
10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 1/11

Bash Style Guide
Jump to bottom

Jared Casner edited this page on Oct 9, 2015 · 3 revisions

Bash coding guide
Going forward, bash scripts should be used for only very limited tasks, cron jobs or init
scripts. Anything else with complex logic should be in Python.

When to use Bash

Category one: Small scripts that set a few environment variables (typically PYTHONPATH,
PATH, AWS credentials), perhaps set up a working directory, then call a Python script to
do real work. If the python script can also do any necessary clean up after itself, the last
line of the bash script should be exec /path/to/foo.py $@ so that the shell script
wrapper inherits the python script's exit code.
Category two: Scripts with very minimal logic and are essentially just "run these half
dozen commands in order."
Category three: Cron jobs and init scripts, since they should have their environment
explicitly set instead of trusting that they will receive any custom setup. They should be
in category one.

When to stop using Bash

If you go to edit a script and there's already a TODO saying to rewrite it in Python,
rewrite it in Python no matter how trivial the changes you want to make seem.

Join GitHub today
GitHub is home to over 28 million developers

working together to host and review code,
manage projects, and build software together.

Dismiss

Sign up

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide/_history
https://github.com/join?source=prompt-wiki-show

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 2/11

If your script is longer than 50-75 lines, you should be using functions. Individual
functions should rarely be more than 20-40 lines. If you have more than a half dozen or
so functions, it is probably time to move to Python.
Functions in the script are complex enough to need local variables.
You're trying to create associative arrays (Bash's equivalent to dicts in Python)
You need data structures.
It takes more than 15 minutes Googling to figure out how to make Bash do what you
want.

Before you write or edit any bash

Read David Pashley's Writing Robust Shell Scripts article.
Read Google's Shell Programming Style Guide.
Read Bash Pitfalls.
Install shellcheck on your laptop - Shellcheck is essentially pylint for bash. Always run it
before creating a pull request for your bash scripts. There are instructions on github for
creating a binary on your machine so you don't have to use the web form at
http://www.shellcheck.net/. On OS X, shellcheck can be installed with brew install
shellcheck .
Read the Community Bash Style Guide

In addition to the above articles, keep the following rules in mind:

Scripts must always have a working shebang line.
Scripts should always be able to be called with scriptname --help so we can see useful
usage instructions without having to dig through the code.
Shebang lines must (with the exception of /bin/bash) always be #!/usr/bin/env
interpretername . This allows you to change your $PATH to get a different version of the
interpreter without having to edit every file you're working on. This is because
/usr/bin/env interpreter is independent of the Linux flavor or even whether the script

is running on Linux or OS X.
/usr/bin/env bash is preferable to /bin/sh or /bin/bash . This allows us to easily test

scripts against new versions of bash.
Never use /bin/sh , especially when it is a symlink to /bin/bash because the syntax
permitted is different when bash is invoked as /bin/sh . Also, different distributions use
different shells for /bin/sh which each have different quirks. bash is everywhere, use it
instead.
It is never ok to change a system's default version of an interpreter. For example, if a
script needs Python 2.7, use /usr/bin/env python2.7, never change /usr/bin/python to

http://www.davidpashley.com/articles/writing-robust-shell-scripts/#id2382181
https://google-styleguide.googlecode.com/svn/trunk/shell.xml
http://bash.cumulonim.biz/BashPitfalls.html
https://github.com/koalaman/shellcheck
https://github.com/koalaman/shellcheck
http://www.shellcheck.net/
https://github.com/azet/community_bash_style_guide

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 3/11

point at python2.7 if python2.6 is the OS default.
Always use set -o optionFullName format - set -o errexit instead of set -x for
example.
Always use set -o pipefail in your scripts to return a fail if any of the commands in a
pipeline fail
Always use set -o nounset to cause errors if you refer to a variable name before you
assign it a value
Scripts must have their X bit set so they can be called directly from the command line.
No one should ever have to do interpreterName script .
Always run shellcheck to lint any scripts you write/edit. If you edit a script, fix the
problems shellcheck flags even if they were already in the file when you started so we
can chip away at our technical debt.
Never use backticks to invoke other scripts. Always use $(scriptname) . Fortunately,
shellcheck will complain about this.
Keep complexity in functions. If you're doing a loop over a bunch of items, put that loop
into a function and then call the function. This makes the script a lot easier to read, and a
lot easier to debug.
xtrace is spammy. If you must use set -o xtrace , surround it in a if statement so it is
only used if $VERBOSE_DEBUG is set in the environment so we don't default to
spamming the console.
If you are not explicitly checking exit codes and coping gracefully with errors (retrying,
etc) set -o errexit so the script fails when the first command in it fails is strongly
recommended.
Avoid hardcoding paths within the script as much as possible. Better to set
NUMENTA='/opt/numenta' and refer to ${NUMENTA}/htm.it/bin and
${NUMENTA}/htm.it/conf/foo.conf . Then when testing a new version, we only have to

change one line to use a different directory tree and not collide with existing scripts
usage of that tree. This bit us on rpmbuild during the switch from Python 2.6 to 2.7 and I
don't want to deal with that hassle again.
Commands referenced inside scripts should use long argument names when available.
For example, pip --build /path/to/tempdir is clearer to read than pip -b
/path/to/tempdir if you're not familiar with all of pip's options.
It is never, ever, ok to call a script with interpreter /path/to/script from within any of
our scripts or jenkins pipelines. It is ok when you're testing from the command line if you
want to test something with a specific version of an interpreter, but any script we use in
automation (whether by Salt, packer or shell scripts), or that we install on our
instances, must have a working shebang line. If you need to change the interpreter
version used, change your $PATH .

https://github.com/koalaman/shellcheck

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 4/11

Command line tools must never have a name ending in .sh, .py or .rb! If we rewrite a
script in another language (to move from a simple bash script to a more functional
python script for example), we don't want to have to track down every reference to that
script and rename it, or worse, have a python script with a .sh extension.
If a script is making temporary files/directories, there must be a cleanup function and we
should trap (at least) SIGINT and SIGTERM to call it so we don't leave kruft around
burning disk space if the script is killed.
Always use mktemp when you need a temporary file or directory instead of rolling your
own way of making a temporary file.
It is always ok (and preferred) to spin up a temporary box for testing instead of trying to
test directly on rpmbuild. We want rpmbuild to always be able to run our production
pipeline helper scripts.
Use lock directories instead of lock files. mkdir is atomic and two simultaneous attempts
to create the same directory will have only one succeed.

Formatting:
Unless explicitly overruled below, follow Google's Shell Programming Style Guide.

Indentation

We do not use tabs for indentation in bash scripts at Numenta. As with our Python code, we
indent two spaces for each level of indentation.

No:

if [${ABC} = "def"]; then
blah foo bar
fi

for x in a b c
do
blah $x
done

Yes:

if ["${ABC}" = "def"]; then
 blah foo bar
fi

https://google-styleguide.googlecode.com/svn/trunk/shell.xml

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 5/11

for x in a b c
do
 blah $x
done

Using whitespace for clarification

As in our Python style guide, use no more than one blank line within a function to offset
logical chunks.

Line length and Long Strings

The maximum line length is 80 characters, just like in Python. If you need a string that is
longer than 80 characters, either use embedded newlines or here documents. If the string has
to be longer than 80 characters and can't sensibly be split, ok, but 80 character width is
strongly preferred.

DO use 'here document's
cat <<END;
I am an exceptionally long
string.
END

Embedded newlines are ok too
long_string="I am an exceptionally
 long string."

Variables

Bash scripts will typically have a section at the beginning where you set up variables that will
be used later in the scrip. Please list them in alphabetical order, unless they use another
variable. Variables that are used in other variables should be in a separate block before the
dependent variables.

No:

XYZ="123"
DEF="456"
PROD_D="/path/to/something"
CONF_D="${PROD_D}/conf"
ABC="${CONF_D}/foo.json"

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 6/11

Yes:

PROD_D="/path/to/something"

CONF_D="${PROD_D}/conf"

ABC="${CONF_D}/foo.json"
DEF="789"
XYZ="123"

Always quote strings containing variables or shell metacharacters when passing them to
other commands or functions.

No:

echo $foo

Yes:

echo "${foo}"

Exceptions:

Bash system variables like $? , $# , $@ , $* and $0 - $9 should not be surrounded in {}
characters. They should still be double-quoted if passed as an argument to another function
or script.

Pipelines

If a pipeline is too long to fit on one line, put one component on each line after the first,
don't do random chunking. Indent each of the subsequent lines by two spaces. Also,
remember to set -o pipefail in the beginning of your script.

Here's an example we want to format correctly

#!/bin/bash

Assume the next line is longer than 80 chars for sake of example:
abc | def | grep -e foo -e bar | jkl | mno | pqr

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 7/11

No:

#!/bin/bash

abc | def | grep -e foo -e bar | \
jkl | mno | pqr

Yes:

#!/bin/bash

set -o pipefail

abc | \
 def | \
 grep -e foo -e bar | \
 jkl | \
 mno | \
 pqr

Comments

As with Python, comments should be preceded by a blank line, and there should not be blank
lines between them and the code they are related to.

No:

blah blah blah
blah
blah
Now we foo the bar

foo bar

Yes:

blah blah blah
blah
blah

Now we foo the bar
foo bar

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 8/11

Examples:

Setting multipart environment variables:

If you're dealing with a multipart environment variable like $PATH or $PYTHONPATH , make
changes easy to read in the diffs. E.g:

PYTHONPATH=/opt/numenta/htm.it
PYTHONPATH=$PYTHONPATH:/opt/numenta/nupic
PYTHONPATH=$PYTHONPATH:/opt/numenta/anaconda/lib/python2.7/site-packages
export PYTHONPATH

is preferred to

since diffs will now highlight just the altered portion instead of highlighting the entire line.

Help text display

If a script requires arguments before it can run, it must have code that prints an error
message that includes usage if it doesn't get them. If it receives a bad argument, it should
display a list of valid arguments. It must also print the usage when it is passed the wrong
number of arguments, or is passed --help as an argument. If --help is given as the
argument, the script must not do anything other than display its usage information and
explicitly exit with a 0 error code.

Here's an example for a script that requires two arguments:

export PYTHONPATH=/opt/numenta/htm.it:/opt/numenta/nupic:/opt/numenta/anaconda/lib/pyt

#!/bin/bash

MY_NAME=$(basename $0)

print_help() {
 echo "${MY_NAME} usage:"
 echo "${MY_NAME} foo bar"
 echo
 echo "This script will blah two branches where foo is the original branch and bar is
 echo

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 9/11

or, in the case of a script that doesn't take arguments

#!/bin/bash

MY_NAME=$(basename $0)

if ["$1" == "--help"]; then
 echo "${MY_NAME} usage:"
 echo "${MY_NAME}"
 echo
 echo "This script will blah blah blah and requires no arguments"
 echo
 exit 0
fi

Command line argument parsing.

Here's an example of good command line parsing:

interactive=0
filename=~/system_page.html

print_usage() {
 echo "${MY_NAME} usage:"
 echo "${MY_NAME} -f|--file FILENAME -i|--interactive"
 echo
 echo "This script will munge a file and can be run in interactive mode."
 echo
}

If this command doesn't have default settings to run with, we should
print help info if called with no args
if [$# -eq 0]; then

}

if ["$1" == "--help"]; then
 print_help
 exit 0
fi

if [$# != 2]; then
 print_help
 exit 1
fi

10/15/2018 Bash Style Guide · numenta/numenta-apps Wiki · GitHub

https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide 10/11

 print_usage
 exit 0
fi

while ["$1" != ""]; do
 case "$1" in
 -f | --file) shift
 filename="$1"
 ;;
 -i | --interactive) interactive=1
 ;;
 -h | --help) print_usage
 exit
 ;;
 *) print_usage
 exit 1
 esac
 shift
done

How it works (cribbed from linuxcommand.org/wss0130.php):

This code is a little tricky, so bear with me as I attempt to explain it.

The first two lines are pretty easy. We set the variable interactive to zero. This will indicate
that the interactive mode has not been requested. Then we set the variable filename to
contain a default file name. If nothing else is specified on the command line, this file name
will be used.

After these two variables are set, we have default settings, in case the user does not specify
any options.

Next, we construct a while loop that will cycle through all the items on the command line
and process each one with case . The case will detect each possible option and process it
accordingly.

Now the tricky part. How does that loop work? It relies on the magic of shift .

shift is a shell builtin that operates on the positional parameters. Each time you invoke
shift , it "shifts" all the positional parameters down by one.

 Pages 19

Home

B h S l G id

Find a Page…

http://linuxcommand.org/wss0130.php#command_line_options
https://github.com/numenta/numenta-apps/wiki
https://github.com/numenta/numenta-apps/wiki/Bash-Style-Guide

