


Preface:
As	 a	 beginner	 in	 programming,	 often	 one	way	 or	 another,	 we	 stumble	 across
Python	as	a	go-to	multifunctional	powerhouse.	Like	the	other	languages,	we	also
see	that	there	is	no	prescribed	course	that	will	guarantee	you	to	be	a	successful
Python	programmer.	Our	aim	was	to	build	a	workbook	that	would	be	conducive
to	a	programmer’s	journey	of	learning.	In	this	book	you	will	find	everything	that
two	 experienced	 Python	 professionals	 feel	 is	 essential	 for	 a	 well-rounded,	 in-
depth	 perception	 of	 the	 language.	Although	 not	 everything	 can	 be	 covered	 no
matter	the	given	time,	we	attempt	to	cover	a	wide	variety	of	Python	essentials	in
this	 workbook.	 You	 will	 find	 that	 the	 exemplary	 programs	 make	 best	 use	 of
numerous	Python	functions	and	methodologies	such	that	topics	are	not	repeated.
Although	you	will	 find	a	brief	explanation	of	 the	 functions,	 feel	 free	 to	utilize
the	 wide	 range	 of	 resources	 offered	 throughout	 the	 internet	 keeping	 in	 mind
there	 is	 never	 only	 one	way	 to	 solve	 a	 problem.	This	 book	will	 not	 cover	 the
basics	such	as	the	syntax,	structure,	etc.	as	you	can	easily	find	clear	explanations
everywhere.	Welcome	to	the	world	of	Python.	Let’s	get	started.

	

Prerequisites:
-Python	3.6	downloaded	and	installed	on	your	local	system
-A	compiler	(suggested	use:	eclipse,	jupyter	notebook)
-A	text	editor	(suggested	use:	sublime	text,	atom)
-Knowledge	of	the	syntax	and	structure	of	Python	3

	



Introduction:
All	the	programs	and	tips	mentioned	in	this	book	are	tested	in	Python	3.6.

In	 the	 program	 section,	we	 introduce	 three	 levels	 of	 difficulty:	Beginner	 (20),
Intermediate	 (20),	Advance	 (20).	These	will	 cover	 the	most	 essential	 topics	 in
the	world	of	Python	3.	The	next	section	will	cover	tips	and	tricks	to	make	your
Python	 code	 shorter,	 faster	 and	 more	 efficient.	 This	 will	 be	 followed	 by	 a
comprehensive	explanation	of	essential	modules	and	packages	offered	by	either
Python	or	3rd	party	open	source	organizations.	For	your	own	betterment,	try	to
understand,	type	and	implement	all	that	you	learn	instead	of	reading	through	the
examples.

	

Table	of	Contents:
->50	programs	of	varied	difficulty
(i)20	Beginner	programs
(ii)20	Intermediate	programs
(iii)10	Advance	programs
->30	python3	tips	and	tricks
->20	Explanations	of	available	modules

	



Beginner:
These	 are	 beginner	 concepts	 you	 should	 have	 at	 the	 tip	 of	 your	 fingers.

Good	luck.

	

1.	With	a	given	number	n,	write	a	program	 to	generate	a	dictionary	 that
contains	 (i,	 i*i)	such	 that	 i	 is	an	number	between	1	and	n	(both	 included).	and
then	the	program	should	print	the	dictionary.

	

2.	 Write	 a	 program	 which	 accepts	 a	 sequence	 of	 comma-separated
numbers	from	console/user	and	generates	a	list	and	a	tuple	which	contains	every
number.

	



3.	Write	a	program	which	will	find	all	the	numbers	which	are	divisible	by
7	 but	 are	 not	 a	 multiple	 of	 5,	 between	 1000	 and	 1500	 (both	 included).	 The
numbers	obtained	should	be	printed	in	a	comma-separated	sequence	on	a	single
line.

	

4.	Define	a	function	which	can	compute	the	sum	of	two	numbers.

	

5.	Define	a	function	that	can	receive	two	integral	numbers	in	string	form
and	compute	their	sum	and	then	print	it	in	console.



6.	Write	 a	 program	which	 can	 compute	 the	given	 factorial	 of	 a	 number.

7.	Use	list	comprehension	to	square	each	odd	number	in	a	list.	The	list	is
input	by	a	sequence	of	comma-separated	numbers.

8.	 Write	 a	 program	 to	 roll	 a	 dice	 and	 get	 a	 random	 output	 (1-6).



9.	Define	a	 function	which	can	generate	a	dictionary	where	 the	keys	are
numbers	 between	1	 and	20	 (both	 included)	 and	 the	 values	 are	 square	 of	 keys.
The	function	should	just	print	the	values	only.

	

10.	Define	a	class	which	has	at	least	two	methods:	getstring:	to	get	a	string
from	user.	printstring:	to	print	the	string	in	upper	case.	Include	a	test	function	to
test	 the	 class	 methods.



11.	Define	a	class,	which	have	a	class	parameter	and	have	a	same	instance
parameter.

12.	Write	a	program	that	accepts	a	sentence	and	calculates	the	number	of
upper	and	lower	case	letters.



13.	Write	 a	 program	 to	 display	 the	 fibonacci	 series	 up	 to	 the	 nth	 term
where	 nth	 term	 is	 given	 by	 the	 user.

	



14.	 Define	 a	 class	 named	 American	 and	 its	 subclass	 NewYorker.

	

15.	Define	a	class	named	Circle	which	can	be	constructed	by	a	radius.	The
Circle	class	has	a	method	which	can	compute	the	area.

	



16.	Write	a	program	using	generator	to	print	the	even	numbers	between	0	and	n
in	 comma	 separated	 form	 while	 n	 is	 input	 by	 console.

	

17.	Write	statements	using	assert	expression	to	verify	that	every	number	in	 the
list	 [2,4,6,8]	 is	 even.

	



18.	Write	a	program	to	compress	and	decompress	the	string	"Hello
world!	Python	is	great!".

	

19.	 Define	 three	 individual	 functions	 to	 implement	 the	 filter,	 map	 and	 reduce
functions.	Experiment	on	them	as	you	like.

	



20.	Create	a	list	of	integers.	Using	filter	and	lambda	functions	find	the	integers
that	are	multiples	of	3.	Using	map	and	lambda	functions	multiply	all	integers	of
the	 list	 by	 2	 and	 add	 15.	 Use	 the	 reduce	 function	 from	 functools	 module	 to
simply	 add	 all	 integers.



Intermediate:
The	 following	 programs	 are	 relatively	 tougher	 than	 the	 ones	 in	 the	 previous
section.	In	this	sections,	many	of	the	important	sorting	and	searching	algorithms
have	been	included.

	

21.	Write	a	program	to	compute	1/2+2/3+3/4+...+n/n+1	with	a	given	n	input	by
console	(n>0).

22.	With	 a	 given	 list	 [12,24,35,24,88,120,155,88,120,155],	write	 a	 program	 to
print	this	list	after	removing	all	duplicate	values	with	original	order	reserved.

	

23.	 In	 a	 given	 sentence,	 find	 all	 the	 adverbs	 and	 their	 positions	 using	 the	 re
module.

	



24.	Using	the	re	module,	find	a	way	to	remove	anything	between	parenthesis	in	a
given	string.

	

25.	Open	a	text	file	and	find	the	longest	word	in	the	text	file	and	find	the	length.

	



26.	Open	a	text	file	and	find	out	how	many	lines	are	in	the	text	file.

	

27.	Using	 the	NumPy	module,	 create	 an	 array	of	 floating	point	 values,	 square
and	find	absolute	value	of	all	elements.

	



28.	Use	the	numpy	module	to	compute	the	trigonometric	sine,	cosine	and	tangent
array	of	angles	given	in	degrees.

	



29.	Develop	a	program	to	multiply	two	matrices.	First	matrix	of	order	3x3	and
second	 matrix	 of	 order	 3x4.

30	Design	a	program	to	create	a	diamond	pattern	using	 the	asterisk	symbol	by
taking	the	side	length	as	input	from	user.



31.	Develop	a	simple	encryption	and	decryption	program	by	shifting	a	character
2	ASCII	values	down	for	encryption	and	2	ASCII	values	back	up	for	decryption.

Note:	 The	 remaining	 programs	 are	 basic	 algorithm	 implementations	 that	 are
crucial	 to	 have	 a	 grip	 on.	There	 are	 numerous	ways	 of	 implementation	 so	 the
need	to	understand	is	greater	than	the	need	to	memorize	the	steps.

	



32.	Develop	a	function	to	implement	Binary	Search.

	



33.	 Write	 a	 function	 to	 implement	 Linear/Sequential	 Search.

	

34.	Write	a	function	to	implement	Bubble	Sort.

	



35.	Write	a	function	to	implement	Selection	Sort.

	



36.	 Develop	 a	 function	 to	 implement	 Insertion	 Sort.

	



37.	Develop	a	function	to	implement	Shell	Sort.

	



38.	 Develop	 a	 function	 to	 implement	 Quick	 Sort.



39.	 Develop	 a	 function	 to	 implement	 Merge	 Sort.



40.	Develop	a	function	to	implement	Counting	Sort.

	



Advanced:
The	 following	 programs	 are	 implementations	 of	Non-primitive	 data	 structures.
The	primitive	data	structures	in	python	as	you	have	already	seen	are	lists,	tuples,
dictionaries,	 etc.	 As	 an	 advanced	 python	 programmer,	 it	 is	 important	 to	 have
knowledge	of	data	structures,	their	working	and	their	implementation.	You	will
be	required	to	use	these	data	structures	along	with	the	algorithms	in	the	previous
section	build	effective	programs.	These	data	structures	a	basic	implementations,
which	 may	 not	 give	 you	 the	 desired	 output.	 You	 may	 have	 to	 tweak	 and
experiment	with	your	code	to	get	what	you	require.

	

41.	Implement	a	basic	Stack.

	



42.	 Implement	 a	 basic	 Queue.

	



43.	 Implement	 a	 basic	 Deque.

	



44.	 Implement	 a

Linked	List.



45.	Implement	a	Doubly	Linked	List.

	



	

	



	

	



46.	Implement	a	Binary	Tree.

	



	

Note:	The	 following	programs	 aren’t	 implementations	 of	 data	 structures.	They
are	 programs	 at	 a	 sligh

tly	 more	 difficult	 level	 utilizing	 multiple	 concepts	 that	 you’ve	 learned	 in	 the
previous	sections.

	



47.	Design	a	basic	game	in	which	a	robot	starting	from	point	(0,0),	moves	as	you
tell	it	to.	The	available	commands	will	be	UP,	DOWN,	RIGHT	and	LEFT.	Using
the	 formula	 for	 distance	 between	 two	 points,	 calculate	 the	 distance	 from	 the
origin	to	the	position	of	the	robot	after	giving	your	command.
Input	format:
UP	6
DOWN	2
LEFT	2
RIGHT	7
#calculates	distance	from	(0,0)	to	(5,4)
#answer	should	be	6

	



48.	The	next	program	will	be	an	introduction	to	GUI	programming	to	give	you
an	 idea	 how	 you	 can	 design	 front	 end	 of	 your	 program	 to	 be	 more	 visually
appealing.	We	will	use	the	tkinter	module	to	design	a	simple	calculator.

	



	

	



	

	



49.	 Create	 a	 simple	 number	 guessing	 game.

	



50.	 For	 the	 final	 program,	we’re	 going	 to	 design	 a	 complete	 tic-tac-toe	 game.
You	 will	 play	 against	 the	 computer.	 The	 program	 has	 been	 explained	 with
comments	and	the	function	nomenclature	makes	it	intuitive	to	understand.	Many
functions	you	learned	has	been	incorporated	into	this	program.

	



	

	



	

	



	



	

	



	



Python	tips	and	tricks:

	

51.	When	 to	 take	your	programming	 to	 the	next	 level	with	complex	 structures
and	algorithms,	maintainability	 and	 readability	 is	often	 lost.	This	 is	 frustrating
when	working	on	a	 repository	such	a	GitHub	with	other	programmers	who	do
not	 follow	 conventions.	 Fortunately,	 the	 official	 Python	 has	 released	 a
documentation	of	good	coding	practices	and	conventions	to	follow.	Go	through
the	following	link:	https://www.python.org/dev/peps/pep-0008/

	

52.	In	order	to	swap	the	values	of	variables,	unlike	other	languages	Python	can
do	this	in	a	single	line	(Ex	1).	This	also	works	for	consecutive	pairs	of	elements
in	any	mutable	set	of	values	(Ex	2).

	

53.	Initializing	a	list	with	a	value	multiple	times	is	very	simple.

	



54.	Converting	a	list	to	a	string.

	

55.	Sometimes	you	will	need	to	operate	on	only	a	portion	of	the	list.	Here	are	a
few	ways	to	do	that.
Note:	List	 ranges	 always	 include	 initial	value	and	 stop	one	 increment	 short	of
the	final	value	in	the	range.	List	ranges	also	begin	with	0	and	count	upwards.



56.	Python	is	known	for	very	short	and	intuitive	code.	Here	is	a	simple	inline	if
statement	which	will	take	you	far	if	mastered.

57.	 In	 addition	 to	 python's	 built	 in	 datatypes	 they	 also	 include	 a	 few	extra	 for
special	 use	 cases	 in	 the	 collections	 module.	 The	 Counter	 is	 quite	 useful	 on
occasion.

58.	Along	with	 the	collections	 library	python	also	has	a	 library	called	 itertools
which	 has	 really	 cool	 efficient	 solutions	 to	 problems.	 One	 is	 finding	 all
combinations.	 This	will	 tell	 us	 all	 the	 different	ways	 the	 teams	 can	 play	 each
other.



59.	To	reverse	a	string/list/tuple	you	can	try	the	following:

60.	Extended	unpacking	a	list	in	python3.

	

61.	In	the	Python	console,	whenever	we	test	an	expression	or	call	a	function,	the
result	dispatches	to	a	temporary	name,	_	(an	underscore).

	



62.	 Like	 we	 use	 list	 comprehensions,	 we	 can	 also	 use	 dictionary/set
comprehensions.	They	are	simple	to	use	and	just	as	effective.

	

63.	To	verify	multiple	values,	we	can	do	in	the	following	manner.

	



64.	Four	Ways	To	Reverse	String/List.

	



65.	Python3	doesn’t	 contain	a	method	 to	create	a	 switch-case	 statement	unlike
c/c++.	This	is	an	alternative.

	

66.	When	working	with	iterables,	you	can	use	the	following	technique	to	shorten
your	code.

	



67.	To	check	if	two	words	are	anagrams,	use	the	counter	function.

	

68.	Instead	of	using	the	join	function	to	make	a	string	out	of	list	elements,	you
can	try	the	following	method.

	



69.	 You	 can	 use	 functions	 like	 sum	 to	 make	 greater	 generators,	 reducing	 the
number	of	lines	of	code.

	

70.	Perhaps	the	easiest	way	of	creating	a	tree	is	with	one	simple	line.

	



71.	Creating	a	unified	list	without	loops.

	

72.	Check	the	memory	usage	of	an	object	by	doing	this.

73.	You	can	declare	multiple	variables	to	call	the	same	function	in	a	line.

	



74.	Unpack	Function	Arguments	Using	Splat	Operator.	(*)

75.	Using	the	reduce	function	to	calculate	the	factorial	of	any	number	in	a	single
line.

	



76.	Complex	programs	require	a	handy	built	in	debugging	tool.	In	this	case,	We
can	set	breakpoints	in	our	Python	script	with	the	help	of	the	‘pdb’	module.

	

77.	You	can	inspect	an	object	and	see	all	the	operations	available	to	perform	on
that	object	by	using	the	dir()	method.

	



78.	Use	a	dictionary	to	store	expressions	and	perhaps	use	as	a	primitive	switch
statement.

	

79.	If	you	have	used	the	eval()	function,	you	should	know	it	has	its	dangers	and
there	 is	 a	 safer	 option.	 It	 evaluates	 the	 code	 as	 soon	 as	 the	 function	 is	 called.
‘ast.literal_eval’	raises	an	exception	if	the	input	isn't	a	valid	Python	datatype,	so
the	code	won't	be	executed	if	it's	not.

	

80.	 This	 last	 tip	 will	 be	 a	 list	 of	 the	 most	 helpful	 Youtube	 channels:
‘sentdex’,’thenewboston’,’Python	 training	 by	 Dan	 Bader’,’Corey
Schafer’,’Clever	Programmer’,’Trevor	Payne’.

	

Python3	modules:
The	following	modules	are	of	 two	types:	 those	offered	along	with	the	standard
package	and	those	offered	by	third	party	organizations	that	make	these	libraries
open	 source.	These	modules	 have	 been	 selected	 based	 on	 their	 usefulness	 and
popularity.	They	are	categorized	based	on	which	major	industry	uses	them.	You
will	find	that	a	variety	of	purposes	can	be	fulfilled	with	these	modules.	Python	is
a	general	purpose	programming	language	and	we	would	like	to	show	you	few	of
the	modules	that	aid	different	purposes	for	all	your	needs.



1.	The	Data	Science	modules:

The	 three	 core	 modules	 used	 for	 scientific	 computing	 are	 numpy,	 scipy	 and
matplotlib.	They	offer	a	variety	of	tools	for	graphing	to	trigonometric	function	to
computing	differential	equations.	 If	you	wish	 to	become	a	data	scientist	 this	 is
where	 you	 should	 start.	 Extended	 learning:	 Pandas	 and	 IPython	 provides
additional	tools	for	data	science.
(i)NumPy	module:
NumPy	introduces	objects	for	multidimensional	arrays	and	matrices,	as	well	as
routines	that	allow	developers	to	perform	advanced	mathematical	and	statistical
functions	on	those	arrays	with	as	little	code	as	possible.
(ii)SciPy	module:
It	 builds	 on	 NumPy	 by	 adding	 a	 collection	 of	 algorithms	 and	 high-level
commands	 for	 manipulating	 and	 visualizing	 data.	 This	 package	 includes
functions	 for	 computing	 integrals	 numerically,	 solving	 differential	 equations,
optimization,	and	more.
You	can	 find	all	 the	 functions	provided	 in	 the	official	documentation	provided
below.
link	:	https://docs.scipy.org/doc/numpy/reference/routines.math.html
(iii)MatPlotLib	module:
Used	 for	 creating	 2D	 plots	 and	 graphs.	 It’s	 relatively	 low-level,	 meaning	 it
requires	more	commands	to	generate	nice-looking	graphs	and	figures	than	with
some	more	advanced	libraries.	However,	with	enough	commands,	you	can	make
just	about	any	kind	of	graph	you	want	with	matplotlib.



2.	The	Machine	Learning	modules:

By	 training	 a	 computer	 to	 read	 and	 interpret	 real	 world	 data,	 we	 can	 create
algorithms	 that	make	more	 accurate	 predictions.	Machine	Learning	 sits	 on	 the
border	 of	 Artificial	 Intelligence	 and	 Statistical	 Analysis.	 These	 modules	 offer
common	algorithms	to	work	with	ML	such	as	regression	algorithms	and	methods
for	neural	networks.

	

(i)	scikit-learn:
It	 builds	 on	 NumPy	 and	 SciPy	 by	 adding	 a	 set	 of	 algorithms	 for	 common
machine	 learning	 and	 data	 mining	 tasks,	 including	 clustering,	 regression,	 and
classification.
(ii)	Theano:
It	uses	NumPy-like	 syntax	 to	optimize	and	evaluate	mathematical	 expressions.
What	sets	Theano	apart	is	that	it	takes	advantage	of	the	computer’s	GPU	in	order
to	 make	 data-intensive	 calculations	 up	 to	 100x	 faster	 than	 the	 CPU	 alone.
Theano’s	 speed	 makes	 it	 especially	 valuable	 for	 deep	 learning	 and	 other
computationally	complex	tasks.
(iii)	TensorFlow:
It	is	another	high-profile	entrant	into	machine	learning,	developed	by	Google	as
an	 open-source	 successor	 to	 DistBelief,	 their	 previous	 framework	 for	 training
neural	 networks.	 TensorFlow	 uses	 a	 system	 of	multi-layered	 nodes	 that	 allow
you	 to	 quickly	 set	 up,	 train,	 and	 deploy	 artificial	 neural	 networks	 with	 large
datasets.	 It’s	 what	 allows	 Google	 to	 identify	 objects	 in	 photos	 or	 understand
spoken	words	in	its	voice-recognition	app.

	

3.	The	re	module(regex):
This	 is	 the	 regular	 expressions	 module.	 It	 offers	 all	 the	 same	 syntax	 as	 perl,
UNIX	 and	 other	 languages.	 A	 regular	 expression	 is	 a	 special	 sequence	 of
characters	 that	helps	you	match	or	 find	other	 strings	or	 sets	of	 strings,	using	a
specialized	syntax.
Important	functions:
(i)	match	function:	re.match(pattern,	string,	flags=0)



(ii)	search	function:	re.search(pattern,	string,	flags=0)
(iii)	sub	function:	re.sub(pattern,	repl,	string,	max=0)



4.	The	sys	module:

The	sys	module	allows	you	 to	use	stdin()	and	stdout(),	as	well	as	stderr(),	but,
most	interestingly,	we	can	utilize	sys.argv().	The	idea	of	sys.argv	is	to	allow	you
to	pass	script	arguments	through	to	Python	from	the	command	line.



5.	The	os	module:

The	OS	module	in	Python	provides	a	way	of	using	operating	system	dependent
functionality.	The	functions	that	the	OS	module	provides	allows	you	to	interface
with	the	underlying	operating	system	that	Python	is	running	on	(Windows,	Mac
or	Linux).	You	can	find	important	information	about	your	location	or	about	the
process.
Important	functions:
Executing	a	shell	command:
os.system()
Get	the	users	environment:
os.environ()
Return	information	identifying	the	current	operating	system:
os.uname()
Change	the	root	directory	of	the	current	process	to	path:
os.chroot(path)
Return	a	list	of	the	entries	in	the	directory	given	by	path:
os.listdir(path)
Create	a	directory	named	path	with	numeric	mode	mode:
os.mkdir(path)



6.	The	collections	module:

This	 module	 implements	 unique	 container	 datatypes	 providing	 alternatives	 to
Python’s	built-in	containers	dict,	list,	set,	and	tuple.
Examples:	defaultdict,	OrderedDict,	counter,	deque,	namedtuple,	enum.Enum



7.	The	itertools	module:

Itertools	 is	 a	 module	 for	 building	 iterators.	 It	 is	 part	 of	 the	 Python	 Standard
Library.	The	tools	provided	by	itertools	are	fast	and	memory	efficient.	You	will
be	able	to	take	these	building	blocks	to	create	your	own	specialized	iterators	that
can	be	used	for	efficient	looping.
Important	functions:
count(no.),	islice(iterable,	stop),	ifilter(predicate,	iterable),
imap(function,	*iterables)



8.	The	urllib	module:

The	 urllib	module	 in	 Python	 3	 allows	 you	 access	websites	 via	 your	 program.
Through	urllib,	you	can	access	websites,	download	data,	parse	data	and	modify
your	 headers.	 Some	websites	 do	 not	 appreciate	 programs	 accessing	 their	 data
and	 placing	 weight	 on	 their	 servers.	 When	 they	 find	 out	 that	 a	 program	 is
visiting	 them,	 they	 may	 sometimes	 choose	 to	 block	 you	 out,	 or	 serve	 you
different	data	that	a	regular	user	might	see.	This	can	be	annoying	at	first,	but	can
be	overcome	with	some	simple	code.



9.	The	threading	module:

It’s	part	of	the	standard	library.	This	module	is	used	to	run	multiple	processes	on
python	at	the	same	time	as	opposed	to	its	linear	nature.



10.	The	tkinter	module:

This	is	part	of	the	standard	library.	It	contains	a	toolkit	to	create	cross-platform
GUI.	You	can	create	widgets,	windows,	checkboxes,	 radio	buttons,	 text	boxes,
etc.	You	can	connect	 it	 to	databases	and	modify	user	entered	 information.	The
tkinter	module	is	perhaps	the	most	widely	used	basic	GUI	library	although	you
can	take	a	look	at	wxpython,	pyGtk	and	pyQT	modules	as	well.



11.	The	pygame	module:

This	library	will	help	you	in	2d	game	development.	It	contains	a	variety	of	tools
to	create	simple	games	such	as	chess,	the	snake	game,	tic-tac-toe,	etc.



12.	The	pyglet	module:

A	powerful	3d	animation	and	game	creation	engine.	This	is	the	engine	in	which
the	famous	minecraft	was	made.



13.	The	sh	module:

Not	available	in	standard	library	and	needs	to	be	installed.
sh	is	a	unique	subprocess	wrapper	that	maps	your	system	programs	to	Python
functions	dynamically.	sh	helps	you	write	shell	scripts	in	Python	by	giving	you
the	 good	 features	 of	 Bash	 (easy	 command	 calling,	 easy	 piping)	 with	 all	 the
power
and	flexibility	of	Python.



14.	The	pymysql	module:

This	is	a	third	party	module	and	not	included	in	the	standard	library.	It	is	used	for
ORM	(object	relational	mapping)	and	provides	a	database	connection	to	mysql.
Alternatives	are	provided	by	SQLAlchemy.	This	is	essential	to	python	software
development.



15.	The	pycrypto	module:

This	 is	 the	cryptography	module.	 If	you	are	 looking	for	a	 job	 in	cybersecurity,
this	is	a	must-learn.	It	provides	methods	of	creating	AES	128	bit	encryption,	key
generators,	ciphers,	etc.



16.	The	socket	module:

It	 basically	 provides	 access	 to	 network	 communication.	 The	 socket	 module
exposes	the	low-level	C	API	for	communicating	over	a	network	using	the	BSD
socket	 interface.	 It	 includes	 the	 socket	 class,	 for	 handling	 the	 actual	 data
channel,	 and	 functions	 for	 network-related	 tasks	 such	 as	 converting	 a	 server’s
name	to	an	address	and	formatting	data	to	be	sent	across	the	network.

	



17.	The	BeautifulSoup	module:

Beautiful	Soup	is	a	Python	library	for	pulling	data	out	of	HTML	and	XML	files.
The	urllib	module	is	often	used	in	combination	with	this	module.	It	 is	used	for
web	scraping	and	parsing	documents.	You	can	also	use	 the	Scrapy	module	 for
web	scraping.



18.	The	Twisted	module:

The	most	 important	 tool	 for	 any	 network	 application	 developer.	 It	 has	 a	 very
beautiful	api	and	is	used	by	a	lot	of	famous	python	developers.



19.	The	Pillow	module:

PIL	 is	 the	 python	 cross-platform	 imaging	 library	 and	 a	must	 have	 for	 anyone
who	works	with	images.	Some	of	the	file	formats	supported	include	PPM,	PNG,
JPEG,	GIF,	 TIFF,	 and	BMP.	 It	 is	 also	 possible	 to	 create	 new	 file	 decoders	 to
expand	the	library	of	file	formats	accessible.



20.	The	nose	framework:

If	you’re	 into	 testing	 in	python,	 this	 is	 the	 framework	 to	use.	Do	check	 it	out.
Used	for	automated	testing	and	test	driven	development.

	

Closing	note:
This	book	was	written	keeping	 in	mind	 the	needs	of	a	beginner;	 to	 truly	make
the	 journey	much	easier.	Please	experiment	with	 the	provided	code,	 tips,	 tricks
and	examples	to	become	a	seasoned	Pythonista	yourself.	Learning	Python	has	no
end.	 Enjoy	 the	 journey	 and	 don’t	 be	 anxious	 to	 reach	 your	 destination.	 Good
luck!


