

INTRODUCTION	TO	PYTHON
2018	EDITION

	
	
	
	

By
Mark	Lassoff

with	Julius	Hernandez
	
	
	

LearnToProgram,	LLC
129	Church	Street	#230
New	Haven,	CT	06510

LearnToProgram.tv,	Incorporated
129	Church	Street	#230
New	Haven,	CT	06510
contact@learntoprogram.tv
(860)	840-7090
	
©2018	by	LearnToProgram.tv,	Incorporated
	
All	rights	reserved.	No	part	of	this	document	may	be	reproduced	or
transmitted	in	any	form	or	by	any	means,	electronic,	mechanical,
photocopying,	recording,	or	otherwise,	without	prior	written
permission	of	LearnToProgram.tv,	Incorporated.
Limit	of	Liability/Disclaimer	of	Warranty:		While	the	publisher	and
author	have	used	their	best	efforts	in	preparing	this	book,	they	make
no	representations	or	warranties	with	respect	to	the	accuracy	or
completeness	of	the	contents	of	this	book	and	specifically	disclaim
any	implied	warranties	of	merchantability	or	fitness	for	a	particular
purpose.		No	warranty	may	be	created	or	extended	by	sales
representatives	or	written	sales	materials.		The	advice	and	strategies
contained	herein	may	not	be	suitable	for	your	situation.		You	should
consult	with	a	professional	where	appropriate.		By	following	the
instructions	contained	herein,	the	reader	willingly	assumes	all	risks	in
connection	with	such	instructions.		Neither	the	publisher	nor	author
shall	be	liable	for	any	loss	of	profit	or	any	other	commercial	damages,
including	but	not	limited	to	special,	incidental,	consequential,
exemplary,	or	other	damages	resulting	in	whole	or	part,	from	the
readers’	use	of,	or	reliance	upon,	this	material.	

Dedication
For	my	family,	friends	and	colleagues	who	supported	
the	development	of	LearnToProgram.tv	and	this	book.

	

Table	of	Contents
	
Chapter	1	–	Introduction
Intended	Audience
What	Does	the	Book	Cover?
Important	Things	to	Remember

Chapter	2	–	Getting	Started
Downloading	and	Installing	Python
Running	IDLE
Writing	Your	First	Python	Program
Running	the	Program
Editing	your	First	Program
Using	the	Shell	Window
To	Change	the	Editor’s	Various	Font-Related	Features
To	Change	the	Editor’s	Highlighted	Text	Colors
To	Use	the	Shell	in	Interactive	Mode
Writing	Code	in	the	Editor	Window
Executing	Python	on	the	Command	Line
Coding	Exercise:	Writing,	Running	and	Debugging

Chapter	3	–	Output
The	print()	Function
Separators	and	Newlines
Coding	Exercise:	Using	the	print()	Function

Chapter	4	–	Variables
Variable	Assignment
Number	Variables	(int,	float,	and	complex)
That	wraps	up	our	section	on	number	variables.	You	will	learn	about	string
variables	next.
String	Variables
Substrings	and	Concatenation
Variables	with	Lists,	Tuples,	and	Dictionaries

Coding	Exercise:	Using	Variables
Chapter	5	–	Operators
Mathematical	Operators
Order	of	Operations
Comparison	Operators
Logical	Operators
Coding	Exercise:	Operators	Practice

Chapter	6	–	Code	Branching
Simple	If	Statements
If…Else	Statements
Nested	If	Statements
The	Ternary	Operator
Coding	Exercise:	Operators	Practice

Chapter	7	–	Loops
The	While	Loop
The	For	Loop
Nested	Loops
Break	and	Continue	Statements
Coding	Exercise:	Loops

Chapter	8	–	Math	Functions
Casting	Functions
Mathematical	Functions
Random	Functions
Coding	Exercise:	Math	Functions

Chapter	9	–	String	Functions
The	capitalize	(),	center	(),	and	count	()	functions
The	find	(),	isalpha	(),	and	isdigit	()	functions
The	join	(),	len	(),	and	split	()	functions
Coding	Exercise:	String	Functions

Chapter	10	–	Tuples	and	Dictionaries
Creating	Tuples

Accessing	Values	in	Tuples
Printing	specific	values	from	a	tuple
Looping	through	a	Tuple
Tuple	Functions
What	are	lists?
The	len()	Function
Using	the	len()	Function	to	Loop	through	a	Tuple
The	min()	and	max()	Functions
You	can	use	the	min()	and	max()	functions	to	return	the	minimum	and
maximum	values	in	a	tuple.	Let’s	try	to	show	this	using	an	example.

Converting	a	List	to	a	Tuple
Declaring	a	Dictionary
Accessing	and	Editing	Values	in	Dictionaries
Printing	specific	values	from	a	dictionary
Changing	the	elements	in	a	dictionary
Deleting	an	element	in	a	dictionary
Dictionary	Functions
The	len()	Function
The	str()	Function
The	clear()	Function
The	get	function
The	items	function
The	values	function
The	keys	function

Getting	the	Elements	and	Key-Value	Pairs	in	a	Dictionary
Coding	Exercise:	String	Functions

Chapter	11	–	Time	and	Date
The	Time	Tuple
The	Calendar
The	Time	and	Calendar	Functions
Coding	Exercise:	Functions

Chapter	12	–	Python	Functions
Defining	and	Calling	a	Simple	Function
Required	Argument	Functions
Keyword	Argument	Functions
Default	Function	Arguments
Return	Statement
Creating	and	Consuming	Python	Modules
Coding	Exercise:	Functions

Chapter	13	–	Input	and	Output
Reading	Keyboard	Input
Reading	an	External	Text	File
Writing	an	External	Text	File
Coding	Exercise:	File	I/O

Chapter	14	–	More	with	Python
Handling	Exceptions
Web	Server	Coding	with	Python
Processing	Form	Data	with	Python
Wrap	Up	and	Goodbye

	
	

Chapter	1	–
Introduction																																																																				

Figure	1.1.	[J1]The	familiar	Python	logo.	Python	is	a	well-supported,	open-sourced	language.		It	is	freely-
available	for	both	personal	and	commercial	use.

Welcome	to	Python	for	Beginners!	With	this	book,	you	will	learn	the	basics	of
Python,	a	powerful	high-level	and	object-oriented	programming	language	that	is
suitable	for	both	beginners	and	experienced	programmers.	The	goal	of	Python	is
to	make	programming	easy	to	learn.	It	is	open-source	and	is	free	to	use	and
distribute,	even	commercially.

Intended	Audience[J2]
Prior	knowledge	of	Python	is	not	required	to	learn	from	this	book.	Whether	you
are	new	to	programming	or	you	are	someone	who	has	programmed	before	using
another	language,	you	will	find	this	book	to	be	the	ideal	resource	for	learning
Python.
For	beginners	who	are	new	to	Python,	computer	science	knowledge	would	be
helpful.		However,	it	is	not	required.		It	is	important	to	spend	time	understanding
the	concepts	and	doing	the	coding	exercises.	This	is	a	sure-fire	way	to	retain
knowledge	gained	from	this	book.
The	concepts	discussed	in	the	book	will	be	familiar	to	someone	with	prior
programming	experience.	For		those	readers,	it	is	expected	that	the	book	will
fast-track	their	understanding	of	Python	programming	concepts	and	how	they
differ	from	the	language/s	they	have	used	before.

At	the	end	of	the	course,	you	will	have	the	basic	skills	necessary	to	take	your
Python	programming	skills	to	the	next	level.	Learn	to	Program’s	Python	for
Game	Development	courses	are	perfect	for	that.

Figure	1.2.	Learning	the	basics	of	Python	programming	has	never	been	easier	with	the	Python	for	Beginners
video	course	on	Learn	to	Program	TV	and	this	companion	book.	After	you	have	completed	this	beginner’s
course,	you	can	take	your	Python	development	skills	to	the	next	level	with	our	Game	Development	for
Python	courses.

What	Does	the	Book	Cover?
This	book	has	12	chapters,	including	this	introductory	chapter.	We	will	go
through	the	next	chapters	briefly	below.

Figure	1.3.	The	home	page	of	the	Python.org	website,	where	you	can	download	installers	and
documentation	on	the	Python	programming	language.	The	website	also	features	the	latest	news	and	events
about	Python,	and	the	robust	Python	user	community.

In	Chapter	2,	you	will	start	by	downloading	and	installing	Python	(installation
packages	are	available	for	Windows,	Linux	and	other	Unix-based	platforms,	and
Mac	OS	X).	You	will	then	code	your	first	Python	program	using	IDLE,	or	the
Integrated	Development	and	Learning	Environment,	which	is	installed	with
Python.	Your	very	first	Python	program	would	be	a	simple	program.		However,
what	better	way	is	there	to	fire	up	the	excitement	of	learning	a	programming
language	than	writing	your	first	program?		You	will	then	execute	the	program
from	the	command	line.	In	this	chapter,	you	will	also	learn	how	to	use	the
Python	shell	window	interactively.	You	will	be	able	to	write	and	run
programming	commands	directly	from	the	shell	window.	You	will	then	have	a
coding	exercise	at	the	end,	that	will	reinforce	the	concepts	discussed	in	the
chapter.

Figure	1.4.	Python	includes	a	cross-platform	IDE	known	as	IDLE,	for	Integrated	Development	and
Learning	Environment.	IDLE	was	coded	entirely	in	Python	and	can	be	configured	to	your	liking.

In	Chapter	3,	you	will	learn	how	the	first	program	you	wrote	in	Chapter	1	works.
This	chapter	will	teach	you	how	to	output	the	results	from	your	program	onto	the
screen,	by	using	the	Print	function.	You	will	also	learn	about	the	proper	usage	of
separators	and	newlines,	which	allow	a	finer	grain	of	control	on	displaying
output	on	the	command	line.	At	the	end,	you	will	tie	this	all	together	with	a
coding	exercise	on	the	Print	function.

Figure	1.5.	IDLE	has	built-in	syntax	highlighting,	and	code	indentation,	among	other	features,	commonly
found	in	commercial	IDEs.

Chapter	4	discusses	the	use	of	variables	in	Python.	You	might	remember
variables	from	your	algebra	class,	such	as	in	the	expression	x	+	10	=	15,	what	is
the	value	of	the	variable	x?	Variables	play	an	important	role	in	Python,	as	well	as
other	programming	languages.	You	will	learn	how	to	assign	variables,	and	then
review	the	different	types	of	variables	you	can	use	in	your	programs,	including
numbers,	strings,	and	substrings	and	how	to	concatenate	them.	You	will	also
learn	about	the	different	variables	that	you	can	use	in	lists,	tuples,	and
dictionaries	(we	will	discuss	these	data	structures	in	greater	detail	in	Chapter
10).	Finally,	you	will	tie	together	everything	you	learned	about	variables	in
another	coding	exercise.
Chapter	5	focuses	on	the	use	of	operators,	which	are	used	to	complete
expressions	made	up	of	variables.	For	example,	in	the	expression	x	+	10	=	15,
the	symbols	+	and	=	are	operators	(the	+	sign	is	a	mathematical	operator,
denoting	that	the	number	10	should	be	added	to	the	variable	x,	while	the	=	sign
is	an	assignment	operator,	which	means	it	assigns	the	number	15	to	the
expression	x+10).	The	order	in	which	these	operators	are	evaluated	works	is	the
same	way	as	in	math	–	given	an	expression,	you	should	solve	it	in	the	following
order:	parentheses,	exponents,	multiplication,	division,	addition,	and
subtraction.		In	addition	to	mathematical	operators,	you	will	also	learn	about
comparison	and	logical	operators.	As	the	name	implies,	a	comparison	operator
compares	two	variables	or	values,	while	a	logical	operator	allows	you	to	join
expressions.	A	coding	exercise	will	be	given	at	the	end	to	test	your	newly-
acquired	knowledge.

In	Chapter	6,	you	will	learn	about	code	branching,	or	decision	making,	in
Python.	Given	a	condition,	which	path	should	your	program	take?	Does	it	go	this
way,	or	that?	You	will	learn	about	various	conditional	statements,	ranging	from
simple	If	to	nested	If-Else	statements,	and	how	to	implement	them	properly	in
your	Python	programs.	You	will	also	learn	about	Python’s	ternary,	or
conditional,	operator,	which	works	differently	than	similar	operators	in	other
programming	languages.	You	will	also	have	an	opportunity	to	again	test	your
understanding	of	the	skills	you	learned	in	the	chapter	with	another	coding
exercise.
Chapter	7	is	all	about	loops.		They	perform	an	operation	repeatedly,	until	all	its
conditions	are	met.	You	will	learn	about	Python’s	implementation	of	different
kinds	of	loops.	While	loops	are	the	simplest.	For	loops	are	implemented
differently	in	Python,	compared	to	other	programming	languages.	Nested	loops
are	contained	within	another	loop,	while	break	and	continue	statements	allow
greater	control	over	an	operation.	In	this	chapter’s	coding	exercise,	you	will	be
asked	to	code	a	program	that	will	compute	interest	on	an	investment.	Your
output	will	result	in	the	first	useful	program	in	the	course.
Chapter	7	is	the	midpoint	of	the	course.		Chapter	8	discusses	Python’s	powerful
math	functions,	which	are	a	strong	suit	of	the	language.		It	is	one	of	the	reasons
why	data	analysts	prefer	Python	to	other	programming	languages.	You	will	learn
about	casting	functions,	more	advanced	math	functions	and	randomization
functions.	Casting	functions	are	used	to	convert	one	variable	type	to	another,
such	as	by	using	int(),	you	can	convert	a	floating-point	number	to	an	integer.
Python’s	advanced	math	functions	allow	increasingly	complex	calculations	to	be
performed,	while	the	random	functions	allow	random	number	generation.	This	is
useful	for	programs	where	random	numbers	are	required.	The	sheer	number	of
functions	in	Python’s	Math	library	makes	it	impossible	to	cover	all	of	them	in
the	book.		However,	you	will	learn	the	most	essential	and	important	functions
and	how	they	can	be	used.		Chapter	8	is	similar	to	other	functions,	since	it	ends
with	a	coding	exercise	that	will	test	your	knowledge	about	Python	math
functions.
Chapter	9	teaches	you	about	the	functions	that	you	can	use	for	string
manipulation	and	processing	in	your	Python	programs.	Like	its	math	functions,
the	Python	String	library	is	so	large	that	it	is	impossible	to	discuss	them	all	in	an
introductory	book	on	Python	programming	(the	material	may	be	enough	to	fill	a
book	or	two	of	its	own).	You	will,	therefore,	only	learn	a	few	string	functions

that	are	essential	to	make	you	a	competent	Python	programmer.	As	you	continue
on	your	coding	journey,	you	will	discover	the	other	string	functions	on	your
own.	Another	coding	exercise	awaits	you	at	the	end.
Chapter	10	discusses	lists,	tuples,	and	dictionaries.		These	are	data	structures	that
allow	you	to	store	more	complex	data	for	your	programs.	There	are	many
functions	available	for	manipulating	data	stored	in	these	structures.	First,	you
will	learn	how	to	create	lists	and	tuples	and	access	the	values	available	in	them,
by	using	the	various	tuple	functions.	Lists	are	like	tuples,	except	that,	once
created,	you	can	still	edit	them.	By	contrast,	you	cannot	edit	a	tuple	once	it	is
created.	You	will	learn	the	same	things	with	dictionaries,	which	are	like	lists,
except	that	the	objects	contained	in	a	dictionary	are	accessed	via	keys	(you
access	objects	in	a	list	via	their	position	within	the	list).	You	will	then	learn	how
to	manipulate	data	within	these	data	structures	yourself	through	another	coding
exercise.
In	Chapter	11,	you	will	learn	about	some	of	the	time	and	date	functions	available
in	Python.		This	includes	how	to	access	data	in	a	Time	tuple,	advance	to	the
Calendar	object	and	then	learn	about	the	time	and	calendar	functions.	You	will
apply	what	you	have	learned	via	a	coding	exercise	involving	these	functions.
Chapter	12	builds	upon	your	knowledge	of	the	various	built-in	Python	functions
by	teaching	you	how	to	write	your	own	custom	functions.	The	information
contained	in	this	chapter	will	allow	you	to	start	taking	your	programming	skills
to	the	next	level.	You	will	learn	how	to	define	and	call	a	simple	function,
required	argument	functions,	keyword	argument	functions,	as	well	as	the	default
arguments	available	to	your	functions.	You	will	also	learn	how	to	use	return
statements	with	your	functions.	This	allows	them	to	return	a	value	when	called.	
You	will	also	learn	how	to	consume	existing	Python	modules.		The	last	part	of
this	chapter	teaches	you	how	to	create	your	own	custom	Python	module.	You
will	have	the	opportunity	to	apply	all	this	critical	information	in	a	coding
exercise.
By	this	time,	you	will	nearly	be	at	the	end	of	your	coding	journey	using	Python.
In	the	previous	chapters,	you	did	all	your	programming	on	the	Python	shell.	In
Chapter	13,	input	and	output	(I/O,	as	it	is	called	in	programming)	from	outside
the	shell	will	be	the	focus.	You	will	learn	how	to	let	your	programs	read	input
from	the	keyboard	and	external	files.	You	will	then	write	to	an	external	file	using
your	program.	Your	coding	exercise	will	be	on	file	I/O.

Chapter	14	will	present	other	topics	that	are	designed	to	prepare	you	for	more
advanced	Python	programming	skills.	You	will	learn	how	to	handle	exceptions,
or	run-time	errors	in	your	program.	You	will	then	learn	about	web	server	coding
with	Python.	You	will	learn	how	to	run	Python	on	a	web	server	and	use	it	to
serve	HTML	pages	to	users.	Finally,	you	will	learn	about	processing	form	data
from	a	website	using	Python.	There	will	not	be	a	coding	exercise	in	Chapter	14.

Figure	1.6.	IDLE	is	easy	to	configure.	You	can	change	font	faces	and	sizes,	customize	the	foreground	and
background	colors	used	in	syntax	highlighting,	use	built-in	highlighting	themes,	customize	keyboard
shortcuts	(useful	if	you	are	accustomed	to	working	on	another	platform),	start	it	up	when	you	boot	into	your
OS,	and	use	extensions.

Important	Things	to	Remember
One	of	the	advantages	of	Python	is	that	it	is	platform-independent.	For	any
preferred	coding	platform,	the	chances	of	modifying	your	code	so	that,	as	an

example,	your	Windows	program	would	run	on	Macs,	 are 	minimal.	Moreover,
IDLE	(which	is	entirely	coded	in	Python)	operates	in	a	similar	way	across
platforms.	If	you	change	platforms	midway	through	a	project,	you	can	proceed
seamlessly	and	pick	up	from	where	you	left	off.
Other	than	IDLE,	you	can	also	use	your	trusty	text	editor	for	coding	Python
programs.	There	are	IDEs	that	specifically	target	or	support	Python.	If	you	like
to	use	other	IDEs	as	you	go	through	the	book,	feel	free	to	do	so.	You	can	expect
minimal	modification	of	the	coding	exercises	to	suit	your	preferred	IDE.
For	the	sake	of	readability,	this	book	primarily	uses	Windows	keyboard	shortcuts
in	its	instructions.	As	Mac	users	probably	know,	Mac	shortcuts	are	generally	the
same.		However,	the	Command	key	is	used	in	place	of	Ctrl	and	Option	instead	of
Alt.	Please	refer	to	the	table	below	for	a	full	list	of	shortcuts	for	both	Mac	and
Windows.	You	don’t	have	to	memorize	it,	but	feel	free	to	use	it	as	a	reference.
We	will	cover	more	specific	shortcuts	as	they	come	up	in	this	book.	However,
some	basic	shortcuts	to	keep	in	mind	are	Undo	(Ctrl+Z),	Step	Backward
(Ctrl+Alt+Z),	Step	Forward	(Shift+Ctrl+Z),	Copy	(Ctrl+C),	and	Paste	(Ctrl+V).
If	you	are	working	on	a	Mac,	simply	replace	Ctrl	with	Command	and	Alt	with
Option.
The	Linux	equivalents	to	Windows	shortcuts	depend	on	your	desktop
environment.	On	Gnome	and	KDE,	two	of	the	more	popular	Linux	desktop
environments,	shortcuts	are	generally	the	same	as	in	Windows.
There	is	one	last	thing	to	mention	before	proceeding	to	the	next	chapter.	Many
Linux	distributions	have	Python	installed	by	default.	If	you	are	using	Linux	and
you	cannot	see	Python	among	its	installed	packages,	you	can	often	just	use	your
package	manager	to	install	Python.
With	that	out	of	the	way,	let’s	proceed	to	the	next	chapter,	where	you	will	code
your	first	Python	program!
	
	
	
	
	
	

	
	
	
	
	
	
	
	
	
	
	
	

Chapter	2	–	Getting	Started
This	chapter	will	teach	you	how	to	download	and	install	Python	on	your
computer,	run	its	built-in	programming	environment,	and	create	your	very	first
Python	program.	In	the	process	of	learning	these	things,	you	will	also	learn
about	executing	your	program	on	the	command	line,	and	using	the	Python	shell
for	coding	interactive	programs.	At	the	end	of	this	chapter,	you	will	have	a
coding	exercise	where	you	will	apply	the	concepts	of	writing,	running,	and
debugging	Python	programs.
Before	you	start	on	your	coding	journey,	you	should	have	already	installed
Python	on	your	computer.		If	you	have	not	yet	installed	Python,	go	through	the
next	section	first.	If	you	have	Python	installed	already,	you	can	skip	to	the	next
section.

Downloading	and	Installing	Python
The	easiest	way	to	install	Python	is	to	download	an	installer	for	your	computer
from	the	official	Python	website,	https://www.python.org.	
Python	3.6.3	is	the	latest	version,	as	of	December	2017.	The	coding	exercises	in
this	book	assume	that	you	are	using	this	version,	or	at	least	a	version	close	to	it.
It	is	recommended	that	beginners	to	the	language,	or	any	programming	language

https://www.python.org

for	that	matter,	start	learning	with	the	latest	version	to	avoid	any	problems	with
older,	legacy	versions.
Python	has	official	releases	for	Windows,	Linux/Unix,	and	Mac	OS	X,	as	well	as
other	platforms,	including	iOS	(yes,	you	can	write	Python	scripts	on	your
favorite	iPad	or	iPhone).	If	you	are	using	Linux	or	Unix,	Python	is	probably
already	available	on	your	favorite	package	manager,	ready	for	installation	at	any
time.	You	can	also	try	compiling	Python	from	tarball	sources,	which	are	also
available	for	download	on	the	website.

Figure	2.1.	Python	installers	for	Windows,	Linux,	MacOS,	and	other	platforms	are	available	for	download
from	the	Python.org	website.

	

Installing	Python	is	relatively	straightforward,	and	should	proceed	without	any
hassle.

Figure	2.2.	After	downloading	an	installer	for	your	platform,	you	can	then	install	Python.	The	process	is
relatively	straightforward,	and	should	run	without	a	hitch.

A	short	note	before	we	start	coding:	Python	is	a	popular	language.		It	has	a
robust,	active	user	community	that	you	might	want	to	join.	A	supportive
community	comprising	both	fellow	newbies	and	veteran	coders	is	always	a
welcome	ally,	as	you	march	towards	Python	mastery.
As	mentioned	in	Chapter	1,	the	book	uses	Windows	keyboard	shortcuts	for	its
instructions.		Whatever	platform	you	are	using,	you	should	still	be	able	to	follow
the	instructions.

Running	IDLE
Any	text	editor	should	suffice	for	writing	Python	programs.	However,	in	this
book,	you	will	be	using	Python’s	integrated	text	editor	named	IDLE,	for
Integrated	Development	and	Learning	Environment.
To	run	IDLE:
1.	 Press	 	on	your	keyboard,	and	enter	the	phrase	“Python.”
2.	 Select	IDLE	(Python	3.x	32-/64-bit)	from	among	the	results,	then	click	or

press	Enter	on	your	keyboard.	IDLE	should	run	soon	after.

Figure	2.3.	Python’s	Integrated	and	Development	Learning	Environment,	or	IDLE,	is	used	to	show	code
samples	throughout	the	book.	Built	entirely	in	Python,	IDLE	is	also	open	source.

You	will	notice	that	the	IDLE’s	Python	Shell	is	similar	to	your	Windows
command	line,	or	your	Linux	and	Mac	OS	terminal,	at	least	in	appearance.	It
also	operates	in	much	the	same	way.

Figure	2.4.	IDLE’s	Python	Shell	is	similar	in	many	ways	to	the	Windows	command	prompt,	or	the	terminal
on	Linux	and	Mac	OS.

Writing	Your	First	Python	Program
As	is	customary	among	first-time	programmers,	your	first	program	will	output
the	phrase	“Hello	World”	on	your	computer.	To	do	this,	the	program	uses	the
Print()	command.
With	IDLE	now	open,	it	is	time	to	start	writing	your	first	Python	program.
1.	 Click	File,	then	New	File.	Alternatively,	press	Ctrl+N	on	your	keyboard.

	
Figure	2.5.	Click	File,	then	New	File,	or	press	Ctrl+N	on	your	keyboard	to	open	a	blank	Editor
window,	which	you	will	use	to	write	your	code.

2.	 A	blank	editor	window	opens.	You	will	write	your	code	here.	Enter	the
following	commands	on	separate	lines:
print("Hello	World")
print("Welcome	to	Python	for	Beginners	2017!")

3.	 To	save	the	file,	click	File,	then	Save,	or	press	Ctrl+S	on	your	keyboard.
4.	 On	the	Save	As	window,	enter	Hello	as	the	file	name,	then	click	Save.	The

file	can	be	saved	to	any	location	on	your	computer.	For	example,	all	the
code	in	this	book	are	saved	to	a	Python	2017	folder	on	our	desktop.

You	have	just	created	a	program	that	will	print,	or	output,	the	lines	Hello	World
and	Welcome	to	Python	for	Beginners	2017	to	your	screen.

Running	the	Program
There	are	two	ways	to	run	a	Python	program.	The	first	one	involves	opening	a
command	prompt	(or	terminal,	on	Linux	and	Mac),	then	running	the	program
from	there.	The	second	one	involves	running	the	program	from	the	IDLE.
Let’s	try	the	first	method.
1.	 On	your	PC,	bring	up	a	command	prompt	window,	or	press	 	on	your

keyboard,	and	enter	the	phrase	Command	Prompt.
2.	 On	the	command	prompt,	navigate	to	the	folder	where	you	saved	your	file.
3.	 Enter	the	following	command	to	call	the	program:

python	hello.py

4.	 The	program	then	outputs	the	following	on	the	command	prompt.
Hello	World
Welcome	to	Python	for	Beginners	2017!	

Fig.	4.6	shows	the	entire	step-by-step	procedure.

Figure	2.6.	Navigate	to	the	folder	where	you	saved	your	program,	then	run	the	program.	The	command	to
run	a	Python	program	is	in	the	form	python+filename.	In	this	screenshot	of	the	command	prompt,	the
program	is	called	by	python	hello.py.	Note	the	lines	that	appear	right	after	the	command	are	entered	on	the
window.

From	Fig.	2.6,	we	can	see	the	following:

The	command	to	call	Python	programs	is	python,	followed	by	the
complete	file	name,	in	this	case,	hello.py.	Thus,	to	run	the	program,	you
enter	python	hello.py	on	the	command	prompt.
All	Python	programs	have	a	.py	file	suffix.	You	need	to	include	the	suffix
every	time	you	run	a	program	this	way.	Otherwise,	you	will	get	an	error.
The	program	output,	Hello	World,	and	Welcome	to	Python	for
Beginners	2017,	on	two	separate	lines,	correspond	to	the	two	lines
enclosed	in	parentheses	we	asked	our	Hello	World	program	to	output,	or
print,	on	screen.

The	second,	more	direct	way	to	run	the	program	involves	using	IDLE.
1.	 Click	File,	then	Open,	and	navigate	to	the	folder	where	you	saved	your

program	to	open	the	file	in	a	new	window.
2.	 Click	Run,	then	Run	Module,	or	press	F5	on	your	keyboard.

	
Figure	2.7.	Click	Run,	then	Run	Module,	to	run	the	program.	Alternatively,	press	F5	on	your
keyboard.

3.	 The	Python	shell	then	runs	the	program	by	printing	the	phrases	“Hello
World”	and	“Welcome	to	Python	for	Beginners	2017.”

Figure	2.8.	When	the	program	is	run,	it	prints	the	output	(the	lines	highlighted	in	blue)	to	the
Python	shell	window.	The	color	of	the	output	text	can	be	customized	by	clicking	Options,	then
Configure	IDLE.	You	will	learn	more	about	this	later	in	this	section.

Editing	your	First	Program
Let’s	see	what	happens,	if	you	add	another	line	of	code	to	your	program.
1.	 Click	File,	then	Open,	then	navigate	to	the	folder	where	you	saved	your

program	to	open	the	file	in	a	new	window.
2.	 Add	the	following	line	to	your	program:

print("I'm	Mark	Lassoff,	your	instructor")
	

3.	 Click	Run,	then	Run	Module,	or	press	F5	on	your	keyboard,	to	run	the
program	again,	the	output	of	which	is	shown	below.
Hello	World
Welcome	to	Python	for	Beginners	2017!
I’m	Mark	Lassoff,	your	instructor

	
That’s	it	for	your	first	program!	You	started	out	with	just	a	couple	of	lines,	then
added	another	line	at	the	end.	The	final	output	might	just	be	three	lines	long.	
However,	it’s	your	very	first	Python	program,	so	clap	yourself	on	the	back	and
congratulate	yourself	on	your	achievement.

Using	the	Shell	Window
This	next	section	teaches	you	how	to	use	the	Python	shell.	You	will	learn	to
customize	its	appearance	to	suit	your	tastes,	and	then	learn	about	its	other
features.	It	will	also	teach	you	to	code	interactively	using	the	shell.	This	means
that	you	enter	code	on	the	shell,	then	also	run	it	directly	from	within	the	shell.
This	is	a	great	way	to	learn	Python,		since	it	allows	you	to	test	out	code	without
writing	a	formal	program.	At	least,	not	yet.	You	can	then	try	the	same	code
within	the	context	of	a	program,	having	learned	how	the	code	behaves	using	the
shell	window.
When	you	start	IDLE,	there	is	a	line	on	top	of	the	shell	that	advises	you	to	enter
copyright(),	credits(),	or	license()	to	learn	more	about	the	software.	If	you	enter
copyright()	on	the	shell,	you	will	see	the	copyright	terms	for	Python	appear	on
screen.	Entering	credits()	will	display	the	organizations	credited	with	developing
Python,	and	license()	will	display	Python’s	open-source	license.
Let’s	look	at	the	Shell	window	in	more	detail.	Specifically,	let’s	look	at	how	you
can	change	the	font	face,	size,	and	color	for	the	highlighted	code	in	the	Editor.

To	Change	the	Editor’s	Various	Font-Related	Features
1.	 On	your	PC,	press	 	on	your	keyboard,	and	enter	IDLE.	This	will

display	IDLE	(Python	3.x	32-/64-bit)	on	the	Search	results.
2.	 Click	IDLE	(Python	3.x	32-/64-bit),	or	press	Enter,	to	run	the	Python

shell.
3.	 When	the	shell	window	appears,	click	Options,	then	Configure	IDLE.

Figure	2.9.	Click	Options,	then	Configure	IDLE	to	open	the	Settings	window,	where	you	can	customize
the	font	face,	size,	and	colors	of	the	highlighted	text	on	the	Editor.

4.	 On	the	Settings	window,	the	Fonts/Tabs	tab	is	selected	by	default.	To
customize	the	font	used	for	various	highlighted	text	in	the	Editor,	select
another	one	from	the	list.

5.	 To	increase	the	font	size	for	more	readability	and	make	the	font	bold	by
default,	select	a	different	size	from	the	list,	and	check	the	Bold	box.

6.	 To	increase	the	indentation	width	from	the	standard	four	(4)	spaces,	drag
the	slider	down	to	the	minimum	size	2	or	up	to	size	six	and	above.	It	is
recommended,	however,	to	stay	with	the	standard	size.

7.	 After	you	are	done	customizing	the	fonts	used	within	IDLE,	click	Apply
to	have	IDLE	implement	your	changes.
	

To	Change	the	Editor’s	Highlighted	Text	Colors
1.	 On	the	Settings	window,	click	the	Highlights	tab.

Figure	2.10.	The	Settings	window’s	Highlights	tab	is	where	the	foreground	and	background	colors	of
highlighted	text	are	customized.	Here,	highlight	themes	can	also	be	applied	to	the	Editor.

2.	 To	change	the	foreground	and	background	colors	used	for	highlighting
text	within	the	shell,	select	the	text	type	first	by	either	clicking	the	Normal
Text	button	and	selecting	another	text	type,	for	example,	Python
keywords,	from	the	list,	or	clicking	the	sample	text	in	the	box.

3.	 After	selecting	the	text	type,	change	the	foreground	color	by	clicking	the
Choose	Color	for:	button,	then	selecting	another	color	from	the	palette.

4.	 To	change	the	highlighting	theme,	select	another	theme	from	the	three
available	on	the	list.

5.	 After	you	are	done	customizing	the	text	colors	used	within	IDLE,	click

Apply	to	have	IDLE	implement	your	changes.
There	are	three	other	tabs	on	the	Settings	window.	The	Keys	tab	is	where	you
can	change	the	built-in	key	set	available	for	your	operating	system	(OS).	This	is
useful,	if	you	are	coming	from	or	are	more	familiar	working	with	another	OS.
The	General	tab	allows	you	to	set	various	other	Window	and	Editor	preferences,
as	well	as	set	another	Help	source	for	when	you	are	using	the	Editor.	For
example,	you	can	set	this	book	as	a	reference	by	pointing	the	shell	to	a	PDF
copy	on	your	computer.
The	Extensions	tab	shows	you	IDLE’s	extensions,	with	zzdummy	the	only
current	default	extension.	Zzdummy	is	used	for	testing.

Figure	2.11.	The	Keys,	General,	and	Extensions	tabs	on	the	Settings	window	contain	the	other	settings	in
the	IDLE	that	you	can	customize.	Experiment	with	the	settings,	until	you	feel	comfortable	with	how	your
program	code	and	output	looks	when	displayed	on	the	Editor.

To	Use	the	Shell	in	Interactive	Mode
Let’s	now	look	at	running	code	interactively	on	the	shell.

1.	 Run	IDLE.
On	the	shell,	where	the	>>	is,	enter	the	following	command:

print("I'm	Mark	Lassoff,	your	instructor")
	

2.	 Press	Enter.	This	prints	Mark	Lassoff,	your	instructor	on	the	next	line.
As	you	can	see	from	the	above	example,	Python	processed	the	code	you	entered
in	the	shell	window.
Let’s	try	out	other	commands.
Enter	2	+	2	on	the	shell,	then	press	Enter.
The	answer	to	our	short,	simple	addition	problem,	4,	then	appears	on	the	next
line.	
Let’s	enter	a	more	complex	expression.
Enter	26874/2.5*8-.076+3,	then	press	Enter.
Python	solves	the	problem	for	us,	by	showing	the	answer	on	the	next	line.
So	far,	we	have	shown	that	mathematical	expressions,	simple	and	complex,	are
processed	interactively	by	the	shell.
Let’s	have	the	shell	solve	for	variants	next.
Enter	the	following	code	on	the	shell,	press	Enter	after	each	line.

x	=	10
print	(x)

	
What	happens?	That’s	right,	the	answer,	0,	appears	on	the	next	line.	The	code
assigns	10	to	x,	then	prints	the	value	of	x	to	the	screen.
Let’s	try	out	another	example.
Enter	the	following	code:

name	=	"Mark	Lassoff,	your	instructor"
print	(name)

	

Pressing	Enter	prints	the	following	on	the	next	line:

Mark	Lassoff,	your	instructor
	
Let’s	have	Python	solve	for	x	again.
	

print	(x)
	
What	happens?	10,	the	value	we	gave	x	previously,	appears	on	screen.
	
So	far,	you	have	seen	that	Python	interprets	what	we	enter	on	the	shell
interactively.	Python	retains	all	these	in	memory,	at	least	until	you	restart	the
shell.

Figure	2.12.	This	screenshot	shows	the	interactive	Python	commands	you	entered	and	their	results
displayed	on	the	Python	shell	window.

Let’s	try	that	next.
Restart	the	shell	by	clicking	Shell,	then	Restart	Shell,	or	pressing	Ctrl+F6.
Then	enter:

print	(x)
	
This	time,	an	error	occurs.	From	the	last	line	on	that	technical	gobbledygook,	we
can	see	the	cause	of	the	error:	name	‘x’	is	not	defined.
Let’s	try	the	same	thing	with	the	name	variable	we	defined	earlier.

print	(name)
	
The	same	type	of	error	occurs.
	

Figure	2.13.	Restarting	the	shell	by	clicking	Shell,	then	Restart	Shell,	or	pressing	Ctrl+F6,	effectively
refreshes	the	Python	shell	and	clears	it	of	the	interactive	commands	you	entered	earlier.

As	you	can	see	from	the	above	examples,	restarting	the	shell	tells	Python	to	start
from	scratch,	erasing	from	its	memory	the	values	that	you	have	previously
associated	with	the	variables	x	and	name.
	
You	can	see	from	the	example	above,	how	easy	it	is	to	play	around	with	code	on
the	shell.	While	learning	to	code,	you	can	adopt	the	shell	as	a	training	tool,
experimenting	with	code	segments	that	you	can	use	in	your	programs.

Writing	Code	in	the	Editor	Window
Let	us	take	a	more	detailed	look	at	how	the	Editor	works	in	this	section.
1.	 Run	IDLE.
2.	 Click	File,	then	New	File,	or	press	Ctrl+N,	to	open	a	new	Editor	window.
3.	 Define	the	following	variables:

name	=	"Python	for	Beginners	2017"
age	=	42
instructor	=	"Mark	Lassoff"
	

4.	 Add	the	following	commands:

print	(name)
print	(age)
print	(instructor)

Note	that	as	you	type,	the	Editor	shows	calltips	to	guide	you	as	you	write
your	program.
	

Figure	2.14.	The	Editor	window	shows	calltips	as	you	enter	your	code.	These	serve	as	guides	as	you	go
about	creating	your	programs.

5.	 Before	saving	the	program,	add	the	following	comments	on	top.
#Python	Course
#Mark	Lassoff
#LearnToProgram.tv
	
Comments	are	preceded	by	ampersands	and	are	not	interpreted,	or	are
disregarded	by	Python	when	it	runs	the	program.	They	explain	what	the
program	is	all	about,	as	a	guide	to	readers	or	other	developers	who	might
need	to	study	the	program	later.	Comments	will	be	essential,	as	you	learn
to	code	more	complex	programs.	They	will	make	your	life	easier,	and
serve	to	document	your	code.
	

6.	 Add	separate	comments	for	the	variables	and	commands.	Your	code	now
looks	like	the	following:
#Python	Course
#Mark	Lassoff
#LearnToProgram.tv
	
#Set	Variables
name	=	"Python	for	Beginners	2017"

age	=	42
instructor	=	"Mark	Lassoff"
	
#Output
print	(name)
print	(age)
print	(instructor)
	

7.	 Before	saving,	you	can	try	experimenting	with	formatting	your	code	by
clicking	Format,	then	going	through	the	available	options	under	that
menu.	For	example,	to	indent	your	code,	highlight	the	code	you	want	to
indent,	then	click	Format,	then	Indent	Region.	Commenting	out	code
blocks	is	another	option.	It	makes	commenting	easier,	since	you	can
comment	out	several	lines	of	code	at	the	same	time,	rather	than	appending
an	ampersand	at	the	beginning	of	each	line	to	be	commented	out	one	at	a
time.

8.	 Click	File,	then	Save,	or	press	Ctrl+S	to	save	the	program.
9.	 Run	the	program	by	clicking	Run,	then	Run	Module,	or	pressing	F5.	The

output	will	look	like	the	following:
Python	for	Beginners	2017
42
Mark	Lassoff
	

You	wrote	a	longer	program	in	this	section	while,	at	the	same	time,	learning
more	about	the	Editor,	including	its	formatting	features.	As	your	programs
become	more	complex,	you	will	find	that	proper	formatting	will	make	your
codes	more	readable.

Executing	Python	on	the	Command	Line
So	far,	you	have	been	using	IDLE’s	Python	shell	and	editor	window	to	run	and
create	your	programs.	Note	that	you	can	still	use	Python,	even	outside	the	shell
and	the	editor	window.	This	is	because	Python	resides	on	the	operating	system,
and	does	not	require	the	Python	shell	to	run.	You	will	see	how	this	works	in	this
section.
In	addition,	as	this	section	demonstrates,	you	can	use	another	text	editor	to	code
your	Python	program	before	running	it	on	the	command	line.	If	you	are	on
Windows,	you	can	use	Notepad.	If	you	are	on	Linux	or	Mac,	you	may	use	your

preferred	text	editor	to	code	your	program.
Let’s	proceed.
1.	 Open	Notepad.	As	mentioned,	you	may	use	any	text	editor	you	prefer.

	
Figure	2.15.	Notepad,	or	any	text	editor,	can	be	used	for	writing	your	Python	programs.

2.	 Enter	the	following	lines	on	Notepad:
x	=	45
y	=	115
print(“X	times	Y	is:	“)
print(x*y)
	

3.	 Save	the	file	to	any	folder	on	your	computer.
4.	 Open	a	command	prompt,	or	press	 	on	your	keyboard,	and	enter	the

phrase	Command	Prompt.
5.	 On	the	command	prompt,	if	you	enter	Python,	an	interactive	Python

window	opens.	However,	you	will	not	be	running	the	program
interactively,	so	navigate	to	the	folder	where	you	saved	your	file,	then
enter	the	following	command:
python	commandline.py

6.	 The	program	then	outputs	the	following	on	the	command	prompt.
X	times	Y	is:
5175
	

7.	 Let’s	edit	the	program	by	changing	the	values	of	x	and	y.	
	
x	=	2015.55
y	=	8.79
	

8.	 Save	the	file,	then	run	it	again.	You	will	get	a	different	result	this	time,

because	of	the	changes	to	x	and	y.

X	times	Y	is:
17716.6845

	
That	is	it	for	executing	Python	on	the	command	line.	Though	this	is	not	typical
of	the	way	programmers	use	Python,	we	showed	this	to	you	so	that	you	can	see
that	Python	can	be	executed	on	the	command	line,	if	needed.
	

Coding	Exercise:	Writing,	Running	and	Debugging
You	will	review	the	process	of	writing	and	executing	a	complete	program	in	this
exercise.	You	will	also	cause	an	error	condition	in	the	program,	correct	it,	and
execute	the	corrected	code.
1.	 Open	IDLE,	then	click	File,	then	New,	to	open	a	new	editor	window.

Enter	the	following	code	on	the	editor	window.	As	you	can	see,	the	code
uses	the	print()	command,	assigns	values	to	the	variables	age,	band,	food,
and	state,	then	prints	out	the	strings	and	variable	values.

#Code	Exercise	1
#Python	for	Beginners	2017
	
print("Mark	Lassoff")
print("Born:	February	21")
age=42
print("I	am",	age,	"years	old")
	
band="Journey"
food="Spaghetti"
state="Connecticut"
	
print("My	favorite	band	is",	band)
print("I	like	to	eat",	food)
print("My	favorite	state	is",	state)
	

Figure	2.16.	The	code	from	the	exercise,	as	seen	on	the	editor	window.	Note	that	the	color	coding	makes	the
code	elements	stand	out.

1.	 Run	the	code	using	the	Run	Module	option	within	your	editor	window.
You	will	see	that	Python	asks	that	you	save	the	file	first	before	running	it.
Verify	the	output	and	make	sure	your	code	runs	as	expected.	Otherwise,
look	for	errors	in	your	code	and	correct	them.	Go,	or	step,	through	each
line	if	you	are	having	trouble	finding	the	error.

	
Figure	2.17.	Before	you	can	run	your	program,	you	will	be	asked	to	save	it	first.

2.	 Let’s	now	generate	an	error	when	running	our	code.	Edit	the	last	line	to
make	it	appear	like	the	following:
print	“My	favorite	state	is”,	state
	

3.	 Click	Run	Module	again,	or	press	F5.	As	you	can	see,	the	editor	points	out
a	syntax	error	with	your	code.	This	is	because	Python	expects	the
parenthesis	with	the	print	command.

	
Figure	2.18.	A	syntax	error	is	raised,	if	your	code	violates	Python	syntax	conventions.

4.	 Correct	your	code	back	to	what	it	was	before,	except	make	the	word	state
plural	so	that	your	code	reads	like	the	following:
print("My	favorite	state	is",	states)
	

5.	 Click	Run	Module	again,	or	press	F5.	This	time,	your	code	runs,	and	prints
the	first	two	lines	to	the	screen.	However,	it	does	not	print	the	last	line	in
your	program.	This	is	because	the	code	is	logically	incorrect,	as	the
variable	states	does	not	exist.	The	error,	highlighted	in	red,	says
NameError:	name	‘states’	is	not	defined.

	
Figure	2.19.	The	screen	showing	the	logical	error	raised	because	of	the	undefined	variable	states
included	in	your	program.	The	error	is	highlighted	in	red.

6.	 Correct	the	code	so	that	it	compiles	and	runs	correctly	one	last	time.	Run
the	code	in	the	shell	to	be	sure	everything	is	correct.

	
	
	
	
	

	
	

Chapter	3	–	Output
This	chapter	will	teach	you	about	output,	or	what	the	user	sees	from	your
program.	Remember	in	Chapter	2,	when	you	coded	your	first	Python	program
and	worked	on	a	coding	exercise	that	showed	the	output	of	your	program	on	the
screen?	In	both	instances,	you	used	the	print()	function	to	output	your	program’s
inputs.
As	you	may	have	guessed	by	now,	print()	is	the	primary	function	used	for
displaying	your	output.	You	will	learn	more	about	the	print()	function	in	this
chapter.
You	will	also	learn	about	newlines	and	separators,	characters	which	act	as
formatting	tools	for	your	screen	output.	With	the	help	of	these	characters,	you
can	show	exactly	how	you	want	your	program	output	to	look	on	screen.
At	the	end	of	this	chapter,	you	will	also	complete	another	coding	exercise
designed	to	reinforce	the	concepts	you	learned	while	going	through	the	chapter’s
sections.

The	print()	Function
You	first	encountered	the	print()	function	in	Chapter	2.	It	is	now	time	to	take	a
closer	look	at	the	function.	To	help	you	understand	the	function	better,	follow
along	with	the	instructions	below.
Before	anything	else,	run	IDLE.
Enter	the	following	on	the	command	line:

print	“Mark”
What	happens?
The	shell	displays	a	syntax	error	regarding	the	missing	parenthesis	in	the
command.	This	is	because	you	will	need	to	enclose	anything	you	want	to	output
in	parentheses.
If	you	revise	your	program	to	include	the	parentheses:

print(“Mark”)

the	error	disappears.
Add	“Lassoff”	to	the	expected	output:

print(“Mark	Lassoff”)
Remember	that	anything	that	lies	between	the	quotation	marks	and	the
parenthesis	gets	printed.	Thus,	you	will	see:

Mark	Lassoff
appear	on	your	screen.
Next,	enter	the	following:

print(“Mark	Lassoff”,	”instructor”)
This	displays	the	following	to	the	screen:

Mark	Lassoff	instructor
This	example	shows	that	if	you	want	to	output	different	values	in	a	single	line,
you	may	also	enter	them	separately,	each	enclosed	in	quotation	marks,	with	a
comma	separating	each	value.	This	improves	the	readability.
Next,	enter	the	following	commands:

course=”Python	for	Beginners	(2017)”
print(“course”)

Here,	you	define	the	string	variable	course	as	having	a	value	=	Python	for
Beginners	(2017),	then	you	output	the	value	of	the	variable	course	to	the	screen.
Thus,	the	following	string	is	printed	to	the	screen:

Python	for	Beginners	(2017)
Now,	combine	the	variable	course	with	another	string,	using	a	comma	to
separate	the	values.

print(course,	“Mark	Lassoff”)
This	outputs	the	following:

Python	for	Beginners	(2017)	Mark	Lassoff
Let’s	try	integers	next.	Entering:

print(17)
gives	you	the	following:

17
If	you	enter	a	floating-point	number	and	then	press	Enter:

print(255.6987)
Python	will	spew	out

255.6987
to	the	screen.
So	far,	you	have	seen	how	Python	handles	strings,	numbers,	and	floating-point
numbers.	Let’s	try	a	mathematical	expression	next.
Enter

print(255/76*2+9-18)
In	the	case	of	mathematical	expressions,	Python	evaluates	the	expression,	then
prints	out	the	results.

-2.2894736842105274
If	you	look	closely	at	how	these	values	are	displayed	on	your	screen,	you	will
notice	a	difference	in	how	Python	treats	strings	and	numbers	when	using	the
print()	function.	Can	you	tell	what	it	is?	
Numbers,	regardless	of	whether	they	are	integers	or	floating-points,	can	be
entered	without	quotation	marks.	In	contrast,	you	can	only	use	the	print()
function	on	a	string	without	quotation	marks,	if	the	string	is	a	variable.	That	is	if
you	have	previously	assigned	a	value	to	the	string.

Figure	3.1.	This	section’s	examples	as	they	appear	on	the	IDLE	Python	shell.

You	have	now	learned	how	to	use	the	print()	function	with	strings,	variables,
integers,	floating-point	numbers,	and	mathematical	expressions.	In	the	next
section,	you	will	learn	how	to	use	newlines	and	separators	with	the	print()
function	to	format	the	output	shown	on	your	screen.

Separators	and	Newlines
In	the	previous	section,	you	used	a	comma	to	separate	a	variable	from	another
string,	while	using	the	print()	function.

print(course,	“Mark	Lassoff”)
This	was	after	you	defined	a	variable	course	as:

course	=	Python	for	Beginners	(2017)
The	commands	above	resulted	in	the	following	output:

Python	for	Beginners	(2017)	Mark	Lassoff

Figure	3.2.	Lines	of	code	from	the	previous	section,	where	a	comma	was	used	to	separate	two	values	in	the
Print	statement.	The	code’s	output	is	seen	at	the	bottom.

You	will	learn	more	about	separators,	as	well	as	newlines,	in	this	section.

Let’s	show	this	through	another	round	of	examples.
First,	Open	IDLE,	then	on	the	Python	shell,	select	File,	then	New	File.
Enter	the	following	commands,	then	save	and	run	the	file.

print("Mark","Brett","Joan","Rick","Kerri",	sep="|")
Instead	of	a	comma,	the	command	above	uses	the	pipe	character	|	to	separate	the
values	shown	on	the	screen.
The	output	will	be:

Mark|Brett|Joan|Rick|Kerri
You	can	use	any	character,	or	even	none,	to	separate	values	printed	to	the	screen.
Let’s	show	this	through	another	example.	If	we	use	four	stars,	****,	the
following	will	be	shown	on	the	screen	instead.

Mark****Brett****Joan****Rick****Kerri
NOTE:	To	be	able	to	generate	the	required	output,	you	need	to	save	the	file
before	running	each	command	in	this	section.
You	can	also	choose	not	to	have	a	separator	between	the	values.	To	do	this,	enter
the	following:

print("Mark","Brett","Joan","Rick","Kerri",	sep="")
This	will	print	the	following	to	the	screen:

MarkBrettJoanRickKerri
The	same	principle	applies	to	numbers.	If	you	enter	the	following:

print(10,15,20,25,	sep=”***”)
the	output	will	be:

10***15***20***25
Now	that	you	have	learned	what	separators	are,	it	is	time	to	go	to	newlines.
The	character	entity	for	a	newline	is	\n.
If	you	use	\n	between	the	values	in	your	print	command,	the	values	will	be
displayed	on	separate	lines.	To	illustrate	this,	enter	the	following	command	to
display	the	three	rock	band	names	on	separate	lines	on	your	screen:

print("Journey",	"\n",	“REO	Speedwagon",	"\n",	"Foreigner",	"\n")

After	saving	and	running	the	file,	you	will	get	the	result	shown	in	Figure	3.3.
If	you	look	more	closely	at	Figure	3.3,	although	the	three	bands	appear	on
separate	lines,	you	will	see	that	the	last	two	lines	each	had	a	space	to	the	left.
What	happened	in	this	case,	is	that	Python	also	interpreted	the	comma	between
the	three	values.

Figure	3.3.	The	output	of	inserting	the	newline	character,	\n,	between	the	values	in	the	3rd	line	of	code	on
the	editor	window	on	top,	is	shown	on	the	last	three	lines	of	the	shell	window	at	the	bottom.	Note	the	spaces
in	the	last	two	lines.

Although	there	is	nothing	wrong	syntactically	with	your	code,	to	avoid	the
spaces	appearing	in	the	output,	you	need	to	define	\n	as	a	separator	just	once	in
the	code,	like	in	the	previous	examples.

print("Journey","REO	Speedwagon","Foreigner",	sep="\n")
This	results	in	the	following	output:

Journey
REO	Speedwagon
Foreigner

	
As	seen	in	Figure	3.4,	the	output	is	left-aligned	and	much	cleaner,	compared	to
the	last	two	lines,	with	their	spaces	in	Figure	3.3.

Figure	3.4.	Defining	the	newline	character,	\n,	once	as	a	separator,	instead	of	inserting	\n	after	every	value
in	the	last	line	of	code	as	seen	on	the	editor	window	on	top,	results	in	a	left-aligned	and	cleaner	output,	as
seen	on	the	shell	window	at	the	bottom.

This	is	the	end	of	the	line	for	separators	and	newlines.	You	will	have	a	fun
exercise	in	the	next	section	to	test	your	new	knowledge.

Coding	Exercise:	Using	the	print()	Function
You	will	work	more	with	the	print()	function	in	this	exercise.
1.	 Open	IDLE,	then	use	the	interactive	mode	to	print	the	following:

a.	 The	result	of	2*5
b.	 A	string	that	includes	your	name	and	age
c.	 The	name	of	the	book

Figure	3.5.	Th	expected	output	for	Step	1.

From	Figure	3.5	above,	note	that	the	instructor’s	name	and	age	is	printed
twice.	Try	using	both	styles	with	your	own	name	and	age.	Your	code
should	appear	like	the	lines	below.

print("Mark	Lassoff,	42")
print("Mark	Lassoff",42)

Both	lines	of	code	work,	but	yield	slightly	different	results.	Why	do	you
think	that	is?

2.	 The	character	entity	\t	is	used	to	output	a	tab	to	the	command	line.	Using
\t	as	a	separator,	output	the	following	names	with	a	tab	between	each
name.

Bob,	March,	Larry,	Lynda,	Natalia,	Woody,	Wendy,	Brett,	Connie
Figure	3.6	shows	the	expected	output	from	your	code.

Figure	3.6	The	expected	output	for	Step	2.

3.	 Look	at	Figure	3.7.	Make	a	slight	change	to	your	code	to	output	the	list	of
names	in	Step	2	in	this	manner.

	
Figure3.7.	The	expected	output	for	Step	3.

4.	 Rewrite	the	following	code,	so	that	the	poem	inside	the	string	is	displayed
on	four	separate	lines.
	

Figure	3.8.	The	code	to	be	rewritten	in	Step	4.

The	output	should	look	like	what	is	displayed	in	Figure	3.9.
	

Figure	3.9.	The	expected	output	for	Step	4.

	
	
	
	

	
	
	
	

Chapter	4	–	Variables
This	chapter	will	teach	you	about	variables	in	Python	programming.	You	might
remember	variables	from	your	Algebra	class,	when	you	were	told	to	solve	for	x
and	y,	and	topics	in	previous	chapters	where	you	encountered	them.
In	this	chapter,	you	will	learn	about	variable	assignments	and	the	different
variable	types,	including	numbers	and	strings.
Other	topics	covered	in	this	chapter	include:	integers,	floating-points,	and
complex	number	variables.	It	will	also	discuss	variables	that	carry	string	values,
as	well	as	substrings	and	concatenation.	You	will	also	learn	about	variables	in
lists,	tuples,	and	dictionaries.
At	the	end	of	the	chapter,	you	will	need	to	complete	a	coding	exercise	that	is
designed	to	let	you	apply	the	principles	you	learned	about	variables	while	going
through	the	chapter.

Variable	Assignment
Before	going	into	the	main	topic	of	discussion	in	this	section,	you	must	have	a
clear	view	of	what	variables	are.		It	is	easiest	to	think	of	variables	as	boxes	that
have	stored	values	located	in	your	computer’s	memory.	For	example,	a	box	x
with	the	number	5	in	it.	Translated	in	terms	of	our	topic,	this	means	that	we	are
assigning	the	integer	5	to	x.
Let’s	take	the	above	concept	a	bit	further.	If	you	need	to	know	the	value	of	x
because	you	need	to	add	it	to	another	number,	for	example,	you	simply	retrieve	it
from	where	it	is	stored	in	memory.
Variables	are	widely	used	in	programming.	For	example,	you	can	assign
variables	to	track	game	scores	and	record	positions	in	chess	matches.
In	this	section,	we	will	first	look	at	simple	variable	assignments	and	then	go	on
to	increasingly	complex	ones.		As	with	our	previous	topics,	to	really	understand
variable	assignments,	you	will	need	to	have	your	Python	editor	open,	and	follow
along	with	the	examples	below.
Let’s	start	by	opening	IDLE,	then	an	editor	window	by	either	clicking	File	and
then	New	File	on	the	menu,	or	pressing	CTRL+N	on	the	keyboard.

On	the	editor	window,	enter	the	following:
name=”Mark	Lassoff”
company=”LearnToProgram.tv”
age=42

If	you	remember	this	from	the	discussions	in	previous	chapters,	it	means	that	we
are	assigning	the	name	variable	to	Mark	Lassoff,	the	company	variable	to
LearnToProgram.tv,	and	the	age	variable	to	42.	In	this	case,	the	equal	sign	(=)
acts	as	the	assignment	operator.	It	assigns	values	to	the	variables.
When	you	assign	values	to	variables,		it	means	that	you	have	allocated	spaces	for
those	variables	in	your	computer’s	memory.	It	would	be	easy	to	retrieve	them	at
any	time,	since	they	are	already	stored	somewhere	in	system	memory.		You
performed	this	retrieving	process	in	the	previous	chapter,	when	you	printed
variables	on	to	your	screen.
Python	can	have	several	variables	pointing	to	the	same	storage	spot	within	a
computer’s	memory,	which	is	a	rare	trait	among	programming	languages.	Let	us
show	you	an	example.
On	your	editor	window,	enter	the	following:

x	=	2
y	=2
z	=	2
print	(x,	y,	z)

Save	and	run	the	file	to	allow	the	file	to	print	the	values	of	x,	y,	z	to	the	screen.
As	you	might	have	expected,	the	output	of	the	above	is:

2,	2,	2

Figure	4.1.	The	shell	window	at	the	bottom	shows	the	output	of	the	print	function	on	the	editor	window	at
the	bottom.	The	first	three	lines	on	the	editor	window	were	not	printed,	because	they	were	left	out	of	the
print	()	function.

Go	back,	and	review	what	you	have	written	on	the	editor	so	far.
name=”Mark	Lassoff”
company=”LearnToProgram.tv”
age=42
x	=	2
y	=2
z	=	2
print	(x,	y,	z)

On	the	shell	window,	the	output	of	the	last	line	of	code	on	the	editor	window,	the
print	statement,	should	be	displayed.

2	2	2
The	first	three	variables	in	your	program	code	were	not	printed	to	the	screen
because,	as	you	might		know,	they	were	left	out	of	the	print	statement.
Let	us	revise	the	variable	assignments	for	x,	y,	and	z.	Delete	lines	4-6	of	the	code
on	your	editor	window,	and	replace	them	with	the	single	line	of	code	below.

x	=	y	=	z	=	5
If	you	have	used	another	programming	language	before,	this	line	might	seem
strange	(there	are	very	few	languages	that	have	the	same	capability).
Save,	then	run	the	file	again	to	see	what	the	revised	variable	assignment	looks
like.

5	5	5

Figure	4.2.	Python	allows	signing	of	multiple	variables	at	the	same	time.	In	this	example,	the	statement	x	=
y	=	z	=	5	assigns	the	value	5	to	the	variables	x,	y,	and	z.

At	first	glance,	this	above	output	seems	to	be	the	same	as	our	earlier	output.
However,	it	is	different	because	the	three	variables	point	to	the	same	spot	in	your
computer’s	memory.	Why	is	it	important	to	know	this?	You	will	understand	from
the	additional	examples	below.
On	the	editor	window,	enter	the	following	line	right	below	the	variable
assignment	x=y=z=5.

x	=	x	+	2
Run,	then	save	the	file,	and	you	should	see	the	following	result	on	the	shell
window:

7	5	5

From	the	result,	you	will	see	that	the	addition	of	the	new	line,	x	=	x	+	2,	moves
the	memory	location	of	x,	while	retaining	the	existing	memory	locations	for	y
and	z,	respectively.

Figure	4.3.	The	2nd	to	the	last	line	on	the	editor	window	at	the	bottom,	assigns	a	new	memory	location	for
the	variable	x.	This	is	reflected	in	the	results	shown	on	the	shell	window	at	the	top,	where	the	value	of	x	has
become	7.

Returning	to	our	earlier	analogy	about	looking	at	variable	assignments	as	storage
locations	in	memory,	this	means	that	x	now	has	its	own	box	7,	while	y	and	z	still
point	to	the	same	box	5.
You	can	also	assign	values	to	different	variables	at	the	same	time.	Let	us	try	this
next.
On	the	editor	window,	enter	the	following:

age,	weight,	height	=	42,	200,	70
In	addition,	comment	out	the	first	three	lines	of	your	program.	Note	that	the	3rd
line	also	assigns	42	to	the	variable	age.	To	comment	out	the	lines,	highlight
them,	then	click	Format	>	Comment	Out	Region,	or	press	ALT+3.
Lastly,	print	both	weight	and	height	on	separate	lines	on	your	screen.	To	do	this,
enter	the	following	at	the	bottom	of	your	program:

print	(weight)

print	(height)
Save,	then	run	the	program	again.	As	you	might	have	expected,	200	and	70	are
then	displayed	on	the	shell	window.
To	make	the	output	for	weight	and	height	clearer	and	more	readable,	you	can
also	label	them.	Revise	your	code	as	follows:

print	(“Weight:”,	weight)
print	(“Height:”,	height)

Figure	4.4.	Variables	can	be	assigned	different	values	at	the	same	time	with	Python.	In	this	example,	the
variables	age,	weight,	and	height	are	each	assigned	a	value	in	just	a	single	line	of	code.

When	you	start	coding	more	complex	programs,	assigning	variables	to	the	same
memory	location	and	labeling	output	are	principles	that	you	should	keep	in
mind.
Thus	far,	you	have	assigned	both	strings	and	numbers	to	variables.	You	have	also
looked	at	various	ways	to	assign	variables,	including	assigning	them	to	multiple
values.	In	the	next	section,	you	will	look	at	the	different	number	variables	–
integers,	floating	points,	and	complex	numbers.

Number	Variables	(int,	float,	and	complex)

The	ease	with	which	Python	performs	numerical	calculations	is	touted	by	many,
as	among	the	language’s	core	strengths.	Thus,	it	is	important	to	understand	how
numerical	variables	work	in	Python.
In	this	section,	you	will	learn	about	the	three	types	of	number	variables	in
Python,	which	are:

Integers	or	simply,	int
float
complex

As	you	can	see,	Python	has	a	limited	set	of	number	variables,	unlike	other
languages.	This	makes	Python	a	much	simpler	language,	and	contributes	to	its
popularity	in	mathematical	programming.
Before	proceeding	with	the	rest	of	the	section,	run	IDLE	again,	then	click	File,
then	New	File,	or	simply	press	CTRL+N.	You	will	again	need	an	editor	window
for	this	section.
Integers	are	used	for	holding	values	that	do	not	have	any	decimal	points.	Integers
can	be	large	or	small,	and	positive	or	negative.		For	the	latter,	you	should	append
a	minus	sign	–	before	the	number	to	make	it	negative.
If	you	are	looking	for	a	suitable	variable	for	holding	a	game	score,	an	integer
would	be	ideal.	Let’s	try	this	now.
On	the	editor	window,	enter	the	following:

#Integers
score	=	1000
time	=	-42

Floating	points,	or	simply	float,	are	the	next	type	of	number	variable,	or	numbers
that	have	a	decimal	point.	Numbers	that	begin	with	zero	are	floating	point
numbers.	Let’s	add	a	couple	of	examples	of	floating	point	numbers,	or	simply
float.

gpa	=	3.44
battingAverage	=	0.375

Complex,	or	scientific	numbers	are	used	for	large	numbers.	Python’s	cmath
method	provides	access	to	mathematical	functions	that	can	be	used	for
computations	involving	complex	numbers.	You	will	not	be	adding	complex
numbers	now,	although	you	should	keep	in	mind	that	any	number	that	is	not	an

integer	nor	a	float,	is	a	complex	number.
Let’s	print	the	integers.	Add	the	following	to	your	code:

print(score)
print(time)

Save,	then	run	the	file.	Score	and	time	are	then	printed	on	the	shell	window.
Note	that	the	output	includes	the	negative	sign	in	the	variable	time	(see	Figure
4.5).

Figure	4.	5.	Python	prints	negative	integers	as-is,	with	the	negative	sign	-.

Let’s	see	what	happens	if	we	print	different	types	of	variables,	e.g.	
Delete	the	last	print	statement	in	your	code,	then	add	gpa	to	the	first	print
statement.	Your	print	function	should	now	look	like	this:

print	(score,	gpa)
Save,	then	run	the	file	again.	The	output	should	be:

1000	3.44
Let’s	add	another	print	function,	this	time	allowing	the	integer	and	the	float	to
interact	mathematically.

print	(score	*	gpa)
Save,	then	run	the	file.	Observe	what	happens.
Perform	another	mathematical	operation,	this	time	adding	the	integer	and	the
floating-point	number.

print	(score	+	gpa)
Save,	then	run	the	file	again.
In	both	of	these	mathematical	operations,	the	answers,	3440.0	and	1003.44,	are
floating-point	numbers.
The	reason	lies	in	Python’s	respect	for	precision.	Floating	point	numbers	are
more	precise	than	integers.	Therefore,	the	result	of	a	mathematical	operation
involving	a	mix	of	integers	and	floating-point	numbers	will,	in	almost	all	cases,
be	another	floating-point	number.	This	is	shown	in	the		examples	above.

Figure	4.6.	Mathematical	operations	involving	integers	and	floating-point	numbers	almost	always	result	in
another	floating-point	number.

You	can	also	assign	multiple	types	of	values	to	different	variables.	For	example,
add	the	following	to	your	program:

a	=	c	=	1000.45
a	=	a	-	.45

In	the	first	line	above,	you	first	assign	the	same	floating-point	number	1000.45
to	variables	a	and	c,	then	assign	another	value,	a-.45,	to	a.
Add	another	line	that	prints	the	value	of	a.
When	you	save,	then	run	the	file,	you	will	get	the	answer,	as	shown	in	Fig.	4.7.

Figure	4.7.	As	shown	in	this	screenshot	of	the	editor	and	shell	windows,	multiple	floating-point	values	can
be	assigned	to	a	variable.	When	you	print	the	variable,	the	result	is	another	floating-point	number.

That	wraps	up	our	section	on	number	variables.	You	will	learn	about	string
variables	next.

String	Variables
Another	strength	of	Python	is	the	unique	way	that	it	processes	strings.	To
demonstrate,	open	IDLE.	Do	not	open	the	editor	window	yet,	since	you	will	use
the	IDLE	in	interactive	mode	for	the	moment.
Write	the	following:

greeting	=	“Hello	World”
activity	=	“Python	Programming”

In	these	lines,	using	the	assignment	operator	=,	we	assign	the	values	Hello
World	and	Python	Programming	to	the	string	variables	greeting	and	activity.

Next,	print	the	variables.
print(greeting,	activity)

As	you	can	see,	the	combined	values	of	the	string	variables,	Hello	World
Python	Programming,	are	printed	to	the	screen.
Let’s	pause	a	moment,	and	dissect	the	way	that	Python	interprets	string
variables.
Python	treats	string	variables	as	separate	characters	that	are	strung	together.	Each
character	in	a	string	is	assigned	a	number,	known	as	its	index	or	position.	For
example,	in	the	string	greeting,	each	character	in	Hello	Word	has	a
corresponding	index.	This	is	illustrated	in	Table	1	below.

Index 0 1 2 3 4 5 6 7 8 9 10
Character H e l l o 	 W o R l d

Table	1.	Each	character	in	a	string	variable	has	a	corresponding	number	assigned	to	it.	Therefore,	to	retrieve
a	character	in	a	string	variable,	you	enclose	its	corresponding	number	in	a	bracket.

Sample	code	will	make	this	clearer.	Write	the	following	line	on	the	shell
window:

print(greeting[0])
This	returns	H,	the	character	in	position	0	in	the	string	greeting.
Let’s	try	another	one.

print(greeting[1])
This	time,	the	answer	is	e,	the	character	in	position	1	in	the	string	greeting.
To	access	any	character	within	the	string,	you	print	the	variable	name,	and
enclose	the	specific	number	corresponding	to	the	character	you	want	printed
within	a	bracket.
To	format	strings,	let’s	review	our	previous	discussion	on	newlines	and	other
separators,	in	particular,	the	newline,	or	\n	character,	and	tab,	or	\t,	character.
Enter	the	following	lines	one	after	the	other	on	the	shell	window:

print(greeting,”\n”,activity)
print(greeting,”t”,activity)
print(“Journey\nReo	Speedwagon\nForeigner”)
print(“Journey\tReo	Speedwagon\tForeigner”)

If	you	recall,	\n	is	the	newline	character	and	\t	is	the	tab	character	in	Python.
The	results	of	the	print	function	calls	above	are	shown	in	Figure	4.8.

Figure	4.8.	This	section’s	examples	as	they	appear	on	the	shell	window.

In	this	section,	you	learned	how	Python	interprets	string	variables.	You	also
reviewed	the	characters	that	you	can	use	for	formatting	strings,	the	way	you
want	them	displayed	on	the	screen.	You	will	learn	more	about	substrings	and
concatenation	in	the	next	section.

Substrings	and	Concatenation
In	this	section,	you	will	learn	about	substrings,	or	taking	part	of	a	string,	and
concatenation,	or	merging	two	strings	into	one.	This	section	builds	upon	what
was	discussed	in	the	previous	section	on	string	variables.
You	will	again	use	IDLE	in	interactive	mode	in	this	section.
After	firing	up	IDLE,	enter	the	following	on	the	shell	window:

name	=	“Mark	Lassoff”
course	=	“Python	for	Beginners	(2017)”

In	the	previous	section,	you	learned	about	calling	characters	by	their	index,	or
position,	on	the	string.	We’ll	try	something	similar	in	the	next	line.

print(name[6])
When	you	press	enter,	it	returns	a,	the	character	corresponding	to	the	6th	index	in
the	string	name.
On	the	next	line,	enter	the	following:

print(“name[0:3]):”,	name[0:3])
When	you	press	enter,	the	print	statement	returns	the	substring	Mar,	which
corresponds	to	the	characters	in	the	range	0-3	in	the	string	name.
If	we	change	the	earlier	print	function	from	print(“name[0:3]:”	name[0:3])	to
print(“name[0:4]:”	name[0:4]),	the	substring	Mark	is	returned	instead.
Let	us	try	using	this	with	the	string	course.	Enter	the	following:

print("course[4:12]:",	course[4:12])
The	output	is:

course[4:12]:	on	for	B
These	examples	are	all	substrings.	Let	us	now	look	at	concatenation.	Enter	the
following:

total=name+course
print(total)

In	the	first	line,	you	use	the	+	sign	to	assign	the	concatenated	strings	name	and
course	to	another	string,	total.	This	results	in	the	string	total	having	the
following	value:

MarkLassoffPython	for	Beginners	(2017)
Notice	that	there	is	no	space	between	Lassoff	and	Python.	This	is	because	there
is	no	space	between	the	two	strings	when	you	concatenated	them.	To	insert	a
space	in	between	the	strings	name	and	course	when	you	print	them,	your	code
should	look	like	this:

total	=	name	+	“	“	+	course
This	will	result	in	the	following	output:

Mark	Lassoff	Python	for	Beginners	(2017)
You	can	also	concatenate	two	substrings	together.	Enter	the	following:

partials=name[0:2]	+	course[5:12]

print	(partials)
This	line	concatenates	the	characters	with	indices	0-2	in	the	string	name,	with
the	characters	with	indices	5-12	in	the	string	course:

Man	for	B
Knowledge	about	dividing	string	variables	into	substrings	and	concatenating
substrings	together,	will	prove	useful	when	you	start	coding	programs	which
process	text,	such	as	email	addresses	and	passwords.

Figure	4.9.	The	substring	and	concatenation	examples	discussed	in	this	section,	as	they	appear	on	the	shell
window.

That	wraps	up	our	discussion	on	substrings	and	concatenation.	Before	we	end
this	section,	let’s	try	a	few	more	examples.	This	time	we	will	show	how	string
formatting	is	done.
Before	working	on	the	next	examples,	restart	your	shell	so	that	you	can	clear	up
all	the	values	you	previously	entered	interactively	on	the	shell	window.
After	restarting,	enter	the	following:

print(“My	name	is	%s”	%	(“Mark”))
This	line	uses	the	%	operator,	which	is	used	for	formatting	strings	in	Python.	%s
acts	as	a	placeholder	for	a	string,	in	this	case,	the	string	Mark.	This	line	returns
the	following:

My	name	is	Mark
You	can	also	use	string	formatting	with	multiple	values.	On	the	shell	window,
enter	the	following:

print(“My	name	is	%s	and	I	am	%d	years	old”	%	(“Mark”,	42))
This	line	uses	%d,	which	is	a	placeholder	for	a	number	which,	in	this	case,	is	42.
The	output	of	this	print	function	is:

My	name	is	Mark	and	I	am	42	years	old.

Figure	4.10.	The	highlighted	part	of	the	shell	window	in	this	screenshot	shows	the	string	formatting
examples	discussed	in	the	section.

Now	that	we	have	discussed	string	formatting,		let’s	sum	up	what	you	have
learned	so	far.	You	learned	how	to	divide	strings	into	substrings,	and	concatenate
two	strings	together	to	make	them	one.	This	section	also	showed	a	few	examples
of	string	formatting	that	you	can	use	in	your	programs,	as	you	progress	through
the	rest	of	the	book.	It	is	now	time	to	discuss	how	to	use	variables	in	data
structures,	particularly	lists,	tuples	and	dictionaries.

Variables	with	Lists,	Tuples,	and	Dictionaries
In	the	previous	sections,	you	learned	how	variables	are	used	to	store	single
values.	In	this	section,	you	will	build	on	concepts	discussed	previously	and	learn
about	using	variables	with	data	structures,	specifically	lists,	tuples,	and

dictionaries.	These	topics	will	be	discussed	in	more	detail	in	Chapter	10.
For	the	exercises	in	this	section,	although	you	will	still	be	using	IDLE,	you	will
open	an	editor	window.
On	the	IDLE,	click	File,	then	New	File,	or	press	CTRL+N	on	your	keyboard,	to
open	a	new	editor	window.
You	will	first	create	a	list.	A	list	is	a	data	structure	that	is	comprised	of	one	or
more	elements.	For	example,	it	could	be	a	list	of	your	family	members.	On	the
editor	window,	enter	the	following:

family	=	[“Mark”,	“Brett”,
“Kerri”,	“Joan”,	“Rick”,
“Rose”]

In	these	lines	of	code,	the	first	line	is	a	comment	that	you	are	creating	a	list.	On
the	next	line,	you	assigned	a	list	of	family	members	to	the	variable	family.	Note
that	a	list	is	enclosed	in	square	brackets.
Let’s	print	the	variable.

print(family)
Click	File,	then	Save,	or	press	CTRL+S,	then	click	Run,	then	Run	Module,	or
press	F5.	The	output	is	shown	below:

['Mark',	'Brett',	'Kerri',	'Joan',	'Rick',	'Rose']
You	probably	guessed	that	the	output	will	be	as	shown	above.
Do	you	remember	that	you	could	output	specific	characters	in	a	string	variable	to
the	screen	in	the	previous	section?		This	can	also	be	done	in	a	list,	except	that	list
members	have	specific	numbers	assigned	to	them.	The	following	table	illustrates
this	for	our	sample	list.

0 1 2 3 4 5
Mark Brett Kerri Joan Rick Rose

	
To	output	a	list	member	to	the	screen,	all	you	need	to	do	is	edit	your	print
command	by	referencing,	or	enclosing	in	square	brackets,	its	corresponding
number	after	the	variable	name.	To	illustrate,	let	us	output	Joan,	the	third
member	on	the	list	(see	Table	1),	to	the	screen.
Add	another	print	command	to	the	Python	program	you	created	earlier.

print(family[3])
If	you	check	the	value	of	[3]	on	Table	2,	you	will	know	that	the	print	command
will	output	Joan	to	the	shell	window.

Figure	4.11.	List	elements	are	enclosed	in	square	brackets	and	can	be	printed	through	its	index	or	position	in
the	list.

Let	us	now	discuss	tuples,	which	are	like	lists,	except	that	tuple	members	are
enclosed	in	parentheses.	Tuples	are	also	immutable.		This	means	that	you	cannot
change	nor	delete	a	tuple’s	individual	elements.		However,	you	can	take	portions
of	existing	tuples	to	create	a	new	tuple,	and	even	delete	an	entire	tuple.
To	see	how	tuples	work,	let	us	define	a	variable	with	several	elements	and	print
it	to	the	screen.	Remember	that	you	should	enclose	the	elements	in	a	parenthesis.
You	should	also	separate	each	element	with	a	comma.

numbers	=	(45,	47,	265,	13)
print	(numbers)

Save,	then	run	the	file	again	to	display	the	tuple	on	the	screen.
(45,	47,	265,	13)

Try	changing	the	value	of	the	first	element	to	15.
numbers[0]	=	15

As	you	can	see,	an	error	occurs.	Comment	out	the	erroneous	line	of	code	to
avoid	the	error	next	time	that	you	run	the	program.
Let	us	go	back	to	our	family	list.	Change	its	first	element	from	Brett	to	B-man,

then	save	and	run	the	program	again.
family[1]	=	“B-man”
print(family)

This	time,	the	list	is	updated,	as	the	new	element	B-man	replaces	the	old
element	Brett	in	our	list.

['Mark',	'Brett',	'Kerri',	'Joan',	'Rick',	'Rose']
As	our	example	shows,	list	elements	can	be	changed,	unlike	the	immutable
tuples.

Figure	4.12.	Tuple	elements	are	immutable	–	their	values	cannot	be	changed.	On	the	other	hand,	values	of
list	elements	can	be	changed.

Now	that	you	have	learned	the	main	difference	between	lists	and	tuples,	let	us
now	look	at	dictionaries.
Dictionaries	comprise	elements	that	are	related	to	each	other.	Each	element	has	a
key	and	associated	value,	with	a	colon	between	the	key	and	its	value;.	The
elements	are	separated	by	commas.	Let	us	try	this	out	with	an	example.
On	the	editor	window,	define,	then	print	the	following	dictionary:

gpas	=	{"Name":"Mark",	"GPA":	3.55}

print(gpas)
Note	that	the	dictionary	elements	are	enclosed	in	curly	brackets.
Save,	then	run	the	file	again.	Your	output	should	look	like	the	following:
{'Name':	'Mark',	'GPA':	3.55}
As	you	can	see,	Python	understands	that	the	elements	are	related	to	each	other.

Figure	4.13.	Dictionary	elements	are	enclosed	in	curly	brackets,	allowing	Python	to	recognize	them	as
related	to	each	other.

Thus	far,	you	have	learned	about	using	variables	with	lists,	tuples,	and
dictionaries.	Later	in	the	book,	these	data	structures	will	be	discussed	in	more
detail.	You	will	now	have	another	coding	exercise,	so	that	you	can	check	your
understanding	of	the	topics	covered	in	the	chapter.

Coding	Exercise:	Using	Variables
You	will	get	to	practice	what	you	learned	about	variables	in	this	exercise.
2.	 Open	IDLE,	and	click	File,	then	New,	to	open	a	new	editor	window.	Save

the	file	as	var_lab.py	before	going	to	Step	2.
3.	 Declare	the	following	variables	and	assign	them	any	value	that	makes

sense	to	you.
i.	 GPA	(should	be	a	floating-point	number)

ii.	 studentName	(should	be	a	string)
iii.	 studentNumber	(should	be	a	string)

4.	 Create	print	commands	to	output	each	variable’s	value	on	a	separate	line.
5.	 Using	a	single	print	command,	your	variables,	and	the	string	substitution

technique	discussed	in	the	chapter,	output	a	statement	with	the	following
format.

John	Smith	has	the	following	student	number:	0023452
6.	 Using	a	single	print	command,	your	variables,	and	the	string	substitution

technique	discussed	in	the	chapter,	output	a	statement	with	the	following
format.
	
John	Smith	has	the	following	GPA:	3.15
Use	the	following	to	substitute	for	a	floating-point	number	with	two
decimal	places:	0.2f.
	

7.	 Create	a	variable	named	places	with	a	list	of	five	(5)	places	you	would	like
to	visit.	Use	the	following	example	as	a	guide:
	
places	=	[“Hawaii”,	“Alaska”,	“Toronto”,	“London”,	“Greece”]
	
Using	print	statements,	print	out	each	member	of	the	list	on	a	separate
line,	when	your	program	is	run.	Your	final	output	should	be	as	shown	in
Fig.	4.14.
	

Figure	4.14.	Sample	expected	output	of	this	coding	exercise.

	
	

	

	
	
	
	
	
	
	
	
	
	
	
	

Chapter	5	–	Operators
This	chapter	will	discuss	operators	in	Python	programming.
Operators	are	used	to	complete	expressions	that	are	made	up	of	variables.	They
are	symbols	that	allow	you	to	carry	out	mathematical	or	logical	operations,
compare	values,	and	make	decisions.	You	have	encountered,	and	used,	most	of
these	symbols	in	the	previous	chapters	of	this	book.
The	different	types	of	operators	used	in	Python	include	mathematical,
comparison,	and	logical	operators.
Similar	to	our	previous	topics,	to	really	understand	operators,	you	will	need	to
have	your	Python	editor	open,	and	follow	along	with	the	examples	that	we
provide	in	each	section	below.
At	the	end	of	the	chapter,	you	will	have	another	coding	exercise	that	will	allow
you	to	reinforce	what	you	learned	in	the	earlier	sections.

Mathematical	Operators
In	the	expression	x	+	10	=	15,	the	symbol,	the	+	sign	is	a	mathematical	operator,
denoting	that	the	number	10	should	be	added	to	the	variable	x.	On	the	other
hand,	as	discussed	in	previous	chapters,	the	=	sign	is	an	assignment	operator,

meaning	that	it	assigns	the	number	15	to	the	expression	x+10.

In	this	section,	you	will	learn	more	about	mathematical	operators.	You	have
previously	encountered	mathematical	operators.	In	this	section,	you	will	learn
more	about	the	four	mathematical	operators	you	might	already	be	familiar	with,
based	on	our	previous	discussions	(multiplication,	division,	addition,	and
subtraction).
You	will	also	be	taught	three	mathematical	operators	that	we	have	not	previously
covered,	including	the	modulus,	exponent,	and	floor	division.		However,	you
might	remember	these	being	discussed	in	your	mathematics	subjects	back	in
school.
Let’s	run	IDLE	again.	Once	IDLE	is	up	and	running,	click	either	File>New	File
or	CTRL+N.	On	the	Editor	window,	click	either	File>Save	As	or
CTRL+Shift+S,	and	save	the	file	as	math.py.	We	will	use	this	file	to
demonstrate	the	different	mathematical	operators.
On	the	Editor	window,	enter	the	following:

operand1	=	65
operand2	=	83.22

From	previous	chapters,	you	know	that	operand1	is	an	integer	and	operand2	is	a
floating-point	number.
Let’s	add	operand1	and	operand2	together	using	the	addition	operator.	Following
the	recommended	practice,	let’s	add	a	comment	first	before	the	line	of	code
adding	our	operands.

#Addition
Now,	let’s	insert	the	line	of	code	that	adds	our	two	operands	together.

print	(operand1	+	operand2)
Next,	let’s	subtract	operand1	and	operand2	using	the	subtraction	operator.

#Subtraction
print	(operand1	–	operand2)

Now	that	you	have	added	the	addition	and	subtraction	operators,	save	the	file,
then	run	it	by	either	clicking	Run>Run	Module	or	pressing	F5	on	your
keyboard.
On	the	shell	window,	you	will	get	the	following	output:

148.22
-18.22

Figure	5.1.	The	shell	window	at	the	bottom	shows	the	output	of	adding	and	subtracting	the	operands	on	the
editor	window	at	the	top.

Let’s	go	on	to	the	other	mathematical	operations,	multiplication	and	division.
#Multiplication
print	(operand1	*	operand2)
#Division
print	(operand1	/	operand2)

Save,	then	run	the	file	again.	You	will	get	the	following	output:
148.22
-18.22
5409.3
0.7810622446527277

Figure	5.2.	The	shell	window	at	the	bottom	shows	the	output	of	the	four	(4)	mathematical	operations	on	the
editor	window	at	the	top.

It	is	not	surprising	that	the	output	of	the	operations	you	performed	above	is
similar	to	what	you	expected.	These	are	the	same	mathematical	operations	you
learned	while	you	were	growing	up.
Let’s	go	to	the	modulus	operator,	which	is	denoted	by	the	%	sign.
When	used,	the	modulus	operator	displays	the	remainder	of	a	division	operation.
To	illustrate,	let’s	go	back	to	our	math.py	program	file.
Enter	the	following	on	the	editor	window:

#Modulus
print	(9	%	3)

If	we	save,	then	run	the	file	again,	we	will	see	0	displayed	on	the	shell	window.
This	is	because	9	/	3	does	not	have	a	remainder.
Let’s	try	a	couple	of	other	examples.	Let’s	enter	the	following	print	statement	on
our	editor	window:

print	(10	%	3)
After	saving	and	running	the	file,	1	is	displayed	on	the	shell	window.	This	is

because	10	divided	by	3	is	3	remainder	1.
Let’s	enter	our	next	example.

print	(15	%	6)
This	will	output	3	on	the	shell	window,	since	the	product	of	15	divided	by	6	is	2
remainder	3.
Fig.	5.3	shows	the	results	of	our	modulus	operations.	Note	that	we	commented
out	the	other	operations	we	had	included	earlier	in	our	math.py	file	for	brevity’s
sake.	If	you	did	not	comment	out	the	earlier	operations,	your	output	will	display
the	results	of	all	those	other	operations,	plus	the	results	of	our	sample	modulus
operations.

Figure	5.3.	The	results	of	the	modulus	operations	on	the	editor	window	at	the	top	is	displayed	on	the	shell
window	at	the	bottom.	The	modulus	operation	returns	the	remainder	of	one	number	being	divided	by
another	number.

You	have	now	learned	about	multiplication,	division,	addition,	subtraction,	and
modulus.	We	will	discuss	exponents	next.
Exponentiation	raises	a	number	to	the	power	of	another	number.	The	resulting
number	is	known	as	the	exponent.	For	example,	3	raised	to	the	3rd	power,	or	3	*
3	*	3,	is	27.
In	Python,	we	used	two	asterisks,	**,	to	denote	exponentiation.	Therefore,	to
display	the	resulting	number	9	in	our	above	example,	we	used	the	following
statement:

print	(3	**	3)

Let	us	try	this	now	by	entering	this	statement	on	our	editor	window,	then	saving
and	running	our	math.py	file	again.	As	you	can	see,	the	resulting	number	on	the
shell	window	is	27.
Let	us	enter	another	example.
On	the	editor	window,	enter	the	following:

print	(10	**	2)
After	saving	and	running	the	program,	the	result,	100,	is	displayed	on	the	shell
window.

Figure	5.4.	The	results	of	the	exponent	operations	on	the	editor	window	at	the	top,	is	displayed	on	the	shell
window	at	the	bottom.	The	exponent	operator,	**,	returns	the	result	of	a	number	raised	to	another	number.

Let	us	now	discuss	Floor	Division,	or	integer	division,	the	last	mathematical
operator	we	will	cover	in	this	section.	The	symbols	used	for	Floor	Division	are
two	forward	slashes,	//,	in	contrast	to	the	single	forward	slash,	/,	used	in	division.
Floor	Division	displays	the	product	of	a	division	operation	as	a	rounded	down
number.	For	example,	5	//	2	is	2.	By	contrast,	if	you	divide	5	by	2,	5	/	2,	the
product	would	be	2.5.
Let	us	illustrate	Floor	Division	using	our	math.py	file.
On	the	editor	window,	enter	the	following	statement:

print	(10	//	3)
When	you	save,	then	run	the	file	again,	3	will	be	the	result.	This	is	because	10
divided	by	3	is	3,	when	rounded	down.
Let	us	enter	another	example.

print	(15	//	6)

After	saving,	then	running	the	file,	you	will	see	2	displayed	on	the	shell
window.		This	is	again	because	15	divided	by	6	is	2,	not	counting	the	remainder.

Figure	5.5.	The	results	of	the	Floor	Division	operations	on	the	editor	window	at	the	top,	is	displayed	on	the
shell	window	at	the	bottom.	Floor	Division	is	denoted	by	the	//	operator,	and	displays	the	product	of	a
division	operation	as	a	rounded	down	number.

Floor	Division	is	the	last	of	our	mathematical	operators.	Prior	to	Floor	Division,
we	discussed	six	other	operators,	including	two	other	new	ones,	the	Modulus	and
Exponent	operators.	These	operators	are	explained	in	Table	1.

Mathematical	Operator Meaning
+ Add	two	operands
- Subtract	two	operands
* Multiply	two	operands
/ Divide	left	operand	by	right	operand
% Modulus,	or	the	remainder	of	the

division	of	the	left	operand	with	the
right	operand

** Exponent,	or	the	left	operand	raised
to	the	power	of	the	right	operand

// Floor	Division,	or	operation	that
results	in	a	product	with	a	rounded
down	number

Table	1.	Mathematical	operators	and	their	meanings

In	the	next	section,	you	will	learn	more	about	the	order	of	operations	in	Python
programming.

	Order	of	Operations
The	order	in	which	operators	are	evaluated	is	the	same	as	in	mathematics	–	given
an	expression,	you	should	solve	it	in	the	following	order:	parentheses,

exponents,	multiplication,	division,	addition,	and	subtraction,	or	PEMDAS	(as	in
Please	Excuse	my	Dear	Aunt	Sally,	from	your	grade	school	days).	Knowing	the
proper	order	in	which	mathematical	operations	are	evaluated,	is	crucial	for
getting	the	correct	answers	when	coding	programs,	where	such	operations	are
performed.
To	illustrate	the	order	of	operations,	we	will	again	need	our	trusty	IDLE.	You
will	not	need	to	open	a	new	file	yet.	Instead,	we	will	code	interactively	using	the
shell	window.
Enter	the	following	line	on	the	shell	window:

2	+	3	*	6
When	you	press	Enter,	the	answer,	20,	is	displayed	immediately	below.
Let	us	dissect	the	above	mathematical	expression,	and	determine	why	20	is	the
answer	we	get.
Assume,	for	example,	that	we	are	using	pen	and	paper	to	compute	the	result	of
this	expression.	Following	the	PEMDAS	rule,	since	the	statement	does	not
contain	any	parentheses	or	exponents,	we	will	start	off	by	completing	the
multiplication	part,	3	*	6,	or	18,	then	adding	2	to	18	to	get	20.
If	we	did	not	follow	the	PEMDAS	rule	to	evaluate	the	statement,	and	instead
evaluated	starting	from	left	to	right,	we	would	add	2	and	3	together,	then
multiply	the	result,	5,	by	6.	The	answer	we	would	get	is	30,	which	would	be
incorrect.
Fortunately,	Python	knows	the	order	in	which	to	evaluate	the	statement	and	got
the	correct	result.	However,	in	the	case	of	long,	complex	expressions,	we	should
always	use	parentheses	to	ensure	that	Python	will	get	the	intended	results.	If	we
use	parentheses,	Python	will	be	better	able	to	determine	the	proper	order	for
evaluating	expressions.
Let	us	again	open	another	new	file	from	IDLE.
On	the	editor	window,	enter	the	following	statements:

print	(5	–	6	*	2)
print	((5-6)	*	2)

What	do	you	think	is	the	result	of	these	statements?
Assuming	we	are	again	computing	the	results	manually,	we	will	evaluate	the	first

statement	by	multiplying	6	and	2	first,	then	subtracting	5	from	the	result.	Thus,	6
*	2	=	12,	then	5	-	12	=	-7[SW3].
In	the	case	of	the	2nd	print	statement,	we	will	subtract	6	from	5	first,	then
multiply	the	result	by	2.	Thus,	5	–	6	=	-1	*	2	=	-2.
Let	us	see	if	we	computed	for	the	results	correctly.	To	do	this,	save,	then	run	the
file.	What	do	you	think	the	results	are?	Did	you	get	the	same	results	that	we
anticipated	above?
The	results	of	the	two	statements	will	be:

-	7
-	2

Let’s	try	a	couple	more	examples.
On	the	editor	window,	enter	the	following	expressions:

print	(3	**	3	*	5)
print	(3**	(3	*	5))

Let’s	evaluate	the	first	expression.
As	we	learned	from	the	previous	section	on	mathematical	operators,	3	**	3
means	3	raised	to	the	3rd	power,	or	3	*	3	*	3	=	27.	Then	27	*	5	=	135.
The	second	statement	is	different	since	there	is	a	parenthesis	around	3	*	5.	Thus,
in	this	example,	we	will	first	evaluate	the	statement	between	the	parentheses.
Thus,	3	*	5	=	15.	We	then	compute	for	3	raised	to	15.
Let’s	see	if	we	got	the	answers	correctly.	Save,	then	run	the	file	again.	We	then
get	the	following	result:

135
14348907

Figure	5.6.	Python	always	computes	mathematical	expressions	using	the	PEMDAS	rule,	which	stands	for
Parentheses,	Exponents,	Multiplication,	Division,	Addition,	and	Subtraction.

This	is	it	for	the	order	of	expressions.	When	working	with	mathematical
expressions	in	Python,	always	keep	PEMDAS	in	mind.
In	the	next	section,	you	will	learn	more	about	comparison	operators,	or	how	we
compare	numbers	in	Python.

Comparison	Operators
In	this	section,	you	are	going	to	learn	about	comparison	operators,	or	how	to
compare	two	values	in	Python.
We	will	use	the	interactive	mode	to	demonstrate	comparison	operators.
Let’s	begin	by	running	IDLE.
On	the	shell	window,	enter	the	following:

a	=	5
b	=	5

Let’s	then	test	for	equality	with	the	following	statement:
a	==	b

Note	that	equality	is	denoted	by	two	(2)	equal	signs	joined	together.	As
discussed	previously,	a	single	equal	sign	is	the	assignment	operator.
When	you	press	Enter,	Python	will	return	True,	since	the	values	of	a	and	b	are

indeed	the	same,	or	equal.
Let’s	change	the	value	of	b	to	6.

b	=	6
If	we	test	for	equality	again,	a	==	b,	will	return	false,	since	b	=	6,	whereas	a	=	5.
Let’s	test	for	equality	between	an	integer	and	a	floating-point	number.	Enter	the
following:

10	==	10.0.
Python	returns	True	in	this	case,	since	Python,	unlike	other	programming
languages,	treats	these	two	numbers	as	equal.

Figure	5.7.	Results	of	our	operations	involving	==,	which	tests	for	equality	between	two	numbers.

To	test	if	two	numbers	are	non-equal,	you	can	use	the	!=	operator.
Enter	the	following	on	the	shell	window:

a	!=	b
Since	a	=	5	and	b	=	6,	the	answer	here	is	True.
Note:	The	<>	operator	can	be	used	in	place	of	the	!=	operator.	These	operators
are	essentially	the	same.
In	addition	to	testing	for	equality,	Python	also	allows	a	comparison	of	two
numbers	that	are	greater	or	less	than	each	other,	using	the	familiar	>	for	greater
than,	and	<	for	less	than.	Let’s	explore	this	more	below.
On	our	shell	window,	enter	10	>	12,	then	press	Enter.	Since	10	is	lesser	than	12,
the	answer	in	this	case	is	False.
Let’s	try	another	set	of	numbers.	Enter	15	>	12.	What	is	the	answer?	Of	course,
it	is	True.
Next,	let’s	use	the	less	than	sign	to	compare	two	numbers.

Enter	6	<	10.	The	answer	is	True.	If	we	enter	10	<	6,	the	answer	is	False.
We	will	now	combine	the	less	than	and	greater	than	signs	with	the	equal	sign,		as
in	the	following	example:

10	<=	9
This	equates	to	False,	since	10	is	neither	less	than	9	nor	equal	to	10.
Let’s	try	another	set	of	numbers	as	an	example.

10	<=	10
As	you	can	see,	the	answer	is	True,	since	10	is	equal	to	10.	Using	another
example,
10	<=	11,	returns	True	again,	since	10	is	obviously	less	than	11.
You	have	seen	how	the	combined	less	than	and	equal	to	operators	work.	Let’s
now	combine	the	greater	than	and	equal	to	operators.
On	the	shell	window,	let’s	enter	the	following:

12	>=	10
When	you	press	Enter	on	your	keyboard,	it	displays	True,	since	12	is	obviously
greater	than	10.
You	can	also	combine	the	assignment	operator	with	addition	and	subtraction
operators,	by	using	the	following	symbols:

+=
-=

To	better	explain	this,	let’s	go	back	to	the	values	for	a	and	b,	5	and	6.
Given	the	value	of	b	=	6,	if	we	enter	b	+=	4,	it	adds	4	to	b,	or	6	+	4,	which	means
that	b’s	new	value	=	10.
If	you	add	a	+	b,	or	5	+	10,	the	sum	would	be	15.
This	can	also	be	applied	using	a	minus	sign,	denoting	subtraction,	rather	than	a
plus	sign.	Given	b	=	10,	if	we	enter	b	-=	7,	then	b’s	new	value	would	be	10	-	7	=
3.
If	you	subtract	a	from	b,	or	5	–	3,	the	difference	would	be	2.

Figure	5.8.	Results	of	the	operations	involving	the	other	comparison	operators,	!=,	>,	<,	<=,	>=,	+=,	and	-=.

Let’s	summarize	what	we	have	learned	in	this	section.
The	comparison	operators	are	summarized	in	Table	5.

Comparison	Operator Meaning
== Equal	to
!= Not	equal	to	(the	same	as	<>)
> Greater	than
< Less	than
>= Greater	than	or	equal	to
<= Less	than	or	equal	to

Table	2.	Comparison	operators	and	their	meanings

That	is	all	that	we	have	for	comparison	operators.	These	operators	will	come	in
handy,		in	the	next	chapter	on	conditionals,	or	code	branches.

Logical	Operators
This	section	is	easy,	since	there	are	only	three	logical	operators	in	Python,
namely,	and,	or,	and	not.
For	our	examples	in	this	section,	we	will	again	be	using	IDLE’s	Interactive
mode.	Run	IDLE,	then	enter	the	following:

(5	==	5	and	10	==	10)
When	you	press	Enter	on	your	keyboard,	the	operation	will	run	and	display	the
results.
In	this	case,	since	the	two	operands,	5	==	5	and	10	==	10,	are	true,	the	result	will
be	True.	The	and	operator	requires	that	all	operands,	regardless	of	number,	to	be
true	to	return	True.
Let’s	try	another	example.	Enter	the	following	on	the	shell	window:

(5	==	5	and	7	<	6)
In	this	example,	5	==	5	is	true	and	7	<	6	is	false.	Thus,	the	result	will	be	False,
since	one	of	the	two	operands	are	false.
Let’s	enter	another	example:

(5	==	5	and	7	==	7	and	6	<	7)
As	mentioned,	since	all	operands	are	true,	it	will	also	result	in	True.	Therefore,
regardless	of	the	number	of	operands,	the	and	operator	will	always	return	True,	
if	all	the	operands	are	true.
Let’s	go	to	the	Or	logical	operator.	On	the	shell	window,	enter	the	following:

(5	==	5	or	7	<	6)
In	this	case,	5	==	5	is	true	and	7	<	6	is	false.	Since	only	one	operand	is	required
to	be	true	when	using	the	Or	operator,	this	statement	is	true.
Like	the	and	operator,	regardless	of	the	number	of	operands,	the	or	operator	will
always	return	True,		as	long	as	one	of	the	operands	is	true.
Thus,

(5	==	5		or	7	<	6	or	5	>10)
will	return	True.

Let’s	go	to	our	third	and	last	logical	operator,	Not,	which	goes	before	the
operand.		We	will	look	at	an	example:

not	(5	==	5)
This	will	return	False	because	not	negates	the	value	of	the	operand.	In	this	case,
since	5	==	5	is	true,	putting	not	before	the	operand	makes	the	operand	false.
Let’s	try	another	example.

not	(5	==	6)
will	return	True,	since	not	negates	the	original	value,	False,	of	the	operand	5	==
6.
That	is	all	for	logical	operators.
So	far,	we	have	covered	mathematical,	comparison,	and	logical	operators	in	this
section.	You	have	also	learned	about	the	order	by	which	Python	performs
mathematical	operations.

Figure	5.9.	Results	of	the	logical	operator	examples	discussed	in	this	section.

In	the	next	section,	you	will	be	doing	a	coding	exercise	to	help	reinforce	what
you	have	learned	in	this	chapter.

Coding	Exercise:	Operators	Practice
This	exercise	will	let	you	apply	what	you	learned	about	operators	in	the	chapter.
1.	 Load	IDLE	and	choose	File>New	File	to	create	a	blank	document,	then

declare	two	variables	and	assign	to	them	the	following	initial	values:
	

operand1	=	250.66
operand2	=	1008.2
	

2.	 Write	code	to	generate	the	output	shown	on	Fig.	5.10.
	

Figure	5.10.	Expected	output	from	the	program	you	will	create	in	this	exercise.

You	should	try	not	to	use	the	following	code,	when	you	create	the
program.	Otherwise,	you	will	find	the	next	step	difficult	to	do.

Figure	5.11.	This	is	how	beginning	programmers	would	create	the	program	being	asked	for	in	this
exercise.	Look	for	a	better	way	to	code	this.

3.	 Change	the	values	of	operand1	and	operand2	as	follows:
	
operand1	=	12.722
operand2	=	33.8
	

4.	 Update	your	code	so	that	the	operands	are	referenced	by	their	name,
everywhere	possible.	This	will	allow	your	program	to	generate	the	correct
output,	regardless	of	the	value	of	the	operands.
	
For	your	reference,	the	correct	code	is	shown	below.
	

Figure	5.12.	This	is	the	correct	code	to	use	for	the	program	that	you	are	asked	to	create	in	this
exercise.

	
	
	
	
	

Chapter	6	–	Code	Branching
This	chapter	will	discuss	conditionals	in	Python	programming.	After	learning
about	operators	in	Chapter	5,	it	is	now	time	to	segue	into	conditionals.	This	is
because	operators	are	the	building	blocks	for	the	conditional	statements	that	we
will	cover	in	this	chapter.
Conditional	statements	allow	you	to	check	conditions,	then	change	your	code’s
behavior,	depending	on	how	those	conditions	are	met.	In	short,	conditionals
determine	program	flow.
The	first	conditional	statement	you	will	learn	is	the	simple	If	statement,	which
basically	states	that	if	x,	then	y.
You	will	then	be	introduced	to	the	if-else	statement,	which	adds	an	else
statement	to	the	basic	If	statement,	and	follows	the	form	if	x,	do	y;	else	do	z.
You	will	also	learn	about	the	nested	if	statement,	which	inserts	an	If	statement
within	another	If	statement.	For	example,	if	w,	do	x;	if	y,	do	z,	etc.
Another	topic	to	be	covered	is	the	Python	ternary	operator,	which	is	an
abbreviated	conditional	form:	a	if	condition	else	b,	which	is	read	as	x	if	True,

else	y.

Finally,	there	is	another	coding	exercise	at	the	end	of	the	chapter.	The	exercise
will	require	you	to	use	the	conditional	statements	discussed	in	the	chapter.

Simple	If	Statements
This	is	the	basic	conditional	statement.	It	follows	the	form	if	x,	then	y.
To	demonstrate,	let’s	create	a	program	that	will	check	your	age	and	determine	if
you	are	legally	allowed	to	buy	and	drink	alcohol.
To	create	our	demo	program	for	this	section,	let’s	create	a	new	Python	file	using
IDLE,	and	name	the	Python	file	as	conditionals.py.
On	the	editor	window,	enter	the	following:

age	=	25
if	age	>	21:

Note	that	there	is	a	colon,	“:”,	at	the	end	of	our	if	statement.	This	is	required	–
you	should	always	end	your	if	statements	with	a	colon.
After	entering	the	colon	at	the	end	of	the	if	statement,	press	Enter	on	your
keyboard.	The	editor	then	automatically	indents	the	line	immediately	after	the
colon.
Next,	let’s	enter	a	couple	of	statements	that	will	get	printed	on	the	screen,	if	our
if	statement	is	determined	to	be	true.

print	(“You	are	legally	allowed	to	purchase	alcohol”)
print	(“What	would	you	like?”)

Finally,	let’s	add	a	final	print	statement,	this	one	not	indented.
print	(“End	of	program”)

This	final,	un-indented	line	of	code	means	that	it	is	not	considered	as	part	of	the
If	statement.	Therefore,	it	will	be	printed,	regardless	of	whether	the	If	statement
is	evaluated	to	be	true	or	not.	The	purpose	of	this	statement	will	become
apparent	below.
To	unindent,	simply	click	Backspace	on	your	keyboard.
If	you	save,	then	run	the	program,	the	indented	statements	“You	are	legally
allowed	to	purchase	alcohol.”	and	“What	would	you	like?”	are	displayed	on	your
screen,	since	the	program	meets	the	condition	imposed	by	the	If	statement,	that

age	>	25.	Since	age	is	evaluated	as	25,	which	is	>	21,	the	print	statements	on
lines	3	and	4	are	displayed	on	the	screen.

Figure	6.1.	The	expected	output	of	the	sample	program,	where	the	value	of	age	meets	the	condition	of	the	If
statement.	Note	the	indented	lines	of	code	right	after	the	If	statement.	The	un-indented	line	of	code	at	the
end	means	that	the	line	is	not	covered	by	the	If	statement.

Aside	from	the	indented	statements	under	the	If	statement,	the	un-indented	last
statement,	End	of	program,	is	also	printed	to	the	screen.
Let’s	change	the	value	of	age	and	see	what	happens:

age	=	18
We	will	now	save	and	run	the	program.
As	you	can	see,	other	than	the	final,	un-indented	line	of	code	at	the	end,	“End	of
program”,	nothing	gets	printed	to	the	screen.	This	is	because	our	If	statement	is
evaluated	as	false,	since	age	=	18	does	not	meet	the	age	>	21	If	condition.

Figure	6.2.	The	expected	output	of	the	revised	sample	program,	where	the	value	of	age	does	not	meet	the
condition	of	the	If	statement.	Since	the	condition	is	not	met,	the	3rd	and	4th	lines	of	code	are	not	printed.
Only	the	un-indented	line	of	code	at	the	end	is	printed,	since	this	line	is	not	covered	by	the	If	statement.

	Another	example	is	where	we	create	a	program	that	checks	for	someone’s
eligibility	to	vote.	We	will	create	a	new	file	and	then	save	it	as	vote.py.
For	someone	to	be	eligible	to	vote,	two	things	must	be	true:	their	age	must	be	18
and	above,	and	the	voter	must	be	a	citizen.	Let’s	enter	these	as	the	parameters
that	we	need	our	program	to	check	using	an	If	statement.

age	=	18
citizen	=	“true”

We	will	then	enter	our	If	statement:
if	(age	>=	18	and	citizen	==	“true”):

Note	that	our	If	statement,	in	this	case,	uses	the	logical	operators,	>=	and	==,
which	were	discussed	in	Chapter	5.
In	addition,	and	more	importantly,	do	not	forget	to	enter	the	colon	that	goes	after
the	condition.
After	pressing	Enter	on	our	keyboard,	let’s	enter	what	the	program	needs	to	do,
once	the	If	statement	is	evaluated	as	having	met	the	conditions	age	>=	18	and
citizen	==	“true”.

print	(“You	are	legally	eligible	to	vote”)
Saving,	then	running	the	program	prints	“You	are	legally	eligible	to	vote”	to
your	screen,	since	both	our	age	and	citizen	parameters	meet	the	conditions	of	the
If	statement.

Figure	6.3.	The	expected	output	of	our	sample	program	checking	for	a	citizen’s	eligibility	to	vote.

If	you	change	the	value	of	citizen	to	false,	then	save	and	run	your	program,
nothing	gets	displayed	on	your	screen	since	the	statement	is	evaluated	as	not
having	met	the	If	condition.

Figure	6.4.	The	program	does	not	do	anything	after	the	values	of	the	parameters	are	changed,	such	that	one
or	both	conditions	in	the	If	statement	are	no	longer	applicable.

That	is	all	for	If	statements.	In	the	next	section,	you	will	learn	about	the	If-Else
conditional	statement.

If…Else	Statements
You	learned	about	the	simple	If	statement	in	the	previous	section.	In	this	section,
we	will	add	an	Else	component	to	the	If	statement.
The	If…Else	statement	is	composed	of	two	parts,	the	If	clause,	which	is	the
same	as	the	If	statement	discussed	in	the	previous	section,	and	the	Else	clause,
which	is	performed	in	case	our	If	condition	is	not	met.	This	is	a	closer
approximation	of	what	happens	in	the	real	world,	since	we	would	want	our
programs	to	output	something	even	if[SW4]		the	condition	tested	is	false.
To	create	our	demo	program	for	this	section,	let’s	create	a	new	Python	file	using
IDLE,	and	name	the	Python	file	as	else.py.

On	the	editor	window,	enter	the	following:
score	=	10000
highscore	=	9000

Let’s	add	our	If	statement:
if	score	>	highscore:

Note	from	the	above,	the	use	of	the	colon	at	the	end	of	the	If	statement.	This	was
discussed	in	the	previous	section.
Let’s	now	add	a	print	statement	to	display	the	output,	if	the	If	statement	is
evaluated	as	true.

print	(“You	have	achieved	the	new	high	score”)
Note	that	your	print	statement	is	indented,	since	it	falls	under	the	If	statement.
Save,	then	run	the	program.	As	you	can	see,	since	score	>	highscore	is	true,	you
will	get	the	following	output:

You	have	achieved	the	new	high	score.

Figure	6.5.	The	expected	output	from	our	simple	If	statement,	which	was	discussed	in	the	previous	section.

Let	us	change	highscore	from	9000	to	90,000,	then	save	and	run	the	program
again.	This	time,	you	will	not	get	an	output,	since	score	>	highscore	becomes
false.

Figure	5.6.	If	our	If	statement	is	false,	our	program	does	not	output	anything.	Adding	an	else	statement,	that
will	get	an	output	from	our	program,	remedies	the	problem.

What	you	have	here	is	a	simple	If	statement,	which,	as	is	obvious	in	this	case
and	the	other	examples	that	we	discussed	in	the	previous	section,	does	not	return
any	output,	if	our	If	statement	is	false.	This	is	where	our	Else	statement	comes
in.
Edit	your	else.py	program	by	using	an	Else	statement:

else:
Note	that,	like	our	If	statement,	we	always	end	an	Else	statement	with	a	colon.
You	should	also	make	sure	to	line	up	the	Else	statement	with	the	If	statement.
Otherwise,	you	will	get	an	error	when	you	run	your	program.
Add	the	following	print	statements:

print	(“Sorry.	You	did	not	achieve	a	new	high	score”)
print	(“Try	again!”)

The	editor	should	automatically	indent	your	Print	statement,	since	it	falls	under
our	Else	statement.
Save,	then	run	the	program	again.	This	time,	you	will	see	the	output	of	the	Else
statement	displayed	on	your	screen.

Figure	6.7.	The	expected	output	from	our	program	using	an	If…Else	statement.	Our	program	displays	the
first	print	statement,	if	the	If	clause	is	true,	and	the	second	print	statement	if	the	If	clause	is	false.

Let’s	try	another	example.
Open	the	editor	window	from	IDLE,	then	enter	the	following:

grade	=	92
if	grade	>=	90:

letterGrade	=	“A”
if	grade	>=80:

letterGrade	=	“B”
print	(letterGrade)

Save	your	program	as	grades.py,	then	run	it.	What	output	did	you	get?
In	this	case,	B	is	returned	as	the	program	output.	Let	us	take	a	closer	look	at	the
answer.
The	program	checked	for	the	value	of	grade	using	the	first	If	clause,	before
checking	the	value	of	grade	again	through	the	second	If	clause.	Since	the
program	evaluated	the	second	If	clause	last,	and	both	If	clauses	were	evaluated
as	true	and	the	program	returns	B	as	the	answer.
Therefore,	we	get	an	incorrect	answer,	if	we	use	two	If	clauses	simultaneously.

Figure	6.8.	The	expected	program	output	from	using	two	If	clauses	that	are	both	evaluated	as	true.

To	get	a	correct	answer,	we	use	an	elif	statement	in	this	case.	Let’s	modify	the
grades.py	program	for	an	example.
On	the	editor	window,	edit	the	grades	program	accordingly:

grade	=	72
if	grade	>=	90:

letterGrade	=	“A”
elif	grade	>=80:

letterGrade	=	“B”
elif	grade	>=70:

letterGrade	=	“C”
elif	grade	>=60:

letterGrade	=	“D”
else:

letterGrade	=	“E”
print	(letterGrade)
Save	the	program,	then	run	it	again.
Your	program	should	output	C.

Let’s	look	at	our	program	again,	this	time	in	more	detail.
When	the	program	enters	the	If	clause,	it	evaluates	grade=72,	and	since	grade	>=
90	is	false,	it	goes	to	the	first	elif	statement.	It	then	evaluates	if	grade	>=	80.
Again,	the	result	is	false,	thus	the	program	goes	to	the	next	elif	statement.	This
time,	since	grade	>=	70	is	true,	the	program	skips	the	rest	of	the	elif	clauses	and
prints	the	grade.
Note	that	we	use	an	Else	clause	for	the	last	letterGrade	option,	since	any	grade
that	returns	false	on	the	previous	elif	statements	would	already	fall	under	“F.”

Figure	6.9.	The	expected	program	output	from	using	a	combination	of	If…Else	clauses.	The	program
evaluates	grade	=	C	since	72	is	greater	than	70.

The	elif	clause	stands	for	else-if.	It	allows	the	program	to	evaluate	the	value	of
each	elif	statement,	then	exit	as	soon	as	the	statement	returns	true.
Still	unclear?	Play	around	with	the	program	by	changing	the	value	of	grade.	You
should	have	a	better	understanding	of	what	an	elif	clause	does	once	you	finish.
That’s	it	for	If…Else	statements.	We	will	discuss	nested	If	statements	next.

Nested	If	Statements
Nested	If	statements	arean	If	statement,	or	several	If	statements,	contained
within	another	If	statement.
To	demonstrate,	let’s	write	another	program	using	IDLE.	We	will	use	several	If
statements	within	an	If	statement	in	this	demo.

Once	IDLE	runs,	on	the	editor	window,	enter	the	following:
Value	=	50
If	value	<	200:

print	(“Value	is	less	than	200”)
if	value	<	150:

print	(“Value	is	less	than	150”)
if	value	<	100:

print	(“Value	is	less	than	100”)
if	value	==	50:

print	(“Value	is	50”)
Note	that	the	program	has	several	If	statements	within	a	single	If	statement.	This
is	what	we	call	nested	If	statements.	We	test	for	the	value	using	these	If
statements.
Save	the	program	as	nested.py,	then	run	the	program.
Since	value	is	50,	what	do	you	think	the	output	of	the	program	will	be?	If	you
said	that	the	program	will	return	the	four	lines	corresponding	to	the	print
statements,	you	are	correct.	This	is	shown	in	Fig.	6.10	below.

Figure	6.10.	The	expected	output	of	our	sample	program	named	nested.py.	With	each	If	statement	evaluated
as	true,	the	program	outputs	all	four	print	statements	in	the	nested	If	statements.

If	we	edit	value	to	be	60,	then	save	and	run	the	program	again,	the	program	will
only	output	the	first	three	print	statements.	The	program	would	skip	the	last	print
statement	corresponding	to	the	If	statement	if	value	==	50,	since	value	==	50	is
false.	This	is	shown	in	Fig.	6.11.

Figure	6.11.	The	expected	output	of	the	program	where	value	=	60,	and	the	last	If	statement	is	evaluated	as
false.	Therefore,	only	the	first	three	print	statements	are	displayed	on	screen,	since	the	program	skips	the
last	print	statement.

Let’s	add	an	Else	clause	after	the	last	nested	If	statement	in	our	program.	First,
let’s	change	value	to	3360.	Our	program	would	look	like	the	one	shown	in	Fig.
6.12.

Figure	6.12.	The	expected	output	of	our	program	with	an	Else	clause.	Since	the	nested	If	statements	are	all
evaluated	as	false,	the	program	skips	to	the	Else	clause,	and	prints	the	corresponding	print	statement.

This	completes	our	discussion	of	nested	If	statements.	To	ensure	that	you
understand	how	this	type	of	conditional	statement	works,	edit	the	program	by
changing	value	to	any	number.	You	should	then	run	the	program	again.	Once
you	are	confident	of	your	understanding	of	the	subject,	you	may	proceed	to	the
next	section,	where	you	will	learn	about	the	ternary	operator	in	Python.

The	Ternary	Operator
The	simplest	definition	of	a	ternary	operator	is	that	it	is	a	condensed	If
statement.	Python’s	ternary	operator	is	a	source	of	confusion,	even	among
experienced	programmers.	To	make	sure	you	understand	this	before	we	go	into
our	coding	exercise	and	then	on	to	the	next	chapter	of	the	book,	let’s	code
another	program.
Run	IDLE,	then	open	a	new	file,	and	save	the	file	as	ternary.py.	You	should	then
enter	the	following	on	the	editor	window:

age	=	23
print	(‘Eligible	to	buy	alcohol’	if	age	>=18	else	‘Ineligible	to	buy

alcohol’)
Save,	then	run	the	program.	What	do	you	think	the	output	will	be?	If	you	said
Eligible	to	buy	alcohol	will	be	displayed	onscreen,	you	are	correct,	since	age	is
evaluated	as	true,	since	it	meets	the	condition	>=18.

Figure	6.13.	The	expected	output	from	our	sample	program,	where	age	=	23	is	evaluated	as	true,	since	23
>=	18.

If	we	change	age	=	17,	then	save

and	run	the	program	again,	we	now	get	the	Ineligible	to	buy	alcohol	output,
since	age=17	is	evaluated	as	false,	as	it	does	not	meet	the	age	>=	18
condition[SW5].
	
Figure	6.14.	The	expected	output	from	our	sample	program,	where	age	=	17	is	evaluated	as	false,	since	17
>=	18.

As	you	can	see	from	the	above	examples,	the	ternary	operator	puts	the	logic	of
the	If…Else	statements	we	discussed	in	the	previous	section	all	together	in	one
line.
Let’s	add	a	couple	of	lines	using	the	ternary	operator	to	our	program.

Enter	the	following	on	the	editor	window:
citizen	=	“true”
print	(‘You	may	vote’	if	citizen	==	“true”	else	‘You	may	not	vote’)

After	saving	and	running	the	program,	since	citizen	=	“true”,	the	output	would
be	You	may	vote.	If	citizen	=	“false”,	the	output	would	be	You	may	not	vote
instead.

Figure	6.15.	The	expected	output	from	our	sample	program,	after	evaluating	for	citizen	=	“true.”

As	you	can	see	from	our	sample	program,	the	ternary	operator	is	simple.
However,	you	should	memorize	it,	if	you	want	to	use	it	in	your	program.	It	will
allow	you	to	save	a	couple	of	lines	or	more.
This	concludes	our	discussion	of	the	ternary	operator	in	Python.	In	the	next
section,	you	will	do	a	coding	exercise	to	help	you	apply	the	conditional
statements	you	learned	about	in	the	chapter.

Coding	Exercise:	Operators	Practice
This	exercise	will	allow	you	to	reinforce	your	knowledge	of	the	conditionals
statements	that	you	learned	in	the	chapter.
1.	 Load	IDLE	and	choose	File>New	File	to	create	a	blank	document,	then

create	the	following	list	variables:
	
subjectList	=	[“English”,	“Spanish”,	“Algebra”,	“Geography”,	“Theater”]
gpas	=	[3.12,	3.45,	2.99]

	
Save	the	document	as	branching_lab.py.
	

2.	 Create	a	series	of	If	statements	that	determine	whether	the	subject
“Geography”	is	on	the	list.	If	the	subject	“Geography”	is	on	the	list,	the
value	of	a	Boolean	variable	called	takingGeography	should	be	set	to
True.	If	not,	the	takingGeography	variable	should	be	set	to	false.
	

3.	 Write	an	if	statement	that	will	determine	whether	the	average	of	the	GPAs
is	greater	than	or	equal	to	3.33.	If	it	is,	output	the	statement	“Average	is
3.33	or	greater.”	If	not,	output	the	statement	“Average	is	less	than	3.33.”
	

4.	 Check	your	answer	against	the	code	shown	in	Fig.	6.16.
	

Figure	6.16.	After	going	through	the	steps	in	the	exercise,	this	is	what	your	code	should	look	like.

Chapter	7	–	Loops
This	chapter	will	teach	you	how	to	use	loops	in	Python	programming.		After
learning	about	conditional	statements,	or	code	branching,	in	Chapter	6,	you
should	now	be	ready	to	handle	loops.
Along	with	conditional	statements,	loops	are	the	most	used	statements	in
computer	programming.	This	is	also	true	for	Python	even	if	it	handles	certain
loops	differently	from	other	programming	languages.
In	this	chapter,	you	will	learn	about	the	different	loops	including:	the	while	loop,
the	for	loop,	and	the	nested	loop.	The	use	of	break	and	continue	statements	in
loops	will	also	be	discussed.
The	while	loop	is	the	simplest	loop.		Therefore,	it	is	the	easiest	to	understand
loop.	You	will	learn	about	this	type	of	loop	first.	The	basic	structure	of	the	while
loop	is	while	(true),	do	this	stuff.
Some	programming	languages	treat	the	for	loop,	the	same	as	the	while	loop.	
This	is	not	true	with	Python.	You	will	know	more	about	the	differences,	as	you
go	through	the	rest	of	the	section.
The	next	type	of	loop	are	nested	loops.		They	are	a	loop,	or	loops,	within	another
loop.	These	are	just	like	the	nested	conditionals	that	were	discussed	in	the
previous	section.
We	then	cover	break	and	continue	statements,	which	allow	better	control	of
operations	within	loops	in	our	programs.
At	the	end	of	the	chapter,	is	a	coding	exercise	that	computes	the	interest	of	an
investment.	Your	output	for	this	coding	exercise	is	the	first	useful	program	that
you	will	be	coding	in	the	course,	although	there	will	be	others	as	you	go	through
the	rest	of	the	book.

The	While	Loop
As	mentioned	previously,	most	things	that	happen	in	a	computer	program	are
part	of	a	loop,	which		means	that	they	occur	repeatedly.
For	example,	let’s	say	you	need	to	write	a	program	that	involves	a	deck	of

playing	cards	in	a	card	game.	This	program	will	go	through	the	deck	of	cards
and	deal	a	card	to	each	player,	until	everyone	has	the	correct	number	of	cards.
The	act	of	dealing	the	cards	is	known	as	a	loop	in	programming.	In	Python,	there
are	several	kinds	of	loops.	This	section	will	examine	the	while	loop.	As	you	will
see	in	our	next	sample	program,	the	while	loop	is	the	easiest	to	understand	loop
that	you	will	learn	about	in	this	section.	The	other	loops	are	not	that	difficult	to
learn.	You	just	need	to	remember	that	constant	practice	is	needed	to	ensure	that
you	know	how	to	use	them	within	your	programs.
Let’s	go	to	our	usual	sample	program.	Open	IDLE,	then	click	File>New	File,	or
press	Ctrl+N.
On	the	editor	window,	enter	the	following	lines	of	code:

x	=	0
while	(x	<	25):
				print	("The	value	of	x:	",	x)
				x	=	x+1

Let’s	pause	for	a	moment	and	discuss	these	lines	of	code	in	more	detail.
In	Line	1	of	our	program,	we	have	a	value	x	which	is	initialized	to	0.	In	Line	2,
we	begin	our	while	loop,	as	denoted	in	the	while	at	the	beginning	of	Line	2,	then
follow	it	with	a	print	statement	that	prints	the	value	of	x,	if	x	<	25	=	true.	
Finally,	in	Line	3	of	our	program,	we	add	(or	increment,	to	use	the	correct	term)
1	to	the	initial	value	of	x.	Therefore,	x	now	becomes	2,	after	which	it	goes	back
to	our	while	statement	until	x<25	is	no	longer	true	(x	!=	25).

Figure	7.1	Sample	program	code	using	a	while	loop.

Let’s	now	save	and	then	run	our	program.
Since	the	initial	value	of	x	is	0,	as	we	go	through	the	while	loop	for	the	first

time,	0	is	printed	to	the	screen.	The	program	then	continues	running	and
displaying	the	value	of	x,	until	the	statement	x<25	is	no	longer	true,	or	when	x	!=
25.	The	program	should	output	the	numbers	0	through	24	on	your	screen.

Figure	7.2.	The	program	prints	1	through	24	on	our	screen,		since	this	meets	the	condition	of	the	while	loop,
x	<	25.	The	program	exits	the	while	loop,	once	the	condition	no	longer	holds	true.

Let’s	try	another	example	using	the	same	file	we	used	for	the	above	program.
counter=100
while	(counter	>	0):
			print	(counter)

			counter=counter	–	10
Let’s	again	discuss	what	these	lines	of	code	mean.
In	Line	1,	we	assign	100	to	a	counter	variable.	We	then	add	our	while	loop,
counter>0	in	Line	2.	On	the	next	line	of	code,	we	print	counter,	after	which	we
subtract	10	from	counter	in	Line	4.

Let’s	save,	then	run	our	program	again.

Figure	7.3.	The	highlighted	lines	show	our	sample	program	code	involving	another	while	loop.

As	shown,	the	program	prints	the	numbers	100	down	to	10	on	your	screen.	This
is	because	the	program	keeps	running,	until	the	condition	counter	>	0	becomes
false,	which	happens	after	counter	=	0.

Figure	7.4.	The	output	of	our	2nd	sample	program.	Note	that	the	program	exits	the	loop,	once	the	counter	>
0	condition	in	the	while	loop	becomes	false.

There	are	a	few	things	you	should	note	when	creating	loops,	including	while
loops.	It	might	be	possible	that	while	coding	your	programs,	you	create	what	is
called	an	endless	loop.	For	example,	if	the	operation	in	your	while	loops	runs
endlessly	because	its	value	is	always	true,	then	that	is	an	endless	loop.	
This	is	generally	bad	coding	practice.	Your	program	can	continue	to	run	forever
or	generate	an	error	due	to	your	computer	running	out	of	memory.	Your

programs	should	always	have	a	way	to	exit	the	loop.		We	will	discuss	how	to
avoid	endless	loops	next.
Let’s	go	back	to	the	editor	window	of	our	IDLE.	In	this	example,	you	will	code
an	endless	loop.

y	=	0
while	(y	>	0):
				print	(y)
				y	=	y+1

Take	a	closer	look	at	our	little	program.	Do	you	see	anything	wrong	with	it?
If	you	say	that	it	will	run	forever,	you	are	right.	This	is	because	the	program	is
coded	so	that	the	condition	y	in	out	while	loop	is	always	true.	It	would	always	be
y	>	0.	Our	sample	program	above,	is	an	example	of	an	endless	loop.

Figure	7.5.	An	example	of	an	endless	loop.	Note	that	the	y>0	condition	of	the	while	loop	in	this	program
code	will	always	be	true.

Let’s	save	and	run	the	program.	You	will	see	that	the	program	will	not	end.	It
will	continue	to	churn	out	numbers	to	your	screen,	until	you	force	it	to	stop	by
pressing	Ctrl+C	on	your	keyboard	(Ctrl+C	intercepts	the	program	via	the
keyboard,	effectively	stopping	it	from	running).

Figure	7.6.	Pressing	Ctrl+C	stops	the	output	operation	of	the	endless	loop	in	the	sample	program.

Pressing	a	combination	of	keyboard	buttons	to	stop	a	program	is	not	how	your
Python	programs	are	meant	to	be	coded.	Therefore,		we	will	present	a	method	to
ensure	that	an	endless	loop	would	not	occur	in	this	case.
Let’s	go	back	to	our	program.
Since	you	do	not	want	to	run	a	program	containing	an	endless	loop,	let’s
comment	out	the	lines	you	added	at	the	bottom	of	the	program	by	manually
entering	a	couple	of	#,	or	sharp,	signs	to	the	left	of	each	line.	You	can	also
comment	out	the	offending	lines	by	either	selecting	them,	then	clicking	Format
>	Comment	Out	Region	from	the	menu,	or	pressing	Alt+3	on	your	keyboard.
Next,	let’s	add	an	else	statement	right	after	the	print	operation	for	our	original
while	statement.
else:
				print(“Y	is	no	longer	greater	than	zero”)
Our	code	should	now	look	like	the	following:

counter		=	100
while	(counter	>	0):
			print	(counter)

			 			counter	=	counter	–	10

else:
				print(“Y	is	no	longer	greater	than	zero”)

Let’s	save	and	run	the	program	again.

Figure	7.7.	The	complete	sample	program	for	this	section.	Note	the	else	statement	on	the	last	two	lines.

In	addition	to	printing	out	the	values	of	100	down	to	10	on	your	screen,	the
program	should	now	display	the	statement	“Y	is	no	longer	greater	than	zero”	at
the	bottom.		This	is	a	sign	that	it	has	reached	the	end	of	the	line,	and	that	the
value	of	Y	is	already	0.

Figure	7.8.	The	output	from	our	sample	program	in	this	section.	Note	that	the	last	printed	value	is	the	output
of	the	else	statement	in	the	complete	program	that	is	shown	on	Fig.	7.7.

When	coding	while	loops,	you	should	have	an	else	option,	if	possible,	to	ensure
that	your	program	exits	the	loop.	As	you	can	see	from	the	final	version	of	our
sample	program	in	this	section,	that	is	exactly	what	we	did.
This	is	the	end	of	the	section.	In	the	next	section,	you	will	learn	more	about	for
loops.

The	For	Loop

In	many	programming	languages,	the	For	loop	is	a	shorter	version	of	the	while
loop.	This	is	not	exactly	true	when	it	comes	to	Python,	where	a	For	loop	allows
us	to	iterate	through	objects,	such	as	a	string.	You	will	learn	how	for	loops	work
in	this	section.
Let’s	run	IDLE,	then	open	another	editing	window.
Enter	the	following	on	the	editor	window:

courseName	=	“Python	for	Beginners	2017”
for	letter	in	courseName:

print	(“Current	Letter	is	“,	letter)
Let’s	save	our	program	before	running	it.

Figure	7.9.	Our	sample	program	code	showing	a	for	loop.

When	you	run	the	program,	you	will	see	that	the	value	of	courseName,	the	string
Python	for	Beginners	2017,	is	printed	to	the	screen,	with	each	letter	in	the	string
appearing	on	a	separate	line.	This	is	shown	in	Fig.	7.10.

Figure	7.10.	The	output	of	our	sample	program	code,	using	a	for	loop.

Take	a	look	at	the	output	again.	Note	that	the	spaces	between	the	words	in	our
string	are	treated	as	empty	characters.	Let’s	change	our	program,	so	that	it	will
display	an	output	when	it	detects	a	space	in	the	string.
Let’s	add	the	following	to	our	code.

if	(letter	==	“	“):
print	(“This	is	a	space	character”)

Let’s	save,	then	run	our	program	again.

Figure	7.11.	Our	revised	program	code	identifying	the	space	characters	in	our	string.

As	you	can	see,	the	program	now	identifies	where	the	space	characters	are	in	our
string.

Figure	7.12.	The	output	of	our	revised	program	code,	identifying	the	space	characters	in	the	string.

Therefore,	in	Python,	a	for	loop	is	used	for	string	processing.	The	ease	with
which	you	can	perform	string	processing	in	Python	can	be	traced	to	this	use	of

the	for	loop.
Let’s	try	another	program	using	a	for	loop.		Similar	to	our	example	in	the
previous	section,	we	will	use	our	existing	file,	and	add	to	it	the	following	lines	of
code.

Bands	=	[“Journey”,	“REO	Speedwagon”,	“Foreigner”,	“Heart”,	“The
Cure”]

for	band	in	bands:
print	(“Current	Band:	“,	x)

Save,	then	run	the	program	again.

Figure	7.13.	The	program	code	showing	another	example	of	using	a	for	loop.

The	program	then	displays	each	band	in	our	Bands	list	on	a	separate	line.

Figure	7.14.	The	output	from	the	additional	lines	in	our	sample	program	code.

Note	that	for	loops	work	for	just	about	any	objects	in	Python.	As	you	go	through
the	rest	of	the	book,		there	are	additional	examples	of	for	loops	being	used	for
string	processing.
This	wraps	up	our	discussion	of	for	loops.	In	the	next	section,	you	will	learn
about	nested	loops.

Nested	Loops

A	nested	loop,	as	the	name	suggests,	is	a	loop	inside	a	loop.	In	this	section,	you
will	learn	how	to	nest	loops	in	Python.
Let’s	go	straight	to	coding	our	sample	program	for	this	section.	Open	IDLE
again,	then	run	a	new	file.	On	the	editor	window,	enter	the	following:

count	=	10
x	=	0
while	x	<	count:

y	=	0
while	y	<	11:
y	=	y	+	1

x		=	x		+	1
Save,	then	run	the	program.

Figure	7.15.	Sample	program	code	showing	nested	loops,	which,	in	this	case,	is	a	while	loop	inside	another
while	loop.

As	shown,	the	program	displays	the	numbers	0-10	on	your	screen	10	times.	Let’s
go	back	to	the	program	and	discuss	each	line,	so	that	you	will	get	a	better	idea	of
what	it	does.

Figure	7.16.	The	output	of	the	program	code	containing	nested	loops	shown	in	Fig.	7.15	displays	0-10	on
your	screen	10	times.

Lines	1	and	2	of	the	program	sets	the	initial	values	of	two	variables,	count	and	x.
Lines	3	and	4	shows	the	initial	while	loop,	which	states	that	while	x	<count,	the
value	of	y	=	0.
On	Line	5,	the	second	while	loop	begins.	First,	it	sets	the	condition	y	<	11	(line
6),	then	prints	y,	before	incrementing	y	by	1	(line	7).	Once	the	while	condition	y
<	11	becomes	false,	the	program	exits	the	second	while	loop,	then	proceeds	to
increment	x	by	1	(line	8).
If	you	are	still	confused	on	the	steps,	go	through	the	example	again	until	it
becomes	clear.	Stepping	through	each	line	is	always	good	–	it	allows	you	to	get	a
clearer	picture	of	the	code.
Let’s	try	another	example,	this	time	using	a	while	loop	inside	the	for	loop.
Add	the	following	lines	to	your	code.

name	=	[“Mark”,	“Fred”,	“Tom”,	“Craig”,	“Bobby”,	“Martha”]
for	x	in	name:

y	=	0
while	y	<	5:

print	(x)
y	=	y	+	1

Let’s	save,	then	run	our	program.

Figure	7.17.	The	program	code	showing	the	use	of	a	for	loop	iterating	through	a	list	and	a	while	loop	within
the	for	loop.	The	program	exits	the	while	loop	once	y	<	5	becomes	false,	then	continues	on	to	the	next
name	on	the	list	via	the	for	loop.

This	time,	the	for	loop	iterates	through	the	names	on	the	list	(as	discussed	in	the
previous	section,	the	for	loop	iterates	through	a	list	automatically),	printing	each
name	5x	while	y	<	5.	Once	the	while	condition	y	<	5	becomes	false,	the	program
exits	the	while	loop,	then	goes	on	to	the	next	name	on	the	list,	which	it	then
prints	another	5x.	The	program	does	this,	until	it	finishes	going	through	each
name	on	the	list.

	
Figure	7.18.	The	output	of	our	program	code	containing	the	nested	while	loop	inside	the	for	loop,	as	shown
on	Fig.	7.17.

That	completes	our	discussion	on	for	loops.	We	will	cover	Break	and	Continue
statements	next.

Break	and	Continue	Statements
There	might	be	circumstances	when	you	need	to	break	out	of	a	while	loop
entirely,	or	skip	an	iteration	within	a	for	loop	completely.	This	is	where	the
Break	and	Continue	statements	come	in.
Let’s	open	another	file	on	IDLE,	then	enter	the	following:

statement	=	“The	quick	brown	fox	jumped	over	the	lazy	dogs.”
for	letter	in	statement:

print	(“Current	letter”,	letter)

Let’s	save	the	file	before	running	the	program.
As	expected,	the	program	will	iterate	through	each	letter	in	the	string	statement.

Figure	7.19.	A	simple	for	loop.

Note	that	you	learned	about	this	earlier	in	the	for	loop	section	of	this	chapter.

Figure	7.20.	The	output	of	a	for	loop.

Now,	let’s	modify	the	program	by	adding	the	following	lines	right	after	the	print
statement.

if	letter	==	“e”:
break

Save	the	program,	then	run.	What	do	we	get?

Figure	7.21.	A	sample	break	statement.

The	program	iterates	through	the	statement	and	displays	each	letter	up	to	the	first
letter	e,	after	which	it	stops	running.	This	is	what	happens	when	you	put	a	break
statement	in	your	program.

Figure	7.22.	Sample	output	of	the	program	with	the	break	statement	shown	on	Fig.	7.21.

What	if	we	want	the	program	to	stop,	if	it	encounters	the	letter	e?	That	is,	we	do
not	want	the	program	to	output	any	e.	How	do	we	handle	this?	Placing	the	break
statement	before	the	print	statement	in	our	program	should	address	this.

for	letter	in	statement:
				if	letter	==	"e":
								break
				print	("Current	letter",	letter)

This	time,	since	the	break	statement	comes	first,	when	it	encounters	the	letter	e,
it	stops	running.	If	you	run	the	program	again,	you	will	see	that	it	no	longer
prints	the	letter	e.

Figure	7.23.	Output	of	our	program	with	the	break	statement	before	the	print	statement.

Next,	let’s	show	an	example	of	a	continue	statement.
Let’s	modify	our	program	once	more	by	adding	the	following	lines	to	our
program.

for	letter	in	statement:
				if	letter	==	"q":
								continue
				print	("Current	letter",	letter)

If	you	save	and	run	the	program,	it	will	output	the	string	without	displaying	the
letter	q.	You	can	see	the	difference	between	continue	and	break	statements.		In
a	continue	statement,	the	program	skips	the	letter	q,	but	continues	to	display	the
rest	of	the	statement.	In	contrast,	as	we	have	shown	previously,	a	break
statement	stops	the	program	completely.

Figure	7.24.	Output	of	our	program	with	the	continue	statement.	Notice	that	the	program	skips	the	letter	q.

When	writing	loops,	always	check	the	indentation	of	your	code.		This	is	because
anything	that	is	lined	up	with	a	loop	statement	is	covered	under	that	statement.	If
you	mistakenly	indent	a	line	of	code	in	your	program,	it	might	bring	up	different
results	from	the	ones	you	intended	the	program	to	make.
This	concludes	our	chapter	on	loops.	You	have	learned	about	the	different	kinds
of	loops:	the	while,	for,	and	nested	loops,	and	you	now	also	know	how	to	use
the	break	and	continue	statements.	It	is	time	for	your	coding	exercise.

Coding	Exercise:	Loops
Unlike	the	exercises	in	the	previous	sections,	the	program	you	will	create	in	this
section	actually	does	something	useful.
Your	objective	is	to	create	a	simple	interest	calculator	using	loops.	The	program
should	compute	the	monthly	interest	on	an	investment	over	a	120-month	term.
The	program	output	will	be	the	month	number,	interest	earned,	and	the	new
balance.
1.	 Create	the	following	list	variables:

balance	=	2250
interestRate	=	.045
term	=	120

2.	 The	program	should	have	the	following	features:
a.	 Calculate	the	monthly	interest	earned	by	multiplying	the	balance	by

the	interest	rate	divided	by	12	(interest	is	given	yearly,	but	calculated
monthly).

b.	 Determine	the	new	balance
c.	 Print	the	month	number,	interest	earned	and	new	balance	to	the

console.
To	make	your	program	output	neat,	use	the	character	entity	\t	to	insert	a	tab
between	each	output.
Your	initial	output	should	look	as	follows:

Figure	7.25.	Initial	output	of	the	coding	exercise.

Note	that	the	initial	results	for	both	interest	and	balance	are	too	precise.	Since
currency	is	rounded	off	at	two	digits,	make	sure	that	your	code	does	the	same	by
inserting	%.2f	at	the	end	of	the	Interest	and	Balance	parts	of	the	print	statement.
%.2f	outputs	a	floating	point	number	with	two	trailing	spaces.	This	results	in	a
much	cleaner	output	(see	example	below).

Figure	7.26.	Notice	the	much	cleaner	output,	as	the	result	of	the	use	of	%2f	in	the	program.

A	screenshot	of	the	initial	program	is	shown	below.

Figure	7.27.	This	screenshot	shows	the	actual	code	of	the	initial	version	of	the	program.

The	final	program	with	a	couple	of	%.2f	inserted	into	the	print	statement	is
shown	below.

Figure	7.28.	Actual	code	of	the	program.	Note	the	two	instances	of	%.2f	on	the	second	to	the	last	line	of
code.

	
	
	
	
	

Chapter	8	–	Math	Functions
In	this	chapter,	you	will	learn	about	Python’s	powerful	math	functions.		They	are
a	strong	suit	of	the	language,	and	a	major	reason	why	data	analysts	prefer	using
Python	over	other	programming	languages.
The	sheer	number	of	functions	in	Python’s	extensive	Math	library	makes	it
impossible	to	cover	all	of	them	in	this	book.		However,	you	will	learn	the
essential	and	more	important	ones	in	order	to	demonstrate	what	you	can	do	with
them.	These	functions	are	relatively	easy	to	learn.	You	do	not	have	to	be	math
wizard	to	learn	how	to	use	them.	You	are	close	to	finishing	the	book.
You	will	first	learn	about	casting	functions,	followed	by	the	more	advanced	math
functions	and	then	finally	learn	about	randomization	functions.
Casting	functions	are	used	to	convert	a	variable	type	to	another,	such	as	using
int().	This	will	allow	you	to	convert	a	floating-point	number	to	an	integer.
The	mathematical	functions	covered	in	the	book	are	used	for	solving	advanced
equations	and	complex	calculations.
Randomization	functions,	as	their	name	suggests,	allow	random	number
generation	or	selection	of	a	random	number	from	a	group	of	numbers.	These
functions	are	useful	in	programs	where	random	numbers	are	required.
Chapter	8	ends	with	a	coding	exercise	that	will	test	your	knowledge	about	math
functions	in	Python.

Casting	Functions
These	functions	are	used	for	‘casting’	a	variable	from	one	type	to	another.	For
example,	when	you	have	a	floating-point	number,	but	you	need	an	integer,	you
use	this	function	to	get	your	desired	number.	
You	will	learn	about	the	use	of	casting	functions	in	Python	in	this	section.
The	first	casting	function	we	will	discuss	allows	a	floating-point	number	to	be
expressed	as	an	integer	and	is	expressed	as	int	().
You	will	then	learn	about	expressing	an	integer	as	a	floating-point	number
through	the	casting	function	float	().
You	will	also	learn	about	displaying	complex	numbers,	or	very	large	real	or

imaginary	numbers,	in	complex	notation.

We	will	use	our	IDLE’s	shell	window	to	demonstrate	what	we	can	do	with	these
functions.
Run	IDLE,	then	on	the	shell	window,	enter	the	following	floating-point	number:

X	=	35.666666
On	the	next	line,	enter	the	following:

print	(x)
The	print	statement	prints	the	value	of	x	on	the	next	line.
Next,	let’s	express	x	as	an	int	by	entering	the	following:

x	=	int	(x)
Let’s	print	the	number	again:

print	(x)
The	integer	value	of	x,	35,	is	then	printed.
As	you	can	see,	our	original	floating-point	number	has	been	converted	to	an
integer,	thanks	to	the	casting	function	int	().
Note	that	the	casting	function	does	not	round	up	the	number	(you	will	see	a	36
instead	of	a	35,	if	you	rounded	up).	The	function	just	chops	off	the	decimal	point
and	everything	to	the	right	of	it.
Let’s	continue	with	our	example.
Enter	the	following	on	the	shell	window:

print	(int	(0.123423523))
When	you	press	enter	on	your	keyboard,	you	will	see	that	only	0	is	displayed	on
your	screen.	The	casting	function	works	for	any	floating-point	number.
Now,	let’s	see	how	this	works	for	an	integer	that	we	want	to	express	as	a
floating-point	number.
Let’s	say	we	want	to	print	an	integer	whose	value	is	50.	Let’s	enter	these	on	our
shell	window.

y	=	50
print	(y)

The	value	of	y,	which	is	50,	gets	printed	to	the	screen.

The	following	line	of	code	will	print	this	int	as	a	floating-point	number.
print	(float	(y))

The	print	statement	and	the	casting	function	float	(),	displays	the	following
output.

50.0
As	you	can	see,	although	the	value	remains	50,	we’ve	now	expressed	our
original	int	as	a	float.
Casting	functions	can	be	useful	when	doing	integer	or	floating-point	math,	as
you	will	see	below.
Let’s	go	back	to	our	shell	window,	and	check	the	values	of	x	and	y.

print	(x)
will	display	35,	and

print	(y)
will	display	50.
Let’s	convert	y	to	a	floating-point	number.	Remember	that	we	casted	y	as	an
integer	previously,	when	we	used	it	with	a	print	statement.	However,	that	does
not	mean	that	we’ve	already	converted	y	from	an	integer	to	a	float.	Using	the
float	()	function	with	the	print	statement	simply	meant	that	we	displayed	an
integer	variable	as	a	float.
To	convert	y	from	an	int	to	a	float,	enter	the	following	on	the	shell	window:

y	=	float	(y)
If	you	print	y,	print(y),	you’ll	see	that	we	have	now	successfully	converted	it	to	a
float.
Let’s	multiply	x	and	y	and	see	what	the	result	will	be.

print	(x	*	y)
We	now	get	1750.0,	a	floating-point	number.
Since	y	is	a	float,	the	product	will	also	be	a	float.
To	display	our	product	as	an	integer,	we	can	use	the	casting	function	when	we
multiply	our	variables.

print	(x	*	int	(y))

The	product	is	now	an	integer,	1750,	when	printed	to	the	screen.
We	will	next	briefly	discuss	complex	numbers.	If	you	remember,	we	discussed
complex	number	variables	in	Chapter	4	of	this	book.	Complex,	or	scientific,
numbers	refer	to	numbers	that	are	neither	integers	nor	floating-point	numbers.
These	are	usually	very	large	numbers.
Python	allows	complex	numbers	to	be	displayed	in	complex	notation	using	the
following	format:

complex	(complex	number)
You	may	check	this	out	on	your	shell	window,	by	entering	an	arbitrary	large
number	inside	a	parenthesis,	as	shown	in	the	lines	of	code	highlighted	in	yellow
in	Fig.	8.1.
You	cannot	convert	complex	numbers	into		an	integer	or	a	floating-point	number.
That	is	the	end	of	our	casting	function	discussion.	We	will	discuss	the	actual
mathematical	functions	available	for	use	in	our	programs	in	the	next	section.

Figure	8.1	Screenshot	of	the	IDLE	shell	window	showing	how	casting	functions	are	used,	as	discussed	in
this	section.	The	lines	highlighted	in	yellow	show	how	to	display	a	complex	number	using	that	number’s
complex	notation.

Mathematical	Functions
	This	section	provides	a	glimpse	of	the	mathematical	functions	that	we	can	use	in
our	Python	programs.
Go	ahead	and	run	IDLE	and	open	a	new	file.	Save	the	file	using	any	name,	such
as,	math_functions.py.
On	your	editor	window,		you	must	first	import	Python’s	math	library	by	entering
the	following:

import	math

Note	that	you	use	the	import	keyword,	if	you	want	to	use	any	of	Python’s	built-
in	function	libraries	for	use	in	your	programs.
Let’s	start	with	absolute	value.	Go	ahead	and	create	the	following	two	values:

value1	=	89.6
value2	=	176

Let’s	subtract	value2	from	value1	and	display	the	difference:
print	(value1-value2)

At	this	point,	let’s	save,	then	run	our	program.
As	you	can	see,	our	difference	for	the	subtraction	operation	gives	us	a	negative
value.

Figure8.2.	Initially,	the	difference	in	the	subtraction	operation	from	our	sample	program	is	a	negative	value.	

Let’s	say	we	want	to	display	the	absolute	value	instead,	when	subtracting	value2
from	value1.	To	do	this,	we	use	the	absolute	value	function	in	our	print
statement:

print	(abs	(value1	–	value2))

If	we	save	and	run	the	file	again,	we	will	see	that	the	program	now	displays	the
absolute	value	of	the	difference.
	

Figure8.3.	Using	the	absolute	value	function,	our	sample	program	now	displays	the	difference	as	a	positive
value.

Next,	we	want	to	round	up,	then	round	down	value1.	To	do	this,	enter	the
following	lines	on	the	editor	window:

print	(math.ceil	(value1))
print	(math.floor(value1))

Saving,	then	running	the	program	displays	the	rounded-up	and	rounded-down
values	of	value1.
To	have	our	program	display	a	number,	such	as	3,	raised	to	a	certain	power,	such
as	4,	we	can	use	the	following	line:

print	(pow	(3,4))
This	is	the	same	as	the	following	line:

print	(3**4)

Enter	both	lines	in	your	program,	then	check	if	they	have	the	same	output.

Figure	8.4.	The	math.ceil	and	math.floor	functions	round	up	and	round	down	variables,	while	pow	(x,	y)
raises	int	x	by	int	y.

These	are	samples	of	the	many	mathematical	operations	you	can	perform	in	your
Python	programs.	There	are	many	more.	Take	the	time	to	discover	them	for
yourselves,	since,	as	we’ve	mentioned	before,	they	are	a	major	reason	why
Python	is	popular	for	use	in	mathematical	programs.
That	wraps	up	our	short	introduction	to	mathematical	functions	in	Python.	You
will	next	learn	about	randomization	functions.

Random	Functions
Almost	every	program	that	is	a	game	or	a	simulation	has	some	element	of
randomness	to	it.	Python	has	a	robust	library	for	introducing	randomness	into
your	programs.

Open	and	run	IDLE,	open	a	new	file,	then	save	it	using	any	name	you	prefer,
such	as	random.
The	first	thing	you	need	to	do	is	import	the	random	library.

import	random
Now,	create	a	list	of	names.	Use	any	names	that	come	to	mind,	such	as	names	of
family	members,	friends,	etc..
Then,	add	the	following	line	of	code	to	your	program.

print	(random.choice	(names))
Save,	then	run	the	program	several	times.	What	do	you	see?
As	you	will	note,	your	program	randomly	selects	and	displays	a	name	from	your
list.	You	can	use	this	for	tuples	as	well.

Figure	8.5.	This	screenshot	shows	our	sample	program	randomly	displaying	names	from	our	list.

In	other	programming	languages,	generating	random	numbers	often	means	using
a	combination	of	a	random	function	and	some	mathematics.		This	is	not	true
with	Python.	For	example,	let’s	add	the	following	lines	of	code	to	our	program.

print	(random.randrange	(1,	1000))
Save,	then	run	the	program	again.	You	can	see	that	a	random	number	in	the
range	1-1000	is	displayed	every	time	you	run	the	program.
Note	that	the	range	of	numbers	is	not	limited	such	as	starting	from	0	and	ending
in	1,000,000.
If	you’re	coming	from	another	programming	language,	you	will	know	that	this	is
not	as	easy	as	in	Python.
The	randrange	function	even	allows	you	to	add	more	randomness	to	the	process
through	a	step	parameter.	For	example,	you	may	edit	the	previous	print	statement
containing	the	randrange	function	using	the	following	example:

print	(random.randrange	(1,	1000,	10)
This	line	means	that	the	function	will	run	through	the	parameters	10	times,
before	finally	displaying	a	random	number.

Figure	8.6.	Our	sample	program	showing	random	names	from	our	list	and	random	numbers	between	1	and
1,000.

We	will	comment	out	our	randrange	function	from	our	sample	program	and	go
back	to	our	earlier	list	of	names.		Next,	add	the	following	lines	to	the	program.

random.shuffle	(names)
print	(names)

Run	the	program	after	saving	it	first.	As	you	can	see,	the	program	now	shuffles
the	names	on	our	list,	reassigns	the	indices,	then	displays	a	different-ordered	list,
each	time	you	run	the	program.

Figure	8.7.	The	shuffle	function	reorders	the	names	in	our	list	and	displays	a	different-ordered	list	every
time	our	sample	program	runs.

That	is	the	end	of	this	section	and	the	chapter	on	math	functions.	It’s	now	time
for	your	coding	exercise.

Coding	Exercise:	Math	Functions
In	this	exercise,	you’ll	be	working	with	some	of	the	math	functions	that	are
available	within	Python	3.0.	You	may	use	either	interactive	mode	or	write	and
save	a	code	file	to	complete	these	exercises.
Step	1:		To	determine	the	hypotenuse	of	a	right-angle	triangle,	the	following
formula	is	used:
Square	Root((side1*side1)	+	(side2*side2))
However,	Python	has	a	math	function	that	will	determine	the	hypotenuse,	given
a	length	of	side	a	and	side	b	of	the	triangle.		Using	the	list	of	Python	math
functions	in	the	online	documentation	available	at
https://docs.python.org/3/library/math.html,	determine	the	length	of	the
hypotenuse	the		triangle	shown	below:

Figure	8.8	Compute	for	the	hypotenuse	of	the	triangle.

	
Step	2:		Using	the	appropriate	Python	function,	convert	the	following	values
from	degrees	to	radians	and	radians	to	degrees:

180	Degrees
2	Radians
270	Degrees
5	Radians

For	this	part	of	the	exercise,	you’ll	need	to	write	and	save	a	formal	Python	script.
Step	3:		Click	File	—>	New	File	on	your	IDLE	editor	to	create	a	blank
document.	Save	this	document	as	math_lab.py.
Write	a	program	that	uses	a	while	loop	to	generate	100	random	numbers	between
1	and	10.	Your	code	should	appear	like	the	code	below:

Figure	8.9.	Program	using	Python’s	random	function

Step	4:		After	the	program	prints	out	all	the	random	number	output,	the	sum	of
all	the	random	numbers	generated	and	the	average	of	all	the	random	numbers
generated.		It	then	outputs	the	average	of	all	the	random	numbers	generated.	
Your	output	in	the	IDLE	window	should	appear	something	like	this:

Figure	8.10.	Output	of	summing	and	averaging	generated	random	numbers

	
	
	

Chapter	9	–	String	Functions
In	this	chapter,	you	will	learn	about	Python’s	string	functions.	String	processing
plays	an	important		role	in	any	programming	language.
Given	the	large	number	of	string	functions	available	to	Python	programmers,	we
will	only	cover	some	of	them	in	this	book.	However,	we	will	cover	the	most
important	functions.	The	related	functions	have	been	grouped	together	to	make	it
easier	for	you	to	learn	them.	With	these	functions,	you	will	appreciate	why
Python	is	a	favorite	among	programmers	for	processing	large	amounts	of	data.
It	will	be	your	responsibility	to	learn	more	about	these	functions	to	see	what	you
do	with	them.	Once	you	become	familiar	with	them,	you	can	experiment	with
the	other	string	functions	on	your	own.	Many	programmers	will	tell	you	that
constant	practice	is	very	important	to	your	coding	journey.
The	first	functions	you	will	learn	about	are	the	string	processing	functions,
including	capitalize(),	center(),	and	count()	functions.
The	next	three	functions	you	will	learn	about	are	find(),	isalpha(),	and	isdigit().
These	functions	will	allow	you	to	search	for	specific	characters	within	a	string
and	identify	them	as	letters	or	numbers.
Finally,	the	last	three	functions	that	will	be	discussed	are	join(),	len(),	and	split().
These	three	functions	will	let	you	join	two	separate	strings	as	one,	identify	the
length	of	a	string,	and	split	a	string	into	two	or	more	strings.
This	chapter	ends	with	a	coding	exercise	that	will	test	your	knowledge	about
string	functions	in	Python.

The	capitalize	(),	center	(),	and	count	()	functions
In	this	section,	you	will	learn	about	the	following	three	(3)	essential	string
processing	functions:
1.	 capitalize()
2.	 center()
3.	 count()

The	first	function,	capitalize(),	makes	the	first	letter	in	any	given	string	a	capital
letter;	the	second	one	centers	the	string	within	a	given	number	of	characters,	and

count	()	returns	the	number	of	a	given	letter	contained	within	a	string.

Let’s	start	with	the	first	function.	Open	IDLE,	then	click	File>New	File	or	press
Ctrl+N.	Enter	the	following	on	the	editor:

message	=	“welcome	to	Python!”	(in	this	string,	the	‘w’	in	welcome	is	not
a	capital	letter)
print(str.capitalize(message))

Save	the	file	as	strings1.py,	then	run	the	program.	The	following	message	is
displayed	on	the	shell	window.

Welcome	to	python!
As	you	can	see,	the	use	of	capitalize	converted	‘w’,	the	first	letter	in	the	string
message	to	a	capital	letter.	The	capital	‘p’	in	Python	becomes	a	small	letter.
What	will	happen	if	there	are	two	separate	strings	in	a	message?	Let’s	look	at	an
example	to	see	how	our	two	strings	will	behave.
Going	back	to	our	existing	program,	let’s	add	another	sentence	after	the	first	one
in	message.
message	=	“welcome	to	Python!	Thanks	for	taking	my	class!”
Retain	the	print	method	as-is,	then	run	the	program	again.	The	following	is	then
displayed	on	the	shell	window:
Welcome	to	python!	thanks	for	taking	my	class!
Take	a	closer	look	at	our	output.	What	do	you	see?	Yes,	that’s	right,	the	first
letter	in	the	second	sentence	becomes	a	small	letter.
To	ensure	that	both	first	letters	in	the	two	sentences	end	up	capitalized	and	that
already	capitalized	letters	are	not	converted	to	small	letters,	you	can	use	the
following	for	strings	with	two	or	more	sentences.

print(message	[:1].upper	+	message[1:]
In[SW6]	this	line	of	code,	the	first	letter	of	the	first	string	in	message	is
capitalized,	all	capitalized	letters	are	not	converted	to	small	letters,	and	the
second	string	is	treated	as-is	(without	any	changes).
Note:	To	retain	the	changes,	you	can	also	define	message	as:
message	=	message	[:1].upper	+	message[1:]
Afterwards,	you	can	just	print	message.

Let’s	now	go	to	the	next	string	function,	center().
Add	the	following	line	to	our	strings1.py	program	file.

print(message.center(80))
Press	F5	to	run	the	program.	When	prompted,	click	Yes	on	the	confirmation
message.	The	program	then	runs	and	outputs	the	message	string,	after	counting
80	empty	spaces.
If	you	want	to	display	the	string	between	*	so	that	the	output	will	be	like	the
following:
*******************Welcome	to	Python!	Thanks	for	taking	my
class!*******************
Just	modify	the	code	a	bit:

print(message.center(80,	‘*’))
That	is	all	for	the	center()	function.		The	last	function	is	count,	which	will	count
the	number	of	times	a	specific	character	appears	in	a	string.
Let’s	add	another	line	of	code	to	our	program,	by	counting	the	number	of	times
‘s’	appears	in	our	message	string.

print(message.count(‘s’))
Saving,	then	running	the	program	displays	an	integer,	or	the	number	of	times	the
character	appears	in	the	string:

3
The	count()	function	can	take	a	beginning	and	ending	parameter	that	will	limit
the	function	to	the	characters	between	the	parameters.	For	example:

print(message.count(‘s’,	5,	15))
This	will	count	the	number	of	times	‘s’	appears	between	characters	5	and	15	of
the	string,	which	is	0,	in	this	case.

Figure	9.1.	The	code	and	output	for	the	first	three	string	functions	discussed	in	this	section.

That	is	all	for	our	first	three	string	functions.	In	the	next	section,	we	will	discuss
another	three	string	functions	related	to	finding	a	specific	character	and
determining	the	type	of	character	found	within	the	string,	i.e.	is	it	a	letter	or	a
number[SW7]?
The	find	(),	isalpha	(),	and	isdigit	()	functions
The	next	three	functions	you	will	learn	about	are:
1.	 find()
2.	 isalpha()
3.	 isdigit()

The	find()	function,	as	its	name	suggests,	finds	a	substring	within	a	string.	Let’s
open	IDLE	again,	and	click	File>New	File,	or	press	Ctrl+N.
Enter	the	following	on	the	editor	window:

message	=	“Welcome	to	Python!	Thanks	for	taking	my	class!”
print(message.find(‘for’))

In	line	2,	we	use	find	()	to	look	for	the	occurrence	of	‘for’	in	the	message	string.
Save	the	file,	then	run	it.	The	output	will	be	26,	which	refers	to	the	location	of
‘for’	in	the	string,	or	its	index.
Next,	let’s	try	to	find	a	phrase	that	is	not	in	the	string.	Let’s	add	the	following
line	to	our	program.

print(message.find(‘xx’))
If	you	run	and	save	the	program	again,	you	will	see	that	it	will	return	a	-1	value,
meaning	that	it	cannot	find	the	substring	within	the	string.
From	this	example,	we	know	that	we	can	use	find()	to	test	for	the	presence	of	a
substring	within	a	string.
We	will	add	an	if-else	statement	to	our	program:

if	message.find(‘xx’)	==	-1
print(“Not	found	in	message”)

Saving	and	running	the	program,	then	displays	the	following	on	your	screen:
Not	found	in	message

Now	go	to	the	isalpha()	function,	which	is	used	to	determine	if	a	specific	string
is	alphabetic	or	not.	If	yes,	the	function	will	return	true,	otherwise	it	will	return
false.
Let’s	try	an	example	by	adding	another	print	method	to	our	program.

print(message.isalpha())
If	we	save,	then	run	the	program,	you	will	see	that	the	output	will	be	false.	Why?
Because	message	is	not	entirely	alphabetic	–	there	are	a	couple	of	exclamation
marks	within	that	string.
Let’s	add	another	string	to	our	program,	this	time	comprised	entirely	of	letters.

message2=”mark”
This	time,	if	we	print	message2	using	the	following	line	of	code:

print(message2.isalpha())
The	program	will	return	true.

The	above	principle	applies	to	the	isdigit()	function	as	well	–	if	the	string	is
composed	of	digits	only,	the	function	will	return	true;	if	not,	the	function	will
return	false.
We	will	try	this	out	by	adding	another	string	to	our	program	before	saving	it
again.

message3=”768345345”
This	time,	since	message3	is	composed	entirely	of	digits,	then	you’ll	get	a	True
when	you	run	the	program.

Figure	9.2.	The	code	and	output	for	the	2nd	batch	of	string	functions	discussed	in	this	section.

That	concludes	our	discussion	on	this	batch	of	string	functions.	Let’s	go	on	to
our	next	batch	of	functions.
The	join	(),	len	(),	and	split	()	functions
The	last	three	of	the	string	functions	you	will	learn	in	this	chapter	are:
1.	 join()

2.	 len()
3.	 split()

	
These	three	are	powerful	and	useful	functions	to	know	at	this	stage	of	your
training	in	becoming	a	Python	programmer.
Open	IDLE,	then	click	File>New	File,	or	press	CTRL+N	on	your
keyboard.
On	the	editor	window,	enter	the	following:

name	=	[“Mark”,	“Adam”,	“Fred”,	“Wendy”,	“Peter”,	“Marsha”]
j	=	“|”
print(j.join(name))

Save,	then	run	the	program.	The	output	will	be	as	follows:
Mark|Adam|Fred|Wendy|Peter|Marsha

As	you	can	see,	the	join()	function	in	our	program	generated	a	string	joining	the
names	in	our	list,	with	each	name	separated	by	the	pipe	delimiter	we	defined	in	j.
The	delimiter	can	be	anything	–	you	may	replace	the	|	with	a	comma,	semi-
colon,	or	any	other	punctuation	mark.
Now,	let’s	go	to	the	len()	function.	On	your	editor	window,	enter	the	following:

message	=	“Join	me	for	the	party	tonight”
print(len(message))

Saving	and	running	the	program,	will	display	the	following	number	on	the	shell
window:
29
In	this	case,	the	output	is	the	number	of	characters	in	the	message	string.	What
the	len()	function	does,	is	to	count	the	number	of	characters	in	the	string,	or	to
determine	its	length.
Let’s	edit	our	program	one	last	time.	On	the	editor	window,	enter	the	following:

teams	=	“Yankees,	Mets,	Jets,	Giants,	Knicks,	Nets”
print(teams.split(“,”)

After	saving,	then	running	the	program,	the	output	will	be	as	follows:
[‘Yankees,	‘Mets’,	‘Jets’,	‘Giants’,	‘Knicks’,	‘Nets’]

In	this	case,	the	split()	function	generates	a	list	names,	with	each	name	enclosed
in	single	quotation	marks	and	separated	by	a	comma.

Figure	9.3.	The	code	and	output	for	the	last	three	string	functions	discussed	in	this	section.

That	is	the	end	of	our	discussion	on	string	functions.	We	recommend	learning
more	about	string	processing	functions	on	your	own.		We	will	now	proceed	to	
the	coding	exercise	for	this	chapter.

Coding	Exercise:	String	Functions
This[SW8]	exercise	will	allow	you	to	apply	what	you	have	learned	about	string
functions	in	this	chapter.
1.	 Create	a	new	script	in	your	Python	editor	and	save	it	as	strings_lab.py.
2.	 Enter	the	lines	of	code	shown	in	Fig.	xx	in	your	program	file.	Save,	then

run	the	program.

	
Figure	9.4.	This	will	be	your	main	program	input	for	the	coding	exercise.

3.	 Using	a	loop,	output	each	line	and	character	number	of	the	string.		For
example,	line	2,	character	2	is	a	‘o’.	The	initial	part	of	your	output	should
look	something	like	Fig.	xx.

	
Figure	9.5.	Initial	program	output	showing	the	numbers	per	line	and	character	in	the	poem.

4.	 Modify	your	code,	so	that	the	word	“Capital”	is	printed	to	the	right	of	each
capital	letter	in	your	output.	Your	output	should	look	something	like	the
one	in	Fig.	xx.

	
Figure	9.6.	The	modified	program	output	that	identifies	the	capitalized	letters	in	the	poem.

The	code	used	to	create	the	expected	result	for	this	exercise	is	shown	in	Fig.
xx.	Your	code	may	vary.

Figure	9.7.	Sample	code	for	our	program.	Your	program	may	vary	from	this	one.

	
	
	

Chapter	10	–	Tuples	and	Dictionaries
In	this	chapter,	you	will	learn	about	data	structures	and	specifically	tuples	and
dictionaries	in	Python.
You	will	learn	how	to	create	tuples	and	access	the	values	included	in	them.		This
chapter	will	also	include	information	about	functions	that	are	available	in	tuples.
It	will	also	discuss	dictionaries	–	declaring	a	dictionary,	accessing	and	editing
values	found	in	dictionaries	and	then	sampling	the	various	functions	available	in
dictionaries.
At	the	end	of	the	chapter,	you	will	have	your	now-familiar	coding	exercise	that
will	allow	you	to	put	into	practice	what	you	have	learned	about	tuples	and
dictionaries.

Creating	Tuples
In	this	section,	you	will	learn	about	creating	tuples.	They	are	a	familiar	data
structure	in	Python.	Data	structures	allow	you	to	hold	data.	Data	in	tuples	can	be
strings,	floating-point	numbers,	and	integers,	among	other	types.	Tuples	are	lists
of	immutable,	or	unchangeable	values.	Data	in	tuples	are	immutable	–	they
cannot	be	changed	in	any	way.
Let’s	start	by	creating	our	first	tuple.	Open	IDLE,	then	click	File>New	File	or
press	Ctrl+N.	Enter	the	following	on	the	editor:

subjects	=	(“English”,	“Algebra”,	“Biology”,	“Physics”,	“Computer
Science”,	“Physical	Education”)
gpas	=	(3.12,	2.34,	4.0,	3.11,	3.9,	4.55)
addresses	=	("123	Main	Street"	,)

These	lines	show	that	the	data	in	the	subjects	tuple	are	composed	entirely	of
strings,	while	those	in	the	gpas	tuple	are	composed	entirely	of	floating-point
numbers.
The	addresses	tuple	is	a	mixture	of	strings	and	integers.		It	contains	only	a	single
value,	with	a	comma	after	that	value.	You	will	learn	more	about	why	we	defined
the	addresses	tuple	this	way,		in	the	next	section	under	this	chapter.

Note	that	string	data	in	tuples	are	enclosed	in	quotation	marks.	In	contrast,	the
floating-point	numbers	in	our	gpas	tuple	do	not	have	these	marks.	The	latter	will
also	be	true,	if	you	use	integers	in	your	tuple.
Let’s	finalize	our	program	by	adding	a	couple	of	print	statements:

print(subjects)
print(gpas)

As	you	can	see	from	Fig.	10.1,	the	program	outputs	the	data	in	the	same
sequence	that	they	are	found	in	the	tuples	(this	accounts	for	why	tuples	are	also
sequences).	As	mentioned	before,	tuples	are	immutable	–	they	cannot	be
changed.

Figure	10.1.	Code	and	output	for	the	sample	program	in	this	section.

Now	that	you	have	learned	about	creating	tuples,	it	is	time	to	learn	how	to	access
the	data	found	in	your	tuples.

Accessing	Values	in	Tuples
As	mentioned	in	the	previous	section,	tuples	are	simply	lists	of	immutable	data.
Tuples	are	excellent	for	storing	data	that	do	not	change,	e.g.	in	a	game,	the	size
of	a	game	board	can	be	stored	in	a	tuple.
We	will	now	learn	about	accessing	the	individual	values	in	a	tuple.	Open	IDLE,
then	click	File>New	File	or	press	Ctrl+N,	then	enter	the	following	on	the	editor:

family	=	(“Joan”,	“Rick”,	“Brett”,	“Kerri”,	“Rose”,	“Stacy”)

print(family)
print(family[0])
print(family[5])

In	line	1,	we	have	a	tuple	of	family	members,	which	we	then	print	in	line	2.

Printing	specific	values	from	a	tuple
In	lines	3	and	4,	we	access	the	family	member	using	the	index	number	from	the
tuple,	or	the	order	in	which	the	family	member’s	name	is	found	in	the	tuple.	That
means	that,	for	the	print	statement	in	line	3,	that	family	member	is	Joan;	for	the
print	statement	in	line	4,	Stacy	is	the	family	member	in	the	5th	index.
Saving	and	running	the	program	generates	the	output	that	is	shown	in	Fig.	10.2.

Looping	through	a	Tuple
Let’s	loop	through	the	tuple	by	adding	code	that	will	output	the	names	of	the
family	members	in	our	tuple.

x	=	0
while	x	<	6:

print(family[x])
x	=	x	+	1

Save,	then	run	the	program	again,	and	you	will	see	that	each	name	in	the	family
tuple	is	printed	on	separate	lines	by	the	program.

Figure	10.2.	Code	and	output	for	the	sample	program	in	this	section.

Note	that,	in	the	line	while	x	<	6,	changing	the	number	to	one	that	is	greater	than
the	total	number	of	records	in	the	tuple	will	result	in	a	program	error.
In	addition,	as	mentioned	previously,	any	change	to	the	tuple	will	also	result	in
an	error.	For	example,	if	you	add	the	following	line	to	the	program:

family[1]		=	“Ricky”
an	error	will	also	be	displayed	when	you	save,	then	run	the	program,	since	this
line	attempts	to	change	the	value	of	one	of	the	values	found	in	the	tuple.
You	have	now	learned	how	to	access	the	individual	values	in	a	tuple.	It	is	now
time	to	learn	about	various	tuple	functions	you	can	use	in	your	Python	programs.

Tuple	Functions
In	this	section,	you	will	learn	about	lists,	which	are	different	from	tuples.	This	is
because	they	contain	data	that	can	be	changed.	In	short,	lists	are	mutable,	or
changeable.
After	a	quick	discussion	on	lists,	you	will	learn	about	the	various	functions	you

can	use	on	tuples.

What	are	lists?
Lists	will	b	e	discussed	first.	Open	IDLE,	then	click	File>New	File,	or	press
Ctrl+N	on	your	keyboard.	On	the	editor	window,	enter	the	following:

bands	=	[“Journey”,	“REO	Speedwagon”,	“Kansas”,	“Heart”,	“Scandal”,
“Pink	Floyd”]
print(bands)

Unlike	tuples,	data	in	a	list	are	enclosed	in	brackets.	In	the	case	of	tuples,	data
are	enclosed	in	a	parenthesis.
Just	like	in	the	tuple,	after	saving	and	running	the	program,	you	will	see	that	our
code	displays	the	members	of	the	bands	list.

Figure	10.3.	Code	and	output	for	the	sample	list	program	in	this	section.

To	see	how	the	modifications	to	the	program	code	below	work,	refer	to	Fig.	10.3
above.
To	print	an	individual	band	in	the	list,	enclose	the	index	number	of	the	band	in
brackets	in	a	print	statement.

print(bands[0])
To	print	a	range	of	names	in	the	list,	enclose	the	index	number	of	the	first	value
to	be	printed,	add	a	colon	and	then	the	other	index	number.		This	is	the	index

number	for	the	value	after	the	actual	one	you	want	printed.	For	example,	if	you
want	to	print	the	values	in	indices	1	and	2,	your	print	statement	would	be	as
follows:

print(bands[1:3])
To	change	the	value	of	a	name	in	the	list,	enclosed	the	index	of	the	value	to	be
changed	in	brackets,	then	the	name	of	the	name	to	be	inserted	in	place	of	the
original	value.	Thus:

bands[1]	=”Foreigner”
print(bands)

Now[SW9]	that	you	know	what	lists	are,	let’s	look	at	some	of	the	functions	that
we	can	use	with	tuples.
The	len()	Function
Open	a	new	file	on	IDLE,	then	enter	the	following	on	the	editor	window:

computers	=(“IBM	PC”,	“Apple	Mac”,	“Compaq”,	“Gateway”,	“HP”,
“Toshiba”)
print(len(computers))

If	you	save,	then	run	the	program,	the	answer,	6,	will	be	displayed	on	the	shell
window.	If	you	had	been	reading	this	book	chapter-by-chapter,	you	will
remember	that	len()	was	discussed	in	our	chapter	on	string	functions	(see
Chapter	9).
Using	the	len()	Function	to	Loop	through	a	Tuple
As	shown	above,	the	len()	function	can	be	used	to	determine	the	length,	or	the
number	of	members,	of	our	computers	tuple.	You	can	use	the	returned	length	to
loop	through	the	members	of	the	tuple.
Enter	the	following	loop	that	will	return	the	members	of	the	tuple:

X=0
while	x	<	len(computers):

print(computers[x])
x=x+1

Running	the	program	again	after	saving,	iterates	through	the	members	of	the
tuple.

The	min()	and	max()	Functions
	You	can	use	the	min()	and	max()	functions	to	return	the	minimum	and
maximum	values	in	a	tuple.	Let’s	try	to	show	this	using	an	example.
Add	the	following	lines	to	your	code:

scores	=	(10500,	11000,	12000,	15000,	9000,	950)
print	(“Min:”	min(scores))
print	(“Max:”	max(scores))

This	will	then	return	the	values	of	the	min	and	max	values,	or	950	and	15000,
respectively,	in	our	scores	tuple.

Converting	a	List	to	a	Tuple
Lastly,	you	can	convert	a	list	to	a	tuple.
To	demonstrate,	let’s	define	a	websites	list	with	our	program.

websites	=	[“Yahoo”,	“Google”,	“Alta	Vista”,	“Dog	Pile”,	“Cnn”]
To	change	this	to	a	tuple,	add	the	following	line	to	your	code:

websites	=	tuple(websites)
Note	that	the	program	will	proceed	as-is,	with	the	conversion	after	saving	and
running	it	again.
To	check	if	the	list	was	really	converted	to	a	tuple,	try	to	change	the	value	of	a
member	of	the	tuple.	For	example,	enter	the	following:

websites[0]	=	“Bing”
In	this	case,	saving,	then	running	the	program	would	result	in	an	error,	since	data
in	a	tuple	cannot	be	changed.

Figure	10.4.	Code	and	output	for	the	sample	program	in	this	section.

That	wraps	up	our	discussion	on	functions	we	can	use	on	our	tuples.	Let’s
discuss	dictionaries	next.

Declaring	a	Dictionary
Dictionaries	comprise	elements	related	to	each	other.	Each	element	has	a	key
and	associated	value,	with	a	colon	between	the	key	and	its	value.	The	elements
are	separated	by	commas.
For	example,	we	may	have	an	employee	dictionary	with	a	couple	of	keys,	one
named	name,	with	a	corresponding	value	of	Mark	Lassoff,	and	the	other	SSN,
with	the	employee’s	social	security	number	as	the	corresponding	value.
For	examples	of	dictionaries	and	how	they	are	outputted,	check	out	Fig.10.4

below.	Go	ahead	and	write	the	program	on	IDLE,	as	you	will	use	this	in	the	next
two	sections	of	this	chapter,	where	you	will	learn	about	accessing	values	in	and
using	functions	with	dictionaries.

Figure10.5.	Sample	dictionaries	and	their	output	when	printed.	Note	the	keys	and	their	values	in	each	of	the
dictionaries.	Dictionaries	are	printed	the	same	way	as	any	data	structure	in	Python.

Accessing	and	Editing	Values	in	Dictionaries
Now	that	you	are	more	familiar	with	dictionaries,	it	is	time	to	learn	how	to
access	and	edit	values	of	data	in	dictionaries.
Let’s	go	back	to	the	sample	program	in	the	previous	section.	Before	proceeding,
save	the	program	using	a	different	file	name.		This	is	because	you	will	also	be
using	the	same	program	when	you	start	learning	about	using	functions	with
dictionaries	in	the	next	section.

Printing	specific	values	from	a	dictionary
You	would	print	a	dictionary	the	same	way	as	any	Python	data	structure.
To	print	a	specific	value	in	a	dictionary,	refer	to	the	key	name.	For	example:

print(employee[“Name”])
print(player[“Position”])

Note	that	the	key	names	should	always	be	the	same	exact	value	as	that	in	the
dictionary.	Otherwise,	you	will	get	an	error.	For	example,	if	the	key	name	is
capitalized,	then	it	should	also	be	capitalized	here	.

Changing	the	elements	in	a	dictionary
You	may	also	change	the	elements	in	a	dictionary.	For	example:

player[“Position”]	=	“Catcher”
This	replaces	the	current	Pitcher	value	of	the	Position	key	in	the	dictionary	with
Catcher.	To	test	this,	we	can	print	the	value	again,	highlighting	the	change	in	the
process.

print(“Change:”,	player[“Position”])
Note	that	the	value	for	the	position	key	has	now	been	changed	from	Pitcher	to
Catcher.
You	may	also	print	the	player	dictionary	again	to	verify.

Deleting	an	element	in	a	dictionary
You	may	also	delete	an	element	from	a	dictionary.	For	example:

del	employee[“Salary”]
If	you	print	the	employee	dictionary	again,	you	will	see	this	time	that	the	Salary
key	and	its	corresponding	value	is	no	longer	a	part	of	the	output.

Figure	10.6.	Code	and	output	for	the	examples	on	accessing	and	editing	values	in	a	dictionary.	Note	that
elements	that	were	changed	or	deleted	in	the	examples	are	highlighted.

This	concludes	our	discussion	on	accessing	and	editing	values	in	a	dictionary.		In
the	next	section,	where	you	will	learn	about	functions	that	can	be	used	in
dictionaries.

Dictionary	Functions
In	this	section,	you	will	learn	about	the	use	of	certain	functions	in	dictionaries.
We	will	return	to	the	sample	program	in	the	Declaring	a	Dictionary	section	of
this	chapter.	Follow	along	with	the	examples	below,	to	learn	more	about	using
functions	with	dictionaries.

The	len()	Function
Just	like	with	tuples,	you	can	use	the	len()	function	to	get	the	number	of
elements	in	a	dictionary.

print	(len(employees))
prints	the	number	of	elements.	Note	that	the	elements	refer	to	the	key-value
pairs.	In	the	case	of	our	sample	program,	the	number	returned	would	be	5.

The	str()	Function
You	can	also	convert	a	dictionary	to	a	string.	For	example:

print(str(employee))
converts	the	dictionary	to	a	string,	enclosed	in	curly	brackets.

The	clear()	Function
This	function	clears	the	dictionary	of	its	elements.	Thus:

player.clear()
print(player)

displays	an	empty	dictionary,	enclosed	in	curly	brackets.

The	get	function
You	can	also	retrieve[SW10]	specific	values	from	a	dictionary	using	this
function.	For	example:

print(employee.get(“SSN”))
returns	the	employee’s	social	security	number.

The	items	function
Using	this	function,	you	can	list	the	individual	items	in	the	dictionary	in	separate
sets.

print(employee.items())

The	values	function
This	returns	the	values	of	each	key	in	the	dictionary.

print(employee.values())

The	keys	function
This	returns	the	individual	keys	in	the	dictionary.

print(employee.keys())

Getting	the	Elements	and	Key-Value	Pairs	in	a	Dictionary
You	can	also	loop	through	the	keys	in	a	dictionary	using	the	following	function:

for	c	in	employee:

print(c)
This	will	return	each	key	in	the	dictionary	on	separate	lines.
To	loop	through	the	key-value	pairs	in	a	dictionary,	use	the	following	function:

for	k,v	in	employee.items:
print(k,v)

Figure	10.7.	Code	and	output	for	the	examples	in	this	section.

That	wraps	up	our	discussion	on	using	certain	functions	on	dictionaries.
In	this	chapter,	you	have	learned	about	creating	tuples	and	dictionaries,
accessing	the	values	in	these	data	structures,	then	working	with	them	using
various	functions.	You	have	also	learned	about	creating	and	accessing	values	in
lists.	It’s	now	time	for	your	coding	exercise.

Coding	Exercise:	String	Functions
This	lab	exercise	will	allow	you	to	work	with	tuples,	lists,	and	dictionaries.
1.	 Create	a	new	script	in	your	Python	editor,	Save	it	using	any	name	you

want.	Enter	the	following	initial	code	into	the	script	and	test.

	
Figure	10.8.	The	initial	program	input.

2.	 Execute	the	code	and	note	the	error	that	appears	in	the	Python	shell
window.	Did	you	expect	this	error?

	
Figure	10.9.	The	error	raised	when	running	the	program	using	the	initial	input	in	Step	1.

3.	 Use	a	for	loop	to	loop	through	each	element	in	the	gpas	tuple	and	output
the	average	gpa	stored	in	the	tuple.	Comment	out	or	delete	the	line	of	code
that	is	causing	the	TypeError	output	in	Step	2.

Try	to	complete	this	on	your	own,	before	examining	the	code	below.
	

Figure	10.10.	Try	to	create	your	own	program	given	the	requirements	outlined	in	Steps	1-3,	before
looking	at	the	program	code	we	created	for	the	exercise.	Your	program	may	vary.

	
4.	 Instead	of	a	tuple,	store	the	same	data	in	a	dictionary,	so	that	each	GPA

value	is	identified	by	a	string	key	containing	the	name	of	the	person	who
achieved	the	GPA.
	
Bob:	 3.14
Mark: 3.45
Melissa: 3.98
Travis: 2.55
DeeDee:3.24
Ian: 2.27
	

5.	 Using	the	dictionary	that	you	just	created,	calculate,	and	then	output	the
average,	as	well	as	the	names	of	the	persons	who	achieved	the	highest	and
lowest	GPA.

	
	
	
	
	
	

Chapter	11	–	Time	and	Date
In	this	chapter,	you	will	learn	about	the	use	of	times	and	dates	in	Python
programming.
We	will	first	discuss	how	Python	handles	time	in	a	time	tuple.	You	will	then	look
at	Python’s	Calendar	object,	before	finally	talking	about	the	use	of	the	Time	and
Calendar	functions	in	Python.
The	last	part	of	this	chapter	includes	another	coding	exercise	to	apply	the
concepts	that	you	have	learned	in	the	chapter.

The	Time	Tuple
In	the	previous	chapter,	we	discussed	tuples.	In	this	section,	you	will	learn	about
the	Time	tuple,	which	we	will	use	later	in	the	chapter.	We	will	output	the	time
tuple,	so	that	you	will	know	what	it	looks	like.
Let’s	start	by	running	IDLE,	then	opening	the	editor	window	by	either	clicking
File>New	File	on	the	IDLE	menu	or	pressing	Ctrl+N	on	your	keyboard.
On	the	editor	window,	the	first	step	is	to	import	the	Time	function.

import	time
localtime=time.localtime(time.time())
print(localtime)

Save,	then	run	the	program.	The	time	tuple	will	be	the	output	of	this	program
(see	Fig.	11.1).

Figure	11.1.	The	time	tuple	is	the	output	of	the	code	shown	on	the	editor	window	at	the	top.

Returning	to	our	discussion	in	Chapter	10	regarding	the	characteristics	of	a
tuple,	you	will	remember	that	we	can	work	with	each	member	of	the	tuple,	if
needed.
To	display	the	output	in	a	human-readable	format,	add	the	following	lines	at	the
bottom:

formattedtime=time.asctime(time.localtime(time.time()))
print(formattedtime)

This	time,	the	output	is	much	more	readable	than	the	original	raw	time	tuple.

Figure	11.2.	Properly-formatted	time	and	date	output	from	the	sample	program	shown	on	the	editor	window
at	the	top.

Let’s	dissect	the	time	tuple	some	more,	starting	with	the	innermost	section	of	the
right-hand	code	segment	shown	on	line	2	in	Fig.	11.2.	Let’s	use	the	IDLE	shell
window	to	do	this.

time.time()
The	output	will	be	the	number	of	seconds	beginning	on	January	1,	1970.
Working	outward,	let’s	enter	the	next	section.

time.localtime(time.time())
This	time,	the	output	is	the	time	tuple.
Finally,	let’s	enter	the	complete,	right-hand	side.

time.asctime(time.localtime(time.time()))
This	time,	the	output	is	now	more	human-readable	and	less	primitive.

Figure	11.3.	The	time	functions	used	in	the	sample	program	for	this	section,	highlighted	and	run	from	the
shell	window.	Note	the	differences	in	output.

Next,	let’s	discuss	the	Calendar	function.

The	Calendar
Python	can	generate	a	formatted	calendar	for	any	month-year	combination,	as
you	will	see	in	this	section.
Let’s	again	create	another	program	using	IDLE.
Similar	to	the	Time	function,	we	also	need	to	import	the	Calendar	function	to
work	with	the	Calendar	object	in	our	Python	program.
Enter	the	following:

import	calendar
cal=calendar.month(2017,	2)
print(cal)

Note	that	line	2	shows	the	year	and	month	enclosed	in	parentheses.
In	addition,	when	saving	the	program,	you	should	not	name	the	program	as
calendar.		This	is	because	it	will	generate	an	error,	since	it	will	overwrite
Python’s	built-in	calendar	function.	This	is	the	same	for	all	your	other	programs
where	you	import,	or	call,	functions.	The	programs	must	not	have	the	same	name
as	the	function	being	called.	Otherwise,	you	will	have	trouble	compiling	your
program.
For	the	output,	see	Fig.	11.4	below.

Figure	11.4.	Code	and	output	for	the	sample	program	in	this	section.

We	will	discuss	the	various	time	and	calendar	functions	that	we	can	use	in	our
Python	programs	next.

The	Time	and	Calendar	Functions
We	will	use	the	shell	window	when	calling	the	different	functions	in	this	section.
Thus,	let’s	start	IDLE.
On	the	shell	window,	we	will	import	the	time	module	first,	before	running	the
different	time	functions.

import	time
Let’s	use	the	following	as	a	guide	for	our	different	time	and	date	functions.
We	will	first	discuss	the	different	methods	we	can	use	with	the	time	function	.
To	show	the	UNIX		epic	time,	which	is	the	number	of	seconds	starting	from
January	1,	1970,	we	use	the	aforementioned	time.time()	function.

time.time()
To	show	the	time	based	on	the	clock	of	the	PC	running	a	program:

time.clock()
To	show	current	GMT	time:

time.gmtime(time.time))
We	will	now	look	at	the	methods	we	can	use	with	our	calendar	function.
Let’s	import	calendar	first,	before	proceeding	with	our	sample	calls.

import	calendar
To	see	the	first	weekday	for	the	calendar:

calendar.firstweekday()
By	default,	this	is	set	to	0,	or	Sunday.
To	see	if	the	current	year	is	a	leap	year:

calendar.isleap(2018)
This	will	return	false,	since	2018	is	not	a	leap	year.	If	we	enter	the	following
instead:

calendar.isleap(2020)
This	will	return	true,	since	2020	is	a	leap	year.
We	will	try	to	set	the	first	weekday	to	Monday,	instead	of	the	default	value	of
Sunday.

calendar.setfirstweekday(1)
We	can	try	this	example	with	an	actual	date	to	see	if	it	works.

calendar.weekday(2018,4,2)
This	will	return	0,	since	April	2,	2018,	falls	on	a	Monday,	or	the	first	day	of	the
week.	If	we	enter	the	following:

calendar.weekday(2018,4,3)
It	will	return	1,	since	April	3,	2018,	falls	on	a	Tuesday,	the	day	after	the	first	day
of	the	week.

Figure	11.5.	The	various	time	and	calendar	functions	and	their	output,	as	shown	on	IDLE’s	shell	window.

To	learn	more	about	other	time	and	calendar	functions	that	you	can	use	in	your
Python	programs,	go	to	the	official	Python	documentation	page	at
http://docs.python.org.
This	is	the	end	of	our	discussion	on	time	and	calendar.	You	will	next	be	doing
another	coding	exercise.	This	time	it	involves	the	time	and	calendar	functions
that	were	discussed	in	this	section.

Coding	Exercise:	Functions
This	coding	exercise	will	allow	you	to	work	with	time	and	dates	in	Python.
1.	 Using	the	Python	date	function	and	the	appropriate	arithmetic,	generate

the	following	with	a	Python	program.	Note	that	you	should	use	your
current	date	and	time,	instead	of	the	same	date	and	time	shown	on	the
example	(see	Fig.	11.6).
	

http://docs.python.org

Figure	11.6.	Initial	output	of	the	Python	program	to	be	created	for	this	exercise.

	
Remember	that	the	following	will	generate	a	formatted	current	time
statement.

time.asctime(time.localtime(time.time()))
Try	to	complete	the	exercise,	before	viewing	the	code	shown	in	Fig.11.7
	

Figure	11.7.	Sample	code	for	the	Python	program	to	be	created	for	this	exercise.	Note	that	your
program	code	may	vary	from	this	one.

2.	 At	the	top	of	your	code,	add	a	second	import	statement	for	the	datetime
module.
	
Create	a	new	variable	after	the	last	print()	statement	that	is	called	birthday.
Use	it	to	define	your	birthday	with	the	following	example	for	February	21,
1974,	at	11:00	AM.

birthday=datetime.datetime(1974,	2,	21,	11,	00)
Add	the	following	line	of	code	below	the	definition	of	the	birthday
variable:

print(“I	was	born	on	“,	birthday.isoformat(“	“))
Run	your	code	and	note	the	ISO	format	for	your	birthdate.
	

Figure	11.8.	Sample	output	from	the	additional	lines	in	Step	2	of	this	exercise.	Note	that	birthdate	is
displayed	using	the	standard	ISO	format.

Chapter	12	–	Python	Functions
If	you	had	been	going	through	this	book	chapter-by-chapter,	you	will	know	that
we	have	been	discussing	Python	functions	since	Chapter	1.	You	have	learned
how	to	use	built-in	Python	functions	in	the	earlier	chapters	of	the	book.
In	this	chapter,	you	will	learn	how	to	build	custom,	or	your	own,	Python
functions.	After	learning	how	to	define	and	call	a	simple	Python	function,	you
will	learn	how	to	define	required	and	keyword	argument	functions.		This	chapter
covers	setting	up	default	function	arguments	and	expecting	return	statements,
which	will	make	your	functions	useful.	You	will	also	learn	how	to	create	and
consume	Python	modules.
The	chapter	will	conclude	with	another	coding	exercise	where	you	will	create
your	own	custom	Python	function.

Defining	and	Calling	a	Simple	Function
As	a	beginning	programmer,	compartmentalization	is	an	important	concept	that
you	can	apply	in	your	Python	programs.	What	does	compartmentalization	mean?
The	simplest	definition	is	that	it	allows	you	to	reuse	code	somewhere	else	in	the
same	program,	or	in	another	program.

Functions	are	how	you	implement	compartmentalization	in	your	Python
programs.	This	is	especially	true	in	the	case	of	similar	procedures	everywhere,
such	as	setting	up	usernames	and	passwords	and	searching	for	the	existence	of	a
term,	among	others.
They	make	your	work	more	efficient,	since	you	do	not	have	to	start	from	scratch.
As	a	result,	compartmentalization	and	functions,	speed	up	the	entire
development	process	and	generate	substantial	savings.
In	this	section,	you	will	learn	how	to	define	and	call	your	own	Python	function.
We	will	again	use	IDLE	to	do	that.	Once	you	have	IDLE	open,	click	either
File>New	File	on	the	menu,	or	press	Ctrl+N	on	your	keyboard.
To	define	a	function,	use	the	def	keyword.	Let’s	try	it	now,	by	entering	the
following	on	the	editor	window:

def	greetingEnglish():	#This	function	greets	the	user	in	the	English
language

print(“Greetings	and	Salutations”)
return

When	called,	this	simple	function	will	display	a	greeting	in	English	on	your
screen.
Let’s	add	another	function	to	our	code.

def	greetingSpanish():	#This	function	greets	in	Spanish
print(“Buenos	Dias”)
return

Like	our	first	function,	the	second	function,	when	called,	displays	a	greeting.
However,	this	greeting	is	in	Spanish.
We	will	now	save	the	functions.	Since	you	will	be	using	the	same	code	again
later	in	this	section,	you	may	save	the	function	as	greetings.py.
Saving	the	functions	did	not	display	anything	on	the	shell	window.	This	is
because	functions	do	not	run,	unless	they	are	called	from	within	a	program.
We	will	modify	our	greetings.py	file	by	adding	a	couple	of	lines	for	calling	our
functions.

greetingEnglish()

greetingSpanish()
When	you	save	and	then	run	the	program,	the	output	is	displayed	on	the	shell
window.	This	is	because	the	two	lines	we	added	to	the	file	are	function	calls.
Functions	can	be	called	an	unlimited	number	of	times	from	within	a	program.
Therefore,	if	you	add	another	greetingEnglish()	function	call	to	the	bottom	of
your	greetings.py	file,	running	the	program	again	will	display	the	English
greetings	twice	on	the	shell	window.

Figure	12.1.	Code	and	output	of	the	function	definition	and	function	call	samples	discussed	in	this	section.

These	examples	are	simple.		However,	functions	in	the	real	world	may	be	more
complicated	and	longer	than	these.	Keep	in	mind	that	functions	should	perform
‘singular’	roles.	You	should	not	create	a	function	that	performs	two	different
tasks.	Otherwise,	your	functions	will	become	overly	complicated	and	make	your
programming	work	more	difficult.

We	have	discussed	defining	and	calling	a	simple	function.	In	the	next	section,
you	will	learn	about	required	argument	functions,	which	are	more	interesting
than	the	simple	function	examples	we	have	covered	so	far.

Required	Argument	Functions
In	this	section,	you	will	learn	more	about	required	argument	functions,	which
send	an	argument	or	arguments	back	to	the	function.	The	function	call	passes	the
argument	back	to	the	function.
If	the	function	does	not	receive	an	expected	argument	back,	an	error	results.
Therefore,	we	refer	to	this	type	of	function	as	a	required	argument	function.	If
the	required	argument	is	missing,	our	program	returns	an	error.
To	illustrate,	let’s	write	a	function	with	a	single	required	argument	first.		We	will
then	write	another	function	with	several	required	arguments.

def	greetMe(str):
				print	(“Welcome	to	the	function”,	str)
				return

In	our	function	definition,	the	required	argument,	str,	is	enclosed	in	a
parenthesis.
We	will	add	a	couple	of	function	calls	at	the	bottom.

greetme(“Kevin”)
greetme(“Brett”)

In	these	function	calls,	Kevin	and	Brett	correspond	to	the	str	argument	expected
by	our	function	definition.
We	will	save	the	program	as	arguments.py.
If	we	run	the	program,	the	shell	window	displays	the	two	separate	function	calls,
one	displaying	Kevin	and	the	other	showing	Brett.
Let’s	define	another	function,	calculateBattingAverage,	with	several	required
arguments,	namely	atBats,	hits,	and	walks.	Let’s	add	this	function	to	our
arguments.py	file.

def	calculateBattingAverage(atBats,	hits,	walks):
				battingAverage	=	hits/(atBats-walks)
				print(battingAverage)

				return
We	will	also	add	a	couple	of	function	calls.

calculateBattingAverage(200,54,12)
calculateBattingAverage(300,108,6)

When	we	save,	then	run	the	program,	our	function	calls	pass	the	arguments,
atBats,	hits,	and	walks,	to	the	calculateBattingAverage	function,	which	then
computes	the	batting	average	based	on	the	formula,	hits/(atBats-walks),	before
printing	battingAverage	to	the	screen.
Note	that	the	arguments	must	be	passed,		which	means	they	are	required.	If	a
function	call	does	not	return	an	argument,	you	will	get	an	error	when	running	the
program.
In	addition,	the	function	calls	must	pass	the	arguments	in	the	same	order	that
they	are	defined	in	our	function	definition.	In	the	first	function	call,	for	instance,
200	corresponds	to	atBats,	54	to	hits,	and	12	to	walks.	If	the	values	are	not
passed	in	that	same	order,	our	battingAverage	computation	will	be	incorrect.

Figure	12.2.	Code	and	output	of	the	required	argument	function	examples	discussed	in	this	section.

That	is	the	end	of	the	discussion	on	required	function	arguments.		We	will	now
look	at	keyword	argument	functions.	We	will	discuss	another	form	of	function
that	does	away	with	the	order	of	the	arguments	passed	in	our	function	calls.

Keyword	Argument	Functions
From	the	previous	section,	we	emphasized	that	function	arguments	must	be
passed	in	the	same	order	they	are	defined.	Otherwise,	an	error	or	errors	may

result.	This	type	of	function	does	away	with	that	requirement.
Let’s	run	IDLE	once	again.	Open	the	editor	window	and	define	another	function.

def	greetTwoPeople(person1,	person2):
				#This	function	greets	two	people
				print("Greetings",	person1)
				print("Hello,	How	are	you?",	person2)
				return

We	will	now	add	a	function	call.	If	we	go	by	what	we	learned	in	the	previous
section,	our	function	call	would	follow	the	following	format:

greetTwoPeople("Mark",	"Brett")

Figure	12.3.	This	is	another	example	of	the	required	argument	function	discussed	in	the	previous	section.
There	is	a	better	alternative	to	this	function,	as	shown	in	Fig.	12.4.

However,	there	is	another	way	to	do	this.	Using	the	keyword	argument	function,
our	call	would	have	the	following	format:

greetTwoPeople(person1="Mark",	person2="Brett")

In	this	function	call,	we	are	passing	the	argument	together	with	the	keyword,	e.g.
person1	=	“Mark”,	instead	of	just	the	argument.
Using	this	format,	the	order	in	which	the	arguments	are	passed	becomes
irrelevant.	Thus,	the	following:

greetTwoPeople(person2="Mark",	person1="Brett")
will	display	the	result	shown	in	Fig.	12.4.	instead.

Figure	12.4.	Order	becomes	irrelevant,	if	we	passed	the	parameters	together	with	the	argument	in	the
function	call,	as	this	example	clearly	shows.

	We	will	try	this	with	the	calculateBattingAverage	function	that	we	defined	in	the
previous	section.

def	calculateBa	(atBats,	hits,	walks):
				ba	=	hits/(atBats-walks)
				print(ba)
				return

Let’s	add	a	function	call.
calculateBa(walks=25,	atBats=317,	hits=67)

Our	function	call	does	not	follow	the	specific	order	shown	in	the	function
definition.	Instead,	walks	come	first,	followed	by	atBats,	then	hits.
Because	we	are	passing	along	the	parameters	together	with	the	arguments,
the	order	does	not	matter,	and	our	calculateBa	function	is	still	able	to
compute	the	batting	average.

Figure	12.5.	As	this	example	shows,	if	the	function	calls	pass	the	parameters	together	with	the	arguments,
the	order	in	which	the	arguments	are	passed	to	the	function	are	not	relevant	anymore	and	does	not	result	in
an	error.

	This	is	the	end	of	our	discussion	on	keyword	argument	functions.	Let’s	go	on	to
the	next	section.

Default	Function	Arguments
In	the	section	on	required	arguments	functions,	it	was	emphasized	that
arguments	are		must	be	passed	by	function	calls.	Otherwise,	there	will	be	a

program	error.	This	section	will	discuss	default	function	arguments,	where
function	calls	that	do	not	pass	an	argument,	will	still	be	able	to	do	so,	and	not
bring	up	an	error	as	a	result.
To	illustrate,	let’s	open	IDLE	again,	then	define	a	function	on	the	editor	window.

def	employeeInformation(name,	ssn,	position):
				print("Name:",	name)
				print("Ssn:",	ssn)
				print("Position:",	position)
				return

Next,	let’s	define	a	function	call.
employeeInformation(name="Mark",	ssn="000-00-000",
position="founder")

Save	the	file	as	defaults.py,	then	run	the	program.	As	expected,	the	function	call
passes	the	arguments	back	to	the	function,	and	the	function	displays	the
arguments	on	the	screen.
If	we	only	pass	arguments	for	the	name	and	position	parameters,	we	will	get	an
error.		This	is	because	the	function	is	also	expecting	an	argument	for	the	ssn
parameter.

Figure	12.6.	Errors	result	if	more	arguments	are	passed	than	what	the	function	is	expecting,	as	the
highlighted	areas	in	this	screenshot	shows.

We	can	avoid	this	limitation	by	setting	default	arguments	for	our	parameters.
How	do	we	define	default	arguments?	Let’s	edit	our	program	to	illustrate.
Let’s	edit	our	function	definition	by	inserting	default	values	for	the	function
parameters.

def	employeeInformation(name="Mark	Lassoff",	ssn="000-00-000",
position=""):

Let’s	also	edit	our	function	call	by	removing	the	arguments.
employeeInformation()

If	we	save,	then	run	the	program	again,	the	result	will	be	as	follows:
Name:	Mark	Lassoff
Ssn:	000-00-000

Position:
The	program,	therefore,	runs	without	any	error,	even	if	we	do	not	pass	any
arguments	to	it	via	the	function	call.
We	can	also	pass	an	argument	in	our	function	call	for	the	position	parameter,	if
we	want.	Let’s	say:
employeeInformation(position=”founder”)
When	we	run	the	program,	the	result	will	be:

Name:	Mark	Lassoff
Ssn:	000-00-000
Position:	founder

You	should	define	default	values	for	your	functions,	if	possible.	This	will	allow
your	programs	to	exit	gracefully,	instead	of	exiting	with	an	error	if	there	are
problems	in	your	arguments.
There	is	another	situation	where	you	may	need	to	process	a	function	with	more
arguments	than	was	specified.		Here	is	another	example.
Let’s	add	another	function	definition	to	our	defaults.py	file.

def	moreEmployee(name,	other):
				print("Employee	Info:")
				print("Name:",	name)
				for	var	in	other:
								print(var)
				return

In	this	function	definition,	the	other	parameter	takes	all	the	other	arguments	that
may	be	passed	to	it	from	a	function	call.
Let’s	also	show	the	function	call	for	the	new	function.

moreEmployee("Mark	Lassoff",	"Founder",	"9-1-2009",	"206")
If	we	save,	then	run	the	program,	we	will	get	an	error	that	states	the	function	is
only	expecting	two	(2)	arguments.	However,	four	have	been	given.
Let’s	modify	line	1	of	our	function	definition	by	putting	an	asterisk	before	the
other	parameter.	Our	modified	line	1	is	shown	as	follows:

def	moreEmployee(name,	*other):
This	time,	if	we	save,	then	run	the	program	again,	all	the	other	arguments	that
we	passed	back	to	the	function	from	the	function	call,	are	now	included	in	the
program	output,	as	shown	in	Fig.12.x.

Figure	12.7.	Inserting	an	*	before	the	other	parameter	in	our	definition	of	the	moreEmployee	function
eliminates	the	error	and	allows	the	function	to	handle	the	other	values	returned	by	the	function	call.

That	is	the	end	of	our	discussion	on	default	function	arguments.	In	the	next
section,	you	will	learn	more	about	the	return	statement,	which	we	have	been
including	from	the	start	of	our	sample	programs	in	this	section.

Return	Statement
Although	you	have	encountered	the	return	statement	before,	it	is	not	just	there
for	show.	iI	plays	an	important	part	in	functions,	as	we’ll	explain	in	this	section.
To	illustrate	this,		we	will	create	another	program.	Open	IDLE,	then	open	the
editor	window,	and	enter	the	following	function:

def	calculateDogYears(humanYears):
				dogYears=	humanYears	*	7
				print("Dog	Years:",	dogYears)
				return

We	will	also	add	a	function	call,		as	we’ve	been	doing	in	the	previous	sections.
calculateDogYears(9.5)

Let’s	save	the	file	as	dog_years.py,	before	running	the	program.
As	expected,	when	we	run	the	program,	it	will	display	the	equivalent	human
years	for	the	given	dog	years.

Figure	12.8.	The	normal	function,	as	discussed	in	the	previous	sections.	Modifying	the	return	statement,	as
shown	in	this	section,	will	make	the	function	truly	portable.

	We	will	now	slightly	modify	the	program	to	truly	make	it	portable.	We	will
make	changes	in	the	return	statement	and	in	the	function	call.	The	function
definition	will	now	look	as	follows:

def	calculateDogYears(humanYears):
				dogYears=	humanYears	*	7
				return	dogYears

Modify	the	function	call	as	follows:
myDogYears	=	calculateDogYears(9.5)
print(“Dog	Years:”,	myDogYears)

The	function	becomes	truly	portable.	We	can	call	it	from	any	other	program.	In
this	example,	our	function	will	return	the	value	of	dogYears	back	to	the	calling
function.
To	ensure	that	you	understand	this,	let’s	try	something	simpler.
Let’s	modify	our	dog_years.py	file	by	defining	another	function	and	inserting
another	function	call	for	the	new	function.
Our	new	function	is:

def	addThese(a,	b):
				return	a	+	b

The	additional	function	call	is:
print("200	+	55	=",	addThese(200,55))

The	output	of	the	modified	dog_years.py	file	is	shown	in	Fig.	12.9.

Figure	12.9.	With	the	return	statement	modified	to	look	like	what	is	shown	in	this	screenshot,	the	function
becomes	portable	and	can	be	called	from	any	Python	program.

Our	function	definitions	are	much	more	concise	using	the	format	with	the
modified	return	statement	that	we	introduced	in	this	section.	You	can	put
together	several	functions	and	place	them	in	a	method,	which	you	can	then	call
from	your	Python	programs.	We	will	show	you	how	to	do	this	in	the	next
section.	This	is	the	end	of	our	discussion	on	the	return	statement.

Creating	and	Consuming	Python	Modules
	We	have	only	used	built-in	Python	modules,	such	as	the	date,	time	and	calendar
methods	that	were	discussed	in	Chapter	11.	In	this	section,	you	will	learn	how	to
create	and	use	your	own	custom	Python	modules.
We	will	open	IDLE,	then	the	editor	window,	and	define	the	functions	that	will
compose	our	module.

def	greetEnglish():
				return	"Greetings!"
def	greetSpanish():
				return	"Buenos	Dias"

def	greetFrench():
				return	"Bon	Jour"
def	greetHebrew():
				return	"Shalom"

We	will	save	the	file	as	mymodule.py.	You	need	to	save	modules	in	the	same
directory	where	all	your	other	Python	files	are	saved.	Otherwise,	you	will
encounter	an	error	when	you	try	to	use	the	module	in	your	programs.

Figure	12.10.	The	code	for	the	custom	module	sample	discussed	in	this	section.

Let’s	open	another	editor	window	and	enter	the	following:
import	myModule
print(myModule.greetEnglish())

print	(myModule.greetFrench())
We	will	save	this	file	as	consumeModule.py.	When	we	run	it,	it	will	call	the
functions	in	the	module	we	created	earlier,	with	the	result	shown	in	Fig.	12.10.

Figure	12.11.	The	program	showing	how	to	consume	the	sample	custom	module	that	is	discussed	in	this
section.

We	have	now	learned	how	to	create	and	consume	our	own	custom	module.
Earlier	in	this	chapter,		you	learned	how	to	create	and	consume	your	own	custom
functions.	You	have	also	learned	how	to	create	the	required	argument	and
keyword	argument	functions.	You	have	also	learned	how	to	set	up	default
arguments	for	your	functions,	and	how	to	use	the	return	statement	for	your
function	calls.	It’s	now	time	for	your	coding	exercise.

Coding	Exercise:	Functions
This	coding	exercise	will	allow	you	to	practice	with	functions.	You	will	create
three	useful	custom	functions	that	can	be	reused	in	your	Python	programs.
1.	 The	formula	to	convert	Celsius	to	Fahrenheit	is	as	follows:

	
Fahrenheit	=	Celsius	*	1.8	+	32
Example:	32	=	0	*	1.8	+	32
Example:	212	=	100	*	1.8	+	32
	
The	formula	to	convert	Fahrenheit	to	Celsius	is:
	
Celsius	=	(Fahrenheit	–	32)	/	1.8
Example:	100	=	(212-32)	/	1.8
	

2.	 Considering	the	equations	above,	write	a	function	called	fToC	that	returns

the	temperature	in	Celsius	when	it	gets	passed	the	temperature	in
Fahrenheit.	The	function	call	would	look		like	this:
	
celsTemp	=	fToC(fahrTemp)
	

3.	 Considering	the	equations	above,	write	a	function	called	cToF	that	returns
the	temperature	in	Fahrenheit	when	it	gets	passed	the	temperature	in
Celsius.	The	function	call	would	look		like	this:
fahrTemp	=	cToF(celsTemp)

4.	 Write	a	function	that	will	convert	either	Celsius	to	Fahrenheit	or	vice-
versa.	The	function	should	receive	two	parameters.	The	first	parameter	is
the	temperature	to	convert.		The	second	parameter	a	Boolean	indicating
whether	the	value	sent	is	Celsius	or	Fahrenheit.
	

5.	 Test	your	functions	to	make	sure	that	they	all	work.	This	can	be	done	by
writing	function	calls	to	them	and	ensuring	they	return	the	expected
values.

	
	

Chapter	13	–	Input	and	Output
In	this	chapter,	you	will	learn	about	file	input	and	output,	or	file	I/O,	as	it	is	more
commonly	known	in	programming.
This	chapter	will	first	teach	you	how	to	read	keyboard	input.	To	this	point,	your
programs	have	all	made	use	of	hardcoded	variables.	You	have	not	been
prompted	to	enter	values	that	your	programs	then	take	to	arrive	at	another	given
value.		In	this	chapter,	you	will	learn	to	create	a	program	that	will	allow	you	to
read	the	values	entered	on	a	keyboard.
Next,	you	will	learn	about	reading	an	external	text	file	from	your	drive.	You	will
take	data	from	this	file	and	pass	it	on	to	a	program.
You	will	then	segue	into	writing	input	to	an	external	text	file.	If	you	can	read
from	an	external	file,	you	should	also	be	able	to	write	to	an	external	file.	We	will
show	you	how	to	do	this	here.
The	final	part	of	this	chapter	will	be	your	coding	exercise,	involving	input	and
output	operations.

Reading	Keyboard	Input
All	the	values	you	have	worked	with	in	your	programs	and	even	in	your	coding
exercises	are	hardcoded.		This	I	not	very	convenient.		It	is	also	not	how	things
work	in	the	real	world,	where	programs	deal	with	real	values	that	are	entered
either	via	the	keyboard	or	text	files.	In	this	section,	you	are	going	to	learn	how	to
read	keyboard	input.
As	in	earlier	chapters,	you	will	create	an	actual	program	to	help	you	master	the
fundamentals	of	file	input	and	output.	Let’s	start	by	opening	IDLE,	then	creating
a	new	file.
On	the	editor,	enter	the	following:

name	=	input(“What	is	your	name:	“)
Save,	then	run	the	program.
On	the	shell	window,	that	single	line	in	our	program	asks	us	to	enter	our	name.
Since	our	program	still	does	not	do	anything	with	the	input,	when	we	press
Enter	after	entering	our	name	as	the	input,	nothing	happens.	We	will		now	add

to	our	program,	the	lines	that	will	take	our	keyboard	input	as	a	string.

print(“Welcome	to	Python”,	name)
If	we	save,	then	run	our	program	again,	we	now	see	that	Python	takes	our
keyboard	input	as	a	string.
Let’s	add	a	few	more	lines	to	our	code.	This	time,	let’s	ask	for	age.

age	=	input(“How	old	are	you?”)
print(“You	are”	,	age,	“years	old”)

Let’s	add	another	couple	of	lines	that	will	let	our	program	display	the	age,	after	a
certain	number	of	years	have	passed.

age	=	age+5
print(“In	five	years	you	will	be:	“,	age)

If	we	compile	our	program,	then	run	it	again,	we	get	an	error.	If	you	trace	back
through	the	error,	you	will	see	that	Python	is	expecting	a	string	as	input,	not	an
integer.	This	is	because	input()	always	reads	data	from	the	keyboard	as	a	string.
To	resolve	this	error,	you	must	cast	age	as	an	integer	first.	To	do	that,	add	the
following	line	to	the	program.	This	line	should	be	inserted	prior	to	the	line	where
you	computed	for	the	age	after	5	years.

age	=	int(age)
Save,	then	run	the	program	again.	This	time,		no	error	is	generated.
Let’s	add	another	example	where	we	compute	for	the	GPA,	then	perform	a
mathematical	operation	involving	the	GPA	that	is	entered	on	the	keyboard.

gpa	=	input(“What	is	your	GPA?	“)
print(“Your	GPA	is”,	gpa)
gpa	=	gpa+10

As	you	can	see	when	you	save	and	run	the	program,	this	will	also	generate	an
error.	The	solution	is	to	cast	GPA	as	a	float,	which	will	then	automatically	cast
GPA	as	a	string	when	you	run	a	mathematical	operation	against	it.	The	line
where	you	cast	GPA	as	a	float,	must	be	inserted	right	before	the	line	where	the
mathematical	operation	is	performed.	The	correct	lines	are	seen	below.

gpa	=	input(“What	is	your	GPA?	“)

print(“Your	GPA	is”,	gpa)
gpa	=	float(gpa)
gpa	=	gpa+10

NOTE:	In	Python	3,	input()	is	the	only	built-in	function	for	reading	data	from
standard	input.	Python	2	had	two	functions	–	input()	and	raw_input().

Figure	13.1.	The	code	and	output	for	the	sample	program	in	this	section.

Reading	an	External	Text	File
In	this	section,	you	will	learn	about	file	input	and	output,	or	file	I/O,	where	your
program	reads	input	from	an	external	text	file.
Let’s	start	off	by	saving	a	list	of	employees	in	a	text	file.	For	example,	we	can
have	an	employee.txt	file	containing	the	names	of	the	following	employees:

Mark
Kevin
Wendy
Chris
Phil

Bryan
Stephen

Open	IDLE,	then	open	a	new	file.
On	the	editor	window,	enter	the	following:

myfile	=	open(“employees.txt”,	“r”)
=>	here,	r	means	reading,	with	the
file	pointer	pointing	to	the	beginning
of	the	file

print	(myfile.read())
This	line	opens	our	employee.txt	file	in	reading	mode,	then	returns	the	contents
of	the	text	file	(see	Fig.	13.2).

Figure	13.2.	The	read()	function	returns	the	contents	of	our	text	file.

We	will	now	edit	the	line	containing	the	print	statement	a	bit:

print(myfile.read(15))
When	you	run	the	file	again,	this	time	it	will	read	the	first	15	characters	inside

the	text	file.
To	read	the	text	file	line	by	line,	we	can	use	the	readline	method.	To	try	this	out,
add	the	following	line	in	your	program:

print(myfile.readline())
This	will	print	the	character	that	comes	after	the	first	15	characters	in	the
program	in	another	line	(see	Fig.	13.3).

Figure	13.3.	Our	modified	read()	function	returns	the	first	15	characters	in	the	text	file.

Let’s	add	another	print	statement	containing	the	same	line	as	before.

print(myfile.readline())
The	output	is	shown	in	Fig.	13.4.

Figure	13.4.	The	readline()	function	goes	through	each	line	in	our	text	file.

Next,	let’s	comment	out	lines	2-4	of	our	program,	then	loop	through	the	file	by
inserting	the	following	lines	in	our	program.
for	line	in	myfile:

print(line)
This	will	loop	through	the	contents	of	our	text	file,	as	shown	in	Fig.	13.5

Figure	13.5.	The	highlighted	lines	in	our	sample	program	loops	through	each	line	in	our	text	file.

By	looping	through	the	contents	of	our	text	file,	we	can	perform	further
processing	on	the	file.	For	example,	we	can	add	a	number	before	the	name	of
each	employee	in	our	file	(see	Fig.	13.6).

Figure	13.6.	Looping	through	each	line	in	our	text	file,	allows	further	processing	to	be	performed	on	the
file’s	contents.

This	concludes	this	section.	In	the	next	section,	you	will	learn	how	to	write	to	an
external	file.

Writing	an	External	Text	File
In	the	first	two	sections	of	this	chapter,	you	learned	about	reading	input	from	the
keyboard	and	an	external	file.
Here,	we	will	teach	you	how	to	output	to	an	external	text	file.	In	this	way,	you
can	permanently	store	data	in	a	file.	This	allows	you	to	maintain	state[SW11]
with	your	Python	programs,	making	them	more	robust	and	complex	in	the
process.
In	this	section,	you	will	write	a	program	that	records	names	into	a	file.
Let’s	go	ahead	and	open	IDLE.		We	will	open	a	new	file,	then	save	it	as	write.py.
On	the	editor	window,	the	first	step	is	to	enter	our	file	pointer.

file	=	open("namesList.txt",	"w")
We	will	then	define	our	variables.

name=""
listOfNames=""

Next,		we	will	define	a	while	loop	that	will	ask	us	to	enter	names.	Inside	this
loop	is	another	loop,	which	will	detect,	if	we	enter	a	name	with	the	value	XXX,
then	add	the	names	we	have	entered,	except	for	XXX,	to	a	list.

while	(name	!=	"XXX"):
				name	=	input("Name:	")
				if	(name	!=	"XXX"):
								listOfNames	+=	name
								listOfNames	+=	","

We	will	then	exit	the	loop	by	printing	the	list	of	names,	before	saving	the	names
to	our	namesList.txt	file.

print	("Saving	",	listOfNames)
file.write(listOfNames)

We	will	then	close	the	file.

file.close()
Let’s	test	our	program.	If	you	entered	the	code	above	correctly,	you	will	get	the
output	shown	in	Fig.	13.7.

Figure	13.7.	Sample	code	and	output	for	this	section.	Check	the	namesList.txt	file	on	your	computer	to	see
if	you	have	done	everything	correctly.

You	should	also	check	your	filesystem	for	namesList.txt.	When	you	open	the
file,	the	names	you	entered	should	be	listed	inside	the	file.
You	should	run	the	program	again	and	enter	names,	other	than	the	ones	you
entered	previously.	If	you	check	the	namesList.txt	file	again,	you	will	see	that
the	file	has	been	overwritten	with	the	new	names.	This	is	because	the	file	is
being	written	over	every	time,	courtesy	of	our	file	pointer:

	file	=	open("namesList.txt",	"w")
In	the		line	of	code	above,	“w”	means	write,	where	every	time	you	run	the
program	and	enter	a	new	list	of	names,	the	file	gets	overwritten	with	the	new
names.	To	change	this	behavior,	replace	the	“w”	with	“a”,	or	append,	which	will
ensure	that	all	new	names	are	instead	appended	to	the	list	(see	Fig.	13.8).

Figure	13.8.	Changing	the	“w”,	or	write	mode,	in	the	file	pointer	to	“a”,	or	append	mode,	ensures	that	all
values	you	enter	are	included	in	the	namesList.txt	file.	Write	mode	overwrites	the	file,	each	time	you	run	the
program	and	enter	names.	Append	mode	appends	the	new	values	you	enter,	each	time	you	run	the	program
with	the	old	values	already	inside	the	namesList.txt	file.

This	wraps	up	this	section.	We’ve	already	discussed	accepting	keyboard	input,
reading	from	a	text	file,	then	writing	to	a	text	file	in	this	chapter.		We	will	now
present	our	coding	exercise.

Coding	Exercise:	File	I/O
This	coding	exercise	will	allow	you	to	practice	the	file	I/O	concepts	that	you
learned	in	this	chapter.	You	will	work	with	external	file	data.
1.	 Load	IDLE	and	choose	File>New	File,	then	save	the	file	as	file_io.py.

Download	the	companies.csv	file	attached	to	this	section.	The	data	in	this
file	is	as	follows:
	
7-Eleven 1964 	Dallas

McDonald's 1955 	Oak	Brook
Dunkin'Donuts 1950 	Canton
UPS	Store 1980 	San	Diego
Wingstop.	1998 	Dallas
ACE	Hardware 1924 	Oak	Brook
	

2.	 Write	a	Python	program,	so	that	the	CSV	file	is	read	in	to	the	program	and
the	information	is	printed	to	the	command	line.	(Hint:	You	can	use	the
character	entity	\t	to	produce	a	tab	and	make	your	output	as	neat	as
possible.)

3.	 After	the	companies	are	outputted,	use	an	input()	command	to	prompt	the
user	for	a	company	name,	a	year	established,	and	a	location.	Store	this
data	in	three	variables	that	are	named	appropriately.

4.	 Write	the	necessary	code	to	store	the	data	entered	–	company	name,	year
established,	and	location	–	in	the	correct	CSV	format.	Output	a	message	to
the	user,	indicating	that	the	data	has	been	stored.

5.	 Run	the	program	and	ensure	that	it	works	as	expected.	If	there	are	errors	or
problems,	debug	your	code	until	it	is	working	properly.
	

Chapter	14	–	More	with	Python
This	is	it.		It	is	the	final	chapter	in	our	Python	for	Beginners	course.
In	this	section,	you	are	going	to	learn	about	other	concepts	in	Python
programming	that	do	not	fit	well	in	the	earlier	chapters	of	the	book.		However,
they	are	still	important	to	know.	These	are	all	cool	skills	that	you	need	to	learn,
as	you	go	about	becoming	a	proficient	Python	programmer.
You	will	first	learn	about	how	to	handle	exceptions,	which	occur	when	a	user
does	something	unexpected,	that	causes	a	run-time	error	in	your	Python
programs.
We’ll	then	look	at	web	server	coding	in	Python.	This	includes	how	we	run
Python	on	a	web	server	and	use	it	to	communicate	with	HTML	to	the	end-user.
Finally,	we’ll	look	at	processing	form	data	with	Python.	When	web	forms	are
filled	up,	it	is	often	processed	using	the	Python	programming	language.

Handling	Exceptions
Sometimes,	when	a	Python	program	executes,	a	user	introduces	conditions	that
cause	run-time	errors.		As	a	result,	your	program	stops	executing.	These	errors
can	often	be	anticipated	as	you	write	your	programs,		such	as	with	network
availability	or	unavailable	files.	As	a	good	developer,	you	should	anticipate	these
errors	by	knowing	how	to	handle	these	exceptions	in	your	code.
Let’s	look	at	an	example	of	a	try-catch	exception.
Open	IDLE	and	click	File>New	File,	then	enter	the	following	on	the	editor
window:

print(“We	have	10	pounds	of	apples.”)
number	=	input(“How	many	ways	are	we	dividing	the	apples?”)
number	=int(numbers)
try:
					poundsEach	=	10/number
					print(“Each	person	gets”,	poundsEach,	“pounds	of	apples.”)
except	ZeroDivisionError:
					print(“You	can’t	divide	by	zero.	Try	again.”)

Let’s	save,	then	run	our	program.
When	prompted	to	enter	the	number	of	ways	to	divide	the	apples,	enter	any
number	except	0.	You	will	see	that	the	program	is	able	to	compute	how	many
apples	each	person	gets.	However,	when	you	enter	0,	since	numbers	cannot	be
divided	by	0,	you	will	be	prompted	to	enter	another	number.	This	is	shown	in	the
output	that	is	shown	on	the	shell	window	in	Fig.	14.1.

Figure	14.1.	The	highlighted	line	shows	how	our	program	gracefully	handles	the	condition,	when	a	user
enters	0	as	program	input.

What	happens	if	your	program	does	not	include	a	try-catch	exception?	You	can
find	out	by	commenting	out	the	following	lines	from	the	program:

try:
except	ZeroDvisionError:
					print(“You	can’t	divide	by	zero.	Try	again.”)

If	you	save	and	run	the	program,	and	enter	0	again	as	an	input,	your
program	will	now	display	an	ugly-looking,	non-descriptive	error
message	and	your	program	cannot	handle	the	input	(see	Fig.	14.2).

Figure	14.2.	When	we	comment	out	the	try-catch	exception	from	our	program	(see	the	highlighted	lines	of
code	on	the	editor	window),	our	program	returns	a	non-descriptive	and	ugly-looking	error	instead.	This	is	a
stark	contrast	to	the	clean-looking	error	message	we	get	with	the	try-catch	exception	in	Fig.	14.1.

Let’s	try	another	example	using	the	namesList.txt	file	that	we	coded	earlier	in
Chapter	13.
Open	another	file	on	IDLE,	then	enter	the	following	on	the	editor	window:

try:
					file	=	open(“namesList.txt”,	“a”)
					file.write(“EOF”)

These	lines	open	our	namesList.txt	file,	then	writes	“EOF”	at	the	end
of	the	file.
Let’s	add	an	exception:

except	IOError:
					print(“IO	Error”)

					file.close()
else:
					print(“EOF	written	successfully”)
					file.close()

The	exception	catches,	then	prints	IO	Error,	if	the	program	can’t	write
to	namesList.txt	file	for	any	reason.	If	there	is	no	error,	the	lines	under
the	else	statement	take	over	–	EOF	written	successfully	is	displayed,
informing	the	user	that	EOF	has	been	appended	to	our	namesList.txt
file.
Saving	and	running	the	program	will	have	the	output	shown	in	Fig.
14.3,	since	we	are	able	to	insert	EOF	to	our	text	file.	However,	if	the
file	is	not	available,	you	will	get	an	IO	Error	message	printed	on
screen.	You	can	check	the	actual	namesList.txt	file	to	see	if	there	is
indeed	an	EOF	at	the	end	of	the	file.

Figure	14.3.	The	sample	code	and	output	for	the	other	try-catch	exception	example	discussed	in	this	section.

There	are	only	two	try-catch	exception	examples	discussed	in	this	section.
However,	there	are	many	more	that	you	will	encounter	as	you	go	about
becoming	a	more	proficient	Python	programmer.	To	give	your	users	a	better	idea
of	what	is	wrong	with	their	input	when	they	use	your	programs,	you	should

ensure	that	your	Python	programs	are	able	to	handle	exceptions.
In	the	next	section,	we	will	discuss	web	server	coding	with	Python.

Web	Server	Coding	with	Python
Many	people	use	Python	for	backend	web	code,	or	code	that	runs	on	a	web
server.
Python	comes	with	its	own	web	server.	To	run	this	server,	open	a	command-line,
if	you’re	using	Windows,	or	a	terminal,	if	you’re	using	Linux	or	MacOS,	then
enter	the	following	command:

python	-m	http.server	--bind	localhost	--cgi	8000
You	can	put	Python	files	in	the	cgi-bin	of	the	folder,	where	your	Python	web
server	is	located.	For	example,	say	we	have	a	hello.py	file	containing	the
following	lines	of	code:

print("Content-Type:	text/html\n")
print("<!doctype	html><title>Hello</title><h2>hello
world</h2>")

To	run	this	simple	HTML	file,	open	your	web	browser,	then	enter	the
following	on	the	URL	bar:
http://localhost:8000/cgi-bin/hello.py
The	web	browser	then	runs	the	Python	file	(see	Fig.	14.4).

http://localhost:8000/cgi-bin/hello.py

Figure	14.4.	A	Python	file	running	on	a	web	browser.

When	you	run	the	file,	the	command-line	or	terminal,	whichever	you
are	using,	displays	the	info	about	the	file	you	are	running	from	the
server	(see	Fig.	14.5).

Figure	14.5.	The	command-line	displays	info	from	the	server	about	the	running	Python	file.

Let’s	try	another	Python	script.	This	one	shows	the	Python	environment
variables	on	your	system.

import	os
print	("Content-type:	text/html\r\n\r\n")
print	("Environment<\br>")
for	param	in	os.environ.keys():
				print("%20s:	%s<\br>"	%	(param,
os.environ[param]))

				print("
")
Save	this	file	as	environ.py	in	your	CGI-BIN,	then	run	it	from	the	browser	by
entering	the	following	on	the	URL	bar:

localhost:8000/cgi-bin/environ.py
WE	have	one	last	example.	This	one	shows	us	modifying	the	hello.py	file	using
our	ordinary	text	editor,	instead	of	IDLE.
Open	the	hello.py	file	using	your	text	editor,	then	enter	the	following:

print("Content-Type:	text/html\n")
print("<!doctype	html>")
print("<html>")
print("<head><title>Python	Script</title></head>")
print("<body>")
print("<h1>Welcome	to	the	world	of	Python	on	the	Web!</h1>")
print("<p>We	learned	this	in	Python	for	Beginners	(2017)</p>")
print("</body></html>")

Save	the	file,	then	run	it	from	the	browser:

localhost:8000/cgi-bin/hello.py
The	output	is	shown	in	Fig.	14.6.
	

Figure	14.6.	Running	the	hello.py	file	on	a	web	server.		If	you	look	closely	at	the	file	itself,		you	can	see	that
it	includes	HTML	tags	within	each	print	statement.

That	concludes	our	section	on	web	server	coding	with	Python.	We	now	segue
into	processing	HTML	form	data	on	the	web	with	Python.

Processing	Form	Data	with	Python
In	this	section,	you	will	learn	how	Python	interacts	with	HTML	to	process	form
data.
First,	let’s	create	a	name_form.html	file	for	our	form	data.

<html>
<head>
<title>Form	with	Python</title>
<body>
<form	method="get"	action="http://localhost:8000/cgi-
bin/form_process.py">
<label	for="first">First	Name</label>
<input	type="text"	id="first"	name="first"/>
<label	for="last">Last	Name</label>

<input	type="text"	id="last"	name="last"/>
<button	type="submit">Submit	to	Python	Script</button>
</form>
</body>
</html>

When	run	from	the	browser,	this	HTML	file	will	appear	like	the	one
in	Fig.	14.7.

Figure	14.7.	Your	HTML	form	will	appear	like	this.

We	will	now	code	the	Python	program	that	will	receive	and	process	the	data
entered	on	the	HTML	form.
First,	let’s	import	the	modules	that	will	be	needed	to	handle	the	CGI.

import	cgi,	cgitb
Next,	we’ll	create	the	storage	instance	for	the	form	data.

form	=	cgi.FieldStorage()
We	will	then	enter	the	variables	that	will	receive	the	values	entered	on	the	first
and	last	fields	in	our	HTML	form.

first_name	=	form.getvalue('first')

last_name	=	form.getvalue('last')
Next,	let’s	enter	the	HTML	tags	that	will	display	the	form	values	on	the	browser.

print("Content-type:text/html\r\n\r\n")
print("<html>")
print("<head>")
print("<title>Hello	-	Second	CGI	Program</title>")
print("</head>")
print("<body>")
print("<h2>Greetings	%s	%s</h2>"	%	(first_name,	last_name)
print("</body>")
print("</html>")

Let’s	save	our	Python	file	as	form_process.py.
We	will	now	tie	it	all	up	together.	Enter	your	first	name	and	last	name	on	the
appropriate	boxes	on	the	browser,	then	click	the	Submit	to	Python	Script
button	(see	Fig.	14.8).

Figure	14.8.	Enter	your	first	and	last	names	on	the	appropriate	boxes	on	the	HTML	form,	then	click	the
Submit	to	Python	Script	button	to	pass	the	values	on	the	boxes	to	the	Python	script	for	processing.

The	first	and	last	names	are	then	passed	to	the	Python	script,	which	displays	the
passed	values	on	the	URL	bar	(see	Fig.	14.9).

Figure	14.9.	The	Python	script	then	processes	the	values	passed	from	the	HTML	form	and	displays	the	first

and	last	values	on	the	URL	bar,	seen	highlighted	in	this	screen	capture.

Wrap	Up	and	Goodbye
That	concludes	this	chapter,	and	the	book.
If	you	went	through	the	book	chapter-by-chapter,	you	would	have	learned	much
at	this	stage.	From	using	IDLE,	you	learned	about	the	print()	function,	variable
assignments	and	the	different	variable	types,	gone	on	to	operators	and	loops,	and
tackled	the	different	Python	functions.	You	also	gained	knowledge	about	data
structures,	created	your	own	functions,	learned	about	file	input	and	output	and
finally	more	advanced	topics,	such	as	exception	handling	and	coding	with	web
servers.
This	is	just	the	beginning.		However,	you	should	know	by	now	that	Python	is	a
powerful	programming	language.	Armed	with	the	skills	you	have	gained	in	this
course,	you	should	now	be	ready	to	take	your	programming	career	a	step	further.
	

[J1]Per	instruction,	I	entered	all	the	figures	(named	according	to	their	figure	number)	in	a	separate	folder.
Since	this	is	the	introductory	chapter,	decided	to	not	overwhelm	the	reader	with	images/screenshots.	Let	me
know	if	I	should	add	more	screenshots.

[J2]I	purposely	inserted	a	sub-heading	between	chapter	sections.	Let	me	know	if	this	works	(we	can
always	take	them	out).

[SW3]I	am	confused	here.	If	you	subtract	5	from	12,	isn’t	the	result	7	instead	of	-7?
[SW4]Something	is	missing	here.	This	is	an	incomplete	sentence.
[SW5]Something	is	off	with	the	formatting	of	the	text	here.	It	keeps	getting	cut	off.
[SW6]Why	does	the	font	change	here?

[SW7]Please	check	this.
[SW8]Change	in	font.
[SW9]Change	in	font.
[SW10]Please	check	this	word.
[SW11]I	don’t	understand	this	word	here.

	Chapter 1 – Introduction
	Intended Audience
	What Does the Book Cover?
	Important Things to Remember

	Chapter 2 – Getting Started
	Downloading and Installing Python
	Running IDLE
	Writing Your First Python Program
	Running the Program
	Editing your First Program
	Using the Shell Window
	To Change the Editor’s Various Font-Related Features
	To Change the Editor’s Highlighted Text Colors
	To Use the Shell in Interactive Mode
	Writing Code in the Editor Window
	Executing Python on the Command Line
	Coding Exercise: Writing, Running and Debugging

	Chapter 3 – Output
	The print() Function
	Separators and Newlines
	Coding Exercise: Using the print() Function

	Chapter 4 – Variables
	Variable Assignment
	Number Variables (int, float, and complex)
	That wraps up our section on number variables. You will learn about string variables next.
	String Variables
	Substrings and Concatenation
	Variables with Lists, Tuples, and Dictionaries
	Coding Exercise: Using Variables

	Chapter 5 – Operators
	Mathematical Operators
	Order of Operations
	Comparison Operators
	Logical Operators
	Coding Exercise: Operators Practice

	Chapter 6 – Code Branching
	Simple If Statements
	If…Else Statements
	Nested If Statements
	The Ternary Operator
	Coding Exercise: Operators Practice

	Chapter 7 – Loops
	The While Loop
	The For Loop
	Nested Loops
	Break and Continue Statements
	Coding Exercise: Loops

	Chapter 8 – Math Functions
	Casting Functions
	Mathematical Functions
	Random Functions
	Coding Exercise: Math Functions

	Chapter 9 – String Functions
	The capitalize (), center (), and count () functions
	The find (), isalpha (), and isdigit () functions
	The join (), len (), and split () functions
	Coding Exercise: String Functions

	Chapter 10 – Tuples and Dictionaries
	Creating Tuples
	Accessing Values in Tuples
	Printing specific values from a tuple
	Looping through a Tuple
	Tuple Functions
	What are lists?
	The len() Function
	Using the len() Function to Loop through a Tuple
	The min() and max() Functions
	You can use the min() and max() functions to return the minimum and maximum values in a tuple. Let’s try to show this using an example.

	Converting a List to a Tuple
	Declaring a Dictionary
	Accessing and Editing Values in Dictionaries
	Printing specific values from a dictionary
	Changing the elements in a dictionary
	Deleting an element in a dictionary
	Dictionary Functions
	The len() Function
	The str() Function
	The clear() Function
	The get function
	The items function
	The values function
	The keys function

	Getting the Elements and Key-Value Pairs in a Dictionary
	Coding Exercise: String Functions

	Chapter 11 – Time and Date
	The Time Tuple
	The Calendar
	The Time and Calendar Functions
	Coding Exercise: Functions

	Chapter 12 – Python Functions
	Defining and Calling a Simple Function
	Required Argument Functions
	Keyword Argument Functions
	Default Function Arguments
	Return Statement
	Creating and Consuming Python Modules
	Coding Exercise: Functions

	Chapter 13 – Input and Output
	Reading Keyboard Input
	Reading an External Text File
	Writing an External Text File
	Coding Exercise: File I/O

	Chapter 14 – More with Python
	Handling Exceptions
	Web Server Coding with Python
	Processing Form Data with Python
	Wrap Up and Goodbye

