
Drawing ER diagrams with TikZ

Claudio Fiandrino

Abstract
The paper will illustrate some techniques to repre-
sent Entity-Relationship (ER) diagrams with TikZ.
In particular, it will focus on the standard internal
library er, on the external package TikZ-er2, on the
external tool Graphviz and on the object-oriented
approach provided by the er-oo library.

Sommario
L’articolo illustrerà alcune tecniche per rappresen-
tare i diagrammi Entità-Relazione (ER) con TikZ.
In particolare si concentrerà sulla libreria standard
interna er, sul pacchetto esterno TikZ-er2, sul pro-
gramma esterno Graphviz e sull’approccio orientato
agli oggetti fornito dalla libreria er-oo.

1 Introduction
The Entity-Relationship (ER from now on) model
is a common way to model and represent databases.
Peter Chen proposed the model specification in
(Chen, 1976). The model is built using three main
blocks:

• entities;

• relationships;

• attributes.

Entities are real-world items or concepts that can
exist independent of one another and are uniquely
identified. Examples of physical entities are “com-
puter” or “car”, while concept entities are “cus-
tomer order” or “payment”. Their standard nota-
tion is a rectangle. The entity “student” is repre-
sented in figure 1.

Student

Figure 1: Entity graphical representation

Entities are linked by relationships, which de-
scribe the relation the entities share. Such relations
can be classified according to the so-called degree
of the relationship, an index of relevance that rep-
resents how many entities the relationship involves.
Relationships are represented with diamonds as
shown in figure 2, where a “student” and a “profes-
sor” are linked by a thesis. According to common
diagram conventions, a relation in which entities
participate more than once is called total or surjec-
tive or recursive and the visual link is double line.

The relation “supervision” in a “team”, shown in
figure 3, is total because some team members will
be supervisors, others will be supervisee.

Student Thesis Professor

Figure 2: Relationship graphical representation

Team Supervision

Figure 3: Total relation graphical representation

At last, both entities and relationships can have
attributes to describe particular properties. Notice
that attributes themselves can have attributes and
are called composite attributes; for example, the
“address” attribute for a “person” entity could be
described by “street” and “city”, two attributes
in this case. Attributes are represented with ovals
which border changes according to the type of the
attribute:
solid border for simple attributes;
dashed border for derived attributes. Attributes
are derived when we infer them from entities or
relationships (e.g., the “age” attribute could derive
from the entity “person”);
double border for multi-attributes. Likewise to-
tal relationships, a multi-attribute has more than
one value per entity or relationship (e.g., the at-
tribute “phone” for the entity “person”).
Figure 4 shows every possible attributes in a single
example.

PersonPhone Age

Address

Figure 4: Attributes graphical representation

While this short introduction to ER mod-
els is not exhaustive, it provides the suffi-
cient background to understand this paper. Fur-
ther references are http://wofford-ecs.org/

5

http://wofford-ecs.org/dataandvisualization/ermodel/material.htm
http://wofford-ecs.org/dataandvisualization/ermodel/material.htm


Claudio Fiandrino ArsTEXnica Nº 15, Aprile 2013

dataandvisualization/ermodel/material.htm
and http://users.informatik.uni-halle.de/
~brass/db04/c3_ermod.pdf.

The remainder of the paper is organized as fol-
lows: section 2 will focus on the er library, section 3
will describe the TikZ-er2 package, section 4 will
show how Graphviz works and section 5 will men-
tion the er-oo module. Every sections will show
the same example programmed (drawn) using the
discussed tool. At last, section 6 will conclude the
paper.

2 The library er
2.1 Usage
TikZ provides plenty of standard libraries, in-
cluding er (Tantau, 2010, section 31 Entity-
Relationship Diagram Drawing Library). As every
TikZ libraries, the user has to load it in the pream-
ble:

\usepackage{tikz}
\usetikzlibrary{er}

The library defines the keys necessary to repre-
sent standard entities, relationships and attributes.
Those keys are:

• entity to represent the entity nodes;

• relationship to represent the relationship
nodes;

• attribute to represent the attribute nodes;

• key attribute to represent a key attribute
node;

and they are applied to TikZ nodes by the com-
mand

\node[key type] (label) at (position)
{text};

The user can customize nodes style modifying the
every entity, every relationship and every
attribute keys. The ways to globally customize
nodes of an ER diagram, according to TikZ habits,
are:

• \tikzset{every entity /.style={
...
customization
...

},
}

• \tikzstyle{every entity}=[
...
customization
...

]

The latter way is discouraged in favor of the former.
The main advantage of using the er library is

that users do not need to use external packages
or tools: standard TEX Live or MiKTEX let them
immediately operate. Unfortunately users are al-
ways requested to spatially organize the diagram
and, optionally, to customize elements style. When
the diagram is large, finding a good layout can be
tricky and time-consuming.

2.2 A real example with er

We will now see how to draw a simple diagram
composed by two entities, “person” and “tool”,
linked by the only relationship “uses”. Notice that
more than one person may use the same tool and
a tool can use other tools. This diagram will be
taken as reference to compare the code of all the
techniques shown in the paper.
Listing 1 shows a complete minimal example

which result appears in figure 5.
As described in subsection 2.1, the library only

provides keys for basic elements, so it has been nec-
essary setting up the multi attribute, derived
attribute and total relationships styles. Notice
that defining these style is very simple: it is just
needed to use the already present attribute style
along with the necessary customization. That is:
\tikzset{multi attribute /.style={

attribute ,
double distance =1.5pt
}

}

This particular procedure carries a very impor-
tant advantage: the new attribute type will inherit
its father style attribute. Indeed, it is perfectly
possible to manually set up the multi attribute:
\tikzset{multi attribute /.style={

ellipse ,
minimum size =1.5 \baselineskip ,
draw ,
double distance =1.5pt ,
every multi attribute
}

}

which prevents a later automatic style customiza-
tion.
A specific command \key has been created to

distinguish the key attribute. Indeed the er library
does not provide any methods to underline a key
attribute and just emphasizes it using italic.
Notice how all the elements have been manu-

ally positioned with keys above, below, left and
right; they could have even been combined for
finer results (e.g., above right). This explains
why it is important that each node has its own
name: in this way, it is possible to place it relatively
to already defined nodes (e.g., above of=prevnode).
The elements are 7em distant from each other
thanks to the key node distance: it is the distance

6

http://wofford-ecs.org/dataandvisualization/ermodel/material.htm
http://wofford-ecs.org/dataandvisualization/ermodel/material.htm
http://wofford-ecs.org/dataandvisualization/ermodel/material.htm
http://users.informatik.uni-halle.de/~brass/db04/c3_ermod.pdf
http://users.informatik.uni-halle.de/~brass/db04/c3_ermod.pdf


ArsTEXnica Nº 15, Aprile 2013 Drawing ER diagrams with TikZ

\documentclass[a4paper ,11pt ,x11 names]{article}

\usepackage{tikz}
\usetikzlibrary{er}
\tikzset{multi attribute /.style={attribute ,double distance =1.5pt}}
\tikzset{derived attribute /.style={attribute ,dashed}}
\tikzset{total /.style={double distance =1.5pt}}
\tikzset{every entity /.style={draw=orange , fill=orange!20}}
\tikzset{every attribute /.style={draw=MediumPurple1, fill=MediumPurple1!20}}
\tikzset{every relationship /.style={draw=Chartreuse2, fill=Chartreuse2!20}}
\newcommand{\key}[1]{\underline{#1}}

\begin{document}
\begin{tikzpicture}[node distance =7em]
\node[entity] (person) {Person};
\node[attribute] (pid) [left of=person] {\key{ID}} edge (person);
\node[attribute] (name) [above left of=person] {Name} edge (person);
\node[multi attribute] (phone) [above of=person] {Phone} edge (person);
\node[attribute] (address) [above right of=person] {Address} edge (person);
\node[attribute] (street) [above right of=address] {Street} edge (address);
\node[attribute] (city) [right of=address] {City} edge (address);
\node[derived attribute] (age) [right of=person] {Age} edge (person);
\node[relationship] (uses) [below of=person] {Uses} edge (person);
\node[entity] (tool) [below of=uses] {Tool} edge[total] (uses);
\node[attribute] (tid) [left of=tool] {\key{ID}} edge (tool);
\node[attribute] (tname) [right of =tool] {Name} edge (tool);
\end{tikzpicture}
\end{document}

Listing 1: Exploiting the er library

PersonID

Name

Phone

Address

Street

City

Age

Uses

ToolID Name

Figure 5: The reference ER diagram

7



Claudio Fiandrino ArsTEXnica Nº 15, Aprile 2013

between the anchor center of each pair of nodes.
This distance applies to every node in tikzpicture,
but it could be locally redefined in case one ele-
ment should be shifted a bit; the right keys to use
for that are xshift and yshift.
\node[multi attribute , xshift =1cm,

yshift =1cm]
(phone) [above of=person] {Phone}
edge (person);

It is not important where we place the options,
i.e., we can set them before or after the type of the
node. However, it is important to highlight that
the syntax
\node[options]

(name) [position] {label}
edge (destination);

makes possible to put and connect a node to an
already existing destination node. Users usually
write nodes in TikZ all together and then create
the links using draw or path. That particular pro-
cedure allows to be fast, but the destination has
to be already defined when a new node is attached
to it. Thus:
\node[multi attribute] (phone)

[above of=person] {Phone}
edge (person);

\node[entity] (person) {Person};

will not work, but rather it will arise the following
error:
! Package pgf Error:
No shape named person is known.

3 The package TikZ-er2
3.1 Usage
The TikZ-er2 package (https://www.assembla.
com/wiki/show/tikz-er2) provides a more de-
tailed set of styles than the er library. Unfortu-
nately, the package is not part of CTAN and thus
does not come along with TEX Live or MiKTEX.
The users wishing to use it have to install it by
themselves.
A closer look at the package unveils its good

structure: not only it provides the same styles as
er does, it also has different types of attributes,
entities and connections. Indeed it distinguishes
among simple and total relationship with styles
link and total styles respectively.
Just like er, the user is the only customizer

of elements. She will do it in the same way she
did with er because the TikZ-er2 defines the
same styles. These styles are in the form every
current-style , thus customizing them could in-
volve, again, tikzset. Positioning of elements is
left to the user too. TikZ library positioning
could be of help, but do not expect stumbling re-
sults: only GraphViz, introduced in section 4 can
save time and some effort in placing the nodes.

3.2 A real example with TikZ-er2
TikZ-er2 allows to obtain the same result already
shown in figure 5. The listing 2 shows that it is
not necessary to write new styles and the users
can only concentrate in customizing and placing
elements.

4 GraphViz
4.1 Why GraphViz?
GraphViz is a graph-deployment program. Since
an ER diagram is graph which vertices are di-
agram elements (entities, relationships and at-
tributes) and edges are links between elements,
it is straightforward to think of drawing an ER di-
agram with Graphviz. Readers can learn the basics
about GraphViz-TikZ interaction in Fiandrino
(2012). In this paper we will use dot2texi (Fauske,
2008) already present in TEX Live and MiKTEX
as it simplifies the needed interaction.
GraphViz makes the user ignore how to place

elements because it has specific algorithms to ac-
complish this task. They can be activated by op-
tions like circo or neato. However, elements styles
are not foreseen and users has to design styles by
themselves.

The compiler will compile the main file with the
option -shell-escape because it has to translate the
dot language with the underlying dot2tex applica-
tion. For instance, let main.tex be the main file;
the command to compile it is:
pdflatex -shell -escape main.tex

Of course, the user has to check for the presence
of GraphViz and dot2tex in her system before
using this approach. The paper Fiandrino (2012)
describes the complete installation procedure for
Ubuntu.

4.2 A real example with GraphViz
Listing 3 shows how to exploit GrapViz to draw
the ER diagram and, at the same time, shows the
major novelties of this approach.
As already mentioned, it is necessary to build

all the styles describing every necessary elements.
They are in the preamble and are always defined via
tikzset. Notice that the styles multi attribute
and derived attribute inherit from the already
defined style attribute in this case too.
The major novelty and facility introduced by

GraphViz is that each element is not placed in
a given position, but its description is given by
choosing the category it belongs to. We make the
choice with the notation style="<category>" inside
square brackets:
Person [style=" entity"];
...
Phone [style ="multi attribute"];
...
Uses [style=" relationship"];

8

https://www.assembla.com/wiki/show/tikz-er2
https://www.assembla.com/wiki/show/tikz-er2


ArsTEXnica Nº 15, Aprile 2013 Drawing ER diagrams with TikZ

\documentclass[a4paper ,11pt ,x11 names]{article}

\usepackage{tikz -er2}
\tikzset{every entity /.style={draw=orange , fill=orange!20}}
\tikzset{every attribute /.style={draw=MediumPurple1, fill=MediumPurple1!20}}
\tikzset{every relationship /.style={draw=Chartreuse2, fill=Chartreuse2!20}}

\begin{document}
\begin{tikzpicture}[node distance =7em]
\node[entity] (person) {Person};
\node[attribute] (pid) [left of=person] {\key{ID}} edge (person);
\node[attribute] (name) [above left of=person] {Name} edge (person);
\node[multi attribute] (phone) [above of=person] {Phone} edge (person);
\node[attribute] (address) [above right of=person] {Address} edge (person);
\node[attribute] (street) [above right of=address] {Street} edge (address);
\node[attribute] (city) [right of=address] {City} edge (address);
\node[derived attribute] (age) [right of=person] {Age} edge (person);
\node[relationship] (uses) [below of=person] {Uses} edge (person);
\node[entity] (tool) [below of=uses] {Tool} edge[total] (uses);
\node[attribute] (tid) [left of=tool] {\key{ID}} edge (tool);
\node[attribute] (tname) [right of =tool] {Name} edge (tool);
\end{tikzpicture}
\end{document}

Listing 2: Exploiting the TikZ-er2 package

This is the standard way to locally customize the
elements in GraphViz. Since the various categories
are also the styles names, the elements will auto-
matically inherit their properties once converted
in TikZ code. The label outside the square brack-
ets is used to later connect the elements and it
also appears in the diagram by default. Identifying
key attributes could be a problem but GraphViz
makes it possible to customize even this label with
the notation label="<label>" (always inside square
brackets). For example:
pid [style=" attribute",

label =" \underline{ID}"];

In this way, the picture will use the label set with
the key label, but for the connection phase it is
the label outside the square brackets that matters,
the name. Notice that the names should be unique
inside the dot2tex environment, therefore it is pos-
sible to exploit the key label also to differentiate
the elements that might assume the same name;
in the example this property has been used for:
Name[style=" attribute"];
...
tname[style =" attribute",label ="Name"];

Elements position is decided by GraphViz and
it is activated with the option neato: this automat-
ically locates the elements near to other elements
to which they are connected to.
The connections creation phase is a very sim-

ple task: the syntax is <element1> -> <element2>.
Automatically, these connenctions inherith the pro-
vided style with:
edge [style=" simple relation"];

This definition allows to declare the style globally.
It will hold for all the connections unless we locally
override the global definition:

Tool -> Uses[style=" total relation"];

that sets up the connection to be of type total.
The result obtained with this approach is shown

in figure 6; the compilation with the option
-shell-escape will also create the files

main -dot2tex -fig1.dot
main -dot2tex -fig1.tex

provided the main file is named main.tex. The first
one contains just the dot code and it can be opened
with any Dot viewer while the second contains the
tikzpicture code. These files can be seen as auxiliary
files created in the translation process from the
dot syntax to the TikZ one.

5 The object-oriented program-
ming approach

5.1 A short introduction to object-
orientation in TikZ

The concept of object-oriented programming in
LATEX graphics is still something quite new al-
though LuaTEX seems to offer an interesting po-
tentiality as per Giacomelli (2012).

On the contrary, the present work is focused on
the module oo directly provided by TikZ. It can
be loaded with

\usepgfmodule{oo}

in the preamble.

9



Claudio Fiandrino ArsTEXnica Nº 15, Aprile 2013

\documentclass[a4paper ,11pt ,x11 names]{article}

\usepackage{tikz}
\usetikzlibrary{automata ,shapes}
\usepackage{dot2texi}
\tikzset{entity /.style={draw=orange , fill=orange!20}}
\tikzset{attribute /.style={ellipse ,draw=MediumPurple1, fill=MediumPurple1!20}}
\tikzset{multi attribute /.style={attribute ,double}}
\tikzset{derived attribute /.style={attribute ,dashed}}
\tikzset{relationship /.style={diamond ,draw=Chartreuse2, fill=Chartreuse2!20}}
\tikzset{simple relation /.style={-}}
\tikzset{total relation /.style={-,double ,double distance =1.5pt}}

\begin{document}
\begin{tikzpicture}
\begin{dot2tex}[styleonly ,mathmode ,codeonly ,neato ,options=-s]
digraph G {
edge [style=" simple relation"];
// nodes
Person [style=" entity"];
pid [style=" attribute",label=" \underline{ID}"];
Attribute [style =" attribute"];
Name [style=" attribute"];
Phone [style ="multi attribute"];
Address [style=" attribute"];
Street [style=" attribute"];
City [style=" attribute"];
Age [style=" derived attribute"];
Uses [style=" relationship"];
Tool [style=" entity"];
tid [style=" attribute",label=" \underline{ID}"];
tname [style =" attribute",label ="Name"];
// edges
Person -> pid;
Person -> Attribute;
Person -> Name;
Person -> Phone;
Person -> Address -> Street;
Person -> City;
Person -> Age;
Person -> Uses;
Tool -> tid;
Tool -> tname;
Tool -> Uses[style=" total relation"];
}
\end{dot2tex}
\end{tikzpicture}
\end{document}

Listing 3: Exploiting GraphViz

10



ArsTEXnica Nº 15, Aprile 2013 Drawing ER diagrams with TikZ

City

Name

Person

Attribute

Age

Name

ID

Phone

Street

Uses

Address

ID

Tool

Figure 6: The ER diagram realized with GraphViz

The module provides a generic macros set to
build classes, methods, attributes and objects. At
the moment, as far as I know, there are no libraries
developed in this way. This approach merges the
advantages of the object-oriented paradigm along
with the TikZ syntax.

In my opinion, the object-oriented paradigm is
extremely useful to draw pictures that have com-
mon features repeated several times. An ER di-
agram falls exactly in this category because its
entities, relationships and attributes have common
features: the set of rules to represent them so that
the standard is accomplished. Moreover, these ele-
ments are repeated several times because in each
diagram there are usually several entities, relation-
ships and attributes.
From an object-oriented point of view, things

with common features are called objects. The fol-
lowing command shows how to create a new object:
\pgfoonew \obj=new constructor()

where constructor() is a method of a given class.
In particular, the constructor method is devoted
to instantiate new objects. Each object belongs to
a given class; classes are to be defined as:
\pgfooclass{c-name}{
...
code
...

}

while methods will be defined with:

\method m-name(parameters) {
...
code
...

}

A class is characterized by attributes that describe
objects properties. It is only possible to customize
or activate these properties with methods. At-
tributes can be defined with
\attribute a-name;

in case they do not have a predefined value, or
with
\attribute a-name=value;

when they do have a predefined value. For example,
an object which prints some text may have an
attribute text without a predefined value while
the attribute color text could be set to, e.g., blue
if the text should be mainly printed in blue.

5.2 The er-oo library
To make this work significant I developed a TikZ
library named er-oo. You can download it from
https://github.com/cfiandra/er-oo. As any other
library, it will be loaded in the preamble with:
\usepackage{tikz}
\usetikzlibrary{er-oo}

after installing it. The library is ultimately a pack-
age, so the recommended way to install it is putting
the files in the personal tree:

11

https://github.com/cfiandra/er-oo


Claudio Fiandrino ArsTEXnica Nº 15, Aprile 2013

• tikzlibraryer-oo.code.tex and er-oo.dtx un-
der ../texmf/tex/latex/er-oo/

• er-oo.pdf under ../texmf/doc/er-oo/

where er-oo is a directory to be created ad hoc
and the .. denotes the missing path which de-
pends on the distribution and the operating sys-
tem running on the machine. It also works copying
tikzlibraryer-oo.code.tex in the directory of the
main file. This solution, however, makes the library
work only for that document while the former so-
lution makes it work for all documents regardless
of their position in the file system.

The library defines three classes for entities, re-
lationships and attributes with a predefined look
(at least in terms of colors), unlike the other tech-
niques seen in this paper. The user is still free to
change the basic look according to her personal
preference with the apposite methods. Available
methods are the same for all the classes though
the class attribute has a further method named
set type.
Before unveiling the code that draws the usual

ER diagram, a short introduction to the library
might be useful. Specifically I will take the
attribute class as the reference because it pro-
vides all methods.

The list of the currently defined attributes is:
\attribute text;
\attribute border color=er-purple;
\attribute fill color=er-purple!20;
\attribute text color=black;
\attribute label;
\attribute type;
\attribute width =1.5cm;
\attribute height =0.35 cm;

Some attributes have a default value, related to
the elements look. The attributes without a default
value are those requiring an input from the user:
text is the attribute devoted to set the label of the
element inside the diagram, the label attribute is
responsible to identify an element (by its name)
and type allows to select the attribute category
(standard, multi attribute or derived attribute).
This set of attributes is very good since it provides
a good customization potentiality, but could be
improved. A new attribute could be:
\attribute text opacity =1;

to set the opacity of the text. A good idea in
defining new attributes is to use names similar
to the keys already provided by TikZ: in such a
way, the attribute will set the corresponding key
with the default value (1 in this case to indicate
an opaque text) maintaining names consistence
between the TikZ layer and the object-oriented
upper layer.

The user sets the attributes value with methods.
The attribute label, for example, has a correspon-
dent method:

\method set label(#1) {
\pgfooset{label}{#1}

}

Methods, however, are not only designed to set
attributes. Two methods can place one element:
draw and place. The first one accepts as arguments
a pair of coordinates (x, y) while the second one
wants as argument a position relative to another
element. Here is the definition of the method draw:
\method draw(#1,#2) {
\node [ellipse ,
attribute type={\pgfoovalueof{type}},
draw=\pgfoovalueof{border color},
fill=\pgfoovalueof{fill color},
text=\pgfoovalueof{text color},
minimum width=\pgfoovalueof{width},
minimum height=\pgfoovalueof{height},
] (\pgfoovalueof{label})
at (#1,#2) {\pgfoovalueof{text}};

}

Notice that the macro \pgfoovalueof sets TikZ
keys inside \node retrieving values of the corre-
sponding attributes. This also holds for text and
label of the element.
Three alternative methods link elements:

connect, multi connect and total relation. The
first method simply draws a link between two ele-
ments exploiting the usual \draw syntax; the sec-
ond, instead, links a single element (specified in
the first argument) to a list of elements (specified
in the second argument), as you may see in its
definition:
\method multi connect(#1,#2) {

\foreach \i in {#2}{
\draw[-] (#1)--(\i);

}
}

Notice that the usage should be in this form:
\myobject.multi connect(1,{2,3,4})

Braces are needed to protect the list of items in the
second argument, since the list has to be comma
separated.
Finally, the total relation is the method

needed in case the relationship has to be of type
total. Unfortunately it is not possible to use these
methods subsequently as it happens in the tradi-
tional object-oriented languages. This means that
the following syntax
\myobject.method one().method two()

and so the following code
\myobject.connect(1,2).total()

are forbidden (i.e., wrong).
To make code writing an easier and quicker pro-

cess, it is possible mixing methods and creating
new methods as a composition of pre-existent ones;
for example, it is the case of:

12



ArsTEXnica Nº 15, Aprile 2013 Drawing ER diagrams with TikZ

\method set and draw(#1,#2,#3,#4) {
\pgfoothis.set label(#1)
\pgfoothis.text(#2)
\pgfoothis.draw(#3,#4)

}

Thanks to the macro \pgfoothis the contained
methods are always applied to the current object
using the container method; for instance:
\myobject.set and draw(a,b,0,0)

is translated into
\myobject.set label(a)
\myobject.text(b)
\myobject.draw(0,0)

5.3 A real example with oo-er

As listings 1 and 2, also listing 4 provides the result
already shown in picture 5.
In order to use the oo-er library, at first it is

needed to instantiate the objects using the special
method constructor:
\pgfoonew \myentity=new entity()
\pgfoonew \myrel=new relationship()
\pgfoonew \myattr=new attribute()

From that point on, objects are able to invoke
those methods defined by each class. For example,
the first entity, “tool”, is placed with the method
set and draw:
\myentity.set and draw(tool ,Tool ,1,0)

Since no other elements are currently present
in the picture, it is not possible to place it
with set and place as its parameters refer to an
already placed element. We can therefore use
set and place for “tool” attributes:
\myattr.set and place(tool -id ,

\underline{ID},left of=tool)
\myattr.set and place(tool -name ,

Name ,right of=tool)

Indeed, once the “tool” entity has been placed, it
is possible to refer to it via its name tool.

After the attributes definition, there is the con-
nection phase:
\myentity.multi connect(tool ,

{tool -id ,tool -name})

because the recommended way to proceed is to
define and immediately connect the entity with its
own attributes.
Notice that it seems possible to optimize the

multi connect or connect methods in order to use
only one argument. Assuming
\method x-multi connect(#1) {
\foreach \i in {#1}{

\draw[-]
(\pgfoovalueof{label})--(\i);

}
}

the previous connection may be obtained with
\myentity.x-multi connect(

tool -id ,tool -name)

since the method refers to the last placed object.
However, in this way, it becomes mandatory to
connect attributes and entities as soon as they are
located because
\myentity.set and draw(x,x,0,0)
\myattribute.set and draw(x1,x1,1,0)
\myattribute.set and draw(x2,x2,0,1)
\myentity.set and draw(y,y,0,0)
\myentity.x-multi connect(x1,x2)

will not connect the entity “x” to the attributes
“x1” and “x2”, but rather “y” to “x1” and “x2”.
This does not happens with the current definition
of multi connect:
\myentity.set and draw(x,x,0,0)
\myattribute.set and draw(x1,x1,1,0)
\myattribute.set and draw(x2,x2,0,1)
\myentity.set and draw(y,y,0,0)
\myentity.multi connect(x,{x1,x2})

correctly connects the entity “x” to the attributes
“x1” and “x2”.

6 Conclusion
The paper presented several techniques to draw ER
diagrams with TikZ. These techniques mainly differ
in terms of the programming style: the usual TikZ
syntax is the base of the er library and the TikZ-
er2 package, the dot language is required to exploit
GraphViz and the object-oriented programming
style is the key feature of the er-oo.

Users may prefer one tool or another according
to their personal preferences or programming style,
but they could wisely pick the tool according to
the ER diagram size. In fact, GraphViz is recom-
mended for large ER diagrams because of the dot
capability to automatically place elements.

7 Acknowledgements
First of all I would like to thank Paulo Cereda;
this paper indeed originated from an answer I
gave on TeX.SX after a talk in chat with him:
http://tex.stackexchange.com/q/78357/13304.
Last but not least, I would also like to thank

the reviewer of the paper for his precious help in
organizing my work better and making my bad
English readable.

References
Chen, P. (1976). «The entity-relationship
model—toward a unified view of data». ACM
Transactions on Database Systems (TODS),
1(1), pp. 9–36.

Fauske, K. M. (2008). The dot2texi package. URL
http://www.ctan.org/pkg/dot2texi.

13

http://tex.stackexchange.com/q/78357/13304
http://www.ctan.org/pkg/dot2texi


Claudio Fiandrino ArsTEXnica Nº 15, Aprile 2013

\documentclass{article}

\usepackage{tikz}
\usetikzlibrary{er-oo}

\begin{document}
\begin{tikzpicture}[node distance =2.75cm]
\pgfoonew \myentity=new entity()
\pgfoonew \myrel=new relationship()
\pgfoonew \myattr=new attribute()
\myentity.set and draw(tool ,Tool ,1,0)
\myattr.set and place(tool -id ,\underline{ID},left of=tool)
\myattr.set and place(tool -name ,Name ,right of=tool)
\myentity.multi connect(tool ,{tool -id,tool -name})
\myrel.set and place(rel ,Uses ,above of=tool)
\myrel.total relation(rel ,tool)
\myentity.set and place(per ,Person ,above of=rel)
\myattr.set and place(per -id ,\underline{ID},left of=per)
\myattr.set type(derived attribute)
\myattr.set and place(per -age ,Age ,right of=per)
\myattr.set type() % to reset the derived attribute style
\myattr.set and place(per -name ,Name ,above left of=per)
\myattr.set type(multi attribute)
\myattr.set and place(per -phone ,Phone ,above of=per)
\myattr.set type() % to reset the multi attribute style
\myattr.set and place(per -addr ,Address ,above right of=per)
\myattr.set and place(street ,Street ,above right of=per -addr)
\myattr.set and place(city ,City ,right of=per -addr)
\myattr.multi connect(per -addr ,{street ,city})
\myentity.multi connect(per ,{per -id,per -age ,per -name ,per -phone ,per -addr ,rel})
\end{tikzpicture}
\end{document}

Listing 4: Exploiting the object-oriented library er-oo

Fiandrino, C. (2012). «Graphviz e TikZ».
ArsTEXnica, (13), pp. 4–10. URL http://www.
guit.sssup.it/arstexnica/.

Giacomelli, R. (2012). «Grafica ad oggetti con
LuaTEX». ArsTEXnica, (14), pp. 53–71. URL
http://www.guit.sssup.it/arstexnica/.

Tantau, T. (2010). The TikZ and PGF Packages.
URL http://www.ctan.org/pkg/pgf.

. Claudio Fiandrino
claudio dot fiandrino at gmail
dot com

14

http://www.guit.sssup.it/arstexnica/
http://www.guit.sssup.it/arstexnica/
http://www.guit.sssup.it/arstexnica/
http://www.ctan.org/pkg/pgf

