9/23/2018 Regular Expressions/POSIX-Extended Regular Expressions - Wikibooks, open books for an open world

Regular Expressions/POSIX-Extended
Regular Expressions

The more advanced "extended" regular expressions can sometimes be used with Unix utilities by including the command
line flag "-E". Other Unix utilities, like awk, use it by default.

The main difference is that some backslashes are removed: \{..\} becomes {..} and \ (..\) becomes (...). Examples:

= "[hc]+at" matches with "hat", "cat", "hhat", "chat", "hcat", "ccchat" etc.
= "[hc]?at" matches "hat", "cat" and "at"
= "([cClat)|([dD]og)" matches "cat", "Cat", "dog" and "Dog"

The characters (,),[,]1,.,*,2,+,|,”, and $ are special symbols and have to be escaped with a backslash symbol in order

to be treated as literal characters. For example:
"a\. (\(]\))" matches with the string "a.)" or "a. ("

Modern regular expression tools allow a quantifier to be specified as non-greedy, by putting a question mark after the
quantifier: (\[\[.*?\]\1).

Table of metacharacters

The following metacharacters are used:

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions 1/3

9/23/2018

Metacharacter

[]

[~]

BRE:
ERE:

\n

BRE:
ERE:

BRE:
ERE:

BRE:
ERE:

BRE:
ERE:

BRE:
ERE:

BRE:
ERE:

BRE:

ERE

\(\)
()

Regular Expressions/POSIX-Extended Regular Expressions - Wikibooks, open books for an open world
Description

Matches any single character (many applications exclude newlines, and exactly which characters
are considered newlines is flavor, character encoding, and platform specific, but it is safe to
assume that the line feed character is included). Within POSIX bracket expressions, the dot
character matches a literal dot. For example, a.c matches "abc", etc., but [a.c] matches only "a",
"", or"c".

A bracket expression. Matches a single character that is contained within the brackets. For
example, [abc] matches "a", "b", or "c¢". [a-z] specifies a range which matches any lowercase
letter from "a" to "z". These forms can be mixed: [abcx-z] matches "a", "b", "c", "x", "y", or "Z", as
does [a-cx-z].

The - character is treated as a literal character if it is the last or the first (after the ~) character
within the brackets: [abc-], [-abc]. Note that backslash escapes are not allowed. The]
character can be included in a bracket expression if it is the first (after the) character: [Jabc].

Matches a single character that is not contained within the brackets. For example, [*abc]
matches any character other than "a", "b", or "c". [*a-z] matches any single character that is not
a lowercase letter from "a" to "z". As above, literal characters and ranges can be mixed.

Matches the starting position within the string. In line-based tools, it matches the starting position
of any line.

Matches the ending position of the string or the position just before a string-ending newline. In
line-based tools, it matches the ending position of any line.

Defines a marked subexpression. The string matched within the parentheses can be recalled later
(see the next entry, \n). A marked subexpression is also called a block or capturing group.

Matches what the nth marked subexpression matched, where n is a digit from 1 to 9. This
construct is theoretically irregular and was not adopted in the POSIX ERE syntax. Some tools
allow referencing more than nine capturing groups.

Matches the preceding element zero or more times. For example, ab*c matches "ac", "abc",
"abbbc", etc. [xyz]* matches "", "x", "y", "Z", "zx", "zyx", "xyzzy", and so on. \ (ab\)* (in BRE) or
(ab)* (in ERE) matches ", "ab", "abab", "ababab", and so on.

Matches the preceding element one or more times. For example, ab\+c (in BRE) or ab+c (in ERE)
matches "abc", "abbbc", etc., but not "ac", [xyz]\+ (in BRE) or [xyz]+ (in ERE) matches "x", "y",
"Z" "zx", "zyx", "xyzzy", and so on. \ (ab\)\+ (in BRE) or (ab)+ (in ERE) matches "ab", "abab",
"ababab", and so on.

Matches the preceding element one or zero times. For example, ab\?c (in BRE) or ab?c (in ERE)
matches either "ac" or "abc", while \ (ab\)\? (in BRE) or (ab)? (in ERE) matches "" or "ab".

Matches the preceding element or the following element. For example, abc\ | def (in BRE) or
abc|def (in ERE) matches either "abc" or "def".

Matches the preceding element at least m and not more than n times. For example, a\{3,5\} (in
BRE) or a{3,5} (in ERE) matches only "aaa", "aaaa", and "aaaaa".

Matches the preceding element exactly m times.

Matches the preceding element at least m times.

Matches the preceding element not more than n times. For example, ba\{,2\}b (in BRE) or
ba{,2}b (in ERE) matches only "bb", "bab", and "baab".

Character classes

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions

2/3

9/23/2018 Regular Expressions/POSIX-Extended Regular Expressions - Wikibooks, open books for an open world

The POSIX standard defines some classes or categories of characters as shown in the following table:

POSIX class similar to meaning
[:upper:] [A-Z] uppercase letters

[:lower:] [a-Z] lowercase letters

[:alpha:] [[:upper:][:lower:]] | upper- and lowercase letters
[:alnum:] [[:alpha:][:digit:]] | digits, upper- and lowercase letters
[:digit:] [0-9] digits

[:xdigit:] [0-9A-Fa-f] hexadecimal digits

[:punct:] [.,12:.] punctuation

[:blank:] [\t] space and TAB characters only
[:space:] [\t\n\r\f\v] blank (whitespace) characters
[:cntrl:] control characters

[:graph:] [~ \E\n\r\f\v] printed characters

[:print:] [A\t\n\r\f\v] printed characters and space

Links:
= W:Regular_expression#Character_classes

= Character Classes that are Always Supported (http://www.boost.org/doc/libs/1_44 0/libs/regex/doc/html/boost regex/
syntax/character_classes/std_char_clases.html) at boost.org

Use in Tools

Tools and languages that utilize this regular expression syntax include:

= AWK - uses a superset of the extended regular expression syntax

Links

= POSIX Basic Regular Expressions (http://www.regular-expressions.info/posix.html) at regular-expressions.info

= POSIX Extended Regular Expression Syntax (http://www.boost.org/doc/libs/1_44 0/libs/regex/doc/html/boost regex/s
yntax/basic_extended.html) at boost.org

Retrieved from "https://en.wikibooks.org/w/index.php?title=Regular_Expressions/POSIX-
Extended Regular_Expressions&oldid=3315722"

This page was last edited on 19 October 2017, at 12:29.

Text is available under the Creative Commons Attribution-ShareAlike License.; additional terms may apply. By using this
site, you agree to the Terms of Use and Privacy Policy.

https://en.wikibooks.org/wiki/Regular_Expressions/POSIX-Extended_Regular_Expressions 3/3

https://en.wikipedia.org/wiki/Regular_expression#Character_classes
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/boost_regex/syntax/character_classes/std_char_clases.html
https://en.wikibooks.org/wiki/AWK
http://www.regular-expressions.info/posix.html
http://www.boost.org/doc/libs/1_44_0/libs/regex/doc/html/boost_regex/syntax/basic_extended.html
https://en.wikibooks.org/w/index.php?title=Regular_Expressions/POSIX-Extended_Regular_Expressions&oldid=3315722
https://creativecommons.org/licenses/by-sa/3.0/
https://wikimediafoundation.org/wiki/Terms_of_Use
https://wikimediafoundation.org/wiki/Privacy_policy

