
10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 1/10

[community-driven] guide to writing useful and modern bash scripts. seriously.

CONTRIBUTING.md Update CONTRIBUTING.md 2 years ago

LICENSE add proper CC BY 4.0 plaintext legalcode 4 years ago

README.md Arrays start index with 0, awk with 1 a year ago

 README.md

Community Bash Style Guide
Formerly known as: hitchhikers guide to writing useful and modern bash scripts

Introduction

This is intended to be a community driven bash style and best practice guide. There are a lot of blog posts and articles out
there, but they do not always agree on certain issues, and mostly lack hints and best practices to achieve a specific goal (e.g.
which userland utilities to use, which built-ins can be used instead and which userland utilities you should avoid at all cost). It's
not that difficult to figure out a common strategy. so here it is.

Please participate: fork this repo, add your thoughts and experiences and open a pull request!

Here's how you write bash code that somebody else will actually understand, is unit testable and will work in different
environments no matter what. please read the mentioned articles, you will not regret it. Furthermore people that will have to
work with or maintain your scripts will not hate you in the future.

Table of Contents

1. When to use Bash and when to avoid Bash
2. Style conventions
3. Resources
4. Common mistakes and useful tricks
5. Trivia section
6. Final remarks
7. Licensing

azet / community_bash_style_guide

Join GitHub today
GitHub is home to over 28 million developers working together to host

and review code, manage projects, and build software together.

Dismiss

Sign up

 108 commits 1 branch 0 releases 9 contributors CC-BY-4.0

 master Branch: New pull request Find file Clone or download

 Merge pull request #14 from kallies/array_count Latest commit bd2a13e on Jan 10azet …

https://github.com/azet/community_bash_style_guide/blob/master/CONTRIBUTING.md
https://github.com/azet/community_bash_style_guide/commit/c59cd3a1faabf95ab524a0e729bb1e4c898ed7a5
https://github.com/azet/community_bash_style_guide/blob/master/LICENSE
https://github.com/azet/community_bash_style_guide/commit/fe7b565871c89ee87398fea7e0ddeb0e90e6d1c6
https://github.com/azet/community_bash_style_guide/blob/master/README.md
https://github.com/azet/community_bash_style_guide/commit/7b62619814aa46ddd9168b9d8b78d5863233e014
https://creativecommons.org/licenses/by/4.0/
https://github.com/azet
https://github.com/azet/community_bash_style_guide
https://github.com/join?source=prompt-code
https://github.com/azet/community_bash_style_guide/commits/master
https://github.com/azet/community_bash_style_guide/branches
https://github.com/azet/community_bash_style_guide/releases
https://github.com/azet/community_bash_style_guide/graphs/contributors
https://github.com/azet/community_bash_style_guide/blob/master/LICENSE
https://github.com/azet/community_bash_style_guide/find/master
https://github.com/azet/community_bash_style_guide/commit/bd2a13e92df23aaceea09b1e325bd3bd90ee8c38
https://github.com/azet/community_bash_style_guide/pull/14
https://github.com/azet/community_bash_style_guide/commit/bd2a13e92df23aaceea09b1e325bd3bd90ee8c38
https://github.com/azet/community_bash_style_guide/commit/bd2a13e92df23aaceea09b1e325bd3bd90ee8c38
https://github.com/azet/community_bash_style_guide/commits?author=azet
https://github.com/azet

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 2/10

When to use bash and when to avoid bash

it's rather simple:

does it need to glue userland utilities together? use bash.
does it need to do complex tasks (e.g. database queries)? use something else.

Why? You can do a lot of complicated tasks with bash, and I've had some experience in trying them all out in bash. It consumes
a lot of time and is often very difficult to debug in comparison to dynamic programming languages such as python, ruby or
even perl. You are simply going to waste valuable time, performance and nerve you could have spent better otherwise.

Style conventions

This is based on most common practices and guides available. It is also what I've seen others recommend and use and seemed
most consistent and/or logical.

This should be seen as an ongoing discussion, you might want to open an Issue in this GitHub repository if you disagree.

use the #!/usr/bin/env bash shebang wherever possible

memorize and utilize set -eu -o pipefail at the very beginning of your code:

never write a script without set -e at the very very beginning. This instructs bash to terminate in case a command or
chain of command finishes with a non-zero exit status. The idea behind this is that a proper programm should never
have unhandled error conditions. Use constructs like if myprogramm --parameter ; then ... for calls that might fail
and require specific error handling. Use a cleanup trap for everything else.
use set -u in your scripts. This will terminate your scripts in case an uninitialized variable is accessed. This is
especially important when developing shell libraries, since library code accessing uninitialized variables will fail in case
it's used in another script which sets the -u flag. Obviously this flag is relevant to the script's/code's security.
use set -o pipefail to get an exit status from a pipeline (last non-zero will be returned).

never use TAB for indentation:

consistently use two (2) or four (4) character indentation.

always put parameters in double-quotes: util "--argument" "${variable}" .

do not put if .. then , while .. do or for .. do , case .. in et cetera on a new line. this is more a tradition than
actual convention. Most Bash programmers will use that style - for the sake of simplicity, let's do as well:

if ${event}; then
 ...
fi

while ${event}; do
 ...
done

for v in ${list[@]}; do
 ...
done

never forget that you cannot put a space/blank between a variable name and it's value during an assignment (e.g. ret =
false will not work)

always set local function variables local

write clear code

never obfuscate what the script is trying to do

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 3/10

never shorten uncessesarily with a lot of commands per LoC chained with a semicolon

Bash does not have a concept of public and private functions, thus;

public functions get generic names, whereas
private functions are prepended by two underscores (RedHat convention)

try to stick to the pushd , popd , and dirs builtins for directory stack manipulation where sensible

every line must have a maximum of eighty (80) terminal columns

like in other dynamic languages, switch/case blocks should be aligned:

case ${contenders}; in
teller) x=4 ;;
ulam) c=1 ;;
neumann) v=7 ;;
esac

only trap / handle signals you actually do care about

use the builtin readonly when declaring constants and immutable variable

assign integer variables, arrays, etc. with typeset / declare (see also)

always work with return values instead of strings passed from a function or userland utility (where applicable)

write generic small check functions instead of large init and clean-up code:

both functions return non-zero on error
function is_valid_string?() {
 [[$@ =~ ^[A-Za-z0-9]*$]]
}
function is_integer?() {
 [[$@ =~ ^-?[0-9]+$]]
}

be as modular and plugable as possible and;

if a project gets bigger, split it up into smaller files with clear and obvious naming scheme

clearly document code parts that are not easily understood (long chains of piped commands for example)

try to stick to restricted mode where sensible and possible to use: set -r (not supported in old versions of Bash). Use
with caution. While this flag is very useful for security sensitive environments, scripts have to be written with the flag in
mind. Adding restricted mode to an existing script will most likely break it.

Thus, scripts should somewhat reflect the following general layout:

#!/usr/bin/env bash

AUTHORS, LICENSE and DOCUMENTATION

set -eu -o pipefail

Readonly Variables
Global Variables

Import ("source scriptname") of external source code

Functions
 `-. function local variables
 `-. clearly describe interfaces: return either a code or string

https://www.gnu.org/software/bash/manual/html_node/Directory-Stack-Builtins.html#Directory-Stack-Builtins
http://tldp.org/LDP/abs/html/declareref.html
http://www.tldp.org/LDP/abs/html/restricted-sh.html

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 4/10

Main
 `-. option parsing
 `-. log file and syslog handling
 `-. temp. file and named pipe handling
 `-. signal traps

 --
 To keep in mind:
 - quoting of all variables passed when executing sub-shells or cli tools
 - testing of functions, conditionals and flow (see style guide)
 - makes restricted mode ("set -r") for security sense here?

Silence is golden - like in any UNIX programm, avoid cluttering the terminal with useless output. Read this.

Resources

General documentation, style guides, tutorials and articles:

https://www.gnu.org/software/bash/manual/bashref.html
http://wiki.bash-hackers.org/doku.php
http://mywiki.wooledge.org/BashFAQ
https://google-styleguide.googlecode.com/svn/trunk/shell.xml
http://www.kfirlavi.com/blog/2012/11/14/defensive-bash-programming/
http://mywiki.wooledge.org/BashWeaknesses
https://github.com/docopt/docopts (see: http://docopt.org)
http://isquared.nl/blog/2012/11/19/bash-lambda-expressions
http://www.davidpashley.com/articles/writing-robust-shell-scripts/

Linting and static analysis:

http://www.shellcheck.net (https://github.com/koalaman/shellcheck)

Portability

https://github.com/duggan/shlint
http://manpages.ubuntu.com/manpages/natty/man1/checkbashisms.1.html

Test driven development and Unit testing:

https://github.com/sstephenson/bats
https://github.com/mlafeldt/sharness
https://bitheap.org/cram/
https://github.com/rylnd/shpec
https://github.com/roman-neuhauser/rnt
https://code.google.com/p/shunit2/
https://github.com/thinkerbot/ts

Profiling:

https://github.com/sstephenson/bashprof

Debugging:

set -evx and bash -evx script.sh
http://bashdb.sourceforge.net/

http://www.linfo.org/rule_of_silence.html
https://www.gnu.org/software/bash/manual/bashref.html
http://wiki.bash-hackers.org/doku.php
http://mywiki.wooledge.org/BashFAQ
https://google-styleguide.googlecode.com/svn/trunk/shell.xml
http://www.kfirlavi.com/blog/2012/11/14/defensive-bash-programming/
http://mywiki.wooledge.org/BashWeaknesses
https://github.com/docopt/docopts
http://docopt.org/
http://isquared.nl/blog/2012/11/19/bash-lambda-expressions
http://www.davidpashley.com/articles/writing-robust-shell-scripts/
http://www.shellcheck.net/
https://github.com/koalaman/shellcheck
https://github.com/duggan/shlint
http://manpages.ubuntu.com/manpages/natty/man1/checkbashisms.1.html
https://github.com/sstephenson/bats
https://github.com/mlafeldt/sharness
https://bitheap.org/cram/
https://github.com/rylnd/shpec
https://github.com/roman-neuhauser/rnt
https://code.google.com/p/shunit2/
https://github.com/thinkerbot/ts
https://github.com/sstephenson/bashprof
http://bashdb.sourceforge.net/

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 5/10

Presentations on this Document:

17/12/14: Beautiful Bash: A community driven effort by Aaron Zauner @ Vienna System Architects & DevOps/Security
Meetup Vienna

http://www.slideshare.net/a_z_e_t/inpresentation
https://github.com/azet/talks/tree/master/2014/DevOpsSec-Meetup_Vienna/beautiful_bash-17_12_2014

Common mistakes and useful tricks

Never use backticks

wrong:

`call_command_in_subshell`

correct:

$(call_command_in_subshell)

Backticks are POSIX compliant but not 100% portable (doesn't work on Solaris 10 /bin/sh for example). Backticks also cannot
be nested without being escaped (which looks just insane):

$(call_command_in_subshell $(different_command $(yetanother_as_parameter)))

Multiline pipe

instead of:

ls ${long_list_of_parameters} | grep ${foo} | grep -v grep | pgrep | wc -l | sort | uniq

do:

ls ${long_list_of_parameters} \
 | grep ${foo} \
 | grep -v grep \
 | pgrep \
 | wc -l \
 | sort \
 | uniq

..far more readable, isn't it?

Overusing grep and grep -v

please never do that. there's almost certainly a better way to express this.

for example:

ps ax | grep ${processname} | grep -v grep

versus using appropriate userland utilities:

pgrep ${processname}

http://www.slideshare.net/a_z_e_t/inpresentation
https://github.com/azet/talks/tree/master/2014/DevOpsSec-Meetup_Vienna/beautiful_bash-17_12_2014

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 6/10

Using awk(1) to print an element

stackexchange is full of this behavoir:

${listofthings} | awk '{ print $3 }' # get the third item

you may use bashisms instead:

listofthings=(${listofthings}) # convert to array
${listofthings[2]} # get the third item (start counting from 0)

Use built in variable expansion instead of sed/awk

instead of this

VAR=FOO
printf ${VAR} | awk '{print tolower($0)}' # foo

use built in expansion like this

${VAR^} # upper single
${VAR^^} # upper all
${VAR,} # lower single
${VAR,,} # lower all
${VAR~} # swap case single
${VAR~~} # swap case all

VAR=BAR
printf ${VAR,,} # bar

same thing with string replacement.

${VAR/PATTERN/STRING} # single replacement
${VAR//PATTERN/STRING} # all match replacement
Use ${VAR#PATTERN} ${VAR%PATTERN} ${VAR/PATTERN} for string removal

VAR=foofoobar
${VAR/foo/bar} # barfoobar
${VAR//foo/bar} # barbarbar
${VAR//foo} # bar

More examples and uses here: http://wiki.bash-hackers.org/syntax/pe

Do not use seq for ranges

use {x..y} instead!

e.g.:

for k in {1..100}; do
 $(do_awesome_stuff_with_input ${k})
done

the built-in range expression can do much more, see: http://wiki.bash-hackers.org/syntax/expansion/brace#ranges

Timeouts

http://wiki.bash-hackers.org/syntax/pe
http://wiki.bash-hackers.org/syntax/expansion/brace#ranges

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 7/10

The GNU coreutils program timeout(1) should be used to timeout processes:
https://www.gnu.org/software/coreutils/manual/html_node/timeout-invocation.html

caveat: timeout(1) might not be available on BSD, Mac OS X and UNIX systems.

Please use printf instead of echo

the bash builtin printf should be preferred to echo where possible. it does work like printf in C or any other high-level
language, for reference see: http://wiki.bash-hackers.org/commands/builtin/printf

Bash arithmetic instead of expr

bash offers the whole nine yards of arithmetic expressions directly as built-in bashisms.

DO NOT USE expr

for reference see:

http://wiki.bash-hackers.org/syntax/arith_expr
http://www.softpanorama.org/Scripting/Shellorama/arithmetic_expressions.shtml

Never use bc(1) for modulo operations

it will come to hurt you, trust me.

bc(1) does not properly handle modulo operations most of the time: https://superuser.com/questions/31445/gnu-bc-
modulo-with-scale-other-than-0

FIFO/named pipes

if you do not know what a named pipe is, please read this: http://wiki.bash-hackers.org/howto/redirection_tutorial

disown

disown is a bash built-in that can be used to remove a job from the job table of a bash script. for example, if you spawn a lot
of sub processes, you can remove one or multiple of these processes with disown and the script will not care about it
anymore.

see: https://www.gnu.org/software/bash/manual/bashref.html#index-disown

Basic parallelism

usually people use & to send a process to the background and wait to wait for the process to finish. people then often use
named pipes, files and global variables to communicate between the parent and sub programs.

xargs

for file-based in-node parallelization, xargs is the easiest way to parallelize the processing of list elements.

simple example: replace all occurences of "foo" with "bar" in ".txt" files
will process each file individually and up 16 processes in parallel
find . -name "*.txt" | xargs -n1 -P16 -I{} sed -i 's/foo/bar/g' {}

complex example: HDF5 repack for transparent compression of files
find all ".h5" files in "${dirName}" and use up to 64 processes in parallel to independently compress them
find ${dirName} -name "*.h5" | xargs -n1 -P64 -I{} \
 sh -c 'echo "compress $1 ..." && \
 h5repack -i $1 -o $1.gz -f GZIP=1 && mv $1.gz $1' _ {}

coproc and GNU parallel

https://www.gnu.org/software/coreutils/manual/html_node/timeout-invocation.html
http://wiki.bash-hackers.org/commands/builtin/printf
http://wiki.bash-hackers.org/syntax/arith_expr
http://www.softpanorama.org/Scripting/Shellorama/arithmetic_expressions.shtml
https://superuser.com/questions/31445/gnu-bc-modulo-with-scale-other-than-0
http://wiki.bash-hackers.org/howto/redirection_tutorial
https://www.gnu.org/software/bash/manual/bashref.html#index-disown

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 8/10

coproc can be used instead to have parallel jobs that can easily communicate with each other: http://wiki.bash-
hackers.org/syntax/keywords/coproc

another excellent way to parallelize things in bash, especially for easy distribution over multiple hosts via SSH, is by using GNU
parallel: https://www.gnu.org/software/parallel/parallel_tutorial.html

Trapping, exception handling and failing gracefully

trap is used for signal handling in bash, a generic error handling function may be used like this:

readonly banner="my first bash project >>"
function fail() {
 # generic fail function for bash scripts
 # arg: 1 - custom error message
 # arg: 2 - file
 # arg: 3 - line number
 # arg: 4 - exit status
 echo "${banner} ERROR: ${1}." >&2
 [[${2+defined} && ${3+defined} && ${4+defined}]] && \
 echo "${banner} file: ${2}, line number: ${3}, exit code: ${4}. exiting!"

 # generic clean up code goes here (tempfiles, forked processes,..)

 exit 1
} ; trap 'fail "caught signal"' HUP KILL QUIT

do_stuff ${withinput} || fail "did not do stuff correctly" ${FILENAME} ${LINENO} $?

Trapping on EXIT instead of a specific signal is particularly useful for cleanup handlers since this executes the handler
regardless of the reason for the script's termination. This also includes reaching the end of your script and aborts due to set -
e .

You don't need cat

sometimes cat is not available, but with bash you can read files anyhow.

batterystatus=$(< /sys/class/power_supply/BAT0/status)
printf "%s\n" ${batterystatus}

Also avoid cat where reading a file can be achieved through passing the file name as a parameter. Never do cat ${FILENAME}
| grep -v ... , instead use grep -v ... ${FILENAME} .

locking (file based)

flock(1) is an userland utility for managing file based locking from within shell scripts. It supports exclusive and shared locks.

Mutex (Mutual Exclusion)

mutex, although rather complex, is possible, too: http://wiki.bash-hackers.org/howto/mutex

Use the getopt builtin for command line parameters

printf "This script is: %s\n" ${0##/*/}

[["${#}" == 0]] && {
 # no arguments
 printf "No options given: %s\n" ${OPTIND}
 exit 1
}

http://wiki.bash-hackers.org/syntax/keywords/coproc
https://www.gnu.org/software/parallel/parallel_tutorial.html
http://wiki.bash-hackers.org/howto/mutex

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 9/10

log="" # numeric, log
table="" # single fill
stores=() # array

: after a letter is for string into parameter
while getopts ":dhls:t:" opt; do
 case "${opt}" in
 d) set -x ;;
 h) printf "Help page\n" ; exit ;;
 s) stores[${#stores[*]}]="${OPTARG}" ;;
 t)
 if [-z "${table}"]; then
 table="${OPTARG}"
 fi
 ;;
 l) ((log++)) ;;
 *)
 printf "\n Option does not exist: %s\nOne option\n" ${OPTARG}
 exit 1
 ;;
 esac
done

set debug if log is more than two
[["${log}" >= 2]] && {
 set -x ; log=""
}
[["${log}" == ""]] && unset log

Trivia section

This section outlines stuff that can be done in Bash but is not necessarily a good idea to do in Bash - might still come in handy
for some corner cases or for curious Bash hackers, I've chosen to include that information.

Anonymous Functions (Lambdas)

Yup, it's possible. But you'll probably never need them, in case you really do, here's how:

function lambda() {
 _f=${1} ; shift
 function _l {
 eval ${_f};
 }
 _l ${*} ; unset _l
}

Using sockets with bash

although i do not really recommend it, it's possible to do simple (or even complex) socket operations in bash using the
/dev/tcp and /dev/udp pseudo-devices: http://wiki.bash-hackers.org/syntax/redirection

example:

function recv() {
 local proto=${1} # tcp or udp
 local host=${2} # hostname
 local port=${3} # port number
 exec 3<>/dev/${proto}/${host}/${port}
 cat <&3
}

function send() {
 local msg=${1}

http://wiki.bash-hackers.org/syntax/redirection

10/15/2018 GitHub - azet/community_bash_style_guide: [community-driven] guide to writing useful and modern bash scripts. seriously.

https://github.com/azet/community_bash_style_guide 10/10

 echo -e ${msg} >&3
}

[...]

you may consider using nc (netcat) or even the far more advanced program socat :

http://www.dest-unreach.org/socat/doc/socat.html
http://stuff.mit.edu/afs/sipb/machine/penguin-lust/src/socat-1.7.1.2/EXAMPLES

Foreign Function Interface

Tavis Ormandy wrote a FFI for Bash. You can directly access function from shared libraries in bash using ctypes.sh . It's a nice
hack, but use is somewhat discouraged. Use userland utilities.

ctypes.sh

Final remarks

Every contribution is valuable to this effort. I'll do my best to incorporate all positive and negative feedback, criticism and am,
of course, looking forward to people opening issues and pull requests for this project.

Please spread the word!

Licensing

This project is licensed under a Creative Commons Attribution 4.0 International License.

The full legal code is contained in the LICENSE file distributed with this repository.

http://www.dest-unreach.org/socat/doc/socat.html
http://stuff.mit.edu/afs/sipb/machine/penguin-lust/src/socat-1.7.1.2/EXAMPLES
https://github.com/taviso/ctypes.sh
https://creativecommons.org/licenses/by/4.0/
https://camo.githubusercontent.com/005cfe27b7c4520ac0d6b607d6a7e33f5ad4eb6e/68747470733a2f2f692e6372656174697665636f6d6d6f6e732e6f72672f6c2f62792f342e302f38387833312e706e67

