The TikZ-UML package

Nicolas KIELBASIEWICZ

March 29, 2016

Contents

1

3

Preamble

1.1 Dependencies e e e
1.1.1 Required packages L

1.2 Imstallation e e

Class diagrams

2.1 Packages, classes, attributes and operations,
2.1.1 Todefine a package e
2.1.2 Todefineaclass

2.2 To define a relation between classes oL
2.2.1 General command
2.2.2 To define the geometry of a relation L oL
2.2.3 To adjust the geometry of a relation
2.2.4 To define informations about attributes of a relation
2.2.5 To place information about attributes of a relation
2.2.6 To adjust the alignment of information about attributes of a relation
2.2.7 To define and place the stereotype of a relation
2.2.8 To modify the anchor points of a relation
2.2.9 To define a recursive relationo
2.2.10 Name of auto-built points of arelation
2.2.11 To draw an intersection point between relations
2.2.12 Advanced styling of arelation L
2.2.13 N-ary associations Lo

2.3 Comments / constraints note Lo

2.4 Association class

2.5 Advanced features for positioning Lo
2.5.1 Horizontal and vertical alignment 0 oL
2.5.2 Relative positioning Lo

2.6 To change preferences e

2.7 Examples e e
2.7.1 Example from introduction, step by step
2.7.2 To define a specialization of a class

2.8 Priority rules of options and known bugs Lo

Use case diagrams

3.1 Todefine asystem e
3.2 Todefine an actor e
3.3 Todefineausecase e
3.4 Todefinearelation e
3.5 Advanced features for positioning

3.5.1 Horizontal and vertical alignment 0.

3.5.2 Relative positioning e
3.6 To change preferences L
3.7 Examples e
3.7.1 Example from introduction, step by step L L.
State-transitions diagrams
4.1 Todefine astate e e e e e
4.2 To define a transition e e e e e e e e
4.2.1 To define a unidirectional transition,
4.2.2 To define a recursive transition oo Lo
4.2.3 To define a transition between sub states
4.3 Advanced features for positioning
4.3.1 Horizontal and vertical alignment o000
4.3.2 Relative positioning oL
4.4 To change preferences
4.5 Examples oL e e
4.5.1 Example from introduction, step by step oL
Sequence diagrams
5.1 To define a sequence diagram
5.2 Todefine an object e e
5.2.1 Typesof objects
5.2.2 Automatic placement of an object
5.2.3 Toscalean object
5.3 To define a function call
5.3.1 Basic /recursive calls
532 Toplaceacall
5.3.3 Synchron /asynchron calls L
5.3.4 Operation, arguments and return value
5.3.5 To define a constructor call
5.3.6 Toname acall e e
5.4 To define a combined fragment Lo Lo
5.4.1 Informations of a fragment
5.4.2 Name of a fragment
5.4.3 To define regions of a fragment Lo oL
5.5 To change preferences e
5.6 Examples e
5.6.1 Example from introduction, step by stepo oL
5.7 Known bugs and perspectives L e
Component diagrams
6.1 To define a component e e e
6.2 To define a provided/required interface Lo
6.3 To define an assembly connector e
6.3.1 To define the geometry of an assembly connector
6.3.2 To place the assembly connector symbol
6.3.3 To adjust the geometry of an assembly connector
6.4 To define a delegate connector
6.5 To define a port on a component
6.6 To change preferences e
6.7 Examples e e e
6.7.1 Example from introduction, step by step

36
37
38
38
39
40
40
40
41
42
42
42

46
47
47
47
48
48
48
49
49
o1
51
52
52
52
93
53
93
54
95
55
99

Chapter 1

Preamble

In front of the wide range of possibilities given by the PGF /TIKZ library, and in front of the apparent
lack of dedicated packages to UML diagrams, except to one specific diagram, such as pgf-umled (for class
diagrams) and pgf-umlsd (for sequence diagrams), I was to develop the T1KZ-UML package, with a set of
specialized commands and environments for these diagrams. It is dedicated to succeed pst-uml package,
that was developped for similar reasons in PSTRICKS. Actually, the package contains definitions of
complete class diagrams, use case diagrams, sequence diagrams, state diagrams and component diagrams
in a quite easy way. Some improvements are still needed, but it is near the final release.

Here is an example of class diagram you can draw:

spl
_ B _‘
T
[e — = m m e e e e e e - o
/1
A 2o
7 |
n : uint P 3
t : float 7 i
|
Je suis une note l
B qui concerne la l
relation d’import l
d : double toto !
|
setB(b : B) : void L l
ctB : B I
g () . : Sp2 3
<interface>>
Je suis une note . C
qui concerne la — o : uint
classe B s : string
1 titi | *
tut
D
n: uint [® veetor

We will now show you the various functionnalities of TIKZ-UML , but before we will talk about packages
dependencies and installation of TIKZ-UML .

1.1 Dependencies

1.1.1 Required packages

tikz: It is useless to present this extremely powerful and complete drawing package. Every diagram
generated by TIKZ-UML is in fact generated by TIKZ . It also gives some packages and libraries
used by TiIkKZ-UML , such as the backgrounds, arrows, shapes, fit, shadows, decorations.markings
libraries and the pgfkeys package that manages macros options.

ifthen: This package offers the management of conditional test, such as if ...then ...else ...

xstring: This package offers string substitutions. It is used for the management of names between
programmation items (classes, states, packages, ...) and and the nodes representing them.

calc: This package offers easy access to calculations.

pegfopts: This package is an add-on of the pgfkeys package for the management of packages and classes
options.

For still unknown reasons, TIKZ-UML works fine if you have already included the babel package with
the language of your choice.

1.2 Installation

Coming soon

Chapter 2

Class diagrams

2.1 Packages, classes, attributes and operations

2.1.1 To define a package

You can define a package with the umlpackage environment:

\begin{tikzpicture} package-name
\begin{umlpackage} [x=0, y=0]{package—name}
\end {umlpackage}

\end{tikzpicture}

Both options x and y allow to define the package position in the figure. The default value for both of
them is 0.

\begin{tikzpicture} <L context>>

\begin{umlpackage} [x=0, y=0, package-name
type=context | { package—name}

\end{umlpackage}

\end{tikzpicture}

Option type
e When a package contains classes and sub-packages, its dimensions automatically fit to its content.
e You can define as many packages as you want in a figure.

e For an empty package (that contains no class), you can use a shortcut command: umlemptypackage
that takes the same arguments and options as the umlpackage environment

2.1.2 To define a class

You can define a class with the umlclass command:

\begin{tikzpicture}

\umlclass{namespace : : A}{ namespace::A
+ n : uint \\ \umlstatic{—— 1 : int} \\)
\# r : const float + 10 uint
H —i:int
+ setA (i : int) : void \\ \umlvirt{\# # r : const float
getA () : AJ — :
} + setA(i: int) : void
\end{tikzpicture} # getA() : A

The class name is defined with the first argument or the umlclass command. As you can see, you can
use double dots in it.

The attributes of a class are defined with the second argument of the umlclass command. You write
the attributes list using \\ as a delimiter. The operations of a class are defined with the third argument
of the umlclass command.

To define a static attribute or a static operation, you can use the umlstatic command. In a similar
way, the umlvirt command is used to define a virtual operation.

For empty classes (that contains no attributes and no operations), you can use a shortcut command
umlemptyclass:
\begin{tikzpicture}
\umlemptyclass{namespace :: class —name}
\end{tikzpicture}

namespace: :class-name

You may also prefer drawing a single rectangle node instead of a 3 parts rectangle node. In this case,

you may use the simple option of umlclass or the shortcut command umlsimpleclass that also takes

only the class name for argument and the same options as the command umlclass:
\begin{tikzpicture}
\umlsimpleclass{namespace :: class —name}
\end{tikzpicture}

namespace: :class-name

The umlclass command (and its shortcuts) also takes options.

Name of the node defining a class

To name a class, you may want use special characters, such as _, or double dots (:) when giving
namespace. Internal mechanism of TIKZ-UML name the class node with the class name. But to name
a TIKZ node, backslashes and double dots are forbidden. As far as double dots are concerned, string
substitutions are done on the class name to define the node name. But for _, it does not work so easily.
That is why you can directly name a node with the option name:
\begin{tikzpicture}
\umlclass [x=0,y=0, namespace::class_name

name=classname | {namespace :: class _name}{}{}
\end{tikzpicture}

To define coordinates of the class node

namespace::A
\begin{tikzpicture}
\umlclass{namespace ::A}{ 4+ n : uint
+ n : uint \\ \umlstatic{— i : int} \\ —i:int
\# r : const float # 1 : const float
H
+ setA(i : int) : void \\ \umlvirt{\# + setA(i: int) : void
getA () : A} # getA() : A
}
\umlsimpleclass [x=1, y=—3]{B}
\end{tikzpicture}

B

Both options x and y allow to define the class position in the figure. 2 cases: if the class is defined inside
a package, the class position is relative to the package; on the contrary, the class position is relative to
the figure. The default value for both options is 0.

To define the width of a class

The default width of a class is 10ex. You can use the width option to specify an other value:

class15

\begin{tikzpicture}

\umlemptyclass [width=15ex] {class 15}
\umlemptyclass[y=—2, width=30ex]|{class30}
\end{tikzpicture}

class30

To define type and tagged values of a class

There is different types of classes: class, interface, typedef, enum. You can specify it with the type
option (the default value is class):

\begin{tikzpicture} <interface>>
\umlemptyclass[type=interface|{class —name} class-name
\end{tikzpicture}

@ The type is written between < and > above the class name, excepted the class type (default behavior),
and the abstract type, where the class name is written in italic style instead:

\begin{tikzpicture}
\umlemptyclass[type=abstract | {class —name}
\end{tikzpicture}

class-name

@ Shortcuts exist for each walue of the type option: umlabstract, umltypedef, umlenum,
umlinterface. For these shortcuts, option type is forbidden.

@ You can also draw interfaces with a circular node. To do so, you can use the simple option to the
umlinterface command, or use the shortcut umlsimpleinterface

\begin{tikzpicture} I
\umlsimpleinterface [x=0,y=0] {1}

\end{tikzpicture} Q

To add tagged values to a class, you can use the option tags:

\begin{tikzpicture} class-name
\umlemptyclass|[tags={v1.2}]|{class —name} {v1.2}
\end{tikzpicture}

To specify template parameters

For a template class, you can use the template option to specify the template parameters list:

\begin{tikzpicture} Lo
\umlemptyclass|[template={T,U} | {class —name}

\end{tikzpicture} class-name

2.2 To define a relation between classes

2.2.1 General command

Each class or package is draw as a node sharing the same name. To define a relation between two classes,
you just need to specify the source class name, the target class name and a set of options specific to the

relation:

Al

\begin{tikzpicture} *
\umlemptyclass{Al}
\umlemptyclass [x=3, y=-3] {A2}
\umluniaggreg[arg2=a, mult2=1,
pos2=0.9] {A1}{A2}
\umluniassoc [geometry=—|, argl=x,
multl=1, posl1=1.9, arg2=y, mult2=x, A2
pos2=0.2] {A1}{A2}
\umlunicompo [arg=z, mult=1..%x, pos=0.8,
anglel=—90, angle2=-140,
loopsize=2cm] {A2}{A2} 7
\end{tikzpicture}

From a UML semantic point of view, there are 12 different relations. Every type of relation is defined
in TIKZ-UML :

A dependency: You can use the umldep command

Al A2

An association: You can use the umlassoc command

Al A2

A unidirectional association: You can use the umluniassoc command

Al A2

An aggregation: You can use the umlaggreg command

Al A2

A unidirectional aggregation You can use the umluniaggreg command

Al A2

A composition: You can use the umlcompo command

Al A2

A unidirectional composition: You can use the umlunicompo command

Al A2

An import: You can use the umlimport command

P1 P2

An inheritance: You can use the umlinherit command

Al A2

An implementation: You can use the umlimpl command

Al A2

A nesting: You can use the umlnest command

Al A2

A realization: You can use the umlreal command

Al A2

These 12 shortcuts are based on the same scheme (the umlrelation command) and take theoretically
the same set of options. Nevertheless, some options concern only part of them.

2.2.2 To define the geometry of a relation

As you may have seen in previous examples, you can specify the geometric shape of a relation with
the geometry option. It needs a value among the following list: - - (straight line), -| (horizontal then
vertical), |- (vertical then horizontal), -|- (horizontal chicane) ou |-| (vertical chicane). These values are
very inspired from TIKZ philosophy.

It seems that this option is used very often. That is why a shortcut of the umlrelation command has
been defined each possible value of the geometry option:

umlHVrelation: shortcut of umlrelation with geometry=-|

umlVHrelation: shortcut of umlrelation with geometry=|-

10

umlHVHrelation: shortcut of umlrelation with geometry=-|-

umlVH Vrelation: shortcut of umlrelation with geometry=|-|

@ For each of these 4 shortcuts, the geometry option is forbidden.

There is no shortcut for the value - -: this is the default value for the umlrelation command.

2.2.3 To adjust the geometry of a relation

When the geometry is built with 2 segments, you can define the coordinates of the auto-built point, named
control node. Then, instead of using umlrelation, you should use the uml1CNrelation command, or one
of its 12 shortcuts:

Al

\begin{tikzpicture}
\umlemptyclass{Al}
\umlemptyclass[x=3,y=—3] {A2}
\umluniaggreg|[geometry=—|] {A1}{A2}
\umlCNuniassoc{A1}{4,0}{A2}
\end{tikzpicture}

A2

When the geometry is built with 3 segments, the relative position of the middle segment between classes
is defined by the midlle of the classes nodes. You can adjust this parameter with the weight option:

\begin{tikzpicture} Al

\umlemptyclass{Al}

\umlemptyclass [x=4, y=—1]{A2}

\umlemptyclass [y=—2] {A3} A2
\umlassoc [geometry=—|—] {A1}{A2}

\umluniaggreg[geometry=—|—, A3

weight=0.3] {A3}{A2}
\end{tikzpicture}

In some cases, this option is not very convenient, because it needs to compute the option value to give.
There is another possibility by uusing the arm1 and arm2 options, that control the size of the first and
last segment respectively. Let’s see the 2 following examples using respectively the weight option and
the arm1 option:

A3

\begin{tikzpicture} fmmmmmmmmmm e oo
\umlemptyclass{Al} |
\umlemptyclass[x=4, y=1]{A2} |
\umlemptyclass [x=6, y=3]{A3} !

A2
\unlHVHdep[weight=0.375] {A1}{A2} | C______

\umlHVHdep[weight =0.25] {A1}{A3} |
\end{tikzpicture} Al |

11

A3

\begin{tikzpicture} e e
\umlemptyclass{Al}

\umlemptyclass[x=4, y=1]{A2}
\umlemptyclass [x=6, y=3]{A3}

A2
\umlHVHdep|arm1=1.5cm] {Al1}{A2}

|
|
|
|
|
|
\umlHVHdep[arm1=1.5cm] {A1}{A3} |
\end{tikzpicture} Al \

The arml and arm2 options also take negative values. How does it work then ? A positive value means
an arm oriented to the right direction (to the right or to the top), whereas a negative valuemeans an
arm oriented to the opposite direction, that allows you to draw other 3-segments relations:

\begin{tikzpicture} A2
\umlemptyclass{aA1} | oooood———<- -
\umlemptyclass [x=4, y=2]{A2}

\umlHVHdep [arm2=—2cm | {A1} {A2}
\umlHVHdep[arm2=2cm|] {A1}{A2} Al
\end{tikzpicture} e

2.2.4 To define informations about attributes of a relation

A relation means a dependency between two classes and represents an attribute in most of the cases.
You can define its name with the argl option or the arg2 option, and its multiplicity with the mult1
option or the mult2 option:

\begin{tikzpicture}
\umlemptyclass{Al}
\umlemptyclass [x=5] {A2} Al argl arg2 A2
\umlassoc[argl=argl, multl=multl,
arg2=arg?2, mult2=mult2]{A1}{A2} multl mult2

\end{tikzpicture}

For unidirectional relations, you should use only arg2 and mult2 options. That is why shortcuts have
been defined, namely the arg option and the mult option respectively.

In addition, when you define the name and the multiplicity of an attribute, you may prefer use the
all-in-one following options attri, attr2 and attr:

\begin{tikzpicture}
\umlemptyclass{Al}
\umlemptyclass[x=5] {A2} Al argl arg?2 A2
\umlassoc[attrl=argl|multl,
attr2=arg2|mult2] {A1}{A2} multl mult2
\end{tikzpicture}

This has an advantage: the semantic of the two values has disappeared and you can switch them for
convenience:

\begin{tikzpicture}
\umlemptyclass{Al}
\umlemptyclass[x=5] {A2} Al
\umlassoc[attrl=mult1l|argl,
attr2=mult2|arg2] {A1}{A2} argl arg2
\end{tikzpicture}

multl mult2 A2

12

2.2.5 To place information about attributes of a relation

You can place information seen in previous section with the following options: pos1, pos2 and pos. The
umlrelation command determine by itself if name and multiplicity should be written on left and right
or on top and bottom of the arrow, according to the geometry and their placement. For those who know
TIKZ enough, the mechanism is based on auto and swap options.

\begin{tikzpicture}
\umlemptyclass{Al} Al <
\umlemptyclass[x=2, y=—2] {A2}
\umlemptyclass [x=—2, y=—2.5] {A3} 1
\umlassoc [geometry=—|, argl=x, multl=1,
pos1=0.2, arg2=y, mult2=x, * 1]a x|y
pos2=1.9] {A1}{A2} b A2
\umlassoc [geometry=|—|, argl=a, multl=1,

pos1=0.5, arg2=b, mult2=x, A3

pos2=1.5]{A1}{A3}
\end{tikzpicture}

You may have noticed that the range of values of the position depends on the number of segments
composing the arrow. For a straight line, position has to be between 0 (source class) and 1 (target class).
If there are 2 segments, then position has to be between 0 et 2 (target class), the value 1 corresponding
to the control node. Otherwise, position has to be between 0 et 3, values 1 and 2 corresponding to the
first and second control node respectively.

2.2.6 To adjust the alignment of information about attributes of a relation

Name and multiplicity of an attribute, when they are written on top and bottom of the relation, are
centered by default. You can define an other alignment. The options alignl, align2 and align are
used to have ragged right or ragged left text:

Al argl

\begin{tikzpicture}
\umlemptyclass{Al} mult1
\umlemptyclass [x=4, y=—3] {A2}
\umlassoc [geometry=—|—, argl=argl,

multl=multl, posl1=0.1, alignl=left ,

arg2=arg?2, mult2=mult2, pos2=2.9,

align2=right | {A1}{A2}
\end{tikzpicture} arg?2 A2

mult2

2.2.7 To define and place the stereotype of a relation

The stereotype of a relation is a keyword contained between < and >>. You can define it with the option
stereo and place it with the option pos stereo.

Al
\begin{tikzpicture}
\umlemptyclass{Al} <Kvegtor>
\umlemptyclass[x=4, y=—3] {A2}
\umlassoc[geometry=—|—, stereo=vector ,

pos stereo=1.2] {A1}{A2}
\end{tikzpicture}
A2

13

2.2.8 To modify the anchor points of a relation

The default behavior of a relation is to start from the center anchor of the source class node and to

end to the center anchor of the target class node. You can adjust this with the options anchorl and

anchor?2.
\begin{tikzpicture}
\umlemptyclass{A} B

\umlemptyclass[x=4,y=2] {B}
\umldep [geometry=—|] {A}{B}

\umlassoc [geometry=—|, anchor1=30, anchor2=300, \
name=assoc 1| {A}{B} |
\umlassoc [geometry=—|, anchorl=-30, anchor2=-60, A X
name=assoc2]{A}¥Y{B} | T -------------- !
\end{tikzpicture}

You give angular values in degree and they can be negative. The internal mechanism of TIKZ uses
modulos. The value 0 is east, 90 is north, 180 (or -180) is west, et 270 (or -90) is south. The following
figure illustrates this option and its angular meaning on 2 examples of rectangular nodes, (class nodes for
instance). You can notice that border anchors (to use TIKZ vocabulary) depend on node dimensions.

80 70 60 50 40 80 70 60 50
X x XX
north // ’ / : / : / 30 north f,“‘ / /}0
Ly, S - | x20 | V4 30
L x10 >
center center - 10
west east east

A R >/ | soun \X
‘ / south
/ . jsouth \k\x - x %% x %

-126116100 -80-70-60 -126110100 -80-70-60

You will very often define anchorl and anchor2 simultaneously. In this case, you can use the all-in-one
option anchors:

\begin{tikzpicture}
\umlemptyclass{A} B
\umlemptyclass[x=4,y=2] {B}
\umldep [geometry=—|] {A}{B}

\umlassoc [geometry=—|, anchors=30 and 300, \
name=assoc 1] {A}{B} |
\umlassoc[geometry=—|, anchors=—30 and —60, A X
name=assoc2|{A}Y{B} | T -------------- !
\end{tikzpicture}

2.2.9 To define a recursive relation

You can define recursive relations, namely a relation from a class to itself. Then, the geometry option
is disabled, but 3 specific options are available: anglel determines the start angle, angle2 determines
the end angle, and loopsize controls the size of the loop.

14

\begin{tikzpicture} Al
\umlemptyclass{Al} 0.
\umlassoc[arg=x, mult=1, pos=0.6, /
anglel=—-90, angle2=—-140,
loopsize=2cm] {A1}{Al}

\umlassoc[arg=y, mult=1..x, pos=0.6, 1
anglel=—-90, angle2=—-140, X
loopsize=4cm] {A1}{A1l}

\umlassoc[arg=z, mult=0..%, pos=0.8, 1.*
anglel=—90, angle2=0, y

loopsize=2cm] {A1}{Al}
\end{tikzpicture}

When you use recursive relations, you will notice that you will need the 3 options simultaneously. This
is the reason why a compact form is defined, the recursive option, and the following syntax:

Al
0.*
\begin{tikzpicture} ’
\umlemptyclass{Al}
\umlassoc[arg=x, mult=1, pos=0.6,
recursive=—90|—140|2cm]| {A1}{A1} 1

\umlassoc[arg=y, mult=1..%, pos=0.6,
recursive=—90|—140]|4cm]| {A1}{A1}
\umlassoc|[arg=z, mult=0..x, pos=0.8, 1%

recursive=-90|0/2cm]| {A1}{Al}
\end{tikzpicture}

2.2.10 Name of auto-built points of a relation

In order to understand the purpose of giving a name to a relation, one should explain how arrows are
defined.

To build an arrow, we need to define control nodes, and a name for each one. The only way to identify a
relation is to give a name using a id counter. This counter is incremented each time we define a relation
in a picture. Let’s suppose the relation has the id 7. The name of the relation, called relname in the
following, is: relation-i

The first defined node is the middle of the class nodes. It is called relname-middle. To simplify, we will
not deal with the placement of the argument and its multiplicity here. So, there are 3 cases:

1. If the arrow is a straight line or a recursive line, it is renamed in relname-1.

A relname-1 B
@ relname-1

2. If the arrow has one right angle, the node placed at the angle is named relname-2, that is enough to
draw the arrow. 2 other nodes are defined, placed at the middle of each arc and named respectively
relname-1 and relname-35.

15

A relname-1

3. If the arrow has 2 right angles, they are defined with relname-middle, that is enough to draw the
arrow. Nodes placed at the angles are named respectively relname-2 and relname-4. 3 other nodes
are defined, at the middle of each arc, named respectively relname-1, relname-3, and relname-5.

relname-4

A relname-1

This default behavior is not easy to use, because the value of the counter is not defined by the user, and
depends on the order of definition of the relations in the picture. This is the reason why you can define
relname thanks to the name option. In the two following sections, you will see when this option is useful.

relname-5

relname-3

relname-2

B

relname-3

relname-2

2.2.11 To draw an intersection point between relations

When you draw a diagram, it occurs that relations cross other ones or share arcs. Let’s take two crossing
arrows. Can both start points go graphically to both end points 7 If yes, you will want to draw a point
at the intersection of the arrows, and this point should be a control node of one the the relations. To

define the point, you can use the umlpoint command.

\begin{tikzpicture}
\umlemptyclass{Al}
\umlemptyclass[x=4, y=—1] {A2}
\umlemptyclass[y=—2] {A3}
\umlassoc [geometry=—|—,
name=assoc | {A1}{A2}
\umluniaggreg|[geometry=—|—,
weight=0.3] {A3}{A2}
\umlpoint{assoc —4}
\end{tikzpicture}

2.2.12 Advanced styling of a relation

On a relation, you can use every TIKZ option, thickness options for instance:

\begin{tikzpicture}

\umlemptyclass{Al}

\umlemptyclass[right=3cm of Al]{A2}

\umluniaggreg|[anchors=10 and 170]{Al}{A2}

\umluniaggreg|[anchors=—10 and —170, very
thick | {A1}{A2}

\end{tikzpicture}

16

Al
| =
.
Al A2

\ 4

2.2.13 N-ary associations

Sometimes, you need to draw a relation between more than two classes, namely a n-ary association. To
do so, you have to draw the main node of such a relation, ans link it to every class it has to be linked:

\begin{tikzpicture} C
\umlemptyclass{A}
\umlemptyclass[x=6] {B}
\umlemptyclass[x=3, y=3]{C} *
\umlNarynode [x=3, name=naryassoc ,

below]{label}
\umlassoc|attrl=a|*x]{A}{naryassoc}
\umlassoc [mult1=0..1]{B}{naryassoc} A B
\umlassoc [mult=x] {naryassoc } {C} a 0.1
\end{tikzpicture} *

label

The umlNarynode command accepts the following options:
e width: to set the width of the node
e name: to give a name to the node and use it in others macros

e below, below left, left, above left, above, above right, right, below right: to place the label
of the n-ary node. Contrary to their equivalents in TIKZ , these options has to be used without
values. The default is above.

@ To use advanced positioning, do not forget to load TIKZ library positioning

2.3 Comments / constraints note

A note is a text comment attached to a class or a relation. The umlnote command needs the name of
the node as argument:

Al Je suis une note

\begin{tikzpicture} - 1 attachee a la classe
\umlemptyclass{Al} Al
\umlnote [x=3] {Al}{Je suis une note

attachee a la classe Al} N
\umlnote [x=2,y=-3, width=5cm]{Al1}{Je suis \\\

une note plus large attachee a la N

classe Al}

d{tikzpict .
\end{tikzpicture} Je suis une note plus large

attachee a la classe Al

Here again, you can give the name of a control node of a relation to attach the note. Giving a name to
the relation will be very useful:

\begin{tikzpicture} |
\umlemptyclass{A} :
\umlemptyclass [x=4] {B} }
\umluniassoc[arg=bb, mult=1, pos=0.95, !

|

align=right , name=uniassoc]{A}{B}
\umlnote [x=2,y=—3]{uniassoc —1}{Je suis une note
attachee a la relation uniassoc}
\end{tikzpicture}

Je suis une note
attachee a la
relation uniassoc

17

Notes have 2 uses: comments and contraints (generally in OCL format).
The umlnote command has the following options:
x, y These 2 options define the coordinates of the note.

width This option defines the width of the note. For TIKZ users, it encapsulates the text width
option

weight, arm, anchorl, anchor2, anchors These options has the same behavior as for umlrelation,
arm being equivalent to arm1, namely attached to the note.

\begin{tikzpicture} :
\umlemptyclass{A} | 1
\umlemptyclass[x=4] {B} |
\umluniassoc[arg=bb, mult=1, pos=0.95, :

align=right , name=uniassoc]{A}{B} (CTToTo :
\umlnote [y=—3, geometry=|—|, anchorl=70, I

arm=0.5cm]|{uniassoc —1}{Je suis une note

attachee a la relation uniassoc} Je suis une note
\end{tikzpicture} attachee a la

relation uniassoc

For a note, you can also use the geometry option, as for umlrelation. Default value is —. For other
values, aliases have been defined: umlHVnote, umlVHnote, umlHVHnote and umlVHVnote.

For each of these aliases, the geometry option is forbidden.

2.4 Association class

Drawing an association class is very easy with TIKZ-UML . It is just a class and a dependency between
this class and a built point of another relation. The umlassocclass makes it for you:

\begin{tikzpicture} bt

\umlemptyclass{A}
\umlemptyclass[x=6, y=—3]{B}

\umlHVassoc [name=assoc ,

attr=t|*, pos=1.9]{A}{B} :
\umlassocclass [geometry =|—|,x=2, |

y==3]{C}H{assoc —1}{}{} C B
\end{tikzpicture}

As the command is like a class and a relation, you can use the following options: x, y, width (default is
10ex), type (default is class), template coming from the umlclass environment, and name, geometry
(default is - -), weight, arm, anchorl, anchor2, and anchors coming from the umlrelation command.

2.5 Advanced features for positioning

umlpackage, umlclass and their aliases, umlnote and umlassocclass can accept every option key
defined for nodes in TIKZ . In this section, you will see how some of them can be used for advanced
features.

18

2.5.1 Horizontal and vertical alignment

In a class diagram, classes have different width and height. For a graphical purpose, you may want to
align them horizontally or vertically. Let’s take the following example:

\umlsimpleclass{A}

\umlemptyclass [x=—2, y=—3]{B}

\umlclass [x=2, y==3]{C}{i : int \\ r : . ‘
double }{}

\umlVHVinherit{B}{A} C

\umlVHVinherit{C}{A} B —

\end{tikzpicture} 10 nt

r : double

\begin{tikzpicture} T

The y coordinate defines the center of the class node. It will be better in this example to have classes
B and C top-aligned. A solution is to define manually the y value for C, but it is not very convenient.
You may prefer use the anchor option. If you specify anchor=north, the y coordinate will define the
top center anchor of the node, instead of the center. You may take a look at the differences between
both codes.

\begin{tikzpicture} A

\umlsimpleclass{A}

\umlemptyclass[x=—2, y=-2, T
anchor=north | {B}

\umlclass [x=2, y=—2, anchor=north]{C}{i

int \\ r : double}{} B C
\umlVHVinherit [arm2=—1.2cm| {B}{A}
\umlVHVinherit [arm2=—1.2cm] {C}{A} R o fiat
\end{tikzpicture} r - double

In a similar way, you may use anchor=east to right align classes, anchor=west to left align classes or
anchor=south to bottom align classes.

For empty packages, association classes and notes, you can also use the mechanism.

2.5.2 Relative positioning

Using the x-y coordinate system may be very hard in big diagrams, when you have to change position
of elements in order to fit the diagram to the page. Relative positioning may be useful in this case,
namely advanced syntax of options above, left, below, right, above left, below left, below right
and above right provided by the TiKZ library positioning.

Let’s take the previous example, you can define B by its cordinates (-2,-2) or by saying that B is 2cm
below and 2cm left of A. You can also define C by saying it is 4cm right of B. Notice that because of the
top alignment of B and C, the latter is defined 4cm right of B.north.

19

\begin{tikzpicture}

\umlsimpleclass{A}

\umlemptyclass|[below left=2cm and 2cm of T
A, anchor=north]{B}

\umlclass|[right=4cm of B.north,
anchor=north | {C}{i : int \\ r :
double }{}

\umlVHVinherit [arm2=—1.2cm] {B}{A} B C
\urr(lil\/'l.{;/'lnhcrlt [arm2=—1.2cm| {C}{A} 8 o fiad
\end{tikzpicture} r - double

For empty packages, association classes and notes, you can also use the mechanism.

2.6 To change preferences

Thanks to the tikzumlset command, you can change default preferences for packages, classes and notes.
The available options are:

text: allows you to set default text color for every drawn object (=black by default),
draw: allows you to define default edge color for every drawn object (=black by default),
fill class: allows you to define the default background color of a class node (=yellow!20 by default),

fill template: allows you to define the default background color of a template node (=yellow!2 by
default),

fill package: allows you to define the default background color of a package (=blue!20 by default),
fill note: allows you to define the default background color for a note (=green!20 by default),
font: allows you to define the default font style for every drawn object (=\small by default).

x: allows you to set the default first coordinate (=0 by default)

y: allows you to set the default second coordinate (=0 by default)

package type: allows you to set the default package type (=package by default)

class width: allows you to set the default class width (=10ex by default)

simple interface width: allows you to set the default width of a simple interface (=4ex by default)
class type: allows you to set the default class type (=class by default)

narynode width: allows you to set the default n-ary node width (=6ex by default)

relation geometry: allows you to set the default geometry of a relation (=— by default)

relation anglel: allows you to set the default anglel of a relation (=-30 by default)

relation angle2: allows you to set the default angle2 of a relation (=30 by default)

relation loopsize: allows you to set the default loopsize of a relation (=3em by default)

relation weight: allows you to set the default weight of a relation (=0.5 by default)

relation posl: allows you to set the default posl of a relation (=0.2 by default)

20

relation pos2: allows you to set the default pos2 of a relation (=0.8 by default)
relation pos stereo: allows you to set the default pos stereo of a relation (=0.5 by default)

note width: allows you to set the default note width (=3cm by default)

Furthermore, relation commands has the style option taking a TIKZ style name as value.
Let’s see the definition of the umlinherit command:

\tikzstyle{tikzuml inherit style}=[color=\tikzumlDefaultDrawColor, —open triangle 45]
\newcommand{\ umlinherit} [3] []| {\umlrelation [style={tikzuml inherit style}, #1]{#2}{#3}}

You can easily define a command on this model by defining a particular style.

2.7 Examples

2.7.1 Example from introduction, step by step

We will now build step by step the picture seen in introduction to understand the behavior of each used
command.

Definition of packages p, spl and sp2

The package p is placed at (0,0) (default), and the sub-packages spl and sp2 respectively at (0,0) and
(10,-6).
\begin{tikzpicture}
\ begin{umlpackage}{p}
\umlvirt{setB(b : B) : void} \\ getB() : B}

\end{umlpackage}
HY
H}
p
spl

sp2

21

Definition of classes A, B, C, D and their attributes and operations

The class A is placed at (0,0) in the sub-package spl and has a template parameter: T. The class B is
placed 3 units below A, still in the sub-package spl. The interface C is placed at (0,0) in the sub sp2.
The class D is placed at (2,-11) in the package p.

Class A has two attributes. Class B has one attribute and two operations (one is virtual). Class C has
two attributes. Classe D has one attribute.

\begin{tikzpicture}
\begin{umlpackage}{p}
\begin{umlpackage}{spl}
\umlclass [template=T]{A}{
n : uint \\ t : float

H}
\umlclass [y=—8]{B}{
d : double

H

\umlvirt{setB(b : B) : void} \\ getB() : B}
\end{umlpackage}
\begin{umlpackage} [2=10,y=—6]{sp2}
\umlinterface{C}{

n : uint \\ s : string

H
\end{umlpackage}
\umleclass [z=2,y=—10]{D}{

n : uint

H}

22

B

d : double

setB(b : B) : void
getB() : B

<interface>>
C

n : uint
s : string

Definition of relations

We define an association between classes C and B, a unidirectional composition between classes D and
C, an import relation named "import” between sub-packages sp2 and spl (with modification of anchors),
a recursive aggregation on class D and an inheritnce between classes D and B. On thses relations, we
will specify argument names and multiplicities. You can notice the value given to place these elements
on each arrow according to the geometry.

\end{umlpackage}

\umlassoc [geometry=—|—, argl=tata, multl=x, pos1=0.3, arg2=toto, mult2=1, pos2=2.9,
align2=1left [{C}{B}

\umlunicompo [geometry=—|, arg=titi , mult=*, pos=1.7, stereo=vector |{D}{C}

\umlimport [geometry=|—, anchors=90 and 50, name=import/{sp2}{spl}

23

B

d : double

setB(b : B) : void
getB() : B

<interface>>
C

n : uint
s : string

Definition of notes

We add a note attached to class B and a note attached to the import relation.

\umlaggreg [arg=tutu , mult=1, pos=0.8, angle1=30, angle2=60, loopsize=2cm][{D}{D}
\umlinherit [geometry=—|/{D}{B}

\umlnote [2=2.5,y=—6, width=8m]{B}{Je suis une note qui concerne la classe B}
\umlnote [2=7.5,y=—2]/{import —2}{Je suis une note qui concerne la relation d’import}
\end{tikzpicture}

24

Je suis une note
B qui concerne la
relation d’import

d : double

setB(b : B) : void
getB() : B

<interface>>
C

Je suis une note
qui concerne la
classe B

n : uint
s : string

Setting style

We illustrate the use of the tikzumlset command by changing colors associated to class and font. We
can also change colors of a given class with draw, text and £ill options.

\tikzumlset{fill class=red!20, fill template=violet!10, font=\bfseries\footnotesize}
\begin{tikzpicture}

\umlclass [x=2,y=—11, fill=orange!50, draw=white, text=red]{D}{
n: uint

H}

\end{tikzpicture}

25

Je suis une note
qui concerne la
relation d’import

sp2

<interface>

C

tata

n:

uint
s : string

titi

spl
el
T
A
n : uint
t : float
B
d : double toto
setB(b : B) : void 1
getB() : B
Je suis une note
qui concerne la
classe B
1
tut
D
~ n: uint

4
Veetor

2.7.2 To define a specialization of a class

A specialization of a classe is an inheritance from a templace class in which one of the template parameters

is defined. To draw this relation, you will use the umlreal command , and its stereo option:

\begin{tikzpicture}

\umlemptyclass[template=T] {A}

\umlemptyclass|[template={T,U}, x=5,
y=—2]{B}

\umlreal [stereo={U \rightarrow
int }] {A}{B}

\end{tikzpicture}

\Ti

L

2.8 Priority rules of options and known bugs

<U=>-int>>

AN

,,,,,

1. The geometry option has always the priority on the others options. It means for instance that if it
has a non-default value, then anglel, angle2 and loopsize options, defining recursive relations,

will be ignored.

26

2. As far as a template class is concerned, there are cases in which a relation about it will not be
drawn correctly, as in the picture below, where the aggregation symbol is hidden by the template
parameter:

B

\begin{tikzpicture}

\umlemptyclass|[template=T] {A}

\umlemptyclass[x=4,y=2] {B}
\umluniaggreg{A}{B} L=
\end{ tikzpicture} A

To solve this problem, you van link the arrow between the template part of class A and class B,
by adding the suffix -template and adjusting the start anchor (the -30 value is correct here):

\begin{tikzpicture}

\umlemptyclass[template=T] {A}

\umlemptyclass[x=4,y=2] {B} ‘,:F,‘
\umluniaggreg|[anchor1=—30] {A—template } {B} L=
\end{tikzpicture} A

3. If you define a class with a name having the: character in it — typically when you give the namespace
of the class — it may have a conflict with the french (or frenchb or francais) option of the babel
package. Indeed, these options add a white-space before the: character if the writer forgot it, that
is a problem for the access operator::. If we take the example of class definition, we should obtain:

\begin{tikzpicture}
\umlclass{namespace ::A}{
+ n : uint \\ \umlstatic{— 1 : int} \\ \# r
const float
H

+ setA(i : int) : void \\ \umlvirt{\# getA ()
A}
}

\end{tikzpicture}

namespace: :class-name

The solution is to use a specific macro given by these options of babel package you have to use in
the preamble of your document:

\frenchbsetup { AutoSpacePunctuation=false }

4. The automatic placement of argument names and multiplicity on a relation can be surprising
when you can to deactivate it. Let’s take the example shown in introduction. If we focus on the
association relation and its attributes toto and tata, toto is above, tata is below. If we justify to
the right the tata attribute (and change its position to 0.1), positions of tata and its multiplicity
exchange.

27

B

d : double

setB(b : B) : void
getB() : B

Je suis une note
qui concerne la
classe B

28

Je suis une note
qui concerne la
relation d’import

<interface>>
C

n : uint
s : string

Chapter 3

Use case diagrams

Here is an example of use case diagram you can draw:

The system

A
Cuse case2 D

<extend>> %
|

admin

use case4
on 2 lines

\ <<i/nplﬁ\ﬂe>>
Phe \
\ use caseb

note on include
dependency

We will see how to define the four constitutive elements of such a diagram: the system, the actors, the
use cases and the relations.

3.1 To define a system

A system is defined by the umlsystem environment:

\begin{tikzpicture} system name
\begin{umlsystem} [x=0, y=0] {system name}

\end{umlsystem }
\end{tikzpicture}

Both options x and y allow to place the system in the picture. The default value is 0. Inside this
environment, you will define use cases, whereas outside, you will define actors.

29

3.2 To define an actor

You can define an actor with the umlactor command:

\begin{tikzpicture}
\umlactor [x=0, y=0]{user}
\end{tikzpicture}

user

Both options x and y allow to place the actor in the picture. The default value is 0. You can change
dimensions of the actor symbol with the scale option. It also adapts position of the label below:

\begin{tikzpicture}
\umlactor{normal user}

\umlactor [x=2, scale=0.5]{small user} % %
\umlactor [x=4, scale=2]{big user}

\end{tikzpicture} small user

normal user

big user

The actor symbol size is defined according to the font size (ex unit), whereas the distance between the
symbol and the label is in cm. You can adjust it if you need with the below option (0.5cm by default).

\tikzumlset{font=\tiny}
\begin{tikzpicture}
\umlactor{normal user}

\umlactor [x=2, scale=0.5, %
below=0.1lcm]{small user}
\umlactor [x=4, scale=2]{big user}
\end{tikzpicture} big user

small user

normal user

Every TIKZ option dedicated to nodes can be used here, see section 2.5 for details.

3.3 To define a use case

You can define a use case with the umlusecase command:

\begin{tikzpicture}
\umlusecase [x=0, y=0]{casel} @

\umlusecase [x=3, y=1]{case2}
\end{tikzpicture}

Both options x and y allow to place the use case in the picture or in the container system. The default
value is 0. The text argument is the label of the use case. The node representing the use case has a
default name, based on a global counter, that is like usecase-17. For pratical reasons, you can rename it
thanks to the name option.

Furthermore, you can set the witdh of the use case with the width option.

Every TIKZ option dedicated to nodes can be used here, see section 2.5 for details.

Now, we can talk about relations between use cases, systems and actors.

3.4 To define a relation
Relations in a user case diagram are of 4 categories:
e Inheritance relations, between actors or between use cases. You can use the umlinherit command

and its aliases, ie subsection 2.2.1.

30

e Association relations, between an actor and a use cases. You can use the umlassoc command and
its aliases, ie subsection 2.2.1.

e Include and extend relations. Graphically, it is a dependency relation, as for class diagrams, with
the stereotype extend or include. You can use aliases of the umlrelation command, named
umlinclude, umlHVinclude, ..., umlextend, umlHVextend, ..., to define such relations.

anchorl, anchor2, anchors, arml, arm2, weight, geometry (only for umlinclude and umlextend), and
pos stereo options are available here.
\begin{tikzpicture}
\umlusecase [name=casel]{use case 1} .
\umlusecase [x=5, name=case2]{use case 2} -<ineclude>- >
\umlusecase [x=5, y=—2, name=case3]{use
case 3}

\umlinclude{casel}{case2}
\umlVHextend [pos stereo=1.5]{casel}{case3} | = ----- <extend=>-- - *>

\end{tikzpicture}

3.5 Advanced features for positioning

umlactor and umlusecase can accept every option key defined for nodes in TIKZ . In this section, you
will see how some of them can be used for advanced features.

3.5.1 Horizontal and vertical alignment

In a use case diagram, cases and actors have different width and height. For a graphical purpose, you
may want to align them horizontally or vertically. Let’s take the following example:

\begin{tikzpicture} A

\umlactor{A}
pN ©

\umlactor [x=-2, y=-3] {B}
B

\umlusecase [x=2, y=-3] {C}

\end{tikzpicture}
The y coordinate defines the center of the case or actor node. It will be better in this example to have
actpr B and case C top-aligned. A solution is to define manually the y value for C, but it is not very
convenient. You may prefer use the anchor option. If you specify anchor=north, the y coordinate will
define the top center anchor of the node, instead of the center. You may take a look at the differences
between both codes.

\begin{tikzpicture} A
\umlactor{A}

\umlactor [x=—2, y=—2, anchor=north]{B}

\umlusecase [x=2, y=—2, anchor=north]{C}

\end{tikzpicture} % @

31

You can notice there is still mis-alignement. It is because an actor node is elliptical and hidden.

In a similar way, you may use anchor=east to right align classes, anchor=west to left align classes or
anchor=south to bottom align classes.
3.5.2 Relative positioning

Using the x-y coordinate system may be very hard in big diagrams, when you have to change position
of elements in order to fit the diagram to the page. Relative positioning may be useful in this case,
namely advanced syntax of options above, left, below, right, above left, below left, below right
and above right provided by the TiKZ library positioning.

Let’s take the previous example, you can define B by its cordinates (-2,-2) or by saying that B is 2cm
below and 2cm left of A. You can also define C by saying it is 4cm right of B. Notice that because of the
top alignment of B and C, the latter is defined 4cm right of B.north.

\begin{tikzpicture} %

\umlactor{A} A

\umlactor [below left=2cm and 2cm of A,
anchor=north | {B}

\umlusecase [right=4cm of B.north,
anchor=north | {C}

\end{tikzpicture}

S ©

3.6 To change preferences

With the tikzumlset command, you can change default colors for use cases, systems, actors and
relations:

text: allows to set the text color (=black by default),

draw: allows to set the edge colors (=black by default),

fill usecase: allows to set the background color for use cases (=bluel20 by default),
fill system: allows to set the background color for systems (=white by default),
font: allows to set the font style (=\small by default).

actor below: allows to set the space between actor symbol and text (=0.5cm by default)

You can also use text, draw and £ill options on a particular element to change its colors, as shown in
the introduction example.

3.7 Examples

3.7.1 Example from introduction, step by step

Definition of actors

32

\umlactor{user}
\umlactor [y=—38]/{subuser}
\umlactor [z=14, y=—1.5]{admin}

X

user
admin
subuser

Definition of use cases

We also show here the use of the £il option.

\umlusecase{use casel}

\umlusecase [y=—2]/{use case2}

\umlusecase [y=—4/{use case3}

\umlusecase [z=4, y=—2, width=1.5cm]{use cased on 2 lines}
\umlusecase [2=6, fill=green!/20]{use caseb5}

\umlusecase [z=6, y=—4]{use case6}

\umlactor{user}
\umlactor [y=—3] { subuser}
\umlactor [x=14, y=—1.5] {admin}

user
use case4 ;():
on 2 lines admin
subuser
use caseb

Definition of the system

As the system is a box used as a new coordinate system, we have to change coordinates of use cases.
\begin{umlsystem} [z=4, fill=red!10]{The system}

\umlusecase{use casel}

\umlusecase [y=—2] {use case2}

\umlusecase [y=—4] {use case3}

\umlusecase [x=4, y=-2, width=1.5cm]{use case4 on 2 lines}
\umlusecase [x=6, fill=green!20]{use case5}

\umlusecase [x=6, y=—4]{use case6}

\end{umlsystem }

33

\umlactor{user}
\umlactor [y=—3] { subuser}
\umlactor [x=14, y=—1.5] {admin}

The system
user
use cased
on 2 lines
subuser
use caseb

Definition of relations and of the note

admin

You will notice here the use of the name option to ensure the definition of the note, and its interest for
use cases, in order to ignore the order of their definition, as shown in the following example:

\begin{umlsystem} [x=4, fill=red!10]{The system}
\umlusecase{use casel}

\umlusecase [y=—2] {use case2}

\umlusecase [y=—4] {use case3}

\umlusecase [x=4, y=—2, width=1.5cm]{use case4 on 2 lines}
\umlusecase [x=6, fill=green!20]{use caseb5}

\umlusecase [x=6, y=—4]{use case6}

\end{umlsystem }

\umlactor{user}
\umlactor [y=—3] {subuser }
\umlactor [x=14, y=-1.5] {admin}

\umlinherit{subuser }{user}

\umlassoc{user }{usecase —1}

\umlassoc{subuser }{usecase —2}
\umlassoc{subuser }{usecase —3}
\umlassoc{admin }{usecase —5}
\umlassoc{admin}{usecase —6}
\umlinherit{usecase —2}{usecase —1}
\umlVHextend{ usecase —5}{usecase —4}
\umlinclude [name=incl]{usecase —3}{usecase —4}

\umlnote [2=7, y=—7]{incl —1}{note on include dependency}

34

X

user

The system

e

subuser

use cased
on 2 lines

use caseG
\
\
\
\

|
|
<<exténd>>
|

35

note on include

dep end ency

admin

Chapter 4

State-transitions diagrams

Here is an example of state-transition diagram you can draw:

(7

Etat global de 'objet A

e)
graphe B
p2 opl
| testl L
|)
op3 op4d
Visualisation
Y a
test2

opd

Now, we will see how to define parts of these diagrams, namely the ten sorts of state and the transitions.

36

4.1 To define a state

A 7standard” state can be defined with the umlstate environment:
\begin{tikzpicture}

O mastate) fstate) | state |
name=state] {state} state

\end{umlstate}
\end{tikzpicture}

Both options x and y allows to place the state in the figure, or in another state. The default value is 0.
The argument to give is the label of the state. The node representing the state has a default name, based
on a global counter. For practical reasons, when you define a transition for instance, you can rename it
with the name option.

You can also define the width of an empty state with the width option (8ex by default).

You can define a state in another state. Then, the coordinates of the sub-states are relative to the parent
state:

I am a state

\begin{tikzpicture}

\beg?n{umlstate} [name=state]{I am a state} (T g & anlastaie 1 W

\begin{umlstate} [name=substatel]|{I am a
substate 1}

\end{umlstate}
\begin{umlstate} [x=3, y=-3,
name=substate2]{I am a substate 2}

\end{umlstate} (I am a substate 2 W
\end{umlstate}
\end{tikzpicture}

- J

If you want to define a state without detailing it, you can use the umlbasicstate command, that is an
alias of the umlstate environment.

Let’s talk about the pseudo-states:
\begin{tikzpicture}

\umlstateinitial [name=initial]
\umlstatefinal [x=1, name=final]

\umlstatejoin [x=2, name=join] . <>
\umlstatedecision [x=3, name=decision |

\umlstateenter [y=—2, name=enter |
\umlstateexit [x=1, y=—2, name=exit |
\umlstateend [x=2, y=—2, name—=end]

\umlstatehistory [x=3, y=—2, name=hist |
\umlstatedeephistory [x=4, y=-2, ><
name=deephist]
\end{ tikzpicture}
From left to right and top to bottom:
e An initial state is defined with the umlstateinitial command.

e A final state is defined with the umlstatefinal command.

e A join state is defined with the umlstatejoin command.

37

A decision state is defined with the umlstatedecision command.

An enter state is defined with the umlstateenter command.

An exit state is defined with the umlstateexit command.

An end state is defined with the umlstateend command.

An history state is defined with the umlstatehistory command.

A deep history state is defined with the umlstatedeephistory command.

These commands take several options: name, to rename the node, and width to set their size. You can
use these commands in a umlstate environment:

\begin{tikzpicture}

\begin{umlstate} [name=state | {state} g <
\begin{umlstate} [name=substate | {substate} state
\umlstateinitial [name=initial]
\umlstatefinal [x=1, name=final | (substate W
\umlstatejoin [x=2, name=join |

\end{umlstate}
\umlstatedecision [x=4, name=decision] ‘ . <>
\umlstateenter [y=—2, name=enter |

\umlstateexit [x=1, y=—2, name=exit |
\umlstateend [x=2, y=—2, name=end |
\umlstatehistory [x=3, y=—2, name=hist |

\umlstatedeephistory [x=4, y=-2, Q @ >< @
name=deephist |

\end{umlstate}
\end{tikzpicture}

You can also give actions on a state, through the entry, do and exit options:

(1
state
\begin{tikzpicture} do/b
\begin{umlstate} [name=state , do=b), .
exit=c]{state} exit/c

\begin{umlstate} [name=substate , entry=d,

exit=f]{substate} m

\end{umlstate}
\end{umlstate} entry/d
\end{tikzpicture} exit/f

4.2 To define a transition

Transitions are relations between states in a state-transition diagram. You can define them with the
umltrans command, that is an alias of the umlrelation command. There are unidirectional transitions
and recursive transitions.

4.2.1 To define a unidirectional transition

Thanks to the geometry option, usual aliases are available: uml1HVtrans, umlVHtrans, umlVHVtrans and
umlHVHtrans. Graphically, the use of these aliases are the most interesting, because corners are rounded.

38

\begin{tikzpicture} .
\umlstateinitial [name=initial] ‘ transitionl
\umlstatefinal [x=4, y=—2, name=final]
\umlHVtrans|arg=transitionl,

pos=0.5]{initial }{final} transition2
\umlHVHtrans|[arml=—2cm, arg=transition?2,

pos=1.5]{initial }{final}
\end{tikzpicture}

Every option of the umlrelation command can be used with the umltrans command and its aliases.

4.2.2 To define a recursive transition

Recursive transitions are graphically the most difficult to manage, because their shape is a rounded
rectangle, contrary to recursive relations in a class diagram. Conceptually, it is as if the geometry
option has the value -|- or |-|, that is to say arrows composed of several segments.

\begin{tikzpicture} I
\umlbasicstate [name=state |{I am a state} am a state
\umltrans|[recursive=—10[10|2cm, arg=a, a

pos=1.5, recursive direction=right to

right | {state}{state}
\umltrans|[recursive=—170/—110|2cm, arg=b,

pos=2, recursive direction=left to

bottom | {state }{state}
\end{tikzpicture}

The recursive direction option is fundamental. Indeed, giving values of start angle and end angle is
not enough to determine the start direction and the end direction of the recursive arrow, because it does
not define the normal direction. Then, we have to precise it. There are 2 cases:

e The arrow can be composed of 3 segments. In this case, usable nodes are shown as follows:

relname-5
W o relname-4

relname-3
@ relname-2
relname-1

e The arrow can be composed of 4 segments. In this case, usable nodes are shown as follows:

39

I am a state | relpame-1

relname-7

relname-5

relname-2

relname-3

relname-6

\begin{tikzpicture}

\begin{umlstate} [name=state | {state}

\umlbasicstate [name=statel] {sub statel}

\umlbasicstate [x=4, name=state2]{sub
state2}

\end{umlstate}

\umlVHVtrans|[arml=—2cm| {state1l}{state2}
\end{tikzpicture}

\begin{tikzpicture}

\begin{umlstate} [name=state]| {state}

\umlbasicstate [name=statel]{sub statel}

\umlbasicstate [x=4, name=state2]{sub
state2}

\umlVHVtrans [arml=—2cm] {state1}{state2}
\end{umlstate}
\end{tikzpicture}

4.3.1 Horizontal and vertical alignment

\begin{tikzpicture}
\umlbasicstate{A}
\umlbasicstate [x=—2, y=—3] {B}
\umlbasicstate [x=2, y=—3] {C}
\end{tikzpicture}

4.3 Advanced features for positioning

40

relname-4

4.2.3 To define a transition between sub states

When you want to define transitions between sub-states, transitions are drawn inside the parent
state.Then, you have to define them inside the umlstate environment. Let’s compare the two following
examples:

' N
state
sub statel sub state2
. J
_ J
' N
state

sub statel sub state2
. J

umlstate and the 9 pseudo-state commands can accept every option key defined for nodes in TIKZ . In
this section, you will see how some of them can be used for advanced features.

In a state-transition diagram, states have different width and height. For a graphical purpose, you may
want to align them horizontally or vertically. Let’s take the following example:

[8 | [c |

The y coordinate defines the center of the state node. It will be better in this example to have states B
and C top-aligned. A solution is to define manually the y value for C, but it is not very convenient. You
may prefer use the anchor option. If you specify anchor=north, the y coordinate will define the top
center anchor of the node, instead of the center. You may take a look at the differences between both

codes.

\begin{tikzpicture}

\umlbasicstate{A}

\umlbasicstate [x=—2, y=-2,
anchor=north] {B}

\umlbasicstate [x=2, y=—2, anchor=north]|{C}

In a similar way, you may use anchor=east to right align states, anchor=west to left align states or
anchor=south to bottom align states.

4.3.2 Relative positioning

Using the x-y coordinate system may be very hard in big diagrams, when you have to change position
of elements in order to fit the diagram to the page. Relative positioning may be useful in this case,
namely advanced syntax of options above, left, below, right, above left, below left, below right
and above right provided by the TiKZ library positioning.

Let’s take the previous example, you can define B by its cordinates (-2,-2) or by saying that B is 2cm
below and 2cm left of A. You can also define C by saying it is 4cm right of B. Notice that because of the
top alignment of B and C, the latter is defined 4cm right of B.north.

\begin{tikzpicture}

\umlbasicstate {A}

\umlbasicstate [below left=2cm and 2cm of
A, anchor=north]{B}

\umlbasicstate [right=4cm of B.north,
anchor=north] {C}
\end{tikzpicture} n

The behavior is not the one expected. It is because definition of a state node is complex. Instead of B,
you may use here B-body.

\begin{tikzpicture}
\umlbasicstate{A}

\umlbasicstate [below left=2cm and 2cm of
A, anchor=north]{B}

\umlbasicstate[right=4cm of B-body.north,
anchor=north] {C}

41

4.4 'To change preferences

With the tikzumlset command, you can change default colors for states and transitions:
text: allows to set default text color (=black by default),

draw: allows to set the default edge color and the default color of initial, final and join states (=black
by default),

fill state: allows to set the default background color of a state (=yellow!20 by default),
font: allows to set the default font style (=\small by default).

state join width allows to set the default with of a state join (=3ex by default),

state decision width: allows to set the default width of a state decision (=3ex by default),
state initial width: allows to set the default width of a state initial (=5ex by default),
state final width: allows to set the default width of a state final (=5.5ex by default),
state enter width: allows to set the default width of a state enter (=bex by default),
state exit width: allows to set the default width of a state exit (=bex by default),

state end width: allows to set the default wdith of a state end (=5ex by default),

state history width: allows to set the default width of a state history (=5ex by default),
state deep history width: allows to set the default width of a state deep-history (=5ex by default),
state width: allows to set the default width of a state (=8ex by default)

You can also use the text, draw and £i11 options on a particular element, in order to change its colors,
as shown in the introduction example.

4.5 Examples

4.5.1 Example from introduction, step by step

Definition of basic states

()

Etat global de 'objet A

graphe B

Visualisation

-

test2

42

\begin{umlstate} [name=Amain]{Etat global de 1’objet A}
\begin{umlstate} [name=Bgraph, fill=red!20]{graphe B}

\umlbasicstate [y=—4, name=test 1, fill=white]{test1}
\umlbasicstate [y=—38, name=test2, fill=white]{test2}
\end{umlstate}

\umlbasicstate [2=6, y=—6, name=visu, fill=green!/20]{Visualisation}

\end{umlstate}

Definition of specific states

()

Etat global de 'objet A

graphe B ‘

()

(Visualisation W

@

\begin{umlstate} [name=Amain| { Etat global de 1’objet A}
\begin{umlstate} [name=Bgraph, fill=red!20]{graphe B}

\umlstateinitial [name=Binit]

\umlbasicstate [y=—4, name=test 1, fill=white]|{testl}
\umlbasicstate [y=—8, name=test 2, fill=white]{test2}
\umlstatefinal [2=3, y=—7.75, name=Bfinal]

\end{umlstate}

\umlstateinitial [2=6, y=1, name=Ainit]

\umlstatefinal [2=6, y=—38.5, name=Afinal]

\umlbasicstate [x=6, y=—6, name=visu, fill=green!20]{Visualisation}

\end{umlstate}

43

Definition of transitions

\begin{umlstate} [name=Amain] { Etat global de 1’objet A}
\begin{umlstate} [name=Bgraph, fill=red!20]{graphe B}
\umlstateinitial [name=Binit]

\umlbasicstate [y=—4, name=test 1, fill=white]|{testl}

\umltrans{Binit }{test1}

\umltrans [recursive =20|60|2.5cm, recursive direction=right to top, arg={opl},
pos=1.5]{test1}{test1}

\umltrans [recursive =160|120|2.5¢cm, recursive direction=left to top, arg={op2},
pos=1.5]{test1}{test1}

\umltrans [recursive =—160|—120|2.5¢cm, recursive direction=left to bottom, arg={op3},
pos=1.5]{test1}{test1}
\umltrans [recursive =—20|—60|2.5¢cm, recursive direction=right to bottom, arg={op4},

pos=1.5]{test1}{test1}
\umlbasicstate [y=—8, name=test2, fill=white]{test2}

\umltrans [recursive =—160|—120|2.5¢cm, recursive direction=left to bottom, arg={opb},
pos=1.5]{test2}{test2}
\umltrans{test1}{test2}

\umlstatefinal [x=3, y=—-7.75, name=Bfinal |
\umltrans{test2}{Bfinal}

\end{umlstate}
\umlstateinitial [x=6, y=1, name=Ainit |

\umlVHtrans [anchor2=40]{ Ainit } { Bgraph}

\umlstatefinal [x=6, y=—3.5, name=Afinal |

\umlHVtrans [anchor1=30]{Bgraph}{ Afinal }

\umlbasicstate [x=6, y=—6, name=visu, fill=green!20]{Visualisation}

\umlHVtrans{ Bfinal }{ visu}
\umltrans{visu}{ Afinal}

\umltrans [recursive =—20|—60|2.5¢cm, recursive direction=right to bottom, arg=a,
pos=1.5]{visu}{visu}
\end{umlstate}

44

Etat global de 'objet A

~

graphe B
P2 opl
test]
op3 op4
Y
test2 m
opd

Visualisation

45

Chapter 5

Sequence diagrams

Here is an example of sequence diagram you can draw:

X

a:A b:B

i opa() -
t
op opb() e
alt ope()
[condition] D
[default] GECY >
S SR
1
Km = m e e e e e] L
opt
« ope()
1Q t
asser opt() -
B ——
4
_.< 77777777 0 777777777 I—
— create D
> e
t
P ops() i Q
t
create >
. 6]
— oph() =
7 L
_.< 777777777777777777777777777777777777 I—

46

Now, we will talk about elements that compose such diagrams.

5.1 To define a sequence diagram

Here is the main difference from previous diagrams: to define a sequence diagram, you have to use a
umlseqdiag environment. Its aim is to initialise some global variables and to draw the lifelines of each
object in the diagram. You have to understand that commands and environments you will use to define
a sequence diagrams place the elements (calls, objects, ...) automatically. We will talk about that in
more details later.

5.2 To define an object

5.2.1 Types of objects
You can define an object with the umlobject command:

\begin{tikzpicture}
\begin{umlseqdiag}

\umlobject{a}

\end{umlseqdiag}
\end{tikzpicture}

The default type is a class instance. You can give the class name with the class option (empty by
default).

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A]{a}
\end{umlseqdiag}

\end{tikzpicture}

On the contrary, you may want to hide the double dots and not giving a class:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [no ddots]{a} IE]
\end{umlseqdiag}

\end{tikzpicture}

The stereo option allows to set the type of object. It needs one of the following values: object (default
value), actor, entity, boundary, control, database, multi. The last six are drawn in the following picture,
from left to right and top to bottom:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlactor [class=B] {b}

\umlentity [x=2, class=C]{c} b:B c:C d:D
\umlboundary [x=4, class=D]{d}

\umlcontrol [x=0, y=—2.5, class=E]{e}
\umldatabase [x=2, y=—2.5, class=F]{f}

-
\umlmulti[x=4, y=-2.5, class=G|{g}
\end{umlseqdiag} O
\end{tikzpicture} |
e:E f:F g:Gl

UML objects may be used in other contexts than class instances. Then, the colon symbol shown in an
object may not be necessary. For this purpose, you may use the umlbasicobject command.

47

5.2.2 Automatic placement of an object

Both options x and y allows to place an object. You only have to use them if the automatic placement
does not do what you need. Its behavior is the following:

e The default value of the y option is 0, that means the default placement of an object is at the top
of the sequence diagram.

e The default value of the x option is the product of 4 by the value of the global counter identifying
the object: for instance, for the second object defined in a diagram, the x option is set to 8 by
default, ...

Unless the width of the object is too large, a shift of 4 is enough. If not, you use the x option.
5.2.3 To scale an object

The scale option of the umlobject command allows to scale an object, its symbol and its font size:

\begin{tikzpicture}

\begin{umlseqdiag}
\umlobject [class=A, stereo=entity]{a}
\umlobject [x=4, scale=2, class=B,
stereo=entity |{b}
\end{umlseqdiag} A bB
\end{tikzpicture} & :

\tikzumlset{font=\large}
\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A, stereco=entity]{a}
\umlobject [x=4, scale=2, class=B,
stereo=entity | {b}

\end{umlseqdiag} aA b:B
\end{tikzpicture} ’ :

5.3 To define a function call

Function calls are the core of sequence diagrams. Then, we need a motor either smart enough to propose
a satisfacting default behavior, either easy enough to parametrize.

From a technical point of view, and I open here a parenthesis, there are two ways to implement function
calls:

1. Either we use the nodal matrix structure of TIKZ . The advantage is to work on a pre computed
nodal grid and then to place elements of a sequence diagram easily (and fast for compilation) with
exactly one counter.

2. Either we use an automatical positioning of nodes with a set of coordinates, here the time instant,
that allows total freedom for the user and make its work easier.

I chose the second way, to keep the philosophy used to implement the other diagrams in this package.
Indeed, if the lack of a grid needs a more accurate computation core, and as a result more compilation
time, you can define most of the elements very easily, such as constructor calls, drawn according to the
standard. That is different from others UML softwares I used before. I close the parenthesis.

48

5.3.1 Basic / recursive calls

You can define a function call with the umlcall environment. Of course, you can define umlcall
environments in other ones:

\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A]
\umlobject [class=B]
\umlobject [class=C]
\begin{umlcall}{a}{
\begin{umlcall}{b}{ D
\end{umlcall}

\end{umlcall}

\end{umlseqdiag}

\end{tikzpicture}

i

}
| %

{a
{b
{c
b}
c}

v
1]
v

You have to give the name of the source object and the name of the destination object. If you give the
same name as source and destination, you define a recursive call. In this case, you may prefer use an
alias, the umlcallself environment:

\begin{tikzpicture}

\begin{umlseqdiag}
\umlobject [class=A] {a} i i
\umlobject [class=B]{b}
\begin{umlcall}{a}{b}
\begin{umlcall}{b}{b}
\end{umlcall}
\begin{umlcallself}{b}
\end{umlcallself}
\end{umlcall}
\end{umlseqdiag}
\end{tikzpicture} — -

\ 4

I

i

Of course, you can define umlcallself inside umlcallself and umlcall:

\begin{tikzpicture}

\begin{umlseqdiag}
\umlobject [class=A] {a} e o
\umlobject [class=B] {b}
\begin{umlcall}{a}{b} «Jcl
\begin{umlcallself} [op=cl, return=0]{b}
\begin{umlcallself} [op=c2, return=true]{b} 2
\end{umlcallself} |
\end{umlcallself} - .true
\end{umlcall} -0
\end{umlseqdiag}

\end{tikzpicture} — -

\ 4

5.3.2 To place a call

The dt option allows to place a function call on a lifeline, relatively to the last call drawn on this lifeline.
It has no default value. Its unit is ex. The default behavior is to shift the call you define to avoid
overwriting between to consecutive calls:

49

\begin{tikzpicture} :
\begin{umlseqdiag}

\umlobject [class=A]{a} . >
\umlobject [class=B] {b}

\begin{umlcall}{a}{b} l—]
\begin{umlcall}{b}{b}

\end{umlcall}

\begin{umlcallself} [dt=5] {b}

\end{umlcallself}

\end{umlcall}

\end{umlseqdiag}

\end{tikzpicture} L] L]

@% Do not forget that using option dt means relatively to the last call defines on the lifeline.

\begin{tikzpicture}

\begin{umlseqdiag}
\umlactor{A}
\umlactor{B}

\umlobject{C} A B:

\begin{umlcall }{A}{C} — —
\begin{umlcall }{C}{A} >
\end{umlcall}
\begin{umlcall }{B}{C}
\begin{umlcall }{C}{B} >
\end{umlcall} P Lo
\begin{umlcall} [return=1] {B}{C}
\end{umlcall}
\end{umlcall}
\begin{umlcall} [dt=20,

return=1] {A}{C}
\end{umlcall}
\end{umlcall} 7 >
\end{umlseqdiag} ettt
\end{tikzpicture} L] L]

Both calls between B and C are first ones, so they are drawn on top of the lifeline. However, you want
that they are drawn below the first call between A and C. By using option dt, you can do it:

\begin{tikzpicture}

\begin{umlseqdiag}
\umlactor{A}
\umlactor{B}

\umlobject {C} A B:

\begin{umlcall } {A}{C}
\begin{umlcall }{C}{A}
\end{umlcall} <
\begin{umlcall} [dt=10] {B}{C}
\begin{umlcall } {C}{B}
\end{umlcall}
\begin{umlcall} [return=1] {B}{C}
\end{umlcall} >
\end{umlcall} e o L]
\begin{umlcall} [dt=20,
return=1] {A}{C}
\end{umlcall}
\end{umlcall} 7 >
\end{umlseqdiag} <" T T T T TS TSI T ST TT oo oo
\end{tikzpicture} L L]

v

\ 4

You can also set spaces for recursive calls with the padding option. It set the space just below the
recursive call:

50

\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A]{a}
\umlobject [class=B] {b}
\begin{umlcall} [padding=10]{a}{b}
\begin{umlcall}{b}{b}
\end{umlcall}
\begin{umlcallself}{b}
\end{umlcallself}
\end{umlcall}
\end{umlseqdiag}
\end{tikzpicture}

\ 4

i

I

@ padding can also takes negative values, to fix for instance position of a call too far away for the
Previous one.

5.3.3 Synchron / asynchron calls

The type option allows to tell if the call is synchron (default value) or asynchron:

\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A] {a} -a:A -I!:
\umlobject [class=B] {b}
\begin{umlcall} [type=synchron]{a}{b}

\end{umlcall} [
|

\ 4

]

\begin{umlcall} [type=asynchron]|{a}{b}
\end{umlcall}

\end{umlseqdiag}

\end{tikzpicture}

5.3.4 Operation, arguments and return value

You can give the function name in a call and its arguments with the op option:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A] {a} .

\umlobject [class=B] {b} call(ik)
\begin{umlcall} [op={call (i,k)}]|{a}{b} : >
\end{umlcall} D D
\end{umlseqdiag}

\end{tikzpicture}

@ Beware of the braces, so as to the comma between i and k is deactivated as an option delimiter.
Wlthout them, there will be a compilation error.

You can also set the return value with the return option, with the same warning;:

\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A] {a}

\umlobject [class=B]{b}

\begin{umlcall} [op={call (i ,k)}, call(i,k) R
[——

return=2]{a}{b}
\end{umlcall}
\end{umlseqdiag}
\end{tikzpicture}

o1

In this case, the return arrow is drawn with the return value above. You can draw the return arrow
without giving a return value. For this, there is the with return option:

\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A]{a}

\umlobject [class=B] {b}

\begin{umlcall} [op={call (i k)}, with D(call(ik) D

return | {a}{b}
\end{umlcall}
\end{umlseqdiag}
\end{tikzpicture}

In some cases, the call may have multiple return arrows. To draw an additionnal return arrow, you can
do as follows:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A] {a}

\umlobject [class=B] {b}

\begin{umlcall} [op={call (i,k)}, call(i,k)
return=1]{a}{b}

\begin{umlcall}[type=return]{b}{a} | [T TTTTTTT777

\end{umlcall} 1

\end{umlealry ... LImrorrorrrrrrrees

\end{umlseqdiag}

\end{tikzpicture}

5.3.5 To define a constructor call

Constructor calls are special function calls, insofar as they build a new object. They are not messages
between two lifelines, but between a lifeline and an object.
To define a constructor call, you can use the umlcreatecall command:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A]{a}
\umlcreatecall[class=B] {a}{b} create rw
\begin{umlcall} [op={call (i,k)}, ['@

return=2]{a}{b} R
\end{umlcall} 5 >
\end{umlseqdiag} [< 7777777777777777 D

\end{tikzpicture}

You can notice that everything behave normally after a constructor call.

As an object builder, the umlcreatecall command has class, stereo and x options.
As a function call, it has the dt option.

5.3.6 To name a call

The name option allows to give a name for a function call. It is not useful actually, insofar as this option
was added for the definition of combined fragments, but as you will see, combined fragment does not use
this feature. Maybe this option will be used for future developments of the package.

5.4 To define a combined fragment

Combined fragments are the second family of elements in a sequence diagram, with the function calls.
You can define them with the umlfragment environment:

52

\begin{tikzpicture}
\begin{umlseqdiag}
\umlobject [class=A]{a}
\umlcreatecall [class=B]{a}{b}
\begin{umlfragment}
\begin{umlcall} [op={call (i ,k)}, dt=7,
return=2] {a}{b}
\end{umlcall}
\end{umlfragment }
\end{umlseqdiag}
\end{tikzpicture}

5.4.1 Informations of a fragment

The type option allows to set the keyword on the top left corner: opt, alt, loop, par, assert, ... The

default value is opt.

create

The 1abel option allows to set information such as the condition for a opt fragment:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A] {a}

\umlcreatecall [class=B] {a}{b}

\begin{umlfragment} [type=alt ,
inner xsep=2]

\begin{umlcall} [op={call (i,k)}, dt=7,
return=2]{a}{b}

\end{umlcall}

\end {umlfragment}

\end{umlseqdiag}

\end{tikzpicture}

label=i>5,

The inner xsep option allows to shift type and label to the left. The default value is 1 and its unit is

eXx.

5.4.2 Name of a fragment

You can give a name to a combined fragment with the name option. It can be useful when you want to

attach a note on a fragment:

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A] {a}

\umlcreatecall [class=B] {a}{b}

\begin{umlfragment} [type=alt ,
name=alt , inner xsep=2]

\begin{umlcall} [op={call (i,k)}, dt=7,
return=2]{a}{b}

\end{umlcall}

\end{umlfragment }

\umlnote [x=2, y=—5]{alt }{note on alt
fragment }

\end{umlseqdiag}

\end{tikzpicture}

label=i>5,

5.4.3 To define regions of a fragment

Let’s take a alt fragment. It represents a switch-case instruction block. To represent each case, you need

create

]

alt)

[i>5] [<

create

]

[alt

[i>5] [(

note on alt
fragment

to set regions in the fragment. For this purpose, you can use the umlfpart command:

93

\begin{tikzpicture}

\begin{umlseqdiag}

\umlobject [class=A]{a}

\umlcreatecall [class=B]{a}{b}

\begin{umlfragment} [type=alt , label=i>5, . create » b:B
inner xsep=5] :

\begin{umlcall} [op={calll(i,k)}, dt=7,
return=2]{a}{b} alt .

\end{umlcall} i>5] >

\umlfpart [default] [i>5] P 2]]

\begin{umlcall} [op={call2(a,k)}, | | ______I___._
return=4]{a}{b} i

\end{umlcall} [default] 4 >]

\end {umlfragment} L]

\end{umlseqdiag}

\end{tikzpicture}

5.5 To change preferences
Thanks to the tikzumlset command, you can set colors for calls, fragments and objects:

text: allows to set the default text color (=black by default),

draw: allows to set the default color of edges and arrows (=black by default),

fill object: allows to set the default background color of objects (=yellow 120 by default),
fill call: allows to set the default background color for calls (=white by default),

fill fragment: allows to set the default background color for fragments (=white by default),
font: allows to set the default font style (=\small by default),

object stereo: allows to set the default font style (=object by default),

call dt: allows to set the default font style (=auto by default),

call padding: allows to set the default font style (=2 by default),

call type: allows to set the default font style (=synchron by default),

fragment type: allows to set the default font style (=opt by default),

fragment inner xsep: allows to set the default font style (=1 by default),

fragment inner ysep: allows to set the default font style (=1 by default),

create call dt: allows to set the default font style (=4 by default)

You can also use the options text, draw and fill on a particular element, as in the example of
introduction.

There is an exception: umlcreatecall. The options text, draw and fill set the colors of the call,
whereas options text obj, draw obj and £ill obj set the colors of the object.

\begin{tikzpicture}
\begin{umlseqdiag}
\umlactor [class=A] {a}

\umlcreatecall [class=B, draw obj=green!70!black,

fill obj=green!20, draw=blue!70]{a}{b} a:A
\end{umlseqdiag} create e
\end{tikzpicture} D @

54

5.6 Examples

5.6.1 Example from introduction, step by step

Definition of objects

\begin{umlseqdiag}

\umlactor [class=A]{a}
\umldatabase [class=B, fill=blue!20]{b}
\umlmulti/class=C]{c}
\umlobject [class=D]{d}

\end{umlseqdiag}
\end{tikzpicture}

x -

a:A b:B

Definition of the call opa and its components

\begin{umlseqdiag}

\umlactor [class=A] {a}

\umldatabase[class=B, fill=blue!20]{b}
\umlmulti| class=C] {c}

\umlobject [class=D] {d}

\begin{umlcall} [op=opa (), type=synchron, return=0]{a}{b}
\begin{umlcall} [op=0pb (), type=synchron, return=1]{b}{c}

\begin{umlcall} [op=opc (), type=asynchron, fill=red!10]{c}{d}
\end{umlcall}

\begin{umlcall} [type=return[{c}{b}

\end{umlcall}

\begin{umlcall} [op=opd (), type=synchron, return=3/{c}{d}
\end{umlcall}

\end{umlcall}

\end{umlseqdiag}
\end{tikzpicture}

95

o opal() o
opb() -
opc() -
opd() -
R S R
S Lo] T
] ope(gz)f(B
Cm = m = 5]
S -
R 0 _______|

Definition of the calls following the construction of E

\begin{umlseqdiag}

\umlactor [class=A] {a}

\umldatabase[class=B, fill=blue!20]{b}

\umlmulti[class=C] {c}

\umlobject [class=D] {d}

\begin{umlcall} [op=opa (), type=synchron, return=0]{a}{b}

\begin{umlcall} [op=opb (), type=synchron, return=1]{b}{c}

\begin{umlcall} [op=opc (), type=asynchron, fill=red!10]{c}{d}
\end{umlcall}

\begin{umlcall} [type=return]{c}{b}

\end{umlcall}

\begin{umlcall} [op=opd (), type=synchron, return=3]{c}{d}
\end{umlcall}

\end{umlcall}

\begin{umlcallself} [op=ope (), type=synchron, return=4/{b}
\begin{umlcall} [op=0opf(), type=synchron, return=5/{b}{c}
\end{umlcall}

\end{umlcallself}

\end{umlcall}
\umlcreatecall [class=E, z=8]{a}{e}

\begin{umlcall} [op=0pg (), name=test, type=synchron, return=6, dt=7, fill=red!10]{a}{e}
\umlcreatecall [class=F, stereo=boundary, z=12]{e}{f}

\end{umlcall}

\begin{umlcall} [op=oph (), type=synchron, return=7]{a}{e}

\end{umlcall}

\end{umlcall}

o6

- opa() -
opb() -
ope() i
opd() -
S S R
R Lo] T
'« ope()
opf() o
Km == m - 5]
.4
S 0]
= create D
> c:E
- opg() — O
create > iT
. 6]
— oph() =
e T

Definition of fragments

\begin{umlseqdiag}

\umlactor [class=A]{a}

\umldatabase[class=B, fill=blue!20]{b}

\umlmulti[class=C] {c}

\umlobject [class=D] {d}

\begin{umlcall} [op=opa (), type=synchron, return=0]{a}{b}

\begin{umlfragment }
\begin{umlcall} [op=opb (), type=synchron, return=1]{b}{c}
\begin{umlfragment} [type=alt , label=condition, inner zsep=8, fill=green!10]

\begin{umlcall} [op=opc (), type=asynchron, fill=red!10]{c}{d}
\end{umlcall}

\begin{umlcall} [type=return]|{c}{b}

\end{umlcall}

\umlfpart [default]

\begin{umlcall} [op=opd (), type=synchron, return=3]{c}{d}
\end{umlcall}

\end{umlfragment}
\end{umlcall}

\end{umlfragment }
\begin{umlfragment }

\begin{umlcallself} [op=ope (), type=synchron, return=4]{b}

o7

\begin{umlfragment} [type=assert]

\begin{umlcall} [op=opf (), type=synchron, return=5]{b}{c}
\end{umlcall}

\end{umlfragment}
\end{umlcallself}
\end{umlfragment }

\end{umlcall}
\umlcreatecall[class=E, x=8]{a}{e}

\begin{umlfragment }

\begin{umlcall} [op=opg () , name=test , type=synchron, return=6, dt=7, fill=red!10]{a}{e}
\umlcreatecall [class=F, stereo=boundary, x=12]|{e}{f}

\end{umlcall}

\begin{umlcall} [op=oph (), type=synchron, return=7]{a}{e}

\end{umlcall}

\end{umlfragment}

\end{umlseqdiag}
\end{tikzpicture}

o8

- opa() e
t
op opb() e
alt opc()
[condition] D
o]
[default] opd() >
Km = === = = - SR
N Lo]
opt
P <« ope()
t
asser opf() -
——
.4
_< 77777777 0 777777777 L
— create
> el

opt
L/ns opg() — Q
t
create > fF
e 6
— oph() =
7

5.7 Known bugs and perspectives

1. When you define a fragment on a set of calls just after a constructor call, the automatic shift does
not work. You have to use the dt with a value greather than 7 to the first call inside the fragment.

2. The automatic placement of objects with a multiple of 4 is not very convenient. A shift of 4
relatively to the last object drawn should be better.

3. You can not give arguments to constructor calls.

4. You can not force the drawing of the activity area of a "non working” object.

99

\begin{tikzpicture}
\begin{umlseqdiag}
\umlactor [no
ddots]{user}
\umlobject [class=A]{a}
\umlobject [class=B] {b}
\begin{umlcall}{a}{b}
\end{umlcall}
\end{umlseqdiag}
\end{tikzpicture}

But you can lengthen lifelines thanks to umlsdnode command:

\begin{tikzpicture}
\begin{umlseqdiag}
\umlactor [no
ddots|{user}
\umlobject [class=A]{a}
\umlobject [class=B] {b}
\begin{umlcall}{a}{b}
\end{umlcall}
\umlsdnode [dt=10] { user }
\umlsdnode [dt=4] {a}
\end{umlseqdiag}
\end{tikzpicture}

user

X

user

60

g

Chapter 6

Component diagrams

Here is an example of component diagram you can draw:

toto-interface

I am the node named

I am the node named
B-west-interface

I am the node named
C-east-interface

T

|
|
1
1

A-south-port

\ $] !
B-interface B \
1
< > i
ll
£] 1
C C-interface
—
I am the node named AE
M
A

GHF

[1—

-

AE-interface

I am the node named

Now, we will talk about elements that compose such diagrams:

61

=L

EF

I am the node named
F-east-port

6.1 To define a component

A component can be defined with the umlcomponent environment:

\begin{tikzpicture}
\begin{umlcomponent} [x=0,y=0] {A} A &

\end{umlcomponent }
\end{tikzpicture}

Both options x and y allow to place the component in the figure, or in another component. The default
value is 0. The argument to give is the label of the component. The node representing the state has a
default name, based on a global counter. For practical reasons, you can rename it with the name option.

You can also define the width of an empty component with the width option (8ex by default).

You can define a component in another component or in a package. Then, the coordinates of the sub-
component are relative to the parent component or package:

p

\begin{tikzpicture}
\begin{umlpackage}{p}
\ begin {umlcomponent } {A} £]
\ begin{umlcomponent } {B} B
\umlemptyclass{D}
\ end {umlcomponent } D
\begin {umlcomponent} [x=4,y=—2] {C}

\ end {umlcomponent }
\end{umlcomponent } C £l
\end{umlpackage}

\end{tikzpicture}

Notice that you can define a class inside a component.

If you want to define a component without detailing it, you can use the umlbasiccomponent command,
that is an alias of the umlcomponent environment.

Every TIKZ option dedicated to nodes can be used here, see section 2.5 for details.

6.2 To define a provided/required interface

On a component, you can define 2 kinds of interfaces: provided interfaces and required interfaces. For
that purpose, you can use umlprovidedinterface and/or umlrequiredinterface commands. These 2
commands offers the same list of options:

62

\begin{tikzpicture} —_—
\begin{umlcomponent } {A} B a Bri
\umlbasiccomponent{B} |
\umlbasiccomponent [y=—2.5] {C}
\umlrequiredinterface[interface=Bri, diftay
width=2em| {B}
\umlprovidedinterface[interface=Cpi, digta
with port]{C} . £]
\end{umlcomponent } Cpi L C

\end{tikzpicture} O—Ej

The interface option is used to give the label of the interface, written above the interface symbol. The
interface symbol is a node named X-Y-interface, where X is the name of the component, and Y is west
for a provided interface and east for a required interface.

You can change these default names with the name option.

The width option is used to size the interface symbol. The default value is lem.
The distance option is used to set the distance between the interface symbol and the component port.
The with port option is used to draw the port symbol.

If you look at the previous example, you can notice the padding between the interface symbols on sub-
components, and the boundary of the parent component. You can change it with the padding option.
The default value is lcm.

\begin{tikzpicture}
\ begin{umlcomponent } {A} B Bri
\umlbasiccomponent {B} C
\umlbasiccomponent [y=—2.5] {C}
\umlrequiredinterface[interface=Bri, distaj
padding=2cm] {B}
\umlprovidedinterface[interface=Cpi, distaj
padding=0cm] {C}
\end{umlcomponent }

\end{tikzpicture} O————

This option will be very useful when you draw connectors, as you will see in the next section.

6.3 To define an assembly connector

An assembly connector is a relation between 2 different components. It is graphically the provided
interface of one of them with the required interface of the other. For that purpose, you can use the
umlassemblyconnector command:

7 . . A £l
\begin{tikzpicture}
\umlbasiccomponent{A} [j
\umlbasiccomponent [x=4, y=—2] {B} \AAB J-‘
\umlassemblyconnector[interface=AB] {A}{B}
\umlHVassemblyconnector [with Q\ [£]
port] {A}{B} =
\end{tikzpicture}

63

The assembly connector symbol is drawn only if the interface option is given. As for
umlprovidedinterface and umlrequiredinterface commands, the with port option is used to draw
ports, and the width option is used to set the size of the assembly connector symbol (default is lem).
You can also name the assembly connector with the option name.

6.3.1 To define the geometry of an assembly connector

As for umlrelation command, you can use the geometry option and shortcuts are defined:
umlHVassemblyconnector: shortcut of umlassemblyconnector with geometry=-|
umlVHassemblyconnector: shortcut of umlassemblyconnector with geometry=|-
umlHVHassemblyconnector: shortcut of unlassemblyconnector with geometry=-|-

umlVHVassemblyconnector: shortcut of umlassemblyconnector with geometry=|-|

6.3.2 To place the assembly connector symbol

To place the assembly connector symbol, you can use the first arm, second arm, middle arm or last
arm options:

\begin{tikzpicture}
\umlbasiccomponent{A}
\umlbasiccomponent [x=4, y=-3] {B}
\umlHVHassemblyconnector [interface=AB1|,

AB2

arml=6cm, last arm]|{A}{B}

\umlHVHassemblyconnector [interface=AB2| {A}{B} AB3
\umlVHassemblyconnector [interface=AB3,

first arm]{A}{B} B Y ABI1
\end{tikzpicture})

6.3.3 To adjust the geometry of an assembly connector

As for umlrelation command, you can use the arml, arm2, anchorl, anchor2 and anchors options:
\begin{tikzpicture}
\umlbasiccomponent{A} A]
\umlbasiccomponent [x=4, y=-—3] {B}
\umlHVHassemblyconnector [interface=AB1|,

arml=6cm, anchor1=20, last arm,
with port]{A}{B} AB2
AB3

\umlHVHassemblyconnector [interface=AB2|,
anchors=—20 and 160,
arm2=—0.5cm] {A}{B} £]
B AB1

\umlVHassemblyconnector [interface=AB3,

first arm, anchor2=-160] {A}{B} []—OF

\end{tikzpicture}

The position of the ports is automatically evaluated according to the values given to these options and
to the geometry option.

6.4 To define a delegate connector

A delegate connector is a connector between a sub-component and its parent component. For this

purpose, you can use the umldelegateconnector command. It has all options of umlrelation command

except stereo, that is set to delegate.
\begin{tikzpicture}
\begin{umlcomponent } {A} A £]
\umlbasiccomponent{B}
\umlbasiccomponent [y=—3] {C} Bpi B f]

\umlprovidedinterface[interface=Bpi,
distance=2cm, padding=2cm]{B}

\umlprovidedinterface[interface=Cpi, <deJegate>

distance=2cm, padding=2cm]{C} C
\ end {umlcomponent }

< delegate>

\umldelegateconnector {A—west—port }{B-west—inter pi C &
\umlHVHdelegateconnector [pos ~

stereo=1.5] {A—west—port }{C—west—interface } -
\umlport{A}{west}
\end{tikzpicture}

6.5 To define a port on a component

Sometimes, as in the previous example, you have to draw manually a port. For this purpose, you can
use the umlport command.

The first argument is the component name, the second one is the anchor of the component node where
you want to draw the port. You can set the size of the port with the width option.

6.6 To change preferences

Thanks to the tikzumlset command, you can set colors for components, provided/required interfaces,
ports and assembly /delegate connectors:

text: allows to set the text color (=black by default),

draw: allows to set the color od edges and arrows (=black by default),

fill component: allows to set the background color of components (=yellow 120 by default),
fill port: allows to set the background color of ports (=yellow 120 by default),

fill assembly connector: allows to set the background color for assembly connector symbols (=white
by default),

font: allows to set the font style (=\small by default).
You can also use the options text, draw and £ill on a particular element.

There is an exception: umlassemblyconnector. The option £ill assembly connector sets the colors
of the assembly connector symbol, whereas the option £i11 port sets the colors of the port symbol.

65

6.7 Examples

6.7.1 Example from introduction, step by step
Definition of the components

There is 6 components A, D, E, F, G and H, and 2 sub-components of A: B and C.

\begin{tikzpicture}

\ begin{umlcomponent } {A}
\umlbasiccomponent{B}
\umlbasiccomponent [y=—2] {C}

\ end {umlcomponent }
\umlbasiccomponent [x=—10,y=1] {D}
\umlbasiccomponent [x=3,y=—7.5] {E}
\umlbasiccomponent [x=—2, y=—9] {F}
\umlbasiccomponent [x=—7,y=—8] {G}
\umlbasiccomponent [x=—7,y=—11] {H}

\end{tikzpicture}
p * A 5
B {]
C {]

Definition of the interfaces

We define a required interface for the component B, and a provided interface for the component C. We
prepare the delegate connector by setting the padding.

66

\begin{tikzpicture}

\ begin{umlcomponent } {A}
\umlbasiccomponent {B}
\umlbasiccomponent [y=—2] {C}

\umlrequiredinterface [interface=C-interface [{C}
\umlprovidedinterface [interface=B—interface , with port, distance=3cm,
padding=2.5¢cm]{B}

\end{umlcomponent }
\umlbasiccomponent [x=—10,y=1] {D}
\umlbasiccomponent [x=3,y=—7.5] {E}
\umlbasiccomponent [x=—2, y=—9] {F}
\umlbasiccomponent [x=—7,y=—8] {G}
\umlbasiccomponent [x=—7,y=—11] {H}

\end{tikzpicture}

]
B-interface B

O——]

£]
C C-interface

——C

Definition of the connectors

We define 5 assembly connectors and 1 delegate connector.
\begin{tikzpicture}

\ begin{umlcomponent } {A}
\umlbasiccomponent {B}

67

\umlbasiccomponent [y=—2] {C}

\umlrequiredinterface[interface=C—interface]{C}

\umlprovidedinterface[interface=B—interface , with port, distance=3cm,
padding=2.5cm] {B}

\ end {umlcomponent }

\umlbasiccomponent [x=—10,y=1] {D}

\umlbasiccomponent [x=3,y=—7.5] {E}

\umlbasiccomponent [x=—2, y=—9] {F}

\umlbasiccomponent [x=—7,y=—8] {G}

\umlbasiccomponent [x=—7,y=—11] {H}

\umlassemblyconnector [interface=DA, with port, name=toto [{D}{A}
\umldelegateconnector {A—west—port }{B-west—interface}
\umlVHVassemblyconnector [interface=AE, with port]{A}{E}
\umlHVHassemblyconnector [interface=EF, with port, first arm/{E}{F}
\umlHVHassemblyconnector [interface=GHF, with port, arm2=—2m, last arm|{G}{F}
\umlHVHassemblyconnector [with port, arm2=—2cm, last arm]{H}{F}
\end{tikzpicture}

DA B-interface B

< e>

]
C C-interface

——

]

AE

P
(S

=

EF

GHF F

Definition of the notes

We add notes to explain the node names.

68

\begin{tikzpicture}

\ begin{umlcomponent } {A}
\umlbasiccomponent {B}
\umlbasiccomponent [y=—2] {C}

\umlrequiredinterface[interface=C—interface]{C}

\umlprovidedinterface[interface=B—interface , with port, distance=3cm,
padding=2.5cm] {B}

\ end {umlcomponent }

\umlbasiccomponent [x=—10,y=1] {D}

\umlbasiccomponent [x=3,y=—7.5] {E}

\umlbasiccomponent [x=—2, y=—9] {F}

\umlbasiccomponent [x=—7,y=—8] {G}

\umlbasiccomponent [x=—7,y=—11] {H}

\umlassemblyconnector[interface=DA, with port, name=toto]{D}{A}
\umldelegateconnector {A—west—port } {B-west—interface}
\umlVHVassemblyconnector [interface=AE, with port]{A}{E}
\umlHVHassemblyconnector [interface=EF, with port, first arm]{E}{F}
\umlHVHassemblyconnector [interface=GHF, with port, arm2=—2cm, last arm]{G}{F}
\umlHVHassemblyconnector [with port, arm2=—2cm, last arm]{H}{F}

\umlnote [z=—/4, y=4, width=58.4cm]{B-west—interface}{I am the node named
B-west—interface}

\umlnote [2=2, y=4, width=3.4cm]{C-east—interface}{l am the node named
C—east—interface}

\umlnote [2=—8.5, y=—2, width=3.4cm]{toto—interface}{l am the node named
toto—interface}

\umlnote [z=—5.5, y=—4.5, width=3.4cm]{A—south—port}{I am the node named A—south—port}

\umlnote [z=—1, y=—06, width=3.4cm]{AE-interface}{I am the node named AE-interface}

\umlnote [2=2, y=—11, width=3.4cm]{F—east—port}{l am the node named F—east—port}

\end{tikzpicture}

69

I am the node named
B-west-interface

I am the node named
C-east-interface

T
|
|
1
1

I am the node named

toto-interface

A-south-port

\ 1]
B-interface B \
£] 1
C C-interface
—

I am the node named AE

M)

(U

AE-interface

I am the node named

-

GHF F

70

EF

o[}——

I am the node named
F-east-port

	1 Preamble
	1.1 Dependencies
	1.1.1 Required packages

	1.2 Installation

	2 Class diagrams
	2.1 Packages, classes, attributes and operations
	2.1.1 To define a package
	2.1.2 To define a class

	2.2 To define a relation between classes
	2.2.1 General command
	2.2.2 To define the geometry of a relation
	2.2.3 To adjust the geometry of a relation
	2.2.4 To define informations about attributes of a relation
	2.2.5 To place information about attributes of a relation
	2.2.6 To adjust the alignment of information about attributes of a relation
	2.2.7 To define and place the stereotype of a relation
	2.2.8 To modify the anchor points of a relation
	2.2.9 To define a recursive relation
	2.2.10 Name of auto-built points of a relation
	2.2.11 To draw an intersection point between relations
	2.2.12 Advanced styling of a relation
	2.2.13 N-ary associations

	2.3 Comments / constraints note
	2.4 Association class
	2.5 Advanced features for positioning
	2.5.1 Horizontal and vertical alignment
	2.5.2 Relative positioning

	2.6 To change preferences
	2.7 Examples
	2.7.1 Example from introduction, step by step
	2.7.2 To define a specialization of a class

	2.8 Priority rules of options and known bugs

	3 Use case diagrams
	3.1 To define a system
	3.2 To define an actor
	3.3 To define a use case
	3.4 To define a relation
	3.5 Advanced features for positioning
	3.5.1 Horizontal and vertical alignment
	3.5.2 Relative positioning

	3.6 To change preferences
	3.7 Examples
	3.7.1 Example from introduction, step by step

	4 State-transitions diagrams
	4.1 To define a state
	4.2 To define a transition
	4.2.1 To define a unidirectional transition
	4.2.2 To define a recursive transition
	4.2.3 To define a transition between sub states

	4.3 Advanced features for positioning
	4.3.1 Horizontal and vertical alignment
	4.3.2 Relative positioning

	4.4 To change preferences
	4.5 Examples
	4.5.1 Example from introduction, step by step

	5 Sequence diagrams
	5.1 To define a sequence diagram
	5.2 To define an object
	5.2.1 Types of objects
	5.2.2 Automatic placement of an object
	5.2.3 To scale an object

	5.3 To define a function call
	5.3.1 Basic / recursive calls
	5.3.2 To place a call
	5.3.3 Synchron / asynchron calls
	5.3.4 Operation, arguments and return value
	5.3.5 To define a constructor call
	5.3.6 To name a call

	5.4 To define a combined fragment
	5.4.1 Informations of a fragment
	5.4.2 Name of a fragment
	5.4.3 To define regions of a fragment

	5.5 To change preferences
	5.6 Examples
	5.6.1 Example from introduction, step by step

	5.7 Known bugs and perspectives

	6 Component diagrams
	6.1 To define a component
	6.2 To define a provided/required interface
	6.3 To define an assembly connector
	6.3.1 To define the geometry of an assembly connector
	6.3.2 To place the assembly connector symbol
	6.3.3 To adjust the geometry of an assembly connector

	6.4 To define a delegate connector
	6.5 To define a port on a component
	6.6 To change preferences
	6.7 Examples
	6.7.1 Example from introduction, step by step

