

Python GUI Programming
with Tkinter

Develop responsive and powerful GUI applications
with Tkinter

Alan D. Moore

BIRMINGHAM - MUMBAI

Python GUI Programming with Tkinter
Copyright © 2018 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means, without the prior written permission of the publisher, except in the case of brief quotations
embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented.
However, the information contained in this book is sold without warranty, either express or implied. Neither the
author, nor Packt Publishing or its dealers and distributors, will be held liable for any damages caused or alleged to
have been caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products
mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy
of this information.

Commissioning Editor: Richa Tripathi
Acquisition Editor: Alok Dhuri
Content Development Editor: Priyanka Sawant
Technical Editor: Vibhuti Gawde
Copy Editor: Safis Editing
Project Coordinator: Vaidehi Sawant
Proofreader: Safis Editing
Indexer: Mariammal Chettiyar
Graphics: Jason Monteiro
Production Coordinator: Shantanu Zagade

First published: May 2018

Production reference: 1110518

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham
B3 2PB, UK.

ISBN 978-1-78883-588-6

www.packtpub.com

http://www.packtpub.com

To my children, may you never be afraid to try, even when you don't have all the answers.

mapt.io

Mapt is an online digital library that gives you full access to over 5,000 books and videos, as
well as industry leading tools to help you plan your personal development and advance
your career. For more information, please visit our website.

Why subscribe?
Spend less time learning and more time coding with practical eBooks and Videos
from over 4,000 industry professionals

Improve your learning with Skill Plans built especially for you

Get a free eBook or video every month

Mapt is fully searchable

Copy and paste, print, and bookmark content

PacktPub.com
Did you know that Packt offers eBook versions of every book published, with PDF and
ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a
print book customer, you are entitled to a discount on the eBook copy. Get in touch with us
at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a
range of free newsletters, and receive exclusive discounts and offers on Packt books and
eBooks.

https://mapt.io/
http://www.PacktPub.com
http://www.packtpub.com

Contributors

About the author
Alan D. Moore is a data analyst and software developer who has been solving problems
with Python since 2006. He's developed both open source and private code using
frameworks like Django, Flask, Qt, and, of course, Tkinter, and contributes to various open
source Python and Javascript projects.

Alan maintains a blog by the name alandmoore, where he writes mainly about Python,
Linux, free software, and his home studio recordings.

Alan lives in Franklin, Tennessee, where he works for the county government, and with his
wife, Cara, raises a crew of children who are just as geeky as their dad.

Thanks to my wife, Cara, for her support; Caspian, for listening to me ramble about
Python; Mark Soper, Tom Potter, Gayle Moore, and Albert Moore for the wise advice;
David Andrews for his expertise; Alok Dhuri, Priyanka Sawant, Vibhuti Gawde, and the
Packt team for their hard work and patience; and all the helpful people in the Python and
Tkinter communities.

About the reviewer
David Andrews is CTO at a small but growing healthcare technology startup. He has spent
many years as a consultant developer in several different industries including sports,
finance, publishing, and insurance. His expertise lies in process automation and identifying
technological solutions to core business inefficiencies.

David operates his own consultancy group, Andrews Innovations, in Nashville, TN,
primarily specializing in bringing startup ideas to fruition for small businesses, including
custom development of mobile applications, websites, and SaaS offerings.

I would like to thank Alan particularly for involving me in this process. It has been a true
honor. I would also like to thank the good people involved in the publishing process for
their patience and guidance as we worked through this.

Packt is searching for authors like you
If you're interested in becoming an author for Packt, please visit authors.packtpub.com
and apply today. We have worked with thousands of developers and tech professionals,
just like you, to help them share their insight with the global tech community. You can
make a general application, apply for a specific hot topic that we are recruiting an author
for, or submit your own idea.

http://authors.packtpub.com

Table of Contents
Preface 1

Chapter 1: Introduction to Tkinter 6
Introducing Tkinter and Tk 7

Choosing Tkinter 7
Installing Tkinter 8

Installing Python 3 on Windows 8
Installing Python 3 on macOS 9
Installing Python 3 and Tkinter on Linux 9

Introducing IDLE 10
Using the shell mode of IDLE 10
Using the editor mode of IDLE 11
IDLE as a Tkinter example 11

Creating a Tkinter Hello World 13
Creating a better Hello World Tkinter 15

Summary 21

Chapter 2: Designing GUI Applications with Tkinter 22
A problem at ABQ AgriLabs 22

Assessing the problem 23
Gathering information about the problem 23
What you found out 25

Information about the data being collected 25
Information about the users of the application 26

Documenting specification requirements 27
Contents of a simple specification 27
Writing the ABQ data entry program specification 28

Designing the application 31
Exploring Tkinter input widgets 32
Grouping our fields 34
Laying out the form 35
Laying out the application 38

Summary 39

Chapter 3: Creating Basic Forms with Tkinter and ttk Widgets 40
Evaluating our technology choices 40

Choosing a technology 41
Exploring Tkinter widgets 41

The Entry widget 42
The Spinbox widget 43

Table of Contents

[ii]

The Combobox widget 44
The Checkbutton widget 45
The Text widget 46
The Button widget 48
The LabelFrame widget 48

Implementing the application 49
Saving some time with a LabelInput class 49
Building the form 54

Adding LabelFrame and other widgets 55
Retrieving data from our form 58
Resetting our form 59

Building our application class 59
Saving to CSV 61

Finishing and testing 63
Summary 65

Chapter 4: Reducing User Error with Validation and Automation 66
Validating user input 66

Strategies to prevent data errors 67
Validation in Tkinter 68

Creating a DateEntry widget 71
Implementing validated widgets in our form 74

Exploiting the power of multiple inheritance 75
A validating mixin class 77

Building our widgets 80
Requiring data 80
A Date widget 81
A better Combobox widget 82
A range-limited Spinbox widget 84
Dynamically adjusting the Spinbox range 88
Updating our form 91
Displaying errors 95
Preventing form submission on error 96

Automating input 97
Inserting a date 97
Automating Lab, Time, and Technician 98

Summary 99

Chapter 5: Planning for the Expansion of Our Application 100
Separating concerns 100

The MVC pattern 101
What is a model? 101
What is a view? 102
What is a controller? 102

Why complicate our design? 103
Structuring our application directory 103

Basic directory structure 103

Table of Contents

[iii]

The abq_data_entry.py file 104
The README.rst file 105

ReStructuredText 106
Populating the docs folder 108
Making a Python package 109

Splitting our application into multiple files 111
Creating the models module 111
Moving the widgets 115
Moving the views 116

Removing redundancy in our view logic 118
Creating the application file 121

Running the application 123
Using version control software 124

A super-quick guide to using Git 125
Initializing and configuring a Git repository 125
Adding and committing code 126
Viewing and using our commits 127

Summary 128

Chapter 6: Creating Menus with Menu and Tkinter Dialogs 129
Solving problems in our application 129

Deciding how to address these problems 130
Implementing simple Tkinter dialogs 131

Tkinter messagebox 131
Showing the error dialogs 134

Designing our menu 135
Creating menus in Tkinter 136
Implementing our application menu 139
Showing an About dialog 141
Adding the menu functionality in the controller 142
Handling file selection 144

Making our settings work 147
Persisting settings 148

Building a model for settings persistence 150
Using the settings model in our application 154

Summary 156

Chapter 7: Navigating Records with Treeview 157
Implementing read and update in the model 157

Adding read and update to our model 158
Implementing get_all_records() 158
Implementing get_record() 160
Adding update to save_record() 161

Implementing a record list view 162
The ttk Treeview 162
Implementing our record list with Treeview 167

Configuring a Treeview widget 168

Table of Contents

[iv]

Adding a scrollbar 169
Populating the Treeview 170
Responding to record selection 171

Modifying the record form for read and update 172
Updating __init__() 173
Adding a load_record() method 174

Updating the rest of the application 175
Main menu changes 175
Connecting the pieces in Application 176

Adding the RecordList view 176
Moving the model 177
Populating the record list 177
Adding the new callbacks 178
Cleaning up 182

Testing our program 183
Summary 184

Chapter 8: Improving the Look with Styles and Themes 185
Working with images in Tkinter 185

Tkinter PhotoImage 186
Adding the company logo 187
Setting our Window icon 188

Styling Tkinter widgets 189
Widget color properties 189

Using widget properties on our form 190
Using tags 192

Styling our record list with tags 194
Tkinter fonts 198

Giving users font options 200
Styling Ttk widgets 202

Exploring a Ttk widget 203
Styling our form labels 208

Styling input widgets on error 210
Making our Spinbox a Ttk widget 211
Updating ValidatedMixin 211

Setting themes 213
Building a theme selector 213

Summary 215

Chapter 9: Maintaining Cross-Platform Compatibility 216
Writing cross-platform Python 216

Filenames and filepaths across platforms 217
Path separators and drives 217

Path separator translation 217
The os.path module 218
The pathlib module 219

Case-sensitivity 220
Symbolic links 220

Table of Contents

[v]

Path variables 222
Inconsistent library and feature support 223

Python's platform-limited libraries 223
Checking low-level function compatibility 224

The dangers of the subprocess module 225
Text file encodings and formats 225
Graphical and console modes 227
Writing code that changes according to the platform 227

Writing cross-platform Tkinter 230
Tkinter version differences across platforms 230
Application menus across platforms 231

Menu widget capabilities 231
Menu guidelines and standards 234

Windows user experience interaction guidelines 234
Apple's human interface guidelines 234
Linux and BSD human interface guidelines 235

Accelerator keys 235
Fonts 236
Theme support 236
Window zoomed state 236

Improving our application's cross-platform compatibility 237
Storing preferences correctly 238
Specifying an encoding for our CSV file 239
Making platform-appropriate menus 239

Preparing our MainMenu class 239
Building the Windows menu 242
Building the Linux menu 244
Building the macOS menu 245
Creating and using our selector function 247

Summary 249

Chapter 10: Creating Automated Tests with unittest 250
Automated testing basics 250

A simple unit test 251
The unittest module 253

Writing a test case 253
TestCase assertion methods 255
Fixtures 257
Using Mock and patch 257
Running multiple unit tests 259

Testing Tkinter code 260
Managing asynchronous code 260
Simulating user actions 261

Specifying an event sequence 261
Managing focus and grab 262
Getting widget information 263

Writing tests for our application 264

Table of Contents

[vi]

Testing our model 264
Testing file reading in get_all_records() 265
Testing file saving in save_record() 267
More tests 269

Testing our application 269
Testing our widgets 273

Unit testing the ValidatedSpinbox widget 274
Integration testing the ValidatedSpinbox widget 275
Testing our mixin class 278

Summary 280

Chapter 11: Improving Data Storage with SQL 281
PostgreSQL 281

Installing and configuring PostgreSQL 282
Connecting with psycopg2 282

SQL and relational database basics 283
Basic SQL operations 284

Syntax differences from Python 284
Defining tables and inserting data 285
Retrieving data from tables 286
Updating rows, deleting rows, and more WHERE clauses 288
Subqueries 289
Joining tables 290
Learning more 294

Modeling relational data 294
Normalization 294
The entity-relationship diagrams 295
Assigning data types 297

Creating the ABQ database 298
Creating our tables 298

Creating the lookup tables 298
The lab_checks table 299
The plot_checks table 299

Creating a view 300
Integrating SQL into our application 301

Creating a new model 302
Adjusting the Application class for the SQL backend 308

Building a login window 309
Using the login window 310
Fixing some model incompatibilities 312

DataRecordForm creation 312
Fixing the open_record() method 312
Fixing the on_save() method 313

Creating new callbacks 313
Updating our views for the SQL backend 315

The data record form 315
The record list 317

Last changes 318

Table of Contents

[vii]

Summary 319

Chapter 12: Connecting to the Cloud 320
HTTP using urllib 320

Basic downloading with urllib.request 321
Creating a download function 323

Parsing XML weather data 324
Implementing weather data storage 327

Creating the SQL table 328
Implementing the SQLModel.add_weather_data() method 328
Updating the SettingsModel class 329

Adding the GUI elements for weather download 330
HTTP using requests 332

Installing and using requests 332
The requests.session() fucntion 333
The response objects 334

Implementing API upload 335
Creating a test HTTP service 336
Creating our network function 339
Updating application 340
Updating the models.py file 344
Finishing up 344

FTP using ftplib 346
Basic concepts of FTP 346
Creating a test FTP service 347
Implementing the FTP upload function 348

Listing files 350
Retrieving files 350
Deleting or renaming files 351

Adding FTP upload to the GUI 351
Summary 354

Chapter 13: Asynchronous Programming with Thread and Queue 355
Tkinter's event queue 355

The after() and after_idle() methods 356
The update() and update_idletasks () methods 357
Eliminating freezes with after() and update_idletasks () 357

Running code in the background with threading 359
The threading module 359
Converting our network functions to threads 361

Simulating a slow server 362
Demonstrating the threaded versus non-threaded uploader 363

Passing messages using a queue 364
The Queue object 364
Using queues to communicate between threads 365
Adding a communication queue to our threaded uploader 368

Creating a communications protocol 368

Table of Contents

[viii]

Sending messages from the uploader 370
Handling queue messages 371

Summary 373

Chapter 14: Visualizing Data Using the Canvas Widget 374
Drawing and animation with Tkinter's Canvas 374

Animating Canvas objects 376
Creating our objects 377
Animating the racers 378
Detecting and handling a win condition 382

Creating simple graphs on the canvas 384
Creating the model method 384
Creating the graph view 385
Updating the application 388

Advanced graphs using Matplotlib and Tkinter 389
Data model method 390
Creating the bubble chart view 390
Application method 393

Summary 394

Chapter 15: Packaging with setuptools and cx_Freeze 395
Using setuptools 395

Configuring a setup.py script 396
Basic metadata arguments 396
Packages and dependencies 397
Adding extra files 398
Defining commands 399

Creating and using source distributions 400
Testing our source distribution 401

Building a wheel distribution 402
Using cx_Freeze 404

First steps with cx_Freeze 404
The build_exe options 405
Including external files 406

Building executables 407
Cleaning up the build 408

Building Windows executables with cx_Freeze 409
Building a Windows installer file 410

Building macOS executables with cx_Freeze 414
Building macOS application bundles 414
Building macOS .dmg files 416

Summary 416

Other Books You May Enjoy 417

Index 420

Preface
Becoming a programmer is not just about learning programming languages; it takes more
than a mastery of syntax rules to build applications that enable users to perform work,
manage data, or enjoy a game. As programmers, we also need to be able to convert user
requests and expectations into designs and pick the best technologies to implement them.
We need to be able to organize large code bases, test them, and maintain them in a way that
keeps them manageable and free from careless errors.

This book not only teaches you how to use the Tkinter GUI toolkit and a few other libraries;
it will also teach you many of the skills you need to move from a writer of short scripts to a
writer of medium-sized graphical applications. By the time you've finished the book, you
should feel confident that you can develop a simple but useful data-oriented application.

Who this book is for
This book is for beginners who have learned the basics of Python but haven't written much
beyond simple scripts or REPL sessions. We'll walk you step-by-step through designing
and creating a larger application, and we'll introduce you to skills that will help you
advance as a programmer.

It's also aimed at those who have used Python for data science, web development, or
system administration, but who now want to branch out into creating GUI applications.
We'll go through the knowledge and skills required to create local GUI applications.

Finally, this book may also be useful for experienced Python programmers who just want
to learn Tkinter, as most of the book details the finer points of using Tkinter classes.

What this book covers
Chapter 1, Introduction to Tkinter, introduces you to the basics of the Tkinter library and
walks you through creating a Hello World application. It will also introduce you to IDLE as
an example of a Tkinter application.

Chapter 2, Designing GUI Applications with Tkinter, goes through the process of turning a
set of user requirements into a design that we can implement.

Preface

[2]

 Chapter 3, Creating Basic Forms with Tkinter and ttk Widgets, shows you how to create a
basic data entry form that appends data to a CSV file.

Chapter 4, Reducing User Error with Validation and Automation, demonstrates how to
automatically populate and validate data in our form's inputs.

Chapter 5, Planning for the Expansion of Our Application, familiarizes you with how to break
a small script into multiple files and build a Python module that you can import. It also
contains some general advice on how to manage a larger code base.

Chapter 6, Creating Menus with Menu and Tkinter Dialogs, outlines the creation of a main
menu using Tkinter. It will also show the use of several built-in dialog types to implement
common menu functionality.

Chapter 7, Navigating Records with Treeview, details the construction of a records navigation
system using the Tkinter Treeview and the conversion of our application from append-only
to full read, write, and update capabilities.

Chapter 8, Improving the Look with Styles and Themes, informs you of how to change the
colors, fonts, and widget styles of your application, and how to use them to make your
application more usable.

Chapter 9, Maintaining Cross-Platform Compatibility, goes over Python and Tkinter
techniques to keep your application running smoothly across Windows, macOS, and Linux
systems.

Chapter 10, Creating Automated Tests with unittest, discusses how to verify your code with
automated unit tests and integration tests.

Chapter 11, Improving Data Storage with SQL, takes you through the conversion of our
application from the CSV flat-files to SQL data storage. You'll learn all about SQL and
relational data models as well.

Chapter 12, Connecting to the Cloud, covers how to work with cloud services such as web
services and FTP to download and upload data.

Chapter 13, Asynchronous Programming with Thread and Queue, explains how to use
asynchronous and multithreaded programming to keep our application responsive during
long-running processes.

Chapter 14, Visualizing Data Using the Canvas Widget, teaches you how to work with the
Tkinter Canvas widget to create visualizations and animations.

Preface

[3]

Chapter 15, Packaging with setuptools and cx_Freeze, explores preparing your Python
application for distribution as a Python package or a standalone executable.

To get the most out of this book
This book expects that you know the basics of Python 3. You should know how to write
and run simple scripts using built-in types and functions, how to define your own
functions and classes, and how to import modules from the standard library.

You can follow this book if you run Windows, macOS, Linux, or even BSD. Ensure that you
have Python 3 and Tcl/Tk installed (Chapter 1, Introduction to Tkinter, contains instructions
for Windows, macOS, and Linux) and that you have an editing environment with which
you are comfortable (we suggest IDLE since it comes with Python and uses Tkinter). In the
later chapters, you'll need access to the internet so that you can install Python packages and
the PostgreSQL database.

Download the example code files
You can download the example code files for this book from your account at
www.packtpub.com. If you purchased this book elsewhere, you can visit
www.packtpub.com/support and register to have the files emailed directly to you.

You can download the code files by following these steps:

Log in or register at www.packtpub.com.1.
Select the SUPPORT tab.2.
Click on Code Downloads & Errata.3.
Enter the name of the book in the Search box and follow the onscreen4.
instructions.

Once the file is downloaded, please make sure that you unzip or extract the folder using the
latest version of:

WinRAR/7-Zip for Windows
Zipeg/iZip/UnRarX for Mac
7-Zip/PeaZip for Linux

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Preface

[4]

The code bundle for the book is also hosted on GitHub at https:/ ​/ ​github. ​com/
PacktPublishing/​Python- ​GUI- ​Programming- ​with- ​Tkinter. In case there's an update to the
code, it will be updated on the existing GitHub repository.

We also have other code bundles from our rich catalog of books and videos available
at https:/​/​github. ​com/ ​PacktPublishing/ ​. Check them out!

Conventions used
There are a number of text conventions used throughout this book.

CodeInText: Indicates code words in text, database table names, folder names, filenames,
file extensions, pathnames, dummy URLs, user input, and Twitter handles. Here is an
example: "Determine the appropriate input widget for each data field."

A block of code is set as follows:

def has_five_or_less_chars(string):
 return len(string) <= 5

 wrapped_function = root.register(has_five_or_less_chars)
 vcmd = (wrapped_function, '%P')
 five_char_input = ttk.Entry(root, validate='key', validatecommand=vcmd)

When we wish to draw your attention to a particular part of a code block, the relevant lines
or items are set in bold:

[default]
exten => s,1,Dial(Zap/1|30)
exten => s,2,Voicemail(u100)
exten => s,102,Voicemail(b100)
exten => i,1,Voicemail(s0)

Any command-line input or output is written as follows:

pip install --user psycopg2-binary

Bold: Indicates a new term, an important word, or words that you see onscreen. For
example, words in menus or dialog boxes appear in the text like this. Here is an example:
"Once installed, launch pgAdmin and create a new admin user for yourself by
selecting Object | Create | Login/Group Role."

https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/Python-GUI-Programming-with-Tkinter/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/
https://github.com/PacktPublishing/

Preface

[5]

Warnings or important notes appear like this.

Tips and tricks appear like this.

Get in touch
Feedback from our readers is always welcome.

General feedback: Email feedback@packtpub.com and mention the book title in the
subject of your message. If you have questions about any aspect of this book, please email
us at questions@packtpub.com.

Errata: Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you have found a mistake in this book, we would be grateful if you would
report this to us. Please visit www.packtpub.com/submit-errata, selecting your book,
clicking on the Errata Submission Form link, and entering the details.

Piracy: If you come across any illegal copies of our works in any form on the Internet, we
would be grateful if you would provide us with the location address or website name.
Please contact us at copyright@packtpub.com with a link to the material.

If you are interested in becoming an author: If there is a topic that you have expertise in
and you are interested in either writing or contributing to a book, please visit
authors.packtpub.com.

Reviews
Please leave a review. Once you have read and used this book, why not leave a review on
the site that you purchased it from? Potential readers can then see and use your unbiased
opinion to make purchase decisions, we at Packt can understand what you think about our
products, and our authors can see your feedback on their book. Thank you!

For more information about Packt, please visit packtpub.com.

http://www.packtpub.com/submit-errata
http://authors.packtpub.com/
https://www.packtpub.com/

1
Introduction to Tkinter

Welcome, Python coder! If you've learned the basics of Python and want to start designing
powerful GUI applications, this book is for you.

By now, you have no doubt experienced the power and simplicity of Python. Perhaps
you've written web services, performed data analysis, or administered servers. Perhaps
you've written a game, automated routine tasks, or simply played around with code. But
now you're ready to tackle the GUI.

With so much emphasis on web, mobile, and server-side programming, the development of
simple desktop GUI applications seems increasingly like a lost art; many otherwise
experienced developers have never learned to create one. What a tragedy! Desktop
computers still play a vital role in work and home computing, and the ability to build
simple, functional applications for this ubiquitous platform should be a part of every
software developer's toolbox. Fortunately, for Python coders, that ability is well within
reach thanks to Tkinter.

In this chapter, you will cover the following topics:

Discovering Tkinter—a fast, fun, and easy-to-learn GUI library built right into
the Python standard library
Learning about IDLE—an editor and development environment written in
Tkinter and bundled with Python
Creating two Hello World applications to learn the basics of writing a Tkinter
GUI

Introduction to Tkinter Chapter 1

[7]

Introducing Tkinter and Tk
The Tk widget library originates from the Tool Command Language (Tcl) programming
language. Tcl and Tk were created by John Ousterman while he was a professor at Berkeley
in the late 1980s as an easier way to program engineering tools being used at the university.
Because of its speed and relative simplicity, Tcl/Tk rapidly grew in popularity among
academic, engineering, and Unix programmers. Much like Python itself, Tcl/Tk originated
on the Unix platform and only later migrated to macOS and Windows. Tk's practical intent
and Unix roots still inform its design today, and its simplicity compared to other toolkits is
still a major strength.

Tkinter is a Python interface to the Tk GUI library and has been a part of the Python
standard library since 1994 with the release of Python version 1.1, making it the de facto
GUI library for Python. Documentation for Tkinter, along with links for further study, can
be found in the standard library documentation at https:/ ​/​docs. ​python. ​org/​3/ ​library/
tkinter.​html.

Choosing Tkinter
Python coders who want to build a GUI have several toolkit options to choose from;
unfortunately, Tkinter is often maligned or ignored as a legacy option. To be fair, it's not a
glamorous technology that you can describe in trendy buzzwords and glowing hype.
However, Tkinter is not only adequate for a wide variety of applications, it also has the
following advantages that can't be ignored:

It's in the standard library: With few exceptions, Tkinter is available wherever
Python is available. There is no need to install pip, create virtual environments,
compile binaries, or search the web for installation packages. For simple projects
that need to be done quickly, this is a clear advantage.
It's stable: While Tkinter development has not stopped, it is slow and
evolutionary. The API has been stable for years, the changes mainly being
additional functionality and bug fixes. Your Tkinter code will likely run
unaltered for years or decades to come.
It's only a GUI toolkit: Unlike some other GUI libraries, Tkinter doesn't have its
own threading library, network stack, or filesystem API. It relies on regular
Python libraries for such things, so it's perfect for applying a GUI to existing
Python code.

https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html
https://docs.python.org/3/library/tkinter.html

Introduction to Tkinter Chapter 1

[8]

It's simple and no-nonsense: Tkinter is straightforward, old-school object-
oriented GUI design. To use Tkinter, you don't have to learn hundreds of widget
classes, a markup or templating language, a new programming paradigm, client-
server technologies, or a different programming language.

Tkinter is not perfect, of course. It also has the following disadvantages:

Look and feel: It's often derided for its look and feel, which still bear a few
artifacts from the 1990s Unix world. This has improved a great deal in the last
few years, thanks to updates in Tk itself and the addition of themed widget
libraries. We'll learn how to fix or avoid some of Tkinter's more archaic defaults
throughout the book.
Complex widgets: It also lacks more complex widgets, like rich text or HTML
rendering widgets. As we'll see later in this book, Tkinter gives us the ability to
create complex widgets by customizing and combining its simple ones.

Tkinter might be the wrong choice for a game UI or slick commercial application; however,
for data-driven applications, simple utilities, configuration dialogs, and other business logic
applications, Tkinter offers all that is needed and more.

Installing Tkinter
Tkinter is included in the Python standard library for the Windows and macOS
distributions. That means that, if you have Python on these platforms, you don't need to do
anything to install Tkinter.

However, we're going to be exclusively focused on Python 3.x for this book; so, you need to
make sure that this is the version you've got installed.

Installing Python 3 on Windows
You can obtain Python 3 installers for Windows from the python.org website by
performing the following steps:

Go to http:/ ​/ ​www. ​python. ​org/ ​downloads/ ​windows. 1.
Select the latest Python 3 release. At the time of writing, the latest version is 3.6.4,2.
with 3.7 promising to be out by publishing time.

https://www.python.org/
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Introduction to Tkinter Chapter 1

[9]

Under the Files section, select the Windows executable installer appropriate to3.
your system's architecture (x86 for 32-bit Windows, x86_64 for 64-bit Windows).
Launch the downloaded installer.4.
Click on Customize installation. Make sure the tcl/tk and IDLE option is5.
checked (it should be by default).
Continue through the installer with all defaults.6.

Installing Python 3 on macOS
As of this writing, macOS ships with Python 2 and Tcl/Tk 8.5 built in. However, Python 2 is
scheduled to be deprecated in 2020, and the code in this book will not work with it, so
macOS users will need to install Python 3 to follow this book.

Let's perform the following steps to install Python3 on macOS:

Go to http:/ ​/ ​www. ​python. ​org/ ​downloads/ ​mac- ​osx/​. 1.
Select the latest Python 3 release. At the time of writing, the latest version is 3.6.4,2.
but 3.7 should be out by publication time.
Under the Files section, select and download macOS 64-bit/32-bit3.
installer.
Launch the .pkg file that you've downloaded and follow the steps of the install4.
wizard, selecting defaults.

There is currently no recommended way to upgrade to Tcl/Tk 8.6 on macOS, though it can
be done with third-party tools if you wish. Most of our code will work with 8.5, though
special mention is made when something is 8.6 only.

Installing Python 3 and Tkinter on Linux
Most Linux distributions include both Python 2 and Python 3, however, Tkinter is not
always bundled with it or installed by default.

To find out if Tkinter is installed, open a Terminal and try the following command:

python3 -m tkinter

This should open a simple window showing some information about Tkinter. If you
get ModuleNotFoundError instead, you will need to use your package manager to install
your distribution's Tkinter package for Python 3. In most major distributions, including
Debian, Ubuntu, Fedora, and openSUSE, this package is called python3-tk.

http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org
http://www.python.org

Introduction to Tkinter Chapter 1

[10]

Introducing IDLE
IDLE is an integrated development environment that is bundled with the Windows and
macOS Python distributions (it's readily available in most Linux distributions as well,
usually as IDLE or IDLE3). IDLE is written in Python using Tkinter, and it provides us with
not only an editing environment for Python, but also a great example of Tkinter in action.
So, while IDLE's rudimentary feature set may not be considered professional grade by
many Python coders, and while you may already have a preferred environment for writing
Python code, I encourage you to spend some time using IDLE as you go through this book.

Let's get familiar with IDLE's two primary modes: shell mode and editor mode.

Using the shell mode of IDLE
When you launch IDLE, you begin in shell mode, which is simply a Python Read-Evaluate-
Print-Loop (REPL) similar to what you get when you type python in a terminal window.

Take a look at the shell mode in the following screenshot:

Introduction to Tkinter Chapter 1

[11]

IDLE's shell has some nice features that you don't get from the command-line REPL, like
syntax highlighting and tab-completion. The REPL is essential to the Python development
process, as it gives you the ability to test code in real time and inspect classes and APIs
without having to write complete scripts. We'll use the shell mode in later chapters to
explore the features and behaviors of modules. If you don't have a shell window open, you
can open one by clicking on Start, then selecting Run, and searching for Python shell.

Using the editor mode of IDLE
Editor mode is for creating Python script files, which you can later run. When the book tells
you to create a new file, this is the mode you'll use. To open a new file in the editor mode,
simply navigate to File | New File in the menu or hit Ctrl + N on the keyboard.

The following is a window where you can start typing a script:

You can run your script without leaving IDLE by hitting F5 in the editor mode; the output
will show up in a shell window.

IDLE as a Tkinter example
Before we start coding with Tkinter, let's take a quick look at what you can do with it by
inspecting some of IDLE's UI. Navigate to Options | Configure IDLE from the main menu
to open IDLE's configuration settings, where you can change IDLE's fonts, colors and
theme, keyboard shortcuts, and default behaviors, as shown in the following screenshot:

Introduction to Tkinter Chapter 1

[12]

Consider some of the following components that make up this user interface:

There are drop-down lists and radio buttons that allow you to select between
different options
There are many push buttons that you can click on to execute actions
There is a text window that can display multi-colored text
There are labeled frames that contain groups of components

Introduction to Tkinter Chapter 1

[13]

Each of these components is known as a widget; we're going to meet these widgets and
more throughout this book and learn how to use them as they've been used here. We'll
begin, however, with something much simpler.

Creating a Tkinter Hello World
Let's learn the basics of Tkinter by creating a simple Hello World script for Tkinter by
performing the following steps:

Create a new file in IDLE or your favorite editor, enter the following code, and1.
save it as hello_tkinter.py:

"""Hello World application for Tkinter"""

from tkinter import *
from tkinter.ttk import *

root = Tk()
label = Label(root, text="Hello World")
label.pack()
root.mainloop()

Run this in IDLE by hitting F5 or in your terminal by typing the following2.
command:

python3 hello_tkinter.py

You should see a very tiny window pop up with the text Hello World as shown
in the following screenshot:

Close the window and return to your editor screen. Let's break down this code3.
and talk about what it does:

from tkinter import *: This imports the Tkinter library into the
global namespace. This isn't best practice, because it fills your
namespace with a lot of classes, which you might accidentally
overwrite, but it's okay for very small scripts.

Introduction to Tkinter Chapter 1

[14]

from tkinter.ttk import *: This imports the ttk or themed Tk
widget library. We'll be using this library throughout the book, as it
adds a number of useful widgets and improves the look of existing
widgets. Since we're doing the star import here, our Tk widgets will be
replaced by the better-looking ttk widgets wherever applicable (for
instance, our Label object).
root = Tk(): This creates our root or master application object. This
represents the primary top-level window and main execution thread of
the application, so there should be one and only one instance of Tk for
every application.
label = Label(root, text="Hello World"): This creates a new
Label object. As the name implies, a Label object is just a widget for
displaying text (or images). Looking closer at this line, we see the
following:

The first argument we pass to Label() is the parent or
master widget. Tkinter widgets are arranged in a
hierarchy starting with the root window, each widget
being contained by another. Any time you create a
widget, your first argument will be the widget object
that contains the new widget. In this case, we're placing
our Label object on the main application window.
The second argument is a keyword argument that
specifies the text to be displayed on the Label object.
We store the new Label instance in a variable, label, so
that we can do more to it later.

label.pack(): This places the new label widget onto its parent
widget. In this case, we're using the pack() method, which is the
simplest of three geometry manager methods you can use. We'll learn
about these in more detail in future chapters.
root.mainloop(): This final line starts our main event loop. This
loop is responsible for processing all the events—keystrokes, mouse
clicks, and so on—and it will run until the program is quit. This is
usually the last line of any Tkinter script, since any code after it won't
run until the main window is closed.

Introduction to Tkinter Chapter 1

[15]

Take a few moments and play around with this script by adding more widgets before the
root.mainloop() call. You can add more Label objects or try Button (which creates a
clickable button) or Entry (which creates a text entry field). Just like Label, these widgets
are initialized with a parent object (use root) and a text parameter. Don't forget to call
pack() on your widget to add them to the window.

You can also try commenting out the ttk import, to see if you notice a difference in the
look of the widgets. Depending on your OS, it may look different or not.

Creating a better Hello World Tkinter
Creating a GUI the way we just did works okay for very small scripts, but a much more
scalable approach is to subclass Tkinter widgets to create component widgets that we will
then assemble into a completed application.

Subclassing is simply a way of creating a new class based on an existing
one, adding or changing only what is different in the new class. We will
use subclassing extensively in this book to extend the functionality of
Tkinter widgets.

Let's build a more robust Hello World script that demonstrates some patterns we'll use
throughout the remainder of the book. Take a look at the following steps:

Create a file called better_hello_tkinter.py and begin with the following1.
lines:

"""A better Hello World for Tkinter"""
import tkinter as tk
from tkinter import ttk

This time, we aren't doing the star imports; instead, we'll keep Tkinter and
the ttk objects in their own namespaces. This keeps our global namespace
from being cluttered up and eliminates a potential source of bugs.

Star imports (from module import *) are seen often in Python tutorials
and example code, but in production code they should be avoided.
Python modules can contain any number of classes, functions, or
variables; when you do a star import, you import all of them, which can
lead to one import overwriting the objects imported from another module.
If you find a module name cumbersome to type over and over, alias it to
something short, as we've done with Tkinter.

Introduction to Tkinter Chapter 1

[16]

Next, we create a new class called HelloView, as follows:2.

class HelloView(tk.Frame):
 """A friendly little module"""

 def __init__(self, parent, *args, **kwargs):
 super().__init__(parent, *args, **kwargs)

Our class is subclassed from Tkinter.Frame. The Frame class is a generic Tk
widget that is typically used as a container for other widgets. We can add any
number of widgets to the Frame class, then treat the whole thing as though it
were a single widget. This is a lot simpler in the long run than individually
placing every last button, label, and input on a single master window. The first
order of business in the constructor is to call super().__init__().
The super() function gives us a reference to the super class (the class we've
subclassed, in this case, tk.Frame). By calling the super class constructor and
passing along *args and **kwargs, our new HelloWidget class can take any
arguments that Frame can take.

In older versions of Python, super() had to be invoked with the name of
the child class and a reference to the current instance, such as
super(MyChildClass, self). Python 3 allows you to call it with no
arguments, but you will probably encounter code that uses the older
invocation.

Next, we're going to create two Tkinter variable objects to store the name and3.
greeting strings, as follows:

 self.name = tk.StringVar()
 self.hello_string = tk.StringVar()
 self.hello_string.set("Hello World")

Tkinter has a collection of variable types including StringVar, IntVar,
DoubleVar, and BooleanVar. You might wonder why we'd use these when
Python has perfectly good data types for all of these (and more!). Tkinter
variables are more than just containers for data: they have special functionality
that regular Python variables lack, such as the ability to automatically propagate
changes to all the widgets that reference them or trigger an event when they're
changed. Here we'll use them as a way to access the data in a widget without
having to keep or pass around references to the widget itself.

Introduction to Tkinter Chapter 1

[17]

Notice that setting a value to a Tkinter variable requires use of the set() method,
rather than direct assignment. Likewise, retrieving the data requires use of
a get() method. Here, we set the value of hello_string to Hello World. We
start building our view by creating a Label object and Entry, as follows:

 name_label = ttk.Label(self, text="Name:")
 name_entry = ttk.Entry(self, textvariable=self.name)

The Label() invocation looks familiar, but the Entry object gets a new
argument: textvariable. By passing a Tkinter StringVar variable to this
argument, the contents of the Entry box will be bound to the variable, and we
can access it without needing to reference the widget. Whenever a user enters text
in the Entry object, self.name will immediately be updated wherever it
appears.

Now, let's create Button, as follows:4.

 ch_button = ttk.Button(self, text="Change",
 command=self.on_change)

In the preceding code, we again have a new argument, command, which takes a
reference to a Python function or method. We call a function or method passed
this way a callback, and, as you might expect, this callback will be called when the
button is clicked. This is the simplest way to bind functions to a widget; later,
we'll learn a more flexible method that will allow us to bind various keystrokes,
mouse clicks, and other widget events to function or method calls.

Make sure you don't actually call your callback at this point—it should be
self.on_change, not self.on_change(). The callback should be a
reference to the function or method, not the output from it.

Let's create another Label, as follows, this time to display our text:5.

 hello_label = ttk.Label(self, textvariable=self.hello_string,
 font=("TkDefaultFont", 64), wraplength=600)

Here we've passed our other StringVarvariable variable,
self.hello_string to the textvariable argument; on a label, the
textvariable variable determines what will be displayed. By doing this,
we can change the text on the label by simply changing
self.hello_string. We'll also set a much larger font by using the font
argument, which takes a tuple in the format (font_name, font_size).

Introduction to Tkinter Chapter 1

[18]

You can enter any font name you want here, but it must be installed on
the system to work. Tk has some built-in aliases that map to sensible fonts
on every platform, such as TkDefaultFont used here. We'll learn more
about using fonts in Tkinter in Chapter 8, Improving the Look with Styles
and Themes.

The wraplength argument specifies how wide the text can be before it wraps to
the next line. We want our text to wrap when it reaches the edge of the window;
by default, label text does not wrap, so it would be cut off at the edge of the
window. By setting the wrap length to 600 pixels, our text will wrap at the width
of the screen.

So far, our widgets have been created, but not yet placed on HelloView. Let's6.
arrange our widgets as follows:

 name_label.grid(row=0, column=0, sticky=tk.W)
 name_entry.grid(row=0, column=1, sticky=(tk.W + tk.E))
 ch_button.grid(row=0, column=2, sticky=tk.E)
 hello_label.grid(row=1, column=0, columnspan=3)

In this case, we're adding our widgets using the grid() geometry manager,
rather than the pack() geometry manager we used before. As the name implies,
grid() allows us to position widgets on their parent object using rows and
columns, much like a spreadsheet or HTML table. Our first three widgets are
arranged across three columns in row 0, while hello_label will be on the
second row (row 1). The sticky argument takes a cardinal direction (N, S, E, or
W—you can either use strings or the Tkinter constants), which specifies which side
of the cell the contents must stick to. You can add these together to stick the
widget to multiple sides; for example, by sticking the name_entry widget to both
the east and west sides, it will stretch to fill the whole width of the column. The
grid() call for hello_label uses the columnspan argument. As you might
expect, this causes the widget to span three grid columns. Since our first row
established three columns for the grid layout, we need to span all three if we want
this widget to fill the width of the application. Finally, we'll finish the
__init__() method by adjusting the grid configuration:

 self.columnconfigure(1, weight=1)

Introduction to Tkinter Chapter 1

[19]

In the preceding code, the columnconfigure() method is used to make changes
to a widget's grid columns. Here, we're telling it to weight column 1 (the second
column) more than the others. By doing this, the second column of the grid
(where our entry lives) will expand horizontally and squash surrounding
columns to their minimum widths. There is also a rowconfigure() method for
making similar changes to grid rows.

Before we finish our HelloModule class, we have to create the callback for7.
ch_button, as follows:

def on_change(self):
 if self.name.get().strip():
 self.hello_string.set("Hello " + self.name.get())
 else:
 self.hello_string.set("Hello World")

To get the value of the text entry, we call the get() method of its text
variable. If this variable contains any characters (notice we strip the white
space), we'll set our hello text to greet the name entered; otherwise, we'll just
greet the whole world.

Notice by using the StringVar objects we don't have to interact directly
with the widgets. This saved us from having to keep a lot of widget
references in our class, but, more importantly, our variable could be
updated from any number of sources or update any number of
destinations without us having to explicitly write code to do so.

With HelloView created, we move onto the actual application class, as follows:8.

class MyApplication(tk.Tk):
 """Hello World Main Application"""

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.title("Hello Tkinter")
 self.geometry("800x600")
 self.resizable(width=False, height=False)

Introduction to Tkinter Chapter 1

[20]

This time, we subclass Tk, which will represent our main application object.
There is some debate in the Tkinter world whether or not this is best practice.
Since there can be only one Tk object in the application, it could theoretically
create problems if we want multiple MyApplication objects somewhere
down the line; for simple, single-window applications, it's perfectly fine.

As with our module, we call super().__init__() and pass along any9.
arguments. Notice we don't need a parent widget this time, since the Tk object
is the root window and has no parent. Then there are the following three calls to
configure our application window:

self.title(): This call sets the window title, which usually appears in the
task list and/or window bar in our OS environment.
self.geometry(): This call sets the size of our window in pixels, in the
format x * y (width x height).
self.resizable(): This call sets whether the program window can be
resized. We're disabling resizing here, both in width and height.

We finish our application class by adding our view to the main window, as10.
follows:

 HelloView(self).grid(sticky=(tk.E + tk.W + tk.N + tk.S))
 self.columnconfigure(0, weight=1)

Notice that we create and place HelloView in a single line of code. We do this in
situations where we don't need to keep a reference to the widget, but since
grid() does not return a value, you'll have to stick to the two-statement version
if you want to access the widget later in your code.

Because we want the view to fill the application window, our grid() call sticks it
to all sides of its cell, and our columnconfigure() call causes the first column to
expand. Note that we've omitted the row and column arguments; without them,
and grid() simply uses the first column of the next available row (in this case, 0,
0).

With our classes defined, we'll start the actual execution of the code, as follows:11.

if __name__ == '__main__':
 app = MyApplication()
 app.mainloop()

Introduction to Tkinter Chapter 1

[21]

In Python, if __name__ == '__main__': is a common idiom to check
if a script is being run directly, such as when we type python3
better_hello_world.py at a terminal. If we were to import this file as a
module into another Python script, this check would be false and the code
after would not be run. It's a good practice to put your program's main
execution code below this check so that you can safely reuse your classes
and functions in larger applications.

Remember that MyApplication is a subclass of Tk, so it acts as the root window. We only
need to create it and then start its main loop. Take a look at the following screenshot:

This was certainly overkill for a Hello World application, but it demonstrates the use of
subclassing to segment our application into modules, which will vastly simplify layouts
and code organization as we build larger programs.

Summary
Now that you've installed Python 3, learned to use IDLE, gotten a taste of the simplicity
and power of Tkinter, and have seen how to begin structuring it for more complicated
applications, it's time to start writing a real application.

In the next chapter, you'll start your new job at ABQ AgriLabs and be presented with a
problem that will need to be solved with your programming skills and Tkinter. You will
learn how to dissect this problem, develop a program specification, and design a user-
friendly application that will be part of the solution.

2
Designing GUI Applications

with Tkinter
Software applications are developed in three repeating phases: understanding a problem,
designing a solution, and implementing the solution. These phases repeat throughout the
life of an application, refining and honing it until it is either optimal or obsolete.

In this chapter, we'll learn about the following topics:

Introducing and analyzing a scenario in the workplace that will need a software
solution
Documenting the requirements of the solution
Developing a design for a piece of software that implements the solution

A problem at ABQ AgriLabs
Congratulations! Your Python skills have landed you a great data analyst job at ABQ
AgriLabs. So far, your job is fairly simple: collating and doing simple data analysis on the
CSV files sent to you daily from the lab's data entry staff.

There is a problem, though. You've noted with frustration that the quality of the CSV files
from the lab is sadly inconsistent. Data is missing, typos abound, and often the files have to
be re-entered in a time-consuming process. The lab director has noticed this as well and,
knowing that you are a skilled Python programmer, she thinks you might be able to help.

You've been enlisted to program a solution that will allow the data entry staff to enter lab
data into a CSV file with fewer mistakes. Your application needs to be simple and allow as
little room for error as possible.

Designing GUI Applications with Tkinter Chapter 2

[23]

Assessing the problem
Spreadsheets are often a first stop for computer users who need to keep track of data. Their
table-like layouts and computational features seem to make them ideal for the task.
However, as a set of data grows and is added to by multiple users, the shortcomings of
spreadsheets become apparent: they don't enforce data integrity, their table-like layout can
be visually confusing when dealing with long rows of sparse or ambiguous data, and users
can easily delete or overwrite data if they aren't being careful.

To improve this situation, you propose to implement a simple GUI data entry form that
appends data to a CSV file in the format we need. Forms can help to improve data integrity
in the several ways:

Allowing only the correct type of data to be entered (for example, only allowing
numerals in a number field)
Limiting choices to only valid options
Auto-filling information like current dates, times, and so on
Verifying that entered data is within expected ranges or matches expected
patterns
Ensuring that all data has been filled in

By implementing such a form, we can greatly reduce the number of errors being entered by
the data entry staff.

Gathering information about the problem
To build the data entry form application, you need to gather details about what it needs to
accomplish. Fortunately, you already know the output part of the equation: you need a
CSV file containing data about the plants growing in the plots of each laboratory and the
environmental conditions at each plot. You work with these files every day, so you're pretty
familiar with the field layout.

However, you don't know everything about the data or the process of entering it; you'll
need to talk to the other staff involved to find out more information.

First, you'll need to find out more detail about the data being recorded. This isn't always as
easy as it sounds. Software needs absolute, black-and-white rules when dealing with data;
people, on the other hand, tend to think in generalities about their data, and they often
don't consider the exact details of limits or edge cases without some prompting.

Designing GUI Applications with Tkinter Chapter 2

[24]

As a programmer, it's your job to come up with questions that will bring out the
information you need.

You decide you should start with the lab technicians and learn more about the data they're
collecting. You come up with the following questions:

What values are acceptable for each field? Are any fields constrained to a set of
values?
What units are represented by each of the numeric fields?
Are numeric fields truly number-only fields? Would they ever need letters or
symbols?
What range of numbers is acceptable for each numeric field?
How do you record data and how long does it take?

Data isn't the only consideration. If we're making a program to help reduce user error, we
also have to understand those users and how they work. In the case of this application, our
users will be the data entry staff. We need to ask them questions about their needs and
workflow to understand how to create an application that works well for them.

We come up with the following list of questions:

In what format do you get the data you're entering?
When is the data received and how soon is it entered? What's the latest it might
be entered?
Are there fields that could be automatically populated? Should users be able to
override the auto values?
What's the overall technical ability of the users?
What do you like about the current solution? What do you dislike?
Do users have visual or manual impairments that should be accommodated?

Finally, we need to understand the technology involved with operating our
application—the computers, networks, servers, and platforms being used to accomplish the
task.

You decide to add the following questions, which you'll assess yourself when you meet
with the data entry staff:

What kind of computer does data entry use?
What platform does it run?
How fast or powerful is it?

Designing GUI Applications with Tkinter Chapter 2

[25]

Is Python available on these systems?
Which Python libraries are available?

What you found out
You start by writing down the following basics about ABQ that you know:

Your ABQ facility has five greenhouses, each operating with a different climate,
marked A, B, C, D, and E
Each greenhouse has 20 plots (labeled 1 through 20)
There are currently four seed samples, each coded with a six-character label
Each plot has 20 seeds of a given sample planted in it, as well as its own
environmental sensor unit

Information about the data being collected
Your talk with the lab technicians revealed a lot about the data. Four times a day, at 8:00,
12:00, 16:00, and 20:00, each technician checks the plots in one or two labs. They use a paper
form to record values at each plot, recording all values to two decimal places. This usually
takes 30 to 40 minutes per lab, and the whole process typically takes 90 minutes.

Each plot has an environmental sensor that detects the light, temperature, and humidity at
the plot. Unfortunately, these devices are prone to failure, indicated by an Equipment
Fault light on the unit. Technicians record if this light is lit, since it invalidates the
environmental data.

Finally, the technicians tell you about the units and acceptable ranges for the fields, which
you record in the following chart:

Field Data type Notes

Date Date The data collection date. Almost always the current date

Time Time
The start of the period during which measurements were
taken. One of 8:00, 12:00, 16:00, or 20:00

Lab Character The lab ID, which will be A to E

Technician Text The name of the technician recording data

Plot Int The plot ID, which will be 1 through 20

Designing GUI Applications with Tkinter Chapter 2

[26]

Seed Sample Text
ID string for seed sample. Always a six-character code
containing digits 0 to 9 and capital letters A to Z

Fault Boolean
True if environmental equipment registered a failure,
otherwise false

Humidity Decimal Absolute humidity in g/m³, roughly between 0.5 and 52.0

Light Decimal
Amount of sunlight at the plot center in kilolux, between 0
and 100

Temperature Decimal Degrees C, should not go below 4 or above 40

Blossoms Int
The number of blossoms in the plot must be 0 or more, but
unlikely to ever approach 1,000

Fruit Int
The number of fruits in the plot must be 0 or more, but
unlikely to ever approach 1,000

Plants Int The number of growing plants, between 0 and 20.

Max height Decimal
The height of the tallest plant in cm. At least 0, unlikely to
approach 1,000.

Median height Decimal
The median height of plants in the plot, in cm. At least 0,
unlikely to approach 1,000

Min height Decimal
The height of the smallest plant in cm. At least 0, unlikely to
approach 1,000

Notes Long Text
Additional observations about the plant, data, instruments,
and so on

Information about the users of the application
Your session with the data entry staff yielded good information about their workflow,
requirements, and technology.

The lab technicians drop off their paper forms as they're completed. The data is typically
entered right away and usually on the same day as it's handed in.

The technicians are currently using LibreOffice on a Debian Linux workstation to enter the
data. Using copy and paste, they can bulk-fill fields with repeated data like date, time, and
technician. The autocompletion feature of LibreOffice is often helpful in text fields, but
sometimes causes accidental data errors in the number fields.

Designing GUI Applications with Tkinter Chapter 2

[27]

The workstation being used is several years old, but performs adequately. You get a chance
to look at it and find that Python and Tkinter are already installed.

There are four data entry clerks in total, but only one working at any one time; while
interviewing the clerks, you learn that one has red-green color blindness, and another has
trouble using a mouse due to RSI issues. All are reasonably computer literate.

Documenting specification requirements
Now that you've assembled your data about the application, it's time to write up a
specification. Software specifications can range from very formal, contractual documents
that include time estimates and deadlines, to a simple set of descriptions of what the
programmer intends to build. The purpose of the specification is to give everyone involved
in the project a point of reference for what the developer will create. It spells out the
problem to be solved, the functionality required, and the scope of what the program should
and shouldn't do.

Your scenario is rather informal and your application is simple, so you do not need a
detailed formal specification in this case. However, a basic write-up of what you know will
make sure that you, your boss, and the users are all on the same page.

Contents of a simple specification
We'll start our specification with the following outline of the items we need to write:

Description: This is one or two sentences that describe the primary purpose,
function, and goals of the application. Think of it as the program's mission
statement.
Functionality required: This section is a list of specific things the program needs
to be able to do to be minimally functional. It can include both hard
requirements, such as detailed output and input formats, and soft
requirements—goals that are not quantifiably attainable, but that the program
should strive toward (for example, "reduce user errors as much as possible").
Functionality not required: This section is a list of things the program does not
need to do; it exists to clarify the scope of the software and make sure nobody
expects unreasonable things from the application.
Limitations: This is a list of constraints under which the program must operate,
both technological and human.

Designing GUI Applications with Tkinter Chapter 2

[28]

Data dictionary: This is a detailed list of the data fields the application will deal
with and their parameters. These can get quite lengthy but are a critical reference
as the application expands and the data gets utilized in other contexts.

Writing the ABQ data entry program specification
You could write a specification in your favorite word processor, but ideally the
specification is a part of your code; it will need to be kept with the code and synchronized
with any changes to the application. For that reason, we're going to write it in our text
editor using the reStructuredText markup language.

For Python documentation, reStructuredText, or reST, is the official
markup language. The Python community encourages the use of reST to
document Python projects, and many packaging and publication tools
used in the Python community expect the reST format. We'll cover reST in
more depth in Chapter 5, Planning for the Expansion of Our Application, but
you can find the official documentation at http:/ ​/​docutils.
sourceforge. ​net/ ​rst. ​html.

Let's begin writing our specification, one section at a time as follows:

Begin the specification with the name of the application and a short description.1.
This should contain a summary of the program's purpose, as follows:

======================================
 ABQ Data Entry Program specification
======================================

Description

The program is being created to minimize data entry errors for
laboratory measurements.

Now, let's list the requirements. Remember that hard requirements are2.
objectively attainable goals—input and output requirements, calculations that
must be done, features that must be present, whereas our soft requirements are
subjective or best-effort goals. Look through your findings from the last section,
and consider which needs are which. You should come up with something like
the following:

Functionality Required

http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html

Designing GUI Applications with Tkinter Chapter 2

[29]

The program must:

* allow all relevant, valid data to be entered, as per the
field chart
* append entered data to a CSV file
 - The CSV file must have a filename
 of abq_data_record_CURRENTDATE.csv, where
 CURRENTDATE is the date of the checks in
 ISO format (Year-month-day)
 - The CSV file must have all the fields as per the chart
* enforce correct datatypes per field

The program should try, whenever possible, to:

* enforce reasonable limits on data entered
* Auto-fill data
* Suggest likely correct values
* Provide a smooth and efficient workflow

Next, we'll reign in the scope of the program with the Functionality Not3.
Required section. Remember that this is only an entry form for now; editing or
deletion will be handled in the spreadsheet application. We'll clarify this as
follows:

Functionality Not Required

The program does not need to:

* Allow editing of data. This can be done in LibreOffice if
necessary.
* Allow deletion of data.

For the Limitations section, remember that we have some users with physical4.
constraints, as well has hardware and operating system constraints. Add it as
follows:

Limitations

The program must:

* Be efficiently operable by keyboard-only users.
* Be accessible to color blind users.
* Run on Debian Linux.
* Run acceptably on a low-end PC.

Designing GUI Applications with Tkinter Chapter 2

[30]

Finally, the data dictionary, this is essentially the table we've made previously,5.
but we'll break out range, data types, and units for quick reference, as follows:

+------------+----------+------+--------------+--------------------
-+
|Field | Datatype | Units| Range |Descripton
|
+============+==========+======+==============+====================
=+
|Date |Date | | |Date of record
|
+------------+----------+------+--------------+--------------------
-+
|Time |Time | |8, 12, 16, 20 |Time period
|
+------------+----------+------+--------------+--------------------
-+
|Lab |String | | A - E |Lab ID
|
+------------+----------+------+--------------+--------------------
-+
|Technician |String | | |Technician name
|
+------------+----------+------+--------------+--------------------
-+
|Plot |Int | | 1 - 20 |Plot ID
|
+------------+----------+------+--------------+--------------------
-+
|Seed |String | | |Seed sample ID
|
|sample | | | |
|
+------------+----------+------+--------------+--------------------
-+
|Fault |Bool | | |Fault on sensor
|
+------------+----------+------+--------------+--------------------
-+
|Light |Decimal |klx | 0 - 100 |Light at plot
|
+------------+----------+------+--------------+--------------------
-+
|Humidity |Decimal |g/m³ | 0.5 - 52.0 |Abs humidity at plot
|
+------------+----------+------+--------------+--------------------
-+

Designing GUI Applications with Tkinter Chapter 2

[31]

|Temperature |Decimal |°C | 4 - 40 |Temperature at plot
|
+------------+----------+------+--------------+--------------------
-+
|Blossoms |Int | | 0 - 1000 |# blossoms in plot
|
+------------+----------+------+--------------+--------------------
-+
|Fruit |Int | | 0 - 1000 |# fruits in plot
|
+------------+----------+------+--------------+--------------------
-+
|Plants |Int | | 0 - 20 |# plants in plot
|
+------------+----------+------+--------------+--------------------
-+
|Max height |Decimal |cm | 0 - 1000 |Ht of tallest plant
|
+------------+----------+------+--------------+--------------------
-+
|Min height |Decimal |cm | 0 - 1000 |Ht of shortest plant
|
+------------+----------+------+--------------+--------------------
-+
|Median |Decimal |cm | 0 - 1000 |Median ht of plants
|
|height | | | |
|
+------------+----------+------+--------------+--------------------
-+
|Notes |String | | |Miscellaneous notes
|
+------------+----------+------+--------------+--------------------
-+

That's our specification for now! The specification is very likely to grow, change, or evolve
in complexity as we discover new needs.

Designing the application
With our specification in hand and our requirements clear, it's time to start designing our
solution. We'll start with the form GUI component itself.

Designing GUI Applications with Tkinter Chapter 2

[32]

We're going to create a basic design for our form in the following three steps:

Determine the appropriate input widget for each data field1.
Group together related items to create a sense of organization2.
Layout our widgets in their groups on a form sheet3.

Exploring Tkinter input widgets
Like all toolkits, Tkinter offers a variety of input widgets for different kinds of data.
However, ttk offers additional widget types and enhances some (but not all!) of Tkinter's
native widgets. The following table offers advice on which widgets are most appropriate
for different kinds of data entry:

Widget Description Used for

ttk.Entry Basic text entry Single-line strings

ttk.Spinbox
Text entry with increment/decrement
arrows Numbers

Tkinter.Listbox Box with a list of choices Choice between several
values

Tkinter.OptionMenu Drop-down list with choices Choice between several
values

ttk.Combobox Drop-down list with optional text entry Choice between several
values plus text entry

ttk.Checkbutton Checkbox with label Boolean values

ttk.Radiobutton
Like checkbox, but only one of a set can
be selected

Choice between small set
of values

Tkiner.Text Multiline text entry box Long, multiline strings

Tkinter.Scale Mouse-operated slider Bounded number data

Designing GUI Applications with Tkinter Chapter 2

[33]

Let's consider which of these widgets are appropriate for the data that needs to be entered:

There are several Decimal fields, many with clear boundary ranges with Min
height, Max height, Median height, Humidity, Temperature, and Light.
You could use a Scale widget for these, but it's not really appropriate for precise
data entry, since it requires careful positioning to get an exact value. It's also
mouse-operated and that violates your specification requirements. Instead, use
the Spinbox widget for these.
There are also some Int fields, such as Plants, Blossoms, and Fruit. Again,
the Spinbox widget is the right choice.
There are a couple of fields with a limited set of possible values—Time and Lab.
The Radiobutton or Listbox widgets could work for these, but both take up a
lot of space and are less keyboard-friendly as they require selection with arrow
keys. There is also OptionMenu, but it is also mouse or arrow keys only. For
these, use the Combobox widget instead.
Plot is a tricky case. At face value, it looks like an Int field, but think about it.
The plots could just as well be identified by letters, or symbols, or names.
Numbers just happen to be an easy set of values with which to assign arbitrary
identifiers. The Plot ID, like the Lab ID, is a constrained set of values; so, it
would make more sense to use a Combobox widget here.
The Notes field is multiline text, so the Text widget is appropriate here.
There is one Boolean field, Fault. It could be handled with Radiobutton or
Combobox, but Checkbutton is the optimal choice—it's compact and reasonably
keyboard-friendly.
The remaining lines are simple, one-line character fields. We'll use Entry for
those fields.
You might be wondering about the Date field. Tkinter has no special widget for
dates; so, we'll use a generic Entry widget here for the time being.

Our final analysis will be as follows:

Field Widget type

Blossoms ttk.Spinbox

Date ttk.Entry

Fault ttk.Checkbutton

Fruit ttk.Spinbox

Designing GUI Applications with Tkinter Chapter 2

[34]

Humidity ttk.Spinbox

Lab ttk.Combobox

Light ttk.Spinbox

Max height ttk.Spinbox

Median height ttk.Spinbox

Min height ttk.Spinbox

Notes Tkinter.Text

Plants ttk.Spinbox

Plot ttk.Combobox

Seed Sample ttk.Entry

Technician ttk.Entry

Temperature ttk.Spinbox

Time ttk.Combobox

Grouping our fields
Humans tend to get confused when staring at a huge wall of inputs in no particular order.
You can do your users a big favor by breaking up the input form into sets of related fields.
Of course, that assumes that your data has related sets of fields, doesn't it?

After looking over your fields, you identify the following related groups:

The Date, Lab, Plot, Seed Sample, Technician, and Time fields are
identifying data or metadata about the record itself. You could group these
together under a heading like Record information.
The Blossoms, Fruit, three Height fields, and Plants fields are all
measurements that have to do with the plants in the Plot field. You could group
these together as Plant data.
The Humidity, Light, Temperature, and Equipment Fault fields, are all
information from the environmental sensor. You could group these as
Environmental data.
The Notes field could be related to anything, so it's in a category of its own.

Designing GUI Applications with Tkinter Chapter 2

[35]

To group the preceding fields in Tkinter, we could just insert labels between each set of
fields, but it's worth exploring the various options we have for grouping widgets together:

Widget Description

ttk.LabelFrame Frame with label text and an optional border

ttk.NoteBook Tabbed widget that allows multiple pages

Tkinter.PanedWindow
Allows for multiple re-sizable frames in horizontal or vertical
arrangement

We don't want our form on multiple pages, nor will users need to resize the sections, but
the LabelFrame widget sounds perfect for our needs.

Laying out the form
So far, we know that we have 17 inputs, which are grouped as follows:

Six fields under Record information
Four fields under Environmental data
Six fields under Plant data
One large Notes field

We want to group the preceding inputs using LabelFrame.

Notice that two of the first three sections have widgets in multiples of three. That suggests
that we could arrange them in a grid with three items across. How should we order the
fields within each group?

Ordering of fields seems like a trivial item, but for the user it can make a significant
difference in usability. Users who have to jump around a form haphazardly to match their
workflow are more likely to make mistakes.

As you learned, the data is entered from paper forms filled out by the lab technicians. You
obtained a copy of the form, as shown in the following screenshot:

Designing GUI Applications with Tkinter Chapter 2

[36]

It looks like items are mostly grouped the way our records are grouped, so we'll use the
ordering on this form to order our fields. That way, data entry clerks can zip right through
the form without having to bounce around the screen.

When designing a new application to replace some part of an existing
workflow, it's important to learn and respect that workflow. While we'll
have to adjust that workflow to actually improve it, we don't want to
make another part of someone's job harder just to make the part we're
working on simpler.

One last consideration in our design is where to place field labels in relation to the fields.
There is a good deal of debate in the UI design community over the best placement of
labels, but the consensus is that one of the following two options is best:

Labels above fields
Labels to the left of fields

Designing GUI Applications with Tkinter Chapter 2

[37]

You might try sketching out both to see which you prefer, but for this application labels
above fields will probably work better for the following reasons:

Since both fields and labels are rectangular in shape, our form will be more
compact by stacking them
It's a lot easier to make the layout work, since we don't have to find a label width
that works for all the labels without distancing them too far from the fields

The one exception is the check button field; check buttons are typically labeled to the right
of the widget.

Take a moment to make a mockup of your form, using paper and pencil, or a drawing
program. Your form should look as follows:

Designing GUI Applications with Tkinter Chapter 2

[38]

Laying out the application
With your form designed, it's time to consider the rest of the application's GUI:

You'll need a save button to trigger storage of the entered data
Sometimes, we might need to provide status information to the user; applications
typically have a status bar that displays these kinds of messages
Finally, it might be good to have a header indicating what the form is

Adding the following things to our sketch, we have something like the following
screenshot:

Designing GUI Applications with Tkinter Chapter 2

[39]

Looks good! This is definitely a form we can implement in Tkinter. Your final step is to
show these designs to your users and the director for any feedback or approval.

Keep stakeholders involved as much as possible in your application
design process. This reduces the possibility that you'll have to go back and
redesign your application later.

Summary
In this chapter, you worked through the first two phases of application development:
understanding the problem and designing a solution. You learned how to develop an
application specification by interviewing users and examining the data and requirements,
creating an optimal form layout for your users, and learned which widgets are available in
Tkinter for dealing with different kinds of input data. Most importantly, you learned that
developing an application doesn't begin with code, but with research and planning.

In the next chapter, you'll create a basic implementation of your designs with Tkinter and
Python. We will get familiar with the Tkinter widgets required to create our form, build the
form, and place the form within the application. We'll also learn how to make our form
trigger callback actions and discover how to structure our code to ensure efficiency and
consistency.

3
Creating Basic Forms with

Tkinter and ttk Widgets
Good news! Your design has been reviewed and approved by the director. Now it's time to
start implementing it!

In this chapter, you'll cover the following topics:

Evaluating your technology choices in light of the design
Getting to know our selected Tkinter and ttk widgets
Implementing and testing the form and application

Let's get coding!

Evaluating our technology choices
Our first implementation of the design will be a very simple application that delivers the
core functionality of the specification and little else. This is known as a minimum viable
product or MVP. Once we've established an MVP, we'll have a better understanding of
how to develop it into a final product.

Before we get to that, let's take a moment to evaluate our technology choices.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[41]

Choosing a technology
Naturally, we're going to build this form using Python and Tkinter. However, it's worth
asking whether Tkinter is really a good choice of technology for the application. We need to
take the following things into consideration when choosing the GUI toolkit used to
implement this form:

Your current expertise and knowledge: Your expertise is in Python, but you
have little experience in creating GUIs. For the fastest time to deliver, you need
an option that works well with Python and isn't complicated to learn. You also
want something established and stable, as you won't have time to keep up with
new developments in the toolkit. Tkinter works here.
The target platforms: You will be developing the application on a Windows PC,
but it will need to run on Debian Linux, so the choice of GUI should be cross-
platform. The computer it will run on is old and slow, so your program needs to
be frugal with resources. Tkinter also works here.
Application functionality: Your application needs to be able to display basic
form fields, validate the data entered, and write it to CSV. Tkinter can handle
these frontend requirements, and Python can handle the CSV file easily.

Given the options available for Python, Tkinter is a good choice. It's got a short learning
curve, it's lightweight, it's readily available on both your development and target platforms,
and it contains the functionality necessary for the form.

Python has other options for GUI development, including PyQT, Kivy,
and wxPython. These have different strengths and weaknesses compared
to Tkinter, but if you find Tkinter doesn't fit well for a project, one of these
might be a better option.

Exploring Tkinter widgets
When we designed our application, we picked out a widget class that most closely matched
each field we needed. These were the Entry, Spinbox, Combobox, Checkbutton, and
Text widgets. We also determined that we'd need the Button and LabelFrame widgets to
implement the application layout. Before we start writing our class, let's take a look at each
of these widgets.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[42]

Some of our widgets are in Tkinter, others are in the ttk themed widget
set, and a few are in both libraries. We prefer the ttk versions wherever
they exist, since they look better across platforms. Pay careful attention to
the library from which we import each widget.

The Entry widget
The ttk.Entry widget is a basic, one-line character entry, as shown in the following
screenshot:

You can create an entry by executing the following code:

my_entry = ttk.Entry(parent, textvariable=my_text_var)

In the preceding code, the commonly used arguments to ttk.Entry are as follows:

parent: This argument sets the parent widget for the entry.
textvariable: This is a Tkinter StringVar variable whose value will be bound
to this input widget.
show: This argument determines which character will be displayed when you
type into the box. By default, it's the character you type, but this can be replaced
(for example, for password entry you might specify * or dot to be shown
instead).
Entry: This widget, like all the ttk widgets, supports additional formatting and
styling options, which we will discuss in detail in Chapter 8, Improving the Look
with Styles and Themes.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[43]

Among all the preceding arguments, use of the textvariable argument is optional;
without it, we can extract the value in the Entry widget, using its get() method. Binding a
variable to our input widget has some advantages, however. First, we don't have to keep
or pass around a reference to the widget itself. This will make it easier to reorganize our
software into separate modules in later chapters. Also, changes to the value of the input are
automatically propagated to the variable and vice versa.

The Spinbox widget
The ttk.Spinbox widget adds increment and decrement buttons to a regular
Entry widget, making it suitable for numerical data.

Prior to Python 3.7, Spinbox was only available in Tkinter, not ttk. If
you're using Python 3.6 or an older version, use the
Tkinter.Spinbox widget instead. The sample code uses the Tkinter
version for compatibility.

A Spinbox widget is created as follows:

my_spinbox = tk.Spinbox(
 parent,
 from_=0.5,
 to=52.0,
 increment=.01,
 textvariable=my_double_var)

As seen in the preceding code, the Spinbox widget takes some extra constructor arguments
to control the increment and decrement button behavior, as follows:

from_: This argument determines the lowest value to which the arrows
decrement. The ending underscore is needed because from is a Python keyword;
in Tcl/Tk it's just from.
to: This argument determines the highest value to which the arrows increment.
increment: This argument represents the amount at which arrows increment or
decrement.
values: This argument takes a list of string or number values that can be
incremented through.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[44]

Note that both from_ and to are required if you use either; that is, you
cannot just specify a lower limit, doing so will either cause an exception or
strange behavior.

Take a look at the Spinbox widget in the following screenshot:

The Spinbox widget is not just for numbers, even though that's primarily how we'll be
using it. It can also take a list of strings, which can be selected using the arrow buttons.
Because it can be used for strings or numbers, the textvariable argument takes
the StringVar, IntVar, or DoubleVar data types.

Be aware that none of these parameters actually limit what can be typed
into a Spinbox widget. It's nothing more than an Entry widget with
buttons tacked on, and you can type not only values outside the valid
range, but letters and symbols as well. Doing so can cause an exception if
you've bound the widget to a non-string variable. In Chapter 4, Reducing
User Error with Validation and Automation, we'll learn how to make the
Spinbox limit entry to valid characters only.

The Combobox widget
The ttk.Combobox argument is an Entry widget that adds a drop-down select menu. To
populate the drop-down menu, simply pass in a values argument with a list of the strings,
which the user can select.

You can execute the following code to create a Combobox widget:

combobox = ttk.Combobox(
 parent, textvariable=my_string_var,
 values=["Option 1", "Option 2", "Option 3"])

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[45]

The preceding code will generate the following widget:

If you're used to HTML <SELECT> widgets or drop-down widgets in
other toolkits, the ttk.Combobox widget may seem strange to you. It's
really an Entry widget with a drop-down menu to select some preset
strings. Just like the Spinbox widget, it doesn't limit the values that can be
typed in. In Chapter 4, Reducing User Error with Validation and Automation,
we'll modify it to make it more like a conventional drop-down widget.

The Checkbutton widget
The ttk.Checkbutton widget is a labeled checkbox for entering boolean data. Unlike
Spinbox and Combobox, it is not derived from the Entry widget and its arguments are
different as follows:

text: This argument sets the label for the widget.
variable: This argument is BooleanVar, to which the checked status is bound.
textvariable: Unlike the Entry based widgets, this argument can be used to
bind a variable to the label text of the widget. You won't use this often, but you
should know it exists in case you mistakenly assign your variable to it.

You can execute the following code to create a Checkbutton widget:

my_checkbutton = ttk.Checkbutton(
 parent, text="Check to make this option True",
 variable=my_boolean_var)

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[46]

The Checkbox widget appears as a clickable box with a label by it, as shown in the
following screenshot:

The Text widget
The Text widget is much more than just a multiline Entry widget. It has a powerful
tagging system that allows you to implement multicolored text, hyperlink-style clickable
text, and more. Unlike other widgets, it can't be bound to a Tkinter StringVar, so setting
or retrieving its contents needs to be done through its get(), insert(), and delete()
methods.

When reading or modifying with these methods, you are required to pass in one or two
index values to select the character or range of characters that you're operating on. These
index values are strings that can take any of the following formats:

The line number and character number separated by a dot. Lines are numbered
from 1 and characters from 0, so the first character on the first line is 1.0, while
the twelfth character on the fourth line would be 4.11.
The end string or Tkinter constant END, indicating the end of the field.
A numerical index plus one of the words linestart, lineend, wordstart, and
wordend, indicating the start or end of the line or word relative to the numerical
index. For example, 6.2 wordstart would be the start of the word containing
the third character on line 6; 2.0 lineend would be the end of line 2.
Any of the preceding, a plus or minus operator, and a number of characters or
lines. For example, 2.5 wordend - 1 chars would be the character before the
end of the word containing the sixth character on line 2.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[47]

The following example shows the basics of working with a Text widget:

create the widget. Make sure to save a reference.
mytext = tk.Text(parent)

insert a string at the beginning
mytext.insert('1.0', "I love my text widget!")

insert a string into the current text
mytext.insert('1.2', 'REALLY ')

get the whole string
mytext.get('1.0', tk.END)

delete the last character.
Note that there is always a newline character
at the end of the input, so we backup 2 chars.
mytext.delete('end - 2 chars')

If you run the preceding code, you'll get the following output:

For the Notes field in this form, we just need a simple multiline Entry; so, we'll only be
using the most basic functionality of the Text widget for now.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[48]

The Button widget
The ttk.Button widget should also be familiar from Chapter 1, Introduction to Tkinter. It's
just a straightforward button that you click with the mouse or spacebar, as shown in the
following screenshot:

Just like the Checkbutton widget, this widget uses the text and textvariable
configuration options to control the label on the button. The Button objects don't
take variable, but they do take a command argument, which specifies a Python function to
run when the button is clicked.

The following example shows the use of a Button object:

tvar = tk.StringVar()
def swaptext():
 if tvar.get() == 'Hi':
 tvar.set('There')
 else:
 tvar.set('Hi')

my_button = ttk.Button(parent, textvariable=tvar, command=swaptext)

The LabelFrame widget
We have chosen the ttk.LabelFrame widget to group the fields in our application. As the
name implies, it's Frame with Label (and a box around it, usually). The LabelFrame
widget takes a text argument in the constructor that sets the label, positioned in the top-
left of the frame.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[49]

Tkinter and ttk contain many more widgets, some of which we'll
encounter later in this book. Python also ships with a widget library
called tix, which contains several dozen widgets. However, tix is very
outdated, and we won't be covering it in this book. You should know that
it exists, though.

Implementing the application
To start our application script, create a folder called ABQ data entry and a file inside it
called data_entry_app.py.

We'll start with the following boilerplate code we learned in Chapter 1, Introduction to
Tkinter:

import tkinter as tk
from tkinter import ttk

Start coding here

class Application(tk.Tk):
 """Application root window"""

if __name__ == "__main__":
 app = Application()
 app.mainloop()

Running this script should give you a blank Tk window.

Saving some time with a LabelInput class
Every input widget on our form has a label associated with it. In a small application, we
can just create the label and input separately, then add each to the parent frame as follows:

form = Frame()
label = Label(form, text='Name')
name_input = Entry(form)
label.grid(row=0, column=0)
name_input.grid(row=1, column=0)

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[50]

That works fine and you could do it that way for your application, but it also creates a lot of
tedious, repetitious code, and moving inputs around means changing twice as much code.
Since the label and input widgets belong together, it would be smart to create a small
wrapper class to contain both and establish some universal defaults.

When coding, be on the lookout for sections that contain a lot of repetitive
code. You can often abstract this code into a class, function, or loop. Doing
so won't just save your fingers some typing, it will ensure consistency and
reduce the total amount of code you have to maintain.

Let's take a look at the following steps:

We'll call this class LabelInput and define it at the top of our code, just under1.
the Start coding here comment:

"""Start coding here"""
class LabelInput(tk.Frame):
 """A widget containing a label and input together."""

 def __init__(self, parent, label='', input_class=ttk.Entry,
 input_var=None, input_args=None, label_args=None,
 **kwargs):
 super().__init__(parent, **kwargs)
 input_args = input_args or {}
 label_args = label_args or {}
 self.variable = input_var

We'll base the class on Tkinter.Frame, just as we did with HelloWidget back2.
in Chapter 1, Introduction to Tkinter. Our constructor takes a number of the
following arguments:

parent: This argument is a reference to the parent widget; all widgets we
create will take this as the first argument.
label: This the text for the label part of the widget.
input_class: This is the class of the widget we want to create. It should be
an actual callable class object, not a string. If left blank, ttk.Entry will be
used.
input_var: This is a Tkinter variable to assign to the input. It's optional,
since some widgets don't use variables.
input_args: This is an optional dictionary of any additional arguments for
the input constructor.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[51]

label_args: This is an optional dictionary of any additional arguments for
the label constructor.
**kwargs: Finally, we catch any additional keyword arguments in
**kwargs. These will be passed to the Frame constructor.

The first thing we do in the constructor is call super().__init__() and pass in3.
the parent and extra keyword arguments. We then make sure that both
input_args and label_args are dictionaries, and save a reference to our input
variable as self.variable.

Don't be tempted to use an empty dictionary ({}) as a default value for a
method's keyword arguments. If you did so, a dictionary would be
created when the method definition is evaluated and shared by all objects
in the class. This would have some very strange effects on your code! The
accepted practice is to pass None for mutable types like dictionaries and
lists, then replacing None with an empty container in the method body.

We want to be able to take any kind of input widget and deal with it4.
appropriately in our class; unfortunately, as we learned previously, there are
small differences between the constructor arguments and behavior in different
widget classes, such as the way Combobox and Checkbutton use their
textvariable argument. At the moment, we just need to differentiate between
the way button widgets like Button and Checkbutton handle variables and
label text. To deal with this, we'll add the following code:

 if input_class in (ttk.Checkbutton, ttk.Button,
 ttk.Radiobutton):
 input_args["text"] = label
 input_args["variable"] = input_var
 else:
 self.label = ttk.Label(self, text=label, **label_args)
 self.label.grid(row=0, column=0, sticky=(tk.W + tk.E))
 input_args["textvariable"] = input_var

For button-type widgets, we do the following tasks differently:5.
Instead of adding a label, we just set the text argument. All buttons
use this argument to add a label to the widget.
Instead of assigning our variable to textvariable, we assign it to
variable.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[52]

In the case of other input classes, we set textvariable and create a Label6.
widget, adding it to the first row of the LabelInput class.
Now we need to create the input class, as follows:7.

 self.input = input_class(self, **input_args)
 self.input.grid(row=1, column=0, sticky=(tk.W + tk.E))

This is pretty straightforward: we call the input_class class passed into the8.
constructor with the input_args dictionary expanded to keyword arguments.
Then, we add it to the grid at row 1.
Lastly, we configure the grid layout to expand our lone column across the entire9.
widget, as follows:

 self.columnconfigure(0, weight=1)

One nice thing we can do when creating custom widgets that will save us a lot of10.
coding is to add defaults to its geometry manager methods. For example, we're
going to want all our LabelInput objects to fill the entire grid cell that they're
placed within. Instead of adding sticky=(tk.W + tk.E) to every
LabelInput.grid() call, we can add it as a default value by overriding the
method:

 def grid(self, sticky=(tk.E + tk.W), **kwargs):
 super().grid(sticky=sticky, **kwargs)

By defining it as a default parameter, we can still override it as usual. The input
widgets all have a get() method that returns their current value. To save some
redundant typing later, we'll implement a get() method in our LabelInput
class that will simply pass along the request to the input or its variable. Add this
method next:

 def get(self):
 try:
 if self.variable:
 return self.variable.get()
 elif type(self.input) == tk.Text:
 return self.input.get('1.0', tk.END)
 else:
 return self.input.get()
 except (TypeError, tk.TclError):
 # happens when numeric fields are empty.
 return ''

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[53]

We're using a try block here, because Tkinter variables will throw an exception if
you call get() under certain conditions, such as when a numeric field is empty
(blank strings can't convert to a numeric value). In such a case, we'll simply return
an empty value from the form. Also, we need to handle the tk.Text widgets
differently, since they require a range to retrieve text. We're always going to want
all the text from this form, so we'll just specify that here. As a complement to
get(), we'll implement a set() method that passes the request to the variable or
widget, as follows:

 def set(self, value, *args, **kwargs):
 if type(self.variable) == tk.BooleanVar:
 self.variable.set(bool(value))
 elif self.variable:
 self.variable.set(value, *args, **kwargs)
 elif type(self.input) in (ttk.Checkbutton,
 ttk.Radiobutton):
 if value:
 self.input.select()
 else:
 self.input.deselect()
 elif type(self.input) == tk.Text:
 self.input.delete('1.0', tk.END)
 self.input.insert('1.0', value)
 else: # input must be an Entry-type widget with no variable
 self.input.delete(0, tk.END)
 self.input.insert(0, value)

The .set() method abstracts away some of the differences between how various
Tkinter widgets set their values:

If we have a variable of class BooleanVar, cast value to bool and set
it. BooleanVar.set() will only take a bool, not other falsy or truthy
values. This ensures our variable only gets an actual boolean value.
If we have any other kind of variable, just pass value to its
.set() method.
If we have no variable, and a button-style class, we use
the .select() and .deselect() methods to select and deselect the
button based on the truthy value of the variable.
If it's a tk.Text class, we can use its .delete and .insert methods.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[54]

Otherwise, we use the .delete and .insert methods of input,
which work on the Entry, Spinbox, and Combobox classes. We have to
do this separately from the tk.Text inputs, because the indexing
values work differently.

This may not account for every possible input widget, but it covers the ones we plan to use
and a few more we may need later. While building the LabelInput class took a lot of
work, we'll see that defining the form is much simpler now.

Building the form
Instead of building our form directly on the main application window, we're going to build
our form as its own object. Initially, this makes it easier to maintain a nice layout, and later
down the road it will make it easier for us to expand our application. Let's perform the
following steps for building our form:

Once again, we'll subclass Tkinter.Frame to build this module. After the1.
LabelInput class definition, begin a new class as follows:

class DataRecordForm(tk.Frame):
 """The input form for our widgets"""

 def __init__(self, parent, *args, **kwargs):
 super().__init__(parent, *args, **kwargs)

This should be familiar by now. We subclass Frame, define our constructor, and
call super().__init__() to initialize the underlying Frame object.

Now we're going to create a structure to hold references to all the form's input2.
widgets, as follows:

 # A dict to keep track of input widgets
 self.inputs = {}

As we create the input widgets, we'll store references to them in the dictionary,
using the field name as a key. This will make it easier later to retrieve all our
values.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[55]

Adding LabelFrame and other widgets
Our form is divided into sections with a label for and a box around each section. For each
section, we'll create a LabelFrame widget and start adding our LabelInput widgets to it
by performing the following steps:

Let's start with the record information frame by executing the following code:1.

 recordinfo = tk.LabelFrame(self, text="Record Information")

Remember that the text argument to LabelFrame defines the text of the
label. This widget will be passed as the parent widget to all the inputs in
the record information group.

Now, we'll add the first line of the input widgets, as follows:2.

 self.inputs['Date'] = LabelInput(recordinfo, "Date",
 input_var=tk.StringVar())
 self.inputs['Date'].grid(row=0, column=0)

 self.inputs['Time'] = LabelInput(recordinfo, "Time",
 input_class=ttk.Combobox, input_var=tk.StringVar(),
 input_args={"values": ["8:00", "12:00", "16:00", "20:00"]})
 self.inputs['Time'].grid(row=0, column=1)

 self.inputs['Technician'] = LabelInput(recordinfo,
 "Technician",
 input_var=tk.StringVar())
 self.inputs['Technician'].grid(row=0, column=2)

The Date and Technician inputs are simple text entries; we only need to pass3.
the parent, label, and input variables into our LabelInput constructor. For
the Time entry, we specify a list of possible values that will be used to initialize
the Combobox widget.
Let's work on line 2, as follows:4.

 # line 2
 self.inputs['Lab'] = LabelInput(recordinfo, "Lab",
 input_class=ttk.Combobox, input_var=tk.StringVar(),
 input_args={"values": ["A", "B", "C", "D", "E"]})
 self.inputs['Lab'].grid(row=1, column=0)

 self.inputs['Plot'] = LabelInput(recordinfo, "Plot",
 input_class=ttk.Combobox, input_var=tk.IntVar(),
 input_args={"values": list(range(1, 21))})

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[56]

 self.inputs['Plot'].grid(row=1, column=1)

 self.inputs['Seed sample'] = LabelInput(
 recordinfo, "Seed sample", input_var=tk.StringVar())
 self.inputs['Seed sample'].grid(row=1, column=2)

 recordinfo.grid(row=0, column=0, sticky=tk.W + tk.E)

Here, we have two more Combobox widgets and another Entry. These are5.
created similarly to those in line 1. The values for Plot just need to be a list of
numbers from 1 through 20; we can create that with Python's built-in range()
function. Finished with the record information, we add its LabelFrame to the
form widget with a call to grid(). The remaining fields are defined in essentially
the same way. For example, our environmental data will look as follows:

 # Environment Data
 environmentinfo = tk.LabelFrame(self, text="Environment Data")
 self.inputs['Humidity'] = LabelInput(
 environmentinfo, "Humidity (g/m³)",
 input_class=tk.Spinbox, input_var=tk.DoubleVar(),
 input_args={"from_": 0.5, "to": 52.0, "increment": .01})
 self.inputs['Humidity'].grid(row=0, column=0)

Here, we've added the first of our Spinbox widgets, specifying the valid ranges6.
and increment amount; you can add in the Light and Temperature inputs in
the same way. Notice that our grid() coordinates have started over with 0, 0;
that's because we're starting a new parent object, so the coordinates begin all over
again.

All of these nested grids can get confusing. Remember that whenever you
call .grid() on a widget, the coordinates are relative to the top-left
corner of the widget's parent. The parent's coordinates are relative to its
parent, and so on, back up to the root window.

This section also contains the lone Checkbutton widget:

 self.inputs['Equipment Fault'] = LabelInput(
 environmentinfo, "Equipment Fault",
 input_class=ttk.Checkbutton,
 input_var=tk.BooleanVar())
 self.inputs['Equipment Fault'].grid(
 row=1, column=0, columnspan=3)

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[57]

There are no real arguments to use with the Checkbutton, though note that7.
we're using a BooleanVar to store its value. Now, we move on to the plant data
section:

 plantinfo = tk.LabelFrame(self, text="Plant Data")

 self.inputs['Plants'] = LabelInput(
 plantinfo, "Plants",
 input_class=tk.Spinbox,
 input_var=tk.IntVar(),
 input_args={"from_": 0, "to": 20})
 self.inputs['Plants'].grid(row=0, column=0)

 self.inputs['Blossoms'] = LabelInput(
 plantinfo, "Blossoms",
 input_class=tk.Spinbox,
 input_var=tk.IntVar(),
 input_args={"from_": 0, "to": 1000})
 self.inputs['Blossoms'].grid(row=0, column=1)

Notice that, unlike our decimal Spinboxes, we're not setting the
increment for the integer fields; that's because it defaults to 1.0, which is
what we want for integer fields.

We're also using 1000 as a maximum for Blossoms although it technically8.
shouldn't have a maximum; our Lab Technicians assured us that it would
never approach 1,000. Since Spinbox requires both to and from_, if we use
either, we'll go ahead and use this value.

You can also specify the strings infinity or -infinity as values. These
can be cast to the float values, which behave appropriately.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[58]

The Fruit field and three Height fields will be mostly identical to these. Go9.
ahead and create them, making sure to follow your data dictionary for the
appropriate input_args values and input_var types. We finish our form fields
by adding the following notes:

Notes section
self.inputs['Notes'] = LabelInput(
 self, "Notes",
 input_class=tk.Text,
 input_args={"width": 75, "height": 10}
)
self.inputs['Notes'].grid(sticky="w", row=3, column=0)

There's no need for LabelFrame here, so we're just adding the note's10.
LabelInput frame directly to the form. The Text widget takes the width and
height arguments to specify the size of the box. We'll give it a nice generous size
for note entry.

Retrieving data from our form
Now that we're finished with the form, we need a way to retrieve data from it so it can be
processed by the application. We'll create a method that returns a dictionary of the form's
data and, as we did with our LabelInput objects, maintain the Tkinter convention of
calling it get().

Add the following method to your form class:

 def get(self):
 data = {}
 for key, widget in self.inputs.items():
 data[key] = widget.get()
 return data

The code is simple: we loop through our instance's inputs object containing our
LabelInput objects and build a new dictionary by calling get() on each variable.

This code demonstrates the power of both iterable objects and consistent
naming schemes. If we had stored our inputs as discrete properties of the
form, or neglected to normalize the get() method, our code would be a
lot less elegant.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[59]

Resetting our form
We're almost done with our form class, but there's one more method needed. After each
save of the form, we're going to need to reset it to empty fields; so, let's add a method to do
that by performing the following steps:

Add this method to the end of the form class:1.

 def reset(self):
 for widget in self.inputs.values():
 widget.set('')

As with our get() method, we're iterating through the input dictionary and2.
setting each widget to an empty value.
To make sure our application behaves consistently, we should call reset()3.
immediately after the application loads, clearing out any Tk defaults that we
might not want.
Back up to the last line of __init__() and add the following code line:4.

 self.reset()

Building our application class
Let's take a look at the following steps for building our application class:

Move down under the Application class doc string (the line that reads1.
Application root window) and start an __init__() method for
Application, as follows:

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)

 self.title("ABQ Data Entry Application")
 self.resizable(width=False, height=False)

Once again we make the familiar call to super().__init__(), passing along2.
any arguments or keyword arguments.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[60]

Note that we don't pass in a parent widget here, since Application is
the root window.

We call .title() to set our application's title string; this isn't required, but it3.
will certainly help users who are running multiple applications to find our
application quickly in their desktop environment.
We also prohibit resizing of the window with a call to self.resizable. This4.
also isn't strictly necessary, but it makes it simpler for us to control our layout for
the time being. Let's start adding our application components as follows:

 ttk.Label(
 self,
 text="ABQ Data Entry Application",
 font=("TkDefaultFont", 16)
).grid(row=0)

The application will start at the top with a Label object showing the name of the5.
application in a larger than normal font. Notice that we don't specify column
here; our main application layout will only have one column, so it's not strictly
necessary to specify column, as it defaults to 0. Next, we'll add our
DataRecordForm as follows:

 self.recordform = DataRecordForm(self)
 self.recordform.grid(row=1, padx=10)

We're adding 10 pixels of padding on the left and right using the padx argument6.
to grid. This just adds a little whitespace around the edges of the form, making
it a bit more readable.
Let's add in the save button next, as follows:7.

 self.savebutton = ttk.Button(self, text="Save",
 command=self.on_save)
 self.savebutton.grid(sticky=tk.E, row=2, padx=10)

We've given the button a command value of self.on_save; we haven't written8.
that method yet, so we'll need to do that before we can run our code.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[61]

When writing methods or functions to be callbacks for a GUI event, it's
conventional to use the format on_EVENTNAME, where EVENTNAME is a
string describing the event triggering it. We could also name this method
on_save_button_click(), but for now on_save() is adequate.

Finally, let's add in the status bar, as follows:9.

 # status bar
 self.status = tk.StringVar()
 self.statusbar = ttk.Label(self, textvariable=self.status)
 self.statusbar.grid(sticky=(tk.W + tk.E), row=3, padx=10)

We start by creating a string variable called self.status and use this10.
as textvariable for ttk.Label. All our application will need to do to update
the status is call self.status.set() anywhere inside the class. Our GUI is
completed by adding the status bar to the bottom of the application widget.

Saving to CSV
When a user clicks on save, the following chain of events needs to take place:

A file called abq_data_record_CURRENTDATE.csv is opened1.
If the file doesn't exist, it will be created, and field headers will be written to the2.
first line
The data dictionary is retrieved from DataEntryForm3.
The data is formatted as a CSV row and appended to the file4.
The form is cleared, and the user is notified that the record was saved5.

We're going to need a few more Python libraries to help us out with this:

First, we'll need a date string for our filename. Python's datetime library can1.
help us here.
Next, we'll need to be able to check if a file exists. Python's os library has a2.
function for this.
Finally, we need to be able to write to a CSV file. Python has a CSV library in the3.
standard library that would be perfect here.

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[62]

Let's take a look at the following steps:

Back up to the top of the file and add the following imports above the Tkinter1.
imports:

from datetime import datetime
import os
import csv

Now, go back to the Application class and start the on_save() method, as2.
follows:

 def on_save(self):
 datestring = datetime.today().strftime("%Y-%m-%d")
 filename = "abq_data_record_{}.csv".format(datestring)
 newfile = not os.path.exists(filename)

The first thing we do is create our date string. The datetime.today() method3.
returns a datetime at midnight of the current day; we then format this using
strftime() to an ISO date string in the form year-month-day (using numbers
01 through 12 for the month). This gets plugged into the filename template from
our specification and saved as filename.
Next, we need to determine whether the file already exists; os.path.exists()4.
will return a boolean value indicating if the file exists; we negate this value and
store it as newfile.
Now, let's get the data from DataEntryForm:5.

 data = self.recordform.get()

With the data acquired, we need to open our file and write the data into it. Add6.
in the following code:

 with open(filename, 'a') as fh:
 csvwriter = csv.DictWriter(fh, fieldnames=data.keys())
 if newfile:
 csvwriter.writeheader()
 csvwriter.writerow(data)

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[63]

The with open(filename, 'a') as fh: statement opens our generated
filename in append mode and gives us a file handle called fh. Append mode
means we can't read or edit any existing lines in the file, just add to the end of it,
which is exactly what we want.

The with keyword works with context manager objects, which our call to
open() returns. Context managers are special objects that define code to
run before and after the with block. By opening files using this method,
they'll automatically be closed correctly at the end of the block.

Next, we create a csv.DictWriter object using the file handle. This object will7.
allow us to write dictionaries of data to the CSV file, matching up the dictionary
keys with the CSV's header row labels. This will work better for us in the long
run than the default CSV writer object, which would require the fields in the
correct order every time.
To configure this, we have to first pass in the fieldnames argument to the8.
DictWriter constructor. Our field names are the keys of the data dictionary
that we get from the form. If we're working on a new file, we need to write those
field names to the first row, which we do by calling
DictWriter.writeheader().
Finally, we write our data dictionary to a new row, using the .writerow()9.
method of our DictWriter object. At the end of the code block, the file is
automatically closed and saved.

Finishing and testing
At this point, you should be able to run the application, enter data, and save it to the CSV
file. Try it out! You should see something similar to the following screenshot:

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[64]

Perhaps the first thing you notice is that clicking Save has no noticeable effect. The form
stays populated, and there's no indication that anything was done. We should fix this.

We'll perform the following two things to help here:

First, put a notification in our status bar that the record was saved and how many1.
records have been saved this session. For the first part, add the following code
line to the end of the Application constructor, as follows:

 self.records_saved = 0

Creating Basic Forms with Tkinter and ttk Widgets Chapter 3

[65]

Second, clear the form after saving, so the next record can be started. Then add2.
the following code line to the end of the on_save() method, as follows:

 self.records_saved += 1
 self.status.set(
 "{} records saved this session".format(self.records_saved))

This code sets up a counter variable that will keep track of the number of records
we've saved since the application was started.

After saving the file, we increment the value, then set our status to indicate how3.
many records have been saved. Users will be able to see this number increase
and know that their button click has done something.
Next, we'll reset the form after saving. Append this code to the end of4.
Application.on_save(), as follows:

 self.recordform.reset()

That will zero out the form and ready it for the next record to be entered.

Now, run the application again. It should clear out and give you a status5.
indication on saving a record.

Summary
Well, we've come a long way in this chapter! You took your design from a specification and
some drawings to a running application that already covers the basic functionality you
need. You learned to work with basic Tkinter and ttk widgets, and create custom widgets
to save yourself a lot of repetitive work.

In the next chapter, we're going to address the issues with our input widgets. We'll learn
to customize the behavior of our input widgets, prevent erroneous keystrokes, and
validate the data to make sure it's within the tolerances laid out in our specification. Along
the way, we'll dig deeper into Python classes and learn more techniques for an efficient and
elegant code.

4
Reducing User Error with

Validation and Automation
Our form works, and both the director and data entry personnel are thrilled with the form
design, but we're not ready for production yet! Our form doesn't yet perform the promised
task of preventing or discouraging user errors. Number boxes still allow letters, combo
boxes aren't limited to the choices given, and dates have to be filled in by hand. In this
chapter, we're going to cover the following topics:

Deciding on the best approach for validating user input
Learning how to use Tkinter's validation system
Creating custom widgets for our form that validate entered data
Automating default values where appropriate in our form

Let's get started!

Validating user input
At first glance, Tkinter's selection of the input widgets seems a little disappointing. It
doesn't give us a true number entry that only allows digits, nor a true drop-down selector
that only allows items from the drop-down list to be selected. We have no date inputs,
email inputs, or other specially-formatted input widgets.

But these weaknesses can become strengths. Because these widgets assume nothing, we can
make them behave in a way that's appropriate to our specific needs, rather than some
generic way that may or may not work optimally. For example, letters may seem
inappropriate in a number entry, but are they? In Python, strings such as NaN and
Infinity are valid float values; having a box that could increment numerals but also
handle those string values may be very useful in some applications.

Reducing User Error with Validation and Automation Chapter 4

[67]

We're going to learn how to shape our widgets to our needs, but before we learn how to
control this behavior, let's think about what we want to do.

Strategies to prevent data errors
There is no universal answer to how a widget should react to a user trying to enter bad
data. The validation logic found in various graphics toolkits can differ greatly; when bad
data is entered, an input widget might validate the user input as follows:

Prevent the invalid keystrokes from registering at all
Accept the input, but return an error or list of errors when the form is submitted
Show an error when the user leaves the entry field, perhaps disabling form
submission until it's corrected
Lock the user in the entry field until valid data is entered
Silently correct the bad data using a best-guess algorithm

The correct behavior in a data entry form (which is filled out hundreds of times a day by
users who may not even be looking at it) may be different from an instrument control panel
(where values absolutely must be correct to avoid a disaster) or an online user registration
form (which is filled out once by a user who has never seen it before). We need to ask
ourselves and our users about which behavior will best minimize errors.

After discussing this with your users on the data entry staff, you come to the following set
of guidelines:

Whenever possible, meaningless keystrokes should be ignored (for example,
letters in a number field)
An empty field should register an error (all fields are required), with the
exception of Notes
Fields containing bad data should be marked in some visible way with an error
describing the problem
Form submission should be disabled if there are fields with errors

Let's add the following requirements to our specification before moving on. Under the
Required Features section, update the hard requirements as follows:

The program must:
...
* have inputs that:
 - ignore meaningless keystrokes
 - require a value for all fields, except Notes

Reducing User Error with Validation and Automation Chapter 4

[68]

 - get marked with an error if the value is invalid on focusout
* prevent saving the record when errors are present

So, how do we implement this?

Validation in Tkinter
Tkinter's validation system is one of those parts of the toolkit that is less than intuitive. It
relies on the following three configuration options that we can pass into any input widget:

validate: This option determines which type of event will trigger the validation
callback
validatecommand: This option takes the command that will determine if the
data is valid
invalidcommand: This option takes a command that will run if
validatecommand returns False

This seems pretty straightforward, but there are some unexpected curves.

The values we can pass to validate are as follows:

Validates string Triggers when

none It is none that turns off validation

focusin The user enters or selects the widget

unfocus The user leaves the widget

focus Either focusin or focusout

key The user enters text in the widget

all focusin, focusout, and key

The validatecommand argument is where things get tricky. You might think this takes the
name of a Python function or method, but that's not quite it. Instead, we need to give it a
tuple containing a reference to a Tcl/Tk function, and optionally some substitution codes
that specify information about the triggering event that we want to pass into the function.

Reducing User Error with Validation and Automation Chapter 4

[69]

How do we get a reference to a Tcl/Tk function? Fortunately, this isn't too hard; we just
pass a Python callable to the .register() method on any Tkinter widget. This returns a
string that we can use with validatecommand.

Of course, validation functions aren't very useful unless we pass in some data to be
validated. To do this, we add one or more substitution codes to our validatecommand
tuple.

These codes are as follows:

Code Value passed

%d
A code indicating the action being attempted: 0 for delete, 1 for insert, and -1 for
other events. Note that this is passed as a string, and not as an integer.

%P The proposed value that the field would have after the change (key events only).

%s The value currently in the field (key events only).

%i
The index (from 0) of the text being inserted or deleted on key events, or -1 on non-key
events. Note that this is passed as a string, not as an integer.

%S For insertion or deletion, the text that is being inserted or deleted (key events only).

%v The widget's validate value.

%V
The event that triggered validation: focusin, focusout, key, or forced (indicating
the text variable was changed).

%W The widget's name in Tcl/Tk, as a string.

The invalidcommand option works exactly the same way, requiring the use of the
.register() method and substitution codes.

To see what this looks like together, consider the following code for an Entry widget that
only accepts five characters:

def has_five_or_less_chars(string):
 return len(string) <= 5

wrapped_function = root.register(has_five_or_less_chars)
vcmd = (wrapped_function, '%P')
five_char_input = ttk.Entry(root, validate='key', validatecommand=vcmd)

Reducing User Error with Validation and Automation Chapter 4

[70]

Here, we've created a function that simply returns whether or not the length of a string is
less than or equal to five characters. We then register this function with Tk using the
register() method, saving its reference string as wrapped_function. Next, we build
our validatecommand tuple using the reference string and the '%P' substitution code,
which represents the proposed value (the value that the entry would have if the key event
was accepted). You can pass in as many substitution codes as you wish, and in any order,
as long as your function is written to accept those arguments. Finally, we'll create our
Entry widget, setting the validation type to key and passing in our validation command
tuple.

Notice we did not define an invalidcommand method in this case; when validation is
triggered by a keystroke, returning False from the validate command will cause the
keystroke to be ignored. This is not the case when triggering validation from a focus or
other event type; in that case, there is no default behavior defined and an invalidcommand
method is necessary.

Consider the following alternate, class-based version of FiveCharEntry, which allows you
to type as much as you want, but truncates your text when you leave the field:

class FiveCharEntry2(ttk.Entry):
 """An Entry that truncates to five characters on exit."""

 def __init__(self, parent, *args, **kwargs):
 super().__init__(parent, *args, **kwargs)
 self.config(
 validate='focusout',
 validatecommand=(self.register(self._validate), '%P'),
 invalidcommand=(self.register(self._on_invalid),)
)

 def _validate(self, proposed_value):
 return len(proposed_value) <= 5

 def _on_invalid(self):
 self.delete(5, tk.END)

This time, we've implemented validation by subclassing Entry and defining our validation
logic in a method rather than an external function. This simplifies access to the widget in
our validation methods.

Reducing User Error with Validation and Automation Chapter 4

[71]

The underscores at the beginning of _validate() and _on_invalid()
indicate that these are internal methods meant to be accessible only within
the class. While it's not necessary to make this code work correctly, and
Python does not treat it any differently from a normal method, it lets other
programmers know that these methods are for internal use and shouldn't
be called outside the class.

We've also changed the validate argument to focusout and added an _on_invalid()
method that truncates the value in Entry. Whenever the widget loses focus, the
_validate() method will be called with the entered text. If it fails, _on_invalid() will
be called, causing the contents to be truncated using the Entry widget's delete() method.

Creating a DateEntry widget
Let's try creating a validating version of our Date field. We'll make a DateEntry widget
that prevents most erroneous keystrokes, then checks for date validity on focusout. If the
date is invalid, we'll mark the field in some way and display an error. Let's perform the
following steps to do the same:

Open a new file called DateEntry.py and begin with the following code:1.

from datetime import datetime

class DateEntry(ttk.Entry):
 """An Entry for ISO-style dates (Year-month-day)"""

 def __init__(self, parent, *args, **kwargs):
 super().__init__(parent, *args, **kwargs)
 self.config(
 validate='all',
 validatecommand=(
 self.register(self._validate),
 '%S', '%i', '%V', '%d'
),
 invalidcommand=(self.register(self._on_invalid), '%V')
)
 self.error = tk.StringVar()

Since we'll need datetime for our validation method, we import it here at the2.
top.
We subclass ttk.Entry, then start our constructor method with a call to3.
super().__init__() as usual.

Reducing User Error with Validation and Automation Chapter 4

[72]

Next, we use self.config() to alter the configuration of the widget. You might4.
wonder why we don't pass these arguments into the super().__init__() call;
the reason is that the self.register() method doesn't exist until the
underlying Entry widget has been initialized.
We're registering the following two methods: self._validate and5.
self._on_invalid, which we'll write shortly:

 _validate(): This method will get the inserted text (%S), the index of
insertion (%i), the type of event (%V), and the action performed (%d).
_on_invalid(): This method will only get the event type. Since we want to
validate on both keystrokes and focusout, we'll set validate to all. Our
validation methods can figure out which event is taking place by looking at
the event type (%V).

Finally, we create StringVar to hold our error text; this will be accessed outside6.
the class, so we don't use the leading underscore in its name.
The next method we create is _toggle_error(), as follows:7.

def _toggle_error(self, error=''):
 self.error.set(error)
 if error:
 self.config(foreground='red')
 else:
 self.config(foreground='black')

We're using this method to consolidate the widget's behavior in the case of an8.
error. It starts by setting our error variable to the string provided. If the string is
not blank, we turn on the error marking (in this case, turning the text red); if it's
blank, we turn off the error marking. The _validate() method is as follows:

 def _validate(self, char, index, event, action):

 # reset error state
 self._toggle_error()
 valid = True

 # ISO dates, YYYY-MM-DD, only need digits and hyphens
 if event == 'key':
 if action == '0': # A delete event should always
validate
 valid = True
 elif index in ('0', '1', '2', '3',
 '5', '6', '8', '9'):

Reducing User Error with Validation and Automation Chapter 4

[73]

 valid = char.isdigit()
 elif index in ('4', '7'):
 valid = char == '-'
 else:
 valid = False

The first thing we do is toggle off our error status and set a valid flag to True.9.
Our input will be innocent until proven guilty.
Then, we'll look at keystroke events. if action == '0': tells us if the user is10.
trying to delete characters. We always want to allow this so that the user can edit
the field.

The basic format of an ISO date is: four digits, a dash, two digits, a dash, and two digits. We
can test whether the user is following this format by checking whether the inserted
characters match our expectation at the inserted index. For example, index in ('0',
'1', '2', '3', '5', '6', '8', '9') will tell us if the character being inserted is one
of the positions that requires a digit, and if so we check that the character is a digit. An
index of 4 or 7 should be a dash. Any other keystroke is invalid.

Although you might expect them to be integers, Tkinter passes the action
codes and indexes them as strings. Keep this in mind when writing your
comparisons.

While this is a hopelessly naive heuristic for a correct date, since it allows for complete
nonsense dates like 0000-97-46 or right-looking-but-still-wrong dates like 2000-02-29, it
at least enforces the basic format and removes a large number of invalid keystrokes. A
completely accurate partial date analyzer is a project unto itself, so for now this will do.

Checking our date for correctness on focusout is simpler and much more foolproof, as
follows:

 elif event == 'focusout':
 try:
 datetime.strptime(self.get(), '%Y-%m-%d')
 except ValueError:
 valid = False
 return valid

Since we have access to the final value the user meant to enter at this point, we can use
datetime.strptime() to try to convert the string to a Python datetime using the format
%Y-%m-%d. If this fails, we know the date is invalid.

Reducing User Error with Validation and Automation Chapter 4

[74]

To end the method, we return our valid flag.

Validation methods must always return a Boolean value. If, for some
reason, your validation method doesn't return a value (or returns None),
your validation will silently break without any error. Be careful to make
sure your methods will always return a Boolean value, especially if you're
using multiple return statements.

As you saw previously, for invalid keystrokes, it's sufficient to return False and prevent
the character from being inserted, but for errors on focus events, we'll need to respond in
some way.

Take a look at the _on_invalid() method in the following code:

 def _on_invalid(self, event):
 if event != 'key':
 self._toggle_error('Not a valid date')

We pass only the event type into this method, which we'll use to ignore keystroke events
(they're already adequately handled by the default behavior). For any other event type,
we'll use our _toggle_error() method to display the error.

To test our DateEntry class, add the following test code to the bottom of the file:

if __name__ == '__main__':
 root = tk.Tk()
 entry = DateEntry(root)
 entry.pack()
 tk.Label(textvariable=entry.error).pack()

 # add this so we can unfocus the DateEntry
 tk.Entry(root).pack()
 root.mainloop()

Save the file and run it to try the new DateEntry class. Try entering various bad dates or
invalid keystrokes, and see what happens.

Implementing validated widgets in our form
Now that you know how to validate your widgets, you have your work cut out for you! We
have 16 input widgets, and you'll have to write code like that shown in the previous section
for all of them to get the behavior we need. Along the way, you'll need to make sure the
widgets respond consistently to errors and present a consistent API to the application.

Reducing User Error with Validation and Automation Chapter 4

[75]

If that sounds like something you'd like to put off indefinitely, I can't blame you. Maybe
there's a way we can cut down the amount of code we need to write.

Exploiting the power of multiple inheritance
So far, we have learned that Python allows us to create new classes by subclassing,
inheriting features from the super class, and only adding or changing what's different about
our new class. Python also supports multiple inheritance, where a subclass can inherit
from multiple superclasses. We can exploit this feature to our advantage by creating what's
called a mixin class.

Mixin classes contain only a specific set of functionalities that we want to be able to mix in
with other classes to compose a new class.

Take a look at the following example code:

class Displayer():

 def display(self, message):
 print(message)

class LoggerMixin():

 def log(self, message, filename='logfile.txt'):
 with open(filename, 'a') as fh:
 fh.write(message)

 def display(self, message):
 super().display(message)
 self.log(message)

class MySubClass(LoggerMixin, Displayer):

 def log(self, message):
 super().log(message, filename='subclasslog.txt')

subclass = MySubClass()
subclass.display("This string will be shown and logged in
subclasslog.txt.")

Reducing User Error with Validation and Automation Chapter 4

[76]

We implement a basic class called Displayer with a display() method that prints a
message. Then, we create a mixin class called LoggerMixin, which both adds a log()
method to write a message to a text file and overrides the display() method to add a call
to log(). Finally, we create a subclass by inheriting from both LoggerMixin and
Displayer. The subclass then overrides the log() method and sets a different filename.

When we create a class using multiple inheritance, the rightmost class we specify is called
the base class, and mixin classes should be specified before it. There's no special syntax for
a mixin class as opposed to any other class, but pay attention to the use of super() in the
mixin's display() method. Technically, LoggerMixin inherits from Python's built-in
object class, which has no display() method. How, then, can we call
super().display() here?

In a multiple inheritance situation, super() does something a little more complex than just
standing in for the superclass. It looks up the chain of inheritance using something called
the Method Resolution Order and determines the nearest class that defines the method
we're calling. Thus, when we call MySubclass.display(), a series of method resolutions
occurs, as follows:

MySubClass.display() is resolved to LoggerMixin.display().
LoggerMixin.display() calls super().display(), which is resolved
to Displayer.display().
It also calls self.log(). Since self, in this case, is a MySubClass instance, it
resolves to MySubClass.log().
MySubClass.log() calls super().log(), which is resolved back to
LoggerMixin.log().

If this seems confusing, just remember that self.method() will look for method() in the
current class first, then follow the list of inherited classes from left to right until the method
is found. The super().method() will do the same, except that it skips the current class.

The method resolution order of a class is stored in its __mro__ property;
you can inspect this method in a Python shell or debugger if you're
having trouble with inherited methods.

Note that LoggerMixin is not usable on its own: it only works when combined with a class
that has a display() method. This is why it's a mixin class because it's meant to be mixed
in to enhance other classes.

Reducing User Error with Validation and Automation Chapter 4

[77]

A validating mixin class
Let's apply our knowledge of multiple inheritance to build a mixin that will give us some
boilerplate validation logic by performing the following steps:

Open data_entry_app.py and start the class before your Application class1.
definition:

class ValidatedMixin:
 """Adds a validation functionality to an input widget"""

 def __init__(self, *args, error_var=None, **kwargs):
 self.error = error_var or tk.StringVar()
 super().__init__(*args, **kwargs)

We start this class as usual, though we're not subclassing anything this time. The2.
constructor also has an extra argument called error_var. This will allow us to
pass in a variable to use for the error message; if we don't, the class creates its
own. The call to super().__init__() will cause the base class that we mix
with to execute its constructor.
Next, we set up validation, as follows:3.

 vcmd = self.register(self._validate)
 invcmd = self.register(self._invalid)

 self.config(
 validate='all',
 validatecommand=(vcmd, '%P', '%s', '%S', '%V', '%i', '%d'),
 invalidcommand=(invcmd, '%P', '%s', '%S', '%V', '%i', '%d')
)

We're setting up our validate and invalid methods here. We'll go ahead and4.
pass in all the substitution codes (except '%w', the widget name, since it's fairly
useless inside a class context). We're running validation on all conditions, so we
can capture both focus and keystroke events.
Now, we'll define our error condition handler:5.

 def _toggle_error(self, on=False):
 self.config(foreground=('red' if on else 'black'))

Reducing User Error with Validation and Automation Chapter 4

[78]

This will just change the text color to red if there's an error, or black otherwise.6.
We don't set the error in this function, since we'll want to set the actual error text
in the validate method as follows:

 def _validate(self, proposed, current, char, event, index,
 action):
 self._toggle_error(False)
 self.error.set('')
 valid = True
 if event == 'focusout':
 valid = self._focusout_validate(event=event)
 elif event == 'key':
 valid = self._key_validate(proposed=proposed,
 current=current, char=char, event=event,
 index=index, action=action)
 return valid

 def _focusout_validate(self, **kwargs):
 return True

 def _key_validate(self, **kwargs):
 return True

Our _validate() method just handles a few setup chores like toggling off
the error and clearing the error message. Then, it runs an event-specific
validate method, depending on the event type passed in. We only care about
the key and focusout events right now, so any other event just returns
True.

Notice that we call the individual methods using keywords; when we
create our subclasses, we'll be overriding these methods. By using
keyword arguments, our overridden functions can just specify the needed
keywords or extract individual arguments from **kwargs, rather than
having to get all the arguments in the right order. Also notice that all the
arguments are passed into _key_validate(), but only event is passed
into _focusout_validate(). Focus events don't return anything useful
for any of the other arguments, so there's no point in passing them along.

Reducing User Error with Validation and Automation Chapter 4

[79]

The ultimate idea here is that our subclasses only need to override the validation7.
method or methods we care about for that widget. If we don't override them,
they just return True, so validation passes. Now, we need to handle an invalid
event:

 def _invalid(self, proposed, current, char, event, index,
 action):
 if event == 'focusout':
 self._focusout_invalid(event=event)
 elif event == 'key':
 self._key_invalid(proposed=proposed,
 current=current, char=char, event=event,
 index=index, action=action)

 def _focusout_invalid(self, **kwargs):
 self._toggle_error(True)

 def _key_invalid(self, **kwargs):
 pass

We take an identical approach to these methods. Unlike the validate methods,8.
though, our invalid data handlers don't need to return anything. For invalid
keys, we do nothing by default, and for invalid data on focusout, we toggle our
error status on.
Keystroke validation only really makes sense in the context of entering keys, but9.
there may be times when we want to manually run the focusout checks, since it
effectively checks a completely entered value. For this reason, we'll implement
the following method:

 def trigger_focusout_validation(self):
 valid = self._validate('', '', '', 'focusout', '', '')
 if not valid:
 self._focusout_invalid(event='focusout')
 return valid

We're just duplicating the logic that occurs when a focusout event happens: run10.
the validation function, and if it fails, run the invalid handler. This is all we need
for ValidatedMixin, so let's start applying it to some of our widgets and see
how it works.

Reducing User Error with Validation and Automation Chapter 4

[80]

Building our widgets
Let's think through what classes we need to implement with our new ValidatedMixin
class, as follows:

All our fields except Notes are required, so we'll need a basic Entry widget that
registers an error if there's no input.
We have one Date field, so we need an Entry widget that enforces a valid date
string.
We have a number of the Spinbox widgets for decimal or integer input. We'll
need to make sure these only accept valid number strings.
We have a few Combobox widgets that don't behave quite the way we want them
to.

Let's get started!

Requiring data
All of our fields are required, so let's start with a basic Entry widget that requires data. We
can use these for fields: Technician and Seed sample.

Add the following code under the ValidatedMixin class:

class RequiredEntry(ValidatedMixin, ttk.Entry):

 def _focusout_validate(self, event):
 valid = True
 if not self.get():
 valid = False
 self.error.set('A value is required')
 return valid

There's no keystroke validation to do here, so we just need to create
_focusout_validate(). If the entered value is empty, we just set an error string and
return False.

That's all there is to it!

Reducing User Error with Validation and Automation Chapter 4

[81]

A Date widget
Now, let's apply the mixin class to the DateEntry class we made before, keeping the same
validation algorithm as follows:

class DateEntry(ValidatedMixin, ttk.Entry):

 def _key_validate(self, action, index, char, **kwargs):
 valid = True

 if action == '0':
 valid = True
 elif index in ('0', '1', '2', '3', '5', '6', '8', '9'):
 valid = char.isdigit()
 elif index in ('4', '7'):
 valid = char == '-'
 else:
 valid = False
 return valid

 def _focusout_validate(self, event):
 valid = True
 if not self.get():
 self.error.set('A value is required')
 valid = False
 try:
 datetime.strptime(self.get(), '%Y-%m-%d')
 except ValueError:
 self.error.set('Invalid date')
 valid = False
 return valid

Again, pretty simple, all we need to do is specify the validation logic. We've added the logic
from our RequiredEntry class too, since the Date value is required.

Let's move on to something a bit more intricate.

Reducing User Error with Validation and Automation Chapter 4

[82]

A better Combobox widget
The drop-down widgets in different toolkits behave fairly consistently when it comes to
mouse operation, but the response to keystrokes varies, as follows:

Some do nothing
Some require the use of arrow keys to select items
Some move to the first entry that begins with any key pressed, and cycle through
entries beginning with that letter on subsequent presses
Some narrow down the list to entries that match what's typed

We need to think about what behavior our Combobox widget should have. Since our users
are accustomed to doing data entry with the keyboard, and some have difficulty with the
mouse, the widget needs to work with the keyboard. Making them use repeated keystrokes
to select options is not very intuitive, either. After talking with the data entry staff, you
decide on this behavior:

If the proposed text matches no entries, it will be ignored
When the proposed text matches a single entry, the widget is set to that value
A delete or backspace clears the entire box

Add this code under the DateEntry code:

class ValidatedCombobox(ValidatedMixin, ttk.Combobox):

 def _key_validate(self, proposed, action, **kwargs):
 valid = True
 # if the user tries to delete, just clear the field
 if action == '0':
 self.set('')
 return True

The _key_validate() method starts out by setting up a valid flag and doing a quick
check to see if this is a delete action. If it is, we set the value to a blank string and return
True.

Now, we'll add the logic to match the proposed text to our values:

 # get our values list
 values = self.cget('values')
 # Do a case-insensitive match against the entered text
 matching = [
 x for x in values
 if x.lower().startswith(proposed.lower())

Reducing User Error with Validation and Automation Chapter 4

[83]

]
 if len(matching) == 0:
 valid = False
 elif len(matching) == 1:
 self.set(matching[0])
 self.icursor(tk.END)
 valid = False
 return valid

A copy of the widget's list of values is retrieved using its .cget() method. Then, we use
list comprehension to reduce this list to only the entries that match the proposed text,
calling lower() on both the values in the list item and the proposed text so that our match
is case-insensitive.

Every Tkinter widget supports the .cget() method. It can be used to
retrieve any of the widget's configuration values by name.

If the length of the matching list is 0, we reject the keystroke. If it's 1, we've found our
match, so we'll set the variable to that value. If it's anything else, we need to let the user
keep typing. As a final touch, we'll send the cursor to the end of the field using the
.icursor() method if a match is found. This isn't strictly necessary, but it looks better
than leaving the cursor in the middle of the text. Now, we'll add the focusout validator, as
follows:

 def _focusout_validate(self, **kwargs):
 valid = True
 if not self.get():
 valid = False
 self.error.set('A value is required')
 return valid

We don't have to do much here, because the key validation method ensures that the only
possible values are a blank field or an item in the values list, but since all fields are required
to have a value, we'll copy the validation from RequiredEntry.

That takes care of our Combobox widget. Next, we'll deal with the Spinbox widget.

Reducing User Error with Validation and Automation Chapter 4

[84]

A range-limited Spinbox widget
A number entry seems like it shouldn't be too complicated to deal with, but there are a
number of subtleties to work through to make it bulletproof. In addition to limiting the
field to valid number values, you'll want to enforce the from, to, and increment
arguments as the minimum, maximum, and precision of the input, respectively.

The algorithm needs to implement the following rules:

Deletion is always allowed
Digits are always allowed
If from is less than 0, a minus is allowed as the first character
If increment has a decimal component, one dot is allowed
If the proposed value is greater than the to value, ignore the keystroke
If the proposed value requires more precision than increment, ignore the
keystroke
On focusout, make sure the value is a valid number string
Also on focusout, make sure the value is greater than the from value

Take a look at the following steps:

Here's how we'll code, regarding the preceding rules:1.

class ValidatedSpinbox(ValidatedMixin, tk.Spinbox):

 def __init__(self, *args, min_var=None, max_var=None,
 focus_update_var=None, from_='-Infinity',
 to='Infinity', **kwargs):
 super().__init__(*args, from_=from_, to=to, **kwargs)
 self.resolution = Decimal(str(kwargs.get('increment',
 '1.0')))
 self.precision = (
 self.resolution
 .normalize()
 .as_tuple()
 .exponent
)

We'll start by overriding the __init__() method so that we can specify some2.
defaults and grab the increment value from the constructor arguments for
processing.

Reducing User Error with Validation and Automation Chapter 4

[85]

The Spinbox arguments can be passed in as floats, integers, or strings.3.
Regardless of how you pass them in, Tkinter converts them to floats.
Determining the precision of a float is problematic, because of floating-point
error, so we want to convert it to a Python Decimal before it becomes a float.

Floats attempt to represent decimal numbers in binary form. Open a
Python shell and enter 1.2 / .2. You might be surprised to find the
answer is 5.999999999999999 rather than 6. This is known as
a floating-point error, and it's a source of computation error in nearly
every programming language. Python offers us the Decimal class, which
takes a numeric string and stores it in a way that makes mathematical
operations safe from floating-point errors.

Before we can use Decimal, we need to import it. Add the following code to4.
your imports at the top of the file:

from decimal import Decimal, InvalidOperation

InvalidOperation is an exception thrown when Decimal is given a string it5.
cannot interpret. We'll be using it later on.

Notice that we cast increment to str before passing it to Decimal.
Ideally, we should pass increment in as a string to ensure it will be
interpreted correctly, but in case we need to pass in a float for some
reason, str will do some sensible rounding first.

We also set defaults for to and from_: -Infinity and Infinity. Both float6.
and Decimal will happily accept these values and treat them as you'd expect
them to do. The default to and from_ values for Tkinter.Spinbox are 0; if
they're left there, Tkinter treats it as no limit, but this creates a problem if we
specify one but not the other.
We extract precision of the resolution value as an exponent of the smallest7.
valid decimal place. We'll use this value in the validation class.
Our constructor is settled, so let's write the validate methods. The key validate8.
method is a bit tricky, so we'll walk through it chunk by chunk. First, we start the
method:

 def _key_validate(self, char, index, current,
 proposed, action, **kwargs):
 valid = True
 min_val = self.cget('from')
 max_val = self.cget('to')

Reducing User Error with Validation and Automation Chapter 4

[86]

 no_negative = min_val >= 0
 no_decimal = self.precision >= 0

To begin, we retrieve the from and to values, then assign flag variables to9.
indicate if negatives and decimals should be allowed, as follows:

 if action == '0':
 return True

Deletion should always work, so if it's a deletion, return True.

We've broken our no multiple returns guideline here, because the same
logic with only one return would be nested quite deeply. When trying to
write readable, maintainable code, sometimes one has to pick the lesser of
two evils.

Next, we test if the keystroke is a valid character, as follows:10.

 # First, filter out obviously invalid keystrokes
 if any([
 (char not in ('-1234567890.')),
 (char == '-' and (no_negative or index != '0')),
 (char == '.' and (no_decimal or '.' in current))
]):
 return False

Valid characters are digits plus - and .. The minus sign is only valid at index
0, and the dot can only appear once. Anything else returns False.

The built-in any function takes a list of expressions and returns True if
any one of the expressions in the list are true. There's also an all function
that returns True if all the expressions are true. These functions allow you
to condense a long chain of boolean expressions.

We're almost guaranteed at this point to have a valid Decimal string, but not
quite; we might have just -, ., or -. characters.

Reducing User Error with Validation and Automation Chapter 4

[87]

The following are valid partial entries, so we just return True for them:11.

 # At this point, proposed is either '-', '.', '-.',
 # or a valid Decimal string
 if proposed in '-.':
 return True

At this point, the proposed text can only be a valid Decimal string, so we'll make12.
a Decimal from it and do some more tests:

 # Proposed is a valid Decimal string
 # convert to Decimal and check more:
 proposed = Decimal(proposed)
 proposed_precision = proposed.as_tuple().exponent

 if any([
 (proposed > max_val),
 (proposed_precision < self.precision)
]):
 return False

 return valid

Our last two tests check to see if the proposed text is either greater than our13.
maximum value, or has more precision than the increment that we specified
(the reason we use a < operator here is because precision is given as a negative
value for decimal places). In case nothing has been returned yet, we return the
valid value as a safeguard. Our focusout validator is much simpler, as follows:

 def _focusout_validate(self, **kwargs):
 valid = True
 value = self.get()
 min_val = self.cget('from')

 try:
 value = Decimal(value)
 except InvalidOperation:
 self.error.set('Invalid number string:
{}'.format(value))
 return False

 if value < min_val:
 self.error.set('Value is too low (min
{})'.format(min_val))
 valid = False
 return valid

Reducing User Error with Validation and Automation Chapter 4

[88]

With the entire intended value, we only need to make sure it's a valid Decimal14.
string and greater than the minimum value.

With that, our ValidatedSpinbox is ready to go.

Dynamically adjusting the Spinbox range
Our ValidatedSpinbox method seems adequate for most of our fields. But consider the
Height fields for a moment. It would not make any sense for the Mini height value to be
more than the Max height value, or for the Median height value not to be between
them. Is there some way we can work this kind of interdependent behavior into our class?

We can! To do this, we'll rely on the tracing feature of Tkinter variables. A trace is
essentially a hook into the .get() and .set() methods of variables that allows you to
trigger any Python function or method when a variable is read or changed.

The syntax is as follows:

sv = tk.StringVar()
sv.trace('w', some_function_or_method)

The first argument to .trace() indicates which event we want to trace.
Here, w indicates a write (.set()), r indicates a read (.get()), and u
indicates an undefined variable or deletion of the variable.

Our strategy will be to allow optional min_var and max_var variables into the
ValidatedSpinbox method and set a trace on these variables to update the
ValidatedSpinbox method's min or max value whenever this variable is changed. We'll
also have a focus_update_var variable that will be updated with the Spinbox widget
value at focusout time.

Let's take a look at the following steps:

To start, we'll update our ValidatedSpinbox constructor as follows:1.

 def __init__(self, *args, min_var=None, max_var=None,
 focus_update_var=None, from_='-Infinity', to='Infinity',
 **kwargs
):
 super().__init__(*args, from_=from_, to=to, **kwargs)
 self.resolution = Decimal(str(kwargs.get('increment',
'1.0')))

Reducing User Error with Validation and Automation Chapter 4

[89]

 self.precision = (
 self.resolution
 .normalize()
 .as_tuple()
 .exponent
)
 # there should always be a variable,
 # or some of our code will fail
 self.variable = kwargs.get('textvariable') or
tk.DoubleVar()

 if min_var:
 self.min_var = min_var
 self.min_var.trace('w', self._set_minimum)
 if max_var:
 self.max_var = max_var
 self.max_var.trace('w', self._set_maximum)
 self.focus_update_var = focus_update_var
 self.bind('<FocusOut>', self._set_focus_update_var)

First, note that we've added a line to store our variable in self.variable, and2.
we create one if the program doesn't pass one in explicitly. Some of the code we
need to write will depend on a text variable existing, so we'll force this, just in
case.
If we pass in either a min_var or max_var argument, the value is stored and a3.
trace is configured. The trace() method points to an appropriately named
method.
We also store a reference to the focus_update_var argument and bind the4.
<FocusOut> event to a method that will be used to update it.

The bind() method can be called on any Tkinter widget, and it's used to
connect widget events to a Python callable. Events can be keystrokes,
mouse movements or clicks, focus events, window management events,
and more.

Now, we need to add the callback methods for our trace() and bind()5.
commands. Start with _set_focus_update_var(), as follows:

def _set_focus_update_var(self, event):
 value = self.get()
 if self.focus_update_var and not self.error.get():
 self.focus_update_var.set(value)

Reducing User Error with Validation and Automation Chapter 4

[90]

This method simply gets the widget's current value and, if there is a
focus_update_var argument present in the instance, sets it to the same value.
Note that we don't set the value if there's an error currently present on the widget.
It wouldn't make sense to update the value to something invalid.

When Tkinter calls a bind callback, it passes in an event object that
contains information about the event that triggered the callback. Even if
you aren't going to use this information, your function or method needs to
be able to take this argument.

Now, let's create the callback for setting the minimum, as follows:6.

 def _set_minimum(self, *args):
 current = self.get()
 try:
 new_min = self.min_var.get()
 self.config(from_=new_min)
 except (tk.TclError, ValueError):
 pass
 if not current:
 self.delete(0, tk.END)
 else:
 self.variable.set(current)
 self.trigger_focusout_validation()

The first thing we do is retrieve the current value. Tkinter.Spinbox has the7.
slightly annoying behavior of correcting its value when the to or from values are
changed, moving too-low values to the from value and too-high values to the to
value. This kind of silent auto-correction might slip past the attention of our user
and cause bad data to be saved. What we want is to leave the value out of range
and mark it as an error; so to work around Tkinter, we're going to save the
current value, change the configuration, and then put the original value back in
the field.
With the current value saved, we attempt to get the value of the min_var and set8.
our widget's from_ value from it. There are several things that could go wrong
here, such as a blank or invalid value in whatever field controls our minimum
and maximum variables, all of which should throw either a tk.TclError or a
ValueError. In either case, we'll just do nothing.

Reducing User Error with Validation and Automation Chapter 4

[91]

It's generally a bad idea to just silence exceptions; however, in this case,
there's nothing we can reasonably do if the variable is bad except ignore it.

Now, we just need to write the current value that we saved back into the field. If9.
it's empty, we just delete the field; otherwise, we set the input's variable. The
method ends with a call to the trigger_focusout_validation() method to
re-check the value in the field against the new minimum.
The _set_maximum() method will be identical to this method, except that it will10.
update the to value using max_var instead. You can write it yourself, or see the
sample code included with the book.
There is one last change we need to make to our ValidatedSpinbox class. Since11.
our maximum can potentially change after entry, and we're relying on our
focusout validation to detect that, we'll need to add some conditions to check
the maximum.
We need to add this to the _focusout_validate() method:12.

 max_val = self.cget('to')
 if value > max_val:
 self.error.set('Value is too high (max {})'.format(max_val))

Add those lines just before the return statement to check the maximum value13.
and set the error, as appropriate.

Updating our form
Now that our widgets are all made, it's time to make the form use them by performing the
following steps:

Scroll down to the DataRecordForm class constructor, and we'll start updating1.
our widgets one row at a time. Line 1 is fairly straightforward:

 self.inputs['Date'] = LabelInput(
 recordinfo, "Date",
 input_class=DateEntry,
 input_var=tk.StringVar())
 self.inputs['Date'].grid(row=0, column=0)
 self.inputs['Time'] = LabelInput(
 recordinfo, "Time",
 input_class=ValidatedCombobox,
 input_var=tk.StringVar(),

Reducing User Error with Validation and Automation Chapter 4

[92]

 input_args={"values": ["8:00", "12:00", "16:00", "20:00"]})
 self.inputs['Time'].grid(row=0, column=1)
 self.inputs['Technician'] = LabelInput(
 recordinfo, "Technician",
 input_class=RequiredEntry,
 input_var=tk.StringVar())
 self.inputs['Technician'].grid(row=0, column=2)

It's as simple as swapping out the input_class value in each LabelInput for2.
our new class. Go ahead and run your application and try out the widgets. Try
some different valid and invalid dates, and see how the Combobox widget works
(RequiredEntry won't do much at this point, since the only visible indication is
red text, and there's no text to mark red if it's empty; we'll address that later on).
Now, on to line 2, first add the Lab widget, as follows:

 self.inputs['Lab'] = LabelInput(
 recordinfo, "Lab",
 input_class=ValidatedCombobox,
 input_var=tk.StringVar(),
 input_args={"values": ["A", "B", "C", "D", "E"]})

Next, add the Plot widget, as follows:3.

 self.inputs['Plot'] = LabelInput(
 recordinfo, "Plot",
 input_class=ValidatedCombobox,
 input_var=tk.IntVar(),
 input_args={"values": list(range(1, 21))})

Fairly straightforward again, but if you run it, you'll find there's a problem
with Plot. It turns out that our ValidatedComobox method doesn't work
right when the values are integers since the characters the user types are
always strings (even if they're digits); we can't compare strings and integers.

Reducing User Error with Validation and Automation Chapter 4

[93]

If you think about it, Plot shouldn't really be an integer value. Yes, the values4.
are technically integers, but as we decided back in Chapter 3, Creating Basic
Forms with Tkinter and ttk Widgets, they could as well be letters or symbols; you
wouldn't do maths on a plot number. So, we'll change Plot to use a
StringVar variable and make the values of the widget strings as well. Change
the Plot widget creation, as follows:

 self.inputs['Plot'] = LabelInput(
 recordinfo, "Plot",
 input_class=ValidatedCombobox,
 input_var=tk.StringVar(),
 input_args={"values": [str(x) for x in range(1, 21)]})

Here, we're just changing the input_var to a StringVar and using a list5.
comprehension to cast every values item to a string. Now, Plot works as
expected.
Continue through the form, replacing the default ttk widgets with your newly6.
validated versions. For the Spinbox widget, make sure you're passing in the to,
from_, and increment values as strings rather than integers. For instance, the
Humidity widget should be as follows:

 self.inputs['Humidity'] = LabelInput(
 environmentinfo, "Humidity (g/m³)",
 input_class=ValidatedSpinbox,
 input_var=tk.DoubleVar(),
 input_args={"from_": '0.5', "to": '52.0', "increment":
 '.01'})

When we get to the Height boxes, it's time to put our min_var and max_var7.
features to the test. First, we need to set up variables to store the minimum and
maximum height, as follows:

 # Height data
 # create variables to be updated for min/max height
 # they can be referenced for min/max variables
 min_height_var = tk.DoubleVar(value='-infinity')
 max_height_var = tk.DoubleVar(value='infinity')

We create two new DoubleVar objects to hold the current minimum and
maximum heights, setting them to infinite values to begin with. This ensures
there will be effectively no minimum or maximum height to start with.

Reducing User Error with Validation and Automation Chapter 4

[94]

Note that our widgets won't be affected by these values until they actually
change, so they won't nullify the original to and from_ values passed in.

Now, we create the Min Height widget, as follows:8.

 self.inputs['Min Height'] = LabelInput(
 plantinfo, "Min Height (cm)",
 input_class=ValidatedSpinbox,
 input_var=tk.DoubleVar(),
 input_args={
 "from_": '0', "to": '1000', "increment": '.01',
 "max_var": max_height_var, "focus_update_var":
 min_height_var})

We'll use max_height_var to set the maximum here, ensuring that our9.
minimum will never go above the maximum value, and set the
focus_update_var to min_height_var values so that it will be updated
whenever this field is changed. Now, the Max Height widget is as follows:

 self.inputs['Max Height'] = LabelInput(
 plantinfo, "Max Height (cm)",
 input_class=ValidatedSpinbox,
 input_var=tk.DoubleVar(),
 input_args={
 "from_": 0, "to": 1000, "increment": .01,
 "min_var": min_height_var, "focus_update_var":
 max_height_var})

This time, we use our min_height_var variable to set the widget's minimum10.
value and update the max_height_var from the widget's current value. Finally,
the Median Height field is as follows:

 self.inputs['Median Height'] = LabelInput(
 plantinfo, "Median Height (cm)",
 input_class=ValidatedSpinbox,
 input_var=tk.DoubleVar(),
 input_args={
 "from_": 0, "to": 1000, "increment": .01,
 "min_var": min_height_var, "max_var": max_height_var})

Reducing User Error with Validation and Automation Chapter 4

[95]

Here, we're setting the minimum and maximum values for the field from the11.
min_height_var and max_height_var variables, respectively. We're not
updating any variables from the Median Height field, although we could add
additional variables and code here to make sure that Min Height couldn't go
above it or Max Height below it. In most cases, it won't matter if the user is
entering data in order since Median Height is last.
You might wonder why we don't just use the input_var variables from Min12.
Height and Max Height to hold these values instead. If you try this, you'll
discover the reason: the input_var updates as you type, which means your
partial value instantly becomes the new maximum or minimum value. We'd
rather wait until the user has committed the value to assign this, and thus we
created a separate variable that is only updated on focusout.

Displaying errors
If you run the application, you may notice that while fields with the focusout errors turn
red, we don't get to see the actual error. We need to fix this by performing the following
steps:

Locate your LabelInput class, and add the following code to the end of the1.
constructor method:

 self.error = getattr(self.input, 'error', tk.StringVar())
 self.error_label = ttk.Label(self, textvariable=self.error)
 self.error_label.grid(row=2, column=0, sticky=(tk.W + tk.E))

Here, we check to see if our input has an error variable, and if not, we create one.2.
We save a reference to it as self.error, then create a Label with the error
as textvariable.
Finally, we place this under the input widget.3.
Now, when you try the application, you should be able to see the field errors.4.

Reducing User Error with Validation and Automation Chapter 4

[96]

Preventing form submission on error
The final step in preventing errors from getting into our CSV file is to stop the application
from saving if the form has known errors. Let's perform the following steps to do this:

The first step in implementing this is to provide a way for the Application1.
object (which handles saving the data) to retrieve the error status from the
DataRecordForm object.
At the end of the DataRecordForm class, add the following method:2.

 def get_errors(self):
 """Get a list of field errors in the form"""

 errors = {}
 for key, widget in self.inputs.items():
 if hasattr(widget.input,
'trigger_focusout_validation'):
 widget.input.trigger_focusout_validation()
 if widget.error.get():
 errors[key] = widget.error.get()

 return errors

Similar to how we handled getting the data, we just loop through the3.
LabelFrame widgets. We look for inputs that have the
trigger_focusout_validation method and call it, just to be sure that all
values have been checked. Then, if the widget's error variable has any value, we
add it to an errors dictionary. This way, we can retrieve a dictionary of field
names and the errors on each field.
Now, we need to add this behavior to the Application class's save logic.4.
Add the following code to the beginning of on_save(), under docstring:5.

 # Check for errors first

 errors = self.recordform.get_errors()
 if errors:
 self.status.set(
 "Cannot save, error in fields: {}"
 .format(', '.join(errors.keys()))
)
 return False

This logic is straightforward: get the errors, if we find any, and alert the user in
the status area and return from the function (thus not saving anything).

Reducing User Error with Validation and Automation Chapter 4

[97]

Start the application and try it out by trying to save a blank form. You should get6.
error messages in all fields and a message at the bottom telling you which fields
have errors.

Automating input
Preventing users from entering bad data is one way to help users enter better data; another
approach is to automate. Using our understanding of how the forms are likely to be filled
out, we can insert values that are very likely to be correct for certain fields.

Remember from Chapter 2, Designing GUI Applications with Tkinter, that the forms are
nearly always recorded the same day that they're filled out, and that they're filled out one
at a time from Plot 1 to Plot 20 in order. Also remember that the Date, Lab, and
Technician values remain the same for each form which is filled in. Let's automate this for
our users.

Inserting a date
Inserting the current date is an easy place to start. The place to do this is in the
DataRecordForm.reset() method, which sets up the form for entering a new record.

Update that method as follows:

 def reset(self):
 """Resets the form entries"""

 # clear all values
 for widget in self.inputs.values():
 widget.set('')

 current_date = datetime.today().strftime('%Y-%m-%d')
 self.inputs['Date'].set(current_date)

Just as we do in the Application.save() method, we get the current date from
datetime.today() and format it as an ISO date. Then, we set the Date widget's input to
that value.

Reducing User Error with Validation and Automation Chapter 4

[98]

Automating Lab, Time, and Technician
Something which is slightly more complex is our handling of Lab, Time, and Technician.
Let's review the logic as follows:

Before clearing the data, save the Lab, Time, and Technician values.1.
If Plot is less than the last value (20), we'll put those values back after clearing2.
all the fields, then increment to the next Plot value.
If Plot is the last value or no value, leave those fields blank. The code is as3.
follows:

 def reset(self):
 """Resets the form entries"""

 # gather the values to keep for each lab
 lab = self.inputs['Lab'].get()
 time = self.inputs['Time'].get()
 technician = self.inputs['Technician'].get()
 plot = self.inputs['Plot'].get()
 plot_values = self.inputs['Plot'].input.cget('values')

 # clear all values
 for widget in self.inputs.values():
 widget.set('')

 current_date = datetime.today().strftime('%Y-%m-%d')
 self.inputs['Date'].set(current_date)
 self.inputs['Time'].input.focus()

 # check if we need to put our values back, then do it.
 if plot not in ('', plot_values[-1]):
 self.inputs['Lab'].set(lab)
 self.inputs['Time'].set(time)
 self.inputs['Technician'].set(technician)
 next_plot_index = plot_values.index(plot) + 1
 self.inputs['Plot'].set(plot_values[next_plot_index])
 self.inputs['Seed sample'].input.focus()

Because Plot looks like an integer, it might be tempting to increment it like one,
but it's better to work with it as though it were not. We use the indexes of the
values list instead.

Reducing User Error with Validation and Automation Chapter 4

[99]

One last tweak, the focus of the form always starts in the first field, but this4.
means the user has to tab through fields that are already filled in. It would be
nice if the next empty inputs were focused at the start instead. Tkinter inputs
have a focus() method, which gives them keyboard focus. Depending on which
fields we've filled in, this will either be Time or Seed sample. Under the line
that sets the Date value, add the following code line:

self.inputs['Time'].input.focus()

And under the line that sets the Plot value, inside the conditional block, add the5.
following line of code:

self.inputs['Seed sample'].input.focus()

Our form is now ready for a trial run with our users. It's definitely an improvement over
the CSV entry at this point, and will help data entry to make quick work of those forms.

Summary
The application has really come a long way. In this chapter, we learned about Tkinter
validation, created a validation mixin class, and used it to create validated versions of the
Entry, Combobox, and Spinbox widgets. We validated different kinds of data on
keystrokes and focus events, and created fields that dynamically update their constraints
based on the value of related fields.

In the next chapter, we're going to prepare our code base for expansion and learn how to
organize a large application for easier maintenance. More specifically, we'll learn about the
MVC pattern and how to structure our code in multiple files for simpler maintenance. We'll
also learn more about RST and and version control software.

5
Planning for the Expansion of

Our Application
The application is a real hit! After some initial testing and orientation, the data entry staff
have been utilizing your new form for a few weeks now. The reduction in errors and data
entry time is dramatic, and there's a lot of excited talk about what other problems this
program might solve. With even the director joining in on the brainstorming, you have a
strong suspicion that you'll be asked to add some new features soon.

There's a problem, though; the application is already a script of several hundred lines, and
you're worried about its manageability as it grows. You need to take some time to organize
your codebase in preparation for future expansion.

In this chapter, we'll learn about the following topics:

How to separate the concerns of your application using the Model-View-
Controller pattern
How to organize your code into a Python package
To create the basic files and directories for your package structure
How to use the Git version control system to track your changes

Separating concerns
Proper architectural design is essential for any project that needs to scale. Anyone can prop
up some studs and build a garden shed, but a house or skyscraper takes careful planning
and engineering. Software is no different; simple scripts can get away with shortcuts such
as global variables or manipulating class properties directly, but as the program grows, our
code needs to isolate and encapsulate different functionalities in a way that limits the
amount of complexity we need to understand at any given moment.

Planning for the Expansion of Our Application Chapter 5

[101]

We call this separation of concerns, and it's accomplished through the use of architectural
patterns that describe different application components and how they interact.

The MVC pattern
Probably the most enduring of these patterns is the MVC pattern, which was introduced in
the 1970s. While this pattern has evolved and spun off variations over the years, the basic
gist remains: keep the data, the presentation of the data, and the application logic in
separate, independent components.

Let's take a deeper look at these components and understand them in the context of our
application as it stands.

What is a model?
The model in MVC represents the data. This includes the storage of the data, but also the
various ways data can be queried or manipulated. Ideally, the model is not concerned or
affected by how data will be presented or what UI controls will be granted, but rather
presents a high-level interface that only minimally concerns other components with its
inner workings. In theory, if you decided to completely change the UI of the program (say,
from a Tkinter application to a web application), the model should be totally unaffected.

Some examples of functionality or information you find in the model include the following:

Preparation and writing of program data to a persistent medium (data file,
database, and so on)
Retrieval of data from a file or database into a format useful to the program
An authoritative list of the fields in a set of data, along with their data types and
limits
Validation of data against the data types and limits defined
Calculations on stored data

We don't have a model class in our application currently; the data layout is defined in the
form class, and the Application.on_save() method is the only code concerned with
data persistence so far. We're going to need to split this logic off into a separate object that
will define the data layout and handle all the CSV operations.

Planning for the Expansion of Our Application Chapter 5

[102]

What is a view?
A view is an interface for presenting data and controls to the user. Applications may have
many views, often on the same data. Views don't talk to the model directly, and ideally
contain only enough logic to present the UI and communicate user actions back to the
controller.

Some examples of code you find in a view include the following:

GUI layout and widget definitions
Form automations, such as auto-completion of fields, dynamic toggling of
widgets, or display of error dialogs
Formatting of raw data for presentation

Our DataRecordForm class is our main view: it contains most of the code for our
application's user interface. It also currently defines the structure of our data records. This
logic can stay in the view, because the view does need a way to store the data temporarily
before handing it off to the model, but it won't be defining our data record from here on
out.

We'll be adding more views to our application as we move forward.

What is a controller?
The controller is the Grand Central station for the application. It handles requests from the
user and takes care of routing data between the views and the model. Most variations of
MVC change the role (and sometimes the name) of the controller, but the important thing is
that it acts as the intermediary between the view and the model. Our controller object will
need to hold references to the views and models used by our application and be responsible
for managing interactions between them.

Examples of code you find in the controller include the following:

Startup and shutdown logic for the application
Callbacks for user interface events
Creation of model and view instances

Our Application object is currently acting as the controller for our application, though it
has some view and model logic in it as well. As the application evolves, we'll be moving
more presentation logic into the views and more data logic into the models, leaving mainly
connecting code in our Application object.

Planning for the Expansion of Our Application Chapter 5

[103]

Why complicate our design?
Initially, it may seem like a lot of needless overhead to split up the application this way.
We'll have to shuttle data around between different objects and ultimately write more code
to do exactly the same thing. Why would we do this?

Put simply, we're doing it to make expansion manageable. As the application grows, the
complexity will also grow. Isolating our components from one another limits the amount of
complexity that any one component has to manage; for example, when we restructure the
layout of our form view, we shouldn't need to worry about how the model will structure
the data in the output file. Those two aspects of the program should be independent of one
another.

It also helps us to be consistent about where we put certain types of logic. For example,
having a discrete model object helps us to avoid littering our UI code with ad hoc data
queries or file access attempts.

The bottom line is, without some guiding architectural strategy, our program is in danger
of becoming a hopeless tangle of spaghetti logic. Even without adhering to a strict
definition of MVC design, consistently following even a loose MVC pattern will save a lot
of headaches as the application becomes more complex.

Structuring our application directory
Just as logically breaking our program into separate concerns helps us manage the logical
complexity of each component, physically breaking the code into multiple files helps us
keep the complexity of each file manageable. It also reinforces more isolation between
components; for example, you can't share global variables, and if your models file imports
tkinter, you know you're doing something wrong.

Basic directory structure
There is no official standard for laying out a Python application directory, but there are
some common conventions that will help us keep things tidy and make it easier to package
our software later on. Let's set up our directory structure as follows:

To begin, create a directory called ABQ_Data_Entry. This is the root directory of1.
our application, so whenever we refer to the application root, this is it.

Planning for the Expansion of Our Application Chapter 5

[104]

Under the application root, create another directory called abq_data_entry.2.
Notice it's in lowercase. This is going to be a Python package that will contain all
the code for the application; it should always be given a fairly unique name so
that it won't be confused with existing Python packages. Normally, you wouldn't
have a different casing between the application root and this main module, but it
doesn't hurt anything either; we're doing it here to avoid confusion.

Python modules should always be named using all lowercase names with
underscores. This convention is spelled out in PEP 8, Python's official
style guide. See https:/ ​/​www. ​python. ​org/ ​dev/ ​peps/ ​pep- ​0008 for more
information about PEP 8.

Next, create a docs folder under the application root. This folder will be for3.
documentation files about the application.
Finally, create two empty files in the application root: README.rst and4.
abq_data_entry.py. Your directory structure should look as follows:

The abq_data_entry.py file
Just as before, abq_data_entry.py is the main file that gets executed to start the program.
Unlike before, though, it won't contain the bulk of our program. In fact, this file should be
as minimal as possible.

https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008
https://www.python.org/dev/peps/pep-0008

Planning for the Expansion of Our Application Chapter 5

[105]

Open the file and enter the following code:

from abq_data_entry.application import Application

app = Application()
app.mainloop()

Save and close the file. The only purpose of this file is to import our Application class,
make an instance of it, and run it. The remainder of the work will happen inside the
abq_data_entry package. We haven't created that yet, so this file won't run just yet;
before we do, let's deal with our documentation.

The README.rst file
Since as far back as the 1970s, programs have included a short text file called README
containing a condensed summary of the program's documentation. For small programs, it
may be the only documentation; for larger programs, it usually contains essential pre-flight
instructions for users or administrators.

There's no prescribed set of contents for a README file, but as a basic guideline, consider the
following sections:

Description: A brief description of the program and its function. We can reuse
the description from our specification, or something like it. This might also
contain a brief list of the main features.
Author information: The names of the authors and copyright date. This is
especially important if you plan to share your software, but even for something
in-house it's useful for future maintainers to know who created the software and
when.
Requirements: A list of the software and hardware requirements for the
software, if any.
Installation: Instructions for installing the software, its prerequisites,
dependencies, and basic setup.
Configuration: How to configure the application and what options are available.
This is generally aimed at the command-line or configuration file options, not
options set interactively in the program.
Usage: A description of how to launch the application, command-line arguments,
and other notes a user would need to know to use the basic functionality of the
application.

Planning for the Expansion of Our Application Chapter 5

[106]

General notes: A catch-all for notes or critical information users should be aware
of.
Bugs: A list of known bugs or limitations in the application.

Not all of these sections will apply to every program; for example, ABQ data entry doesn't
currently have any configuration options, so there's no reason to have a configuration
section. You might add other sections as well, depending on the situation; for example,
publicly distributed software may have a FAQ section, or open source software might have
a contributing section with instructions on how to submit patches.

The README file is written in plain ASCII or Unicode text, either free-form or using a
markup language. Since we're doing a Python project, we'll use reStructuredText, the
official markup for Python documentation (which is why our file uses an rst file
extension).

ReStructuredText
The reStructuredText markup language is part of the Python docutils project, and a
complete reference can be found at the Docutils website: http:/ ​/ ​docutils. ​sourceforge.
net. The docutils project also provides utilities for converting RST to formats like PDF,
ODT, HTML, and LaTeX.

The basics can be grasped fairly quickly, so let's go through them:

Paragraphs are created by leaving a blank line between blocks of text.
Headings are created by underlining a single line of text with a non-
alphanumeric symbol. The exact symbol doesn't matter; whichever one you use
first will be treated as a level one heading for the rest of the document, whichever
you use second as a level two, and so on. Conventionally, = is usually used for
level one, - for level two, ~ for level three, and + for level four.
Titles and subtitles are created like headings, except with a line of symbols above
and below.
Bullet lists are created by starting a line with any of *, -, or + and a space.
Switching symbols will create a sub-list, and multiline points are created by
indenting subsequent lines to where the text starts at the first bullet point.
Numbered lists are created like bullet lists, but using either digits (which don't
need to be correctly ordered) or the # symbol as a bullet.
Code examples can be specified inline by enclosing them in double backtick
characters (``), or in a block by ending a lead-in line with a double colon and
indenting the code block.

http://docutils.sourceforge.net
http://docutils.sourceforge.net
http://docutils.sourceforge.net
http://docutils.sourceforge.net
http://docutils.sourceforge.net
http://docutils.sourceforge.net
http://docutils.sourceforge.net
http://docutils.sourceforge.net

Planning for the Expansion of Our Application Chapter 5

[107]

Tables can either be created by surrounding columns of text with = symbols,
separated by spaces to indicate the column breaks, or by constructing ASCII-art
tables from |, -, and +. Tables can be tedious to create in a plain text editor, but
some programming tools have plugins to generate the RST tables.

We've used RST already in Chapter 2, Designing GUI Applications with Tkinter, to create our
program specification; there, you saw the use of titles, headers, bullets, and a table. Let's
walk through creating our README.rst file:

Open the file and start with the title and description, as follows:1.

============================
 ABQ Data Entry Application
============================

Description
===========

This program provides a data entry form for ABQ Agrilabs
laboratory data.

Features

* Provides a validated entry form to ensure correct data
* Stores data to ABQ-format CSV files
* Auto-fills form fields whenever possible

Next, we'll list the authors by adding the following code:2.

Authors
=======

Alan D Moore, 2018

Add yourself, of course. Eventually, other people might work on your
application; they should add their names here with the dates they worked on it.
Now, add the requirements as follows:

Requirements
============

* Python 3
* Tkinter

Planning for the Expansion of Our Application Chapter 5

[108]

Right now, we only need Python 3 and Tkinter, but as our application grows we
may be expanding this list. Our application doesn't really need to be installed,
and has no configuration options, so for now we can skip those sections. Instead,
we'll skip to Usage as follows:

Usage
=====

To start the application, run::

 python3 ABQ_Data_Entry/abq_data_entry.py

There really isn't much to know about running the program other than this
command; no command-line switches or arguments. We don't know of any bugs,
so we'll just leave some general notes at the end as follows:

General Notes
=============

The CSV file will be saved to your current directory in the
format "abq_data_record_CURRENTDATE.csv", where CURRENTDATE is
today's date in ISO format.

This program only appends to the CSV file. You should have a
spreadsheet program installed in case you need to edit or check
the file.

It seems prudent to tell the user where the file will be saved and what it will be
called, since that's hardcoded into the program right now. Also, we should
mention the fact that the user should have some kind of spreadsheet, since the
program can't edit or view the data. That finishes the README.rst file. Save it
and let's move on to the docs folder.

Populating the docs folder
The docs folder is where documentation goes. This can be any kind of documentation: user
manuals, program specifications, API references, diagrams, and so on.

For now, you copy in the program specification we wrote in previous chapters, your
interface mockups, and a copy of the form used by the technicians.

Planning for the Expansion of Our Application Chapter 5

[109]

At some point, you might need to write a user manual, but for now the program is simple
enough not to need it.

Making a Python package
Creating your own Python package is surprisingly easy. A Python package consists of the
following three things:

A directory
One or more Python files in that directory
A file called __init__.py in the directory

Once you've done this, you can import your package in whole or in part, just like you
would import standard library packages, provided your script is in the same parent
directory as the package directory.

Note that __init__.py in a module is somewhat analogous to what
self.__init__() is for a class. Code inside it will run whenever the
package is imported. The Python community generally discourages
putting much code in this file, though, and since no code is actually
required, we'll leave this file empty.

Let's start building our application's package. Create the following six empty files under
abq_data_entry:

__init__.py

widgets.py

views.py

models.py

application.py

constants.py

Planning for the Expansion of Our Application Chapter 5

[110]

Each of those Python files is called a module. A module is nothing more than a Python file
inside a package directory. Your directory structure should now look like this:

At this point, you have a working package, albeit with no actual code in it. To test this,
open a Terminal/command-line window, change to your ABQ_Data_Entry directory, and
start a Python shell.

Now, type the following command:

from abq_data_entry import application

This should work without error. Of course, it doesn't do anything, but we'll get to that next.

Planning for the Expansion of Our Application Chapter 5

[111]

Don't confuse the term package here with the actual distributable Python
packages, such as those you download using pip. We will learn how to
make distributable Python packages in Chapter 15, Packaging with
setuptools and cx_Freeze. In this context, a package is just a collection of
Python modules.

Splitting our application into multiple files
Now that our directory structure is in order, we need to start dissecting our application
script and splitting it up into our module files. We'll also need to create our model class.
Open up your abq_data_entry.py file from Chapter 4, Reducing User Error with
Validation and Automation, and let's begin!

Creating the models module
When your application is all about data, it's good to begin with the model. Remember that
the job of a model is to manage the storage, retrieval, and processing of our application's
data, usually with respect to its persistent storage format (in this case, CSV). To accomplish
this, our model should contain all the knowledge about our data.

Currently, our application has nothing like a model; knowledge about the application's
data is scattered into the form fields, and the Application object simply takes whatever
data the form contains and stuffs it directly into a CSV file when a save operation is
requested. Since we aren't yet retrieving or updating information, our application has no
actual knowledge about what's inside the CSV file.

To move our application to an MVC architecture, we'll need to create a model class that
both manages data storage and retrieval, and represents the authoritative source of
knowledge about our data. In other words, we have to encode the knowledge contained in
our data dictionary here in our model. We don't really know what we'll do with this
knowledge yet, but this is where it belongs.

There are a few ways we could store this data, such as creating a custom field class or
a namedtuple object, but we'll keep it simple for now and just use a dictionary, mapping
field names to field metadata.

The field metadata will likewise be stored as a dictionary of attributes about the field,
which will include:

Whether or not the field is required

Planning for the Expansion of Our Application Chapter 5

[112]

The type of data stored in the field
The list of possible values, if applicable
The minimum, maximum, and increment of values, if applicable

To store the data type for each field, let's define some data types. Open the constants.py
file and add the following code:

class FieldTypes:
 string = 1
 string_list = 2
 iso_date_string = 3
 long_string = 4
 decimal = 5
 integer = 6
 boolean = 7

We've created a class called FieldTypes that simply stores some named integer values,
which will describe the different types of data we're going to store. We could just use
Python types here, but it's useful to differentiate between certain types of data that are
likely to be the same Python type (such as long, short, and date strings). Note that the
integer values here are basically meaningless; they just need to be different from one
another.

Python 3 has an Enum class, which we could have used here, but it adds
very little that we actually need in this case. You may want to investigate
this class if you're creating a lot of constants such as our FieldTypes class
and need additional features.

Now, open models.py, where we'll import FieldTypes and create our model class and
field definitions as follows:

import csv
import os
from .constants import FieldTypes as FT

class CSVModel:
 """CSV file storage"""
 fields = {
 "Date": {'req': True, 'type': FT.iso_date_string},
 "Time": {'req': True, 'type': FT.string_list,
 'values': ['8:00', '12:00', '16:00', '20:00']},
 "Technician": {'req': True, 'type': FT.string},
 "Lab": {'req': True, 'type': FT.string_list,
 'values': ['A', 'B', 'C', 'D', 'E']},
 "Plot": {'req': True, 'type': FT.string_list,

Planning for the Expansion of Our Application Chapter 5

[113]

 'values': [str(x) for x in range(1, 21)]},
 "Seed sample": {'req': True, 'type': FT.string},
 "Humidity": {'req': True, 'type': FT.decimal,
 'min': 0.5, 'max': 52.0, 'inc': .01},
 "Light": {'req': True, 'type': FT.decimal,
 'min': 0, 'max': 100.0, 'inc': .01},
 "Temperature": {'req': True, 'type': FT.decimal,
 'min': 4, 'max': 40, 'inc': .01},
 "Equipment Fault": {'req': False, 'type': FT.boolean},
 "Plants": {'req': True, 'type': FT.integer,
 'min': 0, 'max': 20},
 "Blossoms": {'req': True, 'type': FT.integer,
 'min': 0, 'max': 1000},
 "Fruit": {'req': True, 'type': FT.integer,
 'min': 0, 'max': 1000},
 "Min Height": {'req': True, 'type': FT.decimal,
 'min': 0, 'max': 1000, 'inc': .01},
 "Max Height": {'req': True, 'type': FT.decimal,
 'min': 0, 'max': 1000, 'inc': .01},
 "Median Height": {'req': True, 'type': FT.decimal,
 'min': 0, 'max': 1000, 'inc': .01},
 "Notes": {'req': False, 'type': FT.long_string}
 }

Notice the way we import FieldTypes: from .constants import FieldTypes. The
dot in front of constants makes this a relative import. Relative imports can be used inside
a Python package to locate other modules in the same package. In this case, we're in
the models module, and we need to access the constants module inside
the abq_data_entry package. The single dot represents our current parent module
(abq_data_entry), and thus .constants means the constants module of
the abq_data_entry package.

Relative imports also distinguish our custom modules from modules in PYTHONPATH. Thus,
we don't have to worry about any third-party or standard library packages conflicting with
our module names.

In addition to field attributes, we're also documenting the order of fields
here. In Python 3.6 and later, dictionaries retain the order they were
defined by; if you're using an older version of Python 3, you'd need to use
the OrderedDict class from the collections standard library module
to preserve the field order.

Planning for the Expansion of Our Application Chapter 5

[114]

Now that we have a class that understands which fields need to be stored, we need to
migrate our save logic from the application class into the model.

The code in our current script is as follows:

datestring = datetime.today().strftime("%Y-%m-%d")
filename = "abq_data_record_{}.csv".format(datestring)
newfile = not os.path.exists(filename)

data = self.recordform.get()

with open(filename, 'a') as fh:
 csvwriter = csv.DictWriter(fh, fieldnames=data.keys())
 if newfile:
 csvwriter.writeheader()
 csvwriter.writerow(data)

Let's go through this code and determine what goes to the model and what stays in the
controller (that is, the Application class):

The first two lines define the filename we're going to use. This could go into the
model, but thinking ahead, it seems that the users may want to be able to open
arbitrary files or define the filename manually. This means the application will
need to be able to tell the model which filename to work with, so it's better to
leave the logic that determines the name in the controller.
The newfile line determines whether the file exists or not. As an
implementation detail of the data storage medium, this is clearly the model's
problem, not the application's.
data = self.recordform.get() pulls data from the form. Since our model
has no knowledge of the form's existence, this needs to stay in the controller.
The last block opens the file, creates a csv.DictWriter object, and appends the
data. This is definitely the model's concern.

Now, let's begin moving code into the CSVModel class:

To start the process, let's create a constructor for CSVModel that allows us to pass1.
in a filename:

 def __init__(self, filename):
 self.filename = filename

Planning for the Expansion of Our Application Chapter 5

[115]

The constructor is pretty simple; it just takes a filename parameter and
stores it as a property. Now, we'll migrate the save logic as follows:

 def save_record(self, data):
 """Save a dict of data to the CSV file"""

 newfile = not os.path.exists(self.filename)

 with open(self.filename, 'a') as fh:
 csvwriter = csv.DictWriter(fh,
 fieldnames=self.fields.keys())
 if newfile:
 csvwriter.writeheader()
 csvwriter.writerow(data)

This is essentially the logic we chose to copy from
Application.on_save(), but with one difference; in the call to
csv.DictWriter(), the fieldnames parameter is defined by the model's
fields list rather than the keys of the data dict. This allows our model to
manage the format of the CSV file itself, and not depend on what the form
gives it.

Before we're done, we need to take care of our module imports. The2.
save_record() method uses the os and csv libraries, so we need to import
them. Add this to the top of the file as follows:

import csv
import os

With the model in place, let's start working on our view components.

Moving the widgets
While we could put all of our UI-related code in one views file, we have a lot of widget
classes that should really be put in their own file to limit the complexity of the views file.

So instead, we're going to move all of the code for our widget classes into the widgets.py
file. Widgets include all the classes that implement reusable GUI components, including
compound widgets like LabelInput. As we develop more of these, we'll add them to this
file.

Planning for the Expansion of Our Application Chapter 5

[116]

Open widgets.py and copy in all of the code for ValidatedMixin, DateInput,
RequiredEntry, ValidatedCombobox, ValidatedSpinbox, and LabelInput. These are
our widgets.

The widgets.py file will need to import any module dependencies used by the code being
copied in. We'll need to look through our code and find what libraries we use and import
them. Obviously, we need tkinter and ttk, so add those at the top as follows:

import tkinter as tk
from tkinter import ttk

Our DateInput class uses the datetime class from the datetime library, so import that
too, as follows:

from datetime import datetime

Finally, our ValidatedSpinbox class makes use of the Decimal class and
InvalidOperation exception from the decimal library as follows:

from decimal import Decimal, InvalidOperation

This is all we need in widgets.py for now, but we'll revisit this file as we refactor our view
logic.

Moving the views
Next, we need to create the views.py file. Views are larger GUI components, like our
DataRecordForm class. Currently it's our only view, but we'll be creating more views in
later chapters, and they'll be added here.

Open the views.py file and copy in the DataRecordForm class, then go back to the top to
deal with the module imports. Again, we'll need tkinter and ttk, and our file saving
logic relies on datetime for the filename.

Add them to the top of the file as follows:

import tkinter as tk
from tkinter import ttk
from datetime import datetime

We aren't done, though; our actual widgets aren't here and we'll need to import them. Since
we're going to be doing a lot of importing of objects between our files, let's pause for a
moment to consider the best way to handle these imports.

Planning for the Expansion of Our Application Chapter 5

[117]

There are three ways we could import objects:

Use a wildcard import to bring in all the classes from widgets.py
Explicitly import all the needed classes from widgets.py using the from ...
import ... format
Import widgets and keep our widgets in their own namespace

Let's consider the relative merits of those ways:

The first option is by far the easiest, but it can cause us headaches as the
application expands. A wildcard import will bring in every name defined at the
global scope within the module. That includes not just the classes we defined, but
any imported modules, aliases, and defined variables or functions. This can lead
to unintended consequences and subtle bugs as the application expands in
complexity.
The second option is cleaner, but means we'll need to maintain the list of imports
as we add new classes and use them in different files, and this leads to a long and
ugly imports section that is hard for humans to parse.
The third option is by far the best, as it keeps all names within a namespace and
keeps the code elegantly simple. The only downside is that we'll need to update
our code so that all references to widget classes include the module name as well.
To keep this from being unwieldy, let's alias the widgets module to something
short, like w.

Add the following code to your imports:

from . import widgets as w

Now, we just need to go through the code and prepend w. to all instances of LabelInput,
RequiredEntry, DateEntry, ValidatedCombobox, and ValidatedSpinbox. This should
be easy enough to do in IDLE or any other text editor using a series of search and replace
actions.

For example, line 1 of the form is as follows:

line 1
self.inputs['Date'] = w.LabelInput(
 recordinfo, "Date",
 input_class=w.DateEntry,
 input_var=tk.StringVar()
)
self.inputs['Date'].grid(row=0, column=0)
self.inputs['Time'] = w.LabelInput(

Planning for the Expansion of Our Application Chapter 5

[118]

 recordinfo, "Time",
 input_class=w.ValidatedCombobox,
 input_var=tk.StringVar(),
 input_args={"values": ["8:00", "12:00", "16:00", "20:00"]}
)
self.inputs['Time'].grid(row=0, column=1)
self.inputs['Technician'] = w.LabelInput(
 recordinfo, "Technician",
 input_class=w.RequiredEntry,
 input_var=tk.StringVar()
)
self.inputs['Technician'].grid(row=0, column=2)

Before you go through and change that everywhere, though, let's stop and take a moment
to refactor some of the redundancy out of this code.

Removing redundancy in our view logic
Look at the field definitions in the view logic: they contain a lot of information that is also
in our model. Minimums, maximums, increments, and possible values are defined both
here and in our model code. Even the type of the input widget is related directly to the type
of data being stored. Ideally, this should only be defined one place, and that place should
be the model. If we needed to update the model for some reason, our form would be out of
sync.

What we need to do is to pass the field specification from our model into the view class and
let the widgets' details be defined from that specification.

Since our widget instances are being defined inside the LabelInput class, we're going to
enhance that class with the ability to automatically work out the input class and
arguments from our model's field specification format. Open up the widgets.py file and
import the FieldTypes class, just as you did in model.py.

Now, locate the LabelInput class and add the following code before the __init__()
method:

 field_types = {
 FT.string: (RequiredEntry, tk.StringVar),
 FT.string_list: (ValidatedCombobox, tk.StringVar),
 FT.iso_date_string: (DateEntry, tk.StringVar),
 FT.long_string: (tk.Text, lambda: None),
 FT.decimal: (ValidatedSpinbox, tk.DoubleVar),

Planning for the Expansion of Our Application Chapter 5

[119]

 FT.integer: (ValidatedSpinbox, tk.IntVar),
 FT.boolean: (ttk.Checkbutton, tk.BooleanVar)
 }

This code acts as a key to translate our model's field types into a widget type and variable
type appropriate for the field type.

Now, we need to update __init__() to take a field_spec parameter and, if given, use it
to define the input widget as follows:

 def __init__(self, parent, label='', input_class=None,
 input_var=None, input_args=None, label_args=None,
 field_spec=None, **kwargs):
 super().__init__(parent, **kwargs)
 input_args = input_args or {}
 label_args = label_args or {}
 if field_spec:
 field_type = field_spec.get('type', FT.string)
 input_class = input_class or
 self.field_types.get(field_type)[0]
 var_type = self.field_types.get(field_type)[1]
 self.variable = input_var if input_var else var_type()
 # min, max, increment
 if 'min' in field_spec and 'from_' not in input_args:
 input_args['from_'] = field_spec.get('min')
 if 'max' in field_spec and 'to' not in input_args:
 input_args['to'] = field_spec.get('max')
 if 'inc' in field_spec and 'increment' not in input_args:
 input_args['increment'] = field_spec.get('inc')
 # values
 if 'values' in field_spec and 'values' not in input_args:
 input_args['values'] = field_spec.get('values')
 else:
 self.variable = input_var
 if input_class in (ttk.Checkbutton, ttk.Button, ttk.Radiobutton):
 input_args["text"] = label
 input_args["variable"] = self.variable
 else:
 self.label = ttk.Label(self, text=label, **label_args)
 self.label.grid(row=0, column=0, sticky=(tk.W + tk.E))
 input_args["textvariable"] = self.variable
 # ... Remainder of __init__() is the same

Planning for the Expansion of Our Application Chapter 5

[120]

Let's break down the changes:

First, we've added field_spec as a keyword argument with None as a default.1.
We might want to use this class in a situation where there isn't a field
specification, so we keep this parameter optional.
If there is field_spec given, we're going to do the following things:2.

We'll grab the type value and use that with our class's field key to get
input_class. In case we want to override this, an explicitly passed
input_class will override the detected one.
We'll determine the appropriate variable type in the same way. Once
again, if input_var is explicitly passed, we'll prefer that, otherwise
we'll use the one determined from the field type. We'll create an
instance either way and store it in self.variable.
For min, max, inc, and values, if the key exists in the field
specification, and the corresponding from_, to, increment, or
values argument has not been passed in explicitly, we'll set up the
input_args variable with the field_spec value.

If field_spec wasn't passed in, we need to assign self.variable from the3.
input_var argument.
We're using self.variable now instead of input_var for assigning the input's4.
variable, since those values might not necessarily be the same anymore and
self.variable will contain the correct reference.

Now, we can update our view code to take advantage of this new ability. Our
DataRecordForm class will need access to the model's fields dictionary, which it can
then use to send a field specification to the LabelInput class.

Back in the views.py file, edit the method signature so that we can pass in a dictionary of
field specifications:

 def __init__(self, parent, fields, *args, **kwargs):

With access to the fields dictionary, we can just get the field specification from it and pass
that into the LabelInput class instead of specifying the input class, input variable, and
input arguments.

Planning for the Expansion of Our Application Chapter 5

[121]

Now, the first line looks like this:

 self.inputs['Date'] = w.LabelInput(
 recordinfo, "Date",
 field_spec=fields['Date'])
 self.inputs['Date'].grid(row=0, column=0)
 self.inputs['Time'] = w.LabelInput(
 recordinfo, "Time",
 field_spec=fields['Time'])
 self.inputs['Time'].grid(row=0, column=1)
 self.inputs['Technician'] = w.LabelInput(
 recordinfo, "Technician",
 field_spec=fields['Technician'])
 self.inputs['Technician'].grid(row=0, column=2)

Go ahead and update the rest of the widgets the same way, replacing input_class,
input_var, and input_args with field_spec. Note that when you get to the height
fields, you'll need to keep the part of input_args that defines min_var, max_var, and
focus_update_var.

For example, the following is the Min Height input definition:

 self.inputs['Min Height'] = w.LabelInput(
 plantinfo, "Min Height (cm)",
 field_spec=fields['Min Height'],
 input_args={"max_var": max_height_var,
 "focus_update_var": min_height_var})

That does it. Now, any changes to our field specification can be made solely in the model,
and the form will simply do the correct thing.

Creating the application file
Finally, let's create our controller class, Application, by following these steps:

Open the application.py file and copy in the Application class definition1.
from the script.

Planning for the Expansion of Our Application Chapter 5

[122]

The first thing we'll fix is our imports. At the top of the file, add the following2.
code:

import tkinter as tk
from tkinter import ttk
from datetime import datetime
from . import views as v
from . import models as m

We need tkinter and ttk, of course, and datetime to define our filename.
Although we only need one class each from views and models, we're going to
keep them in their own namespaces anyway. It's likely we're going to have many
more views as the application expands, and possibly more models.

We need to update the call to DataRecordForm in __init__() for the new3.
namespace and make sure we pass in the required field specification dictionary
as follows:

 self.recordform = v.DataRecordForm(self, m.CSVModel.fields)

Finally, we need to update Application.on_save() to use the model, as4.
follows:

 def on_save(self):
 """Handles save button clicks"""

 errors = self.recordform.get_errors()
 if errors:
 self.status.set(
 "Cannot save, error in fields: {}"
 .format(', '.join(errors.keys())))
 return False

 # For now, we save to a hardcoded filename
 with a datestring.
 datestring = datetime.today().strftime("%Y-%m-%d")
 filename = "abq_data_record_{}.csv".format(datestring)
 model = m.CSVModel(filename)
 data = self.recordform.get()
 model.save_record(data)
 self.records_saved += 1
 self.status.set(
 "{} records saved this session".
 format(self.records_saved)
)
 self.recordform.reset()

Planning for the Expansion of Our Application Chapter 5

[123]

As you can see, using our model is pretty seamless; we just created a CSVModel class by
passing in the filename, and then passed the form's data to save_record().

Running the application
The application is now completely migrated to the new data format. To test it, navigate to
the application root folder, ABQ_Data_Entry, and execute the following command:

python3 abq_data_entry.py

It should look and act just like the single script from Chapter 4, Reducing User Error with
Validation and Automation, and run without errors, as shown in the following screenshot:

Success!

Planning for the Expansion of Our Application Chapter 5

[124]

Using version control software
Our code is nicely structured for expansion, but there's one more critical item we should
address: version control. You may already be familiar with a version control system
(VCS), sometimes called revision control or source code management, but if not, it's an
indispensable tool for dealing with a large and changing codebase.

When working on an application, we sometimes think we know what needs to be changed,
but it turns out we're wrong. Sometimes we don't know exactly how to code something,
and it takes several attempts to find the correct approach. Sometimes we need to revert to
code that was changed a long time back. Sometimes we have multiple people working on
the same piece of code, and we need to merge their changes together. Version control
systems were created to address these issues and more.

There are dozens of different version control systems, but most of them work essentially the
same:

You have a working copy of the code that you make changes to
You periodically select changes to commit back to the master copy
You can checkout older versions of the code at any point, then revert back to the
master copy
You can create branches of the code to experiment with different approaches,
new features, or large refactors
You can later merge these branches back into the master copy

VCS provides a safety net that gives you the freedom to change your code without the fear
that you'll hopelessly ruin it: reverting to a known working state is just a few quick
commands away. It also helps us to document changes to our code, and collaborate with
others if the opportunity arises.

There are dozens of VC systems available, but by far the most popular for many years now
is Git.

Planning for the Expansion of Our Application Chapter 5

[125]

A super-quick guide to using Git
Git was created by Linus Torvalds to be the version control software for the Linux kernel
project, and has since grown to be the most popular VC software in the world. It is utilized
by source sharing sites like GitHub, Bitbucket, SourceForge, and GitLab. Git is extremely
powerful, and mastering it can take months or years; fortunately, the basics can be grasped
in a few minutes.

First, you'll need to install Git; visit https:/ ​/​git- ​scm. ​com/ ​downloads for instructions on
how to install Git on macOS, Windows, Linux, or other Unix operating systems.

Initializing and configuring a Git repository
Once Git is installed, we need to initialize and configure our project directory as a Git
repository by following these steps:

Run the following command in the application's root directory1.
(ABQ_Data_Entry):

git init

This command creates a hidden directory under our project root called .git and
initializes it with the basic files that make up the repository. The .git directory
will contain all the data and metadata about our saved revisions.

Before we add any files to the repository, we need to instruct Git to ignore certain2.
kinds of files. For example, Python creates bytecode (.pyc) files whenever it
executes a file, and we don't want to save these as part of our code. To do this,
create a file in your project root called .gitignore and put the following lines in
it:

*.pyc
__pycache__/

https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads
https://git-scm.com/downloads

Planning for the Expansion of Our Application Chapter 5

[126]

Adding and committing code
Now that our repository is initialized, we can add files and directories to our Git repository
using the following commands:

git add abq_data_entry
git add abq_data_entry.py
git add docs
git add README.rst

At this point, our files are staged, but not yet committed to the repository. You can check
the status of your repository and the files in it at any time by entering git status.

You should get the following output:

On branch master

No commits yet

Changes to be committed:
 (use "git rm --cached <file>..." to unstage)

 new file: README.rst
 new file: abq_data_entry.py
 new file: abq_data_entry/__init__.py
 new file: abq_data_entry/application.py
 new file: abq_data_entry/models.py
 new file: abq_data_entry/views.py
 new file: abq_data_entry/widgets.py
 new file: docs/Application_layout.png
 new file: docs/abq_data_entry_spec.rst
 new file: docs/lab-tech-paper-form.png

Untracked files:
 (use "git add <file>..." to include in what will be committed)

 .gitignore

This shows you that all the files under abq_data_entry and docs, as well as the files you
specified directly, are staged to be committed to the repository.

Let's go ahead and commit the changes as follows:

git commit -m "Initial commit"

Planning for the Expansion of Our Application Chapter 5

[127]

The -m flag here passes in a commit message, which is stored with the commit. Each time
you commit code to the repository, you will be required to write a message. You should
always make these messages as meaningful as possible, detailing what changes you made
and the rationale behind them.

Viewing and using our commits
To view your repository's history, run the git log command as follows:

alanm@alanm-laptop:~/ABQ_Data_Entry$ git log
commit df48707422875ff545dc30f4395f82ad2d25f103 (HEAD -> master)
Author: Alan Moore <alan@example.com>
Date: Thu Dec 21 18:12:17 2017 -0600

 Initial commit

As you can see, the Author, Date, and commit message is displayed for our last commit. If
we had more commits, they would be listed here as well, from newest to oldest. The long
hexadecimal value you see in the first line of output is the commit hash, a unique value
that identifies the commit. This value can be used to refer to the commit in other operations.

For example, we can use it to reset our repository to a past state, as follows:

Delete the README.rst file, and verify that it's completely gone.1.
Now, enter the command git reset --hard df48707, replacing df487072.
with the first seven characters of your commit's hash.
Check your file listing again: the README.rst file is back.3.

What happened here is that we altered our repository, then told Git to hard reset the state
of the repository to our first commit. If you don't want to reset your repository, you can
also checkout an old commit temporarily, or create a branch using a particular commit as
the base. As you can see already, this gives us a powerful safety net for experimentation; no
matter how much you tinker with the code, any commit is just a command away!

Git has many more features that are beyond the scope of this book. If you'd like to learn
more, the Git project provides a free online manual at https:/ ​/​git- ​scm. ​com/​book where
you can learn about advanced features like branching and setting up remote repositories.
For now, the important thing is to commit changes as you go, so that you maintain your
safety net and document the history of changes.

https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book
https://git-scm.com/book

Planning for the Expansion of Our Application Chapter 5

[128]

Summary
In this chapter, you learned to prepare your simple script for some serious expansion. You
learned how to divide your application's areas of responsibility into separate components,
and how to split your code into separate modules. You learned how to document your code
using reStructuredText and track all your changes with version control.

In the next chapter, we're going to put our new project layout to the test by implementing
some new features. You'll learn how to work with Tkinter's application menu widgets, how
to implement file opening and saving, and how to use message popups to alert users or
confirm actions.

6
Creating Menus with Menu and

Tkinter Dialogs
As an application grows, organizing access to its features becomes increasingly
important. Traditionally, applications have addressed this with a menu system, which
is typically located at the top of the application window or (on some platforms) in a
global desktop menu. While these menus are application-specific, certain
organizational conventions have been developed that we should follow in order to
make our software user-friendly.

In this chapter, we're going to cover the following topics:

Analyzing some reported problems and deciding on a solution
Exploring some of Tkinter's dialog classes, and using them for implementing
common menu functionality
Learning how to work with Tkinter's Menu widget and using it to create a menu
for our application
Creating some options for our application and saving them to disk

Solving problems in our application
Your boss has brought you the first set of problems that need to be addressed in your
application. First, in situations where the last reports of the day aren't able to be entered
until the following day, the hardcoded date string in the filename is a problem. The data
entry staff need a way to manually choose which file they'll be appending to.

Also, the data entry staff have mixed feelings about the auto-populate features in the form.
Some find it very helpful, but others would really like to see it disabled. You'll need a way
to allow users to turn this feature on and off.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[130]

Finally, some users have a hard time noticing the status bar text at the bottom, and would
like the application to be more conspicuous when it fails to save data due to errors.

Deciding how to address these problems
It's clear you need to implement a way to select a file and toggle the auto-populate features
of the form. First, you consider just adding controls to the main application for both of
these, and make this quick mock-up:

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[131]

It doesn't take long for you to realize that this is not a great design, and certainly not one
that will accommodate growth. Your users don't want to have to type a file path and
filename blindly into the box, nor do they want a lot of extra fields cluttering up the UI.

Fortunately, Tkinter offers some tools that will help us to solve these problems:

File dialogs: Tkinter's filedialog library will help make file selection simple
Error dialogs: Tkinter's messagebox library will let us display error messages
more noticeably
Main menu: Tkinter's Menu class can help us organize common functionality for
easy access

Implementing simple Tkinter dialogs
The status bar is fine for incidental information that shouldn't interrupt a user's workflow,
but for errors that prevent work from continuing as expected, users should be alerted in a
more assertive way. An error dialog that halts the program until it's acknowledged with a
mouse click is fairly assertive and seems like a good way to address the issue of users not
seeing errors. In order to implement these, you'll need to learn about Tkinter's
messagebox library.

Tkinter messagebox
The best way to display simple dialog boxes in Tkinter is by using the
tkinter.messagebox library, which contains several convenient functions that allow you
to quickly create common dialog types. Each function displays a preset icon and a selection
of buttons with a message and detail text that you specify, and returns a value depending
on which button the user clicked.

The following table shows some of the messagebox functions with their icons and return
values:

Function Icon Button / return value

askokcancel Question Ok (True), Cancel (False)

askretrycancel Warning Retry (True), Cancel (False)

askyesno Question Yes (True), No (False)

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[132]

askyesnocancel Question Yes (True), No (False), Cancel (None)

showerror Error Ok (ok)

showinfo Information Ok (ok)

showwarning Warning Ok (ok)

We can pass the following three text arguments into any messagebox function:

title: This argument sets the title of the window, which is displayed in the title
bar and/or task bar in your desktop environment.
message: This argument sets the main message of the dialog. It's usually in a
heading font and should be kept fairly short.
detail: This argument sets the body text of the dialog, which is usually
displayed in the standard window font.

Here is a basic call to showinfo():

messagebox.showinfo(
 title='This is the title',
 message="This is the message",
 detail='This is the detail')

In Windows 10, it results in a dialog box (on other platforms, it may look a bit different), as
shown in the following screenshot:

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[133]

Tkinter messagebox dialog boxes are modal, which means that the program execution
pauses and the rest of the UI is unresponsive while the dialog box is open. There is no way
to change this, so only use them in situations where it's acceptable for the program to pause
execution while the box is open.

Let's create a small example to show the use of the messagebox functions:

import tkinter as tk
from tkinter import messagebox

To use messagebox, we need to import it from Tkinter; you can't simply use
tk.messagebox because it's a submodule and must be explicitly imported.

Let's create a yes-no message box as follows:

see_more = messagebox.askyesno(title='See more?',
 message='Would you like to see another box?',
 detail='Click NO to quit')
if not see_more:
 exit()

This creates a dialog with Yes and No buttons; if Yes is clicked, the function returns True.
If No is clicked, the function returns False and the application exits.

In case our user wants to see more boxes, let's display an information box:

messagebox.showinfo(title='You got it',
 message="Ok, here's another dialog.",
 detail='Hope you like it!')

Note the difference between the way message and detail are displayed on your platform.
On some platforms, there is no difference; on others, message is large and bold, which is
appropriate for short texts. For cross-platform software, it's best to use detail for extended
output.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[134]

Showing the error dialogs
Now that you understand how to use messagebox, error dialogs should be easy to
implement. The Application.on_save() method already displays errors in the status
bar; we just need to make this error display in an error message box as well by performing
the following steps:

First, we'll need to import it in application.py as follows:1.

from tkinter import messagebox

Now, in the on_save() method after the check for errors, we'll set up the2.
message for the error dialog. We'll make a bullet list of the fields with errors by
joining them with "\n *". Unfortunately, messagebox doesn't support any sort
of markup, so constructs like bullet lists need to be built manually using regular
characters, as in the following:

 message = "Cannot save record"
 detail = "The following fields have errors: \n * {}".format(
 '\n * '.join(errors.keys()))

 Now, we can call showerror(), just after the call to status() as follows:3.

 messagebox.showerror(title='Error', message=message, detail=detail)

Now, open the program and hit Save; you'll see a dialog box alerting you to the4.
errors in the application, as shown in the following screenshot:

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[135]

This error should be hard for anyone to miss!

One shortcoming of the messagebox dialogs is that they don't scroll; a
long error message will create a dialog that may fill (or extend beyond)
the screen. If this is a potential problem, you'll want to create a custom
dialog containing a scrollable widget. We'll make a custom dialog in
Chapter 11, Improving Data Storage with SQL.

Designing our menu
Most applications organize functionality into a hierarchical menu system, typically
displayed at the top of the application or screen (depending on the OS). While the
organization of this menu varies between operating systems, certain items are fairly
common across platforms.

Of these common items, our application will need the following:

A file menu containing file operations such as open/save/export, and often an
option to quit the application. Our users will need this menu to select a file and
quit the program.
An options, preferences, or settings menu where users can configure the
application. We'll need this menu for our toggle settings; we'll call it options for
now.
A help menu, which contains links to help documentation, or, at the very least,
an about message giving the basic information about the application. We'll
implement this menu for the about dialog.

Apple, Microsoft, and the Gnome Project publish guidelines for macOS,
Windows, and Gnome desktops (used on Linux and BSD), respectively;
each set of guidelines addresses the layout of menu items specific to that
platform. We'll explore this in more detail in Chapter 9, Maintaining
Cross-Platform Compatibility.

Before we can implement our menu, we'll need to understand how menus work in Tkinter.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[136]

Creating menus in Tkinter
The tkinter.Menu widget is used to implement menus in Tkinter applications; it's a fairly
simple widget that acts as a container for any number of menu items.

The menu items can be one of the following five types:

command: These items are labeled buttons that, when clicked, run a callback.
checkbutton: These items are just like Checkbutton in our forms, and can be
used to toggle BooleanVar.
radiobutton: These items are similar to Checkbutton, but can be used to
switch any kind of Tkinter variable between several mutually exclusive options.
separator: These items are used to segment the menu into sections.
cascade: These items allow you to add a submenu to the menu. The submenu is
just another tkinter.Menu object.

Let's write the following small program to demonstrate the use of Tkinter menus:

import tkinter as tk

root = tk.Tk()
main_text = tk.StringVar(value='Hi')
label = tk.Label(root, textvariable=main_text)
label.pack()

root.mainloop()

This application sets up a label whose text is controlled by a string variable, main_text. If
you run this application, you'll see a simple window that says Hi. Let's start adding the
menu components.

Right above root.mainloop(), add the following code:

main_menu = tk.Menu(root)
root.config(menu=main_menu)

This creates a main menu and then sets it as the main menu of our application.

Currently, that menu is empty, so let's add an item by adding the following code:

main_menu.add('command', label='Quit', command=root.quit)

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[137]

We've added a command to quit the application. The add method allows us to specify an
item type and any number of attributes to create a new menu item. In the case of a
command, we need to at least have a label argument specifying the text that will show in
the menu and a command argument pointing to a Python callback.

Some platforms, such as macOS, don't allow a command in the top-level
menu. We'll cover the differences between menus on different platforms
in more detail in Chapter 9, Maintaining Cross-Platform Compatibility.

Let's try creating a submenu as follows:

text_menu = tk.Menu(main_menu, tearoff=False)

Creating a submenu is just like creating a menu, except that we specify the parent menu as
the widget's parent. Notice the tearoff argument; by default, submenus in Tkinter are
tearable, which means they can be pulled off and moved around as independent windows.
You don't have to disable this option, but it is a rather archaic UI feature that is rarely used
on modern platforms. Users will likely just find it confusing, so it's best to disable it
whenever you create submenus.

Add some commands to the menu as follows:

text_menu.add_command(label='Set to "Hi"',
 command=lambda: main_text.set('Hi'))
text_menu.add_command(label='Set to "There"',
 command=lambda: main_text.set('There'))

We're using the lambda functions here for convenience, but you can pass any Python
callable. The add_command method used here is simply a shortcut for add('command').
There are analogous methods for adding other items as well (cascade, separator, and so on).

Let's use the add_cascade method to add our menu back to its parent widget as follows:

main_menu.add_cascade(label="Text", menu=text_menu)

When adding a submenu to its parent menu, we simply have to provide the label for the
menu and the menu itself.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[138]

We can add the Checkbutton and Radiobutton widgets to the menu as well. To
demonstrate this, let's create another submenu to alter the label's appearance.

First, we need the following setup code:

font_bold = tk.BooleanVar()
font_size = tk.IntVar()

def set_font(*args):
 font_spec = 'TkDefaultFont {size} {bold}'.format(
 size=font_size.get(),
 bold='bold' if font_bold.get() else '')
 label.config(font=font_spec)

font_bold.trace('w', set_font)
font_size.trace('w', set_font)

Here, we're just creating variables to store the state of the bold option and font size, then a
callback method that actually sets the label's font from these variables when called. Then,
we set up a trace on both variables to call the callback whenever their values are changed.

Now, we just need to create the menu options to change the variables by adding the
following code:

appearance menu
appearance_menu = tk.Menu(main_menu, tearoff=False)
main_menu.add_cascade(label="Appearance", menu=appearance_menu)

bold text button
appearance_menu.add_checkbutton(label="Bold", variable=font_bold)

Like a regular Checkbutton widget, the add_checkbutton method takes BooleanVar,
which is passed to the variable argument that will be bound to its checked status. Unlike
a regular Checkbutton widget, use the label argument, rather than the text argument,
to assign the label text.

To demonstrate the radio buttons, let's add a submenu to our submenu, like so:

size_menu = tk.Menu(appearance_menu, tearoff=False)
appearance_menu.add_cascade(label='Font size', menu=size_menu)
for size in range(8, 24, 2):
 size_menu.add_radiobutton(label="{} px".format(size),
 value=size, variable=font_size)

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[139]

Just as we added a submenu to our main menu, we can add submenus to submenus. In
theory, you could nest submenus indefinitely, but most UI guidelines discourage more than
two levels. To create the items for our size menu, we're just iterating a generated list of even
numbers between 8 and 24; for each one, we add a radiobutton item with a value equal to
that size. Just like with regular Radiobutton widgets, the variable given in the variable
argument will be updated with the value given in the value argument when the button is
selected.

Launch the application and try it out, as shown in the following screenshot:

Now that you understand the Menu widget, let's add one to our application.

Implementing our application menu
As a major component of the GUI, our menu is clearly a view, and should be implemented
in the views.py file. However, it's also going to need to set options that affect other views
(such as the form options we're implementing now) and run functions that affect the
application (like quitting). We need to implement it in such a way that we keep controller
functions in the Application class but still keep the UI code in views.py. Let's take a look
at the following steps:

Let's start out by opening views.py and creating a MainMenu class that1.
subclasses tkinter.Menu:

class MainMenu(tk.Menu):
"""The Application's main menu"""

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[140]

Our overridden __init__() method will take two dictionaries, a settings
dictionary and a callbacks dictionary, as follows:

 def __init__(self, parent, settings, callbacks, **kwargs):
 super().__init__(parent, **kwargs)

We'll use these dictionaries to communicate with the controller: settings will
contain Tkinter variables that can be bound to our menu controls, and callbacks
will be controller methods that we can bind to menu commands. Naturally, we'll
need to make sure to populate these dictionaries with the expected variables and
callables in our Application object.

Now, let's start creating our submenus, starting with the file menu as follows:2.

 file_menu = tk.Menu(self, tearoff=False)
 file_menu.add_command(
 label="Select file…",
 command=callbacks['file->open'])

Our first command in the file menu is Select file.... Notice the ellipses in the
label: this indicates to the user that the option will open another window that will
require further input. We're setting command to a reference from our callbacks
dictionary using the file->open key. This function doesn't exist yet; we'll
implement it shortly. Let's add our next file menu command, file->quit:

 file_menu.add_separator()
 file_menu.add_command(label="Quit",
 command=callbacks['file->quit'])

Once again, we've pointed this command to an as yet undefined function in
our callbacks dictionary. We've also added a separator; since quitting the
program is a fundamentally different sort of operation from selecting a target
file, it makes sense to separate them, and you'll see this in most application
menus.

This completes the file menu, so we need to add it to the main menu object as3.
follows:

 self.add_cascade(label='File', menu=file_menu)

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[141]

The next submenu we need to create is our options menu. Since we only have4.
two menu options, we'll just add them directly to the submenu as Checkbutton.
The option menu looks as follows:

 options_menu = tk.Menu(self, tearoff=False)
 options_menu.add_checkbutton(label='Autofill Date',
 variable=settings['autofill date'])
 options_menu.add_checkbutton(label='Autofill Sheet data',
 variable=settings['autofill sheet data'])
 self.add_cascade(label='Options', menu=options_menu)

The variables bound to these Checkbutton widgets are in the settings
dictionary, so our Application class will populate settings with two
BooleanVar variables: autofill date and autofill sheet data.

Last of all, we'll create a help menu, featuring an option to show an About5.
dialog:

 help_menu = tk.Menu(self, tearoff=False)
 help_menu.add_command(label='About…', command=self.show_about)
 self.add_cascade(label='Help', menu=help_menu)

Our About command points to an internal MainMenu method called show_about,
which we'll implement next. The About dialog is going to be pure UI code with
no actual application functionality in it, so we can implement it entirely within
the view.

Showing an About dialog
We've already seen how to use messagebox to create error dialogs. Now, we can apply that
knowledge to create our About box by performing the following steps:

Start a new method definition after __init__():1.

 def show_about(self):
 """Show the about dialog"""

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[142]

The About dialog can show any information you feel is relevant, including your2.
contact information, support information, version information, or even the entire
README file. In our case, we'll keep it fairly short. Let's specify the message
header text and detail body text:

 about_message = 'ABQ Data Entry'
 about_detail = ('by Alan D Moore\n'
 'For assistance please contact the author.')

We're just using the application name for the header, and a short message about
our name and who to contact for support for the detail. Feel free to put whatever
text you wish in your About box.

There are several ways you can deal with long, multiline strings in Python
code; the approach used here is to place multiple strings between
parenthesis with only whitespace between them. Python automatically
concatenates strings separated by only whitespace, so to Python this looks
like a single long string inside a set of parentheses. In contrast to other
methods, such as triple-quoting, this allows you to maintain clean indents
and control new lines explicitly.

Finally, we need to display our About box as follows:3.

 messagebox.showinfo(title='About', message=about_message,
 detail=about_detail)

In the preceding code, the showinfo() function is clearly the most
appropriate, since we are in fact showing information. This finishes our
show_about() method and our MainMenu class. Next, we need to make the
necessary modifications to Application to make it work.

Adding the menu functionality in the controller
Now that our menu class is defined, our Application object needs to create an instance
and add it into the main window. Before we can do that, we'll need to define some things
that our MainMenu class needs.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[143]

Remember the following things from the previous section:

We need a settings dictionary that contains Tkinter variables for our two
settings options
We need a callbacks dictionary that points to callbacks for file->select and
file->quit

We need the actual functions that implement file selection and quitting

Let's define some things that our MainMenu class needs.

Open application.py and let's start adding code just before the creation of
self.recordform:

 self.settings = {
 'autofill date': tk.BooleanVar(),
 'autofill sheet data': tk.BooleanVar()
 }

This will be our global settings dictionary that stores the boolean variables for our two
configuration options. Next, we'll create the callbacks dictionary:

 self.callbacks = {
 'file->select': self.on_file_select,
 'file->quit': self.quit
 }

Here, we're pointing our two callbacks to the methods of the Application class that will
implement the functionality. Fortunately for us, Tkinter already implements self.quit,
which does exactly what you'd expect it to do, so we only need to implement
on_file_select ourselves. We will finish up here by creating our menu object and add it
to the application as follows:

 menu = v.MainMenu(self, self.settings, self.callbacks)
 self.config(menu=menu)

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[144]

Handling file selection
When a user needs to enter a file or directory path, the preferred way to do this is to display
a dialog containing a miniature file browser, commonly called a file dialog. Like most
toolkits, Tkinter provides us with dialogs for opening files, saving files, and selecting a
directory. These are all part of the filedialog module.

Just like messagebox, filedialog is a Tkinter submodule that needs to be explicitly
imported to be used. Also like messagebox, it contains a set of convenience functions that
create file dialogs that are appropriate for different scenarios.

The following table lists the functions, what they return, and their UI features:

Function Return value Features

askdirectory
Directory path as
string Only shows directories, no files

askopenfile File handle object Only allows selection of existing files

askopenfilename File path as string Only allows selection of existing files

askopenfilenames
File paths as list of
strings

Like askopenfilename, but allows multiple
selections

askopenfiles
List of file handle
objects

Like askopenfile, but allows multiple
selections

asksaveasfile File handle object Allows creation of new files, prompts for
confirmation on existing files

asksaveasfilename File path as string Allows creation of new files, prompts for
confirmation on existing files

As you can see, each file selection dialog comes in two versions: one that returns a path as a
string, and one that returns an open file object.

Each function can take the following common arguments:

title: This argument specifies the dialog window title.
parent: This argument specifies the (optional) parent widget. The file dialog
will appear over this widget.
initialdir: This argument is the directory in which the file browser should
start.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[145]

filetypes: This argument is a list of tuples, each with a label and matching
pattern, which will be used to create files of the filter drop-down type typically
seen under the filename entry. This is used to filter the visible files to only those
supported by the application.

The asksaveasfile and asksaveasfilename methods take the following two additional
options:

initialfile: This option is a default file path to select
defaultextension: This option is a file extension string that will be
automatically appended to the filename if the user doesn't do it

Finally, the methods that return a file object take a mode argument that specifies the file-
open mode; these are the same one- or two-character strings used by Python's open built-in
function.

Which dialog do we need to use in our application? Let's consider our needs:

We need a dialog that allows us to select an existing file
We also need to be able to create a new file
Since opening the file is the responsibility of the model, we just want to get a
filename to pass to the model

These requirements clearly point to the asksaveasfilename function. Let's take a look at
the following steps:

Start a new method on the Application object:1.

 def on_file_select(self):
 """Handle the file->select action from the menu"""

 filename = filedialog.asksaveasfilename(
 title='Select the target file for saving records',
 defaultextension='.csv',
 filetypes=[('Comma-Separated Values', '*.csv *.CSV')])

The method first asks the user to select a file with a .csv extension; using the
filetypes argument, the selection of existing files will be limited to those
ending in .csv or CSV. When the dialog exits, the function will return the
path to the selected file as a string to filename. Somehow, we have to get
this path to our model.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[146]

Currently, the filename is generated in the Application object's on_save2.
method and passed into the model. We need to move filename to a property of
the Application object so that we can override it from our on_file_select()
method.
Back in the __init__() method, add the following code line before the3.
settings and callbacks definitions:

 self.filename = tk.StringVar()

The self.filename property will keep track of the currently selected save file.4.
Previously, we set up our hardcoded filename inside the on_save() method;
there's no good reason to keep doing this every time on_save() is called,
particularly since we're only using it if the user hasn't selected a file otherwise.
Instead, move those lines from on_save() to just above the self.filename
definition:

 datestring = datetime.today().strftime("%Y-%m-%d")
 default_filename = "abq_data_record_{}.csv".
 format(datestring)
 self.filename = tk.StringVar(value=default_filename)

With the default filename defined, we can supply it as a default value5.
for StringVar. The value will be updated by on_file_select() whenever the
user selects a filename. This is accomplished by the following lines at the end of
on_file_select():

 if filename:
 self.filename.set(filename)

The reason for the if statement is that we only want to set a value if a file was6.
actually selected by the user. Remember that the file dialogs will return None if
the user cancels the operation; in this case, a user would expect that the currently
set filename will remain the target.
Lastly, we need to make our on_save() method use this value when it's set7.
instead of the hardcoded default.
Down in the on_save() method, locate the line where filename is defined and8.
change it to the following line:

 filename = self.filename.get()

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[147]

That completes the code changes to make filename selection work. At this point,9.
you should be able to run the application and test out the file selection
functionality. Save a few records and note that they indeed save to the file you
selected.

Making our settings work
While the file saving works, the settings do not. The settings menu items should work as
expected, remaining checked or unchecked, but they don't yet change the behavior of the
data entry form. Let's make this work.

Recall that both autofill features are implemented in the DataRecordForm class's reset()
method. To use our new settings, we need to give our form access to the settings
dictionary by performing the following steps:

Open views.py and update the DataRecordForm.__init__() method as1.
follows:

 def __init__(self, parent, fields, settings, *args, **kwargs):
 super().__init__(parent, *args, **kwargs)
 self.settings = settings

We've added an additional positional argument, settings, and then set that to2.
self.settings so that all of the methods in the class can access it. Now, look at
the reset() method; currently, the date autofill code is as follows:

 current_date = datetime.today().strftime('%Y-%m-%d')
 self.inputs['Date'].set(current_date)
 self.inputs['Time'].input.focus()

We just need to make sure this happens only when settings['autofill3.
date'] is True:

 if self.settings['autofill date'].get():
 current_date = datetime.today().strftime('%Y-%m-%d')
 self.inputs['Date'].set(current_date)
 self.inputs['Time'].input.focus()

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[148]

Autofilling the sheet data is already under a conditional statement, as you
can see here:

 if plot not in ('', plot_values[-1]):
 self.inputs['Lab'].set(lab)
 self.inputs['Time'].set(time)
 ...

To make the setting effective, we just need to add another condition to the if4.
statement:

 if (self.settings['autofill sheet data'].get() and
 plot not in ('', plot_values[-1])):
 ...

The last piece of the puzzle is to make sure we're sending our settings
dictionary to DataRecordForm when it's created.

Back in the Application code, update our call to DataRecordForm() to5.
include self.settings as follows:

 self.recordform = v.DataRecordForm(self,
 m.CSVModel.fields, self.settings)

Now, if you run the program, you should find that the settings are respected; try6.
checking and unchecking them and see what happens after you save a record.

Persisting settings
Our settings work, but there's a major annoyance: they don't persist between sessions. Shut
down the application and start it up again, and you'll see that the settings are back to their
defaults. It's not a major problem, but it's a rough edge we shouldn't leave for our users.

Python gives us a variety of ways to persist data in files. We've already experienced CSV,
which is designed for tabular data; there are other formats designed with different
capabilities in mind.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[149]

The following table shows just a few of the options for storing data available in the Python
standard library:

Library Data
type Suitable Benefits Drawbacks

pickle Binary Any kind of
object Fast, easy, small files

Not safe, files aren't
human-readable, whole
file has to be read

configparser Text
key->value

pairs
Fast, easy, human-
readable files

Can't handle sequences
or complex objects,
limited heirarchy

json Text Simple values
and sequences

Widely used, easy,
human-readable files

Can't serialize complex
objects without
modification

xml Text Any kind of
Python object

Powerful, flexible,
mostly human-
readable files

Not safe, complex to use,
verbose file syntax

sqlite Binary Relational data Fast and powerful
files

Requires SQL
knowledge, objects must
be translated to tables

If this weren't enough, there are even more options available in the third-party libraries.
Almost any of them would be suitable for storing a couple of boolean values, so how do we
choose?

SQL and XML are powerful, but far too complex for our simple needs here.
We'd like to stick to a text format in case we need to debug a corrupt settings file,
so pickle is out.
configparser would work now, but its inability to handle lists, tuples, and
dictionaries may be limiting in the future.
That leaves json, which is a good option. While it can't handle every kind of
Python object, it can handle strings, numbers, and booleans, as well as lists and
dictionaries. That should cover our configuration needs just fine.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[150]

What does it mean when we say that a library is "not safe"? Some data
formats are designed with powerful capabilities, such as extensibility,
linking, or aliasing, which parser libraries must implement.
Unfortunately, those capabilities can be exploited for malicious purposes.
For example, the billion laughs XML vulnerability combines three XML
capabilities to craft a file that, when parsed, expands to a massive size
(usually causing the program or, in some cases, the system, to crash).

Building a model for settings persistence
As with any kind of data persistence, we need to start by implementing a model. As with
our CSVModel class, the settings model needs to save and load the data, as well as define
the layout of the settings data.

In the models.py file, let's start a new class as follows:

class SettingsModel:
 """A model for saving settings"""

Just as we did with our CSVModel class, we'll need to define our model's schema:

 variables = {
 'autofill date': {'type': 'bool', 'value': True},
 'autofill sheet data': {'type': 'bool', 'value': True}
 }

The variables dictionary will store both the schema and the values for each item. Each
setting has a dictionary listing the data type and default value (we could list other attributes
here if they are needed, such as minimum, maximum, or possible values). The variables
dictionary will be the data structure we save to disk and load from disk to persist the
program's settings.

The model needs a location to save the configuration file too, so our constructor will take
the filename and path as arguments. For now, we'll just provide and use reasonable
defaults, but in the future we may want to change these.

We can't just provide a single file path, though; we have different users on the same
computer who will want to save different settings. We need to make sure that the settings
are saved in the individual user's home directory rather than a single common location.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[151]

Therefore, our __init__() method is as follows:

 def __init__(self, filename='abq_settings.json', path='~'):
 # determine the file path
 self.filepath = os.path.join(
 os.path.expanduser(path), filename)

As users of the Linux or macOS Terminal will know, the ~ symbol is a Unix shortcut that
points to the user's home directory. Python's os.path.expanduser() function translates
this character into an absolute path (even on Windows), so that the file will be saved in the
home directory of the user running the program. os.path.join() appends the filename
to the expanded path, giving us a full path to a user-specific configuration file.

As soon as the model is created, we'll want to load the user's saved options from disk.
Loading data from disk is a pretty basic model operation that we should be able to control
outside the class, so we'll make this a public method.

We'll call this method load(), and call it here:

 self.load()

load() will expect to find a JSON file containing a dictionary in the same format as the
variables dictionary. It will need to load that data from the file and replace its own copy
of variables from the file copy.

A simplistic implementation is as follows:

 def load(self):
 """Load the settings from the file"""

 with open(self.filepath, 'r') as fh:
 self.variables = json.loads(fh.read())

The json.loads() function reads in a JSON string and converts it to a Python object,
which we're saving directly to our variables dictionary. Of course, there are some
problems with this method. First of all, what happens if the settings file doesn't exist? In
that case, open will throw an exception and the program will crash. Not good!

So, before we try to open the file, let's test to see if it exists as follows:

 # if the file doesn't exist, return
 if not os.path.exists(self.filepath):
 return

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[152]

If the file doesn't exist, the method simply returns and does nothing. It's perfectly
reasonable for the file not to exist, especially if the user has never run the program or edited
any of the settings. In this case, the method would leave self.variables alone and the
user would end up with the defaults.

The second problem is that our settings file might exist, but contain no data or invalid data
(such as keys not present in the variables dictionary), resulting in a crash. To prevent
this, we'll pull in the JSON data to a local variable; we'll then update variables by asking
raw_values for only those keys that exist in variables, providing a default value if they
aren't present.

The new, safer code is as follows:

 # open the file and read in the raw values
 with open(self.filepath, 'r') as fh:
 raw_values = json.loads(fh.read())

 # don't implicitly trust the raw values,
 # but only get known keys
 for key in self.variables:
 if key in raw_values and 'value' in raw_values[key]:
 raw_value = raw_values[key]['value']
 self.variables[key]['value'] = raw_value

Since variables is created with default values already in place, we just need to ignore
raw_values if it doesn't have a given key or if the dictionary in that key doesn't contain a
values item.

Now that load() is written, let's write a save() method to write our values to the file:

 def save(self, settings=None):
 json_string = json.dumps(self.variables)
 with open(self.filepath, 'w') as fh:
 fh.write(json_string)

The json.dumps() function is the inverse of loads(): it takes a Python object and returns
a JSON string. Saving our settings data is as simple as converting the variables
dictionary to a string and writing it to the specified text file.

The final method our model needs is a way for external code to set values; they could
manipulate variables directly, but in the interest of protecting our data integrity, we'll do
it through a method call. Keeping with Tkinter convention, we'll call this method set().

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[153]

A basic implementation of the set() method is as follows:

 def set(self, key, value):
 self.variables[key]['value'] = value

This simple method just takes a key and value and writes them to the variables
dictionary. Once again, though, this opens up some potential problems; what if the value
provided isn't valid for the data type? What if the key isn't in our variables dictionary?
This could create a situation that would be hard to debug, so our set() method should
safeguard against this.

Change the code as follows:

 if (
 key in self.variables and
 type(value).__name__ == self.variables[key]['type']
):
 self.variables[key]['value'] = value

By using the type strings that correspond to the names of actual Python types, we can
match it against the value's type name using type(value).__name__ (we could have
used the actual type objects themselves in our variables dictionary, but those can't be
serialized to JSON). Now, an attempt to write an unknown key or incorrect variable type
will fail.

However, we shouldn't let it fail silently; we should immediately raise ValueError to alert
us to the problem as follows:

 else:
 raise ValueError("Bad key or wrong variable type")

Why raise an exception? If the test fails, it can only mean a bug in the calling code. With an
exception, we'll know immediately if calling code is sending bad requests to our model.
Without it, requests would fail silently, leaving a hard-to-find bug.

The idea of raising an exception on purpose often seems strange to
beginners; after all, exceptions are something we're trying to avoid, right?
This is true in the case of small scripts where we're mainly users of
existing modules; when writing your own module, however, exceptions
are the correct way for your module to communicate problems to the code
using it. Trying to handle—or worse, silence—bad behavior by external
calling code will, at best, break modularity; at worst, it will create subtle
bugs that are difficult to track down.

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[154]

Using the settings model in our application
Our application needs to load in the settings when it starts, then save them automatically
whenever they are changed. Currently, the application's settings dictionary is created
manually, but our model should really be telling it what kind of variables to create. Let's
perform the following steps for using the settings model in our application:

Replace the code that defines Application.settings with the following code:1.

 self.settings_model = m.SettingsModel()
 self.load_settings()

First, we create a settings model and save it to our Application object. Then,
we're going to run a load_settings() method. This method will be responsible
for setting up the Application.settings dictionary based
on settings_model.

Now, let's create Application.load_settings():2.

 def load_settings(self):
 """Load settings into our self.settings dict."""

Our model stores the type and value for each variable, but our application needs3.
Tkinter variables. We need a way to translate the model's representation of the
data into a structure that Application can use. A dictionary provides a handy
way to do this as follows:

 vartypes = {
 'bool': tk.BooleanVar,
 'str': tk.StringVar,
 'int': tk.IntVar,
 'float': tk.DoubleVar
 }

Notice that each name matches the type name of a Python built-in function. We
could add more entries here, but this should cover most of our future needs.
Now, we can combine this dictionary with the model's variables dictionary to
construct the settings dictionary:

 self.settings = {}
 for key, data in self.settings_model.variables.items():
 vartype = vartypes.get(data['type'], tk.StringVar)
 self.settings[key] = vartype(value=data['value'])

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[155]

The main reason for using Tkinter variables here is so that we can trace any4.
changes the user makes to the values via the UI and respond immediately.
Specifically, we want to save our settings whenever the user makes a change as
follows:

 for var in self.settings.values():
 var.trace('w', self.save_settings)

Of course, this means we need to write a method called5.
Application.save_settings(), which will run whenever the values are
changed. Application.load_settings() is complete, so let's do that next:

 def save_settings(self, *args):
 """Save the current settings to a preferences file"""

The save_settings() method just needs to get the data back from6.
Application.settings to the model and then save it:

 for key, variable in self.settings.items():
 self.settings_model.set(key, variable.get())
 self.settings_model.save()

It's as simple as looping through self.settings and calling our model's set()
method to pull in the values one at a time. Then, we call the model's save()
method.

Now, you should be able to run the program and observe that the settings are7.
saved, even when you close and re-open the application. You'll also find a file in
your home directory called abq_settings.json (this isn't the ideal place to
keep a settings file, but we'll address that in Chapter 9, Maintaining Cross-
Platform Compatibility).

Creating Menus with Menu and Tkinter Dialogs Chapter 6

[156]

Summary
In this chapter, our simple form has taken a big step forward towards being a fully-blown
application. We've implemented a main menu, option settings that are persisted between
executions, and an About dialog. We've added the ability to select a file where records are
saved, and improved the visibility of form errors with an error dialog. Along the way, you
learned about Tkinter menus, file dialogs, and message boxes, as well as the various
options for persisting data in the standard library.

In the next chapter, we're going to be asked to make the program read and write. We'll
learn about Tkinter's tree widget, how to switch between main views, and how to make our
CSVModel and DataRecordForm classes capable of reading and updating existing data.

7
Navigating Records with

Treeview
You've received another request for features in the application. Now that your users can
open arbitrary files, they'd like to be able to see what's in those files and correct old records
using the data entry form they've grown accustomed to, rather than having to switch over
to a spreadsheet. In a nutshell, it's finally time to implement read and update capabilities in
our application.

In this chapter, we're going to cover the following topics:

Modifying our CSV model for read and update capabilities
Discovering the ttk Treeview widget, and building a list of records with it
Implementing record loading and updating in our data record form
Redesigning the menu and application with read and update in mind

Implementing read and update in the model
Our entire design up to this point has been centered around a form that only appends data
to a file; adding read and update capabilities is a fundamental change that will touch nearly
every portion of the application. It may seem like a daunting task, but by taking it one
component at a time, we'll see that the changes are not so overwhelming.

The first thing we should do is update our documentation, starting with the Requirements
section:

The program must:

* Provide a UI for reading, updating, and appending data to the CSV file
* ...

Navigating Records with Treeview Chapter 7

[158]

And, of course, also update the part that is not required that follows:

The program does not need to:

* Allow deletion of data.

Now, it's a simple matter of making the code match with the documentation.

Adding read and update to our model
Open models.py and consider what's missing from the CSVModel class:

We'll need a method that can retrieve all records in a file so we can display them.
We'll call it get_all_records().
We'll need a method to fetch individual records from the file by row number. We
can call this get_record().
We'll need to save records in a way that can not only append new records, but
update existing records as well. We can update our save_record() method to
accommodate this.

Implementing get_all_records()
Start a new method called get_all_records():

 def get_all_records(self):
 if not os.path.exists(self.filename):
 return []

The first thing we've done is check if the model's file exists yet. Remember that when our
application starts, it generates a default filename pointing to a file that likely doesn't exist
yet, so get_all_records() will need to handle this situation gracefully. It makes sense to
return an empty list in this case, since there's no data if the file doesn't exist.

If the file does exist, let's open it in read-only mode and get all the records:

 with open(self.filename, 'r') as fh:
 csvreader = csv.DictReader(fh)
 records = list(csvreader)

Navigating Records with Treeview Chapter 7

[159]

While not terribly efficient, pulling the entire file into memory and converting it into a list is
acceptable in our case, since we know that our largest files should be limited to a mere 401
rows: 20 plots times 5 labs plus a header row. This code is just a little too trusting, however.
We should at least do some sanity checks to make sure that the user has actually opened a
CSV file containing the proper fields and not some other arbitrary file.

Let's check that the file has the correct field structure:

 csvreader = csv.DictReader(fh)
 missing_fields = (set(self.fields.keys()) -
 set(csvreader.fieldnames))
 if len(missing_fields) > 0:
 raise Exception(
 "File is missing fields: {}"
 .format(', '.join(missing_fields))
)
 else:
 records = list(csvreader)

Here, we first find any missing fields by converting a list of our fields dictionary keys
and the CSV file's fieldnames to Python set objects. We can subtract the fieldnames set
from keys and determine which fields, if any, are missing in the file. If there are any, we'll
raise an exception; otherwise, we convert the CSV data to list.

Python set objects are very useful for comparing the content of the list,
tuple, and other sequence objects. They provide an easy way to get
information such as the difference (items in x that are not in y) or
intersection (items in both x and y) between two sets, or allow you to
compare sequences without respect to order.

Before we can return the records list, we need to correct one issue; all data in a CSV file is
stored as text, and read by Python as a string. Most of this is not a problem, since Tkinter
will take care of converting strings to float or int as necessary, but bool values are
stored in the CSV file as the strings True and False, and coercing these values directly
back to bool doesn't work. False is a non-empty string, and all non-empty strings
evaluate to True in Python.

To fix this, let's first define a list of strings that should be interpreted as True:

 trues = ('true', 'yes', '1')

Navigating Records with Treeview Chapter 7

[160]

Any values not in this list will be considered False. We'll do a case-insensitive comparison,
so there are only lowercase values in our list.

Next, we create a list of fields that are boolean fields using a list comprehension as follows:

 bool_fields = [
 key for key, meta
 in self.fields.items()
 if meta['type'] == FT.boolean]

We know that Equipment Fault is our only boolean field, so technically we could just
hardcode that here, but it's a good idea to design your model so that any changes to the
schema will be automatically handled appropriately by the logic portions.

Now, let's check these boolean fields in each row by adding the following code:

 for record in records:
 for key in bool_fields:
 record[key] = record[key].lower() in trues

For every record, we iterate through our list of the boolean fields and check its value
against our list of truthy strings, setting the value of the item accordingly.

With the boolean values fixed, we can return our records list as follows:

 return records

Implementing get_record()
Our get_record() method needs to take a row number and return a single dictionary
containing the data for that row.

This is pretty simple if we leverage our get_all_records() method as follows:

 def get_record(self, rownum):
 return self.get_all_records()[rownum]

Since our files are small and there's very little overhead to pulling all the records, we can
simply do that and then dereference the record we need.

Keep in mind that it's possible to pass rownum that doesn't exist in our records list; in this
case, we'd get IndexError; our calling code will need to catch this error and deal with it
appropriately.

Navigating Records with Treeview Chapter 7

[161]

Adding update to save_record()
To convert our save_record() method so that we can update records, the first thing we'll
need to do is provide the ability to pass in a row number to update. The default will be
None, which will indicate that the data is a new row that should be appended.

The new method signature looks like this:

 def save_record(self, data, rownum=None):
 """Save a dict of data to the CSV file"""

Our existing logic doesn't need to change, but it should only be run if rownum is None.

So, the first thing to do in the method is check rownum:

 if rownum is not None:
 # This is an update, new code here
 else:
 # Old code goes here, indented one more level

For relatively small files, the simplest way to update a single row is to load the entire file
into a list, change the row in the list, and then write the entire list back to a clean file.

Under the if block, we'll add the following code:

 records = self.get_all_records()
 records[rownum] = data
 with open(self.filename, 'w') as fh:
 csvwriter = csv.DictWriter(fh,
 fieldnames=self.fields.keys())
 csvwriter.writeheader()
 csvwriter.writerows(records)

Once again, we leverage our get_all_records() method to fetch the CSV file's content
into a list. We then replace the dictionary in the requested row with the data dictionary
provided. Finally, we open the file in write mode (w), which will clear its content and
replace it with whatever we write to the file, and write the header and all records back to
the file.

The approach we're taking makes it unsafe for two users to work in the
save CSV file simultaneously. Creating software that allows for multiple
users editing a single file is notoriously difficult, and many programs
simply opt to prevent it in the first place using lock files or other
protection mechanisms.

Navigating Records with Treeview Chapter 7

[162]

This method is finished, and that's all we need to change in our model to enable updating
and viewing. Now, it's time to add the necessary features to our GUI.

Implementing a record list view
The record list view will allow our users to browse the content of the file and open records
for viewing or editing. Our users are accustomed to seeing this data in a spreadsheet, laid
out in a table-like format, so it makes sense to design our view in a similar fashion. Since
our view mainly exists for finding and selecting individual records, we don't need to
display all the information; just enough for the users to distinguish one record from
another.

A quick analysis shows that we need CSV row number, Date, Time, Lab, and Plot.

For building table-like views with selectable rows, Tkinter gives us the ttk Treeview
widget. To build our record list view, we'll need to learn about Treeview.

The ttk Treeview
The Treeview is a ttk widget designed to show columns of data in a hierarchical structure.

Perhaps the best example of this kind of data is a filesystem tree:

Each row can represent a file or directory
Each directory can contain additional files or directories
Each row can have additional data properties, such as permissions, size, or
ownership information

To explore how Treeview works, we'll create a simple file browser with some help from
pathlib.

In previous chapters, we used os.path to work with file paths. pathlib
is a new addition to the Python 3 standard library that provides a more
object-oriented approach to paths.

Navigating Records with Treeview Chapter 7

[163]

Open a new file called treeview_demo.py and start with this template:

import tkinter as tk
from tkinter import ttk
from pathlib import Path

root = tk.Tk()
Code will go here

root.mainloop()

We'll start by getting a list of all the file paths under the current working directory. Path
has a method called glob that will give us such a list as follows:

paths = Path('.').glob('**/*')

glob() expands wildcard characters like * and ? against a filesystem tree.
The name goes back to a very early Unix command, though the same
wildcard syntax is now used across most modern operating systems.

Path('.') creates a path object referencing the current working directory, and **/* is a
special wildcard syntax that recursively grabs all objects under the path. The result is a list
of the Path objects that include every directory and file under our current directory.

With that done, we can create and configure our Treeview widget by executing the
following code:

tv = ttk.Treeview(root, columns=['size', 'modified'],
 selectmode='None')

Like any Tkinter widget, the first argument to Treeview is its parent widget. Each column
in the Treeview widget is given an identifying string; by default, there is always one
column named "#0". This column represents the basic identifying information about each
item in the tree, such as a name or ID number. To add more columns, we specify them
using the columns argument. This list contains any number of strings that will be used to
identify the subsequent columns.

Finally, we set selectmode, which determines how users can select items in the tree.

Navigating Records with Treeview Chapter 7

[164]

The following table shows the options for selectmode:

Value Behavior

selectmode Selections can be made

none (as a string, not the None object) No selections can be made

browse User can select one item only

extended User can select multiple items

In this case, we're preventing selection, so we set it to none.

To show how we use the column names, we'll set some headings for the columns:

tv.heading('#0', text='Name')
tv.heading('size', text='Size', anchor='center')
tv.heading('modified', text='Modified', anchor='e')

The Treeview heading method is for manipulating the column heading widget; it takes
the column name, and then any number of attributes you want to assign to the column's
heading widget.

Those attributes can include:

text: The text displayed for the heading. By default, it's blank.
anchor: The alignment of the text; it can be any of eight cardinal directions or
center, specified as strings or Tkinter constants.
command: A command to run when the heading is clicked. This might be used to
order the rows by that column, or select all the values in the column, for example.
image: An image to display in the heading.

Finally, we pack the column into the root widget and expand it to fill the widget:

tv.pack(expand=True, fill='both')

In addition to configuring the headers, we can configure some attributes of the column
itself using the Treeview.column method.

For example, we can add the following code:

tv.column('#0', stretch=True)
tv.column('size', width=200)

Navigating Records with Treeview Chapter 7

[165]

In this example, we've set stretch to True in the first column, which will cause it to
expand to fill available; and we've set the width value on the size column to 200 pixels.

The column parameters that can be set include:

stretch: Whether or not to expand this column to fill the available space.
width: The width of the column in pixels.
minwidth: The minimum width to which the column can be resized, in pixels.
anchor: The alignment of the text in the column. Can be any of eight cardinal
directions or center, specified as strings or Tkinter constants.

With the tree view configured, it now needs to be filled with data. Populating a Treeview
with data is done one row at a time using the insert method.

The insert method looks like this:

mytreeview.insert(parent, 'end', iid='item1',
 text='My Item 1', values=['12', '42'])

The first argument specifies the parent item for the inserted row. This is not the parent
widget, but rather the parent row under which the inserted row belongs in the
hierarchical structure. The value is a string that refers to the iid of the parent item. For
top-level items, this value should be an empty string.

The next argument specifies where the item should be inserted. It's either a numerical index
or end, which places the item at the end of the list.

After this, we specify keyword arguments, which can include:

text: This is the value to be shown in the first column.
values: This is a list of values for the remaining columns.
image: This is an image object to display in the far left of the column.
iid: The item ID string. This will be automatically assigned if you don't specify
it.
open: Whether or not the row is open (displaying child items) at the start.
tags: A list of tag strings. We'll learn more about tags when we discuss styling in
Chapter 8, Improving the Look with Styles and Themes.

Navigating Records with Treeview Chapter 7

[166]

To insert our paths into the Treeview, let's iterate our paths list as follows:

for path in paths:
 meta = path.stat()
 parent = str(path.parent)
 if parent == '.':
 parent = ''

Before calling insert, we need to extract and prepare some data from the path object.
path.stat() will give us an object containing various file information. path.parent
provides us the containing path; however, we need to change the name of the root path
(currently a single dot) to an empty string, which is how Treeview represents the root
node.

Now, we add the insert call as follows:

 tv.insert(parent, 'end', iid=str(path),
 text=str(path.name), values=[meta.st_size, meta.st_mtime])

By using the path string as the item ID, we can then specify it as a parent for its child
objects. We use only the object name (without the containing path) as our display value,
then st_size and st_mtime for populating the size and modification time columns.

Run this script and you should see a simple file tree browser that looks something like this:

The Treeview widgets doesn't offer any kind of sorting functionality by default, but we
can add it fairly easily.

Navigating Records with Treeview Chapter 7

[167]

First, let's create a sorting function by adding the following code:

def sort(tv, col):
 itemlist = list(tv.get_children(''))
 itemlist.sort(key=lambda x: tv.set(x, col))
 for index, iid in enumerate(itemlist):
 tv.move(iid, tv.parent(iid), index)

In the preceding code snippet, the sort function takes a Treeview widget and the ID of a
column in which we'll sort. It starts by getting a list of all the iid values using the
get_children() method of Treeview. Next, it sorts the various iid values using the
value of col for each item as a key; rather confusingly, the set() method of Treeview is
used to retrieve the value of the column (there is no get() method). Finally, we iterate the
list and use the move() method to move each item to a new index under its parent (which
is retrieved using the parent() method).

To make our columns sortable, add this function as a callback to the headers using the
command argument as follows:

tv.heading('#0', text='Name', command=lambda: sort(tv, '#0'))
tv.heading('size', text='Size', anchor='center',
 command=lambda: sort(tv, 'size'))
tv.heading('modified', text='Modified', anchor='e',
 command=lambda: sort(tv, 'modified'))

Implementing our record list with Treeview
Now that we understand how to use the Treeview widget, let's start building our record
list widget.

We'll begin by subclassing tkinter.Frame, just as we did with our record form:

class RecordList(tk.Frame):
 """Display for CSV file contents"""

To save ourselves from some repetitious code, we'll define our column properties and
defaults in class constants. This also makes it easier to tweak them to suit our needs.

Navigating Records with Treeview Chapter 7

[168]

Start out your class with the following properties:

 column_defs = {
 '#0': {'label': 'Row', 'anchor': tk.W},
 'Date': {'label': 'Date', 'width': 150, 'stretch': True},
 'Time': {'label': 'Time'},
 'Lab': {'label': 'Lab', 'width': 40},
 'Plot': {'label': 'Plot', 'width': 80}
 }
 default_width = 100
 default_minwidth = 10
 default_anchor = tk.CENTER

Recall that we're going to be displaying Date, Time, Lab, and Plot. For the first default
column, we'll show the CSV row number. We've also set the width and anchor values for
some columns, and configured the Date field to stretch. We'll use these values when
configuring the Treeview widget in __init__().

Let's start our __init__() definition as follows:

 def __init__(self, parent, callbacks, *args, **kwargs):
 super().__init__(parent, *args, **kwargs)
 self.callbacks = callbacks

As with other views, we're going to accept a dictionary of callback methods from the
Application object, and save it as an instance property.

Configuring a Treeview widget
Now, let's create our Treeview widget by executing the following code snippet:

 self.treeview = ttk.Treeview(self,
 columns=list(self.column_defs.keys())[1:],
 selectmode='browse')

Note that we're excluding the #0 column from our columns list; it should never be
specified here since it's automatically created. We're also choosing the browse select mode,
so that users can select individual rows of the CSV file.

Let's go ahead and add our Treeview widget to RecordList and make it fill the widget:

 self.columnconfigure(0, weight=1)
 self.rowconfigure(0, weight=1)
 self.treeview.grid(row=0, column=0, sticky='NSEW')

Navigating Records with Treeview Chapter 7

[169]

Now, configure the columns and headings of Treeview by iterating through the
column_defs dictionary:

 for name, definition in self.column_defs.items():

For each set of items, let's extract the configuration values we need as follows:

 label = definition.get('label', '')
 anchor = definition.get('anchor', self.default_anchor)
 minwidth = definition.get(
 'minwidth', self.default_minwidth)
 width = definition.get('width', self.default_width)
 stretch = definition.get('stretch', False)

Finally, we'll use those values to configure the heading and columns:

 self.treeview.heading(name, text=label, anchor=anchor)
 self.treeview.column(name, anchor=anchor,
 minwidth=minwidth, width=width, stretch=stretch)

Adding a scrollbar
The ttk Treeview does not have a scrollbar by default; it can be scrolled, using the
keyboard or mouse-wheel controls, but users would reasonably expect a scrollbar on a
scrollable area to help them visualize the size of the list and their current position in it.

Fortunately, ttk provides us with a Scrollbar object that can be connected to our
Treeview widget:

 self.scrollbar = ttk.Scrollbar(self,
 orient=tk.VERTICAL, command=self.treeview.yview)

Here, Scrollbar takes the following two important arguments:

orient: This argument determines whether it is a horizontal or vertical scroll
command: This argument provides a callback for scrollbar move events

In this case, we set the callback to the tree view's yview method, which is used to make the
Treeview scroll up and down. The other option would be xview, which would be used
for horizontal scrolling.

Navigating Records with Treeview Chapter 7

[170]

We also need to connect our Treeview back to the scrollbar:

 self.treeview.configure(yscrollcommand=self.scrollbar.set)

If we don't do this, our Scrollbar won't know how far down the list we've scrolled or
how long the list is, and can't set the size or location of the bar widget appropriately.

With our Scrollbar configured, we need to place it on the widget—conventionally, just to
the right of the widget being scrolled.

We can use our grid layout manager for this:

 self.scrollbar.grid(row=0, column=1, sticky='NSW')

Notice we set sticky to north, south, and west. North and south make sure the scrollbar
stretches the entire height of the widget, and west makes sure it's snug against the
Treeview widget to the left of it.

Populating the Treeview
Now that we have our Treeview widget, we'll create a populate() method to populate it
with data:

 def populate(self, rows):
 """Clear the treeview & write the supplied data rows to it."""

The rows argument will take a list of the dict data types, such as what is returned from
model. The idea is that the controller will fetch a list from the model and then pass it to this
method.

Before refilling Treeview, we need to empty it:

 for row in self.treeview.get_children():
 self.treeview.delete(row)

The get_children() method of Treeview returns a list of every row's iid. We're
iterating this list, passing each iid to the Treeview.delete() method, which, as you'd
expect, deletes the row.

Navigating Records with Treeview Chapter 7

[171]

With the Treeview cleared, we can iterate through the rows list and populate the table:

 valuekeys = list(self.column_defs.keys())[1:]
 for rownum, rowdata in enumerate(rows):
 values = [rowdata[key] for key in valuekeys]
 self.treeview.insert('', 'end', iid=str(rownum),
 text=str(rownum), values=values)

The first thing we do here is create a list of all the keys we actually want to fetch from each
row; this is just the list of keys from self.column_defs minus the "#0" column.

Next, we iterate through the rows using the enumerate() function to generate a row
number. For each row, we'll create a list of values in the proper order using a list
comprehension, then insert the list to the end of the Treeview widget with the insert()
method. Notice that we're just using the row number (converted to a string) as both iid
and text for the row.

The last thing we need to do in this function is a small usability tweak. To make our
Treeview keyboard friendly, we need to focus the first item so that keyboard users can
immediately start to navigate it via the arrow keys.

Doing this in a Treeview widget actually takes three method calls as follows:

 if len(rows) > 0:
 self.treeview.focus_set()
 self.treeview.selection_set(0)
 self.treeview.focus('0')

First, focus_set moves focus to Treeview. Next, selection_set(0) selects the first
record in the list. Finally, focus('0') focuses the row with iid of 0. And, of course, we
only do this if there are any rows at all.

Responding to record selection
The purpose of this widget is for users to select and open records; therefore, we need a way
to do that. It would be nice to be able to trigger this from an event like a double-click or
keyboard selection.

Navigating Records with Treeview Chapter 7

[172]

The Treeview widget has three special events which we can use to trigger a callback as
shown in the following table:

Event string Triggered when

<<TreeviewSelect>> A row is selected, such as by clicking it with a mouse

<<TreeviewOpen>> A row is opened by a double-click or by selecting it and hitting Enter

<<TreeviewClose>> An open row is closed

<<TreeviewOpen>> sounds like the event we want; even though we're not using a
hierarchical list, the user is still conceptually opening the record, and the triggering action
(double-click) seems intuitive. We'll bind this event to a method that will open the selected
record.

Add this code at the end of __init__():

 self.treeview.bind('<<TreeviewOpen>>', self.on_open_record)

The on_open_record() method is quite simple; add this code to the class:

 def on_open_record(self, *args):
 selected_id = self.treeview.selection()[0]
 self.callbacks['on_open_record'](selected_id)

It's as simple as retrieving the selected ID from Treeview, then calling a function provided
by our controller in the callbacks dictionary with the selected ID. It will be up to the
controller to do something appropriate here.

The RecordList class is now complete, but some of our other view classes need attention.

Modifying the record form for read and
update
As long as we're editing views, we'll need to look at our DataRecordForm view and adjust
it to make it capable of updating records.

Take a moment and consider the following changes we'll need to make:

The form will need some way to load in a record provided by the controller.

Navigating Records with Treeview Chapter 7

[173]

The form will need to keep track of what record it's editing, or if it's a new
record.
Our user will need some visual indication of what record is being edited.
Our Save button is currently in the application. It doesn't really make sense in
any context other than the form, so it should probably be part of the form.
This means our form will need a callback to call when the save button is clicked.
We'll need to provide it with a callbacks dictionary like we did with our other
views.

Updating __init__()
Let's start working through these with our __init__() method:

 def __init__(self, parent, fields,
 settings, callbacks, *args, **kwargs):
 self.callbacks = callbacks

We're adding a new argument, callbacks, and storing it as an instance property. This will
give the controller a way to provide methods for the view to call.

Next, our __init__() method should set up a variable in which to store the current
record:

 self.current_record = None

We'll use None to indicate that no record is loaded and the form is being used to create a
new record. Otherwise, this value will be an integer referencing a row in the CSV data.

We could use a Tkinter variable here, but there's no real advantage in this
case, and we wouldn't be able to use None as a value.

At the top of the form, before the first form fields, let's add a label that will keep track of
which record we're editing:

 self.record_label = ttk.Label()
 self.record_label.grid(row=0, column=0)

We're placing this in row 0, column 0, but the first LabelFrame is also in that location.
You'll need to go through each LabelFrame and increment the row value in its call to grid.

Navigating Records with Treeview Chapter 7

[174]

We'll make sure this label gets updated whenever a record is loaded into the form.

At the very end of the widget, after the Notes field, let's add our new Save button as
follows:

 self.savebutton = ttk.Button(self,
 text="Save", command=self.callbacks["on_save"])
 self.savebutton.grid(sticky="e", row=5, padx=10)

The button will call an on_save() method from the callbacks dictionary when clicked.
We'll need to make sure to provide this method when creating DataRecordForm in
Application.

Adding a load_record() method
The last thing to add in our view is a method for loading in a new record. This method will
need to set up our form with a given row number and data dictionary from the controller.

Let's call it load_record() as follows:

 def load_record(self, rownum, data=None):

The first thing we should do is set the form's current_record value from
the rownum provided:

 self.current_record = rownum

Recall that rownum could be None, indicating that this is a new record.

Let's check for that by executing the following code:

 if rownum is None:
 self.reset()
 self.record_label.config(text='New Record')

If we're going to be inserting a new record, we simply want to reset the form, then set the
label to indicate that this is a new record.

Note that our if condition here checks specifically whether rownum is
None; we can't just check the truth value of rownum, since 0 is a valid
rownum for updating!

Navigating Records with Treeview Chapter 7

[175]

If we do have a valid rownum, we'll need it to act differently:

 else:
 self.record_label.config(text='Record #{}'.format(rownum))
 for key, widget in self.inputs.items():
 self.inputs[key].set(data.get(key, ''))
 try:
 widget.input.trigger_focusout_validation()
 except AttributeError:
 pass

In this block, we first set the label appropriately with the row number we're editing.

Then, we cycle through the keys and widgets of our inputs dictionary and pull in the
matching values from the data dictionary. We also attempt to call the
trigger_focusout_validation() method on each widget's input, since it's possible that
the CSV file contains invalid data. If the input has no such method (that is, if we used a
regular Tkinter widget rather than one of our custom ones, such as with Checkbutton), we
just do nothing.

Updating the rest of the application
Before our changes to the form can take effect, we need to update the remaining portions of
our application for the new functionality. Our main menu needs some navigation items so
that users can switch between the record list and the form, and controller methods need to
be created or updated in Application to bring together our new model and view
functionality.

Main menu changes
Since we're already in the views.py file, let's start by updating our main menu view with
some commands to switch between the record list and record form. We'll add a Go menu
containing two more options to our menu that will allow switching between the record list
and a blank record form.

Navigating Records with Treeview Chapter 7

[176]

Add the following lines between the Options and Help menus:

 go_menu = tk.Menu(self, tearoff=False)
 go_menu.add_command(label="Record List",
 command=callbacks['show_recordlist'])
 go_menu.add_command(label="New Record",
 command=callbacks['new_record'])
 self.add_cascade(label='Go', menu=go_menu)

As before, we're binding these menu commands to functions in the callbacks dictionary,
which we'll need to add in our Application class.

Connecting the pieces in Application
Let's quickly take stock of the following changes we're going to need to make in our
Application class:

We need to add an instance of our RecordList view
We'll need to update our use of CSVModel so that we can access data from it
We'll need to implement or refactor several callback methods used by our views

Adding the RecordList view
We'll create the RecordList object in __init__(), just after DataRecordForm, by
executing the following code snippet:

 self.recordlist = v.RecordList(self, self.callbacks)
 self.recordlist.grid(row=1, padx=10, sticky='NSEW')

Notice that when we call grid(), we're adding the RecordList view to the grid cell that
already contains DataRecordForm. This is intentional. When we do this, Tkinter just
stacks the second widget on top of the first, like laying one piece of paper on top of another;
we'll add code in a moment to control which view is visible by raising one or the other to
the top of the stack. Notice that we also stick the widget to all sides of the cell. Without this
code, bits of one widget might be visible behind the other.

Similarly, we need to update the grid call for the record form as follows:

 self.recordform.grid(row=1, padx=10, sticky='NSEW')

Navigating Records with Treeview Chapter 7

[177]

Moving the model
Currently, our data model object is only created in the on_save() method, and is recreated
every time the user saves. Some of the other callbacks we're going to write will need access
to the model as well, so instead we'll create a single data model instance that can be shared
by all the methods when the Application class is started or whenever a new filename is
chosen. Let's take a look at the following steps:

First, edit the Application.__init__() method right after the1.
default_filename is created:

 self.filename = tk.StringVar(value=default_filename)
 self.data_model = m.CSVModel(filename=self.filename.get())

Next, the on_file_select() method needs to recreate the data_model object2.
whenever the filename is changed.
Change the end of on_file_select() to the following code:3.

 if filename:
 self.filename.set(filename)
 self.data_model = m.CSVModel(filename=self.filename.get())

Now, self.data_model will always point to a current data model and all
our methods can use it for saving or reading data.

Populating the record list
The Treeview widget is added to our application, but we need a way to fill it with data.

We'll create a method called populate_recordlist() by executing the following code:

 def populate_recordlist(self):

The logic is simple enough: just get all the rows from the model and send them to the
record list's populate() method.

We could write it as simply as this:

 rows = self.data_model.get_all_records()
 self.recordlist.populate(rows)

Remember, though, that in the event of a problem with the file, get_all_records() will
raise an Exception; we need to catch that exception and let the user know things are
wrong.

Navigating Records with Treeview Chapter 7

[178]

Update the code with the try and except blocks as follows:

 try:
 rows = self.data_model.get_all_records()
 except Exception as e:
 messagebox.showerror(title='Error',
 message='Problem reading file',
 detail=str(e))
 else:
 self.recordlist.populate(rows)

In this case, if we get an exception from get_all_records(), we'll display an error dialog
showing the Exception text.

The RecordList view should be repopulated any time a new model gets created;
currently, that happens in Application.__init__() and
Application.on_file_select().

Update __init__() just after the record list is created:

 self.recordlist = v.RecordList(self, self.callbacks)
 self.recordlist.grid(row=1, padx=10, sticky='NSEW')
 self.populate_recordlist()

Update on_file_select() at the very end, inside the if filename: block as follows:

 if filename:
 self.filename.set(filename)
 self.data_model = m.CSVModel(filename=self.filename.get())
 self.populate_recordlist()

Adding the new callbacks
Looking over our view code, the following callback functions need to be added to our
callbacks dictionary:

show_recordlist(): This function is called when the user clicks the Record
List option in the menu, it should cause the record list to be visible
new_record(): This function is called when the user clicks New Record in the
menu, it should show a reset DataRecordForm
on_open_record(): This function is called when a record list item is opened, it
should show DataRecordForm which is populated with the ID and data of the
record

Navigating Records with Treeview Chapter 7

[179]

on_save(): This function is called when the Save button (now part of
DataRecordForm) is clicked, it should cause the data in the record form to be
updated or inserted in the model

We'll start with show_recordlist():

 def show_recordlist(self):
 """Show the recordform"""
 self.recordlist.tkraise()

Remember that when we laid out the main application, we stacked recordlist on top of
the data entry form, so that one obscured the other. The tkraise() method can be called
on any Tkinter widget to raise it to the top of a stack of widgets. Calling it here will raise
our RecordList widget to the top and obscure the data entry form.

Don't forget to add the following content to the callbacks dictionary:

 self.callbacks = {
 'show_recordlist': self.show_recordlist,
 ...

Both the new_record() and on_open_record() callbacks cause recordform to be
displayed; one is called without a row number, and the other is called with a row number.
We can easily answer both of these in a single method.

Let's call that method open_record():

 def open_record(self, rownum=None):

Remember that our DataRecordForm.load_record() method takes a row number and a
data dictionary, and that if the row number is None, it resets the form for a new record. So,
all we need to do is set the row number and record accordingly and pass them into the
load_record() method.

First, we'll handle rownum being None:

 if rownum is None:
 record = None

Without a row number, there is no record. Easy enough.

Navigating Records with Treeview Chapter 7

[180]

Now, if there is a row number, we need to attempt to fetch that row from the model and
use that for record:

 else:
 rownum = int(rownum)
 record = self.data_model.get_record(rownum)

Note that Tkinter may be passing in rownum as a string, since the iid values of Treeview
are strings. We'll do a safety cast to int, since that's what our model expects.

Remember that in the event of a problem reading the file, the model throws an Exception,
so we should catch this.

Place the call to get_record() inside a try block:

 try:
 record = self.data_model.get_record(rownum)
 except Exception as e:
 messagebox.showerror(title='Error',
 message='Problem reading file',
 detail=str(e))
 return

In the event of an Exception, we'll display an error dialog and return from the function
without changing anything.

With rownum and record set correctly, we can now pass them to DataRecordForm:

 self.recordform.load_record(rownum, record)

Finally, we need to raise the form widget so that it's on top of the record list:

 self.recordform.tkraise()

Now, we can update our callbacks dictionary to point those keys to the new method:

 self.callbacks = {
 'new_record': self.open_record,
 'on_open_record': self.open_record,
 ...

Navigating Records with Treeview Chapter 7

[181]

You could argue that we shouldn't have the same method in here twice, and just have our
views pull the same key; however, it makes sense to let the views refer to callbacks
semantically—that is, in terms of what they intend to accomplish, rather than how it's
accomplished—and then letting the controller determine which piece of code best meets
that semantic need. If, at some point, we need to separate these into two methods, we'll
only need to do that in Application.

We already have a method for on_save(), so that's simple enough to add to our callbacks:

 self.callbacks = {
 ...
 'on_save': self.on_save
 }

However, our current on_save() method only handles inserting new records. We'll need
to fix that.

First, we can remove the two lines that fetch the filename and create the model, since we
can just use the Application object's data_model property.

Now, replace the next couple of lines with this:

 data = self.recordform.get()
 rownum = self.recordform.current_record
 try:
 self.data_model.save_record(data, rownum)

We simply need to get the data and current record from DataRecordForm, then pass them
to the model's save_record() method. Remember that if we send rownum of None, the
model will insert a new record; otherwise it will update the record at that row number.

Because save_record() can throw a couple of different exceptions, it's under a try block
here.

First, if we try to update a row number that doesn't exist, we'll get IndexError, so let's
catch that:

 except IndexError as e:
 messagebox.showerror(title='Error',
 message='Invalid row specified', detail=str(e))
 self.status.set('Tried to update invalid row')

In the event of the problem, we're going to show an error dialog and update the status text.

Navigating Records with Treeview Chapter 7

[182]

The save_record() method can also throw a generic Exception, since it calls the model's
get_all_records() method.

We'll catch this as well and show an appropriate error:

 except Exception as e:
 messagebox.showerror(title='Error',
 message='Problem saving record', detail=str(e))
 self.status.set('Problem saving record')

The remaining code in this method should only be run if no exceptions were thrown, so
move it under an else block:

 else:
 self.records_saved += 1
 self.status.set(
 "{} records saved this session".format(self.records_saved)
)
 self.recordform.reset()

Since inserting or updating records will usually cause a change in the record list, we should
also repopulate the record list after a successful file save.

Add the following line under the if block:

 self.populate_recordlist()

Finally, we only want to reset the record form if we're inserting new files; if not, we should
do nothing.

Put the call to recordform.reset() under an if block:

 if self.recordform.current_record is None:
 self.recordform.reset()

Cleaning up
Before coming out of application.py, make sure to remove the Save button code, since
we've moved that piece of UI to the DataRecordForm.

Look for these lines in __init__() to remove them:

 self.savebutton = ttk.Button(self, text="Save",
 command=self.on_save)
 self.savebutton.grid(sticky="e", row=2, padx=10)

Navigating Records with Treeview Chapter 7

[183]

You can also move the statusbar position up one row:

 self.statusbar.grid(sticky="we", row=2, padx=10)

Testing our program
At this point, you should be able to run the application and load in a sample CSV file as
shown in the following screenshot:

Navigating Records with Treeview Chapter 7

[184]

Make sure to try opening a record, editing and saving it, as well as inserting new records
and opening different files.

You should also test the following error conditions:

Try opening a file that isn't a CSV file, or a CSV with incorrect fields. What
happens?
Open a valid CSV file, select a record for editing, then, before clicking Save,
select a different or empty file. What happens?
Open two copies of the program and point them to the saved CSV file. Try
alternating edit or update actions between the programs. Note what happens.

Summary
We have changed our program from being an append-only form to an application capable
of loading, viewing, and updating data from existing files. You learned how to make a
read-write model, work with the ttk Treeview, and modify the existing views and
controller to read and update records.

In our next chapter, we'll be learning how to modify the look and feel of our application.
We'll learn about using widget attributes, styles, and themes, as well as working with
bitmapped graphics.

8
Improving the Look with Styles

and Themes
While programs can be perfectly functional with plain text in shades of black, white, and
gray, the subtle use of colors, fonts, and images can enhance the visual appeal and usability
of even the most utilitarian applications. Your data entry application is no exception. Your
boss and your users have brought several issues to your attention, which seem to require
the use of Tkinter's styling capabilities. Your boss has informed you that corporate HQ
requires all in-house software to prominently display the company logo, while the data
entry staff have mentioned a variety of issues with the readability and overall look of the
application.

In this chapter, we're going to learn about some features of Tkinter that will help us to solve
these issues:

We'll learn how to add images to our Tkinter GUI
We'll learn how to adjust the fonts and colors in our Tkinter widgets, both
directly and with tags
We'll learn how to adjust the look of Ttk widgets using styles and themes

Working with images in Tkinter
The first requirement we're going to handle is adding the company logo. As a result of
corporate policy, your application is supposed to have the company logo embedded in it,
and you've been asked to make your application comply if possible.

To add this image to our application, you'll need to learn about Tkinter's PhotoImage class.

Improving the Look with Styles and Themes Chapter 8

[186]

Tkinter PhotoImage
Several Tkinter widgets, including Label and Button, can take an image argument, which
allows them to display an image. We can't simply put a path to an image file in those cases;
instead, we have to create a PhotoImage object.

Making a PhotoImage object is fairly simple:

myimage = tk.PhotoImage(file='my_image.png')

PhotoImage is typically called with the keyword argument file, which is pointed to a file
path. Alternatively, you can use the data argument to point to a bytes object containing
image data.

A PhotoImage can be used wherever an image argument is accepted, such as a Label:

mylabel = tk.Label(root, image=myimage)

It's critical to note that your application must retain a reference to the PhotoImage object
that will stay in scope for as long as the image is shown; otherwise, the image will not
appear.

Consider the following example:

import tkinter as tk
class App(tk.Tk):
 def __init__(self):
 super().__init__()
 smile = tk.PhotoImage(file='smile.gif')
 tk.Label(self, image=smile).pack()
App().mainloop()

If you run this example, you'll notice that no image gets displayed. That's because the
smile variable is destroyed as soon as __init__() exits; with no reference to the
PhotoImage object, the image vanishes, even though we've packed it into the layout. To fix
this, you would need to store the image object in an instance variable such as self.smile,
which will continue to exist after the method returns.

Image support in Tkinter is limited to GIF, PGM, PPM, and (as of version 8.6) PNG files. To
use other file formats, such as JPEG or BMP, you'll need to use an image manipulation
library such as Pillow to convert them into a format that Tkinter understands.

Improving the Look with Styles and Themes Chapter 8

[187]

At the time of writing, Python 3 for macOS ships with Tkinter 8.5. To use
PNG on macOS, you'll need to upgrade to Tkinter 8.6 or later, or use
Pillow. Please see https:/ ​/​www. ​python. ​org/ ​download/ ​mac/ ​tcltk/ ​ for
more information about Tcl/Tk and macOS. Pillow is not in the Python
standard library. To install it, follow the instructions at http:/ ​/​python-
pillow. ​org.

Adding the company logo
With our knowledge of PhotoImage, adding the company logo to our program should be
simple; however, we have to solve the problem of how to determine the image file's path.
The path can be either absolute or relative to the working directory, but we don't know
what those will be on another system. Fortunately, there's a way to figure it out.

Under the abq_data_entry directory, create a new directory called images, and within it
place an appropriately-sized PNG file that we can use in our application (the image has an
8x5 aspect ratio, so in this case, we're using 32x20). To get an absolute path to the image,
we're going to rely on a built-in variable in Python called __file__. In any Python script,
the __file__ variable will contain the absolute path to the current script file, which we can
use to locate our image files.

For example, from our application.py file, we could find our image using this code:

from os import path
image_path = path.join(path.dirname(__file__),
 'images/abq_logo_32x20.png')

In this example, we first find the directory that contains the application.py file by
calling path.dirname(__file__). This gives us an absolute path to abq_data_entry,
from which we know the relative path to the image. We can join these two paths and have
an absolute path to the image, no matter where the program is installed on the filesystem.

This approach works fine, but consider that we may want to access images from a variety of
modules in our application, and having to import path and repeat this logic in multiple
files is less than optimal. A cleaner approach is to treat our images folder like a Python
package and create constants in it that point to image paths.

https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
https://www.python.org/download/mac/tcltk/
http://python-pillow.org
http://python-pillow.org
http://python-pillow.org
http://python-pillow.org
http://python-pillow.org
http://python-pillow.org
http://python-pillow.org
http://python-pillow.org

Improving the Look with Styles and Themes Chapter 8

[188]

Start by creating an __init__.py file inside the images folder and add the following code:

from os import path

IMAGE_DIRECTORY = path.dirname(__file__)

ABQ_LOGO_32 = path.join(IMAGE_DIRECTORY, 'abq_logo-32x20.png')
ABQ_LOGO_64 = path.join(IMAGE_DIRECTORY, 'abq_logo-64x40.png')

Now, our application.py module can simply do this:

from .images import ABQ_LOGO_32

Application.__init__() can then create a PhotoImage object using the path in
ABQ_LOGO_32:

 self.logo = tk.PhotoImage(file=ABQ_LOGO_32)
 tk.Label(self, image=self.logo).grid(row=0)

After creating the PhotoImage object, we display it using a Label. If you run the
application, you should see the logo show up at the top.

Setting our Window icon
We can also add the logo as our Window icon, which makes more sense than leaving the
default Tkinter logo. This way, the logo will show up in both the window decorations and
in the operating system's taskbar.

As a subclass of Tk, our Application object has a method called iconbitmap which
should, given a path to an icon file, set the icon appropriately. Unfortunately, this method is
fairly finicky about the type of file it's given and does not work well across platforms. We
can work around this using PhotoImage and the special Tk call() method.

The call method allows us to directly call Tcl/Tk commands, and can be
useful to access Tk capabilities that Tkinter wraps poorly or not at all.

The code looks like this:

 self.taskbar_icon = tk.PhotoImage(file=ABQ_LOGO_64)
 self.call('wm', 'iconphoto', self._w, self.taskbar_icon)

Improving the Look with Styles and Themes Chapter 8

[189]

The first line creates another PhotoImage object, referencing a larger version of the logo.
Next, we execute self.call(), passing in the individual tokens of the Tcl/Tk command.
In this case, we're calling the wm iconphoto command. self._w returns the Tcl/Tk name
for our Application object; and, last of all, we pass in the PhotoImage object we created.

Hopefully, you won't need to use call often, but if you do, you can find
documentation about Tcl/Tk commands at: https:/ ​/​www. ​tcl.​tk/ ​doc/ ​ .

Run your application and notice how the icon has changed.

Styling Tkinter widgets
Tkinter has essentially two styling systems: the old Tkinter widgets system, and the newer
Ttk system. Since we still need to work with both Tkinter and Ttk widgets, we'll have to
look at both systems. Let's take a look first at the older Tkinter system and apply some
styling to the Tkinter widgets in our application.

Widget color properties
Basic Tkinter widgets allow you to change two colors: foreground, meaning mainly the text
and borders, and background, meaning the rest of the widget. These can be set using the
foreground and background arguments, or their aliases fg and bg.

This example shows the use of colors on a Label:

l = tk.Label(text='Hot Dog!', fg='yellow', bg='red')

The values for the colors can be color name strings or CSS-style RGB hex strings.

For example, this code produces the same effect:

l2 = tk.Label(text='Also Hot Dog!',
 foreground='#FFFF00',
 background='#FF0000')

https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/
https://www.tcl.tk/doc/

Improving the Look with Styles and Themes Chapter 8

[190]

There are over 700 named colors recognized by Tkinter, roughly corresponding to those
recognized by the X11 display server used on Linux and Unix, or the CSS named colors
used by web designers. For a complete list, see https:/ ​/​www. ​tcl. ​tk/ ​man/​tcl8. ​6/ ​TkCmd/
colors.​htm.

Using widget properties on our form
One request you received from the data entry staff is to increase the visual separation
between the sections on the data entry form. Our LabelFrame widgets are simple Tkinter
widgets (not Ttk), so we can accomplish this fairly simply by giving the sections colored
backgrounds.

After some thought and discussion, you decide to color-code the sections as follows:

Record information will use khaki, suggesting the classic manila folders used for
paper records
Environment information will use lightblue, symbolic of water and air
Plant information will have a lightgreen background, symbolic of plants
Notes are distinctive enough, so it will remain the same

Open up views.py and edit the LabelFrame calls in DataRecordForm.__init__():

 recordinfo = tk.LabelFrame(
 self, text="Record Information",
 bg="khaki", padx=10, pady=10)
...
 environmentinfo = tk.LabelFrame(
 self, text="Environment Data",
 bg='lightblue', padx=10, pady=10)
...
 plantinfo = tk.LabelFrame(
 self, text="Plant Data",
 bg="lightgreen", padx=10, pady=10)

Notice that we've added a bit of padding here as well, to make the color more visible
around the widgets and to also create more separation in the form.

We should add similar padding around the Notes widget:

 self.inputs['Notes'].grid(sticky="w", row=4, column=0,
 padx=10, pady=10)

https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm
https://www.tcl.tk/man/tcl8.6/TkCmd/colors.htm

Improving the Look with Styles and Themes Chapter 8

[191]

In this case, we add the padding to the grid call, so that the entire LabelInput gets shifted
over.

The result, at least on Debian Linux, looks something like this:

Hardly a visual masterpiece yet, but we have some separation and color coding between
form sections.

Improving the Look with Styles and Themes Chapter 8

[192]

Using tags
Foreground and background are sufficient for simple widgets such as buttons, but more
complex Tkinter widgets like the Text widget or the Ttk Treeview rely on a system of
tags. A tag in Tkinter is a named region of a widget's content to which color and font
settings can be applied. To see how this works, let's build a crude, but pretty, Python shell.

We'll start by creating a Text widget:

import tkinter as tk
text = tk.Text(width=50, height=20, bg='black', fg='lightgreen')
text.pack()

Here, we've used the fg and bg arguments to set up a green-on-black theme, popular with
programmers. Rather than have only green text, though, let's configure different colors for
our prompt and our interpreter output.

To do this, we'll define some tags:

text.tag_configure('prompt', foreground='magenta')
text.tag_configure('output', foreground='yellow')

The tag_configure method allows us to create and configure tags on the Text widget.
We've created one called 'prompt' for our shell prompt, and another called 'output' for
the Python output.

To insert text with a given tag applied, we do the following:

text.insert('end', '>>> ', ('prompt',))

As you may remember, the Text.insert method takes an index and string as its first two
arguments. Notice the third argument: this is a tuple of the tags with which we want to
mark the inserted text. This value must be a tuple, even if you're only using one tag.

If you add text.mainloop() to the end of the code and run it, you'll see that we have a
black text entry window with a magenta prompt, but if you type your text, it will show up
in green. So far so good; now, let's make it execute some Python.

Create a function just before the mainloop() call:

def on_return(*args):
 cmd = text.get('prompt.last', 'end').strip()

Improving the Look with Styles and Themes Chapter 8

[193]

When retrieving text from a Text widget, we're required to supply start and end indices for
the text we want to retrieve. Notice that we've used our tag name in the
index. prompt.last tells Tkinter to fetch the text starting after the end of the region tagged
prompt.

Next, let's execute cmd:

 if cmd:
 try:
 output = str(eval(cmd))
 except Exception as e:
 output = str(e)

If our cmd actually contains anything, we'll try to execute it with eval, then store a string of
the response value as output. If it throws an exception, we'll get our exception as a string
and set that as the output.

Then, we'll just show our output:

 text.insert('end', '\n' + output, ('output',))

We insert our output text, prepended with a newline and tagged as output.

We'll finish off the function by giving the user back a prompt:

 text.insert('end', '\n>>> ', ('prompt',))
 return 'break'

We also return the string break here to tell Tkinter to ignore the original event that
triggered the callback. Since we're going to trigger this from a Return/Enter keystroke, we
want to ignore that keystroke after we're finished. If we don't, the keystroke will be
executed after our function returns and the user will be on the line under the prompt.

Finally, we need to bind our function to the Return key:

text.bind('<Return>', on_return)

Note that the event for the Enter/Return key is always <Return>, even on non-Apple
hardware (where the key is more commonly labeled Enter).

Improving the Look with Styles and Themes Chapter 8

[194]

Your application should look something like this:

While this shell won't be supplanting IDLE any time soon, it does look rather nice, don't
you think?

Styling our record list with tags
Although Treeview is a Ttk widget, it uses tags to control the styling of individual rows.
We can use this to answer another of the requests you've gotten from the data entry staff:
they'd like the record list to highlight records updated and inserted during the current
session.

The first thing we'll need to do is have our Application object keep track of which rows
have been updated or inserted during the session.

In Application.__init__(), we'll create the following instance variables:

 self.inserted_rows = []
 self.updated_rows = []

When a record is saved, we'll need to update one or the other of these lists with its row
number. We'll do this in Application.on_save(), after the record is saved, but before we
repopulate the record list.

Improving the Look with Styles and Themes Chapter 8

[195]

First, we'll check for an updated record:

 if rownum is not None:
 self.updated_rows.append(rownum)

Updates have rownum which do not have a None value, so if this is the case, we'll append it
to the list. If a record is continually updated, there will be duplicates in our list, but that's
not really of any consequence in the scale at which we're operating.

Now, we need to deal with inserts:

 else:
 rownum = len(self.data_model.get_all_records()) - 1
 self.inserted_rows.append(rownum)

Inserted records are a little more troublesome in that we don't have a row number readily
available to record. We do know that inserts are always appended to the end of the file,
though, so it should be one less than the number of rows in the file.

Our inserted and updated records will be kept until the end of the program session (when
the user exits the program), but we need to manually delete them in the case where a user
selects a new file.

We can handle that by clearing the lists in on_file_select():

 if filename:
 ...
 self.inserted_rows = []
 self.updated_rows = []

Now, our controller knows about inserted and updated records. Our record list does not,
however; we need to fix that.

Find the RecordList call in Application.__init__() and add the variables to its
arguments:

 self.recordlist = v.RecordList(
 self, self.callbacks,
 self.inserted_rows,
 self.updated_rows)

Now, we'll need to go back into views.py and tell the RecordList what to do with this
information.

Improving the Look with Styles and Themes Chapter 8

[196]

We'll start by updating its argument list and saving the lists to instance variables:

 def __init__(self, parent, callbacks,
 inserted, updated,
 *args, **kwargs):
 self.inserted = inserted
 self.updated = updated

Next, we'll need to configure tags with appropriate colors. Our data entry staff feels that
lightgreen would be a sensible color for inserted records, and lightblue for updated.

Add this code in __init__() after the self.treeview configuration:

 self.treeview.tag_configure('inserted', background='lightgreen')
 self.treeview.tag_configure('updated', background='lightblue')

Just as we did with the Text widget earlier, we call tag_configure to connect
background color settings with our tag names. Note that you aren't restricted to just one
configuration setting here; we could conceivably add foreground, font, or other
configuration settings to the same call.

To add the tags to our TreeView rows, we'll need to update the populate method.

Inside the for loop, just before inserting the row, we'll add this code:

 if self.inserted and rownum in self.inserted:
 tag = 'inserted'
 elif self.updated and rownum in self.updated:
 tag = 'updated'
 else:
 tag = ''

We want tag to equal 'inserted' if the inserted list exists and our rownum is in it; we
want it to be 'updated' if the updated list exists and our rownum is in it. Otherwise, we
leave it blank.

Now, our treeview.insert call just needs to be amended with this tag value:

 self.treeview.insert('', 'end', iid=str(rownum),
 text=str(rownum), values=values,
 tag=tag)

Run the application and try inserting and updating some records.

Improving the Look with Styles and Themes Chapter 8

[197]

You should get something like this:

Improving the Look with Styles and Themes Chapter 8

[198]

Tkinter fonts
There are three ways of specifying a widget's font in Tkinter.

The simplest way is to just use a string format:

tk.Label(text="Direct font format",
 font="Times 20 italic bold")

The string takes the format Font-family size styles, where styles can be any valid
combination of text style keywords.

Those words include:

bold for boldface text, or normal for normal weight
italic for italized text, or roman for regular slant
underline for underlined text
overstrike for struck-out text

Everything but the font family is optional, though you need to specify a size if you want
to specify any of the styling keywords. The ordering of style keywords doesn't matter, but
the weight and slant keywords are mutually exclusive (that is, you can't have bold normal
or italic roman).

One shortcoming of the string approach is that it cannot handle fonts with spaces in the
name.

To handle these, you can use the tuple format for fonts:

tk.Label(
 text="Tuple font format",
 font=('Droid sans', 15, 'overstrike'))

This format is exactly like the string format except that the different components are written
as items in a tuple. The size component can be an integer or a string containing digits,
which provides some flexibility depending on where the value comes from.

This approach works fine for setting up a handful of font changes at launch time, but for
situations that need to dynamically manipulate font settings, Tkinter has a feature called
named fonts. This approach uses a Font class that can be assigned to widgets and then
dynamically changed.

Improving the Look with Styles and Themes Chapter 8

[199]

To use Font, it must be imported from the tkinter.font module:

from tkinter.font import Font

Now, we can create a custom Font object and assign it to widgets:

labelfont = Font(family='Courier', size=30,
 weight='bold', slant='roman',
 underline=False, overstrike=False)
tk.Label(text='Using the Font class', font=labelfont).pack()

As you can see, the Font constructor arguments correlate the keywords used in string and
tuple font specifications.

Once this font is assigned, we can dynamically alter aspects of it at runtime:

def toggle_overstrike():
 labelfont['overstrike'] = not labelfont['overstrike']

tk.Button(text='Toggle Overstrike', command=toggle_overstrike).pack()

In this example, we're providing a Button that will toggle the overstrike attribute on
and off.

Tk comes with several named fonts already configured; we can create Python Font objects
from them using the nametofont function from the tkinter.font module.

This table shows some of the named fonts included in Tkinter:

Font name Defaults to Used for

TkCaptionFont System title font Window and dialog caption bars

TkDefaultFont System default font Items not otherwise specified

TkFixedFont System fixed-width font Nothing

TkHeadingFont System heading font Column headings in lists and tables

TkIconFont System icon font Icon captions

TkMenuFont System menu font Menu labels

TkSmallCaptionFont System title Subwindows, tool dialogs

TkTextFont System input font Input widgets: Entry, Spinbox, and so on

TkTooltipFont System tooltip font Tooltips

Improving the Look with Styles and Themes Chapter 8

[200]

If you're curious as to what fonts Tkinter is using on your operating system, you can use
the tkinter.font.names() function to retrieve a list of them.

To change the overall look of the application, we can override these named fonts and the
changes will get applied across all widgets that don't otherwise have a font set.

For example:

import tkinter as tk
from tkinter.font import nametofont

default_font = nametofont('TkDefaultFont')
default_font.config(family='Helvetica', size=32)

tk.Label(text='Feeling Groovy').pack()

In this example, we use the nametofont function to retrieve an object for TkDefaultFont,
the default named font class for Tkinter applications. After retrieving it, we can set its font
family and size, changing those values for all widgets using TkDefaultFont.

The Label then shows the result of this adjustment:

Giving users font options
Some of our data entry users have complained that the font of the application is just a little
too small to read easily, but others dislike the idea of you increasing it because it makes the
application too big for the screen. To accommodate all the users, we can add a
configuration option that allows them to set a preferred font size.

We need to begin by adding a 'font size' option to our settings model.

Open models.py and append the SettingsModel.variables dictionary as follows:

 variables = {
 ...
 'font size': {'type': 'int', 'value': 9}

Next, we'll add a set of radio buttons to our options menu so that the user can set the value.

Improving the Look with Styles and Themes Chapter 8

[201]

Open views.py and let's start creating a menu just before the options menu gets added to
the main menu:

 font_size_menu = tk.Menu(self, tearoff=False)
 for size in range(6, 17, 1):
 font_size_menu.add_radiobutton(
 label=size, value=size,
 variable=settings['font size'])
 options_menu.add_cascade(label='Font size',
 menu=font_size_menu)

This should look familiar, since we created a nearly identical font size menu when learning
about the Tkinter Menu widget. We're allowing fonts from 6 to 16, which should provide
plenty of range for our users.

In the Application class, let's create a method that will apply the font setting to our
application's fonts:

 def set_font(self, *args):

We include *args because set_font will be called as a trace callback, so we need to
capture any arguments being sent in, even though we won't use them.

Next, we'll get the current 'font size' value:

 font_size = self.settings['font size'].get()

There are several named fonts we're going to need to change, not just TkDefaultFont. For
our application, TkDefaultFont, TkTextFont, and TkMenuFont should be sufficient.

We'll just loop through these, retrieving the classes and setting the size on each one:

 font_names = ('TkDefaultFont', 'TkMenuFont', 'TkTextFont')
 for font_name in font_names:
 tk_font = nametofont(font_name)
 tk_font.config(size=font_size)

The last thing we need to do is to make sure this callback gets called.

Just after the load_settings() call in Application.__init__(), add this:

 self.set_font()
 self.settings['font size'].trace('w', self.set_font)

Improving the Look with Styles and Themes Chapter 8

[202]

We call set_font() once to activate any saved font size settings and then set a trace
to run it whenever the value is changed.

Run the application and try out the font menu. It should look something like this:

Styling Ttk widgets
Ttk widgets represent a major improvement over standard Tkinter widgets in terms of the
power and flexibility with which they can be styled. This flexibility is what gives Ttk
widgets the ability to mimic native UI controls across platforms, but it comes at a cost: Ttk
styling is confusing, poorly documented, and occasionally inconsistent.

Improving the Look with Styles and Themes Chapter 8

[203]

To understand Ttk styling, let's start with some vocabulary, from the most basic elements to
the most complex:

Ttk starts with elements. An element is one piece of a widget, such as a border,
an arrow, or a field where text can be typed.
Elements are composed using layouts into a complete widget (a Combobox or
Treeview, for example).
Styles are collections of properties that define color and font settings:

Each style has a name, usually T, plus the name of the widget, such
as TButton or TEntry. There are some exceptions to this.
Each element in a layout references one or more style properties to
define its appearance.

Widgets have a number of states, which are flags that can be turned on or off:
Styles can be configured with a map that connects property values
to states or combinations of states

A collection of styles is called a theme. Tkinter ships with different themes on
different platforms.:

A theme might define not only different styles, but different
layouts as well. For example, a ttk.Button on the default macOS
theme may contain a different set of elements, applying style
settings differently compared to a ttk.Button using the default
theme in Windows.

If you're confused at this point, that's okay. Let's take a deep dive into the anatomy of a
ttk.Combobox to get a better feel for these ideas.

Exploring a Ttk widget
To get a better picture of how a Ttk widget is built, open a shell in IDLE and import
tkinter, ttk, and pprint:

>>> import tkinter as tk
>>> from tkinter import ttk
>>> from pprint import pprint

Improving the Look with Styles and Themes Chapter 8

[204]

Now, create a root window, Combobox, and Style object:

>>> root = tk.Tk()
>>> cb = ttk.Combobox(root)
>>> cb.pack()
>>> style = ttk.Style()

The Style object is, perhaps, slightly misnamed; it doesn't point to a single style, but rather
gives us a handle to examine and alter the styles, layouts, and maps for the current theme.

In order to examine our Combobox, we'll first get its stylename using the winfo_class()
method:

>>> cb_stylename = cb.winfo_class()
>>> print(cb_stylename)
TCombobox

We can then inspect the layout of the Combobox using the Style.layout() method:

>>> cb_layout = style.layout(cb_stylename)
>>> pprint(cb_layout)
[('Combobox.field',
 {'children': [('Combobox.downarrow',
 {'side': 'right', 'sticky': 'ns'}),
 ('Combobox.padding',
 {'children': [('Combobox.textarea',
 {'sticky': 'nswe'})],
 'expand': '1',
 'sticky': 'nswe'})],
 'sticky': 'nswe'})]

By passing the style name (in this case, TCombobox) to the style.layout() method, we
get back a layout specification that shows the hierarchy of elements used to construct this
widget.

The elements, in this case, are "Combobox.field", "Combobox.downarrow",
"Combobox.padding", and "Combobox.textarea". As you can see, each element has
associated positioning properties similar to what you'd pass into pack().

The layout method can also be used to replace a style's layout by passing in a new layout
specification. Unfortunately, this requires replacing the entire layout specification—you
can't just adjust or replace a single element in place.

Improving the Look with Styles and Themes Chapter 8

[205]

To see how the style connects to the elements, we can use the style.element_options()
method. This method takes an element name and returns a list of options that can be used
to alter it.

For example:

>>> pprint(style.element_options('Combobox.downarrow'))
('background', 'relief', 'borderwidth', 'arrowcolor', 'arrowsize')

This tells us that the downarrow element of the Combobox uses these style properties to
determine its appearance. To change these properties, we'll have to use the
style.configure() method.

Let's change the color of the arrow to red:

>>> style.configure('TCombobox', arrowcolor='red')

You should see that the arrowcolor has changed to red. This is all we need to know to
configure widgets for static changes, but what about dynamic changes?

To make dynamic changes, we'll need to understand our widget's state.

We can inspect or alter the state of our Combobox using the state method:

>>> print(cb.state())
()
>>> cb.state(['active', 'invalid'])
('!active', '!invalid')
>>> print(cb.state())
('active', 'invalid')

Combobox.state() with no arguments will return a tuple with the currently set state
flags; when used with an argument (which must be a sequence of strings), it will set the
corresponding state flags.

To turn off a state flag, prepend a ! to the flag name:

>>> cb.state(['!invalid'])
('invalid',)
>>> print(cb.state())
('active',)

Improving the Look with Styles and Themes Chapter 8

[206]

When you call state() with an argument to change the value, the return
value is a tuple containing a set of states that would, if applied, undo the
state change you just set. This might be useful in a situation where you
want to temporarily set a widget's state, then return it to its previous
(unknown) state.

You can't just use any strings for state(); they must be one of the following:

active

disabled

focus

pressed

selected

background

readonly

alternate

invalid

Exactly how different widgets use each of these states depends on the widget; not every
state() is configured to have an effect by default.

Widget states interact with the widget style through the use of a map. We use the
style.map() method to inspect or set the map for each style.

Take a look at the default map for TCombobox:

>>> pprint(style.map(cb_stylename))
{'arrowcolor': [('disabled', '#a3a3a3')],
 'fieldbackground': [('readonly', '#d9d9d9'),
 ('disabled', '#d9d9d9')]}

As you can see, TCombobox has a style map for the arrowcolor and fieldbackground
properties by default. Each style map is a list of tuples, and each tuple is one or more state
flags followed by a value for the setting. When all of the state flags match the current state
of the widget, the value takes effect.

The default map turns the arrow color to a light gray color when the disabled flag is set,
and turns the field background to a different light gray color when either the disabled or
readonly flags are set.

Improving the Look with Styles and Themes Chapter 8

[207]

We can set our own style mapping using the same method:

>>> style.map('TCombobox', arrowcolor=[('!invalid', 'blue'), ('invalid',
'focus', 'red')])
{}
>>> pprint(style.map('TCombobox'))
{'arrowcolor': [('!invalid', 'blue'), ('invalid', 'focus', 'red')],
 'fieldbackground': [('readonly', '#d9d9d9'), ('disabled', '#d9d9d9')]}

Here, we've configured the arrowcolor property to be blue when the invalid flag is not
set, and red when both the invalid and focus flags are set. Notice that while our call to
map completely overwrote the arrowcolor style map, the fieldbackground map was
unaffected. This means you can replace style mappings individually, but you can't simply
append to the existing map for a given property.

So far, we've been operating on the TCombobox style, which is the default style for all
Combobox widgets. Any changes we made would impact every Combobox in the
application. We can also create custom styles derived from the existing style by prepending
a name and a dot to an existing style name.

For example:

>>> style.configure('Blue.TCombobox', fieldbackground='blue')
>>> cb.configure(style='Blue.TCombobox')

Blue.TCombobox inherits all of the properties of TCombobox (including the blue
downarrow we previously configured), but can add or override them with settings of its
own that don't affect TCombobox. This allows you to create custom styles for some widgets
without affecting other widgets of the same type.

We can alter the look of all the Ttk widgets at once by changing the theme. Remember that
a theme is a collection of styles, so by changing the theme, we'll be replacing all the built-in
styles and layouts.

Different themes are shipped on different platforms; to see the themes available on your
platform, use the theme_names() method:

>>> style.theme_names()
('clam', 'alt', 'default', 'classic')

(These are the themes available on Debian Linux; yours may differ.)

Improving the Look with Styles and Themes Chapter 8

[208]

To query the current theme, or to set a new theme, use the theme_use() method:

>>> style.theme_use()
'default'
>>> style.theme_use('alt')

Notice how the previous styling is gone when you change the theme. If you switch back to
the default, however, you'll see that your changes were retained.

Styling our form labels
The first thing we can tackle with our knowledge of styling is our form widgets. Our
colorization of the form is rather ugly and incomplete due to the LabelInput widgets
retaining their default, drab color. We'll need to style each of those widgets to match the
color of its LabelInput.

In the views.py file, add this near the start of the DataRecordForm.__init__() method:

 style = ttk.Style()

We're creating our Style object so that we can start working with our Ttk styles. What
styles do we need?

We need a style for Ttk Label widgets for each section, since we'll need different
colors for the widgets in RecordInfo, EnvironmentInfo, and Plant Info.
We'll need to style our Ttk Checkbutton, since it uses its own built-in label
rather than a separate label widget. Since there's only one right now, we only
need one style for it.

Let's create those styles:

 style.configure('RecordInfo.TLabel', background='khaki')
 style.configure(
 'EnvironmentInfo.TLabel',
 background='lightblue')
 style.configure(
 'EnvironmentInfo.TCheckbutton',
 background='lightblue')
 style.configure('PlantInfo.TLabel', background='lightgreen')

Improving the Look with Styles and Themes Chapter 8

[209]

As you can see, we're creating a custom style based on TLabel, but this is prefixed for each
individual section. For each style, we're just setting the background color appropriately.

Now comes the tedious task of adding this style to each widget:

 self.inputs['Date'] = w.LabelInput(
 recordinfo, "Date",
 field_spec=fields['Date'],
 label_args={'style': 'RecordInfo.TLabel'})

In each LabelInput call, you'll need to add a label_args argument that sets the style to
the appropriate TLabel style for the section. Go through and do this for all the widgets.

For the Checkbutton, you'll need to do it differently:

 self.inputs['Equipment Fault'] = w.LabelInput(
 environmentinfo, "Equipment Fault",
 field_spec=fields['Equipment Fault'],
 label_args={'style': 'EnvironmentInfo.TLabel'},
 input_args={'style': 'EnvironmentInfo.TCheckbutton'})

Here, we've set input_args, since the style applies to the Checkbutton rather than the
label (leave label_args; we'll need that in a minute).

If you run the program at this point, you'll see a marked improvement, but it's not quite
there yet; the error labels are still the old, default color.

To fix this, we just need to edit our LabelInput widget to use the label_args for the
error label as well.

Open widgets.py and fix the self.error_label assignment in
LabelInput.__init__():

 self.error_label = ttk.Label(self, textvariable=self.error,
 **label_args)

Improving the Look with Styles and Themes Chapter 8

[210]

Now, your application should have consistent colors and look a lot more attractive:

Styling input widgets on error
Our data entry staff has complained that the error-styling in our fields is not terribly
noticeable. Currently, we're just setting the foreground color to red.

Improving the Look with Styles and Themes Chapter 8

[211]

This has a couple of problems:

For empty fields, there's nothing to actually color red
Our color blind user has trouble distinguishing the red from the normal text
color

We'll use our styling knowledge to improve the error styling and make invalid fields more
noticeable.

Before we can do that, though, you may have to fix a minor issue with one of our widgets.

Making our Spinbox a Ttk widget
If you're using Python 3.6 or earlier, the Spinbox widget is only available in tkinter, and
not ttk. We'll need to fix this so that our error-styling can be consistent.

At the time of writing this book, the author has submitted a patch to
Python 3.7 to include the Ttk Spinbox. If you're using Python 3.7 or later,
you can just use ttk::spinbox and skip this section.

Since Spinbox is already in the Tcl/Tk Ttk library, creating a Python class for it is
surprisingly easy.

Add this code near the top of widgets.py:

class TtkSpinbox(ttk.Entry):

 def __init__(self, parent=None, **kwargs):
 super().__init__(parent, 'ttk::spinbox', **kwargs)

This is all that's needed to create a Ttk Spinbox for this application. We're simply
subclassing ttk.Entry, but changing the Ttk widget being used in the __init__
statement. If we needed any Spinbox methods that Entry lacks, we'd need to provide
those; for this application, we don't need anything else.

Now, we only need to update our ValidatedSpinbox class to inherit TtkSpinbox rather
than tk.Spinbox:

class ValidatedSpinbox(ValidatedMixin, TtkSpinbox):

Improving the Look with Styles and Themes Chapter 8

[212]

Updating ValidatedMixin
Now that we're working with all Ttk widgets, we can update our ValidatedMixin class
with some dynamic styling.

We'll begin in the __init__() method by creating a Style object:

 style = ttk.Style()

Since this is a mixin class, we don't know the original style name of the widget we're
mixing with, so we'll have to fetch that.

Remember that we can do this with winfo_class():

 widget_class = self.winfo_class()
 validated_style = 'ValidatedInput.' + widget_class

After getting the widget class, we're creating a derivative style by prepending
ValidatedInput to it. In order to toggle our input appearance between error and non-
error appearances, we'll create a style map that switches with the state of the invalid state
flag.

You can do this with a call to style.map():

 style.map(
 validated_style,
 foreground=[('invalid', 'white'), ('!invalid', 'black')],
 fieldbackground=[('invalid', 'darkred'), ('!invalid', 'white')]
)

We're still using red, since it's an established "error color", but this time we're inverting the
field from dark-on-light to light-on-dark. This should help our colorblind user to
distinguish errors, even though they are red.

Finally, we need to update our call to self.config to include setting the widget's style to
our new validated style:

 self.config(
 style=validated_style,
 validate='all',
 ...

Ttk widgets automatically set their invalid flags as part of the built-in validation system.
Currently, we have a method called _toggle_error(), which is called whenever
validation begins or fails and sets the error state on and off. We can remove that method
completely, and all references to it.

Improving the Look with Styles and Themes Chapter 8

[213]

If you try the application now, you'll see that fields with errors now turn a dark red color
with white text:

Setting themes
Generally speaking, the default Ttk theme on any given platform is probably the best one to
use on that platform, but looks are subjective and sometimes we might feel that Tkinter gets
it wrong. Having a way to adjust the theme might help to smooth out some rough edges
and make some users feel more comfortable with the look of the application.

As we've already seen, querying available themes and setting a new theme is fairly simple.
Let's create a configuration option to change the theme of our application.

Building a theme selector
Themes aren't something users are going to need to change often, and as we've seen,
changing the theme can undo style changes we've made to our widgets. In light of this,
we'll play it safe by designing our theme changer in such a way that it requires a restart of
the program to make the actual change.

We'll start by adding a theme option to our SettingsModel:

 variables = {
 ...
 'theme': {'type': 'str', 'value': 'default'}
 }

Every platform has a theme aliased to default, so this is a safe and sensible default value.

Next, our Application.__init__() method will need to check this value and set the
theme accordingly.

Improving the Look with Styles and Themes Chapter 8

[214]

Add this code just after the call to load_settings():

 style = ttk.Style()
 theme = self.settings.get('theme').get()
 if theme in style.theme_names():
 style.theme_use(theme)

We create a Style object, query our settings for the theme name, then (assuming the saved
theme is in the available themes) set the theme accordingly.

What remains now is to create the UI.

In the views.py file, we'll create a new submenu for the options_menu:

 style = ttk.Style()
 themes_menu = tk.Menu(self, tearoff=False)
 for theme in style.theme_names():
 themes_menu.add_radiobutton(
 label=theme, value=theme,
 variable=settings['theme']
)
 options_menu.add_cascade(label='Theme', menu=themes_menu)

Here, we simply loop through the available themes and add a Radiobutton for each
theme, tying it to our settings['theme'] variable.

It may not be obvious to users that changing the theme requires a restart, so let's make sure
to let them know.

We'll add a trace to the variable:

 settings['theme'].trace('w', self.on_theme_change)

The on_theme_change method will just display a warning dialog informing the user that a
restart will be needed to realize the change.

Improving the Look with Styles and Themes Chapter 8

[215]

Add it to the end of the MainMenu class:

 def on_theme_change(self, *args):
 """Popup a message about theme changes"""
 message = "Change requires restart"
 detail = (
 "Theme changes do not take effect"
 " until application restart")
 messagebox.showwarning(
 title='Warning',
 message=message,
 detail=detail)

Now, you can run the application and try changing the theme. Which theme looks best on
your platform?

You might find that some themes on your platform break the widget
styling in the form. Remember that themes don't just change default colors
and fonts, they change the layout and contents of the widget elements
themselves. Sometimes, a style setting doesn't carry across different
themes due to this change of property names.

Summary
In this chapter, we overhauled the look and feel of our application for both aesthetic and
usability improvements. You learned how to work with color and font settings for Tkinter
widget, and the intricate world of Ttk styles.

In the next chapter, we'll take steps to make sure our program runs effectively across major
desktop platforms. You'll learn strategies to avoid cross-platform pitfalls in both general
Python programming and Tkinter programming in particular. We'll also explore the
various guidelines platform vendors offer to developers targeting their platforms.

9
Maintaining Cross-Platform

Compatibility
Your application is being requested throughout the lab as a way to visualize and work on
experimental data files. As a result, it now needs to run on the Windows, macOS, and
Linux systems equally well. Fortunately for you, Python and Tkinter are supported on the
three main operating systems, and you'll be pleasantly surprised to find that it runs
unaltered on all three. However, there are some small issues that you need to address and
remain aware of for your application to be a good citizen on each platform.

In this chapter, we'll cover the following topics:

Learning to write cross-platform Python that works across Windows, macOs,
and Linux
Learning how to write Tkinter code that works consistently across platforms
Fixing some minor cross-platform issues in our application

Writing cross-platform Python
At the time of writing, Python is supported on over three dozen operating system
platforms, covering everything from common desktop systems like Windows to high-end
commercial Unixes to obscure OS projects such as Haiku or AROS Research Operating
System. Across all these platforms, most Python code works without any significant
alteration, as Python has been designed to translate high-level functionality into
appropriate low-level operations on each one. Even so, there are situations where OS
differences cannot be (or simply have not been) abstracted away, and careful handling is
required to avoid platform-specific failures.

In this section, we'll look at some of the larger issues that impact cross-platform Python.

Maintaining Cross-Platform Compatibility Chapter 9

[217]

Filenames and filepaths across platforms
Filesystems are probably the biggest source of pitfalls for cross-platform development.
Although most platforms share the concept of files and directories arranged in a hierarchy,
there are some crucial differences that can trip up developers who are unfamiliar with other
operating systems.

Path separators and drives
When it comes to identifying locations on a filesystem, operating systems generally use one
of the following two models:

Windows/DOS: In this model, each partition or device is assigned a volume label
(usually a single letter), and each volume has its own filesystem tree. Paths are
separated by a backslash (\) character. This system is used by Windows, DOS,
and VMS.
Unix: In this model, there is one filesystem tree, into which devices and
partitions are mounted at arbitrary points. Paths are separated by a forward slash
(/). This model is used by macOS, Linux, BSD, iOS, Android, and other Unix-like
operating systems.

Thus, a path like E:\Server\Files\python is meaningless on Linux or macOS, while a
path like /mnt/disk1/files/python is equally meaningless on Windows. This could
make it quite difficult to write code that accesses files in a cross-platform way, but Python
gives us a few tools to deal with the differences.

Path separator translation
If you use the Unix-style forward slash path separators on a Windows system, Python will
automatically translate them into backslashes. This is quite useful for cross-platform
purposes because using backslashes in strings can be problematic.

Note that the reverse is not true: Python will not translate backslashes into
Unix-style forward slashes. A path like r'\usr\bin\python will not
work on macOS or Linux.

Maintaining Cross-Platform Compatibility Chapter 9

[218]

The os.path module
Even with automatic path-separator interpolation, building or hardcoding paths as strings
is a messy business. Python's powerful string manipulation methods make it tempting to
try to work with paths as strings, and many programmers attempt to do so.

The result is often ugly, non-portable code as follows:

script_dir = '/'.join(some_path.split('/')[:-1])

While this approach might work most of the time (even on Windows), it's prone to
breaking on some edge cases (for example, some_path = '/script.sh'). For this reason,
the Python standard library includes the os.path module for working with filesystem
paths. We've seen it quite a bit already, but it warrants another look owing to its
importance in cross-platform compatibility.

The path module appears to be a collection of functions and constants that help abstract
common filenames and directory operations, though it's actually a wrapper around the
low-level modules posixpath for Unix-like systems and ntpath for Windows. When you
import path, Python simply detects your operating system and loads the appropriate low-
level library.

The following table shows some common os.path functions that are useful for cross-
platform developers:

Function Purpose

join()
This function joins two or more path segments in a platform-appropriate
way

expanduser()
This function expands the ~ or ~username shortcuts, which point to user
home directories and to an absolute path

expandvars() This function expands the filesystem and shell variables present in a path

dirname() This function extracts the parent directory of the path

isfile() This function determines whether the path points to a file

isdir() This function determines whether the path points to a directory

exists() This function determines whether the path exists

Maintaining Cross-Platform Compatibility Chapter 9

[219]

The pathlib module
A more recent addition to the Python standard library is the pathlib module, a more
object-oriented and somewhat higher-level take on filesystem paths, which you may
remember from Chapter 7, Navigating Records with Treeview. Unlike os.path, which is just
a collection of functions and constants, pathlib offers the Path object, which represents a
filesystem location.

We typically use pathlib by importing the Path class from it, as follows:

>>> from pathlib import Path
>>> p = Path()
>>> print(p)
.
>>> print(p.absolute())
'/home/alanm'

Path defaults to the current working directory, but you can also provide it with an absolute
or relative path string. Relative paths will be calculated against the current working
directory.

These Path objects have a variety of useful properties and methods:

Create a Path object for the current working directory
p = Path()

find the parent directory
parent = p.parent

Check if the path /var/log exists
has_var_log = Path('/var/log').exists()

Join Paths together, using the division operator
image_path = Path(__file__) / 'images' / 'png'

Refer to the pathlib documentation at https:/ ​/​docs. ​python. ​org/ ​3/ ​library/ ​pathlib.
html for more information on this powerful library.

Should you use os.path or pathlib.Path? The pathlib module
provides a fairly high-level interface that excels at complex path
manipulations, but it can be overkill for simple checks or joins. Either one
works fine, but if you find yourself doing more than a few lines of path-
related operations, pathlib is probably going to be cleaner.

https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html
https://docs.python.org/3/library/pathlib.html

Maintaining Cross-Platform Compatibility Chapter 9

[220]

Case-sensitivity
Platforms also differ in terms of filesystem case sensitivity. On Linux, log.txt, LOG.txt,
and LoG.TxT are all different files that can coexist in the same directory. On Windows, they
will not.

The following table breaks down the case sensitivity of major operating systems:

System Case-sensitive

Windows No

macOS Not default (configurable)

Linux Yes

Berkeley Software Distribution (BSD), most other Unix systems Yes

Problems with case (in)sensitivity usually depend on which system you're accustomed to:

Programmers used to a case-insensitive system tend to run into problems with
inconsistent use of cases between the filesystem and program
Programmers used to a case-sensitive system can have problems when
depending on a case to differentiate between file or directory names (for
example, ImportIngest.txt and ImportingEst.txt)

Avoiding these issues is fairly simple with the following few basic rules:

Use lowercase for file and path names unless there is a good reason not to.
If you do mix cases, follow consistent rules, so that you don't need to remember
arbitrary case usage.
Avoid CamelCase or similar naming schemes that rely on case to denote word
breaks. Use underscores, hyphens, or spaces (they're valid in all modern
filesystems!).

Symbolic links
A symbolic link is a special filesystem construct that points to another file or directory on
the system. Although they exist on Windows, they're far more commonly used on Linux,
macOS, and other Unix-like systems; thus, they can be a point of confusion for
programmers coming from a Windows environment.

Maintaining Cross-Platform Compatibility Chapter 9

[221]

Symbolic links are not to be confused with desktop shortcuts, which also
exist on all three major platforms. Shortcuts are just metadata files
implemented at the desktop environment level, whereas symbolic links
are implemented at the filesystem level.

File and path operations sometimes need to clarify if they're working with the symbolic link
itself or the file that the link points to.

For example, consider a link in our current directory, secret_stuff.txt, that points to
the nonexistent file /tmp/secret_stuff.txt, as follows:

>>> from os import path
>>> path.exists('secret_stuff.txt')
False
>>> path.lexists('secret_stuff.txt')
True

The regular path.exists() function will follow the link and discover that the file in
question does not exist. os.path also includes a lexists() function that will tell us if the
link exists, even if the file doesn't. This situation could be a problem; for example, your
program might be attempting to create a directory with the same name as a broken
symbolic link. In this case, os.path.exists or Path.exists would both return False,
but the name conflict would still exist, and directory creation would fail. Checking
os.path.lexists or Path.is_symlink as well would be a good idea in this case.

The following table shows some of the os.path functions that help deal with symbolic
links:

Method Description

islink() Returns True if a path is a symbolic link

lexists() Returns True if a path exists, even if it's a broken symbolic link

realpath() Return the actual path, resolving any symbolic links to real files and directories

Maintaining Cross-Platform Compatibility Chapter 9

[222]

The pathlib.Path objects also feature the following handy link-related methods:

Method Description

is_symlink() Returns True if the path is a symbolic link

resolve() Returns a path with all symbolic links resolved to real files and directories

lchmod() Changes permissions on a symbolic link, rather than the file it is pointed to

lstat()
Returns filesystem information on a symbolic link, rather than the file it is
pointed to

Path variables
Most platforms, including Windows, macOS, and Linux, support some kind of shell
variables, which are often automatically set up by the system to point to common
filesystem locations. The os.path module provides the expandvars function to expand
these variables into their actual values (pathlib has no equivalent method). While these
variables can be useful in locating common path locations, the cross-platform developer
should understand that they are not consistent across platforms.

Some commonly used variables across different systems include the following:

Description Windows macOS Linux

Current user home
directory

%HOME%, %USERPROFILE% $HOME $HOME

Temporary directory %TMP%, %TEMP% $TMPDIR None

Path to default shell N/A $SHELL $SHELL

Current working
directory None $PWD $PWD

Configuration directory %APPDATA%,
%LOCALAPPDATA%

None
$XDG_CONFIG_HOME

(often not set)

OS directory %WINDIR%, %SYSTEMROOT% N/A N/A

Program files directory %PROGRAMFILES%,
%PROGRAMW6432%

N/A N/A

Maintaining Cross-Platform Compatibility Chapter 9

[223]

Note that Windows variables can be spelled using the native "%VARIABLENAME%" format or
the Unix-style "$VARIABLENAME" format; macOS and Linux only accept the Unix format.
Using these variables is not necessarily a bad idea (they can help abstract differences
between versions or configurations of an OS), but be aware that they are not consistently
available, or even meaningful, across platforms.

Inconsistent library and feature support
While it's understandable that many third-party Python libraries only support a limited
number of platforms, you might be surprised to learn that the standard library contains a
slightly different set of modules depending on the platform. Even those that do exist across
platforms might behave slightly differently, or have inconsistent contents, depending on
the platform.

Naturally, these have to be handled carefully in cross-platform applications.

Python's platform-limited libraries
In sections 34 and 35 of Python's standard library documentation (https:/ ​/​docs. ​python.
org/​3/​library/​index. ​html), you'll find a list of libraries available only on Windows or
Unix-like systems, respectively. Careful reading of the documentation shows that there are
a couple more platform-limited libraries listed in other sections as well.

Following is a list of the more common platform-limited libraries you may encounter:

Library Description Availability

ossaudiodev Open Sound System (OSS) audio server interface Linux, FreeBSD

winsound Windows audio interface Windows

msilib Windows software packaging tools Windows

winreg Windows registry tools Windows

syslog Unix system log interface Linux, macOS, BSD

pwd, spwd Unix password database interface Linux, macOS, BSD

resource System resource limits Linux, macOS, BSD

curses Terminal-based UI library Linux, macOS, BSD

https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html

Maintaining Cross-Platform Compatibility Chapter 9

[224]

In some cases there are higher-level, cross-platform libraries that you can use to replace
these (for example, use logging instead of syslog), but in other cases the functionality is
so platform-specific that you may have no choice (winreg, for example). In this case, you'll
need to do a platform check before importing these libraries, as you'll get an ImportError
exception on unsupported platforms.

Checking low-level function compatibility
Even in universally available libraries, there are sometimes functions or methods that are
unavailable or exhibit different behaviors depending on the platform. The os module is
perhaps the most notable case.

The os module is a relatively thin wrapper around system calls or commands, and while it
attempts to abstract some roughly analogous calls across platforms, many of its functions
are too platform-specific to make available universally.

The os module documentation at https:/ ​/​docs. ​python. ​org/​3/ ​library/ ​os. ​html contains
complete details on platform support, but some examples are listed here:

Library Description Availibility

getuid, getgid, getgroups,
geteuid

Get user or group information for current
process Unix-like

setuid, setgid, setgroups,
seteuid

Set user or group information for current
process Unix-like

getpriority, setpriority Get or set priority of the current process Unix-like

chown, lchown Change owner of a file or its symbolic link Unix-like

startfile Open a file as if it were double-clicked Windows

Attempting to use an unavailable function will cause an exception, so none of these
functions should be in a cross-platform application without appropriate checks or
exception handling. By far, most of the platform-limited functions in os are limited to Unix-
like systems (Linux, macOS, BSD, and so on), and most of the analogous functions for
Windows will be found in the third-party pywin32 package (which is only available for
Windows, of course).

https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html
https://docs.python.org/3/library/os.html

Maintaining Cross-Platform Compatibility Chapter 9

[225]

In general, you need to check the documentation of the libraries you use to make sure
they're available on all the platforms you intend to support. Caution is especially warranted
when using libraries that interact with operating system functions (such as window
management, filesystems, user authentication, and so on) or with services that are only
available on certain platforms (Microsoft SQL Server, for example).

The dangers of the subprocess module
The subprocess module provides tools to launch and manage other programs and
commands from within your Python application. For programmers already familiar with
their operating system's command-line interface, it often provides a fast and convenient
way to accomplish filesystem operations or other administrative tasks. It's also highly
effective at sabotaging cross-platform compatibility.

For example, you might be tempted to copy files as follows:

import subprocess
subprocess.call(['cp', 'file1.txt', 'file2.txt'])

This would work on Unix-like operating systems, but fail on Windows as cp is not a valid
Windows shell command. The better option in this case is to use the shutil library, which
contains high-level functions for copying files.

To avoid problems here, follow these guidelines:

Look for high-level libraries before resorting to subprocess to solve a problem1.
If you must use subprocess, carefully study the called command on each2.
supported platform, making sure the syntax, output, and behavior is identical
If it's not, make sure to create different cases for each platform3.

Text file encodings and formats
The text files on different platforms use different character encodings and end-of-line
characters by default. Although most operating systems can handle a wide variety of
encodings, each system has a default (often determined by language or localization
settings) that will be used if none is specified. Text files on different platforms also use
different character codes for end-of-line characters.

Maintaining Cross-Platform Compatibility Chapter 9

[226]

The defaults for English versions of major operating systems are shown here:

OS Default Default new line

Windows cp1252 Carriage return + line feed (\r\n)

Linux (most modern distributions) UTF-8 Line feed (\n)

macOS US-ASCII Line feed (\n)

Most of the time, these differences do not represent a problem, especially if you are only
reading and writing files in Python and working with standard English characters.

Consider, however, a scenario where you attempt to append a unicode character to a text
file, like so:

with open('testfile.test', 'a') as fh:
 fh.write('\U0001F4A9')

On systems with a non-unicode default encoding (such as the English versions of Windows
and macOS), the preceding code will raise an exception, like so:

Error on macOS
UnicodeEncodeError: 'ascii' codec can't encode character '\U0001f4a9' in
position 0: ordinal not in range(128)
Error on Windows
UnicodeEncodeError: 'charmap' codec can't encode character '\U0001f4a9' in
position 0: character maps to <undefined>

To avoid this problem, you can manually specify a character encoding when opening a file,
as follows:

with open('testfile.test', 'a', encoding='utf-8') as fh:
 fh.write('\U0001F4A9')

It's a good idea to do this whenever saving data you don't control (such as user-entered
data).

Maintaining Cross-Platform Compatibility Chapter 9

[227]

Graphical and console modes
On Windows, programs are launched in either GUI or console mode, as determined by
metadata in the executable. The Python distribution for Windows includes a utility called
Python launcher, which is associated with Python files during installation. Python launcher
will launch your application in either GUI or console mode depending on its file extension,
as follows:

Files ending in the .py extension will be launched in console mode using
python.exe. This will cause a command console window to open in the
background, which must stay open while the program runs.
Files ending in .pyw will be launched in GUI mode using pythonw.exe. No
console window will be launched, and the program will not block the console;
however, print() will have no effect and sys.stderr, and sys.stdout will
not exist. Trying to access them will cause an exception.

To avoid problems when deploying GUI applications to Windows, follow these practices:

Remove any sys.stdout or sys.stderr statements from the code1.
Create a copy of the main executable script with a .pyw extension2.

While macOS does not distinguish between GUI and console applications (apart from the
obvious presence of a GUI), its desktop launches regular .py files by launching a Terminal
window, just like Windows. However, macOS Python includes a pythonw.exe file that
launches without the Terminal, but there are two problems. First, it is not associated with
the .pyw files by default; you'd need to do that manually if you want that behavior. Second,
depending on how you installed Python 3 (for instance, if you installed it using homebrew),
your installation may not have pythonw.

There is a proper way to set up applications on macOS so that they behave like proper GUI
applications, which we'll cover in Chapter 15, Packaging with setuptools and cx_Freeze.

Writing code that changes according to the
platform
As you've seen so far, there are certain situations where you simply can't avoid writing
platform-specific code, either because a high-level library is unavailable or because the
actions that need to be performed are fundamentally different.

Maintaining Cross-Platform Compatibility Chapter 9

[228]

In this case, it becomes necessary to detect the platform. There are a few ways of doing this
in Python, including os.system() and sys.platform, but the platform module
contains the best set of functionality for determining the OS details most useful in making
decisions.

We'll mostly rely on the system() function, which returns a string identifying the
operating system: Windows, Linux, freebsd7, or Darwin (for macOS).

Some other useful functions include release(), which returns the version string of the OS
(for example, "10" on Windows 10, "17.3.0" on macOS High Sierra, or the kernel version on
Linux); and architecture(), which tells us if the system is 64 bit or 32 bit.

For simple differences in code, using this information in a nested if...else chain, as
follows, usually suffices:

import platform
import subprocess

os_name = platform.system()
if os_name in ('Darwin', 'freebsd7'):
 cmd = ['ps', '-e', '-o', "comm=''", '-c']
elif os_name == 'Linux':
 cmd = ['ps', '-e', '--format', 'comm', '--no-heading']
elif os_name == 'Windows':
 cmd = ['tasklist', '/nh', '/fo', 'CSV']
else:
 raise NotImplemented("Command unknown for OS")

processes = subprocess.check_output(cmd)
print(processes)

In this example, we're checking the value of platform.system(), then defining a cmd
variable based on its value. Then, we pass the cmd list to subprocess.check_output() to
run the command and obtain its output.

Maintaining Cross-Platform Compatibility Chapter 9

[229]

This works acceptably for the occasional call, but for more complex situations, it makes
sense to bundle platform-specific code into backend classes which we can then select on the
basis of our platform string, as in this example:

To begin, we'd create a backend.py file with a GenericBackend class1.
implementing a get_process_list() method, like this:

import subprocess
class GenericBackend():
 cmd = []
 def get_process_list(self):
 if self.cmd:
 return subprocess.check_output(self.cmd)
 else:
 raise NotImplemented

Next, we'd create platform-specific subclasses as follows, each defining a cmd list2.
appropriate to the platform:

class LinuxBackend(GenericBackend):
 cmd = ['ps', '-e', '--format', 'comm', '--no-heading']

class MacBsdBackend(GenericBackend):
 cmd = ['ps', '-e', '-o', "comm=''", '-c']

class WindowsBackend(GenericBackend):
 cmd = ['tasklist', '/nh', '/fo', 'CSV']

Finally, we create a selector function to return an appropriate backend class3.
when given an OS name:

def get_backend(os_name):
 backends = {'Linux': LinuxBackend, 'Darwin': MacBsdBackend,
 'Windows': WindowsBackend, 'freebsd7':
MacBsdBackend}
 try:
 return backends[os_name]
 except KeyError:
 raise NotImplemented("No backend for OS")

Maintaining Cross-Platform Compatibility Chapter 9

[230]

With backend.py written, we can create a simple main.py file that uses it as4.
follows:

import platform
from backend import get_backend

os_name = platform.system()
os_backend = get_backend(os_name)()

print(os_backend.get_process_list())

We need only import the get_backend() function into our application, then use it to
retrieve and instantiate the appropriate backend class. You should be able to run this script
on Linux, Windows, macOS, or BSD and get back a process list. Other platforms can be
easily added by creating more backend classes and updating get_backend() .

Writing cross-platform Tkinter
As you've seen so far, Tkinter mostly works identically across platforms, and even has the
capability to do the right thing on each platform with minimal effort. However, there are
some minor issues to be aware of as you support a Tkinter application across multiple
operating systems. In this section, we'll explore the more significant differences.

Tkinter version differences across platforms
Even if you install the latest version of Python from python.org, the actual version of
Tcl/Tk installed on your system may vary widely. This can cause problems if you rely on
features in the most recent Tk.

The following chart shows the versions installed by default on different systems:

OS Tk version

Windows 8.6.6

macOS 8.5.9

Debian Linux 9 8.6.6

Ubuntu Linux 18.04 8.6.8

https://www.python.org/

Maintaining Cross-Platform Compatibility Chapter 9

[231]

Windows and most Linux distributions are shipping a relatively recent version of 8.6, but
macOS defaults to use its system-installed Tk version, which is 8.5.9. This can be a problem
if you want to use any of the new 8.6 features, such as we encountered in Chapter 8,
Improving the Look with Styles and Themes, when working with the PNG files. Although it's
possible to upgrade Tk on macOS, it is not recommended by Apple or the Python
documentation. If your cross-platform plans include macOS, you'll need to decide whether
you are willing to limit yourself to features in 8.5 or if you want to require macOS users to
make a non-recommended upgrade.

Application menus across platforms
The application menu is probably one of the most visible areas where both capabilities and
convention vary between platforms. As mentioned in Chapter 6, Creating Menus with Menu
and Tkinter Dialogs, we should be aware of both the limitations and the expectations on
major operating systems when designing our menus.

Menu widget capabilities
The Menu widget, which we learned about in Chapter 6, Creating Menus with Menu and
Tkinter Dialogs, is different from most other Tkinter widgets in that it relies on the menu
facilities of the underlying platform. This allows your application to have a menu that
behaves natively; for example, on macOS, the menu appears in the global menu area at the
top of the screen, while on Windows it appears in the application window under the
taskbar.

Because of this design, there are some limitations when working with cross-platform Menu
widgets. To demonstrate this, follow these steps to build a very non-cross-platform menu:

We'll begin by creating a simple Tk window with a menu, with the following1.
code:

import tkinter as tk
from tkinter.messagebox import showinfo

root = tk.Tk()
menu = tk.Menu(root)

Maintaining Cross-Platform Compatibility Chapter 9

[232]

Now, we'll create a cascade menu with one command in it, as follows:2.

smile = tk.PhotoImage(file='smile.gif')
smile_menu = tk.Menu(menu, tearoff=False)
smile_menu.add_command(image=smile,
 command=lambda:
showinfo(message="Smile!"))
menu.add_cascade(image=smile, menu=smile_menu)

Instead of adding the cascade with a label, we're using PhotoImage so that it
has an icon.

Next, let's add a command directly to the main menu as follows:3.

menu.add_command(label='Top level command',
 command=lambda: showinfo(message='By your
command!'))

Last of all, we'll create a Checkbutton widget directly to the main menu, and4.
finish with the usual boilerplate:

boolvar = tk.BooleanVar()
menu.add_checkbutton(label="It is true", variable=boolvar)

root.config(menu=menu)
root.mainloop()

If you run the preceding code on Linux (in this case, Ubuntu 17.10), it seems to5.
work as expected:

We have our first cascade labeled with the smiley face GIF, our top-level
menu command, and our top-level Checkbutton (which we've checked,
because our menu works and we're happy!).

Maintaining Cross-Platform Compatibility Chapter 9

[233]

Next, let's try this same code on Windows, as shown in the following screenshot:6.

Instead of our smiling icon in the top menu, we only have the text (Image).
Even if we specify a label, this text shows up. Fortunately, the image does
appear when we use it in the cascade. The top-level command appears and
works just fine, but the Checkbutton widget does not. The label appears,
and can be clicked on, but the checkbox itself does not appear. We're not so
happy now.

Finally, let's try this menu on macOS, as follows:7.

On macOS, our menu shows up not in the program window, but in the top global menu, as
users would expect it to. However, there are some obvious problems.

First, while our smiling icon appears, it's cut off. Since the top bar is a fixed height and
Tkinter will not resize our icon for us, images larger than the top bar height get truncated,
and there are bigger problems: neither the top-level command nor the
Checkbutton widget are anywhere to be seen. Only our cascade menu shows up.

Maintaining Cross-Platform Compatibility Chapter 9

[234]

On each platform, we're limited by the capabilities of the menu system, and while it
appears anything goes for top menus in Linux, the other two operating systems require
more care when constructing menus.

To avoid any issues here, follow these guidelines:

Avoid commands and using Checkbutton and Radiobutton in the main menu.
Stick to cascade menus only.
Don't use images in the main menu.
If you must do either of the preceding points, create separate menus for each
platform.

Menu guidelines and standards
Each of our major platforms offers standards to direct developers in making user interfaces
that meet the expectations of that system's users. While these standards should be taken
into consideration for the whole application, one of the most visible areas affected by them
is the layout of the application menu (or menu bar, to use the standard terminology).

Let's look at what each standard has to say about menu layouts.

Windows user experience interaction guidelines
Microsoft's Windows user experience interaction guidelines, available at https:/ ​/
developer.​microsoft. ​com/ ​en- ​us/ ​windows/ ​desktop/ ​design, offer developers a wealth of
information for designing applications that fit right in to the Windows desktop. Among
many guidelines offered for menu bar design is a description of the standard menu items
and how they should be arranged.

We'll refer to this guideline when customizing our application for Windows.

Apple's human interface guidelines
Apple's human interface guidelines are available at https:/ ​/ ​developer. ​apple. ​com/ ​macos/
human-​interface-​guidelines/ ​, and offer a detailed set of rules for creating macOS-
friendly interfaces.

https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.microsoft.com/en-us/windows/desktop/design
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/
https://developer.apple.com/macos/human-interface-guidelines/

Maintaining Cross-Platform Compatibility Chapter 9

[235]

While much of the basic advice for menu bar design is similar to that offered by Microsoft,
the layout recommendations are quite different and much more specific. For example, the
first cascade on a macOS application should be the app menu, a menu named after the
application, which contains items like about and preferences.

We'll attempt to bring our macOS users a menu closer to Apple's standards later in this
chapter.

Linux and BSD human interface guidelines
In sharp contrast to Windows and macOS, Linux, BSD, and other X11 systems have no
blessed default desktop environments or controlling entities to dictate UI standards. There
are well over a dozen full desktop environments available for these platforms, each with its
own goals and ideals about user interaction.

While there are multiple projects working to create human interface guidelines (HIG),
we'll be following the Gnome HIG, used by the Gnome, MATE, and XFCE desktops,
available at https:/ ​/ ​developer. ​gnome. ​org/ ​hig/ ​stable/ ​. The Gnome desktop is the
default desktop environment on many Linux distributions, including Red Hat, newer
versions of Ubuntu, and Debian, which is our target environment.

Accelerator keys
Accelerator keys are keyboard shortcuts assigned to common application actions,
particularly menu items. Thus far, we've added no accelerator keys, which is bad for
keyboard-only users.

In Tkinter, accelerator keys can be assigned to a widget using the bind() method, which
we learned about in Chapter 4, Reducing User Error with Validation and Automation. We can
also use the bind_all() method, which can be called on any widget and effectively binds
an event globally. Our menu items also take an accelerator argument, which can be used
to specify a string that will be shown in the menu as an accelerator key hint.

The UI guidelines on each platform define standard accelerator keys for common actions,
most of which are the same across platforms since they descend from the IBM Common
User Access (CUA) established in the 1980s. The most notable difference is the use of the
command (⌘) key on macOS in place of the control (ctrl) key used by Windows and Linux.

https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/
https://developer.gnome.org/hig/stable/

Maintaining Cross-Platform Compatibility Chapter 9

[236]

As we rewrite our application menus for cross-platform compatibility, we'll also add
platform-appropriate accelerator keys.

Fonts
In Chapter 8, Improving the Look with Styles and Themes, we learned how easy it is to
customize Tkinter's fonts to change the look and feel of your application. Doing so,
however, can cause inconsistencies across platforms.

There are around 18 fonts that are shared between macOS and Windows, but not all of
them look identical on both platforms. As for Linux, most distributions ship with none of
those 18 fonts due to license issues. Unless you can guarantee that a particular font is
available on all supported platforms, it's best to avoid naming specific font-families in your
styles. Fortunately, if you do happen to specify a nonexistent font, Tkinter will just use the
default, but even that could cause layout or readability issues in certain cases.

To be safe, stick with Tkinter's named fonts, which are automatically set to the same
defaults on each platform.

Theme support
As we saw in Chapter 8, Improving the Look with Styles and Themes, Ttk provides a number
of themes which differ from platform to platform. Each platform contains an alias called
"default", which points to the most sensible theme for that platform.

Attempting to set a theme that doesn't exist results in an exception, so avoid hardcoding a
theme setting in your application, and make sure theme choices are checked against the
output of Style.theme_names() .

Window zoomed state
Windowing environments have the concept of a "zoomed" window, which takes over the
screen completely.

Maintaining Cross-Platform Compatibility Chapter 9

[237]

On Windows or macOS, it can be activated using the root window's state() method, as
follows:

from tkinter import *
root = Tk()
root.state('zoomed')
root.mainloop()

On Windows or macOS, this creates a window that takes over the screen; on Linux or BSD,
however, it raises an exception because X11 does not provide anything for setting a zoomed
state.

On X11, this is accomplished by turning on the Window's -zoomed attribute as follows:

root.attributes('-zoomed', True)

Unfortunately, the preceding code raises an exception on Windows and macOS. If you need
to be able to set this state in a program, you'll need to use some platform-specific code.

Improving our application's cross-platform
compatibility
Our application does pretty well across platforms, but there are some things we can do to
improve it:

First, our application stores its preferences in the user's home folder, which is not
ideal on any platform. We will fix our application to use the correct location on
each platform for user configuration files.
Second, we're creating our CSV files without specifying any encoding; if a user
inserted a unicode character (say, in the Notes field), file saving would raise an
exception and fail.
Finally, the current menu structure does not really come close to following any of
the human interface guidelines we've discussed. We'll implement separate
menus for each platform to ensure users have a UI that is consistent with their
platform.

Maintaining Cross-Platform Compatibility Chapter 9

[238]

Storing preferences correctly
Each platform defines a proper location for storing user configuration files as follows:

Linux and other X11 systems store configuration files in a location defined in the
$XDG_CONFIG_HOME environment variable, which defaults to ~/.config if it's
not defined.
macOS user config files are stored in ~/Library/Application Support/.
Windows user config files are stored in %USERPROFILE%\AppData\Local.
Though if your environment uses Active Directory (AD) with roaming profiles,
you might prefer to use %HOME%\AppData\Roaming instead.

To realize this in our application, we'll edit our Application object to pass the correct path
into SettingsModel. Remember that our SettingsModel constructor takes a path
keyword argument that determines the directory in which the file will be saved. Let's take a
look at the following steps:

To begin, open application.py and add a new class property just before1.
__init__(), as follows:

 config_dirs = {
 'Linux': environ.get('$XDG_CONFIG_HOME', '~/.config'),
 'freebsd7': environ.get('$XDG_CONFIG_HOME', '~/.config'),
 'Darwin': '~/Library/Application Support',
 'Windows': '~/AppData/Local'}

The config_dirs dictionary defines the preferred configuration directory path2.
for each platform. We're pulling the Linux and BSD environment variables from
the environ object, which we'll need to import from the os module, as follows:

from os import environ

Now, we just need to look up the correct directory using platform.system()3.
and pass it to SettingsModel.
Replace the current instantiation of SettingsModel with the following code4.
lines:

 config_dir = self.config_dirs.get(platform.system(), '~')
 self.settings_model = m.SettingsModel(path=config_dir)

Maintaining Cross-Platform Compatibility Chapter 9

[239]

Now, start up the application and change some of the options. The application5.
should create a new config file in the appropriate location for your operating
system.

Specifying an encoding for our CSV file
Our application is currently saving CSV files using system default encoding. This could be
a problem for Windows and macOS users if they try to use unicode characters.

In models.py, we need to locate the three instances of open() in our CSVModel class and
add an encoding, as follows:

with open(self.filename, 'w', encoding='utf-8') as fh:
 ...

With this change, the unicode characters should no longer be a problem.

Making platform-appropriate menus
To create our platform-specific main menus, we'll create multiple menu classes and use a
selector function as explained in the previous section. Before we can do this, we'll need to
prepare our MainMenu class so that it's easier to subclass.

Preparing our MainMenu class
Let's take a look at the following steps for preparing our MainMenu class:

To begin, let's create a new file in our module called mainmenu.py.1.
Cut the entire MainMenu class out of views.py and paste it into mainmenu.py.2.
The first thing we'll do is change its name to explain its role more clearly:

class GenericMainMenu(tk.Menu):

In order to make it easier for subclasses to build different menu structures, we're3.
going to split all the code that creates the menu widgets into their own method.
We'll call this method _build_menu():

 def _build_menu(self):
 # The file menu
 file_menu = tk.Menu(self, tearoff=False)
 ...

Maintaining Cross-Platform Compatibility Chapter 9

[240]

Move the entire __init__() method after the call to super() into this method.4.
Each of our child classes will override this method and create its own menu
structure. Since we no longer have settings or callbacks in this method, we'll
need to make them instance properties in __init__() , and we'll need to call
_build_menu() at the end of __init__(). The __init__() method should be
as follows:

 def __init__(self, parent, settings, callbacks, **kwargs):
 super().__init__(parent, **kwargs)
 self.settings = settings
 self.callbacks = callbacks
 self._build_menu()

To complete _build_menu(), update any settings or callbacks references to5.
self.settings and self.callbacks, as follows:

 file_menu.add_command(
 label="Select file…",
 command=self.callbacks['file->select'])

We would also like our menus to have appropriate accelerator keys for each OS; to do that,
we'll take a look at these steps:

Create a method that will return a dictionary of key events and the commands. 1.
Why use a method for this, and not just a class property? In order to retrieve the
functions, we need access to self.callbacks, which only exists in an instance.
Therefore, we need to create this list at the instance level. The method looks like
this:

 def get_keybinds(self):
 return {
 '<Control-o>': self.callbacks['file->select'],
 '<Control-q>': self.callbacks['file->quit'],
 '<Control-n>': self.callbacks['new_record'],
 '<Control-l>': self.callbacks['show_recordlist']
 }

Maintaining Cross-Platform Compatibility Chapter 9

[241]

 To actually set these bindings, we'll create another method that will iterate this2.
dictionary and call bind_all() to create our bindings. This method won't need
to be overridden by child classes. We'll call this
method, _bind_accelerators():

 def _bind_accelerators(self):
 keybinds = self.get_keybinds()
 for key, command in keybinds.items():
 self.bind_all(key, command)

Remember that the bind_all() method, which can be called by any
widget, binds events globally; if we use bind, our keybinds will only
work when the menu is in focus.

This approach almost works, but there's a small hitch; unlike commands called3.
from a menu item, bound events pass an event object to the called function.
Many of our callbacks don't take arguments, and will raise an exception if called
with an exception. We could alter all our callbacks to eat any extra arguments,
but we will never use that argument since our menu items don't send it. Instead,
we'll create a wrapper that strips out the arguments:

 @staticmethod
 def _argstrip(function, *args):
 return function()

The @staticmethod decorator makes this method static, meaning that
Python won't automatically pass self in as the first argument. Static
methods are useful for utility methods like this one that don't need to
access the object instance.

To wrap our callbacks in this method, we'll use the partial function from the4.
functools standard library module. partial takes a callable and any number
of arguments, and returns a reference to a function with the arguments already
populated. We'll use this to prepare versions of _argstrip() with the callbacks
already populated. Start by adding partial to the file's imports:

from functools import partial

Now, update _bind_accelerators() as follows:5.

 for key, command in keybinds.items():
 self.bind_all(key, partial(self._argstrip, command))

Maintaining Cross-Platform Compatibility Chapter 9

[242]

You may ask, why not use a lambda function to solve this problem, as in lambda
x: command()? The problem is that lambda will not look up the value of
command until it's called, at which point command will be the last item in dict. In
effect, all accelerators would be bound to the last command in the dictionary!
partial, by contrast, looks up the value of command immediately.

The last change to make to our GenericMainMenu is to add accelerator labels to6.
the appropriate commands, which will be displayed to the right of the menu
option. We set this label using the accelerator argument of Menu.add, as
follows:

 file_menu.add_command(
 label="Select file…",
 command=self.callbacks['file->select'],
 accelerator='Ctrl+O'
)

Understand that this argument is strictly cosmetic and does not bind any
keys to the menu item; our bind_all() calls actually enable the
accelerator. Also note that we're putting in the literal text we want to
display, not the event syntax passed to bind() and bind_all().

Add this argument to the Quit, New Record, and Record List items as well.7.

Building the Windows menu
After studying the Microsoft user experience interaction guidelines, you deem the
following changes are necessary to make our menu Windows-friendly:

file->quit should be changed to file->exit, and there should be no
accelerator for it. Windows uses Alt-F4 to close programs, and this is handled
by Windows automatically.
Windows can handle commands in the menu bar just fine, and the guidelines
encourage this for frequently used functionality. We'll move our Record
List and New Record commands directly to the main menu.
Options is supposed to go under a Tools menu, separated from the rest of the
items in tools. Although we have nothing else under tools at the moment, we
likely will in the future, so we'll create this.

Maintaining Cross-Platform Compatibility Chapter 9

[243]

Let's implement these changes and create our Windows menu class:

Start by subclassing the GenericMainMenu class and overriding1.
_build_menu() as follows:

class WindowsMainMenu(GenericMainMenu):
 def _build_menu(self):

To make things faster, copy in the entire _build_menu() method from the2.
parent class, so we can just edit the lines that need to be changed.
Start with the file->quit command, changing the label and removing the3.
accelerator as follows:

 file_menu.add_command(
 label="Exit",
 command=self.callbacks['file->quit'])

Next, we'll remove the Go menu entirely and add its commands directly to the4.
main menu instead, as follows:

 self.add_command(label="Record List",
 command=self.callbacks['show_recordlist'],
 accelerator='Ctrl+L')
 self.add_command(label="New Record",
 command=self.callbacks['new_record'],
 accelerator='Ctrl+N')

Finally, we'll create the Tools menu and add the separator and Options menu5.
to it:

 tools_menu = tk.Menu(self, tearoff=False)
 options_menu = tk.Menu(tools_menu, tearoff=False)
 ...
 # after the end of the options configuration
 tools_menu.add_separator()
 tools_menu.add_cascade(label='Options', menu=options_menu)
 self.add_cascade(label='Tools', menu=tools_menu)

Last of all, we need to remove the Control-q key binding as follows:6.

 def get_keybinds(self):
 return {
 '<Control-o>': self.callbacks['file->select'],
 '<Control-n>': self.callbacks['new_record'],
 '<Control-l>': self.callbacks['show_recordlist']}

Maintaining Cross-Platform Compatibility Chapter 9

[244]

Building the Linux menu
Our GenericMenu class is pretty close to the Gnome HIG, but there is one change to be
made: our Options menu doesn't really belong; rather, we need to split its items into two
categories.

The autofill options, since they change the way data is entered in the form, belong in an edit
menu. The font and theme options, since they only change the appearance of the
application and not the actual data, belong in a view menu.

Let's make the modifications necessary to create our Linux menu:

Start the class by subclassing GenericMainMenu and overriding the1.
_build_menu() method:

class LinuxMainMenu(GenericMainMenu):
 def _build_menu(self):

Once again, copy in the code from the parent and edit what needs to be changed.2.
First, let's create the edit menu just after the file menu, as follows:3.

 # The edit menu
 edit_menu = tk.Menu(self, tearoff=False)
 edit_menu.add_checkbutton(
 label='Autofill Date',
 variable=self.settings['autofill date'])
 edit_menu.add_checkbutton(
 label='Autofill Sheet data',
 variable=self.settings['autofill sheet data'])
 self.add_cascade(label='Edit', menu=edit_menu)

Make sure to remove the autofill items from the Options menu.4.
Next, rename Options to View like so:5.

 view_menu = tk.Menu(self, tearoff=False)
 font_size_menu = tk.Menu(view_menu, tearoff=False)
 ...
 view_menu.add_cascade(label='Font size', menu=font_size_menu)
 ...
 themes_menu = tk.Menu(view_menu, tearoff=False)
 ...
 view_menu.add_cascade(label='Theme', menu=themes_menu)
 self.add_cascade(label='View', menu=view_menu)

Maintaining Cross-Platform Compatibility Chapter 9

[245]

We don't need to change anything else; our accelerators and the rest of the menu line up
pretty well with the Gnome HIG.

Building the macOS menu
The macOS menu will need extensive changes. Unlike the Windows and Gnome guidelines,
which mostly suggest categories, the Apple guidelines are very specific about which menus
should be created and which items belong in them. Furthermore, macOS also creates and
pre-populates some of these menus with default commands, so we'll need to use special
arguments to hook into those menus and add our own items.

The changes we need to make to comply with Apple's HIG are as follows:

We need to create an app menu. This is the first menu macOS creates, just to the
right of the Apple icon on the menu bar. It's created by default, but we'll need to
hook into it to add some custom items.
The about command belongs in the app menu; we'll move it there and remove
the unused Help menu.
Since macOS will provide a quit command for us, we'll remove ours.
As we did with the Linux menu, our options will be split between the edit and
view menus.
We need to add a Window menu; this is another autogenerated menu that
macOS fills with window management and navigation functions. Our navigation
items will be moved from the Go menu to this menu.
Finally, macOS uses the command key rather than the ctrl key to activate
accelerators. We need to update both our key bindings and menu labels
accordingly.

Let's make the necessary changes to build our macOS menu:

As before, we'll subclass GenericMainMenu and start our own _build_menu()1.
method as follows:

class MacOsMainMenu(GenericMainMenu):
 def _build_menu(self):

Maintaining Cross-Platform Compatibility Chapter 9

[246]

The first order of business is the app menu. To access this built-in menu, all we2.
need to do is create tk.Menu and pass in a name argument which is set to apple,
like so:

 app_menu = tk.Menu(self, tearoff=False, name='apple')

The app menu should contain both our about option and our quit option, but we3.
only need to add the former since macOS automatically adds a quit action. Let's
add in the about item as follows:

 app_menu.add_command(
 label='About ABQ Data Entry',
 command=self.show_about)
 self.add_cascade(label='ABQ Data Entry', menu=app_menu)

Note the difference in the label text. Apple's HIG specifies that this should
read About program name rather than just About. Note that we also
manually add the cascade to the main menu. If we didn't do this, macOS
would still create the app menu, but our about item would not be there.

Your app menu will currently read Python rather than ABQ Data Entry.
We'll address this when we package our application in Chapter 15,
Packaging with Setup Tools and cx_Freeze.

The file menu is exactly the same as GenericMainMenu, except that the
accelerator string needs to be changed. Tkinter will automatically replace the
strings Command or Cmd with the symbol for the command key (⌘), this should
be Cmd-o.

The Edit and View menus are next, and they are identical to the menus we made4.
for the LinuxMainMenu class. Copy those in from that class.
The Window menu is the proper location for our navigation controls. Just as with5.
the app menu, we access this built-in menu using a name argument. In this case,
set the name to window as follows:

 window_menu = tk.Menu(self, name='window', tearoff=False)

Add the Record List and New Record items to this menu, making sure to6.
update the accelerator strings, and then add the cascade to the main menu.

Maintaining Cross-Platform Compatibility Chapter 9

[247]

The only thing left to do for the macOSMainMenu class is to fix the key bindings,7.
changing Control to Command and removing the superfluous Command-q
binding as follows:

 def get_keybinds(self):
 return {
 '<Command-o>': self.callbacks['file->select'],
 '<Command-n>': self.callbacks['new_record'],
 '<Command-l>': self.callbacks['show_recordlist']}

Creating and using our selector function
With our classes created, let's add a simple selector function to return the appropriate class
for each platform:

. Add the get_main_menu_for_os() method at the end of the mainmenu.py1.
file as follows:

def get_main_menu_for_os(os_name):
 menus = {
 'Linux': LinuxMainMenu,
 'Darwin': MacOsMainMenu,
 'freebsd7': LinuxMainMenu,
 'Windows': WindowsMainMenu
 }
 return menus.get(os_name, GenericMainMenu)

The keys in this dictionary are the output strings from platform.system(),2.
which we point to a platform-appropriate menu class. In the event we've passed
some new system, we default to the GenericMainMenu class. The
application.py file only needs to import this function:

from .mainmenu import get_main_menu_for_os

Now, instead of calling v.MainMenu() (which no longer exists), we use the3.
following function:

 menu_class = get_main_menu_for_os(platform.system())
 menu = menu_class(self, self.settings, self.callbacks)

Maintaining Cross-Platform Compatibility Chapter 9

[248]

Now when you run the application, your menu appearance will change4.
according to the platform. On Windows, you should see something like this:

On macOS, you'll see something like this:

Finally, on Linux or BSD, you'll see a menu as shown in the following
screenshot:

Maintaining Cross-Platform Compatibility Chapter 9

[249]

Summary
In this chapter, we learned about writing Python software that works well across multiple
platforms. You learned how to avoid common platform pitfalls in Python code and how to
write software that intelligently adapts to the needs of different operating systems. You also
learned about published guidelines that help developers write software that meets platform
users' expectations.

In the next chapter, we're going to learn about automated testing. You'll learn to write tests
that ensure your code works correctly, both for regular Python code and specifically for
Tkinter code, and to take advantage of the testing framework included in the Python
standard library.

10
Creating Automated Tests with

unittest
With the size and complexity of your application rapidly expanding, you've become
nervous about making changes. What if you break something? How will you know? You
need a reliable way to make sure your program is working properly as the code changes.

Fortunately, we have a way: automated testing. In this chapter, you'll cover the following
topics:

Learning the basics of automated testing
Learning specific strategies for testing Tkinter applications
Applying this knowledge to our data entry application

Automated testing basics
Up until now, testing our application has been a process of launching it, running it through
a few basic procedures, and verifying that it did what we expected it to do. This approach
works acceptably on a very small script, but, as our application grows, it becomes an
increasingly time-consuming and error-prone process to verify the application's behavior.
Using automated testing, we can consistently verify our application logic within seconds.

There are several forms of automated testing, but the two most common are unit
testing and integration testing. Unit tests work with discrete pieces of code in isolation,
allowing us to quickly verify the behavior of specific sections. Integration tests verify the
interactions of multiple units of code. We'll be writing both kinds of tests to verify the
behavior of our application.

Creating Automated Tests with unittest Chapter 10

[251]

A simple unit test
At its most basic, a unit test is just a short program that runs a unit of code under different
conditions and compares its output against expected results.

Consider the following calculation class:

import random

class MyCalc:

 def __init__(self, a, b):
 self.a = a
 self.b = b

 def add(self):
 return self.a + self.b

 def mod_divide(self):
 if self.b == 0:
 raise ValueError("Cannot divide by zero")
 return (int(self.a / self.b), self.a % self.b)

 def rand_between(self):
 return ((random.random() * abs(self.a - self.b)) +
 min(self.a, self.b))

This class is initialized with two numbers and can then perform a variety of arithmetic
methods on them.

Let's create a naive test for this function as follows:

from mycalc import MyCalc

mc1 = MyCalc(1, 100)
mc2 = MyCalc(10, 4)

try:
 assert mc1.add() == 101, "Test of add() failed."
 assert mc2.mod_divide() == (2, 2), "Test of mod_divide() failed."
except AssertionError as e:
 print("Test failed: ", e)
else:
 print("Tests succeeded!")

Creating Automated Tests with unittest Chapter 10

[252]

Our test code creates a MyCalc object and then uses assert statements to check the output
of add() and mod_divide() against expected values. The assert keyword in Python is a
special statement that raises an AssertionError exception if the statement that follows it
evaluates to False. The message string after the comma is the error string that will be
passed to the AssertionError exception.

The code assert statement, "message" is essentially equivalent to this:

if not statement:
 raise AssertionError("message")

Currently, all tests pass if you run the test script for MyCalc. Let's try changing the add()
method as follows to make it fail:

 def add(self):
 return self.a - self.b

Now, running the test gives this error:

Test failed: Test of add() failed.

What is the value of such tests? Suppose someone decides to refactor our mod_divide()
method as follows:

 def mod_divide(self):
 ...
 return (self.a // self.b, self.a % self.b)

Since this passes our tests, we can be pretty sure this algorithm is correct, even if we didn't
understand the code. If there were a problem with the refactor, our tests should show that
fairly quickly.

Testing pure mathematical functions is fairly simple; unfortunately, testing real application
code presents us with some challenges that demand a more sophisticated approach.

Consider these issues:

Code units often rely on a pre-existing state that must be set up before the test
and cleared up afterwards.
Code may have side effects that change objects outside the code unit.
Code may interact with resources that are slow, unreliable, or unpredictable.

Creating Automated Tests with unittest Chapter 10

[253]

Real applications contain many functions and classes that require testing, and
ideally we'd like to be alerted to all problems at once. Our tests, as written,
would stop on the first failed assertion, so we'd only get alerted to one problem
at a time.

To address these issues and others, programmers rely on testing frameworks to make
writing and executing automated tests as simple and reliable as possible.

The unittest module
The unittest module is the Python standard library's automated testing framework. It
provides us with some powerful tools to make testing our code reasonably easy.

unittest is based on these standard unit testing concepts found in many test frameworks:

Test: A test is a single method that will either finish or raise an exception. Tests
generally focus on one unit of code, such as a function, method, or process. A test
can either pass, meaning the test was successful; fail, meaning the code failed the
test; or error, meaning the test itself encountered a problem
Test case: A test case is a collection of tests which should be run together and
contain similar setup and tear-down requirements, typically corresponding to a
class or module. Test cases can have fixtures, which are items that need to be set
up before each test and torn down after each test to provide a clean, predictable
environment in which the test can run
Test suite: A test suite is a collection of test cases which cover all the code for an
application or module.
Mock: A mock is an object that stands in for an external resource, such as a file or
database. Mocks are patched over those resources during the test.

To explore these concepts in depth, let's test our MyCalc class using unittest.

Writing a test case
Let's create a test case for the MyCalc class in the test_mycalc.py as follows:

from mycalc import MyCalc
import unittest

class TestMyCalc(unittest.TestCase):
 def test_add(self):
 mc = MyCalc(1, 10)

Creating Automated Tests with unittest Chapter 10

[254]

 assert mc.add() == 11

if __name__ == '__main__':
 unittest.main()

The names of both your test modules and your test methods should be
prefixed with test_. Doing so allows the unittest runner to
automatically find test modules and distinguish test methods from other
methods in your test case classes.

As you probably guessed, the TestCase class represents a test case. To make our test case
for MyCalc, we subclass TestCase and start adding the test_ methods to test various
aspects of our class. Our test_add() method creates a MyCalc object, then makes an
assertion about the output of add(). To run the test case, we add a call to
unittest.main() at the end of the file.

If you run your test file at the command line, you should get the following output:

.
--
Ran 1 test in 0.000s

OK

The single dot on the first line represents our test (test_add()). For each test method,
unittest.main() will output a dot for passing, F for failure, or E for error. At the end, we
get a summary of what happened.

To see what happens when a test fails, let's alter our test to be incorrect:

 def test_add(self):
 mc = mycalc.MyCalc(1, 10)
 assert mc.add() == 12

Now when you run the test module, you should see a failure as follows:

F
==
FAIL: test_add (__main__.TestMyCalc)
--
Traceback (most recent call last):
 File "test_mycalc.py", line 8, in test_add
 assert mc.add() == 12
AssertionError
--

Creating Automated Tests with unittest Chapter 10

[255]

Ran 1 test in 0.000s

FAILED (failures=1)

Note the single F at the top, representing our failed test. After all the tests have run, we get
the full traceback of any failed tests, so that we can easily locate the failing code and correct
it. This traceback output isn't very ideal, though; we can see that mc.add() didn't equal 12,
but we don't know what it was equal to. We could add a comment string to our assert
call, but unittest provides a nicer method.

TestCase assertion methods
TestCase objects have a number of assertion methods that provide a cleaner and more
robust way to run various tests on our code output.

For example, there is the TestCase.assertEqual() method to test equality, which we
can use as follows:

 def test_add(self):
 mc = mycalc.MyCalc(1, 10)
 self.assertEqual(mc.add(), 12)

When we run our tests with this code, you can see that the traceback is improved:

Traceback (most recent call last):
 File "test_mycalc.py", line 11, in test_add
 self.assertEqual(mc.add(), 12)
AssertionError: 11 != 12

Now, we can see the value that mc.add() created, which is much more helpful for
debugging. TestCase contains more than 20 assertion methods that can simplify testing for
a variety of conditions such as class inheritance, raised exceptions, and sequence
membership.

Creating Automated Tests with unittest Chapter 10

[256]

Some more commonly used ones are listed in the following table:

Method Tests

assertEqual(a, b) a == b

assertTrue(a) a is True

assertFalse(a) a is False

assertIn(item, sequence) item is in sequence

assertRaises(exception, callable, args)
callable called with args raises
exception

assertGreater(a, b) a is greater than b

assertLess(a, b) a is less than b

You can easily add your own custom assertion methods to your test case as well; it's simply
a matter of creating a method that raises an AssertionError exception under some
condition.

Let's use an assertion method to test that mod_divide() raises ValueError when b is 0:

 def test_mod_divide(self):
 mycalc = mycalc.MyCalc(1, 0)
 self.assertRaises(ValueError, mycalc.mod_divide)

assertRaises passes if the function raises the given assertion when called. If we need to
pass any arguments into the tested function, they can be specified as additional arguments
to assertRaises().

assertRaises() can also be used as a context manager like so:

 mycalc = MyCalc(1, 0)
 with self.assertRaises(ValueError):
 mycalc.mod_divide()

This code accomplishes the exact same thing, but is a little clearer and more flexible.

Creating Automated Tests with unittest Chapter 10

[257]

Fixtures
Rather than perform the tedious task of creating the MyCalc objects in every test, our
TestCase object can have a setUp() method that automatically creates any resources our
tests need.

For example, take a look at the following code:

 def setUp(self):
 self.mycalc1_0 = mycalc.MyCalc(1, 0)
 self.mycalc36_12 = mycalc.MyCalc(36, 12)

Now, every test case can use these objects to run its tests. The setUp() method will be
rerun before every test, so these objects will always be reset between test methods. If we
have items that need to cleaned up after each test, we can define a tearDown() method,
which will be run after each test (in this case, it's not necessary).

Now, for example, our test_add() method can be much simpler:

 def test_add(self):
 self.assertEqual(self.mycalc1_0.add(), 1)
 self.assertEqual(self.mycalc36_12.add(), 48)

In addition to the instance methods setUp() and tearDown(), TestCase has class
methods for setup and tear down as well, namely setUpClass() and tearDownClass().
These can be used for slower operations that can be run when the test case is created and
destroyed, rather than needing to be refreshed between each test method.

Using Mock and patch
The rand_between() method generates a random number between a and b. Because we
can't possibly predict its output, we can't provide a fixed value to test it against. How can
we test this method?

A naive approach is as follows:

 def test_rand_between(self):
 rv = self.mycalc1_0.rand_between()
 self.assertLessEqual(rv, 1)
 self.assertGreaterEqual(rv, 0)

Creating Automated Tests with unittest Chapter 10

[258]

This test passes if our code is correct, but it doesn't necessarily fail if the code is wrong; in
fact, if the code is wrong, it may pass or fail unpredictably. For example, if MyCalc(1,
10).rand_between() was incorrectly returning values between 2 and 11, there is only a
10% chance that the test would fail on each run.

We can safely assume that a standard library function such random() works correctly, so
our unit test should really test whether our method correctly handles the number provided
to it by random(). If we could temporarily replace random() with a function that returns a
fixed value, it would be simple to test the correctness of our subsequent calculations.

The unittest.mock module provides us with the Mock class for this purpose. Mock objects
can be used to predictably simulate the behavior of another class, method, or library. We
can give our Mock objects return values, side effects, properties, methods, and other
features needed to fake the behavior of another object, then drop it in place of that object
before running our tests.

Let's create a fake random() function using Mock as follows:

from unittest.mock import Mock

#... inside TestMyCalc
 def test_rand_between(self):
 fakerandom = Mock(return_value=.5)

The Mock object's return_value argument allows us to hard code a value to be returned
whenever it's called as a function. Here, fakerandom will always return 0.5.

Now we can put fakerandom in place of random() as follows:

 orig_random = mycalc.random.random
 mycalc.random.random = fakerandom
 rv = self.mycalc1_0.rand_between()
 self.assertEqual(rv, 0.5)
 mycalc.random.random = orig_random

We start by saving a reference to mycalc.random.random before replacing it. Note that
we're specifically replacing only the version of random being used in mycalc.py so that we
don't affect random anywhere else. It's a best practice to be as specific as possible when
patching libraries to avoid unforeseen side effects.

Creating Automated Tests with unittest Chapter 10

[259]

With fakerandom in place, we call our method and test the output. Because fakerandom
will always return 0.5, we know that the answer should be (0.5 × 1 + 0) or 0.5 when a is 1
and b is 0. Any other value would indicate an error in our algorithm. Last of all, we revert
random to the original function so that other tests don't accidentally use the mock.

Having to store or revert the original library each time is an annoyance we can do without,
so unittest.mock provides a cleaner approach using patch. The patch command can be
used as either a context manager or a decorator, and either approach makes patching a
Mock object into our code much cleaner.

Using our mock random() using patch as a context manager looks like this:

from unittest.mock import patch

 #... inside TestMyCalc
 def test_rand_between(self):
 with patch('mycalc.random.random') as fakerandom:
 fakerandom.return_value = 0.5
 rv = self.mycalc1_0.rand_between()
 self.assertEqual(rv, 0.5)

The patch() command takes an import path string and provides us with a Mock object
that it has patched in. We can set methods and properties on the Mock object and run our
actual tests in the block, and the patched library will be reverted when the block ends.

Using patch() as a decorator is similar:

 @patch('mycalc.random.random')
 def test_rand_between2(self, fakerandom):
 fakerandom.return_value = 0.5
 rv = self.mycalc1_0.rand_between()
 self.assertEqual(rv, 0.5)

In this case, the mock object created by patch is passed as an argument to our test method
and will remain patched for the duration of the decorated function.

Running multiple unit tests
While we can run our unit tests by including a call to unittest.main() at the end, that
approach doesn't scale well. As our application grows, we're going to write many test files,
which we'll want to run in groups or all at once.

Creating Automated Tests with unittest Chapter 10

[260]

Fortunately, unittest can discover and run all tests in a project with one command:

python -m unittest

So long as you have followed the recommended naming scheme of prefixing your test
modules with test_, running this command in your project's root directory should run all
your tests.

Testing Tkinter code
Testing Tkinter code presents us with a few particular challenges. First, Tkinter handles
many callbacks and methods asynchronously, meaning that we can't count on the results of
some code to be apparent immediately. Also, testing GUI behaviors often relies on external
factors such as window management or visual cues that our tests cannot detect.

We're going to learn some tools and strategies that will help you craft tests for your Tkinter
code.

Managing asynchronous code
Whenever you interact with a Tkinter UI—whether it's clicking a button, typing in a field,
or raising a window, for example—the response is not executed immediately in-place.
Instead, these actions are placed in a to-do list, called an event queue, to be handled later
while your code execution continues. While these actions seem instant to users, test code
cannot count on a requested action being completed before the next line of code.

To solve this problem, we can use these special widget methods that allow us to manage
the event queue:

wait_visibility(): This method causes the program to wait until a widget is
fully drawn on-screen before executing the next line of code.
update_idletasks(): This method forces Tkinter to process any idle tasks
currently outstanding on the widget. Idle tasks are low-priority tasks such as
drawing and rendering.
update(): This method forces Tkinter to process all events which are
outstanding on a widget, including calling callbacks, redraws, and geometry
management. It includes everything that update_idletasks() does and more.

Creating Automated Tests with unittest Chapter 10

[261]

The event queue will be discussed in more detail in Chapter 13, Asynchronous Programming
with Thread and Queue.

Simulating user actions
When automating GUI tests, we may wish to know what happens when a user clicks on a
certain widget, or types a certain keystroke. When these actions happen in the GUI, Tkinter
generates an Event object for the widget and passes it to the event queue. We can do the
same thing in code, using a widget's event_generate() method.

Specifying an event sequence
To create an event with event_generate(), we need to pass in an event sequence string,
in the format <EventModifier-EventType-EventDetail>.

Event type specifies the kind of event we're sending, such as a keystroke, mouse click,
windowing event, and so on.

Tkinter has around 30 event types, but you will typically only need to work with the
following:

Event types Description

ButtonPress Also Button, represents a mouse button click

ButtonRelease Represents lifting off a mouse button

KeyPress Also Key, represents pressing a keyboard key

KeyRelease Represents lifting off a keyboard key

FocusIn Represents giving focus to a widget

FocusOut Represents exiting a widget

Enter Represents the mouse cursor entering a widget

Leave Represents the mouse cursor moving off a widget

Configure
Called when the widget's configuration changes, either by a .config()
call or user action (resize, for example)

Creating Automated Tests with unittest Chapter 10

[262]

Event modifiers are optional words that can alter the event type; for example, Control,
Alt, and Shift can be used to indicate that one of those modifier keys is held down;
Double or Triple can be used to indicate a double or triple click of the described button.
Multiple modifiers can be strung together if required.

Event detail, only valid for keyboard or mouse events, describes which key or button was
pressed. For example, <Button-1> refers to the left mouse button, while <Button-3>
refers to the right. For letter and number keys, the literal letter or number can be used; most
symbols, however, are described by a word (minus, colon, semicolon, and so on) to
avoid syntactic clashes.

For button presses and key presses, the event type is technically optional;
however, it's probably a good idea to leave it in for the sake of clarity. For
example, <1> is a valid event, but does it refer to the left mouse button or
typing the 1 key? You may be surprised to find that it's the mouse button.

The following table shows some examples of valid event sequences:

Sequence Meaning

<Double-Button-3> Double-clicking the right mouse button

<Alt-KeyPress-exclam> Holding Alt and typing an exclamation point

<Control-Alt-Key-m> Holding Control and Alt and pressing the m key

<KeyRelease-minus> Lifting off a pressed minus key

In addition to the sequence, we can pass other arguments to event_generate() which
describe various aspects of the event. Many of these are redundant, but, in some cases, we
need to provide extra information for the event to have any meaning; for example, mouse
button events need to include the x and y arguments that specify the coordinates of the
click.

Managing focus and grab
Focus refers to the widget or window which is currently receiving keyboard input. Widgets
can also grab focus, preventing mouse movements or keystrokes outside their bounds.

Creating Automated Tests with unittest Chapter 10

[263]

Tkinter gives us these widget methods for managing focus and grab, some of which are
useful for running tests:

Method Description

focus_set() Focuses the widget whenever its window next gains focus

focus_force() Focuses a widget and the window it's in, immediately

grab_set() The widget grabs all events for the application

grab_set_global() The widget grabs all screen events

grab_release() The widget relinquishes its grab

In a test environment, we can use these methods to make sure that our generated keyboard
and mouse events are going to the correct widget or window.

Getting widget information
Tkinter widgets have a set of winfo_ methods that give us access to information about the
widget. While this set of methods leaves much to be desired, it does provide a few methods
we can use in tests to provide feedback about the state of a given widget.

The following are a few winfo_ methods that we will find useful:

Method Description

winfo_height(), winfo_width() Get the height and width of the widget

winfo_children() Get a list of child widgets

winfo_geometry() Get the size and location of the widget

winfo_ismapped()
Determine whether the widget is mapped, meaning it's
been added to a layout using pack() or grid(), for
instance

winfo_viewable()
Determine whether a widget is viewable, meaning it
and all its parents have been mapped

winfo_x(), winfo_y() Get the x or y coordinate of the widget's top left corner

Creating Automated Tests with unittest Chapter 10

[264]

Writing tests for our application
Let's put our knowledge of unittest to work and write some tests for our application. To
get started, we need to create a test module for our application. Make a directory called
test inside the abq_data_entry package, and create the customary empty __init__.py
file inside. We'll create all of our test modules inside this directory.

Testing our model
Our CSVModel code is fairly self-contained apart from its need to read and write files. Since
file operations are one of the more common things that need to be mocked out in a test, the
mock module provides mock_open, a Mock subclass ready-made to replace Python's open
method. When called, a mock_open object returns a mock file handle object, complete with
support for the read(), write(), and readlines() methods.

Let's begin creating our test case class in test/test_models.py as follows:

from .. import models
from unittest import TestCase
from unittest import mock

class TestCSVModel(TestCase):
 def setUp(self):
 self.file1_open = mock.mock_open(
 read_data=(
 "Date,Time,Technician,Lab,Plot,Seed sample,Humidity,Light,"
 "Temperature,Equipment Fault,Plants,Blossoms,Fruit,"
 "Min Height,Max Height,Median Height,Notes\r\n"
 "2018-06-01,8:00,J Simms,A,2,AX478,
 24.47,1.01,21.44,False,14,"
 "27,1,2.35,9.2,5.09,\r\n"
 "2018-06-01,8:00,J Simms,A,3,AX479,
 24.15,1,20.82,False,18,49,"
 "6,2.47,14.2,11.83,\r\n"))
 self.file2_open = mock.mock_open(read_data='')
 self.model1 = models.CSVModel('file1')
 self.model2 = models.CSVModel('file2')

The mock_open and read_data arguments allows us to specify a string that will be
returned when its file handle is read. We've created two mock_open objects, one containing
a CSV header and two lines of data, and the other containing nothing.

Creating Automated Tests with unittest Chapter 10

[265]

We've also created two CSVModel objects, one with a filename of file1 and the other with
a filename of file2. It's worth mentioning that there's no actual connection between our
models and our mock_open objects. The choice of the mock_open object, rather than the
filename, will determine what data will be returned

Testing file reading in get_all_records()
To see how we use these, let's start a test for the get_all_records() method as follows:

 @mock.patch('abq_data_entry.models.os.path.exists')
 def test_get_all_records(self, mock_exists):
 mock_exists.return_value = True

Since our filenames don't actually exist, we're using the decorator version of patch to patch
os.path.exists with a mock function that always returns True. We can later change the
return_value value if we want to test a scenario where the file doesn't exist.

To run the get_all_records() method, we'll use the context manager form of
patch() as follows:

 with mock.patch('abq_data_entry.models.open', self.file1_open):
 records = self.model1.get_all_records()

Any call to open() inside the models.py file which has been initiated inside the context
manager block will be replaced by our mock_open object, and the file handle returned will
contain read_data we specified. However, before we can go on, there's an unfortunate
shortcoming in mock_open that we'll need to work around. While it implements most file
methods, it doesn't implement the iterator methods that the csv library requires to read
data from the file handler.

A slight alteration to our models.py code will fix this:

 def get_all_records(self):
 ...
 with open(self.filename, 'r', encoding='utf-8') as fh:
 csvreader = csv.DictReader(list(fh.readlines()))

Instead of simply passing fh into DictReader, we need to call readlines() and cast it to
list. This won't affect the program in any way, but it will allow mock_open() to work
correctly.

Creating Automated Tests with unittest Chapter 10

[266]

There's nothing wrong with making adjustments to your code to
accommodate tests; in many cases, the code will even be better for it!
However, if you make an unintuitive change such as the previous one, be
sure to add a comment to your code to explain why. Otherwise, someone
is likely to factor it out at some point in the future.

Now we can start making assertions about the records which have been returned:

 self.assertEqual(len(records), 2)
 self.assertIsInstance(records, list)
 self.assertIsInstance(records[0], dict)

Here, we're checking that records contains two lines (since our read data contained two
csv records), that it's a list object, and that its first member is a dict object (or subclass of
dict).

Next, let's make sure all our fields made it through and that our Boolean conversion
worked:

 fields = (
 'Date', 'Time', 'Technician', 'Lab', 'Plot',
 'Seed sample', 'Humidity', 'Light',
 'Temperature', 'Equipment Fault', 'Plants',
 'Blossoms', 'Fruit', 'Min Height', 'Max Height',
 'Median Height', 'Notes')
 for field in fields:
 self.assertIn(field, records[0].keys())
 self.assertFalse(records[0]['Equipment Fault'])

By iterating a tuple of all our field names, we can check that all our fields are present in the
record output. Don't be afraid to use loops in a test this way to check a large amount of
content quickly.

A Mock object can do more than just stand in for another class or function; it also has its
own assertion methods that can tell us if it's been called, how many times, and with what
arguments.

For example, we can check our mock_open object to make sure it was called with the
expected arguments:

 self.file1_open.assert_called_with('file1', 'r', encoding='utf-8')

Creating Automated Tests with unittest Chapter 10

[267]

assert_called_with() takes a set of arguments and checks if the last call to the mock
object used those arguments. We expected file1_open to be called with the filename
file1, a mode of r, and an encoding of utf-8. By confirming that a mocked function was
called with the correct arguments, and assuming the correctness of the real function (the
built-in open() function, in this case), we can avoid having to test the actual outcome.

Testing file saving in save_record()
To demonstrate how to test file-writing with mock_open, let's test save_record():

 @patch('abq_data_entry.models.os.path.exists')
 def test_save_record(self, mock_exists):

To test the conversion from a dict to a csv string, we'll need a sample record in both
formats:

 record = {
 "Date": '2018-07-01', "Time": '12:00',
 "Technician": 'Test Tech', "Lab": 'E',
 "Plot": '7', "Seed sample": 'test',
 "Humidity": '10', "Light": '99',
 "Temperature": '20', "Equipment Fault": False,
 "Plants": '10', "Blossoms": '200', "Fruit": '250',
 "Min Height": '40', "Max Height": '50',
 "Median Height": '55', "Notes": 'Test Note\r\nTest Note\r\n'}
 record_as_csv = (
 '2018-07-01,12:00,Test Tech,E,17,test,10,99,20,False,'
 '10,200,250,40,50,55,"Test Note\r\nTest Note\r\n"\r\n')

You may be tempted to generate either the record or its expected output using code, but it's
always better to stick to literals in tests; doing so makes the expectations of the test explicit
and avoids logic errors in your tests.

For our first scenario, let's simulate writing to an empty but existing file by using
file2_open and model2 as follows:

 mock_exists.return_value = True
 with patch('abq_data_entry.models.open', self.file2_open):
 self.model2.save_record(record, None)

Creating Automated Tests with unittest Chapter 10

[268]

Setting our mock_exists.return_value to True to tell our method that the file already
exists, we then patch over open() with our second mock_open object and call the
save_record() method. Since we passed in a record with no row number (which
indicates a record insert), this should result in our code trying to open file2 in append
mode and writing in the CSV-formatted record.

assert_called_with() will test that assumption as follows:

 self.file2_open.assert_called_with('file2', 'a',
 encoding='utf-8')

file2_open can tell us that it was called with the expected parameters, but how do we
access its file handler so that we can see what was written to it?

It turns out we can just call our mock_open object and retrieve the mock file handle object:

 file2_handle = self.file2_open()
 file2_handle.write.assert_called_with(record_as_csv)

Once we have the mock file handle (which is itself a Mock), we can run test methods on it to
find out if it was called with the CSV data as expected. In this case, the file handle's write
method should have been called with the CSV-format record string.

Let's do a similar set of tests, passing in a row number to simulate a record update:

 with patch('abq_data_entry.models.open', self.file1_open):
 self.model1.save_record(record, 1)
 self.file1_open.assert_called_with('file1', 'w',
 encoding='utf-8')

Checking that our update was done correctly presents a problem:
assert_called_with() only checks the last call made to the mock function. When we
update our CSV file, the entire CSV file is updated, with one write() call per row. We
can't just check that the last call was correct; we need to make sure the write() calls for all
the rows were correct. To accomplish this, Mock provides us with assert_has_calls(),
to which we can pass a list of Call objects to compare against the object's call history.

We create Call objects using the mock.call() function as follows:

 file1_handle = self.file1_open()
 file1_handle.write.assert_has_calls([
 mock.call('Date,Time,Technician,Lab,Plot,Seed sample,'
 'Humidity,Light,Temperature,Equipment Fault,'
 'Plants,Blossoms,Fruit,Min Height,Max Height,'
 'Median Height,Notes\r\n'),

Creating Automated Tests with unittest Chapter 10

[269]

 mock.call('2018-06-01,8:00,J Simms,A,2,AX478,24.47,1.01,'
 '21.44,False, '14,27,1,2.35,9.2,5.09,\r\n'),
 mock.call('2018-07-01,12:00,Test Tech,E,17,test,10,99,20,'
 'False,10,200,250,'40,50,55,'
 '"Test Note\r\nTest Note\r\n"\r\n')
])

The arguments to call() represent the arguments that were passed to the function call.
The list of Call objects we pass to assert_has_calls() represents each call that should
have been made to write() in order. The keyword argument in_order can also be set to
False, in which case the order won't need to match. In this case, order matters, since a
wrong order would result in a corrupt CSV file.

More tests
Testing the remainder of the CSVModel class and the SettingsModel class methods
should be essentially along the same lines as these two methods. A few more tests are
included in the sample code, but see if you can come up with some of your own as well.

Testing our application
We've implemented our application as a Tk object that acts not only as a main window but
as a controller, patching together models and views defined elsewhere in the application.
As you may expect, patch() is going to figure heavily into our testing code as we mock
out all of those other components to isolate Application. Let's take a look at how this is
done:

In a new file called test_application.py, import unittest and1.
application. Now start a test case as follows:

class TestApplication(TestCase):
 records = [
 {'Blossoms': '21', 'Date': '2018-06-01',
 'Equipment Fault': 'False', 'Fruit': '3,
 'Humidity': '24.09', 'Lab': 'A', 'Light': '1.03',
 'Max Height': '8.7', 'Median Height': '2.73',
 'Min Height': '1.67','Notes': '\n\n', 'Plants': '9',
 'Plot': '1', 'Seed sample': 'AX477',
 'Technician': 'J Simms', 'Temperature': '22.01',
 'Time': '8:00'},
 {'Blossoms': '27', 'Date': '2018-06-01',
 'Equipment Fault': 'False', 'Fruit': '1',

Creating Automated Tests with unittest Chapter 10

[270]

 'Humidity': '24.47', 'Lab': 'A', 'Light': '1.01',
 'Max Height': '9.2', 'Median Height': '5.09',
 'Min Height': '2.35', 'Notes': '', 'Plants': '14',
 'Plot': '2', 'Seed sample': 'AX478',
 'Technician': 'J Simms', 'Temperature': '21.44',
 'Time': '8:00'}]
 settings = {
 'autofill date': {'type': 'bool', 'value': True},
 'autofill sheet data': {'type': 'bool', 'value': True},
 'font size': {'type': 'int', 'value': 9},
 'theme': {'type': 'str', 'value': 'default'}}

Our TestApplication class will be using mocks in place of our data and
settings models, so we've created some class properties to store samples of
the data which Application expects to retrieve from those models. The
setUp() method is going to patch out all the external classes with mocks,
configure the mocked models to return our sample data, and then create an
Application instance that our tests can use.

Let's start by using patch() as a context manager to replace all the external2.
resources as follows:

 def setUp(self):
 with \
 patch('abq_data_entry.application.m.CSVModel')\
 as csvmodel,\
 patch('abq_data_entry.application.m.SettingsModel') \
 as settingsmodel,\
 patch('abq_data_entry.application.v.DataRecordForm'), \
 patch('abq_data_entry.application.v.RecordList'),\
 patch('abq_data_entry.application.get_main_menu_for_os')\
 :

Here, we've created a with block using five patch() context managers, one
for each library we're mocking out. Notice that we're only creating aliases for
the model mocks, since we'll want to do some extra configuration on them.
The view mocks won't really need to do much except be imported or called,
and we can access them as properties of our Application object anyway.

Since Python 3.2, you can create a block with multiple context managers
by separating each context manager call with a comma. Unfortunately,
you can't put them in parenthesis, so we're using the comparatively ugly
escaped-newline method of breaking this gigantic call into multiple lines.

Creating Automated Tests with unittest Chapter 10

[271]

Inside the block, we'll need to configure our model mocks to return the3.
appropriate data as follows:

 settingsmodel().variables = self.settings
 csvmodel().get_all_records.return_value = self.records

Notice that we're instantiating our settingsmodel and csvmodel objects
and configuring methods on the return values rather than the mocks
themselves. Remember that our mocks are replacing the classes, not the
objects, and it is the objects which will contain the methods our Application
object will be calling. Therefore, we need to call them to access the actual
Mock object that will be used by Application as the data or settings model.

Unlike the actual class that it stands in for, a Mock object called as a
function will return the same object every time it's called. Thus, we don't
have to save a reference to the object created by calling a mocked class; we
can just call the mocked class repeatedly to access that object. Note,
however, that the Mock class will return a unique Mock object each time.

This takes care of our mocks, so let's create an Application object:4.

 self.app = application.Application()

Because Application is a subclass of Tk, it's a good idea for us to safely dispose5.
of it after each use; even though we're reassigning its variable name, it will go on
existing and cause problems with our tests. To solve this, create a tearDown()
method:

 def tearDown(self):
 self.app.update()
 self.app.destroy()

Notice the call to app.update(). If we don't call this before destroying app ,
there may be tasks in the event queue that will try to access it after it's gone. This
won't break our code, but it will clutter up our test output with error messages.

Creating Automated Tests with unittest Chapter 10

[272]

Now that our fixtures are taken care of, let's write a test:6.

 def test_show_recordlist(self):
 self.app.show_recordlist()
 self.app.update()
 self.app.recordlist.tkraise.assert_called()

Application.show_recordlist() contains one line of code, which is merely a
call to recordlist.tkraise(). Because we made recordlist a mock object,
tkraise is also a mock object, and we can check to see that it was called.
assert_called() merely checks that a method was called, without checking
arguments, which is appropriate in this case because tkraise() takes none.

We can use a similar technique to check populate_recordlist() as follows:7.

 def test_populate_recordlist(self):
 self.app.populate_recordlist()
 self.app.data_model.get_all_records.assert_called()
self.app.recordlist.populate.assert_called_with(self.records)

Under some circumstances, get_all_records() can raise an exception, in8.
which case we're supposed to show an error message box. But since we've
mocked out our data model, how can we get it to raise an exception? The
solution is to use mock's side_effect property as follows:

 self.app.data_model.get_all_records.side_effect =
 Exception('Test message')

side_effect can be used to simulate more complex functionality in a
mocked callable. It can be set to a function, in which case the mock will run
that function and return the results when called; it can be set to an iterable, in
which case the mock will return the next item in the iterable each time it's
called; or, as in this case, it can be set to an exception, which will be raised
when the mock is called.

Before we can use this, we'll need to patch out messagebox as follows:9.

 with patch('abq_data_entry.application.messagebox'):
 self.app.populate_recordlist()
 application.messagebox.showerror.assert_called_with(
 title='Error', message='Problem reading file',
 detail='Test message')

Creating Automated Tests with unittest Chapter 10

[273]

This time when we call populate_recordlist(), it throws an exception,10.
prompting the method to call messagebox.showerror(). Since we've mocked
showerror(), we can assert that it was called with the expected arguments.

Clearly, the hardest part of testing our Application object is patching in all the mocked
components and making sure they behave enough like the real thing to satisfy
Application. Once we've done that, writing the actual tests is fairly straightforward.

Testing our widgets
So far, we've done well with patch, Mock, and the default TestCase, but testing our
widgets module is going to present some new challenges. To begin with, our widgets will
need a Tk instance to be their root window. We can create this in each case's setUp()
method, but this will slow down the tests considerably, and it isn't really necessary; our
tests aren't going to modify the root window, so one root window will suffice for each test
case. We can take advantage of the setUpClass() method to create a single instance of Tk
just once at class instantiation. Secondly, we have a large number of widgets to test, which
means we have a large number of test cases requiring the same boilerplate Tk() setup and
tear down.

To address this, let's start our test_widgets.py module with a custom TestCase class as
follows:

class TkTestCase(TestCase):
 """A test case designed for Tkinter widgets and views"""
 @classmethod
 def setUpClass(cls):
 cls.root = tk.Tk()
 cls.root.wait_visibility()

 @classmethod
 def tearDownClass(cls):
 cls.root.update()
 cls.root.destroy()

The setUpClass() method creates the Tk() object and calls wait_visibility() just to
make sure our window is visible before our tests start working with it. Just as we did with
our Application test, we also supply a complimentary tear-down method that updates
the Tk instance and destroys it.

Creating Automated Tests with unittest Chapter 10

[274]

Unit testing the ValidatedSpinbox widget
ValidatedSpinbox is one of the more complicated widgets we created for our application,
so it's a good place to start writing tests.

Subclass the TkTestCase class to create a test case for ValidatedSpinbox as follows:

class TestValidatedSpinbox(TkTestCase):

 def setUp(self):
 self.value = tk.DoubleVar()
 self.vsb = widgets.ValidatedSpinbox(
 self.root,
 textvariable=self.value,
 from_=-10, to=10, increment=1)
 self.vsb.pack()
 self.vsb.wait_visibility()

 def tearDown(self):
 self.vsb.destroy()

Our setup method creates a variable in which to store the widget's value, then creates an
instance of the ValidatedSpinbox widget with some basic settings: a minimum value of
-10, a maximum of 10, and an increment of 1. After creating it, we pack it and wait for it to
become visible. For our tear-down method, we simply destroy the widget.

There are a couple of approaches we can take in testing our widget. The first approach is a
unit testing-oriented approach, in which we focus on the actual method code, simply
mocking out any external functionality.

Let's try that with the _key_validate() method as follows:

 def test__key_validate(self):
 # test valid input
 for x in range(10):
 x = str(x)
 p_valid = self.vsb._key_validate(x, 'end', '', '', x, '1')
 n_valid = self.vsb._key_validate(
 x, 'end', '-', '-' + x, '1')
 self.assertTrue(p_valid)
 self.assertTrue(n_valid)

Creating Automated Tests with unittest Chapter 10

[275]

We're simply iterating from 0 to 9 and testing both the positive and negative of the number
against _key_validate(), which should return True for all of these values. The
_key_validate() method takes a lot of positional arguments, and most of them are
redundant; it might be nice to have a wrapper method that makes it easier to call, since our
test case is potentially going to call it dozens of times.

Let's call that method key_validate() and add it to our TestValidatedSpinbox class as
follows:

 def key_validate(self, new, current=''):
 # args are inserted char, insertion index, current value,
 # proposed value, and action code (where '1' is 'insert')
 return self.vsb._key_validate(new, 'end', current,
 current + new, '1')

This will make future calls to the method shorter and less error-prone.

Let's use it now to test some invalid input as follows:

 # test letters
 valid = self.key_validate('a')
 self.assertFalse(valid)

 # test non-increment number
 valid = self.key_validate('1', '0.')
 self.assertFalse(valid)

 # test too high number
 valid = self.key_validate('0', '10')
 self.assertFalse(valid)

In the first example, we're entering a; in the second, 1 when 0. is already in the box,
resulting in 0.1; in the third, 0 when 10 is in the box, resulting in 100. All of these
scenarios should fail the validation method.

Integration testing the ValidatedSpinbox widget
In the preceding tests, we weren't actually entering any data into the widget; we were
simply calling the key validation method directly and evaluating its output. This is good
unit testing, but it isn't quite satisfying as a test of this code. Since our custom widget is so
deeply dependent on Tkinter's validation API, we'd like to test that we've actually
implemented this API correctly. After all, that aspect of the code was more challenging than
the actual logic in our validation methods.

Creating Automated Tests with unittest Chapter 10

[276]

We can accomplish this by creating some integration tests that simulate actual user actions
and then check the results of those actions. To do this cleanly, we'll first need to create some
supporting methods.

Start by adding a new method to the TkTestCase class as follows:

 def type_in_widget(self, widget, string):
 widget.focus_force()
 for char in string:
 char = self.keysyms.get(char, char)

This class will take a widget and a string and attempt to simulate a user typing the string
into the widget. The first thing we do is force the focus to the widget; we need to use
focus_force() because our test Tk window is unlikely to be in focus when the test is
being run.

Once we have focus, we'll iterate through the characters in the string and translate the raw
character into the appropriate key symbols for our event sequence. Recall that some
characters, particularly symbols, must be represented as strings, such as minus or colon.

To make this work, we'll need a class property called dict to translate between characters
and their key symbols as follows:

 keysyms = {'-': 'minus', ' ': 'space', ':': 'colon', ...}

More key symbols can be found at http:/ ​/​www. ​tcl.​tk/ ​man/ ​tcl8. ​4/
TkCmd/ ​keysyms. ​htm , but these should do for now.

Once our character is translated to the appropriate key symbol, we can create our event
sequences and generate our key events. Back in the type_in_widget() method, we can
create and call a key event sequence as follows:

 self.root.update()
 widget.event_generate('<KeyPress-{}>'.format(char))
 self.root.update()

Note that we call self.root.update() both before and after generating the keypress
event. This ensures the widget is prepared for input, and that the inputs register after being
generated. update_idletasks() will not do here, by the way; try it and you'll find that
the tests will fail.

http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm
http://www.tcl.tk/man/tcl8.4/TkCmd/keysyms.htm

Creating Automated Tests with unittest Chapter 10

[277]

We can create a similar method for simulating mouse button clicks as follows:

 def click_on_widget(self, widget, x, y, button=1):
 widget.focus_force()
 self.root.update()
 widget.event_generate("<ButtonPress-{}>".format(button),
 x=x, y=y)
 self.root.update()

Just as we did with our keystroke method, we first force focus, update the application,
generate our events, then update again. In this method, however, we also need to specify
the x and y coordinates for the mouse click. These are coordinates relative to the upper-left
corner of the widget. We can also specify a button number, but we'll default to the left
button (1).

With these methods in place, return to TestValidatedSpinbox and write a new test:

 def test__key_validate_integration(self):
 self.vsb.delete(0, 'end')
 self.type_in_widget(self.vsb, '10')
 self.assertEqual(self.vsb.get(), '10')

This method starts by clearing the widget, then simulates some valid input with type_in
_widget() and checks that it was accepted by the widget. Note that in these integration
tests we'll need to clear the widget each time because we are simulating keystrokes in an
actual widget and triggering all the side effects of that action.

Next, let's test some invalid input by executing the following code:

 self.vsb.delete(0, 'end')
 self.type_in_widget(self.vsb, 'abcdef')
 self.assertEqual(self.vsb.get(), '')

 self.vsb.delete(0, 'end')
 self.type_in_widget(self.vsb, '200')
 self.assertEqual(self.vsb.get(), '2')

We can use our mouse click method to test the functionality of the Spinbox arrow buttons
as well. To make this simpler, let's create a helper method in our test case class to click on
the arrow we want. Add this to TestValidatedSpinbox:

 def click_arrow(self, arrow='inc', times=1):
 x = self.vsb.winfo_width() - 5
 y = 5 if arrow == 'inc' else 15
 for _ in range(times):
 self.click_on_widget(self.vsb, x=x, y=y)

Creating Automated Tests with unittest Chapter 10

[278]

We can target the increment arrow by clicking 5 pixels from the right and 5 from the top of
the widget. The decrement arrow can be found at 5 pixels from the right and 15 from the
top. This may need some adjustment depending on the theme or screen settings, of course.
Now, we can test our arrow key functionality easily as follows:

 def test_arrows(self):
 self.value.set(0)
 self.click_arrow(times=1)
 self.assertEqual(self.vsb.get(), '1')

 self.click_arrow(times=5)
 self.assertEqual(self.vsb.get(), '6')

 self.click_arrow(arrow='dec', times=1)
 self.assertEqual(self.vsb.get(), '5')

By setting the value of the widget, then clicking the appropriate arrow a specified number
of times, we can test that the arrows did their jobs according to the rules of our widget
class.

Testing our mixin class
One additional challenge we haven't approached yet is testing our mixin class. Unlike our
other widget classes, our mixin cannot really exist on its own: it depends on methods and
properties found in the ttk widget which it's combined with.

One approach to testing this class would be to mix it with a Mock object which mocks out
any inherited methods. This approach has merit, but a simpler (if less ideal) approach is to
subclass it with the simplest possible ttk widget and test the resulting child class.

That approach looks like this:

class TestValidatedMixin(TkTestCase):

 def setUp(self):
 class TestClass(widgets.ValidatedMixin, ttk.Entry):
 pass
 self.vw1 = TestClass(self.root)

Here, we've created just a basic child class using ttk.Entry and modified nothing else.
Then, we created an instance of the class.

Creating Automated Tests with unittest Chapter 10

[279]

Let's test our _validate() method as follows:

 def test__validate(self):
 args = {'proposed': 'abc', 'current': 'ab', 'char': 'c',
 'event': 'key', 'index': '2', 'action': '1'}
 self.assertTrue(self.vw1._validate(**args))

Because we're sending a key event to _validate(), it routes the request to
_key_validate(), which simply returns True by default. We'll need to verify that
_validate() does what is needed when _key_validate() returns False as well.

We'll employ Mock to do this:

 fake_key_val = Mock(return_value=False)
 self.vw1._key_validate = fake_key_val
 self.assertFalse(self.vw1._validate(**args))
 fake_key_val.assert_called_with(**args)

We test that False is returned and that _key_validate was called with the correct
arguments.

By updating the event value in args, we can check that focusout events also work:

 args['event'] = 'focusout'
 self.assertTrue(self.vw1._validate(**args))
 fake_focusout_val = Mock(return_value=False)
 self.vw1._focusout_validate = fake_focusout_val
 self.assertFalse(self.vw1._validate(**args))
 fake_focusout_val.assert_called_with(event='focusout')

We've taken an identical approach here, just mocking out _focusout_validate() to
make it return False.

As you can see, once we've created our test class, testing ValidatedMixin is like testing
any other widget class. There are other test method examples in the included source code;
these should be enough to get you started with creating a complete test suite.

Creating Automated Tests with unittest Chapter 10

[280]

Summary
In this chapter, we learned about automated testing and the capabilities provided by
Python's unittest library. We wrote both unit tests and integration tests against portions
of our application, and you learned methods for tackling a variety of testing challenges.

In the next chapter, we'll upgrade our backend to use a relational database. You'll also learn
about relational databases, SQL, and database normalization. You'll learn to work with the
PostgreSQL database server and Python's psycopg2 PostgreSQL interface library.

11
Improving Data Storage with

SQL
As weeks have passed by, there is a growing problem at the lab: the CSV files are
everywhere! Conflicting copies, missing files, records getting changed by non-data entry
staff, and other CSV-related frustrations are plaguing the project. It's clear that individual
CSV files are not working out as a way to store data for the experiments. Something better
is needed.

The facility has an older Linux server with a PostgreSQL database installed. You've been
asked to update your program so that it stores data in the PostgreSQL database rather than
in the CSV files. This promises to be a major update to your application!

In this chapter, you'll learn the following topics:

Installing and configuring the PostgreSQL database system
Structuring data in a database for good performance and reliability
The basics of SQL queries
Using the psycopg2 library to connect your program to PostgreSQL

PostgreSQL
PostgreSQL (usually pronounced post-gress) is a free, open source, cross-platform
relational database system. It runs as a network service with which you can communicate
using client programs or software libraries. At the time of writing, the project has just
released version 10.0.

Improving Data Storage with SQL Chapter 11

[282]

Although ABQ has provided a PostgreSQL server which is already installed and
configured, you'll need to download and install the software on your workstation for
development purposes.

Shared production resources such as databases and web services should
never be used for testing or development. Always set up a separate
development copy of these resources on your own workstation or a
separate server machine.

Installing and configuring PostgreSQL
To download PostgreSQL, visit https:/ ​/​www.​postgresql. ​org/ ​download/ ​. Installers are
provided for Windows, macOS, and Linux by the EnterpriseDB company, a commercial
entity that provides paid support for PostgreSQL. These packages include the server,
command-line client, and pgAdmin graphical client all in one package.

To install the software, launch the installer using an account with administrative rights and
follow the screens in the installation wizard.

Once installed, launch pgAdmin and create a new admin user for yourself by
selecting Object | Create | Login/Group Role. Make sure to visit the Privileges tab to
check Superuser, and the Definition tab to set a password. Then, create a database by
selecting Object | Create | Database. Make sure to set your user as an owner. To run SQL
commands on your database, select your database and click Tools | Query Tool.

MacOS or Linux users who prefer the command line can also use the following these
commands:

sudo -u postgres createuser -sP myusername
sudo -u postgres createdb -O myusername mydatabasename
psql -d mydatabasename -U myusername

Although Enterprise DB provides binary installers for Linux, most Linux
users will prefer to use packages supplied by their distribution. You may
end up with a slightly older version of PostgreSQL, but that won't matter
for most basic use cases. Be aware that pgAdmin is usually part of a
separate package, and that the latest version (pgAdmin 4) may not be
available. Regardless, you should have no trouble following this chapter
with the older version.

https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/
https://www.postgresql.org/download/

Improving Data Storage with SQL Chapter 11

[283]

Connecting with psycopg2
To make SQL queries from our application, we'll need to install a Python library that can
talk directly to our database. The most popular choice is psycopg2. The psycopg2 library
is not a part of the Python standard library. You can find the most current installation
instructions at http:/ ​/​initd. ​org/ ​psycopg/ ​docs/ ​install. ​html; however, the preferred
method is to use pip.

For Windows, macOS, and Linux, the following command should work:

pip install --user psycopg2-binary

If that doesn't work, or if you'd rather install it from the source, check the requirements on
the website. The psycopg2 library is written in C, not Python, so it requires a C compiler
and a few other development packages. Linux users can usually install psycopg2 from
their distribution's package management system. We'll get in-depth with the use of
psycopg2 later in the chapter.

SQL and relational database basics
Before we can start using PostgreSQL with Python, you'll need to have at least a basic
understanding of SQL. If you already have one, you can skip to the next section; otherwise,
brace yourself for a super-short crash course on relational databases and SQL.

For over three decades, relational database systems have remained a de-facto standard for
storing business data. They are more commonly known as SQL databases, after the
Structured Query Language (SQL) used to interact with them.

SQL databases are made up of tables. A table is something like our CSV file, in that it has
rows representing individual items and columns representing data values associated with
each item. A SQL table has some important differences from our CSV file. First, each
column in the table is assigned a data type which is strictly enforced; just as Python will
produce an error when you try to use abcd as an int, a SQL database will complain if you
try to insert letters into a numeric or other non-string column. SQL databases typically
support data types for text, numbers, dates and times, boolean values, binary data, and
more.

http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html
http://initd.org/psycopg/docs/install.html

Improving Data Storage with SQL Chapter 11

[284]

SQL tables can also have constraints, which further enforce the validity of data inserted into
the table. For example, a column can be given a unique constraint, which prevents two
rows having the same value, or a not null constraint, which means that every row must
have a value.

SQL databases commonly contain many tables; these tables can be joined together to
represent much more complicated data structures. By breaking data into multiple linked
tables, it can be stored in a way that is much more efficient and resilient than our two-
dimensional plaintext CSV files.

Basic SQL operations
SQL is a powerful and expressive language for doing mass manipulations of tabular data,
but the basics can be grasped quickly. SQL is executed as individual queries which either
define or manipulate data in the database. SQL dialects vary somewhat between different
relational database products, but most of them support ANSI/ISO-standard SQL for core
operations. While we'll be using PostgreSQL in this chapter, most of the SQL statements we
write will be portable to different databases.

To follow this section, connect to an empty database on your PostgreSQL database server,
either using the psql command-line tool, the pgAdmin 4 graphical tool, or another
database client software of your choosing.

Syntax differences from Python
If you've only ever programmed in Python, SQL may feel odd at first, as the rules and
syntax are very different.

We'll be going over the individual commands and keywords, but the following are some
general differences from Python:

SQL is (mostly) case-insensitive: Although it's conventional for readability
purposes to type the SQL keywords in all-caps, most SQL implementations are
not case-sensitive. There are a few small exceptions here and there, but, for the
most part, you can type SQL in whatever case is easiest for you.
Whitespace is not significant: In Python, new lines and indentation can change
the meaning of a piece of code. In SQL, whitespace is not significant and
statements are terminated with a semicolon. Indents and new lines in a query are
only there for readability.

Improving Data Storage with SQL Chapter 11

[285]

SQL is declarative: Python could be described as an imperative programming
language: we tell Python what we want it to do by telling it how to do it. SQL is
more of a declarative language: we describe what we want, and the SQL engine
figures out how to do it.

We'll encounter additional syntax differences as we look at specific SQL code examples.

Defining tables and inserting data
SQL tables are created using the CREATE TABLE command as shown in the following SQL
query:

CREATE TABLE musicians (id SERIAL PRIMARY KEY, name TEXT NOT NULL, born
DATE, died DATE CHECK(died > born));

In this example, we're creating a table called musicians. After the name, we specify a list
of column definitions. Each column definition follows the format column_name
data_type constraints.

In this case, we have the following four columns:

The id column will be an arbitrary row ID. It's type is SERIAL, which means it
will be an autoincrementing integer field, and its constraint is PRIMARY KEY,
which means it will be used as the unique identifier for the row.
The name field is of type TEXT, so it can hold a string of any length. Its constraint
of NOT NULL means that the NULL values are not allowed in this field.
The born and died fields are the DATE fields, so they can only hold a date value.
The born field has no constraints, but died has a CHECK constraint enforcing that
its value must be greater than the value of born for any given row.

Although it's not required, it's a good practice to specify a primary key for each table.
Primary keys can be one field, or a combination of fields, but the value must be unique for
any given row. For example, if we made name the primary key field, we couldn't have two
musicians with the same name in our table.

To add rows of data to this table, we use the INSERT INTO command as follows:

INSERT INTO musicians (name, born, died) VALUES ('Robert Fripp',
'1946-05-16', NULL), ('Keith Emerson', '1944-11-02', '2016-03-11'),
('Greg Lake', '1947-11-10', '2016-12-7'), ('Bill Bruford', '1949-05-17',
NULL), ('David Gilmour', '1946-03-06', NULL);

Improving Data Storage with SQL Chapter 11

[286]

The INSERT INTO command takes a table name and an optional list specifying the fields to
receive data; other fields will receive their default value (NULL if not otherwise specified in
the CREATE statement). The VALUES keyword indicates that a list of data values to
be followed, formatted as a comma-separated list of tuples. Each tuple corresponds to one
table row and must match the field list specified after the table name.

Note that strings are delimited by the single quote character. Unlike Python, single quotes
and double quotes have different meanings in SQL: a single quote indicates a string literal,
while double quotes are used for object names that include spaces or need to preserve case.
Had we used double quotes here, it would have resulted in an error.

Let's create and populate an instruments table:

CREATE TABLE instruments (id SERIAL PRIMARY KEY, name TEXT NOT NULL);
INSERT INTO instruments (name) VALUES ('bass'), ('drums'), ('guitar'),
('keyboards');

Note that the VALUES lists must always use parentheses around each row, even if there's
only one value per row.

Tables can be changed after they are created using the ALTER TABLE command as follows:

ALTER TABLE musicians ADD COLUMN main_instrument INT REFERENCES
instruments(id);

The ALTER TABLE command takes a table name, then a command altering some aspect of
the table. In this case, we're adding a new column called main_instrument, which will be
an integer. The REFERENCES constraint we've specified is known as a foreign key
constraint; it limits the possible values of main_instrument to existing ID numbers in the
instruments table.

Retrieving data from tables
To retrieve data from tables, we use the SELECT statement as follows:

SELECT name FROM musicians;

The SELECT command takes a column or comma-separated list of columns followed by a
FROM clause, which specifies the table or tables containing the specified columns. This
query asks for the name column from the musicians table.

Improving Data Storage with SQL Chapter 11

[287]

Its output is as follows:

name

Bill Bruford

Keith Emerson

Greg Lake

Robert Fripp

David Gilmour

Instead of a list of columns, we can also specify an asterisk, which means all columns as
shown in the following query:

SELECT * FROM musicians;

The preceding SQL query returns a following table of data:

ID name born died main_instrument

4 Bill Bruford 1949-05-17

2 Keith Emerson 1944-11-02 2016-03-11

3 Greg Lake 1947-11-10 2016-12-07

1 Robert Fripp 1946-05-16

5 David Gilmour 1946-03-06

To filter out rows we don't want, we can specify a WHERE clause as follows:

SELECT name FROM musicians WHERE died IS NULL;

The WHERE command must be followed by a conditional statement; rows that satisfy the
condition are shown, while rows that do not are left out. In this case, we have asked for the
names of musicians who do not have a date of death.

We can specify complex conditions with the AND and OR operators as follows:

SELECT name FROM musicians WHERE born < '1945-01-01' AND died IS NULL;

In this case, we would only get musicians born before 1945 who have not died.

Improving Data Storage with SQL Chapter 11

[288]

The SELECT command can also do operations on fields, or re-order the results by certain
columns:

SELECT name, age(born), (died - born)/365 AS "age at death" FROM musicians
ORDER BY born DESC;

In this example, we're using the age() function to determine the age of the musicians from
their birth dates. We're also doing math on the died and born dates to determine the age at
death for those who have passed. Notice that we're using the AS keyword to rename, or
alias, the generated column.

When you run this query, notice that age at death is NULL for those without a date of
death. Mathematical or logical operations on a NULL value always return an answer of
NULL.

The ORDER BY clause specifies a column or list of columns by which the results should be
ordered. It also takes an argument of DESC or ASC to specify descending or ascending order.
We have ordered the output here by date of birth in descending order. Note that each data
type has its own rules for sorting data, just like in Python. Dates are ordered by their
calendar position, strings by alphabetical order, and numbers by their numeric value.

Updating rows, deleting rows, and more WHERE
clauses
To update or delete existing rows, we use the UPDATE and DELETE FROM keywords in
conjunction with a WHERE clause to select the affected rows.

Deleting is fairly simple looks like this:

DELETE FROM instruments WHERE id=4;

The DELETE FROM command will delete any rows that match the WHERE conditions. In this
case, we match the primary key to ensure only one row is deleted. If no rows match the
WHERE conditions, no rows will be deleted. Note, however, that the WHERE clause is
technically optional: DELETE FROM instruments will simply delete all rows in the table.

Updating is similar, except it includes a SET clause to specify new column values as
follows:

UPDATE musicians SET main_instrument=3 WHERE id=1;
UPDATE musicians SET main_instrument=2 WHERE name='Bill Bruford';

Improving Data Storage with SQL Chapter 11

[289]

Here, we are setting main_instrument to the corresponding instruments primary key
value for two musicians. We can select our musician records to update by primary key,
name, or any valid set of conditions. Like DELETE, omitting the WHERE clause would affect
all rows.

Any number of columns can be updated in the SET clause:

UPDATE musicians SET main_instrument=4, name='Keith Noel Emerson' WHERE
name LIKE 'Keith%';

Additional column updates are just separated by commas. Note that we've also matched
the record using the LIKE operator in tandem with the % wildcard character. LIKE can be
used with text and string data types to match partial values. Standard SQL supports two
wildcard characters: %, which matches any number of characters, and _, which matches a
single character.

We can also match against transformed column values:

UPDATE musicians SET main_instrument=1 WHERE LOWER(name) LIKE '%lake';

Here, we've used the LOWER function to match our string against the lowercase version of
the column value. This doesn't permanently change the data in the table; it just temporarily
changes the value for the check.

Standard SQL specifies that LIKE is a case-sensitive match. PostgreSQL
offers an ILIKE operator which does case-insensitive matching as well as
a SIMILAR TO operator that matches using more advanced regular
expression syntax.

Subqueries
Rather than using the raw primary key values of our instruments table each time, we can
use a subquery as shown in the following SQL query:

UPDATE musicians SET main_instrument=(SELECT id FROM instruments WHERE
name='guitar') WHERE name IN ('Robert Fripp', 'David Gilmour');

A subquery is a SQL query within a SQL query. If your subquery can be guaranteed to
return a single value, it can be used anywhere you would use a literal value. In this case,
we're letting our database do the work of figuring out what the primary key of guitar is,
and inserting that for our main_instrument value.

Improving Data Storage with SQL Chapter 11

[290]

In the WHERE clause, we've also used the IN operator to match against a list of values. This
allows us to match against a list of values.

IN can be used with a subquery as well as follows:

SELECT name FROM musicians WHERE main_instrument IN (SELECT id FROM
instruments WHERE name like '%r%')

Since IN is meant to be used with a list of values, any query that returns a single column
with any number of rows is valid.

Subqueries that return multiple rows and multiple columns can be used anywhere a table
can be used:

SELECT name FROM (SELECT * FROM musicians WHERE died IS NULL) AS
living_musicians;

Note that subqueries in a FROM clause require an alias; we've aliased the subquery as
living_musicians.

Joining tables
Subqueries are one way of using multiple tables together, but a more flexible and powerful
way is to use JOIN.

JOIN is used in the FROM clause of an SQL statement as follows:

SELECT musicians.name, instruments.name as main_instrument FROM musicians
JOIN instruments ON musicians.main_instrument = instrument.id;

A JOIN statement requires an ON clause that specifies the conditions used to match rows in
each table. The ON clause acts like a filter, much like the WHERE clause does; you can imagine
that the JOIN creates a new table containing every possible combination of rows from both
tables, then filters out the ones that don't match the ON conditions. Tables are typically
joined by matching the values in common fields, such as those specified in a foreign key
constraint. In this case, our musicians.main_instrument column contains the id values
from the instrument table, so we can join the two tables based on this.

Improving Data Storage with SQL Chapter 11

[291]

Joins are used to implement the following four types of table relationships:

One-to-one joins match exactly one row in the first table to exactly one row in the
second.
Many-to-one joins match multiple rows in the first table to exactly one row in the
second.
One-to-many joins match one row in the first table to multiple rows in the
second.
Many-to-many joins match multiple rows in both tables. This kind of join
requires the use of an intermediary table.

The earlier query shows a many-to-one join, since many musicians can have the same main
instrument. Many-to-one joins are often used when a column's value should be limited to a
set of options, such as fields that our GUI might represent with a ComboBox widget. The
table joined is called a lookup table.

If we were to reverse it, it would be one-to-many:

SELECT instruments.name AS instrument, musicians.name AS musician FROM
instruments JOIN musicians ON musicians.main_instrument = instruments.id;

One-to-many joins are commonly used when a record has a list of sub-records associated
with it; in this case, each instrument has a list of musicians who consider it their main
instrument. The joined table is often called a detail table.

The preceding SQL query will give you the following output:

instrument musician

drums Bill Bruford

keyboards Keith Emerson

bass Greg Lake

guitar Robert Fripp

guitar David Gilmour

Improving Data Storage with SQL Chapter 11

[292]

Notice that guitar is duplicated in the instrument list. When two tables are joined, the
rows of the result no longer refer to the same type of object. One row in the instrument
table represents an instrument. One row in the musician table represents one musician.
One row in this table represents an instrument-musician relationship.

But suppose we wanted to keep the output such that one row represented one instrument
but could still include information about associated musicians in each row. To do this, we'll
need to aggregate the matched musician rows using an aggregate function and the GROUP
BY clause as shown in the following SQL query:

SELECT instruments.name AS instrument, count(musicians.id) as musicians
FROM instruments JOIN musicians ON musicians.main_instrument =
instruments.id GROUP BY instruments.name;

The GROUP BY clause specifies which column or columns describe what each row in the
output table represents. Output columns not in the GROUP BY clause must then be reduced
to single values using an aggregate function. In this case, we're using the count() function
to count the total number of musician records associated with each instrument. Standard
SQL contains several more aggregate functions, such as min(), max(), and sum(), and
most SQL implementations extend this with their own functions as well.

Many-to-one and one-to-many joins don't quite cover every possible situation that
databases need to model; quite often, a many-to-many relationship is required.

To demonstrate a many-to-many join, let's create a new table called bands as follows:

CREATE TABLE bands (id SERIAL PRIMARY KEY, name TEXT NOT NULL);
INSERT INTO bands(name) VALUES ('ABWH'), ('ELP'), ('King Crimson'), ('Pink
Floyd'), ('Yes');

A band has multiple musicians, and musicians can be part of multiple bands. How can we
create a relationship between musicians and bands? If we added a band field to the
musicians table, this would limit each musician to one band. If we added a musician
field to the band table, this would limit each band to one musician. To make the connection,
we need to create a junction table, in which each row represents a musician's membership
in a band.

Improving Data Storage with SQL Chapter 11

[293]

By convention, we call this musicians_bands:

CREATE TABLE musicians_bands (musician_id INT REFERENCES musicians(id),
band_id INT REFERENCES bands(id), PRIMARY KEY (musician_id, band_id));
INSERT INTO musicians_bands(musician_id, band_id) VALUES (1, 3), (2, 2),
(3, 2), (3, 3), (4, 1), (4, 2), (4, 5), (5,4);

The musicians_bands table simply contains two foreign key fields, one to point to a
musician's ID and one to point to the band's ID. Notice that instead of creating or specifying
one field as the primary key, we use the combination of both fields as the primary key. It
wouldn't make sense to have multiple rows with the same two values in them, so the
combination makes an acceptable primary key. To write a query that uses this relationship,
our FROM clause needs to specify two JOIN statements: one from musicians to
musicians_bands and one from bands to musicians_bands.

For example, let's get the names of the bands each musician has been in:

SELECT musicians.name, array_agg(bands.name) AS bands FROM musicians JOIN
musicians_bands ON musicians.id = musicians_bands.musician_id JOIN bands ON
bands.id = musicians_bands.band_id GROUP BY musicians.name ORDER BY
musicians.name ASC;

This query ties musicians to bands using the junction table, then displays musician names
next to an aggregated list of the bands they've been in, and orders it by the musician's
name.

The preceding SQL query gives you the following output:

name bands

Bill Bruford {ABWH,"King Crimson",Yes}

David Gilmour {"Pink Floyd"}

Greg Lake {ELP,"King Crimson"}

Keith Emerson {ELP}

Robert Fripp {"King Crimson"}

Improving Data Storage with SQL Chapter 11

[294]

The array_agg() function used here aggregates string values into an
array structure. This method and the ARRAY data type are specific to
PostgreSQL. There is no SQL standard function for aggregating string
values, but most SQL implementations have a solution for it.

Learning more
This has been a quick overview of SQL concepts and syntax; we've covered most of what
you need to know to write a simple database application, but there's much more to learn.
The PostgreSQL manual, available at https:/ ​/ ​www.​postgresql. ​org/​docs/ ​manuals/ ​, is a
great resource and reference for SQL syntax and the specific features of PostgreSQL.

Modeling relational data
Our application currently stores data in a single CSV file; a file like this is often called a flat
file, because the data has been flattened to two dimensions. While this format works
acceptably for our application and could be translated directly to an SQL table, a more
accurate and useful data model requires more complexity.

Normalization
The process of breaking out a flat data file into multiple tables is called normalization.
Normalization is a process involving a series of levels called normal forms which
progressively remove duplication and create a more precise model of the data we're
storing. Although there are many normal forms, most issues encountered in common
business data can be handled by conforming to the first three.

Roughly speaking, that requires the following conditions:

The first normal form requires that each field contains only one value, and that
repeating columns must be eliminated.
The second normal form additionally requires that every value must be
dependent on the entire primary key. In other words, if a table has primary key
fields A, B, and C, and the value of column of X depends solely on the value of
column A without respect to B or C, the table violates the second normal form.

https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/
https://www.postgresql.org/docs/manuals/

Improving Data Storage with SQL Chapter 11

[295]

The third normal form additionally requires every value in the table to be
dependent only on the primary key. In other words, given a table with primary
key A, and data fields X and Y, the value of Y can't depend on the value of X.

Conforming data to these forms eliminates the potential for redundant, conflicting, or
undefined data situations.

The entity-relationship diagrams
One effective way to help normalize our data and prepare it for a relational database is to
analyze it and create an entity-relationship diagram, or ERD. An ERD is a way of
diagramming the things which our database is storing information about and the
relationships between those things.

Those things are called entities. An entity is a uniquely identifiable object; it corresponds to
a single row of a single table. Entities have attributes, which correspond to the columns of
its table. Entities have relationships with other entities, which correspond to the foreign key
relationships we define in SQL.

Let's consider the entities in our lab scenario with their attributes and relationships:

There are labs. Each lab has a name.
There are plots. Each plot belongs to a lab and has a number. A seed sample is
planted in the plot.
There are lab technicians, who each have a name.
There are lab checks, which are performed by a lab tech at a given lab. Each one
has a date and time.
There are plot checks, which is the data gathered at a plot during a lab check.
Each plot check has various plant and environmental data recorded on it.

Improving Data Storage with SQL Chapter 11

[296]

The following diagram of these entities and relationships is as follows:

In the preceding diagram, the entities are represented by rectangles. We have five entities:
Lab, Plot, Lab Tech, Lab Check, and Plot Check. Each entity has attributes, represented by
the ovals. The relationships are represented by diamonds, with the words describing the
left-to-right relationship. For example, Lab Tech performs Lab Check, and Lab Check is
performed in Lab. Note the small 1 and n characters around the relationship: these show
whether a relationship is one-to-many, many-to-one, or many-to-many.

This diagram represents a reasonably normalized structure for our data. To implement it in
SQL, we'd just make a table for each entity, a column for each attribute, and a foreign key
relationship (possibly including an intermediate table) for each relationship. Before we can
do that, let's consider SQL data types.

Improving Data Storage with SQL Chapter 11

[297]

Assigning data types
Standard SQL defines 16 data types, including types for integers and floating-point
numbers of various sizes, ASCII or Unicode strings of either fixed or variable sizes, date
and time types, and bit types. Nearly every SQL engine extends this with yet more types to
accommodate binary data, special types of strings or numbers, and more. Many data types
seem a little redundant, and several have aliases that may be different between
implementations. Choosing data types for your columns can be surprisingly confusing!

For PostgreSQL, the following chart provides some reasonable choices:

Data being stored Recommended type Notes

Fixed-length strings CHAR Requires a length.

Short-to-medium strings VARCHAR
Requires a max length argument, for
example, VARCHAR(256).

Long, freeform text TEXT Unlimited length, slower performance.

Smaller Integers SMALLINT Up to ±32,767.

Most Integers INT Up to around ±2.1 billion.

Larger Integers BIGINT Up to around ±922 quadrillion.

Decimals numbers NUMERIC
Takes optional length and precision
arguments.

Integer Primary Key SERIAL, BIGSERIAL Autoincrementing integer or big integers.

Boolean BOOLEAN

Date and time
TIMESTAMP WITH
TIMEZONE

Stores date, time, and timezone. Accurate to
1 µs.

Date without time DATE

Time without date TIME Can be with or without time zone.

These types will probably meet the vast majority of your needs in most applications, and
we'll be using a subset of these for our ABQ database. As we create our tables, we'll refer to
our data dictionary and choose appropriate data types for our columns.

Improving Data Storage with SQL Chapter 11

[298]

Be careful not to choose overly specific or restrictive data types. Any data
can ultimately be stored in a TEXT field; the purpose of choosing more
specific types is mainly to enable the use of operators, functions, or sorting
specific to that type. If those aren't required, consider a more generic type.
For example, phone numbers and U.S. Social Security numbers can be
represented purely with digits, but that's no reason to make them
INTEGER or NUMERIC fields; after all, you wouldn't do arithmetic with
them!

Creating the ABQ database
Now that we've modeled our data and gotten a feel for the data types available, it's time to
build our database. To begin, create a database on your SQL server called abq and make
yourself the owner.

Next, under your project root folder, create a new directory called sql. Inside the sql
folder, create a file called create_db.sql. We'll start writing our database creation code in
this file.

Creating our tables
The order in which we create our tables is significant. Any table referred to in a foreign key
relationship will need to exist before the relationship is defined. Because of this, it's best to
start with your lookup tables and follow the chain of one-to-many relationships until all the
tables are created. In our ERD, that takes us from roughly the upper-left to the lower-right.

Creating the lookup tables
We need to create the following three lookup tables:

labs: This lookup table will contain the ID strings for our laboratories.
lab_techs: This lookup table will have the names of the lab technicians,
identified by their employee ID numbers.
plots: This lookup table will have one row for each physical plot, identified by
lab and plot numbers. It will also keep track of the current seed sample planted
in the plot.

Improving Data Storage with SQL Chapter 11

[299]

Add the SQL query for creating these tables to create_db.sql as follows:

CREATE TABLE labs (id CHAR(1) PRIMARY KEY);
CREATE TABLE lab_techs (id SMALLINT PRIMARY KEY, name VARCHAR(512) UNIQUE
NOT NULL);
CREATE TABLE plots (lab_id CHAR(1) NOT NULL REFERENCES labs(id),
 plot SMALLINT NOT NULL, current_seed_sample CHAR(6),
 PRIMARY KEY(lab_id, plot),
 CONSTRAINT valid_plot CHECK (plot BETWEEN 1 AND 20));

Before we can use our database, the lookup tables will need to be populated:

labs should have values A through E for the five labs.
lab_techs needs the name and ID number for our four lab technicians: J
Simms (4291), P Taylor (4319), Q Murphy (4478), and L Taniff (5607).
plots needs all 100 of the plots, numbers 1 through 20 for each lab. The seed
sample rotates between four values such as AXM477, AXM478, AXM479, and
AXM480.

You can populate these tables by hand using pgAdmin, or using the db_populate.sql
script included with the example code.

The lab_checks table
The lab_check table is an instance of a technician checking all the plots of a lab at a given
time on a given date as shown in the following SQL query:

CREATE TABLE lab_checks(
 date DATE NOT NULL, time TIME NOT NULL,
 lab_id CHAR(1) NOT NULL REFERENCES labs(id),
 lab_tech_id SMALLINT NOT NULL REFERENCES lab_techs(id),
 PRIMARY KEY(date, time, lab_id));

The date, time, and lab_id columns together uniquely identify a lab check, and so we
designate them the primary key columns. The ID of the lab technician performing the check
is the lone attribute in this table.

The plot_checks table
Plot checks are the actual data records collected at individual plots. These are part of a lab
check, and so must refer back to an existing lab check.

Improving Data Storage with SQL Chapter 11

[300]

We'll begin with the primary key columns:

CREATE TABLE plot_checks(date DATE NOT NULL, time TIME NOT NULL,
lab_id CHAR(1) NOT NULL REFERENCES labs(id), plot SMALLINT NOT NULL,

This is the primary key of a lab_check table plus a plot number; its key constraints look
like this:

PRIMARY KEY(date, time, lab_id, plot),
FOREIGN KEY(date, time, lab_id)
 REFERENCES lab_checks(date, time, lab_id),
FOREIGN KEY(lab_id, plot) REFERENCES plots(lab_id, plot),

Now we can add the attribute columns:

seed_sample CHAR(6) NOT NULL,
humidity NUMERIC(4, 2) CHECK (humidity BETWEEN 0.5 AND 52.0),
light NUMERIC(5, 2) CHECK (light BETWEEN 0 AND 100),
temperature NUMERIC(4, 2) CHECK (temperature BETWEEN 4 AND 40),
equipment_fault BOOLEAN NOT NULL,
blossoms SMALLINT NOT NULL CHECK (blossoms BETWEEN 0 AND 1000),
plants SMALLINT NOT NULL CHECK (plants BETWEEN 0 AND 20),
fruit SMALLINT NOT NULL CHECK (fruit BETWEEN 0 AND 1000),
max_height NUMERIC(6, 2) NOT NULL CHECK (max_height BETWEEN 0 AND 1000),
min_height NUMERIC(6, 2) NOT NULL CHECK (min_height BETWEEN 0 AND 1000),
median_height NUMERIC(6, 2) NOT NULL
 CHECK (median_height BETWEEN min_height AND max_height),
notes TEXT);

Notice our use of data types and the CHECK constraint to duplicate the limits from our data
dictionary. Using these, we've leveraged the power of the database to safeguard against
invalid data.

Creating a view
Before we finish our database design, we're going to create a view that will simplify access
to our data. A view behaves like a table in most respects, but contains no actual data; it's
really just a stored SELECT query. Our view will format our data for easier interaction with
the GUI.

Views are created using the CREATE VIEW command as follows:

CREATE VIEW data_record_view AS (

Improving Data Storage with SQL Chapter 11

[301]

Inside the parentheses, we put the SELECT query that will return the table data for our
view:

SELECT pc.date AS "Date", to_char(pc.time, 'FMHH24:MI') AS "Time",
 lt.name AS "Technician", pc.lab_id AS "Lab", pc.plot AS "Plot",
 pc.seed_sample AS "Seed sample", pc.humidity AS "Humidity",
 pc.light AS "Light", pc.temperature AS "Temperature",
 pc.plants AS "Plants", pc.blossoms AS "Blossoms", pc.fruit AS
 "Fruit",
 pc.max_height AS "Max Height", pc.min_height AS "Min Height",
 pc.median_height AS "Median Height", pc.notes AS "Notes"
FROM plot_checks AS pc JOIN lab_checks AS lc ON pc.lab_id = lc.lab_id AND
pc.date = lc.date AND pc.time = lc.time JOIN lab_techs AS lt ON
lc.lab_tech_id = lt.id);

We're selecting the plot_checks table, and joining it to lab_checks and lab_techs by
way of our foreign key relationships. Notice that we've aliased these tables by using the AS
keyword. Short aliases like this can help make a large query more readable. We're also
aliasing each field to the name used in the application's data structures. These must be
enclosed in double quotes to allow for the use of spaces and to preserve case. By making
the column names match the data dictionary keys in our application, we won't need to
translate field names in our application code.

SQL database engines such as PostgreSQL are highly efficient at joining
and transforming tabular data. Whenever possible, leverage this power
and make the database do the work of formatting the data for the
convenience of your application.

This completes our database creation script. Run this script in your PostgreSQL client and
verify that the four tables and the view have been created.

Integrating SQL into our application
Converting our application to a SQL backend will be no small task. The application was
built around the assumption of the CSV files, and although we've taken care to separate our
concerns, many things are going to need to change.

Improving Data Storage with SQL Chapter 11

[302]

Let's break down the steps we'll need to take:

We'll need to write a SQL model
Our Application class will need to use the SQL model
The record form will need to be reordered to prioritize our keys, use the new
lookups, and autopopulate using the database
The record list will need to be adjusted to work with the new data model and
primary keys

Along the way, we'll need to fix other bugs or implement some new UI elements as needed.
Let's get started!

Creating a new model
We'll start in models.py by importing psycopg2 and DictCursor:

import psycopg2 as pg
from psycopg2.extras import DictCursor

DictCursor will allow us to fetch results in Python dictionary rather than the default
tuples, which is easier to work with in our application.

Begin a new model class called SQLModel and copy over the fields property from the
CSVModel.

Start by clearing the value lists from Technician, Lab, and Plot, and making
Technician an FT.string_list type:

class SQLModel:
 fields = {
 ...
 "Technician": {'req': True, 'type': FT.string_list,
 'values': []},
 "Lab": {'req': True, 'type': FT.string_list, 'values': []},
 "Plot": {'req': True, 'type': FT.string_list,'values': []},

These lists will be populated from our lookup tables rather than hardcoded into the model.

Improving Data Storage with SQL Chapter 11

[303]

We'll do that in the __init__() method:

 def __init__(self, host, database, user, password):
 self.connection = pg.connect(host=host, database=database,
 user=user, password=password, cursor_factory=DictCursor)
 techs = self.query("SELECT * FROM lab_techs ORDER BY name")
 labs = self.query("SELECT id FROM labs ORDER BY id")
 plots = self.query(
 "SELECT DISTINCT plot FROM plots ORDER BY plot")
 self.fields['Technician']['values'] = [x['name'] for x in
 techs]
 self.fields['Lab']['values'] = [x['id'] for x in labs]
 self.fields['Plot']['values'] = [str(x['plot']) for x in plots]

__init__() takes our basic database connection details and establishes a connection to the
database using psycopg2.connect(). Because we passed in DictCursor as the
cursor_factory, this connection will return lists of dictionaries for all data queries.

Then, we query the database for the pertinent columns in our three lookup tables and use a
list comprehension to flatten the results of each query for the values list.

The query method used here is a wrapper that we need to write next:

 def query(self, query, parameters=None):
 cursor = self.connection.cursor()
 try:
 cursor.execute(query, parameters)
 except (pg.Error) as e:
 self.connection.rollback()
 raise e
 else:
 self.connection.commit()
 if cursor.description is not None:
 return cursor.fetchall()

Improving Data Storage with SQL Chapter 11

[304]

Querying a database using psycopg2 involves generating a cursor object from the
connection, then calling its execute() method with the query string and optional
parameter data. By default, all queries are executed in a transaction, meaning they don't
take effect until we commit the changes. If the query raises an exception for any reason
(SQL syntax error, constraint violation, connection issue, and so on) the transaction enters a
corrupt state and must be rolled back (reverted to the beginning state of the transaction)
before we can use our connection again. Therefore, we will execute our queries in a try
block and rollback the transaction using connection.rollback() in the event of any
psycopg2-related exceptions (which all descend from pg.Error).

To retrieve data from a cursor after the query is executed, we're using the fetchall()
method, which retrieves all results as a list. However, if the query wasn't a data-returning
query (such as INSERT, for example), fetchall() will throw an exception. To avoid this,
we first check cursor.description: if the query returned data (even an empty set of
data), cursor.description will contain metadata about the returned table (column
names, for example). If not, it will be None.

Let's test our query() method by writing the get_all_records() method:

 def get_all_records(self, all_dates=False):
 query = ('SELECT * FROM data_record_view '
 'WHERE NOT %(all_dates)s OR "Date" = CURRENT_DATE '
 'ORDER BY "Date", "Time", "Lab", "Plot"')
 return self.query(query, {'all_dates': all_dates})

Since our users are used to working with only the current day's data, we'll only show that
data by default, but add an optional flag should we ever need to retrieve all data. We can
get the current date in most SQL implementations using the CURRENT_DATE constant,
which we've used here. To use our all_dates flag, we're employing a prepared query.

The syntax %(all_dates)s defines a parameter; it tells psycopg2 to check the included
parameter dictionary for the key all_dates and substitute its value into the query.
The psycopg2 library will automatically do this in a way that's both safe and works
correctly with various data types like None or Boolean values.

Always use prepared queries to pass data into a SQL query. Never use
string formatting or concatenation! Not only is it harder than you think to
get it right, it can leave you open to accidental or malicious database
corruption.

Improving Data Storage with SQL Chapter 11

[305]

Next, let's create get_record():

def get_record(self, date, time, lab, plot):
 query = ('SELECT * FROM data_record_view '
 'WHERE "Date" = %(date)s AND "Time" = %(time)s '
 'AND "Lab" = %(lab)s AND "Plot" = %(plot)s')
 result = self.query(
 query, {"date": date, "time": time, "lab": lab, "plot": plot})
 return result[0] if result else {}

We're no longer dealing in row numbers like our CSVModel did, so this method needs all
four key fields to retrieve a record. Once again, we're using a prepared query, specifying
parameters for the four fields. Take note of the s after the closing parenthesis of the
parameter; this is a required format specifier, and should always be s.

Even with a single row, query() is going to return results in a list. Our application expects
a single row dictionary from get_record(), so our return statement extracts the first
item in result if the list is not empty, or an empty dict if it is.

Retrieving a lab check record is very similar:

 def get_lab_check(self, date, time, lab):
 query = ('SELECT date, time, lab_id, lab_tech_id, '
 'lt.name as lab_tech FROM lab_checks JOIN lab_techs lt '
 'ON lab_checks.lab_tech_id = lt.id WHERE '
 'lab_id = %(lab)s AND date = %(date)s AND time = %(time)s')
 results = self.query(
 query, {'date': date, 'time': time, 'lab': lab})
 return results[0] if results else {}

In this query, we're using a join to make sure we have the technician name available and
not just the ID. This method will come in handy in our save_record() method and form
data autofill methods.

The save_record() method will need four queries: an INSERT and UPDATE query for each
of lab_checks and plot_checks. To keep the method reasonably concise, let's create the
query strings as class properties.

Improving Data Storage with SQL Chapter 11

[306]

We'll start with the lab check queries:

 lc_update_query = ('UPDATE lab_checks SET lab_tech_id = '
 '(SELECT id FROM lab_techs WHERE name = %(Technician)s) '
 'WHERE date=%(Date)s AND time=%(Time)s AND lab_id=%(Lab)s')
 lc_insert_query = ('INSERT INTO lab_checks VALUES (%(Date)s,
 '%(Time)s, %(Lab)s,(SELECT id FROM lab_techs '
 'WHERE name=%(Technician)s))')

These queries are fairly straightforward, though note our use of a subquery to
populate lab_tech_id in each case. Our application will have no idea what a lab tech's ID
is, so we'll need to look the ID up by name. Also, take note that our parameter names match
the names used in our application's fields. This will save us having to reformat the record
data acquired from our form.

The plot check queries are longer but no more complicated:

 pc_update_query = (
 'UPDATE plot_checks SET seed_sample = %(Seed sample)s, '
 'humidity = %(Humidity)s, light = %(Light)s, '
 'temperature = %(Temperature)s, '
 'equipment_fault = %(Equipment Fault)s, '
 'blossoms = %(Blossoms)s, plants = %(Plants)s, '
 'fruit = %(Fruit)s, max_height = %(Max Height)s, '
 'min_height = %(Min Height)s, median_height = '
 '%(Median Height)s, notes = %(Notes)s '
 'WHERE date=%(Date)s AND time=%(Time)s '
 'AND lab_id=%(Lab)s AND plot=%(Plot)s')

 pc_insert_query = (
 'INSERT INTO plot_checks VALUES (%(Date)s, %(Time)s, %(Lab)s,'
 ' %(Plot)s, %(Seed sample)s, %(Humidity)s, %(Light)s,'
 ' %(Temperature)s, %(Equipment Fault)s, %(Blossoms)s,'
 ' %(Plants)s, %(Fruit)s, %(Max Height)s, %(Min Height)s,'
 ' %(Median Height)s, %(Notes)s)')

With the queries in place, we can start the save_record() method:

 def save_record(self, record):
 date = record['Date']
 time = record['Time']
 lab = record['Lab']
 plot = record['Plot']

Improving Data Storage with SQL Chapter 11

[307]

The CSVModel.save_record() method took a record dictionary and a rownum, but we
no longer need the rownum since it's meaningless. All our key information is already in the
record. For convenience, we'll extract those four fields and assign them local variable
names.

There are three possibilities when we try to save a record in this database:

Neither a lab check or plot check record exists. Both will need to be created.
The lab check exists but the plot check does not. The lab check will need to be
updated, in case the user wants to correct the technician value, and the plot check
will need to be added.
Both the lab check and plot check exist. Both will need to be updated with the
submitted values.

To determine which possibility is true, we'll make use of our get_ methods:

 if self.get_lab_check(date, time, lab):
 lc_query = self.lc_update_query
 else:
 lc_query = self.lc_insert_query
 if self.get_record(date, time, lab, plot):
 pc_query = self.pc_update_query
 else:
 pc_query = self.pc_insert_query

For both the lab check and plot check, we attempt to retrieve a record from the respective
table using our key values. If one is found, we'll use our update queries; otherwise, we'll
use our insert queries.

Now, we just run those queries with record as the parameter list:

 self.query(lc_query, record)
 self.query(pc_query, record)

Note that psycopg2 has no problem with us passing a dictionary with extra parameters
that aren't referenced in the query, so we don't need to bother with filtering unneeded items
from record.

There is one more thing we need to do here: remember that our Application needs to
keep track of updated and inserted rows. Since we are no longer dealing with row
numbers, only the database model knows whether an insert or update was performed.

Improving Data Storage with SQL Chapter 11

[308]

Let's create an instance property to share that information:

 if self.get_record(date, time, lab, plot):
 pc_query = self.pc_update_query
 self.last_write = 'update'
 else:
 pc_query = self.pc_insert_query
 self.last_write = 'insert'

Now Application can check the value of last_write after calling save_record() to
determine which operation was done.

There is one last method this model needs; since our database knows what seed sample is
currently in each plot, we want our form to populate this automatically for the user. We'll
need a method that takes a lab and plot_id and returns the seed sample name.

We'll call it get_current_seed_sample():

 def get_current_seed_sample(self, lab, plot):
 result = self.query('SELECT current_seed_sample FROM plots '
 'WHERE lab_id=%(lab)s AND plot=%(plot)s',
 {'lab': lab, 'plot': plot})
 return result[0]['current_seed_sample'] if result else ''

This time, our return statement is not just extracting the first row of results, but the value
of the current_seed_sample column from that first row. If there's no result, we return
an empty string.

That completes our model class; now let's incorporate it into the application.

Adjusting the Application class for the SQL
backend
The first thing the Application class will need is the database connection information to
pass to the model.

For the host and database name, we can just add settings to our SettingsModel:

 variables = {
 ...
 'db_host': {'type': 'str', 'value': 'localhost'},
 'db_name': {'type': 'str', 'value': 'abq'}

Improving Data Storage with SQL Chapter 11

[309]

These can be saved in our JSON config file, which can be edited to switch from
development to production, but our username and password will need to be entered by the
user. For that, we'll need to build a login dialog.

Building a login window
Tkinter does not provide us with a ready-made login dialog, but it does provide us with a
generic Dialog class which can be subclassed to create custom dialogs.

Import this class from tkinter.simpledialog into our views.py file:

from tkinter.simpledialog import Dialog

Let's start with our class declaration and __init__() method:

class LoginDialog(Dialog):

 def __init__(self, parent, title, error=''):
 self.pw = tk.StringVar()
 self.user = tk.StringVar()
 self.error = tk.StringVar(value=error)
 super().__init__(parent, title=title)

Our class will take a parent as usual, a window title, and an optional error, which will
be used in case we need to re-display the dialog with an error message (for example, if the
password is wrong). The rest of __init__() sets up some Tkinter variables for the
password, username, and error string; then, it finishes with the customary call to
super().

The form itself is not defined in __init__(); instead, we need to override the body()
method:

 def body(self, parent):
 lf = tk.Frame(self)
 ttk.Label(lf, text='Login to ABQ', font='Sans 20').grid()

The first thing we do is make a frame and add a title label to the first row using a large font.

Next, we'll check for an error string and, if there is one, display it in an appropriate style:

 if self.error.get():
 tk.Label(lf, textvariable=self.error,
 bg='darkred', fg='white').grid()

Improving Data Storage with SQL Chapter 11

[310]

Now we'll add the username and password fields and pack our frame into the dialog:

 ttk.Label(lf, text='User name:').grid()
 self.username_inp = ttk.Entry(lf, textvariable=self.user)
 self.username_inp.grid()
 ttk.Label(lf, text='Password:').grid()
 self.password_inp = ttk.Entry(lf, show='*',
 textvariable=self.pw)
 self.password_inp.grid()
 lf.pack()
 return self.username_inp

Notice our use of the show option in the password entry, which replaces any typed text
with the character we specify, to create a hidden text field. Also, note that we return the
username input widget from the method. Dialog will focus whichever widget is returned
here when it's displayed.

Dialog automatically supplies the OK and Cancel buttons; we'll want to know which
button was clicked, and if it was the OK button, retrieve the entered information.

Clicking OK calls the apply() method, so we can override it to set up a result value:

 def apply(self):
 self.result = (self.user.get(), self.pw.get())

Dialog creates a property by default called result which is set to None. But now, if our
user clicks OK, result will be a tuple containing a username and password. We'll use this
property to determine what was clicked and what was entered.

Using the login window
To use the dialog, our application needs a method that will display the dialog in an infinite
loop until either the user clicks Cancel or the provided credentials successfully
authenticate.

Start a new database_login() method in Application:

 def database_login(self):
 error = ''
 db_host = self.settings['db_host'].get()
 db_name = self.settings['db_name'].get()
 title = "Login to {} at {}".format(db_name, db_host)

Improving Data Storage with SQL Chapter 11

[311]

We begin by setting up an empty error string and a title string to pass to our
LoginDialog class.

Now we'll start the infinite loop:

 while True:
 login = v.LoginDialog(self, title, error)
 if not login.result:
 break

Inside the loop, we create a LoginDialog, which will block until the user clicks one button
or the other. After the dialog returns, if login.result is None, the user has clicked Cancel,
so we break out of the loop and exit the method.

If we have a non-None login.result, we'll attempt to log in with it:

 else:
 username, password = login.result
 try:
 self.data_model = m.SQLModel(
 db_host, db_name, username, password)
 except m.pg.OperationalError:
 error = "Login Failed"
 else:
 break

After extracting the username and password from the result tuple, we try to create a
SQLModel instance with it. If the credentials fail, psycopg2.connect will raise an
OperationalError, in which case we'll simply populate our error string and let the
infinite loop iterate again.

If the data model creation succeeded, we simply break out of the loop and exit the method.

Back in __init__(), just after setting up our settings, let's put database_login() to
work:

 self.database_login()
 if not hasattr(self, 'data_model'):
 self.destroy()
 return

Improving Data Storage with SQL Chapter 11

[312]

After our call to self.database_login(), Application either has a data_model
attribute (because the login succeeded) or doesn't (because the user clicked Cancel). If it
doesn't, we'll quit the application by destroying the main window and returning
immediately from __init__().

Of course, before this logic will work, we need to delete the creation of the CSVModel:

 # Delete this line:
 self.data_model = m.CSVModel(filename=self.filename.get())

Fixing some model incompatibilities
In theory, we should be able to swap in a new model with the same method calls and our
application object will just work, but this isn't quite the case. There are a few small fixes we
need to make to get Application working with our new model.

DataRecordForm creation
First, let's fix our DataRecordForm instantiation in Application.__init__():

 # The data record form
 self.recordform = v.DataRecordForm(
 self, self.data_model.fields, self.settings,
 self.callbacks)

Previously, we'd pulled the fields argument from the static class property of CSVModel.
We need to pull it from our data model instance instead, since the instance is setting up
some values.

Fixing the open_record() method
Next, we need to fix our open_record() method. It takes a rownum currently, but we no
longer have row numbers; we have date, time, lab, and plot.

To reflect this, replace all instances of rownum with rowkey:

 def open_record(self, rowkey=None):
 if rowkey is None:
 # ...etc

Improving Data Storage with SQL Chapter 11

[313]

Finally, expand rowkey in the get_record() call, since it expects four positional
arguments:

 record = self.data_model.get_record(*rowkey)

Fixing the on_save() method
The error handling portion of on_save() is fine, but after the if errors: block, we'll
start changing things:

 data = self.recordform.get()
 try:
 self.data_model.save_record(data)

We no longer need to extract the row number or pass it into save_record(), and we can
delete the handling of IndexError since SQLModel will not raise that exception. We also
need to rewrite the updating of inserted_rows and updated_rows.

Remove all the code in this method after the call to self.status.set(), and replace it
with this:

 key = (data['Date'], data['Time'], data['Lab'], data['Plot'])
 if self.data_model.last_write == 'update':
 self.updated_rows.append(key)
 else:
 self.inserted_rows.append(key)
 self.populate_recordlist()
 if self.data_model.last_write == 'insert':
 self.recordform.reset()

After building the primary key tuple from data passed into the method, we use the value
of last_write to append it to the proper list. Finally, we reset the record form in the case
of an insert.

Creating new callbacks
There are two callbacks we want to have for our record form. When the user enters a lab
and plot value, we want to automatically populate the correct seed value that is currently
planted in that plot. Also, when the date, time, and lab values have been entered, and
we have an existing lab check that matches, we should populate the name of the lab tech
who did that check.

Improving Data Storage with SQL Chapter 11

[314]

Of course, if our user prefers not to have data autofilled, we shouldn't do either of these
things.

Let's start with the get_current_seed_sample() method:

 def get_current_seed_sample(self, *args):
 if not (hasattr(self, 'recordform')
 and self.settings['autofill sheet data'].get()):
 return
 data = self.recordform.get()
 plot = data['Plot']
 lab = data['Lab']
 if plot and lab:
 seed = self.data_model.get_current_seed_sample(lab, plot)
 self.recordform.inputs['Seed sample'].set(seed)

We begin by checking whether we have a record form object created, and whether the user
wants data autofilled. If not, we exit the method. Next, we fetch the plot and lab from the
form's current data. If we have both, we use them to fetch the seed sample value from the
model and set the form's Seed sample value accordingly.

We'll do something similar with the lab tech value:

 def get_tech_for_lab_check(self, *args):
 if not (hasattr(self, 'recordform')
 and self.settings['autofill sheet data'].get()):
 return
 data = self.recordform.get()
 date = data['Date']
 time = data['Time']
 lab = data['Lab']

 if all([date, time, lab]):
 check = self.data_model.get_lab_check(date, time, lab)
 tech = check['lab_tech'] if check else ''
 self.recordform.inputs['Technician'].set(tech)

This time, we need the date, time, and lab arguments to fetch the lab check record.
Because we can't be sure if a check matching the values exists, we'll set tech to a blank
string if we can't find a matching lab check.

Add these two methods to the callbacks dictionary and the Application class should be
ready to go.

Improving Data Storage with SQL Chapter 11

[315]

Updating our views for the SQL backend
Let's review the changes we need to make in our views:

Re-arrange our fields to put all the primary keys upfront
Fix our form's load_record() method to work with the new key structure
Add triggers to our form to populate Technician and Seed sample
Fix our record list to work with the new keys

Let's start with our record form.

The data record form
The first task we have is to move the fields around. This is really just a matter of cutting
and pasting code and then fixing our grid() arguments. Place them in the proper key
order: Date, Time, Lab, Plot. Then, leave Technician and Seed sample at the end of the
Record Information section.

It should look like this:

The reason for this change is so that all the fields which could trigger autofilling of
Technician or Seed sample will come before those fields. If any of them came after, we'd be
uselessly autofilling a field the user had already filled.

Improving Data Storage with SQL Chapter 11

[316]

At the end of __init__(), let's add our triggers to populate Technician and Seed sample:

 for field in ('Lab', 'Plot'):
 self.inputs[field].variable.trace(
 'w', self.callbacks['get_seed_sample'])
 for field in ('Date', 'Time', 'Lab'):
 self.inputs[field].variable.trace(
 'w', self.callbacks['get_check_tech'])

We're putting a trace on the key variables for lab check and plot; should any of them
change, we'll call the appropriate callback to auto-populate the form.

In load_record(), replace rownum with rowkey for clarity, then fix the label text so that
it makes sense:

 self.record_label.config(
 text='Record for Lab {2}, Plot {3} at {0} {1}'
 .format(*rowkey))

The last change of all for DataRecordForm deals with a small usability issue. As we auto-
populate the form, it gets more and more confusing to determine which field we need to
focus next. We're going to address this by creating a method that finds and focuses the first
empty field in the form.

We'll call it focus_next_empty():

 def focus_next_empty(self):
 for labelwidget in self.inputs.values():
 if (labelwidget.get() == ''):
 labelwidget.input.focus()
 break

In this method, we're just iterating all the inputs and checking their current value. When we
find one returns an empty string, we focus it, then break through the loop so that no more
are checked. We can remove any calls to focus fields from DataRecordForm.reset() and
replace them with a call to this method. You can also add it to our application's autofill
methods, get_current_seed_sample() and get_tech_for_lab_check().

Improving Data Storage with SQL Chapter 11

[317]

The record list
In RecordList, the Row column no longer contains useful information we wish to display.

We can't remove it, but we can hide it with this code:

self.treeview.config(show='headings')

The show configuration option takes any or both of two values: tree and headings.
The tree argument represents the #0 column since it's used to expand tree.
The headings argument represents the remaining columns. By specifying only headings
here, the #0 column is hidden.

We also need to deal with our populate() method, which relies heavily on rownum.

We'll start by changing the for loop that populates the values:

 for rowdata in rows:
 rowkey = (str(rowdata['Date']), rowdata['Time'],
 rowdata['Lab'], str(rowdata['Plot']))
 values = [rowdata[key] for key in valuekeys]

We can remove the enumerate() call and just deal with the row data, extracting the
rowkey tuple from it by getting Date, Time, Lab, and Plot. These need to be cast to string,
because they come out of the database as Python objects like date and int, and we need to
match them against the keys in inserted and updated which are all string values (since
they were pulled from our form).

Let's do that comparison and set our row tags:

 if self.inserted and rowkey in self.inserted:
 tag = 'inserted'
 elif self.updated and rowkey in self.updated:
 tag = 'updated'
 else:
 tag = ''

Now, we need to decide how to handle our row's iid value. The iid values must be
strings; this wasn't a problem when our primary key was an integer (easily castable to and
from a string), but our tuple must be serialized in some way that we can easily reverse.

A simple way to address this is to turn our tuple into a delimited string:

 stringkey = '{}|{}|{}|{}'.format(*rowkey)

Improving Data Storage with SQL Chapter 11

[318]

Any character that isn't going to appear in the data will work fine as a delimiter; we've
chosen to use the pipe character in this case.

Now we can use the string version of the key in treeview:

 self.treeview.insert('', 'end', iid=stringkey,
 text=stringkey, values=values, tag=tag)

The last part of this method focuses the first row for keyboard users. To focus the first row
before, we relied on the fact that the first iid was always 0. Now it will be some data-
dependent tuple, so we'll have to retrieve the first iid before we can set the selection and
focus.

We can do this by using the Treeview.identify_row() method:

 if len(rows) > 0:
 firstrow = self.treeview.identify_row(0)
 self.treeview.focus_set()
 self.treeview.selection_set(firstrow)
 self.treeview.focus(firstrow)

The identify_row() method takes a row number and returns the iid of that row. Once
we have that, we can pass it to selection_set() and focus().

Our final change is to the on_open_record() method. Since we've used our serialized
tuple as an iid value, we obviously need to translate this back to a tuple that can be passed
back to the on_open_record() method.

This is as easy as calling split():

 self.callbacks['on_open_record'](selected_id.split('|'))

That fixes all our view code, and our program is ready to run!

Last changes
Phew! That was quite a journey, but you're not quite done yet. As homework, you'll need to
update your unit tests to accommodate the database and login. The best approach would be
to mock out the database and login dialog.

There are also still some remnants of the CSV backend sitting around, such as the Select
target… item in the file menu. You can delete those UI elements, but leave the backend
code as it may come in handy in the near future.

Improving Data Storage with SQL Chapter 11

[319]

Summary
In this chapter, you learned about relational databases and SQL, the language used to work
with them. You learned to model and normalize data to reduce the possibility of
inconsistencies, and how to convert flat files into relational data. You learned how to work
with the psycopg2 library, and went through the arduous task of converting the
application to use a SQL backend.

In the next chapter, we'll be reaching out to the cloud. We'll need to contact some remote
servers using different networking protocols to exchange data. You'll learn about the
Python standard library's modules for working with HTTP and FTP, and use them to
download and upload data.

12
Connecting to the Cloud

It seems that nearly every application needs to talk to the outside world sooner or later, and
your ABQ data entry application is no exception. You've received some new feature
requests that will require some interactions with remote servers and services. First, the
quality assurance division is doing a study of how local weather conditions are impacting
the environmental data in each lab; they've requested a way to download and store local
weather data in the database on demand. The second request is from your boss, who is still
required to upload daily CSV files to the central corporate servers. She would like this
process streamlined and available at a mouse click.

In this chapter, you will learn the following topics:

Connecting to web services and downloading data using urllib
Managing more complex HTTP interactions using the requests library
Connecting and uploading to FTP services using ftplib

HTTP using urllib
Every time you open a website in your browser, you're using the Hyper Text Transfer
Protocol, or HTTP. HTTP was created over 25 years ago as a way for web browsers to
download HTML documents, but has evolved into one of the most popular client-server
communication protocols for any number of purposes. Not only can we use it to move
everything from plain text to streaming video across the Internet, but applications can also
use it to transfer data, initiate remote procedures, or distribute computing tasks.

Connecting to the Cloud Chapter 12

[321]

A basic HTTP transaction includes a client and a server, which function as follows:

Client: The client creates a request. The request specifies an operation called a
method. The most common methods are GET, for retrieving data, and POST, for
submitting data. The request has a URL, which specifies the host, port, and path
to which the request is being made, and headers which include metadata like the
data-type or authorization tokens. Finally, it has a payload, which may contain
serialized data in key-value pairs.
Server: The server receives the request and returns a response. The response has
a header containing metadata such as the status code or content-type of the
response. It also has a payload containing the actual content of the response, such
as HTML, XML, JSON, or binary data.

In a web browser, these operations take place in the background, but our application will
deal directly with request and response objects in order to talk to remote HTTP servers.

Basic downloading with urllib.request
The urllib.request module is a Python module for generating HTTP requests. It
contains a number of functions and classes for generating HTTP requests, the most basic of
which is the urlopen() function. The urlopen() function can create a GET or POST
request and send it to a remote server.

Let's explore how urllib works; open a Python shell and execute the following
commands:

>>> from urllib.request import urlopen
>>> response = urlopen('http://packtpub.com')

The urlopen() function takes, at a minimum, a URL string. By default, it makes a GET
request to the URL and returns an object that wraps the response received from the server.
This response object exposes metadata or content received from the server, which we can
use in our application.

Much of the response's metadata is found in the header, which we can extract using
getheader() as follows:

>>> response.getheader('Content-Type')
'text/html; charset=utf-8'
>>> response.getheader('Server')
'nginx/1.4.5'

Connecting to the Cloud Chapter 12

[322]

Responses have a status, indicating the error conditions encountered (if any) during the
request process; the status has both a number and a text explanation, called reason.

We can extract both from our response object as follows:

>>> response.status
200
>>> response.reason
'OK'

In the preceding code, a 200 status means the transaction was a success. Client-side errors,
such as sending a bad URL or incorrect permissions, are indicated by statuses in the 400s,
while server-side problems are indicated by statuses in the 500s.

The payload of the response object can be retrieved using an interface similar to a file
handle as follows:

>>> html = response.read()
>>> html[:15]
b'<!DOCTYPE html>'

Just like a file handle, the response can only be read once, using the read() method; unlike
a file handle, it can't be "rewound" using seek(), so it's important to save the response data
in another variable if it needs to be accessed more than once. The output of
response.read() is a bytes object, which should be cast or decoded into an appropriate
object.

In this case, we have a utf-8 string as follows:

>>> html.decode('utf-8')[:15]
'<!DOCTYPE html>'

In addition to the GET requests, urlopen() can also generate POST requests.

To do this, we include a data argument as follows:

>>> response = urlopen('http://duckduckgo.com', data=b'q=tkinter')

The data value needs to be a URL-encoded bytes object. The URL-encoded data string
consists of key-value pairs separated by ampersand (&) symbols, with certain reserved
characters encoded to URL-safe alternatives (for example, the space character is %20, or
sometimes just +).

Connecting to the Cloud Chapter 12

[323]

A string like this can be created by hand, but it's easier to use the urlencode function
provided by the urllib.parse module. Take a look at the following code:

>>> from urllib.parse import urlencode
>>> data = {'q': 'tkinter, python', 'ko': '-2', 'kz': '-1'}
>>> urlencode(data)
'q=tkinter%2C+python&ko=-2&kz=-1'
>>> response = urlopen('http://duckduckgo.com',
data=urlencode(data).encode())

The data argument must be bytes, not a string, so encode() must be called on the URL-
encoded string before urlopen will accept it.

Let's try downloading the weather data needed for our application. The site we'll be using
is http://weather.gov, which provides weather data within the United States. The
actual URL we'll be downloading is http:/ ​/ ​w1.​weather. ​gov/ ​xml/​current_ ​obs/ ​STATION.
xml, where STATION is replaced by the call-sign of the local weather station. In the case of
ABQ, we'll be using KBMG, located in Bloomington, Indiana.

The QA team wants you to record the temperature (in degrees Celsius), relative humidity,
air pressure (in millibars), and sky conditions (a string, like overcast or fair). They also need
the date and time at which the weather was observed by the station.

Creating a download function
We're going to be creating several functions that access network resources for our
application. These functions won't be tied to any particular class, so we'll just put them in
their own file called network.py. Let's take a look at the following steps:

Create network.py in the abq_data_entry module directory.1.
Now, let's open network.py and start our weather download function:2.

from urllib.request import urlopen

def get_local_weather(station):
 url = (
 'http://w1.weather.gov/xml/current_obs/{}.xml'
 .format(station))
 response = urlopen(url)

http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml
http://w1.weather.gov/xml/current_obs/STATION.xml

Connecting to the Cloud Chapter 12

[324]

Our function will take a station string as an argument, in case we need to
change that later or if someone wants to use this application at a different
facility. The function begins by building the URL for the weather data and
requests it using urlopen().

Assuming things went okay, we just need to parse out this response data and3.
put it into a form the Application class can pass to the database model. To
determine how we'll handle the response, let's go back to the Python shell and
examine the data in it:

>>> response =
urlopen('http://w1.weather.gov/xml/current_obs/KBMG.xml')
>>> print(response.read().decode())
<?xml version="1.0" encoding="ISO-8859-1"?>
<?xml-stylesheet href="latest_ob.xsl" type="text/xsl"?>
<current_observation version="1.0"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:noNamespaceSchemaLocation="http://www.weather.gov/view/curr
ent_observation.xsd">
 <credit>NOAA's National Weather Service</credit>
 <credit_URL>http://weather.gov/</credit_URL>
....

As the URL indicated, the payload of the response is an XML document, most of4.
which we won't need. After some searching, though, we can find the fields we're
after as follows:

 <observation_time_rfc822>Wed, 14 Feb 2018 14:53:00
 -0500</observation_time_rfc822>
 <weather>Fog/Mist</weather>
 <temp_c>11.7</temp_c>
 <relative_humidity>96</relative_humidity>
 <pressure_mb>1018.2</pressure_mb>

Good, the data we need is there, so we just need to extract it from the XML string into a
format our application can use. Let's take a moment to learn about parsing XML data.

Parsing XML weather data
The Python standard library contains an xml package, which consists of several
submodules for parsing or creating XML data. The xml.etree.ElementTree submodule
is a simple, lightweight parser that should meet our needs.

Connecting to the Cloud Chapter 12

[325]

Let's import ElementTree into our network.py file as follows:

from xml.etree import ElementTree

Now, back at the end of our function, we'll parse the XML data in our response object as
follows:

 xmlroot = ElementTree.fromstring(response.read())

The fromstring() method takes an XML string and returns an Element object. To get at
the data we need, we'll need to understand what an Element object represents, and how to
work with it.

XML is a hierarchical representation of data; an element represents a node in this hierarchy.
An element begins with a tag, which is a text string inside angle brackets. Each tag has a
matching closing tag, which is just the tag with a forward-slash prepended to the tag name.
Between the opening and closing tags, an element may have other child elements or it may
have text. An element can also have attributes, which are key-value pairs placed inside the
angle brackets of the opening tag, just after the tag name.

Take a look at the following example of XML:

<star_system starname="Sol">
 <planet>Mercury</planet>
 <planet>Venus</planet>
 <planet>Earth
 <moon>Luna</moon>
 </planet>
 <planet>Mars
 <moon>Phobos</moon>
 <moon>Deimos</moon>
 </planet>
 <dwarf_planet>Ceres</dwarf_planet>
</star_system>

This is an (incomplete) XML description of the solar system. The root element has a tag of
<star_system> with an attribute of starname. Under this root element, we have four
<planet> elements and a <dwarf_planet> element, each of which contains a text node
with the planet's name. Some of the planet nodes also have child <moon> nodes, each
containing a text node with the moon's name.

Connecting to the Cloud Chapter 12

[326]

Arguably, this data could have been structured differently; for example, planet names
could have been in a child <name> node inside the planet elements, or listed as an attribute
of the <planet> tag. While XML syntax is well-defined, the actual structure of an XML
document is up to the creator, so fully parsing XML data requires a knowledge of the way
the data is laid out in the document.

If you look at the XML weather data that we downloaded in the shell earlier, you'll notice
it's a fairly shallow hierarchy. Under the <current_observations> node, there are a
number of child elements whose tags represent specific data fields like temperature,
humidity, windchill, and so on.

To get at these child elements, Element offers us the following variety of methods:

Method Returns

iter() An iterator of all child nodes (recursively)

find(tag) The first element matching the given tag

findall(tag) A list of elements matching the given tag

getchildren() A list of the immediate child nodes

iterfind(tag) An iterator of all child nodes matching the given tag (recursive)

When we downloaded the XML data earlier, we identified five tags containing the data we
want to extract from this document: <observation_time_rfc822>, <weather>,
<temp_c>, <relative_humidity>, and <pressure_mb>. We'll want our
get_local_weather() function to return a Python dict containing each of these keys.

Let's add the next lines in the network.py file as follows:

 xmlroot = ElementTree.fromstring(response.read())
 weatherdata = {
 'observation_time_rfc822': None,
 'temp_c': None,
 'relative_humidity': None,
 'pressure_mb': None,
 'weather': None
 }

Our first line extracts the raw XML from the response and parses it into an Element tree,
returning the root node to xmlroot. Then, we've set up dict containing the tags we want
to extract from our XML data.

Connecting to the Cloud Chapter 12

[327]

Now, let's get the values by executing the following code:

 for tag in weatherdata:
 element = xmlroot.find(tag)
 if element is not None:
 weatherdata[tag] = element.text

For each of our tag names, we're going to use the find() method to try to locate the
element with a matching tag in xmlroot. This particular XML document does not use
duplicate tags, so the first instance of any tag should be the only one. If the tag is matched,
we'll get back an Element object; if not, we get back None, so we need to make sure
element is not None before trying to access its text value.

To finish the function just return weatherdata .

You can test this function in the Python shell; from a command line, navigate to the
ABQ_Data_Entry directory and start a Python shell:

>>> from abq_data_entry.network import get_local_weather
>>> get_local_weather('KBMG')
{'observation_time_rfc822': 'Wed, 14 Feb 2018 16:53:00 -0500',
 'temp_c': '11.7', 'relative_humidity': '96', 'pressure_mb': '1017.0',
 'weather': 'Drizzle Fog/Mist'}

You should get back a dict with the current weather conditions in Bloomington, Indiana.
You can find the station codes for other cities inside the U.S. at http:/ ​/​w1.​weather. ​gov/
xml/​current_​obs/ ​.

Now that we have our weather function, we just need to build the table for storing the data
and the interface for triggering the operation.

Implementing weather data storage
To store our weather data, we'll start by creating a table in the ABQ database to hold the
individual observation data, then build a SQLModel method to store data in it. We don't
need to worry about writing code to retrieve data from it, since our laboratory's QA team
has their own reporting tools which they'll use to access it.

http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/
http://w1.weather.gov/xml/current_obs/

Connecting to the Cloud Chapter 12

[328]

Creating the SQL table
Open the create_db.sql file, and add a new CREATE TABLE statement as follows:

CREATE TABLE local_weather (
 datetime TIMESTAMP(0) WITH TIME ZONE PRIMARY KEY,
 temperature NUMERIC(5,2),
 rel_hum NUMERIC(5, 2),
 pressure NUMERIC(7,2),
 conditions VARCHAR(32)
);

We're using the TIMESTAMP data type on the record as a primary key; there's no point in
saving the same timestamped observation twice, so this makes an adequate key. The
(0) size after the TIMESTAMP data type indicates how many decimal places we need for the
seconds' measurement. Since these measurements are taken approximately hourly, and we
only need one every four hours or so (when the lab checks are done), we don't need
fractions of seconds in our timestamp.

Notice that we're saving the time zone; always store time zone data with
timestamps when it's available! It may not seem necessary, especially
when your application will be run in a workplace that will never change
time zones, but there are many edge cases such as daylight-saving time
changes where the lack of a time zone can create major problems.

Run this CREATE query in your database to build the table, and let's move on to creating
our SQLModel method.

Implementing the SQLModel.add_weather_data()
method
Over in models.py, let's add a new method to the SQLModel class called
add_weather_data(), which takes a data dict as its only argument.

Let's start this method by writing an INSERT query as follows:

 def add_weather_data(self, data):
 query = (
 'INSERT INTO local_weather VALUES '
 '(%(observation_time_rfc822)s, %(temp_c)s, '
 '%(relative_humidity)s, %(pressure_mb)s, '
 '%(weather)s)'
)

Connecting to the Cloud Chapter 12

[329]

This is a straightforward parameterized INSERT query using variable names that match the
dict keys that the get_local_weather() function extracts from the XML data. We
should only need to pass this query and the data dict into our query() method.

There is one problem, however; if we get a duplicate timestamp, our query will fail due to a
duplicate primary key. We could do another query to check first, but that would be slightly
redundant, since PostgreSQL itself checks for duplicate keys before inserting a new row.
When it detects such an error, psycopg2 raises an IntegrityError exception, so we just
need to catch this exception and, if it gets raised, do nothing.

To do this, we'll wrap our query() call in the try...except blocks as follows:

 try:
 self.query(query, data)
 except pg.IntegrityError:
 # already have weather for this datetime
 pass

Now, our data entry staff can call this method as often as they wish, but it will only save a
record when there is a fresh observation to save.

Updating the SettingsModel class
Before leaving models.py, we will need to add a new application setting to store the
preferred weather station. Add a new entry in the SettingsModel.variables dictionary
as follows:

 variables = {
 ...
 'weather_station': {'type': 'str', 'value': 'KBMG'},
 ...

We won't add a GUI for this setting, since users won't need to update it. It'll be up to us, or
the system admin at other lab sites, to make sure this is properly set on each workstation.

Connecting to the Cloud Chapter 12

[330]

Adding the GUI elements for weather download
The Application object now needs to connect the weather download method from
network.py to the database method in SQLModel with an appropriate callback method
that the main menu classes can call. Follow these steps:

Open application.py and start a new method as follows:1.

 def update_weather_data(self):

 try:
 weather_data = n.get_local_weather(
 self.settings['weather_station'].get())

Recall that in an error scenario, urlopen() can raise any number of exceptions,2.
depending on what went wrong with the HTTP transaction. There isn't really
anything the application can do to handle such exceptions other than inform the
user and exit the method. Therefore, we'll catch the generic Exception and
display the text in messagebox as follows:

 except Exception as e:
 messagebox.showerror(
 title='Error',
 message='Problem retrieving weather data',
 detail=str(e)
)
 self.status.set('Problem retrieving weather data')

In the event that get_local_weather() succeeds, we simply need to pass the3.
data on to our model method as follows:

 else:
 self.data_model.add_weather_data(weather_data)
 self.status.set(
 'Weather data recorded for {}'
 .format(weather_data['observation_time_rfc822']))

In addition to saving the data, we've notified the user in the status bar that the
weather was updated and displayed the timestamp of the update.

Connecting to the Cloud Chapter 12

[331]

With the callback method done, let's add it to our callbacks dictionary:4.

 self.callbacks = {
 ...
 'update_weather_data': self.update_weather_data,
 ...

Now we can now add a command item for the callback in the main menu. On5.
Windows, functionality like this goes in the Tools menu, and since neither the
Gnome nor macOS guidelines seem to indicate a more appropriate location, we'll
implement a Tools menu in the LinxMainMenu and MacOsMainMenu classes to
hold this command, just to be consistent. In mainmenu.py, starting in the
generic menu class, add a new menu as follows:

 #Tools menu
 tools_menu = tk.Menu(self, tearoff=False)
 tools_menu.add_command(
 label="Update Weather Data",
 command=self.callbacks['update_weather_data'])
 self.add_cascade(label='Tools', menu=tools_menu)

Add this same menu to the macOS and Linux menu classes, and add the6.
command to the Windows main menu's tools_menu. After updating the menus,
you can run the application and try the new command from the Tools menu. If
all went well, you should see an indication in the status bar as shown in the
following screenshot:

You should also connect to the database with your PostgreSQL client and check7.
that the table contains some weather data now by executing the following SQL
command:

SELECT * FROM local_weather;

That SQL statement should return output similar to the following:

datetime temperature relhum pressure conditions

2018-02-14 22:53:00-06 15.00 87.00 1014.00 Overcast

Connecting to the Cloud Chapter 12

[332]

HTTP using requests
You've been asked to create a function in your program to upload a CSV extract of the daily
data to ABQ's corporate web services, which uses an authenticated REST API. While
urllib is easy enough to use for simple one-off GET and POST requests, complex
interactions involving authentication tokens, file uploads, or REST services can be
frustrating and complicated using urllib alone. To get this done, we'll turn to the
requests library.

REST stands for REpresentational State Transfer, and is the name used
for web services built around advanced HTTP semantics. In addition to
GET and POST, REST APIs use additional HTTP methods like DELETE,
PUT, and PATCH, along with data formats like XML or JSON, to present an
API with a complete range of interactions.

The third-party requests library is highly recommended by the Python community for
any serious work involving HTTP (even the urllib documentation recommends it). As
you'll see, requests removes many of the rough edges and outdated assumptions left in
urllib, and provides convenient classes and wrapper functions for more modern HTTP
transactions. Complete documentation on requests can be found at http:/ ​/​docs. ​python-
requests.​org, but the next section will cover most of what you need to know to use it
effectively.

Installing and using requests
The requests package is written in pure Python, so installing it with pip requires no
compiling or binary downloads. Simply type pip install --user requests in the
terminal and it will be added to your system.

Open your Python shell, and let's make some requests as follows:

>>> import requests
>>> response = requests.request('GET', 'http://www.alandmoore.com')

requests.request requires, at minimum, an HTTP method and a URL.
Just like urlopen(), it constructs the appropriate request packet, sends it
to the URL, and returns an object representing the server's response. Here,
we're making a GET request to this author's website.

http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org
http://docs.python-requests.org

Connecting to the Cloud Chapter 12

[333]

In addition to the request() function, requests has shortcut functions that correspond to
the most common HTTP methods.

Thus, the same request can be made as follows:

response = requests.get('http://www.alandmoore.com')

The get() method requires only the URL and performs a GET request. Likewise, the
post(), put(), patch(), delete(), and head() functions send requests using the
corresponding HTTP method. All of the request functions take additional optional
arguments.

For example, we can send data with a POST request as follows:

>>> response = requests.post(
 'http://duckduckgo.com',
 data={'q': 'tkinter', 'ko': '-2', 'kz': '-1'})

Notice that, unlike urlopen(), we can use a Python dictionary directly as a data
argument; requests does the job of converting it to the proper bytes object for us.

Some of the more common arguments used with request functions are as follows:

Argument Purpose

params Like data, but added to the query string rather than the payload

json JSON data to include in the payload

headers A dictionary of header data to use for the request

files
A dictionary of {fieldnames: file objects} to send as a multipart form
data request

auth Username and password tuple to use for basic HTTP digest authentication

The requests.session() fucntion
Web services, particularly privately owned ones, are often password protected. Sometimes,
this is done using the older HTTP digest authentication system, which we can address
using the auth argument of the request functions. More commonly these days though,
authentication involves posting credentials to a REST endpoint to obtain a session cookie or
authentication token that is used to validate subsequent requests.

Connecting to the Cloud Chapter 12

[334]

An endpoint is simply a URL that corresponds to data or functionality
exposed by the API. Data is sent to or retrieved from an endpoint.

The requests method makes all of this simple by providing the Session class. A Session
object allows you to persist settings, cookies, and connections across multiple requests.

To create a Session object, use the requests.session() factory function as follows:

s = requests.session()

Now, we can call request methods like get(), post(), and others on our Session object
as follows:

Assume this is a valid authentication service that returns an auth token
s.post('http://example.com/login', data={'u': 'test', 'p': 'test'})
Now we would have an auth token
response = s.get('http://example.com/protected_content')
Our token cookie would be listed here
print(s.cookies.items())

Token and cookie handling like this happens in the background, without any explicit action
from us. Cookies are stored in a CookieJar object stored as our Session object's cookies
property.

We can also set values on our Session object that will persist across requests as in this
example:

s.headers['User-Agent'] = 'Mozilla'
will be sent with a user-agent string of "Mozilla"
s.get('http://example.com')

In this example, we've set the user-agent string to Mozilla, which will be used for all
requests made from this Session object. We can also set default URL parameters using the
params property or callback functions using the hooks property.

The response objects
The response objects returned from these request functions are not the same as those
returned by urlopen(); they contain all the same data, but in a slightly different (and
generally more convenient) form.

Connecting to the Cloud Chapter 12

[335]

For example, the response headers are already translated into a Python dict for us, as
follows:

>>> r = requests.get('http://www.alandmoore.com')
>>> r.headers
{'Date': 'Thu, 15 Feb 2018 21:13:42 GMT', 'Server': 'Apache',
 'Last-Modified': 'Sat, 17 Jun 2017 14:13:49 GMT',
 'ETag': '"20c003f-19f7-5945391d"', 'Content-Length': '6647',
 'Keep-Alive': 'timeout=15, max=200', 'Connection': 'Keep-Alive',
 'Content-Type': 'text/html'}

Another difference is that requests does not automatically raise an exception on HTTP
errors. However, the .raise_for_status() response method can be called to do so.

For example, this URL will give an HTTP 404 error, as shown in the following code:

>>> r = requests.get('http://www.example.com/does-not-exist')
>>> r.status_code
404
>>> r.raise_for_status()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.6/site-packages/requests/models.py", line 935, in
raise_for_status
 raise HTTPError(http_error_msg, response=self)
requests.exceptions.HTTPError: 404 Client Error: Not Found for url:
http://www.example.com/does-not-exist

This gives us the option of dealing with HTTP errors using exception handling or more
traditional flow control logic.

Implementing API upload
To start implementing our upload function, we need to figure out what kind of requests
we're going to send. We've been provided with some documentation from the corporate
office that describes how to interact with the REST API.

Connecting to the Cloud Chapter 12

[336]

The documentation tells us the following things:

We first need to obtain an authentication token. We do this by submitting a POST
request to the /auth endpoint. The parameters of the POST request should
include username and password.
With the authentication token acquired, we'll need to submit our CSV file. The
request is a PUT request sent to the /upload endpoint. The file is uploaded as
multipart form data specified in a file parameter.

We already know enough to implement our REST upload function using requests, but
before we do, let's create a service that we can use to test our code against it.

Creating a test HTTP service
Developing code that interoperates with an outside service can be frustrating. We're going
to need to send a lot of bad or test data to the service while writing and debugging our
code; we don't want to do so against a production service, and a "test mode" is not always
available. Automated tests can use a Mock object to patch out network requests altogether,
but during development, it's nice to be able to see what's actually going to be sent out to the
web service.

Let's implement a very simple HTTP server that will accept our requests and print out
information about what it receives. We can do this using the Python standard library's
http.server module.

The module documentation shows the following example of a basic HTTP server:

from http.server import HTTPServer, BaseHTTPRequestHandler
def run(server_class=HTTPServer, handler_class=BaseHTTPRequestHandler):
 server_address = ('', 8000)
 httpd = server_class(server_address, handler_class)
 httpd.serve_forever()
run()

The server class, HTTPServer, defines an object that listens for HTTP requests on the
configured address and port. The handler class, BaseHTTPRequestHandler, defines an
object that receives the actual request data and returns response data. We'll use this code as
a starting point, so save it outside the ABQ_Data_Entry directory in a file called
sample_http_server.py.

Connecting to the Cloud Chapter 12

[337]

If you run this code, you'll have a web service running on port 8000 on your local
computer; however, if you make any requests to this service either using requests, a tool
like curl, or just a web browser, you'll find it only returns an HTTP 501 (unsupported
method) error. To make a server that works sufficiently, like our target API for testing
purposes, we'll need to create our own handler class that can respond to the necessary
HTTP methods.

To do that, we'll create our own handler class called TestHandler as follows:

class TestHandler(BaseHTTPRequestHandler):
 pass

def run(server_class=HTTPServer, handler_class=TestHandler):
 ...

Our corporate API uses the POST method to receive login credentials, and the PUT method
to receive files, so both of those need to work. To make an HTTP method work in a request
handler, we need to implement a do_VERB method, where VERB is our HTTP method name
in all uppercase.

So, for PUT and POST add the following code:

class TestHandler(BaseHTTPRequestHandler):
 def do_POST(self, *args, **kwargs):
 pass

 def do_PUT(self, *args, **kwargs):
 pass

This alone doesn't address the problem, because these methods need to result in our
handler sending some kind of response. We don't need any particular response for our
purposes; just something with a status of 200 (OK) will do fine.

Since both methods need this, let's add a third method we can call from the other two as
follows:

 def _send_200(self):
 self.send_response(200)
 self.send_header('Content-type', 'text/html')
 self.end_headers()

Connecting to the Cloud Chapter 12

[338]

This is about the most minimal response required to satisfy most HTTP clients: a status of
200 and a header with a valid Content-type. This won't send any actual data back to the
client, but will tell the client its request was received and successfully processed.

Something else we'd like to do in our methods is print out any data that was sent, so we can
make sure our client is sending the right data.

We'll implement the following method that does this:

 def _print_request_data(self):
 content_length = self.headers['Content-Length']
 print("Content-length: {}".format(content_length))
 data = self.rfile.read(int(content_length))
 print(data.decode('utf-8'))

The handler object's headers property is a dict object containing the request headers,
which includes the number of bytes sent (content-length). Apart from printing that
information, we can also use it to read the data sent. The handler's rfile property is a file-
like object containing the data; its read() method requires a length argument to specify
how much data should be read, so we use our extracted content-length value. The
returned data is a bytes object, so we decode it to utf-8.

Now that we have these two methods, let's update do_POST() and do_PUT() to call them
as follows:

 def do_POST(self, *args, **kwargs):
 print('POST request received')
 self._print_request_data()
 self._send_200()

 def do_PUT(self, *args, **kwargs):
 print("PUT request received")
 self._print_request_data()
 self._send_200()

Now, each method will print out the length and data it receives to POST or PUT as well as
any data. Run this script in a terminal window so you can monitor its output.

Now, open a shell and let's test it as follows:

>>> import requests
>>> requests.post('http://localhost:8000', data={1: 'test1', 2: 'test2'})
<Response[200]>

Connecting to the Cloud Chapter 12

[339]

In the web server terminal, you should see the following output:

POST request received
Content-length: 15
1=test1&2=test2
127.0.0.1 - - [15/Feb/2018 16:22:41] "POST / HTTP/1.1" 200 -

We could implement additional functionality, like actually checking credentials and
returning an authentication token, but for now this server does enough to help us write and
test our client code.

Creating our network function
Now that our test service is up and running, let's start working on the network function
that will interact with the REST API:

We'll start by creating a function in network.py that will take a path to the CSV1.
file, the upload and authentication URLs, and a username and password:

import requests

...

def upload_to_corporate_rest(
 filepath, upload_url, auth_url, username, password):

 Since we're going to have to deal with authentication tokens, the first thing we2.
should do is create a session. We'll call it session as follows:

 session = requests.session()

After creating the session, we post our username and password to the3.
authentication endpoint like so:

 response = session.post(
 auth_url,
 data={'username': username, 'password': password})
 response.raise_for_status()

The session object will automatically store the token we receive if we're
successful. In the event of a problem, we've called raise_for_status(), so that
the function will abort and the calling code can handle any exceptions raised by
network or data problems.

Connecting to the Cloud Chapter 12

[340]

Assuming we haven't raised an exception, we must be authenticated at this point4.
and can now submit the file. This will be done with a put() call as follows:

 files = {'file': open(filepath, 'rb')}
 response = session.put(
 upload_url,
 files=files
)

To send a file, we have to actually open it and pass it into put() as a file
handle; notice we open it in binary-read mode (rb). The requests
documentation recommends this as it ensures the correct content-length
value will be calculated for the header.

After sending the request, we close the file and check again for a failed status5.
before ending the function, like so:

 files['file'].close()
 response.raise_for_status()

Updating application
Before we can call our new function from Application, we need to implement a way to
create a CSV extract of the daily data. This will be used by more than one function, so we'll
implement it separately from the function that calls the upload code. Follow along with
these steps:

To begin, we'll need a temporary location to store our generated CSV file. The1.
tempfile module includes functions to work with temporary files and
directories; we'll import mkdtemp(), which will give us a name for a platform-
specific temporary directory.:

from tempfile import mkdtemp

Note that mdktemp() doesn't actually create a directory; it merely
provides an absolute path to a randomly named directory in the
platform's preferred temp file location. We'll have to create the directory
ourselves.

Connecting to the Cloud Chapter 12

[341]

Now, let's start our new Application method as follows:2.

 def _create_csv_extract(self):
 tmpfilepath = mkdtemp()
 csvmodel = m.CSVModel(
 filename=self.filename.get(), filepath=tmpfilepath)

After creating a temporary directory name, we've created an instance of our
CSVModel class; even though we're no longer storing our data in the CSV files, we
can still use the model to export a CSV file. We've passed the Application
object's default filename, which is still set to abq_data_record-
CURRENTDATE.csv, and also the temporary directory's path as filepath. Of
course, our CSVModel doesn't currently take a filepath, but we'll fix that in a
moment.

After creating the CSV model, we'll extract our records from the database as3.
follows:

 records = self.data_model.get_all_records()
 if not records:
 return None

Remember that our SQLModel.get_all_records() method returns a list of all
records for the current day by default. If we don't happen to have any records for
the day, it's probably best to stop right away and alert the user, rather than
sending an empty CSV file to corporate, so we return None from the method if
there are no records. Our calling code can test for a None return value and display
the appropriate warning.

Now all we need to do is iterate through the records and save each one to the4.
CSV, then return the CSVModel object's filename, like this:

 for record in records:
 csvmodel.save_record(record)

 return csvmodel.filename

Connecting to the Cloud Chapter 12

[342]

Now that we have a way to create a CSV extract file, we can write the callback5.
method as follows:

 def upload_to_corporate_rest(self):

 csvfile = self._create_csv_extract()

 if csvfile is None:
 messagebox.showwarning(
 title='No records',
 message='There are no records to upload'
)
 return

To begin, we created a CSV extract file and checked if it's None. If it is, we'll
display an error message and exit the method.

Before we can upload, we need to get a username and password from the user.6.
Fortunately, we have the perfect class for this:

 d = v.LoginDialog(
 self,
 'Login to ABQ Corporate REST API')
 if d.result is not None:
 username, password = d.result
 else:
 return

Our login dialog serves us well here. Unlike with our database login, we're not
going to run this in an endless loop; if the password is wrong, the user can just
rerun the command. Recall that result will be None if the user clicks Cancel, so
we'll just exit the callback method in that case.

Now, we can execute our network function as follows:7.

 try:
 n.upload_to_corporate_rest(
 csvfile,
 self.settings['abq_upload_url'].get(),
 self.settings['abq_auth_url'].get(),
 username,
 password)

Connecting to the Cloud Chapter 12

[343]

We're executing upload_to_corporate_rest() in a try block since there are a
number of exceptions it might raise. We're passing in the upload and
authentication URLs from our settings object; we haven't added those yet, so that
will need to happen before we're done.

Now, let's catch a few exceptions, starting with the RequestException. This8.
exception would happen if there were some problem with the data we were
sending to the API, most likely a wrong username and password. We'll attach the
exception string to the message we show the user, like so:

 except n.requests.RequestException as e:
 messagebox.showerror('Error with your request', str(e))

Next we'll catch ConnectionError; this exception is going to be the result of a9.
network problem, such as the internet connection at the lab being down, or the
server not responding:

 except n.requests.ConnectionError as e:
 messagebox.showerror('Error connecting', str(e))

Any other exception will just be displayed as General Exception, like so:10.

 except Exception as e:
 messagebox.showerror('General Exception', str(e))

Let's wrap up the method with a success dialog as follows:11.

 else:
 messagebox.showinfo(
 'Success',
 '{} successfully uploaded to REST API.'
 .format(csvfile))

Let's finish our changes to Application by adding this method to12.
callbacks as follows:

 self.callbacks = {
 ...
 'upload_to_corporate_rest':
 self.upload_to_corporate_rest,
 ...

Connecting to the Cloud Chapter 12

[344]

Updating the models.py file
There are a couple of things to fix in the models.py file before we can test our new
functionality. We'll go through these steps to address them:

First, our CSVModel class needs to be able to take filepath:1.

 def __init__(self, filename, filepath=None):
 if filepath:
 if not os.path.exists(filepath):
 os.mkdir(filepath)
 self.filename = os.path.join(filepath, filename)
 else:
 self.filename = filename

If filepath is specified, we need to first make sure the directory exists. Since
the mkdtmp() method called in the Application class does not actually create a
temporary directory, we'll create it here. Once that's done, we'll join the filepath
and filename values and store it in the CSVModel object's filename property.

The other thing we need to do in models.py is add our new settings. Scroll2.
down to the SettingsModel class, and add two more variables entries as
follows:

 variables = {
 ...
 'abq_auth_url': {
 'type': 'str',
 'value': 'http://localhost:8000/auth'},
 'abq_upload_url': {
 'type': 'str',
 'value': 'http://localhost:8000/upload'},
 ...

We won't be building a GUI to set these settings they'll need to be manually created in a
user's configuration file, though for testing, we can use the defaults.

Finishing up
The last thing to do is add the command to our main menu.

Connecting to the Cloud Chapter 12

[345]

Add a new entry to the tools_menu in each menu class:

 tools_menu.add_command(
 label="Upload CSV to corporate REST",
 command=self.callbacks['upload_to_corporate_rest'])

Now, run the application and let's try it out. To make it work, you'll need to have at least
one data entry, and you'll need to start up the sample_http_server.py script.

If all goes well, you should get a dialog like this:

Your server should also have printed some output to the terminal similar to this:

POST request received
Content-length: 27
username=test&password=test
127.0.0.1 - - [16/Feb/2018 10:17:22] "POST /auth HTTP/1.1" 200 -
PUT request received
Content-length: 397
--362eadeb828747769e75d5b4b6d32f31
Content-Disposition: form-data; name="file";
filename="abq_data_record_2018-02-16.csv"

Date,Time,Technician,Lab,Plot,Seed
sample,Humidity,Light,Temperature,Equipment Fault,Plants,Blossoms,Fruit,Min
Height,Max Height,Median Height,Notes
2018-02-16,8:00,Q
Murphy,A,1,AXM477,10.00,10.00,10.00,,1,2,3,1.00,3.00,2.00,"
"

--362eadeb828747769e75d5b4b6d32f31--

127.0.0.1 - - [16/Feb/2018 10:17:22] "PUT /upload HTTP/1.1" 200 -

Connecting to the Cloud Chapter 12

[346]

Notice the POST and PUT requests, as well as the raw text of the CSV file in the payload of
PUT. We have successfully met the API requirements for this function.

FTP using ftplib
While HTTP and REST APIs are the current trend in client-server interactions, it's not
unusual for businesses to rely on older, time tested, and sometimes obsolete technology to
implement data transfers. ABQ is no exception: in addition to the REST upload, you need to
implement support for ABQ corporate's legacy system that relies on FTP.

Basic concepts of FTP
File Transfer Protocol, or FTP, dates back to the early 1970s, predating HTTP by almost 20
years. Nevertheless, it's still commonly used by many organizations to exchange large files
over the internet. FTP is considered somewhat obsolete in many circles due in part to the
fact that it transmits data and credentials in clear text, though SSL-encrypted variants of
FTP are also available.

Like HTTP, FTP clients send requests containing plain text commands similar to HTTP
methods, and the FTP server returns a response packet containing header and payload
information.

There are, however, many significant differences between the two protocols:

FTP is a stateful connection, meaning the client and server maintain a constant
connection over the course of the session. In other words, FTP is more like a live
telephone call, whereas HTTP is like two people having a dialog over voicemail.
FTP requires a session to be authenticated before any other commands or data
are sent, even for anonymous users. FTP servers also implement a more complex
set of permissions.
FTP has separate modes for transferring text and binary data (the main difference
being that text mode transfers automatically correct line endings and encoding
for the receiving OS).
FTP servers are less consistent in their implementation of commands.

Connecting to the Cloud Chapter 12

[347]

Creating a test FTP service
Before we implement our FTP upload functionality, it's helpful to have a test FTP service,
just as we did with our test HTTP service. You can, of course, download any of a number of
free FTP servers such as FileZilla, PureFTPD, ProFTPD, or others.

Rather than going to the trouble of installing, configuring, and later removing an FTP
service on your system just for testing one function of an application, we can instead build
a rudimentary server in Python. The third-party pyftpdlib package offers us an easy way
to implement a quick-and-dirty FTP server adequate for test needs.

Install pyftpdlib using pip:

pip install --user pyftpdlib

Just like our simple HTTP server, the FTP service consists of a server object and a handler
object. It also needs an authorizer object to handle authentication and permissions.

We'll start our basic_ftp_server.py file by importing those:

from pyftpdlib.authorizers import DummyAuthorizer
from pyftpdlib.handlers import FTPHandler
from pyftpdlib.servers import FTPServer

To make sure our authentication code works properly, let's set up our DummyAuthorizer
class with a test user:

auth = DummyAuthorizer()
auth.add_user('test', 'test', '.', perm='elrw')

The perm argument takes a string of characters, each of which represents a specific
permission on the server. In this case, we have e (connect), l (list), r (read), and w (write
new file). There are many other permissions available, all of which are off by default until
granted, but this is sufficient for our needs.

Now, let's set up the handler:

handler = FTPHandler
handler.authorizer = auth

Connecting to the Cloud Chapter 12

[348]

Notice we're not instantiating the handler, just aliasing the class. The server class will
manage the creation of handler classes. We can, however, assign our auth object as the
handler's authorizer class, so that any created handlers will use our authorizer.

Finally, let's set up and run the server portion:

address = ('127.0.0.1', 2100)
server = FTPServer(address, handler)

server.serve_forever()

This is simply a matter of instantiating an FTPServer object with an address tuple and
handler class, then calling the object's server_forever() method. The address tuple is in
the form (ip_address, port), so a tuple of ('127.0.0.1', 2100) means we'll be
serving on our computer's loopback address on port 2100. The default port for FTP is
usually 21, but on most operating systems, starting a service that listens on a port under
1024 requires root or system-admin privileges. For simplicity's sake, we'll just use a higher
port.

While it's possible to build production quality FTP servers with
pyftpdlib, we haven't done that here. This script is adequate for testing,
but please don't use it in production if you value security.

Implementing the FTP upload function
Now that the test server is up and running, let's build our FTP upload function and the
logic for the GUI. While the standard library doesn't contain an FTP server library, it does
contain an FTP client library in the form of the ftplib module.

Begin by importing ftplib into our network.py file:

import ftplib as ftp

An FTP session can be created using the ftplib.FTP class. Because this is a stateful
session, it needs to be closed after we're done; to make sure we do this, FTP can be used as a
context manager.

Connecting to the Cloud Chapter 12

[349]

Let's start our function by connecting to the FTP server:

def upload_to_corporate_ftp(
 filepath, ftp_host,
 ftp_port, ftp_user, ftp_pass):

 with ftp.FTP() as ftp_cx:
 ftp_cx.connect(ftp_host, ftp_port)
 ftp_cx.login(ftp_user, ftp_pass)

The upload_to_corporate() function takes the CSV filepath and the FTP host, port, user,
and password, much like our upload_to_corporate_rest() function did. We begin by
creating our FTP object and calling FTP.connect() and FTP.login.

Next, connect() takes the host and port that we're going to talk to and starts a session
with the server. We aren't yet authenticated at this point, but we do have a connection
going.

Then, login() takes a username and password and attempts to authenticate our session. If
our credentials check out, we're logged in to the server and can begin sending more
commands; if not, an error_perm exception is raised. However, our session is still alive
until we close it, and we can send additional login attempts if we wish.

To actually upload a file, we use the storbinary() method:

 filename = path.basename(filepath)
 with open(filepath, 'rb') as fh:
 ftp_cx.storbinary('STOR {}'.format(filename), fh)

To send the file, we have to open it in binary-read mode, then call storbinary (yes, it's
"stor", not "store"—programmers in the 1970s had a thing about dropping letters from
words).

The first argument to storbinary is a valid FTP STOR command, usually STOR
filename, where "filename" is what you want the uploaded data to be called on the server.
It seems a little counter-intuitive to have to include the actual command string; presumably
this must be specified in case the server uses slightly different commands or syntax.

Connecting to the Cloud Chapter 12

[350]

The second argument is the file object itself. This should be opened in binary mode since
we're sending it as binary data. This may seem odd since the CSV file we're sending is
essentially a plain text file, but sending it as binary data guarantees that the server won't
change the file in any way during transit; this is nearly always what you want when
transferring files, regardless of the nature of the data being exchanged.

This is all our network function needs to do for FTP upload. Although we only needed the
storbinary() method for our program, it's worth noting a few other common ftp
methods in case you find yourself having to work with an FTP server.

Listing files
There are three methods for listing files on an FTP server. The mlsd() method calls the
MLSD command, which is typically the best and most complete output available. It can take
an optional path argument, specifying the path to list (otherwise it lists the current
directory), and a list of facts , such as "size", "type", or "perm", reflecting which data you'd
like included with the filenames. The mlsd() command returns a generator object which
can be iterated or cast to another sequence type.

MLSD is a newer command and not always available, so there are two other methods
available, nlst() and dir(), which correspond to the older NLST and DIR commands.
Both methods accept an arbitrary number of arguments that will be appended verbatim to
the command string sent to the server.

Retrieving files
Downloading files from an FTP server involves either one of the retrbinary() or
retrlines() methods, depending on whether we wish to use binary or text mode (as
mentioned before, you should probably always use binary). Like storbinary, each
method takes a command string as its first argument, but in this case it should be a valid
RETR command (usually "RETR filename" will suffice).

The second argument is a callback function which will be called on every line (for
retrlines()) or chunk (for retrbinary()). This callback can be used to store the
downloaded data.

Connecting to the Cloud Chapter 12

[351]

For example, take a look at the following code:

from ftplib import FTP
from os.path import join

filename = 'raytux.jpg'
path = '/pub/ibiblio/logos/penguins'
destination = open(filename, 'wb')
with FTP('ftp.nluug.nl', 'anonymous') as ftp:
 ftp.retrbinary(
 'RETR {}'.format(join(path, filename)),
 destination.write)
destination.close()

The return value of each function is a result string containing some statistics about the
download as follows:

'226-File successfully transferred\n226 0.000 seconds (measured here),
146.96 Mbytes per second'

Deleting or renaming files
Deleting and renaming files using ftplib is mercifully simple by comparison. The
delete() method takes only a filename and attempts to delete the given file on the server.
The rename() method takes only a source and destination, and attempts to rename the
source to the destination name.

Naturally, the success of either method depends on the permissions granted to the login
account used.

Adding FTP upload to the GUI
Our FTP upload function is ready to go, so let's add the necessary bits to the rest of our
application to make it all work together.

We'll start by adding the FTP host and port to the SettingsModel in models.py:

 variables = {
 ...
 'abq_ftp_host': {'type': 'str', 'value': 'localhost'},
 'abq_ftp_port': {'type': 'int', 'value': 2100}
 ...

Connecting to the Cloud Chapter 12

[352]

Remember that our test FTP uses port 2100, not the usual port 21, so we'll make 2100 the
default for now.

Now, we'll move over to application.py and create the callback method that will create
the CSV file and pass it to the FTP upload function.

Create a new method in the Application object:

 def upload_to_corporate_ftp(self):
 csvfile = self._create_csv_extract()

The first thing we do is create our CSV file, using the method we created for the REST
upload.

Next, we'll ask the user for the FTP username and password:

 d = v.LoginDialog(
 self,
 'Login to ABQ Corporate FTP')

And now, we'll call our network function:

 if d.result is not None:
 username, password = d.result
 try:
 n.upload_to_corporate_ftp(
 csvfile,
 self.settings['abq_ftp_host'].get(),
 self.settings['abq_ftp_port'].get(),
 username,
 password)

We call the FTP upload function in a try block because there are several exceptions that
can be raised by our FTP process.

Rather than catching them individually, we can catch ftplib.all_errors:

 except n.ftp.all_errors as e:
 messagebox.showerror('Error connecting to ftp', str(e))

Note that ftplib.all_errors is the base class for all exceptions defined
in ftplib, which include, among other things, authentication errors,
permission errors, and connectivity errors.

Connecting to the Cloud Chapter 12

[353]

To end this method, we'll show a success message:

 else:
 messagebox.showinfo(
 'Success',
 '{} successfully uploaded to FTP'.format(csvfile))

With the callback method written, we need to add it to the callbacks dictionary:

 self.callbacks = {
 ...
 'upload_to_corporate_ftp': self.upload_to_corporate_ftp
 }

The last thing we need to do is to add our callback to the main menu classes.

Over in mainmenu.py, add a new command to the tools_menu in each class:

 tools_menu.add_command(
 label="Upload CSV to corporate FTP",
 command=self.callbacks['upload_to_corporate_ftp'])

Launch the sample FTP server in a terminal, then run your application and try out the FTP
upload. Remember to enter test for the username and password!

You should see a success dialog like this:

Likewise, there should be a new CSV file in whatever directory you ran the sample FTP
server from.

Connecting to the Cloud Chapter 12

[354]

The FTP server should have printed out some information like this:

127.0.0.1:32878-[] FTP session opened (connect)
127.0.0.1:32878-[test] USER 'test' logged in.
127.0.0.1:32878-[test] STOR
/home/alanm/FTPserver/abq_data_record_2018-02-17.csv completed=1 bytes=235
seconds=0.001
127.0.0.1:32878-[test] FTP session closed (disconnect).

Looks like our FTP upload works great!

Summary
In this chapter, we reached out to the cloud using HTTP and FTP. You learned how to
download data using urllib and parse XML using ElementTree. You also discovered the
requests library and learned the basics of interacting with a REST API. Finally, we
learned how to download and upload files to FTP using Python's ftplib.

In the next chapter, we'll stop long-running processes from freezing up our application and
improve our application's performance by learning about asynchronous programming.
We'll learn the asynchronous commands built in to Tkinter as well as advanced
asynchronous programming using Python's threading library.

13
Asynchronous Programming

with Thread and Queue
Many times, code that works flawlessly in the simplicity of a test environment encounters
problems in the real world; unfortunately, this seems to be the case for your application.
While your network functions ran instantaneously in your localhost-only test environment,
the lab's slow VPN uplink has exposed some shortcomings in your programming. Users
report that the application freezes or becomes unresponsive when network transactions are
taking place. Although it does work, it looks unprofessional and is an annoyance to users.

To solve this problem, we're going to learn about the following topics:

How to control Tkinter's event queue
How to write multithreaded applications using Python's threading module
How to pass messages between threads using queues

Tkinter's event queue
As we discussed in Chapter 10, Creating Automated Tests with unittest, many tasks in
Tkinter, such as drawing and updating widgets, are done asynchronously, rather than
taking immediate action when called in code. More specifically, the actions you perform in
Tkinter—clicking a button, triggering a key bind or trace, resizing a window—place an
event in the event queue. On each iteration of the main loop, Tkinter pulls one event from
the queue and executes it.

Tasks in the event queue are roughly prioritized as regular or do-when-idle (often just
called idle tasks), meaning they are to be run when every regular task in the queue has
been done. Most drawing or widget-updating tasks are idle tasks, while actions like
callbacks are, by default, regular priority.

Asynchronous Programming with Thread and Queue Chapter 13

[356]

Because of this, a callback task that blocks for an extended period of time can cause the
program to seem frozen or stuck at an awkward point, since draw events and other idle
tasks are waiting for it to complete.

For this reason, it's sometimes helpful to be able to control the event queue manually to
delay long-running tasks to a more opportune moment.

The after() and after_idle() methods
Tkinter widgets have two methods for adding arbitrary code to the event queue on a delay:
after() and after_idle().

Basic use of after() looks like this:

import tkinter as tk
root = tk.Tk()
root.after(1000, root.quit)
root.mainloop()

In this example, we're setting root.quit to run after 1 second (1,000 milliseconds). In the
background, root.quit is added to the event loop, but with the condition that it shouldn't
be executed until at least 1 second from when after() was called. During that 1 second,
any other events in the queue will be executed first. The command might be executed later
than 1 second, depending on what's being processed already in the event queue, but no
sooner.

The after_idle() method also adds a Python callable to the event loop, but simply adds
it as an idle task, rather than adding it on a delay. This ensures the code will be run after
any other explicit callbacks.

In both methods, additional arguments are simply passed to the callable:

root.after(1000, print, 'hello', 'Python', 'programmers!')

In this example, we're passing the arguments 'hello', 'Python', and 'programmers' to
a print() call. This statement will schedule the print('hello', 'Python',
'programmers!') command to be run after 1 second.

Note that after() and after_idle() cannot take keyword arguments
for the passed callable, only positional arguments.

Asynchronous Programming with Thread and Queue Chapter 13

[357]

The update() and update_idletasks () methods
In Chapter 10, Creating Automated Tests with unittest, you also learned about the update()
and update_idletasks() methods. To review, these methods will cause Tkinter to
execute any tasks currently in the event queue; update() runs tasks currently waiting in
the queue until it's entirely clear, while update_idletasks() only runs the idle tasks.
This is generally less important and safer code, so it's recommended to use
update_idletasks() unless it doesn't do the job.

Eliminating freezes with after() and update_idletasks ()
To better understand the use of these widget methods, we'll build a simple application that
uses after() and update() to keep the UI responsive during a long-running task.

This is our initial application:

import tkinter as tk
from time import sleep

class App(tk.Tk):

 def __init__(self):
 super().__init__()
 self.status = tk.StringVar()
 tk.Label(self, textvariable=self.status).pack()
 tk.Button(self, text="Run Process",
 command=self.run_process).pack()

 def run_process(self):
 self.status.set("Starting process")
 for phase in range(1, 5):
 self.status.set(f"Phase {phase}")
 self.process_phase(phase, 2)
 self.status.set('Complete')

 def process_phase(self, n, length):
 # some kind of heavy processing here.
 sleep(length)

App().mainloop()

Asynchronous Programming with Thread and Queue Chapter 13

[358]

This application uses time.sleep() to simulate some heavy processing task done in
multiple phases. The GUI presents the user with a button, which launches the processes,
and a status indicator to show progress.

When the user clicks the button, the status indicator is supposed to show Starting
process, then Phase 1, Phase 2, and so on, through all the phases until it finishes, when
it should read Complete.

If you try it, though, you'll see it does no such thing. Instead, it freezes up the moment the
button goes down and does not unfreeze until all the phases are complete and the status
reads Complete. When the button is clicked, the run_process() callback is immediately
sent to the event queue as a regular priority task and executed, blocking the main loop until
the callback returns. All tasks, especially the do-when-idle drawing tasks that would
update the status, are delayed until it finishes. When the run_process() finally returns,
all the updates to status that were queued up are executed in a fraction of a second.

To make this a bit better, let's schedule run_process() using after():

 def run_process(self):
 self.status.set("Starting process")
 self.after(50, self._run_processes)

 def _run_processes(self):
 for phase in range(1, 5):
 self.status.set(f"Phase {phase}")
 self.process_phase(phase, 2)
 self.status.set('Complete')

This time, the loop part of run_process() is split off into a separate method. The
remaining setup section sets the starting status, then schedules the loop method to run 50
milliseconds later. This delay gives Tkinter time to finish up any drawing tasks and to
update the status before jumping into the long blocking loop.

We still aren't seeing individual phase status messages with this version, though; it goes
directly from Starting process to Complete because the _run_processes() method is
still blocking the event loop when it eventually runs.

Asynchronous Programming with Thread and Queue Chapter 13

[359]

To fix this, we'll use update_idletasks():

 def _run_processes(self):
 for phase in range(1, 5):
 self.status.set(f"Phase {phase}")
 self.update_idletasks()
 self.process_phase(phase, 2)
 self.status.set('Complete')

By forcing Tkinter to run the remaining idle tasks in the queue before starting the long
blocking method, our GUI kept is up to date. Unfortunately, the individual tasks still block
the application while they're running. We can't fix that simply by manipulating the event
loop; instead, we need to use threading.

Running code in the background with
threading
All of the code we have written up to this point in the book can be described as single
threaded; that is, every statement is executed one at a time, the prior statement finishing
before the next one is begun. Even asynchronous elements such as our Tkinter event queue,
though they may change the order in which tasks are executed from how they are written,
still execute only one task at a time. This means that a long-running procedure like a slow
network transaction or file read will freeze up our application while it runs.

To get around this problem, we need to create a multithreaded application, in which
multiple sections of code can be run concurrently without needing to wait for one another.

The threading module
Multithreaded application programming can be quite challenging to grasp fully, but the
standard library's threading module makes working with threads about as simple as it
can be.

Asynchronous Programming with Thread and Queue Chapter 13

[360]

To demonstrate the basic use of threading, let's create a slow function:

from time import sleep

def print_slowly(string):
 words = string.split()
 for word in words:
 sleep(1)
 print(word)

This function takes a string and prints it at a rate of one word per second. This will simulate
a long-running, computationally expensive process and give us some feedback that it's
running.

Let's create a Tkinter GUI frontend for this function:

import tkinter as tk
...

class App(tk.Tk):
 def __init__(self):
 super().__init__()
 self.text = tk.StringVar()
 tk.Entry(self, textvariable=self.text).pack()
 tk.Button(self, text="Run unthreaded",
 command=self.print_unthreaded).pack()
 def print_unthreaded(self):
 print_slowly(self.text.get())

App().mainloop()

This simple application has a text entry and a button; when the button is pushed, the text
in the entry is sent to the print_slowly() function. If you run this code, enter a long
sentence into the Entry widget and click the button, you'll see that the entire application
freezes up as the words are printed to the console. That's because it's all running in a single
execution thread.

Now let's add the threading code:

from threading import Thread
...
 def __init__(self):
 ...
 tk.Button(self, text="Run threaded",
 command=self.print_threaded).pack()

 def print_threaded(self):

Asynchronous Programming with Thread and Queue Chapter 13

[361]

 thread = Thread(target=print_slowly, args=(self.text.get(),))
 thread.start()

This time, we've imported the Thread class and created a new callback called
run_threaded(). This callback uses a Thread object to run print_slowly() in its own
execution thread.

A Thread object takes a target argument that points to the callable which will be run in
Thread. It can also take an args tuple, which contains arguments to be passed into the
target argument, and a **kwargs dictionary, which will also be expanded in the
target argument.

To execute the thread object, we call its start() method. This method does not block, so
the callback immediately returns allowing Tkinter to resume its event loop while thread
executes in the background.

If you try this code, you'll see that the GUI no longer freezes while the sentence is printed.
No matter how long the sentence, the GUI remains responsive the whole time.

Converting our network functions to threads
Passing a function to a Thread object as target is one way of running code in a thread; a
more flexible and powerful approach is to subclass Thread and override its run() method
with the code you want to execute. We're going to take this approach with our corporate
REST upload function.

First, we'll subclass Thread to a new class called CorporateRestUploader:

class CorporateRestUploader(Thread):

 def __init__(self, filepath, upload_url, auth_url,
 username, password):
 self.filepath = filepath
 self.upload_url = upload_url
 self.auth_url = auth_url
 self.username = username
 self.password = password
 super().__init__()

The __init__() method takes the same arguments that upload_to_corporate_rest()
took and assigns them to instance properties. Then it calls super().__init__() to set up
the parent Thread object.

Asynchronous Programming with Thread and Queue Chapter 13

[362]

Next, let's implement run():

 def run(self, *args, **kwargs):
 session = requests.session()
 response = session.post(
 self.auth_url,
 data={'username': self.username,
 'password': self.password}
)
 response.raise_for_status()
 files = {'file': open(self.filepath, 'rb')}
 response = session.put(
 self.upload_url,
 files=files
)
 files['file'].close()
 response.raise_for_status()

This is exactly the code from upload_to_corporate_rest() except that the function
arguments have been changed to instance properties. That's all there is to convert a
function to a thread object. All we'll need to do to use this is instantiate a
CorporateRestUploader object and call its start() method.

Simulating a slow server
Testing this code with our lightning-fast local web server won't show us whether the
threading module actually works, so we need to sabotage our test server to make it
simulate a slow connection.

Import sleep() into the sample_http_server.py script, then edit the TestHandler
methods:

 def do_POST(self, *args, **kwargs):
 print('POST request received')
 self._print_request_data()
 sleep(2)
 self._send_200()

 def do_PUT(self, *args, **kwargs):
 print("PUT request received")
 self._print_request_data()
 sleep(10)
 self._send_200()

Asynchronous Programming with Thread and Queue Chapter 13

[363]

We're adding a 2 second delay to the POST response and a 10 second delay to PUT. This
should adequately demonstrate the effect of a slow server.

Demonstrating the threaded versus non-threaded
uploader
Before editing Application to use our new threaded uploader, let's see how the
traditional single-threaded version behaves with the slowed-down test server. Start the
server, launch your application, make sure there are some entries for the current date, then
run the REST upload. Notice how the application freezes hard for at least 12 seconds before
returning control.

Now, let's make the necessary adjustments to Application to use our multithreaded
uploader.

Replace the call to the upload_to_corporate_rest() function with this:

 self.uploader = n.CorporateRestUploader(
 csvfile, self.settings['abq_upload_url'].get(),
 self.settings['abq_auth_url'].get(),
 username, password)
 self.uploader.start()

It's a simple matter of creating a threaded uploader object and calling its start() method.
Try the upload again, and you'll see that there is no freezing whatsoever. You can verify
that the process completed by checking the output of the HTTP server.

Remember, you override the run() method, but call the start()
method. Mixing these up will cause your code to either do nothing or
block like a normal single-threaded call.

Asynchronous Programming with Thread and Queue Chapter 13

[364]

Passing messages using a queue
We've solved the problem of the program freezing up, but now we have some new
problems. The most obvious problem is that our callback immediately shows a message
box claiming that we've successfully uploaded the file, even though the process is still
ongoing in the background. A subtler and far worse problem is that we aren't alerted to
errors. If you try running the callback without the test service running, it will still
immediately claim that the upload succeeded, even though you can see on the terminal that
exceptions are being raised. What's going on here?

The root problem here is that the Thread.start() method doesn't block, nor does it pass
on exceptions caused in the thread's run() method. Those exceptions are raised within the
new thread, and can only be caught in the new thread. As far as our main thread is
concerned, the code in the try block executed just fine.

What we need in order to solve these problems is a way for the two threads to
communicate, so that the upload thread can send error or progress messages back to the
main thread to be handled appropriately. We can do this using a queue.

The Queue object
Python's queue.Queue is a first-in first-out (FIFO) data structure. Items can be placed into
a Queue object using the put() method, and retrieved using the get() method. Let's take a
look at the following example:

>>> from queue import Queue
>>> q = Queue()
>>> q.put('My item')
>>> q.get()
'My item'

This may not seem terribly exciting, but what makes Queue useful is that it has been
specially designed to work safely as a channel for asynchronous communication between
threads (programmers refer to this as thread-safe). One thread can place messages
on queue, and another can retrieve them and respond appropriately.

Asynchronous Programming with Thread and Queue Chapter 13

[365]

By default, get() will block until an item is received. This behavior can be altered by
passing False as its first argument, or using the get_nowait() method; in that case, it
will raise an exception if Queue is empty. Let's take a look at the following example:

>>> q = Queue()
>>> q.get_nowait()
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
 File "/usr/lib/python3.6/queue.py", line 192, in get_nowait
 return self.get(block=False)
 File "/usr/lib/python3.6/queue.py", line 161, in get
 raise Empty
queue.Empty

We can also check whether queue is empty using the empty() or qsize() methods:

>>> q.empty()
True
>>> q.qsize()
0
>>> q.put(1)
>>> q.empty()
False
>>> q.qsize()
1

Queue has several other methods that are useful in more advanced multithreading
situations, but get(), put(), and empty() will be sufficient to solve our problems.

Using queues to communicate between threads
Before editing our application code, let's create a simpler example application to make sure
we understand how to use Queue to communicate between threads.

Start with a long-running thread:

from threading import Thread
from time import sleep

class Backend(Thread):

 def __init__(self, queue, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.queue = queue

Asynchronous Programming with Thread and Queue Chapter 13

[366]

 def run(self):
 self.queue.put('ready')
 for n in range(1, 5):
 self.queue.put(f'stage {n}')
 print(f'stage {n}')
 sleep(2)
 self.queue.put('done')

The Backend object is a subclass of Thread that takes a Queue object as an argument and
saves it as an instance property. Its run method simulates a long-running four-phase
process using print() and sleep(). At the beginning, at the end, and before each phase,
we use queue.put() to place a status message into the queue module.

Now we'll create a frontend for this process in Tkinter:

import tkinter as tk
from queue import Queue

class App(tk.Tk):

 def __init__(self, *args, **kwargs):
 super().__init__(*args, **kwargs)
 self.status = tk.StringVar(self, value='ready')
 tk.Label(self, textvariable=self.status).pack()
 tk.Button(self, text="Run process", command=self.go).pack()
 self.queue = Queue()

This simple application contains a Label object tied to a status variable and a
Button widget that launches a method called go() when clicked. It also has a Queue object
stored as self.queue.

Let's create the go() method:

 def go(self):
 p = Backend(self.queue)
 p.start()

The go() method creates an instance of the Backend class, passing in our Queue object,
and starts it. Because both threads now have a reference to queue, we can use it to
communicate between them. We've already seen how Backend places status messages on
the queue module so how does App() retrieve them?

Asynchronous Programming with Thread and Queue Chapter 13

[367]

Maybe we could start a loop:

while True:
 status = self.queue.get()
 self.status.set(status)
 if status == 'done':
 break

That won't work, of course, because the loop will block, freezing up App() and defeating
the purpose of using a second thread. Instead, we need a way to periodically poll the
queue module for status messages and respond whenever one is received.

We can do that using after():

 self.after(100, self.check_queue)

After 100 milliseconds, we'll call a check_queue() method. It will be up to that method to
read the queue module and determine how to respond.

It starts like this:

 def check_queue(self):
 if not self.queue.empty():
 self.status.set(self.queue.get())

The Queue.empty() method, as you might expect, tells us whether the queue module is
empty or not. If the queue module is empty, we don't want to do anything, because get()
will, by default, block until it receives a message, and we don't want to block. If there is
something in the queue module, we'll want to get it and send it to our status variable.

This only performs one check, of course; we want to keep polling the queue module until
the process is done. Thus, if our status is not done, we need to schedule another queue
check.

That can be done with another call to after() at the end of check_queue():

 if self.status.get() != 'done':
 self.after(100, self.check_queue)

Now check_queue() will do its job, then schedule itself to run again every 100
milliseconds until the status is done. If you run this application, you'll see that we get status
messages in (relatively) real time. Unlike the single-threaded application we created earlier
in the chapter, there is no freezing, even while the tasks are running.

Asynchronous Programming with Thread and Queue Chapter 13

[368]

Adding a communication queue to our threaded
uploader
Create a copy of CorporateResUploader and call it
CorporateRestUploaderWithQueue:

class CorporateRestUploaderWithQueue(Thread):

 def __init__(self, filepath, upload_url, auth_url,
 username, password, queue):
 ...
 self.queue = queue
 ...

The only difference in __init__() is the addition of a queue argument, which we store as
an instance property. Just as in our example application, the Queue object will be created in
the Application object and passed into the thread constructor.

Back in Application, update the call to the uploader class:

 self.rest_queue = Queue()
 self.uploader = n.CorporateRestUploaderWithQueue(
 csvfile, self.settings['abq_upload_url'].get(),
 self.settings['abq_auth_url'].get(),
 username, password,
 self.rest_queue)

Now both Application and CorporateRestUploaderWithQueue have a reference to the
same Queue object, and they can communicate.

Creating a communications protocol
Now that we have established a channel for inter-thread communication, we have to decide
how our two threads will communicate. In other words, what exactly will our uploader
thread place on the queue, and how should our application thread respond to it? We could
just throw anything into the queue and keep writing cases on the app-side to deal with
whatever shows up, but a better approach is to create a mini-protocol that standardizes
communications.

Asynchronous Programming with Thread and Queue Chapter 13

[369]

Our uploader thread will mainly be sending status-related information back to the
application so that it can display updates about what's happening in message boxes or on
the status bar. Let's create a message format that we can use to determine what the thread is
doing and communicate that to the user.

The message structure will look like this:

Field Description

status One word indicating the type of message, such as info or error

subject A short sentence summarizing the message

body A longer string with details about the message

We could create a structure like this using dict or class, but simple collections of named
fields like this are a great use-case for namedtuple(). The collections.namedtuple()
function allows us to quickly create mini-classes that contain only named properties.

Creating a namedtuple class looks like this:

from collections import namedtuple
MyClass = namedtuple('MyClass', ['prop1', 'prop2'])

This is roughly equivalent to writing:

class MyClass():
 def __init__(self, prop1, prop2):
 self.prop1 = prop1
 self.prop2 = prop2

The namedtuple() method is much faster to create than a class, and unlike adict it
enforces uniformity.

At the top of the network.py file, let's define a namedtuple class called Message:

from collections import namedtuple

Message = namedtuple('Message', ['status', 'subject', 'body'])

Creating a new Message object is just like instantiating any other class:

message = Message('info', 'Testing the class', 'We are testing the Message
class')

Asynchronous Programming with Thread and Queue Chapter 13

[370]

Sending messages from the uploader
To make sure that the Message objects are the only thing that get put in our queue, let's
create a wrapper method in CorporateRestUploaderWithQueue that will create the
object and place it in the queue. We'll use this for all communications to the queue.

Call it _putmessage():

 def _putmessage(self, status, subject, body):
 self.queue.put(Message(status, subject, body))

Now, in the run() method, let's add some status messages:

 def run(self, *args, **kwargs):
 session = requests.session()
 self._putmessage(
 'info', 'Authenticating',
 'Authenticating to {} as {}'.format(
 self.auth_url, self.username))
 ...
 # Before upload request
 self._putmessage(
 'info', 'Starting Upload',
 'Starting upload of {} to {}'.format(
 self.upload_url, self.filepath))

Previously, our function raised exceptions and expected the calling code to catch and
handle them. Our thread, however, has to deal with its own exceptions, so we'll move our
requests calls to a try block and convert any exceptions to queue messages.

The code is the same with both requests:

 # Authentication request
 try:
 response = session.post(
 self.auth_url,
 data={'username': self.username,
 'password': self.password})
 response.raise_for_status()
 except Exception as e:
 self._putmessage(
 'error', 'Authentication Failure', str(e))
 return
 ...
 # Upload request
 try:
 response = session.put(

Asynchronous Programming with Thread and Queue Chapter 13

[371]

 self.upload_url,
 files=files
)
 files['file'].close()
 response.raise_for_status()
 except Exception as e:
 self._putmessage(
 'error', "Upload Failure", str(e))
 return

Note that return in each of the exception handling blocks; since we can't rely on
exceptions to abort the process when something goes wrong, the code explicitly returns
from this method after sending the exception to the queue.

Finally, at the end of the method, add a success message:

 self._putmessage(
 'done', 'Complete',
 "File {} uploaded to ABQ REST".format(self.filepath))

Handling queue messages
Back in the Application object, we need to create a method that will poll the queue and
handle any messages sent from the upload thread.

Let's call it check_queue():

 def check_queue(self, queue):
 if not queue.empty():
 item = queue.get()

The method starts by checking to see whether the queue has any items, and if so it retrieves
one. Once we have one, we need to examine it and determine what to do with it based on
the status value.

First, let's handle a done status:

 if item.status == 'done':
 messagebox.showinfo(
 item.status,
 message=item.subject,
 detail=item.body
)
 self.status.set(item.subject)
 return

Asynchronous Programming with Thread and Queue Chapter 13

[372]

When our upload finishes successfully, we want to show a message box and set the status,
then return without doing anything else. Our status, subject, and body map nicely to
the title, message, and detail sections of the message box.

Next, we'll handle error conditions:

 elif item.status == 'error':
 messagebox.showerror(
 item.status,
 message=item.subject,
 detail=item.body
)
 self.status.set(item.subject)
 return

Once again, we show a message box, but this time an error message box. We also want to
exit the method, since the thread has presumably quit.

Finally, let's handle the info statuses:

 else:
 self.status.set(item.body)

For the info messages, we won't show a message box, just set status. The last thing we
need to do in this method is make sure it gets called again if the thread is still going.

We do this with a call to after():

 self.after(100, self.check_queue, queue)

This has to be done if either the message was an info message or if there was no message,
so it's unindented to the leftmost level inside the method. It won't happen if we got a done
or error message, since we returned from the method in each of those cases.

With check_queue() written, we just need to call it at the end of
upload_to_corporate_rest():

 self.check_queue(self.rest_queue)

It doesn't really need to be called as an after() callback since there will most likely not be
a message on the first call, causing check_queue() to just schedule it's next call and
return.

Asynchronous Programming with Thread and Queue Chapter 13

[373]

Now launch the application and try the REST upload again. Watch the status bar, and
you'll see the progress getting displayed, ending with a message box when the process
completes. Try it with the HTTP server turned off, and you should see an error message
pop up right away.

Summary
In this chapter, you learned how to use asynchronous and multithreaded programming
techniques to remove freezing and unresponsive behavior from your program. You learned
how to work with and control Tkinter's event queue, how to use Python's threading
module, and how to utilize queues to communicate between threads.

In the next chapter, we're going to explore the most powerful widget in Tkinter: Canvas.
We'll learn how to draw images and animate them, and create useful and informative
charts.

14
Visualizing Data Using the

Canvas Widget
With months of experimental data logged in the database, it's time to begin the process of
visualizing and interpreting it. Rather than exporting data into a spreadsheet to create
charts and graphs, your fellow analysts have asked whether the program itself can create
graphical data visualizations. To implement this feature, you're going to need to learn
about Tkinter's Canvas widget.

In this chapter, you'll learn the following topics:

Using the Canvas widget for drawing and animation
Building a simple line graph using Canvas
Incorporating more advanced graphs and charts using Matplotlib

Drawing and animation with Tkinter's
Canvas
The Canvas widget is undoubtedly the most powerful widget available in Tkinter. It can be
used to build anything from custom widgets and views to complete user interfaces. As the
name implies, Canvas is a blank area on which figures and images can be drawn.

A Canvas object can be created like any other widget:

root = tk.Tk()
canvas = tk.Canvas(root, width=1024, height=768)
canvas.pack()

Visualizing Data Using the Canvas Widget Chapter 14

[375]

Canvas accepts the usual widget configuration arguments, as well as width and height
for setting its size. Once created, we can start adding items to canvas using its many
create_() methods.

For example, we can add a rectangle with this code:

canvas.create_rectangle(100, 100, 200, 200, fill='orange')

The first four arguments are the coordinates of the upper-left and lower-right corners, in
pixels from the upper-left corner of the canvas. Each create_() method begins like this,
with coordinates defining the shape. The fill option specifies the color of the inside of the
object.

Coordinates can also be specified as tuple pairs, like so:

canvas.create_rectangle((600, 100), (700, 200), fill='#FF8800')

Although this is more characters, it improves readability considerably. Also note that, just
like colors elsewhere in Tkinter, we can use names or hex codes.

We can also create ovals, as shown in the following:

canvas.create_oval((350, 250), (450, 350), fill='blue')

An oval, like a rectangle, takes the coordinates of the upper-left and lower-right corners of
its bounding box. A bounding box is the smallest rectangle that will contain an item, so in
the case of this oval, you can imagine a circle inside a square with corners at (350, 250)
and (450, 350).

We can create lines using create_line(), like so:

canvas.create_line((100, 400), (400, 500),
 (700, 400), (100, 400), width=5, fill='red')

Lines can consist of any number of points, between which Tkinter will connect the dots.
We've specified the width of the line as well as its color (using the fill argument).
Additional arguments can control the shape of corners and ends, the presence and style of
arrows at each end of the line, whether and how the line is dashed, and whether the line is
straight or curved.

In a similar fashion, we can create polygons, like this:

canvas.create_polygon((400, 150), (350, 300), (450, 300),
 fill='blue', smooth=True)

Visualizing Data Using the Canvas Widget Chapter 14

[376]

This is just like creating a line, except that Tkinter connects the last dot back to the first and
fills in the interior. Setting smooth to True causes the corners to be rounded using Bezier
curves.

In addition to simple shapes, we can also place text or images on the canvas object as
follows:

canvas.create_text((400, 600), text='Smile!',
 fill='cyan', font='TkDefaultFont 64')
smiley = tk.PhotoImage(file='smile.gif')
image_item = canvas.create_image((400, 300), image=smiley)

The return value of any create_() method is a string that uniquely identifies the item in
the context of the Canvas object. We can use that identification string to do things to the
item after creation.

For example, we can bind events like so:

canvas.tag_bind(image_item, '<Button-1>', lambda e:
canvas.delete(image_item))

Here, we've used the tag_bind method to bind a left-mouse click on our image object to
the canvas's delete() method, which (when given an item identifier) deletes the item.

Animating Canvas objects
Tkinter's Canvas widget doesn't have a built-in animation framework, but we can still
create simple animations by combining its move() method with our understanding of the
event queue.

To demonstrate this, we'll create a bug race simulator, in which two bugs (represented by
colored circles) will race haphazardly toward a finish line on the other side of the screen.
Like real bugs, they won't have any notion that they're in a race and will move randomly,
the winner being whichever bug incidentally hits the finish line first.

To begin, open a new Python file and start with a basic boilerplate as follows:

import tkinter as tk

class App(tk.Tk):
 def __init__(self):
 super().__init__()

App().mainloop()

Visualizing Data Using the Canvas Widget Chapter 14

[377]

Creating our objects
Let's create the objects to be used in our game:

In App.__init__(), we'll simply create our canvas object and add it using1.
pack():

self.canvas = tk.Canvas(self, background='black')
self.canvas.pack(fill='both', expand=1)

Next, we'll create a setup() method as follows:2.

 def setup(self):
 self.canvas.left = 0
 self.canvas.top = 0
 self.canvas.right = self.canvas.winfo_width()
 self.canvas.bottom = self.canvas.winfo_height()
 self.canvas.center_x = self.canvas.right // 2
 self.canvas.center_y = self.canvas.bottom // 2

 self.finish_line = self.canvas.create_rectangle(
 (self.canvas.right - 50, 0),
 (self.canvas.right, self.canvas.bottom),
 fill='yellow', stipple='gray50')

In the preceding code snippet, setup() begins by calculating some relative
locations on the canvas object and saving them as instance properties, which will
simplify the placement of objects on the canvas object. The finish line, which is a
rectangle across the right edge of the window, uses the stipple argument to
specify a bitmap that will overlay the solid color to give it some texture; in this
case, gray50 is a built-in bitmap that alternates black and transparent pixels.

Add a call to setup() at the end of __init__() as follows:3.

self.after(200, self.setup)

Because setup() relies on the width and height values of the canvas object, we
need to make sure it isn't called until the operating system's window manager has
drawn and sized the window. The simplest way of doing this is to delay the call
by a few hundred milliseconds.

Visualizing Data Using the Canvas Widget Chapter 14

[378]

Next, we need to create our players. Let's create a class to represent them as4.
follows:

class Racer:

 def __init__(self, canvas, color):
 self.canvas = canvas
 self.name = "{} player".format(color.title())
 size = 50
 self.id = canvas.create_oval(
 (canvas.left, canvas.center_y),
 (canvas.left + size, canvas.center_y + size),
 fill=color)

The Racer class will be created with a reference to canvas and a color string,
from which its color and name will be derived. We'll draw the racer initially at the
middle-left of the screen and make it 50 pixels in size. Finally, we save a reference
to its item ID string in self.id.

Now, back in App.setup(), we'll create two racers by executing the following5.
code:

 self.racers = [
 Racer(self.canvas, 'red'),
 Racer(self.canvas, 'green')]

At this point, all the objects in our game are set up. Run the program and you6.
should see a yellow-stippled finish line on the right and a green circle on the left
(the red circle will be hidden under the green).

Animating the racers
To animate our racers, we're going to use the Canvas.move() method. move() takes an
item ID, a number of x pixels, and a number of y pixels, and moves the item by that
amount. By using random.randint() and some simple logic, we can generate a series of
moves that will send each racer on a meandering path towards the finish line.

A simple implementation may look like this:

def move_racer(self):
 x = randint(0, 100)
 y = randint(-50, 50)
 t = randint(500, 2000)
 self.canvas.after(t, self.canvas.move, self.id, x, y)

Visualizing Data Using the Canvas Widget Chapter 14

[379]

 if self.canvas.bbox(self.id)[0] < self.canvas.right:
 self.canvas.after(t, self.move_racer)

This isn't really what we want, though; the problem is that move() happens
instantaneously, causing the bug to jump across the screen; we want our moves to take
place smoothly over a period of time.

To accomplish this, we're going to take the following approach:

Calculate a series of linear moves, each with a random delta x, delta y, and time,1.
that will reach the finish line
Break each move into a number of steps determined by dividing the time into a2.
regular interval
Add each step of each movement to a queue3.
At our regular interval, pull the next step from the queue and pass it to move() 4.

Let's start by defining our frame interval and creating our animation queue:

from queue import Queue
...
class Racer:
 FRAME_RES = 50

 def __init__(...):
 ...
 self.animation_queue = Queue()

FRAME_RES (short for frame resolution) defines the number of milliseconds between each
Canvas.move() call. 50 milliseconds gives us 20 frames per second and should be
sufficient for smooth movements.

Now create a method to plot the course to the finish line:

 def plot_course(self):
 start_x = self.canvas.left
 start_y = self.canvas.center_y
 total_dx, total_dy = (0, 0)

 while start_x + total_dx < self.canvas.right:
 dx = randint(0, 100)
 dy = randint(-50, 50)
 target_y = start_y + total_dy + dy
 if not (self.canvas.top < target_y < self.canvas.bottom):
 dy = -dy
 time = randint(500, 2000)

Visualizing Data Using the Canvas Widget Chapter 14

[380]

 self.queue_move(dx, dy, time)
 total_dx += dx
 total_dy += dy

This method plots a course from the left-center of canvas to the right-side by generating
random x and y movements until the total x is greater than the width of the canvas object.
The change in x will always be positive, keeping our bugs moving towards the finish line,
but the change in y can be positive or negative. To keep our bugs on the screen, we
constrain the total y movements by negating any change in y that would put the player
outside the top or bottom bound of the canvas.

In addition to dx and dy, we generate a random amount of time for the move to take,
between half a second and two seconds, and send the generated values to a queue_move()
method.

The queue_move() command will need to break the large move into individual frames
that describe how much movement should happen in one FRAME_RES interval. To do this,
we need a partition function: a mathematical function that will break an integer n into k
approximately equal integers. For example, if we wanted to break -10 into four parts, our
function should return a list like [-3, -3, -2, -2].

Create partition() as a static method on Racer:

 @staticmethod
 def partition(n, k):
 """Return a list of k integers that sum to n"""
 if n == 0:
 return [0] * k

We start with the easy case: when n is 0, return a list of k zeros.

The rest of the code looks like this:

 base_step = int(n / k)
 parts = [base_step] * k
 for i in range(n % k):
 parts[i] += n / abs(n)
 return parts

First, we create a list of length k that is made up of base_step, that is, the integer portion
of n divided by k. We use a cast of int() here rather than floor division because it behaves
more appropriately with negative numbers. Next, we need to distribute the remainder
among the list as evenly as we can. To accomplish this, we add 1 or -1 (depending on the
sign of the remainder) to the first n % k items in the parts list.

Visualizing Data Using the Canvas Widget Chapter 14

[381]

Follow the math here using our example of n = -10 and k = 4:

-10 / 4 = -2.5, truncated to -2.
So we have a list: [-2, -2, -2, -2].
-10 % 4 = 2, so we add -1 (that is, -10 / 10) to the first two items in the list.
We arrive at an answer of [-3, -3, -2, -2]. Perfect!

Now we can write queue_move():

 def queue_move(self, dx, dy, time):
 num_steps = time // self.FRAME_RES
 steps = zip(
 self.partition(dx, num_steps),
 self.partition(dy, num_steps))

 for step in steps:
 self.animation_queue.put(step)

We first determine the number of steps in this move by dividing the time by FRAME_RES
using floor division. We create a list of x moves and a list of y moves by passing dx and dy
each to our partition() method. Those two lists are combined with zip to form a single
list of (dx, dy) pairs, which then gets added to the animation queue.

To make the animation actually happen, we'll write an animate() method:

 def animate(self):
 if not self.animation_queue.empty():
 nextmove = self.animation_queue.get()
 self.canvas.move(self.id, *nextmove)
 self.canvas.after(self.FRAME_RES, self.animate)

The animate() method checks the queue for a move. If there is one, canvas.move() is
called with the racer's ID and the moves that need to be made. Finally, the animate()
method is scheduled to run again in FRAME_RES milliseconds.

The last step in animating the racers is to call self.plot_course() and self.animate()
at the end of __init__(). If you run the game now, your two dots should wander the
screen from left to right. But nobody's winning just yet!

Visualizing Data Using the Canvas Widget Chapter 14

[382]

Detecting and handling a win condition
To detect a win condition, we're going to periodically check whether a racer is overlapping
with the finish line item. When one of them is, we'll declare it the winner and offer the
option to play again.

Collision detection between items is slightly awkward with the Tkinter Canvas widget. We
have to pass a set of bounding box coordinates to find_overlapping(), which returns a
tuple of item identifiers that overlap with the bounding box.

Let's create an overlapping() method for our Racer class:

 def overlapping(self):
 bbox = self.canvas.bbox(self.id)
 overlappers = self.canvas.find_overlapping(*bbox)
 return [x for x in overlappers if x!=self.id]

This method retrieves the bounding box of the Racer item using the canvas's bbox()
method. It then fetches a tuple of items overlapping this bounding box using
find_overlapping(). Next, we'll filter this tuple to remove the Racer item's ID,
effectively returning a list of items overlapping with the Racer class.

Back in our App() method, we'll create a check_for_winner() method:

 def check_for_winner(self):
 for racer in self.racers:
 if self.finish_line in racer.overlapping():
 self.declare_winner(racer)
 return
 self.after(Racer.FRAME_RES, self.check_for_winner)

This method iterates our list of racers and checks whether the finish_line ID is in the list
returned by the racer's overlapping() method. If it is, racer has hit the finish line and
will be declared the winner.

If no player was declared the winner, we'll schedule the check to run again after
Racer.FRAME_RES milliseconds.

Visualizing Data Using the Canvas Widget Chapter 14

[383]

We handle a win condition in the declare_winner() method:

 def declare_winner(self, racer):
 wintext = self.canvas.create_text(
 (self.canvas.center_x, self.canvas.center_y),
 text='{} wins!\nClick to play again.'.format(racer.name),
 fill='white',
 font='TkDefaultFont 32',
 activefill='violet')
 self.canvas.tag_bind(wintext, '<Button-1>', self.reset)

In this method, we've just created a text item declaring racer.name as the winner in the
center of canvas. The activefill argument causes the color to appear violet when the
mouse is hovered over it, indicating to the user that this text is clickable.

When that text is clicked, it calls the reset() method:

 def reset(self, *args):
 for item in self.canvas.find_all():
 self.canvas.delete(item)
 self.setup()

The reset() method needs to clear off the canvas, so it retrieves a list of all item identifiers
using the find_all() method, then calls delete() on each one. Finally, we call setup()
to reset the game.

The game is now complete, as you can see in the following screenshot:

Visualizing Data Using the Canvas Widget Chapter 14

[384]

While not exactly simple, animation in Tkinter can provide smooth and satisfactory results
with some careful planning and a bit of math.

Enough games, though; let's get back to the lab and figure out how to use the Tkinter
Canvas widget to visualize data.

Creating simple graphs on the canvas
The first graph we want to produce is a simple line graph that shows the growth of our
plants over time. Each lab has varying climate conditions, and we want to see how those
conditions are affecting the growth of all plants, so the chart will have one line per lab
showing the average of the median height measurements for all plots in the lab over the
days of the experiment.

We'll start by creating a model method to return the raw data, then create a Canvas-based
line-chart view, and finally create an application callback to pull the data and send it to the
chart view.

Creating the model method
Suppose we have a SQL query that determines the day number of a plot check by
subtracting its date from the oldest date in the plot_checks table, then pulls lab_id and
the average of median_height for all plants in the given lab on the given day.

We'll run this query in a new SQLModel method called get_growth_by_lab():

 def get_growth_by_lab(self):
 query = (
 'SELECT date - (SELECT min(date) FROM plot_checks) AS day, '
 'lab_id, avg(median_height) AS avg_height FROM plot_checks '
 'GROUP BY date, lab_id ORDER BY day, lab_id;')
 return self.query(query)

We'll get back a table of data that looks something like this:

Day Lab ID Average height

0 A 7.4198750000000000

0 B 7.3320000000000000

0 C 7.5377500000000000

Visualizing Data Using the Canvas Widget Chapter 14

[385]

0 D 8.4633750000000000

0 E 7.8530000000000000

1 A 6.7266250000000000

1 B 6.8503750000000000

We'll use this data to build our chart.

Creating the graph view
Head over to views.py, where we'll create the LineChartView class:

class LineChartView(tk.Canvas):

 margin = 20

 def __init__(self, parent, chart_width, chart_height,
 x_axis, y_axis, x_max, y_max):
 self.max_x = max_x
 self.max_y = max_y
 self.chart_width = chart_width
 self.chart_height = chart_height

LineChartView is a subclass of Canvas, so we'll be able to draw items directly on it. We'll
accept a parent widget, height, and width for the chart portion, labels for the x and y axes
as arguments, and the maximum values for x and y to display. We'll save the chart
dimensions and maximum values for later use, and set a class property of 20 pixels for the
margin width.

Let's start setting up this Canvas:

 view_width = chart_width + 2 * self.margin
 view_height = chart_height + 2 * self.margin
 super().__init__(
 parent, width=view_width,
 height=view_height, background='lightgrey')

Visualizing Data Using the Canvas Widget Chapter 14

[386]

We calculate the width and height values of view by adding the margin to both sides,
then call the superclass __init__() with them, also setting the background to lightgrey.
We'll also save the chart width and height as instance properties.

Next, let's draw the axes:

 self.origin = (self.margin, view_height - self.margin)
 self.create_line(
 self.origin, (self.margin, self.margin), width=2)
 self.create_line(
 self.origin,
 (view_width - self.margin,
 view_height - self.margin))

Our chart's origin will be self.margin pixels from the bottom-left corner, and we'll draw
the x and y axes as simple black lines moving left and up from it to the edge of the chart.

Next, we'll label the axes:

 self.create_text(
 (view_width // 2, view_height - self.margin),
 text=x_axis, anchor='n')
 # angle requires tkinter 8.6 -- macOS users take note!
 self.create_text(
 (self.margin, view_height // 2),
 text=y_axis, angle=90, anchor='s')

Here, we're creating the text items set to the labels for the x and y axes. There are a few
new arguments in use here: anchor sets which side of the text's bounding box is attached
to the coordinates provided, and angle rotates the text object by the given number of
degrees. Note that angle is a Tkinter 8.6 feature, so it could be a problem for macOS users.
Also, note that we've used south as anchor for the rotated text; even though it's rotated, the
cardinal directions refer to the non-rotated sides, so south will always be the bottom of the
text as it's normally printed.

Last of all, we need to create a second Canvas that will contain the actual chart:

 self.chart = tk.Canvas(
 self, width=chart_width, height=chart_height,
 background='white')
 self.create_window(
 self.origin, window=self.chart, anchor='sw')

Visualizing Data Using the Canvas Widget Chapter 14

[387]

While we could place widgets on canvas using a geometry manager like pack() or
grid(), the create_window() method places a widget on Canvas as a Canvas item using
coordinates. We're anchoring the lower-left corner of the chart to the origin point on our
graph.

With the pieces in place, we'll now create a method to draw data on the chart:

 def plot_line(self, data, color):
 x_scale = self.chart_width / self.max_x
 y_scale = self.chart_height / self.max_y

 coords = [(round(x * x_scale),
 self.chart_height - round(y * y_scale))
 for x, y in data]

 self.chart.create_line(*coords, width=2, fill=color)

In plot_line(), we first have to convert the raw data into coordinates that can be drawn.
We'll need to scale our data points so that they range from 0 to the height and width of the
chart object. Our method calculates the scale of x and y (that is, how many pixels per unit x
or y) by dividing the chart dimensions by the maximum values of x and y. We can then
transform our data by using a list comprehension that multiplies each data point by the
scale value.

Also, data is usually graphed with the origin in the bottom-left, but coordinates measure
from the top-left, so we'll need to flip the y coordinates; this is done in our list
comprehension as well by subtracting the new y value from the chart height. These
coordinates can now be passed to create_line() along with a reasonable width and the
color argument passed in by the caller.

One last thing we need is a legend, to tell the user what each color on the chart represents.
Without legend, this chart would be meaningless.

Let's create a draw_legend() method:

 def draw_legend(self, mapping):
 y = self.margin
 x = round(self.margin * 1.5) + self.chart_width
 for label, color in mapping.items():
 self.create_text((x, y), text=label, fill=color,
 anchor='w')
 y += 20

Visualizing Data Using the Canvas Widget Chapter 14

[388]

Our method takes a dictionary that maps labels to colors, which will be provided by the
application. For each one, we simply draw a text item containing the label text with the
associated fill color. Since we know our labels will be short (only a single character), we
can get away with just putting this in the margin.

Updating the application
In the Application class, create a new method for showing our chart:

 def show_growth_chart(self):
 data = self.data_model.get_growth_by_lab()
 max_x = max([x['day'] for x in data])
 max_y = max([x['avg_height'] for x in data])

The first order of business is to fetch data from our get_growth_by_lab() method and
calculate the maximum values for the x and y axes. We've done this by using list
comprehensions to extract values into lists and calling the built-in max() function on it.

Next, we'll build a widget to hold our LineChartView object:

 popup = tk.Toplevel()
 chart = v.LineChartView(popup, 600, 300, 'day',
 'centimeters', max_x, max_y)
 chart.pack(fill='both', expand=1)

We're using the Toplevel widget in this case, which creates a new window outside our
main application window. We've then created LineChartView that is 600 by 300 pixels
with the x-axis and y-axis labels and added it to Toplevel using pack().

Next, we'll assign colors to each lab and draw legend:

 legend = {'A': 'green', 'B': 'blue', 'C': 'cyan',
 'D': 'yellow', 'E': 'purple'}
 chart.draw_legend(legend)

The last thing to do is to draw the actual lines:

 for lab, color in legend.items():
 dataxy = [(x['day'], x['avg_height'])
 for x in data
 if x['lab_id'] == lab]
 chart.plot_line(dataxy, color)

Visualizing Data Using the Canvas Widget Chapter 14

[389]

Remember that our data contains values for all the labs together, so we're iterating through
the labs in legend and using a list comprehension to extract only the data for that lab. Then
our plot_line() method does the rest.

With this method complete, add it to the callbacks dictionary and add a menu item to the
tools menu for each platform.

When you call your function, you should see something like this:

The graph won't look like much without some sample data. Unless you
just like doing data entry, there is a script for loading sample data in the
sql directory.

Advanced graphs using Matplotlib and
Tkinter
Our line graph is pretty, but it still needs considerable work to be fully functional: it lacks a
scale, grid lines, and other features that would make it a completely useful chart.

We could spend a lot of time making it more complete, but there's a faster way to get much
more satisfactory graphs and charts in our Tkinter application: Matplotlib.

Visualizing Data Using the Canvas Widget Chapter 14

[390]

Matplotlib is a third-party library for generating professional-quality, interactive graphs of
all types. It's a vast library with many add-ons, and we won't cover much of its actual
usage, but we should look at how to integrate Matplotlib into a Tkinter application. To do
this, we'll create a bubble chart showing the yield of each plot as it relates to humidity and
temperature.

You should be able to install matplotlib using pip with the command
pip install --user matplotlib. For complete instructions on
installing, please see https:/ ​/ ​matplotlib. ​org/ ​users/ ​installing. ​html. ​

Data model method
Before we can make a chart, we'll need a SQLModel method to extract the data:

 def get_yield_by_plot(self):
 query = (
 'SELECT lab_id, plot, seed_sample, MAX(fruit) AS yield, '
 'AVG(humidity) AS avg_humidity, '
 'AVG(temperature) AS avg_temperature '
 'FROM plot_checks WHERE NOT equipment_fault '
 'GROUP BY lab_id, plot, seed_sample')
 return self.query(query)

The purpose of this chart is to find the sweet spot of temperature and humidity for each
seed sample. Therefore, we need one row per plot that includes the maximum fruit
measurement, average humidity and temperature at the plot column, and seed_sample.
Since we don't want any bad data, we'll filter out rows that have Equipment Fault.

Creating the bubble chart view
To integrate MatplotLib into a Tkinter application, there are several imports we need to
make.

The first is matplotlib itself:

import matplotlib
matplotlib.use('TkAgg')

https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html
https://matplotlib.org/users/installing.html

Visualizing Data Using the Canvas Widget Chapter 14

[391]

It may seem odd to run code in the import section, and your editor may even complain
about it. But before we import anything else from matplotlib we need to tell it which
backend it should use. In this case, we want the TkAgg backend, which is made to integrate
into Tkinter.

Now we can make a few more imports from matplotlib:

from matplotlib.figure import Figure
from matplotlib.backends.backend_tkagg import (
 FigureCanvasTkAgg, NavigationToolbar2TkAgg)

The Figure class represents the basic drawing area on which matplotlib charts can be
drawn. The FigureCanvasTkAgg class is an interface between the Figure and the Tkinter
Canvas, and NavigationToolbar2TkAgg allows us to place a pre-made toolbar for
Figure on our graph.

To see how these fit together, let's start our YieldChartView class in views.py:

class YieldChartView(tk.Frame):
 def __init__(self, parent, x_axis, y_axis, title):
 super().__init__(parent)
 self.figure = Figure(figsize=(6, 4), dpi=100)
 self.canvas = FigureCanvasTkAgg(self.figure, master=self)

After calling super().__init__() to create the Frame object, we create a Figure object
to hold our chart. Instead of a size in pixels, the Figure object takes a size in inches and a
dots per inch (dpi) setting (in this case, resulting in a 600 by 400 pixel Figure). Next, we
create a FigureCanvasTkAgg object to connect our Figure object with a Tkinter Canvas.
The FigureCanvasTkAgg object is not itself a Canvas object or subclass, but it has a
Canvas object we can place in our application.

Next, we'll add the toolbar and pack() to our FigureCanvasTkAgg object:

 self.toolbar = NavigationToolbar2TkAgg(self.canvas, self)
 self.canvas.get_tk_widget().pack(fill='both', expand=True)

Our toolbar is passed our FigureCanvasTkAgg object and the root window (self in this
case), attaching it to our figure and it's canvas. To place the FigureCanvasTkAgg object
on our Frame object, we need to call get_tk_widget() to retrieve its Tkinter Canvas
widget, which we can then pack or grid as desired using pack() and grid().

Visualizing Data Using the Canvas Widget Chapter 14

[392]

The next step is to set up the axes:

 self.axes = self.figure.add_subplot(1, 1, 1)
 self.axes.set_xlabel(x_axis)
 self.axes.set_ylabel(y_axis)
 self.axes.set_title(title)

In Matplotlib, an axes object represents a single set of x and y axes on which data can be
graphed, and is created using the add_subplot() method. The three integers passed to
add_subplot() establish that this is the first set of axes out of one row of one column of
subplots. Our figure could conceivably contain multiple subplots arranged in a table-like
format, but we only need one. After it's created, we set the labels on the axes object.

To create a bubble chart, we're going to use the scatter plot feature of Matplotlib, but use
the size of each dot to indicate the fruit yield. We'll also color code the dots to indicate the
seed sample.

Let's implement a method to draw our scatter plots:

 def draw_scatter(self, data, color, label):
 x, y, s = zip(*data)
 s = [(x ** 2)//2 for x in s]
 scatter = self.axes.scatter(
 x, y, s, c=color, label=label, alpha=0.5)

The data passed in should contain three columns per record, and we're breaking those out
into three separate lists containing the x, y, and size values. Next, we're going amplify the
differences between size values to make them more apparent by squaring each value then
dividing it by half. This isn't strictly necessary, but it helps make the chart more readable
when differences are relatively small.

Finally, we draw the data onto the axes object by calling scatter(), also passing along
the color and label values for the dots, and making them semi-transparent with the
alpha argument.

zip(*data) is a Python idiom for breaking a list of n-length tuples into n
lists of values, essentially the reverse of zip(x, y, s).

To draw legend for our axes object, we need two things: a list of our scatter objects and
list of their labels. To get these, we'll have to create a couple of blank lists in __init__()
and append them whenever draw_scatter() is called.

Visualizing Data Using the Canvas Widget Chapter 14

[393]

In __init__(), add some empty lists:

 self.scatters = []
 self.scatter_labels = []

Now, at the end of draw_scatter(), append the lists and update the legend() method:

 self.scatters.append(scatter)
 self.scatter_labels.append(label)
 self.axes.legend(self.scatters, self.scatter_labels)

We can call legend() repeatedly and it will simply destroy and redraw the legend each
time.

Application method
Back in Application, let's create the method to show our yield data.

Start by creating a Toplevel method and adding our chart view:

 popup = tk.Toplevel()
 chart = v.YieldChartView(popup,
 'Average plot humidity', 'Average Plot temperature',
 'Yield as a product of humidity and temperature')
 chart.pack(fill='both', expand=True)

Now let's set up the data for our scatters:

 data = self.data_model.get_yield_by_plot()
 seed_colors = {'AXM477': 'red', 'AXM478': 'yellow',
 'AXM479': 'green', 'AXM480': 'blue'}

We've retrieved the yield data from the data model and created a dictionary that will hold
the colors we want to use for each seed sample.

Now we just need to iterate through the seed samples and draw the scatters:

 for seed, color in seed_colors.items():
 seed_data = [
 (x['avg_humidity'], x['avg_temperature'], x['yield'])
 for x in data if x['seed_sample'] == seed]
 chart.draw_dots(seed_data, color, seed)

Once again, we're formatting and filtering down our data using a list comprehension,
providing average humidity for x, average temperature for y, and yield for s.

Visualizing Data Using the Canvas Widget Chapter 14

[394]

Add the method to the callbacks dictionary and create a menu item for it just under the
growth chart option.

Your bubble chart should look something like this:

Take a moment to play with this chart using the navigation toolbar. Notice how you can
zoom and pan, adjust the size of the chart, and save the image. These are powerful tools
that Matplotlib provides automatically.

Summary
In this chapter, you learned about Tkinter's graphical capabilities. You learned how to draw
and animate figures on the Tkinter Canvas widget, and how to use these capabilities to
visualize data. You also learned how to integrate Matplotlib figures into your application,
and we implemented two charts in our application by connecting SQL queries to our chart
views.

In the next chapter, we'll learn how to package up our application for distribution. We'll
learn how to arrange the directory for distribution as Python code, and how to use third-
party tools to create executables across Windows, macOS, and Linux.

15
Packaging with setuptools and

cx_Freeze
Word of your application has spread throughout the ABQ corporation, and you've been
asked to provide it for use at other facilities. Unfortunately, running and installing the
application is not a very friendly process; you've been installing it through a tedious and
error-prone copy-and-paste procedure, and users launch it from a batch or shell script you
create by hand on each machine. You need to package your application in a professional
way that makes it easy to install and run across Windows, macOS, and Linux.

In this chapter, you will learn the following topics:

Creating Python source and wheel packages using setuptools
Creating basic standalone binary and installer packages using cx_Freeze
The specifics of creating binaries and installers for Microsoft Windows
The specifics of creating binaries and installers for Apple macOS

Using setuptools
The standard library contains the distutils library, a collection of functionality related to
packaging and distributing Python code. However, both the distutils documentation
(https:/​/​docs.​python. ​org/ ​3/ ​library/ ​distutils. ​html) and the official packaging guide
recommend against using it and instead direct you to use setuptools.

The setuptools library is an extension of the distutils library that adds some
important functionality such as dependency handling; although it is not part of the
standard library, it is included in the official distributions for Windows and macOS, and is
readily available from the package repositories of most Linux distributions. setuptools is
used by the pip package installer, and we can use it to create packages that can be installed
on any system with Python and pip.

https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html
https://docs.python.org/3/library/distutils.html

Packaging with setuptools and cx_Freeze Chapter 15

[396]

If you want to create packages that can be uploaded to PyPI, setuptools
is what you need. For more information about preparing and uploading
packages to PyPI, see the official Python packaging guide at https:/ ​/
python- ​packaging. ​readthedocs. ​io.

Configuring a setup.py script
To package our project using setuptools, we need to create a setup script; by convention,
this is called setup.py and is created in the application's root directory.

The basic structure of setup.py is as follows:

from setuptools import setup

setup(
 # Arguments
)

The vast majority of our configuration will be passed as arguments to the setup()
function, defining the basic metadata for our package, what will be packaged, and
providing some functionality after installation.

Basic metadata arguments
To begin, let's define some basic metadata about our application using these arguments in
setup.py:

setup(
 name='ABQ_Data_Entry',
 version='1.0',
 author='Alan D Moore',
 author_email='alandmoore@example.com',
 description='Data entry application for ABQ Agrilabs',
 url="http://abq.example.com",
 license="ABQ corporate license",

https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io
https://python-packaging.readthedocs.io

Packaging with setuptools and cx_Freeze Chapter 15

[397]

Metadata such as this will be used in naming the package as well as providing information
for PyPI. Not all of the fields are necessary if you are just packaging for personal or internal
use, but if you plan to upload to PyPI, you should include all these fields as well
as long_description, which should be a reStructuredText string that provides extended
information about the program.

Often, the README.rst file can simply be used as follows:

with open('README.rst', 'r') as fh:
 long_description = fh.read()

setup(
 ...
 long_description=long_description,
 ...
)

Packages and dependencies
Once we have specified the metadata, we need to tell setuptools which packages we're
actually bundling using the packages argument.

In our case, we only have the abq_data_entry package, so we'll specify it as follows:

setup(
 #...
 packages=['abq_data_entry'],

Adding this will include the main package and all its submodules as well (such as our
images and test modules).

For more complex cases, setuptools includes the find_packages function, which can be
used instead like so:

from setuptools import setup, find_packages

setup(
 #...
 packages=find_packages(),

This will locate and include all the packages in our project directory automatically.

Packaging with setuptools and cx_Freeze Chapter 15

[398]

In addition to the modules defined in our project, our application depends on third-party
modules such as psycopg2 and matplotlib. We can specify these dependencies in
setup(), and, assuming they're available from PyPI, pip will install them automatically
when our package is installed.

This is done using the install_requires argument as shown here:

setup(
 #...
 install_requires=['psycopg2', 'requests', 'matplotlib'],

Our package only has three dependencies: psycopg2, requests, and matplotlib. Note
that these packages may have their own dependencies as well; those will also be
automatically installed by pip.

If the package requires particular versions of these modules, we can specify that as well:

install_requires=['psycopg2 == 2.7.4', 'requests >= 2.18', 'matplotlib <
2.2']

Similarly, we can specify the version of Python required using the python_requires
argument as follows:

setup(
 #...
 python_requires='>= 3.6',

The syntax for these version specifiers is laid out in PEP 440, which you can find at https:/
/​www.​python.​org/ ​dev/ ​peps/ ​pep- ​0440/ ​.

Adding extra files
By default, setuptools will only copy Python files into your package. Our package
contains more than that, though: we have documentation in RST, SQL scripts, and most
importantly our PNG images, without which our program won't run.

Non-Python files inside our package can be specified using the package_data argument as
follows:

setup(
 #...
 package_data={'abq_data_entry.images': ['*.png']},

https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/
https://www.python.org/dev/peps/pep-0440/

Packaging with setuptools and cx_Freeze Chapter 15

[399]

The package_data argument takes a dictionary that matches module paths to a list of files
or globbing expressions to be included in that module. Here, we're telling setuptools to
include all the PNG files in the images module.

Our project contains other files outside the abq_data_entry module, which aren't needed
for the program to operate, but should nevertheless be distributed with the package. These
cannot be specified in setup(), since it only deals with the in-package files.

To add these, we need to create a MANIFEST.in file in the project root directory with the
following content:

include README.rst
include docs/*
include sql/*.sql

The MANIFEST.in file is a series of the include directives with filenames or globbing
expressions that match files we want to include. Here, we're including our docs directory,
all the sql files, and the README.rst file. Since setup.py relies on the README.rst file for
the long_description argument, it's imperative that we include it in the package.
Otherwise, our package won't be buildable on other systems.

Defining commands
Packaging the abq_data_entry module alone won't make our application executable after
installation. Currently, we run our application from abq_data_entry.py, which is outside
the abq_data_entry module that we're packaging; we could include this file in
MANIFEST.in, but then the user would have to hunt it down somewhere in their Python
libraries directory to run it.

The setuptools library offers a better way to add executable commands in our package
using the entry_points argument. Entry points are ways for external environments to
access our code. One particular entry point, console_scripts, defines a list of module
functions that will be mapped to external commands. When the package is installed,
setuptools will create a simple, platform-appropriate executable file for each
console_scripts item that will run the function specified.

Packaging with setuptools and cx_Freeze Chapter 15

[400]

We can't point console_scripts to a Python file; it must point to a function inside the
package. If we want it to create an executable file to launch our application, we'll need to
add a method inside our package that duplicates the code in abq_data_entry.py.

Let's create this in the package's __init__.py file:

from .application import Application

def main():
 app = Application()
 app.mainloop()

By defining main in the __init__.py file, we make it directly available in the
abq_data_entry namespace.

Now, we can specify this as a console_scripts entry point in setup.py as follows:

setup(
 #...
 entry_points={
 'console_scripts': [
 'abq = abq_data_entry:main'
]}
)

Each item in the console_scripts list is a string in the format {executable_name} =
{module_path}:{function_name}. Our code here will cause setuptools to create an
executable called abq, which will run the main() function we just defined. You could
define other scripts here if there were functions in the package that could run standalone.

Creating and using source distributions
With our configuration files all set, we can create a source distribution. This kind of
distribution bundles all the relevant files for building our package from source into a
tar.gz archive.

To create the source distribution, run setup.py with the sdist option in the project root
directory:

python3 setup.py sdist

Packaging with setuptools and cx_Freeze Chapter 15

[401]

The following two new directories will appear under the project root:

ABQ_Data_Entry.egg-info: This directory contains the metadata files
generated by setuptools. If you explore this directory, you'll find that all the
information we passed to setup() is here in some form or another.
dist: This directory contains any files generated for distribution; in this case,
there is just a single tar.gz file that contains our source package.

To install the source distribution on another computer, it first needs to be extracted. This
can be done with GUI utilities or, on Unix-like systems, the tar command as shown in the
following example:

tar -xzf ABQ_Data_Entry-1.0.tar.gz

Now, inside the extracted directory, the setup.py file can be run using the install option
as follows:

python3 setup.py install

Testing our source distribution
If you don't have a second computer handy to test your source installer on, you can use a
Python virtual environment instead. A virtual environment is an isolated Python
installation that can be activated on-demand to keep packages from polluting our system's
Python environment.

First, make sure you have virtualenv installed using pip:

pip install --user virtualenv

Next, create a directory anywhere on your system and create a Python 3 environment in it
as follows:

mkdir testenv
python3 -m virtualenv -p python3 testenv

This will create a copy of the Python interpreter and standard library in the testenv
directory. This environment can be modified in any way you wish without affecting your
system's Python.

Packaging with setuptools and cx_Freeze Chapter 15

[402]

To use the environment, you need to activate it by executing the following code in a
terminal:

On Linux, macOS, and other unix-like systems:
source testenv/bin/activate

On Windows
testenv\Scripts\activate

With your test environment active now, you can now run setup.py install on your
source distribution. You'll notice that Python will install psycopg2, requests,
matplotlib, and many dependencies of those libraries using pip, even if you already
have them on your system. That's because the virtual environment starts clean with no
third-party packages.

If the install was successful, you should find the following two things:

You have a command called abq available in your virtual environment, which
launches the ABQ Data Entry application
The abq_data_entry library can be found in testenv/lib/python3.6/site-
packages

When finished with your virtual environment, you can use the deactivate script to go
back to your system Python, and delete the testenv directory to remove the environment.

Building a wheel distribution
While a source distribution may be fine for simple software such as our application,
packages with complicated build steps such as code compilation may benefit from a built
distribution, where the building phase has already been done. The current format used by
setuptools for built distributions is the wheel format.

The wheel format replaces an older distutils distribution format called
egg. You will still see references to egg when using setuptools or other
distutils derivatives.

Packaging with setuptools and cx_Freeze Chapter 15

[403]

A wheel (.whl) file is basically a ZIP file containing prebuilt code. They come in the
following three types:

Universal: This wheel file contains only Python code that will run on any
platform with any major version of Python (2 or 3)
Pure Python: This wheel file contains only Python code that will run on any
platform, but is compatible with only one of Python 2 or Python 3
Platform : This wheel file is limited to a particular OS or platform, usually
because it contains compiled binary code

The default wheel file created by setuptools is a pure Python wheel, which is what our
application should be (since we have no compiled code, but are compatible only with
Python 3).

Creating one is simply a matter of calling setup.py with the bdist_wheel option as
follows:

python3 setup.py bdist_wheel

Like sdist, this command creates a new file in the dist directory, only this time it's a
.whl file. The file name will be ABQ_Data_Entry-1.0-py3-none-any.whl.

The segments of this file name represents the following information:

The package name, in this case ABQ_Data_Entry
The version, in this case 1.0
Whether it's Python 3, Python 2, or universal; in this case, py3
The ABI tag, in this case none
The platform, in this case any

Notice that it also creates a build directory, which is where built code is staged before it is
compressed into the wheel file. You can inspect this directory to make sure that your
package is being assembled correctly.

Wheel files are installed using pip as follows:

pip install ABQ_Data_Entry-1.0-py3-none-any.whl

Packaging with setuptools and cx_Freeze Chapter 15

[404]

As with the source install, pip will install any dependencies specified and then install our
package to the site-packages directory. The abq file will also be created and copied to an
executable location.

If you get an error when trying to use bdist_wheel, you may need to
install the wheel module, as it's not always included with setuptools.
This module can be installed with the command pip install --user
wheel.

Using cx_Freeze
While source and wheel distributions are useful, they both require Python and any
necessary library dependencies to be installed on a system before the program can be run.
Often, it would be much handier if we could provide a file or set of files that can simply be
copied and run on a system without installing anything else first. Better yet, we'd like to
have platform-specific installation packages that set up shortcuts and other data.

There are several ways to go about this with Python code, and several projects to choose
from; we're going to look at one called cx_Freeze.

The basic idea of cx_Freeze is to bundle up all the code and shared library files for a Python
project along with a Python interpreter, and then generate a small executable file that will
launch the code with the bundled interpreter. This approach works fairly well most of the
time, but, as we'll see, there are some limitations and difficulties to work around. One
significant limitation is that cx_Freeze can only make executables for the platform that it's
running on; in other words, if you want a Windows executable, you'll need to build it on
Windows; if you want a Linux executable, you'll have to build it on Linux, and so on.

Complete documentation on cx_Freeze can be found at https:/ ​/​cx- ​freeze. ​readthedocs.
io.

First steps with cx_Freeze
Install cx_Freeze using pip as shown in the following command:

pip install --user cx-Freeze

Like setuptools, cx_Freeze is an extension of distutils; it shares many similarities with
setuptools, but solves certain problems in different ways. Just like setuptools, we'll
start with a script in the project directory that calls the setup() function.

https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io
https://cx-freeze.readthedocs.io

Packaging with setuptools and cx_Freeze Chapter 15

[405]

To distinguish this script from our setuptools script, call it cxsetup.py, and enter the
following code:

import cx_Freeze as cx

cx.setup(
 name='ABQ_Data_Entry',
 version='1.0',
 author='Alan D Moore',
 author_email='alandmoore@example.com',
 description='Data entry application for ABQ Agrilabs',
 url="http://abq.example.com",
 packages=['abq_data_entry'],

So far, this is nearly identical to a setuptools script, but from here things will diverge
considerably. First, instead of generating executables using the entry_points argument,
we have to create a list of cx_Freeze Executable objects.

That list is then passed to the executables argument, as follows:

 executables=[
 cx.Executable('abq_data_entry.py',
 targetName='abq', icon='abq.ico')],

The Executable object defines the parameters of the executable files that we want
cx_Freeze to generate for us. At minimum, we need to provide a Python script that should
be executed when the executable will run; we're using our abq_data_entry.py launcher
script for this purpose. By default, the generated executable will be the script name without
the .py extension; we can override this with the targetName argument, as we've done
here.

We can also specify an icon to use for the application. This needs to be an .ico file, so
you'll need to convert PNG or other formats before using them. The path to the file is
relative to the project directory where the cxsetup.py file is.

The build_exe options
Arguments to specific cx_Freeze operations can be passed into setup() using the options
argument. This argument takes a dict object where each item is a cx_Freeze operation
paired with a dict object of operation-specific arguments. The first operation we're going
to look as is build_exe, which is a universal first step for all other operations. As the name
implies, this is the stage where the executable and its accompanying files are built.

Packaging with setuptools and cx_Freeze Chapter 15

[406]

Among other things, this is where we specify the package dependencies:

 options={
 'build_exe': {
 'packages': ['psycopg2', 'requests', 'matplotlib', 'numpy'],
 'includes': ['idna.idnadata', 'zlib'],

In the preceding code snippet, packages is a list of the packages that need to be installed
(including all their submodules and dependencies), while includes is a list of the specific
modules that need to be installed. Note that we've included some things beyond our three
main dependencies. Unfortunately, because cx_Freeze doesn't always do a great job at
identifying all the dependencies, it's often necessary to explicitly list subdependencies.

To figure out the list, follow a basic trial-and-error procedure:

Build the executable1.
Run the executable2.
If you get an import error saying a module cannot be found, add it to the3.
includes list and rebuild
If several modules from the same package are missing, add the package to the4.
packages list and rebuild

Including external files
As with setuptools, cx_Freeze only includes Python files by default. To get other files
included, we use the include_files argument to build_exe. However, there is a
problem: because of the way that cx_Freeze bundles our Python module in a compressed
archive, accessing file paths inside the module is problematic.

Our images module presents such a problem: it contains PNG files that our application
accesses by calculating a relative path from its __init__.py file. To address the issue, the
PNG files will need to be relocated to a directory outside the package during the build
process. Our code will then have to find them in the new location when it's been frozen,
and in the original location when not.

Packaging with setuptools and cx_Freeze Chapter 15

[407]

To make it work, modify images/__init__.py as follows:

from os import path
import sys

if getattr(sys, 'frozen', False):
 IMAGE_DIRECTORY = path.join(path.dirname(sys.executable), 'images')
else:
 IMAGE_DIRECTORY = path.dirname(__file__)

When running a Python script that has been frozen using cx_Freeze, sys has an attribute
called frozen. We can test for the presence of this attribute to specify behavior that
changes when the app is frozen. In this case, we're going to look for our images in an
images directory located in the same directory as the executable file when the script is
frozen. Otherwise, we'll look for them in the module.

To copy our images into this location, we need to update our build_exe options:

include_files = [('abq_data_entry/images', 'images')]
#...
cx.setup(
 #...
 options={
 'build_exe': {
 #...
 'include_files': include_files

include_files is a list of two-tuples. The first tuple member is a source path relative to
the cxsetup.py script, while the second is a destination path relative to the executable file.

Note that we're defining include_files outside the setup() call, for
reasons that will be apparent later.

Building executables
At this point, we can build an executable by running the following command line:

python3 cxsetup.py build

Packaging with setuptools and cx_Freeze Chapter 15

[408]

build runs all steps up to build_exe, leaving you with the built code in a platform-
specific directory under ./build. You can inspect this directory to make sure files are
being copied over and created properly. cx_Freeze should have created a binary executable
file called abq, which will launch your application when run. Note, however, that all files in
this directory must be present for the program to run; cx_Freeze does not support the
creation of single-file standalone executables.

For Linux and BSD, the built package is ready to go and can be zipped up and distributed
as is. For Windows and macOS, we're going to need to do some more work to get it ready
for distribution. In fact, you may have gotten an error, which we'll deal with in the
following sections.

cx_Freeze supports the creation of the RPM files, the package format used
by Linux distributions such as Fedora or SUSE. If you're on an RPM
distribution, you may want to investigate this option. Unfortunately there
is no build operation to build packages for non-RPM distributions such as
Debian, Ubuntu, or Arch.

Cleaning up the build
Although we have working executables, you might have noticed that the distributable
folder is extremely large for such a simple project as ours. Before calling it a day, it's worth
poking around inside the build directories to see what files cx_Freeze is bundling into your
application and whether you really need all of it.

If you look under build/exe.(platform)/lib/python3.6/, you'll find all the libraries
that were pulled in as dependencies of our package. Many of these aren't actually necessary
for running our application, particularly those brought in by alternate backends of
matplotlib.

We can remove many of these using the excludes option of build_exe as follows:

 options={
 'build_exe': {
 'excludes': ['PyQt4', 'PyQt5', 'PySide', 'IPython',
 'jupyter_client', 'jupyter_core', 'ipykernel',
 'ipython_genutils'],

Packaging with setuptools and cx_Freeze Chapter 15

[409]

After adding this change, delete your build directory and rerun the build. You'll see that
all these packages are no longer there, and the size of your build is significantly smaller.
Knowing what can be included or excluded takes research and some trial-and-error, but
with careful pruning we can bring down the size of our distributable files and the build
time for our package considerably.

Building Windows executables with
cx_Freeze
To get our build working correctly on Windows, we'll need to work around a couple of
bugs in the current versions of cx_Freeze and Python 3.6: first, cx_Freeze relies on two
environment variables pointing to the location of the Tcl and Tk libraries, which are no
longer set on Windows, and, second, it fails to copy the Tcl and Tk DLL files to the program
directory. Take the following steps to correct this:

Start by creating a conditional block for Windows builds in cxsetup.py:1.

import platform
import os
if platform.system() == "Windows":
 PYTHON_DIR = os.path.dirname(os.path.dirname(os.__file__))

Inside the block, we're determining the directory containing our Python
installation by getting the parent directory of the os library. We'll use this to
locate the Tcl and Tk libraries.

Now add the environment variables as follows:2.

os.environ['TCL_LIBRARY'] = os.path.join(PYTHON_DIR,
'tcl', 'tcl8.6')
os.environ['TK_LIBRARY'] = os.path.join(PYTHON_DIR,
'tcl', 'tk8.6')

Finally, we need to append our DLL files to the include_files list as follows:3.

 include_files += [
 (os.path.join(PYTHON_DIR, 'DLLs', 'tcl86t.dll'), ''),
 (os.path.join(PYTHON_DIR, 'DLLs', 'tk86t.dll'), '')]

By specifying an empty string for the second tuple member, these files will be
copied into the application's root directory.

Packaging with setuptools and cx_Freeze Chapter 15

[410]

That addresses the bug; the other thing we need to do for a Windows build is4.
configure the base and target arguments to Executable appropriately. As we
discussed in Chapter 9, Maintaining Cross-Platform Compatibility, Windows
programs launch in either console or GUI mode. To make our program launch in
GUI mode, we have to pass a value of Win32GUI for base. Add this to our
conditional block and the cx.setup() call:

base = None
target_name = 'abq'
if platform.system() == "Windows":
 base = "Win32GUI"
 target_name = 'abq.exe'

Inside cx.setup()
 ...
 executables=[
 cx.Executable('abq_data_entry.py', base=base,
 targetName=target_name, icon='abq.ico')],

For other platforms, base should just be None. For the target argument, we
changed the target name to abq.exe. Executable files on Windows need to have
an extension of .exe, and trying to specify a target name that doesn't have this
extension will result in a build error.

Building a Windows installer file
In addition to building a Windows executable, we can build a Windows installer file (.msi)
using the bdist_msi operation. Apart from being ideally compact and simple to distribute,
this file provides some additional capabilities for our build, such as an install wizard and
shortcut generation.

One thing we can specify here is the upgrade code:

cx.setup(
 #...
 options = {
 #...
 'bdist_msi': {
 'upgrade_code': '{12345678-90AB-CDEF-1234-567890ABCDEF}',

Packaging with setuptools and cx_Freeze Chapter 15

[411]

The upgrade code is a Globally Unique Identifier (GUID) value that will identify this
program on the OS. By specifying this, subsequent builds of this .msi file will remove and
replace any existing installations of the same program.

Upgrade codes consist of five segments of 8, 4, 4, 4, and 12 characters from
0 to 9 and A to F. They can be created in Microsoft Visual Studio, or using
the PowerShell
command, [System.Guid]::NewGuid().ToString().ToUpper().
Once specified, they should not change for your program.

The installer can also create application shortcuts, which will be placed on the desktop
and/or programs menu when the package is installed.

To define our shortcuts we need to create a list of shortcut table tuples as follows:

shortcut_data = [
 ('DesktopShortcut', 'DesktopFolder', 'ABQ Data Entry', 'TARGETDIR',
 '[TARGETDIR]' + target_name, None,
 'Data Entry application for ABQ Agrilabs', None,
 None, None, None, 'TARGETDIR'),
 ('MenuShortcut', 'ProgramMenuFolder', 'ABQ Data Entry', 'TARGETDIR',
 '[TARGETDIR]' + target_name, None,
 'Data Entry application for ABQ Agrilabs', None,
 None, None, None, 'TARGETDIR')]

The preceding two tuples define a shortcut for the desktop and menu, respectively. The
data contained in them matches the layout defined by Microsoft at https:/ ​/​msdn.
microsoft.​com/​en- ​us/ ​library/ ​windows/ ​desktop/ ​aa371847. ​aspx.

Those fields are described, in order, as follows:

 Shortcut, the type of shortcut to create; in our case either DesktopShortcut or
MenuShortcut.
 Directory_, a special directory key into which the shortcut will be copied.
Here, DesktopFolder points to the desktop, and ProgramMenuFolder points to
the programs folder in the menu.
Name, representing the name of the shortcut.
Component_, referring to a program whose installed or uninstalled state
determines whether our shortcuts are installed or uninstalled. By specifying
TARGETDIR, the install/uninstall state of our shortcuts matches the
install/uninstall state of the program directory.

https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa371847.aspx

Packaging with setuptools and cx_Freeze Chapter 15

[412]

Target, meaning what file is executed by the shortcut. This will be our
target_name attribute inside TARGETDIR.
Arguments, a string of arguments passed to the command; in our case, there are
none.
Description, a string used in the description field of the shortcut.
Icon_ and IconIndex, which are used to locate an icon for the shortcut. These
can be left as None since our executable's icon will be used by default.
ShowCmd, specifying if the program will be launched minimized, maximized, or
normally. Leaving this as None will launch it normally.
Finally, WkDir, indicating the working directory to be used. We want this to be
the program's directory, so we use TARGETDIR here.

Once created, these shortcut tables need to be included in the data argument of our
bdist_msi options:

cx.setup(
 #...
 options={
 #...
 'bdist_msi': {
 'data': {'Shortcut': shortcut_data}

Currently, data is not documented in the cx_Freeze documentation; cx_Freeze uses the
standard library's msilib module to build the .msi files, and anything passed into this
argument is passed along to the add_data() function of msilib. Refer to the standard
library documentation for msilib at https:/ ​/​docs. ​python. ​org/ ​3/ ​library/ ​msilib. ​html if
you're interested in exploring this option further.

With the bdist_msi options specified, let's build the .msi file as follows:

pyton3 cxsetup.py bdist_msi

https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html
https://docs.python.org/3/library/msilib.html

Packaging with setuptools and cx_Freeze Chapter 15

[413]

This creates a new installer file in the dist directory, which you should be able to install on
any compatible Windows system as shown in the following screenshot:

Keep in mind that cx_Freeze uses Python binaries from your build environment in the
application build; as a result, 64-bit Python will build a 64-bit executable, and 32-bit Python
will build a 32-bit executable. Additionally, builds created on newer versions of Windows
may not be compatible with older versions of Windows. For maximum compatibility, build
your binaries on a 32-bit version of the oldest release of Windows you plan to support.

Packaging with setuptools and cx_Freeze Chapter 15

[414]

Building macOS executables with cx_Freeze
As with Windows, we need to work around a couple of issues to use cx_Freeze on macOS.

First, there is a problem when building projects that include numpy, which is a dependency
of matplotlib. To work around it, you'll need a version newer than 6.0.b1; at the time of
writing, that means installing it directly from GitHub.

This can be done with by executing the following command line:

pip install --user git+https://github.com/anthony-tuininga/cx-freeze

The second issue only happens if you've installed Python using the homebrew package
manager (currently, this is the only way to get Python working with Tk 8.6 on macOS).
cx_Freeze expects Python to be in /Library/Frameworks where the official installer
places it, but homebrew installs Python to /usr/local/Cellar/Frameworks.

This can be fixed with a symlink, by executing this command:

sudo ln -s /usr/local/Cellar/Frameworks/Python.Framework
~/Library/Frameworks/

With the bugs sorted out, we can build binaries for macOS. There are two build types
special to macOS: bdist_mac and bdist_dmg.

Building macOS application bundles
The bdist_mac build type creates an application bundle, a specially formatted directory
with an .app extension that the Macintosh desktop treats as though it were an executable
file.

bdist_mac has several configuration options, but we're only going to use two as follows:

cx.setup(
 #...
 options={
 ...
 'bdist_mac': {
 'bundle_name': 'ABQ-Data-Entry',
 'iconfile': 'abq.icns'
 }

Packaging with setuptools and cx_Freeze Chapter 15

[415]

Here, bundle_name sets the name of our application bundle. Normally, this would default
to your project's name, but we're overriding it to use dashes instead of underscores. Note
that using spaces in this value creates problems for cx_Freeze and is best avoided. The
iconfile setting allows us to point to an ICNS file that macOS will use for the
application's icon. The dimensions of this image file need to be a square number of pixels
that is a power of two between 16 and 1,024. A compatible ABQ logo is included in the
example code.

Refer to the cx_Freeze documentation for additional options here, which include code
signing and explicitly specifying additional frameworks for the bundle.

Once your configuration options are added, run the cxsetup.py script by using the
following command:

python3 cxsetup.py bdist_mac

When this process completes, ABQ-Data-Entry.app should appear in the build
directory. You can double-click this directory in the macOS GUI to run it from any location,
or drag it to the /Applications directory to install it.

It should appear something like as shown in the following screenshot:

As you can see, our application menu no longer reads Python, as we first saw in Chapter 9,
Maintaining Cross-platform Compatibility; it now reads abq, the name of the executable file,
which is what we want.

Packaging with setuptools and cx_Freeze Chapter 15

[416]

As with Windows, cx_Freeze-generated bundles are not necessarily backwards-compatible,
so it's best to create them on the oldest version of macOS that you need to support.

Building macOS .dmg files
Applications on macOS are generally distributed inside a compressed disk image (.dmg)
file. cx_Freeze allows you to go one step further and bundle your package into a DMG file
directly.

This is done using bdist_dmg by executing the following command line:

python3 cxsetup.py bdist_dmg

This command runs bdist_mac and then packages the resulting bundle into a DMG file.
The configuration options for bdist_dmg allow you to override the filename and include a
shortcut to the /Applications directory for easy installation. The built file will appear
in the build directory, and you can copy it from there to another Macintosh to be mounted
and used.

Summary
In this chapter, you learned how to prepare and package your application for distribution.
You learned how to package it for distribution as a Python library, either for internal use or
in a public index such as PyPI. You also learned how to convert your Python script into an
executable file that can be distributed to other systems without installing Python or
supporting libraries.

Congratulations on finishing this book! Together we've taken a simple CSV file and turned
it into a complex and robust graphical application. You now have the knowledge and
confidence to create user-friendly GUI applications that work with files, databases,
networks, and APIs across all major platforms.

As for your career with ABQ, you've just received a promotion offer to work with the
corporate office as a software developer. There will be much more to learn, but with the
skills you've learned so far you are ready for whatever challenges come next. Good luck!

Other Books You May Enjoy
If you enjoyed this book, you may be interested in these other books by Packt:

https://www.packtpub.com/web-development/tkinter-gui-application-development-cookb
ook

https://www.packtpub.com/application-development/tkinter-gui-programming-example

Tkinter GUI Application Development Cookbook
Alejandro Rodas de Paz

ISBN: 978-1-78862-230-1

Add widgets and handle user events
Lay out widgets within windows using frames and the different geometry
managers
Configure widgets so that they have a customized appearance and behavior
Improve the navigation of your apps with menus and dialogs
Apply object-oriented programming techniques in Tkinter applications
Use threads to achieve responsiveness and update the GUI
Explore the capabilities of the canvas widget and the types of items that can be
added to it
Extend Tkinter applications with the TTK (themed Tkinter) module

https://www.packtpub.com/web-development/tkinter-gui-application-development-cookbook

Other Books You May Enjoy

[418]

Tkinter GUI Programming by Example
David Love

ISBN: 978-1-78862-748-1

Create a scrollable frame via theCanvas widget
Use the pack geometry manager andFrame widget to control layout
Learn to choose a data structurefor a game
Group Tkinter widgets, such asbuttons, canvases, and labels
Create a highly customizablePython editor
Design and lay out a chat window

https://www.packtpub.com/application-development/tkinter-gui-programming-example

Other Books You May Enjoy

[419]

Leave a review - let other readers know what
you think
Please share your thoughts on this book with others by leaving a review on the site that you
bought it from. If you purchased the book from Amazon, please leave us an honest review
on this book's Amazon page. This is vital so that other potential readers can see and use
your unbiased opinion to make purchasing decisions, we can understand what our
customers think about our products, and our authors can see your feedback on the title that
they have worked with Packt to create. It will only take a few minutes of your time, but is
valuable to other potential customers, our authors, and Packt. Thank you!

Index

A
About dialog
 displaying 141, 142
ABQ AgriLabs
 data collection information, gathering 25
 information, gathering 25
 issues 22
 issues information, gathering 23
 issues, accessing 23
 users information, gathering 26
ABQ Data Entry application
 executing 123
ABQ database
 creating 298
 tables, creating 298
 view, creating 300, 301
accelerator keys 235
Active Directory (AD) 238
ALTER TABLE command 286
API upload
 application, updating 340
 command, adding to main menu 344
 implementing 335
 models.py file, updating 344
 network function, creating 339
 test HTTP service, creating 336
Application class, for SQL backend
 adjusting 308
 building 59
 callbacks, creating 313
 login window, building 309
 login window, using 310
 model incompatibilities, fixing 312, 313
 saving, to CSV 61
application directory
 abq_data_entry.py file 104

 basic directory structure 103
 docs folder, populating 108
 Python package, making 109
 README.rst file 105
 structuring 103
application menu
 implementing 139, 141
 menu guidelines 234
 menu widget capabilities 231, 232
 standards 234
Application object
 model, moving 177
 new callbacks, adding 178, 180, 182
 record list, populating 177
 RecordList view, adding 176
application's cross-platform compatibility, improving
 about 237
 encoding, specifying for CSV file 239
 platform-appropriate menus, making 239
 preferences, storing 238
application, splitting into multiple files
 about 111
 application file, creating 121
 models module, creating 111
 redundancy, removing in view logic 118
 views, moving 116
 widgets, moving 115
application
 Application object, updating 176
 executing 63
 form, building 54
 implementing 49
 LabelInput class 49, 51, 53
 main menu changes 175
 problems, addressing 130
 problems, solving 129
 testing 63, 183, 269, 270, 272

[421]

 tests, writing for 264
AROS Research Operating System 216
automated testing 250

B
Berkeley Software Distribution (BSD) 220
bounding box 375
built distribution 402
Button widget 48

C
Canvas objects
 animating 376
 creating 377, 378
Canvas widget
 animating with 374, 376
 drawing with 374, 376
 graphs, creating 384
 racers, animating 378, 380
 win condition, detecting 382
 win condition, handling 382
Checkbutton widget 45
code
 executing, in background with threading 359
Combobox widget 44
communication queue
 adding, to threaded uploader 368
controller 102
CREATE TABLE command 285
cross-platform Python
 code, writing 227
 console mode 227
 filenames 217
 filepaths 217
 graphical mode 227
 inconsistent feature support 223
 inconsistent library support 223
 low-level function compatibility 224
 platform-limited libraries 223
 subprocess module 225
 text file encodings 225
 text file formats 225
 writing 216
cross-platform Tkinter

 accelerator keys 235
 application menus 231
 fonts 236
 theme support 236
 version differences 230
 window zoomed state 236
 writing 230
cx_Freeze
 about 404
 build_exe options 405
 documentation, reference link 404
 executables, building 407
 external files, including 406, 407
 installing, with pip 404, 405
 macOS executables, building 414, 415
 using 404
 Windows executables, building 409, 410

D
data errors
 preventing, strategies 67
data types
 assigning 297
DELETE FROM command 288
detail table 291
dialog boxes
 implementing 131
download function
 creating 323

E
elements 203
entity-relationship diagram (ERD) 295
Entry widget 42
error dialog
 about 131
 displaying 134
event modifiers 262
event queue 355
executables, cx_Freeze
 build, cleaning up 408

[422]

F
file reading
 testing, in get_all_records() 265, 266
file saving
 testing, in save_record() 268
file selection
 handling 144, 145
filenames, cross-platform Python
 case-sensitivity 220
 drives 217
 path separators 217
 path variables 222
 symbolic links 220, 221
first-in, first-out (FIFO) 364
flat file 294
floating-point error 85
font options
 providing, to users 200, 202
fonts 198
form
 building 54
 data, retrieving 58
 LabelFrame widget, adding 55, 56, 57
 labels, styling 208, 210
 other widgets 55, 56, 57
 resetting 59
 validated widgets, implementing 74
 widget properties, using on 190
FTP upload function
 adding, to GUI 351
 implementing 348
FTP
 basics 346
 files, deleting 351
 files, listing 350
 files, renaming 351
 files, retrieving 350
 test FTP service 347
 with ftplib 346

G
geometry manager 14
Git repository
 code, adding 126

 code, committing 126
 commits, using 127
 commits, viewing 127
 configuring 125
 initializing 125
Git
 about 125
 reference 125
graphs
 application method 393
 application, updating 388, 389
 bubble chart view, creating 390, 392
 creating, on canvas 384
 creating, with Matplotlib 389
 data model method 390
 graph view, creating 385, 386, 387
 model method, creating 384
GROUP BY clause 292
GUI application
 designing 31, 33
 fields, grouping 34
 form, laying out 35, 37
 laying out 38
 Tkinter input widgets, exploring 32
GUI elements
 adding, for weather download 330

H
HTTP transaction
 client 321
 server 321
HTTP
 with requests 332
 with urllib 320
human interface guidelines (HIG) 235

I
IDLE
 about 10
 editor mode, using 11
 shell mode, using 10
 using, as Tkinter example 11
images
 working with 185

[423]

input automation
 about 97
 date insertion 97
input widgets
 styling, on error 210
INSERT INTO command 285

J
joins 290
junction table 292

L
Lab
 automating 98
Linux
 Python 3, installing 9
 Tkinter, installing 9
lookup table
 about 291
 creating 298
 lab_checks table 299
 plot_checks table 299

M
macOS
 executables, building with cx_Freeze 414, 415
 Python 3, installing 9
Matplotlib
 about 390
 graphs, creating 389
 URL 390
menu guidelines
 Apple's human interface guidelines 234
 Linux and BSD human interface guidelines 235
 Windows user experience interaction guidelines

234

menus
 adding, in controller 142
 creating 136, 137, 139
 designing 135
messagebox
 about 131
 implementing 133
messages

 passing, with queue 364
method 321
Method Resolution Order 76
mixin class
 about 75
 testing 278
model
 about 101
 building, for settings persistence 150, 153
 get_all_records(), implementing 158, 160
 get_record(), implementing 160
 read, adding 158
 read, implementing 157
 testing 264, 265
 update, adding 158
 update, adding to save_record() 161
 update, implementing 157
multiple inheritance
 about 75, 76
 mixin class, validating 77, 78, 79
MVC pattern
 about 101
 controller 102
 model 101
 view 102

N
named fonts 198
network functions
 converting, to threads 361
non-threaded uploader
 versus threaded uploader 363
normal forms
 about 294
 first normal form 294
 second normal form 294
 third normal form 295
normalization 294

O
Open Sound System (OSS) 223
os module
 reference 224
os.path module 218

[424]

P
partition function 380
path separator translation 217
pathlib module
 about 219
 reference 219
PhotoImage
 about 186
 company logo, adding to program 187
 Window icon, setting 188
Pillow
 reference 186
pip
 used, for installing cx_Freeze 404, 405
platform-appropriate menus, Tkinter
 Linux menu, building 244
 macOS menu, building 245
 MainMenu class, preparing 239, 241
 Windows menu, building 242
Portable Operating System Interface (POSIX) 223
PostgreSQL
 about 281
 configuring 4, 282
 download link 282
 installing 282
 reference 294
psycopg2
 connecting with 283
 reference 283
Python 3
 installing, on Linux 9
 installing, on macOS 9
 installing, on Windows 8
 reference 8, 9
Python packaging
 reference link 395

Q
Queue object 364
queue
 used, for passing messages 364
 using, to communicate between threads 365,

367

R
Read-Evaluate-Print-Loop (REPL) 10
read
 adding, to model 158
 implementing, in model 157
 record form, modifying for 172
record form
 __init__(), updating 173
 load_record() method, adding 174, 175
 modifying, for read 172
 modifying, for update 172
record list view
 implementing 162
record list
 implementing, with Treeview 167
 styling, with tags 194, 196
relational data
 modeling 294
relational database 283
REpresentational State Transfer (REST) 332
requests.session() function 333
requests
 installing 332
 reference 332
 using 333
response objects 334
reStructuredText markup language
 about 28, 106, 107
 reference link 28
revision control 124

S
scatter plot 392
SELECT command 286
separation of concerns 101
settings menu 147
settings model
 using, in application 154, 155
settings persistence
 model, building for 150, 153
settings
 persisting 148
setup.py script
 basic metadata arguments 396

[425]

 commands, defining 399
 dependencies 397, 398
 extra files, adding 398
 packages 397, 398
setuptools
 setup.py script, configuring 396
 source distributions, creating 400
 source distributions, using 400
 using 395
 wheel distribution, building 402, 403
slow server
 simulating 362
source code management 124
source distribution
 about 400
 testing 401, 402
specification
 about 27
 ABQ data entry program specification, writing

28, 29
 contents 27
 requisites, documenting 27
Spinbox widget 43, 211
SQL integration, into application
 about 301
 Application class, adjusting for SQL backend

308

 model, creating 302, 304, 307
SQL tables 284
SQL
 basics 283
 data insertion 286
 data, retrieving from tables 286, 288
 operations 284
 rows, deleting 288
 rows, updating 288
 subqueries 289
 syntax differences, from Python 284
 tables, defining 285
 tables, joining 290
 WHERE clauses 289
subclassing 15
subquery 289
symbolic link 220

T
table 283
tags
 used, for styling record list 194, 196
 using 192, 193
Technician
 automating 98
technology
 evaluating 40
 selecting 41
tests
 writing, for application 264
Text widget 46
theme selector
 building 213
themes 203
 setting 213
threaded uploader
 communication queue, adding 368
 communications protocol, creating 368, 369
 messages, sending 370, 371
 queue messages, handling 371, 372
 versus non-threaded uploader 363
threading module 359, 361
threads
 code, executing in background 359
 network functions, converting to 361
Time
 automating 98
Tkinter code
 focus, managing 262
 grab, managing 263
 testing 260
 user actions, simulating 261
 widget information, obtaining 263
Tkinter widgets
 Button widget 48
 Checkbutton widget 45
 color properties 189
 Combobox widget 44
 Entry widget 42
 exploring 41
 LabelFrame widget 48
 Spinbox widget 43

[426]

 styling 189
 Text widget 46
Tkinter
 about 7
 advantages 7
 DateEntry widget, creating 71, 72, 74
 disadvantages 8
 event queue 355
 Hello World script, creating 13, 15, 17, 19, 21
 installing 8
 installing, on Linux 9
 reference link 7
 selecting 7
 validation system 68, 69, 70
Tool Command Language (Tcl) 7
Treeview
 configuring 168
 overview 162, 163, 166
 populating 170, 171
 record list, implementing 167
 responding, to record selection 171, 172
 scrollbar, adding 169, 170
Ttk widgets
 exploring 203
 styling 202, 204, 207
types, wheel file
 platform wheel 403
 pure python wheel 403
 universal wheel 403

U
unit test 251
unittest module
 about 253
 fixtures 257
 mock 253
 Mock class, using 257
 multiple unit tests, executing 259
 path, using 259
 test 253
 test case 253
 test case, writing 253, 254
 test suite 253
 TestCase assertion methods, using 255, 256
update

 adding, to model 158
 implementing, in model 157
 record form, modifying for 172
urllib.request
 used, for basic downloading 321
user input
 validating 66

V
validated widgets
 implementing, in form 74
ValidatedMixin
 updating 212
ValidatedSpinbox widget
 integration testing 275, 277
 unit testing 274, 275
version control 124
version control system (VCS) 124
view 102
views, for SQL backend
 data record form 315
 record list 317
 updating 315

W
weather data storage
 implementing 327
 SettingsModel class, updating 329
 SQL table, creating 328
 SQLModel.add_weather_data() method

implementation 328
weather download method
 GUI elements, adding for 330
widgets properties
 using, on form 190
widgets
 about 13
 after() method 356
 after_idle () method 356
 building 80
 Combobox widget 82, 83
 data, requiring 80
 Date widget 81
 errors, displaying 95

 form submission, preventing on error 96
 form, updating 91, 93, 95
 freezes, eliminating with after() method 357, 358
 freezes, eliminating with update_idletasks ()

method 357, 358
 range-limited Spinbox widget 84, 85, 87
 Spinbox range, adjusting 88, 89, 91
 testing 273
 update() method 357

 update_idletasks () method 357
Windows
 executables, building with cx_Freeze 409, 410
 installer file, building 410, 412
 Python 3, installing 8

X
XML weather data
 parsing 324

	Cover

	Title Page
	Copyright and Credits
	Dedication
	Packt Upsell
	Contributors
	Table of Contents
	Preface
	Chapter 1: Introduction to Tkinter

	Introducing Tkinter and Tk
	Choosing Tkinter
	Installing Tkinter
	Installing Python 3 on Windows
	Installing Python 3 on macOS
	Installing Python 3 and Tkinter on Linux

	Introducing IDLE
	Using the shell mode of IDLE
	Using the editor mode of IDLE
	IDLE as a Tkinter example

	Creating a Tkinter Hello World
	Creating a better Hello World Tkinter

	Summary

	Chapter 2: Designing GUI Applications with Tkinter

	A problem at ABQ AgriLabs
	Assessing the problem
	Gathering information about the problem
	What you found out
	Information about the data being collected
	Information about the users of the application

	Documenting specification requirements
	Contents of a simple specification
	Writing the ABQ data entry program specification

	Designing the application
	Exploring Tkinter input widgets
	Grouping our fields
	Laying out the form
	Laying out the application

	Summary

	Chapter 3: Creating Basic Forms with Tkinter and ttk Widgets

	Evaluating our technology choices
	Choosing a technology

	Exploring Tkinter widgets
	The Entry widget
	The Spinbox widget
	The Combobox widget
	The Checkbutton widget
	The Text widget
	The Button widget
	The LabelFrame widget

	Implementing the application
	Saving some time with a LabelInput class
	Building the form
	Adding LabelFrame and other widgets
	Retrieving data from our form
	Resetting our form

	Building our application class
	Saving to CSV

	Finishing and testing

	Summary

	Chapter 4: Reducing User Error with Validation and Automation

	Validating user input
	Strategies to prevent data errors

	Validation in Tkinter
	Creating a DateEntry widget

	Implementing validated widgets in our form
	Exploiting the power of multiple inheritance
	A validating mixin class

	Building our widgets
	Requiring data
	A Date widget
	A better Combobox widget
	A range-limited Spinbox widget
	Dynamically adjusting the Spinbox range
	Updating our form
	Displaying errors
	Preventing form submission on error

	Automating input
	Inserting a date
	Automating Lab, Time, and Technician

	Summary

	Chapter 5: Planning for the Expansion of Our Application

	Separating concerns
	The MVC pattern
	What is a model?
	What is a view?
	What is a controller?

	Why complicate our design?

	Structuring our application directory
	Basic directory structure
	The abq_data_entry.py file
	The README.rst file
	ReStructuredText

	Populating the docs folder
	Making a Python package

	Splitting our application into multiple files
	Creating the models module
	Moving the widgets
	Moving the views
	Removing redundancy in our view logic

	Creating the application file
	Running the application

	Using version control software
	A super-quick guide to using Git
	Initializing and configuring a Git repository
	Adding and committing code
	Viewing and using our commits

	Summary

	Chapter 6: Creating Menus with Menu and Tkinter Dialogs

	Solving problems in our application
	Deciding how to address these problems

	Implementing simple Tkinter dialogs
	Tkinter messagebox
	Showing the error dialogs

	Designing our menu
	Creating menus in Tkinter
	Implementing our application menu
	Showing an About dialog
	Adding the menu functionality in the controller
	Handling file selection

	Making our settings work
	Persisting settings
	Building a model for settings persistence

	Using the settings model in our application

	Summary

	Chapter 7: Navigating Records with Treeview

	Implementing read and update in the model
	Adding read and update to our model
	Implementing get_all_records()
	Implementing get_record()
	Adding update to save_record()

	Implementing a record list view
	The ttk Treeview
	Implementing our record list with Treeview
	Configuring a Treeview widget
	Adding a scrollbar
	Populating the Treeview
	Responding to record selection

	Modifying the record form for read and update
	Updating __init__()
	Adding a load_record() method

	Updating the rest of the application
	Main menu changes
	Connecting the pieces in Application
	Adding the RecordList view
	Moving the model
	Populating the record list
	Adding the new callbacks
	Cleaning up

	Testing our program

	Summary

	Chapter 8: Improving the Look with Styles and Themes

	Working with images in Tkinter
	Tkinter PhotoImage
	Adding the company logo
	Setting our Window icon

	Styling Tkinter widgets
	Widget color properties
	Using widget properties on our form

	Using tags
	Styling our record list with tags

	Tkinter fonts
	Giving users font options

	Styling Ttk widgets
	Exploring a Ttk widget
	Styling our form labels
	Styling input widgets on error
	Making our Spinbox a Ttk widget
	Updating ValidatedMixin

	Setting themes
	Building a theme selector

	Summary

	Chapter 9: Maintaining Cross-Platform Compatibility

	Writing cross-platform Python
	Filenames and filepaths across platforms
	Path separators and drives
	Path separator translation
	The os.path module
	The pathlib module

	Case-sensitivity
	Symbolic links
	Path variables

	Inconsistent library and feature support
	Python's platform-limited libraries
	Checking low-level function compatibility

	The dangers of the subprocess module
	Text file encodings and formats
	Graphical and console modes
	Writing code that changes according to the platform

	Writing cross-platform Tkinter
	Tkinter version differences across platforms
	Application menus across platforms
	Menu widget capabilities
	Menu guidelines and standards
	Windows user experience interaction guidelines
	Apple's human interface guidelines
	Linux and BSD human interface guidelines

	Accelerator keys
	Fonts
	Theme support
	Window zoomed state

	Improving our application's cross-platform compatibility
	Storing preferences correctly
	Specifying an encoding for our CSV file
	Making platform-appropriate menus
	Preparing our MainMenu class
	Building the Windows menu
	Building the Linux menu
	Building the macOS menu
	Creating and using our selector function

	Summary

	Chapter 10: Creating Automated Tests with unittest

	Automated testing basics
	A simple unit test
	The unittest module
	Writing a test case
	TestCase assertion methods
	Fixtures
	Using Mock and patch
	Running multiple unit tests

	Testing Tkinter code
	Managing asynchronous code
	Simulating user actions
	Specifying an event sequence

	Managing focus and grab
	Getting widget information

	Writing tests for our application
	Testing our model
	Testing file reading in get_all_records()
	Testing file saving in save_record()
	More tests

	Testing our application
	Testing our widgets
	Unit testing the ValidatedSpinbox widget
	Integration testing the ValidatedSpinbox widget
	Testing our mixin class

	Summary

	Chapter 11: Improving Data Storage with SQL

	PostgreSQL
	Installing and configuring PostgreSQL
	Connecting with psycopg2

	SQL and relational database basics
	Basic SQL operations
	Syntax differences from Python
	Defining tables and inserting data
	Retrieving data from tables
	Updating rows, deleting rows, and more WHERE clauses
	Subqueries
	Joining tables
	Learning more

	Modeling relational data
	Normalization
	The entity-relationship diagrams
	Assigning data types

	Creating the ABQ database
	Creating our tables
	Creating the lookup tables
	The lab_checks table
	The plot_checks table

	Creating a view

	Integrating SQL into our application
	Creating a new model
	Adjusting the Application class for the SQL backend
	Building a login window
	Using the login window
	Fixing some model incompatibilities
	DataRecordForm creation
	Fixing the open_record() method
	Fixing the on_save() method

	Creating new callbacks

	Updating our views for the SQL backend
	The data record form
	The record list

	Last changes

	Summary

	Chapter 12: Connecting to the Cloud

	HTTP using urllib
	Basic downloading with urllib.request
	Creating a download function
	Parsing XML weather data

	Implementing weather data storage
	Creating the SQL table
	Implementing the SQLModel.add_weather_data() method
	Updating the SettingsModel class

	Adding the GUI elements for weather download

	HTTP using requests
	Installing and using requests
	The requests.session() fucntion
	The response objects

	Implementing API upload
	Creating a test HTTP service
	Creating our network function
	Updating application
	Updating the models.py file
	Finishing up

	FTP using ftplib
	Basic concepts of FTP
	Creating a test FTP service
	Implementing the FTP upload function
	Listing files
	Retrieving files
	Deleting or renaming files

	Adding FTP upload to the GUI

	Summary

	Chapter 13: Asynchronous Programming with Thread and Queue

	Tkinter's event queue
	The after() and after_idle() methods
	The update() and update_idletasks () methods
	Eliminating freezes with after() and update_idletasks ()

	Running code in the background with threading
	The threading module
	Converting our network functions to threads
	Simulating a slow server
	Demonstrating the threaded versus non-threaded uploader

	Passing messages using a queue
	The Queue object
	Using queues to communicate between threads
	Adding a communication queue to our threaded uploader
	Creating a communications protocol
	Sending messages from the uploader
	Handling queue messages

	Summary

	Chapter 14: Visualizing Data Using the Canvas Widget

	Drawing and animation with Tkinter's Canvas
	Animating Canvas objects
	Creating our objects
	Animating the racers
	Detecting and handling a win condition

	Creating simple graphs on the canvas
	Creating the model method
	Creating the graph view
	Updating the application

	Advanced graphs using Matplotlib and Tkinter
	Data model method
	Creating the bubble chart view
	Application method

	Summary

	Chapter 15: Packaging with setuptools and cx_Freeze

	Using setuptools
	Configuring a setup.py script
	Basic metadata arguments
	Packages and dependencies
	Adding extra files
	Defining commands

	Creating and using source distributions
	Testing our source distribution

	Building a wheel distribution

	Using cx_Freeze
	First steps with cx_Freeze
	The build_exe options
	Including external files

	Building executables
	Cleaning up the build

	Building Windows executables with cx_Freeze
	Building a Windows installer file

	Building macOS executables with cx_Freeze
	Building macOS application bundles
	Building macOS .dmg files

	Summary

	Other Books You May Enjoy
	Index

