N ."1 :: ol .: 3 7
Q4] X 48 A
AR 3
23 2
Ry
'I >
X

S
o R

!
10

Illustrations by
DUANE BIBBY

A
A\ A4

ADDISON WESLEY
PUBLISHING COMPANY

Reading, Massachusetts
Menlo Park, California

Don Mills, Ontario
Wokingham, England
Amsterdam - Mexico City
San Juan - Bogota - Sydney
Santiago - Singapore - Tokyo

The quotation on page 61 is copyright © 1970 by Sesame Street, Inc., and used by permission
of the Children’s Television Workshop.

TEX is a trademark of the American Mathematical Society.
METAFONT is a trademark of Addison Wesley Publishing Company.

Library of Congress Cataloging-in-Publication Data

Knuth, Donald Ervin, 1938-
The TeXbook.

(Computers & Typesetting ; A)

Includes index.

1. TeX (Computer system). 2. Computerized
typesetting. 3. Mathematics printing. I. Title.
II. Series: Knuth, Donald Ervin, 1938-

Computers & typesetting ; A.

2253.4.T47K58 1986 686.2'2544 85-30845
ISBN 0-201-13447-0

ISBN 0-201-13448-9 (soft)

Seventh printing, June 1986
Copyright (©) 1984, 1986 by the American Mathematical Society

This book is published jointly by the American Mathematical Society and Addison Wesley
Publishing Company. All rights reserved. No part of this publication may be reproduced,
stored in a retrieval system, or transmitted, in any form or by any means, electronic, me-
chanical, photocopying, recording, or otherwise, without the prior written permission of the
publishers. Printed in the United States of America. Published simultaneously in Canada.

ISBN 0-201-13447-0
CDEFGHIJ-HA-89876

Preface

GENTLE READER: This is a handbook about TEX, a new typesetting system

intended for the creation of beautiful books—and especially for books
that contain a lot of mathematics. By preparing a manuscript in TEX format,
you will be telling a computer exactly how the manuscript is to be transformed
into pages whose typographic quality is comparable to that of the world’s finest
printers; yet you won’t need to do much more work than would be involved if
you were simply typing the manuscript on an ordinary typewriter. In fact, your
total work will probably be significantly less, if you consider the time it ordinarily
takes to revise a typewritten manuscript, since computer text files are so easy
to change and to reprocess. (If such claims sound too good to be true, keep in
mind that they were made by TEX’s designer, on a day when TEX happened to
be working, so the statements may be biased; but read on anyway.)

This manual is intended for people who have never used TEX before,
as well as for experienced TEX hackers. In other words, it’s supposed to be a
panacea that satisfies everybody, at the risk of satisfying nobody. Everything you
need to know about TEX is explained here somewhere, and so are a lot of things
that most users don’t care about. If you are preparing a simple manuscript, you
won’t need to learn much about TEX at all; on the other hand, some things that
go into the printing of technical books are inherently difficult, and if you wish to
achieve more complex effects you will want to penetrate some of TEX’s darker
corners. In order to make it possible for many types of users to read this manual
effectively, a special sign is used to designate material that is for wizards only:

When the symbol

appears at the beginning of a paragraph, it warns of a “dangerous bend” in
the train of thought; don’t read the paragraph unless you need to. Brave and
experienced drivers at the controls of TEX will gradually enter more and more
of these hazardous areas, but for most applications the details won’t matter.
All that you really ought to know, before reading on, is how to get a
file of text into your computer using a standard editing program. This manual
explains what that file ought to look like so that TEX will understand it, but basic
computer usage is not explained here. Some previous experience with technical
typing will be quite helpful if you plan to do heavily mathematical work with
TEX, although it is not absolutely necessary. TEX will do most of the necessary

vi

Preface

formatting of equations automatically; but users with more experience will be
able to obtain better results, since there are so many ways to deal with formulas.

Some of the paragraphs in this manual are so esoteric that they are rated

a4

everything that was said about single dangerous-bend signs goes double for these.
You should probably have at least a month’s experience with TEX before you
attempt to fathom such doubly dangerous depths of the system; in fact, most
people will never need to know TEX in this much detail, even if they use it every
day. After all, it’s possible to drive a car without knowing how the engine works.
Yet the whole story is here in case you're curious. (About TgX, not cars.)

The reason for such different levels of complexity is that people change
as they grow accustomed to any powerful tool. When you first try to use TEX,
you’ll find that some parts of it are very easy, while other things will take some
getting used to. A day or so later, after you have successfully typeset a few
pages, you'll be a different person; the concepts that used to bother you will now
seem natural, and you’ll be able to picture the final result in your mind before it
comes out of the machine. But you’ll probably run into challenges of a different
kind. After another week your perspective will change again, and you’ll grow in
yet another way; and so on. As years go by, you might become involved with
many different kinds of typesetting; and you’ll find that your usage of TEX will
keep changing as your experience builds. That’s the way it is with any powerful
tool: There’s always more to learn, and there are always better ways to do what
you've done before. At every stage in the development you’ll want a slightly
different sort of manual. You may even want to write one yourself. By paying
attention to the dangerous bend signs in this book you’ll be better able to focus
on the level that interests you at a particular time.

Computer system manuals usually make dull reading, but take heart:
This one contains JOKES every once in a while, so you might actually enjoy
reading it. (However, most of the jokes can only be appreciated properly if you
understand a technical point that is being made—so read carefully.)

Another noteworthy characteristic of this manual is that it doesn’t al-
ways tell the truth. When certain concepts of TEX are introduced informally,
general rules will be stated; afterwards you will find that the rules aren’t strictly
true. In general, the later chapters contain more reliable information than the

Preface

earlier ones do. The author feels that this technique of deliberate lying will ac-
tually make it easier for you to learn the ideas. Once you understand a simple
but false rule, it will not be hard to supplement that rule with its exceptions.

In order to help you internalize what you’re reading, EXERCISES are
sprinkled through this manual. It is generally intended that every reader should
try every exercise, except for questions that appear in the “dangerous bend”
areas. If you can’t solve a problem, you can always look up the answer. But
please, try first to solve it by yourself; then you’ll learn more and you’ll learn
faster. Furthermore, if you think you do know the solution, you should turn to
Appendix A and check it out, just to make sure.

The TEX language described in this book is similar to the author’s first
attempt at a document formatting language, but the new system differs from
the old one in literally thousands of details. Both languages have been called
TEX; but henceforth the old language should be called TEX78, and its use should
rapidly fade away. Let’s keep the name TEX for the language described here,
since 1t is so much better, and since it is not going to change any more.

I wish to thank the hundreds of people who have helped me to formulate
this “definitive edition” of the TEX language, based on their experiences with
preliminary versions of the system. My work at Stanford has been generously
supported by the National Science Foundation, the Office of Naval Research, the
IBM Corporation, and the System Development Foundation. I also wish to thank
the American Mathematical Society for its encouragement, for establishing the
TEX Users Group, and for publishing the TUGboat newsletter (see Appendix J).

Stanford, California — D. E. K.
June 1983

‘Tis pleasant, sure, to see one’s name in print;
A book’s a book, although there’s nothing in 't.

— BYRON, English Bards and Scotch Reviewers (1809)

A question arose as to whether we were covering the field
that it was intended we should fill with this manual.

— RICHARD R. DONNELLEY, Proceedings, United Typotheta of America (1897)

vii

© 00 N & otk W

N N N R T T T S e S e S S Gy S G Gy
W O = O © W g Ut o h WY = O

Contents

The Name of the Game

Book Printing versus Ordinary Typing
Controlling TEX .

Fonts of Type .

Grouping

Running TgX .

How TEX Reads What You Type
The Characters You Type

TEX’s Roman Fonts

Dimensions

Boxes

Glue .

Modes

How TEX Breaks Paragraphs into Lines
How TEX Makes Lines into Pages
Typing Math Formulas .

More about Math

Fine Points of Mathematics Typing
Displayed Equations .

Definitions (also called Macros)
Making Boxes

Alignment

Output Routines

13
19
23
37
43
51
57
63
69
85
91
109
127
139
161
185
199
221
231
251

The Name of
the Game

Chapter 1: The Name of the Game

English words like ‘technology’ stem from a Greek root beginning with the letters
TeX . ..; and this same Greek word means art as well as technology. Hence the
name TEX, which is an uppercase form of Tey.

Insiders pronounce the x of TEX as a Greek chi, not as an ‘x’, so that
TEX rhymes with the word blecchhh. It’s the ‘ch’ sound in Scottish words like
loch or German words like ach; it’s a Spanish ‘j” and a Russian ‘kh’. When you
say it correctly to your computer, the terminal may become slightly moist.

The purpose of this pronunciation exercise is to remind you that TpX
is primarily concerned with high-quality technical manuscripts: Its emphasis is
on art and technology, as in the underlying Greek word. If you merely want to
produce a passably good document—something acceptable and basically read-
able but not really beautiful-—a simpler system will usually suffice. With TEX
the goal is to produce the finest quality; this requires more attention to detail,
but you will not find it much harder to go the extra distance, and you’ll be able
to take special pride in the finished product.

On the other hand, it’s important to notice another thing about TEX’s
name: The ‘E’ is out of kilter. This displaced ‘E’ is a reminder that TgX is about
typesetting, and it distinguishes TEX from other system names. In fact, TEX
(pronounced tecks) is the admirable Text EXecutive processor developed by
Honeywell Information Systems. Since these two system names are pronounced
quite differently, they should also be spelled differently. The correct way to refer
to TEX in a computer file, or when using some other medium that doesn’t allow
lowering of the ‘E’, is to type ‘TeX’. Then there will be no confusion with similar
names, and people will be primed to pronounce everything properly.

» EXERCISE 1.1
After you have mastered the material in this book, what will you be: A TgpXpert,
or a TEXnician?

They do certainly give
very strange and new-fangled names to diseases.

— PLATO, The Republic, Book 3 (c. 375 B.C.)

Technique! The very word is like the shriek
Of outraged Art. It is the idiot name
Given to effort by those who are too weak,
Too weary, or too dull to play the game.

— LEONARD BACON, Sophia Trenton (1920)

Book Printing
versus
Ordinary Typing

Chapter 2: Book Printing versus Ordinary Typing

When you first started using a computer terminal, you probably had to adjust
to the difference between the digit ‘1’ and the lowercase letter ‘I’. When you
take the next step to the level of typography that is common in book publishing,
a few more adjustments of the same kind need to be made; your eyes and your
fingers need to learn to make a few more distinctions.

In the first place, there are two kinds of quotation marks in books,
but only one kind on the typewriter. Even your computer terminal, which has
more characters than an ordinary typewriter, probably has only a non-oriented
double-quote mark ("), because the standard ASCII code for computers was not
invented with book publishing in mind. However, your terminal probably does
have two flavors of single-quote marks, namely ¢ and ’; the second of these is
useful also as an apostrophe. American keyboards usually contain a left-quote
character that shows up as something like ~, and an apostrophe or right-quote
that looks like ' or .

To produce double-quote marks with TEX, you simply type two single-
quote marks of the appropriate kind. For example, to get the phrase

“I understand.”
(including the quotation marks) you should type
““I understand.’’

to your computer.

A typewriter-like style of type will be used throughout this manual to
indicate TEX constructions that you might type on your terminal, so that the
symbols actually typed are readily distinguishable from the output TEX would
produce and from the comments in the manual itself. Here are the symbols to
be used in the examples:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghi jklmnopqrstuvwxyz
0123456789"#$%&Q*+-=, . :;7!
O<>OLF NI/

If your computer terminal doesn’t happen to have all of these, don’t despair;
TEX can make do with the ones you have. An additional symbol

U

is used to stand for a blank space, in case it is important to emphasize that a
blank space is being typed; thus, what you really type in the example above is

‘I understand.’’

Without such a symbol you would have difficulty seeing the invisible parts of

certain constructions. But we won’t be using ‘)’ very often, because spaces are

usually visible enough.

Chapter 2: Book Printing versus Ordinary Typing

Book printing differs significantly from ordinary typing with respect to
dashes, hyphens, and minus signs. In good math books, these symbols are all
different; in fact there usually are at least four different symbols:

a hyphen (-);

an en-dash (-);
an em-dash (—);
a minus sign (—).

Hyphens are used for compound words like ‘daughter-in-law’ and ‘X-rated’. En-
dashes are used for number ranges like ‘pages 13-34’, and also in contexts like
‘exercise 1.2.6-52’. Em-dashes are used for punctuation in sentences—they are
what we often call simply dashes. And minus signs are used in formulas. A
conscientious user of TEX will be careful to distinguish these four usages, and
here is how to do it:

for a hyphen, type a hyphen (-);

for an en-dash, type two hyphens (--);

for an em-dash, type three hyphens (---);

for a minus sign, type a hyphen in mathematics mode ($-$).

(Mathematics mode occurs between dollar signs; it is discussed later, so you
needn’t worry about it now.)

» EXERCISE 2.1
Explain how to type the following sentence to TEX: Alice said, “I always use an
en-dash instead of a hyphen when specifying page numbers like ‘480-491’ in a
bibliography.”

» EXERCISE 2.2
What do you think happens when you type four hyphens in a row?

If you look closely at most well-printed books, you will find that certain
combinations of letters are treated as a unit. For example, this is true of the
‘t” and the ‘1’ of ‘find’. Such combinations are called ligatures, and professional
typesetters have traditionally been trained to watch for letter combinations such
as £f, fi, f1, £fi, and ff1. (The reason is that words like ‘find’ don’t look
very good in most styles of type unless a ligature is substituted for the letters
that clash. It’s somewhat surprising how often the traditional ligatures appear
in English; other combinations are important in other languages.)

» EXERCISE 2.3
Think of an English word that contains two ligatures.

The good news is that you do not have to concern yourself with liga-
tures: TEX is perfectly capable of handling such things by itself, using the same
mechanism that converts ‘--" into ‘~’. In fact, TEX will also look for combi-
nations of adjacent letters (like ‘A’ next to ‘V’) that ought to be moved closer

together for better appearance; this is called kerning.

Chapter 2: Book Printing versus Ordinary Typing

To summarize this chapter: When using TEX for straight copy, you type
the copy as on an ordinary typewriter, except that you need to be careful about
quotation marks, the number 1, and various kinds of hyphens/dashes. TEX will
automatically take care of other niceties like ligatures and kerning.

@ (Are you sure you should be reading this paragraph? The “dangerous bend”

sign here is meant to warn you about material that ought to be skipped on first
reading. And maybe also on second reading. The reader-beware paragraphs sometimes
refer to concepts that aren’t explained until later chapters.)

@ If your keyboard does not contain a left-quote symbol, you can type \lq,
followed by a space if the next character is a letter, or followed by a \ if the
next character is a space. Similarly, \rq yields a right-quote character. Is that clear?

\1q\1lqy I understand.\rq\rq\,

@ In case you need to type quotes within quotes, for example a single quote

followed by a double quote, you can’t simply type ’’’ because TEX will
interpret this as ”’ (namely, double quote followed by single quote). If you have already
read Chapter 5, you might expect that the solution will be to use grouping—namely,
to type something like {’}’’. But it turns out that this doesn’t produce the desired
result, because there is usually less space following a single right quote than there is
following a double right quote: What you get is ’”, which is indeed a single quote
followed by a double quote (if you look at it closely enough), but it looks almost
like three equally spaced single quotes. On the other hand, you certainly won’t want
to type ’.’’, because that space is much too large—it’s just as large as the space

between words—and TEX might even start a new line at such a space when making up

a paragraph! The solution is to type ’\thinspace’’, which produces ’” as desired.
@ » EXERCISE 2.4
OK, now you know how to produce ”’ and ’”; how do you get “‘ and ‘“7?

@ » EXERCISE 2.5
Why do you think the author introduced the control sequence \thinspace to
solve the adjacent-quotes problem, instead of recommending the trickier construction

’$\,$’° (which also works)?

In modern Wit all printed Trash, is
Set off with num’'rous Breaks and Dashes—

— JONATHAN SWIFT, On Poetry: A Rapsody (1733)

Some compositors still object to work
in offices where type-composing machines are introduced.

— WILLIAM STANLEY JEVONS, Political Economy (1878)

\! s -.-\

AN
%’W

|

Wity \\\\\\“
|

Chapter 3: Controlling TpX 7

Your keyboard has very few keys compared to the large number of symbols
that you may want to specify. In order to make a limited keyboard sufficiently
versatile, one of the characters that you can type is reserved for special use,
and 1t i1s called the escape character. Whenever you want to type something
that controls the format of your manuscript, or something that doesn’t use the
keyboard in the ordinary way, you should type the escape character followed by
an indication of what you want to do.

Note: Some computer terminals have a key marked ‘ESC’, but that is not
your escape character! It is a key that sends a special message to the operating
system, so don’t confuse it with what this manual calls “escape.”

TEX allows any character to be used for escapes, but the “backslash”
character ‘\’ is usually adopted for this purpose, since backslashes are reasonably
convenient to type and they are rarely needed in ordinary text. Things work out
best when different TEX users do things consistently, so we shall escape via
backslashes in all the examples of this manual.

Immediately after typing ‘\’ (i.e., immediately after an escape character)
you type a coded command telling TEX what you have in mind. Such commands
are called control sequences. For example, you might type

\input MS

which (as we will see later) causes TEX to begin reading a file called ‘MS.tex’;
the string of characters ‘\input’ is a control sequence. Here’s another example:

George P\’olya and Gabor Szeg\'"o.

9

TEX converts this to ‘George Poélya and Gabor Szego.” There are two control
sequences, \’ and \", here; these control sequences have been used to place
accents over some of the letters.

Control sequences come in two flavors. The first kind, like \input, is
called a control word; it consists of an escape character followed by one or more
letters, followed by a space or by something besides a letter. (TgX has to know
where the control sequence ends, so you must put a space after a control word
if the next character is a letter. For example, if you type ‘\inputMS’, TEX will
naturally interpret this as a control word with seven letters.) In case you're
wondering what a “letter” is, the answer is that TEX normally regards the 52
symbols A...Z and a. ..z as letters. The digits 0...9 are not considered to be
letters, so they don’t appear in control sequences of the first kind.

A control sequence of the other kind, like \’, is called a control symbol;
it consists of the escape character followed by a single nonletter. In this case you
don’t need a space to separate the control sequence from a letter that follows,
since control sequences of the second kind always have a exactly one symbol after
the escape character.

» EXERCISE 3.1
What are the control sequences in ‘\I’m \exercise3.1\\!’?

8 Chapter 3: Controlling TEX

» EXERCISE 3.2
We’ve seen that the input P\’ olya yields ‘Pélya’. Can you guess how the French
words ‘mathématique’ and ‘centimetre’ should be specified?

When a space comes after a control word (an all-letter control sequence),
it is ignored by TEX; i.e., it is not considered to be a “real” space belonging to
the manuscript that is being typeset. But when a space comes after a control
symbol, it’s truly a space.

Now the question arises, what do you do if you actually want a space
to appear after a control word? We will see later that TEX treats two or more
consecutive spaces as a single space, so the answer is not going to be “type two
spaces.” The correct answer is to type “control space,” namely

\u

(the escape character followed by a blank space); TEX will treat this as a space
that is not to be ignored. Notice that control-space is a control sequence of the
second kind, i.e., a control symbol, since there is a single nonletter () following
the escape character. Two consecutive spaces are considered to be equivalent to
a single space, so further spaces immediately following _ will be ignored. But if
you want to enter, say, three consecutive spaces into a manuscript you can type
‘N\u\u\u’. Incidentally, typists are often taught to put two spaces at the ends of
sentences; but we will see later that TEX has its own way to produce extra space
in such cases. Thus you needn’t be consistent in the number of spaces you type.

@ Nonprinting control characters like (return) might follow an escape character,

and these lead to distinct control sequences according to the rules. TgX is
initially set up to treat \(return) and \(tab) the same as \., (control space); these
special control sequences should probably not be redefined, because you can’t see the
difference between them when you look at them in a file.

It is usually unnecessary for you to use “control space,” since control
sequences aren’t often needed at the ends of words. But here’s an example that
might shed some light on the matter: This manual itself has been typeset by
TEX, and one of the things that occurs fairly often is the tricky logo ‘TpX’, which
requires backspacing and lowering the E. There’s a special control word

\TeX

that produces the half-dozen or so instructions necessary to typeset ‘TEX’. When
a phrase like ‘TEX ignores spaces after control words.’ is desired, the manuscript
renders it as follows:

\TeX\ ignores spaces after control words.

Notice the extra \ following \TeX; this produces the control space that is neces-
sary because TEX ignores spaces after control words. Without this extra \, the
result would have been

TEXignores spaces after control words.

Chapter 3: Controlling TgX 9

On the other hand, you can’t simply put \ after \TeX in all contexts. For
example, consider the phrase

the logo ‘\TeX’.

In this case an extra backslash doesn’t work at all; in fact, you get a curious
result if you type

the logo ‘\TeX\’.

Can you guess what happens? Answer: The \’ is a control sequence denoting
an acute accent, as in our P\’olya example above; the effect is therefore to put
an accent over the next nonblank character, which happens to be a period. In
other words, you get an accented period, and the result is

the logo ‘“TEX:

Computers are good at following instructions, but not at reading your mind.
TEX understands about 900 control sequences as part of its built-in
vocabulary, and all of them are explained in this manual somewhere. But you
needn’t worry about learning so many different things, because you won’t really
be needing very many of them unless you are faced with unusually complicated
copy. Furthermore, the ones you do need to learn actually fall into relatively
few categories, so they can be assimilated without great difficulty. For example,
many of the control sequences are simply the names of special characters used
in math formulas; you type ‘\pi’ to get ‘m’, ‘\Pi’ to get ‘II’, ‘\aleph’ to get ‘N’,
‘\infty’ to get ‘c0’, ‘\1e’ to get ‘<’, ‘\ge’ to get ‘>’, ‘\ne’ to get ‘#’, ‘\oplus’ to
get ‘@’, ‘\otimes’ to get ‘®’. Appendix F contains several tables of such symbols.

@ There’s no built-in relationship between uppercase and lowercase letters in
control sequence names. For example, ‘\pi’ and ‘\Pi’ and ‘\PI’ and ‘\pI’ are
four different control words.

The 900 or so control sequences that were just mentioned actually aren’t
the whole story, because it’s easy to define more. For example, if you want to
substitute your own favorite names for math symbols, so that you can remember
them better, you're free to go right ahead and do it; Chapter 20 explains how.

About 300 of TEX’s control sequences are called primitive; these are the
low-level atomic operations that are not decomposable into simpler functions.
All other control sequences are defined, ultimately, in terms of the primitive
ones. For example, \input is a primitive operation, but \’ and \" are not; the
latter are defined in terms of an \accent primitive.

People hardly ever use TEX’s primitive control sequences in their man-
uscripts, because the primitives are ... well ... so primitive. You have to type
a lot of instructions when you are trying to make TEX do low-level things; this
takes time and invites mistakes. It is generally better to make use of higher-level
control sequences that state what functions are desired, instead of typing out
the way to achieve each function each time. The higher-level control sequences

10 Chapter 3: Controlling TpX

need to be defined only once in terms of primitives. For example, \TeX is a con-
trol sequence that means “typeset the TEX logo”; \’ is a control sequence that
means “put an acute accent over the next character”; and both of these con-
trol sequences might require different combinations of primitives when the style
of type changes. If TEX’s logo were to change, the author would simply have
to change one definition, and the changes would appear automatically wherever
they were needed. By contrast, an enormous amount of work would be necessary
to change the logo if it were specified as a sequence of primitives each time.

At a still higher level, there are control sequences that govern the overall
format of a document. For example, in the present book the author typed
‘\exercise’ just before stating each exercise; this \exercise command was
programmed to make TEX do all of the following things:

= compute the exercise number (e.g., ‘3.2’ for the second exercise in Chap-
ter 3);

s typeset ‘» EXERCISE 3.2’ with the appropriate typefaces, on a line by
itself, and with the triangle sticking out in the left margin;

s leave a little extra space just before that line, or begin a new page at
that line if appropriate;

= prohibit beginning a new page just after that line;

s suppress indentation on the following line.

It i1s obviously advantageous to avoid typing all of these individual instructions
each time. And since the manual is entirely described in terms of high-level
control sequences, it could be printed in a radically different format simply by
changing a dozen or so definitions.

@ How can a person distinguish a TEX primitive from a control sequence that

has been defined at a higher level? There are two ways: (1) The index to this
manual lists all of the control sequences that are discussed, and each primitive is marked
with an asterisk. (2) You can display the meaning of a control sequence while running
TEX. If you type ‘\show\cs’ where \cs is any control sequence, TEX will respond
with its current meaning. For example, ‘\show\input’ results in ‘> \input=\input.’,
because \input is primitive. On the other hand, ‘\show\thinspace’ yields

> \thinspace=macro:
->\kern .16667em .

This means that \thinspace has been defined as an abbreviation for ‘\kern .16667em .
By typing ‘\show\kern’ you can verify that \kern is primitive. The results of \show
appear on your terminal and in the log file that you get after running TEX.

@ » EXERCISE 3.3
Which of the control sequences \;, and \(return) is primitive?

In the following chapters we shall frequently discuss “plain TEX” for-
mat, which is a set of about 600 basic control sequences that are defined in
Appendix B. These control sequences, together with the 300 or so primitives,

Chapter 3: Controlling TgX

are usually present when TEX begins to process a manuscript; that is why TpX
claims to know roughly 900 control sequences when it starts. We shall see how
plain TEX can be used to create documents in a flexible format that meets many
people’s needs, using some typefaces that come with the TpX system. However,
you should keep in mind that plain TgX is only one of countless formats that
can be designed on top of TEX’s primitives; if you want some other format, it
will usually be possible to adapt TEX so that it will handle whatever you have in
mind. The best way to learn is probably to start with plain TgX and to change
its definitions, little by little, as you gain more experience.

@ Appendix E contains examples of formats that can be added to Appendix B

for special applications; for example, there is a set of definitions suitable for
business correspondence. A complete specification of the format used to typeset this
manual also appears in Appendix E. Thus, if your goal is to learn how to design TEX
farmats, you will probably want to study Appendix E while mastering Appendix B.
After you have become skilled in the lore of control-sequence definition, you will prob-
ably have developed some formats that other people will want to use; you should then
write a supplement to this manual, explaining your style rules.

The main point of these remarks, as far as novice TEX users are con-
cerned, is that it is indeed possible to define nonstandard TEX control sequences.
When this manual says that something is part of “plain TEX,” it means that TEX
doesn’t insist on doing things exactly that way; a person could change the rules
by changing one or more of the definitions in Appendix B. But you can safely
rely on the control sequences of plain TEX until you become an experienced

TEXnical typist.

@@» EXERCISE 3.4
How many different control sequences of length 2 (including the escape char-
acter) are possible? How many of length 37

Syllables govern the world.
— JOHN SELDEN, Table Talk (1689)

| claim not to have controlled events,
but confess plainly that events have controlled me.

— ABRAHAM LINCOLN (1864)

11

Chapter 4: Fonts of Type

Occasionally you will want to change from one typeface to another, for example
if you wish to be bold or to emphasize something. TgX deals with sets of up
to 256 characters called “fonts” of type, and control sequences are used to select
a particular font. For example, you could specify the last few words of the first
sentence above in the following way, using the plain TgX format of Appendix B:

to be \bf bold \rm or to \sl emphasize \rm something.

Plain TEX provides the following control sequences for changing fonts:

\rm switches to the normal “roman” typeface: Roman

\sl switches to a slanted roman typeface: Slanted

\it switches to italic style: Italic

\tt switches to a typewriter-like face: Typewriter
\bf switches to an extended boldface style: Bold

At the beginning of a run you get roman type (\rm) unless you specify otherwise.

Notice that two of these faces have an “oblique” slope for emphasis:
Slanted type is essentially the same as roman, but the letters are slightly skewed,
while the letters in italic type are drawn in a different style. (You can perhaps
best appreciate the difference between the roman and italic styles by contemplat-
ing letters that are in an unslanted italic face.) Typographic conventions are
presently in a state of transition, because new technology has made it possible
to do things that used to be prohibitively expensive; people are wrestling with
the question of how much to use their new-found typographic freedom. Slanted
roman type was introduced in the 1930s, but it first became widely used as
an alternative to the conventional italic during the late 1970s. It can be bene-
ficial in mathematical texts, since slanted letters are distinguishable from the
italic letters in math formulas. The double use of italic type for two different
purposes—for example, when statements of theorems are italicized as well as the
names of variables in those theorems—has led to some confusion, which can now
be avoided with slanted type. People are not generally agreed about the relative
merits of slanted versus italic, but slanted type is rapidly becoming a favorite
for the titles of books and journals in bibliographies.

Special fonts are effective for emphasis, but not for sustained reading;
your eyes would tire if long portions of this manual were entirely set in a bold
or slanted or italic face. Therefore roman type accounts for the bulk of most
typeset material. But it’s a nuisance to say ‘\rm’ every time you want to go
back to the roman style, so TEX provides an easier way to do it, using “curly
brace” symbols: You can switch fonts inside the special symbols { and }, without
affecting the fonts outside. For example, the displayed phrase at the beginning
of this chapter is usually rendered

to be {\bf bold} or to {\sl emphasize} something.

This is a special case of the general idea of “grouping” that we shall discuss in
the next chapter. It’s best to forget about the first way of changing fonts, and

13

14 Chapter 4: Fonts of Type

to use grouping instead; then your TEX manuscripts will look more natural, and
you’ll probably never* have to type ‘\rm’.

» EXERCISE 4.1
Explain how to type the bibliographic reference ‘Ulrich Dieter, Journal fiir die
reine und angewandte Mathematik 201 (1959), 37-70.” [Use grouping.|

We have glossed over an important aspect of quality in the preceding
discussion. Look, for example, at the italicized and slanted words in this sentence.
Since italic and slanted styles slope to the right, the d’s stick into the spaces that
separate these words from the roman type that follows; as a result, the spaces
appear to be too skimpy, although they are correct at the base of the letters.
To equalize the effective white space, TEX allows you to put the special control
sequence ‘\/’ just before switching back to unslanted letters. When you type

{\it italicized\/} and {\sl slanted\/} words

you get italicized and slanted words that look better. The ‘\/’ tells TEX to add an
“italic correction” to the previous letter, depending on that letter; this correction
i1s about four times as much for an ‘f’ as for a ‘c’, in a typical italic font.

Sometimes the italic correction is not desirable, because other factors
take up the visual slack. The standard rule of thumb is to use \/ just before
switching from slanted or italic to roman or bold, unless the next character is a
period or comma. For example, type

{\it italics\/} for {\it emphasis}.

Old manuals of style say that the punctuation after a word should be in the same
font as that word; but an italic semicolon often looks wrong, so this convention
is changing. When an italicized word occurs just before a semicolon, the author
recommends typing ‘{\it word\/};’.

» EXERCISE 4.2
Ezxplain how to typeset a roman word in the midst of an italicized sentence.

g% Every letter of every font has an italic correction, which you can bring to life

by typing \/. The correction is usually zero in unslanted styles, but there are
exceptions: To typeset a bold ‘f” in quotes, you should say a bold ‘{\bf £f\/}’, lest
you get a bold ‘f".

@@» EXERCISE 4.3
; Define a control sequence \ic such that ‘\ic ¢’ puts the italic correction of
character ¢ into TEX’s register \dimenO.

@@ The primitive control sequence \nullfont stands for a font that has no char-
acters. This font is always present, in case you haven’t specified any others.

* Well ..., hardly ever.

Chapter 4: Fonts of Type

Fonts vary in size as well as in shape. For example, the font you are
now reading is called a “10-point” font, because certain features of its design are
10 points apart, when measured in printers’ units. (We will study the point
system later; for now, it should suffice to point out that the parentheses around
this sentence are exactly 10 points tall —and the em-dash is just 10 points wide.)
The “dangerous bend” sections of this manual are set in 9-point type, the foot-
notes 1n 8-point, subscripts in 7-point or 6-point, sub-subscripts in 5-point.

Each font used in a TEX manuscript is associated with a control se-
quence; for example, the 10-point font in this paragraph is called \tenrm, and
the corresponding 9-point font is called \ninerm. The slanted fonts that match
\tenrm and \ninerm are called \tensl and \ninesl. These control sequences
are not built into TEX, nor are they the actual names of the fonts; TgX users are
just supposed to make up convenient names, whenever new fonts are introduced
into a manuscript. Such control sequences are used to change typefaces.

When fonts of different sizes are used simultaneously, TgX will line the
letters up according to their “baselines.” For example, if you type

\tenrm smaller \ninerm and smaller
\eightrm and smaller \sevenrm and smaller
\sixrm and smaller \fiverm and smaller \tenrm

the result is smaller and smaller and smaller and smaller and smaller and smaner. Of course
this is something that authors and readers aren’t accustomed to, because printers
couldn’t do such things with traditional lead types. Perhaps poets who wish
to speak In a stin sman voice Will cause future books to make use of frequent font
variations, but nowadays it’s only an occasional font freak ike the author of this manual)
who likes such experiments. One should not get too carried away by the prospect
of font switching unless there is good reason.

An alert reader might well be confused at this point because we started
out this chapter by saying that ‘\rm’ is the command that switches to roman
type, but later on we said that ‘\tenrm’ is the way to do it. The truth is that
both ways work. But it has become customary to set things up so that \rm means
“switch to roman type in the current size” while \tenrm means “switch to roman
type in the 10-point size.” In plain TEX format, nothing but 10-point fonts are
provided, so \rm will always get you \tenrm; but in more complicated formats the
meaning of \rm will change in different parts of the manuscript. For example, in
the format used by the author to typeset this manual, there’s a control sequence
‘\tenpoint’ that causes \rm to mean \tenrm, \sl to mean \tensl, and so on,
while ‘\ninepoint’ changes the definitions so that \rm means \ninerm, etc.
There’s another control sequence used to introduce the quotations at the end of
each chapter; when the quotations are typed, \rm and \s1 temporarily stand for
8-point unslanted sans-serif type and 8-point slanted sans-serif type, respectively.
This device of constantly redefining the abbreviations \rm and \s1, behind the
scenes, frees the typist from the need to remember what size or style of type is
currently being used.

15

16 Chapter 4: Fonts of Type

» EXERCISE 4.4
Why do you think the author chose the names ‘\tenpoint’ and ‘\tenrm’, etc.,
instead of ‘\10point’ and ‘\10rm’?

@ » EXERCISE 4.5

Suppose that you have typed a manuscript using slanted type for emphasis,
but your editor suddenly tells you to change all the slanted to italic. What’s an easy
way to do this?

@ Each font has an external name that identifies it with respect to all other fonts

in a particular library. For example, the font in this sentence is called ‘cmr9’,
which is an abbreviation for “Computer Modern Roman 9 point.” In order to prepare
TEX for using this font, the command

\font\ninerm=cmr9

appears in Appendix E. In general you say ‘\font\cs=(external font name)’ to load
the information about a particular font into TEX’s memory; afterwards the control
sequence \cs will select that font for typesetting. Plain TEX makes only sixteen fonts
available initially (see Appendix B and Appendix F), but you can use \font to access
anything that exists in your system’s font library.

@ It is often possible to use a font at several different sizes, by magnifying or

shrinking the character images. Each font has a so-called design size, which
reflects the size it normally has by default; for example, the design size of cmr9 is
9 points. But on many systems there is also a range of sizes at which you can use
a particular font, by scaling its dimensions up or down. To load a scaled font into
TEX’s memory, you simply say ‘\font\cs=(external font name) at (desired size)’. For
example, the command

\font\magnifiedfiverm=cmr5 at 10pt

brings in 5-point Computer Modern Roman at twice its normal size. (Caution: Before
using this ‘at’ feature, you should check to make sure that your typesetter supports
the font at the size in question; TEX will accept any (desired size) that is positive and
less than 2048 points, but the final output will not be right unless the scaled font really
is available on your printing device.)

@ What’s the difference between cmr5 at 10pt and the normal 10-point font,

cmr10? Plenty; a well-designed font will be drawn differently at different point
sizes, and the letters will often have different relative heights and widths, in order to
enhance readability.

Ten point type is different from magnified five-point type.

It is usually best to scale fonts only slightly with respect to their design size, unless
the final product is going to be photographically reduced after TEX has finished with
it, or unless you are trying for an unusual effect.

@ Another way to magnify a font is to specify a scale factor that is relative to
the design size. For example, the command

\font\magnifiedfiverm=cmr5 scaled 2000

Chapter 4: Fonts of Type

1s another way to bring in the font cmr5 at double size. The scale factor is specified
as an integer that represents a magnification ratio times 1000. Thus, a scale factor of
1200 specifies magnification by 1.2, etc. ‘

@ » EXERCISE 4.6
State two ways to load font cmr10 into TEX’s memory at half its normal size.

@ At many computer centers it has proved convenient to supply fonts at magni-

fications that grow in geometric ratios—something like well-tempered tuning
on a piano. The idea is to have all fonts available at their true size as well as at
magnifications 1.2 and 1.44 (which is 1.2 x 1.2); perhaps also at magnification 1.728
(= 1.2 x 1.2 x 1.2) and even higher. Then you can magnify an entire document by 1.2
or 1.44 and still stay within the set of available fonts. Plain TEX provides the abbre-
viations \magstepO for a scale factor of 1000, \magstep1 for a scaled factor of 1200,
\magstep2 for 1440, and so on up to \magstep5. You say, for example,

\font\bigtenrm=cmr10 scaled\magstep2
to load font cmr10 at 1.2 x 1.2 times its normal size.
“This is cmr10 at normal size (\magstep0).”

“This is cmr10 scaled once by 1.2 (\magstep1).”
“This is cmr10 scaled twice by 1.2 (\magstep2).”

(Notice that a little magnification goes a long way.) There’s also \magstephalf, which
magnifies by v/ 1.2, i.e., halfway between steps 0 and 1.

@ Chapter 10 explains how to apply magnification to an entire document, over
and above any magnification that has been specified when fonts are loaded.
For example, if you have loaded a font that is scaled by \magstepl and if you also
specify \magnification=\magstep2, the actual font used for printing will be scaled by
\magstep3. Similarly, if you load a font scaled by \magstephalf and if you also say
\magnification=\magstephalf, the printed results will be scaled by \magstepl.

Type faces—Iike people’'s faces—have distinctive features
indicating aspects of character.

— MARSHALL LEE, Bookmaking (1965)

T his was the Noblest Roman of them all.
— WILLIAM SHAKESPEARE, The Tragedie of Julius Casar (1599)

17

Chapter 5: Grouping

Every once in a while it is necessary to treat part of a manuscript as a unit, so you
need to indicate somehow where that part begins and where it ends. For this
purpose TEX gives special interpretation to two “grouping characters,” which
(like the escape character) are treated differently from the normal symbols that
you type. We assume in this manual that { and } are the grouping characters,
since they are the ones used in plain TEX.

We saw examples of grouping in the previous chapter, where it was men-
tioned that font changes inside a group do not affect the fonts in force outside.
The same principle applies to almost anything else that is defined inside a group,
as we will see later; for example, if you define a control sequence within some
group, that definition will disappear when the group ends. In this way you
can conveniently instruct TEX to do something unusual, by changing its normal
conventions temporarily inside of a group; since the changes are invisible from
outside the group, there is no need to worry about messing up the rest of a
manuscript by forgetting to restore the normal conventions when the unusual
construction has been finished. Computer scientists have a name for this aspect
of grouping, because it’s an important aspect of programming languages in gen-
eral; they call it “block structure,” and definitions that are in force only within
a group are said to be “local” to that group.

You might want to use grouping even when you don’t care about block
structure, just to have better control over spacing. For example, let’s consider
once more the control sequence \TeX that produces the logo ‘TEX’ in this manual:
We observed in Chapter 3 that a blank space after this control sequence will be
gobbled up unless one types ‘\TeX\ ’, yet it is a mistake to say ‘\TeX\’ when the
following character is not a blank space. Well, in all cases it would be correct to
specify the simple group

{\TeX}

whether or not the following character is a space, because the } stops TEX from
absorbing an optional space into \TeX. This might come in handy when you're
using a text editor (e.g., when replacing all occurrences of a particular word by
a control sequence). Another thing you could do is type

\TeX{}

using an empty group for the same purpose: The ‘{}’ here is a group of no
characters, so it produces no output, but it does have the effect of stopping TEX
from skipping blanks.

» EXERCISE 5.1
Sometimes you run into a rare word like ‘shelfful’ that looks better as ‘shelfful’

without the ‘ff” ligature. How can you fool TEX into thinking that there aren’t
two consecutive f’s in such a word?

@ " »EXERCISE 5.2
Explain how to get three blank spaces in a row without using ‘\.,’.

19

Chapter 5: Grouping

But TEX also uses grouping for another, quite different, purpose, namely
to determine how much of your text is to be governed by certain control se-
quences. For example, if you want to center something on a line you can type

\centerline{This information should be centered.}

using the control sequence \centerline defined in plain TEX format.
Grouping is used in quite a few of TEX’s more intricate instructions;

and it’s possible to have groups within groups within groups, as you can see by

glancing at Appendix B. Complex grouping is generally unnecessary, however,

in ordinary manuscripts, so you needn’t worry about it. Just don’t forget to

finish each group that you’ve started, because a lost ‘}’ might cause trouble.
Here’s an example of two groups, one nested inside the other:

\centerline{This information should be {\it centered}.}
As you might expect, TEX will produce a centered line that also contains italics:
This information should be centered.

But let’s look at the example more closely: ‘\centerline’ appears outside the
curly braces, while ‘\it’ appears inside. Why are the two cases different? And
how can a beginner learn to remember which is which? Answer: \centerline
is a control sequence that applies only to the very next thing that follows, so
you want to put braces around the text that is to be centered (unless that text
consists of a single symbol or control sequence). For example, to center the TEX
logo on a line, it would suffice to type ‘\centerline\TeX’, but to center the
phrase “TEX has groups’ you need braces: ‘\centerline{\TeX\ has groups}’.
On the other hand, \it is a control sequence that simply means “change the
current font”; it acts without looking ahead, so it affects everything that follows,
at least potentially. The braces surround \it in order to confine the font change
to a local region.

In other words, the two sets of braces in this:example actually have
different functions: One serves to treat several words of the text as if they were
a single object, while the other provides local block structure.

» EXERCISE 5.3
What do you think happens if you type the following;:

\centerline{This information should be {centered}.}
\cehterline So should this.

» EXERCISE 5.4
And how about this one?

\centerline{This information should be \it centered.}

@ » EXERCISE 5.5
Define a control sequence \ital so that a user could type ‘\ital{text}’ in-
stead of ‘{\it text\/}’. Discuss the pros and cons of \ital versus \it.

Chapter 5: Grouping

@ Subsequent chapters describe many primitive operations of TgX for which

the locality of grouping is important. For example, if one of TEX’s internal
parameters is changed within a group, the previous contents of that parameter will
be restored when the group ends. Sometimes, however, it’s desirable to make a def-
inition that transcends its current group. This effect can be obtained by prefixing
‘\global’ to the definition. For example, TEX keeps the current page number in a
register called \countO, and the routine that outputs a page wants to increase the page
number. Output routines are always protected by enclosing them in groups, so that
they do not inadvertently mess up the rest of TEX; but the change to \count0 would
disappear if it were kept local to the output group. The command

\globalladvance\countO by 1

solves the problem; it increases \count0 and makes this value stick around at the end
of the output routine. In general, \global makes the immediately following definition
pertain to all existing groups, not just to the innermost one.

@@» EXERCISE 5.6
If you think you understand local and global definitions, here’s a little test to

make sure: Suppose \c stands for ‘\count1=’, \g stands for ‘\global\counti=’ and \s
stands for ‘\showthe\count1l’. What values will be shown?

{\c1\s\g2{\s\c3\s\g4\s\c5\s}\s\c6\s}\s

@ Another way to obtain block structure with TEX is to use the primitives

\begingroup and \endgroup. These control sequences make it easy to be-
gin a group within one control sequence and end it within another. The text that TEX
actually executes, after control sequences have been expanded, must have properly
nested groups, i.e., groups that don’t overlap. For example,

{ \begingroup } \endgroup

1s not legitimate.

@@» EXERCISE 5.7
Define control sequences \beginthe(block name) and \endthe(block name)
that provide a “named” block structure. In other words,

\beginthe{beguine}\beginthe{waltz}\endthe{waltz}\endthe{beguine}
should be permissible, but not

\beginthe{beguine}\beginthe{waltz}\endthe{beguine}\endthe{waltz}.

| have had recourse to varieties of type,
and to braces.

— JAMES MUIRHEAD, The Institutes of Gaius (1880)

An encounter group is a gathering, for a few hours or a few days,
of twelve or eighteen personable, responsible, certifiably normal
and temporarily smelly people.

— JANE HOWARD, Please Touch (1970)

21

Running

Chapter 6: Running TpX 23

The best way to learn how to use TEX is to use it. Thus, it’s high time for you
to sit down at a computer terminal and interact with the TgX system, trying
things out to see what happens. Here are some small but complete examples
suggested for your first encounter.

Caution: This chapter is rather a long one. Why don’t you stop reading
now, and come back fresh tomorrow?

OK, let’s suppose that you're rested and excited about having a trial run
of TEX. Step-by-step instructions for using it appear in this chapter. First do
this: Go to the lab where the graphic output device is, since you will be wanting
to see the output that you get—it won’t really be satisfactory to run TEX from
a remote location, where you can’t hold the generated documents in your own
hands. Then log in; and start TEX. (You may have to ask somebody how to
do this on your local computer. Usually the operating system prompts you for
a command and you type ‘TeX’ or ‘run tex’ or something like that.)

When you’re successful, TEX will welcome you with a message such as

This is TeX, Version 1.0 (preloaded format=plain 83.7.15)
*

The ‘**’ is TEX’s way of asking you for an input file name.

Now type ‘\relax’ (including the backslash), and (return) (or whatever
is used to mean “end-of-line” on your terminal). TEX is all geared up for action,
ready to read a long manuscript; but you’re saying that it’s all right to take
things easy, since this is going to be a real simple run. In fact, \relax is a
control sequence that means “do nothing.”

The machine will type another asterisk at you. This time type something
like ‘Hello?’ and wait for another asterisk. Finally type ‘\end’, and stand back
to see what happens.

TEX should respond with ‘[1]’ (meaning that it has finished page 1 of
your output); then the program will halt, probably with some indication that
it has created a file called ‘texput.dvi’. (TEX uses the name texput for its
output when you haven’t specified any better name in your first line of input;
and dvi stands for “device independent,” since texput.dvi is capable of being
printed on almost any kind of typographic output device.)

Now you’re going to need some help again from your friendly local com-
puter hackers. They will tell you how to produce hardcopy from texput.dvi.
And when you see the hardcopy—Oh, glorious day!—you will see a magnificent
‘Hello?” and the page number ‘1’ at the bottom. Congratulations on your first
masterpiece of fine printing.

The point is, you understand now how to get something through the
whole cycle. It only remains to do the same thing with a somewhat longer
document. So our next experiment will be to work from a file instead of typing
the input online.

24 Chapter 6: Running TpX

Use your favorite text editor to create a file called story.tex that con-
tains the following 18 lines of text (no more, no less):

1 \hrule

2 \vskip 1lin

3 \centerline{\bf A SHORT STORY}

4 \vskip 6pt

5 \centerline{\sl by A. U. Thor}

6 \vskip .5cm

7 Once upon a time, in a distant

8 galaxy called \"O\"o\c c,

9 there lived a computer

10 named R."J. Drofnats.

11

12 Mr. Drofnats---or ‘‘R. J.,’’ as

13 he preferred to be called---

14 was happiest when he was at work
15 typesetting beautiful documents.
16 \vskip lin

17 \hrule

18 \vfill\eject

(Don’t type the numbers at the left of these lines, of course; they are present only
for reference.) This example is a bit long, and more than a bit silly; but it’s no
trick for a good typist like you and it will give you some worthwhile experience,
so do it. For your own good. And think about what you're typing, as you go;
the example introduces a few important features of TEX that you can learn as
you’re making the file.

Here is a brief explanation of what you have just typed: Lines 1 and 17
put a horizontal rule (a thin line) across the page. Lines 2 and 16 skip past one
inch of space; ‘\vskip’ means “vertical skip,” and this extra space will separate
the horizontal rules from the rest of the copy. Lines 3 and 5 produce the title and
the author name, centered, in boldface and in slanted type. Lines 4 and 6 put
extra white space between those lines and their successors. (We shall discuss
units of measure like ‘6pt’ and ‘.5cm’ in Chapter 10.)

The main bulk of the story appears on lines 7-15, and it consists of
two paragraphs. The fact that line 11 1s blank informs TEX that line 10 is the
end of the first paragraph; and the ‘\vskip’ on line 16 implies that the second
paragraph ends on line 15, because vertical skips don’t appear in paragraphs.
Incidentally, this example seems to be quite full of TEX commands; but it is
atypical in that respect, because it is so short and because it is supposed to
be teaching things. Messy constructions like \vskip and \centerline can be
expected at the very beginning of a manuscript, unless you're using a canned
format, but they don’t last long; most of the time you will find yourself typing
straight text, with relatively few control sequences.

Chapter-6: Running TgX 25

And now comes the good news, if you haven’t used computer typesetting
before: You don’t have to worry about where to break lines in a paragraph (i.e.,
where to stop at the right margin and to begin a new line), because TEX will
do that for you. Your manuscript file can contain long lines or short lines, or
both; it doesn’t matter. This is especially helpful when you make changes, since
you don’t have to retype anything except the words that changed. Every time
you begin a new line in your manuscript file it is essentially the same as typing
a space. When TEX has read an entire paragraph—in this case lines 7 to 11—it
will try to break up the text so that each line of output, except the last, contains
about the same amount of copy; and it will hyphenate words if necessary to keep
the spacing consistent, but only as a last resort.

Line 8 contains the strange concoction

\IIO\"O\C C

and you already know that \" stands for an umlaut accent. The \c stands for a
“cedilla,” so you will get ‘Oo¢’ as the name of that distant galaxy.

The remaining text is simply a review of the conventions that we dis-
cussed long ago for dashes and quotation marks, except that the ‘~’ signs in
lines 10 and 12 are a new wrinkle. These are called ties, because they tie words
together; i.e., TEX is supposed to treat ‘“’ as a normal space but not to break
between lines there. A good typist will use ties within names, as shown in our
example; further discussion of ties appears in Chapter 14.

Finally, line 18 tells TEX to ‘\vfill’, i.e., to fill the rest of the page with
white space; and to ‘\eject’ the page, i.e., to send it to the output file.

Now you'’re ready for Experiment 2: Get TEX going again. This time
when the machine says ‘**’ you should answer ‘story’, since that is the name
of the file where your input resides. (The file could also be called by its full
name ‘story.tex’, but TEX automatically supplies the suffix ‘. tex’ if no suffix
has been specified.)

You might wonder why the first prompt was ‘**’, while the subsequent
ones are ‘*’; the reason is simply that the first thing you type to TEX is slightly
different from the rest: If the first character of your response to ‘**’ is not a
backslash, TEX automatically inserts ‘\input’. Thus you can usually run TEX
by merely naming your input file. (Previous TEX systems required you to start
by typing ‘\input story’ instead of ‘story’, and you can still do that; but most
TEX users prefer to put all of their commands into a file instead of typing them
online, so TEX now spares them the nuisance of starting out with \input each
time.) Recall that in Experiment 1 you typed ‘\relax’; that started with a
backslash, so \input was not implied.

@ There’s actually another difference between ‘**’ and ‘*’: If the first character

after ** is an ampersand (‘&’), TEX will replace its memory with a precom-
puted format file before proceeding. Thus, for example, you can type ‘&plain \input
story’ or even ‘gplain story’ in response to ‘**’ if you are running some version of
TEX that might not have the plain format preloaded.

26 Chapter 6: Running TpX

@ Incidentally, many systems allow you to invoke TEX by typing a one-liner like

‘tex story’ instead of waiting for the ‘**’; similarly, ‘tex \relax’ works for
Experiment 1, and ‘tex &plain story’ loads the plain format before inputting the
story file. You might want to try this, to see if it works on your computer, or you
might ask somebody if there’s a similar shortcut.

As TgX begins to read your story file, it types ‘(story.tex’, possibly
with a version number for more precise identification, depending on your local
operating system. Then it types ‘[1]’, meaning that page 1 is done; and)’,
meaning that the file has been entirely input.

TEX will now prompt you with ‘*’, because the file did not contain
‘\end’. Enter \end into the computer now, and you should get a file story.dvi
containing a typeset version of Thor’s story. As in Experiment 1, you can proceed
to convert story.dvi into hardcopy; go ahead and do that now. The typeset
output won’t be shown here, but you can see the results by doing the experiment
personally. Please do so before reading on.

» EXERCISE 6.1
Statistics show that only 7.43 of 10 people who read this manual actually type
the story.tex file as recommended, but that those people learn TEX best. So
why don’t you join them?

» EXERCISE 6.2
Look closely at the output of Experiment 2, and compare it to story.tex: If you
followed the instructions carefully, you will notice a typographical error. What
is it, and why did it sneak in?

With Experiment 2 under your belt, you know how to make a document
from a file. The remaining experiments in this chapter are intended to help
you cope with the inevitable anomalies that you will run into later; we will
intentionally do things that will cause TEX to “squeak.”

But before going on, it’s best to fix the error revealed by the previous
output (see exercise 6.2): Line 13 of the story.tex file should be changed to

he preferred to be called---J, error has been fixed!

The ‘%’ sign here is a feature of plain TEX that we haven’t discussed before: It ef-
fectively terminates a line of your input file, without introducing the blank space
that TEX ordinarily inserts when moving to the next line of input. Furthermore,
TEX ignores everything that you type following a %, up to the end of that line
in the file; you can therefore put comments into your manuscript, knowing that
the comments are for your eyes only.

Experiment 3 will be to make TEX work harder, by asking it to set
the story in narrower and narrower columns. Here’s how: After starting the
program, type

\hsize=4in \input story

Chapter 6: Running TpX 27

in response to the ‘xx’. This means, “Set the story in a 4-inch column.” More
precisely, \hsize is a primitive of TEX that specifies the horizontal size, i.e., the
width of each normal line in the output when a paragraph is being typeset; and
\input is a primitive that causes TEX to read the specified file. Thus, you are
instructing the machine to change the normal setting of \hsize that was defined
by plain TEX, and then to process story.tex under this modification.

TEX should respond by typing something like ‘(story.tex [1])’ as
before, followed by ‘*’. Now you should type

\hsize=3in \input story

and, after TEX says ‘(story.tex [2])’ asking for more, type three more lines

\hsize=2.5in \input story
\hsize=2in \input story
\end

to complete this four-page experiment.

Don’t be alarmed when TEX screams ‘Overfull \hbox’ several times
as it works at the 2-inch size; that’s what was supposed to go wrong during
Experiment 3. There simply is no good way to break the given paragraphs into
lines that are exactly two inches wide, without making the spaces between words
come out too large or too small. Plain TEX has been set up to ensure rather
strict tolerances on all of the lines it produces:

you don’t get spaces between words narrower than this, and
you don’t get spaces between words wider than this.

If there’s no way to meet these restrictions, you get an overfull box. And with
the overfull box you also get (1) a warning message, printed on your terminal,
and (2) a big black bar inserted at the right of the offending box, in your output.
(Look at page 4 of the output from Experiment 3; the overfull boxes should stick
out like sore thumbs. On the other hand, pages 1-3 should be perfect.)

Of course you don’t want overfull boxes in your output, so TEX provides
several ways to remove them; that will be the subject of our Experiment 4. But
first let’s look more closely at the results of Experiment 3, since TgpX reported
some potentially valuable information when it was forced to make those boxes
too full; you should learn how to read this data:

Overfull \hbox (0.98807pt too wide) in paragraph at lines 7--11
\tenrm tant galaxy called [J0""70""Xc, there lived|

Overfull \hbox (0.4325pt too wide) in paragraph at lines 7--11
\tenrm a com-puter named R. J. Drof-nats. |

Overfull \hbox (5.32132pt too wide) in paragraph at lines 12--16
\tenrm he pre-ferred to be called---was hap-|

Each overfull box is correlated with its location in your input file (e.g., the first
two were generated when processing the paragraph on lines 7-11 of story. tex),
and you also learn by how much the copy sticks out (e.g., 0.98807 points).

28 Chapter 6: Running TpX

Notice that TEX also shows the contents of the overfull boxes in ab-
breviated form. For example, the last one has the words ‘he preferred to be
called—was hap-’, set in font \tenrm (10-point roman type); the first one has
a somewhat curious rendering of ‘O6¢’, because the accents appear in strange
places within that font. In general, when you see ‘[]’ in one of these messages,
it stands either for the paragraph indentation or for some sort of complex con-
struction; in this particular case it stands for an umlaut that has been raised up
to cover an ‘O’.

@ » EXERCISE 6.3
Can you explain the ‘|’ that appears after ‘lived’ in that message?

@@» EXERCISE 6.4
Why is there a space before the ‘|’ in ‘Drof-nats. |’7

You don’t have to take out pencil and paper in order to write down the
overfull box messages that you get before they disappear from view, since TEX
always writes a “transcript” or “log file” that records what happened during each
session. For example, you should now have a file called story.log containing
the transcript of Experiment 3, as well as a file called texput.log containing
the transcript of Experiment 1. (The transcript of Experiment 2 was probably
overwritten when you did number 3.) Take a look at story.log now; you will
see that the overfull box messages are accompanied not only by the abbreviated
box contents, but also by some strange-looking data about hboxes and glue and
kerns and such things. This data gives a precise description of what’s in that
overfull box; TEX wizards will find such listings important, if they are called
upon to diagnose some mysterious error, and you too may want to understand
TEX’s internal code some day.

The abbreviated forms of overfull boxes show the hyphenations that
TEX tried before it resorted to overfilling. The hyphenation algorithm, which is
described in Appendix H, is excellent but not perfect; for example, you can see
from the messages in story.log that TEX finds the hyphen in ‘pre-ferred’, and
it can even hyphenate ‘Drof-nats’. Yet it discovers no hyphen in ‘galaxy’, and
every once in a while an overfull box problem can be cured simply by giving TEX
a hint about how to hyphenate some word more completely. (We will see later
that there are two ways to do this, either by inserting discretionary hyphens
each time as in ‘gal\-axy’, or by saying ‘\hyphenation{gal-axy}’ once at the
beginning of your manuscript.)

In the present example, hyphenation is not a problem, since TEX found
and tried all the hyphens that could possibly have helped. The only way to get
rid of the overfull boxes is to change the tolerance, i.e., to allow wider spaces
between words. Indeed, the tolerance that plain TEX uses for wide lines is
completely inappropriate for 2-inch columns; such narrow columns simply can’t
be achieved without loosening the constraints, unless you rewrite the copy to fit.

TEX assigns a numerical value called “badness” to each line that it sets,
in order to assess the quality of the spacing. The exact rules for badness are

Chapter 6: Running TpX 29

different for different fonts, and they will be discussed in Chapter 14; but here
1s the way badness works for the roman font of plain TEX:

The badness of this line is 100. ~ (very tight)

The badness of this line is 12. (somewhat tight)
The badness of this line is 0. (perfect)

The badness of this line is 12. (somewhat loose)
The badness of this line is 200. (loose)

The badness of this line is 1000. (bad)

The badness of this line is 5000. (awful)

Plain TEX normally stipulates that no line’s badness should exceed 200; but in
our case, the task would be impossible since

‘tant galaxy called Od¢, there’ has badness 1521;
‘he preferred to be called—was’ has badness 568.

So we turn now to Experiment 4, in which spacing variations that are more
appropriate to narrow columns will be used.
Run TEX again, and begin this time by saying

\hsize=2in \tolerance=1600 \input story

so that lines with badness up to 1600 will be tolerated. Hurray! There are no
overfull boxes this time. (But you do get a message about an underfull box,
since TEX reports all boxes whose badness exceeds a certain threshold called
\hbadness; plain TEX sets \hbadness=1000.) Now make TEX work still harder
by trying

\hsize=1.5in \input story

(thus leaving the tolerance at 1600 but making the column width still skimpier).
Alas, overfull boxes return; so try typing

\tolerance=10000 \input story

in order to see what happens. TEX treats 10000 as if it were “infinite” tolerance,
allowing arbitrarily wide space; thus, a tolerance of 10000 will never produce an
overfull box, unless something strange occurs like an unhyphenatable word that

is wider than the column itself.
The underfull box that TEX produces in the 1.5-inch case is really bad;
with such narrow limits, an occasional wide space is unavoidable. But try

\raggedright \input story

for a change. (This tells TEX not to worry about keeping the right margin
straight, and to keep the spacing uniform within each line.) Finally, type

\hsize=.75in \input story

followed by ‘\end’, to complete Experiment 4. This makes the columns almost
impossibly narrow.

30 Chapter 6: Running TEX

@ The output from this experiment will give you some feeling for the problem

of breaking a paragraph into approximately equal lines. When the lines are
relatively wide, TEX will almost always find a good solution. But otherwise you will
have to figure out some compromise, and several options are possible. Suppose you want
to ensure that no lines have badness exceeding 500. Then you could set \tolerance to
some high number, and \hbadness=500; TEX would not produce overfull boxes, but it
would warn you about the underfull ones. Or you could set \tolerance=500; then TEX
might produce overfull boxes. If you really want to take corrective action, the second
alternative is better, because you can look at an overfull box to see how much sticks
out; it becomes graphically clear what remedies are possible. On the other hand, if you
don’t have time to fix bad spacing—if you just want to know how bad it is—then the
first alternative is better, although it may require more computer time.

@ » EXERCISE 6.5

When \raggedright has been specified, badness reflects the amount of space
at the right margin, instead of the spacing between words. Devise an experiment by
which you can easily determine what badness TEX assigns to each line, when the story
is set ragged-right in 1.5-inch columns.

@ A parameter called \hfuzz allows you to ignore boxes that are only slightly
overfull. For example, if you say \hfuzz=1pt, a box must stick out more than
one point before it is considered erroneous. Plain TEX sets \hfuzz=0.1pt.

@@» EXERCISE 6.6

Inspection of the output from Experiment 4, especially page 3, shows that
with narrow columns it would be better to allow white space to appear before and
after a dash, whenever other spaces in the same line are being stretched. Define a
\dash macro that does this.

You were warned that this is a long chapter. But take heart: There’s
only one more experiment to do, and then you will know enough about TEX to
run it fearlessly by yourself forever after. The only thing you are still missing
is some information about how to cope with error messages—i.e., not just with
warnings about things like overfull boxes, but with cases where TEX actually
stops and asks you what to do next.

Error messages can be terrifying when you aren’t prepared for them;
but they can be fun when you have the right attitude. Just remember that you
really haven’t hurt the computer’s feelings, and that nobody will hold the errors
against you. Then you'll find that running TEX might actually be a creative
experience instead of something to dread.

The first step in Experiment 5 is to plant two intentional mistakes in
the story.tex file. Change line 3 to

\centerline{\bf A SHORT \ERROR STORY}

and change ‘\vskip’ to ‘\vship’ on line 2.

Now run TEX again; but instead of ‘story’ type ‘sorry’. The computer
should respond by saying that it can’t find file sorry.tex, and it will ask you
to try again. Just hit (return) this time; you’ll see that you had better give the

Chapter 6: Running TgX 31

name of a real file. So type ‘story’ and wait for TgX to find one of the faux pas
in that file.

Ah yes, the machine will soon stop,* after typing something like this:

! Undefined control sequence.
1.2 \vship

1in
?

TEX begins 1ts error messages with ‘!’ and it shows what it was reading at the
time of the error by displaying two lines of context. The top line of the pair
(in this case ‘\vship’) shows what TEX has looked at so far, and where it came
from (‘1.2’, i.e., line number 2); the bottom line (in this case ‘1in’) shows what
TEX has yet to read.

The ‘?’ that appears after the context display means that TEX wants
advice about what to do next. If you’ve never seen an error message before, or

if you've forgotten what sort of response is expected, you can type ‘?’ now (go
ahead and try it!); TEX will respond as follows:

Type <return> to proceed, S to scroll future error messages,
R to run without stopping, Q to run quietly,

I to insert something, E to edit your file,

1 or ... or 9 to ignore the next 1 to 9 tokens of input,

H for help, X to quit.

This is your menu of options. You may choose to continue in various ways:

1. Simply type (return). TEX will resume its processing, after attempting
to recover from the error as best it can.

2. Type ‘S’. TEX will proceed without pausing for instructions if further
errors arise. Subsequent error messages will flash by on your terminal,
possibly faster than you can read them, and they will appear in your
log file where you can scrutinize them at your leisure. Thus, ‘S’ is sort
of like typing (return) to every message.

3. Type ‘R’. This is like ‘S’ but even stronger, since it tells TEX not to stop
for any reason, not even if a file name can’t be found.

4. Type ‘Q’. This is like ‘R’ but even more so, since it tells TEX not only to
proceed without stopping but also to suppress all further output to your
terminal. It is a fast, but somewhat reckless, way to proceed (intended
for running TEX with no operator in attendance).

5. Type ‘I’, followed by some text that you want to insert. TEX will read
this line of text before encountering what it would ordinarily see next.
Lines inserted in this way are not assumed to end with a blank space.

- * Some installations of TEX do not allow interaction. In such cases all you can do is
look at the error messages in your log file, where they will appear together with the
“help” information.

32

Chapter 6: Running TpX

6. Type a small number (less than 100). TEX will delete this many charac-
ters and control sequences from whatever it is about to read next, and
it will pause again to give you another chance to look things over.

7. Type ‘H’. This is what you should do now and whenever you are faced
with an error message that you haven’t seen for a while. TEX has two
messages built in for each perceived error: a formal one and an informal
one. The formal message is printed first (e.g., ‘! Undefined control
sequence.’); the informal one is printed if you request more help by
typing ‘H’, and it also appears in your log file if you are scrolling error
messages. The informal message tries to complement the formal one by
explaining what TEX thinks the trouble is, and often by suggesting a
strategy for recouping your losses.

8. Type ‘X’. This stands for “exit.” It causes TEX to stop working on your
job, after putting the finishing touches on your log file and on any pages
that have already been output to your dvi file. The current (incomplete)
page will not be output.

9. Type ‘E’. This is like ‘X’, but it also prepares the computer to edit the
file that TEX is currently reading, at the current position, so that you
can conveniently make a change before trying again.

After you type ‘H’ (or ‘h’, which also works), you’ll get a message that tries
to explain that the control sequence just read by TgX (i.e., \vship) has never
been assigned a meaning, and that you should either insert the correct control
sequence or you should go on as if the offending one had not appeared.

In this case, therefore, your best bet is to type

I\vskip

(and (return)), with no space after the ‘I’; this effectively replaces \vship by
\vskip. (Do it.)

If you had simply typed (return) instead of inserting anything, TEX
would have gone ahead and read ‘1in’, which it would have regarded as part of
a paragraph to be typeset. Alternatively, you could have typed ‘3’; that would
have deleted ‘1in’ from TEX’s input. Or you could have typed ‘X’ or ‘E’ in order
to correct the spelling error in your file. But it’s usually best to try to detect
as many errors as you can, each time you run TgX, since that increases your
productivity while decreasing your computer bills. Chapter 27 explains more
about the art of steering TEX through troubled text.

@ » EXERCISE 6.7
What would have happened if you had typed ‘6’ after the \vship error?

@ You can control the level of interaction by giving commands in your file as well

as online: The TEX primitives \scrollmode, \nonstopmode, and \batchmode
correspond respectively to typing ‘S’, ‘R’, or ‘Q’ in response to an error message, and
\errorstopmode puts you back into the normal level of interaction. (Such changes are
global, whether or not they appear inside a group.) Furthermore, many installations

Chapter 6: Running TpX 33

have implemented a way to interrupt TEX while it is running; such an interruption
causes the program to revert to \errorstopmode, after which it pauses and waits for
further instructions.

What happens next in Experiment 57 TgX will hiccup on the other
bug that we planted in the file. This time, however, the error message is more
elaborate, since the context appears on six lines instead of two:

! Undefined control sequence.
<argument> \bf A SHORT \ERROR
STORY
\centerline #1->\1line {\hss #1
\hss }
1.3 \centerline{\bf A SHORT \ERROR STORY}

?

You get multiline error messages like this when the error is detected while TEX is
processing some higher-level commands—in this case, while it is trying to carry
out \centerline, which is not a primitive operation (it is defined in plain TEX).
At first, such error messages will appear to be complete nonsense to you, because
much of what you see is low-level TEX code that you never wrote. But you can
overcome this hangup by getting a feeling for the way TEX operates.

First notice that the context information always appears in pairs of lines.
As before, the top line shows what TEX has just read (‘\bf A SHORT \ERROR’),
then comes what it is about to read (‘STORY’). The next pair of lines shows the
context of the first two; it indicates what TEX was doing just before it began to
read the others. In this case, we see that TEX has just read ‘#1’, which is a special
code that tells the machine to “read the first argument that is governed by the
current control sequence”; i.e., “now read the stuff that \centerline is supposed
to center on a line.” The definition in Appendix B says that \centerline, when
applied to some text, is supposed to be carried out by sticking that text in place
of the ‘#1’ in ‘\line{\hss#1\hss}’. So TEX is in the midst of this expansion of
\centerline, as well as being in the midst of the text that is to be centered.

The bottom line shows how far TEX has gotten until now in the story
file. (Actually the bottom line is blank in this example; what appears to be the
bottom line is really the first of two lines of context, and it indicates that TEX
has read everything including the ‘}’ in line 3 of the file.) Thus, the context in
this error message gives us a glimpse of how TEX went about its business. First,
it saw \centerline at the beginning of line 3. Then it looked at the definition
of \centerline and noticed that \centerline takes an “argument,” i.e., that
\centerline applies to the next character or control sequence or group that
follows. So TEX read on, and filed ‘\bf A SHORT \ERROR STORY’ away as the
argument to \centerline. Then it began to read the expansion, as defined in
Appendix B. When it reached the #1, it began to read the argument it had saved.
And when it reached \ERROR, it complained about an undefined control sequence.

34 Chapter 6: Running TgpX

@ » EXERCISE 6.8
Why didn’t TEX complain about \ERROR being undefined when \ERROR was
first encountered, i.e., before reading ‘STORY}’ on line 37

When you get a multiline error message like this, the best clues about
the source of the trouble are usually on the bottom line (since that is what
you typed) and on the top line (since that is what triggered the error message).
Somewhere in there you can usually spot the problem.

Where should you go from here? If you type ‘H’ now, you’ll just get the
same help message about undefined control sequences that you saw before. If you
respond by typing (return), TEX will go on and finish the run, producing output
virtually identical to that in Experiment 2. In other words, the conventional
responses won’t teach you anything new. So type ‘E’ now; this terminates the
run and prepares the way for you to fix the erroneous file. (On some systems,
TEX will actually start up the standard text editor, and you’ll be positioned at
the right place to delete ‘\ERROR’. On other systems, TEX will simply tell you to
edit line 3 of file story.tex.)

When you edit story.tex again, you'll notice that line 2 still contains
\vship; the fact that you told TEX to insert \vskip doesn’t mean that your file
has changed in any way. In general, you should correct all errors in the input
file that were spotted by TEX during a run; the log file provides a handy way to
remember what those errors were.

Well, this has indeed been a long chapter, so let’s summarize what has
been accomplished. By doing the five experiments you have learned at first
hand (1) how to get a job printed via TEX; (2) how to make a file that contains
a complete TEX manuscript; (3) how to change the plain TEX format to achieve
columns with different widths; and (4) how to avoid panic when TEX issues
stern warnings.

So you could now stop reading this book and go on to print a bunch
of documents. It is better, however, to continue bearing with the author (after
perhaps taking another rest), since you’re just at the threshold of being able
to do a lot more. And you ought to read Chapter 7 at least, because it warns
you about certain symbols that you must not type unless you want TpX to do
something special. While reading the remaining chapters it will, of course, be
best for you to continue making trial runs, using experiments of your own design.

How TgX Reads
What You Type

Chapter 7: How TgX Reads What You Type

We observed in the previous chapter that an input manuscript is expressed in
terms of “lines,” but that these lines of input are essentially independent of the
lines of output that will appear on the finished pages. Thus you can stop typing
a line of input at any place that’s convenient for you, as you prepare or edit a
file. A few other related rules have also been mentioned:

s A (return) is like a space.
s Two spaces in a row count as one space.

s A blank line denotes the end of a paragraph.

Strictly speaking, these rules are contradictory: A blank line is obtained by
typing (return) twice in a row, and this is different from typing two spaces in a
row. Some day you might want to know the real rules. In this chapter and the
next, we shall study the very first stage in the transition from input to output.

In the first place, it’s wise to have a precise idea of what your keyboard
sends to the machine. There are 128 characters that TEX might encounter at
each step, in a file or in a line of text typed directly on your terminal. These
128 characters are classified into 16 categories numbered 0 to 15:

Category Meaning
0 Escape character (\ in this manual)
1 Beginning of group ({ in this manual)
2 End of group (} in this manual)
3 Math shift ($ in this manual)
4 Alignment tab (& in this manual)
5 End of line ((return) in this manual)
6 Parameter (# in this manual)
7 Superscript (* in this manual)
8 Subscript (_ in this manual)
9 Ignored character ((null) in this manual)
10 Space (L in this manual)
11 Letter (A,...,Zand a, ..., z)
12 Other character (none of the above or below)
13 Active character (7 in this manual)
14 Comment character (% in this manual)
15 Invalid character ((delete) in this manual)

It’s not necessary for you to learn these code numbers; the point is only that
TEX responds to 16 different types of characters. At first this manual led you to
believe that there were just two types—the escape character and the others—
and then you were told about two more types, the grouping symbols { and }.
In Chapter 6 you learned two more: ~ and %. Now you know that there are
really 16. This is the whole truth of the matter; no more types remain to be
revealed. The category code for any character can be changed at any time, but
it is usually wise to stick to a particular scheme.

37

Chapter 7: How TgX Reads What You Type

The main thing to bear in mind is that each TEX format reserves certain
characters for its own special purposes. For example, when you are using plain
TEX format (Appendix B), you need to know that the ten characters

\N{}rs$&# " _ %"~

cannot be used in the ordinary way when you are typing; each of them will cause
TEX to do something special, as explained elsewhere in this book. If you really
need these symbols as part of your manuscript, plain TEX makes it possible for
you to type

\$ for $, \% for %, \& for &, \# for #, _ for _;

the _ symbol is useful for compound_identifiers in computer programs. In math-
ematics formulas you can use \{ and \} for { and }, while \backslash produces
a reverse slash; for example,

‘6\{a \backslash b\}$’ yields ‘{a\b}"

Furthermore \~ produces a circumflex accent (e.g., ‘\"e’ yields ‘¢’); and \~ yields
a tilde accent (e.g., ‘\"n’ yields ‘n’).

» EXERCISE 7.1
What horrible errors appear in the following sentence?

Procter & Gamble’s stock climbed to $2, a 10% gain.

» EXERCISE 7.2
Can you imagine why the designer of plain TEX decided not to make ‘\\’ the
control sequence for reverse slashes?

@ When TEX reads a line of text from a file, or a line of text that you entered

directly on your terminal, it converts that text into a list of “tokens.” A
token is either (a) a single character with an attached category code, or (b) a control
sequence. For example, if the normal conventions of plain TEX are in force, the text
‘{\hskip 36 pt}’ is converted into a list of eight tokens:

{1 |hskip| 312 612 w0 P11 ti1 I}

The subscripts here are the category codes, as listed earlier: 1 for “beginning of group,”
12 for “other character,” and so on. The |hskip| doesn’t get a subscript, because it
represents a control sequence token instead of a character token. Notice that the space
after \hskip does not get into the token list, because it follows a control word.

@ It is important to understand the idea of token lists, if you want to gain a

thorough understanding of TEX, and it is convenient to learn the concept by
thinking of TEX as if it were a living organism. The individual lines of input in your
files are seen only by TEX’s “eyes” and “mouth”; but after that text has been gobbled
up, it is sent to TEX’s “stomach” in the form of a token list, and the digestive processes
that do the actual typesetting are based entirely on tokens. As far as the stomach is
concerned, the input flows in as a stream of tokens, somewhat as if your TEX manuscript
had been typed all on one extremely long line.

Chapter 7: How TgX Reads What You Type

@ You should remember two chief things about TEgX’s tokens: (1) A control

sequence is considered to be a single object that is no longer composed of a
sequence of symbols. Therefore long control sequence names are no harder for TgX to
deal with than short ones, after they have been replaced by tokens. Furthermore, spaces
are not ignored after control sequences inside a token list; the ignore-space rule applies
only in an input file, during the time that strings of characters are being tokenized.
(2) Once a category code has been attached to a character token, the attachment is
permanent. For example, if character ‘{’ were suddenly declared to be of category 12
instead of category 1, the characters ‘{;’ already inside token lists of TEX would still
remain of category 1; only newly made lists would contain ‘{12’ tokens. In other words,
individual characters receive a fixed interpretation as soon as they have been read from
a file, based on the category they have at the time of reading. Control sequences
are different, since they can change their interpretation at any time. TEX’s digestive
processes always know exactly what a character token signifies, because the category
code appears in the token itself; but when the digestive processes encounter a control
sequence token, they must look up the current definition of that control sequence in
order to figure out what it means.

@@» EXERCISE 7.3

Some of the category codes 0 to 15 will never appear as subscripts in character
tokens, because they disappear in TEX’s mouth. For example, characters of category 0
(escapes) never get to be tokens. Which categories can actually reach TEX’s stomach?

@@ There’s a program called INITEX that is used to install TEX, starting from
scratch; INITEX is like TEX except that it can do even more things. It can
compress hyphenation patterns into special tables that facilitate rapid hyphenation, and
it can produce format files like ‘plain. fmt’ from ‘plain.tex’. But INITEX needs extra
space to carry out such tasks, so it generally has less memory available for typesetting
than you would expect to find in a production version of TEX.

@ > When INITEX begins, it knows nothing but TEX’s primitives. All 128 charac-

ters are initially of category 12, except that (return) has category 5, (space)
has category 10, (null) has category 9, (delete) has category 15, the 52 letters A...Z and
a...z have category 11, % and \ have the respective categories 14 and 0. It follows that
INITEX is initially incapable of carrying out some of TEX’s primitives that depend on
grouping; you can’t use \def or \hbox until there are characters of categories 1 and 2.
The format in Appendix B begins with \catcode commands to provide characters of
the necessary categories; e.g.,

\catcode ‘\{=1

assigns category 1 to the { symbol. The \catcode operation is like many other primi-
tives of TEX that we shall study later; by modifying internal quantities like the category
codes, you can adapt TEX to a wide variety of applications.

@@» EXERCISE 7.4
Suppose that the commands
\catcode‘\<=1 \catcode‘\>=2

appéar near the beginning of a group that begins with ‘{’; these specifications instruct
TEX to treat < and > as group delimiters. According to TEX’s rules of locality, the

39

40 Chapter 7: How TgX Reads What You Type

characters < and > will revert to their previous categories when the group ends. But
should the group end with } or with >7

@ Although control sequences are treated as single objects, TEX does provide

a way to break them into lists of character tokens: If you write \string\cs,
where \cs is any control sequence, you get the list of characters for that control se-
quence’s name. For example, \string\TeX produces four tokens: \i12, Ti2, ei12, Xi2.
Each character in this token list automatically gets category code 12 (“other”), in-
cluding the backslash that \string inserts to represent an escape character. However,
category 10 will be assigned to the character ‘,’ (blank space) if a space character
somehow sneaks into the name of a control sequence.

@ Conversely, you can go from a list of character tokens to a control sequence by

saying ‘\csname(tokens)\endcsname’. The tokens that appear in this construc-
tion between \csname and \endcsname may include other control sequences, as long as
those control sequences ultimately expand into characters instead of TEX primitives; the
final characters can be of any category, not necessarily letters. For example, ‘\csname
TeX\endcsname’ is essentially the same as ‘\TeX’; but ‘\csname\TeX\endcsname’ is il-
legal, because \TeX expands into tokens containing the \kern primitive. Furthermore,
“\csname\string\TeX\endcsname’ will produce the unusual control sequence ‘\\TeX’,
i.e., the token [\TeX], which you can’t ordinarily write.

@@» EXERCISE 7.5

Experiment with TEX to see what \string does when it is followed by an
active character like ~. (Active characters behave like control sequences, but they are
not prefixed by an escape.) What is an easy way to conduct such experiments online?
What control sequence could you put after \string to obtain the single character
token \127

@@» EXERCISE 7.6
What tokens does ‘\expandafter\string\csname a\string\ b\endcsname’
produce? (There are three spaces before the b. Chapter 20 explains \expandafter.)

@@» EXERCISE 7.7
When \csname is used to define a control sequence for the first time, that

control sequence is made equivalent to \relax until it is redefined. Use this fact to
design a macro \ifundefined#1 such that, for example,

\ifundefined{TeX}(true text)\else(false text)\fi

expands to the (true text) if \TeX hasn’t previously been defined, or if \TeX has been
\let equal to \relax; it should expand to the (false text) otherwise.

@ In the examples so far, \string has converted control sequences into lists of

tokens that begin with \12. But this backslash token isn’t really hardwired into
TEX; there’s a parameter called \escapechar that specifies what character should be
used when control sequences are output as text. The value of \escapechar is normally
TEX’s internal code for backslash, but it can be changed if another convention is desired.

@@ TEX has two other token-producing operations similar to the \string com-
mand. If you write \number(number), you get the decimal equivalent of the
(number); and if you write \romannumeral(number), you get the number expressed in

Chapter 7: How TgX Reads What You Type

lowercase roman numerals. For example, ‘\romannumeral24’ produces ‘xxiv’, a list of
four tokens each having category 12. The \number operation is redundant when it is
applied to an explicit constant (e.g., ‘\number24’ produces ‘24’); but it does suppress
leading zeros, and it can also be used with numbers that are in TEX’s internal registers
or parameters. For example, ‘\number-0015’ produces ‘-15’; and if register \count5
holds the value 316, then ‘\number\count5’ produces ‘316’.

@@ The twin operations \uppercase{(token list)} and \lowercase{(token list)}
go through a given token list and convert all of the character tokens to their
“uppercase” or “lowercase” equivalents. Here’s how: Each of the 128 possible charac-
ters has two associated values called the \uccode and the \lccode; these values are
changeable just as a \catcode is. Conversion to uppercase means that a character
is replaced by its \uccode value, unless the \uccode value is zero (when no change
is made). Conversion to lowercase is similar, using the \lccode. The category codes
aren’t changed. When INITEX begins, all \uccode and \lccode values are zero except
that the letters a to z and A to Z have \uccode values A to Z and \1lccode values a to z.

@@ TEX performs the \uppercase and \lowercase transformations in its stomach,
but the \string and \number and \romannumeral and \csname operations are
carried out en route to the stomach (like macro expansion), as explained in Chapter 20.

@@» EXERCISE 7.8
What token list results from ‘\uppercase{a\lowercase{bC}}’?

@@» EXERCISE 7.9

TEX has an internal integer parameter called \year that is set equal to the cur-
rent year number at the beginning of every job. Explain how to use \year, together with
\romannumeral and \uppercase, to print a copyright notice like ‘© MCMLXXXVT’
for all jobs run in 1986.

@@» EXERCISE 7.10

Define a control sequence \appendroman with three parameters such that
\appendroman#1#2#3 defines control sequence #1 to expand to a control sequence whose
name is the name of control sequence #2 followed by the value of the positive integer
#3 expressed in roman numerals. For example, suppose \count20 equals 30; then
‘\appendroman\a\TeX{\count20}’ should have the same effect as ‘\def\a{\TeXxxx}’.

Some bookes are to bee tasted,
others to bee swallowed,
and some few to bee chewed and disgested.

— FRANCIS BACON, Essayes (1597)

‘Tis the good reader that makes the good book.
— RALPH WALDO EMERSON, Society & Solitude (1870)

41

The Characters
You Type

-
"
\ . :
§ e /,
O ’,“‘- % 2 ""'
\\‘\\:::‘l
ZE 00
1]
L/
s

L R R A SRS
R ".‘ X ’\\‘\ “"0\. \'a:-.o’.- DO
l'

(,U
{

/

]
{i

N
4
\

Chapter 8: The Characters You Type

A lot of different keyboards are used with TgX, but few keyboards can produce
128 different symbols. Furthermore, as we have seen, some of the characters that
you can type on your keyboard are reserved for special purposes like escaping
and grouping. Yet when we studied fonts it was pointed out that there are 256
characters per font. So how can you refer to the characters that aren’t on your
keyboard, or that have been pre-empted for formatting?

Omne answer is to use control sequences. For example, the plain format
of Appendix B, which defines % to be an end-of-line symbol so that you can use
it for comments, defines the control sequence \% to mean a percent sign.

To get access to any character whatsoever, you can type

\char (number)

where (number) is any number from 0 to 255 (optionally followed by a space);
you will get the corresponding character from the current font. That’s how
Appendix B handles \%; it defines ‘\%’ to be an abbreviation for ‘\char37’, since
37 is the character code for a percent sign.

The codes that TEX uses internally to represent characters are based on
“ASCIL,” the American Standard Code for Information Interchange. Appendix C
gives full details of this code, which assigns numbers to certain control functions
as well as to ordinary letters and punctuation marks. For example, (space) = 32
and (return) = 13. There are 94 standard visible symbols, and they have been
assigned code numbers from 33 to 126, inclusive.

It turns out that ‘b’ is character number 98 in ASCII. So you can typeset
the word bubble in a strange way by putting

\char98 u\char98\char98 le

into your manuscript, if the b-key on your typewriter is broken. (An optional
space 1s ignored after constants like ‘98’. Of course you need the \, ¢, h, a, and r
keys to type ‘\char’, so let’s hope that they are always working.)

TEX always uses the internal character code of Appendix C for the standard

ASCII characters, regardless of what external coding scheme actually appears
in the files being read. Thus, b is 98 inside of TEX even when your computer normally
deals with EBCDIC or some other non-ASCII scheme; the TEX software has been set
up to convert text files to internal code, and to convert back to the external code when
writing text files. Device-independent (dvi) output files use TEX’s internal code. In
this way, TEX is able to give identical results on all computers.

@ Character code tables like those in Appendix C often give the code numbers in

octal notation, i.e., the radix-8 number system, in which the digits are 0, 1, 2,
3, 4, 5, 6, and 7.* Sometimes hexadecimal notation is also used, in which case the digits
are 0, 1,2, 3,4,5,6,7,8,9, A, B, C, D, E, and F. For example, the octal code for ‘b’ is

- * The author of this manual likes to use italic digits for octal numbers, and type-
writer type for hexadecimal numbers, in order to provide a typographic clue to the
underlying radix whenever possible.

43

44 Chapter 8: The Characters You Type

142, and its hexadecimal code is 62. A (number) in TEX’s language can begin with a ’,
in which case it is regarded as octal, or with a ", when it is regarded as hexadecimal.
Thus, \char’142 and \char"62 are equivalent to \char98. The legitimate character
codes in octal notation run from ‘0 to ‘377; in hexadecimal, they run from "0 to "FF.

@ But TEX actually provides another kind of (number) that makes it unnecessary

for you to know ASCII at alll The token ‘12 (left quote), when followed by
any character token or by any control sequence token whose name is a single character,
stands for TEX’s internal code for the character in question. For example, \char ‘b and
\char ‘\b are also equivalent to \char98. If you look in Appendix B to see how \} is
defined, you’ll notice that the definition is

\def\%{\char ‘\%}

instead of \char37 as claimed above.

§? » EXERCISE 8.1
What would be wrong with \def\%{\char‘%}?

@@ The preface to this manual points out that the author makes little white lies
from time to time. Well, if you actually check Appendix B you’ll find that

\chardef\¥%=“\Y

is the true definition of \%. Since format designers often want to associate a spe-
cial character with a special control sequence name, TEX provides the construction
‘\chardef (control sequence)=(number)’ for numbers between 0 and 255, as an efficient
alternative to ‘\def(control sequence){\char(number)}’.

Although you can use \char to access any character in the current font,
you can’t use it in the middle of a control sequence. For example, if you type

\\char98

TEX reads this as the control sequence \\ followed by c, h, a, etc., not as the
control sequence \b.

You will hardly ever need to use \char when typing a manuscript, since
the characters you want will probably be available as predefined control se-
quences; \char is primarily intended for the designers of book formats like those
in the appendices. But some day you may require a special symbol, and you
may have to hunt through a font catalog until you find it. Once you find it,
you can use it by simply selecting the appropriate font and then specifying the
character number with \char. For example, the “dangerous bend” sign used in
this manual appears as character number 127 of font manfnt, and that font is
selected by the control sequence \manual. The macros in Appendix E therefore
display dangerous bends by saying ‘{\manual\char127}’.

We have observed that the ASCII character set includes only 94 printable
symbols; but TEX works internally with 128 different character codes, from 0
to 127, each of which is assigned to one of the sixteen categories described in
Chapter 7. If your keyboard has additional symbols, or if it doesn’t have the
standard 94, the people who installed your local TEX system can tell you the

Chapter 8: The Characters You Type

correspondence between what you type and the character number that TEX
receives. Some people are fortunate enough to have keys marked ‘#’ and ‘<’ and
2’; 1t is possible to install TEX so that it will recognize these handy symbols
and make the typing of mathematics more pleasant. But if you do not have such
keys, you can get by with the control sequences \ne, \le, and \ge.

@ TEX has a standard way to refer to the invisible characters of ASCII: Code 0

can be typed as the sequence of three characters ~~@, code 1 can be typed
“~A, and so on up to code 31, which is “~_ (see Appendix C). If the character following
~~ has an internal code of 64 or more, TEX subtracts 64 from the code, otherwise
TEX adds 64. Hence code 127 can be typed ~~?, and the dangerous bend sign can be
obtained by saying ‘{\manual~~?}’. However, you must change the category code of
character 127 before using it, since this character ordinarily has category 15 (invalid);
say, e.g., ‘\catcode‘\""7=12". The "~ notation is different from \char, because ~~
combinations are like single characters; for example, it would not be permissible to say
\catcode ‘\char127, but ~~ symbols can even be used as letters within control words.

@ One of the overfull box messages in Chapter 6 illustrates the fact that TEX
sometimes uses the funny ~~ convention in its output: The umlaut character

in that example appears as “~7, and the cedilla appears as ~"X, because ‘"’ and ‘’

occur in positions 177 and ‘80 of the \tenrm font.

@ Most of the “~ codes are unimportant except in unusual applications. But
“~M is particularly noteworthy because it is code 13, the ASCII (return) that

TEX normally places at the right end of every line of your input file. By changing the
category of ~"M you can obtain useful special effects, as we shall see later.

@ The control code ~~I is also of potential interest, since it’s the ASCII (tab).
Plain TEX makes (tab) act like a blank space.

@ People who install TEX systems for use with non-American alphabets are

advised to use character codes less than 32 for any additional letters, and to
assign category 11 (letter) to those codes. For example, suppose you have a Norwegian
keyboard that contains the letter 2. You could design your TEX interface so that
this letter comes in as code 26,* say, and your standard format package should define
\catcode‘z=11. Then you could have control sequences like \szrtrykk; and your TpX
input files would be readable by American installations of TEX that don’t have your
keyboard, by substituting ~~Z for character 26. (For example, the stated control
sequence would appear as \s”“Zrtrykk in the file; your American friends should also
be provided with the format that you used, with its \catcode‘~"Z=11.) Of course
you should also arrange your fonts so that TEX’s character 26 will print as @; and
you should change TEX’s hyphenation algorithm so that it will do correct Norwegian
hyphenation. The main point is that such chan:,es are not extremely difficult; nothing
in the design of TEX limits it to the American alphabet, as long as you have at most
128 different characters.

* There’s nothing magic about this number 26, except that by coincidence the Com-
puter Modern fonts of plain TEX happen to have an ‘&’ in position 26 already. Some
change to the font layout is inevitable, however, since all six of the special letters e,
8, 4, £, @, and A should be assigned to positions less than 32. Characters already
in those positions can easily be moved to positions greater than 127, since they are
never accessed by plain TEX except via control sequences.

45

46 Chapter 8: The Characters You Type

@ But wait, you say. Why are characters numbered from 0 to 127, when fonts

can contain up to 256 different symbols? The answer is that TEX can access
positions 128 to 255 of a font in several reasonably convenient ways, even though its
character tokens are coded from 0 to 127. You can use \char, generally via a control
sequence, as already mentioned; and the higher positions of a font can conveniently be
occupied by math symbols, as we shall see later. Another important way to generate
codes above 127 is by sequences of keystrokes (i.e., ligatures), when the font has been
set up properly. It is often faster to touch-type a sequence of letters than to hunt for
a single key on a large keyboard; thus the restriction to 128 typable characters is not
actually unreasonable.

@ For example, let’s consider Norwegian again, but suppose that you want to

use a keyboard without an @ character. You can arrange the font metric file
so that TEX will interpret ae, o/, aa, AE, 0/, and AA as ligatures that produce &, ¢, a,
E, ®, and A, respectively; and you could put the characters 4 and A into positions 128
and 129 of the font. By setting \catcode ‘/=11 you would be able to use the ligature
o/ in control sequences like ‘\ho/yre’. TEX’s hyphenation method is not confused by
ligatures; so you could use this scheme to operate essentially as suggested before, but
with two keystrokes occasionally replacing one. (Your typists would have to watch
out for the occasional times when the adjacent characters aa, oe, and o/ should not be
treated as ligatures; also, ‘\/’ would be a control word, not a control symbol.)

@ The rest of this chapter is devoted to TEX'’s reading rules, which define the

conversion from text to tokens. For example, the fact that TEX ignores spaces
after control words is a consequence of the rules below, which imply among other things
that spaces after control words never become space tokens. The rules are intended to
work the way you would expect them to, so you may not wish to bother reading them:;
but when you are communicating with a computer, it is nice to understand what the
machine thinks it is doing, and here’s your chance.

@@ The input to TEX is a sequence of “lines.” Whenever TEX is reading a line of
text from a file, or a line of text that you entered directly on your terminal,

the reading apparatus is in one of three so-called states:

State N Beginning a new line;

State M Middle of a line;
State S Skipping blanks.

At the beginning of every line it’s in state N; but most of the time it’s in state M,
and after a control word or a space it’s in state S. Incidentally, “states” are different
from the “modes” that we will be studying later; the current state refers to TEX’s
eyes and mouth as they take in characters of new text, but the current mode refers
to the condition of TEX’s gastro-intestinal tract. Most of the things that TEX does
when it converts characters to tokens are independent of the current state, but there
are differences when spaces or end-of-line characters are detected (categories 10 and 5).

@@ TEX deletes any (space) characters (number 32) that occur at the right end
of an input line. Then it inserts a (return) character (number 13) at the right
end of the line, except that it places nothing additional at the end of a line that you
inserted with ‘I’ during error recovery. Note that (return) is considered to be an actual
character that is part of the line; you can obtain special effects by changing its catcode.

Chapter 8: The Characters You Type

@ If TEX sees an escape character (category 0) in any state, it scans the entire

control sequence name as follows. (a) If there are no more characters in the
line, the name is empty (like \csname\endcsname). Otherwise (b) if the next character
is not of category 11 (letter), the name consists of that single symbol. Otherwise (c) the
name consists of all letters beginning with the current one and ending just before the
first nonletter, or at the end of the line. This name becomes a control sequence token.
TEX goes into state S in case (¢), or in case (b) with respect to a character of category 10
(space); otherwise TEX goes into state M.

@ If TEX sees a superscript character (category 7) in any state, and if that

character is followed by another identical character, and if those two equal
characters aren’t at the end of the line, then they are deleted and 64 is added to or
subtracted from the following character. (Thus, ~"A is replaced by a single character
whose code is 1, etc., as explained earlier.) This replacement is carried out also if such
a trio of characters is encountered during steps (b) or (c) of the control-sequence-name
scanning procedure described above. After the replacement is made, TEX begins again
as if the new character had been present all the time. If a superscript character is not
the first of such a trio, it is handled by the following rule.

@ If TEX sees a character of categories 1, 2, 3, 4, 6, 8, 11, 12, or 13, or a character

of category 7 that is not the first of a trio as just described, it converts the
character to a token by attaching the category code, and goes into state M. This is
the normal case; almost every nonblank character is handled by this rule.

@ If TEX sees an end-of-line character (category 5), it throws away any other

information that might remain on the current line. Then if TEX is in state N
(new line), the end-of-line character is converted to the control sequence token ‘|par|’
(end of paragraph); if TEX is in state M (mid-line), the end-of-line character is con-
verted to a token for character 32 (‘) of category 10 (space); and if TEX is in state S
(skipping blanks), the end-of-line character is simply dropped.

@ If TEX sees a character to be ignored (category 9), it simply bypasses that
character as if it weren’t there, and remains in the same state.

@ If TEX sees a character of category 10 (space), the action depends on the

current state. If TEX is in state N or S, the character is simply passed by, and
TEX remains in the same state. Otherwise TEX is in state M; the character is converted
to a token of category 10 whose character code is 32, and TEX enters state S. The
character code in a space token is always 32.

@@ If TEX sees a comment character (category 14), it throws away that character
and any other information that might remain on the current line.

@@ Finally, if TEX sees an invalid character (category 15), it bypasses that char-
acter, prints an error message, and remains in the same state.

@@ If TEX has nothing more to read on the current line, it goes to the next line
and enters state N. However, if \endinput has been specified for a file being

\input, or if an \input file has ended, TEX returns to whatever it was reading when
the \input command was originally given. (Further details of \input and \endinput
are discussed in Chapter 20.)

47

48 Chapter 8: The Characters You Type

@@» EXERCISE 8.2

Test your understanding of TEX’s reading rules by answering the following
quickie questions: (a) What is the difference between categories 5 and 147 (b) What is
the difference between categories 3 and 47 (¢) What is the difference between categories
11 and 127 (d) Are spaces ignored after active characters? (e) When a line ends with a
comment character like %, are spaces ignored at the beginning of the next line? (f) Can
an ignored character appear in the midst of a control sequence name?

@@» EXERCISE 8.3

Look again at the error message that appears on page 31. When TEX reported
that \vship was an undefined control sequence, it printed two lines of context, showing
that it was in the midst of reading line 2 of the story file. At the time of that error
message, what state was TEX in? What character was it about to read next?

@@» EXERCISE 8.4
Given the category codes of plain TEX format, what tokens are produced from
the input line ¢ $x°2$~ \TeX ~°C'7

@@» EXERCISE 8.5

Consider an input file that contains exactly three lines; the first line says ‘Hi!’,
while the other two lines are completely blank. What tokens are produced when TEX
reads this file, using the category codes of plain TEX format?

@@» EXERCISE 8.6

Assume that the category codes of plain TEX are in force, except that the char-
acters ~"A, "B, "~C, "~ "M belong respectively to categories 0, 7, 10, and 11. What tokens
are produced from the (rather ridiculous) input line ‘""B""BM"~A~"B~"C~"M""@\M,?
(Remember that this line is followed by (return), which is ~"M; and recall that ~~@
denotes the (null) character, which has category 9 when INITEX begins.)

@@ The special character inserted at the end of each line needn’t be (return); TEX

actually inserts the current value of an integer parameter called \endlinechar,
which normally equals 13 but it can be changed like any other parameter. If the value
of \endlinechar is negative or greater than 127, no character is appended, and the
effect is as if every line ends with % (i.e., with a comment character).

@ Since it is possible to change the category codes, TEX might actually use

several different categories for the same character on a single line. For example,
Appendices D and E contain several ways to coerce TEX to process text “verbatim,”
so that the author could prepare this manual without great difficulty. (Try to imagine
typesetting a TEX manual; backslashes and other special characters need to switch back
and forth between their normal categories and category 12!) Some care is needed to
get the timing right, but you can make TEX behave in a variety of different ways by
judiciously changing the categories. On the other hand, it is best not to play with the
category codes very often, because you must remember that characters never change
their categories once they have become tokens. For example, when the arguments to a
macro are first scanned, they are placed into a token list, so their categories are fixed
once and for all at that time. The author has intentionally kept the category codes
numeric instead of mnemonic, in order to discourage people from making extensive use
of \catcode changes except in unusual circumstances.

TeX's
Roman Fonts

u\\., % .‘.--

A

It

Chapter 9: TgX’s Roman Fonts

When you're typing a manuscript for TEX, you need to know what symbols
are available. The plain TEX format of Appendix B is based on the Computer
Modern fonts, which provide the characters needed to typeset a wide variety
of documents. It’s time now to discuss what a person can do with plain TgX
when typing straight text. We’ve already touched on some of the slightly subtle
things—for example, dashes and quotation marks were considered in Chapter 2,
and certain kinds of accents appeared in the examples of Chapters 3 and 6. The
purpose of this chapter is to give a more systematic summary of the possibilities,
by putting all the facts together.

Let’s begin with the rules for the normal roman font (\rm or \tenrm);
plain TEX will use this font for everything unless you specify otherwise. Most of
the ordinary symbols that you need are readily available and you can type them
in the ordinary way: There’s nothing special about

the letters A to Z and a to z
the digits 0 to 9
common punctuationmarks : ; ' 2 () [] ¢ > -%/ . , Q@

except that TEX recognizes certain combinations as ligatures:

ff yields ff; ffi yields fh; ‘¢ yields “; 1 yields j;
fi yields fi; f£1 yields fii; >2 yields 7 ; 7¢ yields ;.
f1 yields fl; -- yields —; --- yields —;

You can also type + and =, to get the corresponding symbols + and =; but it’s
much better to use such characters only in math mode, i.e., enclosed between
two $ signs, since that tells TEX to insert the proper spacing for mathemat-
ics. Math mode is explained later; for now, it’s just a good idea to remember
that formulas and text should be segregated. A non-mathematical hyphen and
a non-mathematical slash should be specified by typing ‘-’ and ‘/’ outside of
mathematics mode, but subtraction and division should be specified by typing
‘-7 and ‘/’ between $ signs.

The previous paragraph covers 80 of the 94 visible characters of standard
ASCII; so your keyboard probably contains at least 14 more symbols, and you
should learn to watch out for the remaining ones, since they are special. Four of
these are preémpted by plain TEX; if your manuscript requires the symbols

$ W A &
you should remember to type them as
\$ \# \/% \&
respectively. Plain TEX also reserves the six symbols
\ { } B - ”
but you probably don’t mind losing these, since they don’t appear in normal
copy. Braces and backslashes are available via control sequences in math mode.

51

52

Chapter 9: TgpX’s Roman Fonts

There are four remaining special characters in the standard ASCII set:
" I < >

Again, you don’t really want them when you’re typesetting text. (Double-quote
marks should be replaced either by ‘‘ or by ’’; vertical lines and relation signs
are needed only in math mode.)

Scholarly publications in English often refer to other languages, so plain
TEX makes it possible to typeset the most commonly used accents:

Type to get

\‘o o (grave accent)

\’o 6 (acute accent)

\"o o (circumflex or “hat”)
\"o 0 (umlaut or dieresis)
\~o 0 (tilde or “squiggle”)
\=o0 0 (macron or “bar”)
\.o o (dot accent)

\u o o} (breve accent)

\v o o (hécek or “check”)
\H o 6 (long Hungarian umlaut)
\t oo 00 (tie-after accent)

Within the font, such accents are designed to appear at the right height for the
letter ‘0’; but you can use them over any letter, and TEX will raise an accent that
is supposed to be taller. Notice that spaces are needed in the last four cases, to
separate the control sequences from the letters that follow. You could, however,
type ‘\H{o}’ in order to avoid putting a space in the midst of a word.

Plain TEX also provides three accents that go underneath:

Type to get

\c o Q (cedilla accent)

\d o 0 (dot-under accent)
\b o 0 (bar-under accent)

And there are a few special letters:

Type to get

\oe,\OE ce,(E (French ligature OE)

\ae,\AE &, £ (Latin and Scandinavian ligature AE)
\aa,\AA 4,A (Scandinavian A-with-circle)

\o,\0 3, (Scandinavian O-with-slash)

\1,\L L L (Polish suppressed-L)

\ss 3 (German “es-zet” or sharp S)

The \rm font contains also the dotless letters ‘1’ and ‘}’, which you can obtain by
typing ‘\i’ and ‘\j’. These are needed because ‘i’ and ‘j’ should lose their dots

Chapter 9: TpX’s Roman Fonts

when they gain an accent. For example, the right way to obtain ‘minus’ is to
type ‘m\=\1i n\u us’ or ‘m\={\i}n\u{ul}s’.

This completes our summary of the \rm font. Exactly the same conven-
tions apply to \bf, \sl, and \it, so you don’t have to do things differently when
you're using a different typeface. For example, \bf\"o yields 6 and \it\& yields
&. Isn’t that nice?

@ However, \tt is slightly different. You will be glad to know that ££, £i, and so

on are not treated as ligatures when you’re using typewriter type; nor do you
get ligatures from dashes and quote marks. That’s fine, because ordinary dashes and
ordinary double-quotes are appropriate when you’re trying to imitate a typewriter.
Most of the accents are available too. But \H, \., \1, and \L cannot be used—the
typewriter font contains other symbols in their place. Indeed, you are suddenly allowed
to type ", I, <, and >; see Appendix F. All of the letters, spaces, and other symbols in
\tt have the same width.

» EXERCISE 9.1
What’s the non-naive way to type ‘naive’?

» EXERCISE 9.2
List some English words that contain accented letters.

» EXERCISE 9.3
How would you type ‘Asop’s (Euvres en francais’?

» EXERCISE 9.4

Explain what to type in order to get this sentence: Commentarii Academizse
scientiarum imperialis petropolitana is now Akademiia Nauk SSSR, Doklady.

» EXERCISE 9.5
And how would you specify the names Ernesto Cesaro, Pal Erdds, Qystein Ore,
Stanistaw Swierczkowski, Sergei Iur’ev, Munammad ibn Misa al-Khwéarizmi?

@ » EXERCISE 9.6
Devise a way to typeset P4l Erd8s in typewriter type.

The following symbols come out looking exactly the same whether you
are using \rm, \sl, \bf, \it, or \tt:

Type to get

\dag T (dagger or obelisk)

\ddag 1 (double dagger or diesis)
\S § (section number sign)

\P q (paragraph sign or pilcrow)

(They appear in just one style because plain TEX gets them from the math
symbols font. Lots of other symbols are needed for mathematics; we shall study
them later. See Appendix B for a few more non-math symbols.)

54 Chapter 9: TEX’s Roman Fonts

» EXERCISE 9.7
In plain TEX’s italic font, the ‘$’ sign comes out as ‘£’. This gives you a way
to refer to pounds sterling, but you might want an italic dollar sign. Can you
think of a way to typeset a reference to the book Furope on $15.00 a day?

@ Appendix B shows that plain TEX handles most of the accents by using TEX'’s

\accent primitive. For example, \’#1 is equivalent to {\accent19 #1}, where
#1 is the argument being accented. The general rule is that \accent(number) puts an
accent over the next character; the (number) tells where that accent appears in the
current font. The accent is assumed to be properly positioned for a character whose
height equals the x-height of the current font; taller or shorter characters cause the
accent to be raised or lowered, taking due account of the slantedness of the fonts of
accenter and accentee. The width of the final construction is the width of the character
being accented, regardless of the width of the accent. Mode-independent commands like
font changes may appear between the accent number and the character to be accented,
but grouping operations must not intervene. If it turns out that no suitable character
is present, the accent will appear by itself as if you had said \char(number) instead of
\accent(number). For example, \’{} produces ".

@@» EXERCISE 9.8

Why do you think plain TEX defines \’#1 to be ‘{\accent19 #1}’ instead of
simply letting \’ be an abbreviation for ‘\accent19 ’? (Why the extra braces, and
why the argument #17)

@ It’s important to remember that these conventions we have discussed for ac-

cents and special letters are not built into TEX itself; they belong only to the
plain TEX format, which uses the Computer Modern fonts. Quite different conventions
will be appropriate when other fonts are involved; format designers should provide rules
for how to obtain accents and special characters in their particular systems. Plain TEX
works well enough when accents are infrequent, but the conventions of this chapter
are by no means recommended for large-scale applications of TEX to other languages.
For example, a well-designed TEX font for French would probably treat accents as lig-
atures, so that one could e’crire de cette manie‘re nai''ve en franc/ais without
backslashes. (See the remarks about Norwegian in Chapter 8.)

10

Dimensions

Chapter 10: Dimensions

Sometimes you want to tell TEX how big to make a space, or how wide to make
a line. For example, the short story of Chapter 6 used the instruction ‘\vskip
.5cm’ to skip vertically by half a centimeter, and we also said ‘\hsize=4in’ to
specify a horizontal size of 4 inches. It’s time now to consider the various ways
such dimensions can be communicated to TEX.

“Points” and “picas” are the traditional units of measure for printers
and compositors in English-speaking countries, so TEX understands points and
picas. TEX also understands inches and metric units, as well as the continental
European versions of points and picas. Each unit of measure is given a two-letter
abbreviation, as follows:

pt point (baselines in this manual are 12 pt apart)
pc pica (1pc = 12pt)

in inch (1in = 72.27 pt)

bp big point (72bp = 1in)

cm centimeter (2.54cm = 1in)

mm millimeter (10mm = 1cm)

dd didot point (1157 dd = 1238 pt)

cc cicero (1cc=12dd)

sp scaled point (65536sp = 1 pt)

The output of TEX is firmly grounded in the metric system, using the conversion
factors shown here as exact ratios.

» EXERCISE 10.1
How many points are there in 254 centimeters?

When you want to express some physical dimension to TEX, type it as

(optional sign)(number)(unit of measure)

or

(optional sign)(digit string) . (digit string)(unit of measure)
where an (optional sign) is either a ‘+’ or a ‘=’ or nothing at all, and where a
(digit string) consists of zero or more consecutive decimal digits. The *.” can

also be a *,’. For example, here are six typical dimensions:

3 1in 29 pc
-.013837in + 42,1 d4dd
O .mm 123456789sp

A plus sign is redundant, but some people occasionally like extra redundancy
once in a while. Blank spaces are optional before the signs and the numbers and
the units of measure, and you can also put an optional space after the dimension;
but you should not put spaces within the digits of a number or between the letters
of the unit of measure.

» EXERCISE 10.2
Arrange those six “typical dimensions” into order, from smallest to largest.

58 Chapter 10: Dimensions

@ » EXERCISE 10.3
Two of the following three dimensions are legitimate according to TEX's rules.
Which two are they? What do they mean? Why is the other one incorrect?
> . T7pt
"Ccc

-,sp

The following “rulers” have been typeset by TEX so that you can get
some idea of how different units compare to each other. If no distortion has been
introduced during the camera work and printing processes that have taken place
after TEX did its work, these rulers are highly accurate.

[T R TR T e T e e e T e k0BT
- T~ 1 " " T [T " 1300pt
" " " T " " " "1 " " " L LR [300dd
T I I R l L R B B " 110cm

@ » EXERCISE 10.4
(To be worked after you know about boxes and glue and have read Chapter 21.)
Explain how to typeset such a 10 cm ruler, using TEX.

TEX represents all dimensions internally as an integer multiple of the tiny

units called sp. Since the wavelength of visible light is approximately 100 sp,
rounding errors of a few sp make no difference to the eye. However, TEX does all
of its arithmetic very carefully so that identical results will be obtained on different
computers. Different implementations of TEX will produce the same line breaks and
the same page breaks when presented with the same document, because the integer
arithmetic will be the same.

@ The units have been defined here so that precise conversion to sp is efficient

on a wide variety of machines. In order to achieve this, TEX’s “pt” has been
made slightly larger than the official printer’s point, which was defined to equal exactly
.013837in by the American Typefounders Association in 1886 [cf. National Bureau of
Standards Circular 570 (1956)]. In fact, one classical point is exactly .99999999 pt, so
the “error” is essentially one part in 10°. This is more than two orders of magnitude
less than the amount by which the inch itself changed during 1959, when it shrank to
2.54 cm from its former value of (1/0.3937) cm; so there is no point in worrying about
the difference. The new definition 72.27 pt = 1in is not only better for calculation, it is
also easier to remember.

TEX will not deal with dimensions whose absolute value is 2°° sp or more. In

other words, the maximum legal dimension is slightly less than 16384 pt. This
is a distance of about 18.892 feet (5.7583 meters), so it won’t cramp your style.

Chapter 10: Dimensions

In a language manual like this it is convenient to use “angle brackets”
In abbreviations for various constructions like (number) and (optional sign) and
(digit string). Henceforth we shall use the term (dimen) to stand for a legitimate
TEX dimension. For example,

\hsize=(dimen)

will be the general way to define the column width that TEX is supposed to use.
The idea is that (dimen) can be replaced by any quantity like ‘4in’ that satisfies
TEX'’s grammatical rules for dimensions; abbreviations in angle brackets make it
easy to state such laws of grammar.

When a dimension is zero, you have to specify a unit of measure even
though the unit is irrelevant. Don’t just say ‘0’; say ‘Opt’ or ‘Oin’ or something.

The 10-point size of type that you are now reading is normal in text-
books, but you probably will often find yourself wanting a larger font. Plain TgpX
makes it easy to do this by providing magnified output. If you say

\magnification=1200

at the beginning of your manuscript, everything will be enlarged by 20%; i.e., it
will come out at 1.2 times the normal size. Similarly, ‘\magnification=2000’
doubles everything; this actually quadruples the area of each letter, since heights
and widths are both doubled. To magnify a document by the factor f, you say
\magnification=(number), where the (number) is 1000 times f. This instruc-
tion must be given before the first page of output has been completed. You
cannot apply two different magnifications to the same document.

Magnification has obvious advantages: You'll have less eyestrain when
you’re proofreading; you can easily make transparencies for lectures; and you
can photo-reduce magnified output, in order to minimize the deficiencies of a
low-resolution printer. Conversely, you might even want ‘\magnification=500’
in order to create a pocket-size version of some book. But there’s a slight catch:
You can’t use magnification unless your printing device happens to have the
fonts that you need at the magnification you desire. In other words, you need
to find out what sizes are available before you can magnify. Most installations
of TEX make it possible to print all the fonts of plain TEX if you magnify by
\magstepO, 1, 2, 3, and perhaps 4 or even 5 (see Chapter 4); but the use of large
fonts can be expensive because a lot of system memory space is often required
to store the shapes.

» EXERCISE 10.5
Try printing the short story of Chapter 6 at 1.2, 1.44, and 1.728 times the normal
size. What should you type to get TEX to do this?

@ ~ When you say \magnification=2000, an operation like ‘\vskip.5cm’ will ac-
tually skip 1.0 cm of space in the final document. If you want to specify a
dimension in terms of the final size, TEX allows you to say ‘true’ just before pt, pc, in,

59

60 Chapter 10: Dimensions

bp, cm, mm, dd, cc, and sp. This unmagnifies the units, so that the subsequent magni-
fication will cancel out. For example, ‘\vskip.5truecm’ is equivalent to ‘\vskip.25cm’
if you have previously said ‘\magnification=2000". Plain TEX uses this feature in the
\magnification command itself: Appendix B includes the instruction

\hsize = 6.5 true in

just after a new magnification has taken effect. This adjusts the line width so that the
material on each page will be 63 inches wide when it is finally printed, regardless of the
magnification factor. There will be an inch of margin at both left and right, assuming
that the paper is 8% inches wide.

@ If you use no ‘true’ dimensions, TEX's internal computations are not affected

by the presence or absence of magnification; line breaks and page breaks will
be the same, and the dvi file will change in only two places. TEX simply tells the
printing routine that you want a certain magnification, and the printing routine will
do the actual enlargement when it reads the dvi file.

g‘% » EXERCISE 10.6

Chapter 4 mentions that fonts of different magnifications can be used in the
same job, by loading them ‘at’ different sizes. Explain what fonts will be used when
you give the commands

\magnification=\magstepl
\font\first=cmr10 scaled\magstepl
\font\second=cmr10 at 12truept

@ Magnification is actually governed by TEX’s \mag primitive, which is an integer

parameter that should be positive and at most 32768. The value of \mag is
examined in three cases: (1) just before the first page is shipped to the dvi file; (2) when
computing a true dimension; (3) when the dvi file is being closed. Alternatively, some
implementations of TEX produce non-dvi output; they examine \mag in case (2) and
also when shipping out each page. Since each document has only one magnification,
the value of \mag must not change after it has first been examined.

@ TEX also recognizes two units of measure that are relative rather than absolute;
l.e., they depend on the current context:

em is the width of a “quad” in the current font;
ex is the “x-height” of the current font.

Each font defines its own em and ex values. In olden days, an “em” was the width
of an ‘M’, but this is no longer true; ems are simply arbitrary units that come with a
font, and so are exes. The Computer Modern fonts have the property that an em-dash
1s one em wide, each of the digits 0 to 9 is half an em wide, and lowercase ‘x’ is one ex
high; but these are not hard-and-fast rules for all fonts. The \rm font (cmr10) of plain
TEX has 1em = 10pt and 1ex ~ 4.3 pt; the \bf font (cmbx10) has 1em = 11.5 pt and
lex ~ 4.44pt; and the \tt font (cmtt10) has 1em = 10.5pt and lex ~ 4.3 pt. All of
these are “10-point” fonts, yet they have different em and ex values. It is generally best
to use em for horizontal measurements and ex for vertical measurements that depend
on the current font.

Chapter 10: Dimensions

@ A (dimen) can also refer to TEX’s internal registers or parameters. We shall

discuss registers later, and a complete definition of everything that a (dimen)
can be will be given in Chapter 24. For now it will suffice to give some hints about
what 1s to come: ‘\hsize’ stands for the current horizontal line size, and ‘.5\hsize’

is half that amount; ‘2\wd3’ denotes twice the width of register \box3; ‘~\dimen100’ is
the negative of register \dimen100.

@ Notice that the unit names in dimensions are not preceded by backslashes. The

same 1s true of other so-called keywords of the TEX language. Keywords can be
given in uppercase letters or in a mixture of upper and lower case; e.g., ‘Pt’ is equivalent
to ‘pt’. The category codes of these letters are irrelevant; you may, for example, be
using a p of category 12 (other) that was generated by expanding ‘\the\hsize’ as
explained in Chapter 20. TEX gives a special interpretation to keywords only when
they appear in certain very restricted contexts. For example, ‘pt’ is a keyword only
when it appears after a number in a (dimen); ‘at’ is a keyword only when it appears
after the external name of a font in a \font declaration. Here is a complete list of
TEX’s keywords, in case you are wondering about the full set: at, bp, by, cc, cm, dd,
depth, em, ex, fil, height, in, 1, minus, mm, mu, pc, plus, pt, scaled, sp, spread, to,
true, width. (See Appendix I for references to the contexts in which each of these is
recognized as a keyword.)

The methods that have hitherto been taken

to discover the measure of the Roman foot,

will, upon examination, be found so unsatisfactory, that

it is no wonder the learned are not yet agreed on that point.

9 London inches are equal to 8,447 Paris inches.
— MATTHEW RAPER, in Philosophical Transactions (1760)

Without the letter U,
units would be nits.

— SESAME STREET (1970)

61

O A T

o)
=N
S5
=
S
=

o
23S
RS

et
. -
\\\\¢~

o

-

=
%

R

\\'i
A
St

Cd
PO

NN
==
S : -
!
@

NS

%)
SR
20 o

S
o |C Ba

O<

)

N -.‘:;-‘ \
Qo o c

g5

S

e
., P

E".v
=
=
Y
[
'

-‘.

R
= N
A

o
(<]
:‘-'. D
ol < o
o

- D — y

{

%

Chapter 11: Bozxes

TEX makes complicated pages by starting with simple individual characters and
putting them together in larger units, and putting these together in still larger
units, and so on. Conceptually, it’s a big paste-up job. The TgXnical terms used
to describe such page construction are boxes and glue.

Boxes in TEX are two-dimensional things with a rectangular shape, hav-
ing three associated measurements called height, width, and depth. Here is a
picture of a typical box, showing its so-called reference point and baseline:

height

Baseline

Reference point—¢

depth
!

«— width —

From TgX’s viewpoint, a single character from a font is a box; it’s one of the
simplest kinds of boxes. The font designer has decided what the height, width,
and depth of the character are, and what the symbol will look like when it is in
the box; TEX uses these dimensions to paste boxes together, and ultimately to
determine the locations of the reference points for all characters on a page. In
plain TEX’s \rm font (cmr10), for example, the letter ‘h’ has a height of 6.9444
points, a width of 5.5555 points, and a depth of zero; the letter ‘g’ has a height
of 4.3055 points, a width of 5 points, and a depth of 1.9444 points. Only certain
special characters like parentheses have height plus depth actually equal to 10
points, although cmr10 is said to be a “10-point” font. You needn’t bother to
learn these measurements yourself, but it’s good to be aware of the fact that TEX
deals with such information; then you can better understand what the computer
does to your manuscript.

The character shape need not fit inside the boundaries of its box. For
example, some characters that are used to build up larger math symbols like
matrix brackets intentionally protrude a little bit, so that they overlap properly
with the rest of the symbol. Slanted letters frequently extend a little to the right
of the box, as if the box were skewed right at the top and left at the bottom,
keeping its baseline fixed. For example, compare the letter ‘g’ in the cmr10 and
cms110 fonts (\rm and \sl):

In both cases TEX thinks that the box is 5 points wide, so both letters get exactly
the same treatment. TEX doesn’t have any idea where the ink will go—only the
output device knows this. But the slanted letters will be spaced properly in spite
of TEX’s lack of knowledge, because the baselines will match up.

63

64

Chapter 11: Bozxes

Actually the font designer also tells TEX one other thing, the so-called
italic correction: A number is specified for each character, telling roughly how
far that character extends to the right of its box boundary, plus a little to spare.
For example, the italic correction for ‘g’ in cmr10 is 0.1389 pt, while in cms110
it is 0.8565 pt. Chapter 4 points out that this correction is added to the normal
width if you type ‘\/’ just after the character. You should remember to use \/
when shifting from a slanted font to an unslanted one, especially in cases like

the so-called {\sl italic correction\/}:

since no space intervenes here to compensate for the loss of slant.

TEX also deals with another simple kind of box, which might be called
a “black box,” namely, a rectangle like ‘@’ that is to be entirely filled with ink
at printing time. You can specify any height, width, and depth you like for such
boxes—but they had better not have too much area, or the printer might get
upset. (Printers generally prefer white space to black space.)

Usually these black boxes are made very skinny, so that they appear as
horizontal lines or vertical lines. Printers traditionally call such lines “horizontal
rules” and “vertical rules,” so the terms TEX uses to stand for black boxes are
\hrule and \vrule. Even when the box is square, as in ‘®’, you must call it
either an \hrule or a \vrule. We shall discuss the use of rule boxes in greater
detail later. (See Chapter 21.)

Everything on a page that has been typeset by TEX is made up of simple
character boxes or rule boxes, pasted together in combination. TEX pastes boxes
together in two ways, either horizontally or vertically. When TEX builds a
horizontal list of boxes, it lines them up so that their reference points appear
in the same horizontal row; therefore the baselines of adjacent characters will
match up as they should. Similarly, when TEX builds a vertical list of boxes, it
lines them up so that their reference points appear in the same vertical column.

Let’s take a look at what TEX does behind the scenes, by comparing
the computer’s methods with what you would do if you were setting metal type
by hand. In the time-tested traditional method, you choose the letters that
you need out of a type case—the uppercase letters are in the upper case—and
you put them into a “composing stick.” When a line is complete, you adjust
the spacing and transfer the result to the “chase,” where it joins the other rows
of type. Eventually you lock the type up tightly by adjusting external wedges
called “quoins.” This isn’t much different from what TpX does, except that
different words are used; when TEX locks up a line, it creates what is called an
“hbox” (horizontal box), because the components of the line are pieced together
horizontally. You can give an instruction like

\hbox{A line of type.}

in a TEX manuscript; this tells the computer to take boxes for the appropriate
letters in the current font and to lock them up in an hbox. As far as TEX is

Chapter 11: Bozxes

concerned, the letter ‘A’ is a box ‘00’ and the letter ‘p’ is a box ‘g’. So the
given instruction causes TEX to form the hbox

H o ol Gyl

representing ‘A line of type.” The hboxes for individual lines of type are eventu-
ally joined together by putting them into a “vbox” (vertical box). For example,
you can say

\vbox{\hbox{Two lines}\hbox{of type.}}
and TEX will convert this into

0 o . Two lines

JHogel | 0 of type.

The principal difference between TEX’s method and the old way is that metal
types are generally cast so that each character has the same height and depth;
this makes it easy to line them up by hand. TEX’s types have variable height
and depth, because the computer has no trouble lining characters up by their
baselines, and because the extra information about height and depth helps in
the positioning of accents and mathematical symbols.

Another important difference between TEX setting and hand setting is, of
course, that TEX will choose line divisions automatically; you don’t have to insert
\hbox and \vbox instructions unless you want to retain complete control over
where each letter goes. On the other hand, if you do use \hbox and \vbox, you
can make TEX do almost everything that Ben Franklin could do in his printer’s
shop. You're only giving up the ability to make the letters come out charmingly
crooked or badly inked; for such effects you need to make a new font. (And
of course you lose the tactile and olfactory sensations, and the thrill of doing
everything by yourself. TEX will never completely replace the good old ways.)

A page of text like the one you're reading is itself a box, in TEX’s view:
It is a largish box made from a vertical list of smaller boxes representing the lines
of text. Each line of text, in turn, is a box made from a horizontal list of boxes
representing the individual characters. In more complicated situations, involving
mathematical formulas and/or complex tables, you can have boxes within boxes
within boxes ... to any level. But even these complicated situations arise from
horizontal or vertical lists of boxes pasted together in a simple way; all that you
and TEX have to worry about is one list of boxes at a time. In fact, when you're
typing straight text, you don’t have to think about boxes at all, since TEX will
automatically take responsibility for assembling the character boxes into words
and the words into lines and the lines into pages. You need to be aware of the
box concept only when you want to do something out of the ordinary, e.g., when
you want to center a heading.

@ From the standpoint of TEX’s digestive processes, a manuscript comes in as a
" sequence of tokens, and the tokens are to be transformed into a sequence of
boxes. Each token of input is essentially an instruction or a piece of an instruction; for

66 Chapter 11: Bozes

)

example, the token ‘A;;’ normally means, “put a character box for the letter A at the
end of the current hbox, using the current font”; the token ‘|vskip|’ normally means,
“skip vertically in the current vbox by the (dimen) specified in the following tokens.”

@ The height, width, or depth of a box might be negative, in which case it is a

“shadow box” that is somewhat hard to draw. TEX doesn’t balk at negative
dimensions; it just does arithmetic as usual. For example, the combined width of two
adjacent boxes is the sum of their widths, whether or not the widths are positive. A
font designer can declare a character’s width to be negative, in which case the character
acts like a backspace. (Languages that read from right to left could be handled in this
way, but only to a limited extent, since TEX’s line-breaking algorithm is based on the
assumption that words don’t have negative widths.)

@ TEX can raise or lower the individual boxes in a horizental list; such adjust-

ments take care of mathematical subscripts and superscripts, as well as the
heights of accents and a few other things. For example, here is a way to make a box
that contains the TEX logo, putting it into TEX'’s internal register \boxO:

\setbox0=\hbox{T\kern-.1667em\lower.5ex\hbox{E}\kern-.125em X}

Here ‘\kern-.1667em’ means to insert blank space of —.1667 ems in the current font,
i.e., to back up a bit; and ‘\lower.5ex’ means that the box \hbox{E} is to be lowered
by half of the current x-height, thus offsetting that box with respect to the others.
Instead of ‘\lower.5ex’ one could also say ‘\raise-.5ex’. Chapters 12 and 21 discuss
the details of how to construct boxes for special effects; our goal in the present chapter
is merely to get a taste of the possibilities.

TEX will exhibit the contents of any box register, if you ask it to. For example,
if you type ‘\showbox0’ after setting \box0 to the TEX logo as above, your log
file will contain the following mumbo jumbo:

\hbox (6.83331+2.15277)x18.6108

.\tenrm T

.\kern -1.66702

.\hbox(6.83331+0.0)x6.80557, shifted 2.15277
..\tenrm E

.\kern -1.25

.\tenrm X

The first line means that \box0 is an hbox whose height, depth, and width are re-
spectively 6.83331 pt, 2.15277 pt, and 18.6108 pt. Subsequent lines beginning with ‘.’
indicate that they are inside of a box. The first thing in this particular box is the
letter T in font \tenrm; then comes a kern. The next item is an hbox that contains
only the letter E; this box has the height, depth, and width of an E, and it has been
shifted downward by 2.15277 pt (thereby accounting for the depth of the larger box).

@ » EXERCISE 11.1
Why are there two dots in the ‘. .\tenrm E’ line here?

@ Such displays of box contents will be discussed further in Chapters 12 and 17.
They are used primarily for diagnostic purposes, when you are trying to figure
out exactly what TEX thinks it’s doing. The main reason for bringing them up in the

Chapter 11: Boxes 67

present chapter is simply to provide a glimpse of how TEX represents boxes in its
guts. A computer program doesn’t really move boxes around; it fiddles with lists of
representations of boxes.

@ » EXERCISE 11.2
By running TgX, figure out how it actually handles italic corrections to char-
acters: How are the corrections represented inside a box?

@ » EXERCISE 11.3
The “opposite” of TEX’s logo—namely, T EX—is produced by

\setbox1=\hbox{T\kern+.1667em\raise.5ex\hbox{E}\kern+.125em X}
What would \showbox1 show now? (Try to guess, without running the machine.)

@ » EXERCISE 11.4

Why do you think the author of TEX didn’t make boxes more symmetrical
between horizontal and vertical, by allowing reference points to be inside the boundary
instead of insisting that the reference point must appear at the left edge of each box?

@@» EXERCISE 11.5
Construct a \demobox macro for use in writing manuals like this, so that an
author can write ‘\demobox{Tough exercise.}’ in order to typeset ‘Cloo] ooodln]’.

@@» EXERCISE 11.6
Construct a \frac macro such that ‘\frac1/2’ yields ‘15"

| have several boxes in my memory
in which | will keep them all very safe,
there shall not a one of them be lost.

— 1IZAAK WALTON, The Compleat Angler (1653)

How very little does the amateur, dwelling at home at ease,
comprehend the labours and perils of the author.

— R. L. STEVENSON and L. OSBOURNE, The Wrong Box (1889)

Chapter 12: Glue

But there’s more to the story than just boxes: There’s also some magic mortar
called glue that TEX uses to paste boxes together. For example, there is a little
space between the lines of text in this manual; it has been calculated so that
the baselines of consecutive lines within a paragraph are exactly 12 points apart.
And there is space between words too; such space is not an “empty” box, it
1s part of the glue between boxes. This glue can stretch or shrink so that the
right-hand margin of each page comes out looking straight.

When TEX makes a large box from a horizontal or vertical list of smaller
boxes, there often is glue between the smaller boxes. Glue has three attributes,
namely its natural space, its ability to stretch, and its ability to shrink.

In order to understand how this works, consider the following example
of four boxes in a horizontal list separated by three globs of glue:

width 5 ictheg
width 6 width 8
e TP e
space 9 space 9 space 12
stretch 3 stretch 6 stretch O
shrink 1 shrink 2 shrink O
- width 52

The first glue element has 9 units of space, 3 of stretch, and 1 of shrink; the next
one also has 9 units of space, but 6 units of stretch and 2 of shrink; the last one
has 12 units of space, but it is unable to stretch or to shrink, so it will remain
12 units of space no matter what.

The total width of boxes and glue in this example, considering only the
space components of the glue, is 5 4+9+6 +9 + 3 + 12 + 8 = 52 units. This
is called the natural width of the horizontal list; it’s the preferred way to paste
the boxes together. Suppose, however, that TEX is told to make the horizontal
list into a box that is 58 units wide; then the glue has to stretch by 6 units.
Well, there are 3 + 6 + 0 = 9 units of stretchability present, so TEX multiplies
each unit of stretchability by 6/9 in order to obtain the extra 6 units needed.
The first glob of glue becomes 9 4+ (6/9) x 3 = 11 units wide, the next becomes
9+ (6/9) x 6 = 13 units wide, the last remains 12 units wide, and we obtain the
desired box looking like this:

width 58

On the other hand, if TEX is supposed to make a box 51 units wide from
the given list, it is necessary for the glue to shrink by a total of one unit. There
are three units of shrinkability present, so the first glob of glue would shrink by
1/3 and the second by 2/3.

69

70

Chapter 12: Glue

The process of determining glue thickness when a box is being made
from a horizontal or vertical list is called setting the glue. Once glue has been
set, it becomes rigid; it won’t stretch or shrink any more, and the resulting box
is essentially indecomposable.

Glue will never shrink more than its stated shrinkability. For example,
the first glob of glue in our illustration will never be allowed to become narrower
than 8 units wide, and TEX will never shrink the given horizontal list to make
its total width less than 49 units. But glue is allowed to stretch arbitrarily far,
whenever it has a positive stretch component.

» EXERCISE 12.1

How wide would the glue globs be if the horizontal list in the illustration were
to be made 100 units wide?

Once you understand TEX’s concept of glue, you may well decide that
it was misnamed; real glue doesn’t stretch or shrink in such ways, nor does it
contribute much space between boxes that it welds together. Another word like
“spring” would be much closer to the essential idea, since springs have a nat-
ural width, and since different springs compress and expand at different rates
under tension. But whenever the author has suggested changing TEX’s termi-
nology, numerous people have said that they like the word “glue” in spite of its
inappropriateness; so the original name has stuck.

TEX is somewhat reluctant to stretch glue more than the stated stretchability;

therefore you can decide how big to make each aspect of the glue by using the
following rules: (a) The natural glue space should be the amount of space that looks
best. (b) The glue stretch should be the maximum amount of space that can be
added to the natural spacing before the layout begins to look bad. (c¢) The glue shrink
should be the maximum amount of space that can be subtracted from the natural
spacing before the layout begins to look bad.

In most cases the designer of a book layout will have specified all the
kinds of glue that are to be used, so a typist will not need to decide how big
any glue attributes should be. For example, users of the plain TEX format of
Appendix B can type ‘\smallskip’ when they want a little extra space between
paragraphs; a \smallskip turns out to be 3 pt worth of vertical glue that can
stretch or shrink by an additional 1 pt. Here is a \smallskip:

Instead of sprinkling various amounts of glue throughout a manuscript, express-
ing each of them explicitly in terms of points, you will find it much better
to explain your intentions more clearly by typing something like ‘\smallskip’
when you want abnormal spacing. The definition of \smallskip can readily
be changed later, in case you want such spaces to be smaller or larger. Plain
TEX also provides you with ‘\medskip’, which is worth two smallskips, and
“\bigskip’, which is worth two medskips.

@ A plain TEX \medskip appears before and after each “dangerous bend” section
of this manual, so you have already seen numerous examples of such spacing

Chapter 12: Glue

before you knew what it was called. Vertical glue is created by writing ‘\vskip(glue)’,
where (glue) is any glue specification. The usual way to specify (glue) to TEX is

(dimen) plus(dimen) minus(dimen)

where the ‘plus(dimen)’ and ‘minus(dimen)’ are optional and assumed to be zero if not
present; ‘plus’ introduces the amount of stretchability, ‘minus’ introduces the amount
of shrinkability. For example, Appendix B defines \medskip to be an abbreviation for
“\vskip6pt plus2pt minus2pt’. The normal-space component of glue must always be
given as an explicit (dimen), even when it is zero.

@ Horizontal glue is created in the same way, but with \hskip instead of \vskip.

For example, plain TEX defines \enskip as an abbreviation for the command
‘\hskip.b5em\relax’; this skips horizontally by one “en,” i.e., by exactly half of an em
in the current font. There is no stretching or shrinking in an \enskip. The control
sequence \relax after ‘.5em’ prevents TEX from thinking that a keyword is present, in
case the text following \enskip just happens to begin with ‘plus’ or ‘minus’.

One of the interesting things that happens when glue stretches and
shrinks at different rates is that there might be glue with infinite stretchabil-
ity. For example, consider again the four boxes we had at the beginning of this
chapter, with the same glue as before except that the glue in the middle can
stretch infinitely far. Now the total stretchability is infinite; and when the line
has to grow, all of the additional space is put into the middle glue. If, for ex-
ample, a box of width 58 is desired, the middle glue expands from 9 to 15 units,
and the other spacing remains unchanged.

If such infinitely stretchable glue is placed at the left of a row of boxes,
the effect is to place them “flush right,” i.e., to move them over to the rightmost
boundary of the constructed box. And if you take two globs of infinitely stretch-
able glue, putting one at the left and one at the right, the effect is to center the
list of boxes within a larger box. This in fact is how the \centerline instruction
works in plain TEX: It places infinite glue at both ends, then makes a box whose
width is the current value of \hsize.

The short story example of Chapter 6 used infinite glue not only for
centering, but also in the \vfill instruction at the end; ‘\vfill’ essentially
means “skip vertically by zero, but with infinite stretchability.” In other words,
\vfill fills up the rest of the current page with blank space.

TEX actually recognizes several kinds of infinity, some of which are “more

infinite” than others. You can say both \vfil and \vfill; the second is
stronger than the first. In other words, if no other infinite stretchability is present,
\vfil will expand to fill the remaining space; but if both \vfil and \vfill are present
simultaneously, the \vfill effectively prevents \vfil from stretching. You can think
of it as if \vfil has one mile of stretchability, while \v£fill has a trillion miles.

@ Besides \vfil and \vfill, TEX has \hfil and \hfill, for stretching indefi-

~ nitely in the horizontal direction. You can also say \hss or \vss, in order to
get glue that is infinitely shrinkable as well as infinitely stretchable. (The name ‘\hss’
stands for “horizontal stretch or shrink”; ‘\vss’ is its vertical counterpart.) Finally, the

71

72

Chapter 12: Glue

primitives \hfilneg and \vfilneg will cancel the stretchability of \hfil and \vfil;
we shall discuss applications of these curious glues later.

@ Here are some examples of \hfil, using the \1line macro of plain TEX, which
creates an hbox whose width is the current \hsize:

\line{This text will be flush left.\hfil}

\line{\hfil This text will be flush right.}

\line{\hfil This text will be centered.\hfil}

\line{Some text flush left\hfil and some flush right.}
\line{Alpha\hfil centered between Alpha and Omega\hfil Omega}
\line{Five\hfil words\hfil equally\hfil spaced\hfil out.}

@ » EXERCISE 12.2
Describe the result of
\line{\hfil\hfil What happens now?\hfil}
\line{\hfill\hfil and now?\hfil}

@@» EXERCISE 12.3
How do the following three macros behave differently?

\def\centerlinea#i1{\line{\hfil#1\hfil}}
\def\centerlineb#i1{\line{\hfill#1\hfill}}
\def\centerlinec#1{\1line{\hss#1\hss}}

@ In order to specify such infinities, you are allowed to use the special units ‘fil’,
‘£i11’, and ‘filll’ in the (dimen) parts of a stretchability or shrinkability

component. For example, \vfil, \vfill, \vss, and \vfilneg are essentially equivalent
to the glue specifications

\vskip Opt plus 1fil

\vskip Opt plus 1fill

\vskip Opt plus 1fil minus 1fil

\vskip Opt plus -1fil

respectively. It’s usually best to stick to the first order infinity (fil) as much as you can,
resorting to second order (fill) only when you really need something extremely infinite.
Then the ultimate order (filll) is always available as a last resort in emergencies. (TgEX
does not provide a ‘\vfilll’ primitive, since the use of this highest infinity is not
encouraged.) You can use fractional multiples of infinity like ‘3.25fil’, as long as
you stick to fewer than 16384 fil units. TEX actually does its calculations with integer
multiples of 27! fil (or fill or filll); so 0.000007£i111 turns out to be indistinguishable
from Opt, but 0.00001£i111 is infinitely greater than 16383.99999fil1l.

Now here’s something important for all TEXnical typists to know: Plain
TEX puts extra space at the end of a sentence; furthermore, it automatically
increases the stretchability (and decreases the shrinkability) after punctuation
marks. The reason 1s that it’s usually better to put more space after punctua-
tion than between two ordinary words, when spreading a line out to reach the
desired margins. Consider, for example, the following sentences from a classic
kindergarten pre-primer:

“‘0Oh, oh!’’ cried Baby Sally. Dick and Jane laughed.

‘i

Chapter 12: Glue

If TEX sets this at its natural width, all the spaces will be the same, except after
the quote and after ‘Baby Sally.’:

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

But if the line needs to be expanded by 5 points, 10 points, 15 points, or more,
TEX will set it as

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.
“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after the comma stretches at 1.25 times the rate of the glue between
adjacent words; the glue after the period and after the !’ stretches at 3 times
the rate. There is no glue between adjacent letters, so individual words will
always look the same. If TEX had to shrink this line to its minimum width, the
result would be

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

The glue after a comma shrinks only 80 percent as much as ordinary inter-word
glue, and after a period or exclamation point or question mark 1t shrinks by only
one third as much.

This all makes for nice-looking output, but it unfortunately adds a bit
of a burden to your job as a typist, because TEX’s rule for determining the end of
a sentence doesn’t always work. The problem is that a period sometimes comes
in the middle of a sentence ... like when it is used (as here) to make an “ellipsis”
of three dots.

Moreover, if you try to specify ‘... by typing three periods in a row,
you get ‘... —the dots are too close together. One way to handle this is to go
into mathematics mode, using the \1dots control sequence defined in plain TpX
format. For example, if you type

Honmm \ldots I wonder why?

the result is ‘Hmmm ... I wonder why?’. This works because math formulas are
exempt from the normal text spacing rules. Chapter 18 has more to say about
\ldots and related topics.

Abbreviations present problems too. For example, the short story in
Chapter 6 referred to ‘Mr. Drofnats’; TEX must be told somehow that the period
after ‘Mr.” or ‘Mrs.” or ‘Ms.” or ‘Prof.” or ‘Dr.” or ‘Rt. Hon.’, etc., doesn’t count
as a sentence-ending full stop.

We avoided that embarrassment in Chapter 6 by typing ‘Mr. “Drofnats’;
the “tie” mark ~ tells plain TEX to insert a normal space, and to refrain from
breaking between lines at that space. Another way to get TEX to put out a
normal space is to type ‘\’ (control space); e.g., ‘Mr.\ Drofnats’ would be
almost the same as ‘Mr. “Drofnats’, except that a line might end after the ‘Mr.".

Chapter 12: Glue

The tie mark is best for abbreviations within a name, and after several
other common abbreviations like ‘Fig.” and ‘cf.” and ‘vs.” and ‘resp.’; you will
find that it’s easy to train yourself to type ‘cf. Fig.”5’. In fact, it’s usually
wise to type ~ (instead of a space) just after a common abbreviation that occurs
in the middle of a sentence. Manuals of style will tell you that the abbreviations
‘e.g.” and ‘1.e.” should always be followed by commas, never by spaces, so those
particular cases shouldn’t need any special treatment.

The only remaining abbreviations that arise with significant frequency
occur in bibliographic references; control spaces are appropriate here. If, for
example, you are typing a manuscript that refers to ‘Proc. Amer. Math. Soc.’,
you should say

Proc.\ Amer.\ Math.\ Soc.

Granted that this input looks a bit ugly, it makes the output look right. It’s one
of the things we occasionally must do when dealing with a computer that tries
to be smart.

»EXERCISE 12.4
Explain how to type the following sentence: “Mr. & Mrs. User were married by
Rev. Drofnats, who preached on Matt. 19:3-9.”

» EXERCISE 12.5

Put the following bibliographic reference into plain TEX language: Donald E.
Knuth, “Mathematical typography,” Bull. Amer. Math. Soc. 1 (1979), 337-372.

On the other hand, if you don’t care about such refinements of spacing
you can tell plain TEX to make all spaces the same, regardless of punctuation
marks, by simply typing ‘\frenchspacing’ at the beginning of your manuscript.
French spacing looks like this:

“Oh, oh!” cried Baby Sally. Dick and Jane laughed.

You can also shift back and forth between the two styles, either by saying
‘\nonfrenchspacing’ to establish sophisticated spacing, or by making your use
of \frenchspacing local to some group. For example, you might want to use
French spacing only when typing the bibliography of some document.

@ TEX doesn’t consider a period or question mark or exclamation point to be

the end of a sentence if the preceding character is an uppercase letter, since
TEX assumes that such uppercase letters are most likely somebody’s initials. Thus, for
example, the “\’ is unnecessary after the ‘I.” in ‘Dr. Livingstone~I.\ Presume’; that
particular period is not assumed to be a full stop.

@ » EXERCISE 12.6
What can you do to make TEX recognize the ends of sentences that do end with

uppercase letters (e.g., ‘... launched by NASA.” or ‘Did I?” or ‘... see Appendix A.")?

Chapter 12: Glue

@ You can see the glue that TEX puts between words by looking at the contents

of hboxes in the internal diagnostic format that we discussed briefly in Chap-
ter 11. For example, Baby Sally’s exclamation begins as follows, after TeX has digested
1t and put it into a box, assuming \nonfrenchspacing:

.\tenrm \ (ligature °¢)

.\tenrm 0O

.\tenrm h

.\tenrm ,

.\glue 3.33333 plus 2.08331 minus 0.88889
.\tenrm o

.\tenrm h

.\tenrm !

.\tenrm " (ligature ’’)

.\glue 4.44444 plus 4.99997 minus 0.37036
.\tenrm c

\tenrm r

\tenrm i

.\tenrm e

.\tenrm d

.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenrm B

.\tenrm a

.\tenrm b

.\kern-0.27779

.\tenrm y

.\glue 3.33333 plus 1.66666 minus 1.11111
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\tenrm
.\kern-0.83334

.\tenrm .

.\glue 4.44444 plus 4.99997 minus 0.37036

< H H W

The normal interword glue in font \tenrm is 3.33333 pt, plus 1.66666 pt of stretchability,
minus 1.11111 pt of shrinkability. Notice that the interword \glue in this list stretches
more, and shrinks less, after the punctuation marks; and the natural space is in fact
larger at the end of each sentence. This example also shows several other things that
TEX does while it processes the sample line of text: It converts ‘¢ and ’’ into single
characters, i.e., ligatures; and it inserts small kerns in two places to improve the spacing.
A \kern is similar to glue, but it is not the same, because kerns cannot stretch or shrink;
furthermore, TEX will never break a line at a kern, unless that kern is immediately
followed by glue.

@ ~ You may be wondering what TEX’s rules for interword glue really are, exactly.
For example, how did TEX remember the effect of Baby Sally’s exclamation
point, when quotation marks intervened before the next space? The details are slightly

75

76

Chapter 12: Glue

tricky, but not incomprehensible. When TEX is processing a horizontal list of boxes
and glue, it keeps track of a positive integer called the current “space factor.” The
space factor is normally 1000, which means that the interword glue should not be
modified. If the space factor f is different from 1000, the interword glue is computed
as follows: Take the normal space glue for the current font, and add the extra space
if f > 2000. (Each font specifies a normal space, normal stretch, normal shrink,
and extra space; for example, these quantities are 3.3333 pt, 1.66666 pt, 1.11111 pt,
and 1.11111 pt, respectively, in cmr10. We’ll discuss such font parameters in greater
detail later.) Then the stretch component is multiplied by f/1000, while the shrink
component is multiplied by 1000/ f.

@ However, TEX has two parameters \spaceskip and \xspaceskip that allow

you to override the normal spacing of the current font. If f > 2000 and if
\xspaceskip is nonzero, the \xspaceskip glue is used for an interword space. Other-
wise if \spaceskip is nonzero, the \spaceskip glue is used, with stretch and shrink
components multiplied by /1000 and 1000/ f. For example, the \raggedright macro
of plain TEX uses \spaceskip and \xspaceskip to suppress all stretching and shrinking
of interword spaces.

@@ The space factor f is 1000 at the beginning of a horizontal list, and it is set to
1000 just after a non-character box or a math formula has been put onto the
current horizontal list. You can say ‘\spacefactor=(number)’ to assign any particular
value to the space factor; but ordinarily, f gets set to a number other than 1000 only
when a simple character box goes on the list. Each character has a space factor code,
and when a character whose space factor code is g enters the current list the normal
procedure is simply to assign g as the new space factor. However, if g is zero, f is not
changed; and if f < 1000 < g, the space factor is set to 1000. (In other words, f
doesn’t jump from a value less than 1000 to a value greater than 1000 in a single step.)

@ When INITEX creates a brand new TEX, all characters have a space factor code

of 1000, except that the uppercase letters ‘A’ through ‘Z’ have code 999. (This
slight difference is what makes punctuation act differently after an uppercase letter; do
you see why?) Plain TEX redefines a few of these codes using the \sfcode primitive,
which is similar to \catcode (see Appendix B); for example, the instructions

\sfcode‘)=0 \sfcode‘.=3000

make right parentheses “transparent” to the space factor, while tripling the stretcha-
bility after periods. The \frenchspacing operation resets \sfcode‘. to 1000.

@ When ligatures are formed, or when a special character is specified via \char,

the space factor code is computed from the individual characters that gener-
ated the ligature. For example, plain TEX sets the space factor code for single-right-
quote to zero, so that the effects of punctuation will be propagated. Two adjacent
characters ’’ combine to form a ligature that is in character position 042; but the
space factor code of this double-right-quote ligature is never examined by TEX, so plain
TEX does not assign any value to \sfcode’042. A character whose character code is
128 or more is required to have a space factor code of 1000, since TEX maintains a
changeable \sfcode only for characters 0 to 127.

@@» EXERCISE 12.7
What are the space factors after each token of the Dick-and-Jane example?

Chapter 12: Glue

@ Here’s the way TEX goes about setting the glue when an hbox is being wrapped

up: The natural width, z, of the box contents is determined by adding up the
widths of the boxes and kerns inside, together with the natural widths of all the glue
inside. Furthermore the total amount of glue stretchability and shrinkability in the
box 1s computed; let’s say that there’s a total of yo + y1 fil + y» fill + ys filll available
for stretching and zo + z; fil + 22 fill 4 23 filll available for shrinking. Now the natural
width z is compared to the desired width w. If x = w, all glue gets its natural width.
Otherwise the glue will be modified, by computing a “glue set ratio” r and a “glue set
order” ¢ in the following way: (a) If x < w, TEX attempts to stretch the contents of
the box; the glue order is the highest subscript ¢ such that y; is nonzero, and the glue
ratio is 7 = (w — z)/yi. (If yo = y1 = y2 = y3 = 0, there’s no stretchability; both 3
and r are set to zero.) (b) If z > w, TEX attempts to shrink the contents of the box
in a similar way; the glue order is the highest subscript 7 such that z; # 0, and the
glue ratio is normally 7 = (z — w)/z;. However, r is set to 1.0 in the case i = 0 and
r —w > 2o, because the maximum shrinkability must not be exceeded. (c) Finally,
every glob of glue in the horizontal list being boxed is modified. Suppose the glue has
natural width wu, stretchability y, and shrinkability z, where y is a jth order infinity
and z is a kth order infinity. Then if z < w (stretching), this glue takes the new width
u + ry if 7 = 4; it keeps its natural width u if j # i. If £ > w (shrinking), this glue
takes the new width u — rz if £ = 1; it keeps its natural width v if £k # 7. Notice that
stretching or shrinking occurs only when the glue has the highest order of infinity that
doesn’t cancel out.

@ TEX will construct an hbox that has a given width w if you issue the command

‘\hbox to (dimen){(contents of box)}’, where w is the value of the (dimen).
For example, the \1ine macro discussed earlier in this chapter is simply an abbreviation
for ‘\hbox to\hsize’. TEX also allows you to specify the exact amount of stretching
or shrinking; the command ‘\hbox spread(dimen){(contents of box)}’ creates a box
whose width w is a given amount more than the natural width of the contents. For
example, one of the boxes displayed earlier in this chapter was generated by

\hbox spread 5pt{‘‘Oh, oh!’’ ... laughed.}

In the simplest case, when you just want a box to have its natural width, you don’t
have to write ‘\hbox spread Opt’; you can simply say ‘\hbox{(contents of box)}’.

@ The baseline of a constructed hbox is the common baseline of the boxes inside.

(More precisely, it’s the common baseline that they would share if they weren’t
raised or lowered.) The height and depth of a constructed hbox are determined by the
maximum distances by which the interior boxes reach above and below the baseline,
respectively. The result of \hbox never has negative height or negative depth, but the
width can be negative.

@ » EXERCISE 12.8
Assume that \box1 is 1 pt high, 1pt deep, and 1 pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide. A third box is formed by saying

\setbox3=\hbox to3pt{\hfilllower3pt\box1\hskip-3pt plus3fil\box2}

What are the height, depth, and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

77

78

Chapter 12: Glue

@ The process of setting glue for vboxes is similar to that for hboxes; but before

we study the \vbox operation, we need to discuss how TEX stacks boxes up
vertically so that their baselines tend to be a fixed distance apart. The boxes in a
horizontal list often touch each other, but it’s usually wrong to do this in a vertical list;
imagine how awtful a page would look if its lines of type were brought closer together
whenever they didn’t contain tall letters, or whenever they didn’t contain any letters
that descended below the baseline.

@ TEX’s solution to this problem involves three primitives called \baselineskip,
\lineskip, and \lineskiplimit. A format designer chooses values of these
three quantities by writing

\baselineskip=(glue)
\lineskip=(glue)
\lineskiplimit=(dimen)

and the interpretation is essentially this: Whenever a box is added to a vertical list, TEX
inserts “interline glue” intended to make the distance between the baseline of the new
box and the baseline of the previous box exactly equal to the value of \baselineskip.
But if the interline glue calculated by this rule would cause the top edge of the new
box to be closer than \lineskiplimit to the bottom edge of the previous box, then
\lineskip is used as the interline glue. In other words, the distance between adjacent
baselines will be the \baselineskip setting, unless that would bring the boxes too
close together; the \1ineskip glue will separate adjacent boxes in the latter case.

@ The rules for interline glue in the previous paragraph are carried out without

regard to other kinds of glue that might be present; all vertical spacing due
to explicit appearances of \vskip and \kern acts independently of the interline glue.
Thus, for example, a \smallskip between two lines always makes their baselines further
apart than usual, by the amount of a \smallskip; it does not affect the decision about
whether \lineskip glue is used between those lines.

@ For example, let’s suppose that \baselineskip=12pt plus 2pt, \lineskip=

3pt minus 1pt, and \lineskiplimit=2pt. (These values aren’t particularly
useful; they have simply been chosen to illustrate the rules.) Suppose further that a
box whose depth 1s 3 pt was most recently added to the current vertical list; we are
about to add a new box whose height is h. If h = 5pt, the interline glue will be
4 pt plus 2 pt, since this will make the baselines 12 pt plus 2 pt apart when we add h
and the previous depth to the interline glue. But if A = 8 pt, the interline glue will
be 3 pt minus 1pt, since \lineskip will be chosen in order to keep from violating the
given \lineskiplimit when stretching and shrinking are ignored.

@ When you are typesetting a document that spans several pages, it’s generally
best to define the \baselineskip so that it cannot stretch or shrink, because
this will give more uniformity to the pages. A small variation in the distance between
baselines—say only half a point —can make a substantial difference in the appearance
of the type, since it significantly affects the proportion of white to black. On the
other hand, if you are preparing a one-page document, you might want to give the
baselineskip some stretchability, so that TEX will help you fit the copy on the page.

@ » EXERCISE 12.9
What settings of \baselineskip, \lineskip, and \lineskiplimit will cause

Chapter 12: Glue

the interline glue to be a “continuous” function of the next box height (i.e., the interline
glue will never change a lot when the box height changes only a little)?

@ A study of TEX’s internal box-and-glue representation should help to firm
up some of these ideas. Here is an excerpt from the vertical list that TEX
constructed when it was typesetting this very paragraph:

\glue 6.0 plus 2.0 minus 2.0

\glue (\parskip) 0.0 plus 1.0

\glue (\baselineskip) 1.25

\hbox (7.5+1.93748)x312.0, glue set 0.80154, shifted 36.0 []
\penalty 10000

\glue(\baselineskip) 2.81252

\hbox (6.25+1.93748)x312.0, glue set 0.5816, shifted 36.0 []
\penalty 50

\glue (\baselineskip) 2.81252

\hbox (6.25+1.75)x348.0, glue set 116.70227fil []

\penalty 10000

\glue (\abovedisplayskip) 6.0 plus 3.0 minus 1.0
\glue(\lineskip) 1.0

\hbox (149.25+0.74998)x348.0 []

The first \glue in this example is the \medskip that precedes each dangerous-bend
paragraph. Then comes the \parskip glue, which is automatically supplied before
the first line of a new paragraph. Then comes some interline glue of 1.25pt; it was
calculated to make a total of 11 pt when the height of the next box (7.5pt) and the
depth of the previous box were added. (The previous box is not shown—it’s the
bottom line of exercise 12.9—but we can deduce that its depth was 2.25pt.) The
\hbox that follows is the first line of this paragraph; it has been shifted right 36 pt
because of hanging indentation. The glue set ratio for this hbox is 0.80154; i.e., the
glue inside is stretched by 80.154% of its stretchability. (In the case of shrinking,
the ratio following ‘glue set’ would have been preceded by ‘- ’; hence we know that
stretching is involved here.) TgEX has put ‘[]’ at the end of each hbox line to indicate
that there’s something in the box that isn’t shown. (The box contents would have
been displayed completely, if \showboxdepth had been set higher.) The \penalty
indications are used to discourage bad breaks between pages, as we will see later. The
third hbox has a glue ratio of 116.70227, which applies to first-order-infinite stretching
(i.e., fil); this results from an \hfil that was implicitly inserted just before the displayed
material, to fill up the third line of the paragraph. Finally the big hbox whose height,
is 149.25 pt causes \lineskip to be the interline glue. This large box contains the
individual lines of typewriter type that are displayed; they have been packaged into a
single box so that they cannot be split between pages. Careful study of this example
will teach you a lot about TEX’s inner workings.

@ Exception: No interline glue is inserted before or after a rule box. You can
also inhibit interline glue by saying \nointerlineskip between boxes.

@@ TEX’s implementation of interline glue involves another primitive quantity
called \prevdepth, which usually contains the depth of the most recent box
on the current vertical list. However, \prevdepth is set to the sentinel value —1000 pt

79

80 Chapter 12: Glue

at the beginning of a vertical list, or just after a rule box; this serves to suppress the
next interline glue. The user can change the value of \prevdepth at any time when
building & vertical list; thus, for example, the \nointerlineskip macro of Appendix B
simply expands to ‘\prevdepth=-1000pt’.

@@ Here are the exact rules by which TEX calculates the interline glue between
boxes: Assume that a new box of height h (not a rule box) is about to
be appended to the bottom of the current vertical list, and let \prevdepth = p,
\lineskiplimit = [, \baselineskip = (b plus y minus z). If p < —1000pt, no in-
terline glue is added. Otherwise if b — p — h > [, the interline glue ‘(b — p — h) plus y
minus 2z’ will be appended just above the new box. Otherwise the \lineskip glue will
be appended. Finally, \prevdepth is set to the depth of the new box.

@@» EXERCISE 12.10

Mr. B. L. User had an application in which he wanted to put a number of
boxes together in a vertical list, with no space between them. He didn’t want to say
\nointerlineskip after each box; so he decided to set \baselineskip, \1ineskip, and
\lineskiplimit all equal to Opt. Did this work?

@ The vertical analog of \hbox is \vbox, and TEX will obey the commands ‘\vbox

to(dimen)’ and ‘\vbox spread(dimen)’ in about the way you would expect,
by analogy with the horizontal case. However, there’s a slight complication because
boxes have both height and depth in the vertical direction, while they have only width
in the horizontal direction. The dimension in a \vbox command refers to the final
height of the vbox, so that, for example, ‘\vbox to 50pt{...} produces a box that
is 50 pt high; this is appropriate because everything that can stretch or shrink inside a
vbox appears in the part that contributes to the height, while the depth is unaffected
by glue setting.

@ The depth of a constructed \vbox is best thought of as the depth of the bottom

box inside. Thus, a vbox is conceptually built by taking a bunch of boxes and
arranging them so that their reference points are lined up vertically; then the reference
point of the lowest box is taken as the reference point of the whole, and the glue is set
so that the final height has some desired value.

@ However, this description of vboxes glosses over some technicalities that come

up when you consider unusual cases. For example, TEX allows you to shift
boxes in a vertical list to the right or to the left by saying ‘\moveright(dimen)(box)’
or ‘\moveleft(dimen)(box)’; this is like the ability to \raise or \lower boxes in a
horizontal list, and it implies that the reference points inside a vbox need not always
lie in a vertical line. Furthermore, it is necessary to guard against boxes that have
too much depth, lest they extend too far into the bottom margin of a page; and later
chapters will point out that vertical lists can contain other things like penalties and
marks, in addition to boxes and glue.

@@ Therefore, the actual rules for the depth of a constructed vbox are somewhat
TEXnical. Here they are: Given a vertical list that is being wrapped up via
\vbox, the problem is to determine its natural depth. (1) If the vertical list contains no
boxes, the depth is zero. (2) If there’s at least one box, but if the final box is followed
by kerning or glue, possibly with intervening penalties or other things, the depth is zero.
(3) If there’s at least one box, and if the final box is not followed by kerning or glue,

Chapter 12: Glue

the depth is the depth of that box. (4) However, if the depth computed by ruies (1),
(2), or (3) exceeds \boxmaxdepth, the depth will be the current value of \boxmaxdepth.
(Plain TEX sets \boxmaxdepth to the largest possible dimension; therefore rule (4)
won’t apply unless you specify a smaller value. When rule (4) does decrease the depth,
TEX adds the excess depth to the box’s natural height, essentially moving the reference
point down until the depth has been reduced to the stated maximum.)

@ The glue is set in a vbox just as in an hbox, by determining a glue set ratio

and a glue set order, based on the difference between the natural height z and
the desired height w, and based on the amounts of stretchability and shrinkability that
happen to be present.

@ The width of a computed \vbox is the maximum distance by which an enclosed
box extends to the right of the reference point, taking possible shifting into
account. This width is always nonnegative.

@ » EXERCISE 12.11

Assume that \box1 is 1pt high, 1pt deep, and 1pt wide; \box2 is 2 pt high,
2 pt deep, and 2 pt wide; the baselineskip, lineskip, and lineskiplimit are all zero; and
the \boxmaxdepth is very large. A third box is formed by saying

\setbox3=\vbox to3pt{\moveright3pt\box1\vskip-3pt plus3fil\box2}

What are the height, depth, and width of \box3? Describe the position of the reference
points of boxes 1 and 2 with respect to the reference point of box 3.

@ » EXERCISE 12.12
Under the assumptions of the previous exercise, but with \baselineskip=9pt
minus3fil, describe \box4 after

\setbox4=\vbox todpt{\vss\boxi\moveleft4pt\box2\vss}

@@» EXERCISE 12.13
Solve the previous problem but with \boxmaxdepth=-4pt.

@ We have observed that \vbox combines a bunch of boxes into a larger box that

has the same baseline as the bottom box inside. TEX has another operation
called \vtop, which gives you a box like \vbox but with the same baseline as the top
box inside. For example,

\hbox{Here are \vtop{\hbox{two lines}\hbox{of text.}}}

produces

Here are two lines
of text.

@@ You can say ‘\vtop to(dimen)’ and ‘\vtop spread(dimen)’ just as with \vbox,

but you should realize what such a construction means. TEX implements \vtop
as follows: (1) First a vertical box is formed as if \vtop had been \vbox, using all of
the rules for \vbox as given above. (2) The final height z is defined to be zero unless
the very first item inside the new vbox is a box; in the latter case, z is the height of
that box. (3) Let h and d be the height and depth of the vbox in step (1). TEX
completes the \vtop by moving the reference point up or down, if necessary, so that
the box has height = and depth h +d — z.

81

82

Chapter 12: Glue

@@» EXERCISE 12.14
Describe the empty boxes that you get from ‘\vbox to(dimen){}’ and ‘\vtop
to(dimen){}’. What are their heights, depths, and widths?

@@» EXERCISE 12.15

Define a macro \nullbox#1#2#3 that produces a box whose height, depth, and
width are given by the three parameters. The box should contain nothing that will
show up in print.

@ The \vbox operation tends to produce boxes with large height and small depth,

while \vtop tends to produce small height and large depth. If you’re trying
to make a vertical list out of big vboxes, however, you may not be satisfied with either
\vbox or \vtop; you might well wish that a box had two reference points simultaneously,
one for the top and one for the bottom. If such a dual-reference-point scheme were in
use, one could define interline glue based on the distance between the lower reference
point of one box and the upper reference point of its successor in a vertical list. But
alas, TEX gives you only one reference point per box.

@ There’s a way out of this dilemma, using an important idea called a “strut.”

Plain TEX defines \strut to be an invisible box of width zero that extends
just enough above and below the baseline so that you would need no interline glue at
all if every line contained a strut. (Baselines are 12 pt apart in plain TEX; it turns
out that \strut is a vertical rule, 8.5 pt high and 3.5 pt deep and .0pt wide.) If you
contrive to put a strut on the top line and another on the bottom line, inside your large
vboxes, then it’s possible to obtain the correct spacing in a larger assembly by simply
letting the boxes butt together. For example, the \footnote macro in Appendix B
puts struts at the beginning and end of every footnote, so that the spacing will be right
when several footnotes occur together at the bottom of some page.

@ If you understand boxes and glue, you’re ready to learn the \rlap and \1lap

macros of plain TEX; these names are abbreviations for “right overlap” and
“left overlap.” Saying ‘\rlap{(something)}’ is like typesetting (something) and then
backing up as if you hadn’t typeset anything. More precisely, ‘\rlap{(something)}’
creates a box of width zero, with ‘(something)’ appearing just at the right of that
box (but not taking up any space). The \1llap macro is similar, but it does the
backspacing first; in other words, ‘\1lap{(something)}’ creates a box of width zero,
with ‘(something)’ extending just to the left of that box. Using typewriter type, for
example, you can typeset ‘#’ by saying either ‘\rlap/=" or ‘/\1lap=’. It’s possible to
put text into the left margin using \1lap, or into the right margin using \rlap, because
TEX does not insist that the contents of a box must be strictly confined within that
box’s boundaries.

@ The interesting thing about \rlap and \llap is that they can be done so
simply with infinite glue. One way to define \rlap would be

\def\rlap#1{{\setbox0=\hbox{#1}\copyO\kern-\wd0}}

but there’s no need to do such a lengthy computation. The actual definition in Appen-
dix B is much more elegant, namely,

\def\rlap#1{\hbox to Opt{#1\hss}}

Chapter 12: Glue

and it’s worth pondering why this works. Suppose, for example, that you're doing
\rlap{g} where the letter ‘g’ is 5 pt wide. Since \rlap makes an hbox of width 0 pt,
the glue represented by \hss must shrink by 5 pt. Well, that glue has 0 pt as its natural
width, but it has infinite shrinkability, so it can easily shrink to —5 pt; and ‘\hskip-5pt’
is exactly what \rlap wants in this case.

g% » EXERCISE 12.16
Guess the definition of \1lap, without peeking at Appendices A or B.

@ » EXERCISE 12.17
(This is a sequel to exercise 12.2, but it’s trickier.) Describe the result of

\line{\hfil A puzzle.\hfilneg}

There was things which he stretched,
but mainly he told the truth.

— MARK TWAIN, Huckleberry Finn (1884)

Every shape exists only because of the space around it.
... Hence there is a ‘right’ position for every shape in every situation.
If we succeed in finding that position, we have done our job.

— JAN TSCHICHOLD, Typographische Gestaltung (1935)

83

Modes

Chapter 13: Modes

Just as people get into different moods, TEX gets into different “modes.” (Except
that TEX is more predictable than people.) There are six modes:

= Vertical mode. [Building the main vertical list, from which the pages of
output are derived.]

s Internal vertical mode. [Building a vertical list for a vbox.]
s Horizontal mode. [Building a horizontal list for a paragraph.]
s Restricted horizontal mode. [Building a horizontal list for an hbox.]

= Math mode. [Building a mathematical formula to be placed in a hori-
zontal list.]

» Display math mode. [Building a mathematical formula to be placed on
a line by itself, temporarily interrupting the current paragraph.]

In simple situations, you don’t need to be aware of what mode TEX is in, because
the computer just does the right thing. But when you get an error message
that says ‘! You can’t do such-and-such in restricted horizontal mode’,
a knowledge of modes helps to explain why TEX thinks you goofed.

Basically TEX is in one of the vertical modes when it is preparing a list
of boxes and glue that will be placed vertically above and below one another on
the page; it’s in one of the horizontal modes when it is preparing a list of boxes
and glue that will be strung out horizontally next to each other with baselines
aligned; and it’s in one of the math modes when it is reading a formula.

A play-by-play account of a typical TEX job should make the mode idea
clear: At the beginning, TEX is in vertical mode, ready to construct pages. If
you specify glue or a box when TEX is in vertical mode, the glue or the box
gets placed on the current page below what has already been specified. For
example, the \vskip instructions in the sample run we discussed in Chapter 6
contributed vertical glue to the page; and the \hrule instructions contributed
horizontal rules at the top and bottom of the story. The \centerline commands
also produced boxes that were included in the main vertical list; but those boxes
required a bit more work than the rule boxes: TEX was in vertical mode when
it encountered ‘\centerline{\bf A SHORT STORY}’, and it went temporarily
into restricted horizontal mode while processing the words ‘A SHORT STORY’;
then the digestive process returned to vertical mode, after setting the glue in
the \centerline box.

Continuing with the example of Chapter 6, TEX switched into horizontal
mode as soon as it read the ‘0’ of ‘Once upon a time’. Horizontal mode is the
mode for making paragraphs. The entire paragraph (lines 7 to 11 of the story
file) was input in horizontal mode; then the text was divided into output lines of
the appropriate width, those lines were put in boxes and appended to the page
(with appropriate interline glue between them), and TEX was back in vertical
mode. The ‘M’ on line 12 started up horizontal mode again.

“When TEX is in vertical mode or internal vertical mode, the first token of
a new paragraph changes the mode to horizontal for the duration of a paragraph.

85

86

Chapter 13: Modes

In other words, things that do not have a vertical orientation cause the mode to
switch automatically from vertical to horizontal. This occurs when you type any
character, or \char or \accent or \hskip or _ or \vrule or math shift ($);
TEX inserts the current paragraph indentation and rereads the horizontal token
as if it had occurred in horizontal mode.

@ You can also tell TEX explicitly to go into horizontal mode, instead of relying
on such implicit mode-switching, by saying ‘\indent’ or ‘\noindent’. For
example, if line 7 of the story file in Chapter 6 had begun

\indent Once upon a time,

the same output would have been obtained, because ‘\indent’ would have instructed
TEX to begin the paragraph. And if that line had begun with

\noindent Once upon a time,

the first paragraph of the story would not have been indented. The \noindent com-
mand simply tells TEX to enter horizontal mode if the current mode is vertical or
internal vertical; \indent is similar, but it also creates an empty box whose width is
the current value of \parindent, and it puts this empty box into the current horizontal
list. Plain TEX sets \parindent=20pt. If you say \indent\indent, you get double
indentation; if you say \noindent\noindent, the second \noindent does nothing.

@ » EXERCISE 13.1

If you say ‘\hbox{...} in horizontal mode, TEX will construct the specified
box and it will contribute the result to the current paragraph. Similarly, if you say
“\hbox{. ..} in vertical mode, TEX will construct a box and contribute it to the current
page. What can you do if you want to begin a paragraph with an \hbox?

When handling simple manuscripts, TEX spends almost all of its time in
horizontal mode (making paragraphs), with brief excursions into vertical mode
(between paragraphs). A paragraph is completed when you type \par or when
your manuscript has a blank line, since a blank line is converted to \par by
the reading rules of Chapter 8. A paragraph also ends when you type certain
things that are incompatible with horizontal mode. For example, the command
‘\vskip 1in’ on line 16 of Chapter 6’s story file was enough to terminate the
paragraph about ‘...beautiful documents.’; no \par was necessary, since
\vskip introduced vertical glue that couldn’t belong to the paragraph.

If a begin-math token ($) appears in horizontal mode, TEX plunges into
math mode and processes the formula up until the closing ‘$’, then appends the
text of this formula to the current paragraph and returns to horizontal mode.
Thus, in the “I wonder why?” example of Chapter 12, TEX went into math mode
temporarily while processing \1dots, treating the dots as a formula.

However, if two consecutive begin-math tokens appear in a paragraph
($$), TEX interrupts the paragraph where it is, contributes the paragraph-so-far
to the enclosing vertical list, then processes a math formula in display math
mode, then contributes this formula to the enclosing list, then returns to hori-
zontal mode for more of the paragraph. (The formula to be displayed should

Chapter 13: Modes

end with ‘$$’.) For example, suppose you type
the number $$\pi \approx 3.1415926536$$ is important.

TEX goes into display math mode between the $$’s, and the output you get
states that the number

T~ 3.1415926536
1s important.

TEX ignores blank spaces and blank lines (or \par commands) when it’s
in vertical or internal vertical mode, so you need not worry that such things
might change the mode or affect a printed document. A control space (\.) will,
however, be regarded as the beginning of a paragraph; the paragraph will start
with a blank space after the indentation.

At the end of a TEX manuscript it’s usually best to finish everything
off by typing ‘\bye’, which is plain TEX’s abbreviation for ‘\vfill\eject\end .
The ‘\vfill’ gets TEX into vertical mode and inserts enough space to fill up the
last page; ‘\eject’ outputs that last page; and ‘\end’ sends the computer into
its endgame routine.

TEX gets into internal vertical mode when you ask it to construct something

from a vertical list of boxes (using \vbox or \vtop or \vcenter or \valign
or \vadjust or \insert). It gets into restricted horizontal mode when you ask it to
construct something from a horizontal list of boxes (using \hbox or \halign). Box
construction is discussed in Chapters 12 and 21. We will see later that there is very
little difference between internal vertical mode and ordinary vertical mode, and very
little difference between restricted horizontal mode and ordinary horizontal mode; but
they aren’t quite identical, because they have different goals.

@ Whenever TEX looks at a token of input to decide what should be done next,

the current mode has a potential influence on what that token means. For
example, \kern specifies vertical spacing in vertical mode, but it specifies horizontal
spacing in horizontal mode; a math shift character like ‘$’ causes entry to math mode
from horizontal mode, but it causes exit from math mode when it occurs in math mode;
two consecutive math shifts ($$) appearing in horizontal mode will initiate display math
mode, but in restricted horizontal mode they simply denote an empty math formula.
TEX uses the fact that some operations are inappropriate in certain modes to help you
recover from errors that might have crept into your manuscript. Chapters 24 to 26
explain exactly what happens to every possible token in every possible mode.

TEX often interrupts its work in one mode to do some task in another mode,

after which the original mode is resumed again. For example, you can say
‘“\hbox{’ in any mode; when TEX digests this, it suspends whatever else it was doing
and enters restricted horizontal mode. The matching ‘}’ will eventually cause the hbox
to be completed, whereupon the postponed task will be taken up anew. In this sense
TEX can be in many modes simultaneously, but only the innermost mode influences the
calculations at any time; the other modes have been pushed out of TEX’s consciousness.

87

88

Chapter 13: Modes

@ One way to become familiar with TEX’s modes is to consider the following
curious test file called modes.tex, which exercises all the modes at once:

\tracingcommands=1
\hbox{

$

\vbox{

\noindent$$
x\showlists

$$}$}\bye

The first line of modes.tex tells TEX to log every command it receives; TEX will produce
diagnostic data whenever \tracingcommands is positive. Indeed, if you run TEX on
modes.tex you will get a modes.log file that includes the following information:

N O W N =

{vertical mode: \hbox}

{restricted horizontal mode: blank space}
{math shift character $}

{math mode: blank space}

{\vbox}

{internal vertical mode: blank space}
{\noindent}

{horizontal mode: math shift character $}
{display math mode: blank space}

{the letter x}

The meaning is that TEX first saw an \hbox token in vertical mode; this caused it to
go ahead and read the ‘{’ behind the scenes. Then TEX entered restricted horizontal
mode, and saw the blank space token that resulted from the end of line 2 in the
file. Then it saw a math shift character token (still in restricted horizontal mode),
which caused a shift to math mode; another blank space came through. Then \vbox
inaugurated internal vertical mode, and \noindent instituted horizontal mode within
that; two subsequent $ signs led to display math mode. (Only the first $ was shown
by \tracingcommands, because that one caused TEX to look ahead for another.)

@ The next thing in modes.log after the output above is ‘{\showlists}’. This

is another handy diagnostic command that you can use to find out things that
TEX ordinarily keeps to itself; it causes TEX to display the lists that are being worked
on, in the current mode and in all enclosing modes where the work has been suspended:

display math mode entered at line 5
\mathord

\faml x

internal vertical mode entered at line 4
prevdepth ignored

math mode entered at line 3

restricted horizontal mode entered at line 2
\glue 3.33333 plus 1.66666 minus 1.11111
spacefactor 1000

vertical mode entered at line O
prevdepth ignored

Chapter 13: Modes

In this case the lists represent five levels of activity, all present at the end of line 6 of
modes.tex. The current mode is shown first, namely, display math mode, which began
on line 5. The current math list contains one “mathord” object, consisting of the
letter x in family 1. (Have patience and you will understand what that means, when
you learn about TEX’s math formulas.) Outside of display math mode comes internal
vertical mode, to which TEX will return when the paragraph containing the displayed
formula is complete. The vertical list on that level is empty; ‘prevdepth ignored’
means that \prevdepth has a value < —1000pt, so that the next interline glue will be
omitted (cf. Chapter 12). The math mode outside of this internal vertical mode has
an empty list, likewise, but the restricted horizontal mode enclosing the math mode
contains some glue. Finally, we see the main vertical mode that encloses everything;
this mode was ‘entered at line 0, i.e., before the file modes.tex was input; nothing
has been contributed so far to the vertical list on this outermost level.

@ » EXERCISE 13.2
Why is there glue in one of these lists but not in the others?

@ » EXERCISE 13.3
After this output of \showlists, the modes.log file contains further output
from \tracingcommands. In fact, the next two lines of that file are

{math shift character $}
{horizontal mode: end-group character }}

because the ‘$$’ on line 7 finishes the displayed formula, and this resumes horizontal
mode for the paragraph that was interrupted. What do you think are the next three
lines of modes.log?

@ » EXERCISE 13.4
Suppose TEX has generated a document without ever leaving vertical mode.
What can you say about that document?

@@» EXERCISE 13.5

Some of TEX’s modes cannot immediately enclose other modes; for example,
display math mode is never directly enclosed by horizontal mode, even though displays
occur within paragraphs, because an interrupted paragraph-so-far of horizontal mode is
always completed and removed from TEX’s memory before the processing of a displayed
formula begins. Give a complete characterization of all pairs of consecutive modes that
can occur in the output of \showlists.

Every mode of life has its conveniences.
— SAMUEL JOHNSON, The Idler (1758)

[Hindu musicians] have eighty-four modes,

of which thirty-six are in general use,

and each of which, it appears, has a peculiar expression,

and the power of moving some particular sentiment or affection.

— MOUNTSTUART ELPHINSTONE, History of India (1841)

89

14

How TgX Breaks
Paragraphs into Lines

Chapter 14: How TgX Breaks Paragraphs into Lines

One of a typesetting system’s chief duties is to take a long sequence of words
and to break it up into individual lines of the appropriate size. For example,
every paragraph of this manual has been broken into lines that are 29 picas wide,
but the author didn’t have to worry about such details when he composed the
manuscript. TEX chooses breakpoints in an interesting way that considers each
paragraph in its entirety; the closing words of a paragraph can actually influence
the appearance of the first line. As a result, the spacing between words is as
uniform as possible, and the computer is able to reduce the number of times that
words must be hyphenated or formulas must be split between lines.

The experiments of Chapter 6 have already illustrated the general ideas:
We discussed the notion of “badness,” and we ran into “overfull” and “underfull”
boxes in difficult situations. We also observed that different settings of TEX’s
\tolerance parameter will produce different effects; a higher tolerance means
that wider spaces are acceptable.

TEX will find the absolutely best way to typeset any given paragraph,
according to its ideas of minimum badness. But such “badness” doesn’t account
for everything, and if you rely entirely on an automatic scheme you will occasion-
ally encounter line breaks that are not really the best on psychological grounds;
this is inevitable, because computers don’t understand things the way people do
(at least not yet). Therefore you’ll sometimes want to tell the machine that
certain places are not good breakpoints. Conversely, you will sometimes want
to force a break at a particular spot. TEX provides a convenient way to avoid
psychologically bad breaks, so that you will be able to obtain results of the finest
quality by simply giving a few hints to the machine.

“Ties”—denoted by ‘7’ in plain TpX-—are the key to successful line
breaking. Once you learn how to insert them, you will have graduated from
the ranks of ordinary TgpXnical typists to the select group of Distinguished
TEXnicians. And it’s really not difficult to train yourself to insert occasional
ties, almost without thinking, as you type a manuscript.

When you type ~ it’s the same as typing a space, except that TEX won’t
break a line at this space. Furthermore, you shouldn’t leave any blanks next to
the ~, since they will count as additional spaces. If you put ~ at the very end
of a line in your input file, you’ll get a wider space than you want, because the
(return) that follows the ~ produces an extra space.

We have already observed in Chapter 12 that it’s generally a good idea
to type ~ after an abbreviation that does not come at the end of a sentence. Ties
also belong in several other places:

= In references to named parts of a document:

Chapter~12 Theorem™1.2
Appendix~A Table™\hbox{B-8}
Figure™3 Lemmas 5 and™6

(No ~ appears after ‘Lemmas’ in the final example, since there’s no harm in having
‘5 and 6’ at the beginning of a line. The use of \hbox is explained below.)

91

92

Chapter 14: How TgX Breaks Paragraphs into Lines

s Between a person’s forenames and between multiple surnames:

Donald“E. Knuth Luis®™I. Trabb“Pardo
Bartel "Leendert van~ der Waerden Charles™XII

Note that it is sometimes better to hyphenate a name than to break it be-
tween words; e.g., ‘Don-’ and ‘ald E. Knuth’ is more tolerable than ‘Donald’
and ‘E. Knuth’. The previous rule can be regarded as a special case of this one,
since we may think of ‘Chapter 12’ as a compound name; another example is
‘register”X’. Sometimes a name is so long that we dare not tie it all together,
lest there be no way to break the line:

Charles Louis Xavier~Joseph de”la Vall\’ee”Poussin.
s Between math symbols in apposition with nouns:

dimension~d width w function " $f(x)$
string”s of length"1

However, the last example should be compared with
string”s of length 1~or more.
s Between symbols in series:

1,72, or~3
a, " b, and~c.
1,72, \dots, " n.

s When a symbol is a tightly bound object of a preposition:

of "x

from 0 to~1
increase z by~1
in common with™m.

The rule does not, however, apply to compound objects:
of u~and~v.
o When mathematical phrases are rendered in words:

equals~n less than~ϵ (given~ X)
mod~2 modulo~$p~e$ for all large~n

Compare ‘is”15’ with ‘is 15”"times the height’.
= When cases are being enumerated within a paragraph:
(b) “Show that $f(x)$ is (1)~ continuous; (2) bounded.

It would be nice to boil all of these rules down to one or two simple principles,
and it would be even nicer if the rules could be automated so that keyboarding

Chapter 14: How TgX Breaks Paragraphs into Lines

could be done without them; but subtle semantic considerations seem to be
involved. Therefore it’s best to use your own judgment with respect to ties. The
computer needs your help. |

A tie keeps TEX from breaking at a space, but sometimes you want to
prevent the machine from breaking at a hyphen or a dash. This can be done
by using \hbox, because TEX will not split up the contents of a box; boxes are
indecomposable units, once they have been constructed. We have already il-
lustrated this principle in the ‘Table™\hbox{B-8}’ example considered earlier.
Another example occurs when you are typing the page numbers in a bibliographic
reference: It doesn’t look good to put ‘22.” on a line by itself, so you can type
‘\hbox{13--22}.’ to prohibit breaking ‘13-22.” On the other hand, TEX doesn’t
often choose line breaks at hyphens, so you needn’t bother to insert \hbox com-
mands unless you need to correct a bad break that TEX has already made on a
previous run.

» EXERCISE 14.1
Here are some phrases culled from previous chapters of this manual. How do
you think the author typed them?

(cf. Chapter 12).

Chapters 12 and 21.

line 16 of Chapter 6’s story

lines 7 to 11

lines 2, 3, 4, and 5.

(2) a big black bar

All 128 characters are initially of category 12,
letter x in family 1.

the factor f, where n is 1000 times f.

» EXERCISE 14.2
How would you type the phrase ‘for all n greater than ng’?

» EXERCISE 14.3
And how would you type ‘exercise 4.3.2-15"7

» EXERCISE 14.4
Why is it better to type ‘Chapter~12’ than to type ‘\hbox{Chapter 12}’7

» EXERCISE 14.5
TEX will sometimes break a math formula after an equals sign. How can you
stop the computer from breaking the formula ‘z = 0’7

@@» EXERCISE 14.6
Explain how you could instruct TEX not to make any breaks after explicit
hyphens and dashes. (This is useful in lengthy bibliographies.)

Sometimes you want to permit a line break after a ‘/’ just as if it were
a hyphen. For this purpose plain TEX allows you to say ‘\slash’; for example,
‘input\slash output’ produces ‘input/output’ with an optional break.

94 Chapter 14: How TgX Breaks Paragraphs into Lines

If you want to force TEX to break between lines at a certain point in the
middle of a paragraph, just say ‘\break’. However, that might cause the line to
be really spaced out.
If you want TEX to fill up the right-hand part of a line with blank space just
before a forced line break,
without indenting the next line, say ‘\hfil\break’.

@ You may have several consecutive lines of input for which you want the output

to appear line-for-line in the same way. One solution is to type ‘\par’ at the
end of each input line; but that’s somewhat of a nuisance, so plain TEX provides the
abbreviation ‘\obeylines’, which causes each end-of-line in the input to be like \par.
After you say \obeylines you will get one line of output per line of input, unless an
input line ends with ‘4’ or unless it is so long that it must be broken. For example, you
probably want to use \obeylines if you are typesetting a poem. Be sure to enclose
\obeylines in a group, unless you want this “poetry mode” to continue to the end of
your document.

{\obeylines\smallskip
Roses are red,

\quad Violets are blue;
Rhymes can be typeset
\quad With boxes and glue.
\smallskip}

@ » EXERCISE 14.7
Explain the uses of \quad in this poem. What would have happened if ‘\quad’
had been replaced by ‘\indent’ in both places?

Roughly speaking, TEX breaks paragraphs into lines in the following
way: Breakpoints are inserted between words or after hyphens so as to produce
lines whose badnesses do not exceed the current \tolerance. If there’s no way
to insert such breakpoints, an overfull box is set. Otherwise the breakpoints are
chosen so that the paragraph is mathematically optimal, i.e., best possible, in
the sense that it has no more “demerits” than you could obtain by any other
sequence of breakpoints. Demerits are based on the badnesses of individual lines
and on the existence of such things as consecutive lines that end with hyphens,
or tight lines that occur next to loose ones.

@ But the informal description of line breaking in the previous paragraph is

an oversimplification of what really happens. The remainder of this chapter
explains the details precisely, for people who want to apply TEX in nonstandard ways.
TEX’s line-breaking algorithm has proved to be general enough to handle a surprising
variety of different applications; this, in fact, is probably the most interesting aspect
of the whole TEX system. However, every paragraph from now on until the end of the
chapter is prefaced by at least one dangerous bend sign, so you may want to learn the
following material in easy stages instead of all at once.

@ Before the lines have been broken, a paragraph inside of TEX is actually a
horizontal list, i.e., a sequence of items that TEX has gathered while in hori-
zontal mode. We have been saying informally that a horizontal list consists of boxes

Chapter 14: How TgX Breaks Paragraphs into Lines 95

and glue; the truth is that boxes and glue aren’t the whole story. Each item in a
horizontal list is one of the following types of things:

» a box (a character or ligature or rule or hbox or vbox);

» a discretionary break (to be explained momentarily);

» a “whatsit” (something special to be explained later);

» vertical material (from \mark or \vadjust or \insert);

a glob of glue (or \leaders, as we will see later);

» a kern (something like glue that doesn’t stretch or shrink);

a penalty (representing the undesirability of breaking here);

» “math-on” (beginning a formula) or “math-off” (ending a formula).

The last four types (glue, kern, penalty, and math items) are called discardable, since
they may change or disappear at a line break; the first four types are called non-
discardable, since they always remain intact. Many of the things that can appear in
horizontal lists have not been touched on yet in this manual, but it isn’t necessary to
understand them in order to understand line breaking. Sooner or later you’ll learn how
each of the gismos listed above can infiltrate a horizontal list; and if you want to get
a thorough understanding of TEX’s internal processes, you can always use \showlists
with various features of the language, in order to see exactly what TEX is doing.

@ A discretionary break consists of three sequences of characters called the pre-

break, post-break, and no-break texts. The idea is that if a line break occurs
here, the pre-break text will appear at the end of the current line and the post-break
text will occur at the beginning of the next line; but if no break occurs, the no-break
text will appear in the current line. Users can specify discretionary breaks in complete
generality by writing

\discretionary{(pre-break text)}{(post-break text)}{(no-break text)}

where the three texts consist entirely of characters, boxes, and kerns. For example, TEX
can hyphenate the word ‘difficult’ between the f’s, even though this requires breaking
the ‘fhi’ ligature into ‘f-’ followed by an ‘fi’ ligature, if the horizontal list contains

di\discretionary{f-}{fi}{ffi}cult.

Fortunately you need not type such a mess yourself; TEX’s hyphenation algorithm
works behind the scenes, taking ligatures apart and putting them into discretionary
breaks when necessary.

@ The most common case of a discretionary break is a simple discretionary
hyphen

\discretionary{-}{}{}

for which TEX accepts the abbreviation ‘\-’. The next most common case 1s

\discretionary{}{}{}

(an “empty discretionary”), which TEX automatically inserts after ‘-’ and after every

ligature that ends with ‘=’. In the case of plain TEX, empty discretionaries are therefore
inserted after hyphens and dashes. (Each font has an associated \hyphenchar, which
we can assume for simplicity is equal to ‘=’.)

96 Chapter 14: How TgX Breaks Paragraphs into Lines

@ When TEX hyphenates words, it simply inserts discretionary breaks into the
horizontal list. For example, the words ‘discretionary hyphens’ are trans-

formed into the equivalent of
dis\-cre\-tionary hy\-phens

if hyphenation becomes necessary. But TEX doesn’t apply its hyphenation algorithm
to any word that already contains a discretionary break; therefore you can use explicit
discretionaries to override TEX’s automatic method, in an emergency.

@ » EXERCISE 14.8

Some compound words in German text change their spelling when they are
split between lines. For example, ‘backen’ becomes ‘bak-ken’ and ‘Bettuch’ becomes
‘Bett-tuch’. How can you instruct TEX to produce this effect?

@ In order to save time, TEX tries first to break a paragraph into lines without

inserting any discretionary hyphens. This first pass will succeed if a sequence
of breakpoints is found for which none of the resulting lines has a badness exceeding
the current value of \pretolerance. If the first pass fails, the method of Appendix H
is used to hyphenate each word of the paragraph by inserting discretionary breaks
into the horizontal list, and a second attempt is made using \tolerance instead of
\pretolerance. When the lines are fairly wide, as they are in this manual, experiments
show that the first pass succeeds more than 90% of the time, and that fewer than 2 words
per paragraph need to be subjected to the hyphenation algorithm, on the average.
But when the lines are very narrow the first pass usually fails rather quickly. Plain
TEX sets \pretolerance=100 and \tolerance=200 as the default values. If you make
\pretolerance=10000, the first pass will essentially always succeed, so hyphenations
will not be tried (and the spacing may not be very good); on the other hand if you make
\pretolerance=-1, TEX will omit the first pass and will try to hyphenate immediately.

@ Line breaks can-occur only in certain places within a horizontal list. Roughly
speaking, they occur between words and after hyphens, but in actuality they
are permitted in the following five cases:

. a) at glue, provided that this glue is immediately preceded by a non-discardable
item, and that it is not part of a math formula (i.e., not between math-on and
math-off). A break “at glue” occurs at the left edge of the glue space.

b) at a kern, provided that this kern is immediately followed by glue, and that it
is not part of a math formula.

c) at a math-off that is immediately followed by glue.
d) at a penalty (which might have been inserted automatically in a formula).
e) at a discretionary break.

Notice that if two globs of glue occur next to each other, the second one will never be
selected as a breakpoint, since it is preceded by glue (which is discardable).

g% Each potential breakpoint has an associated “penalty,” which represents the

“aesthetic cost” of breaking at that place. In cases (a), (b), (¢), the penalty is
zero; in case (d) an explicit penalty has been specified; and in case (e) the penalty is the
current value of \hyphenpenalty if the pre-break text is nonempty, or the current value
of \exhyphenpenalty if the pre-break text is empty. Plain TEX sets \hyphenpenalty=50
and \exhyphenpenalty=50.

Chapter 14: How TgX Breaks Paragraphs into Lines

@ For example, if you say ‘\penalty 100’ at some point in a paragraph, that

position will be a legitimate place to break between lines, but a penalty of 100
will be charged. If you say ‘\penalty-100’ you are telling TgX that this is a rather
good place to break, because a negative penalty is really a “bonus”; a line that ends
with a bonus might even have “merits” (negative demerits).

@ Any penalty that is 10000 or more is considered to be so large that TEX will

never break there. At the other extreme, any penalty that is —10000 or less
is considered to be so small that TEX will always break there. The \nobreak macro of
plain TEX is simply an abbreviation for ‘\penalty10000’, because this prohibits a line
break. A tie in plain TEX is equivalent to ‘\nobreak\,’; there will be no break at the
glue represented by \., in this case, because glue is never a legal breakpoint when it is
preceded by a discardable item like a penalty.

@ » EXERCISE 14.9
Guess how the \break macro is defined in plain TEX.

@ » EXERCISE 14.10
What happens if you say \nobreak\break or \break\nobreak?

@ When a line break actually does occur, TEX removes all discardable items that

follow the break, until coming to something non-discardable, or until coming
to another chosen breakpoint. For example, a sequence of glue and penalty items will
vanish as a unit, if no boxes intervene, unless the optimum breakpoint sequence includes
one or more of the penalties. Math-on and math-off items act essentially as kerns that
contribute the spacing specified by \mathsurround; such spacing will disappear into the
line break if a formula comes at the very end or the very beginning of a line, because
of the way the rules have been formulated above.

@@ The badness of a line is an integer that is approximately 100 times the cube
of the ratio by which the glue inside the line must stretch or shrink to make
an hbox of the required size. For example, if the line has a total shrinkability of
10 points, and if the glue is being compressed by a total of 9 points, the badness is
computed to be 73 (since 100 x (9/10)° = 72.9); similarly, a line that stretches by
twice its total stretchability has a badness of 800. But if the badness obtained by
this method turns out to be more than 10000, the value 10000 is used. (See the
discussion of “glue set ratio” r and “glue set order” i in Chapter 12; if 7 # 0, there is
infinite stretchability or shrinkability, so the badness is zero, otherwise the badness is
approximately min(1007°,10000).) Overfull boxes are considered to be infinitely bad;
they are avoided whenever possible.

@ A line whose badness is 13 or more has a glue set ratio exceeding 50%. We

call such a line tight if its glue had to shrink, loose if its glue had to stretch,
and very loose if it had to stretch so much that the badness is 100 or more. But if the
badness is 12 or less we say that the line is decent. Two adjacent lines are said to be
visually incompatible if their classifications are not adjacent, i.e., if a tight line is next
to a loose or very loose line, or if a decent line is next to a very loose one.

@@ ‘TEX rates each potential sequence of breakpoints by totalling up demerits that
are assessed to individual lines. The goal is to choose breakpoints that yield
the fewest total demerits. Suppose that a line has badness b, and suppose that the

97

98

Chapter 14: How TgX Breaks Paragraphs into Lines

penalty p is associated with the breakpoint at the end of this line. As stated above,
TEX will not even consider such a line if p > 10000, or if b exceeds the current tolerance
or pretolerance. Otherwise the demerits of such a line are defined by the formula

(1 +b)2 +p?, if 0<p < 10000;
d=< (I+0b)*—p* if —10000 < p < 0;
(1 + b)?, if p < —10000.

Here [is the current value of \linepenalty, a parameter that can be increased if you
want TEX to try harder to keep all paragraphs to the minimum number of lines; plain
TEX sets \linepenalty=10. For example, a line with badness 20 ending at glue will
have (10 + 20)® = 900 demerits, if I = 10, since there’s no penalty for a break at glue.
Minimizing the total demerits of a paragraph is roughly the same as minimizing the sum
of the squares of the badnesses and penalties; this usually means that the maximum
badness of any individual line is also minimized, over all sequences of breakpoints.

@@» EXERCISE 14.11

The formula for demerits has a strange discontinuity: It seems more reasonable
at first to define d = (I + b)®> — 10000°, in the case p < —10000. Can you account for
this apparent discrepancy?

@ Additional demerits are assessed based on pairs of adjacent lines. If two con-

secutive lines are visually incompatible, in the sense explained a minute ago,
the current value of \adjdemerits is added to d. If two consecutive lines end with dis-
cretionary breaks, the \doublehyphendemerits are added. And if the second-last line of
the entire paragraph ends with a discretionary, the \finalhyphendemerits are added.
Plain TEX sets up the values \adjdemerits=10000, \doublehyphendemerits=10000,
and \finalhyphendemerits=5000. Demerits are in units of “badness squared,” so the
demerit-oriented parameters need to be rather large if they are to have much effect;
but tolerances and penalties are given in the same units as badness.

@ If you set \tracingparagraphs=1, your log file will contain a summary of

TEX’s line-breaking calculations, so you can watch the tradeoffs that occur
when parameters like \1inepenalty and \hyphenpenalty and \adjdemerits are twid-
dled. The line-break data looks pretty scary at first, but you can learn to read it with a
little practice; this, in fact, is the best way to get a solid understanding of line breaking.
Here is the trace that results from the second paragraph of the story file in Chapter 6,
when \hsize=2.5in and \tolerance=1000:

[J\tenrm Mr. Drofnats---or ‘‘R. J.,’’ as he pre-
@\discretionary via @@0 b=0 p=50 d=2600
@@1: line 1.2- t=2600 -> Q@0

ferred to be called---was hap-pi-est when

@ via @@1 b=131 p=0 d=29881

@@2: line 2.0 t=32481 -> @01

he

@ via @@1 b=25 p=0 d=1225

@@3: line 2.3 t=3825 -> @e1

was at work type-set-ting beau-ti-ful doc-
@\discretionary via @@2 b=1 p=50 d=12621
@\discretionary via @@3 b=291 p=50 d=103101

Chapter 14: How TgX Breaks Paragraphs into Lines

@@4: line 3.2- t=45102 -> Q@2

u-

@\discretionary via @@3 b=44 p=50 d=15416
@@5: line 3.1- t=19241 -> Q@3

ments.

@\par via @@4 b=0 p=-10000 d=5100

@\par via @@5 b=0 p=-10000 d=5100

@@6: line 4.2- t=24341 -> Q@5

Lines that begin with ‘@@’ represent feasible breakpoints, i.e., breakpoints that can
be reached without any badness exceeding the tolerance. Feasible breakpoints are
numbered consecutively, starting with @@1; the beginning of the paragraph is considered
to be feasible too, and it is number @@0. Lines that begin with ‘@’ but not ‘@@’ are
candidate ways to reach the feasible breakpoint that follows; TEX will select only the
best candidate, when there is a choice. Lines that do not begin with ‘@’ indicate how
far TEX has gotten in the paragraph. Thus, for example, we find ‘@@2: line 2.0
t=32481 -> @@1’ after ‘. ..hap-pi-est when’ and before ‘he’, so we know that feasible
breakpoint @@2 occurs at the space between the words when and he. The notation ‘line
2.0’ means that this feasible break comes at the end of line 2, and that this line will
be very loose. (The suffixes .0, .1, .2, .3 stand respectively for very loose, loose,
decent, and tight.) A hyphen is suffixed to the line number if that line ends with a
discretionary break, or if it is the final line of the paragraph; for example, ‘1ine 1.2-’
is a decent line that was hyphenated. The notation ‘t=32481’ means that the total
demerits from the beginning of the paragraph to @@2 are 32481, and ‘-> @@1’ means
that the best way to get to @@2 is to come from @@1. On the preceding line of trace data
we see the calculations for a typeset line to this point from @@1: the badness is 131,
the penalty is 0, hence there are 29881 demerits. Similarly, breakpoint @@3 presents
an alternative for the second line of the paragraph, obtained by breaking between ‘he’
and ‘was’; this one makes the second line tight, and it has only 3825 demerits when
the demerits of line 1 are added, so it appears that @@3 will work much better than
@@2. However, the next feasible breakpoint (@@4) occurs after ‘doc-’, and the line from
Q@2 to @@4 has only 12621 demerits, while the line from @@3 to @@4 has a whopping
103101; therefore the best way to get from @@0 to @@4 is via @@2. If we regard demerits
as distances, TEX is finding the “shortest paths” from @@0 to each feasible breakpoint
(using a variant of a well-known algorithm for shortest paths in an acyclic graph).
Finally the end of the paragraph comes at breakpoint @@6, and the shortest path from
@@0 to @@6 represents the best sequence of breakpoints. Following the arrows back
from @@6, we deduce that the best breaks in this particular paragraph go through @@5,
@@3, and @e@1.

@@» EXERCISE 14.12
Explain why there are 29881 demerits from @@1 to @@2, and 12621 demerits
from @@2 to @@4.

@ If ‘b=*" appears in such trace data, it means that an infeasible breakpoint had
to be chosen because there was no feasible alternative.

@ We still haven’t discussed the special trick that allows the final line of a para-
graph to be shorter than the others. Just before TEX begins to choose break-
points, it does two important things: (1) If the final item of the current horizontal

99

100 Chapter 14: How TgX Breaks Paragraphs into Lines

list is glue, that glue is discarded. (The reason is that a blank space often gets into a
token list just before \par or just before $$, and this blank space should not be part
of the paragraph.) (2) Three more items are put at the end of the current horizontal
list: \penalty10000 (which prohibits a line break); \hskip\parfillskip (which adds
“finishing glue” to the paragraph); and \penalty-10000 (which forces the final break).
Plain TEX sets \parfillskip=0Opt plus1fil, so that the last line of each paragraph will
be filled with white space if necessary; but other settings of \parfillskip are appro-
priate in special applications. For example, the present paragraph ends flush with the
right margin, because it was typeset with \parfillskip=0pt; the author didn’t have to
rewrite any of the text in order to make this possible, since a long paragraph generally
allows so much flexibility that a line break can be forced at almost any point. You
can have some fun playing with paragraphs, because the algorithm for line breaking
occasionally appears to be clairvoyant. Just write paragraphs that are long enough.

@ » EXERCISE 14.13

Ben User decided to say ‘\hfilneg\par’ at the end of a paragraph, intending
that the negative stretchability of \hfilneg would cancel with the \parfillskip of
plain TEX. Why didn’t his bright idea work?

@ » EXERCISE 14.14
How can you set \parfillskip so that the last line of a paragraph has exactly
as much white space at the right as the first line has indentation at the left?

@@» EXERCISE 14.15

Since TEX reads an entire paragraph before it makes any decisions about
line breaks, the computer’s memory capacity might be exceeded if you are typesetting
the works of some philosopher or modernistic novelist who writes 200-line paragraphs.
Suggest a way to cope with such authors.

TEX has two parameters called \leftskip and \rightskip that specify glue

to be inserted at the left and right of every line in a paragraph; this glue is
taken into account when badnesses and demerits are computed. Plain TEX normally
keeps \leftskip and \rightskip zero, but it has a ‘\narrower’ macro that increases
both of their values by the current \parindent. You may want to use \narrower when
quoting lengthy passages from a book.

{\narrower\smallskip\noindent

This paragraph will have narrower lines than
the surrounding paragraphs do, because it
uses the ‘‘narrower’’ feature of plain \TeX.
The former margins will be restored after
this group ends.\smallskip}

(Try it.) The second ‘\smallskip’ in this example ends the paragraph. It’s important
to end the paragraph before ending the group, for otherwise the effect of \narrower
will disappear before TEX begins to choose line breaks.

@ » EXERCISE 14.16

When an entire paragraph is typeset in italic or slanted type, it sometimes
appears to be offset on the page with respect to other paragraphs. Explain how you
could use \leftskip and \rightskip to shift all lines of a paragraph left by 1 pt.

Chapter 14: How TgX Breaks Paragraphs into Lines 101

@ » EXERCISE 14.17
The \centerline, \leftline, \rightline, and \line macros of plain TEX
don’t take \leftskip and \rightskip into account. How could you make them do so?

@ If you suspect that \raggedright setting is accomplished by some appropriate

manipulation of \rightskip, you are correct. But some care is necessary. For
example, a person can set \rightskip=Opt plusifil, and every line will be filled
with space at the right. But this isn’t a particularly good way to make ragged-right
margins, because the infinite stretchability will assign zero badness to lines that are
very short. To do a decent job of ragged-right setting, the trick is to set \rightskip
so that it will stretch enough to make line breaks possible, yet not too much, because
short lines should be considered bad. Furthermore the spaces between words should
be fixed so that they do not stretch or shrink. (See the definition of \raggedright in
Appendix B.) It would also be possible to allow a little variability in the interword
glue, so that the right margin would not be quite so ragged but the paragraphs would
still have an informal appearance.

TEX looks at the parameters that affect line breaking only when it is breaking

lines. For example, you shouldn’t try to change the \hyphenpenalty in the
middle of a paragraph, if you want TEX to penalize the hyphens in one word more than
it does in another word. The relevant values of \hyphenpenalty, \rightskip, \hsize,
and so on, are the ones that are current at the end of the paragraph. On the other
hand, the width of indentation that you get implicitly at the beginning of a paragraph
or when you say ‘\indent’ is determined by the value of \parindent at the time the
indentation is contributed to the current horizontal list, not by its value at the end
of the paragraph. Similarly, penalties that are inserted into math formulas within a
paragraph are based on the values of \binoppenalty and \relpenalty that are current
at the end of each particular formula. Appendix D contains an example that shows how
to have both ragged-right and ragged-left margins within a single paragraph, without
using \leftskip or \rightskip.

@ It’s possible to control the length of lines in a much more general way, if
simple changes to \leftskip and \rightskip aren’t flexible enough for your
purposes. For example, a semicircular hole has been cut out of the present

paragraph, in order to make room for a circular illustration that con- rte Mo off
tains some of Galileo’s immortal words about circles; all of the line B o T B
1]]] 1 two regular and similar poly-
breaks in this paragraph and in the circular quotation were found e e i
? 1me- 1 1 1 1 it and the other is isoperimetric
by ’[EX s line-breaking algorlthn}. You can specify an essentially o e oibes o feepeiiall
arbitrary paragraph shape by saying \parshape=(number), where g Tem U g Dlets 6f oy et
5 00 o . scribed polygon and greater than that
the (number) is a positive integer n, followed by 2n (dimen) spec- o anylisdperitietiic polygon: Andfur-
. . ¢ . 5 ! 5 o ther, of these circumscribed polygons,
ifications. In general, ‘\parshape=n %1 l1 2 l2 ... tn [;,’ specifies L BE S e (O e
1. 11 h l h [l l ber of sides has a smaller area than
a paragra’ph WhOSC ﬁI'St n lnes wi ave engt S i1y 62y <oy bny the one that has a lesser number;
= Q 0 : but, on the other hand, the iso-
respectively, and they will be indented from the left margin by the e fe S won uhedl Ao,
] ; y 1 the greater number of
respective amounts 41, i2, ..., in. 1f the paragraph hag fejwer than I
n lines, the additional specifications will be ignored; if it has more [Galileo, 1638]

than n lines, the specifications for line n will be repeated ad infinitum.
You can cancel the effect of a previously specified \parshape by saying ‘\parshape=0’.

@@»EXERCISE 14.18
Typeset the following Pascalian quotation in the shape of an isosceles triangle:

102

Chapter 14: How TgX Breaks Paragraphs into Lines

“I turn, in the following treatises, to various uses of those triangles whose generator
is unity. But I leave out many more than I include; it is extraordinary how fertile in
properties this triangle is. Everyone can try his hand.”

@ You probably won’t need unusual parshapes very often. But there’s a special
case that occurs rather frequently, so TEX provides a special abbreviation
for it in terms of two parameters called \hangindent and \hangafter. The command
‘\hangindent=(dimen)’ specifies a so-called hanging indentation, and the command
‘\hangafter=(number)’ specifies the duration of that indentation. Let and n be the
respective values of \hangindent and \hangafter, and let h be the value of \hsize;
then if n > 0, hanging indentation will occur on lines n+1, n+2, ... of the paragraph,
but if n < 0 it will occur on lines 1, 2, ..., |n|. Hanging indentation means that lines will
be of width h — |z| instead of their normal width h; if z > 0, the lines will be indented
at the left margin, otherwise they will be indented at the right margin. For example,
the “dangerous bend” paragraphs of this manual have a hanging indentation of 3 picas
that lasts for two lines; they were set with \hangindent=3pc and \hangafter=-2.

@ Plain TEX uses hanging indentation in its ‘\item’ macro, which produces a

paragraph in which every line has the same indentation as a normal \indent.
Furthermore, \item takes a parameter that is placed into the position of the indentation
on the first line. Another macro called ‘\itemitem’ does the same thing but with double
indentation. For example, suppose you type

\item{1.} This is the first of several cases that are being
enumerated, with hanging indentation applied to entire paragraphs.
\itemitem{a)} This is the first subcase.

\itemitem{b)} And this is the second subcase. Notice

that subcases have twice as much hanging indentation.

\item{2.} The second case is similar.

Then you get the following output:

1. This is the first of several cases that are being enumerated, with hanging
indentation applied to entire paragraphs.
a) This is the first subcase.
b) And this is the second subcase. Notice that subcases have twice as
much hanging indentation.
2. The second case is similar.

(Indentations in plain TEX are not actually as dramatic as those displayed here; Appen-
dix B says ‘\parindent=20pt’, but this manual has been set with \parindent=36pt.)
It is customary to put \medskip before and after a group of itemized paragraphs, and
to say \noindent before any closing remarks that apply to all of the cases. Blank lines
are not needed before \item or \itemitem, since those macros begin with \par.

@ » EXERCISE 14.19
Suppose one of the enumerated cases continues for two or more paragraphs.
How can you use \item to get hanging indentation on the subsequent paragraphs?

@ » EXERCISE 14.20
Explain how to make a “bulleted” item that says ‘e’ instead of ‘1.’

Chapter 14: How TgX Breaks Paragraphs into Lines

@@» EXERCISE 14.21
The ‘\item’ macro doesn’t alter the right-hand margin. How could you indent
at both sides? '

@@» EXERCISE 14.22
Explain how you could specify a hanging indentation of —2 ems (i.e., the lines
should project into the left margin), after the first two lines of a paragraph.

@ If \parshape and hanging indentation have both been specified, \parshape

takes precedence and \hangindent is ignored. You get the normal paragraph
shape, in which every line width is \hsize, when \parshape=0, \hangindent=0pt, and
\hangafter=1. TEX automatically restores these normal values at the end of every
paragraph, and (by local definitions) whenever it enters internal vertical mode. For
example, hanging indentation that might be present outside of a \vbox construction
won’t occur inside that vbox, unless you ask for it inside.

@@» EXERCISE 14.23

Suppose you want to leave room at the right margin for a rectangular illus-
tration that takes up 15 lines, and you expect that three paragraphs will go by before
you have typeset enough text to get past that illustration. Suggest a good way to do
this without trial and error, given the fact that TEX resets hanging indentation.

@ If displayed equations occur in a paragraph that has a nonstandard shape, TEX

always assumes that the display takes up exactly three lines. For example, a
paragraph that has four lines of text, then a display, then two more lines of text, is
considered to be 4 + 3 + 2 = 9 lines long; the displayed equation will be indented and
centered using the paragraph shape information appropriate to line 6.

@ TEX has an internal integer variable called \prevgraf that records the number

of lines in the most recent paragraph that has been completed or partially
completed. You can use \prevgraf in the context of a (number), and you can set
\prevgraf to any desired nonnegative value if you want to make TEX think that it is in
some particular part of the current paragraph shape. For example, let’s consider again
a paragraph that contains four lines plus a display plus two more lines. When TEX
starts the paragraph, it sets \prevgraf=0; when it starts the display, \prevgraf will
be 4; when it finishes the display, \prevgraf will be 7; and when it ends the paragraph,
\prevgraf will be 9. If the display is actually one line taller than usual, you could set
\prevgraf=8 at the beginning of the two final lines; then TEX will think that a 10-line
paragraph is being made. The value of \prevgraf affects line breaking only when TgX
is dealing with nonstandard \parshape or \hangindent.

@@» EXERCISE 14.24
Solve exercise 14.23 using \prevgraf.

@ You are probably convinced by now that TEX’s line-breaking algorithm has

plenty of bells and whistles, perhaps even too many. But there’s one more
feature, called “looseness”; some day you might find yourself needing it, when you are
fine-tuning the pages of a book. If you set \looseness=1, TEX will try to make the
current paragraph one line longer than its optimum length, provided that there is a
way to choose such breakpoints without exceeding the tolerance you have specified for
the badnesses of individual lines. Similarly, if you set \looseness=2, TEX will try to

103

104 Chapter 14: How TgX Breaks Paragraphs into Lines

make the paragraph two lines longer; and \looseness=-1 causes an attempt to make
it shorter. The general idea is that TEX first finds breakpoints as usual; then if the
optimum breakpoints produce n lines, and if the current \looseness is [, TEX will
choose the final breakpoints so as to make the final number of lines as close as possible
to n+1{ without exceeding the current tolerance. Furthermore, the final breakpoints will
have fewest total demerits, considering all ways to achieve the same number of lines.

@ For example, you can set \looseness=1 if you want to avoid a lonely “club

line” or “widow line” on some page that does not have sufficiently flexible glue,
or if you want the total number of lines in some two-column document to come out
to be an even number. It’s usually best to choose a paragraph that is already pretty
“full,” i.e., one whose last line doesn’t have much white space, since such paragraphs
can generally be loosened without much harm. You might also want to insert a tie
between the last two words of that paragraph, so that the loosened version will not
end with only one “widow word” on the line; this tie will cover your tracks, so that
people will find it hard to detect the fact that you have tampered with the spacing.
On the other hand, TEX can take almost any sufficiently long paragraph and stretch it
a bit, without substantial harm; the present paragraph is, in fact, one line looser than
its optimum length.

®@ TEX resets the looseness to zero at the same time as it resets \hangindent,
A \hangafter, and \parshape.

@@» EXERCISE 14.25
Explain what TgX will do if you set \looseness=-1000.

@ Just before switching to horizontal mode to begin scanning a paragraph, TEX
inserts the glue specified by \parskip into the vertical list that will contain
the paragraph, unless that vertical list is empty so far. For example, ‘\parskip=3pt’
will cause 3 points of extra space to be placed between paragraphs. Plain TgX sets
\parskip=0Opt pluslpt; this gives a little stretchability, but no extra space.

@ After line breaking is complete, TEX appends the lines to the current vertical

list that encloses the current paragraph, inserting interline glue as explained in
Chapter 12; this interline glue will depend on the values of \baselineskip, \lineskip,
and \lineskiplimit that are currently in force. TEX will also insert penalties into the
vertical list, just before each glob of interline glue, in order to help control page breaks
that might have to be made later. For example, a special penalty will be assessed for
breaking a page between the first two lines of a paragraph, or just before the last line,
so that “club” or “widow” lines that are detached from the rest of a paragraph will not
appear all alone on a page unless the alternative is worse.

@ Here’s how interline penalties are calculated: TEX has just chosen the break-

points for some paragraph, or for some partial paragraph that precedes a
displayed equation; and n lines have been formed. The penalty between lines j and
J + 1, given a value of j in the range 1 < j < n, is the value of \interlinepenalty
plus additional charges made in special cases: The \clubpenalty is added if j = 1,
i.e., just after the first line; then the \displaywidowpenalty or the \widowpenalty is
added if j = n — 1, i.e., just before the last line, depending on whether or not the
current lines immediately precede a display; and finally the \brokenpenalty is added,
if the jth line ended at a discretionary break. (Plain TgX sets \clubpenalty=150,

Chapter 14: How TgX Breaks Paragraphs into Lines

\widowpenalty=150, \displaywidowpenalty=50, and \brokenpenalty=100; the value
of \interlinepenalty is normally zero, but it is increased to 100 within footnotes, so
that long footnotes will tend not to be broken between pages.)

@ » EXERCISE 14.26
Consider a five-line paragraph in which the second and fourth lines end with
hyphens. What penalties does plain TEX put between the lines?

@ » EXERCISE 14.27
What penalty goes between the lines of a two-line paragraph?

@ If you say \vadjust{(vertical list)} within a paragraph, TEX will insert the

specified internal vertical list into the vertical list that encloses the paragraph,
immediately after whatever line contained the position of the \vadjust. For example,
you can say ‘\vadjust{\kernlpt}’ to increase the amount of space between lines of a
paragraph if those lines would otherwise come out too close together. (The author
did it in the previous line, just to illustrate what happens.) Also, if you want to
make sure that a page break will occur immediately after a certain line, you can say
‘\vadjust{\eject} anywhere in that line.

@@ Later chapters discuss \insert and \mark commands that are relevant to
TEX’s page builder. If such commands appear within a paragraph, they are
removed from whatever horizontal lines contain them and placed into the enclosing
vertical list, together with other vertical material from \vadjust commands that might
be present. In the final vertical list, each horizontal line of text is an hbox that is
immediately preceded by interline glue and immediately followed by vertical material
that has “migrated out” from that line (with left to right order preserved, if there are
several instances of vertical material); then comes the interline penalty, if it is nonzero.
Inserted vertical material does not influence the interline glue.

@@» EXERCISE 14.28

Design a \marginalstar macro that can be used anywhere in a paragraph. It
should use \vadjust to place an asterisk in the margin just to the left of the line where
\marginalstar occurs.

@ When TEX enters horizontal mode, it will interrupt its normal scanning to read
tokens that were predefined by the command \everypar={(token list)}. For
example, suppose you have said ‘\everypar={A}’. If you type ‘B’ in vertical mode, TEX
will shift to horizontal mode (after contributing \parskip glue to the current page),
and a horizontal list will be initiated by inserting an empty box of width \parindent.
Then TEX will read ‘AB’, since it reads the \everypar tokens before getting back to the
‘B’ that triggered the new paragraph. Of course, this is not a very useful illustration of
\everypar; but if you let your imagination run you will think of better applications.

@@» EXERCISE 14.29

Use \everypar to define an \insertbullets macro: All paragraphs in a group
of the form ‘{\insertbullets ...\parl}’ should have a bullet symbol ‘e’ as part of
their indentation.

@ A paragraph of zero lines is formed if you say ‘\noindent\par’. If \everypar
is null, such a paragraph contributes nothing except \parskip glue to the
current vertical list.

105

106 Chapter 14: How TgX Breaks Paragraphs into Lines

@@» EXERCISE 14.30
Guess what happens if you say ‘\noindent$$...$$ \par’.

@@ Experience has shown that TEX’s line-breaking algorithm can be harnessed
to a surprising variety of tasks. Here, for example, is an application that
indicates one of the possibilities: Articles that are published in Mathematical Reviews
are generally signed with the reviewer’s name and address, and this information is
typeset flush right, i.e., at the right-hand margin. If there is sufficient space to put
such a name and address at the right of the final line of the paragraph, the publishers
can save space, and at the same time the results look better because there are no

strange gaps on the page.

This is a case where the name and address fit in nicely
with the review. A. Reviewer (Ann Arbor, Mich.)

But sometimes an extra line must be added.
N. Bourbaki (Paris)

Let’s suppose that a space of at least two ems should separate the reviewer’s name
from the text of the review, if they occur on the same line. We would like to design a
macro so that the examples shown above could be typed as follows in an input file:

. with the review. \signed A. Reviewer (Ann Arbor, Mich.)
. an extra line must be added. \signed N. Bourbaki (Paris)

Here is one way to solve the problem:

\def\signed #1 (#2){{\unskip\nobreak\hfil\penalty50
\hskip2em\hbox{}\nobreak\hfil\s1l#1\/ \rm(#2)
\parfillskip=0Opt \finalhyphendemerits=0 \par}}

If a line break occurs at the \penalty50, the \hskip2em will disappear and the empty
\hbox will occur at the beginning of a line, followed by \hfil glue. This yields two lines
whose badness is zero; the first of these lines is assessed a penalty of 50. But if no line
break occurs at the \penalty50, there will be glue of 2 em plus 2 fil between the review
and the name; this yields one line of badness zero. TgX will try both alternatives,
to see which leads to the fewest total demerits. The one-line solution will usually be
preferred if it is feasible.

@@» EXERCISE 14.31
Explain what would happen if ‘\hbox{}’ were left out of the \signed macro.
@@» EXERCISE 14.32

Why does the \signed macro say ‘\finalhyphendemerits=0’?

@@» EXERCISE 14.33

In one of the paragraphs earlier in this chapter, the author used \break to force
a line break in a specific place; as a result, the third line of that particular paragraph was
really spaced out.
Explain why all the extra space went into the third line, instead of being distributed
impartially among the first three lines.

Chapter 14: How TEX Breaks Paragraphs into Lines 107

@@» EXERCISE 14.34

Devise a \raggedcenter macro (analogous to \raggedright) that partitions
the words of a paragraph into as few as possible lines of approximately equal size and
centers each individual line. Hyphenation should be avoided if possible.

When the author objects to [a hyphenation]
he should be asked to add or cancel or substitute
a word or words that will prevent the breakage.

Authors who insist on even spacing always,
with sightly divisions always,
do not clearly understand the rigidity of types.

— T. L. DE VINNE, Correct Composition (1901)

In reprinting his own works, whenever [William Morris]
found a line that justified awkwardly, he altered the wording
solely for the sake of making it look well in print.

When a proof has been sent me with two or three

lines so widely spaced as to make a grey band across the page,

| have often rewritten the passage so as to fill up the lines better;
but | am sorry to say that my object has generally been so little
understood that the compositor has spoilt all the rest

of the paragraph instead of mending his former bad work.

— GEORGE BERNARD SHAW, in The Dolphin (1940)

15

How TgX Makes
Lines into Pages

Chapter 15: How TgX Makes Lines into Pages

TEX attempts to choose desirable places to divide your document into individual
pages, and its technique for doing this usually works pretty well. But the problem
of page make-up is considerably more difficult than the problem of line breaking
that we considered in the previous chapter, because pages often have much less
flexibility than lines do. If the vertical glue on a page has little or no ability to
stretch or to shrink, TEX usually has no choice about where to start a new page;
conversely, if there is too much variability in the glue, the result will look bad
because different pages will be too irregular. Therefore if you are fussy about
the appearance of pages, you can expect to do some rewriting of the manuscript
until you achieve an appropriate balance, or you might need to fiddle with the
\looseness as described in Chapter 14; no automated system will be able to do
this as well as you.

Mathematical papers that contain a lot of displayed equations have an
advantage in this regard, because the glue that surrounds a display tends to
be quite flexible. TEX also gets valuable room to maneuver when you have
occasion to use \smallskip or \medskip or \bigskip spacing between certain
paragraphs. For example, consider a page that contains a dozen or so exercises,
and suppose that there is 3 pt of additional space between exercises, where this
space can stretch to 4 pt or shrink to 2pt. Then there is a chance to squeeze
an extra lihe on the page, or to open up the page by removing one line, in
order to avoid splitting an exercise between pages. Similarly, it is possible to use
flexible glue in special publications like membership rosters or company telephone
directories, so that individual entries need not be split between columns or pages,
yet every column appears to be the same height.

For ordinary purposes you will probably find that TEX’s automatic
method of page breaking is satisfactory. And when it occasionally gives un-
pleasant results, you can force the machine to break at your favorite place by
typing ‘\eject’. But be careful: \eject will cause TEX to stretch the page
out, if necessary, so that the top and bottom baselines agree with those on other
pages. If you want to eject a short page, filling it with blank space at the bottom,
type ‘\vfill\eject’ instead.

@ If you say ‘\eject’ in the middle of a paragraph, the paragraph will end

first, as if you typed ‘\par\eject’. But Chapter 14 mentions that you can say
‘“\vadjust{\eject}’ in mid-paragraph, if you want to force a page break after whatever
line contains your current position when the full paragraph is eventually broken up into
lines; the rest of the paragraph will go on the following page.

@ To prevent a page break, you can say ‘\nobreak’ in vertical mode, just as

\nobreak in horizontal mode prevents breaks between lines. For example, it
is wise to say \nobreak between the title of a subsection and the first line of text in that
subsection. But \nobreak does not cancel the effect of other commands like \eject
that tell TEX to break; it only inhibits a break at glue that immediately follows. You
should become familiar with TEX’s rules for line breaks and page breaks if you want to
maintain fine control over everything. The remainder of this chapter is devoted to the
intimate details of page breaking.

109

110 Chapter 15: How TpX Makes Lines into Pages

TEX breaks lists of lines into pages by computing badness ratings and penal-

ties, more or less as it does when breaking paragraphs into lines. But pages
are made up one at a time and removed from TEX’s memory; there is no looking ahead
to see how one page break will affect the next one. In other words, TEX uses a special
method to find the optimum breakpoints for the lines in an entire paragraph, but it
doesn’t attempt to find the optimum breakpoints for the pages in an entire document.
The computer doesn’t have enough high-speed memory capacity to remember the con-
tents of several pages, so TEX simply chooses each page break as best it can, by a
process of “local” rather than “global” optimization.

@ Let’s look now at the details of TEX’s page-making process. Everything you

contribute to the pages of your document is placed on the main vertical list,
which is the sequence of items that TEX has accumulated while in vertical mode. Each
item in a vertical list is one of the following types of things:

= a box (an hbox or vbox or rule);

m a “whatsit” (something special to be explained later);

= a mark (another thing that will be explained later);

m an insertion (yet another thing that we will get to);

a glob of glue (or \leaders, as we will see later);

a kern (something like glue that doesn’t stretch or shrink);

a penalty (representing the undesirability of breaking here).

The last three types (glue, kern, and penalty items) are called discardable, for the
same reason that we called them discardable in horizontal lists. You might want to
compare these specifications with the analogous rules for the horizontal case, found
in Chapter 14; it turns out that vertical lists are just like horizontal ones except that
character boxes, discretionary breaks, \vadjust items, and math shifts cannot appear
in vertical lists. Chapter 12 exhibits a typical vertical list in TEX’s internal box-and-glue

representation.
@ Page breaks can occur only at certain places within a vertical list. The per-
missible breakpoints are exactly the same as in the horizontal case, namely

a) at glue, provided that this glue is immediately preceded by a non-discardable
item (i.e., by a box, whatsit, mark, or insertion);

b) at a kern, provided that this kern is immediately followed by glue;
¢) at a penalty (which might have been inserted automatically in a paragraph).

Interline glue is usually inserted automatically between the boxes of a vertical list, as
explained in Chapter 12, so there is usually a valid breakpoint between boxes.

@ As in horizontal lists, each potential breakpoint has an associated penalty,

which is high for undesirable breakpoints and negative for desirable ones. The
penalty is zero at glue and kern breaks, so it is nonzero only at explicit penalty breaks.
If you say ‘\penalty-100’ between two paragraphs, you are indicating that TEX should
try to break here because the penalty is negative; a bonus of 100 points for breaking at
this place will essentially cancel up to 100 units of badness that might be necessary to
achieve such a break. A penalty of 10000 or more is so large that it inhibits breaking;
a penalty of —10000 or less is so small that it forces breaking.

Chapter 15: How TEX Makes Lines into Pages

@ Plain TEX provides several control sequences that help to control page breaks.

For example, \smallbreak, \medbreak, and \bigbreak specify increasingly
desirable places to break, having respective penalties of —50, —100, and —200; further-
more, they will insert a \smallskip, \medskip, or \bigskip of space, respectively, if a
break is not taken. However, \smallbreak, \medbreak, and \bigbreak do not increase
existing glue unnecessarily; for example, if you say \smallbreak just after a displayed
equation, you won’t get a \smallskip of space in addition to the glue that already
follows a display. Therefore these commands can conveniently be used before and after
the statements of theorems, in a format for mathematical papers. In the present manual
the author has used a macro that puts \medbreak before and after every dangerous-
bend paragraph; \medbreak\medbreak is equivalent to a single \medbreak, so you don’t
see two medskips when one such paragraph ends and another one begins.

@ The \goodbreak macro is an abbreviation for ‘\par\penalty-500’. This is a

good thing to insert in your manuscript when proofreading, if you are willing
to stretch some page a little bit extra in order to improve the following one. Later on
if you make another change so that this \goodbreak command does not appear near
the bottom of a page, it will have no effect; thus it is not as drastic as \eject.

@ The most interesting macro that plain TEX provides for page make-up is called
\filbreak. It means, roughly, “Break the page here and fill the bottom with
blank space, unless there is room for more copy that is itself followed by \filbreak.”
Thus if you put \filbreak at the end of every paragraph, and if your paragraphs aren’t
too long, every page break will occur between paragraphs, and TgX will fit as many
paragraphs as possible on each page. The precise meaning of \filbreak is

\vfil\penalty-200\vfilneg

according to Appendix B; and this simple combination of TEX’s primitives produces
the desired result: If a break is taken at the \peralty-200, the preceding \vfil will
fill the bottom of the page with blank space, and the \vfilneg will be discarded after
the break; but if no break is taken at the penalty, the \vfil and \vfilneg will cancel
each other and have no effect.

@ Plain TEX also provides a \raggedbottom command, which is a vertical analog
of \raggedright: It tells TEX to permit a small amount of variability in the
bottom margins on different pages, in order to make the other spacing uniform.

@ We saw in Chapter 14 that breakpoints for paragraphs are chosen by comput-

ing “demerits” for each line and summing them over all lines. The situation
for pages is simpler because each page is considered separately. TEX figures the “cost”
of a page break by using the following formula:

P, if b < oo and p < —10000 and g < 10000;

b+p+q, if b< 10000 and —10000 < p < 10000 and ¢ < 10000;
100000, if b > 10000 and —10000 < p < 10000 and g < 10000;
00, if (b = oo or ¢ > 10000) and p < 10000.

Here b is the badness of the page that would be formed if a break were chosen here;
p is the penalty associated with the current breakpoint; and g is ‘\insertpenalties’,
the sum of all penalties for split insertions on the page, as explained below. Vertical
badness is computed by the same rules as horizontal badness; it is an integer between
0 and 10000, inclusive, except when the box is overfull, when it is co (infinity).

111

112

Chapter 15: How TgX Makes Lines into Pages

@ When a page is completed, it is removed from the main vertical list and passed

to an “output routine,” as we will see later; so its boxes and glue eventually
disappear from TEX’s memory. The remainder of the main vertical list exists in two
parts: First comes the “current page,” which contains all the material that TEX has
considered so far as a candidate for the next page to be broken off; then there are
“recent contributions,” i.e., items that will be moved to the current page as soon as
TEX finds it convenient to do so. If you say \showlists, TEX will display the contents
of the current page and the recent contributions, if any, on your log file. (The example
in Chapter 13 doesn’t show any such lists because they were both empty in that case.
Chapter 24 explains more about TEX’s timing.)

@ Whenever TEX is moving an item from the top of the “recent contributions” to

the bottom of the “current page,” it discards a discardable item (glue, kern, or
penalty) if the current page does not contain any boxes. This is how glue disappears at
a page break. Otherwise if a discardable item is a legitimate breakpoint, TEX calculates
the cost ¢ of breaking at this point, using the formula that we have just discussed. If the
resulting c is less than or equal to the smallest cost seen so far on the current page, TEX
remembers the current breakpoint as the best so far. And if ¢ = oo or if p < —10000,
TEX seizes the initiative and breaks the page at the best remembered breakpoint. Any
material on the current page following that best breakpoint is moved back onto the
list of recent contributions, where it will be considered again; thus the “current page”
typically gets more than one page’s worth of material before the breakpoint is chosen.

@@ This procedure may seem mysterious until you see it in action. Fortunately,

there is a convenient way to watch it; you can set \tracingpages=1, thereby
instructing TEX to put its page-cost calculations into your log file. For example, here is
what appeared on the log file when the author used \tracingpages=1 at the beginning
of the present chapter:

%% goal height=528.0, max depth=2.2

% t=10.0 g=528.0 b=10000 p=150 c=100000%#
% t=22.0 g=528.0 b=10000 p=0 c=100000%#

% t=34.0 g=528.0 b=10000 p=0 <c=100000#

(25 similar lines are being omitted here)
% t=346.0 plus 2.0 g=528.0 b=10000 p=0 c=100000#
% t=358.0 plus 2.0 g=528.0 b=10000 p=150 c=100000#
% t=370.02223 plus 2.0 g=528.0 b=10000 p=-100 c=100000#

% t=398.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=0 ¢=100000%

% t=409.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=0 c=100000%

% t=420.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=150 c¢=100000#
% t=431.0 plus 5.0 minus 2.0 g=528.0 b=10000 p=-100 <c=100000#
% t=459.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000#

% t=470.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000#

% t=481.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000%#

% t=492.0 plus 8.0 minus 4.0 g=528.0 b=10000 p=0 c=100000%#

% t=503.0 plus 8.0 minus 4.0 g=528.0 b=3049 p=0 c=3049#

% t=514.0 plus 8.0 minus 4.0 g=528.0 b=533 p=150 c=683#

% t=525.0 plus 8.0 minus 4.0 g=528.0 b=5 p=-100 c=-95#

% t=553.0 plus 11.0 minus 6.0 g=528.0 b=*x p=0 c=%

Chapter 15: How TEX Makes Lines into Pages

This trace output is admittedly not “user-friendly” in appearance, but after all it comes
from deep inside TEX’s bowels where things have been reduced to numeric calculations.
You can learn to read it with a little practice, but you won't need to do so very often
unless you need to plunge into page-breaking for special applications. Here’s what it
means: The first line, which starts with ‘%%’, is written when the first box or insertion
enters the current page list; it shows the “goal height” and the “max depth” that will
be used for that page (namely, the current values of \vsize and \maxdepth). In the
present manual we have \vsize=44pc and \maxdepth=2.2pt; dimensions in the log file
are always displayed in points. The subsequent lines, which start with a single ‘/}’, are
written whenever a legal breakpoint is being moved from the list of recent contributions
to the current page list. Every ¥ line shows ¢, which is the total height so far if a page
break were to occur, and g, which is the goal height; in this example g stays fixed at
528 pt, but g would have decreased if insertions such as footnotes had occurred on the
page. The values of t are steadily increasing from 10 to 22 to 34, etc.; baselines are
12 pt apart at the top of the page and 11 pt apart at the bottom (where material is
set in nine-point type). We are essentially seeing one % line per hbox of text being
placed on the current page. However, the % lines are generated by the penalty or glue
items that follow the hboxes, not by the boxes themselves. Each % line shows also the
badness b, the penalty p, and the cost ¢ associated with a breakpoint; if this cost is the
best so far, it is marked with a ‘#’ sign, meaning that “this breakpoint will be used for
the current page if nothing better comes along.” Notice that the first 40 or so breaks
all have b = 10000, since they are so bad that TEX considers them indistinguishable; in
such cases ¢ = 100000, so TEX simply accumulates material until the page is full enough
to have b < 10000. A penalty of 150 reflects the \clubpenalty or the \widowpenalty
that was inserted as described in Chapter 14. The three lines that say p=-100 are
the breakpoints between “dangerous bend” paragraphs; these came from \medbreak
commands. The notation b=+ and c=* on the final line means that b and c are infinite;
the total height of 553 pt cannot be reduced to 528 pt by shrinking the available glue.
Therefore the page is ejected at the best previous place, which turns out to be a pretty
good break: b=5 and p=-100 yield a net cost of —95.

@@» EXERCISE 15.1
Suppose the paragraph at the bottom of the example page had been one line
shorter; what page break would have been chosen?

@@» EXERCISE 15.2
The last two “% lines” of this example show the natural height of ¢ jumping
by 28 pt, from 525.0 to 553.0. Explain why there was such a big jump.

@@ The \maxdepth parameter tells TEX to raise the bottom box on the page if
that box has too much depth, so that the depth of the constructed page will
not exceed a specified value. (See the discussion of \boxmaxdepth in Chapter 12.) In
our example \maxdepth=2.2pt, and the influence of this parameter can be seen in the
line that says ‘% t=370.02223’. Ordinarily ¢ would have been 370.0 at that breakpoint;
but the hbox preceding it was unusual because it contained the letter j in \tt, and
a 10-point typewriter-style j descends 2.22223 pt below the baseline. Therefore TEX
figured badness as if the hbox were .02223 pt higher and only 2.2 pt deep.

@ ‘Notice that the first “Y% line” of our example says t=10.0; this is a consequence
of another parameter, called \topskip. Glue disappears at a page break, but

113

114 Chapter 15: How TgX Makes Lines into Pages

it 1s desirable to produce pages whose top and bottom baselines occur in predetermined
positions, whenever possible; therefore TEX inserts special glue just before the first box
on each page. This special glue is equal to \topskip, except that the natural space
has been decreased by the height of the first box, or it has been set to zero in lieu
of a negative value. For example, if \topskip=20pt plus2pt, and if the first box on
the current page is 13 pt tall, TEX inserts ‘\vskip7pt plus2pt’ just above that box.
Furthermore, if the first box is more than 20 pt tall, ‘\vskipOpt plus2pt’ is inserted.
But this example is atypical, since the \topskip glue usually has no stretchability or
shrinkability; plain TEX sets \topskip=10pt.

@@» EXERCISE 15.3

Assume that \vsize=528pt, \maxdepth=2.2pt, \topskip=10pt, and that no
\insert commands are being used. TEX will make pages that are 528 pt high, and the
following two statements will normally be true: (a) The baseline of the topmost box
on the page will be 10 pt from the top, i.e., 518 pt above the baseline of the page itself.
(b) The baseline of the bottommost box on the page will coincide with the baseline of
the page itself. Explain under what circumstances (a) and (b) will fail.

@ Since \vsize, \maxdepth, and \topskip are parameters, you can change them

at any time; what happens if you do? Well, TEX salts away the values of
\vsize and \maxdepth when it prints the “%% line,” i.e., when the first box or insertion
occurs on the current page; subsequent changes to those two parameters have no effect
until the next current page is started. On the other hand, TEX looks at \topskip only
when the first box is being contributed to the current page. If insertions occur before
the first box, the \topskip glue before that box is considered to be a valid breakpoint;

this is the only case in which a completed page might not contain a box.

@ You can look at the ¢ and g values that are used in page breaking by referring

to the (dimen) values ‘\pagetotal’ and ‘\pagegoal’, respectively. You can
even change them (but let’s hope that you know what you are doing). For example,
the command \pagegoal=500pt overrides the previously saved value of \vsize. Be-
sides \pagetotal, which represents the accumulated natural height, TEX maintains the
quantities \pagestretch, \pagefilstretch, \pagefillstretch, \pagefilllstretch,
\pageshrink, and \pagedepth. When the current page contains no boxes, \pagetotal
and its relatives are zero and \pagegoal is 16383.99998 pt (TgX’s largest (dimen));
changing their values has no effect at such times. The integer ¢ in the formula for page
costs is also available for inspection and change; it is called \insertpenalties.

@ Page breaking differs from line breaking in one small respect that deserves
mention here: If you say \eject\eject, the second \eject is ignored, because
1t 1s equivalent to \penalty-10000 and penalties are discarded after a page break. But if
you say \break\break in a paragraph, the second \break causes an empty line, because
penalties are discarded after a break in a paragraph only if they do not belong to the
final sequence of breakpoints. This technicality is unimportant in practice, because
\break\break isn’t a good way to make an empty line; that line will usually be an
underfull hbox, since it has only the \leftskip and \rightskip glue in it. Similarly,
‘\eject\eject’ would not be a good way to make an empty page, even if TEX were to
change its rules somehow so that an \eject would never be ignored. The best way to
eject an empty page is to say ‘\eject\line{}\vfil\eject’, and the best way to create
an empty line is ‘\break\hbox{}\hfil\break’. Both of these avoid underfull boxes.

Chapter 15: How TgX Makes Lines into Pages

@ You are probably wondering how page numbers and such things get attached

to pages. The answer is that TEX allows you to do further processing after
each page break has been chosen; a special “output routine” goes into action before
pages actually receive their final form. Chapter 23 explains how to construct output
routines and how to modify the output routine of plain TEX.

@ Every once in a while, TEX will produce a really awful-looking page and you

will wonder what happened. For example, you might get just one paragraph
and a lot of white space, when some of the text on the following page would easily fit
into the white space. The reason for such apparently anomalous behavior is almost
always that no good page break is possible; even the alternative that looks better to
you is quite terrible as far as TEX is concerned! TEX does not distinguish between two
choices that both have 10000 units of badness or more, even though some bad breaks
do look much worse than others. The solution in such cases is to insert \eject or
\vfill\eject in some acceptable spot, or to revise the manuscript. If this problem
arises frequently, however, you probably are using a format that sets overly strict
limitations on page format; try looking at the output of \tracingpages and modifying
some of TEX’s parameters, until you have better luck.

@ The remainder of this chapter is about insertions: things like footnotes and

illustrations, and how they interact with page breaks. Before we discuss the
primitive operations by which TEX deals with insertions, we will take a look at the
facilities that plain TEX provides at a higher level.

@ Illustrations can be inserted in several ways using plain TEX: The simplest of
these is called a “floating topinsert”; you say

\topinsert(vertical mode material)\endinsert

and TEX will attempt to put the vertical mode material at the top of the current page.
If there’s no rcom for such an insertion on one page, TEX will insert it at the top of
the next page. The (vertical mode material) can contain embedded paragraphs that
temporarily interrupt vertical mode in the usual way; for example:

\topinsert \vskip 2in

\hsize=3in \raggedright

\noindent{\bf Figure 3.} This is the caption to the
third illustration of my paper. I have left two inches
of space above the caption so that there will be room
to introduce special artwork. \endinsert

The caption in this example will be set ragged-right in a 3-inch column at the left of
the page. Plain TEX automatically adds a “bigskip” below each topinsert; this will
separate the caption from the text. The effects of \hsize=3in and \raggedright do
not extend past the \endinsert, since grouping is implied.

@ » EXERCISE 15.4
Modify this example so that the caption is moved over next to the right margin,

instead of appearing at the left.

@ ~Similarly, if you say ‘\pageinsert (vertical mode material) \endinsert’, the
vertical mode material will be justified to the size of a full page (without a
bigskip below it); the result will appear on the following page.

115

116 Chapter 15: How TgX Makes Lines into Pages

@ There’s also ‘\midinsert (vertical mode material) \endinsert’, which tries
first to insert the material in place, wherever you happen to be, in the middle
of the current page. If there is enough room, you get the effect of

\bigskip\vbox{(vertical mode material)}\bigbreak

otherwise the \midinsert is effectively converted to a \topinsert. There is a slight
probability that \midinsert will not find the best placement, because TEX is sometimes
processing text ahead of the current page. You may want to say ‘\goodbreak’ just
before \midinsert.

@ You should use the commands \topinsert, \pageinsert, \midinsert in ver-
tical mode (i.e., between paragraphs), not inside of boxes or other insertions.

@ If you have two or more \topinsert, \pageinsert, or \midinsert commands

in quick succession, they may carry over to several subsequent pages; but they
will retain their relative order when they are carried over. For example, suppose you
have pages that are nine inches tall, and suppose you have already specified 4 inches of
text for some page, say page 25. Then suppose you make seven topinserts in a row, of
respective sizes 1,2,3,9, 3, 2,1 inches; the 9-inch one is actually a \pageinsert. What
happens? Well, the first and second will appear at the top of page 25, followed by the
4 inches of copy you have already typed; that copy will immediately be followed by two
more inches that you type after the seven inserts. The third topinsert will appear at
the top of page 26, followed by six more inches of text; the fourth will fill page 27; and
the remaining three will appear at the top of page 28.

@ » EXERCISE 15.5
What would happen in the example just discussed if the final 1-inch insertion
were a \midinsert instead of a \topinsert?

@ At the end of a paper, you probably want to make sure that no insertions

are lost; and at the end of a chapter, you probably want to make sure that
no insertions float into the following chapter. Plain TEX will flush out all remain-
ing insertions, with blank space filling the bottom of incomplete pages, if you say
‘\vfill\supereject’.

@ Besides illustrations that are inserted at the top of a page, plain TEX will also

insert footnotes at the bottom of a page. The \footnote macro is provided
for use within paragraphs;* for example, the footnote in the present sentence was typed
in the following way:

. paragraphs;\footnotex{Like this.} for example,

There are two parameters to a \footnote; first comes the reference mark, which will
appear both in the paragraph™* and in the footnote itself, and then comes the text of
the footnote.*® The latter text may be several paragraphs long, and it may contain

* Like this.
** The author typed ‘paragraph\footnote{**}{The author ...} here.

45 And ‘footnote.\footnote{$"{45}$}{And ...} here. The footnotes in this manual
appear in smaller type, and they are set with hanging indentation; furthermore a
smallskip occurs between footnotes on the same page. But in plain TEX, footnotes

Chapter 15: How TgX Makes Lines into Pages

displayed equations and such things, but it should not involve other insertions. TEX
will ensure that each footnote occurs at the bottom of the same page as its reference.f
A long footnote will be split, if necessary, and continued at the bottom of the following
page, as you can see in the somewhat contrived example that appears here. Authors
who are interested in good exposition should avoid footnotes whenever possible, since
footnotes tend to be distracting.}

@ The \footnote macro should be used only in paragraphs or hboxes that are

contributed to TEX’s main vertical list; insertions will be lost if they occur
inside of boxes that are inside of boxes. Thus, for example, you should not try to put
a \footnote into a subformula of a math formula. But it’s OK to use footnotes within
\centerline, e.g.,

\centerline{A paper by A. U. Thor/
\footnote*{Supported by NSF.}}

or even on the outer level of a table entry inside an \halign.

@@ Topinserts work fine by themselves, and footnotes work fine by themselves,
but complications can arise when you try to mix them in devious ways. For
example, if a \pageinsert floats to the page that follows a long footnote that had
to be broken, both of the held-over insertions may try to force themselves onto the
same page, and an overfull vbox may result. Furthermore, insertions cannot appear
within insertions, so you can’t use \footnote within a \topinsert. If you really need
a footnote in some caption, there’s a \vfootnote macro that can be used in vertical
mode. To use it, you put a reference mark like ‘*’ in the caption, and then you say
‘\vfootnote*{The footnote}’ somewhere on the page where you guess that the caption
will finally fall. In such complex circumstances you might want to rethink whether or
not you are really using the most appropriate format for the exposition of your ideas.

@ Chapter 24 explains the exact rules about migration of vertical-mode material
(like footnotes) from horizontal lists to the enclosing vertical list. Insertions,
marks, and the results of \vadjust all migrate in the same fashion.

@ Now let’s study the primitives of TEX that are used to construct macros like

\topinsert and \footnote. We are about to enter behind the scenes into a
sublanguage of TEX that permits users to do complex manipulations with boxes and
glue. Our discussion will be in two parts: First we shall consider TEX’s “registers,”
with which a user can do arithmetic related to typesetting; and then we shall discuss
the insertion items that can appear in horizontal and vertical lists. Our discussion
of the first topic (registers) will be marked with single dangerous-bend signs, since
registers are of general use in advanced applications of TEX, whether or not they relate
to insertions. But the second topic will be marked with double dangerous-bend signs,
since insertions are rather esoteric.

are typeset with the normal size of type, with \textindent used for the reference
mark, and without extra smallskips. The \textindent macro is like \item, but it
omits hanging indentation.

T Printers often use the symbols \dag (f), \ddag (1), \S (§), and \P () as reference
‘marks; sometimes also $\1$ (||). You can say, e.g, ‘\footnote\dag{...}"

I Yet Gibbon’s Decline and Fall would not have been the same without footnotes.

117

118 Chapter 15: How TgX Makes Lines into Pages

TEX has 256 registers called \countO to \count255, each capable of containing

integers between —2147483647 and +2147483647, inclusive; i.e., the magni-
tudes should be less than 2. TgX also has 256 registers called \dimen0 to \dimen255,
each capable of containing a (dimen) (see Chapter 10). There are another 256 registers
called \skipO to \skip255, each containing (glue) (see Chapter 12); and \muskipO to
\muskip255, each containing (muglue) (see Chapter 18). You can assign new values to
these registers by saying

\count(number) = (number)
\dimen(number) = (dimen)
\skip(number) = (glue)
\muskip(number) = (muglue)

and then you can add or subtract values of the same type by saying

\advance\count (number) by (number)
\advance\dimen(number) by (dimen)
\advance\skip{number) by (glue)
\advance\muskip{number) by (muglue)

For example, ‘\dimen8=\hsize \advance\dimen8 by 1in’ sets register \dimen8 to an
inch more than the current value of the normal line size.

@ If infinite glue components are added, lower order infinities disappear. For
example, after the two commands

\skip2 = Opt plus 2fill minus 3fill
\advance\skip2 by 4pt plus 1fil minus 2£filll

the value of \skip2 will be 4 pt plus 2 fill minus 2 filll.

@ Multiplication and division are possible too, but only by integers. For example,

‘\multiply\dimen4 by 3’ triples the value of \dimen4, and ‘\divide\skip5
by 2’ cuts in half all three components of the glue that is currently registered in \skip5.
You shouldn’t divide by zero, nor should you multiply by numbers that will make the
results exceed the register capacities. Division of a positive integer by a positive integer
discards the remainder, and the sign of the result changes if you change the sign of
either operand. For example, 14 divided by 3 yields 4; —14 divided by 3 yields —4;
—14 divided by —3 yields 4. Dimension values are integer multiples of sp (scaled points).

@ You can use any \count register in the context of a (number), any \dimen
register in the context of a (dimen), any \skip register in the context of (glue),
and any \muskip register in the context of (muglue). For example, ‘\hskip\skip1’ puts
horizontal glue into a list, using the value of \skip1; and if \count5 is 20, the command
“\advance\dimen20 by\dimen\count5’ is equivalent to ‘\multiply\dimen20 by 2’.

@ A \dimen register can be used also in the context of a (number), and a \skip

register can be used as a (dimen) or a (number). TEX converts (glue) to
(dimen) by omitting the stretch and shrink components, and it converts (dimen) to
(number) by assuming units of sp (scaled points). For example, if \skip1 holds the
value 1pt plus 2 pt, then ‘\dimen1=\skip1l’ sets \dimenl equal to 1 pt; and the com-
mands ‘\count2=\dimen1’ or ‘\count2=\skipl’ will set \count2 equal to 65536. These
rules also apply to TEX’s internal parameters; for example, ‘\dimen2=\baselineskip’
will set \dimen2 to the natural space component of the current baselineskip glue.

Chapter 15: How TgX Makes Lines into Pages 119

@ » EXERCISE 15.6
Test your knowledge of TEX’s registers by stating the results of each of the
following commands when they are performed in sequence:

\count1=50 \dimen2=\countipt \divide\counti by 8

\skip2=-10pt plus\countifil minus\dimen2

\multiply\skip2 by-\countl \divide\skip2 by \dimen2 \count6=\skip2
\skip1l=.5\dimen2 plus\skip2 minus\count\count1fill

\multiply\skip2 by\skipl \advance\skipl by-\skip2

@ » EXERCISE 15.7
What is in \skip5 after the following three commands have acted?

\skip5=0pt plus 1pt
\advance\skip5 by \skip4 \advance\skip5 by -\skip4

@ » EXERCISE 15.8
(For mathematicians.) Explain how to round \dimen2 to the nearest multiple
of \dimen3, assuming that \dimen3 is nonzero.

@ The registers obey TEX’s group structure. For example, changes to \count3
inside {...} will not affect the value of \count3 outside. Therefore TEX

effectively has more than 256 registers of each type. If you want the effect of a register

command to transcend its group, you must say \global when you change the value.

gé} » EXERCISE 15.9
What is in \count1 after the following sequence of commands?

\count1=5 {\count1=2 \globalladvance\countiby\countl
\advance\countiby\counti}

@ The first ten \count registers, \countO through \count9, are reserved for a

special purpose: TEX displays these ten counts on your terminal whenever
outputting a page, and it transmits them to the output file as an identification of that
page. The counts are separated by decimal points on your terminal, with trailing ‘.0’
patterns suppressed. Thus, for example, if \count0=5 and \count2=7 when a page is
being shipped out to the dvi file, and if the other count registers are zero, TEX will
type ‘[5.0.7]°. Plain TEX uses \countO for the page number, and it keeps \count1
through \count9 equal to zero; that is why you see just ‘[1]’ when page 1 is being
output. In more complex applications the page numbers can have further structure;
ten counts are shipped out so that there will be plenty of identification.

@, It’s usually desirable to have symbolic names for registers. TEX provides a
\countdef command (similar to \chardef, cf. Chapter 8), which makes it
easy to do this: You just say

\countdef\chapno=28

and \chapno is henceforth an abbreviation for \count28. Similar commands \dimendef,
\skipdef, and \muskipdef are available for the other types of numeric registers. After
a control sequence has been defined by \countdef, it can be used in TEX commands
exactly as if it were an integer parameter like \tolerance. Similarly, \dimendef ef-
fectively creates a new dimension parameter, \skipdef effectively creates a new glue
parameter, and \muskipdef effectively creates a new muglue parameter.

120 Chapter 15: How TEX Makes Lines into Pages

@ Besides the numerical registers, TEX also has 256 box registers called \box0 to

\box255. A box register gets a value when you say \setbox(number)=(box);
for example, ‘\setbox3=\hbox{A} sets \box3 to an hbox that contains the single let-
ter A. Several other examples of \setbox have already appeared in Chapter 12. Chap-
ter 10 points out that ‘2\wd3’ is a (dimen) that represents twice the width of \box3;
similarly, \ht (number) and \dp(number) can be used to refer to the height and depth
of a given box register.

@ Box registers are local to groups just as arithmetic registers are. But there’s a

big difference between box registers and all the rest: When you use a \box, it
loses its value. For example, the construction ‘\raise2pt\box3’ in a horizontal list not
only puts the contents of \box3 into the list after raising it by 2 pt, it also makes \box3
void. TEX does this for efficiency, since it is desirable to avoid copying the contents
of potentially large boxes. If you want to use a box register without wiping out its
contents, just say ‘\copy’ instead of ‘\box’; for example, ‘\raise2pt\copy3’.

@ Another way to use a box register is to extract the inside of an hbox by saying
“\unhbox’. This annihilates the contents of the register, like ‘\box’ does, and
it also removes one level of boxing. For example, the commands

\setbox3=\hbox{A} \setbox3=\hbox{\box3 B}
\setbox4=\hbox{A} \setbox4=\hbox{\unhbox4 B}

put \hbox{\hbox{A}B} into \box3 and \hbox{AB} into \box4. Similarly, \unvbox un-
wraps a vbox. If you want to construct a large box by accretion (e.g., a table of
contents), it is best to use \unhbox or \unvbox as in the \setbox4 example; otherwise
you use more of TEX’s memory space, and you might even obtain boxes inside boxes
nested to such a deep level that hardware or software limits are exceeded.

@ The operations \unhcopy and \unvcopy are related to \unhbox and \unvbox
as \copy is to \box. (But their names are admittedly peculiar.)

@ An unboxing operation “unsets” any glue that was set at the box’s outer level.
For example, consider the sequence of commands

\setbox5=\hbox{A \hbox{B C}} \setbox6=\hbox to 1.05\wd5{\unhcopy5}

This makes \box6 five percent wider than \box5; the glue between A and \hbox{B C}
stretches to make the difference, but the glue inside the inner hbox does not change.

@ A box register is either “void” or it contains an hbox or a vbox. There is a

difference between a void register and one that contains an empty box whose
height, width, and depth are zero; for example, if \box3 is void, you can say \unhbox3
or \unvbox3 or \unhcopy3 or \unvcopy3, but if \box3 is equal to \hbox{} you can say
only \unhbox3 or \unhcopy3. If you say ‘\global\setbox3=(box)’, register \box3 will
become “globally void” when it is subsequently used or unboxed.

@ » EXERCISE 15.10
What is in register \box5 after the following commands?

\setbox5=\hbox{A} \setbox5=\hbox{\copy5\unhbox5\box5\unhcopy5}

@ » EXERCISE 15.11
And what’s in \box3 after ‘{\global\setbox3=\hbox{A}\setbox3=\hbox{}}'?

Chapter 15: How TpX Makes Lines into Pages

@ If you are unsure about how TEX operates on its registers, you can experiment
online by using certain ‘\show’ commands. For example,

\showthe\countl \showthe\dimen2 \showthe\skipB

will display the contents of \count1, \dimen2, and \skip3; and ‘\showbox4’ will dis-
play the contents of \box4. Box contents will appear only in the log file, unless you
say ‘\tracingonline=1". Plain TEX provides a macro ‘\tracingall’ that turns on
every possible mode of interaction, including \tracingonline. The author used these
features to check the answers to several of the exercises above.

@ Large applications of TEX make use of different sets of macros written by
different groups of people. Chaos would reign if a register like \count100, say,
were being used simultaneously for different purposes in different macros. Therefore
plain TEX provides an allocation facility; cooperation will replace confusion if each
macro writer uses these conventions. The idea is to say, e.g., ‘\newcount’ when you
want to dedicate a \count register to a special purpose. For example, the author
designed a macro called ‘\exercise’ to format the exercises in this manual, and one of
the features of \exercise is that it computes the number of the current exercise. The
format macros in Appendix E reserve a \count register for this purpose by saying

\newcount\exno

and then the command ‘\exno=0" is used at the beginning of each chapter. Similarly,
‘\advance\exno by1l’ is used whenever a new exercise comes along, and ‘\the\exno’
is used to typeset the current exercise number. The \newcount operation assigns a
unique count register to its argument \exno, and it defines \exno with a \countdef
command. All of the other format macros are written without the knowledge of exactly
which \count register actually corresponds to \exno.

gé? Besides \newcount, plain TEX provides \newdimen, \newskip, \newmuskip,

and \newbox:; there also are \newtoks, \newread, \newwrite, \newfam, and
\newinsert, for features we haven’t discussed yet. Appendices B and E contain sev-
eral examples of the proper use of allocation. In the cases of \newbox, \newread,
etc., the allocated number is defined by \chardef. For example, if the command
‘\newbox\abstract’ is used to define a box register that will contain an abstract,
and if the \newbox operation decides to allocate \box45 for this purpose, then it
defines the meaning of \abstract by saying ‘\chardefl\abstract=45". TEX allows
\chardef’d quantities to be used as integers, so that you can say \box\abstract and
\copy\abstract, etc. (There is no \boxdef command.)

@ » EXERCISE 15.12
Design a \note macro that produces footnotes numbered sequentially. For

example,! it should produce the footnotes here® if you type

. example,\note{First note.} it should produce
the footnotes here\note{Second note.} if

(Use \newcount to allocate a \count register for the footnotes.)

I First note.

2 Second note.

121

122

Chapter 15: How TEX Makes Lines into Pages

@ Sometimes, however, you want to use a register just for temporary storage,

and you know that it won’t conflict with anybody else’s macros. Registers
\count255, \dimen255, \skip255, and \muskip255 are traditionally kept available for
such purposes. Furthermore, plain TEX reserves \dimenO to \dimen9, \skipO to \skip9,
\muskipO to \muskip9, and \box0 to \box9 for “scratchwork”; these registers are never
allocated by the \new. .. operations. We have seen that \countO through \count9 are
special, and \box255 also turns out to be special; so those registers should be avoided
unless you know what you are doing.

@@ Of course any register can be used for short-term purposes inside a group
(including \countO to \count9 and \box255, and including registers that have
been allocated for other purposes), since register changes are local to groups. However,
you should be sure that TEX will not output any pages before the group has ended,
because output routines might otherwise be invoked at unfortunate times. TEX is liable
to invoke an output routine whenever it tries to move something from the list of recent
contributions to the current page, because it might discover a page break with ¢ = oc
then. Here is a list of the times when that can happen: (a) At the beginning or end of a
paragraph, provided that this paragraph is being contributed to the main vertical list.
(b) At the beginning or end of a displayed equation within such a paragraph. (c) After
completing an \halign in vertical mode. (d) After contributing a box or penalty or
insertion to the main vertical list. (e) After an \output routine has ended.

@ Now that we are armed with the knowledge of TEX’s flexible registers, we

can plunge into the details of insertions. There are 255 classes of insertions,
\insert0 to \insert254, and they are tied to other registers of the same number.
For example, \insert100 is connected with \count100, \dimen100, \skip100, and
\box100. Therefore plain TEX provides an allocation function for insertions as it does
for registers; Appendix B includes the command

\newinsert\footins

which defines \footins as the number for footnote insertions. Other commands that
deal with footnotes refer to \count\footins, \dimen\footins, and so on. The macros
for floating topinserts are similarly prefaced by ‘\newinsert\topins’, which defines
\topins as the number of their class. Each class of insertions is independent, but TgX
preserves the order of insertions within a class. It turns out that \footins is class 254,
and \topins is class 253, but the macros do not use such numbers directly.

@ For our purposes let’s consider a particular class of insertions called class n;
we will then be dealing with TEX’s primitive command

\insert n{(vertical mode material)}
which puts an insertion item into a horizontal or vertical list. For this class of insertions

\box n is where the material appears when a page is output;
\count n is the magnification factor for page breaking;
\dimenn is the maximum insertion size per page;

\skipn is the extra space to allocate on a page.

For example, material inserted with \insert100 will eventually appear in \box100.

Chapter 15: How TgX Makes Lines into Pages

@ Let the natural height plus depth of \insertn be z; then \countn is 1000

times the factor by which z affects the page goal. For example, plain TEX sets
\count\footins=1000, since there is a one-to-one relationship: A 10-point footnote
effectively makes a page 10 pt shorter. But if we have an application where footnotes
appear in double columns, a count value of 500 would be appropriate. One of the
insertion classes in Appendix E makes marginal notes for proofreading purposes; in
that case the count value is zero. No actual magnification is done; \count n is simply
a number used for bookkeeping, when estimating the costs of various page breaks.

@@ The first footnote on a page requires extra space, since we want to separate
the footnotes from the text, and since we want to output a horizontal rule.
Plain TEX sets ‘\skip\footins=\bigskipamount’; this means that a bigskip of extra
space is assumed to be added by the output routine to any page that contains at least
one insertion of class \footins.

@@ Sometimes it is desirable to put a maximum limitation on the size of insertions;

for example, people usually don’t want an entire page to consist of footnotes.
Plain TEX sets \dimen\footins=8in; this means that \box\footins is not supposed
to accumulate more than 8 inches of footnotes for any one page.

@ You might want to review the page-breaking algorithm explained at the be-
ginning of this chapter, before reading further. On the other hand, maybe you
don’t really want to read the rest of this chapter at all, ever.

@@ Here now is the algorithm that TEX performs when an \insert n is moved

from the “recent contributions” to the “current page.” (Remember that such
a move does not mean that the insertion will actually take place; the current page will
be backed up later, to the breakpoint of least cost, and only the insertions preceding
that breakpoint will actually be performed.) Let g and t be the current \pagegoal
and \pagetotal; let ¢ be the \insertpenalties accumulated for the current page;
and let d and 2z be the current \pagedepth and \pageshrink. (The value of d is at
most \maxdepth; this value has not yet been incorporated into t.) Finally, let z be
the natural height plus depth of the \insert n that we are moving to the current page;
and let f be the corresponding magnification factor, i.e., \count n divided by 1000.

Step 1. If there is no previous \insert n on the current page, decrease g by hf + w,
where h is the current height plus depth of \boxn, and where w is the natural space
component of \skipn; also include the stretch and shrink components of \skipn in
the totals for the current page (in particular, this affects z).

Step 2. If a previous \insert n on the current page has been split, add the parameter
called \floatingpenalty to ¢, and omit Steps 3 and 4.

Step 3. Test if the current insertion will fit on the page without splitting. This means
that it will not make the height plus depth of \boxn surpass \dimenn, when it is
added to \boxn together with all previous \insertn amounts on the current page;
furthermore, it means that either zf < 0ort+d-+zf — 2z < g. If both tests are passed,
subtract zf from g and omit Step 4.

Step 4. (The current insertion will be split, at least tentatively; but the split will not
actually take place if the least-cost page turns out to have occurred earlier than the
present insertion.) First compute the largest amount v such that a height plus depth

123

124 Chapter 15: How TgX Makes Lines into Pages

of v will not make the total insertions into \box n bigger than \dimen n, and such that
t+d+uvf <g. (Notice that z is omitted from the latter formula, but the available
shrinkability was considered in Step 3 when we tried to avoid splitting.) Then find the
least-cost way to split the beginning of the vertical list of the insertion so as to obtain a
box of height v. (Use an algorithm just like page-breaking, but without the complexity
of insertion; an additional ‘\penalty-10000’ item is assumed to be present at the end
of the vertical list, to ensure that a legal breakpoint exists.) Let u be the natural
height plus depth of that least-cost box, and let 7 be the penalty associated with the
optimum breakpoint. Decrease g by uf, and increase ¢ by . (If \tracingpages=1, the
log file should now get a cryptic message that says ‘%4 splitmn v,u p=r’. For example,

% split254 180.2,175.3 p=100

means that the algorithm has tried to split an \insert254 to 180.2 pt; the best split is
actually 175.3 pt tall, and the penalty for breaking there is 100.)

@@ This algorithm is admittedly complicated, but no simpler mechanism seems to
do nearly as much. Notice that penalties of —10000 inside insertions will make
certain splits very attractive in Step 4, so the user can provide hints about where to
break, in difficult situations. The interesting thing is that the algorithm can be adapted
to behave in a variety of different ways. Floating insertions are accommodated as a
special case of split insertions, by making each floating topinsert start with \penaltyO,
so that it can split for free, and by having zero as the associated \floatingpenalty;
non-floating insertions like footnotes are accommodated by associating larger penalties
with split insertions (see Appendix B).

@@ The splitting operation mentioned in Step 4 is also available as a primitive:
‘\vsplit(number) to(dimen)’ produces a vbox obtained by splitting off a
specified amount of material from a box register. For example,

\setbox200=\vsplit100 to 50pt

sets \box200 to a vbox whose height is 50 pt; it goes through the vertical list inside
\box100 (which should be a vbox) and finds the least-cost break assuming a goal height
of 50 pt, considering badnesses and penalties just as in the case of page-breaking (but
with ¢ = 0). The algorithm uses \splitmaxdepth instead of \maxdepth to govern
the maximum depth of boxes. Then it prunes the top of \box100 by removing every-
thing up to and including any discardable items that immediately follow the optimum
breakpoint; and it uses \splittopskip to insert new glue before the first box inside
\box100, just as \topskip glue appears at the top of a page. However, if the optimum
breakpoint occurs at the end of the vertical list inside \box100—a ‘\penalty-10000’
item is assumed to be present there—or if all items after the optimum breakpoint are
discarded, \box100 will be void after the \vsplit. And if \box100 was void before the
\vsplit, both \box100 and \box200 will be void afterwards.

@ You had better not change \boxn, \count n, \dimenn, or \skipn while TEX

is contributing insertions to the current page, since the algorithm described
above assumes that those quantities are static. But you can change \floatingpenalty,
\splittopskip, and \splitmaxdepth; TEX will use the values that were current just
inside the closing right brace of ‘\insertn{...} when it splits and floats insertions.
For example, Appendix B uses \floatingpenalty=20000 in footnote insertions, in order

Chapter 15: How TgX Makes Lines into Pages

to discourage footnotes that split before others can start; but the \floatingpenalty is
zero in floating topinserts. Appendix B also uses special values of \splittopskip and
\splitmaxdepth, together with struts, so that split footnotes will be typeset with the
same spacing as unsplit ones.

@@ The \footnote macro puts an \insert into the horizontal list of a paragraph.

After the paragraph has been broken into lines, this insertion will move out
into the vertical list just after the line that contained it (see Chapter 14). Since there
is no legal breakpoint between that box (i.e., that line) and the insertion, TEX will put
the insertion onto the page that contains the line that contains the insertion.

@@» EXERCISE 15.13
Study the page-breaking algorithm carefully. Is it possible that a footnote
might not appear on the same page as its reference?

@ When the best page break is finally chosen, TEX removes everything after the

chosen breakpoint from the bottom of the “current page,” and puts it all back
at the top of the “recent contributions.” The chosen breakpoint itself is placed at the
very top of the recent contributions. If it is a penalty item, the value of the penalty
is recorded in \outputpenalty and the penalty in the contribution list is changed to
10000; otherwise \outputpenalty is set to zero. The insertions that remain on the
current page are of three kinds: For each class n there are unsplit insertions, followed
possibly by a single split insertion, followed possibly by others. The unsplit insertions
are appended to \boxn, with no interline glue between them. (Struts should be
used, as in the \vfootnote macro of Appendix B.) If a split insertion is present, it is
effectively \vsplit to the size that was computed previously in Step 4; the top part is
treated as an unsplit insertion, and the remainder (if any) is converted to an insertion
as if it had not been split. This remainder, followed by any other floating insertions
of the same class, is held over in a separate place. (They will show up on the “current,
page” if \showlists is used while an \output routine is active; the total number of
such insertions appears in \insertpenalties during an \output routine.) The non-
insertion items before the best break on the current page are put together in a \vbox
of height g, where g was the \pagegoal at the time of the break, using the saved value
of \maxdepth; this box becomes \box255. Now the user’s \output routine enters TEX’s
scanner (see Chapter 23); its duty is to assemble the final pages based on the contents of
\box255 and any insertion boxes that it knows about. The output routine will probably
unbox those boxes, so that their glue can be reset; the glue in insertion boxes usually
cooperates nicely with the glue on the rest of the page, when it is given a chance. After
the \output routine is finished, held-over insertion items are placed first on the list of
recent contributions, followed by the vertical list constructed by \output, followed by
the recent contributions beginning with the page break. (Deep breath.) You got that?

Since it is impossible to foresee how [footnotes] will happen to come out

in the make-up, it is impracticable to number them from 1 up on each page.
The best way is to number them consecutively throughout an article

or by chapters in a book.

— UNIVERSITY OF CHICAGO PRESS, Manual of Style (1910)

Don'’t use footnotes in your books, Don.
— JILL KNUTH (1962)

125

16

Typing
Math Formulas

b0 -
N

P [/

I

Chapter 16: Typing Math Formulas

TEX 1s designed to handle complex mathematical expressions in such a way that
most of them are easy to input. The basic idea is that a complicated formula
is composed of less complicated formulas put together in a simple way; the less
complicated formulas are, in turn, made up of simple combinations of formulas
that are even less complicated; and so on. Stating this another way, if you know
how to type simple formulas and how to combine formulas into larger ones, you
will be able to handle virtually any formula at all. So let’s start with simple ones
and work our way up.

The simplest formula is a single letter, like ‘z’, or a single number, like
‘2’. In order to put these into a TEX text, you type ‘x’ and ‘2’, respectively.
Notice that all mathematical formulas are enclosed in special math brackets; we
are using $ as the math bracket in this manual, in accord with the plain TEX
format defined in Appendix B, because mathematics is supposedly expensive.

When you type ‘x’ the ‘z’ comes out in italics, but when you type
‘$28%’ the ‘2’ comes out in roman type. In general, all characters on your key-
board have a special interpretation in math formulas, according to the normal
conventions of mathematics printing: Letters now denote italic letters, while
digits and punctuation denote roman digits and punctuation; a hyphen (-) now
denotes a minus sign (—), which is almost the same as an em-dash but not quite
(see Chapter 2). The first $ that you type puts you into “math mode” and the
second takes you out (see Chapter 13). So if you forget one $ or type one $ too
many, TEX will probably become thoroughly confused and you will probably get
some sort of error message.

Formulas that have been typeset by a printer who i1s unaccustomed to
mathematics usually look quite strange to a mathematician, because a novice
printer usually gets the spacing all wrong. In order to alleviate this problem, TEX
does most of its own spacing in math formulas; and it ignores any spaces that you
yourself put between $’s. For example, if you type ‘¢ x$" and ‘$ 2 $’, they will
mean the same thing as ‘x’ and ‘2’. You can type ‘$(x + y)/(x - y)$ or
‘$(x+y) / (x-y)$’, but both will result in ‘(z +vy)/(z —y)’, a formula in which
there is a bit of extra space surrounding the + and — signs but none around
the / sign. Thus, you do not have to memorize the complicated rules of math
spacing, and you are free to use blank spaces in any way you like. Of course,
spaces are still used in the normal way to mark the end of control sequences,
as explained in Chapter 3. In most circumstances TEX’s spacing will be what a
mathematician is accustomed to; but we will see in Chapter 18 that there are
control sequences by which you can override TEX’s spacing rules if you want to.

One of the things mathematicians like to do is make their formulas look
like Greek to the uninitiated. In plain TEX language you can type ‘$$\alpha,
\beta, \gamma, \delta;3$$’ and you will get the first four Greek letters

a, 3,7, 0;

furthermore there are uppercase Greek letters like ‘I, which you can get by
typing ‘Γ’. Don’t feel intimidated if you aren’t already familiar with

127

128

Chapter 16: Typing Math Formulas

Greek letters; they will be easy to learn if you need them. The only difficulty
is that some symbols that look nearly the same must be carefully distinguished.
For example, the Greek letters \nu (v) and \kappa (x) should not be confused
with the italic letters v and x; the Greek \phi (¢) is different from the slashed
zero called \emptyset ((). A lowercase epsilon (¢) is quite different from the
symbol used to denote membership in a set (€); type ‘ϵ’ for ¢ and
‘\in’ for €. Some of the lowercase Greek letters have variant forms in plain
TEX’s math italic fonts: ‘$(\phi,\theta,\epsilon,\rho)$’ yields ‘(¢,6,¢,p)’
while ‘¢ (\varphi,\vartheta,\varepsilon,\varrho)$’ yields ‘(¢, 9, ¢, 0)".
Besides Greek letters, there are a lot of funny symbols like ‘~’ (which
you get by typing ‘\approx’) and ‘" (which you get by typing ‘\mapsto’).
A complete list of these control sequences and the characters they correspond to
appears in Appendix F. Such control sequences are allowed only in math mode,
1.e., between $’s, because the corresponding symbols appear in the math fonts.

» EXERCISE 16.1

What should you type to get the formula ‘v +v € I ?

» EXERCISE 16.2

Look at Appendix F to discover the control sequences for ‘<’, ‘>’ and ‘#’.
(These are probably the three most commonly used math symbols that are not
present on your keyboard.) What does plain TgX call them?

Now let’s see how the more complex formulas get built up from simple
ones. In the first place, you can get superscripts ("Phigh) and subscripts o

by using ‘~" and ‘_’, as shown in the following examples:

Input Output
$x~28 z?

$x_2¢% To

$2°x$ 2%
$x"2y"2% T2y

$x © 2y © 2% x2y?
$x_2y_2% T2Y2
$_2F_3% o Iy

Notice that ~ and _ apply only to the next single character. If you want several
things to be superscripted or subscripted, just enclose them in braces:

$x"{2y}$ x2Y
$2°{2°x}$ e
$2°{2°{2"x}}$ 92%"
$y_{x_23}% Yo

$y_{x"2}$ Y2

Chapter 16: Typing Math Formulas

The braces in these examples have been used to specify “subformulas,” i.e.,
simpler parts of a larger formula. TEX makes a box for each subformula, and
treats that box as if it were a single symbol. Braces also serve their usual purpose
of grouping, as discussed in Chapter 5.

It 1s illegal to type ‘x"y~2’ or ‘x_y_z’; TEgX will complain of a “double
superscript” or “double subscript.” You must type ‘x"{y~z} or ‘x~{yz} or
‘x_{y_z} or ‘x_{yz}’ in order to make your intention clear.

A superscript or subscript following a character applies to that character
only; but when following a subformula it applies to that whole subformula, and
it will be raised or lowered accordingly. For example,

$((x°2)"3)"4$ ((z*)%)*
4
$1({(x"2)}~3)} 43 ((z2)%)

In the first formula the ‘=3’ and ‘"4’ are superscripts on the right parentheses,
i.e., on the ‘)’ characters that immediately precede them, but in the second
formula they are superscripts on the subformulas that are enclosed in braces.
The first alternative is preferable, because it is much easier to type and it is just
as easy to read.

@ A subscript or superscript following nothing (as in the ‘_2F_3’ example on

the preceding page, where the ‘_2’ follows nothing) is taken to mean a sub-
script or superscript of an empty subformula. Such notations are (fortunately) rare in
mathematics; but if you do encounter them it is better to make your intention clear by
showing the empty subformula explicitly with braces. In other words, the best way to
get ‘2F3’ in a formula is to type {}_2F_3’ or ‘{_2}F_3’ or ‘{_2F_3}".

@ » EXERCISE 16.3
What difference, if any, is there between the output of ‘¢x + _2F_3$’ and the
output of ‘¢x + {}_2F_3%’7

@ » EXERCISE 16.4
Describe the differences between the outputs of ‘${x"y}"z$ and ‘$x~{y~z}$".

You can have simultaneous subscripts and superscripts, and you can
specify them in any order:

$x"2_39% T
$x_372% x%
$x~{31415}_{92}+\pi$ T3t +
zd
$x_{y~a_b} "{z_c~d}$ Ty

Notice that simultaneous su} 'scripts are positioned over each other. However, a
subscript will be “tucked in” slightly when it follows certain letters; for example,
‘¢P_2"2%’ produces ‘Pj’. If for some reason you want the left edges of both
subscript and superscript to be aligned, you can fool TEX by inserting a null
subformula: ‘$P{}_2"2$ produces ‘P3 .

129

130 Chapter 16: Typing Math Formulas

The control sequence \prime stands for the symbol /' which is used
mostly 1in superscripts. In fact, ‘7’ is so big as it stands that you would never
want to use it except in a subscript or superscript, where it occurs in a smaller
size. Here are some typical examples:

i Output
$y_1"\prime$ v,
$y_2"{\prime\prime}$ ol

$y_3"{\prime\prime\prime}$ s

Since single and double primes occur rather frequently, plain TEX provides a
convenient abbreviation: You can simply type ’ instead of “\prime, and ’°
instead of “{\prime\prime}, and so on.

$£° [g(x)]g’ (x)$ f'lg(x)]g' (z)
$y_17+y_27°$% y1 +y3

By’ _1+y’’ 23 1+ Yo

$y)) _3+g: A2$ yg/ + g/2

@ » EXERCISE 16.5

Why do you think TEX treats \prime as a large symbol that appears only in
superscripts, instead of making it a smaller symbol that has already been shifted up
into the superscript position?

@ » EXERCISE 16.6
Mathematicians sometimes use “tensor notation” in which subscripts and su-
perscripts are staggered, as in ‘R;*¥;’. Explain how to achieve such an effect.

Another way to get complex formulas from simple ones is to use the con-
trol sequences \sqrt, \underline, or \overline. Like ~ and _, these operations
apply to the character or subformula that follows them:

$\sqrt2$ V2
$\sqrt{x+2}$ Vo +2
$\underline4$ 4
$\overline{x+yl}$ T +y
$\overline x+\overline y$ T+7Y
$x"{\underline n}$ T
$x~{\overline{m+n}}$ g
$\sqrt{x~3+\sqrt\alphal}$ 3+ /a
You can also get cube roots ‘v ’ and similar things by using \root:
$\root 3 \of 2% V2
$\root n \of {x"n+y°n}$ Y + yn

$\root n+1 \of a$ "t a

Chapter 16: Typing Math Formulas

@ The \sqrt and \underline and \overline operations are able to place lines

above or below subformulas of any size or shape; the bar lines change their size
and position, so that they are long enough to cover the subformula, and high enough
or low enough not to bump into it. For example, consider ‘\overline 1’ () versus
“\overline m’ (7): the first has a shorter bar line, and this line has been raised higher
than the bar in the second. Similarly, the bar in ‘\underline y’ (y) is lower than
the bar in ‘\underline x’ (z); and square root signs appear in a variety of positions
based on the height and depth of what is being \sqrt’d: v/a + vd + VY- TEX knows
the height, depth, and width of every letter and every subformula, because it considers
them to be boxes, as explained in Chapter 11. If you have a formula in which there
is only one \sqrt, or only one \overline or \underline, the normal positioning rules
work fine; but sometimes you want to have uniformity between different parts of a
complex formula. For example, you might want to typeset ‘\/E + \/c_l + \/5’, putting
all square roots in the same vertical position. There’s an easy way to do this, using the
control sequence \mathstrut as follows:

$\sqrt{\mathstrut al+\sqrt{\mathstrut d}+\sqrt{\mathstrut y}$.

A \mathstrut is an invisible box whose width is zero; its height and depth are the
height and depth of a parenthesis ‘(. Therefore subformulas that contain \mathstrut
will always have the same height and depth, unless they involve more complicated
constructions like subscripts and superscripts. Chapter 18 discusses more powerful
operations called \smash and \phantom by which you can obtain complete control over
the positioning of roots and similar signs.

» EXERCISE 16.7
Test your understanding of what you have read so far in this chapter by explain-
ing what should be typed to get the following formulas. (Be sure to check your
answer with Appendix A to confirm that you're right.)

neEY gieaed (n—i—l)2 V-2 w+z pf ay,, v/ h!!(ax)

» EXERCISE 16.8
What mistake did B. C. Dull discover after he typed the following?

If$ x = y$, then $x3$ is equal to $y.$

» EXERCISE 16.9
Explain how to type the following sentence:

Deleting an element from an n-tuple leaves an (n — 1)-tuple.

» EXERCISE 16.10
List all the italic letters that descend below the baseline. (These are the letters
for which \underline will lower its bar line.)

_ We have discussed the fact that the characters you type have special
meanings in math mode, but the examples so far are incomplete; they don’t
reveal all the power that is at your fingertips just after you press the ‘§’ key. It’s
time now to go back to basics: Let us make a systematic survey of what each
character does, when it is used in a formula.

131

132

Chapter 16: Typing Math Formulas

The 52 letters (A to Z and a to z) denote italic symbols (A to Z and
a to z), which a mathematician would call “variables.” TEX just calls them
“ordinary symbols,” because they make up the bulk of math formulas. There
are two variants of lowercase L in plain TEX, namely ‘I’ (which you get by simply
typing ‘1’) and ‘¢’ (which you get by typing ‘\ell’). Although mathematicians
commonly write something that looks like /" in their manuscripts, they do so
only to distinguish it from the numeral ‘1’. This distinguishability problem 1is
not present in printed mathematics, since an italic ‘I’ is quite different from a ‘1’;
therefore it is traditional to use ‘I’ unless ‘¢’ has been specifically requested.

Plain TgX also treats the 18 characters
0123456789 !'72 .|/ “@™"

as ordinary symbols; i.e., it doesn’t insert any extra space when these symbols
occur next to each other or next to letters. Unlike the letters, these 18 characters
remain in roman type when they appear in formulas. There’s nothing special for
you to remember about them, except that the vertical line ‘|’ has special uses
that we shall discuss later. Furthermore, you should be careful to distinguish
between ‘oh’ and ‘zero’: The italic letter O is almost never used in formulas
unless it appears just before a left parenthesis, as in ‘O(n)’; and the numeral 0 is
almost never used just before a left parenthesis unless it i1s preceded by another
digit, as in ‘10(n—1)". Watch for left parentheses and you'll be 0K. (Lowercase
o’s also tend to appear only before left parentheses; type ‘x_0’ instead of ‘x_o’,
since the formula ‘zy’ is generally more correct than ‘z,’.)

The three characters +, -, and * are called “binary operations,” because
they operate on two parts of a formula. For example, + is a plus sign, which is
used for the sum of two numbers; - is a minus sign. The asterisk (*) is rarer in
mathematics, but it also behaves as a binary operation. Here are some exam-
ples of how TEX typesets binary operations when they appear next to ordinary
symbols:

Input Output
$x+y-z$ T+y—2z
$x+y*z$ T+y*z
xxy/z Txy/z

Notice that - and * produce quite different math symbols from what you get in
normal text: The hyphen (-) becomes a minus sign (—), and the raised aster-
isk (*) drops down to a lower level (x).

TEX does not treat / as a binary operation, even though a slash stands for
division (which qualifies as a binary operation on mathematical grounds). The
reason is that printers traditionally put extra space around the symbols +, —, and x,
but not around /. If TEX were to typeset / as a binary operation, the formula ‘$1/2¢$’
would come out ‘1 /2’ which is wrong; so TEX considers / to be an ordinary symbol.

Chapter 16: Typing Math Formulas

@ Appendix F lists many more binary operations, for which you type control
sequences instead of single characters. Here are some examples:

$x\times y\cdot z$ TXY- 2
$x\circ y\bullet z$ royez
$x\cup y\cap z$ zUyNz
$x\sqcup y\sqcap z$ xUyMNz
$x\vee y\wedge z$ TVYANz
$x\pm y\mp z$ TEYTF 2

It is important to distinguish x (\times) from X (X) and from z (x); to distinguish U
(\cup) from U (U) and from u (u); to distinguish V (\vee) from V (V) and from v (v);
to distinguish o (\circ) from O (0) and from o (o). The symbols ‘v’ and ‘A’ can also
be called \lor and \land, since they frequently stand for binary operations that are
called “logical or” and “logical and.”

@ Incidentally, binary operations are treated as ordinary symbols if they don’t
occur between two quantities that they can operate on. For example, no extra

space is inserted next to the +, —, and * in cases like the following:
$x=+1% P — =1l
$3.142-% 3.142—
$(D*x)$ (Dx)

Consider also the following examples, which show that binary operations can be used
as ordinary symbols in superscripts and subscripts:

$K_n"+,K_n"-$ KI Ky
$z"*_{ij}$ 23

$g-\circ \mapsto g~\bullet$ 9°+—g°
$£7%(x) \cap f_*(y)$ f (@) 0 fe(y)

@ » EXERCISE 16.11
How would you obtain the formulas ‘z**’ and ‘h/,(2)’?

Plain TgX treats the four characters =, <, >, and : as “relations” because
they express a relationship between two quantities. For example, ‘z < y’ means
that = is less than y. Such relationships have a rather different meaning from
binary operations like 4+, and the symbols are typeset somewhat differently:

$x=y>z$ T=y>2z
$x:=y$ 7 g= 1

$x\le y\ne z$ r<y#z
$x\sim y\simeq z$ T~y =2
$x\equiv y\not\equiv z$ T=YE 2
$x\subset y\subseteq z$ rCyCz

(The last several examples show some of the many other relational symbols that
plain TEX makes available via control sequences; see Appendix F.)

133

134 Chapter 16: Typing Math Formulas

The two characters ¢,” (comma) and ‘;’ (semicolon) are treated as
punctuation marks in formulas; this means that TEX puts a little extra space
after them, but not before them.

$f(x,y;2)$ flz,y;2)

It isn’t customary to put extra space after a ‘.’ (period) in math formulas, so

TEX treats a period as an ordinary symbol. If you want the ‘:’ character to be
treated as a punctuation mark instead of as a relation, just call it \colon:

$f:A\to B$ f:A— B
$f\colon A\to B$ f:A— B

If you want to use a comma as an ordinary symbol (e.g., when it appears in a
large number), just put it in braces; TEX treats anything in braces as an ordinary
symbol. For instance,

$12,345x$ 12,345z (wrong)
$12{, }345x$ 12,345z (right)

g% » EXERCISE 16.12
What’s an easy way to get a raised dot in a decimal constant (e.g., ‘3-1416")7

So far we have considered letters, other ordinary symbols, binary oper-
ations, relations, and punctuation marks; hence we have covered almost every
key on the typewriter. There are just a few more: The characters ‘(’ and ‘[’ are
called “openings,” while ‘)’ and ‘]’ are called “closings”; these act pretty much
like ordinary symbols, but they help TEX to decide when a binary operation is
not really being used in a binary way. Then there is the character ’, which we
know is used as an abbreviation for \prime superscripts. Finally, we know that
plain TEX reserves the other ten characters:

\s$h#& " {1} _~°

These are not usable for symbols in math mode unless their \catcode values
are changed (see Chapter 7). Although { and } specify grouping, the control
sequences ‘\{’ and ‘\}’ can be used to get ‘{’ as an opening and ‘}’ as a closing.

@ All of these math mode interpretations are easily changeable, since each char-
acter has a \mathcode, as explained in Chapter 17; none of the conventions are

permanently built into TEX. However, most of them are so standard that it is usually

unwise to make many changes, except perhaps in the interpretations of “, ", and @.

The special characters ~ and _ that designate superscripts and subscripts
should not be used except in formulas. Similarly, the names of math symbols
like \alpha and \approx, and the control sequences for math operations like
\overline, must not invade ordinary text. TEX uses these facts to detect missing
dollar signs in your input, before such mistakes cause too much trouble. For
example, suppose you were to type

The smallest $n such that $2°n>1000% is~10.

Chapter 16: Typing Math Formulas

TEX doesn’t know that you forgot a ‘$’ after the first ‘n’, because it doesn’t
understand English; so it finds a “formula” between the first two $ signs:

The smallest nsuchthat

after which it thinks that ‘2’ is part of the text. But then the ~ reveals an
inconsistency; TEX will automatically insert a $ before the =, and you will get
an error message. In this way the computer has gotten back into synch, and the
rest of the document can be typeset as if nothing had happened.

@ Conversely, a blank line or \par is not permitted in math mode. This gives
TEX another way to recover from a missing $; such errors will be confined to
the paragraph in which they occur.

@ If for some reason you cannot use ~ and _ for superscripts and subscripts,
because you have an unusual keyboard or because you need ~ for French
accents or something, plain TEX lets you type \sp and \sb instead. For example,
‘$x\sp2¢$’ is another way to get ‘z?’. On the other hand, some people are lucky enough
to have keyboards that contain additional symbols besides those of standard ASCII.
When such symbols are available, TEX can be set up to make math typing a bit more
pleasant. For example, at the author’s installation there are keys labeled t and { that
produce visible symbols (these make superscripts and subscripts look much nicer on
the screen); there are keys for the relations <, 2, and # (these save time); and there are
about two dozen more keys that occasionally come in handy. (See Appendix C.)

@ Mathematicians are fond of using accents over letters, because this is often
an effective way to indicate relationships between mathematical objects, and
because it greatly extends the number of available symbols without increasing the
number of necessary fonts. Chapter 9 discusses the use of accents in ordinary text, but
mathematical accents are somewhat different, because spacing is not the same; TEX
uses special conventions for accents in formulas, so that the two sorts of accents will not
be confused with each other. The following math accents are provided by plain TEX:

$\hat a$ a
$\check a$ a
$\tilde a$ a
$\acute a$ a
$\grave a$ a
$\dot a$ a
$\ddot a$ a
$\breve a$ a
$\bar a$ a
$\vec a$ a

The first nine of these are called \~, \v, \7, \’, \, \., \", \u, and \=, respectively,
when they appear in text; \vec is an accent that appears only in formulas. TEX will
complain if you try to use \" or \v, etc., in formulas, or if you try to use \hat or
\check, etc., in ordinary text.

135

136 Chapter 16: Typing Math Formulas

@ It’s usually a good idea to define special control sequences for accented letters
that you need frequently. For example, you can put

\def\Ahat{{\hat A}}
\def\chat{{\hat c}}
\def\scheck{{\check s}r
\def\xtilde{{\tilde x}}
\def\zbar{{\bar z}}

at the beginning of a manuscript that uses the symbols fl, ¢, §, £, and Z more than,
say, five times. This saves you a lot of keystrokes, and it makes the manuscript easier
to read. Chapter 20 explains how to define control sequences.

@ When the letters ¢ and j are accented in math formulas, dotless symbols

and 7 should be used under the accents. These symbols are called \imath and
\jmath in plain TEX. Thus, for example, a paper that uses ‘2’ and ‘)’ ought to begin
with the following definitions:

\def\ihat{{\hat\imath}}
\def\jhat{{\hat\jmath}}

@ You can put accents on top of accents, making symbols like A that might cause

a mathematician to squeal with ecstasy. However, it takes a bit of finesse to
get the upper accent into a position that looks right, because the designer of a font
for mathematics usually tells TEX to position math accents in special ways for special
letters. Plain TEX provides a control sequence called \skew that makes it fairly easy to
shift superaccents into their proper place. For example, ‘\skew6\hat\Ahat’ was used
to produce the symbol above. The number ‘6’ in this example was chosen by trial and
error; ‘5’ seems to put the upper accent a bit too far left, while ‘7’ makes it a bit too
far right, at least in the author’s opinion. The idea is to fiddle with the amount of skew
until you find what pleases you best.

@ It’s possible, in fact, to put math accents on any subformula, not just on

single characters or accented characters. But there’s usually not much point
in doing so, because TEX just centers the accent over the whole subformula. For
example, ‘$\hat{I+M}$’ yields ‘I + M’. In particular, a \bar accent always stays the
same size; it’s not like \overline, which grows with the formula under it. Some people
prefer the longer line from \overline even when it applies to only a single letter; for
example, ‘$\bar z+\overline z$’ produces ‘Z + Z’, and you can take your pick when
you define \zbar. However, plain TEX does provide two accents that grow; they are
called \widehat and \widetilde:

$\widehat x,\widetilde x$ T,T
$\widehat{xy}, \widetilde{xy}$ Ty, Ty
$\widehat{xyz},\widetilde{xyz}$ Tyz,Tyz

The third example here shows the maximum size available.

» EXERCISE 16.13
This has been another long chapter; but cheer up, you have learned a lot! Prove
. . - . 2
it by explaining what to type in order to get the formulas e™%", D ~ p®M + [,

Chapter 16: Typing Math Formulas 137

. =1l
and g € (H™)". (In the last example, assume that a control sequence \ghat
has already been defined, so that \ghat produces the accented letter qg.)

Producing Greek letters is as easy as .
You just type ... as easy as π.

— LESLIE LAMPORT, The L9TeX Document Preparation System (1983)

TeX has no regard for the glories of the Greek tongue—

as far as it is concerned, Greek letters are just additional weird symbols,
and they are allowed only in math mode.

In a pinch you can get the output tex by typing $\tau\epsilon\chi$,

but if you're actually setting Greek text, you will be using

a different version of TgX, designed for a keyboard with Greek letters on it,
and you shouldn’t even be reading this

manual, which is undoubtedly all English to you.

— MICHAEL SPIVAK, The Joy of TeX (1982)

17

More about Math

o\ DA
\\c \‘ll\

¢
SN X
W ase a (YAl ¢
o
AbiS
NAVA A
@-’* —~— = —

Chapter 17: More about Math

Another thing mathematicians like to do is make fractions——and they like to
build symbols up on top of each other in a variety of different ways:

3

% and 1 ;_ ! and (n —3'_ 1> and Z 7 .
n=1

You can get these four formulas as displayed equations by typing ‘$$1\over23$$’

and ‘$$n+1\over3$$’ and ‘$$n+1\choose3$$’” and ‘$$\sum_{n=1}"3 Z_n"2$$’;

we shall study the simple rules for such constructions in this chapter.

First let’s look at fractions, which use the ‘\over’ notation. The control
sequence \over applies to everything in the formula unless you use braces to
enclose it in a specific subformula; in the latter case, \over applies to everything
in that subformula.

Input Output

2
$$x+y~2\over k+13$$ a;_:_yl

2
$${x+y~2\over k}+1$$ a _;y L 7]

2

$$x+{y "2\over k}+1$$ T+ ? +1

2
$$x+{y"2\over k+1}$3 T + ==
$$x+y~{2\over k+1}3$$ T+ ykzﬁ

You aren’t allowed to use \over twice in the same subformula; instead of typing
something like ‘a \over b \over 2’, you must specify what goes over what:

$${a\over b}\over 23%$$

$$a\over{b\over 2}$$

Nio | & Do |oie

Unfortunately, both of these alternatives look pretty awful. Mathematicians
tend to “overuse” \over when they first begin to typeset their own work on a
system like TEX. A good typist or copy editor will convert fractions to a “slashed
form,” whenever a built-up construction would be too small or too crowded. For
example, the last two cases should be treated as follows:

a/b

$$a/b \over 2%$ N
\ b/2$$ 4

$$a \over b2

Conversion to slashed form takes a little bit of mathematical knowhow, since
parentheses sometimes need to be inserted in order to preserve the meaning of

139

140

Chapter 17: More about Math

the formula. Besides substituting ‘/’ for ‘\over’, the two parts of the fraction
should be put in parentheses unless they are single symbols; for example, 7 be-
comes simply a/b, but ¢+ becomes (a +1)/b, and Z_i_% becomes (a +1)/(b+1).
Furthermore, the entire fraction should generally be enclosed in parentheses if
it appears next to something else; for example, ¢z becomes (a/b)z. If you are
a typist without mathematical training, it’s best to ask the author of the manu-
script for help, in doubtful cases; you might also tactfully suggest that unsightly

fractions be avoided altogether in future manuscripts.

»EXERCISE 17.1 ,
What’s a better way to render the formula z 4+ y*®17

» EXERCISE 17.2

Convert ‘%:p’ to slashed form.

» EXERCISE 17.3
What surprise did B. L. User get when he typed ‘$$x = (y~2\over k+1)$$’?

» EXERCISE 17.4
How can you make ‘75¢’? (Assume that the control sequence \cents yields ‘¢’.)

The examples above show that letters and other symbols sometimes get
smaller when they appear in fractions, just as they get smaller when they are
used as exponents. It’s about time that we studied TEX’s method for choosing
the sizes of things. TEX actually has eight different styles in which it can treat
formulas, namely

display style (for formulas displayed on lines by themselves)
text style (for formulas embedded in the text)

script style (for formulas used as superscripts or subscripts)
scriptscript style (for second-order superscripts or subscripts)

and four other “cramped” styles that are almost the same except that exponents
aren’t raised quite so much. For brevity we shall refer to the eight styles as

D, D, T, T,S, S, SS, SS.

where D is display style, D’ is cramped display style, T is text style, etc. TEX
also uses three different sizes of type for mathematics; they are called text size,
script size, and scriptscript size.

The normal way to typeset a formula with TEX is to enclose it in dollar
signs $... $; this yields the formula in text style (style T'). Or you can enclose it in
double dollar signs $$. .. 8; this displays the formula in display style (style D).
The subformulas of a formula might, of course, be in different styles. Once you
know the style, you can determine the size of type that TEX will use:

If a letter is in style then it will be set in
D,D'\T,T' text size (like this)
5 il script size (like this)

5SS, SS' scriptscript size (like this)

Chapter 17: More about Math 141

There is no “SSS” style or “scriptscriptscript” size; such tiny symbols would
be even less readable than the scriptscript ones. Therefore TEX stays with
scriptscript size as the minimum: ‘

In a formula the superscript and the subscript
of style style is style is

D, T S S’

D', T’ S’ S’

S S5 SS’

S’, S8’ SS’ SS’

For example, if x"{a_b} is to be typeset in style D, then a_b will be set in
style S, and b in style SS’; the result is ‘z®®’.

So far we haven’t seen any difference between styles D and T'. Actually
there is a slight difference in the positioning of exponents, although script size
is used in each case: You get 22 in D style and z? in T style and z2 in D’ or
T’ style—do you see the difference? But there is a big distinction between D
style and T style when it comes to fractions:

In a formula the style of the and the style of the
a\over (3 of style numerator « is denominator 3 is
D T T’

D’ T’ T’

T S 5

T’ St S’

S, 88 SS SS’

S’ SS’ SS’ o

Thus if you type ‘1\over2’ (in a text) you get %, namely style S over style S’;
but if you type ‘$$1\over2$$’ you get

1

2
(a displayed formula), which is style T" over style T".

@ While we’re at it, we might as well finish the style rules: \underline does

not change the style. Math accents, and the operations \sqrt and \overline,
change uncramped styles to their cramped counterparts; for example, D changes to D',
but D’ stays as it was.

@ » EXERCISE 17.5
State the style and size of each part of the formula /p§ , assuming that the
formula itself is in style D.

Suppose you don’t like the style that TEX selects by its automatic style
rules. Then you can specify the style you want by typing \displaystyle or
\textstyle or \scriptstyle or \scriptscriptstyle; the style that you se-
lect will apply until the end of the formula or subformula, or until you select

142

Chapter 17: More about Math

another style. For example, ‘$$n+\scriptstyle n+\scriptscriptstyle n.$$’
produces the display

n +7L+n.

This is a rather silly example, but it does show that the plus signs get smaller
too, as the style changes. TEX puts no space around 4+ signs in script styles.

Here’s a more useful example of style changes: Sometimes you need to
typeset a “continued fraction” made up of many other fractions, all of which are
supposed to be in display style:

(Hoas ==
aq4

In order to get this effect, the idea is to type

$$a_O+{1\over\displaystyle a_1+
{\strut 1\over\displaystyle a_2+
{\strut 1\over\displaystyle a_3+
{\strut 1\over a_4}}}}$$

(The control sequence \strut has been used to make the denominators taller;
this is a refinement that will be discussed in Chapter 18. Our concern now is with
the style commands.) Without the appearances of \strut and \displaystyle
in this formula, the result would be completely different:

@ These examples show that the numerator and denominator of a fraction are

generally centered with respect to each other. If you prefer to have the nu-
merator or denominator appear flush left, put ‘\hfill’ after it; or if you prefer flush
right, put ‘\hfill’ at the left. For example, if the first three appearances of ‘1\over’
in the previous example are replaced by ‘1\hfilll\over’, you get the display

ap +

a3 + —
a4
(a format for continued fractions that many authors prefer). This works because \hfill
stretches at a faster rate than the glue that is actually used internally by TEX when it
centers the numerators and denominators.

Chapter 17: More about Math 143

TEX has another operation ‘\atop’, which is like \over except that it
leaves out the fraction line:

$$x\atop y+2$3

Jb
y+2

The plain TEX format in Appendix B also defines ‘\choose’, which is like \atop
but it encloses the result in parentheses:

$$n\choose k$$ (;)

It is called \choose because it’s a common notation for the so-called binomial
coefficient that tells how many ways there are to choose k things out of n things.

You can’t mix \over and \atop and \choose with each other. For
example, ‘$$n \choose k \over 2$$’ is illegal; you must use grouping, to get
either ‘$${n\choose k}\over2$$ or ‘$$n\choose{k\over2}$$’, i.c.,

2 .)

The latter formula, incidentally, would look better as ‘$$n\choose k/28$$ or
‘$$n\choose{1\over2}k$$’. yielding

() o ()

» EXERCISE 17.6

n
As alternatives to %l discuss how you could obtain the two displays

2\ k 2

(0w 1)

» EXERCISE 17.7
Explain how to specify the displayed formula

P\ 2 p—2 1 1
<2>a:y l—z1—a2

TEX has a generalized version of \over and \atop in which you specify the
exact thickness of the line rule by typing ‘\above(dimen)’. For example,

$$\displaystyle{al\over b}\abovelpt\displaystyle{c\over d}$$

will produce a compound fraction with a heavier (1 pt thick) rule as its main bar:

alajsie

This sort of thing occurs primarily in textbooks on elementary mathematics.

144 Chapter 17: More about Math

Mathematicians often use the sign > to stand for “summation” and the
sign [to stand for “integration.” If you're a typist but not a mathematician,
all you need to remember is that \sum stands for Y and \int for [; these
abbreviations appear in Appendix F together with all the other symbols, in case
you forget. Symbols like > and [(and a few others like |J and [] and ¢ and),
all listed in Appendix F) are called large operators, and you type them just as
you type ordinary symbols or letters. The difference is that TEX will choose a
larger large operator in display style than it will in text style. For example,

$\sum x_n$ yields va kb, (T style)
$$\sum x_n$$ yields D =z, (D style).

A displayed \sum usually occurs with “limits,” i.e., with subformulas
that are to appear above and below it. You type limits just as if they were
superscripts and subscripts; for example, if you want

m
n=1

you type either ‘$$\sum_{n=1}"m$$ or ‘$$\sum"m_{n=1}$$’. According to the

normal conventions of mathematical typesetting, TEX will change this to ‘Z:,?:l
(i.e., without limits) if it occurs in text style rather than in display style.
Integrations are slightly different from summations, in that the super-

scripts and subscripts are not set as limits even in display style:

$\int_{-\infty} {+\infty}$ yields fj;o (T style)
400
$$\int_{-\infty}"{+\infty}$$ yields / (D style).

J =00

@ Some printers prefer to set limits above and below f signs; this takes more
space on the page, but it gives a better appearance if the subformulas are
complex, because it keeps them out of the way of the rest of the formula. Similarly,
limits are occasionally desirable in text style or script style; but some printers prefer
not to set limits on displayed) signs. You can change TEX’s convention by simply
typing ‘\limits’ or ‘\nolimits’ immediately after the large operator. For example,

s

$$\int\limits_O0"{\pi\over2}$$ yields /

0

$$\sum\nolimits_{n=1}"m$$ yields Y
n=1

@ If you say ‘\nolimits\limits’ (presumably because some macro like \int

specifies \nolimits, but you do want them), the last word takes precedence.
There’s also a command ‘\displaylimits’ that can be used to restore TEX’s normal
conventions; i.e., the limits will be displayed only in styles D and D’.

Chapter 17: More about Math 145

é% Sometimes you need to put two or more rows of limits under a large operator;
you can do this with ‘\atop’. For example, if you want the displayed formula

the correct way to type it is
$$\sum_{\scriptstyleO\le i\le m\atop\scriptstyle0<j<n}P(i,j)$$

(perhaps with a few more spaces to make it look nicer in the manuscript file). The
instruction ‘\scriptstyle’ was necessary here, twice—otherwise the lines ‘0 < ¢ < m’
and ‘0 < 7 < n” would have been in scriptscript size, which is too small. This is another
instance of a rare case where TEX’s automatic style rules need to be overruled.

»EXERCISE 17.8
q T

p
How would you type the displayed formula y: y: yj TFRAT. o
i=1j=1k=1

é% » EXERCISE 17.9
And how would you handle Z a;jbjrcri 7

1<:<p
1<7<¢q
1<k<r

Since mathematical formulas can get horribly large, TEX has to have
some way to make ever-larger symbols. For example, if you type

$S\sqrt{1+\sqrt{i+\sqrt{1+
\sqrt{1+\sqrt{i+\sqrt{1+\sqre{1+x}}}}}}11$$

the result shows a variety of available square-root signs:

14+411+ 1+\/1+\/1+\/1+\/1+x

\

The three largest signs here are all essentially the same, except for a vertical
segment ‘ |’ that gets repeated as often as necessary to reach the desired size;
but the smaller signs are distinct characters found in TEX’s math fonts.

A similar thing happens with parentheses and other so-called “delimiter”
symbols. For example, here are some of the different sizes of parentheses and
braces that plain TEX might use in formulas:

(((((« >>)))>) | |

N\
~/

{{{{{{{ }}}}}}}

The three largest pairs in each case are made with repeatable extensions, so they
can become as large as necessary.

s

146 Chapter 17: More about Math

Delimiters are important to mathematicians, because they provide good
visual clues to the underlying structure of complex expressions; they delimit the
boundaries of individual subformulas. Here is a list of the 22 basic delimiters

provided by plain TEX:

Input Delimater

(left parenthesis: (
) right parenthesis:)
[or \1brack left bracket: |

] or \rbrack right bracket: |

\{ or \1brace left curly brace: {
\} or \rbrace right curly brace: }

\1floor left floor bracket: |
\rfloor right floor bracket: |
\1lceil left ceiling bracket: [
\rceil right ceiling bracket: |
\langle left angle bracket: (
\rangle right angle bracket:)

/ slash: /

\backslash reverse slash: \

| or \vert vertical bar: |

\| or \Vert double vertical bar: ||
\uparrow upward arrow: |
\Uparrow double upward arrow: f
\downarrow downward arrow: |
\Downarrow double downward arrow: |}
\updownarrow up-and-down arrow: |
\Updownarrow double up-and-down arrow: {§

In some cases, there are two ways to get the same delimiter; for example, you
can specify a left bracket by typing either ‘[’ or ‘\1brack’. The latter alternative
has been provided because the symbol ‘[’ is not readily available on all computer
keyboards. Remember, however, that you should never try to specify a left brace
or right brace simply by typing ‘{’ or ‘}’; the { and } symbols are reserved for
grouping. The right way is to type ‘\{” or ‘\}’ or ‘\1brace’ or ‘\rbrace’.

In order to get a slightly larger version of any of these symbols, just
precede them by ‘\bigl’ (for opening delimiters) or ‘\bigr’ (for closing ones).
This makes it easier to read formulas that contain delimiters inside delimiters:

Input Output

$\bigl (x-s(x)\bigr)\bigl (y-s(y)\bigr)$ (z — s(z))(y — s(y))
$\bigl [x-s[x]\bigr]l\bigl [y-s[yl\bigrl$ [z — s[z]] [y — s[y]]
$\bigll Ix|+lyl \bigrl$ |z| + |y]|
$\bigl\1floor\sqrt A\bigr\rfloor$ L\/ZJ

Chapter 17: More about Math 147

The \big delimiters are just enough bigger than ordinary ones so that the dif-
ference can be perceived, yet small enough to be used in the text of a paragraph.
Here are all 22 of them, in the ordinary size and in the \big size:

OODGLUMO/NI 101818
OUGUTTONANTTILTYS

You can also type \Bigl and \Bigr to get larger symbols suitable for displays:

OUGUTOANTTLITT

These are 50% taller than their \big counterparts. Displayed formulas most
often use delimiters that are even taller (twice the size of \big); such delimiters
are constructed by \biggl and \biggr, and they look like this:

OUGUTTO AT

Finally, there are \Biggl and \Biggr versions, 2.5 times as tall as the \bigl
and \bigr delimiters:

OUGUTOAIT

» EXERCISE 17.10
Guess how to type the formula (

28 +82 | (:c+z')‘2 0, in display style
= 1 1

using \bigg delimiters for the large parentheses. (The symbols 0 and ¢ that

appear here are called \partial and \varphi.)

@ » EXERCISE 17.11
In practice, \big and \bigg delimiters are used much more often than \Big
and \Bigg ones. Why do you think this is true?

@ A \bigl or \Bigl or \biggl or \Biggl delimiter is an opening, like a left

parenthesis; a \bigr or \Bigr or \biggr or \Biggr delimiter is a closing, like
a right parenthesis. Plain TEX also provides \bigm and \Bigm and \biggm and \Biggm
delimiters, for use in the middle of formulas; such a delimiter plays the role of a relation,
like an equals sign, so TEX puts a bit of space on either side of it.

$\bigl (x\in A(n)\bigm|x\in B(n)\bigr)$ (z € A(n) | z € B(n))
$\bigcup_n X_n\bigm\|\bigcap_n Y_n$ U,, Xn “ N, Yn

You can also say just \big or \Big or \bigg or \Bigg; this produces a delimiter that
acts as an ordinary variable. It is used primarily with slashes and backslashes, as in

the following example.

a+1 /c+1
$${a+1\over b}\bigg/{c+1\over d}$$ b / p

@ » EXERCISE 17.12
What’s the professional way to type (:E + f(:c))/(x = f(:c))‘? (Look closely.)

148

Chapter 17: More about Math

TEX has a built-in mechanism that figures out how tall a pair of delim-
iters needs to be, in order to enclose a given subformula; so you can use this
method, instead of deciding whether a delimiter should be \big or \bigg or
whatever. All you do is say

\left(delim;)(subformula)\right(delimy)

and TEX will typeset the subformula, putting the specified delimiters at the left
and the right. The size of the delimiters will be just big enough to cover the
subformula. For example, in the display

3
$$1+\1left (1\overi-x~2\right) "3$$ 1+ (1 __1332)

TEX has chosen \biggl(and \biggr), because smaller delimiters would be too
small for this particular fraction. A simple formula like ‘$\left (x\right)$§’
yields just ‘(x)’; thus, \left and \right sometimes choose delimiters that are
smaller than \bigl and \bigr.

Whenever you use \1eft and \right they must pair up with each other,
just as braces do in groups. You can’t have \left in one formula and \right in
another, nor are you allowed to type things like ‘\left(...{...\right)...}
or ‘\left(...\begingroup...\right)...\endgroup’. This restriction makes
sense, because TEX needs to typeset the subformula that appears between \left
and \right before it can decide how big to make the delimiters. But it is
worth explicit mention here, because you do not have to match parentheses and
brackets, etc., when you are not using \1left and \right: TEX will not complain
if you input a formula like ‘$[0,1)$’ or even ‘$) ($ or just ‘$)$’. (And it’s a
good thing TEX doesn’t, for such unbalanced formulas occur surprisingly often
in mathematics papers.) Even when you do use \left and \right, TEX doesn’t
look closely at the particular delimiters that you happen to choose; thus, you
can type strange things like ‘\1left)’ and/or ‘\right (’ if you know what you're
doing. Or even if you don't.

The \over operation in the example displayed above does not involve
the ‘1+’ at the beginning of the formula; this happens because \1eft and \right
have the function of grouping, in addition to their function of delimiter-making.
Any definitions that you happen to make between \left and \right will be
local, as if braces had appeared around the enclosed subformula.

» EXERCISE 17.13

Use \left and \right to typeset the following display (with \phi for ¢):

— | o(k)
w(n)—;[k_lJ.

At this point you are probably wondering why you should bother learn-
ing about \bigl and \bigr and their relatives, when \left and \right are
there to calculate sizes for you automatically. Well, it’s true that \left and
\right are quite handy, but there are at least three situations in which you

Chapter 17: More about Math 149

will want to use your own wisdom when selecting the proper delimiter size:
(1) Sometimes \1left and \right choose a smaller delimiter than you want. For
example, we used \bigl and \bigr to produce ||:1:| £ |yH in one of the previous
llustrations; \left and \right don’t make things any bigger than necessary,
so ‘$\left|\left|x\right |+\left|y\right|\right|$’ yields only ‘||z| + |y|| .
(2) Sometimes \left and \right choose a larger delimiter than you want. This
happens most frequently when they enclose a large operator in a display; for
example, compare the following two formulas:

$$\1left (\sum_{k=1}"n A_k \right)3$$ (Z Ak>

k=1

$$\biggl(\sum_{k=1}"n A_k \biggr)$$ (Z Ak)
k=1

The rules of \1left and \right cause them to enclose the \sum together with
its Iimits, but in special cases like this it looks better to let the limits hang out
a bit; \bigg delimiters are better here. (3) Sometimes you need to break a huge
displayed formula into two or more separate lines, and you want to make sure
that its opening and closing delimiters have the same size; but you can’t use
\left on the first line and \right on the last, since \left and \right must
occur in pairs. The solution is to use \Biggl (say) on the first line and \Biggr
on the last.

@ Of course, one of the advantages of \left and \right is that they can make

arbitrarily large delimiters—much bigger than \biggggg! The slashes and
angle brackets do have a maximum size, however; if you ask for really big versions of
those symbols you will get the largest ones available.

» EXERCISE 17.14
Prove that you have mastered delimiters: Coerce TEX into producing the formula

m(n) = i [(nfl(m/k)/(m/HJ)_lJ -

@ If you type ‘.” after \left or \right, instead of specifying one of the basic
delimiters, you get a so-called null delimiter (which is blank). Why on earth
would anybody want that, you may ask. Well, you sometimes need to produce formulas
that contain only one large delimiter. For example, the display
| = { x, ifz >0
—z, ifzx<0

has a ‘{’ but no ‘}’. It can be produced by a construction of the form
$$1x1=\1eft\{ ... \right.$$

Chapter 18 explains how to fill in the ‘...’ to finish this construction; let’s just notice
for now that the ‘\right.’ makes it possible to have an invisible right delimiter to go
with the visible left brace.

150 Chapter 17: More about Math

@ A null delimiter isn’t completely void; it is an empty box whose width is a TEX
parameter called \nulldelimiterspace. We will see later that null delimiters
are inserted next to fractions. Plain TEX sets \nulldelimiterspace=1.2pt.

You can type ‘<’ or ‘>’ as convenient abbreviations for \langle and
\rangle, when TEX is looking for a delimiter. For example, ‘\bigl<’ is equiv-
alent to ‘\bigl\langle’, and ‘\right>’ is equivalent to ‘\right\rangle’. Of
course ‘<’ and ‘>’ ordinarily produce the less-than and greater-than relations
‘< >’ which are quite different from angle brackets ‘().

@ Plain TEX also makes available a few more delimiters, which were not listed

in the basic set of 22 because they are sort of special. The control sequences
\arrowvert, \Arrowvert, and \bracevert produce delimiters made from the repeatable
parts of the vertical arrows, double vertical arrows, and large braces, respectively,
without the arrowheads or the curly parts of the braces. They produce results similar
to \vert or \Vert, but they are surrounded by more white space and they have a
different weight. You can also use \1group and \rgroup, which are constructed from
braces without the middle parts; and \1moustache and \rmoustache, which give you
the top and bottom halves of large braces. For example, here are the \Big and \bigg
versions of \vert, \Vert, and these seven special delimiters:

4) ()

\ J J \

Notice that \1group and \rgroup are rather like bold parentheses, with sharper bends
at the corners; this makes them attractive for certain large displays. But you can-
not use them exactly like parentheses, because they are available only in large sizes
(\Big or more).

@ Question: What happens if a subscript or superscript follows a large delim-
iter? Answer: That’s a good question. After a \left delimiter, it is the first
subscript or superscript of the enclosed subformula, so it is effectively preceded by {}.
After a \right delimiter, it is a subscript or superscript of the entire \left...\right
subformula. And after a \bigl or \bigr or \bigm or \big delimiter, it applies only to
that particular delimiter. Thus, ‘\bigl(_2" works quite differently from ‘\left(_2’.

@ If you look closely at the examples of math typesetting in this chapter, you

will notice that large parentheses and brackets are symmetric with respect to
an invisible horizontal line that runs a little bit above the baseline; when a delimiter
gets larger, its height and depth both grow by the same amount. This horizontal line
1s called the axis of the formula; for example, a formula in the text of the present
paragraph would have an axis at this level: ——. The bar line in every fraction is
centered on the axis, regardless of the size of the numerator or denominator.

@ Sometimes it i1s necessary to create a special box that should be centered
vertically with respect to the axis. (For example, the ‘|z| = {...” example
above was done with such a box.) TEX provides a simple way to do this: You just say

\vcenter{(vertical mode material)}

Chapter 17: More about Math

and the vertical mode material will be packed into a box just as if \vcenter had been
\vbox. Then the box will be raised or lowered until its top edge is as far above the axis
as the bottom edge is below.

@@ The concept of “axis” is meaningful for TEX only in math formulas, not in
ordinary text; therefore TEX allows you to use \vcenter only in math mode.
If you really need to center something vertically in horizontal mode, the solution is
to say ‘$\vcenter{...}$’. (Incidentally, the constructions ‘\vcenter to(dimen)’ and
‘\vcenter spread(dimen)’ are legal too, in math mode; vertical glue is always set by
the rules for \vbox in Chapter 12. But \vcenter by itself is usually sufficient.)

@ Any box can be put into a formula by simply saying \hbox or \vbox or \vtop

or \box or \copy in the normal way, even when you are in math mode. Fur-
thermore you can use \raise or \lower, as if you were in horizontal mode, and you
can Insert vertical rules with \vrule. Such constructions, like \vcenter, produce boxes
that can be used like ordinary symbols in math formulas.

@ Sometimes you need to make up your own symbols, when you run across

something unusual that doesn’t occur in the fonts. If the new symbol occurs
only in one place, you can use \hbox or \vcenter or something to insert exactly what
you want; but if you are defining a macro for general use, you may want to use different
constructions in different styles. TEX has a special feature called \mathchoice that
comes to the rescue in such situations: You write

\mathchoice{(math)}{(math)}{(math)}{(math)}

where each (math) specifies a subformula. TEX will choose the first subformula in style
D or D', the second in style T' or T”, the third in style S or S’, the fourth in style SS
or $S'. (TEX actually typesets all four subformulas, before it chooses the final one,
because the actual style is not always known at the time a \mathchoice is encountered;
for example, when you type ‘\over’ you often change the style of everything that has
occurred earlier in the formula. Therefore \mathchoice is somewhat expensive in terms
of time and space, and you should use it only when you’re willing to pay the price.)

@@» EXERCISE 17.15
Guess what output is produced by the following commands:

\def\puzzle{{\mathchoice{D}{T}{S}{SS}}}
$$\puzzle{\puzzle\over\puzzle~{\puzzle~\puzzle}}$$

@@» EXERCISE 17.16

Devise a ‘\square’ macro that produces a ‘o’ for use in math formulas. The
box should be symmetrical with respect to the axis, and its inside dimensions should
be 3 pt in display and text styles, 2.1 pt in script styles, and 1.5 pt in scriptscript styles.
The rules should be 0.4 pt thick in display and text styles, 0.3 pt thick otherwise.

{% Plain TEX has a macro called \mathpalette that is useful for \mathchoice
constructions; ‘\mathpalette\a{xyz}’ expands to the four-pronged array of
choices ‘\mathchoice {\a\displaystyle {xyz}} ... {\a\scriptscriptstyle {xyz}}'.
Thus the first argument to \mathpalette is a control sequence whose first argument is
a style selection. Appendix B contains several examples that show how \mathpalette
can be applied. (See in particular the definitions of \phantom, \root, and \smash; the
congruence sign \cong (22) is also constructed from = and ~ using \mathpalette.)

151

152

Chapter 17: More about Math

@ At the beginning of this chapter we discussed the commands \over, \atop,
\choose, and \above. These are special cases of TEX’s “generalized fraction”
feature, which includes also the three primitives

\overwithdelims(delim;)(delimy)
\atopwithdelims(delim;)(delimy)
\abovewithdelims(delim,)(delims)(dimen)

The third of these is the most general, as it encompasses all of the other generalized
fractions: \overwithdelims uses a fraction bar whose thickness is the default for the
current size, and \atopwithdelims uses an invisible fraction bar whose thickness is zero,
while \abovewithdelims uses a bar whose thickness is specified explicitly. TEX places
the immediately preceding subformula (the numerator) over the immediately following
subformula (the denominator), separated by a bar line of the desired thickness; then it
puts (delim;) at the left and (delimz) at the right. For example, ‘\choose’ is equivalent
to ‘\atopwithdelims()’. If you define \legendre to be ‘\overwithdelims()’, you
can typeset the Legendre symbol ‘(%)’ by saying ‘{a\legendre b}’. The size of the
surrounding delimiters depends only on the style, not on the size of the fractions; larger
delimiters are used in styles D and D' (see Appendix G). The simple commands \over,
\atop, and \above are equivalent to the corresponding ‘withdelims’ commands when
the delimiters are null; for example, ‘\over’ is an abbreviation for ‘\overwithdelims. .’ .

@@» EXERCISE 17.17
Define a control sequence \euler so that the Eulerian number <Z> will be
produced when you type ‘{n\euler k}’ in a formula.

@ Appendix G explains exactly how TEX computes the desired size of delimiters

for \1eft and \right. The general idea is that delimiters are vertically cen-
tered with respect to the axis; hence, if we want to cover a subformula between \left
and \right that extends y; units above the axis and y2 units below, we need to make
a delimiter whose height plus depth is at least y units, where y = 2 max(y1,y2). It is
usually best not to cover the formula completely, however, but just to come close; so
TEX allows you to specify two parameters, the \delimiterfactor f (an integer) and
the \delimitershortfall é§ (a dimension). The minimum delimiter size is taken to be
at least y - f/1000, and at least y — 6. Appendix B sets f = 901 and é = 5 pt. Thus,
if y = 30pt, the plain TEX format causes the delimiter to be more than 27 pt tall; if
y = 100 pt, the corresponding delimiter will be at least 95 pt tall.

@ So far we have been discussing the rules for typing math formulas, but we

haven’t said much about how TEX actually goes about converting its input into
lists of boxes and glue. Almost all of the control sequences that have been mentioned in
Chapters 16 and 17 are “high level” features of the plain TEX format; they are not built
into TEX itself. Appendix B defines those control sequences in terms of more primitive
commands that TEX actually deals with. For example, ‘\choose’ is an abbreviation
for ‘\atopwithdelims()’; Appendix B not only introduces \choose, it also tells TEX
where to find the delimiters (and) in various sizes. The plain TEX format defines all
of the special characters like \alpha and \mapsto, all of the special accents like \tilde
and \widehat, all of the large operators like \sum and \int, and all of the delimiters
like \1floor and \vert. Any of these things can be redefined, in order to adapt TeX
to other mathematical styles and/or to other fonts.

Chapter 17: More about Math

@ The remainder of this chapter discusses the low-level commands that TEX

actually obeys behind the scenes. Every paragraph on the next few pages is
marked with double dangerous bends, so you should skip to Chapter 18 unless you are
a glutton for TEpXnicalities.

@ All characters that are typeset in math mode belong to one of sixteen families

of fonts, numbered internally from 0 to 15. Each of these families consists
of three fonts: one for text size, one for script size, and one for scriptscriptsize. The
commands \textfont, \scriptfont, and \scriptscriptfont are used to specify the
members of each family. For example, family 0 in the plain TEX format is used for
roman letters, and Appendix B contains the instructions

\textfontO=\tenrm
\scriptfontO0=\sevenrm
\scriptscriptfontO=\fiverm

to set up this family: The 10-point roman font (\tenrm) is used for normal symbols,
7-point roman (\sevenrm) is used for subscripts, and 5-point roman (\fiverm) is used
for sub-subscripts. Since there are up to 256 characters per font, and 3 fonts per family,
and 16 families, TEX can access up to 12,288 characters in any one formula (4096 in each
of the three sizes). Imagine that.

@ A definition like \textfont(family number)=(font identifier) is local to the

group that contains it, so you can easily change family membership from one
set of conventions to another and back again. Furthermore you can put any font into
any family; for example, the command

\scriptscriptfontO=\scriptfontO

makes sub-subscripts in family 0 the same size as the subscripts currently are. TEX
doesn’t check to see if the families are sensibly organized; it just follows instructions.
(However, fonts cannot be used in families 2 and 3 unless they contain a certain number
of special parameters, as we shall see later.) Incidentally, TEX uses \nullfont, which
contains no characters, for each family member that has not been defined.

@ During the time that a math formula is being read, TEX remembers each

symbol as being “character position so-and-so in family number such-and-
such,” but it does not take note of what fonts are actually in the families until reaching
the end of the formula. Thus, if you have loaded a font called \Helvetica that contains
Swiss-style numerals, and if you say something like

$\textfontO=\tenrm 9 \textfontO=\Helvetica 9%

you will get two 9’s in font \Helvetica, assuming that TEX has been set up to take 9’s
from family 0. The reason is that \textfontO is \Helvetica at the end of the formula,
and that’s when it counts. On the other hand, if you say

$\textfontO=\tenrm 9 \hbox{$9\textfontO=\Helvetica$}$

the first 9 will be from \tenrm and the second from \Helvetica, because the formula
in the hbox will be typeset before it is incorporated into the surrounding formula.

@@» EXERCISE 17.18
If you say ‘${\textfontO=\Helvetica 9}$’, what font will be used for the 97

153

154 Chapter 17: More about Math

@ Every math character is given an identifying code number between 0 and 4095,
obtained by adding 256 times the family number to the position number. This
1s easily expressed in hexadecimal notation, using one hexadecimal digit for the family
and two for the character; for example, “"24A stands for character “4A in family 2. Each
character is also assigned to one of eight classes, numbered 0 to 7, as follows:

Class Meaning Ezample Class Meaning Ezample
0 Ordinary / 4 Opening (
1 Large operator \sum 5 Closing)
2 Binary operation + 6 Punctuation ,
3 Relation = 7 Variable family x

Classes 0 to 6 tell what “part of speech” the character belongs to, in math-printing
language; class 7 is a special case discussed below. The class number is multiplied by
4096 and added to the character number, and this is the same as making it the leading
digit of a four-digit hexadecimal number. For example, Appendix B defines \sum to
be the math character "1350, meaning that it is a large operator (class 1) found in
position “50 of family 3.

@@» EXERCISE 17.19

The \oplus and \bullet symbols (& and e) are binary operations that appear
in positions 8 and 15 (decimal) of family 2, when the fonts of plain TEX are being used.
Guess what their math character codes are. (This is too easy.)

@ Class 7 is a special case that allows math symbols to change families. It

behaves exactly like class 0, except that the specified family is replaced by the
current value of an integer parameter called \fam, provided that \fam is a legal family
number (i.e., if it lies between 0 and 15). TEX automatically sets \fam=-1 whenever
math mode is entered; therefore class 7 and class 0 are equivalent unless \fam has been
given a new value. Plain TEX changes \fam to 0 when the user types ‘\rm’; this makes
it convenient to get roman letters in formulas, as we will see in Chapter 18, since
letters belong to class 7. (The control sequence \rm is an abbreviation for ‘\fam=0
\tenrm’; thus, \rm causes \fam to become zero, and it makes \tenrm the “current
font.” In horizontal mode, the \fam value is irrelevant and the current font governs the
typesetting of letters; but in math mode, the current font is irrelevant and the \fam
value governs the letters. The current font affects math mode only if \ is used or if
dimensions are given in ex or em units; it also has an effect if an \hbox appears inside
a formula, since the contents of an hbox are typeset in horizontal mode.)

@g% The interpretation of characters in math mode is defined by a table of 128

“mathcode” values; these table entries can be changed by the \mathcode com-
mand, just as the category codes are changed by \catcode (see Chapter 7). Each
mathcode specifies class, family, and character position, as described above. For exam-
ple, Appendix B contains the commands

\mathcode ‘<="313C
\mathcode ‘*="2203

which cause TEX to treat the character ‘<’ in math mode as a relation (class 3) found
in position “3C of family 1, and to treat an asterisk ‘*’ as a binary operation found in
position 3 of family 2. The initial value of \mathcode ‘b is “7162; thus, b is character

Chapter 17: More about Math

"62 in family 1 (italics), and its family will vary with \fam. TEX looks at the mathcode
only when it is typesetting a character whose catcode is 11 (letter) or 12 (other), or
when it encounters a character that is given explicitly as \char(number). (If \char is
used with a character code between 128 and 255, there is no \mathcode value; family 0
and class 0 are implied.)

@ A \mathcode can also have the special value “8000, which causes the character

to behave as if it has catcode 13 (active). Appendix B uses this feature to
make ’ expand to “{\prime} in a slightly tricky way. The mathcode of > does not
interfere with the use of ’ in octal constants.

@@ The mathcode table allows you to refer indirectly to any character in any
family, with the touch of a single key. You can also specify a math character
code directly, by typing \mathchar, which is analogous to \char. For example, the
command ‘\mathchar"1ABC’ specifies a character of class 1, family 10 (”A), and position
"BC. A hundred or so definitions like

\def\sum{\mathchar"1350 }

would therefore suffice to define the special symbols of plain TEX. But there is a better
way: TEX has a primitive command \mathchardef, which relates to \mathchar just as
\chardef does to \char. Appendix B has a hundred or so definitions like

\mathchardef\sum="1350
to define the special symbols. A \mathchar must be between 0 and 32767 ("7FFF).

@ A character of class 1, i.e., a large operator like \sum, will be vertically centered

with respect to the axis when it is typeset. Thus, the large operators can be
used with different sizes of type. This vertical adjustment is not made for symbols of
the other classes.

@ TEX associates classes with subformulas as well as with individual characters.

Thus, for example, you can treat a complex construction as if it were a bi-
nary operation or a relation, etc., if you want to. The commands \mathord, \mathop,
\mathbin, \mathrel, \mathopen, \mathclose, and \mathpunct are used for this pur-
pose; each of them is followed either by a single character or by a subformula in
braces. For example, \mathopen\mathchar"1234 is equivalent to \mathchar"4234, be-
cause \mathopen forces class 4 (opening). In the formula ‘$G\mathbin:H$’, the colon
is treated as a binary operation. And Appendix B constructs large opening symbols
by defining \bigl#1 to be an abbreviation for

\mathopen{\hbox{$\left#1 ...\right.$}}

There’s also an eighth classification, \mathinner, which is not normally used for in-
dividual symbols; fractions and \left...\right constructions are treated as “inner”
subformulas, which means that they will be surrounded by additional space in cer-
tain circumstances. All other subformulas are generally treated as ordinary symbols,
whether they are formed by \overline or \hbox or \vcenter or by simply being en-
closed in braces. Thus, \mathord isn’t really a necessary part of the TEX language;
instead of typing ‘$1\mathord, 234$’ you can get the same effect from ‘$1{, }234%’.

155

156 Chapter 17: More about Math

@@» EXERCISE 17.20

Commands like \mathchardef\alpha="10B are used in Appendix B to define
the lowercase Greek letters. Suppose that you want to extend plain TEX by putting
boldface math italic letters in family 9, analogous to the normal math italic letters
in family 1. (Such fonts aren’t available in stripped down versions of TEX, but let’s
assume that they exist.) Assume that the control sequence \bmit has been defined as
an abbreviation for ‘\fam=9’; hence ‘{\bmit b}’ will give a boldface math italic b. What
change to the definition of \alpha will make {\bmit\alpha} produce a boldface alpha?

@ Delimiters are specified in a similar but more complicated way. Each character

has not only a \catcode and a \mathcode but also a \delcode, which is either
negative (for characters that should not act as delimiters) or less than “1000000. In
other words, nonnegative delcodes consist of six hexadecimal digits. The first three
digits specify a “small” variant of the delimiter, and the last three specify a “large”
variant. For example, the command

\delcode‘x="123456

means that if the letter x is used as a delimiter, its small variant is found in position
"23 of family 1, and its large variant is found in position "56 of family 4. If the
small or large variant is given as 000, however (position 0 of family 0), that variant is
ignored. TEX looks at the delcode when a character follows \left or \right, or when
a character follows one of the withdelims commands; a negative delcode leads to an
error message, but otherwise TEX finds a suitable delimiter by first trying the small
variant and then the large. (Appendix G discusses this process in more detail.) For
example, Appendix B contains the commands

\delcode‘ (="028300 \delcode‘.=0

which specify that the small variant of a left parenthesis is found in position “"28 of
family 0, and that the large variant is in position 0 of family 3; also, a period has
no variants, hence ‘\left.’ will produce a null delimiter. There actually are several
different left parenthesis symbols in family 3; the smallest is in position 0, and the others
are linked together by information that comes with the font. All delcodes are —1 until
they are changed by a \delcode command.

@@» EXERCISE 17.21
Appendix B defines \delcode ‘< so that there is a shorthand notation for angle
brackets. Why do you think Appendix B doesn’t go further and define \delcode ‘{?

g% A delimiter can also be given directly, as ‘\delimiter(number)’. In this case

the number can be as high as "7FFFFFF, i.e., seven hexadecimal digits; the
leading digit specifies a class, from 0 to 7, as in a \mathchar. For example, Appendix B
contains the definition

\def\langle{\delimiter"426830A }

and this means that \langle is an opening (class 4) whose small variant is “"268 and
whose large variant is “30A. When \delimiter appears after \left or \right, the
class digit is ignored; but when \delimiter occurs in other contexts, i.e., when TEX
isn’t looking for a delimiter, the three rightmost digits are dropped and the remaining
four digits act as a \mathchar. For example, the expression ‘¢\langle x$’ is treated
as if it were ‘$\mathchar"4268 x$.

Chapter 17: More about Math

@@» EXERCISE 17.22
What goes wrong if you type ‘\bigl\delimiter"426830A’?

@@ Granted that these numeric conventions for \mathchar and \delimiter are not

beautiful, they sure do pack a lot of information into a small space. That’s why
TEX uses them for low-level definitions inside formats. Two other low-level primitives
also deserve to be mentioned: \radical and \mathaccent. Plain TEX makes square
root signs and math accents available by giving the commands

\def\sqrt{\radical"270370 }
\def\widehat{\mathaccent"362 }

and several more like them. The idea is that \radical is followed by a delimiter
code and \mathaccent is followed by a math character code, so that TEX knows the
family and character positions for the symbols used in radical and accent constructions.
Appendix G gives precise information about the positioning of these characters. By
changing the definitions, TEX could easily be extended so that it would typeset a variety
of different radical signs and a variety of different accent signs, if such symbols were
available in the fonts.

@ Plain TEX uses family 1 for math italic letters, family 2 for ordinary math

symbols, and family 3 for large symbols. TEX insists that the fonts in fami-
lies 2 and 3 have special \fontdimen parameters, which govern mathematical spacing
according to the rules in Appendix G; the cmsy and cmex symbol fonts have these
parameters, so their assignment to families 2 and 3 is almost mandatory. (There is,
however, a way to modify the parameters of any font, using the \fontdimen command.)
INITEX initializes the mathcodes of all letters A to Z and a to z so that they are symbols
of class 7 and family 1; that’s why it is natural to use family 1 for math italics. Sim-
ilarly, the digits O to 9 are class 7 and family 0. None of the other families is treated
in any special way by TgX. Thus, for example, plain TEX puts text italic in family 4,
slanted roman in family 5, bold roman in family 6, and typewriter type in family 7, but
any of these numbers could be switched around. There is a macro \newfam, analogous
to \newbox, that will assign symbolic names to families that aren’t already used.

g% When TgX is in horizontal mode, it is making a horizontal list; in vertical

mode, it is making a vertical list. Therefore it should come as no great surprise
that TEX is making a math list when it is in math mode. The contents of horizontal
lists were explained in Chapter 14, and the contents of vertical lists were explained in
Chapter 15; it’s time now to describe what math lists are made of. Each item in a
math list is one of the following types of things:

® an atom (to be explained momentarily);

» horizontal material (a rule or discretionary or penalty or “whatsit”);
s vertical material (from \mark or \insert or \vadjust);

a glob of glue (from \hskip or \mskip or \nonscript);

a kern (from \kern or \mkern);

a style change (from \displaystyle, \textstyle, etc.);

a generalized fraction (from \above, \over, etc.);

a boundary (from \left or \right);

a four-way choice (from \mathchoice).

157

158 Chapter 17: More about Math

@@ The most important items are called atoms, and they have three parts: a
nucleus, a superscript, and a subscript. For example, if you type

(x_i+y) "{\overline{n+1}}
in math mode, you get a math list consisting of five atoms: (, =i, +, y, and)"*!.
The nuclei of these atoms are (, z, +, y, and); the subscripts are empty except for
the second atom, which has subscript ¢; the superscripts are empty for the last atom,
whose superscript is n + 1. This superscript is itself a math list consisting of one atom,
whose nucleus is n + 1; and that nucleus is a math list consisting of three atoms.

@@ There are thirteen kinds of atoms, each of which might act differently in a
formula; for example, ‘(" is an Open atom because it comes from an opening.
Here is a complete list of the different kinds:

Ord is an ordinary atom like ‘z’;

Op is a large operator atom like) 7;
Bin is a binary operation atom like ‘+’;
Rel is a relation atom like ‘="

Open is an opening atom like ‘(’;

Close is a closing atom like)’ ;

Punct is a punctuation atom like ‘.’ ;
Inner 1is an inner atom like ‘%’;

Over is an overline atom like ‘T’ ;

Under is an underline atom like ‘z’;

Acc is an accented atom like ‘z’;

Rad is a radical atom like ‘v/2’;

Vcent is a vbox to be centered, produced by \vcenter.

@@ An atom’s nucleus, superscript, and subscript are called its fields, and there
are four possibilities for each of these fields; a field can be

s empty;

= a math symbol (specified by family and position number);
= a box; or

= a math list.

For example, the Close atom)"*' considered above has an empty subscript field; its

nucleus is the symbol ‘)’, which is character "28 of family 0 if the conventions of plain
TEX are in force; and its superscript field is the math list » + 1. The latter math list
consists of an Over atom whose nucleus is the math list n + 1; and that math list, in
turn, consists of three atoms of types Ord, Bin, Ord.

@ You can see TEX’s view of a math list by typing \showlists in math mode.
For example, after ‘$(x_i+y) "{\overline{n+1}}\showlists’ your log file gets
the following curious data:

\mathopen
A\fam0 (
\mathord
A\faml x
_\faml i

Chapter 17: More about Math

\mathbin
A\fam0 +
\mathord
Afaml y
\mathclose
.\famO)
“\overline
~.\mathord
.. \faml n
~.\mathbin
~..\fam0 +
~.\mathord
~..\fam0 1

In our previous experiences with \showlists we observed that there can be boxes within
boxes, and that each line in the log file is prefixed by dots to indicate its position in
the hierarchy. Math lists have a slightly more complex structure; therefore a dot is
used to denote the nucleus of an atom, a ‘’ is used for the superscript field, and a *_’
is used for the subscript field. Empty fields are not shown. Thus, for example, the Ord
atom z; is represented here by three lines ‘\mathord’, ‘.\faml x’, and ‘_\famil i’.

@ Certain kinds of atoms carry additional information besides their nucleus,

subscript, and superscript fields: An Op atom will be marked ‘\limits’ or
‘\nolimits’ if the normal \displaylimits convention has been overridden; a radical
atom contains a delimiter field to specify what radical sign is to be used; and an Acc
atom contains the family and character codes of the accent symbol.

@ When you say \hbox{.. .} in math mode, an Ord atom is placed on the current

math list, with the hbox as its nucleus. Similarly, \vcenter{...} produces a
Vcent atom whose nucleus is a box. But in most cases the nucleus of an atom will be
either a symbol or a math list. You can experiment with \showlists to discover how
other things like fractions and mathchoices are represented internally.

@ Chapter 26 contains complete details of how math lists are constructed. As

soon as math mode ends (i.e., when the closing ‘$’ occurs), TEX dismantles the
current math list and converts it into a horizontal list. The rules for this conversion are
spelled out in Appendix G. You can see “before and after” representations of such math
typesetting by ending a formula with ‘\showlists$\showlists’; the first \showlists
will display the math list, and the second will show the (possibly complex) horizontal
list that is manufactured from it.

The learning time is short. A few minutes gives the general flavor, and
typing a page or two of a paper generally uncovers most of the misconceptions.

— KERNIGHAN and CHERRY, A System for Typesetting Mathematics (1975)

Within a few hours (a few days at most)
a typist with no math or typesetting experience
can be taught to input even the most complex equations.

— PETER J. BOEHM, Software and Hardware Considerations for a
Technical Typesetting System (1976)

159

18

Fine Points _of
Mathematics

Typing

Chapter 18: Fine Points of Mathematics Typing 161

We have discussed most of the facilities needed to construct math formulas, but
there are several more things a good mathematical typist will want to watch for.
After you have typed a dozen or so formulas using the basic ideas of Chapters
16 and 17, you will find that it’s easy to visualize the final appearance of a
mathematical expression as you type it. And once you have gotten to that level,
there’s only a little bit more to learn before you are producing formulas as beau-
tiful as any the world has ever seen; tastefully applied touches of TEXnique will
add a professional polish that works wonders for the appearance and readability
of the books and papers that you type. This chapter talks about such tricks,
and it also fills in a few gaps by mentioning some aspects of math that didn’t fit
comfortably into Chapters 16 and 17.

1. Punctuation. When a formula is followed by a period, comma, semicolon,
colon, question mark, exclamation point, etc., put the punctuation after the $,
when the formula is in the text; but put the punctuation before the $$ when the
formula is displayed. For example,

If $x<03, we have shown that $$y=f(x) .33

TEX’s spacing rules within paragraphs work best when the punctuation marks
are not considered to be part of the formulas.
Similarly, don’t ever type anything like

for $x = a, b$, or c.
It should be
for $x = a$, $bP, or c.

(Better yet, use a tie: ‘or~c’.) The reason is that TEX will typeset expression
‘$x = a, b$’ as a single formula, so it will put a “thin space” between the comma
and the . This space will not be the same as the space that TEX puts after
the comma after the b, since spaces between words are always bigger than thin
spaces. Such unequal spacing looks bad, but when you type things right the
spacing will look good.

Another reason for not typing ‘$x = a, b$’ is that it inhibits the pos-
sibilities for breaking lines in a paragraph: TEX will never break at the space
between the comma and the b because breaks after commas in formulas are usu-
ally wrong. For example, in the equation ‘$x = f(a, b)$ we certainly don’t
want to put ‘z = f(a,” on one line and ‘b)’ on the next.

Thus, when typing formulas in the text of a paragraph, keep the math
properly segregated: Don’t take operators like — and = outside of the $’s, and
keep commas inside the formula if they are truly part of the formula. But if a
comma or period or other punctuation mark belongs linguistically to the sentence
rather than to the formula, leave it outside the $’s.

» EXERCISE 18.1
Type this: R(n,t) = O(t"/?), ast — 0F.

162

Chapter 18: Fine Points of Mathematics Typing

@ Some mathematical styles insert a bit of extra space around formulas to sep-

arate them from the text. For example, when copy is being produced on an
ordinary typewriter that doesn’t have italic letters, the best technical typists have tra-
ditionally put an extra blank space before and after each formula, because this provides
a useful visual distinction. You might find it helpful to think of each $ as a symbol that
has the potential of adding a little space to the printed output; then the rule about
excluding sentence punctuation from formulas may be easier to remember.

@ 2 TEX does, in fact, insert additional space before and after each formula; the

amount of such space is called \mathsurround, which is a (dimen)-valued
parameter. For example, if you set \mathsurround=1pt, each formula will effectively
be 2 points wider (1 pt at each side):

For z = a, b, or ¢. (\mathsurround=1ipt)

For x = a, b, or ¢. (\mathsurround=0pt)

This extra space will disappear into the left or right margin if the formula occurs at
the beginning or end of a line. The value of \mathsurround that is in force when TEX
reads the closing $ of a formula is used at both left and right of that formula. Plain
TEX takes \mathsurround=0pt, so you won’t see any extra space unless you are using
some other format, or unless you change \mathsurround yourself.

2. Non-italic letters in formulas. The names of algebraic variables are usually
italic or Greek letters, but common mathematical functions like ‘log’ are always
set in roman type. The best way to deal with such constructions is to make
use of the following 32 control sequences (all of which are defined in plain TEX
format, see Appendix B):

\arccos \cos \csc \exp \ker \limsup \min \sinh
\arcsin \cosh \deg \gcd \lg \1n \Pr \sup
\arctan \cot \det \hom \lim \log \sec \tan
\arg \coth \dim \inf \liminf \max \sin \tanh

These control sequences lead to roman type with appropriate spacing:

Input Output
$\sin2\theta=2\sin\theta\cos\theta$ sin26 = 2sinfcosfh
$0(n\log n\log\log n)$ O(nlognloglogn)

$\Pr (X>x)=\exp(-x/\mu) $ Pr(X > z) = exp(—z/u)
$3\max_{1\1le n\le m}\log_2P_n$$ max. log, P,
$$\lin_{x\to0}{\sin x\over x}=1$$ lim SIZ‘@ =1

The last two formulas, which are displays, show that some of the special control
sequences are treated by TEX as “large operators” with limits just like > : The
subscript on \max is not treated like the subscript on \log. Subscripts and
superscripts will become limits when they are attached to \det, \gcd, \inf,
\1lim, \1iminf, \limsup, \max, \min, \Pr, and \sup, in display style.

Chapter 18: Fine Points of Mathematics Typing 163

» EXERCISE 18.2
Express the following display in plain TEX language, using ‘\nu’ for ‘v’:
0
p1(n) = lim (1 = cos®™ (V1" m/n)).

m—00 =0
@ If you need roman type for some mathematical function or operator that isn’t
included in plain TEX’s list of 32, it is easy to define a new control sequence by
mimicking the definitions in Appendix B. Or, if you need roman type just for a “one

shot” use, it is even easier to get what you want by switching to \rm type, as follows:

$\sqrt{{\rm Var}(X)1}$ v/ Var(X)

$x_{\rm max}-x_{\rm min}$ Tmax — Tmin

${\rm LL}(k)\Rightarrow{\rm LR} (k)$ LL(k) = LR(k)
$\exp(x+{\rm constant})$ exp(z + constant)
$x"3+{\rm lower\ order\ terms}$ z2 + lower order terms

Notice the uses of ‘\J’ in the last case; without them, the result would have been
‘z® 4 lowerorderterms’, because ordinary blank spaces are ignored in math mode.

@ You can also use \hbox instead of \rm to get roman letters into formulas. For
example, four of the last five formulas can be generated by
$\sqrt{\hbox{Var}(X)1}$ v/ Var(X)
$\hbox{LL} (k) \Rightarrow\hbox{LR}(k)$ LL(k) = LR(k)
$\exp (x+\hbox{constant})$ exp(z + constant)
$x~3+\hbox{lower order terms}$ z> + lower order terms

In this case ‘\,’ isn’t necessary, because the material in an \hbox is processed in horizon-
tal mode, when spaces are significant. But such uses of \hbox have two disadvantages:
(1) The contents of the box will be typeset in the same size, whether or not the box
occurs as a subscript; for example, ‘$x_{\hbox{max}}$’ yields ‘zmax’. (2) The font
that’s used inside \hbox will be the “current font,” so it might not be roman. For ex-
ample, if you are typesetting the statement of some theorem that is in slanted type, and
if that theorem refers to ‘$\sqrt{\hbox{Var}(X)}$’, you will get the unintended result
‘A/ Var(X)’. In order to make sure that an \hbox uses roman type, you need to specify
\rm, e.g., ‘$\sqrt{\hbox{\rm Var}(X)}$’; and then the \hbox serves no purpose. We
will see later, however, that \hbox can be very useful in displayed formulas.

@@» EXERCISE 18.3

When the displayed formula ‘$$\1im_{n\to\infty}x_n {\rm\ exists} \iff
\limsup_{n\to\infty}x_n = \liminf_{n\to\infty}x_n.$$’ is typeset with the stan-
dard macros of plain TEX, you get

lim z, exists <= limsupz, = liminf z,.
n — 00 DG n— 00

But some people prefer a different notation: Explain how you could change the defini-
tions of \limsup and \1liminf so that the display would be

lim z, exists <= lim z, = lim z,.
77— 00 n— o0 7 — 00

164 Chapter 18: Fine Points of Mathematics Typing

g‘% The word ‘mod’ is also generally set in roman type, when it occurs in formulas;

but this word needs more care, because it is used in two different ways that
require two different treatments. Plain TEX provides two different control sequences,
\bmod and \pmod, for the two cases: \bmod is to be used when ‘mod’ is a binary operation
(i.e., when it occurs between two quantities, like a plus sign usually does), and \pmod
is to be used when ‘mod’ occurs parenthetically at the end of a formula. For example,

$\gcd(m,n)=\gcd(n,m\bmod n)$ ged(m,n) = ged(n, m mod n)
$x\equiv y+1\pmod{m~2}$ t=y+1 (modm?

The ‘b’ in ‘\bmod’ stands for “binary”; the ‘p’ in ‘\pmod’ stands for “parenthesized.”
Notice that \pmod inserts its own parentheses; the quantity that appears after ‘mod’ in
the parentheses should be enclosed in braces, if it isn’t a single symbol.

@ » EXERCISE 18.4
What did poor B. L. User get when he typed ‘$x\equiv0 (\pmod y"n)$ 7

@ » EXERCISE 18.5 . n/p]\ (nmod p
Explain how to produce (k) = (Lk/pj) (k mod p) (mod p).

@ The same mechanism that works for roman type in formulas can be used to
get other styles of type as well. For example, \bf yields boldface:

$\bf a+b=\Phi_m$ a+b=%®,

Notice that whole formula didn’t become emboldened in this example; the ‘4’ and
‘=" stayed the same. Plain TEX sets things up so that commands like \rm and \bf
will affect only the uppercase letters A to Z, the lowercase letters a to z, the digits
0 to 9, the uppercase Greek letters \Gamma to \Omega, and math accents like \hat and
\tilde. Incidentally, no braces were used in this example, because $’s have the effect
of grouping; \bf changes the current font, but the change is local, so it does not affect

the font that was current outside the formula.

@@ The bold fonts available in plain TEX are “bold roman,” rather than “bold
italic,” because the latter are rarely needed. However, TEX could readily be
set up to make use of bold math italics, if desired (see Exercise 17.20). A more extensive
set of math fonts would also include script, Fraktur, and “blackboard bold” styles; plain

TEX doesn’t have these, but other formats like Ap(S-TEX do.

@ Besides \rm and \bf, you can say \cal in formulas to get uppercase letters in

a “calligraphic” style. For example, ‘$\cal A$’ produces ‘A’ and ‘$\cal Z$’
produces ‘Z’. But beware: This works only with the letters A to Z; you’ll get weird
results if you apply \cal to lowercase or Greek letters.

@ There’s also \mit, which stands for “math italic.” This affects uppercase

Greek, so that you get (I, 4,0, A, = 11, X7, ®, ¥, (2) instead of (I',...).
When \mit is in effect, the ordinary letters A to Z and a to z are not changed; they
are set in italics as usual, because they ordinarily come from the math italic font.
Conversely, uppercase Greek letters and math accents are unaffected by \rm, because
they ordinarily come from the roman font. Math accents should not be used when the
\mit family has been selected, because the math italic font contains no accents.

Chapter 18: Fine Points of Mathematics Typing

@ » EXERCISE 18.6

Type the formula X" Mx =0 <= x =0, using as few keystrokes as possible.
(The first ‘0’ is roman, the second is bold.)

@ » EXERCISE 18.7
Figure out how to typeset ‘S C Y <= Se S

{% Plain TEX also allows you to type \it, \sl, or \tt, if you want text italic,
slanted, or typewriter letters to occur in a math formula. However, these fonts
are available only in text size, so you should not try to use them in subscripts.

@ If you're paying attention, you probably wonder why both \mit and \it are
provided; the answer is that \mit is “math italic” (which is normally best for
formulas), and \it is “text italic” (which is normally best for running text).

$This\ is\ math\ italic.$ This 1s math italic.
{\it This is text italic.} This 18 text italic.

The math italic letters are a little wider, and the spacing is different; this works better
in most formulas, but it fails spectacularly when you try to type certain italic words
like ‘dif ferent’ using math mode (‘$different$’). A wide ‘f’ is usually desirable
in formulas, but it is undesirable in text. Therefore wise typists use \it in a math
formula that is supposed to contain an actual italic word. Such cases almost never
occur in classical mathematics, but they are common when computer programs are
being typeset, since programmers often use multi-letter “identifiers”:

$\it last:=first$ last := first
$\it x_coord(point_2)$ x_coord(point_2)

The first of these examples shows that TEX recognizes the ligature ‘fi’ when text italic
occurs in a math formula; the other example illustrates the use of short underlines to
break up identifier names. When the author typeset this manual, he used ‘$\it SS$’
to refer to style SS, since ‘SS’ makes the S’s too far apart: SS.

@ » EXERCISE 18.8
What plain TEX commands will produce the following display?

available + Z max (full(i), reserved(i)) = capacity.

=1

@@» EXERCISE 18.9
How would you go about typesetting the following computer program, using
the macros of plain TEX?

for j := 2 step 1 until n do
begin accum := A[j]; k :=j — 1; A[0] := accum;
while A[k] > accum do
begin Alk + 1] := Alk]; k =k — 1;
~ end;
Alk + 1] := accum;
end.

165

166

Chapter 18: Fine Pownts of Mathematics Typing

3. Spacing between formulas. Displays often contain more than one formula; for
example, an equation is frequently accompanied by a side condition:

F,=F, 1+ F, 2, n 2 2.

In such cases you need to tell TEX how much space to put after the comma,
because TEX’s normal spacing conventions would bunch things together; without
special precautions you would get

Fo=F,_1+F, 2,n2=>2.

The traditional hot-metal technology for printing has led to some in-
grained standards for situations like this, based on what printers call a “quad”
of space. Since these standards seem to work well in practice, TEX makes it easy
for you to continue the tradition: When you type ‘\quad’ in plain TEX format,
you get a printer’s quad of space in the horizontal direction. Similarly, ‘\qquad’
gives you a double quad (twice as much); this is the normal spacing for situations
like the F),, example above. Thus, the recommended procedure is to type

$$ F_.n = F_{n-1} + F_{n-2}, \qquad n \ge 2. $$

It is perhaps worth reiterating that TEX ignores all the spaces in math mode
(except, of course, the space after ‘\qquad’, which is needed to distinguish be-
tween ‘\qquad n’ and ‘\qquadn’); so the same result would be obtained if you
were to leave out all but one space:

$$F_n=F_{n-1}+F_{n-2},\qquad n\ge2.$$

Whenever you want spacing that differs from the normal conventions, you must
specify it explicitly by using control sequences such as \quad and \qquad.

@ A quad used to be a square piece of blank type, 1em wide and 1em tall—

approximately the size of a capital M, as explained in Chapter 10. This
tradition has not been fully retained: The control sequence \quad in plain TEX is simply
an abbreviation for ‘\hskip lem\relax’, so TEX’s quad has width but no height.

@ You can use \quad in text as well as in formulas; for example, Chapter 14

illustrates how \quad applies to poetry. When \quad appears in a formula it
stands for one em in the current text font, independent of the current math size or
style or family. Thus, for example, \quad is just as wide in a subscript as it is on the
main line of a formula.

Sometimes a careless author will put two formulas next to each other in
the text of a paragraph. For example, you might find a sentence like this:

The Fibonacci numbers satisty F,, = F,,_; + F,,_2, n > 2.

Everybody who teaches proper mathematical style is agreed that formulas ought
to be separated by words, not just by commas; the author of that sentence
should at least have said ‘for n > 2’, not simply ‘n > 2’. But alas, such lapses
are commonplace, and many prominent mathematicians are hopelessly addicted

Chapter 18: Fine Points of Mathematics Typing 167

to clusters of formulas. If we are not allowed to change their writing style, we can
at least Insert extra space where they neglected to insert an appropriate word.
An additional interword space generally works well in such cases; for example,
the sentence above was typeset thus:

.. $F_n=F_{n-1}+F_{n-2}$, \ $n\ge2$.}$$
The ‘\" here gives a visual separation that partly compensates for the bad style.

» EXERCISE 18.10
Put the following paragraph into TEX form, treating punctuation and spacing
carefully; also insert ties to prevent bad line breaks.

Let H be a Hilbert space, C a closed bounded convex subset of H,

T a nonexpansive self map of C. Suppose that as n — o0, a,; — 0
for each k, and v, = 3 7o o(@n k+1—an k)T — 0. Then for each z in C,
Anz =300, an xT*x converges weakly to a fixed point of T.

4. Spacing within formulas. Chapter 16 says that TEX does automatic spacing of
math formulas so that they look right, and this is almost true. But occasionally
you must give TEX some help. The number of possible math formulas is vast,
and TEX'’s spacing rules are rather simple, so it is natural that exceptions should
arise. Of course, it is desirable to have fine units of spacing for this purpose,
instead of the big chunks that arise from _, \quad and \gquad.

The basic elements of space that TEX puts into formulas are called thin
spaces, medium spaces, and thick spaces. In order to get a feeling for these units,
let’s take a look at the F;, example again: Thick spaces occur just before and
after the = sign, and also before and after the >; medium spaces occur just
before and after the + sign. Thin spaces are slightly smaller, but noticeable; it’s
a thin space that makes the difference between ‘loglog’ and ‘loglog’. The normal
space between words of a paragraph is approximately equal to two thin spaces.

TEX inserts thin spaces, medium spaces, and thick spaces into formulas
automatically, but you can add your own spacing whenever you want to, by using
the control sequences

\, thin space (normally 1/6 of a quad);

\> medium space (normally 2/9 of a quad);

\; thick space (normally 5/18 of a quad);

\! negative thin space (normally —1/6 of a quad).

In most cases you can rely on TEX’s spacing while you are typing a manuscript,
and you’ll want to insert or delete space with these four control sequences only
in rare circumstances after you see what comes out.

@ We observed a minute ago that \quad spacing does not change with the style

of formula, nor does it depend on the math font families that are being used.
But thin spaces, medium spaces, and thick spaces do get bigger and smaller as the size
of type gets bigger and smaller; this is because they are defined in terms of (muglue),

168

Chapter 18: Fine Points of Mathematics Typing

a special brand of glue intended for math spacing. You specify (muglue) just as if it
were ordinary glue, except that the units are given in terms of ‘mu’ (math units) instead
of pt or cm or something else. For example, Appendix B contains the definitions

\thinmuskip = 3mu
\medmuskip = 4mu plus 2mu minus 4mu
\thickmuskip = 5mu plus 5mu

and this defines the thin, medium, and thick spaces that TEX inserts into formulas.
According to these specifications, thin spaces in plain TEX do not stretch or shrink;
medium spaces can stretch a little, and they can shrink to zero; thick spaces can stretch
a lot, but they never shrink.

@ There are 18 mu to an em, where the em is taken from family 2 (the math

symbols family). In other words, \textfont 2 defines the em value for mu
in display and text styles; \scriptfont 2 defines the em for script size material; and
\scriptscriptfont 2 defines it for scriptscript size.

@ You can insert math glue into any formula just by giving the command

‘“\mskip(muglue)’. For example, ‘\mskip 9mu plus 2mu’ inserts one half em of
space, in the current size, together with some stretchability. Appendix B defines ‘\,’
to be an abbreviation for ‘\mskip\thinmuskip’. Similarly, you can use the command
‘\mkern’ when there is no stretching or shrinking; ‘\mkern18mu’ gives one em of hori-
zontal space in the current size. TEX insists that \mskip and \mkern be used only with
mu; conversely, \hskip and \kern (which are also allowed in formulas) must never give
units in mu.

Formulas involving calculus look best when an extra thin space appears
before dz or dy or d whatever; but TEX doesn’t do this automatically. Therefore
a well-trained typist will remember to insert ‘\,’ in examples like the following:

Input Output
$\int_0"\infty f(x)\,dx$ fooo f(x)dx
$y\,dx-x\,dy$ ydr — x dy
$dx\,dy=r\,dr\,d\theta$ dz dy = r dr df
$x\,dy/dx$ xdy/dx

Notice that no ‘\,” was desirable after the ‘/’ in the last example. Similarly,
there’s no need for ‘\,’ in cases like

$3\int_1"x{dt\over t}$$ / —(?
1

since the dt appears all by itself in the numerator of a fraction; this detaches it
visually from the rest of the formula.

» EXERCISE 18.11

Explain how to handle the display

 t—ib
| et =B @), ab>o0
0

Chapter 18: Fine Points of Mathematics Typing

@ When physical units appear in a formula, they should be set in roman type
and separated from the preceding material by a thin space:

$55\rm\ ,mi/hr$ 55 mi/hr
$g=9.8\rm\,m/sec"2$ g = 9.8 m/sec”
$\rm1\,m1=1.000028\,cc$ 1 ml = 1.000028 cc

@ » EXERCISE 18.12
Typeset the following display, assuming that ‘\hbar’ generates ‘h’:

h = 1.0545 x 1077 erg sec.

@ Thin spaces should also be inserted after exclamation points (which stand for
the “factorial” operation in a formula), if the next character is a letter or a
number or an opening delimiter:

$(2n)!'/\bigl(n'\, (n+1) '\bigr)$ (2n)!/(n!(n + 1))

52!

$${52!\over13!\,13!\,26!'1}$$ 13!'13126!

Besides these cases, you will occasionally encounter formulas in which
the symbols are bunched up too tightly, or where too much white space appears,
because of certain unlucky combinations of shapes. It’s usually immpossible to
anticipate optical glitches like this until you see the first proofs of what you
have typed; then you get to use your judgment about how to add finishing
touches that provide extra beauty, clarity, and finesse. A tastefully applied ‘\,’
or ‘\!" will open things up or close things together so that the reader won’t be
distracted from the mathematical significance ot the formula. Square root signs
and multiple integrals are often candidates for such fine tuning. Here are some
examples of situations to look out for:

$\sqrt2\,x$ V2
$\sqrt{\,\log x1}$ Viogx
$0\bigl (1/\sqgrt n\,\bigr)$ O(1/y/n)
$[\,0,1)8% [0,1)

$\log n\, (\log\log n) 2% log n (log logn)?
$x"2\1/2% x2/2
$n/\!'\log n$ n/logn
$\Gamma_{\!2}+\Delta {\!2}$ I, + A?
$R_i{}"j{F_{\'k1}$ R

$\int _0"x\'\int_0"y dF(u,v)$ foxfoy dF (u,v)
$$\int\'\'\!\int _D dx\,dy$$ // dx dy
D

In each of these formulas the omission of \, or \! would lead to somewhat less
satisfactory results.

169

170 Chapter 18: Fine Pownts of Mathematics Typing

@ Most of these examples where thin-space corrections are desirable arise because

of chance coincidences. For example, the superscript in $x°2/2$ leaves a hole
before the slash (z*/2); a negative thin space helps to fill that hole. The positive
thin space in $\sqrt{\,\log x}$ compensates for the fact that ‘logz’ begins with a
tall, unslanted letter; and so on. But two of the examples involve corrections that were
necessary because TEX doesn’t really know a great deal about mathematics: (1) In the
formula $\1log n(\log\log n) ~2$, TEX inserts no thin space before the left parenthesis,
because there are similar formulas like $\log n(x)$ where no such space is desired.
(2) In the formula $n/\log n$, TEX automatically inserts an unwanted thin space
before \log, since the slash is treated as an ordinary symbol, and since a thin space is
usually desirable between an ordinary symbol and an operator like \log.

@@ In fact, TEX’s rules for spacing in formulas are fairly simple. A formula is con-

verted to a math list as described at the end of Chapter 17, and the math list
consists chiefly of “atoms” of eight basic types: Ord (ordinary), Op (large operator),
Bin (binary operation), Rel (relation), Open (opening), Close (closing), Punct (punc-
tuation), and Inner (a delimited subformula). Other kinds of atoms, which arise from
commands like \overline or \mathaccent or \vcenter, etc., are all treated as type Ord;
fractions are treated as type Inner. The following table is used to determine the spacing
between pairs of adjacent atoms:

Right atom
Ord Op Bin Rel Open Close Punct Inner
Ord 0 'k (2) (3) 0 0 0 (1)
Op 1 1 * (3) 0 0 0 (1)
Bin (2) (2) * * (2) * * (2)
Left Rel (3) (3) * 0 (3) 0 0 (3)
atom Open 0 0 * 0 0 0 0 0
Close 0 1 (2) (3) 0 0 0 (1)
Punct (1) (1) * (1) (1) (1) (1) (1)
Inner (1) 1 (2) (3) (1) 0 (1) (1)

Here 0, 1, 2, and 3 stand for no space, thin space, medium space, and thick space,
respectively; the table entry is parenthesized if the space is to be inserted only in
display and text styles, not in script and scriptscript styles. For example, many of the
entries in the Rel row and the Rel column are ‘(3)’; this means that thick spaces are
normally inserted before and after relational symbols like ‘=", but not in subscripts.
Some of the entries in the table are ‘*’; such cases never arise, because Bin atoms must
be preceded and followed by atoms compatible with the nature of binary operations.
Appendix G contains precise details about how math lists are converted to horizontal
lists; this conversion is done whenever TEX is about to leave math mode, and the
inter-atomic spacing is inserted at that time.

@ For example, the displayed formula specification
$$x+y=\max\{x,y\}+\min\{x,y\}$$

will be transforimed into the sequence of atoms

pHpeox o, g Bmn{o,gl]

Chapter 18: Fine Points of Mathematics Typing

of respective types Ord, Bin, Ord, Rel, Op, Open, Ord, Punct, Ord, Close, Bin, Op,
Open, Ord, Punct, Ord, and Close. Inserting spaces according to the table gives

Ord \> Bin\> Ord \; Rel\; Op Open Ord Punct \, Ord Close \>
Bin \> Op Open Ord Punct \, Ord Close

and the resulting formula is

o g = i,] B min{{in, gl
l.e.
r +y = max{z,y} + min{z, y}

This example doesn’t involve subscripts or superscripts; but subscripts and superscripts
merely get attached to atoms without changing the atomic type.

@@» EXERCISE 18.13
Use the table to determine what spacing TEX will insert between the atoms
of the formula ‘$f (x,y)<x"2+y~2%’.

?}@ The plain TEX macros \bigl, \bigr, \bigm, and \big all produce identical
delimiters; the only difference between them is that they may lead to different

spacing, because they make the delimiter into different types of atoms: \bigl produces
an Open atom, \bigr a Close, \bigm a Rel, and \big an Ord. On the other hand, when
a subformula appears between \left and \right, it is typeset by itself and placed into
an Inner atom. Therefore it is possible that a subformula enclosed by \1left and \right
will be surrounded by more space than there would be if that subformula were enclosed
by \bigl and \bigr. For example, Ord followed by Inner (from \left) gets a thin
space, but Ord followed by Open (from \bigl) does not. The rules in Chapter 17
imply that the construction ‘\mathinner{\bigl({(subformula)}\bigr)}’ within any
formula produces a result exactly equivalent to ‘\left ((subformula)\right)’, except
that the delimiters are forced to be of the \big size regardless of the height and depth
of the subformula.

TEX’s spacing rules sometimes fail when ‘|’ and ‘\|’ appear in a formula,
because | and || are treated as ordinary symbols instead of as delimiters. For
example, consider the formulas

$l-xl=1+x1$ | — x| = | + =
$\left|-x\right|=\1left|+x\right|$ |—z| = |+z|
$\1floor-x\rfloor=-\1lceil+x\rceil$ |—z] = —[+2]

In the first case the spacing is wrong because TEX thinks that the plus sign is computing
the sum of ‘|’ and ‘z’. The use of \left and \right in the second example puts TEX
on the right track. The third example shows that no such corrections are needed with
other delimiters, because TEX knows whether they are openings or closings.

@@» EXERCISE 18.14
Some perverse mathematicians use brackets backwards, to denote “open in-
tervals.” Explain how to type the following bizarre formula: |—oo, T x |—o00,T'[.

@@» EXERCISE 18.15
Study Appendix G and determine what spacing will be used in the formula
‘$x++1%’. Which of the plus signs will be regarded as a binary operation?

171

172

Chapter 18: Fine Points of Mathematics Typing

5. Ellipses (“three dots”). Mathematical copy looks much nicer if you are careful
about how groups of three dots are typed in formulas and text. Although it looks
fine to type ‘...’ on a typewriter that has fixed spacing, the result looks too
crowded when you're using a printer’s fonts: ‘$x...y$’ results in ‘z...y’, and
such close spacing is undesirable except in subscripts or superscripts.

An ellipsis can be indicated by two different kinds of dots, one higher
than the other; the best mathematical traditions distinguish between these two
possibilities. It is generally correct to produce formulas like

1+ + Ty and (1,...,Tn),
but wrong to produce formulas like
T1+ ...+, and (1, ,Tn)-

The plain TEX format of Appendix B allows you to solve the “three dots” problem
very simply, and everyone will be envious of the beautiful formulas that you
produce. The idea is simply to type \1dots when you want three low dots (...),
and \cdots when you want three vertically centered dots (---).

In general, it is best to use \cdots between + and — and x signs, and
also between = signs or < signs or C signs or other similar relations. Low dots
are used between commas, and when things are juxtaposed with no signs between
them at all. For example:

$x_1+\cdots+x_n$ 1+ -+ x,
$x_1=\cdots=x_n=09% rL=:--=x, =0
$A_1\times\cdots\times A_n$ A x - x A,

$f (x_1,\1ldots,x_n)$ flzy,...,2p)
$x_1x_2\1ldots x_n$ T1To ...Tn

$(1-x) (1-x"2)\1ldots(1-x"n)$ (1 —-2z)(1—22)...(1 —2")
$n(n-1)\1ldots(1)$ nin—1)...(1)

» EXERCISE 18.16

Type the formulas ‘zy +z122 4+ -+ 2122 ... 2, and (21, ..., x0) (Y1, .. Yn) =
Tiy1 + -+ 2pys’. [Hint: A single raised dot is called ‘\cdot’.]

But there’s an important special case in which \1dots and \cdots don’t
give the correct spacing, namely when they appear at the very end of a formula,
or when they appear just before a closing delimiter like ‘)’. In such situations
an extra thin space is needed. For example, consider sentences like this:

Prove that (1 —z) ' =14+a+22+---.
Clearly a; < b; fori=1,2, ..., n.
The coefficients ¢y, ¢q, ..., ¢, are positive.

To get the first sentence, the author typed
Prove that $(1-x) " {-1}=1+x+x"2+\cdots\,$.

Chapter 18: Fine Points of Mathematics Typing 173

Without the *\,’ the period would have come too close to the \cdots. Similarly,
the second sentence was typed thus:

Clearly $a_i<b_i$ for $i=1$,72, $\ldots\,$, n.

Notice the use of ties, which prevent bad line breaks as explained in Chapter 14.
Such ellipses are extreinely common in some forms of mathematical writing, so
plain TEX allows you to say just ‘\dots’ as an abbreviation for ‘$\1dots\,$’ in
the text of a paragraph. The third sentence can therefore be typed

The coefficients $c_0%, c_1, \dots, c_n are positive.

» EXERCISE 18.17
B. C. Dull tried to take a shortcut by typing the second example this way:

Clearly $a_i<b_i$ for~$i=1, 2, \ldots, n$.
What’s so bad about that?

» EXERCISE 18.18
How do you think the author typed the footnote in Chapter 4 of this book?

6. Line breaking. When you have formulas in a paragraph, TEX may have to
break them between lines. This is a necessary evil, something like the hyphen-
ation of words; we want to avoid it unless the alternative is worse.

A formula will be broken only after a relation symbol like = or < or —,
or after a binary operation symbol like 4+ or — or X, where the relation or binary
operation is on the “outer level” of the formula (i.e., not enclosed in {...} and
not part of an ‘\over’ construction). For example, if you type

$f(x,y) = x72-y72 = (x+y) (x-y)$

in mid-paragraph, there’s a chance that TEX will break after either of the = signs
(it prefers this) or after the - or + or - (in an emergency). But there won’t be
a break after the comma in any case-—commas after which breaks are desirable
shouldn’t appear between $’s.

If you don’t want to permit breaking in this example except after the
= signs, you could type

$f(x,y) = {x"2-y"2} = {(x+y) (x-y)}$

because these additional braces “freeze” the subformulas, putting them into un-
breakable boxes in which the glue has been set to its natural width. But it isn’t
necessary to bother worrying about such things unless TEX actually does break
a formula badly, since the chances of this are pretty slim.

@ A “discretionary multiplication sign” is allowed in formulas: If you type

‘$ (x+y) *(x-y)$’, TEX will treat the * something like the way it treats \-;
namely, a line break will be allowed at that place, with the hyphenation penalty. How-
ever, instead of inserting a hyphen, TEX will insert a X sign in text size.

174 Chapter 18: Fine Points of Mathematics Typing

@ If you do want to permit a break at some point in the outer level of a formula,
you can say \allowbreak. For example, if the formula

$(x_1,\1ldots,x_m,\allowbreak y_1,\ldots,y_n)$

appears in the text of a paragraph, TEX will allow it to be broken into the two pieces
b) ?
(Ta, . o yEmdy’ AR “Yiy . vos Yn)™s

@ The penalty for breaking after a Rel atom is called \relpenalty, and the
penalty for breaking after a Bin atom is called \binoppenalty. Plain TEX sets
\relpenalty=500 and \binoppenalty=700. You can change the penalty for breaking
in any particular case by typing ‘\penalty(number)’ immediately after the atom in
question; then the number you have specified will be used instead of the ordinary
penalty. For example, you can prohibit breaking in the formula ‘z = 0’ by typing
‘$x=\nobreak0$’, since \nobreak is an abbreviation for ‘\penalty10000 ’

@@» EXERCISE 18.19
Is there any difference between the results of ‘$x=\nobreak0$’ and ‘${x=0}$'7

@@» EXERCISE 18.20
How could you prohibit all breaks in formulas, by making only a few changes
to the macros of plain TEX?

7. Braces. A variety of different notations have sprung up involving the symbols
{" and ‘}’; plain TEX includes several control sequences that help you cope with
formulas involving such things.

In simple situations, braces are used to indicate a set of objects; for
example, ‘{a, b, ¢}’ stands for the set of three objects a, b, and ¢. There’s nothing
speclal about typesetting such formulas. except that you must remember to use
\{ and \} for the braces:

$\{a,b,c\}$ {a,b,c}
$\{1,2,\1dots,n\}$ {1,2,...,n}
$\{\rm red,white,blue\}$ {red, white, blue}

A slightly more complex case arises when a set is indicated by giving a generic
element followed by a specific condition; for example, ‘{z | > 5} stands for
the set of all objects @ that are greater than 5. In such situations the control
sequence \mid should be used for the vertical bar, and thin spaces should be
inserted inside the braces:

$\{\,x\mid x>5\,\}$ {x]x>5}
$\{\,x:x>5\,\}$ {x:x>5}

(Some authors prefer to use a colon instead of *|’; as in the second example here.)
When the delimiters get larger, as in

{ (z, f(x)) ‘ RS D}

Chapter 18: Fine Points of Mathematics Typing 175

they should be called \bigl, \bigm, and \bigr; for example, the formula just
given would be typed

\bigI\{\,\bigl(x,f(x)\bigr)\bigm|x\in D\,\bigr\}

and formulas that involve still larger delimiters would use \Big or \bigg or even
\Bigg, as explained in Chapter 17.

» EXERCISE 18.21
How would you typeset the formula { 2 , h(z) € {—1,0,+1} }?

g% » EXERCISE 18.22
Sometimes the condition that defines a set is given as a fairly long English

description, not as a formula; for example, consider ‘{p | p and p + 2 are prime }’. An
hbox would do the job:

$\{\,p\mid\hbox{$p$ and $p+2$ are prime}\,\}$

but a long formula like this is troublesome in a paragraph, since an hbox cannot be
broken between lines, and since the glue inside the \hbox does not vary with the
interword glue in the line that contains it. Explain how the given formula could be
typeset with line breaks allowed. [Hint: Go back and forth between math mode and
horizontal mode.]

Displayed formulas often involve another sort of brace, to indicate a
choice between various alternatives, as in the construction

| = x, if > 0;
| —z, otherwise.

You can typeset it with the control sequence \cases:

$$I1xl=\cases{x,&if $x\gel0$;\cr
-x,&%otherwise.\cr}$$

Look closely at this example and notice that it uses the character &, which we
sald in Chapter 7 was reserved for special purposes. Here for the first time in
this manual we have an example of why & is so special: Each of the cases has
two parts, and the & separates those parts. To the left of the & is a math formula
that is implicitly enclosed in $...8$; to the right of the & is ordinary text, which
is not implicitly enclosed in $...$. For example, the ‘-x,’ in the second line
will be typeset in math mode, but the ‘otherwise’ will be typeset in horizontal
mode. Blank spaces after the & are ignored. There can be any nuinber of cases,
but there usually are at least two. Each case should be followed by \cr. Notice

that the \cases construction typesets its own ‘{’; there is no corresponding ‘}’.

Typeset the display f(z) =4 2/3 if 3 <2 < 4;

» EXERCISE 18.23 { 1/3 if0<az<1;
0 elsewhere.

176

Chapter 18: Fine Points of Mathematics Typing

@ You can insert ‘\noalign(vertical mode material)’ just after any \cr within

\cases, as explained in Chapter 22, because \cases is an application of the
general alignment constructions considered in that chapter. For example, the command
‘“\noalign{\vskip2pt} can be used to put a little extra space between two of the cases.

@ Horizontal braces will be set over or under parts of a displayed formula if you

use the control sequences \overbrace or \underbrace. Such constructions are
considered to be large operators like \sum, so you can put limits above them or below
them by specifying superscripts or subscripts, as in the following examples:

k times

—N—
$$\overbrace{x+\cdots+x} " {k\rm\;times}$$ T+ -4z

$$\underbrace{x+y+z}_{>\,0}.$$ T+y+z.
R
>0

8. Matrices. Now comes the fun part. Mathematicians in many different disci-
plines like to construct rectangular arrays of formulas that have been arranged
in rows and columns; such an array is called a matrix. Plain TEX provides a
\matrix control sequence that makes it convenient to deal with the most com-
mon types of matrices.

For example, suppose that you want to specify the display

r— A 1 0
A= 0 T — A 1

All you do is type

$$A=\1left (\matrix{x-\lambda&1&0\cr
O&x-\lambda&l\cr
0&0&x-\lambda\cr}\right) . $$

This is very much like the \cases construction we looked at earlier; each row of
the matrix is followed by \cr, and ‘&’ signs are used between the individual entries
of each row. Notice, however, that you are supposed to put your own \left and
\right delimiters around the matrix; this makes \matrix different from \cases,
which inserts a big ‘{" automatically. The reason is that \cases always involves
a left brace, but different delimiters are used in different matrix constructions.
On the other hand, parentheses are used more often than other delimiters, so
you can write \pmatrix if you want plain TEX to fill in the parentheses for you;
the example above then reduces to

$$A=\pmatrix{x-\lambda&. . .&x-\lambda\cr}.$$

u T
] v Yy |, using \lgroup and \rgroup.
w =z

[

@ » EXERCISE 18.24
e f

Typeset the display [(ll

Chapter 18: Fine Points of Mathematics Typing 177

@ The individual entries of a matrix are normally centered in columns. Each

column is made as wide as necessary to accommodate the entries it contains,
and there’s a quad of space between columns. If you want to put something flush
right in its column, precede it by \hfi11; if you want to put something flush left in its
column, follow it by \hfill.

@ Each entry of a matrix is treated separately from the others, and it is typeset
as a math formula in text style. Thus, for example, if you say \rm in one entry,
it does not affect the others. Don’t try to say ‘{\rm x&y} .

Matrices often appear in the form of generic patterns that use ellipses
(i.e., dots) to indicate rows or columns that are left out. You can typeset such
matrices by putting the ellipses into rows and/or columns of their own. Plain
TEX provides \vdots (vertical dots) and \ddots (diagonal dots) as companions
to \1ldots for constructions like this. For example, the generic matrix

ai a2 5 IO Ain

asq a-29 e Aoy
A =

Admi1 aQm2 ... Qmn/

1s easily specified:

$$A=\pmatrix{a_{11}&a_{12}&\1ldots&a_{in}\cr
a_{21}&a_{22}&\1dots&a_{2n}\cr
\vdots&\vdots&\ddots&\vdots\cr
a_{mi1}&a_{m2}&\ldots&a_{mn}\cr}$$

» EXERCISE 18.25 Y1
How can you get TEX to produce the column vector : ?
Yk
@ Sometimes a matrix is bordered at the top and left by formulas that give
labels to the rows and columns. Plain TEX provides a special macro called
\bordermatrix for this situation. For example, the display
C I C’
C 1 0 0
M=1 b 1-9 0
C'"\ 0 a l—a

is obtained when you type

$$M=\bordermatrix{&C&I&C’\cr
C&1&0&0\cr I&b&1-b&0\cr C’&0&a&l-a\cr}$$

The first row gives the upper labels, which appear above the big left and right paren-
theses; the first column gives the left labels, which are typeset flush left, just before
the matrix itself. The first column in the first row is normally blank. Notice that
\bordermatrix inserts its own parentheses, like \pmatrix does.

178

Chapter 18: Fine Points of Mathematics Typing

@ It’s usually inadvisable to put matrices into the text of a paragraph, be-

cause they are so big that they are better displayed. But occasionally you
11
01

‘$1\, 1\choose0\,1$’. Similarly, the small matrix (¢ ° ¢) can be typeset as

may want to specify a small matrix like () which you can typeset for example as

$\bigl({a\atop 1}{b\atop m}{c\atop n}\bigr)$
The \matrix macro does not produce small arrays of this sort.

9. Vertical spacing. If you want to tidy up an unusual formula, you know already
how to move things farther apart or closer together, by using positive or negative
thin spaces. But such spaces affect only the horizontal dimension; what if you
want something to be moved higher or lower? That’s an advanced topic.

@ Appendix B provides a few macros that can be used to fool TEX into thinking

that certain formulas are larger or smaller than they really are; such tricks can
be used to move other parts of the formula up or down or left or right. For example, we
have already discussed the use of \mathstrut in Chapter 16 and \strut in Chapter 17;
these invisible boxes caused TEX to put square root signs and the denominators of
continued fractions into different positions than usual.

@ If you say ‘’ in any formula, TEX will do all of its

spacing as if you had said simply ‘{(subformula)}’, but the subformula itself
will be invisible. Thus, for example, ‘2’ takes up just as much space as
‘02’ in the current style, but only the 2 will actually appear on the page. If you want
to leave blank space for a new symbol that has exactly the same size as » , but if you
are forced to put that symbol in by hand for some reason, ‘\mathop{\phantom\sum}’
will leave exactly the right amount of blank space. (The ‘\mathop’ here makes this
phantom behave like \sum, i.e., as a large operator.)

@ Even more useful than \phantom is \vphantom, which makes an invisible box

whose height and depth are the same as those of the corresponding \phantom,
but the width is zero. Thus, \vphantom makes a vertical strut that can increase a
formula’s effective height or depth. Plain TEX defines \mathstrut to be an abbreviation
for ‘\vphantom(’. There’s also \hphantom, which has the width of a \phantom, but its
height and depth are zero.

@ Plain TEX also provides ‘\smash{(subformula)}’, a macro that yields the same

result as ‘{(subformula)}’ but makes the height and depth zero. By using
both \smash and \vphantom you can typeset any subformula and give it any desired
nonnegative height and depth. For example,

\mathop{\smash\limsup\vphantom\liminf}

produces a large operator that says ‘limsup’, but its height and depth are those of
\liminf (i.e., the depth is zero).

@@» EXERCISE 18.26
If you want to underline some text, you could use a macro like

\def\undertext#1{$\underline{\hbox{#1}}$}

to do the job. But this doesn’t always work right. Discuss better alternatives.

Chapter 18: Fine Points of Mathematics Typing

@ You can also use \raise and \lower to adjust the vertical positions of boxes

in formulas. For example, the formula ‘$2°{\raiselpt\hbox{$\scriptstyle
n$}}$’ will have its superscript n one point higher than usual (2" instead of 2™). Note
that it was necessary to say \scriptstyle in this example, since the contents of an
\hbox will normally be in text style even when that hbox appears in a superscript, and
since \raise can be used only in connection with a box. This method of positioning
is not used extremely often, but it is sometimes helpful if the \root macro doesn’t put
its argument in a suitable place. For example,

\root\raise(dimen)\hbox{$\scriptscriptstyle(argument)$}\of. ..
will move the argument up by a given amount.

@ Instead of changing the sizes of subformulas, or using \raise, you can also

control vertical spacing by changing the parameters that TEX uses when it is
converting math lists to horizontal lists. These parameters are described in Appen-
dix G: you need to be careful when changing them, because such changes are global
(i.e., not local to groups). Here is an example of how such a change might be made:
Suppose that you are designing a format for chemical typesetting, and that you expect
to be setting a lot of formulas like ‘Fe}?Cr2O4’. You may not like the fact that the
subscript in Fe;2 1s lower than the subscript in Crz; and you don’t want to force users
to type monstrosities like

$\rm Fe_2"{+2}Cr_2"{\vphantom{+2}}0_4"{\vphantom{+2}}$

just to get the formula Fe?Cr,O, with all subscripts at the same level. Well, all
you need to do is set ‘\fontdimen16\tensy=2.7pt’ and ‘\fontdimenl7\tensy=2.7pt’,
assuming that \tensy is your main symbol font (\textfont2); this lowers all normal
subscripts to a position 2.7 pt below the baseline, which is enough to make room for a
possible superscript that contains a plus sign. Similarly, you can adjust the positioning
of superscripts by changing \fontdimen14\tensy. There are parameters for the position
of the axis line, the positions of numerator and denominator in a generalized fraction,
the spacing above and below limits, the default rule thickness, and so on. Appendix G
gives precise details.

10. Special features for math hackers. TEX has a few more primitive operations
for math mode that haven’t been mentioned yet. They are occasionally useful if
you are designing special formats.

@ If a glue or kern specification is immediately preceded by ‘\nonscript’, TEX

will not use that glue or kern in script or scriptscript styles. Thus, for example,
the sequence ‘\nonscript\;’ produces exactly the amount of space specified by ‘(3)’
in the spacing table for mathematics that appeared earlier in this chapter.

@ Whenever TEX has scanned a $ and is about to read a math formula that

appears in text, it will first read another list of tokens that has been predefined
by the command \everymath={(token list)}. (This is analogous to \everypar, which
was described in Chapter 14.) Similarly, you can say \everydisplay={(token list)} to
predefine a list of tokens for TEX to read just after it has scanned an opening $$, i.e., just
before reading a formula that is to be displayed. With \everymath and \everydisplay,
you can set up special conventions that you wish to apply to all formulas.

179

180 Chapter 18: Fine Points of Mathematics Typing

11. Summary. We have discussed more different kinds of formulas in this chapter
than you will usually find in any one book of mathematics. If you have faithfully

done the exercises so far, you can face almost any formula with confidence.

®

®

But here are a few more exercises, to help you review what you have learned.
Each of the following “challenge formulas” illustrates one or more of the prin-
ciples already discussed in this chapter. The author confesses that he is trying to trip
you up on several of these. Nevertheless, if you try each one before looking at the
answer, and if you're alert for traps, you should find that these formulas provide a
good way to consolidate and complete your knowledge.

» EXERCISE 18.27

Challenge number 1: Explain how to type the phrase ‘n'

h

is treated as a mathematical formula with a superscript in roman type.

a2 A U A s Vi O e

(L4+zz+z222+). (I+apz+a222+--) =

®

» EXERCISE 18.28
Challenge number 2:

» EXERCISE 18.29
Challenge number 3:

» EXERCISE 18.30
Challenge number 4:

» EXERCISE 18.31
Challenge number 5:

» EXERCISE 18.32
Challenge number 6:

» EXERCISE 18.33
Challenge number 7:

» EXERCISE 18.34
Challenge number 8:

» EXERCISE 18.35

STITS = dg(w;,...,w,) = A.
Pr(m=n|m+n=3).

sin18° = 3(v/5 — 1).

k= I.Bé x 107 1% erg/°K.

® CNL{/N=L}C---CNL:/N=L.

I(X) = [[9(z,y)e?h @) dz dy.

1 1
fo...fo f(ajl,...,flfn)dafl... dCIIn.

Challenge number 9: Here’s a display.

m { QX2 — P,W2)—252 (m odd)
T PH(XE — P,W2) —2S% (m even)

» EXERCISE 18.36

(mod N).

Challenge number 10: And another.

» EXERCISE 18.37

1

root’, where ‘n'

Challenge number 11: And another.

1] (Z ajhz’

§>0 k>0

— < < a'Okoalkl'H)'

n>0

ko,k1,...20
ko+ki+-=n

(1—=212)...(1 —z,2)

hs

Chapter 18: Fine Points of Mathematics Typing 181

@ » EXERCISE 18.38
Challenge number 12: And,

(i 4 i 4= oo T R)l (n1+n2> (n1+n2+ng> <n1+n2+---+nm>

nilna!. .. n,,! o ns My

@ » EXERCISE 18.39
Challenge number 13: Yet another display.

I a1,a9,...,0ap L ﬁ (]_ — qal"‘n)(]_ _ q02+n> . (1 _ an-!-n)
FLb1bo, b (1 =g +m)(1 —gbotm) .. (1 —gbntn)

n=0

@ » EXERCISE 18.40
Challenge number 14: And another.

Y. flp)= f(t) dr(t).

p prime t>1

@ » EXERCISE 18.41
Challenge number 15: Still another.

k-4l elements

@ » EXERCISE 18.42
Challenge number 16: Put a \smallskip between the rows of matrices in the
compound matrix

-
o
VR
T .
— S,
N

@ » EXERCISE 18.43
Challenge number 17: Make the columns flush left here.

Co C1 C% L E
Gl Ca C3 N &y |

det Cz C3 Cq N &) > (.
Cn Cn+l1 Cp4+2 ... Co2p

@g‘%» EXERCISE 18.44
Challenge number 18: The main problem here is to prime the >

S E Y f).

TEA z€EA
zH#0

182

Chapter 18: Fine Points of Mathematics Typing

@{%» EXERCISE 18.45
Challenge number 19: You may be ready now for this display.

.'2
def 92’ }k

211k = 2

@@» EXERCISE 18.46
Challenge number 20: And finally, when you have polished off all the other
examples, here’s the ultimate test. Explain how to obtain the commutative diagram

0
0 — Oc —— E s /- — 0
H [¥

0 — Oc — m0Op - RY.Oy(-D) — 0

lei(@’)’—l

R'f, (Ov(—-ZM)) Q!

l

0

using \matrix. (Many of the entries are blank.)

12. Words of advice. The number of different notations is enormous and still
growing, so you will probably continue to find new challenges as you continue to
type mathematical papers. It’s a good idea to keep a personal notebook in which
you record all of the non-obvious formulas that you have handled successfully,
showing both the final output and what you typed to get it. Then you’ll be able
to refer back to those solutions when you discover that you need to do something
similar, a few months later.

If you're a mathematician who types your own papers, you have now
learned how to get enormously complex formulas into print, and you can do so
without going through an intermediary who may somehow distort their meaning.
But please, don’t get too carried away by your newfound talent; the fact that you
are able to typeset your formulas with TEX doesn’t necessarily mean that you
have found the best notation for communicating with the readers of your work.
Some notations will be unfortunate even when they are beautifully formatted.

19

Displayed Equations

e
o

’

/

__/‘—'“ e \~© ==
< . e, raail > .
e Ay = - S i — h““
'a)\ ! Y | l._!" I_/ ,
: AN -1..‘\\\\ > N!('\“d“l““ 'h == tm"‘ ”“n /'4% Y 51 (
»

SN \\™ - GEe—

Chapter 19: Displayed Equations

By now you know how to type mathematical formulas so that TEX will handle
them with supreme elegance; your knowledge of math typing is nearly complete.
But there is one more part to the story, and the purpose of this chapter is to
present the happy ending. We have discussed how to deal with individual formu-
las; but displays often involve a whole bunch of different formulas, or different
pieces of a huge formula, and it’s a bit of a problem to lay them out so that they
line up properly with each other. Fortunately, large displays generally fall into
a few simple patterns.

1. One-line displays. Before plunging into the general question of display layout,
let’s recapitulate what we have already covered. If you type ‘$$(formula)$$’,
TEX will display the formula in flamboyant display style, centering it on a line
by itself. We have also noted in Chapter 18 that it’s possible to display two
short formulas at once, by typing ‘$$(formula;) \qquad{formulas)$$’; this reduces
the two-formula problem to a one-formula problem. You get the two formulas
separated by two quads of space, the whole being centered on a line.

Displayed equations often involve ordinary text. Chapter 18 explains
how to get roman type into formulas without leaving math mode, but the best
way to get text into a display is to put it into an \hbox. There needn’t even be
any math at all; to typeset

Displayed Text

you can simply say ‘$$\hbox{Displayed Text}$$’. But here’s a more interesting
example:

X, = X if and only if Y, =Y. and Z, = 7.
Formulas and text were combined in this case by typing

$$X_n=X_k \gquad\hbox{if and only if}\qquad
Y_n=Y_k \quad\hbox{and}\quad Z_n=7Z_k.$3

Notice that \qquad appears around ‘if and only if’, but a single \quad surrounds
‘and’; this helps to indicate that the Y and Z parts of the display are related
more closely to cach other than to the X part.

Consider now the display

Y, = X, modp and Z, =X, mod g for all n > 0.

Can you figure out how to type this? One solution is

$$Y_n=X_n\bmod p \quad\hbox{and}\quad Z_n=X_n\bmod g
\gquad\hbox{for all }n\geO.3$

Notice that a space has been left after ‘all’ in the hbox here, since spaces
disappear when they are out in formula-land. But there’s a sunpler and more
logical way to proceed, once you get used to TEX’s idea of modes: You can type

\gqquad\hbox{for all $n\geO$.}$3

185

186

Chapter 19: Displayed Equations

Wow—that’s math mode inside of horizontal mode inside of display math mode.
But in this way your manuscript mirrors what you are trying to accomplish,
while the previous solution (with the space after ‘all’) looks somewhat forced.

» EXERCISE 19.1

Typeset the following four displays (one at a time):

i~ -1
an 2" converges if 2| < (lim sup v/ anl) :
=0 n—00
T+ Ax) — f(x
f()~ @) — f'(z) as Az — 0.
Ax
Jwi]| = 1, ui-uy; =0 if i # j.
an arc an arc
The confluent 1mage of a circle 28 an arc or a circle

a fan a fan or an arc

@ » EXERCISE 19.2
Sometimes display style is too grandiose, when the formula being displayed is

1
¥y=3

or something equally simple. One day B. L. User tried to remedy this by typing it as
‘$$y={\scriptstylei\over\scriptstyle2}x$$’, but the resulting formula

y=-u
2

wasn’t at all what he had in mind. What’s the right way to get simply ‘y = %:z:’ when
you don’t want big fractions in displays?

@ » EXERCISE 19.3
What difference, if any, is there between the result of typing ‘$$(formula)$$’
and the result of typing ‘$$\hbox{$(formula)$}$$’ 7

@ » EXERCISE 19.4

You may have noticed that most of the displays in this manual are not cen-
tered; displayed material is usually aligned at the left with the paragraph indentation,
as part of the book design, because this is an unusual book. Explain how you could
typeset a formula like

1 1 1
l—=-—4=—=—+4+-.-=1n2
2+3 4+ n

that is off-center in this way.

If you've had previous experience typing mathematical papers, you prob-
ably have been thinking, “What about equation numbers? When is this book
going to talk about them?” Al yes, now is the time to discuss those sneaky little
labels that appear off to the side of displays. If you type

$$(formula)\eqno(formula)$$

Chapter 19: Displayed Equations 187

TEX will display the first formula and it will also put an equation number (the
second formula) at the right-hand margin. For example,

$$x72-y"2 = (x+y) (x-y) .\eqno(15)$$

will-produce this:

z? —y* = (v +y)(z —y). (15)
You can also get equation numbers at the left-hand margin, with \leqno. For
example,

$$x72-y"2 = (x+y) (x-y) .\leqno(16)$$

will produce this:

(16) ' -y’ =(z+y)(z —y)

Notice that you always give the equation number second, even when it is going
to appear at the left. Everything from the \eqno or \leqno command to the $$
that ends the display is the equation number. Thus, you're not allowed to have
two equation numbers in the same display; but there’s a way to get around that
restriction, as we’ll see later.

@ Nowadays people are using right-hand equation numbers more and more, be-

cause a display most often comes at the end of a sentence or clause, and the
right-hand convention keeps the number from intruding into the clause. Furthermore,
it’s often possible to save space when a displayed equation follows a short text line,
since less space is needed above the display; such savings are not possible with \leqno,
because there’s no room for overlap. For example, there is less space above display (15)
than there is above (16) in our illustrations of \eqno and \leqgno, although the formulas
and text are otherwise identical.

@ If you look closely at (15) and (16) above, you can see that the displayed

formulas have been centered without regard to the presence of the equation
numbers. But when a formula is large, TEX makes sure that it does not interfere with
its number; the equation number may even be placed on a line by itself.

» EXERCISE 19.5
How would you produce the following display?

H(l_—lqujzzzn/ I a-4. (16")

k>0 n>0 1<k<n

@ » EXERCISE 19.6
Equation numbers are math formulas, typeset in text style. So how can you
get an equation number like ¢(3-1)’ (with an en-dash)?

@@» EXERCISE 19.7

B. L. User tried typing ‘\eqno(*)’ and ‘\eqno(**)’, and he was pleased to
discover that this produced the equation numbers ‘(x)” and ‘(*x)’. [He had been a bit
worried that they would come out ‘(*)’ and ‘(**)’ instead.] DBut then a few months
later he tried ‘\eqno (***)’ and got a surprise. What was it?

188

Chapter 19: Displayed Equations

@ Somewhere in this manual there ought to be a description of exactly how

TEX displays formulas; i.e., how it centers them, how it places the equation
numbers, how it inserts extra space above and below, and so on. Well, now is the time
for those rules to be stated. They are somewhat complex, because they interact with
things like \parshape, and because they involve several parameters that haven’t been
discussed yet. The purpose of the rules is to explain exactly what sorts of boxes, glue,
and penalties are placed onto the current vertical list when a display occurs.

@ If a display occurs after, say, four lines of a paragraph, TEX’s internal register

called \prevgraf will be equal to 4 when the display starts. The display will be
assumed to take three lines, so \prevgraf will become 7 when the paragraph is resumed
at the end of the display (unless you have changed \prevgraf in the meantime). TEX
assigns special values to three (dimen) parameters immediately after the opening $$ is
sensed: \displaywidth and \displayindent are set to the line width 2z and the shift
amount s for line number \prevgraf +2, based on the current paragraph shape or hang-
ing indentation. (Usually \displaywidth is the same as \hsize, and \displayindent
is zero, but the paragraph shape can vary as described in Chapter 14.) Furthermore,
\predisplaysize is set to the effective width p of the line preceding the display, as
follows: If there was no previous line (e.g., if the $$ was preceded by \noindent or by
the closing $$ of another display), p is set to —16383.99999 pt (i.e., to the smallest legal
dimension, —\maxdimen). Otherwise TEX looks inside the hbox that was formed by the
previous line, and sets p to the position of the right edge of the rightmost box inside
that hbox, plus the indentation by which the enclosing hbox has been moved right, plus
two ems in the current font. However, if this value of p depends on the fact that glue in
that hbox was stretching or shrinking —for example, if the \parfillskip glue is finite,
so that the material preceding it has not been set at its natural width-—then p is set to
\maxdimen. (This doesn’t happen often, but it keeps TEX machine independent, since
p never depends on quantities that may be rounded differently on different computers.)
Notice that \displaywidth and \displayindent are not affected by \leftskip and
\rightskip, but \predisplaysize is. The values of \displaywidth, \displayindent,
and \predisplaysize will be used by TEX after the displayed formula has been read,
as explained below; your program can examine them and/or change them, if you want
the typesetting to be done differently.

@ After a display has been read, TiX converts it from a math list to a horizontal

list A in display style, as explained in Appendix G. An equation number, if
present, 1s processed in text style and put into an hbox a with its natural width. Now
the fussy processing begins: Let z, s, and p be the current values of \displaywidth,
\displayindent, and \predisplaysize. Let ¢ and e be zero if there is no equation
nuiber; otherwise let e be the width of the equation number, and let ¢ be equal to
e plus one quad in the symbols font (i.e., in \textfont2). Let wo be the natural width
of the displayed formula h. If wo + ¢ < z, list h is packaged in an hbox b having its
natural width wg. But if wo + ¢ > 2z (i.e., if the display is too wide to fit at its natural
width), TEX performs the following “squeeze routine”: If ¢ # 0 and if there is enough
shrinkability in the displayed formula A to reduce its width to z — ¢, then list h is
packaged in an hbox b of width z — ¢. Otherwise e is set to zero, and list h is packaged
in a (possibly overfull) hbox b of width min(wy. 2).

gé? (Continuation.) TgX tries now to center the display without regard to the
equation number. But if such centering would make it too close to that number

Chapter 19: Displayed Equations

(where “too close” means that the space between them is less than the width e), the
equation 1s either centered in the remaining space or placed as far from the equation
number as possible. The latter alternative is chosen only if the first item on list A is
glue, since TEX assumes that such glue was placed there in order to control the spacing
precisely. But let’s state the rules more formally: Let w be the width of box b. TEX
computes a displacement d, to be used later when positioning box b, by first setting
d=3(z—w). If e >0 and if d < 2e, then d is reset to 2(z —w — e) or to zero, where
zero is chosen if list h begins with a glue item.

@@ (Continuation.) TgEX is now ready to put things onto the current vertical list,

just after the material previously constructed for the paragraph-so-far. First
comes a penalty item, whose cost is an integer parameter called \predisplaypenalty.
Then comes glue. If d + s < p, or if there was a left equation number (\legno),
TEX sets ga and g to glue items specified by the parameters \abovedisplayskip and
\belowdisplayskip, respectively; otherwise g, and g, become glue items correspond-
ing to \abovedisplayshortskip and \belowdisplayshortskip. [Translation: If the
predisplaysize is short enough so that it doesn’t overlap the displayed formula, the glue
above and below the display will be “short” by comparison with the glue that is used
when there is an overlap.] If e = 0 and if there is an \legno, the equation number is
appended as an hbox by itself, shifted right s and preceded by interline glue as usual;
an infinite penalty is also appended, to prevent a page break between this number and
the display. Otherwise a glue item g, is placed on the vertical list.

@@ (Continuation.) Now comes the displayed equation itself. If e # 0, the
equation number box a is combined with the formula box b as follows: Let &
be a kern of width 2 — w — e — d. In the \eqno case, box b is replaced by an hbox
containing (b, k,a); in the \legno case, box b is replaced by an hbox containing (a, k, b),
and d is set to zero. In all cases, box b is then appended to the vertical list, shifted
right by s 4 d.

@ (Continuation.) The final task is to append the glue or the equation number
that follows the display. If there was an \eqno and if e = 0, an infinite
penalty is placed on the vertical list, followed by the equation number box a shifted
right by s + z minus its width, followed by a penalty item whose cost is the value
of \postdisplaypenalty. Otherwise a penalty item for the \postdisplaypenalty is
appended first, followed by a glue item for g, as specified above. TEX now adds 3 to
\prevgraf and returns to horizontal mode, ready to resume the paragraph.

@ One consequence of these rules is that you can force an equation number to
appear on a line by itself by making its width zero, i.e., by saying either

“\egno\1llap{$(formula)$}’ or ‘\leqno\rlap{$(formula)$}’. This makes e = 0, and the

condition e = 0 controls TEX’s positioning logic, as explained in the rules just given.

@@ Plain TEX sets \predisplaypenalty=10000, because fine printers tradition-
ally shun displayed formulas at the very top of a page. You can change
\predisplaypenalty and \postdisplaypenalty if you want to encourage or discourage
page breaks just before or just after a display. For example, ‘$$\postdisplaypenalty=
-10000(formula)$$’ will force a page break, putting the formula at the bottom line. It
is better to force a page break this way than to say \eject right after $$...$$; such
an eject (which follows the \belowdisplayskip glue below the display) causes the page
to be short, because it leaves unwanted glue at the bottom.

189

190 Chapter 19: Displayed Equations

@@» EXERCISE 19.8

Read the rules carefully and deduce the final position of ‘z = ¥’ in the formula
$$\quad x=y \hskip10000pt minus 1fil \eqno(5)$$

assuming that there is no hanging indentation. Also consider \legno instead of \egno.

@ TEX also allows “alignment displays,” which are not processed in math mode
because they contain no formulas at the outer level. An alignment display is
created by commands of the general form

$$ (assignments)\halign{(alignment)} (assignments)$$

where the (assignments) are optional things like parameter changes that do not produce
any math lists. In such displays. the \halign is processed exactly as if it had appeared
in vertical mode, and it will construct a vertical list v as usual, except that each row
of the alignment will be shifted right by the \displayindent. After the alignment and
the closing assignments have been processed, TEX will put a \predisplaypenalty item
and some \abovedisplayskip glue on the main vertical list, followed by v, followed by
a \postdisplaypenalty item and \belowdisplayskip glue. Thus, alignment displays
are essentially like ordinary alignments, except that they can interrupt paragraphs;
furthermore, they are embedded in glue and penalties just like other displays. The
\displaywidth and \predisplaysize do not affect the result, although you could use
those parameters in your \halign. An entire alignment display is considered to be only
three lines long, as far as \prevgraf is concerned.

2. Multi-line displays. OK, the use of displayed formulas is very nice. But when
you try typing a lot of manuscripts you will run into some displays that don’t
fit the simple pattern of a one-line formula with or without an equation num-
ber. Plain TEX provides special control sequences that will cover most of the
remalning cases.

Multi-line displays usually consist of several equations that should be
lined up by their ‘=" signs, as in

X1+ +Xp =m,
Yi+---+Y,=n

The recommended procedure for such a display is to use \eqalign, which works
with special markers & and \cr that we have already encountered in connection
with \cases and \matrix in Chapter 18. Here’s how to type this particular one:

$$\eqalign{X_1+\cdots+X_p&=m, \cr
Y_1+\cdots+Y_q&=n.\cr}$$

There can be any number of equations in an \eqalign; the general pattern is
\eqgalign{(left-hand side;)&(right-hand side;)\cr
(left-hand sides)&(right-hand sides)\cr

(left-hand side,,)&(right-hand side,)\cr}

Chapter 19: Displayed Equations

where each (right-hand side) starts with the symbol on which you want alignment
to occur. For example, every right-hand side often begins with an = sign. The
equations will be typeset in display style.

» EXERCISE 19.9

In practice, the left-hand sides of aligned formulas are often blank, and the
alignment 1s often done with respect to other symbols as well as =. For example,
the following display is typical; see if you can guess how the author typed it:

T(n) < T(2M'8"1) < ¢(3M6n1 — 2MNen)
< 3c-3&n

= 3cn'83.

The result of \eqalign is a vertically centered box. This makes it easy
to get a formula like

a = f(z2) = o
B=f(") {y:27 }
v = f(2%)

You simply use \eqalign twice in the same line:

$$\left\{

\eqalign{\alpha&=f (z)\cr \beta&=f(z"2)\cr \gamma&=f(z~3)\cr}
\right\}\qquad\left\{

\eqalign{x&=\alpha~2-\beta\cr y&=2\gamma\cr}\right\}.$$

» EXERCISE 19.10
Try your hand at the numbered two-line display

P(z) = ap + a1 + a22° + - + a, ",

(30
P(—z) = ag — a1% + agz° — -+ - + (=1)"a,z".)

[Hint: Use the fact that \eqalign produces a vertically centered box; the equa-
tion number ‘(30)’ is supposed to appear halfway between the two lines.]

» EXERCISE 19.11
What happens if you forget the & in one equation of an \eqalign?

@ Multi-line formulas sometimes fit together in odd ways, and you’ll find that
every once in a while you will want to move certain lines farther apart or

closer together. If you type ‘\noalign{\vskip(glue)}’ after any \cr, TEX will insert
the given amount of extra glue just after that particular line. For example,

\noalign{\vskip3pt}

will put 3pt of additional space between lines. You can also change the amount of
space before the first line, in the same way.

191

192

Chapter 19: Displayed Equations

The next level of complexity occurs when you have several aligned equa-
tions with several equation numbers. Or perhaps some of the lines are numbered

and others are not:<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>