

Python Numpy Exercises
-Skyrocket your Python skill

Joshua K. Cage
Python Numpy Exercises -Skyrocket your Python skill
Joshua K. Cage
Introduction.

Target　audience
Exemption from responsibility
About Trademarks and Registered Trademarks
Feedback
Jupyter Notebook
Setting up a Python environment - How to useColab

Chapter 1: Numpy is fast, cheap and good
01: IMPORT Numpy with the name np.
02:　Check　the　version　of Numpy.
03: Identify the type of BLAS that Numpy is using.
04: Generate a one-dimensional vector with all elements of size 10 being
zero.
05: Generate a one-dimensional list of all elements of size 10 that are zero.
Make an assignment to the list in 06:04 and 05 so that the index is a value
and the address of each element is displayed by id().
07:　Get Numpy 's np.dot 　documentation　from　the　command　line
08: After defining a vector of all elements 0 of size 10, set the fifth element
to 1.
09:　Measure　the　execution　speed　of Numpy 's ndarray 　and
Python 　list　to　generate　a　vector　with　elements　that　increase　
by 1 　from 100 　to 999999, 　respectively.

(Chapter 2) Numpy is flexible.
11: Generate a 3 x 3 unit matrix.
12: Define a random number array A with a 512 x 768 shape, 12 random
number arrays B of 768 x 768 (B1 - B12), and a random number array C of
768 x 2, and output the result of dot product operations on all of them in
order.

13:　Create　a　matrix　of 10 x 10 SHAPE 　random　numbers　and　
find　the　maximum　and　minimum　values.
14:　Generate　an　array　of　random　numbers　of　size 30 　and　
calculate　the　average　value.
15:　Generate　a　two-dimensional　array　that　is　surrounded　by 1s
on 　all　sides　and 0s 　in　the　middle.
16: Use Numpy to describe the initial state of Othello.
17:　Surround　a 5 x 5 matrix　with　all　the　elements 0 　by 1.
18: Surround a 7 x 7 matrix with all the elements 0 by 1. But write it in a
different way than in No. 17.
19: Create a 5 x 5 0 matrix and arrange 1,2,3,4,5 on the diagonal.

(Chapter 3) Welcome to the depths of Tensor
Create a 20:8 x 8 matrix and represent the checkerboard pattern by 01.
21: Find the index (x,y,z) of the 100th element when there is an array of the
form (6,6,6).
22: Create an 8x8 checkerboard using the tile function.
23: Normalize a 5 x 5 random number array to fit within 0-1.
24: Create your own dtype that represents an integer on the xy coordinate
axis.
25: Create your own dtype for RGBA (the three primary colors plus
transparency).
26: Find the matrix product of a 2 x 2 matrix and a 2 x 2 matrix.
27: Generate a sign-reversed array of 1D arrays whose elements are
between 3 and 8.

Python standard library version
Numpy 　Edition

28: Compare the results when sum() is executed without importing numpy
and when sum() is executed after numpy has been *imported.
29: Which of the following expressions in vector Z is problematic?

(Chapter 4) Working with Numbers in Numpy
30: Show the result of the following equation.
31: Round up to the nearest whole number in a float array.
32: Find the common value of the two sequences.
33: Perform division by zero in the mode of ignoring all numpy warnings.
34: What is the true value of the following equation?
35: Get yesterday, today and tomorrow's dates.
36: Get all dates for September 2020.

37:　If　two　arrays A and B 　have A=[1.0, 2.0] and B=[3.0, 4.0] 　
respectively,　calculate (-(A+B)xB+1) / 2 with 　and　without　memory　
copy,　respectively.
38: Generate an array by extracting only the integer part from a uniform
random number array of a specific range.
39: Define a 5 x 5 array in which the elements of the row are 0 to 4.

(Chapter 5) Sequence Generation
40: Define and execute a generator function that generates an array of N
elements (elements are integers between 0 and N-1).
41: Generate a real array of 0 to 1 with size 10. (But exclude 0 and 1.)
42: Generate random number vectors of size 10 and sort them in ascending
order.
43: Sum faster than np.sum for small arrays.
44: Determine if the integer sequences A and B are equal.
45: Make an immutable array.
46: Convert from Cartesian coordinates (xy) to polar coordinates (r, θ).
47: Create an array of random numbers of size 10 and replace the largest
element with 0.
48: Define a structural array where (x, y) = (0, 0) to (1, 1) is filled with
evenly spaced grid sequences.
49: Construct the Cauchy matrix Cij=1/(xi-yj) for two sequences of X and
Y.

(Chapter 6) Numpy Array Customization 1
50: Show the maximum and minimum values that Numpy's scalar types
(e.g. np.float32 and np.float64) can represent.
51: Do not abbreviate all the elements in the numpy array, but output them
to the standard output.
52 : 　Given　a　vector (a) 　and　a　scalar (b) ,　output　the　scalar　
value　closest　to b 　in a.
53: Generate a structured array to represent the (x,y) coordinates and RGB.
54: Find the distance matrix of (100,100) from the random number array of
(100,2).
55: Change the float array to an int array.
56: Store the following files in a numpy array.
57: Define three ways to get the index and value of a two-dimensional
numpy array and compare their speeds.
58: Generate a two-dimensional Gaussian kernel array.

59: Place p elements randomly in a two-dimensional array.
(Chapter 7) The More Practical Numpy

61: Sort the array by the nth column.
62: Generate another array with non-zero elements from the sequence
[1,2,0,0,4,0].
63:　Determine　if　the　two-dimensional　array　contains　a　column　
with　only Null 　elements.
64: Find the closest value to the given value in an array of arbitrary shapes.
65: Find the sum of sequences of the (1,3) and (3,1) forms using the
universal operation or iterator.
66: Create your own array class with name attributes.
67: Given a sequence A and another sequence B, add 1 to the value of the
element of A indexed by the value of the element of B.
68: How to accumulate the elements of a vector (X) into an array (F) based
on an index list (I)?
69: Define a numpy array of length x width x color (RGB) and count the
number of unique colors.

(Chapter 8) Statistics and Aggregation with Numpy
70:　Calculate　the　sum　of　the　last　two　axes　in　a　4-dimensional　
vector　in　a　lump　sum.
71: Using a vector S of the same size for a one-dimensional vector D (the
index is stored in the value), compute the average of the subset specified by
the index of D.
72: Get the diagonal elements of the dot product of the two matrices.
73: Swap the two rows in the array.
74: Given a bincount of B sequence named C, generate an array A such that
np.bincount(A) == C.
75: Swap the two rows in the array.
76: Generate 10 triangles in which each point is represented by an (x, y)
coordinate, and find 10 unique coordinates that represent the edges of
multiple triangles sharing an edge.
77: Given a bincount of B sequence named C, generate an array A such that
np.bincount(A) == C.
78: Calculate the average using the sliding window on the array.
79: Given a one-dimensional array of type int, get a three-gram (trigram) as
a two-dimensional array.

(Chapter 9) Numpy Batch Processing

80: Output the negation of a boolean element array. Also, do a sign
inversion of the floating-point array.
81: Consider two points P0, P1 and a set of points p that represent a line in
two-dimensional space and calculate the distance from p to each line i
(P0[i], P1[i]).
82:　Consider　an　arbitrary　array　and　extract　a　sub-array　whose　
shape　is　fixed　around　a　given　element.　(0padding if 　necessary.)
83: Calculate the matrix rank.
84: Find the mode of the sequence.
85: Extract all consecutive 3x3 blocks from a random 10x10 matrix.
86: Find a two-dimensional array in which the rows and columns of the
two-dimensional array Z are swapped. (That is, a two-dimensional array
with Z[i,j] == Z[j,i])
87: Consider a set of p matrices whose shape is (n,n) and a set of p vectors
whose shape is (n,1). How do you calculate the sum of the products of p
matrices at once? (The result has the shape (n,1)
88: Consider a 16x16 array, get the sum of a sub-array of block size 4x4.
89: How do I implement Game of Life using numpy arrays?

(Chapter 10) Numpy Cornering
90: Get the nth largest number in the array where the numbers are stored.
91: Given any number of vectors, find the direct product (all combinations
of all items).
92: Generate a recalay from ndarray.
93:　Consider　a　large　vector Z (ten　million　random　numbers) 　
and　calculate　the cube 　using　four　different　methods.
94:　Consider two 　arrays A 　and B of the 　form (8,3) 　and (2,2) ;　
how　do　you　find　a　row　of A that 　contains　an　element　in　each　
row　of B ,　regardless　of　the　order　of　the　elements　in B?
Extract the rows in a 95:10x3 array that are not all equal (e.g., [2,2,3]).
96:　Convert　a　vector　of　type int 　to　a 01 　representation.
97: Given a two-dimensional array, extract a unique row.
98: Considering two vectors A and B, write the subscript of the einsum of
the inner product, outer product, summation, and mul function.
99: Consider a two-dimensional array Xk=[[x1,y1],[x2,y2]] representing
two coordinates. Find the Euclidean distance between the two points of
X1=[[0,0],[1,1]] and X1=[[1,1],[2,2]], respectively.
100:　Given　an　integer n 　and　a　two-dimensional　array X, 　select　

a　row　that　can　be　interpreted　as　being　drawn　from X 　from　an n-
degree 　polynomial　distribution,　i.e.,　a　row　that　contains　only　
integers　and　sums　to n.
101: Compute the bootstrapped 95% confidence interval of the mean of the
1D array X (i.e., replace the elements of the array N times and resample,
compute the mean of each sample, and compute the percentile for that
mean).

Conclusion

Introduction.

Target　audience
　Thank you for picking up this book. This book is a practical introduction to
"Numpy" for first-time Python users. The goal of this book is to give you the
freedom to write code that takes full advantage of the capabilities of Numpy
and Python by walking you through the 101 questions while you are writing
a real-world program in Python.

The following readers are envisioned

1) You've learned the basic Python grammar, so you want to take the next
step

2) If you want to write fast-running, concise Python programs.

3) If you're also a little curious about the mechanics behind deep learning and
machine learning.

4) Those who get defensive when they hear the words vector and matrix.

5) Those who want to handle large scale data.

6) Those who want to study a little bit every day

7) If you have started to solve the numpy 100 exercises, but are frustrated

This book starts with "import numpy as np" and lays the foundation for doing
things like linear algebra and basic statistics in machine learning.

Programming is often said to be "better to get used to it than to learn it," but
if you don't take the time to build an environment to get used to it and get to
the point where you can't get to the point, there is no point. This book
includes links to the executable Google Colaboratory source code, so you can
actually run the code and modify it as you solve problems without the hassle
of setting up an environment.

However, explanations are omitted for questions that may not require
explanation if you read the source material. However, explanations are
omitted for problems that may not be necessary if you read the source
material. If you find something difficult to understand, please let us know by
email using feedback.
We also tweet about supplements and corrections to the book on Twitter
(@JoshuaKCage1).

Exemption from responsibility
　The information contained in this document is for informational purposes
only. Therefore, the use of this book is always at the reader's own risk and
discretion. The use of the Google Colaboratory described in this book is at
the reader's own risk after reviewing Google's Terms of Service and Privacy
Policy. In no event shall the reader be liable for any consequential, incidental,
or lost profits or other indirect damages, whether foreseen or foreseeable,
arising out of or in connection with the use of the source code accompanying
this book or the Google Colaboratory service.
　Please use this book if you agree to the above precautions. Please note that
the author will not be able to respond to any inquiries you make without
reading these notes. Please be aware that you may not be able to contact us if
you do not read these terms and conditions.

About Trademarks and Registered Trademarks

　All product names appearing in this manual are generally registered
trademarks or trademarks of the respective companies. ™, ® and other marks
may be omitted from the text.

https://colab.research.google.com/notebooks/welcome.ipynb?hl=ja
https://policies.google.com/terms?hl=ja

Feedback

　While the utmost care has been taken in the writing of this book, you may
notice errors, inaccuracies, misleading or confusing language, or simple
typographical errors and mistakes. In such cases, we would appreciate your
feedback to the following address so that we can improve future editions.
Suggestions for future revisions are also welcome. The contact information is
below.

Joshua K. Cage
joshua.k.cage@gmail.com

Jupyter Notebook
　The Jupyter Notebook, which allows you to run the code described in this
book, is now available on Google Colaboratory. You can access it from the
following link, so please refer to it when you read this book (Chrome is
recommended*) .

https://colab.research.google.com/drive/13_MEoP-
TDQrYVhTbMESufyyuw_YRlADu#scrollTo=1KT7lPjN_s31

*Google Colaboratory is a service of Google and may be terminated by the
author without notice.

Setting up a Python environment - How to useColab
　In　this　book,　I　have　published　the　steps　to　set　up　a GPU 　
environment　on Google Colaboratory, as　well　as　source　code　with　
explanations　for　this　problem.　Basically,　this　book　is　designed　to　
work　only　by　executing　the　cells　from　the　top,　so　that　you　don't　
have　to　spend　time　on　building　an　extra　environment.

If you don't have a GMAIL account, you will need to create one by clicking
on the link here. The following explanation goes on assuming that you
already have a gmail account.

https://colab.research.google.com/drive/13_MEoP-TDQrYVhTbMESufyyuw_YRlADu#scrollTo=1KT7lPjN_s31
https://colab.research.google.com/notebooks/welcome.ipynb?hl=ja
https://accounts.google.com/signup/v2/webcreateaccount?flowName=GlifWebSignIn&flowEntry=SignUp

How to Setup Colab

(1) When you access GMAIL, in the upper right corner of the screen you will
see a Bento Menu with nine squares, click on that and then click on the
"Drive" icon.

(2) Press the "+ New" button at the bottom of the drive and select "More >"
from the menu, then click "Google Colaboratory" if it exists, otherwise
choose "Connect more apps".

(3) When "G Suite Marketplace" is displayed, click on the magnifying glass
mark, and in the text box to search in the app, type "Colaboratory". Please
click the "+" button at the bottom right of the logo, and then click the
"Install" button on the screen that appears.

Please click the "Install" button on the screen displayed at the bottom right of
the logo.

(4) You may be asked to log in again, please continue. When the screen of
"Google Colaboratory is now connected to Google Drive. When the screen of
"Google Colaboratory has been connected to Google Drive" appears, check
the box of "Make Google Colaboratory the default application" and click the
"OK" button. A modal window that says "Colaboratory has been installed.
When you see the modal window "You have installed Colaboratory", you can
use Colab. Now, when you upload a file with the Colab extension (.ipynb
file) to Google Drive, it should open in Colab by default.

(5) Close the modal window and once again, click the "New +" button and

select the "Other >" app. Now you can select "Google Colaboratory".

(6) When you select Google Colaboratory, the following screen will open up,
but by default, Colab is in CPU-using mode, which means it will take longer
to run deep learning. So, go to the "Runtime" menu, click "Change runtime
type" and select "GPU" in the "Hardware Accelerator" section and click the
Save button.

It is also possible to use TPU here, but it is a bit difficult to get the
performance out of it, and for most applications there is not much difference
in execution speed between GPU and GPU, so we will use "GPU" in this
manual.

(7) To make sure the GPU is available, copy the following code into a cell
and run it. You can execute it by pressing the play button on the left side of
the cell, or you can use the shortcut "Shift + Enter". If you see "device_type:
"GPU" in the execution result, it means that the GPU is recognized.

from tensorflow.python.client import
device_libdevice_lib.list_local_devices()

Output:
[name: "/device:CPU:0"
device_type: "CPU"
memory_limit: 268435456
locality {
}
incarnation: 8604083664829407890, name: "/device:XLA_CPU:0"
device_type: "XLA_CPU"
memory_limit: 17179869184
locality {
}
incarnation: 18180926124650645506
physical_device_desc: "device: XLA_CPU device", name:
"/device:XLA_GPU:0"
device_type: "XLA_GPU"
memory_limit: 17179869184
locality {
}
incarnation: 18355618728471253196
physical_device_desc: "device: XLA_GPU device", name:
"/device:GPU:0"
device_type: "GPU"
memory_limit: 11146783616
locality {

bus_id: 1
links {
}

}
incarnation: 18112086373768308297
physical_device_desc: "device: 0, name: Tesla K80, pci bus id:
0000:00:04.0, compute capability: 3.7"]

Chapter 1: Numpy is fast, cheap and good
　numpy is intuitive, concise, and fast to write, and it's a great thing that
provides basic linear algebra methods as standard. What it lacks in the
standard Python library, it makes up for in numpy. Enjoy the world of
(excellent design).

01: IMPORT Numpy with the name np.

It is possible to import a module with the syntax "import library formal name
as shorthanded system" and call it as "shorthanded system. It is possible to
import a module with the syntax "shorthanded" and call something like
"shorthanded function name()". For example, we can import numpy as np and
then use np.sqrt(2) to find √2.

02:　Check　the　version　of Numpy.

The version of Numpy that was installed by default on the Colab
environment the author is currently testing was 1.18.5.

03: Identify the type of BLAS that Numpy is
using.

np.show_config() and np.__config__.show() print out the same value and you
can see what the bound linear algebra library is. numpy is fast even though
it's Python because it's running inside BLAS(Basic Linear Algebra
Subprograms), a linear algebra arithmetic library. Depending on which CPU
you are running on, there are different types of BLASs bound to it, the most
famous being Open BLUS/Intel MKL/ATLAS.
In Colab, Open BLUS was bound; Intel MKL drinks and runs on Intel CPUs.

I'm going to use the "lshw" command to see what Colab's CPU is using. First,
we will install the lshw command by using the "apt-get install" command.

It seems that Colab dynamically selects and allocates CPU resources at
runtime, and in the above example, Intel Xeon CPUs are used, but depending
on the runtime, AMD may be allocated.

04: Generate a one-dimensional vector with all
elements of size 10 being zero.

You can use np.zeros() to create a numpy array with all the elements zero.
You can also specify the type of np.int, np.float16/32/64, etc. by using dtype
as an argument.

05: Generate a one-dimensional list of all
elements of size 10 that are zero.

Make an assignment to the list in 06:04 and 05
so that the index is a value and the address of
each element is displayed by id().

07:　Get Numpy 's np.dot 　documentation　
from　the　command　line

*Output is omitted for brevity

08: After defining a vector of all elements 0 of
size 10, set the fifth element to 1.

09:　Measure　the　execution　speed　of
Numpy 's ndarray 　and Python 　list　to　
generate　a　vector　with　elements　that　
increase　by 1 　from 100 　to 999999, 　
respectively.

10:　Generate　a　vector　in　reverse　order.

(Chapter 2) Numpy is flexible.

11: Generate a 3 x 3 unit matrix.

By　the　way,　if　you　write　in Python 　without　thinking　about　it,　as　
shown　below,　the　execution　time　is 10 　lines　even　though　the　
number　of　elements　is　more　than 10 　times　slower　when　the　
number　of　elements　is　large.

12: Define a random number array A with a
512 x 768 shape, 12 random number arrays B
of 768 x 768 (B1 - B12), and a random
number array C of 768 x 2, and output the
result of dot product operations on all of them
in order.

13:　Create　a　matrix　of 10 x 10 SHAPE 　
random　numbers　and　find　the　maximum　

and　minimum　values.

14:　Generate　an　array　of　random　
numbers　of　size 30 　and　calculate　the　
average　value.

15:　Generate　a　two-dimensional　array　
that　is　surrounded　by 1s on 　all　sides　
and 0s 　in　the　middle.

16: Use Numpy to describe the initial state of
Othello.

17:　Surround　a 5 x 5 matrix　with　all　
the　elements 0 　by 1.

18: Surround a 7 x 7 matrix with all the
elements 0 by 1. But write it in a different way
than in No. 17.

19: Create a 5 x 5 0 matrix and arrange
1,2,3,4,5 on the diagonal.

different solution

(Chapter 3) Welcome to the depths of Tensor

Create a 20:8 x 8 matrix and represent the
checkerboard pattern by 01.

different solution

21: Find the index (x,y,z) of the 100th element
when there is an array of the form (6,6,6).

22: Create an 8x8 checkerboard using the tile
function.

23: Normalize a 5 x 5 random number array to
fit within 0-1.

24: Create your own dtype that represents
an integer on the xy coordinate axis.

25: Create your own dtype for RGBA (the
three primary colors plus transparency).

26: Find the matrix product of a 2 x 2 matrix
and a 2 x 2 matrix.

Suppose we have,

AB can be derived as follows:

In this case,

27: Generate a sign-reversed array of 1D
arrays whose elements are between 3 and 8.
Python standard library version

Numpy 　Edition

28: Compare the results when sum() is
executed without importing numpy and when
sum() is executed after numpy has been
*imported.

The second argument of the sum() method of the standard Python function
represents start, so it returns 9, the sum of -1, 0, 1, 2, 2, 3, and 4, while the
second argument of the Numpy sum() method represents axis. -The second
argument of Numpy's sum() method represents the axis. *It is important to
use import numpy as np instead of importing.

29: Which of the following expressions in
vector Z is problematic?

]

(Chapter 4) Working with Numbers in Numpy
30: Show the result of the following equation.

31: Round up to the nearest whole number in a
float array.

32: Find the common value of the two sequences.

33: Perform division by zero in the mode of ignoring

all numpy warnings.

By the way, if you run it in normal mode, you will get the following zero
division warning.

34: What is the true value of the following equation?

The question of whether np.emath can handle imaginary numbers. np.emath
can also get the square root of -1 with the mathematical functions with
automatic domain module, but not with np.sqrt.

35: Get yesterday, today and tomorrow's dates.
♦Numpy

The Python standard library

36: Get all dates for September 2020.

37:　If　two　arrays A and B 　have A=[1.0, 2.0] and
B=[3.0, 4.0] 　respectively,　calculate (-(A+B)xB+1) /
2 with 　and　without　memory　copy,　respectively.

38: Generate an array by extracting only the integer
part from a uniform random number array of a specific
range.

39: Define a 5 x 5 array in which the elements of the
row are 0 to 4.

(Chapter 5) Sequence Generation

40: Define and execute a generator function
that generates an array of N elements

(elements are integers between 0 and N-1).

It is easy to implement using np.fromiter() which creates an array of numpy
from iterable objects.

41: Generate a real array of 0 to 1 with size 10. (But
exclude 0 and 1.)

np.linspace() can generate an array containing equally spaced numbers within
a specified range.
If endopoint=False, then the last element of the array (i.e. the right end of the
specified range) is excluded from the array. The former method creates two
extra arrays and removes both ends of the range by slicing, while the latter
creates an array without the right end and removes the left end by slicing.

42: Generate random number vectors of
size 10 and sort them in ascending order.

43: Sum faster than np.sum for small arrays.

44: Determine if the integer sequences A and
B are equal.
A = np.random.randint(0,2,5)
B = np.random.randint(0,2,5)
print(A)
print(B)

Determine if all elements are equal, np.all() can be compared to a scalar

%timeit eq = np. all(A==B)
print(np. all(A==B))

check if all elements are equal, np.array_equal() determines array
equivalence
%timeit np.array_equal(A,B)
print(np.array_equal(A,B))

Determine if all elements are close to each other (even if there is a NAN
in the same position)
%timeit np.allclose(A,B,equal_nan=True)
print(np.allclose(A,B,equal_nan=True))

Commented out IPython magic to ensure Python compatibility.
A = np.array([1,np.nan, 2])
B = np.array([1,np.nan, 2])
print(A)
print(B)

Determine if all elements are equal, np.all() can be compared to a scalar
%timeit eq = np. all(A==B)
print(np. all(A==B))

check if all elements are equal, np.array_equal() determines array
equivalence
%timeit np.array_equal(A,B)
print(np.array_equal(A,B))

Determine if all elements are close to each other (even if there is a NAN
in the same position)
%timeit np.allclose(A,B,equal_nan=True)
print(np.allclose(A,B,equal_nan=True))

Output:
[1 1 0 1 0]
[0 1 0 1 0]
The slowest run took 7.83 times longer than the fastest. This could mean
that an intermediate result is being cached.
100000 loops, best of 3: 3.85 µs per loop
False
The slowest run took 8.58 times longer than the fastest. This could mean
that an intermediate result is being cached.
100000 loops, best of 3: 3.81 µs per loop
False
The slowest run took 5.81 times longer than the fastest. This could mean
that an intermediate result is being cached.
10000 loops, best of 3: 29.2 µs per loop
False

45: Make an immutable array.

46: Convert from Cartesian coordinates (xy) to
polar coordinates (r, θ).
import numpy as np
import math
cartesian
a = np.random.random((10,2))
x = a[:, 0]
y = a[:, 1]
convert to polar(r^2 = x^2 + y^2, tanθ = y/x)
r = np.sqrt(x**2 + y**2)
theta = []
for x1, y1 in zip(x, y):

theta.append(math.atan(y1/x1))

print(r)
print(theta)

X,Y = a[:,0], a[:,1]
R = np.sqrt(X**2+Y**2)
T = np.arctan2(Y,X)
print(R)
print(T)

Output:
[0.36557586 0.51545783 0.73283743 0.31851877 0.70162908 1.08979207
0.65337167 0.42607204 0.81758765 0.15791347]
[0.5410951641282364, 0.19469415918846794, 1.196519173783585,
0.9611078425515306, 0.5269888796611327, 0.6290035529936863, 0.
7316122981119595, 0.6143838477282143, 0.5415761837628309,
1.054302594907771]

different solution

47: Create an array of random numbers of size
10 and replace the largest element with 0.

48: Define a structural array where (x, y) = (0,
0) to (1, 1) is filled with evenly spaced grid
sequences.

49: Construct the Cauchy matrix Cij=1/(xi-yj) for two
sequences of X and Y.

If you write in the standard Python library, it's seven lines.

You can write in Numpy to be more concise.
outer(A, B) can apply universal functions to A, B. Subtraction is applied to
all elements in np.subtract.outer. This will result in a single line.

(Chapter 6) Numpy Array Customization 1
50: Show the maximum and minimum values

that Numpy's scalar types (e.g. np.float32 and
np.float64) can represent.

You can use np.finfo() to display the limits (maximum and minimum values)
that can represent a scalar type.

51: Do not abbreviate all the elements in the
numpy array, but output them to the standard
output.

You can change the display format of the Numpy array (number of digits,
exponential notation, zero filling, etc.) with np.set_options(). The values of
the original array elements themselves do not change.

52 : 　Given　a　vector (a) 　and　a　scalar
(b) ,　output　the　scalar　value　closest　
to b 　in a.

53: Generate a structured array to represent the (x,y)
coordinates and RGB.

A structured array 　of numpy 　is　an　array　that　incorporates　variables　
of　different　types　with　a　self-defined dtype. The　best　thing　is　that　
you　can　refer　to　it　with　elements　that　you　define　in　your　own　
field　names.

54: Find the distance matrix of (100,100) from the
random number array of (100,2).

Distance matrix: an N*N square matrix with (i, j) components being the

distance between the i-th element and the j-th element for N data. It is faster
and more concise to write it in Scipy, as shown below.

55: Change the float array to an int array.

You can change dtype later with np.ndarray.astype(). Another solution
(below) uses np.ndarray.view(). astype is recommended because the original
array Z has been changed.

56: Store the following files in a numpy array.

You　can　use np.genfromtxt() to 　store　a numpy 　array　from　a　text　
file　with　the　missing　data　treatment　as　well.

57: Define three ways to get the index and
value of a two-dimensional numpy array and

compare their speeds.

method1:Python standard functions, method2:np.ndenumerate(),
method3:np.ndindex(). You can use them all for the same purpose as follows.

With timeit, you can only know the elapsed time for each iteration, and you
can't see the effect of the array size on the execution speed, so you can make
your own time measurement function.

We confirmed that the method using np.ndenumerate() is the fastest
regardless of the array size.

58: Generate a two-dimensional Gaussian
kernel array.

different solution

Gaussian kernel matrix used for smoothing images, which can be described
more concisely using scipy.signal.

59: Place p elements randomly in a two-
dimensional array.

np.put() can be used to replace the elements of a specified index with the
specified value.

(Chapter 7) The More Practical Numpy

61: Sort the array by the nth column.

　In a[:, 2], you can get the third column as an array and argsort() to get the
list of indexes for the ascending sort by the third column. By specifying this
index list as the index of the original numpy array (called a fancy index), we
can achieve sorting by the third column. By the way, numpy arrays are zero-
origin (starting from 0), so you can specify the nth column with a[:, n-1].

62: Generate another array with non-zero
elements from the sequence [1,2,0,0,4,0].

You can create another numpy array consisting of only the elements with the
specified condition by placing a conditional expression at the point where
you specify the index or slicing in the numpy array. Using this mechanism,
the first solution is to create a separate array with only non-zero elements. As
an alternative solution, in a[a!=0], we can use np.nonzero() to return another
numpy array with an index of non-zero elements. We need to specify
a[a[np.nonzero(a)[0]] because the return value is an index and tuple.

63:　Determine　if　the　two-dimensional　
array　contains　a　column　with　only Null 　
elements.

Output:
True
True
False
True
True
False

True False True]
[False False False]
True True True]
[False True False]
True True True]
[False False False]
True
True
False

Define　two　arrays (a, b) that 　contain　columns　with　only Null 　
elements,　and　two　arrays　(c) that 　do　not　contain　them.　Therefore,　
if　we　give a, b, and c 　as　arguments,　we　expect　them　to　be　
included (True) ,　included (True), 　and　not　included (False).
　First,　let's　try　to　solve　the　problem　in　a　simple　way　without　
using　any numpy 　functions.

0 column
a = np.array([[1,0,3],[1,0,5]])

all 0
b = np.array([[0,0,0],[0,0,0]])

no 0
c = np.array([[1,2,3],[1,4,5]])

def judge_col0(a):
 dic = {}
 col_zero_flg = False
 for i, row in enumerate(a):
 for j, col in enumerate(row):
 if j not in dic and col == 0:
 dic[j] = 1

else:
 if col == 0:
 dic[j] += 1
 if j in dic:
 if dic[j] == a.shape[0]:
 col_zero_flg = True
 break
 return col_zero_flg
print(judge_col0(a))
print(judge_col0(b))
print(judge_col0(c))

We scan 　all　the elements and increment the count of the columns that
were 0 elements in the dictionary, and then flag and return the columns that
have a count by the number of rows. This can be described very simply using
the numpy functions all() and any(), as follows

print((~a. all(axis=0)). any())
print((~b. all(axis=0)). any())
print((~c. all(axis=0)). any())

First　of　all, 0 　is false 　when　cast　as bool (true　or　false) ; true 　of　

type bool corresponds 　to 1 　of　type int ,　and false 　of　type bool
corresponds to 0 of 　type int, 　respectively.　And　if　we　check　the　
other　integers,　we　can　see　that　non-zero　integers　are　treated　as
true.

print([bool(i) for i in range(-10,10,1)])

Now　let's　expand　the　equation　a　little　bit　to　understand　it.

print(a. all(axis=0))
print(b. all(axis=0))
print(c. all(axis=0))

First of all, if axis=0 is specified, then in a two-dimensional array such as [[a,
b, c],[d, e, f]], each column of [a, b, c] and [d, e, f] with the outermost
parentheses removed is counted. That is, for each of (a, d), (b, e), and (c, f), if
all of them are true, then they are true, and if they are not true, then they are
false. In this case, we want to find a column that is all 0 elements on this axis
0 (or False if it's true or false), so we need to use the negative form. ~(tilde)
means negative.

print(~a. all(axis=0))
print(~b. all(axis=0))
print(~c. all(axis=0))

True 　is　contained　in　the　column　where　all　the　columns　were 0.
Therefore, by 　using any() 　here,　if　any　of　the　columns　are True ,　
then　it　is True, 　which　means　that　it　may　or　may　not　contain　
the　columns　of　the Null 　element　in　this　problem.　It　is　possible　
to　make　a　judgment　that　Please　note　that　the　position　of　the　
parentheses　changes　the　meaning　and　the　result.

print((~a. all(axis=0)). any())
print((~b. all(axis=0)). any())
print((~c. all(axis=0)). any())

64: Find the closest value to the given
value in an array of arbitrary shapes.

65: Find the sum of sequences of the (1,3)
and (3,1) forms using the universal
operation or iterator.

　As you can see, the universal operation is A+B. np.nditer is a function used
to scan numpy multidimensional arrays, which is applied to display the result
of assigning Z[...] to the first part of a numpy array. It is applied to display
the result by assigning it to the first position of None. is a shorthand notation
called Ellipsis, which can be used in the following way and is very useful.

66: Create your own array class with name attributes.

Subclassing np.ndarray to add attribute information. There are three points in
__new__() This is the main initialization process.

1) class subclass name(np.ndarray): explicit inheritance by

2) cast an existing ndarray to a subclass by view casting
np.asarray(array).view(cls)

3) Generate it from the template instance return obj to create it as an instance
of a new subclass. This will create a different array than the original one. For
example

Then, __array_finalize__() does the post-processing after creating a new
instance from the template. For example, in this example, we put None in the
name attribute if it was initialized without a name attribute argument.

67: Given a sequence A and another sequence
B, add 1 to the value of the element of A
indexed by the value of the element of B.

Array B has 2 0s and 1 1, so we add 2 to the 0th and 1 to the 1st. np.bincount
allows us to count the number of occurrences of each element.

at(a, indices, b=None) behaves like a[indices] += b.

If the for loop is an acceptable use, this is the easiest way to write it.

68: How to accumulate the elements of a
vector (X) into an array (F) based on an index
list (I)?
Solution 1

Solution 2

Solution 1 uses np.bincount to aggregate the frequency of occurrence of each
value in the given input array.

Solution 2 is a for-loop solution: zip to scan the input array and the index

together, and store the values in an array with the length of the index pre-
initialized by 0.

69: Define a numpy array of length x width x
color (RGB) and count the number of unique
colors.

This is accomplished by converting the number of unique colors from RGB
to a scalar and then using np.unique() to get the number of unique elements.

32 x 32 x RGB looks like the following when displayed.

The colors are represented in scalar type as follows.

A simpler example is below.

The alternative solution is below. You can also specify an axis and call it
unique.

As you can see below, there are really three colors.

(Chapter 8) Statistics and Aggregation with
Numpy
70:　Calculate　the　sum　of　the　last　two　

axes　in　a　4-dimensional　vector　in　a　
lump　sum.

　np.sum() can calculate the sum of a numpy array, and the axes can be
specified in the argument axis.

71: Using a vector S of the same size for a
one-dimensional vector D (the index is stored
in the value), compute the average of the
subset specified by the index of D.

The mean of the subset specified in the index in D is intuitive when solved by
groupby of pandas, but it can also be solved by np.bincount.

72: Get the diagonal elements of the dot
product of the two matrices.

Einstein notation style is the fastest.

73: Swap the two rows in the array.

74: Given a bincount of B sequence named C,
generate an array A such that np.bincount(A)
== C.

It is possible to repeat the elements of the array given by np.repeat. The
process is achieved by repeating the interval frequency of the original array.
If we check the values, we can see that np.bincount(A) == C, as shown
below.

75: Swap the two rows in the array.

Fancy indexing makes this possible.
While normal indexing allows you to specify elements by [row, col], fancy
indexing allows you to generate another array in the order of its index, if you
pass in a list.

Indexing

Fancy Indexing

The　address　of　the　original　array　and　the　array　generated　by　
fancy　indexing　are　different.

76: Generate 10 triangles in which each point
is represented by an (x, y) coordinate, and find
10 unique coordinates that represent the edges
of multiple triangles sharing an edge.
If the three sides of the triangle are a, b, and c, then the following inequality
holds for the triangle to be a triangle.

Based on this, we generate an array representing the coordinates of many of
the three points of the triangle.

Find the coordinates of a unique edge where multiple triangles share an edge
by

77: Given a bincount of B sequence named C,

generate an array A such that np.bincount(A)
== C.

This is achieved by np.repeat(). np.repeat can create another array that repeats
the elements of the array.
You can specify the number of repetitions of each element by giving repeats
as an int array as an argument. repeats are broadcast. This can be used to fit
the shape of a given axis. For example, the following generates another array
that repeats 0 0 times, 1 once, and 2 twice.

In the following, we define another sequence that repeats 1 once, 2 twice, and
3 three times.

78: Calculate the average using the sliding
window on the array.
a = [0,1,... ,9].

np.cumsum() is a function that takes a cumulative sum. b=np.cumsum(a),
where b is [0,(0+1),(0+1+2),... ,(0+1+2+3+4+5+6+7+8+9)]

In order to get the average of the sliding window, we need to convert it to an
interval-by-interval sum rather than a cumulative sum. For example, the sum
of every three elements can be obtained by b[3:] - b[:-3].

The sequence b obtained in the last calculation has a missing interval sum
that should come first. Since this is equal to b[n-1], concatenating b[n-1] with
the sequence b[n:] - b[:-n] from the last calculation yields an array that sums

in the sliding window on top of sequence a. Divide this by n to get the
average.

79: Given a one-dimensional array of type int,
get a three-gram (trigram) as a two-
dimensional array.

The following is a hard-coded confirmation of the idea.

The following is a for-loop expression. This is sufficient if the one-
dimensional array is not so large.

Here are the key points.
(1) The slicing must be taken out three at a time.
(2) The end decision should be set by len(Z)-2 so that i+3 does not exceed the
list range.

You　can　use numpy.lib.stride_tricks.as_strided() 　to　speed　up　the　
same　process　as　above　if　you　want　efficiency.　If　the　size　of　the　
array　to　be　handled　is　large,　use　this　method.

(Chapter 9) Numpy Batch Processing
80: Output the negation of a boolean element
array. Also, do a sign inversion of the floating-
point array.

81: Consider two points P0, P1 and a set of

points p that represent a line in two-
dimensional space and calculate the distance
from p to each line i (P0[i], P1[i]).

In order to solve this problem, you need to know the following formula.

To reduce the amount of description, I used Ellipsis for the following code.

82:　Consider　an　arbitrary　array　and　

extract　a　sub-array　whose　shape　is　
fixed　around　a　given　element.　(0padding
if 　necessary.)　

A　more　Numpy-like　solution　is　as　follows

83: Calculate the matrix rank.
numpy.linalg contains a number of useful functions for linear algebra, such as
np.linalg.matrix_rank(), which makes it easy to find the matrix rank.

The number of non-zero vectors of S obtained by singular value
decomposition by np.linalg.svd() is the matrix rank of the original matrix.

By the way, SVD (Singular Value Decomposition) is a type of matrix
decomposition, often used for dimensionality reduction applications, where Z
and U*S@V are equal.

84: Find the mode of the sequence.
import numpy as np

a = np.array([1,2,3,4,4,5])
print(np.argmax(np.bincount(a)))
Output:
4

85: Extract all consecutive 3x3 blocks from a
random 10x10 matrix.

*Output is omitted for brevity.

86: Find a two-dimensional array in which the

rows and columns of the two-dimensional
array Z are swapped. (That is, a two-
dimensional array with Z[i,j] == Z[j,i])

87: Consider a set of p matrices whose shape is (n,n)
and a set of p vectors whose shape is (n,1). How do
you calculate the sum of the products of p matrices at
once? (The result has the shape (n,1)

You can specify an axis in "@" (inner product calculation). You can calculate
the sum of products of p matrices at once by specifying the axis 0. You can
do the same in np.tensordot().

88: Consider a 16x16 array, get the sum of a
sub-array of block size 4x4.

Reduces with a specified slice on one axis in np.add.reduceat. This is done by
specifying the block size on axes 0 and 1, respectively.

89: How do I implement Game of Life using
numpy arrays?

Conway's Game of Life (Conway's Game of Life[1]) is a simulation game
invented by the English mathematician John Horton Conway in 1970 that
uses a simple model to recreate the process of birth, evolution, and selection
of life. It follows the following rules.

1) Birth: if there are exactly three living cells adjacent to a dead cell, the next
generation is born.

2) Survival: If there are two or three living cells adjacent to a living cell, it
will survive in the next generation.

3) Overpopulation: if there is less than one living cell adjacent to a living cell,
it dies due to overpopulation.

4) Overcrowding: if there are four or more living cells adjacent to a living
cell, it dies due to overcrowding. Below is an example of life and death at the
next step in the middle cell. Living cells are represented by ■ and dead cells
by □.

Implementing this would look like the code above (see comments for details).
The "..." that appears a few times stands for the Python built-in Ellipsis
(abbreviation). is a special value used mainly in the extended slice syntax and
user-defined container data types (official reference), but is recommended for
numpy's multi-dimensional array slicing as it's easier to write in a concise
way if you know it.

https://docs.python.org/ja/3/library/constants.html#Ellipsis

(Chapter 10) Numpy Cornering

90: Get the nth largest number in the array
where the numbers are stored.

91: Given any number of vectors, find the
direct product (all combinations of all items).

For two sets A and B, the set made up of all the pairs made from one element
of A and one element of B is called the direct product set. The above is
implemented in a foolproof way.

Using itertools.product, you can implement direct product in a simple and
fast way.

92: Generate a recalay from ndarray.

　Record arrays can expose structured array fields as properties. ndarray also
supports named fields, but the difference is that recarray can use attribute
references to refer to the fields.

You can also use view() to convert it.

Replace dtype=[('X','S3'), with dtype=[('X','S2 '), the string that can be stored
in X will be truncated by two characters.

This is what happens when you generate a recarray with a single line.

93:　Consider　a　large　vector Z (ten　
million　random　numbers) 　and　calculate　
the cube 　using　four　different　methods.

np.einsum (Einstein's contraction notation) is the fastest; in Jupyter
Notebook, type np.einsum? to see an example of einsum.

94:　Consider two 　arrays A 　and B of the 　
form (8,3) 　and (2,2) ;　how　do　you　find　
a　row　of A that 　contains　an　element　
in　each　row　of B ,　regardless　of　the　
order　of　the　elements　in B?

Written more numpy-like, it looks like the following.

Extract the rows in a 95:10x3 array that are not
all equal (e.g., [2,2,3]).
First, prepare a 10 x 3 array.

A straightforward for-loop solution of the subject would be as follows.

If the maximum and the minimum are different among the three columns, all
three columns will be different, as shown below. However, please note that a
non-numeric type will cause an error.

The　following　code　is　written　in　a numpy-like 　manner　and　
supports　all　data　types.

96:　Convert　a　vector　of　type int 　to　a
01 　representation.

You can use bin() to convert the integer value to 01 representation (binary),
but you need 0padding to store it as an element in np.ndarray. The above
code is a simple implementation of this, and although I've commented out the
output of print(), it may help the reader to understand it better if I delete the
comment # from the code as needed.

By　the　way,　if　you　type np.ubyte, 　this　can　be　written　in　one　line.

97: Given a two-dimensional array, extract a
unique row.

98: Considering two vectors A and B, write the

subscript of the einsum of the inner product,
outer product, summation, and mul function.

99: Consider a two-dimensional array Xk=
[[x1,y1],[x2,y2]] representing two coordinates.
Find the Euclidean distance between the two
points of X1=[[0,0],[1,1]] and X1=[[1,1],
[2,2]], respectively.

100:　Given　an　integer n 　and　a　two-
dimensional　array X, 　select　a　row　that　
can　be　interpreted　as　being　drawn　
from X 　from　an n-degree 　polynomial　
distribution,　i.e.,　a　row　that　contains　
only　integers　and　sums　to n.

The part of the statement that doesn't make sense at first glance, i.e., a row
that contains only integers and totals to n, is key. First,
np.logical_and.reduce(np.mod(X, 1) == 0, axis=-1), extracting only those
rows where all the elements are integers (i.e., divide by 1 to get 0), and then
M &= (X.sum(axis=-1) == n) to see if the sum of each element is n The
solution is derived by fancy indexing by X[M] by extracting an array of true
and false values of

101: Compute the bootstrapped 95%
confidence interval of the mean of the 1D
array X (i.e., replace the elements of the array
N times and resample, compute the mean of
each sample, and compute the percentile for

that mean).

We will discuss the bootstrap confidence interval. First of all, the bootstrap
method is a method that allows us to estimate a statistic that is theoretically
difficult to derive by a simple resampling from an empirical distribution. The
bootstrap method also allows us to obtain confidence intervals for the
estimated statistic, and such confidence intervals are called bootstrap
confidence intervals. Since it is called an empirical distribution, the results of
the run will change each time.

It is possible to solve the problem without understanding the bootstrapping
method in detail, i.e., from the following problem statement.

Conclusion
　Thank you very much for your 101 training. Thank you for reading this
book to the end. There is a reason why there were 101 problems instead of
100. My favorite word is "A small difference is a big difference". It means
that a little bit of effort and ingenuity can lead to a big difference in results. If
the result you get with 100% effort is 1.0, if you continue this effort every
year for 80 years, 1.0 x 1.0 x ...(1.0^80) remains at 1.0. However, if you put
in 101% effort slightly above your limit, 1.01 x 1.01 x ...(1.01^80) is

2.2167... That's the number. That means that just 1% more effort than others
every time you do it 80 times will make twice as much difference. If this
were a 105% effort, 80 times that number would be 49.56... For those of you
who have solved the 101 questions, I encourage you to keep studying. I'll be
sending out daily updates on the results of my own study on Twitter, so if
you'd like to follow me, please do so.

Twitter account: Joshua K. Cage @JoshuaKCage1

Finally, we would like to thank Rougier for providing us with Numpy 100
exercises under an MIT License.

https://github.com/rougier/numpy-100

	Python Numpy Exercises -Skyrocket your Python skill
	Joshua K. Cage
	Introduction.
	Target　audience
	Exemption from responsibility
	About Trademarks and Registered Trademarks
	Feedback
	Jupyter Notebook
	Setting up a Python environment - How to useColab

	Chapter 1: Numpy is fast, cheap and good
	01: IMPORT Numpy with the name np.
	02:　Check　the　version　of Numpy.
	03: Identify the type of BLAS that Numpy is using.
	04: Generate a one-dimensional vector with all elements of size 10 being zero.
	05: Generate a one-dimensional list of all elements of size 10 that are zero.
	Make an assignment to the list in 06:04 and 05 so that the index is a value and the address of each element is displayed by id().
	07:　Get Numpy's np.dot　documentation　from　the　command　line
	08: After defining a vector of all elements 0 of size 10, set the fifth element to 1.
	09:　Measure　the　execution　speed　of Numpy's ndarray　and Python　list　to　generate　a　vector　with　elements　that　increase　by1　from 100　to 999999,　respectively.

	(Chapter 2) Numpy is flexible.
	11: Generate a 3 x 3 unit matrix.
	12: Define a random number array A with a 512 x 768 shape, 12 random number arrays B of 768 x 768 (B1 - B12), and a random number array C of 768 x 2, and output the result of dot product operations on all of them in order.
	13:　Create　a　matrix　of 10 x 10 SHAPE　random　numbers　and　find　the　maximum　and　minimum　values.
	14:　Generate　an　array　of　random　numbers　of　size 30　and　calculate　the　average　value.
	15:　Generate　a　two-dimensional　array　that　is　surrounded　by 1s on　all　sides　and 0s　in　the　middle.
	16: Use Numpy to describe the initial state of Othello.
	17:　Surround　a 5 x 5 matrix　with　all　the　elements0　by 1.
	18: Surround a 7 x 7 matrix with all the elements 0 by 1. But write it in a different way than in No. 17.
	19: Create a 5 x 5 0 matrix and arrange 1,2,3,4,5 on the diagonal.

	(Chapter 3) Welcome to the depths of Tensor
	Create a 20:8 x 8 matrix and represent the checkerboard pattern by 01.
	21: Find the index (x,y,z) of the 100th element when there is an array of the form (6,6,6).
	22: Create an 8x8 checkerboard using the tile function.
	23: Normalize a 5 x 5 random number array to fit within 0-1.
	24: Create your own dtype that represents an integer on the xy coordinate axis.
	25: Create your own dtype for RGBA (the three primary colors plus transparency).
	26: Find the matrix product of a 2 x 2 matrix and a 2 x 2 matrix.
	27: Generate a sign-reversed array of 1D arrays whose elements are between 3 and 8.
	Python standard library version
	Numpy　Edition

	28: Compare the results when sum() is executed without importing numpy and when sum() is executed after numpy has been *imported.
	29: Which of the following expressions in vector Z is problematic?

	(Chapter 4) Working with Numbers in Numpy
	30: Show the result of the following equation.
	31: Round up to the nearest whole number in a float array.
	32: Find the common value of the two sequences.
	33: Perform division by zero in the mode of ignoring all numpy warnings.
	34: What is the true value of the following equation?
	35: Get yesterday, today and tomorrow's dates.
	36: Get all dates for September 2020.
	37:　If　two　arrays A and B　have A=[1.0, 2.0] and B=[3.0, 4.0]　respectively,　calculate (-(A+B)xB+1) / 2 with　and　without　memory　copy,　respectively.
	38: Generate an array by extracting only the integer part from a uniform random number array of a specific range.
	39: Define a 5 x 5 array in which the elements of the row are 0 to 4.

	(Chapter 5) Sequence Generation
	40: Define and execute a generator function that generates an array of N elements (elements are integers between 0 and N-1).
	41: Generate a real array of 0 to 1 with size 10. (But exclude 0 and 1.)
	42: Generate random number vectors of size 10 and sort them in ascending order.
	43: Sum faster than np.sum for small arrays.
	44: Determine if the integer sequences A and B are equal.
	45: Make an immutable array.
	46: Convert from Cartesian coordinates (xy) to polar coordinates (r, θ).
	47: Create an array of random numbers of size 10 and replace the largest element with 0.
	48: Define a structural array where (x, y) = (0, 0) to (1, 1) is filled with evenly spaced grid sequences.
	49: Construct the Cauchy matrix Cij=1/(xi-yj) for two sequences of X and Y.

	(Chapter 6) Numpy Array Customization 1
	50: Show the maximum and minimum values that Numpy's scalar types (e.g. np.float32 and np.float64) can represent.
	51: Do not abbreviate all the elements in the numpy array, but output them to the standard output.
	52:　Given　a　vector (a)　and　a　scalar (b),　output　the　scalar　value　closest　tob　in a.
	53: Generate a structured array to represent the (x,y) coordinates and RGB.
	54: Find the distance matrix of (100,100) from the random number array of (100,2).
	55: Change the float array to an int array.
	56: Store the following files in a numpy array.
	57: Define three ways to get the index and value of a two-dimensional numpy array and compare their speeds.
	58: Generate a two-dimensional Gaussian kernel array.
	59: Place p elements randomly in a two-dimensional array.

	(Chapter 7) The More Practical Numpy
	61: Sort the array by the nth column.
	62: Generate another array with non-zero elements from the sequence [1,2,0,0,4,0].
	63:　Determine　if　the　two-dimensional　array　contains　a　column　with　only Null　elements.
	64: Find the closest value to the given value in an array of arbitrary shapes.
	65: Find the sum of sequences of the (1,3) and (3,1) forms using the universal operation or iterator.
	66: Create your own array class with name attributes.
	67: Given a sequence A and another sequence B, add 1 to the value of the element of A indexed by the value of the element of B.
	68: How to accumulate the elements of a vector (X) into an array (F) based on an index list (I)?
	69: Define a numpy array of length x width x color (RGB) and count the number of unique colors.

	(Chapter 8) Statistics and Aggregation with Numpy
	70:　Calculate　the　sum　of　the　last　two　axes　in　a　4-dimensional　vector　in　a　lump　sum.
	71: Using a vector S of the same size for a one-dimensional vector D (the index is stored in the value), compute the average of the subset specified by the index of D.
	72: Get the diagonal elements of the dot product of the two matrices.
	73: Swap the two rows in the array.
	74: Given a bincount of B sequence named C, generate an array A such that np.bincount(A) == C.
	75: Swap the two rows in the array.
	76: Generate 10 triangles in which each point is represented by an (x, y) coordinate, and find 10 unique coordinates that represent the edges of multiple triangles sharing an edge.
	77: Given a bincount of B sequence named C, generate an array A such that np.bincount(A) == C.
	78: Calculate the average using the sliding window on the array.
	79: Given a one-dimensional array of type int, get a three-gram (trigram) as a two-dimensional array.

	(Chapter 9) Numpy Batch Processing
	80: Output the negation of a boolean element array. Also, do a sign inversion of the floating-point array.
	81: Consider two points P0, P1 and a set of points p that represent a line in two-dimensional space and calculate the distance from p to each line i (P0[i], P1[i]).
	82:　Consider　an　arbitrary　array　and　extract　a　sub-array　whose　shape　is　fixed　around　a　given　element.　(0padding if　necessary.)
	83: Calculate the matrix rank.
	84: Find the mode of the sequence.
	85: Extract all consecutive 3x3 blocks from a random 10x10 matrix.
	86: Find a two-dimensional array in which the rows and columns of the two-dimensional array Z are swapped. (That is, a two-dimensional array with Z[i,j] == Z[j,i])
	87: Consider a set of p matrices whose shape is (n,n) and a set of p vectors whose shape is (n,1). How do you calculate the sum of the products of p matrices at once? (The result has the shape (n,1)
	88: Consider a 16x16 array, get the sum of a sub-array of block size 4x4.
	89: How do I implement Game of Life using numpy arrays?

	(Chapter 10) Numpy Cornering
	90: Get the nth largest number in the array where the numbers are stored.
	91: Given any number of vectors, find the direct product (all combinations of all items).
	92: Generate a recalay from ndarray.
	93:　Consider　a　large　vector Z (ten　million　random　numbers)　and　calculate　the cube　using　four　different　methods.
	94:　Consider two　arraysA　and B of the　form (8,3)　and (2,2);　how　do　you　find　a　row　of A that　contains　an　element　in　each　row　ofB,　regardless　of　the　order　of　the　elements　in B?
	Extract the rows in a 95:10x3 array that are not all equal (e.g., [2,2,3]).
	96:　Convert　a　vector　of　type int　to　a 01　representation.
	97: Given a two-dimensional array, extract a unique row.
	98: Considering two vectors A and B, write the subscript of the einsum of the inner product, outer product, summation, and mul function.
	99: Consider a two-dimensional array Xk=[[x1,y1],[x2,y2]] representing two coordinates. Find the Euclidean distance between the two points of X1=[[0,0],[1,1]] and X1=[[1,1],[2,2]], respectively.
	100:　Given　an　integern　and　a　two-dimensional　array X,　select　a　row　that　can　be　interpreted　as　being　drawn　fromX　from　an n-degree　polynomial　distribution,　i.e.,　a　row　that　contains　only　integers　and　sums　to n.
	101: Compute the bootstrapped 95% confidence interval of the mean of the 1D array X (i.e., replace the elements of the array N times and resample, compute the mean of each sample, and compute the percentile for that mean).

	Conclusion

