

Copyright © 2020 by Rockridge Press, Emeryville, California

No part of this publication may be reproduced, stored in a retrieval system, or transmitted

in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or

otherwise, except as permitted under Sections 107 or 108 of the 1976 United States

Copyright Act, without the prior written permission of the Publisher. Requests to the

Publisher for permission should be addressed to the Permissions Department, Rockridge

Press, 6005 Shellmound Street, Suite 175, Emeryville, CA 94608.

Limit of Liability/Disclaimer of Warranty: The Publisher and the author make no

representations or warranties with respect to the accuracy or completeness of the

contents of this work and specifically disclaim all warranties, including without limitation

warranties of fitness for a particular purpose. No warranty may be created or extended by

sales or promotional materials. The advice and strategies contained herein may not be

suitable for every situation. This work is sold with the understanding that the Publisher is

not engaged in rendering medical, legal, or other professional advice or services. If

professional assistance is required, the services of a competent professional person should

be sought. Neither the Publisher nor the author shall be liable for damages arising

herefrom. The fact that an individual, organization, or website is referred to in this work as a

citation and/or potential source of further information does not mean that the author or

the Publisher endorses the information the individual, organization, or website may provide

or recommendations they/it may make. Further, readers should be aware that websites

listed in this work may have changed or disappeared between when this work was written

and when it is read.

For general information on our other products and services or to obtain technical support,

please contact our Customer Care Department within the United States at (866) 744-2665,

or outside the United States at (510) 253-0500.

Rockridge Press publishes its books in a variety of electronic and print formats. Some

content that appears in print may not be available in electronic books, and vice versa.

TRADEMARKS: Rockridge Press and the Rockridge Press logo are trademarks or

registered trademarks of Callisto Media Inc. and/or its affiliates, in the United States and

other countries, and may not be used without written permission. All other trademarks are

the property of their respective owners. Rockridge Press is not associated with any product

or vendor mentioned in this book.

Interior and Cover Designer: Stephanie Mautone

Art Producer: Sara Feinstein

Editor: Caitlin Prim

Production Editor: Ruth Sakata Corley

Illustrations © 2020 Ryan Johnson

ISBN: Print 978-1-64611-388-0 | eBook 978-1-64611-389-7

R0

To all kids who love creating, building, and exploring new
worlds.

Contents

How to Use This Book

Chapter 1: Welcome to Programming!

Chapter 2: Python: The Basics

Chapter 3: Variables
Walkie-Talkie Codes
Alien Socks
A Likely Story!

Chapter 4: Data Types
Kitten Party
Lie Detector
Bake Sale: Raise Some Dough!

Chapter 5: Data Structures
Pizza Pandemonium!
My Friend, Chatbot
Pig Latin Translator

Chapter 6: Conditionals
All-or-Nothing Gummy Worms

Roller Coaster Challenge
My New Magical Pet

Chapter 7: Loops
My Python Snake
Who’s Getting Splashed?
Find the Buried Treasure

Chapter 8: Functions
Quest for the Biggest Jellyfish!
Anagram Checker
The Whimsical Cupcake Shop

Chapter 9: Turtle Module
Spiraling Out of Control!
Bungee Jump!
Very Curious Turtles

Chapter 10: Game On: Putting It All Together
Spaceships and Aliens

Code for the Road
Bug Hunting: Troubleshooting Tips
Resources

Glossary
About the Author

How to Use This Book

Welcome! As you’ve probably guessed, this book will teach you the
basics of Python programming. But more importantly, it’s going to

teach you how to think like a coder!

Coders can look at big, complicated problems and break them
down into small pieces, then solve each piece with a step-by-step
plan. This is a useful skill for your day-to-day life, whether you’re
coding or not!

We’ll start this book with an introduction to programming. Then,
we’ll cover the basics of Python and how to download it onto your
computer. Remember to always ask an adult you trust—like a parent,
teacher, or guardian—before downloading something from the
Internet!

Chapters 3 through 9 are full of fun, hands-on examples and
lessons. You’ll follow along with the code and see how each coding
concept can be used to build programs and games. These chapters
each include three cool activities: one easy, one medium, and one
challenging—all of which are perfect for practicing the chapter’s
central concept and your new coding skills. Each activity will end
with the complete code, so you can easily follow along and check
your work.

Finally, we’ll put everything together in chapter 10, building a
game you can play against the computer.

When you’re done, check out Code for the Road for ideas to
take your coding skills even further.

If you run into trouble, check out Bug Hunting: Troubleshooting
Tips. There’s also a Glossary of common coding terms and a list of
programming Resources for learning more about Python and
coding.

Let’s get started!

1

Welcome to Programming!

Picture the last 24 hours. How many different things have you done
on a computer? Maybe you’ve taken photos with your phone or
played video games. Maybe you’ve chatted with friends,
downloaded a homework assignment, laughed at funny cat videos,
or researched how many eyeballs an octopus has.

Computers are everywhere! And that’s because computers are
really, really good at one thing: doing math very fast without
making mistakes.

It’s we, the clever humans, who take this “fast math” and use it to
solve problems. We found a way to turn math into code, and now
programmers can use code to build useful programs. How do I stay
in touch with my friends? We invent social media. How can I watch
my favorite movies without buying or renting hundreds of discs? We
create video streaming. What’s something fun I can do when I’m
bored? We design video games.

Coding is about solving problems with computers. It’s about
creating useful, fun, or silly programs that can make your life better.
And the only limit is your imagination!

If you’ve never coded before, this book is the perfect place to
start. Through fun examples and exercises, you’ll gather all the tools
you need to start building whatever games, apps, or websites you
want.

What Are Programs?
A program is a bunch of code designed to solve a human problem.
This can be something complex, like “How do I get this satellite into
space?” Or it can be funny, like “How can I add dog ears to people
over video chat?”

Writing a program is a bit like explaining to an alien how to go to
school. The alien has never visited Earth, so they don’t know what a
school is, or a bus, or recess, or homework. You have to explain
everything!

To start, you need to give the alien precise instructions to get to
the bus stop: Leave at 8:15 a.m. Walk down the driveway, then turn
right. Walk for five minutes and stop next to the oak tree. Wait for the
big yellow vehicle.

When they finally get on the bus, the alien doesn’t know how to
pick a seat. What instructions would you give them? “Pick the closest
seat that doesn’t have two people” works. But so does “Always
choose a window seat, if available” or “Go as far back in the bus as
you can!”

To write a computer program or direct an alien, you break big
ideas into smaller tasks. Every task becomes a series of precise, step-
by-step instructions. Choices that you make without even thinking
about it, like where to sit on a bus, must be questioned and
explained.

The result, when translated into a programming language, is a
program!

Programs might have different goals, but every program has
these five parts:

• Input

• Output

• Math

• Conditional execution

• Repetition

Let’s explore them!

INPUT
Imagine you’re buying ice cream. Before the ice cream man makes
your frosty treat, he asks you some questions, like “Small, medium, or
large?” and “Cone or bowl?” and “What flavors would you like?”

Input is the information you need to start your program. If you
haven’t chosen your flavors, the ice cream man can’t start scooping!

Likewise, imagine that you’re playing soccer with friends. What do
you need to get started? A soccer ball, two teams of players, and
maybe a field or a big driveway. These elements can be considered
the “input” of your soccer game.

OUTPUT
Output is the finished product of a program. If you order a “medium
raspberry ice cream,” you expect to receive a medium raspberry ice
cream!

What about the output of a soccer game? The goal of each team
is to win, and winning is decided by score. So, a good choice of
output is the final score of both teams.

When we talk about input and output, we’re looking at how the
program starts and ends. At this stage, we’re not worried about how

we get from Point A to Point B. We’re just trying to imagine Point A
and Point B themselves!

MATH
Every computer program has a bit of math. Sometimes it’s obvious.
Maybe ice cream sizes are calculated by weight, and you need to
divide 5 ounces of ice cream between three flavors. Or maybe you
buy four cones, and math is needed to calculate the final price.
Addition, subtraction, multiplication, division—it’s all a breeze for a
computer!

Other times, the math in a program is sneaky—you’re not even
aware it’s doing math.

Remember that computers are fast math machines. Technically,
everything on a computer—from text to images—is made out of
numbers. Luckily, most of these transformations happen
automatically. We don’t have to worry about how a cute cat video
becomes 1s and 0s through behind-the-scenes coding. We just trust
that the math works.

You might write program instructions to scoop ice cream, clean
equipment, and replace empty ice cream trays. But somewhere,
deep below the surface . . . this all becomes math.

CONDITIONAL EXECUTION
If you ask for an ice cream cone, it’d be weird for the ice cream man
to fill up both a cone and a cup. If you order pistachio ice cream,
there are dozens of flavors you don’t taste.

Programs are designed to have users, and different users make
different choices. If you write 1,000 lines of code, maybe only 50
percent (or even 10 percent) is used in a typical day.

A program’s ability to have different options is called “conditional
execution.” Without it, programs would be one-size-fits-all. You’d be
stuck ordering the same flavor of ice cream or playing the same
soccer game over and over. Sounds pretty boring!

REPETITION
Every program can be broken into a series of mini tasks. When you
play soccer, you kick the ball, steal the ball from opponents, score
goals, or block them. You probably do each of these actions multiple
times in a single game.

Likewise, many programs do the same thing over and over. If we
write a block of code that scoops ice cream, it makes sense to use
that same block of code when scooping hazelnut and blueberry
flavors. No sense in writing more code than necessary!

The Fundamentals
You might have heard of JavaScript, Scratch, C++, Ruby, and dozens
of other programming languages.

Here’s the good news: It doesn’t really matter which one you
learn first. After your first language, it’s easy to pick up a second, then
a third. Each language has its quirks, but they all use the same basic
coding concepts. In other words, each language uses the same
toolbox.

So, let’s focus on the tools themselves, and master the coding
equivalent of screwdrivers, drills, hammers, and wrenches. Once you
understand how different tools solve different problems, you can
build anything: a palace, a cottage, or a camping van!

In coding, the five most important concepts, or tools, are:

• Variables

• Data types and structures

• Conditionals

• Loops

• Functions

Every program—from self-driving cars to a text game of Hangman
—uses these five tools. Mastering them will help you learn to think like
a coder. The more you build with these tools, the more you’ll
understand how programs fit together. From there, you can start
bringing your own creations to life! Maybe one day, when you see a
big, complicated human problem, like “How do I find the fastest
route from my house to my school?”, you’ll be able to turn it into GPS
software!

Just remember, programming is supposed to be messy. All
coders make mistakes. If your first try isn’t perfect and your code
crashes (a.k.a. it doesn’t work), so what? You’ll learn how to fix your
code and try again. The important thing is to keep trying. Even when
you make mistakes, you’re learning.

These concepts are:

VARIABLES
Variables are tools that store all the information used in our
programs. They’re the reusable plastic containers of the computing
universe! Whenever you’re finished with some information, you can
just “wash out the container” and use it for a different piece of data.

What flavor of ice cream did you pick? Or how many goals did
you score in soccer? These choices need to be recorded somewhere.
Putting them in variables keeps our code clean, organized, and easy
to edit.

DATA TYPES AND STRUCTURES
Data structures are tools for organizing multiple variables. When you
have a million different elements, you need a system to keep track of
them all!

If variables are like reusable containers, then data structures are
like fridges or lunch boxes. They make sure that no container is
forgotten at the bottom of your backpack, getting gross and stinky.

Every piece of data also has a “type.” The data type determines
how much space the data needs in a computer’s memory, and how
the data responds to different math operators like plus (+), minus (-),
multiply (*), and divide (/). You wouldn’t use the same type of
container for leftover soup and delicious brownies. Similarly,
numbers, text, and “yes or no” variables all come in different boxes.

CONDITIONALS
Conditionals are structures that allow you to create a fork in your
code. If the user chooses caramel sauce, they take the right-hand
path. If they choose chocolate, then they go left. Each choice comes
with its own consequences. Remember, users don’t usually explore
every piece of code. Conditionals allow us to decide which
instructions are run, when they are run, and why they are run.

LOOPS

Loops are an important tool for repeating code. When you hear the
term “loop,” maybe you think of a racetrack or a roller coaster,
something that races around the same path over and over.

Whenever you write a program that performs identical tasks,
you’ll want to use a loop so you don’t have to write the same code
over and over again. Scooping some mango ice cream, for example,
probably isn’t very different from scooping bubble gum ice cream. A
perfect candidate for a loop!

FUNCTIONS
Functions are a tool for giving tasks to different pieces of code. At an
ice cream cart, you might have one worker preparing sundaes and
another handling payment. When you play soccer, team members
might be offense, defense, or goalies. If people weren’t in charge of
specific tasks, it’d be a messy free-for-all!

Like loops, functions are ways to reuse code. They’re also used to
keep code clean and easy to understand. Instead of asking “What
tasks are repeated over and over?” (a loop question), ask yourself
“How can I break a complicated task, like playing soccer, into smaller
tasks?” That’s how you know what functions to build!

Talk Like a Programmer: Words to Know
Starting to code can feel a little intimidating because programmers
use lots of weird words. But it doesn’t have to be overwhelming!

Let’s check out some common terms:

ALGORITHMS

Algorithms are a series of precise, step-by-step instructions that solve
a problem. But wait! How is that different from a program?

While computer programs target big, vague “human problems”
like looking for craft ideas or needing directions to the zoo,
algorithms solve smaller “computer problems.” These are things like
“How do I multiply two really big numbers?” or “How do I find the
smallest number in a list of one million numbers?”

A program often uses many algorithms. Each algorithm takes the
program one step closer to accomplishing its big, vague, “human”
goal!

COMPILING
Computers don’t speak English, but they don’t really speak Python or
JavaScript or C# either. At a basic level, computers are built out of
electronic switches, which can either be “on” (1) or “off” (0).
Compiling is the process of changing the code that humans can read
into the series of 1s and 0s that computers understand.

RUNTIME
Code doesn’t do anything if we don’t run it. Running code is like
saying “go,” and letting the computer execute your directions line by
line. Picture starting a car’s engine, driving it out of the garage, and
going around the block. A running car isn’t sitting in the garage,
doing nothing. And running code isn’t sitting on a page. Instead, it is
actively completing its task.

Runtime is this space between starting the program (starting the
car) and ending it (finishing the trip around the block).

DEBUGGING

Humans aren’t perfect, and sometimes our code doesn’t do what we
want. Other times, it does things that we don’t want. Debugging is
the process of searching for the tiny mistake in our code that’s
making everything wonky. It might be a typo, or it might be a more
serious logic error. Either way, we refer to this mistake as a bug.
Some programmers also call these “glitches” instead of bugs, just like
glitches in video games.

It can be frustrating when your code doesn’t work, but you should
know that even the most experienced programmers get bugs in their
code! Trial and error are all part of the learning process.

SPAGHETTI CODE
When we code, our goal is to create an organized program that’s
easy for others to understand. You’ll want to avoid making spaghetti
code. Instead of clear step-by-step instructions, spaghetti code flips
back and forth between one task and the next. Everything is jumbled
together, just like a bowl of spaghetti! The program might work
correctly, but it’s not clear how. This makes the code difficult to
debug. There’s also the danger of undetected bugs lurking just
under the meatballs!

SYNTAX
In computer science, syntax is the set of spelling and formatting rules
for a programming language. It includes how code needs to be
structured, what symbols are used, and how you need to write
specific instructions. For example, lots of languages use semicolons
in their syntax. Others use tabs. Each language is a little different!

Why Python?

Python is the perfect language for when you have a great idea that
you want to bring to life quickly. Because it has simple syntax, you
can focus on logic, instead of worrying about complicated curly
braces, semicolons, or oodles of round brackets!

But don’t let the word “simple” fool you. Python can do everything
the other languages can and in less space. This makes Python a great
language for beginners. And because it’s great for beginners, lots of
people know it and use it to make fun and useful programs.

Whether you want to create multimedia games or design
websites, Python is a great place to start. Get ready to mix creativity
and logic and build some cool programs!

What Can Python Do?

The short answer: anything you can imagine a computer doing!

The long answer is: Python is a popular language for games, websites, and data

science. If you want to make adventure games with 2D graphics, Python is perfect. If

you want to make a text “choose your own adventure” game, Python is perfect. If you

want to get physical and buy hardware like a Raspberry Pi or MicroPython to make

some electronics projects, Python is still perfect!

2

Python: The Basics

What does installing a programming language mean?

When you download Python, you’re actually downloading a
program that translates Python code into machine code. Remember
that computers are just a bunch of electronic switches. The only
concepts they understand are “on” and “off!”

If you want to learn a new human language, like Spanish, you’d
probably use a Spanish-English dictionary. Every human language is
a bit different, so each one needs its own dictionary.

Similarly, each programming language is a bit different.
JavaScript, C#, C++, Ruby, Java, and yes, Python—each one has its
own translator. These translators are the programs that transform
code on a page into an interactive program.

Think about this: Human languages are constantly changing.
Words like “selfie” or “jeggings” didn’t exist 100 years ago. Like
human language, programming languages evolve, too. When you
go to download Python, you’ll see many different versions. As a rule
of thumb, go for the most recent one.

How to Install Python
To install Python on your computer:

1. Go to the Python website: python.org/downloads. It’s always best
to download from official sources. That way, you know the
translator is up-to-date and you can trust the website not to sneak
a virus into your download!

2. Select your computer’s operating system. It’s possible the website
has done this for you automatically.

If you have an Apple computer, you’re probably using Mac OS X.
Otherwise, you’re probably using Windows. Ask a trusted adult if
you’re not sure which operating system you have.

On the Python website, there are links in the banner that allow
you to access translators for Windows, Mac OS X, and even Linux
operating systems.

3. After selecting your operating system, you should see text that
says: “Download the latest version for Mac OS X” or “Download
the latest version for Windows.” Under that, there’ll be a button
that allows you to download the latest release. Click on it!

You can also scroll down until you see the list of Python releases.
Download the most recent version of Python 3. Don’t worry—since
we’re focusing on the basics in this book, it doesn’t matter if you
use Python 3.8.2 or Python 3.7.6. Just make sure the first number
after the word “Python” is a 3.

4. Your click will download a package that will install Python. The
package should have a “.exe” (on Windows) or a “.pkg” extension

https://www.python.org/downloads/

(on a Mac) and might be called something like “python-
3.8.2.exe.”

5. Once the package is downloaded, double-click it to run the
Python installer.

6. You’ll need to give the application permission to make changes
to your device. This might require an administrator’s password.
Ask a parent, teacher, or guardian if you’re not sure what it is.

7. Select any folder on your computer to store your Python files.
Often, it’s easiest to use the default location (the one the
computer selects).

8. You should get a “Setup was successful” message.
Congratulations—you’ve successfully installed Python! Go ahead
and close the installer.

All About File Extensions
Every piece of information on your computer, from pictures to videos
to songs, is stored in your computer as a sequence of 0s and 1s. The
file extension tells your computer how to interpret that sequence.
Otherwise, the 1s and 0s are just gibberish!

You might be familiar with some of these file extensions that
appear at the end of file names:

• Text documents: .doc, .docx, .txt, .rtf

• Images: .jpg, .gif, .png

• Songs: .mp3, .wav

• Videos: .mp4, .mov, .mpg

Programmers use even more funny file extensions. Once you start
making programs in Python, you’ll see that your Python code is
stored in .py files. Other coding languages have their own file
extensions, like .java or .c.

Files with .exe, .app, .bin, or .vb are called “executables.” When
you double-click on them, a program opens and starts running.
Executables contain “machine code.” Every program on your
computer, from your image editor to your web browser to Python, is
an executable.

Symbol Key: Unlocking the Secrets of Python Syntax

Programmers use lots of symbols in their code. Each symbol is used to give the

program different instructions. Here are some of the most common symbols you’ll

use in Python:

() - round brackets

[] - square brackets

{ } - curly braces

; - semicolon

: - colon

/ - forward slash

\ - backslash

> - greater-than symbol

< - less-than symbol

IDLE

The Python package you downloaded contains both translation
software and a program called IDLE.

IDLE is an IDE. IDE stands for “integrated development
environment,” but don’t worry about remembering that acronym! An
IDE is just a program that helps you edit and run code.

As long as you have a translator installed on your computer, you
could technically write your code in any program that lets you type
words and symbols. There are several advantages to using an IDE,
though. First, there are lots of cool features that make writing code
easier. These include things like syntax highlighting, which uses
different colors to make Python keywords stand out.

Most IDEs also come with features like code completion and
auto-indentation. When you’re learning to code, it’s best to keep
these features turned on. They’re helpful tools that are great for
beginners who are just starting out! Once you’ve gotten more
advanced and you’re working on bigger projects, it’s nice to have
these shortcuts to help code more quickly.

Second, running your code in an IDE is simple. Just click a button
and your code is transformed into a program.

The terms IDE and IDLE look very similar—after all, they’re only
one letter apart! Just remember that IDLE is the name of one specific
program, while an IDE is a type of program.

IDLE is a great choice for beginners because it is simple, has all
the best IDE features (like syntax highlighting and auto-indenting),
and is automatically installed when you download Python!

There are lots of different IDEs you can use to write and run
Python. Some IDEs are made by nonprofit coding organizations and
others are created by private companies. Some are free and some

aren’t. All of them have slightly different features. If you’re interested,
search for “Python IDEs” in a web search engine, and you’ll find lots
of people talking about the pros and cons of each choice.

Every IDE, however, has two important parts: the editor and the
console.

The Console and Editor
The code editor (often just called the editor) is the window where
you actually write your Python code. When you run your program,
the translator takes this code and turns it into machine instructions.
These instructions are then executed line by line, with the results
displayed in the console. The console is a separate window used just
to display a program’s output.

Picture an IDE as a puppet show stage. The audience only sees
the glamorous final production. This is like looking at the console! If
you look behind the stage, however, you’ll see the puppeteers
hiding, as well as all the tools they’re using to manipulate their
puppets. This is like looking at the editor.

When you’re writing code, you need to be the puppeteer pulling
the strings, but you also want to experience the show as the
audience. Having the editor and console in the same program makes
it easy to switch between views.

So, if you create a program that draws a picture of a kitten, the
picture will appear in the console. If you write a “choose your own
adventure” game where you’re the hero, the story itself is displayed
in the console. The code to make everything work stays in the editor.

Using IDLE

If you’re on a Mac, click on your Launchpad. If you’re on Windows,
click the “Windows” button at the bottom of your screen. Then, for
both operating systems, you can search for “IDLE” and click on the
program to launch it. Or you can scroll around until you see the
Python logo and access the IDLE shell from there.

A small white window will appear on your screen. This is your
IDLE shell.

Picture the shell as a cross between an editor and a console. For
starters, you can write lines of code directly into the shell. As soon as
you hit “enter,” the code runs immediately! The results are then
displayed in the shell, right underneath your code:

In this picture, you can see the shell with some Python code
already written. The results of each line of code appear in blue. Don’t

worry if the code doesn’t make sense yet—that’s what the rest of this
book is for! You can try it out now or wait until the next chapter.

This shell is different from the traditional editor/console setup,
where code and results are separate. In the traditional editor, you can
write many lines of code before trying them out. In the shell, it’s
always one line at a time.

There are pros and cons to using the shell. On the plus side, it’s
great for trying out new code! You instantly see the result of each
line, so you know exactly what the code is doing and where any
errors are. When following the examples in this book, it’s easiest to
write your code in the shell.

If you want to write long, complicated programs, it’s better to
write in a traditional code editor. Luckily, IDLE has an option for this
as well, which we’ll explore in the next section. Use this traditional
code editor when you’re coding chapter activities or examples that
have many lines of code.

Using a Code Editor
Writing in a traditional editor allows you to edit and save your work.
You can write some code, take a break, and come back to it later!

At the top of the shell screen, click “File” and then “New File.” You
should see a whole new window pop up. This blank file is your code
editor. The original shell will serve as your console.

For easy viewing, you can set up the windows side by side, with
the editor on the left and the console/shell on the right:

The console/shell still has the example code from earlier. The
editor is blank—no new code has been written yet.

Another option is to make both the editor and the console full-
screen, and switch back and forth between them. Whatever you
prefer!

HACKER HINTS:
LIGHT VS DARK MODE

In IDLE, you can customize the color of your background and your text!

“Light mode” has a white background with dark text, and “night mode” or “dark

mode” is a dark background with light text. Many programmers prefer night/dark

mode because they find it less tiring on their eyes.

To change your settings on a Mac, click on “IDLE,” then “Preferences,” then

“Highlights.” On Windows, go to the “Options” in your shell, then “Configure IDLE,”

then “Highlights.”

Saving Your Work
When working in the editor, you will need to save your work before
you run your code—plus, you don’t want your hard work to disappear!

To save your code file, click “File” and then “Save.” In the editor, a
small dialogue box will appear. Pick a name for your file and then
save it anywhere you like. Pick a folder that’s easy to remember (the
default location always works).

Double-check that your file is being saved as a “.py” file. This will
let the translator know that it’s a Python file, not an image, text, video,
or a different programming language. Otherwise, the Python
keywords won’t be highlighted correctly.

To load a file, click “File” and then “Open,” and find your file’s
location. You may also see your program under “Recent Files.”

Running a Program
Your editor is open, your code is written, and your file is saved. Now
it’s time to see if your program works as planned!

“Running” a program means translating it into machine code,
then getting your computer to follow your code’s instructions line by
line. So, if you wrote a program where a tiny 2D sprite goes on
adventures, then it’s time for the computer to animate that 2D sprite
going on adventures! If you wrote a program that writes your name
in giant bold letters, it’s time for the computer to create those letters,
pixel by pixel.

To run your code, click the “Run” button in the top banner on your
screen and then “Run Module.” You’ll see the results displayed in the

console:

In this picture, there’s now some code in the editor! The file was
saved as “test1.py” (you can see the name in the title bar). The result
of the code is then displayed in blue in the console/shell. See how
the code is now completely separate from the result?

One of the great things about using an editor is that you can run a
program as many times as you want. There’s no cost if you mess up!
You’re not using up art supplies, building materials, or sports
equipment. If things don’t go as planned, you can stop your
program, fix a few lines, and try again—all in seconds!

Bugs
Even the best programmers get bugs. It doesn’t matter how much
you study or practice—it’s just about impossible to write perfect code

all the time.

There are two ways to know that your program has a bug. First,
the program might “crash.” It’ll look something like this:

Errors in your console can look very dramatic with all that red text!
Instead of trying to understand what everything means, focus on the
line number that caused the crash. This will always be shown
somewhere in your error message. In this picture, for example, it says
“line 4.” Often, this line of code has a small typo that you need to fix.
Other times, the typo is actually higher up and it just took a few lines
before the mistake caused the crash.

The second type of bug is less dramatic, but it’s still a problem.
Your code doesn’t crash, but it’s not giving you the results you
expected.

We call these “logic errors.” After you’ve written your program, it’s
a good idea to test it with different kinds of input to see if the
program does what you expect. If you’ve built a pet simulator, for
example, you’ll want to test eating, sleeping, and playing with toys. If
your cat is hungrier after eating, something wonky is going on!

There’s an entire section at the end of this book called Bug
Hunting: Troubleshooting Tips. If you run into trouble, check it out.
But don’t worry about bugs too much. As you master your coding
tools, you’ll also learn about common mistakes and what to look for
when your code doesn’t work. Instead of getting discouraged, think
of bugs as challenges! Coding is all about trial and error, and making
mistakes is how we learn. You might even find yourself having fun
while debugging!

HACKER HINTS:
KEYBOARD SHORTCUTS

You may be familiar with the shortcuts “CTRL + C” and “CTRL + V” to copy and paste

text (or “CMD + C” and “CMD + V” on a Mac). Just like these shortcuts, every IDE has

different shortcuts for copying text, running programs, and saving your work. It’s a

good idea to go online and learn the keyboard shortcuts when you’re using IDLE or

a new IDE. It’ll save you time in the long run!

3

Variables

Like we learned in chapter 1, variables are tools that help us keep
track of changing information. Picture them as containers. The
container itself isn’t super important. It’s the stuff inside that
matters!

Have you ever helped organize a birthday party? To make
everything run smoothly, you need to know who’s invited, what
activities are planned, and what kind of cake you’re serving. But
what if the information keeps changing? One minute you have
seven guests, and the next you have fifteen. Suddenly, you need a
bigger cake.

If you use variables to store your plans, it’s easy to keep
information organized and up-to-date.

The Basics of Variables
There are two parts to every variable: a name and a value, which can
be changed anytime. In Python, you declare a variable like this:

cake = "chocolate"

Go ahead and type the code into IDLE shell, your IDLE editor, or
whatever IDE you’re using. The best way to learn to code is by trying
things out!

To keep your program organized, the names of your variables
should be clues about what information they store. Write the variable
name on the left-hand side of your statement—in this case, it’s “cake.”
On the right, you’ll put the data, known as the value. In this case, it’s
“chocolate.” And in the middle, we have the “=” sign, also known as
the assignment operator.

The assignment operator assigns the value “chocolate” to the
variable “cake.” So if you wrote:

"chocolate" = cake

You’d be trying to assign the variable “cake” to the value
“chocolate,” and your code won’t work!

What if you decide that chocolate isn’t your favorite flavor of
cake? To change the value of the “cake” variable, add a second line
in your editor:

cake = "chocolate"

cake = "buttercream"

The first line slips the value “chocolate” into the variable “cake.”
The second line throws out the original value and replaces it with
“buttercream.” Because we use the same variable name (it’s still
about cake), we don’t create a new variable. Same container, new
content!

Print Function: Your First Code!
Ready to flex your coding muscles? The print function is a tool used
to send messages to users. You’re not printing on paper, though.
Printing is computer-speak for displaying text in the console.

The most basic version looks like this:

print()

Then, we place the message we want to share inside the round
brackets.

Traditionally, programmers start by printing “Hello World.” But
since every programmer does this, Earth’s probably getting a little
tired of that greeting.

In your code editor, let’s write:

print("Hello Mars!")

Run your code to see your message displayed in the console. If
you’re using the IDLE editor, and you want to review how to run
code, flip back to chapter 2 for a quick refresher!

Congratulations—you’ve just written your first program!

If you get an error message, don’t worry! Double-check your
spelling for things like apostrophes and brackets, then try again.

Here are some general rules for writing code and using the print
function:

• Every open bracket (round or square) must be closed by a
matching bracket.

• Watch out for spelling mistakes in your message!

• The print function displays the exact text we’ve written, including
uppercase and lowercase letters, spaces, and punctuation.

• The text inside the print function should always be surrounded by
quotation marks.

Next, let’s try printing some variables:

planet = "Jupiter"

print(planet)

If you run this code, you’ll see “Jupiter” appear in the console.
When you print a variable, you display its value, not its name. A
variable’s name just helps you—the programmer—keep track of your
data. Your users never see it!

If we want to print a variable’s value (in this case, “Jupiter”) and
text (in this case, “Hello”) together in one message, we need to get a
little fancy, and use an f-string. An f-string is a string that includes text
and variables.

First create a variable:

planet = "Jupiter"

Next, write out the print statement. Add the letter “f” in front of
the text to indicate that it’s an f-string. To include a variable, simply

surround the variable’s name with curly braces. Python will swap in
the variable’s value automatically:

print(f"Hello {planet}!")

The result of your print function should be “Hello Jupiter!”

Using variables makes it easy to change values, which is useful
when you don’t want your messages to all be the same. Just
remember, whenever you print a message with a variable, you need
to use an f-string!

Types of Variables
There are two basic types of information we store in variables: text
(like letters and words) and numbers.

Technically, both text and code are written with words and letters.
But in coding, “text” means values stored inside variables or
messages displayed to the user. “Code” is everything the user
doesn’t see, including variable names, math equations, and keywords
like “print.”

To let Python know we’re writing text, we need to surround those
words with quotation marks. For example:

party_theme = "Pirates vs Ninjas"

first_game = 'Foam Noodle Sword Fight'

As you can see in the code above, it doesn’t matter if you use
single or double quotes!

Numbers, on the other hand, don’t need any special syntax. See
how the following numbers don’t have any quotation marks around
them:

num_party_hats = 20

num_prizes = 5

In these variable names, “num” is short for “number.” So

“num_party_hats” is used to store the number of available party hats.
Much easier to read and write! We’ll talk about how to choose good
variable names in the next section.

Variable Dos and Don’ts!
Here are some dos and don’ts when creating and using variables:

• Be specific when naming variables. Descriptive names help us
remember what our variables store.

• Always start your variable’s name with a letter. After the first letter,
you can use a mix of numbers and letters. Don’t use spaces or
special symbols like !, *, $, etc.

• Capitalization matters! Uppercase “Cake” and lowercase “cake”
are two different variables. In general, you should only use
lowercase letters.

• Some keywords are reserved for coding instructions, like “and,”
“or,” “list,” “print,” “for,” and “while.” These keywords will be
highlighted in your IDE, so you’ll know when you try to use
something off-limits!

• If a variable name has multiple words, they should be separated
by underscores, like “treasure_hunt_prize.”

HACKER HINTS:
CHOOSING GOOD NAMES FOR YOUR VARIABLES

If your variable names are too similar, you might accidentally use the wrong one in a

calculation. Imagine coding (or playing) a soccer game where scoring goals gives

points to the other team instead! You can avoid this by giving your variables long but

specific names, like score_team_red and score_team_blue.

Calculating with Variables
We can use variables to make a lot of things easier, like calculating
sums of numbers. For example, when you write out equations in
math class, you might write something like this:

250 / 10 = 25

This is great for math, but not so great for programming. For
starters, math is the machine’s job!

Instead of crunching the numbers yourself, let the computer do it,
then store the result in a variable.

n = 250 / 10

If you run this code, the value “25” will be calculated and then
stored inside the variable “n.”

Any variable storing a number can be used inside a math
equation. Let’s say you buy a giant container with 250 jelly beans and

you want to split it equally between 10 party guests. You might
declare the following variables:

num_guests = 10

num_jelly_beans = 250

Now, to calculate how many jelly beans go in each party bag:

jelly_beans_per_bag = num_jelly_beans / num_guests

Using variables might seem like an extra step, but there are lots of
advantages to coding this way:

1. By naming them “num_jelly_beans” and “num_guests,” it’s clear
what the values “250” and “10” represent. If you come back to
your code a year from now, it’s easier to remember what you were
trying to calculate.

2. If you invite more guests to the party or buy another container of
jelly beans, you can easily update your values.

3. Storing the result allows you to reuse it in your code. Maybe
someday, you’ll want to calculate the number of objects in each
party bag. This is easy to do with your current code!

Using Operators
There are lots of different calculations we can do with variables. All
basic math operators have a Python equivalent or symbol:

• Addition: +

• Subtraction: -

• Multiplication: *

• Division: /

• Exponentiation: **

Since the variable’s name always goes on the left, your math goes
on the right. Now that we’ve seen how to use basic math operators in
Python, let’s learn how they work together.

Order of Operations
Look at the following math problem:

n = 3 + 2 * 4

When you have an expression with multiple variables like this,
how do you know which numbers are calculated first? The 3 + 2? Or
the 2 * 4? Well, the acronym “BEDMAS” can help us figure this out.
You might already be familiar with this concept from math class!

• B - brackets

• E - exponents

• D - division

• M - multiplication

• A - addition

• S - subtraction

Take another look at this equation:

n = 3 + 2 * 4

Will the value of “n” be 20 or 11?

If you guessed “11,” you’re correct! Multiplication (M) comes
before addition (A) in BEDMAS!

But if we change it to:

n = (3 + 2) * 4

Now the result is “20,” because brackets (B) are evaluated first.

If the same operator is used multiple times, then the order of
operations goes from left to right—the same way you read!

Variables in Action
Now that you know all about variables, let’s see what kind of
programs you can build with this new tool! If you’ve been working in
the shell up until now, this is a great time to try using a separate
editor. It’ll be much easier to tweak and edit your code.

Walkie-Talkie Codes
Imagine you’re a secret agent on a mission in the tropical jungle!
There are no cell towers here, so you and your team have to use
walkie-talkies to communicate undercover.

Start by picking your super-secret codename and storing it inside
a variable. Here, we’ve used “Eagle One”—what will you choose?

codename = "Eagle One"

Feel free to choose something goofy or exciting! If you’re looking
for ideas, try starting with a cool animal. Add your lucky number and
you’ve got a great codename.

Next, use the print function to send a message to your team:

print(f"Go for {codename}. Over!")

Since your message contains a variable (your codename), you
need to use an f-string. Remember to put the “f” outside of the
quotation marks.

Run your code to see the result in the console. Now that your
team knows you’re ready for action, they can send you a response.

Let’s create a new variable to store the codename for home base:

home_base = "Purple Viper"

And finally, add a return message:

print(f"Copy that, {codename}. This is {home_base}.

We've established contact with the satellite. Over!")

If you ever want to use a different codename, it’s easy to update
your variable to try new ones.

CODE COMPLETE!

codename = "Eagle One"

print(f"Go for {codename}. Over!")

home_base = "Purple Viper"

print(f"Copy that, {codename}. This is {home_base}.

We've established contact with the satellite. Over!")

YOUR TURN!
Congratulations—you’ve completed your first activity! Now that
you’ve worked with variables, print statements, and f-strings,
challenge yourself to make these changes to the code:

o Add one or two more teammates, each with their own
codename and variable.

o Maybe one of your teammates turns traitor! Update their
codename in your program. Remember, you don’t have to
create a new variable to do this; just put a new value into the old
variable.

o Using print functions, send each other a few more messages to
complete the mission. Remember, you only need to use f-strings
if a message contains variables. And when you’re done, don’t
forget to say “Over and out!”

Alien Socks
A group of eight Martians are visiting Earth on vacation, but they all
forgot to pack socks! Sadly, Earth socks are sold in pairs, and
Martians have 17 legs each. The Martians are asking for our help to
figure how many pairs of socks they need and how much they will
cost.

We could calculate this by hand, but since we’re practicing
coding, let’s see how variables can help! To start, let’s set up a few
numeric variables:

num_martians = 8

martian_legs = 17

Next, let’s figure out how many socks the whole group of Martians
needs. We can do this with a simple multiplication equation, and
store the result in a new variable:

num_socks = num_martians * martian_legs

This is the total number of socks, but as you know, Earth socks are
sold in pairs! So we’ll want to divide the result by two. Update the line
of code in your editor:

num_socks = num_martians * martian_legs / 2

The next step is to figure out the total price of this sock purchase.
Let’s start by storing the price of a single pair of socks:

sock_price = 1.25

Next, we’ll multiply the price of this single pair of socks by the
number of pairs needed:

total_sock_price = sock_price * num_socks

Finally, let’s print the result to the console so our alien friends can
see!

print(total_sock_price)

Did you get $85 for an answer?

That’s a lot of money for socks—aren’t you glad you don’t have 17
legs?

CODE COMPLETE!

num_martians = 8

martian_legs = 17

num_socks = num_martians * martian_legs / 2

sock_price = 1.25

total_sock_price = sock_price * num_socks

print(total_sock_price)

YOUR TURN!
You just wrote a program with numeric variables and made some
intergalactic friends! Here are some ideas to challenge yourself
further and make your program even better:

o What if more aliens arrive, this time from Neptune? These aliens
have six legs and forgot their socks, too. How can you change
your code to work for this new species? Should you define new
variables or update old ones?

o Let’s say our alien friends want to stay on Earth for nine days and
they want clean socks for each new day. How can you add this
into your equation?

A Likely Story!
Ready to get creative and build your own interactive story? To begin,
you’ll write a short story or joke with a few words replaced by

variables. For now, don’t worry about the value of these variables.
We’ll fill them in later!

Here’s an example to get you started. You can copy it into your
editor or write your own story instead. Because our story contains
variables, we’ll use f-strings, so don’t forget the “f” symbol in front of
the quotation marks.

print(f"Once upon a time, {name} went to the zoo. But a

{adjective} {animal} escaped and chased them around!")

Now we’ll create our missing variables. Normally, we give
variables their values when we declare them, like this:

name = "Sophie"

But this time, we’re doing something a little different. Instead of
picking values ourselves, we’re letting our user choose!

The input function allows you to have a conversation with your
user. This function does two things. First, it asks the user a question
or gives a direction, which is printed to the console. The user can
then type their response in the console—right next to the question or
direction—and hit the Enter key. Second, the input function copies
the user’s answer and stores it in a variable.

A basic input function looks like this:

name = input()

Just like the print function, the input function uses rounded
brackets. Usually, you include a text prompt inside these brackets. A
text prompt is a sentence that tells the user what they need to do.

That prompt is printed on the screen and tells the user what kind of
value they need to enter.

Since the input function displays our message letter for letter, it’s
a good idea to include a space after the colon. That way your
message won’t look smushed together and will make sense for the
user.

name = input("Enter a name: ")

Like all statements with variables, the variable’s name goes on the
left, the “=” symbol in the middle, and the value on the right. In this
case, the value is chosen by the user after seeing the text prompt and
stored in our “name” variable.

To finish off your code, declare any other variables missing from
your story. In the example, we’re still missing the “animal” and
“adjective” variables:

animal = input("Enter an animal: ")

adjective = input("Enter an adjective: ")

Quick tip: The lines of code declaring your variables should be
placed at the beginning of your program. Otherwise, Python won’t
be able to run the print statement, because your variables don’t
contain any values yet!

Congratulations! You’ve just created an interactive text game that
you can play with friends, family, or even by yourself!

CODE COMPLETE!

name = input("Enter a name: ")

animal = input("Enter an animal: ")

adjective = input("Enter an adjective: ")

print(f"Once upon a time, {name} went to the zoo. But a

{adjective} {animal} escaped and chased them around!")

YOUR TURN!
The best way to improve your programming skills is to practice! Now
that you’ve coded this activity, see if you can make the following
changes to your code:

o If you copied the example story, try writing your own! Don’t be
afraid to put your characters in ridiculous situations. How long
can you make your story?

o Add a few more variables to your story. Maybe this means
adding more text, maybe not. What are some good prompts for
your users?

o What do you think is better for your story: one long print
statement or multiple shorter print statements? Try out both and
see what you prefer!

Variables Off-Screen
Just like there are variables in programming, you’ve probably run
into variables off-screen, in the real world!

If your parents say, “We’re going to the beach Saturday!”, you can
guess that the outing will involve swimsuits, snacks, and beach
games. But which ones?

Usually, you wait until the last minute to decide on the actual
details. You might wake up and choose your polka-dot swimsuit
instead of your orange one. Right before leaving, you pack popsicles
instead of ice cream sandwiches.

Making these tiny choices in advance isn’t always useful. Maybe
you chose the orange swimsuit, but it’s in the laundry, so you’re stuck
with the polka-dot one. The world is impossible to predict!

Making plans with vague, general ideas is like using variables.
You can figure out the values at “runtime.” Now you’re thinking like a
programmer!

HACKER HINTS:
HARD CODING

Maybe you’re calculating how many hours you sleep in a year, and you use the

number “365” instead of creating a new variable called “days_in_a_year.” Using the

value directly (in this case, 365) instead of storing it in a variable is called “hard

coding.” And the code works fine—until suddenly it’s a leap year! Now you have to

dig through all your code to update the values. What a pain!

To simplify your life, use as many variables as you can. You never know when

information needs to be changed.

Coder’s Checklist
In this chapter, we covered:

o How to declare variables

o The two kinds of information you store in variables: text and numbers

o How to write a simple print function and use an f-string to format text

o How to do math with variables, and how to use the order of operations

(BEDMAS)

If anything in this list feels unfamiliar or confusing, you can always flip back

through the chapter. Coding is a skill that takes practice—just like baseball, guitar, or

handstands. The best way to learn is by typing code in your editor, running your

program, and seeing what happens—over and over again!

4

Data Types

Data comes in all shapes and sizes. There are big numbers, small
numbers, decimal numbers, as well as text values and values that
can only be “yes” or “no.” The “type” of your value determines how
the computer stores it in memory. Each data type also responds
differently to math operators like +, -, *, and /.

Think of data types like different animals! A horse needs a big
stable, but a cat just needs a cozy bed. A dog enjoys playing in
water, while a cat will hiss and run away if it gets wet. Each animal
has different needs and different behaviors.

Python automatically knows how to store each data type, but it’s
important for us, the programmers, to understand how to work with
them!

Strings
String is the computer term for text. It comes from the idea of
“stringing” together letters to make words, sentences, and pages.

To tell Python that a value is a string, we surround it with either
single or double quotes, like this:

favorite_animal = "squid"

This is something you’ve seen already in this book, right? But what
if we write:

num_tentacles = "2"

What happens now? Because we used quotation marks, the
“number” 2 will be stored as the “letter” 2. Python treats it like text!
Numbers can become strings, same as letters and words.

So, if you write the following code in your editor:

num_limbs = 6 + num_tentacles

Python doesn’t know how to add numbers and strings together,
so you’ll get an error when you run your code. You’re adding a
number with words, and that doesn’t make sense!

So why would we ever store numbers as strings? Well, for starters,
not all numbers are meant to be added, multiplied, or crunched
inside an equation. Telephone numbers and zip codes are both
great examples. For instance, you’d never write code like this:

alice_telephone = 4161112222

bob_telephone = 4163334444

super_mega_telephone = alice_telephone +

bob_telephone

Other times, you’ll want your variable to act like a string, so you
can glue it together with another string using the + operator, or
repeat it using the * operator.

Adding Values in Strings
We can’t add strings to numbers, but we can add strings to other
strings. This isn’t like adding numbers, where 1 + 1 = 2 and 2 + 2 = 4.
When you add strings, you’re gluing blocks of text together.

Try out the following code to see what adding strings together
looks like:

pet_name = "Thomas"

pet_type = "turtle"

pet = pet_name + " the " + pet_type

print(pet)

When you run this code, you should see “Thomas the turtle” in
your console.

Multiplying Values in Strings

We can’t add numbers and strings, but we can multiply strings by
numbers! What do you think will happen when we multiply the string
“Thomas” by 5? Let’s experiment!

pet_name = "Thomas"

print(pet_name * 5)

If you guessed “ThomasThomasThomasThomasThomas,” you’re
correct! Multiplying a string by a number (in this case, 5) creates a
new, super long string where the original string is glued together five
times. This is useful if you’re creating text games, where letters and
numbers are used to create maps and images. For example, you
might make a maze where the walls are made of Xs.

Just so you know, while you can add two strings together or
multiply a string by a number, you can’t multiply two strings together
or divide two strings.

Numbers
Numbers are the next type of data type. In computer science, there
are two species of numbers. Integers (ints) are whole numbers, like 7,
0, or 20,000. Floating point numbers (floats) are decimal numbers
like 3.14 or 0.5.

To a computer, the difference is huge. The way a computer stores
ints versus floats in its memory is as different as a fish tank is from a
birdcage. Luckily, Python detects data types automatically, so we
humans don’t have to worry about it!

Can you mix ints and floats in an equation? You bet! Give this a
try:

print(2 + 4.2)

You should see “6.2” in the console. Python automatically did the
conversion between floats and ints!

Integer Division
When you divide two integers, you often end up with a floating point
number. Sometimes, though, you don’t want a pesky decimal! In that
case, you can use integer division.

Check out the following code:

num_treats = 10

num_puppies = 3

print(num_treats / num_puppies)

print(num_treats // num_puppies)

The first print statement displays the number
3.333333333333335. The second displays a simple 3. The only
difference between the two lines is the single backslash versus
double backslash when dividing. We refer to the double backslash as
integer division.

If you try to divide 10 treats between 3 puppies, math will tell you
that each puppy should get 3.333333333333335 treats. But
sometimes, fractions aren’t practical. Maybe you want to save that
remaining treat for later or the treat is too small to split.

HACKER HINTS:
DYNAMIC TYPING

In Python, values have types but variables don’t. So if you use the variable “x” to store

a number in one line of code, you can use it to store a string in the next line! We call

this “dynamic typing.” In other programming languages, an “int” container can only

ever store ints! That’s called “static typing.”

The solution is to use integer division. This operator will always
round down your answer into a nice whole number that’s easier to
work with.

Floats
Decimal numbers can go on forever. No matter how precise your
fraction is, you can always stick one more number onto the end!

At some point, though, this becomes ridiculous. Getting an extra
half of a pie is awesome. An extra quarter is great. An extra 1/100 is a
little silly. And an extra 1/100,000,000 probably isn’t even a crumb!

In Python, floats are limited to 16 digits. At some point,
programmers decided this was the sweet spot between accuracy and
too much storage. Unless you’re doing science or finance, it’s unlikely
you’ll even need that much precision!

Integers to Strings: Converting Between Data Types
What if we need to change one data type into another? We can turn
an int into a string with the str function:

a = str(2)

In this example, the str function takes the number 2 and converts
it into the string 2. Then, it stores the result in the variable “a.” We can
treat “a” like a string! For example, we could multiply it by 10 and
print the result:

print(a * 10)

You should see “2222222222” in your console. That wouldn’t
happen if “a” was storing the number 2—you’d get 20. In this case,
since you were multiplying a string by a number, you got that string
duplicated—just like when you got
ThomasThomasThomasThomasThomas!

We can also turn strings into integers with the int function.

b = int("2")

Here, the int function takes the string 2 and turns it into the
number 2, which it stores in the variable “b.” The int function can only
convert strings that are built out of numbers. If you put something
weird between the round brackets, like a letter or a symbol, you’ll get
an error.

Boolean Types
Another type of data are Booleans, which can only have two values:
True or False. Usually, you use Booleans for variables that are
answers to yes/no questions. Did the user win the game? Did they
enter their password correctly?

We often start the name of a Boolean variable with the word “is.”
This makes it really clear that the value stored inside should either be
True or False.

is_puppy_cute = True

is_cat_hungry = False

Like all variables, you can change these values at any time.

In Python, “True” and “False” are special keywords used for
Booleans. Since they are keywords, make sure you capitalize that first
letter, or you’ll get an error message! Also, True and False are
Booleans, not strings, so you don’t need to surround them with
quotation marks.

Comparing Values
We’ve already seen mathematical operators like +, -, *, and /. These
operators take two or more values (like 5 and 7) and use math to
combine them to make a new value (like 12 or 35).

There are also comparison operators.

The most common is the equals-to operator (==), which tells you
if two values are equal. For example:

5 == 7

Since 5 and 7 are different numbers, they obviously can’t be
equal! Let’s see what happens if you print out this comparison. You
can put the whole expression in between round brackets—no
quotation marks needed!

print(5 == 7)

In your console, you should see “False!”

Comparisons always return Boolean values. After all, either 5
equals 7 or it doesn’t—and that’s it!

There’s also the not-equals-to operator (!=), which tells you when
values are different. Let’s try it out:

print(5 != 7)

While it’s False that 5 equals 7, it’s True that 5 doesn’t equal 7. The
not-equals-to operator always gives the opposite result of equals-to
operator.

Assigning vs Comparing
When doing math in the real world, we use the single “=” sign to
compare two values. But this doesn’t work in coding! The single “=”
is already reserved for the assignment operator, which puts a value
inside a variable. We’ve used it a lot so far in earlier chapters.

Take a look at these two slightly different lines of code:

a = 5

a == 5

In the first line, we’re storing the value “5” inside the variable “a.”
In the second line, we’re comparing the value inside “a” to the value
“5.” The result of this comparison can either be True or False.

Don’t worry if you mix up these two operators at first! Even
experienced programmers sometimes make that mistake. But

whenever you get a typo in your code, it’s a good idea to check all
your comparisons.

None Type
The “None” type is the black hole of variables. It’s not a number. It’s
not a string of text that says “None.” It’s just . . . nothing!

current_pet = None

Since “None” isn’t a string, you don’t need to surround the value
with quotation marks. Your Python editor will also highlight the word
in a different color to show that it’s a special concept!

You might see “None” when you get error messages. It’s also a
useful placeholder value when you want to define a variable without
giving it a value.

Data Types in Action
Ready to practice using data types? C’mon, let’s try it out! There’s no
better way to master a coding tool than by building things with it.
Open a new editor window and let’s get coding.

Kitten Party
The Internet loves kittens! With a little bit of imagination, let’s create
our own virtual kitten. We’ll use “=” for whiskers, “^” for ears, and “.”
for the nose. Then, we can print a bunch of kittens to the screen! In
this activity, we’ll also practice multiplying strings with numbers and
converting strings to ints.

To start, let’s make our kitten using a string. Don’t forget to
surround the string with quotation marks!

kitten = "=^.^="

Next, using the input function, let’s ask the user how many kittens
they want to adopt. Remember to put a good text prompt in
between the brackets of your function:

num_kittens = input("How many kittens would you like?")

Whether the user wants 1 or 100 kittens, their choice will be
stored in our “num_kittens” variable. However, the input function
always returns string values and we want an actual number. After all,
we can’t multiply two strings together.

To fix this, let’s convert our variable’s value into an int:

num_kittens = int(num_kittens)

In this line of code, we removed the string value from the
“num_kittens” container. Then we transformed it into an int using the
int function and put it back in the same container!

To finish off, let’s print out a line of kittens for the user to enjoy:

print(kitten * num_kittens)

Our “kitten” variable contains the text art, while “num_kittens” is
an integer. Remember what happens when a string is multiplied by
an int?

CODE COMPLETE!

kitten = "=^.^="

num_kittens = input("How many kittens would you like?")

num_kittens = int(num_kittens)

print(kitten * num_kittens)

Depending on how many kittens you wanted, you should see a
line of 5, 10, or maybe even 1,000 kittens purring all over your
console!

YOUR TURN!
Now that you’ve practiced using strings and integers, see if you can
make the following changes to your program:

o Try creating some new text animals, like a fish, bird, or turtle! If
your picture is several lines tall, how could you tweak your code
to display it properly? Hint: You’ll need multiple variables for a
single picture.

o Instead of printing “n” kittens, get creative—try printing “n * n” to
the screen!

Lie Detector
Have you ever played “Two Truths and a Lie?” You start by coming up
with three statements, two that are true and one that’s a lie. The other
players then have to guess which is which! We’ll use Booleans to help
us check if the user guessed correctly.

Let’s start by printing some instructions for our user:

print("Can you guess which statement is a lie?")

Now it’s time to print our statements to the console. You can
either follow the example or pick your own truths and lies.

print("1: I really love spiders!")

print("2: I've been inside a volcano.")

print("3: I can do a headstand!")

Ideally, you want it to be tricky to guess which statement is the lie.
“I went to the moon,” for example, might be a little hard to believe!

Next, we record the user’s guess using the input function:

guess = input("Which statement is the lie? Enter 1, 2, or

3: ")

The input function always returns strings. So our “guess” variable
should store either the string “1,” the string “2,” or the string “3.”
Should we convert it into a number?

Programmers like to be efficient. Unless we’re doing
mathematical things with the value, like adding or dividing, it’s easier
to leave it as a string, so we’ll do that.

To finish the program, record which statement is the lie. Whether
your lie is statement 1, 2, or 3, you want to store this number as a
string so it matches the user’s input:

lie = "1"

Finally, let’s see if the user guessed correctly:

print(guess == lie)

We’re using the equals-to operator (==), which means the result
can either be True or False. If the user’s guess matches the value in
our “lie” variable, then the Boolean statement will be True. If they’re
tricked by our clever lie, then it’ll be False!

CODE COMPLETE!

print("Can you guess which statement is a lie?")

print("1: I really love spiders!")

print("2: I've been inside a volcano.")

print("3: I can do a headstand!")

guess = input("Which statement is the lie? Enter 1, 2, or

3: ")

lie = "1"

print(guess == lie)

Challenge friends and family members to your new game. Let’s
see how many of them you can trick!

YOUR TURN!
Now that you’ve coded this activity, challenge yourself to tweak this
game and make it even more exciting:

o Add another lie to your code so you have two lies and two truths.
Give your user another guess and see if they can detect both
false statements! (Hint: You’ll need to add another input function
and another comparison.)

o We originally kept the user’s guess (1, 2, or 3) as a string, but
what happens if you change it into an int? Do you think this
makes the code better or just messier?

Bake Sale: Raise Some Dough!
You and two other friends have decided to hold a bake sale to
fundraise for your trip to the zoo. The end goal is $250. Using
integers, floats, and mathematical operators, let’s figure out how
many tasty treats you need to sell!

To start, let’s pick some baked goods and decide how many
portions you will each bake. You can copy the example or pick your
own desserts:

chocolate_cupcakes = 24

shortbread_cookies = 36

apple_pie_slices = 20

In total, you need to make $250. So how do you decide what
prices to charge for each baked good?

Variables are easy to change, so you might as well start with your
best guess. If you don’t get the answer you want, just tweak your
variables and run your code again!

cupcake_price = 2.00

cookie_price = 1.00

pie_price = 2.50

Putting the “00” after the decimal point does two things. First, it
makes it clear to other programmers that those values represent
money. Second, it tells Python that we want these values to be floats.

Now, let’s figure out how much money we can earn by selling all
our baked goods:

max_money = (chocolate_cupcakes * cupcake_price) +

(shortbread_cookies * cookie_price) + (apple_pie_slices

* pie_price)

print(max_money)

If you’re following the example, you should get $134. That’s just
over half of what you need. You could increase your prices or bake
twice as many portions. The choice is yours!

There’s one more thing to consider. You probably won’t sell all
your snacks, no matter how delicious they look and smell. If you’re
lucky, you might sell 90 percent. If you’re unlucky, it could be much
less.

Let’s create a new variable to include the percentage of snacks
likely to be actually sold:

p = 75

Again, just use your best guess!

We’re now all set to calculate an accurate estimate. Since “p” is a
percentage, let’s divide it by 100 inside our equation:

probable_money = max_money * (p / 100)

Try typing “75 / 100” in your IDLE shell. You should get 0.75.
Python is a smart language that can automatically switch between
integers and floats. Most languages aren’t that smart, though, so it’s a
good idea to test out divisions before using them in a long coding
program.

Finish by printing your “probable_money” variable:

print(probable_money)

You now have everything you need to estimate how much money
your bake sale will make—and whether or not you’ll get that trip to the
zoo!

CODE COMPLETE!

chocolate_cupcakes = 24

shortbread_cookies = 36

apple_pie_slices = 20

cupcake_price = 2.00

cookie_price = 1.00

pie_price = 2.50

max_money = (chocolate_cupcakes * cupcake_price) +

(shortbread_cookies * cookie_price) + (apple_pie_slices

* pie_price)

print(max_money)

p = 75

probable_money = max_money * (p / 100)

print(probable_money)

Keep fiddling with your numbers until you find the magic
combination that gets you over the $250 mark!

YOUR TURN!
The best way to master a coding tool is to play around with a
program and try adding new things. Now that you’ve successfully
coded this activity, here are a few ideas to challenge yourself further:

o A couple of new friends bring new baked goods to the sale. Try
adding them into your equation. How would the equation
change if you add two friends? What about three?

o What if you decide to hold the sale over several days and create
new batches of treats every day? What new variables should you
add to your equation?

Data Types Off-Screen
Humans love separating things by type, including data. You can see
this all over the world outside your computer. We have different
types of music: rock, pop, hip-hop, classical. And we have different
types of movies, books, comic books—you name it!

All of these “types” are categories created by humans. We can
create new types at any time.

Generally, we create a “type” for a particular purpose. We created
spoons to eat soups. We created knives to help us cut meat. We
created forks for pasta and salads. Each “type” is designed for a
particular task. Imagine trying to eat soup with a fork!

See if you can notice the next time you see different “data” types
out in the real world!

HACKER HINTS:
PRINT YOUR VARIABLES!

There’s a downside to Python detecting data types automatically. Unless you wrote

the code yourself, you can’t be 100 percent sure what type of value a variable is

storing. When in doubt, print your variables to the console. This is a good habit

anyway, to make sure that your code is doing exactly what you planned.

Coder’s Checklist
In this chapter, you learned:

o The difference between data types like strings, integers, floats, Booleans, and

the “None” type

o How to add strings together

o How to multiply strings with integers

o How to convert between strings and numbers

o How to use comparison operators like “==” and “!=”

o The difference between the assignment operator (=) and the equals-to operator

(==)

You can flip through this chapter anytime you want to review data types. The

more you use this tool, the more natural it’ll feel to work with integers, strings, floats,

and Booleans.

5

Data Structures

Data structures are tools that organize large amounts of data. When
you’ve got millions (or billions!) of pieces of information, it doesn’t
make sense to put them all in separate variables. Imagine how long
that code would be! Instead, data structures allow us to put a
million pieces of data into a single mega-variable.

You can compare a data structure to a library full of books. The
library uses an indexing system to quickly find any book you’re
looking for. New books can be added to the index and then placed
onto the appropriate shelf. Much nicer than sifting through a giant,
disorganized pile of books, right?

There are many different ways to index data and many types of
data structures. Three of the most common are lists, tuples, and
dictionaries.

Lists
Lists are a type of data structure with ordered items. Picture a row of
books on a shelf or a line of ducklings.

Each book—or duckling, or string, or number—has a clear position.
We know who’s first and who’s last. When talking about lists, we say
“index” (or “indices”) instead of “position.”

In Python, we use square brackets to declare a list. Items are
separated by commas. A list of numbers would look like this:

list_of_numbers = [5, 0, 7, 3, 3, 3, 1]

A list of strings would look like this:

list_of_animals = ["duck", "cat", "iguana", "duck",

"parrot"]

The first item in “list_of_numbers” is “5,” while the first item in
“list_of_animals” is “duck.” Did you notice the repeat items in each
list? There are several 3s and two ducks. Because these items have
different indices (positions), it’s possible to tell the repeat items
apart.

If you want to display your lists, you can print them to the console:

print(list_of_numbers)

print(list_of_animals)

But wait! You can also have lists of blended items:

blended_list = [5, "duck", 0, "horse", "emu", 7]

Declaring a list is similar to declaring any other variable. The
name goes on the left, the “=” sign in the middle, and the data on the
right. The only difference here is that we’re storing a lot of data. And
we’re squashing it into a single container!

To search your list and grab a single item from the container, use
the item’s index:

list_of_animals[3]

Once again, you’re using square brackets. This time, you’ll start
with the name of the variable storing your list, then put the value’s
index in square brackets. It’s like looking at books on a shelf and
telling the librarian that you want “the third book from the left.”

Let’s see what happens when we print out that third item!

print(list_of_animals[3])

The spelling looks a bit tricky here, because you’ve got square
brackets inside round brackets. Make sure you close your inner pair
before closing your outer pair!

When you run the code, you probably see the word “duck” in the
console. Not what you were expecting, right?

In programming, lists begin at position 0—not position 1. So
“duck” might be the first item in line, but it’s at index 0, not index 1.
“Cat” is then at index 1, and “iguana” is at index 2. So let’s try
modifying our print statement:

print(list_of_animals[2])

Now we’ve got an iguana in the console!

Starting at index 0 instead of index 1 feels a bit weird at first. Keep
practicing and you’ll master it in no time!

You can also change the value of any item in the list:

list_of_animals[2] = "snake"

“Snake” will now replace “iguana” at index 2, and iguana will
disappear from the list.

Making Changes to Lists
To add new items to a list, we use the append function, like this:

list_of_animals.append("ferret")

To use “append”:

• Start with your list variable (in this case, “list_of_animals”).

• Next, put a period (.).

• Write “append,” followed by round brackets.

• The round brackets will contain the item you’re adding.

If you print out the whole list, you’ll see the new value added on at
the end. Try it out!

print(list_of_animals)

Any program can print text or read in text. But to add to a list, you
need to have already created a list in a previous line.

That’s why the syntax of append is a little different than functions
like print or input. If you append to a variable that’s not a list or a list
that’s not defined, you’ll get an error.

To get rid of an item, use the remove function:

list_of_animals.remove("duck")

print(list_of_animals)

If there are two items with the same value, you’ll only remove the
first one. Of course, you can only remove items that are actually in the
list—if you try to remove “rhino” from this list, you’ll get an error
message!

Finding the Smallest Number in a List
We’ve added and removed items from a list, but what about finding
specific items?

To find the smallest number in a list, we use the min function
(think of the word “minimum”). Let’s define a list of numbers, try it
out, and then print the result to the console:

list_of_numbers = [7, 5, 6]

smallest_val = min(list_of_numbers)

print(smallest_val)

In this code, min selected 5 as the smallest number. No surprise
there!

By default, strings are ordered alphabetically in Python. So if you
call min on a list of strings, you’ll get the value that appears in the
dictionary first.

list_of_sports = ["soccer", "baseball", "basketball",

"hockey"]

print(min(list_of_sports))

In this example, it’s “baseball.”

Now, both the min function and the print function have their own
set of round brackets. So when we use them together, we get two
closing brackets back to back. See how “min(list_of_sports)” fits
inside “print()”? Just like a set of nesting dolls!

HACKER HINTS:
PRACTICE USING LISTS

If you’re not comfortable working with lists yet, try writing out your list’s items on

paper. Over each item, jot down the index, starting at 0. This will help you see the

difference between items (data) and indices (position). Eventually, you’ll do this in

your head automatically!

Slicing Lists
“Slicing” means separating a small chunk from a list. Think of it like
slicing a cake so you don’t need to eat the whole thing at once!

Let’s start with a list of pets:

list_of_pets = ["cat", "dog", "guinea pig", "budgie",

"parrot", "iguana", "snake", "turtle"]

Let’s say we only want the mammals. In that case, our slice should
start at index 0 (“cat”) and end at index 2 (“guinea pig”):

list_of_mammals = list_of_pets[0:3]

To code a list slice:

• Start with your list variable.

• Use square brackets.

• Inside the brackets, write your starting and ending index,
separated by a colon.

• The ending index isn’t included in your slice, so if you want your
slice to include indices 0, 1, and 2, your ending index must be
one higher (3).

So, slicing the list of birds would look like this:

list_of_birds = list_of_pets[3:5]

If you leave the starting index blank, Python assumes you want to
start at the beginning of the list. And if you leave your ending index
blank, Python assumes you want to go to the end. So, to get lists of
mammals and reptiles, we could do the following:

list_of_mammals = list_of_pets[:3]

list_of_reptiles = list_of_pets[5:]

Unlike slicing a cake, slicing a list doesn’t remove the items—it
creates a copy! If you want to see this for yourself, try printing out all
the lists, the original and the slices, in the same program.

Tuples
A tuple is a data structure that acts just like a list, with one key
difference: Once the tuple has been created, its values can’t be
changed.

Creating a tuple is similar to creating a list, but you use round
brackets instead of square brackets:

candies = ("gummy worms", "jawbreakers", "jujubes")

You can search and access individual items the same way as lists—
with square brackets.

print(candies[0])

However, if you try to change an item, you’ll get an error
message. Try running the following code:

candies[0] = "lollipops"

There’s also no way to add or remove elements. So why would a
tuple be useful? Well, if you’re working with a big team, using a tuple
prevents other people from changing values and mixing things up
(or keeps you from making that mistake yourself!). Tuples are also
easier for computers to store in memory than regular lists.

Dictionaries
A dictionary is a collection of key-value pairs, just like a real
dictionary, where each word is matched to its definition. Unlike the
other data structures, which have a specific order with clear positions,
data in a dictionary is all jumbled together.

Whenever you put a value into your dictionary, you link the value
to a matching key term. The key is then used to fetch or update your
value. Both keys and values can be any data type you want—integer,
string, float! However, each key must be different so the dictionary
knows what value it matches.

To declare a dictionary, we use curly braces instead of square
brackets:

telephone_numbers = {"Josh": "444-111-0000"}

Here, we’ve created a dictionary with only one item and stored
the whole data structure inside the variable “telephone_numbers.”
The number “444-111-0000” has been linked to the key “Josh.” In
each key-value pair, the key is written first, followed by a colon (:) and
then the value.

To search the dictionary and access Josh’s telephone number,
we’d write:

telephone_numbers["Josh"]

Even though you declare a dictionary with curly braces, you still
access items with square brackets—just like a list!

If Josh ever changes his telephone number, you can update it:

telephone_numbers["Josh"] = "444-111-1111"

Most of the time, we want more than one value in our dictionary.
In Python, you declare a multi-valued dictionary like this:

telephone_numbers = {"Josh": "444-111-0000", "Kelly":

"750-200-2222", "Mariam": "762-816-3333"}

Each key is connected to its value with a colon. Then, each key-
value pair is separated by a comma.

You can also start with an empty dictionary, like this:

telephone_numbers = {}

Then you can add your values one at a time:

telephone_numbers["Josh"] = "444-111-0000"

telephone_numbers["Kelly"] = "750-200-2222"

telephone_numbers["Mariam"] = "762-816-3333"

Dictionaries are great when you want to link two pieces of data:
one that’s important but complicated (like the phone numbers) and
one that’s easy to remember (like the names). Sometimes, indices
just don’t cut it!

Data Types in Action
Ready to create some fun programs with your new coding tool? Let’s
see what we can build with lists, tuples, and dictionaries!

Pizza Pandemonium!
The Pizza Pandemonium restaurant makes cheap, delicious pizza—
but with super weird toppings. In fact, its orders are always random,
so you never know what you’re going to get! Using a list, let’s cook
up the strangest pizza you’ve ever tasted.

Start by creating a list of 10 different pizza toppings. Feel free to
get creative and include weird things like anchovies, apples, or even
macaroni and cheese! The stranger your ingredients, the more fun
and bizarre the pizzas will be.

pizza_toppings = ["onion", "frogs' legs", "olives",

"pepperoni", "French fries", "pepper", "squid",

"mushrooms", "jalapeno", "pear"]

Next, pick three random numbers between 0 and 9. These will be
the indices of the ingredients on your pizza. No peeking! Remember,
we’re choosing between 0 and 9 because lists start at index 0. So, if
there are 10 items in the list, our last index is 9!

Let’s store your choices in some variables:

t1 = pizza_toppings[3]

t2 = pizza_toppings[6]

t3 = pizza_toppings[7]

The “t” in our variable names stands for “topping.”

Now, let’s use an f-string to print out whatever extraordinary pizza
we’ve concocted:

print(f"Here is a {t1}, {t2}, and {t3} pizza!")

Think you could actually eat that pizza?

CODE COMPLETE!

pizza_toppings = ["onion", "frogs' legs", "olives",

"pepperoni", "French fries", "pepper", "squid",

"mushrooms", "jalapeno", "pear"]

t1 = pizza_toppings[3]

t2 = pizza_toppings[6]

t3 = pizza_toppings[7]

print(f"Here is a {t1}, {t2}, and {t3} pizza!")

Run the program a few times and play around with different
indices. Or ask your friends and family to pick the numbers for you.
Let’s see what bizarre creations you can dream up!

YOUR TURN!
Now that you’ve coded this activity, you can keep practicing coding
with lists. Try making the following changes to your program:

o To increase your odds of making a delicious pizza, use the
remove function to take away your least-favorite topping.

o Do we really need the “t1,” “t2,” and “t3” variables? Why or why
not? How could you write the program without them?

My Friend, Chatbot
A “chatbot” is a program you can talk to via text. A sophisticated
chatbot is hard to write, but we can create a simple one using a

dictionary! Let’s design a chatbot that can tell us about its favorite
things.

To start, let’s create an empty dictionary:

chatbot = {}

Next, let’s add some key-value pairs. Each “key” will be a
category, like food, color, animal, or planet. The “value” is the
chatbot’s favorite item in that category. For example, its favorite food
might be tacos, or its favorite animal might be the platypus.

Since both the keys and values are strings, we can add a pair to
the dictionary like this:

chatbot["animal"] = "platypus"

Let’s add a few more pairs!

chatbot["color"] = "orange"

chatbot["food"] = "tacos"

chatbot["planet"] = "Mars"

You can add favorite things for as many categories as you want:
numbers, movies, music, seasons. Once you’re happy with your
chatbot, it’s time to make it interact with the user!

First, let’s print out some instructions for talking to your chatbot:

print("Hi, I'm Chatbot! Ask me about my favorite animal,

color, food, or planet.")

Next, let’s use the input function to copy the user’s question into a
variable:

key = input("What is Chatbot's favorite... ")

It’s always a good idea to write a clear prompt. That way, the user
knows that the program expects them to type something.

The “key” variable will store the string entered by the user. We’re
expecting this to be a single word, like “animal” or “food.” Using this
key, let’s access the matching value in the dictionary. We’ll store that
value, or “val,” in a new variable:

val = chatbot[key]

Now, let’s print Chatbot’s response to the console. To make it feel
like a conversation, let’s use an f-string:

print(f"My favorite {key} is {val}!")

If the user asked about Chatbot’s favorite color, the string “color”
would be stored in “key,” and the string “orange” would be stored in
“val.” So Chatbot’s response would be: “My favorite color is orange!”

CODE COMPLETE!

chatbot = {}

chatbot["animal"] = "platypus"

chatbot["color"] = "orange"

chatbot["food"] = "tacos"

chatbot["planet"] = "Mars"

print("Hi, I'm Chatbot! Ask me about my favorite animal,

color, food, or planet.")

key = input("What is Chatbot's favorite... ")

val = chatbot[key]

print(f"My favorite {key} is {val}!")

Make you sure you only ask about categories defined in the
dictionary. If you pick something random or there’s a typo in your
question, Chatbot won’t be able to respond. In fact, your program
will display an error message.

Enjoy chatting!

YOUR TURN!
Now that you’ve practiced using dictionaries, see if you can make
these changes on your own:

o Add a second input function after Chatbot’s first response. Now,
Chatbot can respond a second time! Should you reuse the “key”
variable or create a new one?

o In between the first and second response, modify some of
Chatbot’s answers. Now if the user asks about the same category
twice, Chatbot will have something different to say!

Pig Latin Translator
Want to learn a “new language” quickly? The rules of Pig Latin are
simple. Take the first sound of a word and move it to the back, then
add “ay.” That first sound is usually one to two letters. For example,
the word “fish” becomes:

“ish” + “f” + “ay” = “ishfay”

The word “shark” becomes:

“ark” + “sh” + “ay” = “arkshay”

Using list slicing, we’re going to translate English words into Pig
Latin! To start, let’s create a variable to store our starting English
word:

eng1 = "frog"

Pick any word you like—even the name of a person or place!

In the next line of code, we’re going to treat a string like a list of
letters. That means the first letter of the string is at index 0. The next
is at index 1, etc.

The first sound of the word “frog” is two letters: “f” and “r.” These
letters are at indices 0 and 1, and we want to send them to the back
of the string. So, to start our Pig Latin word, we want all the letters
from index 2 and beyond:

pig_latin1 = eng1[2:]

If the first sound of your word only has one letter—like “fog”—then
you’ll start from index 1.

Next, we want to add that first sound back to the end of the word.
Even though we’re treating our string like a list, it’s still a string! We
can add it to other strings using the + operator:

pig_latin1 = eng1[2:] + eng1[:2]

Remember that the ending index of a slice isn’t included. So
“eng1[:2]” will start at the beginning and include every index until 2—
which means indices 0 and 1.

Finally, we’ll finish our Pig Latin off with the all-important “ay” and
print it to the console!

pig_latin1 = eng1[2:] + eng1[:2] + "ay"

print(pig_latin1)

If you followed the example, you’ll see the word “ogfray” in the
console!

Let’s try with a with a more complicated term that has two words,
like “sea turtle!” Both “sea” and “turtle” start with a sound that’s only
one letter. When we translate that into Pig Latin, it should be “easay
urtletay.”

Once again, we’ll store the English words in a variable:

eng2 = "sea turtle"

Let’s focus on the first word: sea. We want to start with the letters
“ea,” which are at indices 1 and 2, then add the “s,” which is at index
0. Then we’ll add an “ay” at the end.

pig_latin2 = eng2[1:3] + eng2[0] + "ay"

Remember, the last index isn’t included in the slice. To include
indices 1 and 2, we have to end our slice at index 3.

What about the second word, “turtle”? In our English string, index
3 is a space. Index 4 is a “t,” and indices 5 through 9 are “urtle.” Let’s
add these onto our Pig Latin. Don’t forget the space in between
words!

pig_latin2 = eng2[1:3] + eng2[0] + "ay" + " " +

eng2[5:10] + eng2[4] + "ay"

Let’s go through each slice one at a time: “ea” + “s” + “ay” + “ ” +
“urtle” + “t” + “ay.” Try printing it out!

print(pig_latin2)

You should now see “easay urtletay” in your console!

CODE COMPLETE!

eng1 = "frog"

pig_latin1 = eng1[2:] + eng1[:2] + "ay"

print(pig_latin1)

eng2 = "sea turtle"

pig_latin2 = eng2[1:3] + eng2[0] + "ay" + " " +

eng2[5:10] + eng2[4] + "ay"

print(pig_latin2)

You now have your own Pig Latin translator. Try it out with your
own word suggestions and watch it go!

YOUR TURN!
Now that you’ve completed this activity, are you ready to play around
with more list slicing? Here are some ideas to get you started:

o Try writing code for more terms with two words, like “tuna fish”
or “blueberry pie,” or even your own name!

o Use the input function and ask your user to choose a word, then
use a second input function to ask them if the first sound is one
or two letters.

o Can you write a program that translates Pig Latin back into
English?

Data Structures Off-Screen
We humans use lots of structures to keep ourselves organized. Think
about how you store your clothes. Maybe you have a dresser, or
drawers under your bed, or shelves in the closet. Maybe you
separate your clothes by type: shirts here, socks there, pants over
here. Some people take this a step further and organize their clothes
by length or color!

HACKER HINTS:
NAMING YOUR DATA STRUCTURES

Descriptive variable names like “list_of_planets” or “dict_of_telephone_numbers” can

be useful, but they’re also long and annoying. Often, programmers just use simple

plural nouns when naming data structures. Calling a list “planets” hints that it has

more than one item. The only downside is that this won’t tell you what kind of data

structure is being used, such as list or dictionary.

No matter what system you use, the goal is to make things easier
to find. Some structures might be more effective than others, but
each one has pros and cons, depending on the situation. After all,
living out of a suitcase might not be helpful in everyday life, but it’s
great on vacation!

Coder’s Checklist
In this chapter, you learned:

o How to create lists and access or change items inside them

o That in programming, list indices always start at 0

o How to add to and remove from lists

o How to slice lists

o How to create tuples, and how they’re different from lists

o How to create dictionaries

That’s a lot of new stuff! If you’ve come this far, you’re getting a good handle on

the basics of programming. Flip through this chapter anytime you want to review a

data structure or two.

6

Conditionals

Conditionals are coding structures that decide which lines of code
should be run and which lines should be ignored. Conditionals are
also called “branching structures,” because they let the program
pick one of several options. Picture arriving at an intersection on a
street: You can turn right, go straight, or turn left, but you can only
pick one direction!

Each “direction” leads the program to a different block of code.
Choosing to go right instead of left means the program will behave
differently!

Imagine that you’re making some dessert. If you make a bowl of
ice cream, you’ll eat it with a spoon. If you make a milkshake, you’ll
slurp it up with a straw. And if you want pie, you’ll gobble it down
with a fork! Your choice—spoon, straw, or fork—depends on the type
of dessert you choose. In coding, conditionals allow you to pick the
right option. That way, you’re not stuck with three utensils or trying
to eat ice cream through a straw!

Types of Conditionals
There are several different types of conditionals, depending on how
many branches you want in your code.

The if statement is a single branch. Picture it as an interesting side
street. You can choose to explore it (or not) before coming back to
the main code.

The if-else statement has two branches, just like a fork in the
road! You can either go right or left, but you have to pick one of the
two options: if, or else.

The if-elif-else statement has as many branches as you want: two,
three, ten, or a hundred! This is a useful coding structure when your
program needs lots of different options.

How does a conditional choose which branch to explore? It all
depends on the conditions given to each branch. Let’s explore!

(Since the examples in this chapter are a little longer than the
ones we’ve seen before, it’s easiest to open a new editor for each
section instead of coding in the shell.)

Conditions
A condition is a Boolean expression used inside a coding structure.
In other words, it’s a question where the computer can answer “True”
or “False.” If you want a quick review of Boolean data types, flip back
to chapter 4.

Each branch of a conditional has its own condition. When the
condition is True, we run the code inside the branch. When it’s False,
we ignore the branch.

The words “conditional” and “condition” sound similar, but they’re
very different things in coding! A conditional is a type of coding
structure. A condition, on the other hand, is the Boolean expression
used inside that coding structure.

Boolean Expressions
Boolean expressions can use variables, values, and comparison
operators like == (the equals-to operator) and != (the not-equals-to
operator). The expression is always either “True” or “False.”

For example, “4 == 5” is a Boolean expression. In this case, the
expression is False, because 4 doesn’t equal 5!

When Boolean expressions use variables, the expression might
be either “True” or “False,” depending on the values inside those
variables. Think about this: Does “num_cupcakes == num_guests?” If
both variables store the number “5” then the expression is True. If
one is “12” and the other is “5,” the expression is False.

Here are a few more comparison operators to add to your
toolbox:

• > greater than

• < less than

• >= greater than or equal to

• <= less than or equal to

Maybe your character needs 100 or more coins to get to the next
level. Maybe your sprite dies if they have 0 or less hit points. With
these new operators, you can create more precise conditions. And
that means building cooler games and programs!

If Statements
An if statement is a simple conditional with only one branch. You can
also picture an if statement as a locked box full of code. To unlock
the box, the statement’s condition must be True. If the condition is
False, then the box stays locked and the code inside is never run.

In Python, an if statement looks like this:

if coins >= 100:

print("You made it to the next level!")

In this example, the condition is “coins >= 100.” If the “coins”
variable stores the number 101, then the condition is True, because
101 is greater than or equal to 100. The program runs the print
statement and brings the user to the next level!

If “coins” stores the number 89, the condition is False. The
program skips the print statement and goes back to the main code.

To write an if statement in Python:

• Start with the “if” keyword, followed by your condition.

• End the line with a colon (:).

• To put code inside the if statement, start the line with either
one tab or four spaces. We call this “indenting.”

You can put as many lines as you want inside the if statement.
However, the moment the program sees a line with no indent, it
assumes you’ve jumped back to the main code.

If-Else Statements

The if-else statement is a conditional structure with two branches.
The first branch is a regular if statement:

if is_beach_day:

print("Put on your swimsuit!")

The variable “is_beach_day” stores a Boolean value. It can be
either True or False. If it’s True, then we unlock the code inside the if
statement. If the condition is False, we skip over the print statement
and nothing happens.

What if we want something to happen when the condition is
False? After all, even if we’re not putting on a swimsuit, we need to
wear something!

To fix this, we can use an else statement:

else:

print("Wear shorts and a t-shirt.")

An else statement can only be written directly after an if
statement. Together, they create a single conditional.

If the variable “is_beach_day” is storing the value “True” then we
run the code inside the if statement. But if “is_beach_day” is False, we
run the code inside the else statement. We can only pick one or the
other. After all, when you hit a fork in the road, you can’t go both left
and right—you have to choose one.

To test our if-else statement, let’s give “is_beach_day” a test value.
Add this line of code at the top of your editor:

is_beach_day = True

All together, the code for your if-else statement should look like
this:

is_beach_day = True

if is_beach_day:

print("Put on your swimsuit!")

else:

print("Wear shorts and a t-shirt.")

If you run your code, you’ll see “Put on your swimsuit!” in the
console. Try changing the value of “is_beach_day” to False and run
your code again. Now, you’ll see “Wear shorts and a t-shirt.”

When we write a conditional, we don’t know if its condition will be
True or False. The value might depend on a user’s choices or on
random chance.

Using an if-else statement allows us to plan for different options. If
it’s sunny? Then you go to the beach. If it’s not sunny? Then you stay
home and play a board game. Either way, you have a plan!

If-Elif-Else Statements
The if-elif-else statement has as many branches as you want.
Sometimes, two options aren’t enough. Sometimes, you need three,
or four, or twenty!

To write an if-elif-else statement:

• Start with an if statement. Everything inside the if statement must
be indented.

• Directly after the if statement, you can write one or more elif
statements. “Elif” is a shortened term for “else if.”

• Each elif statement starts with the “elif” keyword, followed by its
own condition, then a colon.

• All the code inside an elif statement must be indented.

• You can end your conditional with an else statement, but that’s
optional. However, you can’t put an elif after the else.

Let’s try it out! To start, we need an if statement. You can’t write an
elif without an if! Open up a new editor so your code can start fresh,
then write:

if is_winter:

print("Let's build a snowman!")

If “is_winter” is True, then we run the code inside the branch and
skip the rest of the conditional. If not, we look for other branches and
test their conditions.

Now, let’s add another branch. Since we’ve already written an if
statement, our next branch must be an elif:

elif is_fall:

print("Let's jump in a pile a leaves!")

The elif statement is very similar to the if statement, except that
we’re using the “elif” keyword instead of “if.”

Let’s add a third branch:

elif is_summer:

print("Time to throw around a Frisbee!")

HACKER HINTS:
TABS VS SPACES

To put a line of code inside an if-elif-else statement, we start that line with an indent.

In Python, you can use either one tab or four spaces. But you can’t mix and match! If

some of your code is indented with spaces, and other parts are indented with tabs,

you’ll get an error message when you try to run your program.

If we wanted, we could keep adding elifs. A conditional can have
as many branches as you want! However, since we’re using seasons
in our conditions, it makes sense to have four branches—winter, fall,
summer, and spring.

Let’s end the conditional with an else statement. Coding-wise, this
is optional. It’s possible to write an if-elif-else statement with no
“else.”

However, using an else statement makes sense in this case. If it’s
not winter, fall, or summer, then it definitely has to be spring! There’s
no day of the year that doesn’t have a season. And if we don’t use an
else statement, it’s possible that every branch of the conditional
could be ignored.

else:

print("Go for a walk, but bring your umbrella!")

Let’s test our if-elif-else statement. There are three different
variables used in the conditions of our branches: “is_winter,” “is_fall,”
and “is_summer.” In order to run the code, we need to put test values
into these variables. Make sure you define your values before the
conditional, not after—otherwise, you’ll get an error!

is_winter = False

is_fall = True

is_summer = False

Your code should look like this:

is_winter = False

is_fall = True

is_summer = False

if is_winter:

print("Let's build a snowman!")

elif is_fall:

print("Let's jump in a pile a leaves!")

else:

print("Go for a walk, but bring your umbrella!")

Try running your code. The program starts by checking the
condition of the if statement. Since “is_winter” is False, the program
moves on to the second branch, “is_fall.” Now we have a condition
that’s True! You should see “Let’s jump in a pile of leaves!” printed in
your console.

The program won’t even bother checking the condition of the
third branch, “is_summer.” As soon as one condition is True, the rest
of the conditional is ignored.

Try changing the values in your variables! What happens when all
three of them are False? Play around and see if you can get all four
messages printed in your console, one at a time.

What happens if more than one condition is True? Let’s try it out:

is_winter = False

is_fall = True

is_summer = True

If you run this code, the program will print “Let’s jump in a pile of
leaves!” Even though the condition “is_summer” is True, that branch
comes after “is_fall.” When writing your conditional, order matters.
No matter how many branches you have, only one of them will be
picked. After all, you can’t explore two paths at the same time—you’d
have to split yourself in half!

Logic Operators

There are three symbols we can use to make more complicated
Boolean expressions: and, or, and not. We call these “logic
operators” or “logic symbols.”

The and operator connects two Boolean expressions into one big
mega-expression. For example, if the sky is blue and the weather is
warm, you’ll go outside in a T-shirt. But if the sky is gray or if it’s cold,
you’ll want a jacket.

When using the and operator, both mini-expressions must be
True in order for the mega-expression to be True. It’s all or nothing!

if is_sunny and is_warm:

print("It's t-shirt weather!")

To test out this piece of code, let’s give “is_sunny” and “is_warm”
values. Remember, these must be declared before the conditional:

is_sunny = True

is_warm = True

If you run your code, you’ll see “It’s t-shirt weather!” printed in
your console. Now, change either “is_sunny” or “is_warm” to False
and try again. Nothing appears! Because we used the “and
operator,” both Boolean expressions must be True.

The or operator is the opposite. If either mini-expression is True,
then the mega-expression is automatically True as well.

if is_sunny or is_warm:

print("Hmmm, still good enough for a t-shirt!")

Let’s try that out with the following values:

is_sunny = True

is_warm = False

One of the conditions was True, so text was printed in the
console!

Because we used an or operator, only one or the other Boolean
needed to be True for the whole mega-expression to be True. Even
though the weather wasn’t warm, it was still sunny.

The only time your condition will be False is when both “is_sunny”
and “is_warm” are False. Give the variables new values and see for
yourself!

Finally, we have the not operator. This operator flips the value of
a Boolean expression so that True becomes False and False
becomes True.

if not is_sunny:

print("Bring a jacket!")

When “is_sunny” is True, “not is_sunny” is False. So when
“is_sunny” is False, the condition “not is_sunny” is True. They’re
always opposites!

To run the code in our if statement, we need “is_sunny” to be
False. Give the variable a test value and try it out:

is_sunny = False

You’ll see “Bring a jacket!” printed in the console.

Conditionals in Action
Now that you’ve learned all about conditionals, let’s use them to
build fun, interactive programs. With this new tool, your code is no
longer one-size-fits-all—it offers choices and different outcomes!

All-or-Nothing Gummy Worms
At a school fair, you and your friend Cory both win packets of
delicious gummy worms. To make things interesting, Cory proposes
a game of “double or nothing.” You’ll flip a coin: If it’s heads, Cory
gives you his gummy worms, but if it’s tails, he gets yours!

Let’s turn this game into a program using a simple if-else
statement.

To start the code, let’s ask the user to flip a coin. Then, they can
type in the result of the coin toss using the input function:

coin = input("Flip a coin. Enter 'H' for heads and 'T' for

tails.")

There are only two possible values for “coin”—“H” or “T.” Let’s start
by checking if the coin was “heads”:

if coin == "H":

print("You win! Enjoy your tasty gummies!")

If the coin isn’t “heads,” then it has to be “tails.” In that case, the
program skips over the code inside the if statement and goes
straight to the else statement:

else:

print("You lose everything!")

Flip your coin a few times. Feeling lucky?

CODE COMPLETE!

coin = input("Flip a coin. Enter 'H' for heads and 'T' for

tails.")

if coin == "H":

print("You win! Enjoy your tasty gummies!")

else:

print("You lose everything!")

Nice job!

But what happens if the user writes something unexpected?

Any input that isn’t “H”—whether it’s “T,” or “24,” or even “toaster”—
will lead the code into the else statement. Sometimes, this is fine. The
program we just wrote will still work and won’t crash. However, the
outcome of “tails” might seem weird to your user if they typed in
“armadillo!”

YOUR TURN!
Now that you’ve coded this activity, see if you can challenge yourself
to make the following changes:

o Change your else statement to an elif and use it to check if the
coin is “T.” Then, you can use your else statement to catch
incorrect input. So if the user types something silly, like
“platypus,” you can print a funny error message!

o Instead of a coin, find a six-sided die. On a 1, 2, or 3, Cory wins,
but if the result is greater than 3, then the gummy worms are
yours.

o Maybe more friends want to join your game! With a six-sided
die, you can have up to six winners, which means six branches in
your if-elif-else statement. Can you do it?

Roller Coaster Challenge
A group of friends are headed to a theme park. However, some rides
(like the Spinning Typhoon and the Rocket Blaster 5000) have a
minimum height. Using an if-elif-else statement, let’s find the scariest
roller coaster that the whole group can ride together.

To start our code, let’s put everyone’s height (in inches) in a list.
The order is completely random:

heights = [52, 54, 41, 62, 55, 49, 65]

If the shortest person in the group can ride a rollercoaster, then
so can everyone else. Since we’ve stored the heights in a list, we can
use the min function to find the shortest height:

min_height = min(heights)

The min function returns the smallest number in the list. Then, we
store the result in the “min_height” variable.

Time to pick a roller coaster! The three options are:

1. Rumbling Log Ride: no height restrictions

2. Rocket Blaster 5000: 60" and over

3. Spinning Typhoon: 40” and over

When creating our conditional, order matters! Since the friends
want to ride the scariest roller coaster possible, we want to start with
the ride that has the tallest height requirement: the Rocket Blaster
5000.

if min_height >= 60:

print("You can ride the Rocket Blaster 5000!")

If the smallest friend is under 60", the group will have to look for
other options. The next scariest roller coaster is the Spinning
Typhoon:

elif min_height >= 40:

print("You can ride the Spinning Typhoon!")

If neither of those conditions are True, there’s always the roller
coaster with no height restriction: the Rumbling Log Ride. Since
we’re not checking a condition, we can use an else instead of an elif:

else:

print("You can ride the Rumbling Log Ride!")

Our program is done! Make sure that all the lines of code inside
your conditionals are indented, and then run your program.

CODE COMPLETE!

heights = [52, 54, 41, 62, 55, 49, 65]

min_height = min(heights)

if min_height >= 60:

print("You can ride the Rocket Blaster 5000!")

elif min_height >= 40:

print("You can ride the Spinning Typhoon!")

else:

print("You can ride the Rumbling Log Ride!")

Now, imagine other friends have joined the group, and add and
remove other heights to the list to see how it affects your results. Let’s
see what fun roller coasters the friends can ride together!

YOUR TURN!
Now that you’ve practiced using if-elif-else statements, see if you can
add some new features to the code:

o Add one or two new roller coasters to the theme park. Where
should you put these new elif statements?

o You just discovered a new theme park rule: If you’re under 40”,
you can still ride the Spinning Typhoon if you’re accompanied by
someone over 66”! Try using logic operators to update your
condition!

My New Magical Pet
The owner of a magical pet store wants to help customers choose
the perfect pet! To do this, they’ve created three “yes or no”
questions that will help people pick out their very own dragon,
phoenix, basilisk, or unicorn.

Using an if-elif-else statement, we’ll use the customer’s answers to
guide them. This is also a great time to use some logic operators!

Let’s start our code with three questions printed to the console:

print("Are you scared of fire?")

print("Do you like reptiles?")

print("Do you enjoy flying?)

Next, let’s create variables to store these answers. Because each
answer is “yes or no,” we’ll use Boolean data types.

You can answer these questions yourself or use random
“placeholders” like the values below. In real life, the values would be
different for each customer and we wouldn’t know what they are in
advance! Plus, we’d use the input function to ask our users! For now,
though, let’s “hard code” some answers and write them directly into
the code, like so:

scared_of_fire = True

likes_reptiles = True

likes_flying = False

When creating our guide, it’s best to start with the trickier pets! A
good future dragon owner would answer “False” to “scared_of_fire,”
“True” to “likes_reptiles,” and “True” to “likes_flying.” It won’t work
with any other combination! For a unicorn, on the other hand, none
of those answers really matter.

So let’s start with the dragon:

if not scared_of_fire and likes_reptiles and likes_flying:

print("You should get a dragon!")

We connect our Booleans with and operators because all three of
these need to be True. If even one is False—if an owner is scared of
fire or doesn’t like reptiles—then adopting a dragon is a bad idea,
right?

Notice how the not operator is in front of “scared_of_fire.” That’s
because we want “scared_of_fire” to be False, but the condition as a
whole to be True!

Next, let’s add a phoenix to our guide. Since phoenixes are birds
made out of fire, a future phoenix owner should answer “False” to
“scared_of_fire” and “True” to “likes_flying.”

Remember, another person’s answers might be different than
your own! Right now our variables have “dummy” (random) values,
but those values could be changed at any time.

elif not scared_of_fire and likes_flying:

print("You should get a phoenix!")

Since a phoenix isn’t a reptile, it doesn’t matter if a user
“likes_reptiles.” But what about basilisks? Now, “like_reptiles” is very
important. Flying and fire, not so much.

elif likes_reptiles:

print("You should get a basilisk!")

Finally, all that’s left is the unicorn. Should we use an else
statement or an elif?

else:

print("You should get a unicorn!")

All done! With this handy guide, everyone can find their perfect
magical pet. Try rearranging your code to make it a little easier to
read.

CODE COMPLETE!

print("Are you scared of fire?")

scared_of_fire = True

print("Do you like reptiles?")

likes_reptiles = True

print("Do you enjoy flying?")

likes_flying = False

if not scared_of_fire and likes_reptiles and likes_flying:

print("You should get a dragon!")

elif not scared_of_fire and likes_flying:

print("You should get a phoenix!")

elif likes_reptiles:

print("You should get a basilisk!")

else:

print("You should get a unicorn!")

Should you adopt the dragon, phoenix, basilisk, or unicorn? Try it
and see, then have fun with your new magical pet!

YOUR TURN!
Are you ready for a challenge? Using your new skills with logic
operators and conditionals, see if you can make some changes to
your code:

o With three different answers, each True or False, there are eight
possible combinations. Try adding a few of your own magical
pets to the guide!

o Instead of assigning “True” or “False” values to your variables,
use the input function to ask the user. This will make the guide
interactive! Remember, the input function only returns strings, so
you’ll have to update your conditions to test if the strings are
“yes” or “no.” For example, “if is_scared_of_fire” would become
“if is_scared_of_fire == “yes”.”

Conditionals Off-Screen
Have you ever made a plan and then had it go wrong? Maybe you
tried to bake cookies, then realized you didn’t have any eggs. Or
maybe you headed to the beach and got stuck in a rainstorm.

When things like this happen, you start making backup plans.
You’ve identified the important variables—eggs, sunny weather, etc.
These are the things that decide if Plan A will happen. And in a worst-
case scenario, you can always make a Plan B!

Conditionals are a way of structuring choices. They’re not the
choices themselves, but the ability to choose between different
options, based on unpredictable variables. If you have eggs, then
you make cookies. If you don’t have eggs, then you make pudding.
The condition is whether or not you have eggs. The conditional is the
question—should I do this or that, and why?

See if you can notice some conditionals in your own daily life!

HACKER HINTS:
VALIDATING USER INPUT

“Validating” input means checking that your user didn’t type something silly into the

input function. Often, we use if-else statements to see if the user’s answer matched

our question. If you ask for a phone number and the user types “orangutan,” it could

lead to problems in your code!

Coder’s Checklist
In this chapter, you learned:

o How to write if statements

o What Boolean expressions are

o How to use comparison operators like >=, >, <=, and < in Boolean expressions,

as well as != and ==

o What logical operators are (and, or, not)

o How to use elif and else statements

o How to choose the order of your conditions in an if-elif-else statement

These chapters aren’t going anywhere—they’re here for you! If you ever want to

review these concepts, flip back to the start of the chapter.

7

Loops

A loop is a coding structure that’s used to repeat specific lines of
code. It’s basically a shortcut. Picture a boring task, like scanning
100 pieces of paper. Wouldn’t it be cool if you could just scan one
piece of paper and the rest scanned themselves automatically?
Using a loop, you can!

Loops save coders a lot of time. They also keep your code
consistent. If you’re doing a boring task over and over, you’re more
likely to make mistakes. When you use a loop, the task can be
performed exactly the same way each time. All 100 pieces of paper
are guaranteed to be scanned perfectly!

There are two main types of loops: while loops, which have a
variable (changing) number of rounds, and for loops, which have a
fixed (unchanging) number of rounds.

While Loops
A while loop is a loop that uses a condition. As long as the condition
is True, the while loop keeps going. When the condition becomes
False, the loop ends. Think of them like this: while the condition is
true, the loop keeps right on going. There! Much easier to
remember, right?

To write a while loop:

• Start with the “while” keyword.

• Next, write your condition. Just like an if statement, the
condition is a Boolean expression.

• Finish the line off with a colon (:).

• To put a line of code inside the while loop, start it with an
indent.

Here’s a simple example. Try this code out in a new editor:

while is_hungry:

print("Have a snack!")

Our condition is “is_hungry.” This is a Boolean variable. As long it
stores the value “True,” the loop will keep going and we’ll keep
printing “Have a snack!” over and over.

To run this code, let’s give “is_hungry” a test value. Don’t forget to
define this variable before the loop! And don’t run your code just yet
. . .

is_hungry = True

We have a small problem. The value of “is_hungry” never gets
changed, so the while loop’s condition is always True. The loop never
stops and we’ll be stuck eating snacks forever!

To fix this, we need a way to change the value of “is_hungry”
inside our while loop. One option is to ask the user using the input
function:

q = input("Are you still hungry? Enter Y or N: ")

Then, using an if statement, we can update “is_hungry”:

if q == "N":

is_hungry = False

We have to be careful about our indentation here. Since the if
statement is inside the while loop, we should start the if statement
with an indent.

The line “is_hungry = False” is inside the if statement and also
inside the while loop. So that line should start with two indents!

Everything should line up in your editor just like this:

is_hungry = True

while is_hungry:

print("Have a snack!")

q = input("Are you still hungry? Enter Y or N: ")

if q == "N":

is_hungry = False

Try running the code now. See how the same lines are repeated
over and over in your console, right up until you type “N?”

You can put conditionals inside loops, loops inside conditionals,
and loops inside other loops. Sometimes, you’ll even have lines of
code with three or four indents! Before running your code, first
double-check that everything lines up in your editor. A line of code
should always be one indent farther than the “for,” “while,” or “if”
keyword of the structure it’s inside.

Counting Laps
Another way to avoid infinite while loops is to use a “counter
variable.” Starting at 1, this variable counts the number of “laps”
you’ve run around your loop. Then, in your condition, you can set the
limit.

Picture riding your favorite roller coaster. Let’s start our counter
variable at lap number one:

num_laps = 1

Maybe the roller coaster goes around the track five times before
stopping. In that case, we’d write our while loop like this:

while num_laps <= 5:

As long as we haven’t done more than five laps, the condition is
True and the code inside the while loop repeats. To avoid an infinite
loop, we need to update the value of “num_laps” inside the body of

the loop. Let’s use the plus-equal operator (+=) to increase the value
of “num_laps” by one with each lap:

print(f"Here goes lap #{num_laps}!")

num_laps += 1

Try running this in your console! See how the value of “num_laps”
starts at 1, then increases to 2, then 3, all the way to 5?

While loops are used when you don’t know how many rounds you
need. Depending on the user’s choices, the while loop can run once,
twice, or a thousand times! Most computer games, for example, are
built using while loops. The game runs until the user wins, loses, or
gets bored and stops the game.

While loops with counters are useful if you’re changing the value
of the counter inside the loop. Maybe the counter resets to “0” if the
user finds a magic item inside a game. But if you simply need a fixed
number of rounds, you’re better off using a for loop. Read on to learn
how!

HACKER HINTS:
INFINITE WHILE LOOPS

If you find yourself stuck in a while loop, don’t worry! It’s a common bug for all

programmers. There are several ways to stop a runaway program. Many IDEs have a

“Stop” button next to the “Run” button. If not, you can type CTRL+C to interrupt the

program. In IDLE, you can also click “Shell” and then “Restart Shell.”

For Loops
For loops are another type of loop. You can think of them as while
loops with built-in counters! For loops are only meant to last for a set
amount of time—get it? Instead of repeating code until a condition
becomes False, for loops are programmed to repeat exactly 5, or 10,
or 100 times. Just like setting a timer!

To code a for loop in Python, we need to use the range function:

range(10)

Like other functions such as print, input, and min, range uses
round brackets. In this example, the function creates a sequence of
10 numbers. Like lists, this sequence starts at 0, which means the last
number of the range is 9. The number you put inside the round
brackets is never included in the range.

So, to create a sequence of numbers from 0 to 4, we’d write:

range(5)

Picture the range function as your timer, counting the laps one by
one.

To write a for loop:

• Start with the “for” keyword.

• Next, put the name of your “counter” variable. This is a new
variable created just for the loop.

• Add the “in” keyword.

• Finish with the range function and end the line with a colon.

Let’s create a for loop to count while you run 10 laps around a
track:

for x in range(10):

In this example, our counter variable is called “x.” We can picture
“range(10)” as a timer set to 10 laps. The counter “x” is the clock hand
counting the laps one by one.

On the first lap, the value of “x” is 0. On the second lap, it’s 1. At
every lap, the value increases by 1, until we reach the end of the
timer at 9.

If this seems a bit confusing, go back and review the example with
the while loop and the counter, here. The two loops work the same
way, with one key difference. In the while loop, we increased
“counter” by hand, while “x” increases automatically in the for loop.

for x in range(10):

print(f"Running lap #{x}")

You can’t change the value of “x” inside a for loop, but you can
still access it. For example, you could use it in an if statement:

for x in range(10):

if x == 9:

print("Almost there! Last lap...")

print(f"Running lap #{x}")

In this example, we check if the counter variable “x” currently
stores the value 9. Since the value of “x” changes every round, this
condition will only be True once—on the final lap!

For loops are useful when you know ahead of time how many
rounds you need. Maybe you’re going through a list with 10 items.
Or maybe you’re playing a game with exactly three rounds.

Because the counter variable is updated automatically, you can’t
update it yourself. If you set the timer for 10 rounds, you’re getting
exactly 10 rounds—no more and no less!

HACKER HINTS:
WORKING WITH NEGATIVE CONDITIONS

Working with conditions that use the not-equals-to operator (!=) can be tricky. If

you’re having a hard time keeping it straight, think of the condition’s opposite. Is

“num_cars == num_drivers” True? Then “num_cars != num_drivers” is False!

Sometimes it can help to write down your condition on a piece of paper with the

value of each variable written above. This strategy also helps when you’re working

with the not operator.

For Each Loops
With for loops, we set the number of rounds in advance. This makes
them the perfect tool for working with lists.

There’s even a special type of for loop called the for each loop.
You can use it to access each item in a list, one at a time.

As an example, let’s start with a list of pet names, stored as
strings:

pet_names = ["Mr. Whiskers", "Snickerdoodle",

"Mittens", "Lucky", "Sergeant Wiggles", "Mustard"]

The for each loop would like this:

for pet in pet_names:

You’re still using the “for” and “in” keywords, as well as a colon.
But instead of the range function, just put the name of a list!

Normally, counter variables like “x” store numbers. However, the
variable “pet” is going to store pet names. On the first round of the
loop, “pet” will store the value “Mr. Whiskers.” On the second round,
it will store “Snickerdoodle.” One pet at a time, we’ll go through the
entire list until we reach “Mustard.”

for pet in pet_names:

print(f"{pet} is a good pet!")

It doesn’t matter if you make the list longer or shorter. For each
loops always go through a list’s items one at a time, front to back,
until they’ve seen every item.

Loops in Action
Mastering loops opens up a whole world of cool new programs! Let’s
see what we can build with our newest tool.

My Python Snake

Some snakes are short, while other snakes are very, very long. Using
a for loop, let’s print one in the console!

To start, pick a length for your slithery friend. Make sure it’s an
integer!

length = 10

Your snake will be built out of letters, numbers, and symbols. You
can create the head, body, and tail like this:

head = ">-(0)"

body = " |"

tail = " __/"

See how the “>-” creates a forked tongue, the “0” makes the eye,
and the round brackets make up the snake’s head?

The body is a little bit tricky. To make things line up, you’ll need to
add five spaces in front of the “|” symbol. Same with the tail: first five
spaces, then two underscores (_), and finally one backslash (/).

Now, let’s print the head to the console:

print(head)

To print the body, let’s use a for loop:

for x in range(length):

print(body)

Remember how the range function is like a timer? We’ve set it to
the value stored in “length.” In the example, that’s 10. Since ranges
start at 0, “range(10)” will create a sequence of numbers from 0 to 9.
At each round, the loop prints a new segment of the snake’s body.

Exit the loop and finish by printing the tail in the console. Make
sure you don’t indent this line of code. Otherwise, it’ll repeat at every
round of the loop.

print(tail)

Run your program and you’ll see a slithering snake in your
console—your very own “Python” friend!

CODE COMPLETE!

length = 10

head = ">-(0)"

body = " |"

tail = " __/"

print(head)

for x in range(length):

print(body)

print(tail)

Play around with different lengths. What does a snake look like
with no body? Can you make a snake so long that it crashes your
program? Try it out—it’s all part of experimenting!

YOUR TURN!
Now that you’ve completed this activity, challenge yourself to make
the following changes to your code. Feel free to flip back through the
chapter if you want to review a concept:

o Instead of printing the snake’s body, print the counter variable
“x.” You’ll get a snake made out of numbers!

o Using the input function, ask the user for the length of the snake.
Don’t forget to convert this into an int.

o Try creating the same program using a while loop instead of a
for loop. The for loop is the better tool for this situation, but it’s
still good to practice both!

Who’s Getting Splashed?
It’s a hot summer day, but you know just how to cool off—with a fun
game of water balloon toss! Your friends and family stand in a circle.
Each person throws the balloon to the person next to them. It could
pop at any moment! Using a for loop, let’s find out who gets soaked.

To start, create a list of friends and/or family:

friends = ["Laura", "Chloe", "Eric", "Gabriel", "Betty",

"Elise", "Brendan", "Jon", "Amanda", "Grant"]

Next, we’ll declare a variable to choose who pops the balloon.
Pick any random integer that’s shorter than the length of your list. So
if your list has 10 people, you can’t pick a number higher than 9, but
it’s okay to pick 0. No peeking!

pop_num = 6

The person at position 6 is going to get soaked. Let’s find out
who it is!

Because our program uses a list, it seems like a good time to use
a for each loop. However, we need a counter variable to help us find
the person at position 6. So let’s use a regular for loop instead:

for i in range(10):

The counter variable is called “i” because we’re using it to check
indices in a list.

Next, we use “range(10)” because the example list has 10 people.
Your list might be shorter or longer.

Inside the for loop, use an if statement to check if we’ve reached
the position where the water balloon pops:

if i == pop_num:

If so, print the name of the person who got soaked! Do you
remember how to access an item from a list? (Hint: We need square
brackets and the item’s position.)

soaked = friends[i]

print(f"The water balloon was popped by {soaked}!")

Run your program to see who’s the unlucky friend!

CODE COMPLETE!

friends = ["Laura", "Chloe", "Eric", "Gabriel", "Betty",

"Elise", "Brendan", "Jon", "Amanda", "Grant"]

pop_num = 6

for i in range(10):

if i == pop_num:

soaked = friends[i]

print(f"The water balloon was popped by {soaked}!")

Now that you’ve popped one water balloon, try playing around
with different integers. This is great practice for both loops and lists.

YOUR TURN!
Now that you’ve coded this activity, see if you can challenge yourself
to make the following changes:

o Add an else statement that contains another print message. Print
the names of everyone who caught the water balloon
successfully.

o When someone gets soaked, remove them from the list. This is a
little bit tricky, because you remove a friend using their name,
not their position! (Hint: Store the friend’s name in a new
variable.)

o With one friend eliminated, add another round to the game of
water balloon toss. You won’t need a new list, but you’ll need a
new random number and a new for loop. What should be
different about this new for loop?

Find the Buried Treasure
A crew of pirates are searching for buried treasure along the shore!
To make sure they don’t accidentally miss any treasure, they’ve
separated the beach into 100 sections and given each one a number
from 1 to 100. After searching a section, they’ll know if that section’s
number was “too high” or “too low,” an important clue that will help
them find the real location of the treasure! Then, they’ll try again at a
new section of the beach.

Using a while loop and some if statements, let’s turn this treasure
hunt into an interactive game!

To start, let’s pick a position for the treasure. This can be any
number between 0 and 100:

treasure_pos = 86

Next, let’s give the user some instructions, then ask them to guess
the position of the treasure. Since the input function always returns a
string, we need to convert the value into an int:

print("Guess the location of the buried treasure!")

guess = input("Enter a number between 0 and 100: ")

guess = int(guess)

At the start of the game, we don’t know how many guesses the
user will need. Maybe they’ll guess right away. Maybe they’ll need 99
guesses! Because we don’t know, it’s best to use a while loop.

The game continues as long as “guess” and “treasure_pos” don’t
match. To check this, we can use the not-equals-to operator (!=). This
means our condition is:

while guess != treasure_pos:

If the user guesses correctly, then “guess” will equal
“treasure_pos.” The two variables will no longer be different, the
condition will become False, and the loop will end. So our loop only
runs while the user makes incorrect guesses.

There’s just one small problem. We want our input function to be
inside the while loop so the user can guess multiple times. Unless the
user is very lucky, they’ll need more than one guess!

So let’s move the guessing lines inside the while loop. Problem
solved!

while guess != treasure_pos:

guess = input("Enter a number between 0 and 100: ")

guess = int(guess)

Except there’s a new problem. The first time we check the while
loop’s condition, the “guess” variable doesn’t have a value, since no
one’s guessed anything yet.

We can solve this by giving the “guess” variable a dummy
(random) value to get the while loop started. Add this line to the top

of your code editor:

guess = -1

The next step is to tell the user if their guess was “too high” or
“too low.” We can do this with an if statement:

if guess > treasure_pos:

print("Too high!")

We’re putting a conditional inside a while loop, so make sure your
if statement has one indent, and your print statement has two.

Next, let’s check if the guess was too low:

elif guess < treasure_pos:

print("Too low!")

Now, what happens if the user guesses correctly, and “guess ==
treasure_pos”? Neither of the conditions are True, so nothing is
printed to the console.

However, on the next round of the loop, the program will check
the while loop’s condition. That condition is “guess != treasure_pos,”
which is True when the guesses are different. If “guess” matches
“treasure_pos,” the while loop’s condition becomes False. The
treasure has been discovered and the program automatically leaves
the loop.

Once we’ve exited, finish your program by congratulating the
user:

print(f"Congratulations! You found the treasure buried at

position {treasure_pos}!")

Run your code and test it out!

CODE COMPLETE!

treasure_pos = 86

guess = -1

print("Guess the location of the buried treasure!")

while guess != treasure_pos:

guess = input("Enter a number between 0 and 100: ")

guess = int(guess)

if guess > treasure_pos:

print("Too high!")

elif guess < treasure_pos:

print("Too low!")

print(f"Congratulations! You found the treasure buried at

position {treasure_pos}!")

You can challenge friends or family to find the buried treasure.
How many guesses do you think they’ll need?

YOUR TURN!
Now that you’ve practiced using while loops, see if you can make the
following changes on your own:

o Using a list, keep track of the user’s guesses. Print these to the
console so the user can see what numbers they’ve already tried.
(Hint: Start with an empty list, then append guesses to it inside
the loop.)

o Try giving your user only seven guesses. The easiest way to do
this is to create a new variable (maybe “num_guesses_left”) and
tweak your while loop’s condition. (Hint: Check out the section
“Logic Operators”.)

Loops Off-Screen
Loops allow you to write your code once, then repeat it as many
times as you like. If you look at the world around you, you’ll see lots
of machines that do this.

Picture a sewing machine. It does one thing: make a tiny, perfect
stitch. Then, it repeats this action over and over. Using a sewing
machine is way faster than doing all those stitches by hand and the
result has fewer mistakes!

Think about it. What are some other long, boring tasks that
humans have made faster and better by using loops?

Coder’s Checklist
In this chapter, you learned:

o How to code a while loop

o How to avoid and stop infinite while loops

o How to indent code when you’re using multiple loops or conditionals

o How to use a counter variable with a while loop

o How to code a for loop and then use it with a list

o How to code a for each loop

Loops are an important tool for building games or creating computer animations.

Whenever you want to brush up on loops, feel free to reread this chapter. If you

keep practicing, you’ll be a master of loops in no time!

8

Functions

A function is a block of code that completes a specific task. We can
define them ourselves or use functions created by other
programmers.

When you have a big project, it’s best to split up the work. If
you’re throwing a birthday party, maybe one person buys
decorations, one person creates party games, and one person
bakes a cake. If you’re camping, you might split up who starts the
fire, who makes dinner, and who sets up the tent.

Similarly, anytime you have a big program, it’s best to split it up
into functions. Picture each function as a tiny helper robot. The
robot is only good at one task. Whenever you need help with that
one task, the robot swoops in and takes care of it!

Splitting up your program into functions keeps your code neat
and organized. And because you can reuse functions, you don’t
have to code the same task twice.

Parts of a Function
To create a function, we need to know:

• The name of the function we will create.

• Input: What information, or tools, does the function need to
complete its task? A robot that cleans your house needs a
broom. A robot baking a cake needs eggs, flour, and butter.

• Output: What does the finished task look like? Is it a clean
house? A delicious cake?

In chapter 1, we talked about the input and output of programs.
The difference between functions and programs is really about size.
Programs are big, vague projects like “throwing a birthday party.”
Functions are small, specific tasks like “baking a cake.”

Let’s start with a small function. When we define our own
functions, we use the “def” keyword:

def bake_cake():

print("Time to bake a cake!")

In this case, the function’s name is “bake_cake.” It doesn’t have
any input or output. It just prints the words “Time to bake a cake!”
whenever we ask.

To write a function in Python:

• Start with the “def” keyword.

• Next, write the name of your function.

• Then, put a pair of round brackets: ().

• Finish off the line with a colon.

To put code inside a function, start the line with an indent, just like
loops and if-elif-else statements!

Next, let’s add some input. Functions receive input through
parameters. A parameter is a special variable that’s defined inside a
function’s round brackets. When it’s time to run the function, we put
values inside the function’s parameters. Then, those values can be
accessed inside the function.

Let’s say we’re creating a “cake baking” function. We want the
function to bake all kinds of cakes: red velvet, black forest, vanilla
sprinkle. To make this happen, we’ll create a “cake_type” parameter.

When it’s time to bake a cake, we’ll specify which flavor we want. If
we want a chocolate cake, we put the value “chocolate” inside
“cake_type.” If we want a coffee cake, then we put the value “coffee”
inside instead.

The result looks like this:

def bake_cake(cake_type):

print(f"Time to bake a {cake_type} cake!")

In the first line of this code block, we define our “bake_cake”
function with one parameter inside the round brackets: “cake_type.”
In the second line, we print an f-string that uses the value inside
“cake_type.” So if “butter pecan” is stored inside “cake_type,” the
function will print “Time to bake a butter pecan cake!”

A function can have as many parameters as you want: zero, two,
ten—whatever. They all go inside the round brackets, separated by

commas. For example, if we want to add a “cake_size” parameter,
we’d define the function like this:

def bake_cake(cake_type, cake_size):

print(f"Time to bake a {cake_size} {cake_type} cake!")

Remember, parameters can only be accessed inside the function
that defines them. Think of them like variables that only exist inside a
function.

If you’re writing this code in your editor, you might notice nothing
happens when you run the code! Why isn’t the print statement
showing up in the console?

When you define a function, you’re teaching the “helper robot”
how to do its task. But until you actually give it a command, it’s just
going to stand there, waiting. We’ll talk more about “calling
functions” in one of the next sections, when we’ll actually use our
functions. This is also the step where we put values inside the
parameters.

Return Values
After a function completes its task, it can output its result using the
“return” keyword. When you call a function, the program starts
running the lines of code inside it. The function ends once it returns:

def bake_cake(cake_type, cake_size):

print(f"Time to bake a {cake_size} {cake_type} cake!")

return f"A {cake_size} {cake_type} cake"

Notice the new line at the end of the function? In this example,
we’re returning an f-string. If “cake_type” stores the value “chocolate,”
and “cake_size” stores the value “large,” our return value will be “A
large chocolate cake.”

You can return any data type: integers, strings, Booleans, floats.
Pretty handy!

Let’s take a look at another function:

def hot_chocolate_calculator(num_people):

print("How many cups of water do I need for

{num_people} people?")

return num_people * 1.5

The “hot_chocolate_calculator” function returns a float. If we’re
making hot chocolate for four people, we’ll place the value “4” inside
“num_people.” Since we need 1.5 cups for each serving, the return
value of the function would be 6. That’s how many cups of water we
should boil!

Once a function returns a value, the function ends. If there are
lines of code after the return statement, they’ll be ignored.

Not all functions return values, and functions that print or display
information often don’t. You only need to return values if you plan to
use those values later in your program.

Calling Functions
So far we’ve built our “helper robots” and given them instructions to
complete specific tasks. Now, let’s see them in action! To call a

function and get it running, write the function’s name. Then, put
values inside the function’s parameters. We call this “passing” values
to a function:

bake_cake("rainbow", "large")

The values “rainbow” and “large” are called arguments. An
argument is a special term for a value stored inside a parameter.

The number of parameters and their order are found inside a
function’s definition. Let’s take a look at the line where we define
“bake_cake”:

def bake_cake(cake_type, cake_size):

You can see that function “bake_cake” has two parameters:
“cake_type” and “cake_size.” When we called “bake_cake,” we put
the value “rainbow” into the variable “cake_type” and “large” into the
variable “cake_size.”

Try running your code! You should now see text appear in your
console.

What if we call the function with its arguments in a different
order?

bake_cake("large", "rainbow")

Now the value “large” is inside “cake_type” and “rainbow” is
inside “cake_size.” That’s no good! Our code will still run, because
both parameters take string arguments. But in other functions,
mixing up the order of parameters will make your code crash. That’s
why it’s important to check a function’s definition before calling it.

Make sure the parameters are in the right order and that you’re not
forgetting one.

The cool thing about functions is that we can call them over and
over again. Let’s call “bake_cake” with different arguments:

bake_cake("rainbow", "large")

bake_cake("coffee", "small")

bake_cake("maple walnut", "extra large")

If you run this code, you’ll see three different lines of text in your
console. See how passing different arguments to “bake_cake” led to
different results?

Let’s go over all the code in your editor:

def bake_cake(cake_type, cake_size):

print(f"Time to bake a {cake_size} {cake_type} cake!")

return f"A {cake_size} {cake_type} cake"

bake_cake("rainbow", "large")

bake_cake("coffee", "small")

bake_cake("maple walnut", "extra large")

The top three lines are the function’s definition. This is where you
teach your “helper robot” how to bake a cake. The last three lines are
function calls. This is where you tell your robot what kind of cake to

bake (large rainbow, small coffee, or extra large maple walnut) and
the robot goes off, bakes a cake, and returns it to you!

Next, we’ll use variables to collect return values:

cake = bake_cake("rainbow", "large")

The value returned by the “bake_cake” function will be “A large
rainbow cake.” This string is now stored in the variable “cake.” We
can do whatever we want with it—print it, add it to other strings,
multiply it with integers.

We can also collect values that aren’t strings! Let’s call the
“hot_chocolate_calculator” function from earlier and store its return
value in a new variable:

num_cups = hot_chocolate_calculator(4)

print(f"We need {num_cups} cups of water")

The return value of “6” was stored in “num_cups,” which we
printed to the console using an f-string. If we give
“hot_chocolate_calculator” a different input, then we’ll get a different
output:

num_cups = hot_chocolate_calculator(1)

print(f"We need {num_cups} cups of water")

Functions allow us to reuse code. And because we can change
the values inside a function’s parameters, we can get thousands of
different results!

Using Python’s Built-In Functions
We’ve compared functions to “helper robots” and learned how to
build and use our own. Python also comes with built-in “helper
robots!” These are functions that are written by professional
programmers and installed in the language.

You’ve actually used some of these built-in functions before!
Remember print and input? Both of these are built-in functions.
You’ve also used min, which takes a list as a parameter and returns
the smallest value in the list. Not to mention range, append, and
remove. Let’s take a look at a few more useful functions!

Len Function
The len function is used to calculate the length of a list or a tuple.
Does the list have five items? 500? It doesn’t matter—len saves you
the trouble of having to count it yourself!

Input: A list or tuple

Output: The length of that list/tuple

Let’s start by defining a list:

camping_activities = ["hiking", "biking", "canoeing",

"roasting marshmallows"]

Next, we’ll use the len function to calculate the length of the list
and store the result in a variable:

length = len(camping_activities)

print(length)

Try adding and removing items from the list and see how the
result of len changes!

Sorted Function
The sorted function is used to sort the items inside lists. If you’re
sorting a list of integers, they’ll be sorted from smallest to largest. If
you’re sorting a list of strings, they’ll be sorted alphabetically.

Input: A list

Output: A new, sorted list

Let’s make a quick list of integers:

x = [0, 7, 3, 10, 1, 4, 2, 8]

Now let’s sort it and store the result in a new variable:

y = sorted(x)

print(y)

Let’s try sorting a list of strings and print out the result:

camping_activities = ["hiking", "biking", "canoeing",

"roasting marshmallows"]

sorted_activities = sorted(camping_activities)

print(sorted_activities)

Choice Function

The choice function picks a random item from a list or tuple. Picture a
blindfolded person choosing a random item from a bag. Who knows
which item will be picked? Nobody!

Input: A list or tuple

Output: One random item

Using the choice function is a bit different than using print, input,
sorted, or len. Those functions are built into the core Python
language. Choice, on the other hand, is stored in a library. Libraries
are folders full of code that contain lots of useful helper functions.
Each library specializes in something different.

To use the choice function in our code, we need to import it. This
is like heading to the library, borrowing a book, and then bringing it
home:

from random import choice

Write this line at the very top of your code file. “Random” is the
name of the library, and “choice” is the name of the function we’re
borrowing.

Let’s try it out! First, we need to create a list:

costume_ideas = ["witch", "vampire", "giant pumpkin",

"dinosaur", "ballerina", "pirate", "astronaut"]

Now, let’s use the choice function to select one costume at
random:

costume = choice(costume_ideas)

print(costume)

Try running this bit of code a few times. See how choice keeps
selecting different costumes?

HACKER HINTS:
CONTROL FLOW

Programs usually read lines of code from top to bottom. When the program sees a

function call, however, it jumps to the first line of the function. Then it goes through

the function’s lines of code one at a time, top to bottom. When the function returns a

value, the program goes back to where it left off. Sort of like pausing a movie, going

to make popcorn, and then coming back to your movie!

Functions in Action
We’ve learned how to define functions and use them in our code.
Let’s see how powerful this new tool is by testing it out!

Quest for the Biggest Jellyfish!
A group of explorers are trying to find the biggest jellyfish in the
world!

To help them, a team of top scientists have figured out how to
guess a jellyfish’s size based on how deep the water is. Let’s turn this
into a simple function called “jellyfish_size_guesser.”

Input: How deep is the water, in miles (a float)

Output: How big is the jellyfish, in feet (also a float)

Let’s start by defining our function:

def jellyfish_size_guesser(water_depth):

Don’t forget the colon at the end of the line!

Now, it’s time to put the scientists’ equation inside our function.
The deeper the water, the bigger the jellyfish. The math goes
something like this:

jellyfish_size = 28 * water_depth + 0.1

Let’s finish our function with a return statement:

return jellyfish_size

Remember, our function won’t do anything unless we call it. What
value should we pass to the “water_depth” parameter? Well, a 10-
story building is about 100 feet high, or 0.02 miles. Let’s start with
that:

size = jellyfish_size_guesser(0.02)

print(size)

Did you get 0.66? That’s just over 7 inches. So if you swam 100
feet deep, you might find a jellyfish the size of your hand.

CODE COMPLETE!

def jellyfish_size_guesser(water_depth):

jellyfish_size = 28 * water_depth + 0.1

return jellyfish_size

size = jellyfish_size_guesser(0.02)

print(size)

Play around with different values to see what you get. The
Marianas Trench, which is the deepest part of the ocean, is almost 7
miles deep! What size jellyfish could you find there? Do you think
that’s where the largest jellyfish can be found?

YOUR TURN!
Now that you’ve written a function, challenge yourself to make some
changes to it:

o The explorers want the height of the jellyfish in inches, not feet.
How can you change your return value to make this possible?
(Hint: There are 12 inches in a foot.)

o Use the input function to make your program interactive: Ask the
user for the depth of the water! And don’t forget to convert their
answer into an int.

o What if the user types something that doesn’t make sense, like
“-10 miles”? That value is impossible! Add an if statement inside
your function that checks if the value inside “water_depth” is
greater than 0. What should happen if it isn’t? Should you print
an error message?

Anagram Checker
Pick a word, any word! If you can rearrange its letters into a new
word, then you’ve found an anagram. “RATS,” for example, is an
anagram of “STAR.” So is “ARTS.”

To check if two words are anagrams, let’s define a simple
“is_anagram” function. We’ll practice defining functions, use Python’s
built-in sorted method, and review conditionals.

First, let’s figure out our input and output:

Input: Two words that could be anagrams (each is a string).

Output: A Boolean value that’s True if the words are anagrams,
and False if they’re not.

Since our function has two parameters, let’s separate them with a
comma. We’re defining a function, so we put variable names, not
values:

def is_anagram(word1, word2):

How can we tell if two words are anagrams? Let’s look at an
example: “STAR” and “RATS.” If we sort the letters of each word
alphabetically, “STAR” becomes “ARST.” “RATS” also becomes
“ARST.” The two results match!

Since anagrams are different words that use the same letters, if
you sort the letters of any two anagrams, the results will always be the
same. So, we can use the sorted function inside our “is_anagram”
function to check if the values of “word1” and “word2” are anagrams.
We’ll sort the letters in each word, and if they match, then we’ve
found a pair of anagrams.

Remember how strings can be treated like lists of letters? Let’s
see what happens if we pass a string to the sorted function. You can
try this code out in your IDLE shell:

sorted("STAR")

The letters have been sorted into “ARST!” However, the result is a
list of letters, not a string.

Back inside our “is_anagram” function, let’s use an if statement to
compare our two lists of sorted letters:

if sorted(word1) == sorted(word2):

return True

If “word1” is “STAR,” then “sorted(word1)” is “ARST.” If “word2” is
“RATS,” then “sorted(word2)” is also “ARST.” Using the equals-to
operator (==), we compare the letters in these two sorted words.

Does “ARST” == “ARST?” It does! The sorted letters match,
meaning “STAR” and “RATS” are anagrams.

When we define a function, we don’t know what values will be
given to “word1” and “word2.” Maybe they’re anagrams, maybe not.
That’s why we sort the letters and use an if statement to check! If the
letters match, we return “True.” If they don’t, we return “False.”

Let’s add an else statement for pairs of words that aren’t
anagrams:

else:

return False

It’s as simple as that! Now let’s call our function and see if it works:

b = is_anagram("STAR", "RATS")

print(b)

You should see “True” in your console. Let’s try again with two
words that aren’t anagrams:

b = is_anagram("SUN", "MOON")

print(b)

The answer is “False.”

CODE COMPLETE!

def is_anagram(word1, word2):

if sorted(word1) == sorted(word2):

return True

else:

return False

b = is_anagram("STAR", "RATS")

print(b)

One last thing: To a computer, uppercase and lowercase matter a
lot. Keep this in mind when comparing anagrams!

YOUR TURN!
In this activity, you’ve practiced defining functions as well as using
built-in ones. Now try adding some new features to your code!

o Using the input function, ask the user to pick two words. Don’t
forget to write a good prompt!

o Instead of printing the return value, use it in an if statement to
print customized messages.

o Before checking if “sorted(1) == sorted(2),” add another if
statement that checks if the lengths of “word1” and “word2” are
equal. If not, then we already know they can’t be anagrams. You
can immediately return “False!”

The Whimsical Cupcake Shop
The Whimsical Cupcake Shop is known for its strange mishmashes of
flavors. Each cupcake has two flavors: one for the cake and one for
the icing. The shop is creating an “order” function to surprise their
loyal customers, where the input and output look like this:

Input: How many cupcakes the customer wants (an integer)

Output: A list of cupcakes with randomly chosen surprise flavors.
Each cupcake is represented with a string.

To build this function, we’re going to need a for loop and the
choice function. Let’s start by importing the choice function from the
random library! (Remember: We already did this earlier in the
chapter, here.) Make sure this import statement is at the top of your
code file:

from random import choice

Now we define our function:

def order(num_cupcakes):

Inside the function let’s create a list of flavors. This is the
Whimsical Cupcake Shop, so feel free to pick flavors that are a little
goofy and strange!

flavors = ["cherry", "mint", "bacon", "marshmallow",

"peanut butter", "zucchini", "caramel", "chocolate",

"grapefruit"]

Choose as many or as few flavors as you want! Each cupcake is
created by randomly selecting two flavors using the choice function.
The results are stored in two variables:

f1 = choice(flavors)

f2 = choice(flavors)

The “f1” stands for “flavor 1” and “f2” stands for “flavor 2.” Who
knows what values are stored inside? Choice could have selected
anything from the list of flavors—mint, grapefruit, chocolate, anything!

Next, we combine the two flavors into a single string. Because the
chosen flavors are stored inside variables, we need to use an f-string.
We’ll store this new f-string inside the “cupcake” variable:

cupcake = f"{f1} and {f2}"

If you want to test out your code, you can always print the
“cupcake” variable to the screen. This will let you see what value is
stored inside. Delete that extra print statement when you’re done
testing.

If a customer orders six cupcakes, we’ll need to do the random
selection six times. Luckily, we have the perfect tool that makes

repeating code a breeze! Put your last three lines of code inside a for
loop, like this:

for x in range(num_cupcakes):

f1 = choice(flavors)

f2 = choice(flavors)

cupcake = f"{f1} and {f2}"

During every round of the loop, “f1” and “f2” get new random
flavors. “Cupcake” is the combination of these two flavors. On the
first round, “cupcake” might be “mint and vanilla.” On the second
round, it might be “chocolate and cherry.” We don’t know, because
the choices are random!

Time to store all these randomly generated cupcakes in a list.
Before your for loop, we need to create an empty list to store all the
cupcakes:

cupcake_list = []

It’s important to define this variable outside of the for loop.
Otherwise, we’ll create a new “cupcake box” at each new round and
all our progress will be lost.

Back inside the for loop, let’s put each new cupcake inside that
box:

cupcake_list.append(cupcake)

When the loop ends, we’ll have a list with 4, 6, 12, or even 100
cupcakes! All that’s left to do is return it:

return cupcake_list

And now we can call our function and test it out:

cupcakes = order(6)

print(cupcakes)

What bizarre flavor combinations did you get?

CODE COMPLETE!

from random import choice

def order(num_cupcakes):

flavors = ["cherry", "mint", "bacon", "marshmallow",

"peanut butter", "zucchini", "caramel", "chocolate",

"grapefruit"]

cupcake_list = []

for x in range(num_cupcakes):

f1 = choice(flavors)

f2 = choice(flavors)

cupcake = f"{f1} and {f2}"

cupcake_list.append(cupcake)

return cupcake_list

cupcakes = order(6)

print(cupcakes)

Test out your function with several different values. Have fun
discovering all kinds of weird new flavors and combinations!

YOUR TURN!
Now that you’ve completed this activity, are you ready for another
challenge? See if you can make the following changes to this activity:

o Try defining the list of flavors outside your function. Then, pass it
to “order” as a third parameter. What are the pros and cons of
this new code?

o The choice function randomly picks a flavor. This means it’s even
possible to get a “chocolate and chocolate” cupcake or a
“grapefruit and grapefruit” cupcake. Can you do something to
prevent this? (Hint: Try removing a flavor from the list after f1 has
been chosen.)

Functions Off-Screen
We need functions in programming for the same reasons that we
need functions in the real world!

Think of all the people you know who have different jobs:
teachers, doctors, actors, hairdressers, plumbers. Splitting up these
jobs between hundreds of people allows everyone to get really good
at one thing. The dentist cleans everyone’s teeth. The pilot flies all
the airplanes. Doing everything yourself would be exhausting!

HACKER HINTS:
TESTING YOUR FUNCTIONS

If you write a cake-baking function, you want it to bake any kind of cake. If you write a

function that adds numbers, it should be able to add any numbers. To make sure

your function doesn’t have bugs, test it with lots of different inputs! Try big numbers,

negative numbers, and zero. For strings, try testing empty strings, strings with

numbers, or very long strings.

Giving each person a different “function” also prevents lots of
mistakes. When everyone’s job is clearly defined, no task gets
forgotten. The world wouldn’t run as smoothly if the garbage
collector forgot to pick up the garbage or the radio host forgot to
start their show!

Coder’s Checklist
In this chapter, we covered:

o How functions allow us to reuse code and keep programs organized

o How to declare a function and its input parameters

o How to return values

o How to call a function

o How to use some of Python’s built-in functions: len, sorted, and choice

o What libraries are and how to “borrow” functions from them

That’s a lot of new stuff! Come back to this chapter anytime you want to review

these lessons. Functions are a powerful coding tool, and mastering them is a key

step to building cool, complex programs.

9

Turtle Module

A module is a collection of specialized functions. Functions are
small blocks of code that complete a specific task, like sorting the
items in a list or picking a random number.

In chapter 8, we talked about libraries and how we could
“borrow” functions from them. Modules are like the sections in a
library: nonfiction, mystery, fantasy, and so on. Splitting a big library
into sections helps people find the books they want more quickly.
It’s the same idea with modules! Splitting functions into modules
helps keep programmers organized.

In this chapter, we’re diving into the “turtle” module. This
module is full of fun, easy-to-use graphics, which will let us code
images. Say goodbye to the console and say hello to colors, shapes,
and yes, turtles!

Introducing the Turtle Module
You always import libraries and modules at the top of your program:

from turtle import *

The * symbol means that we’re importing all the functions from
the turtle module! That way, we don’t have to go back and add more
import statements later.

When you’re using the turtle module, there are two key parts: the
screen and the turtle.

The screen is your canvas. The turtle is your paintbrush (or pen). In
your code, you’ll use the turtle to draw shapes onto the screen. You
can also use this module to make games!

When you run code from the turtle module, the screen is created
automatically. You’ll see a small new window pop up next to your
editor and console. The turtle, on the other hand, you’ll create
yourself!

Objects
In the turtle module, each turtle is an object. An object is a user-
defined data structure. We use objects to keep related variables and
functions in the same place. Instead of needing 10 or 20 different
variables, we can store them all in a single object. Much more
organized!

An object’s variables are called attributes. A turtle object, for
example, will have attributes that define its shape, size, and color.

Objects also have special functions called methods. Methods
define what an object is meant to do. The turtle object, for example,

can move around the canvas, draw shapes, change colors, move fast
or slow, etc.

This book won’t show you how to define your own objects, but
you’ll get plenty of practice using the objects, attributes, and
methods of the turtle module. If you want to explore this subject
more, check out the Resources section for fun coding websites,
magazines, and more!

Making Your Turtle
Now that we’ve imported the module, we can create our turtle. Make
sure you write “Turtle” with a capital “T,” and don’t forget the round
brackets!

shelly = Turtle()

The code “Turtle()” creates a new turtle object, which we store in
the variable named “shelly,” just like going to a virtual pet store,
adopting a turtle, and naming her “Shelly!”

A turtle object comes with all kinds of built-in attributes and
methods. In other words, Shelly already knows how to do things like
move around and change colors. We don’t have to teach her. Later
on, when we want to use these attributes and methods, we’ll use the
“shelly” variable to access the turtle object.

Run the code in your editor. A small window should pop up, with
a tiny triangle in the middle.

That tiny triangle is our turtle, Shelly! But she doesn’t really look
like a turtle yet, does she? Let’s use the shape method to change
that:

shelly.shape("turtle")

To use an object’s method:

• Start with the variable that stores the object (in this case, it’s
“shelly”).

• Add a period (.).

• Write the name of the method, followed by round brackets.
Just like a regular function!

• If the function needs parameters, write your values in between
the brackets. Remember, parameters are special variables
used to collect function input. We covered them in chapter 8!

Does the syntax look a little familiar? We’ve used it before, in
chapter 5! In Python, lists are a type of object, and append and
remove are object methods.

To use the shape method, you need to pass an argument (value)
to the function. This argument is a string and it tells the method what
kind of shape we want: a triangle, a circle, or in this case, a turtle!

If you run your code, you should see a tiny turtle on your screen:

There she is! What a good turtle.

Making the Turtle Move
Let’s make Shelly move! The simplest choice is the forward method:

shelly.forward(100)

The forward method needs one argument: an integer, which
represents how many pixels (a tiny unit of length) you want Shelly to
move forward. Try the code out!

See how Shelly darted forward, drawing a line as she went? It’s a
pretty small line—remember, pixels aren’t very big! You can also
move Shelly backwards using the backward method:

shelly.backward(100)

Now, Shelly has returned to her starting point! Both forward and
backward depend on the direction that Shelly is facing. By default,
the turtle starts looking to the right, but we can change that using the
right and left methods.

Right needs one number as an argument, which represents an
angle. So if we want Shelly to turn 90 degrees to the right, we’d write:

shelly.right(90)

Now, Shelly is facing the bottom of the screen! What happens if
we make her move forward again? (Psst: Either write the next block
of code in a new editor or delete your previous lines of code.
Otherwise, your results will be wonky!)

shelly.forward(100)

shelly.right(90)

shelly.forward(100)

This code makes Shelly moves 100 paces forward, turn 90
degrees to the right to face the bottom, and move another 100
paces forward:

The left function is the same as right, except that Shelly turns in
the opposite direction. Let’s have Shelly draw a square. Overall, the
code to move the turtle should look like this:

shelly.forward(100)

shelly.left(90)

shelly.forward(100)

shelly.left(90)

shelly.forward(100)

shelly.left(90)

shelly.forward(100)

We call the forward function four times, to make four sides. In
between each one, Shelly turns 90 degrees to the left, to face a new
direction. The result is a perfect square!

There’s one more interesting function that gets Shelly moving.
Forward and backward make straight lines and are perfect for
drawing shapes like squares, rectangles, triangles, and octagons. But
if you want to draw a circle, then you want the circle function. This
method also takes one argument:

shelly.circle(100)

The number inside the brackets represents the radius of the
circle. The radius is the distance from the edge of circle to the center.
So a small radius means a small circle, and a big radius means a big
circle. Let’s try it out!

shelly.circle(20)

shelly.circle(250)

You can make Shelly draw a circle anywhere on the screen.
Between forward, backward, left, right, and circle, there are so many
images you can create!

HACKER HINTS:
ONLINE DOCUMENTATION

The turtle module has lots of cool built-in functions!

To discover everything the module can do, check out the online documentation.

This is a collection of web pages that go over all the different methods and how to

use each one. You can find the turtle module documentation here:

https://docs.python.org/3.3/library/turtle.html?highlight=turtle.

Documentation can be a bit tricky to read at first, so remember to focus on three

things: the function’s name, its parameters, and its return value. That’s all that

matters! Play around, practice, and have fun!

https://docs.python.org/3.3/library/turtle.html?highlight=turtle

Changing Colors
Ready to take your artistic masterpieces to the next level? To change
the color of your paintbrush (or pen), use the pencolor method.
Then, let’s make Shelly go in a circle:

shelly.pencolor("blue")

shelly.circle(100)

Pencolor needs one string as an argument. This string should be a
color, such as blue, green, red, yellow, orange, or pink. Make sure to
spell it with lowercase letters. And since pencolor is a method, we
have to call it using a turtle object. If you just wrote
“pencolor(“blue”),” the code wouldn’t work. Just like forward,
backward, and circle—all methods must be attached to an object!

Shelly can only use colors that are built into the turtle library.
Luckily, there are lots! You can get wild with really specific shades like
“dark orchid” and “medium spring green.” You can find the full list of
built-in colors here: tcl.tk/man/tcl8.6/TkCmd/colors.htm.

To make things even more colorful, we can fill in the shapes that
Shelly has drawn and create even better pictures. To begin, we use
the fillcolor method to pick the color that will fill the shapes. This
method is similar to pencolor: it takes one string argument and that
string must be a color.

Then, we call the begin_fill and end_fill methods. Neither of these
functions have parameters. When writing your code, you start with a
call to begin_fill, then you draw your shape, and finally you end with
end_fill. The code looks like this:

shelly.fillcolor("purple")

shelly.begin_fill()

shelly.circle(100)

shelly.end_fill()

http://tcl.tk/man/tcl8.6/TkCmd/colors.htm

You can draw any shape you want—triangles, squares, hexagons.
Instead of calling the circle method in between begin_fill and
end_fill, use a combination of forward and right to create any of these
new shapes.

Finally, we can make our canvas prettier by changing the
background color of the screen. This bgcolor function is a little
different. For starters, it’s not a method. You can call it with no object:

bgcolor("light green")

Look at that happy little turtle! Like the methods we’ve seen in the
turtle module, bgcolor needs one string argument. Between
pencolor, fillcolor, and bgcolor, you can create some beautiful
designs on your canvas!

Working with Screen Coordinates
Understanding how to use the screen’s coordinate system will let us
move our turtle to specific places. This means we can draw prettier,
more detailed pictures!

When you use the turtle module, the program creates a new,
separate window where your turtles can zoom around. The window is
separated into four areas. Picture two lines, one horizontal and one
vertical, dividing the screen down and across the middle.

These lines are your x-axis and y-axis. The center, where they
meet, is position (0, 0). When we write coordinates, we always write

the x-coordinate first, followed by the y-coordinate.

If Shelly travels to the right, her x-coordinate increases. If she goes
left, the x-coordinate decreases. If she goes up, the y-coordinate
increases, and if she goes down, the y-coordinate decreases.

You can visualize the coordinate system with this handy chart. The
screen is designed as a square of 600 pixels per side. The four
corners are (-300, -300), (-300, 300), (300, 300), and (300, -300).

To make Shelly go to a point on the screen, we can use the goto
function. Goto has two parameters: an x-coordinate and a y-
coordinate.

shelly.goto(100, 100)

See how Shelly draws a diagonal line that goes up and right?
That’s because we gave her a positive x-coordinate and a positive y-
coordinate. Try sending Shelly to different positions. Don’t forget to
try coordinates with negative numbers!

HACKER HINTS:
USING THE CONSOLE FOR DEBUGGING

When you run your turtle code, a new screen pops up. However, you can still print

values to your console. This is really useful if you’ve got a bug in your code, because

printing variables can help you find it. Switch back and forth between the two

screens to see what’s going on.

Go, Turtle, Go! (Turtle Module in Action)
The turtle library is perfect for creating games or drawing beautiful
pictures. Let’s build a few together and combine our old coding tools
with these new ones. Remember to code your activities in the editor,
not the shell!

Spiraling Out of Control!
Shelly’s been drawing so many circles that she’s made herself dizzy.
She’s spiraling out of control!

We know how to make a turtle draw a circle, but what about a
spiral? Using an extra variable and a for loop, let’s create this new
shape.

As always, we need to import the turtle library:

from turtle import *

Next, we create our turtle:

shelly = Turtle()

If you want, you can also change Shelly’s shape using the shape
function. Remember, the method takes one argument—a string!

shelly.shape("turtle")

We’ve seen how to call the circle method with one parameter.
There’s also a version with two parameters. The first parameter is still
the radius of the circle, but the second parameter is an angle. If you
put “360,” Shelly will draw a full circle:

shelly.circle(50, 360)

But if you put “180,” Shelly only draws half a circle. Try out these
two lines of code, then delete them when you’re done:

shelly.circle(50, 180)

To create our spiral, we’ll start with a half-circle. Then, we’ll draw
another half-circle, but slightly bigger. Then a third, slightly bigger
again. This creates the spiral effect!

To make this work, let’s store the length of the radius in a variable.

radius = 50

Next, since we’re drawing half-circles over and over, it’s time for a
for loop! Let’s start with 10 rounds:

for counter in range(10):

shelly.circle(radius, 180)

In the first line of this code block, we define our for loop. The
range function decides the number of rounds, and we’re passing it a
“10.”

To draw the circle, we use the circle method with two parameters.
On the first round, the “radius” value stores the value “50.” That’ll be

the size of the circle. The second parameter is set to 180 degrees, so
we only draw a half-circle.

At each round of the loop, we want the half-circle to be slightly
bigger. So after drawing a half-circle, let’s increase the “radius”
variable:

radius += 20

Make sure you’re increasing the radius inside the for loop, so it
gets bigger every round!

CODE COMPLETE!

from turtle import *

shelly = Turtle()

shelly.shape("turtle")

radius = 50

for counter in range(10):

shelly.circle(radius, 180)

radius += 20

Shelly should look something like this:

Try out your code and watch Shelly keep on spinning. That’s one
dizzy little turtle!

YOUR TURN!
We’ve practiced using the circle method in a new, fun way. How can
you make the code better?

o Try tweaking some of the numbers in your code. Instead of a
radius of 50, start at 100. Instead of adding 20 at each lap, try
multiplying “radius” by 1.3.

o Add a background color to your canvas and add some color to
the spiral!

o Can you make Shelly draw a spiral in reverse? She should end up
back where she started.

Bungee Jump!
Shelly is going bungee jumping! Using a for loop and the forward
and backward functions, let’s animate our little turtle’s adventures.

Start by importing the turtle library:

from turtle import *

Then, create Shelly and give her a turtle shape:

shelly = Turtle()

shelly.shape("turtle")

Next, let’s make the animation more fun to watch! If we slow
down Shelly using the speed method, her bungee jumping won’t
look so wild:

shelly.speed("slowest")

The speed method takes one string as an argument. You can
choose options like “normal,” “fast,” or “slow.”

Time for the bungee jumping! Right now, Shelly is still staring at
the right side of the screen. To make her look at the bottom of the
screen, we need to turn her to the right by 90 degrees:

shelly.right(90)

Finally, let’s choose a length for the bungee-jumping cord. This
value will decide how far down she goes:

cord_length = 150

Let’s say that Shelly gets five rounds of bungee jumping in one
session. Since all the rounds are pretty similar, we can use a for loop
to repeat them:

for counter in range(5):

At the start of the first round, Shelly jumps off the platform. Since
she’s facing downward, we can use the forward function. The
distance is determined by the length of the bungee-jumping cord:

shelly.forward(cord_length)

Once she reaches the bottom, the cord pulls her back up!
However, because she’s moving so fast, it’s going to pull her back up
slightly farther than the starting platform. We can add this into our
code by multiplying “cord_length” by 1.1 inside the round brackets:

shelly.backward(cord_length * 1.1)

If forward brings Shelly down, then backward will bring her back
up. If the value of “cord_length” is “150,” then “cord_length * 1.1” will
be 165. Shelly will be 15 pixels above her starting platform.

Since Shelly is now starting higher up, she has more momentum,
and she’s going to fall a little farther. Let’s increase the “cord_length”
variable inside our for loop:

cord_length += 50

On the second round, Shelly will fall 200 feet. On the third round,
it’ll be 250.

CODE COMPLETE!

from turtle import *

shelly = Turtle()

shelly.shape("turtle")

shelly.speed("slowest")

shelly.right(90)

cord_length = 150

for counter in range(5):

shelly.forward(cord_length)

shelly.backward(cord_length * 1.1)

cord_length += 50

Double-check your indentation and run your code. Have fun
watching Shelly bob up and down—what an adventurous little turtle!

YOUR TURN!
Shelly is having the time of her life bungee jumping, thanks to you!
Can you add even more cool features to the program?

o When Shelly’s facing the right, forward brings her to the right
and backward brings her to the left. Before she starts bungee
jumping, have Shelly draw a starting platform using these
methods.

o Can you make Shelly’s speed increase every couple of rounds?
From “slowest,” you could change her speed to “slow,” then
“normal,” then “fast.” (Hint: Use the counter variable of the for
loop to figure out what round it is, then use an if statement.)

Very Curious Turtles

Shelly and her friend Sheldon want to explore a park. They’ve packed
their bags with snacks, sunscreen, and water bottles, and they’re
ready to explore every inch of greenery!

Using a while loop, the goto function, and the random library,
let’s write some code that’ll help them explore.

To start, we need to import two libraries:

from turtle import *

from random import randint

We’re importing everything from the turtle module, but we’re
only borrowing one function from the random library: randint.
Randint is a function that creates random integers. Later, we’ll use it
to create coordinates and decide where Shelly and Sheldon explore!

Now, let’s create Shelly and Sheldon:

shelly = Turtle()

sheldon = Turtle()

To tell the two turtles apart, let’s give them each a different color
using the pencolor function. You can choose your own colors for the
turtles or copy the ones here:

shelly.pencolor("purple")

sheldon.pencolor("green")

Now, let’s change the background color of the screen. This will
make the park more exciting for Shelly and Sheldon to explore:

bgcolor("light green")

Since bgcolor isn’t a method, we don’t need to call it with an
object. You’re also free to choose any color you want: green, dark
green, light blue, pink, or even yellow!

To keep our code simple, we’re going to do something that’s
usually forbidden: We’re going to use an infinite while loop!

while True:

The condition of this while loop is “True.” “True” is always True!
And since our condition depends on a value, not a variable, it can’t
be changed.

This means you’ll have to stop your program manually, either by
closing the window or pressing CTRL+C, but it also means Shelly and
Sheldon can wander as long as they like, inspecting flowers, insects,
and birds.

Now, it’s time to choose the exact locations that Shelly and
Sheldon will explore. Remember how every point on the screen can
be found using an x-coordinate and a y-coordinate? We’ll use the
randint function to choose these coordinates randomly:

shelly_x = randint(-300, 300)

The randint function takes two arguments. The first is the smallest
value that the function is allowed to choose. The second argument is
the biggest value. Both parameters must be integers. In this
example, randint chooses a number between -300 and 300 and
stores it in the “shelly_x” variable.

Why did we choose “-300” and “300” as the parameters?
Remember, the four corners of the screen are (-300, -300), (-300,
300), (300, 300), and (300, -300). If you choose a number higher than
300 or lower than -300, Shelly will leave the screen completely!

Let’s choose random numbers three more times, for the other
coordinates!

shelly_y = randint(-300, 300)

sheldon_x = randint(-300, 300)

sheldon_y = randint(-300, 300)

We’ve created four random integers, two for Shelly and two for
Sheldon. The variables “shelly_x” and “shelly_y” will store the x-
coordinates and y-coordinates for Shelly. So, if “shelly_x” is “45” and
“shelly_y” is “120,” then Shelly will head to position (45, 120).

Next, we use the goto function to send Shelly and Sheldon to
these new positions:

shelly.goto(shelly_x, shelly_y)

sheldon.goto(sheldon_x, sheldon_y)

Make sure that “shelly_x” and “shelly_y” are matched with Shelly,
and “sheldon_x” and “sheldon_y” with Sheldon!

Each round of the while loop, we create four new random
numbers, then we send Shelly and Sheldon to explore these new
positions. If you run your code, you’ll see the two turtles bounce
around the screen, exploring every inch of their new park!

Because you’re using an infinite while loop, you have to stop the
program manually. There are three ways to do this in IDLE:

• Close the window using the “X” in the top corner.

• Hit CTRL+C.

• Click on “Shell” at the top of the screen and then select
“Restart Shell.”

CODE COMPLETE!

from turtle import *

from random import randint

shelly = Turtle()

sheldon = Turtle()

shelly.pencolor("purple")

sheldon.pencolor("green")

bgcolor("light green")

while True:

shelly_x = randint(-300, 300)

shelly_y = randint(-300, 300)

sheldon_x = randint(-300, 300)

sheldon_y = randint(-300, 300)

shelly.goto(shelly_x, shelly_y)

sheldon.goto(sheldon_x, sheldon_y)

Run your code and watch Shelly and Sheldon explore! See how
the turtles randomly move to new coordinates?

YOUR TURN!
Shelly and Sheldon are having a blast exploring their new park that
you created for them. Now, let’s make their adventure even more

exciting!

o Try drawing some interesting shapes at different coordinates for
Shelly and Sheldon to go visit.

o Play with methods like shape and speed to change how the
program looks.

o Create a few more friends for Shelly and Sheldon and place all
these Turtle objects in a list. To generate new coordinates for
each turtle, make them “goto” a new position. (Hint: Use a for
each loop inside the while loop when creating these new
numbers and telling each turtle where to go).

Modules Off-Screen
Modules aren’t just a programming concept—they pop up in the real
world, too! Look around all the stuff in your house. If you put it all into
a big pile, it’d probably be hard to find things. In order to stay
organized, you separate stuff into different rooms: knives and forks
go in the kitchen, bicycles go in the garage, clothes go in your
bedroom closet.

Separating functions into different modules is just like separating
objects into different rooms. When we want to build a website, we
know we’ll find the right functions in the web module. When we want
to build multimedia games with cool images, we’ll look in the
graphics modules.

Modules are also useful for a second reason: They let us import
only the functions we need! When you go to school, you don’t bring
all your possessions with you. That’d be way too heavy and it

wouldn’t fit in your backpack! The same thing applies to code. If we
didn’t split all that code into modules, it would slow our programs
down. With modules, we can pick and choose what we need.

Coder’s Checklist
In the chapter, you learned:

o What modules are and how to import them

o What objects are

o How to create a Turtle object and store it in a variable

o How to make Turtles move

o How to use colors with the Turtle module

o How the screen can be separated into coordinates

Turtle is a really fun module for drawing pictures and creating games. Now that

you know the basics, see where your imagination takes you! You can go over the

sections of this chapter whenever you want to jog your memory.

10

Game On: Putting It All Together

You’ve learned about variables, data types, data structures,
conditionals, loops, and functions. Now it’s time to have some fun
and challenge yourself even more! Building a game is a great way
to practice coding. By the end, you’ll have an even better
understanding of all your new coding tools, and you can combine
them to solve complicated problems and build your own games
from scratch!

Ready to put your skills to the test?

Rules of the Game
We’re going to create a space-themed version of “Code Breaker”
called “Spaceships and Aliens.”

Picture a not-so-distant future where humans live all across the
galaxy. You, a spaceship captain, have intercepted a secret message
from another ship. To decode the message, you need to crack a 4-
digit code.

Your codebreaking software can tell if you’ve guessed the right
digit at the right position, which we’ll call a spaceship. It’ll also tell you
if you’ve guessed the right digit at the wrong position, which we’ll call
an alien. Digits that aren’t spaceships or aliens get ignored.

For example: Let’s say the code is “7832,” and your guess is
“7628.”

• Both your guess and the code start with a 7. Right digit, right
position. That’s one spaceship!

• Both your guess and the code have an “8” and a “2.” However,
the “8” is the second digit of the code, and the fourth digit of
the guess. There’s a similar problem with the “2”: right digit,
but the wrong position. That’s two aliens!

• So the result of this guess would be “1S2A”: one spaceship
and two aliens.

One other thing: When choosing codes, we have to make sure
that all four digits are different. Otherwise, the game won’t work!

Bite by Byte: Building Your Game

When you build a big program, you don’t want to write all the code
at once. Instead, we want to think logically, like a programmer, and
start with a small piece. We run our code, test it, and fix any bugs,
then we can move on to the next piece. This makes code easier to
debug, and it also stops us from “biting off more than we can chew!”

Comments: For Your Eyes Only
Big programs can have thousands of lines of code. To stay
organized, programmers use comments to describe what a section
of code is doing. Comments are lines of text that are ignored by the
program. They’re for human eyes only!

In Python, there are two ways to write comments.

1. There’s the short, one-line comment:

A secret message has been intercepted!

Start the line with the “#” symbol. When the program runs, that
entire line will be skipped! You can also add comments halfway
through a line:

message = "2HFHOUWAHIFGA" # this message is

gibberish

Everything to the right of the “#” symbol is ignored.

2. There’s also the multiline comment:

""" This function decodes a secret message

Input: the secret message (a string)

Output: a Boolean value """

Use three quotation marks (""") to start your comment, and three
more to end it.

Good variable names make code easier to read, but sometimes
we need a little more help to understand what’s going on.
Comments help with this. You might want to start functions, for
example, with a comment that explains what their task is.

Comments are especially helpful when you haven’t looked at your
code in months or if someone else is trying to understand the logic
of your code!

Let’s Code!
To start, we’ll print some instructions to the screen and set up our
game. Then, we’ll create a secret code for you, the player, to crack! In
our version, the game ends when you’ve correctly guessed all four
digits.

3, 2, 1—Liftoff!: Starting Your Game
To begin, let’s tell the user what game they’re playing:

print("Welcome to Spaceships and Aliens!")

We also want to explain the instructions:

print("Your goal is to crack a secret 4-digit code. All the

digits in the code are unique!")

print("A spaceship (S) means you've guessed the right

digit at the right position.")

print("An alien (A) means you've guessed the right digit,

but at the wrong position!")

print("Wrong digits get ignored.")

The game is in full swing! Now, it’s time to create our 4-digit
secret code. Using the input function, let’s ask the user to pick
something and type it into the console. The text prompt should
mention that all the digits need to be unique!

secret_code = input("Pick a secret code with 4 different

digits: ")

If you want to play the game yourself, get a friend or family
member to type in the secret code. No peeking!

Next, we need to hide this secret code from the user. If we just
leave it in the console, the user won’t have to guess—the code will be
right in front of them!

To hide the secret code, let’s print 100 blank lines. This will
replace the text in the console and hide the secret code. Since we’re
repeating code, let’s use a for loop:

for counter in range(100):

print()

We don’t need to put any text inside the print function because
we’re not trying to display a message. We just want blank lines! And
since our range function has the value “100,” we know that the print
function will run 100 times, giving us 100 blank lines in total.

Now the user can enter their first guess. They probably won’t
guess the correct code on their first try. They might need 10 tries, or
100! Since we don’t know the number of guesses they’ll need, we
should use a while loop.

First, let’s create a “guess” variable with a dummy value:

guess = "0000"

Since the secret code is a 4-digit string, then the user’s guess
should be a 4-digit string as well. But we also know that the secret
code can’t actually be “0000,” because the code will have four
different digits! We’re just giving “guess” a dummy value to get the
loop started.

The game ends when the user guesses the secret code. This
means the game continues as long as “guess” and “secret_code”
don’t match!

while secret_code != guess:

The expression “secret_code != guess” is True when the variables
have different values. That means our loop will only run while the user
makes incorrect guesses!

Inside the loop, we ask the user for a guess. Don’t forget to write a
good prompt in your input function!

guess = input("Enter a 4-digit code: ")

Remember, input functions always return strings. Whatever the
user types into the console will be stored in the variable “guess” as a
string.

So far, your code for the game should look like this:

print("Welcome to Spaceships and Aliens!")

print("Your goal is to crack a secret 4-digit code. All the

digits in the code are unique!")

print("A spaceship (S) means you've guessed the right

digit at the right position.")

print("An alien (A) means you've guessed the right digit,

but at the wrong position!")

print("Wrong digits get ignored.")

secret_code = input("Pick a secret code with 4 different

digits: ")

for counter in range(100):

print()

guess = "0000"

while secret_code != guess:

guess = input("Enter a 4-digit code: ")

Win or Lose? Comparing the Guess and the Secret Code
It’s time to see if the user has cracked the secret code! Comparing
the user’s guess to the secret code isn’t a simple task. Are the right
digits in the right positions? Or does the guess have the right digits,
but in the wrong order?

Since this is a task we’ll repeat often, let’s put the code inside
another function called “compare_guess.”

The input of this function has two parameters: the secret code
and the player’s guess.

The output is a string that tells us about the player’s guess. How
many spaceships were in the guess? How many aliens?

You should write your “compare_guess” function at the top of
your file, before the first print statement. In general, you should
structure the program inside your editor like this:

1. Import statements

2. Function definitions

3. All the other code

We write code in this order because you can’t call a function that
hasn’t been defined, and you can’t use a library that hasn’t been
imported!

Next, since the “compare_guess” function needs two parameters,
let’s separate them with a comma in between the round brackets.
Let’s also add a comment above the function to describe exactly
what it does, to make sure our code is clearly labeled:

Compares the player's guess to the secret code by

looking at each digit, one at a time

def compare_guess(secret_code, guess):

The goal of this function is to see how many spaceships and
aliens are in the user’s guess. Let’s create variables to store these
numbers. Don’t forget to indent all the code inside your function!

num_spaceships = 0

num_aliens = 0

The values start at 0, because we haven’t checked any digits yet.
Whenever two digits match, we’ll increase either “num_spaceships”
or “num_aliens” by 1. Since we want to check each digit, one at a
time, we can use a for loop:

for i in range(4):

“Range(4)” means the loop will have four rounds—one for each
digit. The “i” is our counter variable that stores the index of the digit
we’re checking. On the first round of the loop, the value of “i” will be
“0.” On the second round, it’ll be “1,” then “2,” and finally “3.”

Since both “secret_code” and “guess” are strings, we can treat
them like lists and access digits using their indices. Let’s say that
“secret_code” is 5682 and the “guess” is 5204. To check if the two
first digits match, we’d write:

secret_code[0] == guess[0]

In this case, the Boolean expression would be True, because the
first digit of both lists is “5.” However, we eventually want to check all
four digits. So instead of “0,” let’s use “i”. Remember, the value of “i”
is always changing! This lets us check each digit one at a time.

If the digits of both codes match, we increase our
“num_spaceships” variable:

for i in range(4):

if guess[i] == secret_code[i]:

num_spaceships += 1

Take a look at this code—on the first round of the loop, when “i” is
0, we’re checking the two digits at index 0. On the next round, we
check the two digits at index 1, and so on. If none of the digits match,
we’ll end the loop with zero spaceships. And if all the digits match,
we’ll have four spaceships and we’ll win the game!

The next step is to check for aliens—digits that match but aren’t at
the same position. To check if a digit is somewhere in a list (or string),
we can use the “in” keyword. For example, if we write:

5 in secret_code

The expression is True if the number 5 is one of the digits in
“secret_code.” It could be the first digit, or the second, or the last—
doesn’t matter! It just has to be there. If none of the digits are 5, then
the whole expression is False.

Since we’re checking for spaceships with the first branch of our
conditional, we’ll use a second branch—an elif—to check for aliens:

elif guess[i] in secret_code:

num_aliens += 1

Let’s review what we’ve done with this function:

1. We used a for loop to check each digit, one at a time.

2. Starting at index 0, we checked if the first two digits of
“secret_code” and “guess” were equal using the equals-to
operator (==).

3. If the digits matched, great! We increased “num_spaceships” and
skipped the rest of the conditional.

4. But if the digits didn’t match, we checked the elif. Even though
the guessed digit (“guess[i]”) wasn’t at the right position, we
checked if the digit might still be somewhere else in the list. If it
was, that means we found an alien, and we increased
“num_aliens.”

5. The for loop increased the value of “i” to 1. Next, we checked the
digits at index 1.

6. We repeated steps 2 through 5 until all the digits were checked.

By the end of the for loop, we’ve found all the spaceships and
aliens in the user’s guess. The next step in our game is to tell the user
the results of their guess!

We want our output to be a string with a format that might look
like “2S0A” or “1S1A,” depending on which digits matched.
Remember, the “S” stands for spaceships and the “A” for aliens.

Using an f-string, we can combine text and variables:

result = f"{num_spaceships}S{num_aliens}A"

Finish the function by returning this variable:

return result

The function is done! Your code for the function should look like
this—make sure the indentation lines up properly in your editor:

Compares the player's guess to the secret code by

looking at each digit, one at a time

def compare_guess(secret_code, guess):

num_spaceships = 0

num_aliens = 0

for i in range(4):

if guess[i] == secret_code[i]:

num_spaceships += 1

elif guess[i] in secret_code:

num_aliens += 1

result = f"{num_spaceships}S{num_aliens}A"

return result

Now we can compare the user’s guess with the secret code
anytime we want!

Testing Your Code
Before we move on to the next step, let’s make sure the function
works by testing it! Since this code is just used for testing, you can
delete it when you’re done.

To start, let’s create dummy variables with good test values:

test_code = [1, 2, 3, 4]

test_guess = [1, 2, 3, 4]

As you can see, the digits of “test_code” and “test_guess” are
identical. That’s because we want our function to find four spaceships
and zero aliens. Let’s see what happens when we call the function:

test_result = compare_guess(test_code, test_guess)

Make sure that “test_code” is the first argument so it matches the
parameters in our function definition. Then, print the result to the
console:

print(test_result)

Did you get the right answer? If your “compare_guess” function
works properly, you should see “4S0A” in your console—four
spaceships and zero aliens!

Tweak the values of “test_code” and “test_guess” for another
couple tests. What if we want to test values that will give us a result of

zero spaceships and four aliens? Or two spaceships and two aliens—
or even a case with zero spaceships and zero aliens? Try coming up
with your own values, and give them a quick test.

Everything looking good? Great! Now delete your test code and
get ready to finish the game!

Are We There Yet?: Finishing the Game
Almost finished!

For the next step, let’s go back to our while loop:

while secret_code != guess:

guess = ("Enter a 4-digit code: ")

You now have the function you need to compare the user’s guess
with the secret code. Let’s call “compare_guess” and store the result
in a new variable. Make sure you match the order of the parameters!

result = compare_guess(secret_code, guess)

How do we know if the user won the game?

If all the digits of “guess” are correct and in the correct positions,
the “compare_guess” function will find four spaceships and zero
aliens. That means the value stored in “result” will be “4S0A.” Let’s
check that!

If this Boolean expression is True, then we can congratulate our
player!

if result == "4S0A":

print("Congratulations! You broke the secret code!")

But if the player hasn’t won yet, let’s pass along the result of their
guess:

else:

print(result)

If the result is something like “2S1A”—two spaceships and one
alien—that string will be printed to the console. It’s an important clue
for the player that’ll help them decide what to guess next.

That’s it for the main code! Once the player has won, the values in
“guess” and “secret_code” will be identical. The condition of our
while loop is only True when these two variables are different. If
they’re the same, then the while loop ends automatically.

Don’t forget to double-check your code for typos, mistakes with
indentation, and forgotten brackets!

CODE COMPLETE!

Compares the player's guess to the secret code by

looking at each digit, one at a time

def compare_guess(secret_code, guess):

num_spaceships = 0

num_aliens = 0

for i in range(4):

if guess[i] == secret_code[i]:

num_spaceships += 1

elif guess[i] in secret_code:

num_aliens += 1

result = f"{num_spaceships}S{num_aliens}A"

return result

print("Welcome to Spaceships and Aliens!")

print("Your goal is to crack a secret 4-digit code. All the

digits in the code are unique!")

print("A spaceship(S) means you've guessed the right

digit at the right position.")

print("An alien (A) means you've guessed the right digit,

but at the wrong position!")

print("Wrong digits get ignored.")

secret_code = input("Pick a secret code with 4 different

digits: ")

for counter in range(100):

print()

guess = "0000"

while secret_code != guess:

guess = input("Enter a 4-digit code: ")

result = compare_guess(secret_code, guess)

if result == "4S0A":

print("Congratulations! You broke the secret

code!")

else:

print(result)

Congratulations—you’ve built an entire game with Python code!

When you’re ready, run your game and see how long it takes you
to crack the code. Once you’ve worked out any bugs in your game,
challenge friends and family members!

Taking “Spaceships and Aliens” to the Next Level
“Spaceships and Aliens” is just one example of the fun games and
programs you can build in Python. There are lots of features you can
add to make your game even better! Try adding one (or more!) of
these ideas to your game for the ultimate challenge.

Bring a Friend!
Cracking secret codes is fun, but it’s even more fun when you’re
playing against a friend!

If you want to add a second player, you’ll have to create a second
secret code. Luckily, you can call the “create_secret_code” function
as many times as you want:

secret_code2 = input("Pick another secret code with 4

different digits: ")

You’re also going to need a new variable for Player 2’s guess:

guess1 = "0000"

guess2 = "0000"

Since there’s only one console, Player 1 and Player 2 will have to
guess one at a time. What coding structures should you repeat inside
your while loop to make this work?

Beat the Clock!
To make the game harder, limit the number of guesses each player is
allowed.

To start, you’ll need a variable that keeps track of guesses. This
should be defined before the while loop:

guesses_left = 25

Whenever the user doesn’t guess correctly, remove one guess.
You can put this in your else statement:

guesses_left -= 1

What other changes should you make? You’ll probably need to
modify the condition of your while loop. (Hint: “guesses_left” should
always be greater than 0!)

The Finishing Touches
Here are a few more ideas you can add to your game:

• Use a dictionary to keep track of all the guesses a player has
made and the results of those guesses.

• Add a funny print statement that tells the user how good their
guess was. You can use a conditional to customize these
messages.

• Add a special “hint” feature, where the user can unlock one
digit of the secret code.

Feel free to come up with your own ideas! You have all the
fundamental coding tools you need to make any change you want.

In this chapter, you built a game using functions, a while loop, for
loops, conditionals, and lists. You used the print and input functions
to make your game interactive. That’s a lot of tools! Best of all, you’ve
learned how to tackle problems by thinking like a programmer.

Give yourself a high-five—you’ve earned it!

Code for the Road

Congratulations—you did it! You’ve reached the end of your first
coding adventure. Give yourself a pat on the back and look at how
far you’ve come.

You built over 20 programs using variables, data structures,
conditionals, loops, and functions. You created a big, interactive
game and learned how to debug. And best of all, you learned how
different coding tools can solve different problems. Whenever you
run into a new challenge, think about your toolbox. Can the
problem be solved with repetition? By splitting it into different
tasks? By changing a condition?

It’s okay if you’re still getting stuck on certain concepts. Like
anything, coding takes practice! You’re learning a whole new
language—Python—and all those terms and rules take time to
master. Keep going through the different lessons, especially those
you found tricky. By practicing coding again and again, it’ll become
easier and more natural, and soon you’ll find yourself looking for
bigger challenges! Maybe you’ll even use your new Python skills to
help you bring your own programs and games to life!

Thinking like a programmer is about breaking down a
complicated problem into small pieces. That’s a skill that can help
you in the real world! Whenever you’re faced with a big project, like
a camping trip, an essay, or an art project, try tackling it like a
programmer—one step at a time.

One of the fun things about coding is that the basics stay the
same, no matter what language you use. Another cool thing about

coding is that there’s always more to learn. More languages, more
libraries, more algorithms. If you’re ready to keep going, check out
the Resources section for great websites and more.

Happy coding!

Bug Hunting: Troubleshooting Tips

Your program crashed, or it’s not quite working how you want. Looks
like you’ve got a bug to find!

Whether you’re a beginner or you’ve been coding for years, the
first draft of any program is almost never perfect. The key is to hunt
for bugs in a calm, logical order. If you need a break, go ahead and
take one! Sometimes, just leaving the computer and coming back
later can clear your head and make a bug easier to find.

But if you’re hungry to find that bug, here’s where to start:

1. If your program crashed, first look at the error in your console.

In all that red text, you’ll see a line number. Maybe “line 2” or “line
27.” This is the line of code where the crash happened. Then, you
can go find it in your editor. This is the best place to start your
bug hunt.

2. Next, check your code for spelling mistakes.

Typos happen to every programmer! Here are some of the most
common typing errors:

• Misspelling a variable name. You named your variable
“unicorn,” but later on you typed “unicrn.” You’ll get a
“NameError” in the console.

• Forgetting some punctuation. Does your if statement end with
a colon? Are the parameters of your function separated by
commas?

• Using too many, or not enough, quotation marks. In your
editor, strings have a different color than the rest of your code.
If you’re missing a quotation mark, pieces of code will have
colors that they shouldn’t!

• Forgetting to close a bracket. Every opening bracket should
have a matching closing bracket. Same thing with curly braces.

Look through your code for these spelling and punctuation
mistakes. The more you practice, the easier it gets!

3. Next, check your indentation.

Python code is organized using indents. To put a line of code
inside a for loop or an if statement, you start it with either one tab
or four spaces. But you can’t mix and match! If your indents use
both tabs and spaces, you’ll get an “IndentationError” in your
code. If this happens, delete all your indents, then re-indent with
either tabs or spaces.

4. Read over your code to see if there are any logic errors.

Maybe your program didn’t crash, but you’re not getting the
results you should. We call this a logic error. Everything is spelled
correctly, which means it’s time to dig deeper for your bug!

Maybe you forgot to write a line of code. Maybe you put code
inside a loop when it should be outside of a loop. Another very
common mistake is to use the = sign (assignment operator)
instead of the == sign (comparison operator).

Go through your code line by line. How does each line help the
program achieve its goal? Are you missing a key step?

5. Finally, try adding print statements.

When you print a variable, you display its value in the console.
Then, you can check if it’s storing the value you want! Maybe
you’re expecting a string, but the variable contains an integer. Or
maybe the list should have four elements, but it only has one.
Once you’ve printed a variable, it’s often clear how to fix your
code. Tweak your program, run it again, and see if the value is
now correct.

Print as many variables as you want. You can always delete these
lines of code when you’re done debugging. The values inside
your variables may surprise you!

Here are some common coding errors you might make when
starting out, and some quick fixes to get your code running smoothly
again:

Error What needs to be fixed?

NameError: name is not defined • You misspelled a variable name, or you forgot
to define it.

• You forgot to import a library or module.

• You defined your variable, but too low in the
program. Move the definition several lines up.

• Your function is being called before it’s
defined. Always define your functions near the
top of your code file!

SyntaxError: invalid syntax You forgot an important symbol, like a colon or a
comma. Check your functions, conditionals, loops,
and lists for missing punctuation.

SyntaxError: unexpected EOF while parsing You forgot to close a round bracket, square
bracket, or curly brace.

SyntaxError: EOL while scanning string literal The quotation marks surrounding your strings
aren’t in the right places—you might be missing
one.

TypeError: unsupported operand type You tried to add an integer to a string, add a
Boolean value to a string, or multiply two strings.
Maybe you forgot to convert a value or your
variables are storing a value you didn’t expect.

TypeError: missing required positional argument Your function call is missing an argument.

IndentationError: expected an indented block You need to indent a line (or more) of code.
Check all your if statements, for loops, while
loops, and functions.

NameError: name “true” is not defined You forgot to write a Boolean value (True or False)
with a capital letter.

You’re always skipping over a loop or a
conditional

Your condition is always False. Check the values
inside the variables used in your condition.

Your variable contains “None” You forgot to return a value in your function.

Your code always runs the first branch of your
conditional

You might be using the assignment operator (=)
instead of the equals-to operator (==).

With these tips and tricks, you’ll be a master bug hunter in no
time!

Resources

Beanz Magazine (BeanzMag.com)
Beanz is a magazine about “kids, code, and computer science.” It has
educational articles and hands-on coding activities for kids ages 5 to
18.

BrainPOP.com
The BrainPOP website has a great section about computer science
with videos, worksheets, games, and quizzes covering lots of
different subjects.

CodeCombat.com
Learn Python by playing puzzle games! This is a great way to review
your basics.

CodeWizardsHQ.com: Python for Kids
CodeWizardsHQ offers hands-on online classes for kids with a live
instructor.

Computerphile
Computerphile is a YouTube channel about “computers and
computer stuff.” The channel has videos covering lots of interesting
topics, from artificial intelligence to hacking to the history of
computer science.

HackerRank.com
The HackerRank website has plenty of hands-on coding challenges.
You can practice new coding languages or try writing games and
algorithms.

https://beanzmag.com/
https://www.brainpop.com/
https://codecombat.com/
https://codewizardshq.com/
https://www.youtube.com/user/Computerphile
https://www.hackerrank.com/

HourofPython.com
The Trinket team has collected a series of free Python activities and
challenges.

PyGame.org
PyGame is the most popular graphics library in Python. Check out the
official PyGame website for tutorials to get you started.

TutorialsPoint.com
TutorialsPoint is a website that has a tutorial for everything. You can
review the basics of Python or learn more advanced topics.

Tynker.com
Tynker.com has fun, engaging Python courses that are full of games
and puzzles.

https://hourofpython.com/
https://www.pygame.org/news
https://www.tutorialspoint.com/index.htm
https://www.tynker.com/

Glossary

algorithm: A series of precise, step-by-step instructions that solve a
problem

and operator: A logic operator that joins two Boolean expressions
into one mega-expression; both expressions must be true in order
for the mega-expression to be True.

append: Add a new item to the end of a list

argument: A value inside a function parameter

assignment operator (=): Assigns a value to a variable; not to be
confused with the equals-to operator (==)!

attribute: A variable that belongs to an object

Boolean: A data type for values that are either True or False

Boolean expression: A mathematical expression that uses variables,
values, and comparison operators. Boolean expressions must be
True or False.

bug: An error in the code; it could be a typo, a missing line of code,
or a problem with the code’s logic.

code editor/editor: The window where you write your Python code.
Often, the editor is part of your IDE.

comments: Lines of text that are ignored by the program

compiling: Transforming human code into machine code (1s and 0s)

condition: A Boolean expression used in coding structures like while
loops and conditionals; they can use both variables and values and

are either True or False.

conditional: A coding structure that decides which lines of code are
run and which lines are ignored

console: A window that displays a program’s text output; users can
also interact with a program using the console.

data structure: A tool to organize large amounts of data

data type: Determines what values the data can have, how much
space it needs in a computer’s memory, and how the data responds
to different math operators like plus (+), minus (-), multiply (*), and
divide (/).

debugging: The process of searching for a mistake in our code

dictionary: A collection of key-value pairs; the items of this data
structure aren’t ordered.

dummy value: A placeholder value used to start a loop or function;
dummy values should be replaced by real ones as soon as possible.

editor: A special text editor used to write and edit code

equals-to operator (==): A comparison operator that returns True if
two values are equal

f-string: A string that includes text and variables

file extension: A group of letters that appear after a file’s name, like
“.jpg” or “.py”; the file extension tells a computer about the file’s
format.

floating point number: A data type for decimal numbers, shortened
to “float”

for each loop: A type of loop that can be used to access each item in
a list, one at a time

for loop: A type of loop with a built-in counter; for loops only last for
a set number of rounds.

function: A block of code that completes a specific task

IDE: Stands for “integrated development environment”; an IDE is a
program that is used to edit and run code.

if-elif-else statement: A conditional structure with two or more
branches

if-else statement: A conditional structure with two branches; one of
the branches is always run by the program.

if statement: A conditional structure with a single branch

input: The information needed to start a program

integer: A data type for whole numbers, shortened to “int”

library: A folder full of code that contains useful helper functions; you
can import them to use the functions in your code. One library might
have several modules.

list: A data structure with ordered elements; it can also have repeat
elements.

loop: A tool for repeating code

math operators: Symbols used inside math equations, like plus (+),
minus (-), multiply (*), and divide (/)

method: A function that belongs to an object

module: A collection of specialized functions that can be imported
and used in a program

not-equals-to operator (!=): A comparison operator that returns True
when two values are different and False when two values are equal

not operator: A logic operator that flips the value of a Boolean
expression so that True becomes False and False becomes True

object: A user-defined data structure with attributes and methods

or operator: A logic operator that joins two Boolean expressions into
one mega-expression; at least one expression must be True in order
for the mega-expression to be True.

output: The finished product of a program

parameter: A variable created to pass input to a function; parameters
can only be accessed inside that same function.

printing: Displaying a text message in the console

running: Executing the instructions in a program, one line at a time

runtime: The time a program spends running

spaghetti code: Code that is disorganized and messy

string: A data type that stores text

syntax: The set of spelling and formatting rules for a programming
language

text prompt: A sentence that tells the user what to do

tuple: A data structure with ordered elements; once created, the
elements in a tuple can’t be changed.

variables: Tools used to store the information inside programs

while loop: A loop that uses a condition; while the condition is True,
the loop keeps going.

About the Author

Patricia Foster is a software developer from
Ottawa, Canada. Since graduating from
Carleton University in 2017, she’s tutored
students, written for magazines, and
contributed to books about programming.
She’s passionate about helping others
discover their love of computer science. You

can often find her drinking peppermint tea, petting a cat, or dancing
in an elevator—though probably not all at once.

	Title Page
	Copyright Page
	Dedication
	Contents
	How to Use This Book
	Chapter 1: Welcome to Programming!
	Chapter 2: Python: The Basics
	Chapter 3: Variables
	Walkie-Talkie Codes
	Alien Socks
	A Likely Story!

	Chapter 4: Data Types
	Kitten Party
	Lie Detector
	Bake Sale: Raise Some Dough!

	Chapter 5: Data Structures
	Pizza Pandemonium!
	My Friend, Chatbot
	Pig Latin Translator

	Chapter 6: Conditionals
	All-or-Nothing Gummy Worms
	Roller Coaster Challenge
	My New Magical Pet

	Chapter 7: Loops
	My Python Snake
	Who’s Getting Splashed?
	Find the Buried Treasure

	Chapter 8: Functions
	Quest for the Biggest Jellyfish!
	Anagram Checker
	The Whimsical Cupcake Shop

	Chapter 9: Turtle Module
	Spiraling Out of Control!
	Bungee Jump!
	Very Curious Turtles

	Chapter 10: Game On: Putting It All Together
	Spaceships and Aliens

	Code for the Road
	Bug Hunting: Troubleshooting Tips
	Resources
	Glossary
	About the Author

