CODING

2 BOODKS

PYTHON
RASPBERRY PI

HHHHHHHHHHHHHHHHHHH

CODING

PYTHON & RASPBERRY PI

Authors

Larry Lutz & Richard Ray

Python For Beginners

Step-By-Step Guide to Learning Python Programming

Author
Larry Lutz

© Copyright 2018 - All rights reserved.

If you would like to share this book with another person, please purchase an additional copy for each
recipient. Thank you for respecting the hard work of this author. Otherwise, the transmission,
duplication or reproduction of any of the following work including specific information will be
considered an illegal act irrespective of if it is done electronically or in print. This extends to creating a
secondary or tertiary copy of the work or a recorded copy and is only allowed with an express written
consent from the Publisher. All additional right reserved.

INTRODUCTION TO PYTHON
UTILITIES OF PYTHON

CONFIGURING PYTHON ENVIRONMENT
BASICS OF PYTHON

VARIABLES, STRING AND OPERATORS
MATHEMATICAL ASPECTS

DATA TYPES

LISTS AND TUPLES

DICTIONARIES

CONTROL STATEMENTS

FUNCTIONS AND MODULES

FILE INPUT-OUTPUT
OBJECT-ORIENTED PROGRAMMING
CODE OPTIMIZATION

USEFUL PYTHON LIBRARIES

RASPBERRY PI

CHAPTER 1

INTRODUCTION TO RASPBERRY PI

CHAPTER 2

GETTING STARTED WITH THE RASPBERRY PI
CHAPTER 3

INTRODUCTION TO EMBEDDED LINUX

CHAPTER 4

WORKING WITH ELECTRONICS

CHAPTER 5

PROGRAMMING A RASPBERRY PI

CHAPTER 6

INPUT AND OUTPUT ON A RASPBERRY PI
CHAPTER 7

INTRODUCTION TO COMMUNICATION PROTOCOLS
CHAPTER 8

PYTHON PROGRAMMING FOR THE RASPBERRY PI

CHAPTER 9
FINAL PROJECT

Chapter 1: Introduction to Python

Introduction
History

Script Language
Advantages
Disadvantages

Chapter 2: Utilities of Python

Introduction
Utilities

Chapter 3: Configuring Python Environment

Introduction

Getting python
Installing python
Windows Installation
Python 2 Installation
Linux Installation
Macintosh Installation
Python IDEs

Chapter 4: Basic of Python

Hello, World Program

o By using Text Editor

o By using Python Interactive
Python Interactive
Basic built-in Function

Chapter 5: Variables, Strings and Operators

Variables

Index

PN
v
o
o
o
o

Data types

Strings

Escape Character

Tuples

Dictionary

Numbers

Basic Operators

Types of Operators
o Arithmetic Operator
o Logical Operator
o Assignment Operator
o Relational Operator
o Bitwise Operator
o Identity Operator
o Membership Operator

Chapter 6: Mathematical Aspects

Introduction

Basic Mathematics Operations
NumPy Library

SciPy Library

Matplotlib Library

Chapter 7: Data Types

Importance of built-in types
Numbers
Strings

Chapter 8: Lists and Tuples

Lists

Properties of Lists
Operations related to lists
Tuples

Properties of Tuples

Operations related to Tuples

O

12

12

12

12

Chapter 9: Dictionaries

Introduction

Properties

Dictionaries Usage

Operations related to Dictionaries

Dictionary Functions

Chapter 10: Control Statements

If-else
Nested If-else
Else-if Ladder
Loops
o While loop
o For Loop
o Infinite Loop
Continue and Break Statement

Chapter 11: Functions and Modules

Introduction
Function and its uses
Function Syntax
Modules and its uses

Chapter 12: File Input - Output

Chapter 13: Object-oriented Programming

Introduction
Creating a Class
Example of Class

Chapter 14: Code optimization

Chapter 15: Useful python libraries
o Tkinter Library
e PyQt Library
e Requests Library
e SQLAIchemy Library

Introduction to Python

Introduction:

The software consists of many small programs interacting with each other. Each program is a
combination of instructions in an ordered manner to perform a specific process. Processes are of
different types based on the complexity of the program. Development of programs is done based on the
type of complexity. Algorithms are needed to find a solution to the problem or implement processes.

An algorithm can be considered as the logic of the program. Each program is written with some
type of algorithm. After the development of the program, program testing is done to measure the
performance of the program for different inputs. Proper documentation is done with the development of
each program for future reference.

To develop any program in the software industry, there are mainly seven stages to follow:

e Requirement Gathering

e Analysing problem

e Decide Input and Output

e Developing Algorithm

e Program implementation

e Testing and Debugging

e Documentation

To find a solution to any software problem, design approaches play a very important role. It is

essential to represent the solution for large complex systems. There are various design approaches
evolved over the time in the software domain.

Top-Down Approach:

The system consists of various components in a proper hierarchy. In this design approach,
designing is done from top-level components to bottom level components.

Bottom Top Approach:

This is the reverse designing approach to Top-down approach. Bottom Level components are
designed first and then move to top-level components. Bottom level components are also called base
components of the system.

Modular Approach:

This approach is aimed at segregating the whole system into different modules. Each module is
implemented differently using a program. Modules are well defined in terms of input and output, it
provides flexibility to modify in future and independent testing. Every language is designed on the
basis of its requirement and purpose. Like FORTRAN was developed to solve problems related to
science and mathematics, COBOL was developed to find solutions related to business applications.

Python interpreter development was started by Guido van Rossum as his hobby project as a
successor to ABC Language, but today because of its simplicity and pseudo code characteristics, it has

a million users all around the world. Python interpreter is not only able to solve complex programming

problems, but able to target problems of the 21 ' century in the field of automation, web development,

desktop application, and many more.
History:

Python was one of the hobby projects for Guido van Rossum after his regular job in the late
1980s. The irrelevant project name was because of his fondness towards Monty Python's Flying Circus.
His intention was to develop a simple and readable code interpreter. Guido released the first version of
Python interpreter in the year 1991. Today, there are many python versions available in the series

names of 2.X to 3.X and still, latest version are releasing every year.

Presently, Python's development and upgradation are handled by a non-profile organization
named Python Software Foundation and Guido van Rossum still holds a very important role in the
development of python interpreter. There are many versions of python interpreter, and with every
release, its feature has been improved and new features included. In October 2000, Python 2.0 was

released.

The major features included were Unicode support and Memory Management with a cyclic-
detection garbage collection system. In the year 2008, Python 3.0 was released with major
functionalities backward compatibility with python 2.6 and python 2.7 version.

Scripting Language:

e Python is a high level and general purpose programming language.

e You might have seen people considering it as a scripting language because they understand
script and program as the same.

e They often use the word “Script” instead of “Program.” Python has become the tool for
many people around the world because of it's easy to use characteristics. Sometimes Python
users also infer “python file” by using the term “script.”

e Commonly, Python is an Object-oriented programming language that inherits all the
advantages of OOP and dividing a program into procedures, modules, and functions. Its
object-oriented orientation makes it useful for the scripting purpose.

Advantages:

Python language is widely used all over the globe. Its popularity is because of its characteristics

and many advantages attached to it. Some of the major advantages are as follows:

Easy-to-Learn, Read and Maintain:

Python’s design philosophy focusses more on the readability of the code. Its pseudo code nature
makes it easy-to-learn for beginners who want to learn to programme.

Any non-computer science background can understand by reading the code because of its simple
English words used as Keywords. Python's code is also very easy-to-maintain.

A handful of Standard Libraries:

Python's package is available with many standard libraries, which are an aid in solving diverse
programming challenges. These libraries are also cross-platform compatible. It allows you to port your
Python code to any platform such as Windows, Mac, and Linux.

Easy development and Test:

Python Interactive is very popular and a quick Python interpreter. It helps you to test and run code
snippets pretty quick. When you are in the middle of a large program and need to test some code, you
just need to run Python interpreter and run into it.

Graphical User Interface programming:

Python avails many libraries for the development of GUI such as Tkinter, Wx, and PyQt, etcetera.

These libraries support system calls and cross-platform compatibility.
Extendable to Low-Level languages:

Python also allows you to include low-level programming modules like C, C++, and Java in your
code that aid in the development of efficient and fast solutions. Because of its extendable nature, you
can have all the advantages of a low-level programming language with quick development.

Disadvantages:

With the numerous advantages of using the Python language over the year in various fields.
there are also some downsides of using it for some applications.

e Python is a high-level language, so its execution speed is not as fast as compared to C and

C++. But over time, Python libraries are optimized to use it in applications where timing is
the important aspect.

For GUI programming, Python libraries are optimized enough to provide service almost as
fast as C and C++.

Exercise

1. Explain the design philosophy of Python.
Answer: Guido had the following philosophy while designing and

implementing;:

e Python's implementation should not be tied to a specific
platform. There is no problem if some features are not
always available, but the core should work anywhere.

e Do not disturb the details the machine handles.

e Mistakes should not be fatal. That is, as long as the virtual
machine is still valid, the user code should be able to recover
from the error condition.

e The user's Python code should not be allowed to cause errors
in the Python interpreter's undefined behavior; the core

dump will never be the user's fault.

2. What are the key features in python?

Answer: Key features of python is as following —

e Python is an interpreted language. This means that, unlike C
and its variant languages, Python does not need to be
compiled before it runs. Other interpreted languages include
PHP and Ruby.

e In Python, a function is a first class object. This means that it

is assigned to a variable, returned from another function, and

passed to the function. The class is also a first class object.
The creation of Python code is fast, but it runs slower than
the compiled language.

Python is suitable for object-oriented programming. This is
to enable class definitions, combinations, and inheritance.
Python offers applications in many areas, including web
applications, automation, scientific modelling, and large-
scale data applications. It is also often used as a "glue" code

to make differences in other languages and components.

Utilities of Python
Introduction:

Based on the various statistics available online, there are almost a million users of the Python
language. The numerical data may be more or less than that as Python is open source language and this
data is probably based on the number of downloads. Python source code is available online, but Python
Software Foundation still holds Copy-rights for this language.

Python’s source code is available to use under GNU General Public License. Today, Python
package comes pre-installed with Macintosh and Linux operating system. Because of its various
impactful characteristics, Python is used in many software solutions and applied to solve real-time
problems with profit generating solutions.

Big giants like Google, Netflix, and Dropbox have used the Python language in many ways. The
backend process of Google web search engine is written in Python. The world's largest collection of
videos, Youtube, is completely developed in Python. The Dropbox used Python in storage services and
for its desktop applications.

Utilities:

Besides the well-designed characteristics of Python, Python is used to solve many real-world
problems in the various domains. Programmers also use it for solving their day-to-day life problems. In
fact, Python applications are nearly unlimited as it can be used from simple gaming applications to
high-end complex aerospace and robotics solutions.

Some of the present and emerging applications as described in the following sections:
Graphical User Interface:

Python has a rich set of GUI libraries that could be used developing front-end for applications.
These GUIs are supported by Macintosh, Windows, and Linux distributions. Tk library is included
automatically with Python 2.0 named Tkinter. This library could also be extended by PMW library to
use enhanced widgets in front-end. Qt GUI library is also available with name PyQt and Swing GUI
with name Jython. These GUIs are not only available limited to computer applications, but also in
embedded applications.

Web-Scripting:

Python has made the complex client-server programming really very simple by the use of
standard libraries available with it. These modules let programmers to implement networking task
pretty quick. Python scripts also help in creating sockets and data communication over it. File
transferring using FTP and parsing XML data is easy-to-implement. There are available methods for

network communications for sending, receiving, parsing, and creating e-mails.
Database Programming:

For the demand of accessing the data from the database traditionally, Python also avails features
of database accessing and programming for the commonly used databases like MySQL, Oracle, ODBC,
and Sybase. It is also considered as the portable database API as it provides the code portability for
database just by changing vendor interface.

Mathematical and Scientific Applications:

Python is able to target problems of complex math as well as scientific domain that has not been
targeted by any programming language traditionally. NumPy is the very popularly used numeric
library, which allows the programmer to solve quick numeric problems in programming application. It
is one of the Python's compelling utilities.

There are many more standard libraries available for numeric computations and representation
of numeric data in 3-D plot models. SciPy and ScientificPython are popular libraries used as scientific
tools that differentiate Python from the other traditional programming languages. These are well

optimized in terms of processing the complex algorithms and math. Due to this reason. NumPy is the

core interface in the development of SciPy library.

Gaming Application:

Gaming software industries also take advantage of Python libraries such as PyGame, PySoy,
Pyglet, and others. Some libraries also include multimedia functionalities with it.

Embedded Applications:

Embedded is a combination of software and hardware component such as microprocessor and
microcontroller based applications. Raspberry pi is one such popular microprocessor which uses the
Python language for the firmware development. All the modules that control it are written in the Python

language.

Image and Data-Mining Applications:

Image processing and Data-mining are the emerging fields in the 21 % century. There are various
interfaces available that are being used for image processing applications like PyOpenGL, OpenCV,

and Maya. Data-mining deals with the large set of data and applying mathematical calculations for
generating results, and Python is a great tool for the same. Matplotlib and Mayavi are the common
interfaces available modules for data mining and visualization.

Exercise

1. What is the difference between deep and shallow copy?

Answer:

Shallow copy : When creating a new instance type, use shallow copy and kee
the value copied to the new instance. Shallow copies are used to copy
reference pointers in the same way as copy values. These references point to
the original object, and changes to the members of the class will also affect
the original copy. Using shallow copies reduces program execution time and

depends on the size of the data used.

Deep copy: Deep copy is used to store the copied values. With deep copy,
reference pointers to objects are not copied. It contains a reference to an
object and a new object pointed to by another object. Changes made to the
original copy do not affect the use of other copies of the object. Deep
replication slows program execution because copies of each invoked object

are created.

2. Explore more utilities of Python programming language.
Answer: Many organizations are currently using Python to perform
key tasks. Organizations usually have information to publish trade
secrets, so you do not necessarily need to listen to these messages.

However, Python plays an important role in organizing the way we

work and maintain revenue. Here are some of the key ways
companies can use Python. This makes Python easier to use in your

organization.

e Corel

e D-Link

e Eve — Online
e Forecast watch
e Frequentis

e HP

e Honeywell

Configuring Python Environment

Before you start with the Python programming, you need Python on
your computer. You can check whether Python is already installed on your
computer or not. Open your command line windows and type "python" and
hit enter, if it displays any response from Python interpreter with the version

number then you don't need to download Python on your system.

Python is available on wide variety of platforms. You can download
Python for all different environments and it can be ported to the Java and .net
virtual machines. For example, you can use python on your UNIX, Linux,
Windows, Macintosh, DOS, etcetera.

Getting python:

The most up to date and previous version of Python is available on the
official Python website with source code, binaries, and all preferable
documentation. You can visit the official Python website at
https://www.python.org/ .

You can download or refer Python documents from

https://www.python.org/doc/ . The particular documentation is available for

all versions of Python.
Installing Python:

Python is available for wide variety of platforms. You need to
download the binary file of Python version according to the platform and

then install Python on your computer.

https://www.python.org/
https://www.python.org/doc/

If the binary code is not available for your platform, then you can use a
C compiler to compile the source code manually. Compilation of source code

gives more flexibility in terms of choice of features.

Windows Installation:

Python interpreter is not pre-installed in Windows, but it does not mean that
Windows users won't find a useful, flexible programming language.
However, installing the latest version of Python is not a trivial matter, so you
make sure to find the right tool for the task.

You can download latest version of Python 2 and Python 3 according to
your need. The installer will install 32-bit or 64-bit version according to your

computer automatically.
Python 2 Installation:

You can install Python 2 version from the official Python site
https://www.python.org/downloads/ . The latest version is also available but
if you want to download an older version then you can do it by downloading
its binary code. Click on Download Python 2.7.14 so it will start

downloading binary code on your computer automatically.

e While downloading, the installer will set a path variable for you.

Download and Run the installer.

https://www.python.org/downloads/

Looking for a specific release?

Python releases by version number.

Rel=aze version Release date Click far mare
Python 3.6.4 nli-13-1% & Dow Release Mores
Python 5.8.4 L7104 & Dow
Python 3..7 207018 & Dow
Pythen 2.7.14 0170816 & Downloa Release Motes
Python 3.4.7 270840 & Dow
Python 3.5.4 L7080 & Dow
Python 3.6.1 wLT-07-17 & Downlox Aicli

¥
Al &
L] older a5

e Select Install for all users and click on Next button.

42 Python 2.7.14 Setup b

Select whether to install Python 2.7.14
for all users of this computer.

(®) Install for all users

() Install just for me (not avalable on Windows Vista)

puthon
for
windows
Back Cancel

e While selecting the directory, leave the directory as Python 27 and

click on Next button.

8 Python 2.7.14 Setup X

, Select Destination Directory

Please select a drectory for the Python 2.7.14 files.

3 python27 ~ |Up| New

python

for
windows

|c:\Python27},

« Back Cancel

¢ On customize Python screen, click on “Add python.exe to path” and
then select the option “Will be installed on local hard drive.” After
selecting option, click on Next button.

Python 2.7.14 Setup =

= Customize Python 2.7.14
Select the way you want features to be nstaled.
Cick on the icons in the tree below to change the
way features wil be nstalled.

=~ Register Extensions -
=) TdiTk

&3 = | Documentation

Utility Scripts

e

. —
-] Test sulte
B b= | Add python.exe to Path

| = Will be installed on local hard drve

Prepend C:\F =38 Entire feature will be installed on local
var@able. Thig
command pr. ® Entire feature will be unavailable

pgthf;n

This feature requires OKB on your hard drve.

windows

Disk Usage Advanced < Back Mext = Cancel

e After clicking on Next, it will start the installation process. After

completing it, click on Finish button.

1 Python 2.7.14 Setup b4

-
Install Python 2.7.14

Please wait while the Installer installs Python 2.7.14. This may take
several minutes,

Status:

= Back Mext >

¢ You can search for python in “Start” Menu and can open Python Idle

and Python Command line for more operation.

You can install and work on both Python version 2 and 3 simultaneously on
your system. But when you type "Python" at the command prompt, it will

point to Python 2.7.

It is because of the variable pointing to the directory and all executable
present in that directory that works as the command in the command line. If
two directories are present and both have a "python.exe" file, then it will use
a variable of the directory which is higher in the list. If there is variable for

user and system then system path takes precedence over user path.

To remove it, you can change the name of Python folder, "python" for Python
2 and "python3" for Python 3 in the directory where you have installed
Python on the computer. After changing the name in the installed directory

you can check version in the command line.

If you are not satisfied with this solution, then you can reorder the
environment variable and use Python version according to the need of your

project.
Linux Installation:

You can install and setup Python by using Terminal, which is non-graphical.
Instead of selecting options from GUI screen and click on buttons, you need

to write commands and receive feedback from your computer.

Ubuntu 16.04 comes with the Python 2 and Python 3 pre-installed. To make
sure that you have the latest version of Python or not, you can update and

upgrade your computer with apt-get command.

$ sudo apt-get update

$ sudo apt-get —y upgrade

The -y flag will confirm that you are installing all the projects in the system,
but depending on your Linux version, you need to select additional prompts
during system updates and upgrades.

If you are using an older version of Ubuntu and other Linux based operating
systems in which Python is not pre-installed, then you can use the following
command for installing Python:

$ sudo apt-get install python2.7

You can check the version of installed Python by typing the command:

$ python2.7 -V

You will receive output with the Python version in the terminal window. The

output will look like this:

Python 2.7.14

To install pip in your system, use command:

$ sudo apt-get install —y python-pip

Macintosh Installation:

The installation process of Python is somewhat similar in the Linux and

Macintosh. Macintosh comes with the pre-installed Python version. You can

check the version of Python by typing:
$ python -V or
$ python --version

If you are installing Python again or need to install the latest version of

Python, then you need to type the following command:

$brew install python
Python IDEs:

There are many Python IDE (Integrated Development Environment) that are
useful for you to work on a Python project. IDE can easily handle big
projects that have hundreds of small modules. The main focus while working
on IDE is on simplicity and ease of use. It provides a graphical interface to
the programmer for their ease. Some of them are very lightweight and fast
while working on Python projects. Here is the list of IDEs which are

compatible with Windows, Linux, and Mac:

e IDLE

e PyDev

e FEric

e LiClipse

e NetBeans

e Pycharm

e Pyscripter

e Spyder

e Python tools for Visual Studio

There are some of the IDEs which comes with the integrated GUI builder. It
is useful when you are working on any Python based GUI projects. They are:

MonkeyStudio
Xcode

Visual Python
PythonCard

Exercise

1. Install the Python package in your system.

Refer to the steps as your operating system specified in the chapter.

Basics of Python

In the previous chapter, we have learned about the various
characteristics, utilities, and configuration of Python in your
systems. Now it's the time to start with the understanding of the
basic Python scripts and get familiar with the programming

environment of it.

We will be using the Linux distribution environment for writing
and running the scripts throughout this book. You can use any
environment other than Linux such as Macintosh or Windows and
configure your Python package as explained in the previous chapter
and get set go.

Hello, World Program

Hello, World is the most basic program to learn any computer programming
language with. Python is a really quick and dirty programming language. It’s
just a matter of time that you have any solution in your mind and you quickly

code it, thanks to the pseudo-code design philosophy of python.

You can either use Python Interactive Mode to write your first Hello, World
program and it will provide a prompt output or by using the traditional
method for writing program in a text editor. Here both ways have been

explained:

Let’s get started,
By using Text Editor:

Open any of your favourite text editor such as Notepad, VI editor, or VIM
etcetera. Write the following program in it and save it with the name
“helloWorld.py”.

$ print “Hello, World”

Hello World Program
print "Hello, Worla!!l"™

To run the program, you need to open Terminal (in Linux) or Command line
window (in Windows). Change your current directory to the program file

folder and run following command:
$ python helloWorld.py
The output is as follows:
Hello, World!!
By using Python Interactive:

Python Interactive is a mode of python which programmers use to write a
quick code snippet and test it while working with the large programs. The
significance and utility of Python Interactive is explained more in-depth in

coming section of this chapter.

Here you can just have a hands-on experience of Python Interactive

with this example.
Let’s start with it. Open Terminal in your system and Type following:

$ python

Python 2.7.12 (default, Nov 19 2016, 06:48:18)

[GCC 5.4.0 20160689] on linux2

Type "help”, "copyright", "credits” or "license" for more information.

e

With this command, you are calling Python interpreter to run in
interactive mode. Write following one line Hello, World program and then

press Enter.
% >>> print “Hello, World”

With the Enter button, promptly it will display output as following:

»>>> print "Hello, World"
Hello, World

This method of running your Hello, World program is just for your
experience with Python Interactive. To write any further programs, we will

be using traditional text editor method.

Let’s understand more in-detail about the steps and the program that we

have run.

To get a brief of the one-liner program. Break it into two parts: one is
print and the other one is "Hello, World." Print is a function call, similar to
the printf function in C. It displays data to output screen in string form and
"Hello, World" is a string which is an argument to print function. As of now,
you should not think too much about strings and function. These are

explained well in the following chapters.
Python Interactive:

The interactive window of Python is simple and also very useful for the
programmer during the development of Python code. It is similar to sitting in-
front of Python interpreter and getting results for each Python expression.

This aids programmers in experimenting and testing of code snippets.

To wake up Python interactive mode in your system, you just need to type
Python and hit enter in Terminal. It will next display a few lines with details
of python interpreter like version number and others and prompt your for

input with “>>>" As showing in the following:

Python 2.7.12 (default, Nov 19 2016, 06:48:18)
[GCC 5.4.0 20166669] on Linux2
Type "help”, "copyright”, "credits" or "license" for more information.

When you work with Python interactively, it will give the result of each
expression in the next line as you type it and press Enter key. Due to this, it is
not required for you to put a print command in Python interactive mode. Here
in the following expression: x = 10, which represents x is assigned with
integer value 10 and on pressing Enter key, its value is being displayed.
Similarly for str = "Hello, World". The string "Hello, World" is assigned to

str variable.

>>> str = "Hello, World"
=>> str
'Hello, World'

Now It is certainly clear the reason behind the use of Python interactive
mode. Being a smart programmer, you can experiment with a few lines of
Python commands to see the behaviour of Python when working with large

programs.
Basic Built-in Function:

Python package is available with several useful input-output functions. Being
a beginner Python programmer, it is a must to understand and remember
these functions. These functions’ names, syntax, and descriptions are as
following:

1. raw_input() or input() :

2. print():

3. len():

4. str():

5. abs()

6. help()

7. min():

This function is similar to the scanf function in C. It is used

to take input from the user.

This function is useful for printing the data to the output

windows in string form.

This function is used to get the length of the object. Here the
object can be a string, a tuple, or a list and the object is

passed as an argument in the len function.

This function is useful for converting the type of object.

Object version is changed to string type.

This is a mathematical function and it is same as the absolute

maths function. It provides the absolute value of the object.

This function is very useful for getting information of any
function, method or keyword. If no object is passed in the
function, It will prompt to a Python help window, and if any
string is passed through it as an object, then it will search for
that string in the documentation and shows relevant function

or data.

This function gives the smallest element in an iterative
object or it will give the smallest element when multiple

objects are passed.

8. max()
this function gives the largest element in an iterative object

or it will give the largest element when multiple objects are

passed.

9. all()
This function returns a Boolean value that is either True or
False. It gives True as the return value when all the elements
in the iterative object elements are true.

10. any():

This function also returns a Boolean value. It gives True as a
return value when any of the elements in the iterative object

elements are true.

Exercise

1. Create and Run a program to display following string text.

“python is widely used programming language”

Code:

!print "python is widely used programming language";

Output:

python is widely used programming language ;_

2. Create a python program to take input string from the user and
display it on output window.
Code:

str = raw_input("Enter string: ");
print "input is: ", str

Output:

Enter string: Hello python
input is: Hello python

Variables, String and Operators

Variables are the identifier which reserve location in the memory to
store values. It means when you are creating any variable, it is creating some

space in the memory.

The interpreter will allocate memory based on the data type of variable,
and data type defines the type of value the variable holds. The variables can

hold integer, character, string, and other data types
Variables(Values):

A value is a small unit of the program like letter and number, which is
used while assigning to the variable. We don't need to declare a variable
before assigning value. Python interpreter will automatically assign the type

of data while assigning the value to that variable.

The = sign is used for assignment. The left part of the equal sign is a

variable and right part of the equal sign is a value which is assigned to that

variable.

Code:
name = "Mark"
height =6
age = 25

print (name)
print (height)
print (age)

Output:

Mark

25

b AN 14

In the above code, the variables are "name”, “age", and "height" and we
are assigning the values to each variable. The variable name is storing the
character values, age is storing integer value, and height is storing the float
value. We don't need to declare the data type of variable; it will automatically

assign data type according to the assigned values.

Rules for variable name:

The variable name must start with an underscore or character.

The variable name is case-sensitive and contains only alphanumeric
character.

The variable name can't contain any spaces.

You can't use reserved words as a variable name.

Data Types:

A variable can hold different types of data in the memory. For storing a
name, a string is used, age in numeric value, height in float value. There are
some standard data types in Python programming language that you can use

for storing data in the memory.
These are the standard data types are:

e String
e Tuple

¢ Dictionary
e Numbers
o List

Strings:

In the Python language, a string is a sequence of text and bytes. A string
starts with a single and double quote. You can also use single quotes within

double quotes and vice versa.

In simple words, a string is an array of characters and you can use
indexing to access the elements of an array. The index starts at 0 on the left
and -1 on the right. In Python, strings are immutable in nature. You cannot
change character in string once it is generated. The ‘in' operator is used when
we need to check presence of substring in the string. The result of matching

the string is represented in the form of Boolean value.

Python provides us the very simple method to cut the substring from a
string. It is known as string slicing. You can separate two indices by the

colon (3).
How to access string Values?

Python language does not support character datatype because the
character is treated as a string in Python. It gives a length of string and hence

it is considered as a substring.
Code:

charl = 'Hello Python'

stri1 = "Python Programming”

print ("First value is: " , charl)
print ("Second value is: ", stri)

Output:

o

('First value is: ', 'Hello Python')
('Second value is: ', 'Python Programming')

Update String:

Reassigning an existing string with new string will give you updated
string. The new string can be related to the previous string or completely new

string.

Code:

char = "Hello Python"
print ("New String is: " , char)

Output:

('New String is: ', 'Hello Python')

Escape Character:

Backslash Notation Description

\a Alert

\b Backspace
\cx Control X

\e Escape

\f Form feed
\n New line

\r Carriage return
\s Space

\t Tab

\v Vertical Tab

Tuples:

A tuple is another type of data type which consists of series of comma-
separated values. Like strings, tuples are also immutable and enclosed in the
parenthesis with holding mix data type. Like strings, tuples can also be sliced.
When we slice tuple, it will create a new tuple, but it does not change the
original tuple. Addition(+) Operator is used to create a new tuple that is

concatenation of more than two tuples. We use * operator to repeat a tuple.

Code:

tuple = ('python', 465, 'language', 76.8)
tuplel = (458, 'program')

print tuple

print tuple[1]

print tuple[1:2]
print tuple[2:]
print tuplel * 2
print tuple + tuplel

Output:

('python', 465, 'language', 70.8)

465

(465,)

('language', 70.8)

(458, 'program', 458, 'program')

('python', 465, 'language', 70.8, 458, 'program')

Dictionary:

In the Python language, dictionary data type is like a hash table. It
works like an associative array and hashes similar to Perl. Basically, it
consists of key-value pairs. A dictionary key is generally a number and a

string but it can be of any Python data type. The values can be like arbitrary

Python object.

Code:

dictlonary = {}

dictionary['one'] = "This is one

dictionary[2] = "This is two"

dictionaryl = {'name'l: ‘Mark’, ‘EID 4578, "dept' : 'marketing'}
print dictionary['one'] # Print values for 'one' key
print dictionary[2] # Print wvalue for key 2

print dictionaryl # Print complete dictlonary
print dictionary.keys() # Print all key

print dictionary.values() # Print all wvalues

Output:

This is one

This is two

{'dept': 'marketing', 'name': 'Mark', 'EID': 4578}
[2, "one']

['This is two', 'This is one']

Numbers:

The Number data type is used to store numerical values like 1, 2,
etcetera. It is used when programmers need to assign a numeric value to the

variable. For example,
age = 25
height = 6

Del is used when you want to delete a single or multiple objects. For

example,

del age

del age, height

Generally, there are four types of numeric value that you can use in python :

e int (signed integer)

¢ long (it can be represented in octal and hexadecimal)
¢ float (floating point values)

e complex

Basic Operator:

The operators are symbols which are used to perform mathematical and
logical operations. Operands are the values on which the operator is applied

while operations.
Types of Operators:

e Assignment operator
e [Logical operator

e Arithmetic operator
e Relational operator
e Bitwise operator

¢ Identify operator

e Membership operator

Arithmetic Operator:

Symbol Operator Name
+ Addition
- Subtraction
* Multiplication
/ Division
% Modulus
Hox Exponent

/1

Floor Division

Logical Operator:

Symbol Operator Name
or Logical OR
and Logical AND
Not Logical NOT

Assignment Operator:

Symbol

Operator Name

Equal

+=

Add AND

-

Subtract AND

Multiply AND

Division AND

Modulus AND

Exponent AND

Floor Division AND

Relational Operator:

Operator Name

Double Equal

Bitwise Operator:

Identity Operator:

I=or <> Not Equal To
> Greater Than
< Less Than
<= Less Than Equal To
>= Greater Than Equal To
Symbol Operator Name
& Binary AND
| Binary OR
A Binary XOR
~ Binary 1s
Complement
<< Binary Left Shift
>> Binary Right Shift
Symbol Operator Name
Is Is
Is not Is not

Membership operator:

Symbol

Operator Name

In

In

Not in

Not in

Exercise

1. Explain Variable and write a code using it.

Answer: Variables are the identifier which reserve memory location to
store values. It means when you are creating any variable, it is creating

some space in the memory.

Code:

name = "Mark"
height =6
age = 25

print (name)
print (height)
print (age)

Output:

Mark
v
25

2. Explain Strings and write a code using it.
Answer: A string is a sequence of text and bytes. A string starts with
a single and double quote. You can also use single quotes within

double quotes and vice versa.

Code:

charl = 'Helle Python'

str1 = "Python Programming"

print ("First value is: " , charil)
print ("Second value is: ", strl)

Output:

[

('First value is: ', 'Hello Python')
('second value is: ', 'Python Programming')_

3. Explain Operators and name different types of Operators?

Answer: The operators are symbols which are used to perform
mathematical and logical operations. Operands are the values on which

the operator is applied while in operations.
Types of Operators:

¢ Assignment operator
e [ogical operator

e Arithmetic operator
e Relational operator
e Bitwise operator

¢ Identify operator

e Membership operator

Mathematical Aspects

Introduction:

Mathematics is one of the integral parts of programming. Be it a simple
maths operation or writing a complex mathematical algorithm for software,
python is always ahead in terms of its speed and quick coding practices.
Mathematical data is taken as the data object in the Python language. In fact,
objects are the building block of Python programming. We will be learning
the usage of basic mathematical functions which are frequently used during
Python programming. There are many popular and optimized mathematics
and scientific libraries available, which are either built-in or can be imported

into your Python code to use.
Basic Mathematics Operations:

In addition to the simple operation like addition (+), subtraction (-),
multiplication (*), and division(/), there are many mathematical functions
available in Python. As the new versions of Python releases, more
mathematical functions are added to the package. In Python version 2.7, there
are many methods available in the math library such as numeric theoretical
functions, power and logarithmic functions, trigonometric and hyperbolic

function, and some special functions.

Code:

Program to peform basic arithmatic operation

numl
num2

int({raw input("Enter Input 1 :"))
int{raw input("Enter Input 2 :"))

print "Addition is %d" % (numl + num2)
print "Subtraction is %¥d" % (numl - num2)
print "Multiplication is %d" % (numl*num2)
print "Division is %d" % (numl/num2)

Output:

Enter Input 1 :45
Enter Input 2 :78
Addition is 123
Subtraction is -33
Multiplication is 3518
Division is @

In the following sections, we will look more into its usage and prototype:

1. Numeric-theoretic Functions:
This module already comes with a built-in Python version
2.7. It is similar to C math library. These functions take one
or two objects as data, but it does not take any complex
number as objects. Cmath is another Python librarycmath,

which is available for complex number math operations.

math.ceil(a) : This function is the same as the ceil function
in mathematics. It provides ceil value of 'a" with float
datatype. It is the smallest integer value which is greater than

or equal to 'a'.

math.floor(a): This function is same as the floor function in

mathematics. It provides floor value of 'a’ with float
datatype. It is the largest integer value which is less than or

equal to 'a".

math.factorial(a) : It returns factorial value of 'a’, where 'a' is

a positive and integer data, otherwise, it throws an error.

math.fabs(a) : This function returns absolute value of 'a'.

math.copysign(a, b): This function is used to change the sign of the number.
It returns data of 'a’ with the sign of 'b'.

Let’s understand above functions further with Python programming. In the

below program:

Code:

Program to perform math function

import math
a = 1.456

print "Ceil value of a is %d" % math.ceil(a)
print "Floor value of a is %d" % math.floor(a)
print "Absolute value of a is %d" % math.fabs(a)

b 5

c -5

print "Factorial of b is %d" % math.factorial(b)

print "Copied Sign value of b is %d" % math.copysign{ b, c)

Output:

ICell value of a is 2

Floor value of a is 1
Absolute value of a is 1
Factorial of b is 120

Copied Sign value of b is -5

In addition to the above function, a few more functions are available in

Python. You can have a look at the python documentation for more.

2. Power and Logarithmic Functions:

Python provides following functions in this category:

math.pow(a,b): This function returns 'a' raised to the power
of 'b, where both the data objects should have valid data. For

invalid data, the function throws an error.

math.sqrt(a): This function returns square root value of 'a'.

math.log10(a): This function returns logarithmic value of 'a,
where the base of the logarithm is 10.

math.log1p(a): This function returns natural logarithmic

value of 'a’, where base of logarithm is e (constant)

math.exp(a): This function returns exponential value of ‘a’

Code:

Program to peform math functions.

import math

18
2

a
b

print "Power of a raised to b :%d" % math.pow(a, b)

print "Square root of a :%d" % math.sqrt(a)

print "Logarithmic Value of a{base-10) :%¥d" % math.logl®(a)
print "Logarithmic Value of a(base-e)} :%d" % math.logip(a)
print "Exponential of a :%d" % math.exp(a)

Output:

Power of a raised to b :100
square root of a :3

Logarithmic Value of a(base-10) :1
Logarithmic value of a(base-e) :2
Exponential of a :22826

3. Trigonometric and Hyperbolic Functions:
Python has all trigonometric and hyperbolic functions
available in its package. These functions’ returns value in
radian unit and functions same as the mathematics

trigonometric and hyperbolic function.

Trigonometric:

math.sin(a)
math.cos(a)

math.tan(a)

Hyperbolic:

math.sinh(a)
math.cosh(a)

math.tan(a)

Code:

Program to perform trigonimetric function

import math
a = 10

print "Sine of a :%f" % math.sin(a)

print "Cosine of a :%f" % math.cos(a)

print "Tan of a :%f" % math.tan(a)

print "Hyperbolic Sine of a :%f" % math.sinh(a)
print "Hyperbolic Cosine of a :%f" % math.cosh(a)
print "Hyperbolic Tan of a :¥f" % math.tanh(a)

Output:

Sine of a :-0.544021
Cosine of a :-0.839672
Tan of a :0.648361
Hyperbolic Sine of a :11013.232875
Hyperbolic Cosine of a :11013.232920
Hyperbolic Tan of a :1.000000

4. Special Functions:

Other than the standard maths functions, Python also provides special

mathematical functions. They are as following:
math.gamma(a):

This function returns mathematics gamma function

value of 'a'.
math.lgamma(a):

This function is a combination of natural logarithm
and gamma function. First, it finds the gamma
function value at 'a', and then returns natural

logarithmic value of absolute value of the result.
math.erf(a):
This function returns error function value at 'a'.
math.erfc(a):

This function returns complementary error function

value at 'a'.

Till now, we have discussed the basic mathematics function. Python is also
rich with its advanced mathematical capabilities. Its richness also attracted
people from research and scientific backgrounds. NumPy, SciPy, and
Matplotlib are very well contained and optimized libraries. Every Python
programmer must be well versed with these libraries to enhance their Python
programming skills. We will learn more in-depth about these libraries and its

utilities.

NumPy Library :

NumPy is a short name for Numeric or Numerical Python and developed as
the open source project by Travis Oliphant. The key idea behind the
development of this library was to handle multi-dimensional data (array) in
Python. It was developed by merging two predecessor libraries, one is

Numeric and another is Numarray.

NumPy has power to process multi-dimensional array at fast speed.

There are following operations you can perform using NumPy.

1. Logical and mathematical operations on multi-dimensional data
or matrix.
2. Linear algebra and generating random numbers.

3. Fourier transforms.

Usually, this library won't be pre-installed with your Python package.
You need to install it separately using Pip Python module using the following

command in Terminal.
$ pip install numpy

There are following methods and functions which are available in NumPy

library.

1. Numpy.zeros(a,b,c)
The function creates a new array with all elements entries as
zero. Where

'a’ is the shape of new array or size of array.
'b' is the datatype for the elements and, it is optional.
'c’ is the order of array and it is also optional.

2. Numpy.ones(a,b,c)

This function creates a new array with all elements entries as

one and data objects are same as of zeros function.
3. Numpy.full(a,b,c,d)

This function returns a newly created array and provides

shape and value where
‘a’ is the shape of new array or size of array.
‘b’ is the value to be fill in the array.
‘c’ is the datatype for the elements, and it is optional.
‘d’ is the order of the array, and it is also optional.

Code:

Program to perform numpy function

import numpy

1-d array of zeros
arrl = numpy.zeros(5)
print "arr1l :"

print arril

2-d array of zeros
arr2 = numpy.zeros((3,2))

print "arrz :
print arr2

1-d array of ones

arr3 = numpy.ones(3)
print "arr3 :"
print arr3

2-d array of ones

arr4 = numpy.ones((2,3))
print "arr4 :"

print arr4

array of any scalar value
arr5 = numpy.full(s, 10)
print "arr5 :"

print arrs

Output:

arrl :
[8. & 8. 8.)
arr2 :
[[8: 8]
[8. 8.]
[B8. 8.]]
arr3 :
I1. 1. 1.]
arr4d :
[EL=-3: 1.
-1 1]
arrs :
[16 10 16 10 18]

SciPy Library :

SciPy name stands for Scientific Python. It is an extension of Python NumPy
library to enhance its processing and algorithmic capabilities. As NumPy
provides methods for creating multi-dimensional data and its processing in
Python, SciPy is one step ahead. It is specifically built for implementation of
scientific processing like writing mathematical algorithms application.
Because of it, Python is a perfect language if you are programming for niche

applications such as scientific, web, and desktop applications.

For installing SciPy in your system, you need following commands in your

Terminal window.
$ sudo apt -get install python-scipy

SciPy library is structured into various sub-packages and each sub-package is
specific to particular computing domain. These sub-packages and their

computing domains are as following :

1. constants: Mathematical Constants.

2. Fftpack: Fast Fourier transform functions.
3. Interpolate: Interpolation functions.

4. Cluster: Clustering algorithms functions.

5. lo: Input and Output.

Before using any sub-package function in your program. You need to

import library, for example:
$ from SciPy import constants, io

It is time to go deep into the SciPy library, We will understand some basic

functions one-by-one and quickly program it. Let’s get started:

1. Constants: The SciPy contains various constant values which are

used in both scientific and mathematical calculations. Constants
like ¢ (Speed of Light), h (Plank’s constant), e (elementary
Charge), etcetera.

. Fftpack: In signalling related applications Fftpack is vastly used.

There are many transforming functions present in it.

fft(x[, n, axis, overwrite_x): It is used for generating discrete

Fourier transform of any real or complex sequence.

Ifft(x[, n, axis, overwrite_x): It is used for generating discrete

inverse Fourier transform of any real or complex sequence.

fft2(x[, shapes, axis, overwrite_x): It is used for finding 2-

dimensional Fourier transform.

Ifft2(x[, shapes, axis, overwrite_x): It is used for finding 2-

dimensional inverse Fourier transform.

. Interpolate: In this domain, functions related to various
mathematical interpolation methods are available. These

functions and their descriptions are as follows:

Interp1d(x,y[,kind,axis,copy,...]): It is used for interpolation of

one-dimensional function.

KroghlInterpolator(xi,yi[,axis]): It is used for interpolation of a
set of points.

4. Cluster: Clustering is one of the latest methods you can use in
information theory, compression of data, and detection of the
targets. Further, the cluster subpackage contains two modules.
One is vq and another is hierarchy. Vq is particularly used for
vector quantisation and K-mean algorithm. Hierarchy module

supports hierarchical clustering.

5. lTo: SciPy supports reading from files and writing to files in
various formats. It could be any data like text, numeric, or
binary. You can use file like Matrix Market file, Matlab file, IDL
files, etcetera.

Code:
||| T

Program to perform scipy function

import scipy, numpy
from scipy import interpolate

Constant values
print "Value of e :

+ str(scipy.e)

fftpack
y = scipy.fft([1.8, 2.P, 3.6, 1.5])
print "Fast Fourier Transform of y :" + str(y)

Output:

L o

Value of e :2.71828182846
Fast Fourier Transform of y :[7.54+8.j -2. -6.5j ©8.5+8.j -2. +8.5j]

Matplotlib Library:

With the enhanced capabilities of Python using NumPy and SciPy. Matplotlib
is one of the alternatives of MATLAB software for representation of data and
its analysis. With open-source nature Python, these libraries are well used

among data scientist and researcher.

You can use Matplotlib for plotting 2-dimensional and 3-dimensional data. It
also includes error charts, histogram and bar charts in just a few lines of

codes. It makes hard and complex data analysis very easy.

Exercise

1. Perform the following mathematical equation:
a((a+b)/(a-b)) +b + 1

wherea=10and b =5

Code:
b = 10
b =5

c

a*((a+b)/(a-b)) + b + 1

print "Output value is : %d" %c

Output:

Output Value is : 36

2. Take an input array from the user and find its Fast-Fourier
transformation.

Code:

fimport scipy

input from user

print "Enter an 1-d array :"

inputArray = [int(x) for x in raw _input{).split()}]

performing fase-fourier transform on input
output = scipy.fft(inputArray)

displaying output
print "Fast-Fourier Transform is :" + str{output)

Output:

Enter an 1-d array : E
121415
Fast-Fourier Transform is :[14. +0.00000008e+00] -0.5+2.598067621e+00j ©.5+2.598

87621e+003
-8. +5.77315973e-15] 0.5-2.59807621e+00j -0.5-2.59807621e+607]

. Plot the sine wave using Python program.
Code:

morm

Plotting Sine wave
import numpy as np
import matplotlib.pyplot as plot

range of sine wave
time = np.arange(@, 16, 8.1)

finding amplitude of sine wave
amp = np.sine(time)

plotting the sine wave
plot.plot{time, amp)
plot.show()

Output:

Data types

In Python, data takes the objects of different types of form — they are
either built-in objects provided by the Python language or created by the
programmer using Python classes or external language tools. Objects are just

pieces of memory used for storing values and set operations on that variable.
Importance of Built-in Types:

In the lower-level language such as C and C++, most of programmer's
effort goes into implementing objects to represent the component in the
application domain. Being a good programmer, you need to manage memory
allocation, memory structure, implement search, and access routine. These

chores are very tedious and always distract you from your programming goal.

In the Python language, most of the work goes away as you don't need
to do object implementation before you start solving problems. It is always

best way to use built-in object instead of implementing your own object.

e Easy to write a program with the help of Built-in Object: Built-in
object gives you a collection of lists and dictionaries for free, which
is very helpful while working on any task.

e For the complex problem, you need to write your own object with
the Python classes and C language interfaces, but it is easier to use
built-in types such as list and dictionaries.

¢ Built-in objects are more efficient than custom data structure because
that is already optimized similarly to all data structure algorithms,

which is used in C programming language.

To some readers, object types are more powerful while programming.
Especially Lists and Dictionary are the more powerful data types, which are
very useful in collections and searching in lower-level programming
language. Lists provide an ordered collection of objects while dictionary
stores object by keys. Lists and dictionary are nested in nature and can grow

and shrink according to the demand and also capable to containing the object

of any type.

Built-in Objects:

Object Type Examples
Number 146,2.75,3+4]j
String ‘python’, programming”
Lists [1,[4,’six’],6.8]
Dictionaries {‘python’: ’programming’}, dict(day=10)
Tuples (1,’python’,’U”)
Sets Set(‘xyz’)
Files Open(‘egg.txt’)
Program unit types Function, modules, and classes
Implementation relates | Complied code, stack tracebacks
types
Other core types Boolean, Types

Numbers:

Python object also includes the numbers and it contains integer,
floating-point numbers, complex numbers, decimal, rational numbers. It
supports mathematical operation. For example, plus sign (+) is used for
addition, star (*) is used for multiplication, and two stars (**) are sued for

exponentiation operation.

Code:

==> 146 + 485

631

»>»>> 1.3 * 9
11.700000000000001
>>> 2%16

=l I

Besides the expression, you can also use numeric modules, which are
shipped with Python-modules. They are just Python packages that you can

import and add to your program for ease.

Code:

>>> import math

>>> math.sqrt(25)

5.0

>>> import random

>»>> random.choice([1,2,3,4,5,6])
3l

== I

Strings:

Strings are usually used to represent both textual and arbitrary
information. String supports an operation that includes positional ordering

among items. For example, if you want to calculate the length of a string

which is inside quotes, you can use built-in len function and calculate its

length.

>>> Var = 'Python’
>>> len(Var)

6
=== Var[2]
1 t1

-4 I

In Python, indexes are coded as offset and it start from 0: the first item
which is at first place is index 0, second is index 1, and so on. In Python, you
can also use of index backward from the endpoint. Positive indexes are
counted from the left-hand side and negative numbers count from the right-
hand side.

In simple positional indexing, sequences also support slicing in, which

you can extract entire section from the string in a single step.

>=>> Var = 'Python’
>>> len(Var)

6
==> Var[-1]
'In1

>>> Var[-2]
o

=>= \ar
'Python’

==> Var[1:3]
1yt'|

e I

We have seen in previous examples of changing an original string with
some operation. We were just generating a new string with every operation
because strings are immutable in Python. We can't change a string after they
are created. For example, we can't change a string by assigning it to one
particular position, but we can create a new string and assign it to the same

variable because Python always cleans up an old object.

>>> Var = 'Python'
>>> len(Vvar)

=>> Var[-1]
==> Var[-2]

=== Var

'"Python’

=»> Var[1:3]

Tyt

=»> Var[e] = 'z’

Traceback (most recent call last):
File "<stdin=", line 1, in <module=

TypeError: 'str' object does not support item assignment

=»> Var = 'z' + Var[1:]

=== Var

'zython'

mEn

But, you have one method by which you can change a specific word in
the string, but that method is text-based. You can change text-based data if

you expand it into individual characters and join it back together or use newer

bytearray type available in Python’s newer version.

=>> Var = 'python'

>>> Var1l = list(var)

=»> Varl

[IIPII? 1!!"" ‘t‘s lhli 101# ln‘]
==> Varil[1] = 'z'

>>> '',join(Vvaril)

‘pztﬂnn‘

Every string operation which we have used untill now is like a sequence

operation and it can also be used in other Python sequences such as lists and

tuples.

String find operation is basic method to search particular substring in
string, and string replace method performs replacement of substring in a

string. For example,

>>> Var = 'python'
>>> Var.find('yt')
1
=== \ar
'‘python’
==> Var.replace('py','ze")
‘zethon'

|

Here, despite the name of datatype string, we are creating a new string.

We are not changing an old string because strings are immutable.

So far, we were understanding the specific operations on the string. But
the Python language provides a variety of methods to perform on a string.
Some special characters are represented with a backslash. For example, \n is

used for end of the line and \t is used for the tab.

You can represent multiple string literals enclosed in triple quotes.
Triple quotes are used when you want to concatenate more than one string.

For example,

33953

>>>Var = “””python””’programming

Python language comes with full Unicode support, which is required
for processing text in international characters like Japanese, Chinese, or other
characters which are outside of the ASCII set. You can see non ASCII
character sets in web pages, emails, GUISs, or elsewhere. Python has built-in

support for Unicode character, but the form varies per Python line.

One point is worth remembering is that Python support pattern-based
text processing. Text pattern matching is an advanced tool for Python for
beginners, but the readers who have knowledge of other scripting languages

knows the importance of pattern matching. This module is used for searching,

splitting, and replacement. For example,

Code:

>>> import re
>>> match = re.match('Hello[\t]*(.*)world', 'Helloe Python world')
>»>> match.group(1)
'Python '
e O

The above example searches for the word “Hello” followed by zero or
more tabs or spaces, then any character is saved as a match group ending
"world". If you find such a substring that matches partial patterns enclosed in

parentheses, they are the available group.

Till now, we have studied about numbers and strings in data-types. We
are going to study about List, tuple, and dictionary in the upcoming chapter in
detail.

Exercise

1. What is a Datatype?
Answer: The type of data in programming that specifies, what type of

value a variable can store such as integer, boolean, string, etcetera.

2. Name fundamental data types present in the Python language.

Answer:

e Numbers
e Boolean
e String

e Tuples
e Lists

e Dictionary

Lists and Tuples

Till now, we have learned about different data types and discussed in-
details of numbers and strings, which are only two data types in the Python
language. Now, we need to understand some more such as Lists and Tuples

in detail.

It is really comfortable to deal with the structured format data as the
data is set in a specific manner. Python provides data types named "lists" and
"Tuples", which is used to organize data in a structured manner. "Lists" and

"Tuples" are most popular built-in sequence of the Python language.

Lists:

The Lists are a more flexible ordered collection data type in Python.
Unlike strings, lists can contain all type of data such as numbers, strings, and
even other lists, too. Lists are mutable in nature so you can change it while

assigning and slices.
Properties of Lists:

e Collection of arbitrary objects:
Lists are the entity where you can collect other objects and treat them
as an ordered group. Lists maintain items in left to right positional

ordering.
e Accessed by offset:

In order to access a component, you can fetch any component

by indexing the lists. You can fetch it even when it is out of the list.

The indexing on object's offset is required for fetching. You can do
slicing and concatenation on items because items are set by their

position.

e Variable length, nesting:
Unlike string, lists can grow and shrink according to the
need of the program. In addition to that, lists can contain all

kinds of objects such as numbers, strings, and another list.

e Mutable:
You can change lists at any place and it responds to all
operations, which are performed on lists like slicing,
indexing, and concatenation. It will give result in new lists
instead of the new string even if you are changing in a

string.

e Object reference:
Python lists contain zero or more than zero references to the
other objects. Whenever you use reference, Python always
prefers a reference to an object. For example, you are
assigning an object to the data structure component and
variable name, then Python will store a reference to the same
object name. It will not store the reference to the copy of that

object.
Create Lists:

When you want to build a list, you just need to write the number of

expressions in square bracket.

Syntax:

Ist 1=1[]

Ist_2 = [expressionl, expression2, , expression N]

For example:

listl = ['script', 'python', "perl'];
list2 = [1983, 2011];
list3 = [.8.9, "s°, ", “@];

Access value in Lists:

Lists len(L) always returns the number of items which is present in the list
and L[i] represents the items which is at index i and L[i:j] returns a new list

which contains objects between "I' and "j".

Code:

listl = ['script', 'python', 'perl']:
list2z = [1983, 2011];

1ist3 = [188, "% W= 0 1;

print ("listi[e]", listi[e])
print ("list3[2:4]", list3[2:4])

Output:

('listi[e]', 'script')
('list3[2:4]', [6, 's'])

Update Lists:

You can add and update single and multiple elements in a list at a time.

Code:
listl = ["script', 'python', ‘perl']:

print {”Third value in list is: ")
print (listi1[2])

1list1[2] = 'programming language'’

print ("Updated value in the list is: ")
print(listi[2])

Output:

Third value in list is:

perl

Updated value in the list is:
programming language

Delete elements from Lists:
“del” statement is used for deleting an element from the list.
Syntax:

Del list_name[index_val];

Lists support many operations similar to string. Lists also respond to
arithmetic operations same as string, but it will give the result as a new list.
For example, + operator will accept the same sort of sequence on both sides.

If it is not the same sequence, then it will give type error while compilation.

Code:
listl = ['script', 'python', 1983, 2011];

print listil;
del listi[2];
print "After deleting value at index 2 : "
print list1;

Output:
['script', 'python', 1983, 2011]
After deleting value at index 2 :
['script', 'python', 2811]
If you want to concatenate string and lists, then you need to convert the

lists to string to vice-versa.

Code:

>»> str([1,2]) + "83"
'[1, 2]83"

s=> [1,2] + list("83")
[1, 2, '8", '3']

mm>

If you want to check all sequence operation you have performed in the

string, you will see that lists are responding to all sequence operation.

Code:

s=> L = ['script', 'python', 'perl’']
==> L[2]

'perl’

22> 1[-2]

'python’

=»> L[1:]

[‘py;hﬂn‘, "perl’]

Indexing and Slicing:

In lists, indexing and slicing work the same as the string because the list
is also a sequence. The result of indexing depends on the type of object,

which is specified by the programmer at the offset, while slicing always give

a new list.

Code:

>>> 1 = ['script', 'python', 'perl']
=»> 1[1] = 'java'

>»> L

["script', 'java', 'perl']

==> 1[8:2] = ['program', 'language’]
=55 L

[‘prggram‘, 'language', 'perl']

Change place in the Lists:

Lists always support the operation which changes the place of the

object. Python deals with the object references. The creation of new object

and change in place always matters while dealing with a reference because it

can impact more than one reference.

While using list, you can change its content by assigning it to the offset

or slice.

Code:

s»» L = ['script', 'python', 'perl’']
>>> l.append('java')

=»> L

['script', 'python', 'perl', 'java']
>=> Ll.sort()

=== 1L

[‘jaia‘, 'perl', 'python', 'script']

Both index and slice assignment modify the subject list while dealing with in-
place. It will not generate a new lists object. Python list support type-specific
method calls. Methods are the function, which is associated with and act
upon particular objects. It provides type-specific tools which are generally

available for lists.
Tuple:

In the Python language, a tuple is a data type which constructs simple
group of objects. You cannot change tuples in place and they are written as a

series of items in parentheses, not square brackets.
Properties:

¢ An ordered collection of arbitrary object:
Tuples maintain left to right order when storing any content.

It is a collection of objects which are in a positional order.

Tuples can embed all kinds of objects.

Access by Offset:

You can access items by offset and it supports all operations,

which are offset-based such as indexing and slicing.

Immutable:

Like string, tuples are also immutable. It supports many of
the same operations like string and lists. It will not support

any in-place change operation, which is applied to the lists.

Fixed-length and Nestable:
You cannot change the size of a tuple without masking a
copy because of its immutable property. Tuples can hold any
type of object including lists, dictionary, etc. It also supports

arbitrary nesting.

Object references:
Tuple storage access point to other objects and the index

tuples are relatively fast.
Create Tuple:
You can create a tuple by comma separated values.
For example,
Tupl = (‘python’, ‘programming’);
Tup2 = (1, 2, 3, 4, 5);

Access Values in Tuples:

You can access the value by using square brackets for slicing along with an
index to obtain the value.

Code:

tupl = ('script’, 'python', 'perl');
tup2 = (1983, 20811);

tup3 = (2,4,6,8,10,12,14,16);

print ("tupi[®]", tupl[@])
print ("tup3[2:4]", tup3[2:4])

Output:

('tupif[e]’', 'script')
('tup3[2:4]', (6, 8))

Updating Tuples:

Tuples are immutable in nature, so you cannot change or update the
value of tuples. But you can create a new tuple from an existing tuple and

make changes in the new tuple.

Code:

tupl = (1, 2, 3);

tup2 = ('abc', 'def');
tup3 = tupl + tup2

print (tup3)|

Output:
(1,2, 3. “abe'; "def")
Delete Tuple:

You can delete tuple by using “del” statement.

Code:

fupl = €3, T, %);
tup2 = ("abc', 'defl'):
tup3 = tupl + tup2

del tup3;

print (ftup3)

Output:

Traceback (most recent call last):
File "edit tuple.py", line 6, in <module>
print (tup3)
NameError: name 'tup3' is not defined

Basic Tuple Operation:

You can use an arithmetic operation like + and * in the tuple. It also
supports concatenation and repetition similar to the string and it will give

result in a new tuple.

Expression Result Description
Len((0, 1, 2, 3, 4)) 5 Length
(1,2,3)+(4,5,6) (1,2, 3,4,5, 6) Concatenation
(‘Python’,)*2 (‘Python’, ¢ Repetition

Python)
4in (0, 1, 2) False Membership

Indexing and Slicing:

You can operate indexing and slicing similar to string because of its

ordered set of the element.

Var = (‘python’, ‘python’, ‘python language’)
| |

Expression Result
Var[3] ‘python language’
Var[-3] ‘python’
Var[1:] [‘python’, ’python language’]

If you want to compare elements of two tuples, then you can use ‘cmp’.
Syntax:

Cmp(tuple_1, tuple_2)
Description:

tuple_1 = first tuple to be compared.

tuple_2 = second tuple to be compared.

If you are comparing elements of the same type, it will give you a direct
result, but if you are comparing different types of elements, then you need to
cross-check whether it is a number or not. If it is a number, then first perform
numeric coercion and then compare them. If they are a string, then it will
sorted alphabetically.

Code:

tupl .tup2 = (123, ‘abc'), (456, “xyr')
print cmp(tupl, tup2);

print cmp(tup2, tupl);

tup3 = tup2 + (789,);

print cmp(tup2, tup3)

Output:

If you want to find the length of tuple, then you can use “len()”. It will
return the number of element in the tuple.

Syntax:
len(tuple)
Description:
Tuple = tuple in which you need to count numbers of elements.

Code:

tupl, tup2 = (123, 'abc', ‘pqrs'), (456, 'xyzr')
print "first tuple length : ", len(tupl);
print "Second tuple length: ", len{tup2);

Output:

first tuple length : 3
second tuple length: 2

Exercise

1. Explain Lists using Python program.

Answer: The lists are the most flexible ordered collection data type in
Python. Unlike strings, lists contain all type of data such as numbers,
strings, and even other lists, too. Lists are mutable in nature, so you can

change it while assigning and slices.

Code:
listl = ['script', ‘python', 'perl'];
list2 = [1983, 2011];
list3 = [Z,8,8, "s", "v", "d"[];

2. Explain Tuples using Python program.

Answer: In the Python language, a tuple is a data type which constructs
simple group of objects. You cannot change tuples in place and they are

written as a series of items in parentheses, not square brackets.

Code:
tupl = ('script’', 'python', 'perl');
tup2 = (1983, 2011);
tup3 = (2,4,6,8,10,12,14,16);

print ("tupi[®]", tupil[@])
print ("tup3[2:4]", tup3[2:4])

Dictionaries

After string, list, tuple, and numbers, dictionaries is a popular used data
type in the Python programming language. It is the last data type to
understand in this material. Dictionaries are completely different from other

data types. They are not in sequence at all, but still, it is known as mapping.

Mapping is also considered as a collection of other objects, but it stores
them as keys instead of their position as the tuple. Mapping doesn't follow

any left to right order like tuple; it directly maps keys to associated values.
Properties:

e Access by keys: Dictionaries associate a key, so you can fetch an
item using the keys from the dictionary. Indexing operation is the
same as the list to get component in a dictionary, but the difference
between them is it takes the form of the keys and does not use a
relative offset.

e Unordered collection of object: Items stored in dictionaries are not
in order, unlike a list. Keys provide a location of items in a
dictionary, but it provides the only symbolic location. It does not
provide a physical location, too.

e Variable length and nesting: Dictionaries can contain any type of
objects and it supports nesting to any depth, too. There can be only
one key per key value, but if necessary, the value can be a collection
of multiple objects, and a given value can be stored under any
number of keys. Dictionaries can grow and shrink without new

copies.

e Mutable: Dictionaries can be modified by assigning value to indexes
but it does not support sequence operation unlike string and lists
because dictionaries are an unordered collection.

e Object references: Dictionaries are an unordered table of object
references that support access by keys. It is implemented similarly to
a hash table, which starts small and grows as per the need. Python
uses a optimization hash table algorithm to find the keys — it helps
to retrieve data quickly. Like lists, dictionaries also store object

references.
Dictionaries Usage:

You can use an arbitrary object such as the standard object or user-defined
object in dictionary values. Its values don't have any restrictions on using

Python objects, but you cannot use all Python objects with the keys.
There are some points you need to remember about dictionary keys:

e You cannot do more than one entry per key. It means you cannot use
a duplicate key. If duplicate keys are encountered during assignment,

it takes the last assignment into consideration

e Key should be immutable, which means you can use string, tuples,

etc. as dictionary keys, but you cannot use ‘key’.
Access Value in Dictionary:

If you want to access elements in the dictionary, you can use the square
bracket with the key.

Code:

dict = {'Name' : 'Smlth', ‘Age' : 25}
print (dict['Name'])
print (dict['Age'])

Output:

smith
25

If you are trying to access elements which are not present in the dictionary,

then it will show you an error.

Code:

dict = {'Name" : 'Smith', 'Age"' : 25, 'Class' : 'Seven‘'};
print "dict['Mark']: ", dict['Mark'];

Output:

dict['Mark']:
Traceback (most recent call last):
File "access dict.py", line 2, in <module=>
print "dict['Mark']: ", dict['Mark'];
KeyError: 'Mark'

Update Dictionary:

You can update a dictionary by adding a new entry, or you can modify or

delete an existing entry.

Code:

dict = {'Name': 'Smith', 'Age': 18, 'Class': 'Seven'};
dict['Age'] = 14|; # update existing entry
dict['School'] = "DPS School"; # Add new entry

print "dict['Age']: ", dict['Age’];

print "dict|'School']: ", dict['School'];

Output:

dict['Age']: 14
dict['School']: DPS School

Delete Dictionary Element:

Dictionary gives you an option of deleting individual elements in the
dictionary or deleting entire content, which is present in the dictionary, or

you can delete the entire dictionary in a single operation.
You can use “del” statement to remove the entire dictionary.

Code:

dict = {'Name': 'Smith®', 'Age': 18, 'Class': 'Seven|'};
del dict['Name']; # remove entry with key 'Name'’
dict.clear(); # remove all entries in dict

del dict ; # delete entire dictionary

print "dict['Age']: ", dict['Age’'];

print "dict|['School']: ", dict['School'];

Output:

dict['Age']:
Traceback (most recent call last):
File "delete dict.py", line 5, in <module=>
print "dict['Age']: ", dict['Age'];
TypeError: 'type' object has no attribute ' getitem '

Dictionary Functions:

cmp(dictionary1, dictionary?2)

len(dictionary)

w N =

str(dictionary)
4. type(variable)

cmp(dictionaryl,dictionary2):

This method is used to compare elements of both dictionaries. It
compares both dictionaries based on key and values.

Syntax:

cmp(dictionary1, dictionary?2)
Parameters:
Dictionary1 = First dictionary to be compared with dictionary?2.

Dictionary2 = Second dictionary to be compared with dictionary1.

Code:

dictl = {'Name': “Zara', 'Age': 7};
dict2 = {'Name"': 'Smith', 'Age': 27};
dict2 = {'Name"': 'Mark', 'Age': 256;
dict4 = {'Name': 'Adam', 'Age’': 18};

print "Return Value : %¥d" ¥ cmp (dictl, dict2)
print "Return Value : ¥d" ¥ cmp (dict2, dict3)
print "Return Value : %¥d" ¥ cmp (dictl, dict4)

Output:

Return Value : -1
Return WValue : 1
Return Value : -1

It will return O if both dictionaries are equal (dict]l = dict2) in comparison.
If dictionary1 is greater than dictionary2 (dict1>dict2) then it will return 1.
If dictionary? is greater than dictionary1 (dict2>dict1) then it will return -1.
len(dictionary):

This method gives the length of the dictionary. It counts the number of items

and gives the result as a length of the dictionary.
Syntax:

len(dictionary)
Parameters:

Dictionary: Dictionary’s length you need to calculate.

Code:

dict = {'Name': 'smith|', 'Age': 10};
print "Length : %d" % len (dict)

Output:
Length : 2

str(dictionary):

This method is used to produce a printable string which can represent the

dictionary.
Syntax:
str(dictionary)
Parameters:
Dictionary: It is a dictionary.
It will return a string representation.

Code:

dict = {'Name': 'Smith|', 'Age': 16};
print "Equivalent String ! %s" % str (dict)

Output:
[Equivalent String : {'Age': 16, 'Name': 'Smith'}

type(dictionary):

This method is used to return the type of variable that you are passing. If

passing variable is dictionary then its return type is of dictionary data type.

Syntax:

type(dictionary)
Parameters:
Dictionary: It is a dictionary.
It returns the type of variable that you are passing to the dictionary.

Code:

dict = {'Name': 'Smith|', 'Age': 10};
print "Variable Type : %s" %type (dict)

Output:

Variable Type : <type 'dict's

Sorting keys:

Dictionaries are not in sequence, they don't maintain any left to right
order, so when you are printing it, it may come with the different order. If
you want all of the dictionary items in proper order, than you can use the
dictionary key method to get the key list, sort them by sort method, then
iterate through the results in Python for loops. The sorted call returns the
result and sorts the various object types sorted in the case dictionary key

automatically.

Exercise

1. What is Mapping?

Answer: Mapping is considered a collection of other objects, but it stores
them with keys instead of their position. Mapping doesn't follow any left

to right order like tuple, it directly maps keys to associated values.

2. Why we need Dictionary?

Answer: You can use an arbitrary object such as the standard object or
user-defined object in dictionary values. Its values don't have any
restrictions on using Python objects. But, you cannot use all Python

objects with the keys.
There are some points which you need to remember about dictionary keys:

¢ You cannot do more than one entry per key. It means you cannot
use duplicate key. If duplicate keys have encountered during

assignment, then it takes last assignment into consideration

e Key should be immutable, which means you can use string,

tuples, etc. as dictionary keys, but you cannot use ‘key’.

Control Statements
Introduction:

The Python language execution is sequential in nature, but in some cases, you
need to change your program's execution sequence based on the problem
requirement. Sometimes, you even need to check some conditions, and based
on the condition fulfilment, statements need to be executed. To fulfil this
requirement, Python provides features like conditional execution, iterative
execution, and jumps in the program. They specify the transfer of control

from one line to another.
For the conditional execution of statements, Python provides:

1. If-else
2. Switch-case

For the iterative execution of the code, Python provides:

1. While loop
2. Forloop
3. Nested loop
For jumps in the program, Python has rich features of break and

continue. Let’s discuss all there feature in detail:

If-else :

This is the most common and powerful feature to implement condition

execution of the statement in Python. It is bidirectional in nature. The syntax

is as follows:

If expression:
Statement1
Else:
Statement?2

In the above syntax, Python interpreter evaluates the expression, also called if
condition. If the expression results in true (non zero) then statementl
executes. Otherwise, statement2 execution takes place. The following

flowchart is suitable for the better understanding of its bidirectional nature:

Flowchart

START

¥

@)
(=
(=W
)

Program to check Even and Odd number

num = int(raw_input("Enter a Number :"))
if (num%2==08):

print "Number is Even"
else:

print "Number is 0dd"

Output

Enter a Number :5
Number is 0dd

It is also possible to keep multiple statements with if-else to executes. It just
requires putting same indentation space. Block of statements with the same
indentation is also called compound statement. The syntax with compound

statements is as follows:
If expression:
Statement]

Statement2

Else:

Statement3

Statement4

FlowChart

statementl

v v
L4 v
statementd statement2

o

Code

|r| 0o

Program to test Even and 0dd number and display it
num = int(raw_input("Enter a Number :"))
if (num%2 == 0):
print "Entered number is
print "Number is Even"

+ str(num)

else:
print "Entered number is " + str(num)
print "Number is 0dd"

Output

Enter a Mumber :45
Entered number is 45
|Nunber is 0dd

Else part of the syntax is not compulsory. You can skip it, according to

the need. The syntax and flowchart are as following:
If expression

statement1

Flowchart3

START

D

Code

||| "o

Program to test even number
num = int{raw_input("Enter a MNumber :"))
if (num%2 == 8):
print "Entered number 1is
print "Number is Even"

+ stri{num)

Output

Enter a Number :78
Entered number is 78
Number is Even

Nested if-else:
The Python language also allows the nesting of if-else where one if-else
statement can be used inside the body of other if-else as following:

If expressionl:

If expression2:

Statement1
Else
Statement2
Else

If expression3:
Statement3
Else:

Statement4

Flowchart

e
Program to find the input range of number
num = int(raw_input("Enter a Number(between © to 200):"))
if (num < 180):
if (num > 50):
print "Entered number is between 58 and 166"

else:
print "Entered number is between ® and 56"
else:
if (num > 158):
print "Entered number is between 150 and 268"
else:
print "Entered number is between 180 and 158"
Output

Enter a Number(between @ to EEB):lbﬁf
Entered number is between 100 and 150

Else-if Ladder:

The else-if ladder is one type of multi-way decision-making statement in
Python. There is an if-else statement for every else part of if statement and

the syntax for the same is as follows:

If expresionl:
Statement1

Elif expression2:
Statement2

Elif expression3:
Statement3

Else:

Statement4

In the else-if ladder, Python interpreter evaluates every if condition
sequentially one-by-one, and when it resolves into true, it executes the
corresponding statement and then controls comes out without checking

remaining condition.

Flowchart

Taine é Trus
|
¥

T statementl
¥

statementd statement3

Code

||| "o

Program to test number range
num = int{raw_input("Enter a Number(between ® to 100):"))
if (num < 25):
print "Number is between & to 25"
elif (num < 508):
print "Number is between 25 to 56"
elif (num < 75):
print "Mumber is between 50 to 75"
else:
print "Number is between 75 to 168"

Output

Enter a Number(between © to 100):50
Number is between 50 to 75

Loops:

In any programming language, loops are used when we want to execute
a part of program multiple times. It is always easy to optimize the program
using Loops. For example, if you want to print a string “Welcome to Python”
ten times on the output string, instead of writing print statement ten times,
you can use one of the loops (while or for) to implement it. Every Loop in the
Python language requires a counter variable, condition check, and increment

or decrement operation.

Counter variable keeps track of the number of times the loop has
executed. Increment and decrement operation is implemented on the counter

variable, and condition check is required for termination of the loop.

Each loop has its own requirement and significance during programming.

Let’s understand them in detail:

While Loop:

The syntax of while loop is as following:

While expression:
Statement1

Statement?2

In the above syntax, the expression is evaluated by the interpreter first,
and if it resolves into true, then the body of the while loop (Compound
Statements) executes. Otherwise, it comes out of the loop. After the execution
of the body again, it evaluates the expression and executes the body. The
body of loop will execute until the expression in the results into false. This

process can be better understood from the below flow chart.

Flowchart

Initialization statemeant

condition

statement

Increment/decrement
statement

In the programming, you can use the following type of convention for more

productive code.

Initialization statement
While condition;
Statement

Increment/decrement statement

You will get a clear idea for above convention with the following

programming challenge.

@)
(=
(=W
o

Program to print 1 to 10 using while-loop

1=1

while {1 <= 16):
print i
=1+ A

Output:

= oAD 00 =] Oh LN B P

For Loop:

The for loop is frequently used out of all the loops because of its easy

syntax, which is as follows:

For counterVar in sequence:

Statements

The syntax comprises of counterVar variable and a sequence. The
sequence could be either list, tuple, string, or any collection of data. If you
are dealing with data sequencing in Python, for loop is definitely a feasible

choice.

During the execution of for loop, the first element in the sequence is
assigned to the counterVar and statements of the loop body are executed, then
the next element is assigned to the couterVar and the statements are executed
in a loop until all the elements of the sequence are exhausted. The sequence

in the loop could be any list, string, or collection of data elements.

Flowchart

= il IS

4
51 E* é. a
-
Y

When you need to iterate through the sequence, there are two ways you can

iterate using for loop. Let’s understand them in brief:

1. Iterating using Sequence expression:
In this type of for loop, the programmer uses the following syntax to

iterate in for loop.

For element in Sequence:

Statements

Code

Program to print list elements using for-loop

list = ["python","programming”,"is","fun"]

for 1list element in 1list:
print list element

Output

python
jprogramming
is

fun

2. Iterating using Sequence Index:
In this type of for loop, the programmer uses the following syntax to

iterate in for loop.

For index in range(len(Sequence)):

Statements

Code

Program to print list elements using for-loop

list = ["python","programming”,"is","fun"]

for index in range(len(list)):
print list[index]

Output

python
programming
is

fun

Nesting of loops is also possible by using one loop inside the body of
another loop. Application of nested loops can be in the array of sequence and
for handling huge data.

Infinite Loop:

The loops that execute its body infinite times are known as the infinite
loop. You can implement this type of loop deliberately or by mistake, which
puts your program running into continuously. To implement infinite loop,

you can use the following approach:

While True:

Statement

The termination of an infinite loop can be controlled by using break and goto
statement inside the body of the loop. These statements are explained in the

further topics of this chapter.

Continue and Break Statement:

Continue and break statements are very useful statements and used frequently

with loops. The syntax for continue is simple:
Continue

Continue statement is used for skipping execution of the loop statements
inside the loop body and transferring control to the beginning of the next loop
iteration. It is used with the if condition generally. Let’s understand its use

case with a programming challenge

Program to skip numbers using 6 to 18 using continue statement

while 1<18:
i=1+1
if 1:== B
continue
print 1

Output

[- T B VR - R N

The break statement is similar to the continue, but when it is used inside
the loop, it terminates the loop and control is transferred to the next statement

after the loop. Let’s understand it with following program.

Code

Program to stop while-loop using break statement
i=149
while (i<10):
L =%+ 1
if (i > 5):
break
print i

Output

ol pd e

Exercise

1. What is the importance of loops in programming?
Answer: Defining a loop in your code allows the computer to
repeatedly perform certain tasks. Depending on the task to be
performed, the loop needs to be defined in the computer program for
a variety of reasons. The computer programming language needs to

be looped so that the code executes actions as many times as needed.

2. Name different types of available loops in Python.

Answer:

e For loop
e While loop

e Infinite loop using for and while loop

Functions and Modules
Introduction:

Throughout the previous chapters, we have discussed the different features
of Python interpreter that will help you to create your Python program. It's
time to move to the design approaches for your programs and without an
understanding of the functions and modules, it would be impossible to create
a properly designed program. Functions and Modules give you the freedom
to cut your program into small parts and implement it with an easy-to-design

philosophy.
Functions and its Uses:

In simple words, a function is a collective group of Python statements.
The ideology behind the use of functions is to reuse the code. Whenever you
come across a situation where you want to execute a group of statements
more than once, then you need to create a function. It is a programming
practice to write a function and call it with its name every time. You can also
perceive functions as the independently running programming section, that

you can use multiple times.

Functions are like devices that have the capability of taking input parameters
and provide output. Output of the function can be either a data or operation

on the parameter passed in it.

Before we dig deep into the syntax and programming with functions, let's
understand a bigger picture for the use case of functions. Functions are

generally giving a structure to your Python program. Sometimes they are also

called procedures and sub-routines in other programming languages.
Primarily, there are following philosophy for the use of functions in any

python program:

1. Maximum Code-reuse and Minimum redundant programming;:
It is similar to any other programming language. Functions are the
easiest way to package your Python logic, you just need to write your
code logic once in the function body, and later you can use it
multiple times in your program. It also minimizes your redundant

statements.

2. Well-structured programming:
The function gives you a tool to divide your big programming task
into multiple well-defined procedures and allow you have a well-
structured program for the same. Let's consider a programming
scenario where you want to calculate average salary of the employee
in any organization. You can divide the task into procedures likes
taking the input of the employee data, calculating an average, and
displaying the average value. The function can be written for each of

the procedures and call them to have the well-structured program.

Function Syntax:

In Python programming, the general syntax of writing function is as follows:

def functionName(arg1, arg?2 argN):

Statements

Return val

def is considered as the header of the function, which generates a
function object and assigns a function name to it. In the brackets, the function
multiple input parameters are represented with argl, arg2 ... argN. These
arguments are optional when the function does not take any input parameter
then brackets are kept empty. After the colon, function bodies with multiple
statements is written where functional logic is implemented. The return
statement returns val value to the caller in the program. It can appear
anywhere inside the function body and usually is present at the end of the
function. If val is not specified, then function returns None as the return

value. Both the val and return statement are optional.

Let’s get into the Python programming to get more use out of case of

functions and its implementation:

Program to add two numbers using a function

LRI

def main():

numl = 10
num2 = 20
num3 = add(numi, num2)

print "Addition is :" + str{num3)

def add(a, b):
c:a+b
return c

if name == " main “:
main()

Output

Addition is :30

Code

||| "o

Program to test even odd using function

LU)

def main():
input num = int(raw input("Enter a MNumber :"))
evenOdd(input num)

def evenOdd(num):
if (num%z2 == B):
print "Number is Even"

else:
print "Number is 0dd"
return
AT . . pahE.. == "_ ‘mEIn. "
main()

Output

Enter a Mumber :45
Number is 0dd

Modules and its Uses:

Modules are the top level programs which organize programming units. It
contains packages that have Python code, reusable data, and namespaces,
which reduces clashing of variables in your Python program. In a simple
way, modules can be considered as the program files. And every file which is

referred is called as a Module.

Modules are generally processed by using import and from statement.

Let’s understand about these statements before digging into deep into

modules:
1. Import:
It allows you to load complete module as a whole in your
Python program.
2. From:

It allows you to load specific names from any module in

your Python program.

As any particular module is being loaded inside your Python program, it lets
you use all the self-contained program codes from the modules. Because of
the use of modules inside Python programming, it provides you with a bigger
picture with the use of existing modules without any conflicts between

attributes and methods.
There are many uses of modules, let’s understand them in a brief:

1. Code — reuse:
When you are loading any of the modules in your Python using
import statement, you can use all the methods and functions present

in the particular module. After importing, it can be referenced

multiple times to reduce the lines of code. Modules always help to
visualize a bigger picture of the program. Unless you are using

Python interpreter, you can import modules just by using its name.

2. Separate Namespaces:
As modules are a self-contained program code, being a programmer,
their parameters are isolated from your main Python code. It helps
you to write your Python code in a well-organized manner, keeping

top-level organization in mind.

Whenever you are working with Python programming, you will need to
import and link libraries with your main top-level program. Libraries are
present inside the module files, which act as a tool to perform programming

tasks.

Let’s understand the concept of modules and its use with programming

examples. There are following files with their Python code:
Def display(text): #displayModule.py

Print text

Import displayModule # mainScript.py

displayModule.display(“Hello, World!!”) # prints “Hello,
World!!”

In the above example, “mainScript.py” is a top-level file that contains text in
it. The execution of the top-level file occurs in a top to bottom. And

"displayModule.py" are modules files containing def statements and assigns

function object to the name "display". Inside the function body, print

statement is present and displays the passing parameter to the output screen.

The top-level files include an import statement that loads the modules into the
main file. After fetching modules, it can be referenced using the attributes of
it.

TOP LEVEL MODULES

e Standard Library

mainSscript.py 2q displayModule.py S5

Exercise

1. What is Function and write uses of function in a programming

language?

Answer: In simple words, a function is a collective group of Python
statements. The ideology behind the use of functions is to reuse the
code. Whenever you come across a situation where you want to
execute a group of statements more than once, then you need to
create a function. It is a programming practice to write a function and
call it every time with its name. You can also perceive functions as
the independently running programming section, which you can use

multiple times.

Functions are like devices that have the capability of taking input
parameters and provide output. The output of the function can be

either a data or operation on the parameter passed in it.

2. What are modules and its uses?
Answer: Modules are the top level programs that organize
programming units. It contains packages that have Python code,
reusable data, and namespaces which reduces clashing of variables in
your Python program. In a simple way, modules can be considered as
the program files, and every file, which is referred is called as a
Module.

e When you are loading any of the modules in your Python
using import statement. You can use all the methods and
functions present in the particular module. After importing,
it can be referenced multiple times that reduce the lines of
code. Modules always help to visualize a bigger picture of
the program. Unless you are using Python interpreter, you
can import modules just by using its name.

e As modules are self-contained program codes, being a
programmer, their parameters are isolated from your main
Python code. It helps you to write your Python code in a

well-organized manner with top-level organization in mind.

File Input-Output

Each program is a combination of program statements to perform some
task or logic. These logics may or may not require inputs to provide the
output, hence inputs that are outputted are part of every program. You need a
file to store everything for storage on the computer, which is managed by OS.
Although variable provides us a way to store the data while a program is
running, we must save it to a file if we want to keep the data after the

program has ended.

There are always two parts of a computer system's file, one is a
filename and another is an extension of the file. In addition, these files also
have two key attributes, which are name and location or path which specify

the location of file in the computer. The two parts of the filename are

separated by dots (.) or periods.

The built-in open method is used to create a Python file object that
provides a connection to the files, which resides on the programmer's
machine. After calling an open function, the programmer can transfer the data

string to and from an external file residing in the machine.
Print to the screen

You can produce output by using the “print” statement where you can
pass expression separated by commas. This function converts the expression

which you are passing into a string and writes the result to standard output.

Code:

!print "python is widely used programming language";|
Output:

python is widely used programming language ;_

Read Input:

You can read a line of text from standard input, which will come from the

keyboard by using two built-in functions.

e raw_input

e input

¢ raw_input function:

The raw_input function reads one line from standard input and

returns output as S'[I‘il'lg.

Code:

str = raw_input("Enter string:

print "input is: ", str

Output:

Enter string: Hello python
input is: Hello python

¢ input function:

");

The input function assumes that the input is a valid Python

expression and it will return the evaluated result to you.

Code:

str = [input("Enter string: ");

print "input is: ", str

Output:

Enter string: [x*5 for x in range(2,10,2)]

input is: [10, 20, 30, 40]

Open and close the file:

From the beginning of this chapter, we understood the function related
to input and output from the users. In the continuing discussion, we will have

an in-depth understanding of taking inputs from the file and storing the

output to it.

Open Function:

You need to open file before you start reading and writing any file.
Python has a built-in function that is used to open file i.e. open(). This

function will create a file object, which is utilized to call other methods

associated with it.

Syntax:

File object = open(file_name[, access_mode][, buffering])
Parameters:

file_name = The file_name is a string value which contains a file name to

dccess.

access_mode = The access mode provides the mode in which the

programmer wants to open the file i.e. read, write, append etc.

buffering = If buffer value is 0, that means no buffering. If it is 1, then line
buffering is performed while accessing the file. If you specify the buffer
value as a greater than 1, then buffer the operation execute with the specified

buffer size. If it is negative, the buffer size is system default.

Different Modes:
Modes Description
R Open file for read only
r+ Open file for both read and write
b Open file for read in binary format
rb+ Open file for both read and write in a binary format
W Open file for write only
w+ Open file for both read and write
wb Open file for write in a binary format
wb+ Open file for both read and write in a binary format
A Open file for appending
a+ Open file for both appending and reading

ab Open file for appending in binary format

ab+ Open file for both appending and reading in binary format

Close Function:

The close () method of the file object refreshes any unwritten information and

closes the object file and the object cannot be written later.

Python closes the file automatically when the file is reassigned to another
file.

Syntax:
fileObject.close();

Code:

foo = open("python|.txt", "wb")

print "Mame of the file: ", foo.name
foo.close()

Output:
Name of the file: python.txt

Read and Write the file:

Write Function:

You can write any string to an open file by using write () function. It is
really important that Python string contains binary data and not just text. It

does not add a new line character to the end of the string.
Syntax:

fileObject.write(string);

Code:

foo = open("python.txt”, “"wb")
foo.write{ "Python is a widely used programming language.\nyveah [its great!!i\n");
foo.close()

Output:

Python is a widely used programming language.
Yeah its great!!

The above method will create .text file and writes content in the file, and after

execution, it closes the file.

Read Function:

You can read a string from an open file by using read () function.
Syntax:

fileObject.read([count]);

Parameters:

The passing parameter is representing the number of bytes to be read from
the open file. This method starts reading from the beginning of the file, and if
count is missing, then it tries to read as much as possible, maybe until the file

is over.

Code:

foo = open("python|. txt",
str foo.read(18);
print "Read String is : ", str
foo.close()

Output:

Name of the file: python.txt
Closed or not : False
Opening mode : wb
Softspace flag : ©
S gedit open.py
nS gedit close.py
$ python close.py
Name of the file: python.txt
$ gedit close.py
hon$ gedit write.py
hon$ python write.py
- ' S open write.txt
Couldn't get a file descriptor referring to the console
: thon$ gedit python.txt
onS gedit write.py
n$ gedit read.py
% gedit python.txt
S python read.py
Read String is : Python is

File Position:

If you want to check current position with the file, then you can use tell
() function. The next read and write will occur after the number of bytes

returned from the tell () function from the beginning of the file.

The seek (offset [, from]) is used to change the current file position. The
offset indicates the number of bytes to move. The from is used to specify the

reference position from which you want to move the bytes.

If from is set to 0, the beginning of the file is used as a reference
position. 1 indicates that the current position is used as a reference position. If

it is set to 2, then the end of the file will be treated as a reference position.

Code:

foo open("python.txt", "r+")

str foo.read(16);

print "Read String is : ", str

position = foo.tell();

print "Current file position : ", position
position = foo.seek(0, @);

str = foo.read(10);

print "Again read String is : ", str
fool.close()

Output:

Read String is : Python is
Current file position : 10
Again read String is : Python is

Rename and Delete File:

Rename Function:

Rename function generally takes two arguments i.e. current filename and new

filename.

Syntax:

os.rename(current_filename, new_filename)
Remove Function:

You can delete files by giving the name of the file as an argument in the

remove () function.
Syntax:
os.remove(file_name)

Code:

import os
Remove a file pythonil.txt
os.remove("pythoni.txt"|)

File Flush:

Python automatically flushes the files when it is closed. But if you want
to flush the data before closing the file, then you can use flush () function.
This method is used to flush the internal buffer.

Syntax:
fileObject.flush();

It does not return any value.

Code:
foo = open("python.txt", "wb")
print "Name of the file: ", foo.name

Here it does nothing, but you can call it with read operation.
foo.flush()
fool.close()

Output:
Name of the file: python.txt
File next:

The next () function is used when the file is used repeatedly or
iteratively. It returns the next input line and raises Stoplteration when end of
the line hits.

Using the next () method with other file methods such as readline () is

not correct. However, using seek () to relocate the file to an absolute position
refreshes the read-ahead buffer.

Syntax:
fileObject.next();

Next () function will return the next input line.

Code:

foo = open("python.txt", "rw+")
print "MName of the file: ", foo.name
Assuming file has following 3 lines
This is 1st line
This is 2nd line
This is 3rd line
for index in range(3):
line = foo.next()
print "Line No %d - %s" % (index, line)
foo.close()

Exercise

1. What is the usage of help () and dir () function in Python?

Answer: The Help () and dir () functions can be accessed from the
Python interpreter and used to view merge dumps of built-in
functions.

e Help Function: The help () function is used to display
document strings, as well as help with modules, keywords,
properties, and more.

e Dir Function: The dir() is used to display the symbols which
is defined.

2. What are negative indexes and where it is used?

Answer: The sequence in Python is indexed and consists of positive
numbers and negative numbers. The positive numbers use '0' as the

first index and '1' as the second index, so the process is done.

The negative index begins with '-1', indicating the last index in the
sequence, '-2' as the penultimate index, and the sequence going

forwards like a positive number.

Object-oriented Programming
Introduction:

The secondary philosophy behind the development of the Python language
was to create an easy-to-code object-oriented programming language that has
the capability of less development time with all the advantages of object-
oriented. Though using Python's object-oriented way of programming is

optional, but it is a good practice over procedural programming.

You can certainly use procedural programming practice with Python, which
allows you to develop pretty quickly. In practice, Object-oriented
programming requires a lot of pre-planning in the actual development of the
solution, hence it is used for the large projects. When the time for the solution
development is less, then top-bottom approach in writing Python scripts are a
better option. In some situations, if the pre-planning and program modelling
strategies are properly formed for larger projects, then development time

could be significantly reduced.

If you are not familiar with basics or object-oriented fundamentals, then it is
advisable to refer all the basic principles of object-oriented programming.
Before getting deep in the object-oriented programming, let’s get familiar

with various terminologies associated with it:

1. Class:
The class is a prototype, which is user-defined and specifies
a standard set of attributes. These attributes are methods,

instance variables, and data variables.

. Class Variable:

Class variables are the object or variables which are shared
in a particular class. These variables are declared and
defined inside the body of a class, but outside of method
present in the class. Generally, these types of variables are

less commonly used than instance variables.

. Instance:

A specific object class is called an Instance of that particular

class.

. Instance Variable:

The variables which are declared and defined inside the body of the
class method and its scope are only inside the method body.

. Object:

An object is the basic building block of any object-oriented
programming language. It is a particular instance of the data
structure that is defined by its class. The object includes

methods instance variables and class variables.

. Method:

The method is a small function or procedure defined inside a
class. These are the building blocks of any class that

implements certain logic.

. Inheritance:

Inheritance is one of the popular advantages of using an
object-oriented programming language. It is a process in
which the characteristics of a class is transferred to the other

class. The new class, which is derived from the former class,

is also known as the child class.

Now, let’s get started with the object-oriented programming in further

sections:
Creating a Class:

Classes are the user-defined prototypes with its attributes. To create a class in

the Python language. The following syntax is used:

class ClassName:
“Class Documentation string”

classAttributes

In the above syntax, the class is a statement that creates a class with
class name as className. The next line after the colon is for documentations
of class. The documentation string contains all the information about the
class in the double inverted comma. The class body has classAttributes and it

comprises of class variables, instance variables, and methods.
Example of Class

Let’s understand the fundamental of object oriented class with a simple

programming example.

Code

Program to create Employee Class
class Employee:
'Base class for Employee’
employeeCount = @;
def _ init_ (self, name, salary):
self.name = name
self.salary = salary
Employee.employeeCount += 1

def displayCount(self):
print "Total Employees are %d" ¥ Employee.employeeCount

def displayEmployee(self):
print "Name : ", self.name, " ,Salary :", self.salary

Creating fist object of Emplovee Class
employeel = Employee("Alex”, 8008)

Creating second object of Employee Class
employee?2 = Employee("Neo", 10008)

Displaying employeel and employee2 data
employeel.displayEmployee()
employee2.displayEmployee()

Displaying totoal number of employee
print "Totol Employee :%d" % Employee.employeeCount

Output

Mame : Alex ,Salary : 8000
Mame : Neo ,Salary : 10000
Totol Employee :2

In the above example, Employee class can have multiple attributes such as
Employee name, Employee salary, and their count, hence class allows the
programmer to specify the entity with its features. displayCount and
displayEmployee are the methods of the Employee class. Inside the
Employee class, employeeCount variable is instance variable as its scope is
inside the class only.

The method name with __init__ inside the Employee class is called the
constructor or initialization method whenever object of Employee class is

created, then its attributes are initialized with the specified arguments.

To create an object of the class, it can be called with its name and initialized
parameter is passed. In the above program, employeel and employee2 are
two objects of Employee class. To access the attributes of any class, it can be
used with className, dot operator, and attribute name. As you can see, to

call displayEmployee, method employeel.displayEmployee() is used.

The object-oriented programming philosophy helps in distributing the real
time entities as classes and allows the programmer to write modular code and

implement it for larger applications.

Exercise

1. What is object oriented programming?
Answer: OOPS is abbreviated as an object-oriented programming
system, in which programs are treated as a collection of objects.
Each object is an instance of a class.

2. Explain function overloading?

Answer: Function overloading is defined as a normal function, but it
has the ability to perform different tasks. Through the function input
and output types, you can create several methods with the same

name.

Code Optimization

Python is one of the most popular and widely used programming
languages for solving programming challenges. There can be many solutions
for the particular problem by using different logics, but the effectiveness of
any solution is measured in terms of time and memory consumed. If your
solution is giving correct output but taking a long time to run, then it is not
optimized, it is similar to memory consumption. Your program should be
consuming optimum memory. But there is always a trade-off between these
two parameters. Because when you try to write high-speed code, then it
increases memory consumption of the system and vice versa, but based on

the application requirements, one can find a well-optimized solution.

Creating a highly effective solution takes a lot of programming
experience and in-depth knowledge of the Python language. In the further
section of this chapter, we have discussed some techniques for finding an

optimized solution, they are as following:

e Use built-in function and library: Built-in function is really helpful
for optimizing any code. The interpreter does not need to execute
particular loops so it will give you fast results.

The packages are platform specific, which means if you are doing
string operation, then it is better to use Python packages to optimize
your code. For example, use existing module "collection" like

"deque" which is an optimized way while dealing with strings.

Code:

from collections [import deque
s = 'python'

d = deque(s)

d.append('y’)
d.appendleft('h')

print d

d.pop()

d.popleft()

print list(reversed(d))

Output:

deqUE([I'h‘? 1p1? 1}‘.‘? 1t1? 1h1? 101.?““‘?.1.3‘.‘1])
|n‘f 101? 1h1? 1t1l 1};1? ‘p1:|

Sort using keys: You can use the key parameter of built-in sorting,
which is a faster way to sorting
Code:

list = [1, -3, 6, 11, 5]
list.sort()
print list|

5 'python’
5 sorted(s)
print s

Optimize loop: You should write your code with timing parameters
in your mind, particularly when dealing with loops. Because Python

is designed to have only one way to do task.

Code:

s = 'pythonprogram'
slist = "!
for i in s:

slist = slist + i
print slist

string concatenation

st = "pythonprogram'

slist = '"'.join([1 for i in s])
print slist

Better way to iterate a range
evens = [1 for 1 in xrange(18) if i%2 == @]
print evens

Less faster
1=0

evens = []
while 1 < 16:

if 1L %2 == 0:
evens.append(i)
i+=1

print evens

slow

v = "ter’

s = 'python
print s

+ VvV + python'

fast
s = 'python %s python' % v
print s

Output:

pythonprogram
pythonprogram
[6. 2, 4, 6, B]

e Try multiple methods in coding: Always try multiple approaches
while creating an application because one may give you better results
than another. For the different inputs, it takes different times for
execution. For some particular set of inputs, your chosen solution

may be slow, you can decide as per your application need.
Code:

my dict = {'p':1,'r':1,'a':1,"'g':1}
word = 'pythonprogram'
for w in word:
if w not in my dict:
my dict[w] = B
my dict[w] += 1
print my dict

faster
my dict = {'F':3.'7":3;'4':3,"'§"':1}
word = 'pythonprogram'
for w in word:
try:

my dict[w] += 1
except KeyError:
my dict[w] = 1
print my_éict

Output:
A R R e e i | R B R A F 1 el TR e BT T B S R TR L AT
T et TR LS T A R RA-E O T TR IR R A L TR R R T

e Use xrange : This function is used to display a number by looping
because it returns the generator object. This function is used to
display only particular range on demand and hence it is known as
“lazy evaluation”.

But it can save your system memory because it will yield only

integer element at a time.

Code:

slower
x = [1 for 1 in range(90,10,2)]
print x

faster
x = [1 for 1 in xrange(6,10,2)]
print x|

e Use local variable: Python retrieves local variable faster than
retrieving global variable. Avoid global variable as much as you can.
If you are accessing any statement often, which is inside a loop, then
write it to a variable.
Code:

run faster
class Test:
def func(self,x):
print x+x

0bj = Test()
my test = Obj.func # Declaring local variable
M=
for i1 in range(n):
my ftest(i) # faster than Obj.func(i)

e Lambda Function: Lambda function is an anonymous function that
can be used with filter (), map () and reduce () function.
Code:

>>> f =lambda x,y: x/y
=>> f(1,1)
1

=3 I

Filter () —
Syntax:
filter (function, list)

First parameter of “filter” is function and another is list.

Code:

>>> f =lambda x,y: x/vy

>»> f(1,1)

1

>>> a = [1,2,3,4]

>>> p = map(lambda x:x*18, a)

=== print p

[18, 26, 30, 40]

>>> a = [10,20,30,40,50,60]

>»> p = filter(lambda x: x % 2,a)
>>> print p

>=> p
==> print p
[1, 3, 5, 7, 9]

-3

Map () -

Syntax:

map (function, list)
First parameter of “map” is function and another is list.

Code:

>>> f =lambda x,y: x/y

st F01 1)

1

== 3= [1,2,3.4]

>>> p = map(lambda x:x*10, a)
=>> print p

[10, 20, 30, 48]

-

Reduce () —
Syntax:
reduce (function, list)

First parameter of “reduce” is function and another is list.

Code:

>>> a = range(2,6)

>>> p = reduce(lambda x,y:x+y, a)
=== print p

14

=331 I

List: Use list instead of lengthy code. As it gives you the flexibility tc

eliminate a large number of lines from the program

Code:

ST
File "=stdin=", line 1
q=1[1]
A
IndentationError: unexpected indent
»»> 0 = []

»>»> for i in range(5,16):
for j in range(i*2,28):
wta g.append(j)
s>> print gq
[18, 11, 12, 13, 14, 15, 16, 17, 18, 19, 12, 13, 14, 15, 16, 17, 18, 19, 14, 15,
16, 17, 18, 19,16, 17, 18, 19, 18, 19]

>
Optimized way:

|:;5 a= [j for i in range(5,18) for j in range(i*2,100)]

¢ Dictionary: Use dictionary comprehension for optimization while
creating a dictionary.
Code:

>»>> d = {k: k*3 for k in range(1,5)}
>>> print d
Fiz 3. 2 6. 3 9, 4z 12}

=

e Use Import in proper manner: Sometimes you need a particular
package for a particular module so it is an optimized way if you
specify particular package and module.

Code:

Mormal way: from country import *
Correct way: from country.india import states]]

e Lazy Generator: If you are using range for finding some of 100
elements, then it will be waste of memory. You can use xrange for
optimization, as it generates each number in which sum will
consume to accumulate the sum.

Code:

>>> n=sum(range(100))
>>> print n
4950

> I

e Peephole Technique: It is a technique which is used to optimize
small segments of instruction from a program. The segment is called
as ‘Peephole' or ‘window’. It spots the instructions you can replace
with minified program or instruction.

Code:

»>»» ele = 'peephole’
>>> if ele in {'peephole’, 'demo’', 'optimization'} : print("TRUE")

TRUE

>3

In this example, we used the "in" operator to find particular
elements from the collection. Here, Python detects that the collection
will be used to verify the membership of the element. So it treats
these instructions as a constant operation regardless of the size of the

collection and it processes faster than tuples and lists. This method is

also known as membership test in Python.

Use Advance profile with C Profile: C profile is a part of packages
in the Python programming. You can use C profile in many ways
with your Python code. For example, you can wrap a function inside
run method to measure performance of the program or run the script
from command line with c profile as an argument.

Code:

>>> ele = 'peephole'
»>> 1f ele in {'peephole', 'demo', 'optimization'} : print{"TRUE")

TRUE
>»> import cProfile
>>> cProfile.run('10*18"')
2 function calls in 06.8080 seconds
Ordered by: standard name
ncalls tottime percall cumtime percall filename:lineno(function)
1 6.080 B.060 0.0808 0.000 <strings:1(<modules)

1 6.0080 B.060 0.600 6.080 {method 'disable’' of '_lsprof.Prof
iler' objects}

== I

You can look at a result and find out the area where you think
you need to improve. You can attach C profile while running script
too.

Interpret C Profile result: It is even more important to find the
culprit in analyzing the output. If you are able to find key element
which constitute the CProfile report, then only you can make
decision .

1. ncalls — Number of calls made.

2. tottime — time spent in given function.
3. percall — Represent quotient of “tottime” divided by “ncalls”.
4. Cumtime — cumulative time in executing function.

5. filename_lineno (function) — Point of action in a program.

e Optimization using IF statement: Most of the programming
languages allow for laziness — if evaluated, Python does, too. This
means that if you add the "AND" condition, not all of the conditions
will be tested when anyone is true unless it is an error.

You can utilize this technique by normal adjustments of your
current code. For example, if you are searching for a specific pattern
in a program then you can reduce the scope with the use of "AND"

condition.

Exercise

1. How does memory management works?

Answer: Python memory is managed by Python's private heap space.
All Python objects and data structures are in a private heap.
Programmers do not have permission to access this private heap; the

interpreter is responsible for handling this Python private heap.

The Python heap space allocation for Python objects is done by
the Python memory manager. The core API provides some tools for
programmers to write code. Python also has a built-in garbage
collector that reclaims all unused memory and frees memory and

makes it available for heap space.

2. Why all memory is not de-allocated in Python?

Answer: Whenever Python exits, especially those Python modules
that have circular references to other objects or objects referenced
from the global namespace are not always de-allocated or freed. On
exit, due to its own efficient cleanup mechanism, Python will try to

release / destroy all other objects.

Useful Python Libraries

Throughout this book, we have discussed various features of the Python
language and its utilities, there are almost limitless uses of Python currently.
Its uses in the various domains are due to its quick and easy programming
approaches. Various libraries present until the date, enrich its usability. You
could name any domain for programming and its libraries are available on the
internet. It is just matter of importing those libraries in your code and using

its modules for your program application.

We already discussed Python libraries related to mathematical and
scientific application in "Mathematical Aspects". Let's see some more Python
libraries and its applications a more in-depth. Meanwhile, you will get to

know many ways to use it for your programming tasks. Let's get started!
Tkinter Library:

This library is built-in present with all the Python packages, so you don't need

to install it separately on your system. As we have discussed in the chapter

(13

”. Tkinter’s name is shorthand name for interface to Tk. This is one of
the many GUI libraries for Python. To import this library into your program,

you can use the following line:
$ import Tkinter

Or

$ from Tkinter import *

In case if you want to include only some module from it, you can use:

$ from Tkinter import moduleName

Where moduleName is any module name present in the Tkinter, the available

modules are discussed in the further sections.
Uses:

You can use it to create your Graphical User Interfaces such as forms, button,
checkboxes, and many other GUI features. Front-end designing is important

aspects when creating any application. This library helps you in it.
Modules:

ScrolledText: to create a text widget having a scrollbar with it.
tkColorChooser: It allows the user to select a particular color.
tkCommonDialog: to create dialog box of different types.

tkFileDialog: To provide a dialog box to select or save the file by the user.
tkFont: To use the different font for GUI.

tkMessageBox: To create message boxes.

tkSimpleDialog: It provide primary dialog box functions.

PyQT Library:

PyQt is the most popular graphical user interface libraries, which is
developed by Riverbank Computing Ltd. The library is used not only for
computer applications, but also in embedded applications. There are many

version of PyQT has been released.

To import this library in your code, you need to install PyQT using pip

installer on your system.

Uses:

The uses of PyQT library are diverse. Some of the very complex applications
(including Embedded Applications) using it for the development of their

graphical user interface.
Modules:

There are hundreds of modules available from PyQT library; you just need to
use particular modules as per your applications. You can go to the link for

exploring its documentation:

http://pyqt.sourceforge.net/Docs/PyQt5/
Some of the general PyQt modules are as follows:

QtGui: It is used for system integration, handling GUI events, 2-dimensional

graphics, basic images, text, and fonts.

QtWidgets: This module comprises of almost all classic user interface

elements such as button, textbox, list wheel, etcetera.

QtFileDialog: This module contains all the classes and function related to

selection and saving of files by the user.
Requests Library:

Requests is a very simple and quick HTTP library which was developed by
Kenneth Reitz. It is the must known library for any Python programmer. Its

beloved features attract every web Python developer.

To install it on your system and use it with your Python program, you need to

setup it using pipenv.

Uses:

http://pyqt.sourceforge.net/Docs/PyQt5/

This library is useful for requesting URL in an automated way. There
are various features available with it, such as network pooling, connecting to
international domains and URLs, browser type SSL verification, and

automatic decoding of content.

Modules:

Request: this method helps in sending a request to URL specified with it.
Head: this method is used to send the HEAD request.

Get: this method sends a GET Request.

Put: this method helps in sending PUT request.

Patch: this method is used to send PATCH request to URL.

Delete: this method is used to send DELETE request.

Exception:

There are many exceptions that occur while working with requests library.

Let’s understand these exceptions and there causes:

RequestException: Whenever there are ambiguous exceptions during the

request.
ConnectionError: Whenever there is connection error occurs.
URLRequired: Whenever the correct URL is required for requesting.

ConnectionTimeout: Whenever a timeout occurs when connecting to a

remote server.

HTTPError: Whenever HTTP error occurs.

SQLAIchemy Library:

It is one of the important Python database access libraries. It includes all the
tools required for accessing SQL database and mapping to it. It provides
flexibility and power to the developer for writing high-performance and

efficient database program.

There are many advanced level database access functions available in this
module. To install this library on your system, you need to take help from pip

module.
Uses:

The fundamental utility of SQLAlchemy is to link your Python application to
SQL database and access it using all the powers of SQL. The most popular
feature of the SQLAlchemy library is ORM (Object-Relational Mapper). It is
an optional component provided by this library which gives the data mapper
pattern that allows your program to map to the database in multiple ways. If

you want to explore more of its uses, you can visit
http://www.sqlalchemy.org/

Modules:
SQLAIchemy has a rich set of modules in it, which gives your power to link

and access SQL data in a flexible way. Some of its modules are as follows:

Query: Query is the basic source of all the SELECT statements in the SQL

database. This method allows you to generate a query for the database.

Add_column: It helps in adding a column expression with the list of query

results.

Add_Columns: It helps in adding multiple column expression with the list of

query results.

http://www.sqlalchemy.org/

Add_entity: It adds a mapped entry in the list of result.

All: it helps in returning results generated by the query.

As_scalar: It returns the whole SELECT expression given by the query.
Autoflush: It gives a query with particular set of "autoflush”
Column_description: it returns meta-data for the returned query column.
Count: It gives a count of rows from the returned query results.

Delete: it helps in deleting the bulk data from the query results.

RASPBERRY PI

Step-by-Step Guide To Mastering Raspberry PI 3
Hardware and Software

Richard Ray

© Copyright Richard Ray 2018 - All rights reserved.

If you would like to share this book with another person, please purchase an additional copy for each
recipient. Thank you for respecting the hard work of this author. Otherwise, the transmission,
duplication or reproduction of any of the following work including specific information will be
considered an illegal act irrespective of if it is done electronically or in print. This extends to creating a
secondary or tertiary copy of the work or a recorded copy and is only allowed with express written
consent from the Publisher. All additional right reserved.

TABLE OF CONTENT'S

CHAPTER 1

INTRODUCTION TO RASPBERRY PI

CHAPTER 2

GETTING STARTED WITH THE RASPBERRY PI
CHAPTER 3

INTRODUCTION TO EMBEDDED LINUX

CHAPTER 4

WORKING WITH ELECTRONICS

CHAPTER 5

PROGRAMMING A RASPBERRY PI

CHAPTER 6

INPUT AND OUTPUT ON A RASPBERRY PI
CHAPTER 7

INTRODUCTION TO COMMUNICATION PROTOCOLS
CHAPTER 8

PYTHON PROGRAMMING FOR THE RASPBERRY PI
CHAPTER 9

FINAL PROJECT

Chapter 1

Introduction to Raspberry Pi

What you will learn in this chapter:
@ Raspberry Pi boards

® Raspberry Pi hardware

What you will need for this chapter:

@ Raspberry Pi board

The Raspberry Pi was developed to encourage children who want to learn about computers and
programming. The Raspberry Pi is one of the most popular devices in the system-on-a-chip (SoC)
market, thanks to its rapid development and the low cost, which starts from just $5 for the Raspberry Pi
Zero model. In 2015, more than five million Raspberry Pi boards were sold. The Raspberry Pi boards
are very complex, but the ability of the Raspberry Pi to run embedded Linux makes the device both
powerful and accessible. Using Linux on embedded systems makes the development very easy,
especially if we develop applications for smart things, the Internet of Things (IoT), robotics, smart
cities, and cyber-physical systems. Thanks to the integration between Linux software and electronics,
this board represents a paradigm shift in the development of embedded systems. You can use the
Raspberry Pi not only in embedded systems development but also as a general purpose computer.

As we said before, the Raspberry PI can be used as a general purpose computing device. Because of
that reason, it may be used to introduce computer programming to its users, but most of the developers
use it as an embedded Linux platform.

Most of the Raspberry Pi models have the following features:
- Low cost, starting from $5 to $35

- Contains a powerful 1.2 GHz ARM Cortex — A53 processor which can process more than 700 million
instructions per second

- Has many models that are suitable for different applications
- They save a lot of power since they run at 0.5W to 5.5W

- If you need support for any project, you can easily find a solution thanks to the huge community of
innovators

RPi 3

RPi Zero

IGPIO headers ane
uApopul Med)

s
W
Ll
]
-
®
®
L
=
=
=
-
&
-
=
-
=
-
-
L]
]

LTI T]

- It can run a Linux operating system, so you can install open source libraries and many applications
directly to it

It has Hardware Attached on Top (HATS)

This actually an impressive feature because you can extend the Raspberry Pi functionality using HAT
that then connects to the GPIO header, so you can design your own HATs and attach them to your
Raspberry Pi header.

If you want to learn about electronics, programming, and the Linux operating system, you should use
the Raspberry Pi platform especially for IoT applications and robotics.

The Raspberry PI is better than other embedded Linux devices and more traditional embedded systems,
such as the Arduino, AVR, and PIC microcontrollers, is when you use Linux for your project. For
example, if we develop a smart home system using the Raspberry Pi and you want to make information
on the Internet, you can use and install the Nginx web server. After that, you can use a server-side
language like PHP, Python, Perl, or any other programming language you may prefer. Also, you may
want remote shell access, so you could install a Secure Shell without any effort by using the command:
sudo apt install sshd. This will save you time.

On Linux operating systems you will find device driver support for many USB peripherals that makes
the installation of any USB device so easy like camera, Wi-Fi adapters, and much more, instead of
complex software drivers.

The Raspberry Pi can also play HD videos because it has a Broadcom BCM2835/6/7 processor used for
multimedia applications, and it also a has a hardware implementation of H.264 MIPG-4 and MPG-
2/VC-1 decoders and encoders.

If you are going to develop applications for a real time system then the Raspberry Pi will not be a good
choice. For example, if you want to use a sensor to get some values every on millions of a second, it
will be not easy to interrupt the system, but you can connect them with real-time micro-controllers
through the buses like UART, 12C and Ethernet.

Raspberry Pi Hardware

The heart of every Raspberry Pi board is the Broadcom BCM2835, BCM2836, and BCM2837 system-
on-a-chip (SoC). Raspberry Pi models are available for example (the Raspberry Pi A+, B+, 2, 3 and
Zero), but I recommend purchasing the Raspberry Pi 3 because it has a multi-core processor.

Raspberry Pi Versions

e If you want to use the Raspberry Pi as a general purpose computer, you should consider the
Raspberry Pi 3. The 1 GB of memory and 1.2 GHz processor provides the best performance compared
to the other boards.

e For applications that interface electronics to the Internet on a network, use the Raspberry Pi 3 2 or
Raspberry Pi B+.

e If you want a small board with wireless capability , the best choice would be the Raspberry Pi Zero

Wetumir | Ll Lk} Ll [kt W dwio L] £
h Fh # " Eibapengl arwr P g g rdrg b
B it e i
Friaw i A §3:] W o i D | K e |
Frosesiar™ BOWDHNT gid e BEMCHNG guad 108y AR [BN BN, R
[IETY LY Sy i AR T 1yinan B Iotan Al LiPam & Kt Lisim ARRAE [T
el 3 Fiew L] e Ay G LEiLE Ry
W rrory LOE (1) SLINE et] IR Wi Sirnas
Twmic s gt LFW o o 5w LW e o A 18] 1% jep 0 L5 W0 TW [um fo L3 LWiapio L3W] LW iep o LYW 1% | op o 13WI
Ll Pty & 4 * 1 1onE i Wi P
L rreet 1o |0l W T O LD W 126100 Alman L) e Y M0 W)
PERY e
g LN] L] e Sl Lo R wa a5] AGE AT
Vatea A i iy Hik e A HIRA IS g
Jimgar, ie vregEn | L, B e RCA viden Ty DAL wid s
haites SR At S a0 Ealog R iR vl 3 L Lere ek | e w il able | b A IR
[} Beidl s Videad e IV ARamissgie C o Procesids & MO RS | 1 U0
[R T i e i L5 L [+ TFETET
Dy (581 1 o e o B8 2w agr
[1L T o B a0 i i Bpm B wiawigr
Unsge Cre g Grepral purpone Lo parpose bailabiv by plaggeng ha
compumng gk oegubng Ieiemet (R wuind BB ssirg &
applicamora DO LODHE sorvescior
[ie— [T
T T Fale] bl sevas s

itpitee Th UM & & gusd s AR |

10 kb At - B e B

Now let’s take a closer look of the Raspberry hardware.

{a) 1 GHr Broadcom BCM2RS ARM 11 Sl §12MB LPDDR2 (on top of processor)
AD i [J = 200 GO bseador -

AEESAEEFR S R RERNEREY

AL TERR SRR NT -Ttmm"ﬁn‘

unpopulated compoiie

widen header ’

i HOMI WY power
micro USE peo LISE micro
(B) 4200 MMz Broadcom BCMISIT ARM Corzew-AS3 Sof
.I"-._' grm button

-

A0 per |2 = 200 GO il

E 4 = LUSE ports
E
E
E 1T
[=] LANGS14
g 5
|
28
‘ - 107700 BaseT
Ettuprmant
? ConnecTon
- 1
i 5V powier HDMAI A-pole 1.5mm jack (audsn snd video)
& USE micra 5] conmnector

1. Processor : The Raspberry Pi uses the Broadcom BCM2835/BCM2836/BCM2837 processor.

2. Memory: The amount of system memory affects performance and the use of the Raspberry Pi as a
general purpose computer. Memory is shared between the CPU and GPU (256 MB to 1GB DDR).

3. Storage: The Raspberry PI boards all boot from a micro SD or SD card, with the exception of the
computer module. It has an on-board eMMC, which is effectively an SD card on a chip. The Raspberry
PI 3 uses a friction-fit slot, rather than a click in/click out slot

4. Power: A 5v supply is required that can ideally deliver a current of at least 1.1A and 2.5A for the
Raspberry Pi 3. Be careful not to continue the USB hub and USB power inputs on the Raspberry Pi
Zero.

5. Video Out: Used to connect the Raspberry Pi boards to a monitor or television. The Raspberry Pi
models support 14 output resolutions, including full-HD (1920 x 1080) and 1920 x 1200.

6. GPIOs: 40 pins that are multiplexed to provide access to the following features (2x 12C, SPI bus,
UART, PWM, GPCLIK).

7. USB: There is an internal USB hub on Raspberry Pi models with varying numbers of inputs.
8. Reset: Can be used to reset the Raspberry Pi.

9. Audio and video: This provides composite video and stereo audio on the Raspberry PI.

10. Power LED: Indicates that the board is powered.

11. Activity LED: Indicates that there is activity on the board.

12. USB to Ethernet: This IC provides a USB 2.0 hub and a 10/100 Ethernet controller.

13. Network: 10/100 Mbps Ethernet via a RJ45 connector.

14. Camera: The Raspberry Pi has a mobile industry processor interface camera serial interface, a 15-
pin connector that can be connected to a special purpose camera.

15. Display: The Display Serial Interface is an interface that is typically used by mobile phone vendors
to interface with a screen display.

@i~ W

Questions for Chapter 1

What is the Raspberry Pi?

Describe the difference between the different Raspberry PI boards.
What are the HATSs?

Describe the usage of the display on the Raspberry Pi.

Is the Raspberry Pi board good for real time system? Why or why not?

Chapter 2

Getting Started with the Raspberry Pi

QO @ -

-

o &\,\

What you will learn in this chapter:
@ Understanding Linux

® Raspberry Pi software

What you will need for this chapter:
@ Raspberry Pi board

® USB cable

@ Micro-SD card

@ Serial cable or Wi-Fi adapter

Linux has many distributions (also known as versions) of its operating system. There are many
different Linux versions such as Debian, Red Hat, or OpenSUSE that are mainly used on servers, but
versions like Ubuntu, Fedora, or Linux Mint are used for desktop users. But you should keep in mind
that they all have the same Linux kernel that was created by Linus Torvalds in 1991.

For an embedded system we will choose a distribution based on the following:

e The stability of the distribution

e The package manger
® The level of community support for the device used

e The device drivers support

Linux for the Raspberry Pi

As we said before that every Linux version has its own tools and configurations that result in a quite
different user experience, the main open source Linux versions used on the Raspberry Pi board include
Raspbian, Arch Linux, and Ubuntu.

Raspbian is a version of Debian; there are three versions of Raspbian on the Raspberry Pi website:

e Raspbian Jessie: An image based on Debian version 8.

e Raspbian Jessie Lite: A minimal image based on Debian Jessie, but with limited desktop support.
e Raspbian Wheezy: An older image based on Debian version 7.

e The Ubuntu distro (a distribution) is very close to Debian as described on the Ubuntu website
“Debian is the rock upon which Ubuntu is built.”

e Ubuntu is one of the most popular distributions because it has excellent desktop driver support, is
easy to install, and is more accessible to new users.

e Arch Linux is a lightweight Linux version targeting competent Linux users. Prebuilt versions of the
Arch Linux distribution are available for the Raspberry Pi, but it has less support for new Linux users
that use the Raspberry Pi platform.

e The Raspberry Pi Foundation developed a Linux installer called NOOBS. It contains Raspbian but
also provides the download and installation of other Linux distributions as well.

Let’s create a Linux SD card image for the Raspberry PI

e If you want to set up an SD card to boot the Raspberry Pi, just download a Linux distribution image
file from www.raspberrypi.org/downloads and write it to an SD card using any image writer.

Connect to a Network

There are two ways to connect the Raspberry Pi to a network using regular Ethernet or an Ethernet
crossover cable.

Advantages Disadvantages ‘

You will have control You will need administrative control
over IP address settings

You can connect many You will need a source power for the
boards Raspberry Pi over Ethernet

http://www.raspberrypi.org/downloads

The Raspberry Pi can The setup is more complex for
connect to the Internet beginners

without a desktop

computer

e The first thing you should do is find your Raspberry Pi on the network. By default, the Raspberry Pi
request a Dynamic Host Configuration Protocol (DHCP) IP address. This service is provided by the
DHCP server that runs on the integrated modem — router —LLAN.

You can use any of the following methods to get the Raspberry Pi's dynamic IP address:

e Using a web browser: write 192.168.1.1, 192.168.0.1 or 10.0.0.1. Log in and look under the menu
"Status" for the DHCP Table. You should see an entry with the details for the IP address, the MAC
address, and the lease time remaining for a device with the hostname Raspberry Pi.

e Using a port scanning tool: Use a tool such as nmap under Linux or the Zenmap GUI version
available for Windows. You will search for an entry has an open port 22 for SSH. It identifies the range
of MAC addresses to the foundation. You can ping it to test the network connection.

Let’s use the other type which is the Ethernet crossover cable

An Ethernet crossover cable is a cable that has been modified to enable similar devices to connect
without using a switch.

Advantages Disadvantages ‘

In case you don’t have access to When your desktop machine

the network , you can still connect | has only one network

the Raspberry Pi adapter, you will lose access
to the Internet

Raspberry Pi can have Internet Raspberry Pi will need a

access if you have two network source of power

adapters and sharing is enabled

You will have a stable network You may need a specialized

setup crossover cable

Here are the steps when you use the Windows operating system

1. Plug one end of the cable into the Raspberry Pi and the other end into the laptop socket.

2. Turn on the Raspberry Pi by attaching the micro-USB power supply.

3. Open up the Control Panel, choose Network Connections, then select two network adapters
(wired and wireless). At the same time, right click and choose bridge connection.

4. Restart the Raspberry Pi. You can use a USB or TTL serial cable to do this, or use the reset
button directly, then your Raspberry Pi will get an IP address from the DHCP server.

s wany Rautes WAP/DIHCP serves
-+ * LT — Intermet opiional
- I o
o= ; WLAN S
(] =y
[[% 192.1868.1.1
¢ Lapiop T 3
—

AP

1921680115 1921681111 16 168.1.4

Communicating with Raspberry Pi

After you networked the Raspberry PI, the next thing that you will need to do is communicate with the
Raspberry Pi. You can connect the Raspberry Pi using a serial connecting over USB to TTL or using a
network connection as we did before. It is a fallback communication method for when something goes
wrong with the software services on the Raspberry Pi board. You can also use it to configure wireless
networking on the Raspberry Pi.

To connect the Raspberry pi through the serial connection, you will need terminal software; you can
choose PuTTY or RealTeerm on Windows. If you are using a Linux OS, press Ctrl + Alt+T then type
gnome-terminal under Debian.

To find the port number, open the Windows Device Manager, and find where the device is. It is listed
as COMx.

Set up the connection speed; by default it will be 115,200 baud to connect the Raspberry Pi.

Then set the following values: bits = 8; Stop bits=1; Parity=none; and Flow control = XON/.XOFF.

e st e s PuTTY

-y b, e e e
S e

Connecting the Raspberry PI via SSH

Secure Shell (SSH) is a useful network protocol for secure encrypted communication between network
devices. The SSH is running on port 22, and you can also use Putty to connect the Raspberry PI via
SSH.

Basic Linux Commands

| and De ptio
More/etc/issue Returns the Linux Version
pp —p $% Returns the shell you are suing
(like bash)
whoami Returns who you are logged in as
uptime Returns how long the system has

been running

top Lists all of the processes and
programs executing

File system Commands

Name Command | Information Example

Current pwd Show the working pwd -p
directory directory

Make a
directory

Copy a
directory

Get the
calendar

mkdir

cp

cal

Create a directory

Recursive copy

Display the calendar

mkdir new

Cp new
new?2

cal 72017

Questions for Chapter 2

. Describe some of Linux's features.

. What is the SSH protocol?
. List the advantages and disadvantages for the crossover Ethernet cable.

. Which command you will use to show the current working directory?

Chapter 3

Introduction to Embedded Linux

What you will learn in this chapter:
@ Raspberry Pi boards

What you will need for this chapter:
@ Understanding Embedded Linux

® More Linux commands

® Intro to Git

First of all, the term embedded Linux is technically not one hundred percent correct because there is no
special Linux kernel for embedded systems; it’s the same Linux kernel for any device.

When we use the term embedded Linux, we mean that we use the Linux operating system on embedded
systems, but embedded has different characteristics for the general purpose computing devices such as
the following:

- Embedded systems have specific and dedicated applications
- Have limited memory, power, and storage capability
- They are almost always part of a larger system that may be linked to sensors or actuators

- They are embedded in automobiles, airplanes, and medical devices

- Works in real time (the outputs are directly related to its present inputs)

You can see embedded systems everywhere in everyday life. They can be found in vending machines,
household appliances, smartphones, TVs, cars, parking systems, advanced driving assistance systems,
and much more).

Advantages and disadvantages of Embedded Linux

e The Linux operating system is an efficient and scalable OS that can run on everything from low—cost
devices to expensive large servers.

e Linux has a huge number of open source applications and tools.
e Open source = free.

e Its only disadvantage is that it cannot deal with real time applications due to the operating system
overhead. So if you develop fast- response applications , like analog signal processing , embedded
Linux will not be the best choice , but in special cases it can handle the real time systems using
embedded Linux.

Booting the Raspberry Pi

If you boot your desktop computer, you will see the Unified Extensible Firmware Interface (UEFT),
which provides legacy support for BIOS (Basic Input/Output System) services. The Boot menu
displays the system information and you can change the setting by pressing any key. UEFI tests the
hardware of your computers like the memory, the hard disk, and then loads the operating system from
the solid state drive (SSD). When a desktop computer is powered on , the UEFI/BIOS performs these
steps:

1. Takes control of the processor of your computer
2. Tests the hardware components

3. Loads the operating system from your hard drive

Raspberry Pi Bootloaders

Like any embedded Linux device, the Raspberry PI does not have a BIOS by default. Indeed, it uses a
combination of Bootloaders. Bootloaders are programs used to link your hardware to your operating
system.

® Check the controllers such as the memory, I/O
e Prepare the memory for the operating system

e [.oad the operating system passing the control to it

In the following illustration you can find the sequence of the booting process on the Raspberry Pi.

Power is applied or the CPU invokes the reset vector to start
the program counter at a defined location in the boot ROM.

Calls the first user-space process /sbin/init (systemd init).
Moves from kernel context to wser conteut.

e Also, you can find the same information using the command dmesg | more in the terminal.

Kernel and User Space

e The kernel space is the area that the Linux kernel runs in. It’s an area of the system memory, but the
area that regular applications run in is called user space, and there is a hard boundary between the
kernel and the user space; this is to prevent the kernel from crashing, in case the user wrote bad code.

e The Linux kernel has the full access of the physical recourse, including memory on the Raspberry
PI board.

user-level programs

fsbinfinit usercode Linux terminal

GNU Clibrary (glibc)

system call interface
kernel services
device modules & drivers

More commands on Linux (some system commands)

systemct1 : Lists all running services.

systemect1 start ntp: Starts a service. Does not persist after reboot.

systemct1 stop ntp: Stops a service. Does not persist after reboot.

systemct1 enable ntp: Enables a service to start on boot.

systemct1 disable ntp: Disables a service from starting on boot.

systemct1 reload ntp: Reloads configuration files for a service starting on boot.

e The Super User on Linux = the system administrator who has the highest level of security access to
all commands. You can use the terminal as a super user by typing the sudo passwd root command.

Let’s create a new user on the Raspberry Pi
Called USER

Open the terminal window and write the following commands :

pi@erpi- $ sudo adduser USER

Adding the user ‘USER’ . ..

Adding new group ‘USER’ (1002) . ..

Adding new user ‘USER’ (1001) with group ‘USER’ . ..
Creating home directory ‘/home/USER’ . ..

Copying files from ‘etc/skel’ . . .

Enter new UNIX password: enter your password

Retype new UNIX password: enter your password

Passwd: password updated successfully

Git version control

Git is a system that allows you to track your changes of the software you are developing.
There are two types of version control systems:

e Distributed: Like Git. Using such systems, you cannot pull down changes but you can clone the entire
repository. "Clone" means copy, and it can become the master copy if required.

e Centralized: Like Apache (SVN), works on systems like that where you will find a master copy of
your project, and then you can pull down changes.

For more details you can check out git.kernel.org

E

Questions for Chapter 3

What is embedded Linux?
Create a user called “your name” on the Raspberry Pi.
Describe the concept of version controls and its types.

List the sequence of the booting process on the Raspberry Pi.

Chapter 4

Working with Electronics -

What you will learn in this chapter:

® Raspberry Pi boards

What you will need for this chapter:

® Understanding the basics of electronics components

® Interfacing electronics with the Raspberry Pi

Electronics components

Digital Multimeter

DMM is an electrical device used to measure the voltage, current, and resistance of a circuit.
If you don’t have one, buy one that has the following features:

e Auto range: To automatically detect the range of the measurements.

e Auto power off: To save power and not waste your battery.

e True RMS: A multimeter with this feature uses real calculations to analyze phase-controlled devices
like solid state drives.

Introduction to electric circuits

e Ohm’s Law—» V=IXR
This is the most important equation you will need.

e V for Voltage . Voltage is the potential difference between two points on a circuit. For example, if yoi
have a buffer tank of water which is connected to the tap, water will flow if you turn on the tap because
the height of the tank and the gravity, but if the tap was at the same height as the top of the water tank,
water wouldn't flow because in this case there is no potential energy. Voltage also exhibits the same
behavior; if the one side has a higher voltage than the other side , the current will flow across the
component.

o I for Current. Measured in amperes (A), current is the flow of the electrical charge. Like in the water
tank example, the current will be the flow of the water from the tank to the tap.

e R for Resistance (R). Resistance is measured in ohms (Q2), and is something that reduces the flow of
current through the dissipation of the power; power(P) in watts(W), P=V X L.

For example if you want to buy a resistor that limits the current to 100mA using a 5v supply, you can
calculate it as the following R =V
R/(IR=5V)/(100 mA) = 50 L, and the power will be P = VI = 0.5W.

® The total resistance of the series resistors = R1 + R2 + ... + Rn
® The voltage across the same resistor V supply= Vrl + Vr2 + + Vr3
Let’s implement Raspberry Pi circuits on a breadboard.

We will use a breadboard for prototyping circuits, and in the next circuit we will use two horizontal
power rails for 3.3V and 5V power. The Raspberry Pi GPIO headers consist of male pins, so you will
need to use female jumper connectors for wiring the circuit.

5V powar rail resisien is badly plaged haned)

ey i

—
m ilil..'iii'l!‘i - .

CLEES

T T | B
ﬁ HHHHE : ..:EEEEE:I“ sanaiaanie
2 s s r

by B P b

LU \'

= {fmm

-

grounad rsl — LY pewwn vl 1'.'q""'lmu:u.I:m'ldl\::!J.'rllﬂl‘vl.-r-;n:-|r\1.-~‘1'u--l'|h-e¢|:|||w-lt-rll

e Connect the circuit as shown in the above figure.

Digital multimeters and the breadboard

e We can measure the voltage on the circuit by connecting the multimeter in parallel (black probe in
the COM).

e If you want to measure the current on the circuit you should insert the multi-meter between the
o mkE Yy

maasure DC voltage (DCW) maasure DC cerent (DCA) FTHISLINE TSR ’

| [este)iaas sasalroore) sail senes)3 Saa(rconcls aasas saes
:Illil!l Ii!llil!ll IEI‘Ii’il'l!llil*lllli.lll!:

FaHId
s wt &
LE L LR

[

ARCDE

-
| mmmmw

components

e A voltage regulator is a device that takes the varying input voltage and outputs a constant voltage, the
Raspberry Pi B+ and Raspberry Pi 2/3 models have a dual efficiency PWM DC TO DC converter that
can apply different fixed voltage levels on-board if there is a 5v, 3.3v and a 1.8v output. You can use
the 5v and 3.3v on the Raspberry Pi GPIO headers, and the board can support up to 300mA on the 5v
(pins 2 and 4).

And 50mA on the 3.3v pins (pins 1 and 17).

e If you want a larger current, you can use an external regulator which is used for components like
motors.

A diode is a semiconductor that allows the current to pass in one direction.

Anode Cathode
(+) (-)

Light Emitting Diode (LED)

A light emitting diode is a semiconductor-based light source used mainly for debugging purposes.

+33V

*20%

fiat odge
ancelad+) cathade-)
KgaT ware shorter wine

Capacitor

A capacitor is an electrical component used to store electrical energy.

- ~0
[3 4 F|,|r- : e
Ceramic Electrolytic sl sen

e The first number is the first digit for the value.

® The second number is the second digit for the value.
e The third number is the number of zeros.

For example:

104 = 100000pF = 100nF = 0.1pF

Transistors

Transistors are one of the core components of any microprocessor or any electronic system. We use
transistors to amplify a signal on or off. You can also use it as a switch.

NPN | - ; --+ -{BJT Packages } - - - - - - {[NPN Charactendics]- - -
Coolnctor (L : : ' E E Vir = Vien « Ve c
Base (B} ' e l‘
[Erraitier {E§
p | : §
B 8

B 'L bl TOSZAMC s diflerant &
¥ . 0 i ¥
.- ! sy Chesch Datasharts gra

Questions for Chapter 4

Explain Ohm’s Law.
What is resistance?
What are the benefits of using regulators?

Describe how a diode works.

Chapter 5

Programming a Raspberry Pi

MWHI—IU\—I-\"\-"

.Mi ,_{]-hjef,t...:_. an .

2L, shél g VB= 5%
C+w+mc e o

NERan iﬁf:lava

N L

o Pythun -

What you will learn in this chapter:

® Programming the Raspberry Pi using different languages
@ The difference between the compiler and interpreter

@ An intro to Python programming

What you will need for this chapter:

@ Raspberry Pi board

® Resistors, a breadboard, LEDs, transistors

Introduction

In this chapter we will use many programming languages for the Raspberry Pi, including scripting and
compiling languages. Take a look at the structure and syntax of each language and the advantages and

disadvantages of each language (with examples), but we will mainly focus on the Python programming
language.

G+ a pthhonW

e —— Wizual Base

FROHER A MR

Jﬂ'u'aﬂcript LANGLAGE

Any programming language available on Linux will be also available on the Raspberry Pi, then you
can choose the suitable language depending on the kind of application you are developing.

If you would like to do any of the following:
e Write device drivers for Linux

e Develop graphical user interfaces

e Design web applications

e Design a mobile application

Each choice will impact the option of the suitable language needed for that particular task, but there is a
difference between the development for embedded systems and the development for other platforms
like desktop, web, or mobile applications when you are developing for the embedded system. You
should keep the following in mind:

® You should write clean code.

e You should optimize the code only if you complete it.

e You should have a good understanding of the hardware you are developing on.
Languages on the Raspberry Pi

By now you must be thinking, “What programming language should I use on the Raspberry Pi to
guarantee the best performance?" Actually, this is a fairly difficult question to answer because, as we
said before, it depends on what type of the application you are developing.

e Interpreted: The source code won’t be translated directly to machine code, but the interpreter will
read your code and then execute it line by line.

e Compiled: The compiler will translate the language directly to the machine code (0s and 1s).

e JIT: Just in time compiled means it has the feature of the compiled language, which is translating the

source code directly into machine code. It also has the interpreter language, which is translated into the
code line by line.

Also you may use Cython, this allow you to generate C code from your Python code. We will show
some examples using Cython and the extended version of Python.

Write the following commands on the terminal if you want to set the CPU frequency.
$sudo apt install cpufrequtils

$cpufreq-info

Set clock freq write the following commands.

$sudo cpufreg-set -g performance

$cpufreq-info

$sudo cpufreq-set —f 700MHz

$cpufreq-info

Example: Driving an LED with Raspberry Pi pins using transistors (wiring).

LED BCS47

Example: Driving an LED with Raspberry Pi pins using transistors.

After wiring the circuit as shown, you can use Linux to control the Raspberry Pi pins with the
following code:

$ cd /system/class/gpio

/system/class/gpio $ s
/system/class/gpio $ echo 4 > export
/system/class/gpio $ 1s
/system/class/gpio $ cd gpio4
/system/class/gpio/gpio4 $ Is

Now it’s time to control GP104:
/system/class/gpio/gpio4 $ echo out > direction
/system/class/gpio/gpio4 $ echo 1 > value

/system/class/gpio/gpio4 $ echo 0 > value

A scripting language is a type of computer programming that is used to write scripts that are interpreted
directly with no compiler.

There are many types like:

e Python : It’s a great and very easy language to learn and use for scripting and object-oriented support
features.

e Bash : A good choice for short tasks and you don’t need advanced programming structures.

e Perl : You can use this language for text or process data. It allows you to write code in object-orientec
paradigms.

e Lua : This scripting language is used a lot with embedded applications. It is a lightweight language
and supports object-oriented programming styles.

A s o--.

%“m

Example: Drive the LED using Bash.
LED-IO =5 # use a variable called LED with value 5
Function blinkLED

{
Echo $1 >> “/sys/class/gpio/gpio$LED_IO/value”

}

If [$# -ne 1]; then

echo “No command has been entered”.
echo “ on or off ”

echo —e ” setup the LED ”

exit 2

if

echo”The command has been entered is $1”
if [“$1” == “setup”]; then

echo “IO $1”

echo ”the LED is on”

echo $LED_IO >> “sys/class/IO/export”
sleep 1

echo “away” >> “sys/class/IO$LED_IO/direction”
elif [“$1” == “on”]; then

echo “LED is on”

blinkLED 1

elif [“$1” == “off”]; then

echo ”LED is off”

blinkLED 0

elif [$1 == “status™]; then

state=$(cat “/sys/class/IO/IO$LED/value”)
echo “LED State is: $state”

elif [“$1” == “end”]; then

echo”lo num $LED_IO”
echo $SLED_IO >> “/sys/class/IO/unexport”
fi

Example: Drive the LED using Lua.
local LED4_PIN = “sys/class/IO/104”
local SYSFS_DIR = “sys/class/IO/”
local LED_Num = “4”

function writeIO(dir, filen, val)

file = I0.open(dir..filen,”w”)
file:write(val)

file:close()

end

print(“Driving the LED”)

ifarg[1] == nil then

print(“you should enter a command”)
print(“ usage is: command”)

print(“1 -> on or 0-> off”)

do return en

end

if arg[1] == “off” then

print(“The LED is on”)
wirtelO(“LED4_PIN”, “val”, “1”)
elseif arg[1] == “configure “then
print(“the LED is off”)
WirtelO(LED4_PIN, “val”, “0”)

Elesif arg[1] == “configure”

Print(“configure the 10”)
WritelO(SYSFS_DIR, “xport”, LED_NUM)
Os.execute()
WritelO(LED4_PIN,”DIR”,”out™)
Elseif arg[1]=="sta”then

Print(“turn 10 off”

Print(“find the LED sta”)
File=io.open(LED4_PIN..”val”,”r”)
File:close()

Else

Print(“please insert a valid command”)
End

Print(“the end”)

Example: Drive the LED using Python.
Import sys

From time import sleep

LED4_PIN = “/sys/class/I0/104”
SYS_DIR = “/sys/class/IO”

LED_NUM = “4”

def wLED(fname, val, PIN = LED4_PIN)
“This function to set the value on the file”
Fileo = open(PIN + fname,”w”)
Fileo.write(val)

Fileo.close()

Return

Print(“start the script™)

If len(sys.argv) =4

Print(“incorrect argument”)
Sys.exit(4)

If.argv[1]=="on”

Print(“the LED is on”)
wLED(fname="val”, val="1")

elif sys.argv[1] =="turn off”
print(“The LED is off”)
wLED(fname="val”, val="0")

elif sys.argv[1]=="configure”:
print(“configure the 10”)
wLED(fname="xport”, val="LED_NUM?”, PIN=SYS_DIR)
sleep(0.1)

wLED(fname="DIR”, val="out”)
eleif sys.argv[1] == “close”
print(“The 10 T off”)
wLED(fname="unexport”, val=LED_NUM, PIN=SYS_DIR)
eleif sys.argv[1]=="state”

print(“the LED state”)

fileo = open(LED4_PIN + “val”, “r”)
print(fileo.read())

fileo.close()

else

print(“please enter a valid command”)

print(“end of the script”)

Questions of Chapter 5

1. What is the object-oriented paradigm?
2. Define the difference between compiled and interpreted languages.

3. Write python code to turn on an LED on GPIO 4 60 times in one minute.

Chapter 6

Input and output on a Raspberry pi

What you will learn in this chapter:

® Interfacing on a Raspberry Pi

® PWM concepts

® The importance of pull up and pull down resistors
What you will need for this chapter:

@ Raspberry Pi board

@ Buttons, transistors

@ LEDs

Introduction

In this chapter you will use what you have learned in the five previous chapters about Linux,
programming, and electronics basics, so you will start working with the general purpose inputs/outputs
on the Raspberry Pi, as well as work with Pulse Width Modulation (PWM). At the end, you will work
with the Wiring Pi Library, so let’s get started...

After showing you how to administrate Linux and practice different commands on the command line,
building electronic circuits, and programming using different languages it’s now time to integrate all of
these things to control the Raspberry Pi in different ways like:

e Using the buses, for example SPI and 12C.

e Using UART on the GPIO.
e Communicating through Wi-Fi or Bluetooth with electronic components.

e Connecting your USB devices like keyboards, Wi-Fi modules, etc.

Now we will use the GPIO header to connect the Raspberry Pi to circuits. The next example will
provide you a view of the functions of the GPIO header, you will find that many of the pins are
multiplexed, which means that the same pin can do more than one.

| pullg Lt g
- B - - r
T - - | i)
GroIr n Qi WD
amor 1 "
e

e
|

1 Hi
L

|||||||

& :
I',
#E B R BB W

sl e

ai

General Purpose Inputs/ Outputs
You can use them for the following purpose:
e Digital input: In this case, you can read a digital output from an electronic device/circuit.

e Analog output: You can use Pulse width modulation to output a signal that can be used as a voltage
level to control devices like servo motors.

e Digital output: You can use a GPIO to turn the circuit on or to turn it off, for example when you use
an LED or a relay (switch) to turn on/off high voltage devices.

e Analog input: You cannot use this feature (ADC) directly on the Raspberry Pi, but you can add it
using bus devices.

General purpose input/output digital output
In this example we used a GPIO to connect a FET to the switch circuit.

When the voltage is applied to the gate, it will close the switch to enable the current to flow from 5
volts using the 220 ohm resistor. This is applied on the right-hand side picture, and you can use this
circuit for many on/off output and input applications because the BS270FET can drive a constant
current up to 400maA.

Now let’s test the performance of this circuit using a short bash shell script to control the LED.
Write the following:

echo 17 > /sys/class/gpio/export

sleep 0.7

echo “” > /sys/class/gpio/gpio7/direction
count =0

while [$count -1t 100000]; do

echo 1 > /sys/class/gpio/gpiol7/val

let count = count +1

echo 0 > /sys/class/gpio/gpiol7/value
done

echo 17 > /sys/class/gpio/unexport

This is the reading of output signal on an oscilloscope:

el ol T T - Y L
Ina flm
A W Sles CF AW r.\ ql '.
i i i
[i
[S——— e
[i
Pt Sy i
Vg Ty g n
U 1™

General purpose input/output digital input

In this example we will apply the concept of GPIO digital input.

The GPIO digital input will allow us to read the state of a pushbutton or any on/off input (0 or 1) we
will use both the Linux terminal and C++ to perform this task. The circuit in the following figures use
normal pushbuttons (SPST) that are connected to the Raspberry Pi pin 13/GPIO27. You will not need
pull-up or pull-down resistors on pushbutton switches because pin 13 on the GPIO header is directly
consented to ground using an internal resistor (pull down resistor).

Open the Linux terminal and write the following:
/sys/class/gpio/$ echo 27 >export

/sys/class/gpio/$ c gpio twenty seven
/sys/class/gpio/gpiotwentyseven $ Is
/sys/class/gpio/gpiotwentyseven $echo in > direction
/sys/class/gpio/gpiotwentyseven $ cat direction in
/sys/class/gpio/gpiotwentyseven $ cat value 0

/sys/class/gpio/gpiotwentyseven $ cat value 1

The pull down and pull up resistors

e Pull up resistor : From its name, it pulls the voltage of the wire that connected to its source when the
other components on the line are inactive, and they are disconnected.

Win

Pullug
Resistor

h Vout
L,-"

Lagic Gate

= {Buffer)
Swatch

Ground

Pull Up Resistor

e Pull down resistor: It works like the pull up resistor, but it's connected to the ground and holds the
signal when the other devices are disconnected.

Vir

Switch

™~ Vout
l/-""

Logic Gate
(Buffer)

Pulldown
Resistor

Ground

Pull Down Resistor

Control the GPIOs using C++

There is a C++ class with the sysfs GPIO functions on the Raspberry Pi to make it much easier to use.
You transfer it to any embedded Linux device. There is another approach called memory-mapped that

you will see at the end of the chapter, but keep in mind that all of these approaches are specific to the
Raspberry Pi board.

#define GPIO_Address “/sys/class/gpio”
Namespace Raspberry {

enum GPIO_DIR{IN, OUT};

enum GPIO_VAL {low=0, HIGH=1};
enum GPIO_EDGE {none, rise, fall, both}
b

Class GPIO {

private:

int number, debounceTime;
string name, address;
public:

GPIO(int number);

Virtual int getNumber(){return number;}

// input and output configurations
Virtual int setDir(GPIO_DIR);

Virtual GPIO_DIR getDIR();

Virtual int setVal(GPIO_VAL);

Virtual int toggleOut();

Virtual GPIO_VAL getVal ();

Virtual int setActivelow(bool is low=true);
Virtual int setAciveHigh();

Virtual void setDebounceTime(int time)
{this-> debounceTime = time;

}

b

/I Advanced, faster by open the stream

Virtual int streamopen();

Virtual int streamWrite(GPIO_VAL);

Virtual int streamClose();

Virtual int toggleOut(int time);

Virtual int toggleOut(int numOfTime, int time);

Virtual void changeToggTime(int time)

{

This->threadRunning =false;
}
// input
Virtual int setEdgeType(I0_EDGE);
Virtual IO_EDGE getEdge();
Virtual int waitEdge();
Virtual int waitEdge(callbackType callback);
Virtual void waitEdgeClose(){this->threadRunning = false; }
Virtual ~IO(); // destructor
Private:
Int write(string address, string fname, string val);
Int write (string address, string fname, int val);
string read(string address, string fname);
int exportlO();
int unexportIO();
of stream;
thr_t thread;
callbackType callbackfunc;
bool thrRunning;

int togglePer;

int toggleNum;
friend void* thrpoll(void *val);

b

Void* thrpoll(void *val);
Void* thrtogg(void *val);

}/* namespace Raspberry*/

File c++control.cpp
#include<iostream>

#include<unistd.h> //for usleep function
#include”GPIO.h”

Using namespce Raspberry

Using namespace std;

Int main()

{

GPIO outlO(17);

outlO.setDIR(OUT);

for(int I =0; I <10; i++)
{
outlO.setVal(HIGH);
usleep(400000);
outlO.setVal(LOW);
usleep(400000);
}
inlO.setDIR(INPUT);
cout << “input state is”<<inlO.getVal() <<end];

outlOlstreamOpen()

for(int i =0; I < 100000000; i++)
{

outlO.streamWrite(HIGH);
outlO.streamWrite(LOW);
}

outlO.close();

return O;

In the following figure you will see the performance of the code when the write() method is used; it is
flashing at 129 kHz.

il W D Bme (SpRde)y (Eteiges ST Dibes i lwes 5 G

B W W O 1Y T-" s X & &

LT

m

L]

POSIX

Ptherads is a set of functions written in the C language to allow you to implement threads with C/C++
programs. You will need threads when you want to run some parts of your code at the same time.

Shagle Lave verius Malt-Coms Perlsrmaads on th BM) | 20000} snd BE 0 (21 D00MHI|

Jpe—
E AT ol TRrwach |eact M) grEeTTEs LOOOLOSE puRale arir trmhey
[r— _--""_d'-\-:('
E e L=y
& el o
y - Wil e — ——— 1§ |
s i angle [A]
il — NI Fplon Rk i
; - e -F'_'_.FF.:____F " ur\huwmi
E — __l;-_u:_uuu-.- [l -
'; — _'_'_,_r"'_::.--"" - =5 o o e i Rp2 4 @ = k ¥t
: P o e e
2 _— i — RP3 (mulicone)
Bl e = tedn anin st n el e s
] — — = — s - it
i ~ i s - e e w— — —_— [

Pulse Width Modulation - LED Fading

The Raspberry Pi has the capability (PWM) to provide analog to digital conversion (DAC), which is
usually used for motor devices.

All Raspberry Pi boards have Pulse Width Modulation pins.

We will use the PWM feature to fade an LED by changing the duty cycle value.
Create file call LEDFading.cpp.

Then write the following code:

#include <iostream>
#include <wiringPi.h>
#include <unistd.h>
Using namespace std;
#define LED_PIN 18
#define Button_PIN 27
Bool run = true;

Void buttPress(void)

{

Cout<< “you pressed the Button”;

Run = false
}
Int main ()
{
wiringPiSetuplO();
pinMode(LED_PIN, OUTPUT);
pinMode(Button_PIN, INPUT);
wirinPisr(Button_PIN, INT_EDGE_Rise, &buttPress);
cout << “LED fading until the button is pressed”;
while(run)
{

For (int I =1; I <=1023; i++)
{

pmWrite(LED_PIN, i);
usleep(1000);
}

for(int i=1022; i>=0; i--)
{

pmWrite(LED_PIN, i);
usleep(1000); //delay
}
}
return 0;

}

Questions for Chapter 6

. Describe the difference between pull-up and pull-down resistors.

. What is Pulse Width Modulation? How many pins are on the Raspberry Pi?
. List the purposes of using the general input output pin on the Raspberry Pi.

. Using C++, write a program to control servo motors using the PWM pin on the
Raspberry Pi.

. What is the benefit of using POSIX?

Chapter 7

Introduction to Communication Protocols

5o
&

What you will learn in this chapter:
® Understand bus communication

® More code with C/C++

What you will need for this chapter:
@ Raspberry Pi board

@ Seven segment display

® Shift register

Introduction

In this chapter you will work with the following communication protocols:
e SPI: serial peripheral interface
e [2C: inter integrated circuit

e UART: Universal Asynchronous Receiver/Transmitter

'RuspberruPi o= cans paseen

wscsirn | P s
‘ e "

*

I12C

The I2C protocol or IIC is a protocol with two wires that were invented by the Philips company. The
benefit of this protocol is to connect microcontrollers with other peripheral devices. You can use it with
the Raspberry Pi for the following reasons::

e The Raspberry Pi will act as the master device.
o The other devices will connect to the Raspberry Pi and will act as slaves on the same wire.
The Advantages of using 12C

® You can implement the 12C using just two signal lines for communication, which is the serial data
and the serial clock.

- Serial data: to transfer the data

- Serial clock: to synchronize the data transfer

e Any device on the bus can be a master or a slave.
- Master device: the device that can initiate communication
- Slave device: the device that can respond

e There is a built-in chip for noise filtering.

oOn the Raspberry Pi, the IIC was implemented using the Broadcom controller, which supports up to

400,000 Hz. NXP has a new one which supports up to 1,000,000 Hz.

® You can see the pull up resistors on the serial data and the serial clock. They are used as termination

resistors; they enable the master device to take control of the bus with the slaves.

To configure the I2C on the Raspberry Pi, open the terminal and write the following:
Config.txt | grep i2c_arm

Then save and restart; let’s make it available.

After the restart, open the terminal and write the following:

Sudo modprobe i2c-bcm2708

Sudo modprobe i2c-dev

Lsmod | grep i2c

On the Raspberry Pi you will find the following 12C buses:
[2C1: Serial data on PIN3, Serial clock on PIN5, not enabled by default.
12CO0: Serial data on PIN27, Serial clock on PIN28, this is used for HAT management.

To change the baud rate, open the terminal and then write the following:
Sudo cat /sys/module/i2c_bcm2708/parameter/baudrate

Reboot and then write the following

Sudo cat /sys/module/i2c_bcm2708/parameter/baudrate 4000

I2C in C programming

This program can be run on any i2c device.

#include<stdio.h>
#include<fcntl.h>
#include<sys/ioct1.h>
#include<Linux/i2c.h>
#include<Linux/i2c-dev.h>
#define size 19

Int bTOD (char b)

{

return (b/16)*10 + (b%16);
}

Int main()

{

Int file;
Printf(“test is starting \n”);
If(file=open(“/dev/i2c-1”, o_RDWR < 0)
{

perror(“ cannot open your bus\n);

return 1;

}

If(ioct1(file, I2C_SLAVE, 0x68) < 0)
{

Perror (“cannot connect the sensor”);
Return 1;

}

Char writeBuff[1] = {0x00};

If (write(file, writeBuff, 1)!=1

{
Perror(“Failed to set your entered address\n”);
Return 1;
}
Char buff(Size);
If(read(file, buff, Size)!=Size)
{
Perror(“Failed to your data in the buffer\n”);
}
Printf(“Time is %02d:%02d:%02d\n”, bTOD(buff[0]));
Float temp = buff[0x11] + ((buff [0x12] >>6)*0.25);
Printf(“the temp : %f\n”, temp);
Close(file);
Return 1;
}
SPI BUS

SPI stands for Serial Peripheral Interface. It’s a fast, full duplex serial data link that allows devices like
the Raspberry Pi to communicate with other devices, but in short distances, so such as I2C the SPI
Protocol is also synchronous. But I2c is not a full duplex bus unlike the SPI, so if you use SPI you can
send and receive the data at the same time. We will use the SPI bus to drive a seven segment LED
Display using an 8-bit shift register.

Now let’s take a look at the differences between IIC and SPI.

IIC : Two wires, 128 devices can be attached. SPI : Four wires, and also needs to connect it with logic i
you want to attach more than one slave device.

IIC : It uses half duplex with 400000Hz. SPI : It uses full duplex with 32MHz.
IIC : You will need to connect pull-up resistors. SPI : There is no need for pull-up resistors.

IIC : The most important feature is that you can have multiple masters. =~ SPI: Very simple but no mor
than one master device.

5P| Master
5P Slave
(ADXL345)

SPH0_ MY

SPI0_MISD
SPID CLK
SP_CED_M

SPI bus works using one of the four modes that are chosen based on the specification defined in the
data sheet of the SPI device. The data can be synchronized by the clock signal and any of the
communication modes. The polarity can be defined if the clock is low or high.

SPI Modes

Mode : 0, polarity : 0 (low), clock Phase : 0
Mode : 1, polarity : 0 (low), clock Phase : 1
Mode : 2, polarity : 1 (high), clock Phase : 0
Mode : 3, polarity : 1 (high), clock Phase : 1

e There is no defined maximum data rate with the SPI protocol, also no flow control, and no
communication acknowledgement.

Raspberry Pi and SPI Protocol

The GPIO header on the Raspberry Pi that has the SPI bus is disabled by default, but you can enable
the bus by the following steps:

e Add an entry to the file /boot/config.txt/etc/modules
Cat config.txt | grep spi

Cat modules | grep spi

Sudo reboot

Ls spi*

SPI application (seven segment display)

The seven segment display consists of eight LEDs that can be used to display decimal or hexadecimal
numbers. There are many types with different colors and sizes.

The 74HC595 can be connected to the Raspberry Pi board using three of the four SPI lines.
e Connect the SPI0_CLK to the Serial clock input (pin 11) of the 74HC595.

® The benefit of SPI0_MOSI is to transfer the data from the Raspberry Pi to the 74HC595 Serial input
(pin 14). You can send 8 bits at a time.

e SPI_CEO_N is connected to the Register Clock input to latch the 74HC595 to the output pins to light
the LEDs.

The SPI Communication in C programming

#include <stdio.h>
#include<cnt1.h>
#include<unistd.h>
#include<stdint.h>
#include<linuxspi/spidev.h>
#define SPI_ADDRESS “/dev/spidev0 .0”
Const unsigned char symb[16]=
{

0b0011111, 0b00000110, 0b01011011, 0b1001111,
0b01100110, 0b01101101, 0b01111101, 0b00000111,
0b01111111, 0b01100111, 0b01110111, 0b01111100,
0b00111001, 0b01011110, 0b01111001, 0b01110001
%

Int transferData(int 1g, unsigned char se, unsigned char rc[], int le)

Struct spi_ioc transfer trans;
Transfer.txx_buff = (unsigned long) se;
Transfer.rx_buff = (unsigned long) rc;
Transfer.le = le;
Transfer.speed_hez = 1000000; // speed in herz
Transfer.b_per_w = 8; // bits per word
Transfer.del_us = 0; // delay in micro second
Transfer.cx_change = 0; //chip affect transfer
Transfer.tx_nbits=0; //no bits for writing
Transfer.rx_nbits=0; //no bits for reading
Transfer.pd = 0; //interbyte delay
Int status = ioct1(lg, SPI_IOC_MESSAGE(1), &transfer);
If(status < 0)
{

Perror (“*SPI: SPI_IOC_MESSAG Failed “);
Return -1;
}
Return status;
}
Int main (){
Unsigned int 1g, I; //file to handle and loop counter
Unsigned char null=0x00; // only sending one char

Unit8_t mode =3; //SPI mode

If (Ig = open(SPI_ADDRESS, o_RDWR) <0)
{
Perror (“SPI Error: cannot open the device”);

Return -1;

}

If (ioct1(lg, SPI_IOC_RD_MODE, & MODE)==-1)
{
Perror(“SPI: Cannot set the mode of SPI”);
Return -1;
}
If(ioct1(lg, SPI_TOC_WR_MODE, &mode)==-1))
{
Perror(“SPI: Cannot get the mode of SPI”);
Return -1;
}
Printf(“SPI Mode: %d\n”, mode);

Printf(“count in hexa from 0 to F”);

For(i=0; i<=15; i++)
{
// this code to receive and send the data
If(transfer(lg, (unsigned char*), &symbl[i], &null, 1)==-1)
Perror (“cannot update the display”);
Return -1;
}
Printf(“%5d\r”, i); //print the nun in the terminal window
fflush(stout); // flus the output
usleep(60000) // delay for 600ms in each loop
}
Close(lg);
Return 0;

}

You can use the ioct1() function to override the current settings of the device, but if you add xx you can
read and write.

oSPI_IOC_XX_MOE: The transfer mode of SPI (0-3)

e SPI_IOC_XX_BITS_PER_WORD: determine the number of bits in each word
e SPI_IOC_XX_LSB_FIRST: 0 is MSB, 1 is LSB

e SPI TOC_XX MAX_ SPEED_HZ: to set the max transfer rate in Hz

UART

UART stands for Universal Asynchronous Receiver/Transmitter. It’s a microprocessor peripheral
device that is used for serial data transfer, one bit at a time, between any two devices. UART was once
a standalone IC, but it is now integrated with the host microcontroller. A UART is described as
asynchronous because the sender can’t send a clock signal to the recipient to synchronize the
transmission. Usually the data is sent by only two lines such as your telephone line that uses the
transmit data connection (TXD) and the receive data connection (RXD). It’s very common to use the
logic level for the UART outputs and inputs to enable two UARTS to connect with each other.

The number of symbols per second is called the baud rate, or modulation rate; the symbol could be two
bits, so the byte rate will be 1/8 " of the bit rate.

|__ Frovmes lsngth {10 o 13 bit pericce) ol [T T ———r——— e
L= B | b TSR el KEnn Fuigih
s 3 3 k- 3 k3 - B | Stmert - Stmrt Bt ey o
(i) ZWEaa) DN D F DR - D3 F De DS C DE 2 Dr 5 Paer S so (it y | EO=DT - Daka Dils {Figh O o)
- ' 1 : x® L E & 3 i 1 rar - Pty Dit. The vslus depends
K ey Sy ¥ B E | O e I Do B DTy i LS
Tmil
-

| | Btop - Sicep bit i sbemye begh
,_-_..,.”,,dLl e A U LN RN N LN RN N R | Thars can e wtep

This figure represents UART transmission format for one byte.
On the Raspberry Pi you will find the following:

A full UART that you can access via the GPIO header.

e TXDO (pin8): to transmit data to a receiver

e RXDO (pin 10): to receive data from a transmitter

The /dev directory has an entry for ttAMAQO. This is the terminal device, which is a software interface
that enables you to send and receive data.

Advantages and disadvantage of UART communication

e Very simple wire transmissions with error checking, but the max data rate is very low compared to
others like SPI.

e Easy to implement for interconnecting embedded devices and PCs, but the clock on both devices mus
be accurate especially at high baud rate.

e Can be interfaced to RS physical interfaces to enable long distance communication more than 15
meters, but you need to know the UART settings in advance like the baud rate, size, and checking type.

UART in C Programming

#include <stdio.h>
#include<fcnt1.h>
#include<unistd.h>
#include<termios.h>

Include<string.h>

Int main(int argc, char *argv[])

{

Int myFile, myCount;

If(argc!=2)

{

Printf(“please enter a string to your program\n”);

Return -2;

}

If(myFile =open(“/dev/ttAMAO0”, O_RDWR | O_noctty | O_NDELAY) <0)
{

Perror (“cannot open the device”);

Return -1}

Struct termios options;

Tcgetarr(file, &options);

Options.c_cflag = b115200 | cs8 | CREAD | CLOAL;
Options.c_iflag = IGNPAR | ICRNL;
Tcflush(myFile, TCANOW, &options);
Tcflush(myFile, TCLFULUSH)

Tcsetattr(file, TCSANOW, &options);
If(count = write(myFile, argv[1], strlen(1)))<0)
{

Perror(“UART: cannot write to the output\n”);
Return -1;

}

Write(myFile, “\n\r”,2);

Close(myFile);

Return 0;

}

In the above code we have used the termios structure.
The termios structure has many members:

o tcflag t c_iflag: to set the input modes

o tcflag t c_oflag: to set the output modes

e tcflag t c_cflag: to set the control modes

e tcflag t c_1flag: to set the local modes

e cc_T c_cc [NCCS]: Used for special characters

Questions for Chapter 7
Compare IIC and SPI.
Define UART.
Implement the UART in C.

List the advantages of SPI.

Chapter 8

Python Programming for the Raspberry Pi

What you will learn in this chapter:
@ Start programming with Python

® Use Python for automation

@ Drive the hardware with Python
What you will need for this chapter:
@ Raspberry Pi board

® Resistors, LEDs

Introduction to Python Programming

In this chapter you will learn how to use Python to develop basic encryption, user input, and graphical
user interfaces.

Let’s start with the "hello world" example as in any programming language.
Create a file named hello.py using the nano text editor.

Nano —c hello.py

Within the file write the following code:

#!/usr/bin/python3

#hello.py

Print (“Hello World”)

After writing the code, save and exit. You can run the file using the following command:
Python3 hello.py
You should know more about strings if you want to start with Python.

A string is a sequence of characters stored together as a value. We will write code to get the user’s
input, using string manipulation to switch the letters and then print the encrypted message of the user
input. You can use text editors that can be directly on your Raspberry Pi or via VNC or SSH. There are
many text editors you can choose from:

e Nano: You can work with this editor from the terminal.

e IDLE3: This editor includes syntax highlighting and context help, but this program requires x-
windows or x11 to run remotely. We will use Python 3, so make sure that you run IDL3 and not IDLE.

eGeany: This editor is an Integrated Development Environment (IDE) that supports many
programming languages, syntax highlighting, auto completion, and very easy code navigation. This is a
rich editor , but not for beginners and it will be slow on the Raspberry Pi. If you want to install Geany,
write the following command:

Sudo apt-get install Geany
To make sure that the Geany editor uses Python 3:

Click on the Execute button to run the code. You will need to change the build commands. L.oad the
file.

Click build and set build commands and then change Python to Python 3.
Let’s create the program

#!/usr/bin/python3

#ecryptionprogram.py

#takes the input and encrypt it

def encrpytText(input_text,key);

output=""

for letter in input_text:

#Ascii Uppercase 65-90 lowercase 97 -122

Ascii_val = ord(letter)

#now write the following code to exclude non characters from encryption
If(ord(“A”) > Ascii_val) or (Ascii_val > ord(“Z”)):

Output+=letter

Else:

#write this code to apply the encryption key

Key_val = Ascii_val + key

#make sure that we use A-Z regardless of key

If not((or(“A”)) < key_val < or(“Z”)):

Key_val = ord(“A”) + (key_val-ord(“A”))\
%(ord(“Z”) —ord(“A”)+1)

#add the encrypted letter to the output

Output+=str(chr(key_val))

Return output

#Test

Def main()

Print (“please enter any text to encrypt”)

#get user input

Try:

Us_input = input();

Sc_result = ecryptText(us_input, 10)

Print (“output: ”, sc_result)

Print(“to un-scramble , pls press enter”)

Input()

Un_result = ecryptText(Sc_result, -10)

Print (“output: ” + un_result)

Except UnicodeDecodeError:

Print (“this program supports ASCII characters only”)

Main()

#end of the program

The preceding code implements a basic method to encode the text using a character substitution called
the Caesar Cipher, named after Julius Caesar, who used this method to send his secret orders to the
army.

We have defined two functions; encryptText() and main().

When the code is running, the main function contains the user’s input using the input() command. The
result is stored as a string in the us_ input variable.

Us_input = input()

e Keep in mind that the input() function can’t handle non ASCII characters, so we will use try()
function to solve this problem, which will cause UnicodeDecodeError.

We also call the encryptText() function with two parameters; the text to be encrypted, and the key.
After that, the output will be printed.

Sc_result = ecryptText(us_input, 10)
Print(“Output:” + Sc_result)

At the end, we will use input() to get the user input. The encryptText() will perform a simple form of
encryption by shifting the position of the letters. That means substituting the letter with another letter
based on the key; for example, if the letter is “A” and the key is 3 the output will be “D.” This table
shows you the idea of the Caesar Cipher.

In our example, “A” = 65, the key = 3, so the output = 65 +3 = 68 which is “D.”

A B [+ [+ E F G H 1] K L M
65 B &7 68 B4 70 il 72 73 T4 75 i 7
N Q P Q R 5 T u v W X Y Z
T8 70 80 81 a2 a3 a4 B5 85 a7 BR 84 a0

After that, we will make sure that we have an empty string to build our result (output = “”’), and then we
will set our key to encrypt the text.

The input_text variable will contain strings that are stored as a list (a list is something like an array).
You can access every item in the list using input_text[0] for the first item and so on. Python also allows
you to loop through a list using the line of code for “item” in “items”, to access each item.

The letter in input_text : This line allows you to break up the input by looping it through for each item
inside and to set the letter equal to that, so if the input is equal to HELLO, it will run the code five times
for H,E,L,L, and O. This allow you to read every letter separately, and then add the new encrypted
letter to the output string.

The next line , if(ord(“A) > Ascii_val) or (Ascii_val > ord(“Z”)):,

We write this line to check if the character we are looking at is not between A and Z, which means it is
may be a number or a mark. In this case, the program will exclude the character from the encryption
process (the output will not change).

If the letter is correct (between A and Z), you can add the value to our encryption key of 10 (Shifting 10
positions).

Inlput: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Output: KLMNOPQRSTUVWXYZABCDEFGHIJ

As you want the encrypted message to be much easier to write, you have a small output between A and
Z, so if the letter starts with X, you want to wrap it and count from A. You can do this by writing the %
(modulus) function, that gives you the remainder value of the input (if you divide a number by another
number) if the number is 24, and if you add 10, you will get 34. The value of 34%26 (26 is the total
number of the letters) is 8. Start from A until H.

In ASCII, the A is equal to the number 65, so you will remove the offset from the key_val and then add
it once you have the modulus value. The next code makes sure that you limit the ASCII values to
anything between A and Z:

#makes sure that you use A to Z regardless of key

If not((ord(“A”)) < key_val < ord(“Z”)):

Key_val = ord(“A”) + (key_val-or(“A”))\
%(ord(“Z”) —ord(“A”)+1)

If the entered value is not between the values for A or Z, then you will allow the value to wrap around
(after calculating the modulus the total number of letters between A and Z, which is 26). This works if
the key is larger than 26 and if you are counting in the opposite way, for example:

if the key was negative, the decryption key will be positive.

The following figure will show you the basic form of encryption, you will supply the method and the
key to the one you want to read your message:

A MESSAGE

N_
=]

— |
&

— e
MESSAGE

: LOCK

}
}

MESSAGE

i
&=z

If you would like to send the message without the key and the method to the receiver, you will do the
following as in the figure:

First, you will encrypt it and send the message over to the other one, and then they encrypt it again with
their own encryption and send it back. The message at this point has two layers of the applied
encryption. Now you can remove your encryption. At the end, the other side will receive the message
with his/her encryption, which he/she can remove to read the message.

You should keep in mind that there are 25 encryption combinations.

You can run the file directly; Python will set _name_to the main global attribute with this code.
If __name__ ==”__main__":

main()

Now let’s create key.py and write the following code
#!/user/bin/python3

#key.py

Import encryptdecrypt as ENC

Key_1=120

Key_2 =150

Print(“enter your text:)

#get user input

Us_input = input()

#send message

encodKey = ENC.encryptText(us_input, key_1)

print(us_1: send message encrypted with Key_1:” + encodKey)
encodKey2 = ENC.encryptText(encodKEY1KEY2, -KEY1)
print(“us_1: removes KEY1 & returns with KEY2(KEY2):” + encodKey2)
#Receiver will remove the encryption

Msg_res = ENC.encryptText(encodKEY2, -KEY?2)
Print(“us_2: will remove KEY?2 & msg received :” + msg_res)

End of the program

Using files

In this part you will learn how to use and specify a file, via the command line, that will be read and
encoded to produce the output file.

Now let’s create a file named myFile.txt. Write the following code:
#!/user/bin/python3

#myfile.py

Import sys # to obtain command line parameters

Import encryptdecrypt as ENC

#define inputs

RG_IN =1

RG_OUT =2
RG_KEY =3
RG_LEN =4

def conv_File(in, out, key)
#convert the key to an integer

try:

encr_Key = int(key)

except ValueErr:

print(“invalid: your key %s should be an integer” %(key))
#put it on to the lines

Else:

Try:

#open your files

With open(in) as f_in:

In_content = f_in.readlines()
Except IOError:

Print (“Unable to open %s” % (in))
try:

with open (out,’w’) as f_out:

for line in in_content:

out_line = ENC.encryptText(line, enc_key)

f_out.writelines(out_line)

except IOError:

print(“cannot open %s %(in)”)

try:

with open(out,’w’) as f_out:

for line in in_content:

out_line = ENC.encryptText(line, en_key)
f_out.writelines(out_line)

except IOError:

print(“cannot open %s” %(out))

print(“the process is complete %s ” %(out))
finally:

print(“complete”)

#check the parameters

If len(sys.argv) == RG_LEN

Print(“comm: %s” %(sys.argv))

convertFile(sys.argv[RG_IN], sys.argv[RG_OUT], sys.argv[RG_KEY])
else:

print(“myFile.py in out key”)

#End of the program

e To run the programs, write the following Python 3 myfile.py in the out key.

For instance, to encrypt myFile.txt and output it as encrypted.txt, use 20 as the key by writing the
following command:

Python3 myfile.py in.txt encrypted.txt 20
If you want to show the result, use less encrypted.txt and enter Q to exit.
If you want to decrypt encrypted.txt and output it as decrypted.txt, use -20.

e Python myFile.py encrypted.txt decrypted.txt -20

This code requires us to use parameters that are provided in the terminal window. You will access them
by importing the Python module called sys. Like you did before, you will also import your
encrypt/decrypt module by the import command. You will use the part to allow you to refer to it using
ENC.

Next, you will set the values to define what each command-line parameter will represent. If you run it ,
you will see that sys.argv[] is an array of values like in the following array:

[‘myfile.py’, ‘in.txt’, ‘encrypted.txt’, ‘20’]

So the input file will be at index 1 in the list, then the output file, and finally, the key with the total
number of parameters RG_LEN = 4.

e Next, you will define the convertFile() function that you will call upon later from the next block of
code.

e If you want to step away from errors, you will check if the length of the sys.argv value matches the
number of parameters from the terminal window. This will make sure that the user has supplied you
with enough, and you shouldn’t try to reference items in the sys.argv[] list that don’t exist. You will
return a short message to explain what you are expecting.

e You will now call the convertFile() function via the terminal window values and making use of
Python’s built in exception handling features to ensure that errors are responded to accordingly.

e The line try/except code allow us to try to run some code and handle any exceptions (errors) in the
program itself, and to halt any sudden stop.

The try code is accompanied by the following options:

e except valError: If an error occurs, a specific type of exception can be specified and handled with the
action, depending on the error you wish to handle. For valError, you could check if the value is a float
value and convert it to an integer or prompt for a new one. Multiple exceptions can be caught using
except (valError, IOError) as required.

e except: This is to catch all cases of any possible exceptions that you have not dealt with. This point
may the code be called from other places.

e else: This part of code is always executed if the try code is right and there is no exception, or any
errors in the code will not be handled by the try/except block.

e finally: The finally part of code will always executed , even if there is no exception or if there is a
problem with the try code.

e In other programming languages you will see something like try and except it, maybe try and catch,
or also raise and throw as equivalents.

Let’s create a boot menu, myMenu.py.

#!/user/bin/python3

#myMenu.py

From subprocess import call
FileN =”myMenu.ini”

DES=0

Key_ k=1

CM=2

Print(“Start Menu: ”)

Try:

With open(fileN) as f:
myMenuFile = f.readlines()
except IOError:

print(“cannot open %s” %(fileN))
for item in myMenuFile

line = item.split(*,”)

print (“(%s):%s” % (line[KEY_k], line[DES]))
#Get the user input

Run = True

While(run)

Us_input = input()

#check the input

For item in myMenuFile:

Line = item.spilt(‘,”)
If(us_input == line[KEY_k]):
Print(“comm:” + line[CM])
#run the script

Comm = line[CM].rstrip().split()
Print(comm)

Run = false

If len(comm):

Call(comm)

If(run == true):

Print (“your key in not exist in the menu”)

Print (“everything is done”)

Create a menu named menu.ini file that will contain the following:

Start Desk,d, starty

Show ip Address, I, hostname —I

Show cpu speed, s, cat / sys/devices/system/cpu/cpu0/cpu/cpufreq/scaling_cur_
Freq

Show core temp, t, sudo /opt/vc/bin/vegencmd measure temp

Exit,x,

® You can add your command and you can customize the list based on your needs..

If you want to execute any other programs from a Python script, you will need to use the command
“call”. You only wish to use the call part of the subprocess module, so you can simply use the
subprocess import call.

e Open the file and read the lines in a menufile array. You can process each item as follows:
Line [‘Start’, ‘Desk’,‘d’, ‘starty’]

You can access each section using the print statement separately, so you can print the key you need to
press for a specific command and the description of the command.

Us_input == line[KEY_k]

The call command will require a command and its parameters to be a list, so you will use the split()
function to break the command part into a list (every space in the statement will use the function).You
should note that after\n is the end of the line character after starty, and this is the end of the line
character from mymenu.ini. You will remove the first using the function rstrip() that is used to remove
any whitespace.

Start:

Menu:

(d): start Desk

(i): Show ip Address
(s): show cpu speed

(t): show core temp

(y): exit

Using Python for automation

In this part, you will mainly work with the command line. You will also work with the Raspberry Pi by
using a graphical user interface (GUI).

It will be very easy to get the input from the graphical user interface in a natural way. Python supports
this. Much like any other programming language, you will use the Tkinter module that provides a lot of
good controls and tools to create graphical user interfaces.

The app you will make is to convert the encryption application into a graphical user interface instead of
using the command line.

Make sure that you have completed the instructions in the previous part; encryptdecrypt.py program

If you want to use Tkinter (one of add-ons of python), you will need to make sure that it is installed. By
default it will be installed on the standard Raspbian image, but let’s confirm that by importing it for a
Python shell.

>>> import Tkinter
If it doesn’t exist you will see an error (import error). In any case, you can install it using the command:

Sudo apt-get install python3-tk

If it did load , you will use the following command to read more:
>> help (tkinter)

Also, you can find a lot of information about the classes, functions and methods by writing the
following command:

>>> help(tkinter.Button)

If you want to list any valid commands, you should write the following command in your shell:
>>> dir (tkinter.button)

Now let’s use the tkinter to develop a GUI for the encrypt program:

#!/usr/bin/python3

#encrypt.py

Import encrypt as ENC

Import tkinter as TK

def encbutton():
encryptVal.set(ENC.encryptText(encryptVal.get(), keyVal.get))
def decButton():
encryptVal.set(ENC.encryptText(encryptVal.get(). —keyVal.get()))
#Tkinter application

Root =TK.TK()

Root.title(“Enc/Dec application”)

#control values

encryptVal = TK.StringVar()

enryptVal.set(“this is a message™)

keyVal = TK.IntVar()

keyVal.set(20)

promp = “Enter your message to encrypt: ”

Key_k = “Key: ”

Labl_1 = TK.label(root, text = promp, width=len(promp), bg="red’)
texEnter=tk.Entry(root, textvariable =encryptVal, width = len(promp))
encbutton = TK.Button(root, text="enc”, command=encbutton)
decButton = TK.Button(root, text="dec”, command=decbutton)
labl_2 = TK.label(root, textvariable=keyVal, width=9)

#Layout

Labl_1.grid(row=0, cloumnspan=2, sticky=TK.E + TK.w)
texEnter.grid(row=1, cloumnspan=2, sticky=TK.E+TK.W)
encbutton.grid(row=2, column=0, sticky=TK.E)
decbutton.grid(row=2, column=0, sticky=TK.W)
labl_2grid(row=3, column=1, sticky=TK.W)

TK.mainloop() #end of the program

In this program we start by importing modules

First one is the encrypt/decrypt file and the second one is the tkinter module.

The encbutton() and decbutton functions will be run when click on the encrypt and decrypt buttons
Now let’s take a look at the code
Labl_1 = TK.label(root, text=promp, width=len(promp), bg="red’)

All of the controls have to be linked to the window, you have to determine your tkinter window root.

You will set the text using the text variable as shown. You have to set it to a string named promp that
we defined previously with the text. You also can set the width to match the number of characters of

the message, but it’s not necessary to do that. You set the background color by using bg = ‘red’.

In the next line of code, you defined the textEntry(root, textvariable=encryptVal, width=len(promp)),
you also defined textvariable as a useful way to link variables to the contents of the box that is a string
variable. You can access the text using textEnter.get() if you want, but this will allow you to separate
the data you got it from the code which handles the graphical user interface. Use a Tkinter StringVar()
to access it directly. The encryptVal variable used to update the Entry widget is linked to the .set()
command.

Encbutton = TK.button(root, text=t”Encrypt”, command=encButton)
decbutton = TK.button(root, text="decrypt”, command=encButton)

In this case, you can set a function to call it when the button is pressed:
def encbutton():

encryptVal.set(ENC.encryptText(encryptVal.get(), keyVal.get))

Drive the hardware with python

One of the features of the Raspberry Pi is to set it from home computers; it has the ability to interface
with any hardware.

The General purpose input — output (GPIO) pins can control a lot of low level electronics from LEDs to
motors and displays.

Controlling an LED in Python

You will need:

e Female to male wire (4)
e Breadboard

e RGB LED

® 470 ohm resistors (3)

This figure show you the difference between the RGB LED and the other LED:

RGE-LED 2
Common — i RaELLED
B Mormal LED E

Flat Flat

.\\‘-‘ .\-‘ ('3 Lt o
I_r-...
B
R {-] cathode T
[Cat?mde e

Controlling an LED in python (wiring)

]

m‘f.’..’ii":&ﬂ]

Controlling an LED in Python (coding)
#!user/pin/python3

#led.py

Import RPi.GPIO as GPIO

import time

#RGB LED

now setup the hardware
RGB_Ena = 1; RGB_Dis =0

#LED Configuration

RGB_R = 16; RGB_G = 18; RGB_B=22
RGB = (RGB_R, RGB_G, RGB_B)
Def led_set():

#wiring
GPIO.setmode(GPIO.BOARD)
#ports

For val in RGB:

GPIO.setup(val, GP10.0UT)

Def main():

Led_set()

For val in RGB:

GPIO.output(val, RGB_Ena)
Print(“LED is on now ™)
Time.sleep(7)

GPIO.output(val, RGB_Dis)

Print (“LED is off now)

Try:

Main()

Finally:

GPIO.cleanup()

Print(“Everything is closed now, the END”)

#End of the program

Control the LED using a button (wiring)

You will need:

e Female to male wires
e Breadboard

e Push button switch

e General purpose LED
e 470 ohm resistors (2)

e Breadboard wire

i) Cathode Shortest LED Leg

Control the LED using a button (coding)

#!/usr/bin/python3

#control.py

Import time

Import RPi.GPIO as GPIO
Import os

#close the script

debugging = True

nd = True

#setup the hardware

#GPIO

#config

MODE = GPIO.BOARD

Sht BIN =7

LD =12

Def gpio_Set():

#wiring
GPIO.semode(GPIO.MODE)
#ports

GPIO.setupt(sht_BIN, GPIO.IN, pull_up_down = GPIO.PUD_UP)

GPIO.Setup(LD,GPIO.OUT)

Def doShut():

If(debugging):print(“you pressed the button”)

Time.sleep(4)

If GPIO.input(Sht_BIN):

If(debugging):print(“skip the shutdown (<4sec)”)

else:

if(debugging):print(“do you want to shut down the RPi NOW”)
GPIO.output(LD,0)

Time.sleep(0.6)

GPIO.output(LD, 1)

If(ND):os.system(“flite -tWarning 3 2 1’)

If (debugging == false):os.system(“sudo shutdown h now”)
If(debugging):GPIO.cleanup()

If(debugging):exit()

def main():

GPIO_set()

GPIO.output(LD, 1)

While True:

If(debugging):print(“you can press the button™)
If GPIO.input(sht_BTN)==False:
doShut()

time.sleep(2)

try:

main()

finally:

GPIO.cleanup()

print(“every ting is closed now. The End”)

#End of the program

Questions for Chapter 8

. Using Python, create a file and put your name and your friends names into that file.
. Design and develop an LED blinking system using a button and 3 LEDs.

. Make the three LEDs blink in sequence order.

. Design a graphical user interface to control the system in Question 3.

Chapter 9

Final Project

What you will learn in this chapter:

® Build a media center using the Raspberry Pi
What you will need for this chapter:

@ Raspberry Pi board

® 4 GB SD card or micro SD

® HDMI cable

® Ethernet cable

In this chapter you will build a media center on the Raspberry Pi board.

The first thing you will do is choose an operating system. I mean the appropriate operating system for
the project because you will focus on making the Pi into a media center. There are two operating
systems for this purpose; the first one is OpenELEC (Open Embedded Linux Entertainment Center),
and the second one is OSMC(Open Source Media Center). In this project you will use the OSMC, so
let’s do the following:

e Download the OS.

e Install the OS on the SD card.

Download and Install the OSMC

Now you should choose the correct version of OSMC so you can download and install it. You can go to
RaspberryPi.org, this is the official website for the Raspberry PI. As shown before in the past chapters,
you can use this web site as a support community for you because you can share your experience the
other Raspberry Pi users or read about theirs.

Now go to the main page and then choose DOWNLOADS. There, you will find a list of all the options
of the operating systems you can choose from, or you can start working with Noobs that provide a look
at what the Raspberry PI can do. You will find under these lists a third party operating system, and at
this part you will find the OSMC, so just click on it.

e After completing the download, you can now install it. Make sure that you have the appropriate SD
card that you can use on the Raspberry Pi. If you don’t have WinRAR, just go to the WinRAR website
and install it and extract the image.

Now it’s time to burn the operating system onto the SD card. Make sure that the file is ended with .img,
then open the image burning program and burn it.

After burning the image on the SD card, you can set up everything now. You will need the following
hardware:

The power supply

This power supply will make the difference to the Raspberry Pi, because if the pi is underpowered it
will tell you it doesn’t enough power during high-CPU usage.

Video — Audio Output

You can use the HDMI cable to connect your Raspberry Pi, but you should keep two things in mind:
the length and the stiffness of the cable.

Internet Cable (Ethernet Cable)

You use this cable to connect you device to the Internet, but you can also use the USB Wi-Fi dongle.

Now it’s time to plug everything in:
e Plug the Raspberry Pi to the power supply and USB devices.

e Plug your preferred video/audio cable to either the HDMI or RCA ports.
e Hook the Raspberry Pi to the TV.

Start working with the OSMC

e This operating system uses a front end called Kodi. In this part you are going to become very familiar
with the OSMC (Operating System Media Center), and you are going to do the following:

e Work and navigate the keyboard
e Start looking at the settings

e Set up and configure the network

Work and navigate with the keyboard

If you use your PC or your laptop, you may do most of your actions using the mouse to click on
different menus or to open programs.

You mainly use your keyboard only when you enter your IP Address, typing something like an email,
or playing a game. On the OSMC you can navigate with your mouse, but it will be much better than
your keyboard and that depends on the version of your Raspberry Pi board.

The home screen of the OSMC:

M Videos

OSMC has a lot of different ways that you can use the content. I will show you how to stream it from
different sources.

The Files menu is where videos can be found. We will discover how to get videos into the right place
so you can watch them later. The most important thing you should know is the video add-ons. This is
where Kodi comes in, and you will spend a lot of time adding new programs and watching your
favorite videos.

Music

This screen is like the video screen. You can store your sounds or audio files if you open it from this
screen. Like with videos , if you stored a collection of audio files somewhere, you can access it from
the OSMC from this screen as well. Also, you will find the music add-ons like the video add-ons.

The settings

In the settings, you can find the following info

e File manager: If you want to transfer something from a USB onto the Raspberry Pi like pictures or
movies, you will open the directory from the file manager.

e System info: This will give an overview of the things running on the Raspberry Pi, and it also
provides you with information like the IP address, summary, storage, memory, and so on.

e Profiles: The profiles are something like the users on the Windows operating system; you add users,
delete, and edit something like the privileges similar to any operating system.

MyOSMC

This screen handles hardware, overclocking, networking, and controls to connect the OSMC from
another computer in case you want to transfer the file.

Wi-Fi
If you want to connect to the Internet wirelessly, you will use the Wi-Fi.

And you can set up it from this screen as shown:

® MyOSMC Gﬁ

After plugging your Wi-Fi dongle and running your OSMC, you can go to the network and then click
"Wireless." Click yes and finally apply.

Glest

Install video add—ons

If you want to install new applications on the OSMC, you will navigate over to videos: Add-ons and
press enter. Any apps(add-ons) that have been installed will be found here.

There are many choices you can choose from. You will scroll a long list of choices and take time to
choose one. You can install it easily by dimming anything and then pressing enter, but you should look
at the language of the app because the same app may have multilingual versions and you may prefer a
specific one.

After installing a few apps , press backspace to see what apps you have installed.

Music add-ons

If you interested in music you can also do the same thing. There are a lot of streaming options available
that you can add on the Raspberry Pi. You can go to music by using the keyboard and pressing enter on
music.

{7 Music

Move and copy your files

You will use now the file manager to copy or move files. From the main page, go to "settings" and then
choose "file manager."

e In this figure you can see that there is a directory called Super Repo. If you plugged in your USB,
you can see the directory listed on the file manager screen.

e After inserting your USB stick, scroll to your USB until you see your files and then copy any file you
want. For example, llc.mp3, then go to any directory you want and paste it there.

oIf you want to play the DVDs and ISOs , the Raspberry Pi can do that but you will need to do the
following:

Get the codec, go back to www.raspberrypi.org

e Click on "shop" until you reach to the Raspberry Pi Swag Store and press on that. There are many
categories like buy a Pi, Codecs, and so on.

e You will use codec/OS, so choose this.

e For DVDs, you will need an MPEG-2 LICENSE KEY, so you will purchase the codec and then pres
on the license “please click here to buy your mpeg-2 license key.”

Go to MyOSMC from the main menu, then pi config, and finally to GPU Mem & Codec.

e Keep in mind that not all of the Raspberry Pi boards will process this code.

http://www.Raspberrypi.org/

e If you want to play a DVD you will need to add an external DVD reader to the Raspberry Pi that you
connect via USB to your computer.

Networking

e In this part you will learn how to connect your OSMC over the network.

e You should connect with computers in your home network.

e Everything you will do with your home network can be done with larger networks.

e Some of the benefits of connecting your OSMC is to watch your movies on TV, for example.

e You will focus on your home network instead of Raspberry Pi and OSMC.

Sharing in Windows

e You should remember how to share with Windows, Samba, and SMB.

e Sharing is one of the easiest things that you can do in Windows. After installing Windows , if you
want to share a folder you can just click on it, choose "properties," and then click sharing.

Sharing in Linux

e If you are using the Linux operating system, you can use SSH (secure shell).

If you want to share your Linux computer and the OSMC, simply do the following:
Open the terminal window and then write this command:

Sudo systememct1 enable sshd

If your computer didn’t process this command, don’t worry.

You can try the other command:
Sudo service ssh start
And then write the following:

Sudo systememct]1 start sshd

NFS (Network File Share)

e Network file sharing on Linux is something like the sharing in Windows..
e When you want to connect to a remote folder, your computer will be like a local folder.
e [t will be more complex to setup the Network File Share than an SSH.

Because you will make the other users someone other than yourself , so you will need to set the
permissions.

Sudo mkdir any name / nfs
Sudo shown user: user /nfs
Chmod 777 /nfs

Sudo nano /etc/exports

/nfs *(rw)

Samba

This is the last option to share media from your Linux computer to OSMC, and it is Samba.
Now open the terminal window and write the following command:

Sudo nano / etc/samba/smb.conf

We can scroll down all the way and then add our information for the folder we are sharing.

[sharing name]

Path = /samba

Writable = yes

Guest ok = yes

Hosts allow = 192.168.

We can enable and start the Samba service.
Sudo systemct1 enable/start smb

Service smbd start

	text00000

